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Abstract— An output-feedback sliding mode controller is
proposed for uncertain plants with relative degree higher
than one in order to achieve asymptotic exact tracking of
a reference model. To compensate the relative degree, a
lead filter scheme is proposed such that global stability and
asymptotic exact tracking are obtained. The scheme is based
on a convex combination of a linear lead filter with a robust
exact differentiator, based on second order sliding modes.
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I. INTRODUCTION

Robustness and adaptation are the main trends to cope with
systems with poor modeling or large uncertainties, including pa-
rameter variations, unmodeled dynamics and external disturbances.
An important technique to control systems under large uncertain-
ties, effective in several practical applications in engineering, is
variable structure control based on sliding modes, or, for short,
sliding mode control (SMC).

Recently, a growing number of research papers about the sub-
ject, both on theoretical and application grounds can be observed.
The power of the SMC to deal with nonlinear plants together with
newly introduced concepts like terminal sliding mode control [3],
higher order sliding modes [11], [2] and also the progress in output
feedback SMC [10], [9], [1], [14], have significantly widened the
range of applicability of SMC.

In the recent papers [13], [14], interesting output feedback
SMCs based on higher order sliding were proposed for plants of
arbitrary relative degree. The main idea that allowed the comple-
tion of the feedback control scheme was the so called robust exact
differentiator introduced in [12]. The class of controllers, based on
exact differentiators, may lead to exact output tracking but, so far,
stability or convergence has been proved only locally [14].

On the other hand, an earlier output feedback SMC scheme,
named, VS-MRAC (Variable structure Model Reference Adaptive
Control), introduced in [7], [10] has the capability of guaranteeing
global exponential stability. However, for plants of relative degree
higher than one, the tracking error becomes arbitrary small but not
necessarily zero.

This paper represents a preliminary attempt to achieve global
stability and asymptotic exact tracking controllers using exact dif-
ferentiators. To this end, we have restricted the detailed theoretical
development to SISO (single-input/single-output) uncertain linear
plants of relative degree two. Extension to higher relative degree
seems quite immediate using the differentiators introduced in [2],
[14], while extension to nonlinear plants could be done using the
recent extensions of the VS-MRAC to MIMO (multi-input/multi-
output) and nonlinear plants [9], [8].
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II. PRELIMINARIES

Prior to developing the theoretical content of the paper, it
is important to clarify some notation which might otherwise
lead to some confusion. Here, similarly to adaptive control lit-
erature, a dual time-domain/frequency domain notation is often
adopted. Rigorously, one should use “s” for the Laplace variable
(frequency-domain) and “p” for the differential operator “d/dt”.
However, for the sake of simplicity, the symbol “s” will here
represent either the Laplace variable or the differential operator
(d/dt), according to the context.

Some further notation is also introduced, according to [10]:
a) In what follows, all K’s denote positive constants, operator

norms (||H||) are L∞ induced norms, π(t) is an exponentially
decaying function (i.e. |π(t)|≤Re−λt, for some positive scalars
λ, R and ∀t).

b) Operators and convolution operators: Refer to ([10], [15])
for precise meaning of mixed time domain (state-space) and
Laplace transform domain (operator) representations.

III. PROBLEM STATEMENT

Consider an uncertain SISO LTI plant with known relative
degree n∗ and transfer function Gp(s) = KpNp(s)/Dp(s), where
deg(Dp) = n, with input u and output yp. The reference model,
having input r and output ym, also has relative degree n∗ and
is given by M(s) = Km/Dm(s), where deg(Dm) = n∗,
Np, Dp, Dm are monic polynomials and Dm(s) is a Hurwitz
polynomial.

The main objective is to find a control law u(t) such that the
output error e0 := yp − ym tends asymptotically or in finite time
to zero, for arbitrary initial conditions and uniformly bounded
arbitrary piecewise continuous reference signals r(t).

The control input u can be parameterized as u(t) = θT ω(t),
where θ ∈ IR2n is the parameter vector and ω ∈ IR2n is the
regressor vector obtained from input and output state variable
filters [6].

Considering the usual MRAC design assumptions, the error
equations for a plant under the action of an input disturbance de,
is of the form (see [6][10] for details)

State-Space form: ė = Ace + k∗bc(u + Ū ) (1)

e0 = hT
c e;

I/O form: e0 = k∗M(s)[u + Ū ] (2)

where k∗ = Kp/Km , Ū = −u∗ + Wdde, u = u∗ = θ∗T ω is the
ideal control signal which matches the plant to the model (with
de = 0), Wd(s)=[k∗M(s)]−1W̄d is proper and stable and W̄d(s)
is the closed-loop transfer function from the input disturbance de

to e0 with u = u∗ (see [10] for details). The input disturbance
is assumed to be piecewise continuous or locally integrable and
uniformly bounded. It is also assumed that an instantaneous upper
bound d̄e(t) of de(t) is known, satisfying d̄e(t) ≥ |de(t)| (∀t).

From the control parameterization u(t) = θT ω(t), we now
make the following assumption on the class of admissible control
laws. The control signal satisfies the inequality

sup
t

|u(t)| ≤ Kω sup
t

||ω(t)|| + Kδ; ∀t (3)



where Kω, Kδ are positive constants. This assumption guarantees
that no finite time escape occurs in the system signals. Indeed,
in this case the system signals will be regular and therefore can
grow at most exponentially [15]. This bound guarantees that all
systems signals are in L∞e.

IV. VARIABLE STRUCTURE MODEL REFERENCE

ADAPTIVE CONTROL (VS-MRAC)

When the relative degree of the plant is n∗ = 1, the main idea
of the VS-MRAC is to close the error loop with an appropriate
modulated relay, i.e. u = −f(t)sign(e0). In this case, the
reference-model M(s) can be chosen strictly positive real (SPR),
so that an ideal sliding loop (ISL) [5] is formed around the relay
function.

Figure 1 presents the block diagram of the VS-MRAC for
n∗ = 1. The control signal u can be generated with a modulation
function satisfying

f(t) ≥ |u∗| + |Wdde| + δ (4)

where δ is an arbitrary positive constant. This modulation function
guarantees that the above scheme is globally exponentially stable
and the output error e0 becomes identically zero after some finite
time, according to Lemma 1 in [10].

−

+

+

+

PSfrag replacements

Relay

M

f

Plant

Model
ymr

yp e0u Gp

de

−1

Fig. 1. VS-MRAC for n∗ = 1.

Consider the parameter uncertainty upper bound vector θ̄T

defined as θ̄T = [θ̄1 · · · θ̄2n], with θ̄i > |θ∗
i |. In order to satisfy

(4) the modulation function f(t) can be implemented as follows:

f(t) = θ̄T |ω(t)| + d̂e(t) + δ (5)

where |ω(t)|T = [|ω1(t)| , · · · , |ω2n(t)|], d̂e(t) is an upper bound
for |Wdde(t)| and is obtained from d̄e ≥ |de(t)| filtered by a first
order filter i.e. d̂e(t) = ke

p+γ
d̄e where γ = mink |Re(pk)|, with

pk being the poles of Wd (for details see Lemma 3 in [10]).
For the case of plants with relative degree n∗ > 1 the reference

model transfer function cannot be chosen SPR. For simplicity
consider only the case n∗ = 2. To overcome the relative degree
problem we propose the scheme of Figure 2, named LF/VS-
MRAC, where

D(s) = s/F (τs),

with F (τs) being a Hurwitz polynomial in τs, deg(F ) = l and
F (0) = 1. As τ tends to zero the transfer function from e0 to ē0,
namely, La(s) = D(s)+γ approximates the polynomial operator
L(s) = s + γ. Therefore the scheme depicted in Figure 2 ap-
proximately compensates the excess of relative degree. Moreover,
for convenience, it is assumed that ML(s) = Km/(s + am). An
additional signal βα(t) has also been introduced in the control
loop and, for the time being, it will be regarded as a bounded
disturbance. Later on, we will synthesize the signal βα(t) in order
to achieve asymptotic exact tracking.
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Fig. 2. VS-MRAC using a linear lead filter for relative degree compen-
sation, with an uniformly bounded output measurement error.

A. Stability Analysis
In what follows the stability analysis of the LF/VS-MRAC will

be presented. It should be stressed that Filippov’s definition of
solution for differential equations with discontinuous right-hand
sides is assumed [4]. Note that u or de are not necessarily functions
of t in the usual sense when sliding modes take place. In order
to avoid clutter, we will denote by u(t) and de(t) the locally
integrable functions which are equivalent to u and de, respectively,
in the sense of equivalent control, along any given Filippov
solution of the closed-loop system. It should be stressed that
Filippov solution is, by definition, absolutely continuous. Then,
along any such solution, u or de can be replaced by u(t) or de(t)
respectively, in the right-hand side of the governing differential
equations. Although the equivalent control u(t) = ueq(t) is not
directly available, filtering u with any strictly proper filter G(s)
gives G(s)u=G(s)u(t)=G(s)ueq(t).

From Fig. 2, one has

ē0 = (γ + D)e0 (6)

which, from (2), can be rewritten as (in fact, immersed)

ē0 = k∗ML[u + Ū ] + βŪ + βu (7)

where
βŪ = − [k∗M (F − 1) D] Ū (8)

βu = − [k∗M (F − 1) D] u (9)

Note that the transfer function M(s) [F (τs)− 1] D(s) is BIBO
stable and strictly proper.

The auxiliary error ẽ0 is given by

ẽ0 = ē0 + βα (10)

where |βα(t)| is a bounded disturbance.
From now on, let z denote the full error state vector of

the system (1)(7)-(9). In order to fully account for the initial
conditions, it is convenient to partition z as

zT = [(z0)T , zT
e ] zT

e = [eT , ēT ]

where ēT = [ē1, . . . , ēl] correspond to the state vector of the
lead filter, and similarly as in [10], z0 denotes the transient state
corresponding to operators Wd and M(s) [F (τs)− 1] D(s). In
what follows, EXP and EXP 0 denote any term of the form
K ||z(0)|| e−at and K

∣
∣
∣
∣z0(0)

∣
∣
∣
∣ e−at, respectively, where a is some

(generic) positive constant [5].
The following proposition characterizes the convergence prop-

erties of the error ē0(t).

Proposition 1: Consider the error equation (7), with u =
−f(t)sign(ẽ0). If the relay modulation function f(t) is defined as
in (5), ML(s) is of the form ML(s) = Km/(s+am) (Km, am >
0) and |βα(t)| ≤ τKR then,

|ē0(t)| ≤ τKē0C(t) + EXP, ∀t ≥ 0 (11)



where Kē0 > 0 is a constant, τ is the time constant of F−1 and

C1(t) = sup
t

||ω(t)|| ; C(t) = KθC1(t) + Kβ (12)

for some constants Kθ , Kβ > 0. (Proof: see Appendix.)

The stability result can be stated in the following theorem:

Theorem 1: Consider the system (1)(6)(10), with u =
−f(t)sign(ẽ0). Assume that (4) is satisfied. If ML(s) =
Km/(s+am) (Km, am > 0). Then, for sufficiently small τ > 0,
the complete error system, with state z, is globally exponentially
stable with respect to a residual set of order τ , i.e., there exist
positive constants Kz and a such that ∀z(0), ∀t ≥ 0, ||z(t)|| ≤
Kze−at ||z(0)|| + O(τ ). (Proof: see [10].)

The following corollaries will be useful in the theoretical
analysis presented in section VI.

Corollary 1: For all R > 0, ∃ τ > 0 sufficiently small such
that for some finite T ,

||z(t)|| < R, ∀t ≥ T (13)

Corollary 2: The signal ë0(t) is bounded, i.e., there exists a
positive constant Ka such that

|ë0(t)| ≤ Ka, ∀ t ≥ 0

(Proof: see Appendix)

The drawback of this approach is that the system only guaran-
tees error convergence to a residual set of order τ and thus the
chattering phenomena may arise.

V. ROBUST EXACT DIFFERENTIATOR (RED)

To circumvent the above problem we will consider the following
differentiator based on second-order sliding-mode, proposed in
[12]

ẋ = v

v = u1 − λ|x − e0(t)|
1/2sign(x − e0(t))

u̇1 = −αsign(x − e0(t))
(14)

where e0(t) is a measurable locally bounded input signal, α, λ > 0
and v(t) is the output of the differentiator.

Let e0(t) be a signal having derivative with Lipschitz constant
C2. If the following sufficient conditions

α > C2, λ2 ≥ 4C2
α + C2

α − C2
(15)

are satisfied, then the output v(t) converges to ė0(t) in a finite
time. This result is formally stated in the following Theorem

Theorem 2: Consider system (14). Let α and λ be such that
inequality (15) is satisfied. Then, provided e0(t) has a derivative
with Lipschitz’s constant C2 or bounded second derivative, the
equality v(t) = ė0(t) is fulfilled identically after a finite-time
transient process. (Proof: see [12])

This differentiator can provide, in absence of noise, the exact
derivative. In the presence of noise the RED has accuracy propor-
tional to the square root of the noise magnitude.

Another important aspect that must be pointed out is the fact
that the state of the RED cannot escape in a finite time, provided
the input signal has bounded second derivative, even if (15) does
not hold. This result is stated in the following Lemma.

Lemma 1: Consider system (14). If |ë0(t)| ≤ Ka ∀t, for some
positive constant Ka, then the system state cannot diverge in finite
time (Proof: see appendix)

VI. VS-MRAC BASED ON A GLOBAL ROBUST EXACT

DIFFERENTIATOR (GRED)
In sections IV and V two solutions for derivative estimation

were discussed. The lead filter, proposed in Section IV, leads to
global stability, but cannot provide exact derivative. On the other
hand the RED, proposed in section V, can give the exact derivative.
However, when used in a feedback loop, only local convergence
properties can be guaranteed since the boundedness condition (15)
may not be valid for any initial conditions.

The idea is to combine both estimators in order to accomplish
the following tasks:

• To globally drive the system trajectories into an invariant
compact set DR in some finite time.

• To drive the full error state asymptotically to zero
Here we propose a control scheme, named GRED/VS-MRAC

(see Fig. 3), based on a weighted switching scheme in order to
achieve global asymptotic convergence of the full error state to
zero. In this scheme the derivative of the output error e0 can be
estimated using either the lead filter or the RED.
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The block composed by the lead filter and the RED, denoted
by Global Robust Exact Differentiator (GRED), can be seen as
a single differentiator with input e0 and output êg given by the
convex combination

êg = α(ẽrl)êl(t) + [1 − α(ẽrl)] êr (16)

where êl and êr are estimations of ė0 provided by the lead filter
and the RED respectively and ẽrl = êr − êl. The switching
function α(ẽrl) is a continuous, state dependent modulation which
allows the controller to smoothly change between both estimators.
This function assumes values in the set [0, 1] and it will be defined
later on.

The estimate given by the lead filter and the RED can be written
as follows

êl(t) = ė0(t) + εl(t) (17)

êr(t) = ė0(t) + εr(t)

where εl(t) and εr(t) are estimation errors of the lead filter and
the RED respectively.

From (17), equation (16) can be rewritten as

êg(t) = ė0(t) + ε(t) (18)

where
ε(t) = α(ẽrl)εl(t) + [1 − α(ẽrl)] εr(t) (19)

Thus, the error ẽ0 (see Fig. 3) can be written as

ẽ0(t) = ė0 + γe0 + ε(t) (20)



The estimation error ε(t) can be considered as an output
measurement error. Thus we can define the following auxiliary
error

ê0 := ė0 + γe0 (21)

From (21) and considering system (1) (with relative degree
two), we can describe the GRED/VS-MRAC as follows.

State-Space form: ė = Ace + k∗bc(u + Ū) (22)

ê0 = ĥT e

I/O form: ê0 = k∗M(s)L(s)[u + Ū ] (23)

u = −f(t)sign(ê0 + ε) (24)

Since, by assumption, M(s)L(s) = Km/(s + am), the system
{Ac, bc, ĥ

T } is SPR.
We now propose a switching law for α(.) in order to guarantee

global stability and to ensure that the full error state converges to
zero. To this end, the lead filter must be fully activated, when the
system state is far from the equilibrium, so as to drive the system
close to the origin. Then, after a finite time transient the RED
takes over, providing exact estimation. In order to avoid “nested”
discontinuities (outside the scope of Filippov’s theory), we choose
the following (continuous) weighted switching law for α:

α(ẽrl)=

{
0, for |ẽrl| < εM − c

(|ẽrl|−εM +c)/c, for εM −c≤|ẽrl|<εM

1, for |ẽrl| ≥ εM

(25)

where 0 < c < εM and

εM = τKR (26)

where KR is an appropriate positive constant.

Proposition 2: Consider the estimation error ε(t) defined in
(19). Using the above weighted switching function α, ε(t) can
be rewritten as

ε(t) = εl(t) + βα(ẽrl(t)) (27)

where βα(ẽrl(t)) is absolutely continuous in t and uniformly
bounded by

|βα(ẽrl(t))| < εM , ∀t ≥ 0 (28)

(Proof: see Appendix.)

According to Proposition 2, for the switching function (25),
the GRED can be seen as a lead filter with transfer function D(s)
plus an output measurement error βα(ẽrl). Hence, the system can
be represented as in Fig. 2 and, consequently, Theorem 1 holds
if all signals in the system are defined for all t, that is, belong
to L∞e. In order to show that the latter condition is true for the
system with the GRED block, we only have to show that the
signals in the block RED are in L∞e. This argument can be proved
by contradiction as follows. Suppose that the maximal interval of
finiteness of the signals in the RED is [0, TM ). During this interval,
all conditions of Theorem 1 hold and thus all signals of the
remaining subsystems of the GRED/VS-MRAC are bounded by
a constant, and in particular |ë0(t)|, from Corollary 2. This leads
to a contradiction with Lemma 1 whereby, the signals in RED
could not diverge unboundedly as t → TM . As a consequence of
the continuation theorem for differential equations (in Filippov’s
theory), TM must be ∞, which means that all signals are defined
∀t > 0.

Therefore, according to Theorem 1 the full error system with
state z is globally exponentially stable with respect to a residual
set of order τ .

Now, we will analyze the convergence of the RED. In order to
apply Theorem 2 we have to find an upper bound to the signal
ë0(t).

According to Corollary 1 the full error state is steered to an
invariant compact set DR := {z : ||z(t)|| < R} in some finite
time T1 ≥ 0.

After the error state enters the set DR the signal ë0(t) can be
bounded according to the following Proposition.

Proposition 3: Consider the control scheme of the GRED/VS-
MRAC, represented by (22)(24)(19), with α(ẽrl) defined in (25).
The modulation function f(t) is defined as in (5). If ||e(t)|| <
R, ∀t > T1 then,

sup
t≥T1

|ë0(t)| ≤ C2 (29)

(Proof: see Appendix.)

Since the RED is time invariant its initial conditions can be
considered in t = T1. According to Lemma 1 the initial conditions
are finite. If the parameters α and λ were adjusted, satisfying
condition (15), then from Theorem 2 the estimation error εr(t)
converges to zero in a finite time T2. This convergence result is
formally stated in the following Lemma.

Lemma 2: Consider the system (22) (24) (19), with the switch-
ing function defined in (25). The modulation function f(t) is
defined as in (5). If condition (15) is satisfied, for C2 given by
proposition 3, then êr(t) = ė0(t) after some finite time T2.

From Lemma 2 the estimation error εr(t) becomes zero after
some finite time. Thereafter, the RED will remain active if the
threshold εM is chosen larger than the upper bound of the residual
estimation error of the lead filter.

One suitable way to do this is to choose εM such that εM >
ε̄l+c, where ε̄l is the upper bound of the lead filter estimation error
εl(t) when the error state is within the invariant compact set DR.
This upper bound is characterized in the following proposition.

Proposition 4: Consider the system (22) (24) (19), with the
switching function defined in (25). The modulation function f(t)
is defined as in (5). The lead filter estimation error εl(t) can be
bounded for t ≥ T1 by

lim
t→∞

sup
ts≥t

|εl(ts)| < ε̄l (30)

where ε̄l = τKlC2, Kl is a positive constant and C2 is defined
in Proposition 3. (Proof: see Appendix.)

If εM is chosen appropriately, then the weighted switching
function α(ẽrl)=0,∀t≥T2, which implies that ε(t)=0,∀t≥T2.
In this case an ideal sliding loop is formed and applying Lemma
1 in [10] to system (22) (24), with f(t) defined as in (5), one can
conclude that the error state e will converge exponentially to zero
and the output error ê0 becomes identically zero after some finite
time.

Since F (τs) is a Hurwitz polynomial and the tracking error
e0(t) converges exponentially to zero, one can conclude that the
lead filter state vector ē will also converges exponentially to zero,
which implies that after some finite time the full error state z
converges exponentially to zero. The convergence properties of
the proposed system concluded above can be formalized in the
following Theorem.

Theorem 3: (Main Result) Consider the error system of the
GRED/VS-MRAC, depicted in Fig. 3, with switching function α
defined in (25) and modulation function f(t) defined in (5). If KR

is such that εM = τKR satisfies

εM > ε̄l + c, (31)

then, for sufficiently small τ > 0, the full error system with state
z is globally exponentially stable with respect to a residual set of



order τ . Moreover after some finite time the derivative estimation
becomes exact and only given by the RED (α(ẽrl) = 0), and the
full error state z, as well as the output tracking error e0(t) tend
exponentially to zero.

VII. SIMULATION RESULTS

This section presents some illustrative simulation examples
which highlights the performance of the proposed control scheme.

Case 1: Uncertain plant with relative degree (n∗ = 2)
The plant is considered unknown and is given by Gp(s) =

2
(s+1)(s−2)

. The reference model is chosen to be M(s) = 2
(s+2)2

.
We consider de(t) = sqw(5t), where sqw denotes a unit square

wave and r(t) = sin(0.5t). The modulation function is given by
f(t) = θ̄T |ω| + fo, where θ̄T = [6, 10, 2, 2] and fo = 1.5.
Other design parameters are: L(s) = s + 2; RED : α = 1.1C2;
λ = 0.5C

1/2
2 ; C2 = 30; lead filter: F (τs) = (τs+1)2; τ = 0.02;

plant initial conditions: yp(0) = 10; ẏp(0) = 5
As shown in Fig 4, if the velocity is estimated using only

the lead filter, i.e. α(ẽrl) = 1, the output tracking error do not
converges to zero. As was expected using the GRED very precise
tracking is achieved even in the presence of large disturbance
de(t). In this case an ideal sliding loop is obtained.
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For the above parameters and conditions, if only the RED is
used for velocity estimation (α(ẽrl) = 0) the system becomes
unstable (see Fig. 6)
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Fig. 6. System instability when only the RED is used for velocity
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Case 2: Uncertain plant (n∗ = 2) with unmodeled dynamics
In this case we consider the same example of case 1 ex-

cept for the plant which includes an unmodeled dynamic, i.e.

Gp(s) = 1
(µs+1)

[
2

(s+1)(s−2)

]

, where µ = 0.1 was chosen for

simulation purposes. The same control design (for the nominal

plant G0
p(s) =

[
2

(s+1)(s−2)

])

is considered. The plant initial

conditions are: yp(0) = 1 and ẏp(0) = 5.
As shown in Fig. 7, the tracking performance of the control

scheme using the GRED for velocity estimation is clearly superior

to that obtained using only the lead filter, which demonstrates the
robustness of the proposed scheme. This result motivates further
research to investigate the influence of unmodeled dynamics on
the proposed controller.
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VIII. CONCLUSIONS
In this paper, an output feedback sliding mode controller for

uncertain plants with relative degree higher than one is proposed.
The presented controller uses a convex combination of a linear lead
filter with a robust exact differentiator in order to achieve global
stability and asymptotic exact tracking of a model reference. One
key element that has allowed the solution of the problem with only
output feedback was the error ẽrl, i.e., the difference between
the velocity estimates provided by the RED and the lead filter.
The detailed theoretical analysis has been restricted to uncertain
plants of relative degree two. The extension to arbitrary relative
degree will be presented in a future work. Simulation results are
presented to validate the analysis and to illustrate the robustness
of the proposed scheme to external disturbances and unmodeled
dynamics.

APPENDIX

Proof of Proposition 1: From (7) and (10), one has

ẽ0 = k∗ML[−f(t)sign(ẽ0) + Ū ] + βŪ + βu + βα (32)

where βŪ and βu are defined in (8) and (9) respectively, and |βα| ≤ τKR.
According to assumption (3), one can also choose the constants Kθ ,Kβ

such that supt

∣
∣Ū(t)

∣
∣ ≤ C(t). Then, from (8), one has

sup
t

∣
∣βŪ (t)−β0

Ū
(t)

∣
∣≤||k∗M (F − 1) D||

︸ ︷︷ ︸

O(τ)

C(t)=τKβŪ
C(t) (33)

From (9) and (3) one has

sup
t

∣
∣βu(t)−β0

u(t)
∣
∣≤||k∗M (F − 1) D||

︸ ︷︷ ︸

O(τ)

C(t)=τKβu
C(t) (34)

It is straightforward to conclude that

sup
t

|βŪ (t)| ≤ τKβŪ
C(t) + EXP 0 (35)

sup
t

|βu(t)| ≤ τKβu
C(t) + EXP 0 (36)

Since |βα| ≤ τKR, for appropriate constants Kθ and Kβ , one has

sup
t

|βα(t)| ≤ τKβα
C(t) (37)

Using the results obtained in (35), (36) and (37), if f(t) ≥
∣
∣Ū

∣
∣,

applying Lemma 2 in [10] to (32), one has |ẽ0| ≤ τKẽ0
C(t) + EXP ,

which implies, from (10), that

|ē0| ≤ τKē0C(t) + EXP (38)



Proof of Proposition 2: Consider the switching function proposed in (25)
there are three possible cases:

Case 1: (|ẽrl| ≥ εM )
In this case α(ẽrl) = 1, then, from (19), one has ε(t) = εl(t). Thus

βα(ẽrl) = 0, satisfying condition (28)
Case 2: (εM − c ≤ |ẽrl| < εM )
In this case the following statement can be made

|ẽrl| = εM − δ1(ẽrl) (39)

where
0 < δ1(ẽrl) ≤ c (40)

Substituting (39) in (19), using (25), one can rewrite

ε(t) = εl + βα(ẽrl)

where:

βα(ẽrl) = ± δ1(ẽrl)

c
[εM − δ1(ẽrl)]

Using (40) condition (28) can be easily verified
Case 3: (|ẽrl|<εM − c)
In this case α(ẽrl) = 0, which implies, from (19), that ε(t) = εr(t).

For this case the following statement can be made

|ẽrl| = εM − c − δ2(ẽrl) (41)

where
0 < δ2(ẽrl) ≤ εM − c (42)

From (41) and (19), one has

ε(t) = εl + βα(ẽrl)

where βα(ẽrl) = ± [εM − c − δ2(ẽrl)]. Then, from (42), condition (28)
is also satisfied for this case.

Finally, βα(ẽrl(t)) is absolutely continuous in t since α(ẽrl) is
Lipschitz continuous and êr(t) and êl(t) are absolutely continuous since
they are Filippov Solutions.

Proof of Proposition 3: From (1) it follows that ë0 = hT
c A2

ce +
k∗hT

c Acbc

[
u + Ū

]
. Thus ë0 can be bounded by |ë0| ≤

∣
∣
∣
∣hT

c A2
c

∣
∣
∣
∣ ||e||+

∣
∣
∣
∣k∗hT

c Acbc

∣
∣
∣
∣ 2f(t), which, can be rewritten, from (5), as

|ë0| ≤ K1 ||e|| + K2 ||ω|| + K3 (43)

Using the relation ω = ωm + Ωe and the fact that ||e|| ≤ R, one has

sup
t≥T1

|ë0(t)| ≤ C2 (44)

Proof of Proposition 4: The lead filter estimation of the output derivative
is given by êl = F−1(s)ė0 + π. Thus, from (17), one has

εl =

[
1 − F (τs)

F (τs)

]

ė0 + π (45)

Equation (45) can be written as follows

εl = −τ
Q(τs)

F (τs)
ë0 + π (46)

where Q(τs) = [F (τs) − 1] /τs
Substituting (44) into (46), it follows that

sup
t≥T1

|εl(t)| ≤ τKl̄C2 + π

where Kl̄ is a positive constant and C2 is defined in Proposition 3
Then it is straightforward to see that

lim
t→∞

sup
ts≥t

|εl(ts)| ≤ τKlC2

where Kl > Kl̄.

Proof of Lemma 1: Using the following variable transformations ε :=
x − e0 and ζ := u1 − ė0 system (14) can be rewritten as

ε̇ = ζ − λF (ε)

ζ̇ = −αsign(ε) − ë0
(47)

where F (ε) = |ε|1/2 sign(ε). Lyapunov-like function:

V (ε, ζ) = α |ε| + ζ2/2

which has from (47) the following time derivative

V̇ = −λα |ε|1/2 − ζë0 ≤ −ζë0 ≤ |ζ| |ë0|

Since |ë0| < Ka and |ζ| ≤
√

2V 1/2, one has

V̇ ≤
√

2KaV 1/2

Using the comparison equation

V̇c =
√

2KaV
1/2
c

we know that if Vc(0) = V (0), then

V (t) ≤ Vc(t); ∀t ≥ 0

Introducing ρ2 = Vc, one obtains

2ρρ̇ =
√

2Kaρ

For ρ(0) 6= 0 → ρ̇ =
√

2Ka/2 → ρ(t) =
√

2Kat/2 + ρ(0)
For ρ(0) = 0 → ρ(t) ≡ 0 or ρ(t) =

√
2Kat/2

Thus, either V (t) ≡ 0 or V (t) ≤
[√

2Kat/2 + V 1/2(0)
]2

. In any
case V (t) does not escape in finite time for any finite Ka

Proof of Corollary 2: From (1) it follows that ë0 = hT
c A2

ce +
k∗hT

c Acbc

[
u + Ū

]
. Since the signals e, u and Ū are uniformly bounded.

Then there exists a positive constant Ka such that |ë0| ≤ Ka, ∀ t
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[10] L. Hsu, F. Lizarralde, and A. Araújo, “New results on output feedback VS-
MRAC: Design and stability analysis,” IEEE Trans. Aut. Contr., vol. 42, no. 3,
pp. 386–393, 1997.

[11] A. Levant, “Sliding order and sliding accuracy in sliding mode control,” Int.
J. Contr., vol. 58, no. 6, pp. 1247–1263, 1993.

[12] A. Levant, “Robust exact differentiation via sliding mode technique,” Automat-
ica, vol. 34, no. 3, pp. 379–384, 1998.

[13] A. Levant, “Universal SISO sliding-mode controllers with finite time conver-
gence,” IEEE Trans. Aut. Contr., vol. 46, pp. 1447–1451, 2001.

[14] A. Levant, “Higher-order sliding modes, differentiation and output-feedback
control,” Int. J. Contr., vol. 76, no. 9, pp. 924–941, 2003.

[15] S. S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence and
Robustness. Prentice Hall, 1989.


