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Abstract— This paper considers the model reference tracking
control for a class of uncertain nonlinear systems, based
on sliding mode and output-feedback. No particular growth
condition is imposed on the nonlinearity. Moreover, the design
does not assume the prior knowledge of the control direction.
For plants of arbitrary relative degree, global or semi-global
asymptotic stability with respect to a compact set is guaranteed.
Ultimate finite-time or exponential convergence of the tracking
error to zero is achieved by using a hybrid lead filter based on
2-sliding mode exact differentiators. A monitoring function is
used to determine the unknown control direction.

Keywords: uncertain nonlinear systems, output feedback,
control direction, exact tracking, exact differentiators, 2-sliding
mode.

I. INTRODUCTION

The problem of controlling uncertain plants with unknown
control direction, i.e., the sign of the high frequency gain,
has attracted the attention of the adaptive control community
since the early 1980’s [3]. A solution to the problem appeared
in [4], where the so called Nussbaum-type gains were intro-
duced to design stable adaptive control systems under this
relaxed assumption. This concept became a standard design
tool in adaptive control theory as in [5], and more recently
in [6], [7], [8].Although in theory, this approach may lead to
a solution of the problem, it is well known that the resulting
transient behavior can be unacceptable [5][9].

For sliding mode control (SMC) with unknown control
direction, fewer results are available In [10], a state feedback
sliding mode controller was proposed for a class of uncertain
nonlinear systems without need of explicitly identifying the
sign of the control direction. In [11], a hybrid scheme was
proposed for uncertain first order nonlinear systems with hard
nonlinearities, avoiding the large peaking transient resulting
from the Nussbaum gain approach. An output feedback SMC
scheme for tracking of uncertain linear plants was introduced
in [1] utilizing a switching algorithm based on a monitoring
function for the output tracking error. Similar controller
was extended to nonlinear systems in [2] where the Model
Reference Robust Control approach was adopted. However,
[1] and [2] approach only relative degree one plants.

In this paper, we further extend the later results to the
case of nonlinear plants with arbitrary relative degree, using
only output feedback. It is desired to obtain global or semi-
global stability and exact tracking without knowledge of the
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control direction. To this end, we use a hybrid scheme [16]
which combines conventional linear lead filter with exact 2-
sliding differentiators [18]. The lack of knowledge of the
control direction is circumvented by a switching mechanism
that adjusts the control sign, being driven by a monitoring
function for an appropriate auxiliary error.

II. PROBLEM FORMULATION

Consider an uncertain SISO LTI plant

y = Gp(s)[u + de(y, t)] , (1)

where u is the control input, y is the output, de(y, t) is a
matched input disturbance and Gp(s) = kp(Np(s)/Dp(s)),
with Np(s) and Dp(s) being monic polynomials of degree
m and n, respectively. The following assumptions are made:
(A1) Gp(s) is minimum phase, strictly proper and its param-
eters are unknown but belong to a known compact set. (A2)
The degree n of Dp(s) is a known constant. (A3) Gp(s) has
known relative degree n∗ := n−m. The above Assumptions
(A1)–(A3) are usual in adaptive control [15]. Consider the
following additional assumptions:

(A4) The sign of the high frequency gain kp �= 0 is
unknown.

(A5) The disturbance de(y, t) is locally Lipschitz in y,
∀y, and piecewise continuous in t, ∀t.

(A6) The nonlinear disturbance de(y, t) satisfies

|de(y, t)| ≤ d̄e(y, t) , ∀(y, t) ,

where d̄e : IR × IR+ → IR+ is a known function
piecewise continuous in t and continuous in y,
satisfying d̄e(y, t) ≤ Ψ(|y|) + kΨ, where Ψ ∈ K∞
and kΨ > 0 is a constant.

(A4) represents the relaxation of the classical assumption on
the prior knowledge concerning sgn(kp); (A5) allows us to
develop a control law u that guarantees local existence and
uniqueness (in positive time) of the solution of (1).

Remark 1: In (A6), no particular growth condition is
imposed on de, e.g., de(y, t)=y2. Since finite-time escape is
not precluded, a priori, [0, tM ) is defined as the maximum
time interval of definition of a given solution, where tM may
be finite or infinite.

Reference Model: the reference model is given by

ym = M(s)r = (km/Dm(s))r , km > 0 , (2)

where the reference signal r(t) is assumed piecewise con-
tinuous and uniformly bounded, Dm is a monic polynomial
of degree n∗.
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Control Objective: the control objective is to achieve
global or semi-global stability and convergence of the er-
ror state with respect to the origin of the error space. In
particular, the tracking error

e0(t) = y(t) − ym(t) (3)

should asymptotically tend to zero, i.e., exact tracking is
required.

Notation: In this paper we adopt the following notation.
The 2-norm (Euclidean) of a vector x and the corresponding
induced of a matrix A are denoted by |x|, or |A|, respectively.
The L∞e norm of the signal x(t) ∈ IRn is defined as
‖xt,t̄0‖ := supt̄0≤τ≤t |x(τ)|. For t̄0 = 0 the notation is
adopted ‖xt‖ := sup0≤τ≤t |x(τ)|. The symbol “s” repre-
sents either the Laplace variable or the differential operator
“d/dt”, according to the context. As in [15], [14] the output
y of a linear time invariant system with transfer function
H(s) and input u is given by y = H(s)u. Convolution
operations h(t) ∗ u(t), with h(t) being the impulse response
from H(s), will be eventually written, for simplicity, as
H(s)∗u. The stability margin λ0 of a transfer function G(s)
is defined as λ0 := mini{−Re(λi)} where {λi} are the poles
of G(s).

A. Output Error Equation

Considering the usual model reference adaptive control
(MRAC) approach [15], the output error e0 satisfy (see [12]
for details)

e0 = k∗M(s)[u − u∗] , (4)

where k∗ = kp/km,

u∗ := θ∗T ω − Wd(s) ∗ de , (5)

is the model matching control in the presence of de. The re-
gressor vector ω is composed by the states of the input/output
filters [15], by the plant output y and by the reference
signal r. The ideal parameter vector θ∗ is unknown but is
elementwise bounded by a known constant vector θ̄T (θ̄i >
|θ∗i |) [12]. The transfer function Wd(s)=[k∗M(s)]−1W̄d is
proper and stable where W̄d(s) is the closed-loop transfer
function from the input disturbance de to e0 (see [14] for
details).

The signal u∗ will be regarded as a matched input
disturbance, thus an upper bound will be required. Since
Wd is a proper and BIBO stable transfer function and de

satisfies Assumption (A6), then applying [19, Lemma 2]
to the convolution Wd(s) ∗ de(y, t) , one can find positive
constants cd, γd such that |Wd(s) ∗ de(y, t)| ≤ d̂e(t), where
d̂e is defined by

d̂e(t) := d̄e(y, t) + cde
−γdt ∗ d̄e(y, t) . (6)

Thus, from (5), u∗ satisfies

|u∗(t)| ≤ θ̄T |ω(t)| + d̂e(t) , ∀t ∈ [0, tM ) . (7)

III. THE CASE OF PLANTS WITH RELATIVE DEGREE ONE

Consider the case of relative degree one, unknown
sgn(kp), and nonlinear disturbances. This section will gen-
eralize the results of [1] developed for linear plants.

The control law is defined by

u =

{
u+ = −f(t) sgn(e0) , t ∈ T+ ,

u− = f(t) sgn(e0) , t ∈ T− ,
(8)

where an appropriate monitoring function [1] of the tracking
error e0 is used to decide when u would be switched
from u+ to u− and vice versa, allowing the detection any
wrong estimate of sgn(kp). The sets T+ and T− satisfy
T+ ∪ T− = [0, tM ) and T+ ∩ T− = 0, and as will be
shown in the following analysis, both T+ and T− have the
form [tk, tk+1) ∪ · · · ∪ [tj , tj+1). Here, tk or tj denotes the
switching time for u and will be defined later. We refer to
such switchings as control sign switchings.

According to (4), the modulation function f(t) should be
a norm bound of u∗. From (7), one possible choice is

f(t) = θ̄T |ω(t)| + d̂e(t) + δ , (9)

where δ is an arbitrary nonnegative constant. Consider for
simplicity M(s) = km/(s + am) (am, km > 0). Then for
sgn(kp) known, one chooses the control u+ or u−, according
to kp > 0 or kp < 0, respectively. Now, e0 satisfies

ė0(t) = −ame0(t) + kp[u(t) − u∗(t)] + π(t) , (10)

where π(t) denotes a transient term due to initial conditions
of the observable but not controllable subsystem of the
nonminimal realization (Ac, bc, h

T
c ) of M(s) in (4), used

in MRAC theory [15]. Now, noting that sgn(u − u∗) =
−sgn(e0), if the correct control direction is used and f(t) >
|u∗|, then by using the Comparison Theorem [13], |e0| is
bounded by the solution of the following differential equation

ξ̇(t) = −amξ(t) + π(t), ∀t ∈ [t̄0, tM ), ξ(t̄0) = e0(t̄0) ,
(11)

i.e., ∀t ≥ [t̄0, tM ), one has

|e0(t)| ≤ |ξ(t)| ≤ e−am(t−t̄0)|e0(t̄0)| + c0e
−δt , (12)

where t̄0 denotes some initial time.

A. Monitoring Function (n∗ = 1)

Based on (12), consider the auxiliary function ϕk defined
as follows:

ϕk(t) = e−am(t−tk)|e0(tk)| + (k + 1)e−
t

k+1 , (13)

t ∈ [tk, tM ), t0 := 0, (k = 0, 1, . . .) .

The monitoring function ϕm can be defined as

ϕm(t) := ϕk(t) ,∀t ∈ [tk, tk+1)(⊂ [0, tM )) . (14)

The motivation behind the introduction of ϕm is that π is
not available for measurement. Reminding that the inequality
(12) holds if the sgn(kp) is correctly estimated, it seems
natural to use ξ as a benchmark to decide whether a switching
of u is needed. However, since π is not available, one has to
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use ϕm to replace ξ and invoke the switching of ϕm. Note
that from (14), one always has |e0(tk)| < ϕk(tk) at t = tk.
Hence, the switching time tk for u from u− to u+ (or u+

to u−) is well-defined (for k ≥ 0):

tk+1 =

{
min{t > tk : |e0(t)| = ϕk(t)}, if it exists ,

tM , otherwise .
(15)

B. Main Result for n∗ = 1
Theorem 1: Assume that (A1)–(A6) hold. Consider the

system defined by (1), (2) and (8) and the modulation
function given in (9). Then, the control sign switchings,
driven by the monitoring function (14), will stop after a
finite number of switchings and both the tracking error e0

and the complete state Xe will converge to zero at least
exponentially.

Proof: We only sketch the proof, which is divided in
three parts. First it is proved that the switching stops after
a finite number of switchings (avoiding finite-time escape),
since for some finite k∗ the term (k∗ + 1)e−t/(k∗+1) of
(13) will allow ϕk(t) to be an upper bound valid for ξ, in
(12), consequently no switching will occur after that. Second,
if the control direction is correctly estimated or not, since
ϕk converges to zero exponentially e0(t) will also converge
to zero, at least exponentially, avoiding finite-time escape.
Finally, the convergence of the complete error state Xe can
be shown by using the regular form for the state space
realization of (4).

Corollary 1: In Theorem 1, the control sign switching
stops at a correct sign corresponding to the unknown sign of
the control direction of the plant, i.e., for t > tk∗ , u = u+,
if kp > 0 and u = u−, otherwise.

Proof: The proof is based on a reverse dynamics argu-
ment. We know that if the sign is correct all trajectories of
the system converge to the origin of the error state space
(Lemma 1 in [14]).

Reverse Dynamics Argument: Assume that the final
control sign is incorrect. Then, if we reverse the time, i.e.,
t → −t, the resulting equations have the same stability
properties as those obtained with the right control sign and
thus all trajectories from any initial condition would converge
to the origin, i.e., the origin would be a global sink in reverse
time. Thus, in forward time, all trajectories not at the origin
would diverge unboundedly. This is a contradiction, since
by Theorem 1 the state converges to the origin. Thus, the
ultimate control sign must be correct.

IV. THE CASE OF PLANTS WITH ARBITRARY RELATIVE

DEGREE

The main idea for generalizing the previous case consists
in reducing the problem to the n∗ = 1 case by the introduc-
tion of the operator

L(s) = sN + aN−1s
N−1 + . . . + a0 , N := n∗ − 1 , (16)

such that GpL(s) be of relative degree one (or, equivalently,
almost strictly positive real – ASPR) and ML(s) be SPR

(or ASPR). However, L(s) is non-causal and what can be
actually implemented is an approximate realization of this
operator. One approximation is L given by the linear lead
filter

L(s) = L(s)/F (τs) , F (τs) = (τs + 1)N and τ > 0 ,
(17)

As will be shown, this approximation leads to global/semi-
global stability with respect a residual set of order O(τ).
However, it is well known that such filters usually lead to
control chattering and nonzero residual tracking error due to
the phase lag introduced the time constant (τ ). Alternatively,
L(s) can be implemented by using the Levant’s robust exact
differentiators (RED) [18] which potentially allows the exact
estimate of the e0 derivatives. The problem is that such
differentiators are valid only locally and may lead to unstable
behavior with larger initial conditions [16].

In the proposed control strategy, see Figure 1, L(s) is
replaced by a hybrid lead filter, named Global Robust Exact
Differentiator (GRED) [16]. In Fig. 1, α represents a switch-
ing law. It is then possible to obtain a exact compensation
of the relative degree while assuring global or semi-global
stability properties of the closed loop system. The control
sign is adjusted according to the monitoring function ϕm, as
indicated in Fig. 1.

The control u is defined as in (8), replacing e0 by ε̃0 :=
αε̄0 + (1 − α)ε0 (see Fig. 1), i.e.,

u =

{
u+ = −f(t) sgn(ε̃0) , t ∈ T+ ,

u− = f(t) sgn(ε̃0) , t ∈ T− ,
(18)

The strategy for switching the control direction, according
to a new monitoring function ϕm, will be redefined later on.

+1

−1

+
+ +

−

GRED

L/F

Relay

M

f

Plant

Model

ymr

y e0u
Gp

de

Lred
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α

ε̃0

ε0

ε̄0

Fig. 1. VS-MRAC using a hybrid lead filter (GRED) for relative degree
compensation and a switching scheme to adjust the control sign. LF and
Lred stand, respectively, for the linear and nonlinear (RED based) lead
filters.

Equivalent Structure for the Hybrid Lead Filter: Ac-
cording to [16, Lemma 2], choosing an appropriate α(·),
the GRED is equivalent to a linear lead filter with an
uniformly bounded output disturbance βα of order τ , modulo
exponentially decaying terms. However, in order to simplify
the analysis, we will meanwhile ignore βα. This corresponds
to ε̃0 = ε0. The analysis will be easily completed in Subsec-
tion IV-C.1, considering the neglected output disturbances.
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A. Auxiliary Errors for Analysis and Design

As explained above, assume that only the linear lead filter
is active, i.e., ε̃0 = ε0. Then, from Figure 1, one has

ε0 =
L(s)
F (τs)

e0 , (19)

which can be rewritten as

ε0 = k∗ML [u − u∗] + βU + e0
F , ∀t ∈ [0, tM ) ,(20)

where

βU := k∗ML(s) [1 − F (τs)] F−1(τs) ∗ (u − u∗) and

(21)

|e0
F |≤ R1e

−λct +
R2

τN
e−

t
τ ≤ Rae−λa(t−te(τ)) . (22)

The positive constants R1, R2, Ra and λc are independent
of τ > 0; λc is lower than the stability margin of Ac and
0<λa <min(λc, 1/̄τ), with τ̄ >τ .

The first inequality in (22) holds ∀t ≥ 0, while the last
one holds only ∀t ≥ te where te is the peak extinction
time, i.e., the smallest time value at which the inequality
R2
τN e−

t
τ ≤ R2,∀t ≥ te(τ),∀R2 is satisfied for a fixed value

of the parameter τ ∈(0, 1].
The constants R1 and R2 are linear combination of the

initial conditions Xe(0) and xf (0), where xf is the state vec-
tor of the realization (Af

τ ,
Bf

τ ,
Cf

τN , 1
τN ) with (Af , Bf , Cf , 1)

being the canonical controllable realization of L/F in (19).
By using this realization, peaking appears only in the output
ε0 while the state xf is peaking free.

An Upper Bound for te (peak extinction time): It can
be easily concluded that te(τ) is uniformly bounded by a
class-K function of τ . Moreover, there exist t̄e(τ) ∈ K such
that

te(τ) ≤ t̄e(τ) , (23)

which can be obtained from the known upper bounds of the
plant parameters.

Considering the error system (4), (19), the following state
vector z is used

zT := [XT
e , xf ] , z ∈ IR3n−2+N . (24)

The following inequality is a consequence of the continuity
of the Filippov solutions and the particular state realization
associated with xf :

|z(t)| ≤ kz0|z(0)| + V(τ) , (25)

∀t ∈ [0, te(τ)] ⊂ [0, tM ), ∀τ ∈ (0, τ1]; 0 < τ1 ≤ 1; V ∈ K
and kz0 > 0 is a constant.

B. Monitoring Function (n∗ > 1)

The following lemma provides an upper bound for |ε0|,
valid if sgn(kp) is known and t ∈ [t̄e, tM ), from which the
new monitoring function will be defined.

Lemma 1: Consider the I/O relationship

ε(t) = M̄(s)[u + d(t)] + π(t) + β(t) , (26)

and any arbitrary initial time t̄0 ≥ 0, where M̄(s) =
k̄/(s + ᾱ) (k̄, ᾱ > 0), d(t) is LI, β(t) and π(t) are
absolutely continuous, ∀t ∈ [t̄0, tM ). Assume that |π(t)| ≤
Re−λ(t−t̄0),∀t ∈ [t̄0, tM ), where R, λ are positive constants.
If u = −f(t) sgn(ε), where the modulation function f(t) is
LI and satisfies f(t) ≥ |d(t)|,∀t ∈ [t̄0, tM ), then the signal
ē(t) := ε(t) − β(t) − π(t) is bounded by (for any arbitrary
ti such that t̄0 ≤ ti < tM and ᾱλ := min(ᾱ, λ))

|ē(t)| ≤ |ε(ti) − β(ti)|e−ᾱ(t−ti) + Re−ᾱλ(t−t̄0) + ‖βt,t̄0‖ .
(27)

Proof: The proof is similar to the proof of [14,
Lemma 2].

Reminding that ε0 = βU + ē0 + e0
F then |ε0| ≤ |βU | +

|ē0| + |e0
F |. Now, applying Lemma 1 to (20), considering

t̄0 := t̄e and ML(s) = km/(s + am) (for simplicity), and
from (22) one has ∀t, tk such that (tM > t ≥ tk ≥ t̄e),

|ε0(t)| ≤ (|ε0(tk)| + |βU (tk)|)e−am(t−tk) +

+ (2Raeλ̄a t̄e)e−λ̄at + 2‖(βU )t,t̄e)‖ , (28)

where λ̄a = min{am, λa}. Note that, according to Lemma 1,
(28) is valid for the modulation function f(t) given in (9).

Consider the available signal

β̄U = 2k̄∗τWβ(s) ∗ f(t) , (29)

where τWβ(s) is a first order approximation filter (FOAF,
[19]) for the transfer function ML(s) [1 − F (τs)] F−1(τs).
Note that, from (21), (18) and (9), one has βU (t) ≤ β̄U (t)
(∀t ∈ [0, tM )). Let

ϕk(t) := (|ε0(tk)| + β̄U (tk))e−am(t−tk) +
+ a(k)e−λct + 2‖(β̄U )t‖ , (30)

∀t ∈ [tk, tM ), with λc in (22) and a(k) is any positive
monotonically increasing unbounded sequence. The moni-
toring function for n∗ > 1 ϕm is defined by

ϕm(t) := ϕk(t) ,∀t ∈ [tk, tk+1) ⊂ [0, tM ) . (31)

Note that ϕm is discontinuous in t. The switching time tk
for u from u− to u+ (or u+ to u−) is well-defined by:

tk+1 :=

{
min{t > tk : |ε0(t)| = ϕk(t)}, if it exists ,

tM , otherwise ,
(32)

where k ≥ 1, t0 := 0 and t1 := t̄e. For convenience, ϕ0 :=
0,∀t ∈ [t0, t1). The following proposition follows directly
from the definition of the monitoring function ϕm, in (31).

Proposition 1: Let k ≥ 1 be the largest switching index
of the monitoring function (31), such that tk ∈ [0, tM ), then
the auxiliary error ε0(t) is bounded by

|ε0(t)| ≤ ϕm(t), ∀t ∈ [t1, tM ) . (33)
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C. Stability Results (n∗ > 1)

The following proposition assures boundness of the error
system during the switching of the control direction.

Proposition 2: Assume that (A1)-(A6) hold. Consider the
complete error system (4), (18) and (19), with state z defined
in (24). Let k be the largest switching index of the monitoring
function, given in (31), such that tk < t < tM . Then, ∀R0 >
0 such that |z(0)| ≤ R0, there exists a sufficiently small
τ2 > 0 (that depends on R0 and k) such that ∀τ ∈ (0, τ2],
the complete error system is bounded by

|z(t)| ≤ kz0|z(0)|+ka

k∑
i=1

a(i)+Ψ(τ)+kτkτ+O(τ) , (34)

∀t ∈ [0, tM ), where Ψ ∈ K and kz0, ka, kτ are positive
constants.

Proof: See Appendix.
The main stability and convergence result can be stated in

the following theorem (for the linear lead filter compensa-
tion):

Theorem 2: Assume that (A1)–(A6) hold, the modulation
function is given by (9) and ML(s) = km/(s + am) with
(km, am > 0). Then, for sufficiently small τ > 0, the
switchings of the control sign, driven by the monitoring
function (31), stop after a finite number of switchings and
the complete error system (4), (18) and (19), with state
z defined in (24) is semi-globally asymptotically stable
with respect to a compact set and ultimately exponentially
convergent to a residual set of order O(τ), both sets being
independent of the initial conditions. If the nonlinearity in
the system satisfies a global Lipschitz condition, the semi-
global stability properties become global.

Proof: Propositions 1 and 2 are used to prove that the
modification of the control direction by the switching rule
(18), based on the monitoring function (31), will stop after a
finite number of switching. Moreover, during this phase the
complete state of error system remains uniformly bounded.
After that, the proof follows from [14, Theorem 2]. See the
Appendix for a complete proof.

1) Chattering Avoidance and Exact Tracking : In Fig-
ure 1, the block Lred represents the “exact lead filter” which
implements the operator L(s) by using the RED. The RED
algorithm to compute the first and second derivatives of a
given signal e0 is given by:

η̇0 = v0,

v0 = −λ0 |η0−e0|
2
3 sgn(η0−e0)+η1,

η̇1 = v1,

v1 = −λ1 |η1−v0|
1
2 sgn(η1−v0)+η2,

η̇2 = −λ2sgn(η2−v1) ,

(35)

which provides η0(t) → e0(t), η1(t) → ė0(t) e η2(t) →
ë0(t). Higher order differentiators can be found in [18], [16].
We can therefore state exact tracking result:

Corollary 2: With the hybrid lead filter, all results of the
Theorem 2 hold and moreover, exact tracking is achieved in
finite time or at least exponentially. Moreover, the control
sign switchings stops at the correct sign.

Proof: The resulting global/semi-global stability and
convergence of the modified scheme can be easily proved
since, as already remarked above, by proper design of
the switching law, the hybrid lead filter only introduces a
disturbance βα which is norm-bounded by a design constant
of order O(τ), modulo decaying exponential terms, which
can be embedded in e0

F (22). This constant bound can be
simply added to β̄U given in (29). The monitoring function
can be redefined in an appropriate way in order to monitor
the perturbed auxiliary signal ε̃0. The control sign switchings
will stop in finite time and the exact differentiator takes over
since the error systems enters the residual set. Then, the
system becomes exactly a relative one case. Thus the reverse
dynamics argument can be applied (see proof of Theorem 1)
to show that the control sign switchings stop at the correct
sign.

D. Robustness to Measurement Noise

To date, there is no SMC which is immune to measurement
noise. This is more critical with output feedback schemes
when differentiation underlies the existing controllers, in-
cluding those based on HGOs and the one presented here. On
the other hand, it should be emphasized that the parameter
τ can be chosen not so small, so that high frequency noise
can be filtered out. The role of the linear lead filter is only
to guarantee stability at large while the RED takes care of
the tracking precision.

The hybrid lead filter scheme has been experimentally
verified in [17]. Experimental results with the proposed
scheme (to be presented in a future paper) have shown that
robustness to noise is, to a certain extent, acceptable.

V. SIMULATION RESULTS

This section presents an illustrative simulation example
which highlights the performance of the proposed control
scheme for a nonlinear plant with relative degree n∗ = 3.

Example 1: Consider an open-loop unstable plant with
transfer function given by: Gp(s) = 1

(s+2)(s+1)(s−1) , being
controlled by the VS-MRAC controller of Figure 1 and
under the action of a nonlinear input disturbance de(y, t) =
y2 + sqw(5t), where sqw denotes a unit square wave. The
reference model is M(s) = 4

(s+2)3 and the linear lead filter
is given in (17) with L(s) = (s + 2)2 and τ = 0.01. The
monitoring function is obtained from (31) with a(k) = k+1
and λ̄c = 0.5. The plant initial conditions are y(0) = 2,
ẏ(0) = 0 and ÿ(0) = 2 and the feedback is positive at t = 0
(wrong control direction).

Figure 2 corresponds to a simulation result when the
reference signal is a sinusoid of amplitude 1 and frequency
1 rad/s. The convergence of the plant output signal to the
model reference output is clear. Figure 3 (a) shows that just
one switching in the control sign was need (first jump of
ϕm when it meets ε̃0). After that, the control direction is
correctly identified and the auxiliary error ε̃0, as well as the
tracking error, vanish in finite time. Note that the second
discontinuous-like change of ϕm is not due to a change
between u+ and u−. It is due to the ‖(β̄U )t‖ term in (30).
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Fig. 2. Simulation results (Example 1). Simulated (a) plant output y (line),
reference model output ym (dash) and (b) the plant tracking error e0.

Figure 3 (b) shows the changes between the linear (α = 1)
and the nonlinear (α = 0) lead filters. It is clear that the
nonlinear lead filter is ultimately chosen by the switching
strategy of the hybrid lead filter. This is also indicated by
the convergence to zero (in finite time) of both the plant
tracking error (e0) and the filtered error ε̃0.
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Fig. 3. Simulation results (Example 1); (a) monitoring function ϕm (dash)
and the auxiliary error ε̃0 (line); (b) switching function α: α = 1 (linear
lead filter) and α = 0 (nonlinear lead filter).

VI. CONCLUSIONS

An output-feedback model-reference sliding mode con-
troller was developed for a class of nonlinear uncertain
systems with unknown control direction. The proposed con-
troller is an extension of the VS-MRAC controller, intro-
duced in [1], to nonlinear systems with arbitrary relative
degree. The controller requires two switching schemes: one
to adjust the control direction and another to compensate
the relative degree in such a way that global/semi-global
stability holds and also exact tracking is obtained. The
control direction adjustment was based on a monitoring
function constructed from input and output error signals. The
relative degree compensation was based on the switching
between a linear lead filter and a locally exact differentiators
based on 2-sliding modes. The resulting controller leads to
global or semi-global asymptotic stability with respect to
some compact set and ultimate exponential or finite time
convergence of the tracking error to zero. The controller has

led to quite reasonable transient behavior in our simulations
in contrast to the Nussbaum gain approach.
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APPENDIX

Please refer to [www.coep.ufrj.br/̃ liu/vss06] for the de-
tailed proofs of stability.
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feedback variable structure adaptive control: design and stability
analysis,” IEEE Trans. Aut. Contr., vol. 42, no. 3, pp. 386–393, 1997.

[15] P. A. Ioannou and J. Sun, Robust Adaptive Control. Prentice-Hall,
1996.

[16] E. V. L. Nunes, L. Hsu and F. Lizarralde, “Globally Stable Output-
Feedback Sliding Mode Control with Asymptotic Exact Tracking”, in
American Control Conference, Boston, Ma, 2004, pp. 638–643.

[17] E. V. L. Nunes, L. Hsu and F. Lizarralde, “Output-Feedback Sliding
Mode Control for Global Asymptotic Tracking of Uncertain Systems
using Locally Exact Differentiators”, in American Control Conference,
Minneapolis, accepted, 2006. ACC06 Submission No. 502 Title:
Author(s): Eduardo Vieira Leao Nunes*, Liu Hsu, Fernando Lizarralde

[18] A. Levant, “Higher-order sliding modes, differentiation and output-
feedback control,” Int. J. Contr., vol. 76, no. 9, pp. 924–941, 2003.

[19] L. Hsu, R. R. Costa, and J. P. V. S. Cunha. Model-reference output-
feedback sliding mode controller for a class of multivariable nonlinear
systems. Asian Journal of Control, 5(4):543–556, 2003.

183




