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B. Proof of Theorem 1

The proof is carried out in two parts: before and after sliding mode takes place.
Part A: Analysis During the Reaching Phase

From Proposition 1, there exists a finite time t5 € [0,t,) such that, V¢ € [ts,tar), sliding mode occurs, i.e., the sliding
variable &(t) becomes identically null. However, at this point, it does not assure directly that finite time escape is avoided
in the closed-loop system signals. Finite-time escape avoidance is proven in what follows. From Proposition 1, one has that
the §-reachability condition

, 1d .,
éoco = 5 [0(D)] < =dleo(D)], (16)
holds. Then, integrating (16) from ¢g to ¢ € [to, tar), with ¢ < T, and T := to + |eo(t0)]/0,, it follows that

leo(®)] < —0(t —to) + leo(to)| < leo(to)l,

Yt € [to,ta), and ¢t < Ts. It is clear that €g(tg) = 0 implies sliding mode at the manifold ey(¢) = 0, starting from the
beginning, i.e., Vt € [to, tar), since Ts = to + |eo(to)|/0 = to and the d-reachability condition (16) is satisfied. In this case,
finite-time escape cannot occur before sliding mode takes place. Thus, from now on, assume that ey(tg) # 0.

Assuming that ¢, is finite, then there exists a finite t* (t9 < tjs < t*) such that some close-loop signal escapes at t = t*.
Moreover, aiming to prove that finite-time escape cannot occur before sliding mode takes place, assume that €y(¢) # 0,
Vit € [to, t*]

Due to the unboundedness observability property of the closed-loop system, finite-time escape can occur if and only if
the output oy = éy + A1eg escapes in finite-time. In addition, since the d-reachability condition holds, then ¢ is uniformly
norm bound in the time interval [to, t*].

Then, é(t) = eo(t) — €o(t) must also escapes at t = t* and lim;_,;+ |é0(t)|] = oo. However, at this point, &, can escape
to infinity oscillating around zero (and switching sign), or monotonically with a fixed sign. Both cases do not occur. Indeed,
since ég = k™™ M (s)L(s)[ug — ud®] = k™™ M (s)L(s)[1 — F; . (78)]uo = k™™ M (s)L(s)[1 — F,,}(75)]osgn(ep), where
sgn(ep(t)) is fixed in the time interval [to, t*]. Thus, éy cannot escape in finite time. Consequently, €y and ey cannot escape in
finite time. Finally, one can conclude that sliding mode occurs before any closed-loop signal escapes in finite time. However,
finite-time escape is not precluded after sliding mode takes place. To complete the proof, we will evoke the Small Gain
Theorem.

Part B: Analysis in Sliding Mode

From Part (a), there exists a finite time ¢4 € [0, ¢,/) such that, V¢ € [ts, tr), sliding mode occurs, i.e., the sliding variable
€o(t) = 0 becomes identically null.
Since €9 := &y — éy = 0, thus &g = &y = k™™ ML(s)[ug — ul’]. Therefore, one can write ﬁoe
kmom M L(8)[Fay(75) — 1]ud*, where
avk __ 1
Y0 = nom N ($VL(s) (Fao(15) — 1) F(1p5)

av*x

compose the synthesized DSSC law u; = u"°™ — ug
op-dynamics can be written as

, 1.e., the equivalent control law during sliding mode. Note that, the

oo =k*M(s)L(s)[—ug’ + ds] , a7
where d, := u™"™ — u* + Wy(s)d. Thus, with ul? = u2*, one can further write
k*
1+ oo =k*M(s)L(s)d, ,

krom (Fyy (15) — 1) F(rps)

or, equivalently,
gg = P (S)dg 5

where

_ E* ke (Fyy(1s) — 1) F(1rs)M(s)L(s)

P(S) knom(FaU(Ts) _ 1)F(7-F5) + k*



In the Appendix III-C, one can subsequently verify that: (i) the ideal matching control u* can be represented as a filtered
version of gg (plus feedforward terms); (ii) since the nominal control can also be represented as a filtered version of o
(plus feedforward terms), so is the disturbance d, := u"°™ — u* + Wy(s)d, plus the filtered disturbance Wy(s)d, and (iii)
the transfer function P(s) is of order O(7 + 1), i.e., |P(s)|lcc = O(T + 7F). So, one can write (see Appendix III-C)

o0 = P,(s)oo + P(s)Wa(s)d + @, , (18)

where P,(s) and P(s)Wy(s) are strictly stable transfer functions of order O(r + 7) and 4, is feedforward signal that is
norm bounded by a constant of order O(7 + 7).

Now, given a ball of radius R > 0, such that 3 + 23 < R?, then one has |z1| < R and |z2| < R. Let K1(R) and
Kgo(R) positive constants depending on R, such that

|1‘1|<R<(2K31)1/3, |1‘2|<R<2KR2,

which leads to
‘$1‘4<2KR1|£E1‘, |I’2|2 <2KRQ|II}2|.

Moreover, the following inequalities hold
212 |za| < (2] + [a2]?) /2 < KRr(Ja1| + [22]) (19)

with Kr = Kg1 + Kg2. Now, from (??) and reminding that |g(z1)| < kg123 + kgo, one has |d| < kgi|@1|?|za| + kgo|z2]
and
|d| < (kg1 Kr)|z1| + (kg1 KR + kg2) 22| -

In addition, since x1 = ey + Y, and xs = €y + Ym, one can further write

S .
xl—mUO'f‘ynm $2—m00+ym7

leading to the inequalities
1
lz1] < =lloollo + lymllec + 1,
1
and
|z2| < [loollco + [9mlloc + 72,

since L(s) = s+ A1, where 71 and 7o are exponentially decaying terms due to initial conditions.
Therefore, one can conclude that

kglKR

| < [(kglKR+kgz+ >||ao||m+dm+7r ,

where dy, = (kg1 KR)||Ym|loo + (kg1 KR + kg2)||Umlloc and 7 := (kg1 Kg)m1 + (kg1 Kg + kg2)m2. The proof follows by
applying the Small Gain Theorem to (18), leading, subsequently, to the semi-global convergence of oy and e( to a residual
set of order O(7 + 77 ), while all closed-loop signals remain uniformly norm bounded, so that finite-time escape is avoided
(tv — 00). [

C. Development of (18)

Let us rewrite the nominal control law as
Ch(s)
L(s)

where the relationship og = L(s)eo was used. It must be highlighted that the nominal control is not regarded as a disturbance
and can be disregarded when the plant uncertainty is large. Reminding that u) = u™°" — u§"* and

1

u™™ = Cy(s)eg + up, =

oo+ up,,

av¥ __

Y0 = nom N ($VL(s) (Fau(15) — 1) F(1p5)
one can write
uy Cn(s) +ulr — Cap(s)
= g — Lav g0,
T L(s) Y 0
where Cg,(s) = kmmM(s)L(s)(;av(TS)_UF(TFS). In the MRC approach the ideal control u* is parameterized as u* = 6*7'w,

T . . T .
where 6% = [ 07, 0:T 03T 9;T |" € IR*" is the ideal parameter vector, w = [ ym vi v3 Y |° € R*™ is the



regressor vector and v; € IR"~! and v, € IR™! are the input and output state variable filters and n is the order of the
plant. The input and output state variable filters are given by strictly stable transfers functions F;(s) and F:(s) such that

QTT’Ul = F1 (S)UT 5 QSTUQ = FQ(S)y .

So, one can write
u* =05, ym + F1(s)u, + Fa(s)Y + 9:)},

or, equivalently,
Fy(s) 0y

u* =uy + Fi(s)u, + (s) oo + (s)

g0,

where
U’:;L = H:nym + FQ(S)ym + 9Zym .

Now, considering the synthesized control law w, = ., one has

. _ [Fi(s)Cals) . . Fy(s) + 0, o
I O I A T A
+ up + Fi(s)up, (20)

Reminding that oo = P(s)d, and d, := u™°™ — u* + Wy(s)d one has
P(s)Cp(s)

() oo + P(s)u,, + P(s)u* + P(s)Wy(s)d.

og =
Hence, one can write
00 = Py(s)og + P(s)Wa(s)d + U, ,

P(s)(F2(s)+0;)

where P, (s) := DL By (5) P(5)Coy (5) + =2 + P and iy, = P(s)uf, + P(s)(Fi(s) + Dl

L(s)
Moreover,

P(s)Wq4(s) = P(s)Wy(s)L(s)(s + am)/k*,

since Wy(s) = [k*M(s)] " Wa(s).
One can verify that P(s)Wy(s) and P,(s) are transfer functions of order O(7 + 7). To verify that and since we are
considering the relative degree two case to simplify the presentation, recall that F/(7ps) = 7ps 4+ 1 and write

k*kmomr(tps 4+ 1)s

P(s) = (kremr(tps 4+ 1)s + k*)(s + am)

Let us consider 77 = ak™°™ 7, with o > 0. This is not restrictive, and assures that 77 must be small when 7 is made small.
The lead-filter time constant must be of the order of the averaging filter time constant.
Then, one has that the polinomial

(k™™ 1 (1ps 4+ 1)s + k%) = (k"™ 7)%as® + k"™ rs + k¥,

has real roots

—knomr 4 \/(k"0m7)2 — 4(kromr)2k*
2(knomr)2qy ’

or,
p Sl (DI dba

TF 27—F

, (i=0,1),

provide that o < 1/(4k*). Now, for each fixed 0 < « < 1/(4k*) one has that py and p; are independent of 77 (or 7), so
that one can rewrite P(s) in the forms
k*(s+1/7p)s

PO = G p )G+ pa /)G )

or, equivalently,
/ k*(s +1)s
P(s)=r ; ; T
=T | o) T P T )

Y



/ .
=0(1), s = 7ps, and a,, = @y, /7. Thus, one can write

’ oo

||P(S)||OO < TF k/ < aknom ’
T+71 — T+7TF 14 aknom

)

and conclude that
[P(s)]lec = O(T + 7).

Moreover, one can subsequently conclude that all transfer functions composing P, (s), P,(s) and P(s)Wy(s) are of order
O(1+ 7). In addition, one can subsequently conclude that P(s)(F;(s)+1) is of order O(7 +7F) and @,, is norm bounded
by a constant of order O(7 + 7). [ |



