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Abstract— A peaking free output-feedback model reference sliding mode controller is introduced for a general
class of uncertain nonlinear systems based on high gain observers and dwell-time control activation. Semi-global
practical exponential stability and significantly improved tracking transient behavior is obtained. Moreover, a
monitoring scheme is proposed to deal with induced peaks generated by output exogenous disturbances.
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Resumo— Um controlador baseado em modos deslizantes, modelo de referência e realimentação de sáıda é
introduzido para uma ampla classe de sistemas não-lineares incertos utilizando-se observadores de alto ganho
e o conceito de tempo de parada na ativação do sinal de controle. Estabilidade exponencial semi-global e bom
comportamento transitório são obtidos. Além disso, um esquema de monitoração é proposto com o objetivo de
evitar os danosos efeitos de picos gerados por perturbações externas.

Palavras-chave— sistemas não-lineares incertos, realimentação de sáıda, controle por modos deslizantes, fenô-
meno de pico.

1 Introduction

The output-feedback tracking problem of nonlinear sys-
tems with strong nonlinearities has been a challenging
problem and it is not surprising that most of the exist-
ing output-feedback results impose restrictive assump-
tions on the nonlinear vector fields, such as particular
growth conditions or existence of a global Lipschitz con-
stant (Mazenc et al., 1994).

In general, to solve the problem, some estimate of the
plant state, or at least of the state norm, is necessary.
In this respect, high-gain observers have been utilized
owing to their robustness to plant uncertainties and ar-
bitrarily small estimation error. However, the price to
be paid is the generation of peaking which may po-
tentially lead to either bad transient or even instabil-
ity when the peaking signal is transmitted to the plant
(Sussmann & Kokotović, 1991).

Oh & Khalil (1995), Teel & Praly (1995) and Oh &
Khalil (1997) proposed globally bounded control (GBC)
strategies, which amounts essentially to saturating the
control signal, in order to circumvent the deleterious
effects of the peaking phenomena. However, the GBC
may not guarantee global stability for general classes
of nonlinear systems. In order to increase the stability
domain, the control saturation level has to be increased.
This in turn can result in unacceptable transients since
higher peaking signals are transmitted to the plant.

In this sense, we propose an alternative sliding mode
control strategy for a class of nonlinear systems which
may include strong (e.g., polynomial) nonlinearities,
where the norm estimates are also obtained from high
gain observers. The control peaking is avoided by intro-
ducing a dwell-time (Hespanha et al., 2003; De Persis
et al., 2002; Freidovich & Khalil, 2007) in the controller
activation. Better transient behavior, semi-global prac-
tical stability, smaller residual tracking errors and in-
creased stability domains are achieved when compared
with the approach proposed in (Oh & Khalil, 1995; Oh
& Khalil, 1997).

Another novelty presented here is with respect to the
introduction of a monitoring scheme which is used as a

peaking detector of induced peaks generated by output
exogenous disturbances. Then, the deleterious effect of
such peaking phenomena can be automatically circum-
vented. Simulations illustrate the effectiveness of the
proposed controller.

Notation and Definitions: The Euclidean norm of
a vector x and the corresponding induced norm of a
matrix A are denoted by |x| and |A|, respectively. The
L∞e norm of signal x(t)∈ IRn, is defined as ‖xt,t0‖ :=
supt0≤τ≤t |x(τ)|; for t0 =0, ‖xt‖ is adopted. The sym-
bol “s” represents either the Laplace variable or the
differential operator “d/dt”, according to the context.
The output of a linear system with transfer function
H(s) and input u is written H(s)u. Classes K, K∞

functions are defined as usual (Khalil, 2002, pp. 144).
ISS and ISpS mean Input-to-State-Stable (or Stabil-
ity) and Input-to-State-Practical-Stable (or Stability),
respectively (Jiang et al., 1994). Filippov’s definition
for the solution of discontinuous differential equations
(Filippov, 1964) and the concept of extended equiva-
lent control (Utkin, 1978; Hsu et al., 2002) are used
throughout the paper.

2 Problem Formulation

Consider a SISO nonlinear uncertain plant given by:

ẋ=Ax+φ(x, t)+Bu , y=Cx , (1)

where x ∈ IRn is the state, u ∈ IR is the control input,

y ∈ IR is the measured output and φ : IRn×IR+ → IRn

is a state dependent uncertain nonlinear disturbance,
possibly unmatched. No particular growth condition,
such as linear growth or existence of a global Lipschitz
constant, is imposed on φ. Therefore, strong polyno-
mial nonlinearities can be included. Then, finite-time
escape is not precluded a priori and for each solution
of (1) a maximal time interval of definition is [t0, tM ),
where t0 is the initial time and tM may be finite or
infinite.



2.1 Basic Assumptions

Without loss of generality, t0 = 0 is the initial time.
The uncertain triple (A, B, C) is assumed to be in the
canonical controllable form. All uncertain parameters
belong to some compact set Ωp such that the necessary
uncertainty bounds are available for design. In Ωp we
assume that: (i) φ is locally Lipschitz in x (∀x), piece-
wise continuous in t (∀t) and sufficiently smooth; (ii)
(A, B, C) represents a linear plant which is minimum-
phase, observable, has known order n, relative degree ρ
and known high frequency gain (HFG) sign, as usual in
Model Reference Adaptive Control (MRAC) (Ioannou
& Sun, 1996). Our main additional assumptions are:

(A1) There exists a global diffeomorphism (x̄, t) =
T (x, t), x̄T := [ηT ξT ], η ∈ IRn−ρ, which trans-
forms (1) into the normal form (Khalil, 2002), with
ξ=[y ẏ . . . y(ρ−1)]T and

η̇=A0η+φ0(x, t) , ξ̇ = Arξ +Brkp[u+dφ(x, t)] ,

where y=Crξ, kp :=CAρ−1B is the constant plant
HFG and (Ar, Br, Cr) is in the Brunovsky’s con-
troller form. In the η-dynamics: A0 is Hurwitz
and |φ0| ≤ ϕ0(|ξ|, t), with ϕ0 being a known non-
negative function, piecewise continuous in t and K
in |ξ|.

According to (A1), the nonlinear plant (1) is minimum
phase and has strong relative degree ρ (Isidori, 1995).
To obtain norm bounds for the matched disturbance
dφ(x, t), we further assume that:

(A2) There exist known locally Lipschitz functions
ϕT1, ϕT2 ∈ K∞ and constants kT1, kT2 ≥ 0 such
that |x̄| ≤ ϕT1(|x|)+kT1 and |x| ≤ ϕT2(|x̄|)+kT2.

(A3) There exists a known non-negative function
ϕd(|x|, t) piecewise continuous in t and K∞ in |x|
such that |dφ(x, t)|≤ϕd(|x|, t).

Note that (A2)–(A3) are not restrictive since T , T−1

and dφ are continuous in its arguments. Moreover, no
particular growth condition is imposed on the bounding
functions ϕT1, ϕT2 and ϕd.

2.2 Control Objective

The aim is, by output-feedback, to achieve semi-
global stability properties in the sense of uniform signal
boundedness and asymptotic output tracking, i.e., the
output tracking error

e(t) = y(t) − ym(t) (2)

should tend to zero or to some small residual values.

The desired trajectory ym(t) is generated by the follow-
ing reference model:

ym = M(s)r =
km

L(s)(s + am)
r , km, am > 0 , (3)

where r(t) is assumed piecewise continuous, uniformly
bounded and the Hurwitz polynomial L(s) is given by

L(s) :=sρ−1+aρ−2s
ρ−2 + . . . + a0 . (4)

2.3 Output Error Equation

Let the minimal realization of M(s) in (3) be given by:

ξ̇m = Amξm + Bmkmr , ym = Cmξm , (5)

where ξT
m := [ ym ẏm . . . y

(ρ−1)
m ], Bm :=Br, Cm :=Cr

and Am :=Ar+BrKm, with Km obtained from the coef-
ficients of the characteristic polynomial of M(s). Now,
consider the ξ-dynamics of the plant in (A1). Replacing
u by u+Kmξ/kp−Kmξ/kp, we obtain:

ξ̇=Amξ+Bmkp[u−Kmξ/kp+dφ] , y=Cmξ . (6)

From (5) and (6), the state tracking error xe := ξ−ξm

and the output tracking error e satisfy

ẋe = Amxe + kpBm[u + d] , e = Cmxe , (7)

e = k∗M(s)[u + d] , k∗ = kp/km , (8)

where the equivalent input disturbance is defined by

d(x, t) := −Kmξ/kp + dφ(x, t) − r/k∗ . (9)

3 Sliding Mode Control

In this section, we describe the state-feedback and
the output-feedback sliding mode control approaches,
pointing out the sliding surface and modulation func-
tion designs.

3.1 State-Feedback Control

When x and ξ are available for feedback we choose

σ=Sxe =0 , S :=[ a0 . . . aρ−2 1 ] , (10)

as the sliding surface, with a0, . . . , aρ−2 defined in
(4). From (4), (7) and (10) one can conclude that
(Am, Bm, S) is a non-minimal realization of k−1

m ML(s)
and

σ = k∗ML[u + d] . (11)

Since ML(s) is strictly positive real, applying (Hsu
et al., 1997, Lemma 1) to (11) with control signal
u = −[sgn(kp)]̺(x, t)sgn(σ(t)), global exponential sta-
bility (GES) and finite time exact tracking are guaran-
teed, if the modulation function ̺(x, t) (continuous in
its arguments) satisfies

̺(x, t)≥|d(x, t)| + δ , (12)

modulo exponentially decaying terms, where δ>0 is an
arbitrarily small constant.

3.2 Output-Feedback Control

Sliding surface: when only y is available for feedback,
the sliding surface is chosen as

σ̂ := Sx̂e = 0 , x̂e := ξ̂ − ξm , (13)

with ξ̂ being an estimate of ξ provided by an HGO
due to its robustness to disturbances and parametric
uncertainties.
Modulation (or control gain) function: the control law
u is redefined by1

u = −[sgn(kp)]̺(χ, t)sgn(σ̂(t)) , (14)

1With some abuse of notation, we have kept the same
symbol ̺ for the modulation function.



where χ(t) is a scalar non-negative absolutely continu-
ous function, obtained from available signals, which up-
per bounds the plant state norm |x|, modulo exponen-
tially decaying terms. It would be desirable to obtain
a peaking free norm bound χ such that the inequality
(12) could be satisfied by ̺(χ, t), i.e.,

̺(χ, t)≥|d(x, t)| + δ . (15)

In contrast to the state-feedback case, inequality (15) is
not sufficient to achieve global or semi-global tracking
due to the disturbances from the inexact HGO estima-
tion. Let the estimation error be defined by

x̃e :=xe−x̂e = ξ − ξ̂ . (16)

From (10), (11), (13) and (16), one has σ̂=σ−Sx̃e and

σ̂ = k∗ML[u + d] − Sx̃e . (17)

As shown in (Oliveira et al., 2008), (15) and (17) will
imply only an ISS property from x̃e to xe. Further-
more, the estimate ξ̂ provided by an HGO has an ISpS
property from xe to x̃e, with ISpS-gain given by the
HGO small parameter µ. Thus, combining the above
ISS properties, global or semi-global tracking can be
proved through a small-gain analysis.
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Figure 1: Output-feedback sliding mode controller.

The proposed scheme is depicted in Fig. 1. An eventual
peaking (Sussmann & Kokotović, 1991) in σ̂ is blocked
by the sgn(·) function in (14) and the control signal u
is peaking free since χ is implemented using only well
conditioned (without peaking) available signals.

In the following, we give a detailed description of the
proposed controller, stressing the HGO design and the
peaking free strategy to obtain χ for classes of nonlinear
systems with no particular growth restriction w.r.t. the
unmeasured states.

4 High Gain Observer

An estimate ξ̂ for ξ in (A1) is provided by the HGO:

˙̂
ξ = Ar ξ̂ + knom

p Bru + HµLoCr(ξ − ξ̂) , (18)

where Lo and Hµ are given by

Lo :=[ l1 . . . lρ ]T , Hµ :=diag(µ−1, . . . , µ−ρ)
(19)

and knom
p is a nominal value for kp. The observer gain

Lo is such that N(s)=sρ+l1s
ρ−1+. . .+lρ is Hurwitz.

Since it is desirable that the uncertainties and distur-
bances have negligible effects in x̂e (13), the norm of
Hµ shall be large, which imposes that µ-constant pa-
rameter be small.

4.1 High Gain Observer Error Dynamics

As in (Oh & Khalil, 1997), the following transformation
is applied to (16)

ζ := Tµx̃e , Tµ := [µρHµ]−1 , (20)

which leads to: (i) Tµ(Ar − HµLoCr)T
−1
µ = 1

µ
Ao and

(ii) TµBr =Br, where Ao :=Ar−LoCr. Thus, from the
ξ-dynamics in (A1), (16), (18) and (20), one has

µζ̇ = Aoζ + kpBρ[µν] , (21)

with

ν :=[κu + dφ] and κ=(kp−knom
p )/kp . (22)

4.2 Peaking Phenomenon

As it is well known, HGO estimates may contain peak-
ing (Sussmann & Kokotović, 1991). Indeed, the estima-
tion error x̃e will contain a transient term of the form
(a/µb)e−ct/µ, for some a, b, c > 0. Thus, these terms
eventually exhibit an impulsive-like transient behavior,
as µ → 0, where the transient peaks to O(1/µ) values
before it decays rapidly to zero. This behavior is known
as the peaking phenomenon (Khalil, 2002; Sussmann &
Kokotović, 1991).
However, the peaking phenomenon can be circum-
vented by using the peak extinction time (te) concept,
where te is defined as the solution of (a/µb)e−cte/µ = 1,
for each value of µ ∈ (0, 1]. Note that te is a function of
µ, which satisfies te(µ) ≤ t̄e(µ), with t̄e(µ) ∈ K (Cunha
et al., 2005). In the next section, this concept will be
crucial in the formulation of a peaking free control law.

5 Peaking Free Strategy

In this section, we consider a wider class of nonlinear
systems without any type of growth condition imposed
on φ. As in (Oh & Khalil, 1995; Oh & Khalil, 1997), we
will use HGO state not only to define the sliding sur-
face but also use the HGO estimates (with peaking) to
design χ and appropriate modulation function ̺(χ, t).
In (Oh & Khalil, 1995; Oh & Khalil, 1997), a globally
bounded sliding mode control law is applied by using
saturation functions in order to avoid the peaking phe-
nomena. As a consequence, the region of interest of the
control effort must be first estimated in order to tune
the saturation level and guarantee semi-global stabil-
ity. One major problem in this approach is that, to en-
large the domain of stability, it is necessary to increase
the level of the saturation function. Then, considerable
peaking energy is transmitted to the plant, which leads
to large transients, stability domain shrinking and sys-
tem degradation performance.

5.1 High Gain Observer plus Dwell-Time

Inspired by the recent developments in supervisory
control and logic-based switching schemes (Hespanha
et al., 2003; De Persis et al., 2002; Freidovich &
Khalil, 2007), we propose a novel strategy based on the
peak extinction time and dwell-time concepts to cope
with the problems induced by peaking, particulary the
shrinking of the region of attraction. The new scheme
is developed trying to retain the qualities of the state-
feedback based sliding mode controller such as good
transient performance.



Our key idea consists in combining the high gain esti-
mates from HGO with an appropriate dwell-time strat-
egy to obtain a peaking free norm bound χ. In this
respect, we only apply the HGO estimates after a cer-
tain dwell-time τD, which is chosen large enough to al-
low the peaking transients of the HGO to settle down,
and small enough to ensure that the trajectories do not
leave a prescribed compact set, thus avoiding finite time
escape. It will be shown that this choice is possible for
µ sufficiently small and

τD := t̄e(µ) , (23)

where t̄e(µ) is the known upper bound for the peaking
extinction time te, given in Section 4.2.

5.2 Norm Bound from HGO

Due to the high gain properties of the HGO, it can
be shown that: while the plant state x remains within
any given compact ball, the observer error x̃e (16) can
be made arbitrary small by reducing the parameter µ.
Indeed, the following proposition can be demonstrated.

Proposition 1 Consider the plant (1) under the as-
sumptions (A1)–(A3) and τD defined in (23). Let
t∗ ∈ [0, tM ) be the first time such that |x| exits a given
ball B := {x : |x| ≤ R} of radius R > |x(0)| and ξ̂ (18)
be the estimate for the state ξ given in (A1). Then,
if the HGO parameter µ is sufficiently small such that
τD(µ)∈ [0, t∗), one has

|ξ−ξ̂|≤ k̃Rµ , k̃R > 0 , ∀t∈ [τD, t∗) , (24)

where k̃R is a constant possibly depending on R. More-
over,

|x(t)|≤ϕT2

�
c0|ξ̂(t)|+

c1

s + λ1
ϕ0(c2|ξ̂(t)|, t)

�
+∆ := χ(t) ,

(25)
∀t ∈ [τD, t∗), modulo exponentially decaying terms,
where c0, c1, c2, λ1, ∆>0 are appropriate constants and
ϕ0, ϕT2 are given in (A1) and (A2), respectively.

Proof: The proof of (24) follows from (Oh & Khalil,
1995, Lemma 1) and (25) is a direct consequence of (24),
assumptions (A1)–(A2) and the known norm bound for
η obtained from application of (Hsu et al., 2003, Lemma
2) to the η-dynamics in (A1).

Remark 1 If the nonlinear system (1) is in the normal
form and the η-dynamics in (A1) is absent, the first
order filter in (25) can be neglected and the following
less conservative upper bound χ can be obtained

χ(t) := |ξ̂(t)|+∆ , ∀t∈ [τD, t∗) , (26)

where ∆ should account only for the effect of the O(µ)
estimation error in (24).

Thus, from (A2)–(A3), (9) and (25), one can write
|d|≤ d̂+π̂, where π̂ is a decaying term and

d̂(t) := ϕ̂(|χ(t)|) + cr , (27)

with an appropriate constant cr >0 and ϕ̂∈K. Hence,
a peaking free modulation function ̺(χ, t) can be ob-
tained:

̺(χ, t) =

�
0 , ∀t ∈ [0, τD)

d̂(t) + δ , otherwise ,
(28)

such that (15) holds ∀t ∈ [τD, tM ).

6 Stability Analysis

In order to fully account for the initial conditions of the
error system (7) and (21), let:

zT (t) :=[z0(t), xT
e (t), ζT (t)] , (29)

z0(t) :=[|η(0)|, |x̺(0)|]e−γt ,

where z0 denotes the transient state (Hsu et al., 1997)
due to state conditions of the stable systems corre-
sponding to the η-dynamics and the filters used in the
modulation function design and γ >0 is a generic con-
stant. The main stability result is now stated.

Theorem 1 Consider the error system (7) and (21)
with control law (14) and modulation function (28). As-
sume that (A1)–(A3) hold. Then, for sufficiently small
µ∈ (0, 1], the complete error system, with state z(t), is
semi-globally exponentially stable w.r.t. a small resid-
ual set of order O(µ) independent of the initial condi-
tions. Moreover, under these conditions, all signals in
the closed loop system are uniformly bounded.

Proof: During the peaking period, the dwell-time
control activation protects the plant from peaking,
while the state of the plant cannot change by more than
O(µ) from its initial value. Hence, for sufficiently small
µ and τD(µ) in (23), x(τD) will be arbitrary close to
x(0). Then, the proof is based on Small-Gain Theorem
(Jiang et al., 1994) and follows the same steps in the
proof of (Oliveira et al., 2008, Theorem 1).

Ideal Sliding Mode: If, additionally to the assump-
tions of Theorem 1, ̺ ≥ |Kmξm−kmr| + δ with δ > 0
then the sliding mode σ̂(t)≡0 is reached in finite time.
This implies that finite frequency chattering is avoided.

Absence of Peaking: Since peaking is not transmitted
to the plant state x, one can easily conclude that xe is
peaking free by noting that xe in (7) is ISS with respect
to [u+d(x, t)] and that the control law u (14) is peaking
free by definition.

Stability Domain and Transient Behavior: In our
simulations in Section 8, the stability domain using the
proposed approach is larger than one obtained with
GBC for the same µ. It is interesting to note that in-
creasing the saturation level, while µ is kept constant,
the GBC stability domain is reduced. In order to re-
cover the domain using GBC it is necessary to reduce
µ, i.e., to increase the HGO gain. However, while the
stability domain is increased, the transient behavior is
degraded due to large peaks transmitted to the plant
allowed by the larger saturation level.

Smaller Residual Set: The residual set in Theorem 1
is of order O(µ) while in GBC approach (Oh & Khalil,
1995; Oh & Khalil, 1997) this set is of order O(

√
µ).

7 Monitoring Scheme for Peaking Detection

To implement the HGO plus dwell-time strategy, it is
necessary to know the arbitrary initial time to keep the
control signal equal to zero during the period τD. While
this is easy when the system is switched on, it may be
difficult if the system is subjected to exogenous distur-
bances that cause an abrupt change in the output of
the system and, consequently, induce another peaking
on the HGO states during a certain process.



In order to avoid peaking after the initial time, a moni-
toring scheme to detect the onset of peaking is proposed
in what follows.
If the system is free of output exogenous disturbances,
|ξ̂|≤ |ξ|+O(µ) is a natural norm bound for ξ̂ obtained
from (24), ∀t≥τD. Moreover, as claimed in Theorem 1,
ξ tends to ξm exponentially. In such case, there exists
a finite time ta ≥ 0 such that |ξ̂| ≤ |ξm|+O(µ), ∀t≥ ta.
A monitoring function Φ can thus be defined as

|ξ̂(t)| < |ξm(t)|+α := Φ(t) , ∀t ≥ τD , (30)

where α>0 is an appropriate design constant such that
Φ is a norm bound for |ξ̂|, ∀t≥τD. Hence, the detection
time t̄i is defined by

t̄i+1 :=

(
min{t>t̄i : |ξ̂(t)| :=Φ(t)}, if it exists ,

∞, otherwise ,
(31)

where i ∈ {1, 2, . . .} and t̄0 := τD. The following algo-
rithm in conjunction with (30)-(31) form a monitoring
scheme to detect and avoid peaking in the control sig-
nal valid ∀t ≥ τD. In a few words, the control signal
applied to the plant is equal to zero (just for conve-
nience) during the interval [t̄i, t̄i +τD) and is given by
(14) and (28) otherwise.

Algorithm for peaking detection, ∀t ≥ τD

Step 1. Define the initial detection time, say

t̄0 := τD, the set of indices I := {0, 1, 2, . . .} and

the initial value for i∈I, say i :=0.

Step 2. Put the controller u defined by (14)

with ̺(χ, t) in (28) into the loop ∀t≥ t̄0.

Step 3. For t ≥ t̄0, check continuoulsly the in-

equality (30). Keep the controller u (14) in

the loop until t = t̄i(> t̄0) when the inequality

(30) fails according to (31).

Step 4. Set u := 0, ∀t ∈ [t̄i, t̄i+τD).

Step 5. Set t̄0 := t̄i and go back to Step 2.

We also point also that the proposed monitoring scheme
is applicable to a class of exogenous output distur-
bances, at least stepwise with sufficient time between
steps, which avoids multiple peaks during the interval
[t̄i, t̄i+τD). It would be desirable to characterize more
general classes of output disturbances that could be in-
cluded in the proposed approach.

8 Simulation Results

Consider the second-order nonlinear system in the
normal form (ρ = 2):

ξ̇1 = ξ2

ξ̇2 = εξ3
2 + kpu

y = ξ1

In this example, the η-dynamics is absent, the HFG
satisfies |kp| ≤ 2, dφ = εξ3

2 in (A1) and |ε| ≤ 2. In the
simulations, we consider ε = 1 and kp = 0.5 as the ac-
tual plant parameters. The reference model is chosen

M(s)= 1
(s+1)2

with Km =[−1−2]T and r(t)=2 sin(π t).

The HGO parameters are: µ = 0.001, knom
p = 1,

N(s) = (s + 1)2 and Lo = [2 1]T . The equivalent in-
put disturbance d is given in (9). The control gain (28)
is computed with δ=1 and

d̂(t) = |y| + 2(|ξ̂2| + ∆) + 2(|ξ̂2| + ∆)3 + |r| , (32)

where ∆ = 1 is added to |ξ̂2| to account for the HGO
estimation error of order O(µ) (24) after the peaking
phase. In this example, the system has a strong nonlin-
earity in the unmeasured state ξ2. If the control peak-
ing is transmitted to the plant, finite time escape can be
provoked. With the same initial state xe(0)=[1 − 1]T

as in Fig. 2, the finite time escape occurs at t = 0.073
(curves not shown).
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Figure 2: HGO plus dwell-time: (a) state tracking
error xe, (b) control signal u and (c) zoom in u plot
showing the dwell-time τD = 0.01.

Fig. 2 shows the remarkable performance obtained
with the HGO together with the dwell-time strategy
(τD = 10µ = 0.01) to generate a peaking free control
law. Finite time escape is eliminated for the given ini-
tial conditions.
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Figure 3: Phase portrait [xe1 × xe2] and stability
domain: proposed scheme (solid-line) and GBC (dot-
dash) trajectories with initial condition xe(0)=[5−5]T .



In Fig. 3, two stability boundaries are shown with
µ = 0.001. The larger one (in green line) corresponds
to the maximum domain achieved with our proposed
scheme. The smaller one (in red line) represents the
domain obtained with GBC and usat = 500. In order
to achieve the larger stability domain with the GBC, µ
must be reduced 3-times. But then, the transient is still
degraded. Since the HGO plus dwell-time strategy is
not based on saturation, peaking is completely avoided
and the stability domain can be arbitrarily increased by
reducing µ, without damaging the transient behavior.
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Figure 4: Monitoring scheme and output disturbance:
(a) plant output y (solid-line) and reference model out-
put ym (dash), (b) control signal u and (c) zoom in u
plot showing the dwell-time control reinitialization due
to the pulse output disturbance at t=1.

The HGO plus dwell-time scheme require us to de-
tect any instant where the state suddenly deviates from
the current value and program the controller to reini-
tialize itself starting at that moment. Failing to do
so could lead to peaking and the system goes unsta-
ble. This situation can be observed when we choose
ξ(0) = [0.5 − 0.5]T and we insert pulses of amplitude
0.15 and duration 0.0001 to the output y at the time in-
stants t=1, 2, . . . , 5. This disturbance feature was good
enough to induce peaking on HGO states and provoke
finite time escape at t = 1.06 (curves not shown). On
the other hand, the dwell-time strategy in conjunction
with the monitoring scheme (30)-(31) and α = 2 han-
dles the situation gracefully and takes care of peaking
complications as illustrated in Fig. 4.

9 Conclusions

The sliding mode tracking controller for uncertain non-
linear systems developed in this paper uses HGO esti-
mates in the computation of the switching law and in
the control gain design. Due to the dwell-time strat-
egy for control activation, the proposed scheme was
shown to be peaking free. The proposed approach was
also shown to lead to semi-global exponential stability,
w.r.t. a small residual set, without the need for glob-
ally bounding the control signal. The only parameter
required to increase the stability domain is the observer
gain. Moreover, a monitoring scheme was proposed to
avoid the peaking effects from a class of output exoge-
nous disturbances.
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