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1 Introduction

In this chapter, an output-feedback sliding mode (OFSM) controller for a
class of multi-input-multi-output (MIMO) uncertain nonlinear systems is de-
veloped. Uncertainties in either the linear or nonlinear terms are allowed. The
plant is regarded as a linear system with nonlinear state dependent distur-
bances. Such disturbances are not necessarily matched with respect to the
control inputs.

The classic variable structure control (VSC) design relies on state space
representations of the system and the resulting control law implementation
requires the availability of the full state vector, e.g., [43]. Owing to the prac-
tical difficulty of measuring all states, output-feedback VSC strategies were
developed, at first using asymptotic observers [5]. More recently, to cope with
uncertain linear and nonlinear systems, sliding mode observers [38, 44, 10]
and high-gain observers [11, 12, 35, 31] were proposed.

Alternatively, the unit vector model-reference sliding mode controller (UV-
MRAC) follows the model-reference adaptive control (MRAC) approach [37]
without the use of state observers [20]. This chapter intends to extend the
design of the UV-MRAC, developed for MIMO nonlinear systems of relative
degree one in [19], to systems of arbitrary uniform relative degree. The nonlin-
ear unmeasured state dependent disturbances are dealt with according to [33]
where one central idea was to reduce all disturbance terms to input distur-
bances. This leads to a controller design for a class of uncertain MIMO plants
with nonlinear state dependent disturbances (locally or globally Lipschitz)
which are not uniformly bounded, a priori.

The new scheme will be developed trying to retain the advantageous fea-
tures of the previous UV-MRAC versions. In particular, it is desirable to
ensure that no peaking phenomena [40] occurs in the closed loop system, as
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in [19], in contrast to some output feedback controllers based on high gain
observers [12, 11].

In addition, since no particular growth restrictions are imposed on the
nonlinear terms, the controller should guarantee global (as in [20, 19]) or at
least semi-global exponential stability with respect to some small residual set
in the error space. The residual set should be arbitrarily small, depending on
a design parameter.

The control distribution matrix, and therefore the plant high frequency
gain (matrix Kp), is allowed to be uncertain. The main motivation to use a
unit vector [15, 16] instead of the vector “sign(·)” switching function, is that
a less restrictive prior knowledge of Kp is required, e.g., compared to that
obtained using some direct norm-bounds on the uncertainty of the control
matrix [10].

This chapter is organized as follows. Section 2 presents some preliminary
concepts, definitions, notations and properties. Section 3 describes the plant,
the reference model and the control objective. Section 4 briefly introduces the
unit vector controller and a key related theorem. A parametrization for the
output feedback model matching control and the output error equations are
described in Section 5. The development and analysis of the UV-MRAC is
carried out in Section 6. Some implementation issues are considered in Sec-
tion 7 and an illustrative simple simulation example is discussed in Section 8.
Conclusions are presented in Section 9 and further reading is suggested in
Section 10. The proof of the main result is included in an Appendix.

2 Preliminaries

2.1 Basic concepts and notation

The following basic concepts and notation are employed in this chapter.

• ‖x‖ denotes the Euclidean norm of a vector x and ‖A‖ = σmax(A) de-
notes the induced norm of matrix A, with σmax(·) denoting the maximum
singular value of the argument.

• The L∞e norm of the signal x(t) ∈ R
n is defined as

‖xt‖∞ := sup
0≤τ≤t

‖x(τ)‖ . (1)

• Classes of K,K∞ and KL functions are defined according to [26, p. 144],
as follows. A function Ψ : [0, σ1) → [0,∞) is of class K if Ψ is continuous,
strictly increasing and Ψ(0) = 0. It is of class K∞ if additionally it is
defined in [0,∞) and it is unbounded. A function V : [0, σ1) × [t0,∞) →
[0,∞) is of class KL if, for each fixed t, V(σ, t) is of class K with respect
to σ and for each fixed σ, V(σ, t) is monotone decreasing to zero as t
increases. Throughout the chapter, the class K can be assumed to be locally
Lipschitz.
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• The symbol s denotes either the complex variable in Laplace transforms
or the differential operator d

dt
in time-domain expressions.

• The stability margin λ0 of a polynomial p(λ) is defined as

λ0 := min
i
{−Re(λi)} , (2)

where {λi} are the roots of p(λ). Similarly, for a matrix A or a transfer
function G(s), a stability margin is defined with {λi} being the eigenvalues
of A or the poles ofG(s). If λ0>0, then the polynomial p(λ) and the matrix
A are said to be Hurwitz and, the transfer function G(s) is bounded-input-
bounded-output (BIBO) stable.

• As usual in adaptive control theory, mixed time domain and Laplace trans-
form domain (operator) representations will be adopted. As in [24, 21]: the
output y of a linear time invariant system with transfer function H(s) and
input u is given by H(s)u. Pure convolution operations h(t) ∗ u(t), h(t)
being the impulse response from H(s), will be eventually written, for sim-
plicity, as H(s) ∗ u. Consider the realization ẋ = Ax+Bu, y = Cx+Du,
of H(s). Then,

y(t) = H(s)u(t) = h(t) ∗ u(t) + CeAtx(0) , (3)

where the exponential term is the homogeneous response of the system
(u(t) ≡ 0). The state x0 of the homogeneous system ẋ0 = Ax0 is called
the transient state. Note that the convolution operator together with the
transient state allows a complete input/output description of the linear
system, which accounts for the initial conditions.

• The norm of the operator H(s) is defined as

‖H(s)‖ := ‖h(t)‖1 =

∫ +∞

0

‖h(τ)‖dτ . (4)

• It is assumed that t ∈ [0,∞) so that ∀t means ∀t ≥ 0, except otherwise
stated.

2.2 Class K Properties

The following properties of class K functions are useful to extend the results
of [20] to the nonlinear case. Similar properties can be found in [39].

Property 1. (Invariance property of filtered functions of class KL) Let Πu be
a class KL function and consider the impulse response h(t) of a BIBO stable
linear SISO filter. For a fixed σ ≥ 0, let u(t) be a signal norm-bounded by
Πu(σ, t). Then, there exists a class KL function Πy such that the filtered
signal y(t) = h(t) ∗ u(t) is norm-bounded by Πy(σ, t), i.e.,

|y(t)| ≤ |h(t)| ∗Πu(σ, t) ≤ Πy(σ, t) . (5)
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Proof. The proof follows applying Lemma 1 (Section 7) to the convolution
integral. ⊓⊔

Property 2. (Separability property for class-K functions) Let Ψ be a class-K
function and a, b, α be arbitrary positive constants. Then, the inequality

Ψ(a+ b) ≤ Ψ(a+ αa) + Ψ(b+
b

α
) ,

is verified.

Proof. Since Ψ is an increasing function then Ψ(a + b) ≤ Ψ(b + b/α) when
a < b/α. In addition, Ψ(a + b) ≤ Ψ(a + αa) + Ψ(b + b

α
), since Ψ assumes

positive values only. Using the same argument for the a ≥ b/α case, the same
inequality results thus proving the stated property. ⊓⊔

2.3 Basic MIMO Systems Concepts

Let {A,B,C} be a realization of a strictly proper and nonsingular m × m
rational transfer function G(s) = C(sI −A)−1B.

• The observability index of the pair {C,A} (A ∈ R
n×n, C ∈ R

m×n) is the
smallest integer ν, (1 ≤ ν ≤ n), such that

Oν =
[

CT (CA)T · · · (CAν−1)T
]T

(6)

has full rank. See [25, pp. 356–357].
• The relative degree of a MIMO plant is related with the concept of in-

teractor matrix ξ(s) associated with G(s) [45]. In particular, if G(s) has
uniform relative degree n∗ ≥ 1, see [20], then CAn∗−1B is nonsingular and,
in addition, CAiB ≡ 0, ∀i ∈ {0, 1, . . . , n∗ − 2}, if n∗ ≥ 2.

• The matrix Kp ∈R
m×m, finite and nonsingular, is referred to as the high

frequency gain (HFG) matrix and satisfies

Kp = lim
s→∞

sn∗

G(s) , (7)

when the interactor matrix is diagonal (ξ(s) = sn∗

I) and G(s) has uniform
relative degree.

2.4 Discontinuous Differential Equations

• Filippov’s definition for the solution of differential equations with discon-
tinuous right-hand sides is assumed [13]. Note that the control signal u is
not necessarily a function of t in the usual sense when a sliding mode takes
place. In order to avoid clutter, u(t) denotes the locally integrable function
which is equivalent to u, in the sense of extended equivalent control [43],
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along any given Filippov solution of the closed-loop system which is ab-
solutely continuous by definition. Also, along any such solution, u can be
replaced by u(t) in the right-hand side of the governing differential equa-
tions. The extended equivalent control is defined as an equivalent control
which applies for any system motion, not necessarily on a sliding surface
[20, Section 2.3].

3 Problem Statement

This chapter considers the model-reference control of a nonlinear MIMO plant

ẋp = Apxp + φ(xp, t) +Bpu ,

y = Cpxp , (8)

where xp ∈R
n is the state, u∈R

m is the input, y ∈R
m is the output, φ is a

state dependent nonlinear disturbance which can be decomposed as

φ(xp, t) := fx(xp, t) + fy(y, t) . (9)

This decomposition indicates the portion of the disturbance depending only
on t and on the measured output y.

Matrices Ap, Bp and Cp are uncertain, i.e., only nominal values and some
uncertainty bounds are available for design. For φ≡0, the plant (8) is assumed
controllable and observable. The linear subsystem has transfer function given
by G(s)=Cp(sI−Ap)

−1Bp.

3.1 Basic Assumptions

As in [20], the following assumptions are made:

(A1) G(s) is minimum phase, has full rank and is strictly proper.
(A2) The observability index ν of G(s), or an upper bound of ν, is known.
(A3) The interactor matrix ξ(s) is diagonal and G(s) has known uniform

relative degree n∗ (i.e., ξ(s)=sn∗

I), with HFG given by Kp as defined by
(7).

(A4) A matrix Sp is known such that −KpSp is Hurwitz.

The above assumptions are discussed and motivated in [20] for linear systems.
Some additional assumptions must be made on the nonlinearities:

(A5) The nonlinear term φ(xp, t) is locally Lipschitz in xp, ∀xp, and piecewise
continuous in t, ∀t.

(A6) The nonlinear disturbance φ satisfies

‖φ(xp, t)‖≤kx‖xp‖+ϕ(y, t) , ∀(xp, t) ,

where kx≥0 is a scalar and ϕ : R
m×R

+→R
+ is a known function piecewise

continuous in t and continuous in y, satisfying ϕ(y, t) ≤ Ψϕ(‖y‖) + kϕ,
where Ψϕ is of class K∞ and kϕ is a positive constant.
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The decomposition (9) is such that both nonlinear terms fx, fy are composed
by matched and unmatched nonlinear functions. Structural restrictions (e.g.,
triangularity) on fx and sufficient smoothness of the nonlinear terms fx and
fy will be later required (see Assumption (A7), Section 5.2) for the case of
relative degree higher than one.

As already pointed out in [20], Assumption (A4) represents a considerable
reduction in the required prior knowledge concerning the plant HFG matrix.
In [41, 42, 6], the more restrictive assumption of positive definiteness of KpSp

(and also symmetry in some approaches) was needed. In fact, if a unit vector
controller is used, one cannot do better since the mentioned Hurwitz condition
is necessary and sufficient for the stability of the sliding surface, according to
[3, 20] (see Theorem 1 in Section 4).

Assumption (A5) is made in order to allow us to develop a control law
u that guarantees local existence and uniqueness (in positive time) of the
solution of (8). According to Assumption (A6), no particular growth condition
is imposed on ϕ. Thus, one could have, e.g., ϕ(y)= ‖y‖2. Finite-time escape
is therefore not precluded, a priori.

3.2 Reference Model

The reference model is defined by

yM = WM (s) r , r, yM ∈ R
m , (10)

WM (s) = diag
{

(s+ γ1)
−1, . . . , (s+ γm)−1

}

L−1(s) , (11)

L(s) = L1(s)L2(s) · · ·LN (s) , Li(s) = (s+ αi)I , (12)

γj > 0 , (j = 1, · · · ,m) , αi > 0 , (i = 1, · · · , N) , and N = n∗ − 1. The
reference signal r(t) is assumed piecewise continuous and uniformly bounded.
WM (s) has the same n∗ as G(s) and its HFG is the identity matrix.

3.3 Control Objective

The control objective is to achieve global or semi-global asymptotic stability
of the error state with respect to the origin of the error space or to some small
residual neighbourhood of the origin. In particular, the tracking error

e(t) = y(t) − yM (t) (13)

should asymptotically tend to zero or to small residual values.

4 Unit Vector Control

The unit vector control (UVC) law is given by [15, 16]
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u = −̺(x, t)
v(x)

‖v(x)‖
, ‖v‖ 6= 0 , (14)

where x is the state vector and v(x) is a vector function of the state of the
system. The modulation function ̺(x, t) ≥ 0 (∀x, t) is designed to induce a
sliding mode on the manifold v(x)=0. Henceforth, u=0 is set if v(x)=0 only
to complete the definition of the control law. However, this does not mean
that the equivalent control vanishes on the manifold v(x)=0.

The main motivation for the application of UVC in MIMO systems follows
from the Theorem below which was proved for UVC systems of arbitrary
dimension in [3].

Theorem 1. Consider the system

ẋ = K(x)
x

‖x‖
, (15)

where x∈R
m, m≥ 1, K : R

m → R
m×m, and det(K(x)) 6= 0, ∀x. The origin

of the state-space of system (15), with bounded K(x) and its derivatives, is
stable, asymptotically stable or unstable, if and only if the system ż=K(z)z
is stable, asymptotically stable or unstable, respectively.

In particular, if K(x) is constant, then the origin of the UVC system (15)
is globally asymptotically stable if and only if K is Hurwitz. In contrast,
no necessary and sufficient conditions are known for VSC systems based on
the classic vector “sign(·)” switching function (i.e., for x ∈ R

m, sign(x) =

[sign(x1), sign(x2), ..., sign(xm)]
T
) of dimension greater than two [20].

Some lemmas regarding the application of unit vector control within the
MRAC framework are presented in [20]. These lemmas generalize their SISO
counterparts found in [21] and are instrumental for the controller synthesis and
stability analysis. Properties 1 and 2, given in Section 2, are fundamental to
extend the results of the mentioned lemmas for the case where exponentially
decreasing signals are replaced by the more general class of signals norm-
bounded by KL functions.

5 Model Matching Output Feedback Control

When the plant is perfectly known and free of disturbances (φ≡ 0), a con-
trol law which achieves matching between the closed-loop transfer function
and WM (s) is given by the following parametrization, which appears in the
adaptive control literature [37]

u∗ = θ∗Tω + θ∗T
4 r , (16)

where the parameter matrix θ∗ and the regressor vector ω(t) are given by
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θ∗T = [θ∗T
1 θ∗T

2 θ∗T
3 ] , ω = [ωT

1 ωT
2 yT ]T , (17)

ω1 = A(s)Λ−1(s)u , ω2 = A(s)Λ−1(s)y , (18)

A(s) = [Isν−2 Isν−3 · · · Is I]T , (19)

Λ(s) = λ(s)I , (20)

ω1, ω2 ∈ R
m(ν−1), θ∗1 , θ

∗
2 ∈ R

m(ν−1)×m, θ∗3 , θ
∗
4 ∈ R

m×m and λ(s) is a monic
Hurwitz polynomial of degree ν − 1. The matching conditions require that
θ∗T
4 = K−1

p .

5.1 Output Error Equation

The error equation can be developed following the usual approach for SISO
MRAC [17, 24]. Consider the following realization of (18)

ω̇1 = Φω1 + Γu , ω̇2 = Φω2 + Γy , (21)

where Γ ∈R
m(ν−1)×m and Φ∈R

m(ν−1)×m(ν−1) with det(sI−Φ)=det(Λ(s))=
[λ(s)]m. Let

X := [xT
p ωT

1 ωT
2 ]T . (22)

The open-loop system composed by the plant (8) and the filters (21) can be
written as

Ẋ = AoX +Bou+Bφφ ,

y = CoX . (23)

where

Ao =





Ap 0 0
0 Φ 0

(ΓCp) 0 Φ



 , Bo =





Bp

Γ
0



 , Bφ =





I
0
0



 , Co =
[

Cp 0 0
]

. (24)

Then, the regressor vector is given by

ω = Ω1X , Ω1 =





0 I 0
0 0 I
Cp 0 0



 . (25)

Upon substituting u by u∗ given by (16) into (23) and including a disturbance
cancellation term Wφ(s) ∗ φ, the following nonminimal realization of WM (s)
is obtained [19]

ẊM = AcXM +BcKp

[

θ∗T
4 r −Wφ(s) ∗ φ

]

+Bφφ ,

yM = CoXM , (26)

where Ac = Ao +Boθ
∗TΩ1, Bc = Boθ

∗T
4 and
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Wφ(s) = K−1
p [WM (s)]

−1
Co (sI −Ac)

−1
Bφ . (27)

Note that Ac is Hurwitz since the reference model is BIBO stable.
The open-loop system (23) can be rewritten as

Ẋ = AcX +BcKp

[

u− θ∗Tω
]

+Bφφ ,

y = CoX . (28)

Now, defining the state error Xe and the output error e by

Xe := X −XM , (29)

e := y − yM , (30)

and, subtracting (26) from (28), then Xe and e satisfy

Ẋe = AcXe +BcKp [u− ū] ,

e = CoXe , (31)

where the model matching control ū is given by

ū = θ∗Tω + θ∗T
4 r −Wφ(s) ∗ φ . (32)

Since {Ac, Bc, Co} is a realization of WM (s), the error equation can be
rewritten in input-output form as

e = WM (s)Kp [u− ū] . (33)

5.2 Equivalent Nonlinear Input Disturbance

In (33) an upper bound of ū is necessary to design the control signal u. Con-
sidering the plant in (8), if the linear subsystem has uniform relative degree
n∗=1, then Wφ(s) is proper and stable. Thus, an upper bound for the equiv-
alent nonlinear input disturbance dφ, defined by

dφ := Wφ(s)∗φ , (34)

can be directly obtained through the application of Lemma 1 (Section 7) and
some upper bound for ‖φ‖ [19].

However, for systems with uniform relative degree n∗ > 1, the transfer
function Wφ(s), defined in (27), can be improper. In this case, time derivatives
of the nonlinear disturbance φ must be taken into account.

From the definition of the reference model WM , given in (10), one has

K−1
p W−1

M (s) = N0s
n∗

+ N1s
n∗−1 + · · · + Nn∗ ,

where Ni ∈ R
m×m(i = 0, 1, . . . , n∗) are functions of γi(i = 1, . . . ,m) and

αi(i = 1, . . . , n∗ − 1). By using the Markov parameters [25] for representing
the transfer function
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Co(sI −Ac)
−1Bφ =

CoBφ

s
+
CoAcBφ

s2
+
CoA

2
cBφ

s3
+ . . . ,

Wφ(s) (27) can be rewritten as

Wφ(s)=WNs
N + · · · +W1s+W0 + W̄φ(s) , (35)

where

W̄φ(s) :=
n∗

∑

i=0

NiCoA
n∗−i
c (sI −Ac)

−1Bφ

is strictly proper and BIBO stable and Wj ∈R
m×n are given by

Wj =

N−j
∑

i=0

NiCoA
N−j−i
c Bφ =

N−j
∑

i=0

NiCpA
N−j−i
p , (0≤j≤N) . (36)

The last equality in (36) comes from the identity CoA
i
cBφ ≡ CpA

i
p, (i =

0, 1, . . . , n∗), obtained from (24).
From (35), consider the term

(

WNs
N + · · · +W1s+W0

)

∗ φ , (37)

with φ = fx + fy according to (9). In what follows, the notation f
(j)
x :=

dj

dtj fx(xp, t) is adopted, where the derivative is taken along a solution xp(t) of

(8). An analogous notation is used for f
(j)
y .

In order to deal with the derivatives of the terms fx(xp, t) and fy(y, t) in
(37), the following assumptions guarantee sufficient differentiability:

(A7.a) The terms Wjfy(y, t) (∀j∈{1, · · · , N}) are continuous with respect to
y and t and their partial derivatives of order up to N are continuous.

(A7.b) The terms Wjfx(xp, t) (∀j ∈{1, · · · , N}) are continuous with respect
to xp and t and their partial derivatives of order up to N are continuous.

In addition, the following structural assumptions preclude the relative de-
gree from being altered by the nonlinear disturbance. These assumptions guar-
antee that the time derivative of the control signal u does not appear in the
equivalent input disturbance dφ, given in (34).

(A7.c) For n∗ ≥ 3, (N ≥ 2),

∂
[

Wjf
(i)
x

]

∂xp

Bp ≡ 0 , (2 ≤ j ≤ N), (0 ≤ i ≤ j − 2) . (38)

(A7.d) For n∗ ≥ 2, (N ≥ 1),
∥

∥

∥

∥

∥

∥

∂
[

Wjf
(j−1)
x

]

∂xp

Bp

∥

∥

∥

∥

∥

∥

≤ kj , (1 ≤ j ≤ N) , (39)

where kj are sufficiently small positive scalars.
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In particular, for SISO nonlinear plants, Assumption (A7.c)–(A7.d) are satis-
fied by nonlinear systems in triangular form.

Remark 1. The following relationship underlies the above assumptions:

Wjf
(j)
x =

∂
[

Wjf
(j−1)
x

]

∂xp

ẋp +
∂

[

Wjf
(j−1)
x

]

∂t
,

for n∗ ≥ 2 and j ∈ {1, 2, . . . , N}.

Note that the time derivatives f
(i)
y do not contribute to modify the relative

degree. This can be verified as follows. From (36) and Assumption (A7.c) one
has

CpA
N−j
p

∂f
(i)
x

∂xp

Bp ≡ 0 , (2 ≤ j ≤ N), (0 ≤ i ≤ j − 2) . (40)

Thus, after some algebraic manipulations using induction, one can conclude
that the time derivatives of the output y of order up to N are independent

of the control signal u. Noting that f
(i)
y (∀i ∈ {0, 1, . . . , p} and p a positive

integer) are functions of y, y(1), y(2), . . . , y(p) and t only (independent of u),

the time derivatives f
(i)
y are also independent of the control signal u, thus f

(i)
y

does not affect the relative degree.
Now, from Assumptions (A7.a)-(A7.d), one has

(WNs
N + · · · +W1s+W0) ∗ φ = f̄1(xp, t) + f̄2(xp, t)u , (41)

where f̄2 is uniformly bounded, i.e., ‖f̄2(xp, t)‖ ≤ kf2 = k1 + . . .+ kN , for the
constants kj of Assumption (A7.d). Now, consider the following additional
assumption:

(A7.e) ‖f̄1(xp, t)‖ ≤ Ψφ(‖xp‖) + kφ, where Ψφ is of class-K∞ and kφ is a
positive constant.

Assumption (A7.e) does not impose any particular growth condition on the
state dependent nonlinearities and, together with Assumption (A7.c)–(A7.d),
leads to

‖(WNs
N + · · · +W1s+W0) ∗ φ‖ ≤ Ψφ(‖xp‖) + kφ + kf2‖u‖ . (42)

From (41) and (35), the equivalent nonlinear input disturbance dφ is given by

dφ = Wφ(s) ∗ φ = f̄1(xp, t) + f̄2(xp, t)u+ W̄φ(s) ∗ φ(xp, t) . (43)

Since there exists ū, in (32), that gives the perfect model following control
law, it is reasonable to restrict the class of admissible control laws by the
following assumption
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(A8) The control law satisfies the inequality

‖ut‖∞ ≤ ΨX(‖(Xe)t‖∞) + kred , ∀t ≥ 0 , (44)

where ΨX is of class K∞ and kred is a positive constant.

Note that Assumption (A8) is consistent with the modulation functions to
be determined (Section 7) and it allows one to separate the stability analysis
from the modulation function implementation.

The class of nonlinear systems considered here is illustrated through the
following example.

Example 1. Consider the SISO system

ẋp1 = xp2 + φ1(xp1, xp2) ,

ẋp2 = xp3 + φ2(xp1, xp2) ,

ẋp3 = u ,

y = xp1 . (45)

In this SISO case the linear subsystem has transfer function given by G(s) =
1/s3 and thus, Assumptions (A1)–(A4) are easily verified. In addition, con-
sider nonlinear disturbances φ1 and φ2 that satisfy the locally Lipschitz con-
dition given in Assumption (A5). Without further information about the non-

linearities, one can simply set fx =
[

φ1 φ2 0
]T

and fy = 0.
Writing the system in the form (8), (Ap, Bp, Cp) can be taken as the canon-

ical controllable realization of G(s) = 1/s3 with Cp =
[

1 0 0
]

.

In (38), considering that Bp =
[

0 0 1
]T

, one has

∂ [W2fx]

∂xp

Bp =
∂ [W2fx]

∂xp3
.

Since fx does not depend on xp3, this term is null and Assumption (A7.c) is
satisfied. In addition, from (36) one has W2 = N0Cp, where N0 = 1. Since

∂ [W1fx]

∂xp

Bp =
∂ [W1fx]

∂xp3
= 0 , and

∂
[

W2ḟx

]

∂xp

Bp =
∂φ̇1

∂xp3
,

Assumption (A7.d) is satisfied if
∥

∥

∥

∂φ̇1

∂xp3

∥

∥

∥
< 1. Noting that

φ̇1 =
∂φ1

∂xp1
(xp2 + φ1) +

∂φ1

∂xp2
(xp3 + φ2) , one has

∂φ̇1

∂xp3
=

∂φ1

∂xp2
.

Thus, Assumption (A7.d) is also equivalent to
∥

∥

∥

∂φ1

∂xp2

∥

∥

∥
< 1. Considering

φ1 = 0.5 sinxp2 + x2
p1 , φ2 =

xp1

(1 − θxp2)2 + x2
p2

,
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where φ2 is borrowed from [29], Assumptions (A6) and (A7) are satisfied,
since

∣

∣

∣

∣

∣

xp1

(1 − θxp2)2 + x2
p2

∣

∣

∣

∣

∣

≤ (1 + θ2)|xp1| , and

∥

∥

∥

∥

∂φ1

∂xp2

∥

∥

∥

∥

= 0.5 cos(xp2) < 1 .

As an example of systems violating some of the above assumptions, con-
sider disturbances with polynomial growth bounds depending on unmeasured
states, like in φ1(xp1, xp2) = x2

p1 + x2
p2. In this case, Assumption (A6) is vio-

lated.

6 UV-MRAC Design and Analysis

In simple words, our goal is to design a stable control system that generates
some approximation of the model matching control ū. Ideally, if u≡ ū, then
the output error signal e → 0 exponentially, as can be seen from the output
error equation (33), since WM (s) is BIBO stable.

The proposed control law is

u = unom − SpUN , (46)

UN = ̺N

εN

‖εN‖
, (47)

unom = (θnom)Tω + (θnom
4 )T r , (48)

where Sp ∈ R
m×m is a design matrix which satisfies Assumption (A4) and

θnom and θnom
4 are nominal values for θ∗ and θ∗4 . The nominal control signal

unom allows the reduction of modulation function amplitudes if the parameter
uncertainties ‖θ∗ − θnom‖ and ‖θ∗4 − θnom

4 ‖ are small.
For systems with uniform relative degree one, N=0 and εN =e in (47). For

this case, the design of the modulation function ̺N and the stability analysis
of the closed-loop control system are discussed in detail in [19].

For systems of higher uniform relative degree, the control signal UN and
the auxiliary error εN are defined according to the controller scheme given
in Figs. 1 and 2 [20]. A key idea for the controller generalization to higher
relative degree is the introduction of the prediction error

ê = WM (s)L(s)Knom
(

U0 − L−1(s)UN

)

, (49)

where Knom is a nominal value of K=KpSp and the operator L(s), as given
by (12), is such that G(s)L(s) and WM (s)L(s) have uniform vector relative
degree one. The operator L(s) is noncausal but can be approximated by the
unit vector lead filter L shown in Fig. 2.

The averaging filters F−1
i (τs) in Fig. 2 are low-pass filters with matrix

transfer function given by F−1
i (τs) = [favi(τs)I]

−1
, with favi(τs) being Hur-

witz polynomials in τs such that the filter has unit DC gain (favi(0) = 1),



14 L. Hsu et al.

−

+

+

−

+

−

Nonlinear
+

−

Model

Plant

unom
e

ê

ε0

L

L−1

r
̺0

u

U0

U0

UN

y

yM

WM (s)

WMLKnom

Sp

̺0
ε0

‖ε0‖

Fig. 1. UV-MRAC for nonlinear plants of uniform relative degree n∗ ≥ 2. The
state filters and the computation of unom and ̺0 are omitted to avoid clutter. The
realization of the unit vector lead filter L is presented in Fig. 2.

−

+

−

+ε1εN

F−1

1
F−1

N

L−1

1
L−1

N

̺1̺N

U0U1
UN−1UN ̺1

ε1

‖ε1‖
̺N

εN

‖εN‖

Fig. 2. Realization of the unit vector lead filter L.

e.g., favi(τs) = τs + 1. If the time constant τ > 0 is sufficiently small, the
averaging filters give an approximation of the equivalent control signals [43].
According to the stability analysis (Section 6.3), the time constant τ is the
only design parameter required to increase the region of stability. It is chosen
small enough to guarantee the tracking error and the stability region are both
acceptable.

6.1 Error Equations

The following expressions for the auxiliary error signals are convenient for
the controller design and stability analysis [21]. From (33) and (49), using
u = (θnom)Tω + (θnom

4 )T r − SpUN , K = KpSp and
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Ū := (Knom)−1Kp

[

(θ∗ − θnom)
T
ω + (θ∗4 − θnom

4 )
T
r −Wφ(s) ∗ φ

]

−

−
[

I − (Knom)−1K
]

UN , (50)

the auxiliary error ε0 =e− ê can be rewritten as

ε0 = WM (s)L(s)Knom
[

−U0 − L−1(s)Ū
]

. (51)

The auxiliary errors in the lead filters are given by

εi = F−1
i (τs)Ui−1 − L−1

i (s)Ui , (i=1, . . . , N) . (52)

These auxiliary errors εi (i=1, . . . , N − 1) and εN can be rewritten as:

εi = L−1
i (s)

[

−Ui − F−1
1,i (τs)L−1

i+1,N (s)Ū
]

− πei − π0i , (53)

εN = −L−1
N (s)(Knom)−1K

[

UN +F−1
1,N (τs)Ud

]

−

−
[

I − (Knom)−1K
]

βuN − πeN − π0N , (54)

where Li,j(s) =
∏j

k=i Lk(s) (Li,j(s) = 1 if j < i), Fi,j(τs) is defined similarly
and (by convention, πe1≡0)

Ud = S−1
p

[

(θ∗−θnom)
T
ω+ (θ∗4 − θnom

4 )
T
r −Wφ(s)∗φ

]

, (55)

βuN = [F1,N (τs) − I]F−1
1,N (τs)L−1

N (s)UN , (56)

πei = Li−1(s)F
−1
i (τs)[πe,i−1+εi−1] , (57)

π0i = [WM (s)F1,i(τs)Li,N (s)Knom]
−1
ε0 . (58)

6.2 Bounds for the Auxiliary Errors

Consider the error system (31), (51), (53), and (54). Let Xε denote the state
vector of (51). The upper bounds for the auxiliary errors are obtained by
forcing the modulation functions to satisfy some inequalities (Theorem 2),
modulo vanishing terms.

Let x0
F represent these vanishing terms as well as the transient states [21]

corresponding to the following operators: L−1 in (51), F−1
1,i L

−1
i+1,N in (53), and

all the remaining operators associated with βuN , πei, π0i in (56)–(58). Since all
these operators are linear and BIBO stable, there exists a class KL function
VF such that

‖x0
F (t)‖ ≤ VF (‖x0

F (0)‖, t), ∀t . (59)

In order to fully account for the initial conditions, the following state vector
z is used

zT = [(z0)T , εT
N ,X

T
e ] ,

(z0)T = [XT
ε , ε

T
1 , ε

T
2 , . . . , ε

T
N−1, (x

0
F )T ] . (60)
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In what follows, “Π” and “Π0” denote any vanishing terms of the form
V(‖z(0)‖, t) and V(‖z0(0)‖, t), respectively, where V is a generic class KL
function. Since finite escape time cannot be excluded a priori, define [0, tM )
as the maximum time interval of definition of a given solution, where tM may
be finite or infinite.

Henceforth, ∀tmeans ∀t∈ [0, tM ). The following theorem is useful to obtain
bounds for the auxiliary errors. For N = n∗ − 1 ≥ 1, assume that −Knom and
−(Knom)−1K are Hurwitz matrices.

Theorem 2. Consider the auxiliary errors (51), (53) and (54). If the modu-
lation functions satisfy, ∀t ∈ [0, t∗), t∗ ≤ tM ,

̺0(t) ≥ (1 + cd0)‖L
−1Ū‖ + cε0‖ε0‖ ,

̺i(t) ≥ (1 + cdi)‖(F
−1
1,i L

−1
i+1,N )(Ū)‖ , (i = 1, · · · , N − 1) , (61)

̺N (t) ≥ (1 + cdN )‖F−1
1,NUd‖ ,

modulo vanishing terms, with some appropriate constants cε0 ≥ 0 and cdi ≥ 0,
for i = 0, . . . , N , then,

‖εi(t)‖, ‖Xε(t)‖ ≤ Π0 , (62)

‖εN (t)‖ ≤ τ
∥

∥I − (Knom)−1K
∥

∥ keNC(t) +Π , (63)

and

‖πei(t)‖, ‖π0i(t)‖ ≤ Π0, (i = 1, . . . , N) , (64)

‖βuN (t)‖ ≤ τkβNC(t) +Π0 , (65)

where
C(t) := ΨX(‖(Xe)t‖∞) + kred (66)

with positive constants keN , kβN and ΨX , kred as in Assumption (A8). More-
over, if t∗ → +∞, the auxiliary errors εi (i = 0, . . . , N − 1) tend to zero
asymptotically.

Proof. Applying the invariance Property 1, both Corollary 1 and Lemma 2 of
[20, p. 292] can be extended to the case in which the exponentially decreasing
signals π(t) are replaced by the more general class of signals represented by
KL functions. Then the proof follows closely that of Theorem 4 of [20, p. 300]
except that, here, t may not be extendable to +∞ if tM or t∗ are finite. ⊓⊔

6.3 Error System Stability

The main result of this chapter is now stated.
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Theorem 3. For N = n∗ − 1 ≥ 1, assume that (A1)–(A8) hold, −Knom

and −(Knom)−1K are Hurwitz matrices, and the modulation functions sat-
isfy (61). Then, for sufficiently small τ > 0, the error system (31), (51),
(53) and (54), with state z as defined in (60) is semi-globally exponentially
stable with respect to a residual set of order τ , in the sense that there exist
Ψ(·) ∈ K∞, a positive function a(·) and a positive constant R0, which can be
chosen arbitrarily large when τ is sufficiently small, such that

‖z(t)‖ ≤ e−a(‖z(0)‖) t Ψ(‖z(0)‖) + O(τ), ∀t ≥ 0 ,

provided that ‖z(0)‖ ≤ R0. Under these conditions, all signals in the closed
loop system are uniformly bounded.

Proof. See Appendix. ⊓⊔

Now, the global stability result for the UV-MRAC closed loop system can
be stated.

Theorem 4. Under the conditions of Theorem 3 and, in addition, if Assump-
tion (A7) holds with (A7.e) being satisfied by a norm-bound consisting of a
globally Lipschitz class-K∞ function plus some positive constant, then, for
sufficiently small τ > 0, the error system (31), (51), (53) and (54), with
state z as defined in (60) is globally exponentially stable with respect to a
residual set of order τ , i.e., there exist positive constants a and kz such that
‖z(t)‖≤ kze

−at‖z(0)‖+O(τ), ∀t ≥ 0, and ∀z(0); Under these conditions, all
signals in the closed loop system are uniformly bounded.

Proof. Under the global Lipschitz assumption, R0 in Theorem 3 can be infinite
since in the proof of the former theorem all class-K∞ bounds can be linear.⊓⊔

Remark 2. If the global Lipschitz condition of Theorem 4 is not satisfied,
global exponential stability can still be achieved if the plant has uniform
relative degree n∗ = 1, see [19].

Remark 3 (Absence of peaking). From the expression of the state norm-bounds
given in Theorems 3 and 4 the transient is independent of τ . This guarantees
that the peaking phenomena is absent in the proposed scheme.

6.4 The realization of ideal sliding modes

The realization of ideal sliding modes is important in order to preclude finite
frequency chattering in the control signal, at least under ideal conditions. The
ideal sliding modes of the UV-MRAC are realized when the auxiliary errors
εi ≡ 0 (i = 0, . . . , N). From Theorem 2, for N ≥ 1 the first N sliding modes
(i = 0, . . . , N − 1) are reached asymptotically. One can further show that
the last sliding mode εN ≡ 0 is also reached asymptotically according to the
following corollary.
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Corollary 1. For N ≥ 1, under the assumptions of Theorem 3 and with
appropriate modulation function ̺N , the auxiliary error εN (t) also tends to
zero asymptotically if the following transfer function is minimum phase, i.e.,
has all its transmission zeros with negative real parts:

L−1
N (s)[I +∆KF−1(τs)] , (67)

where ∆K = (Knom)−1K − I and F (τs) = F−1
1,N (τs).

Proof. The equation for εN can be rewritten as

εN = −L−1
N [I +∆KF−1]{UN + [I +∆KF−1]−1(Knom)−1KF−1Ud} −

− πeN − π0N . (68)

The corollary follows from direct application of Lemma 1 of [20, p. 291]. ⊓⊔

A simple sufficient condition for the corollary to hold comes from the appli-
cation of the small gain theorem to the transfer function ∆KF−1(τs) with
unitary feedback. This results in the sufficient condition:

‖∆K‖ ‖F−1(τs)‖∞ < 1 , (69)

where ‖·‖∞ denotes the H∞ norm. The modulation function ̺N should satisfy
(61) and also, according to Lemma 1 of [20, p. 291],

̺N (t) ≥ (1 + cdN1)‖[I +∆KF−1]−1(Knom)−1KF−1Ud‖ . (70)

As will be clear from Lemma 1, a simple first order filter can be designed to
calculate ̺N from ‖Ud‖.

7 Modulation Functions

According to the definition of the signals Ū (50) and Ud (55), the modulation
functions that satisfy (61), modulo vanishing terms, can be implemented using
upper bounds for ε0 and for the output of the filters L−1, F−1

1,i L
−1
i+1,N and F−1

1,N

driven by the measured signals ω, r, UN and by an upper bound d̂φ of the
equivalent input disturbance nonlinear term Wφ(s) ∗ φ.

Upper bounds for the output signal of stable linear systems (possibly un-
certain) can be generated through a first order approximation filter (FOAF),
as presented in the following lemma that extends the applicability of [23,
Lemma 3.1] to multivariable systems [8, 21]. In this lemma the system

ẋ(t) = Ax(t) +Bu(t) , y(t) = Cx(t) (71)

is considered, where y∈R
p, u∈R

m and x∈R
n. The system transfer function

is given by G(s) = C(sI − A)−1B and g(t) is the system impulse response.
Let λ0 be the stability margin of matrix A and λ :=λ0 − δ with δ > 0 being
an arbitrary constant. Let ū(t) be an instantaneous upper bound of u(t), i.e.,
‖u(t)‖ ≤ ū(t), ∀t. Note that, in the following lemma G(s) is not necessarily
stable.
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Lemma 1. For system (71), there exist c1, c2 > 0 such that the impulse re-
sponse g(t) satisfies ‖g(t)‖≤c1e

−λt and the following inequalities hold

‖g(t) ∗ u(t)‖ ≤ c1e
−λt ∗ ū(t) , ∀t , (72)

‖y(t)‖ ≤ c1e
−λt ∗ ū(t) + c2‖x(0)‖e−λt , ∀t . (73)

Proof. See [19, Appendix IV] and [23]. ⊓⊔

One can further simplify the modulation functions by using Lemma 1 to com-
pute a simple, but more conservative upper bound for ‖ω‖, since ω is a filtered
version of the signals u and y, see (17)–(20). The FOAF concept is very useful
to compute upper bound signals using low order linear filters without the ap-
plication of complex filtering devices. On the other hand, conservative upper
bounds are obtained. Thus, in this approach, there exists a tradeoff between
controller complexity and control signal amplitude.

7.1 Norm-Bounds for the Plant State

The synthesis of the UV-MRAC modulation functions require an upper bound
d̂φ for the equivalent input disturbance dφ :=Wφ(s) ∗ φ term, where φ is a
function of the unmeasured system state xp. Thus, an estimate of ‖xp‖ must
be obtained.

The lemma presented below provides an upper bound for the norm of the
state of the nonlinear system (74). In this lemma, the input signal U can be a
switched signal generated by a sliding mode control law and the signal Uav is
the average control generated through the auxiliary low-pass filter (75). This
lemma considers the system

ẋ = Ax+B[U + d] +Bφφ̄(x, t) , (74)

τav U̇av = −Uav + U , (75)

where U, d ∈ R
m are input signals, d is locally integrable in the sense of

Lebesgue, τav > 0 is an arbitrary time constant, x ∈ R
n and Uav ∈ R

m. The
function φ̄ : R

n ×R
+ → R

l is piecewise continuous in t, locally Lipschitz in x
(∀x) and satisfies

‖φ̄(x, t)‖ ≤ kx‖x‖ + ϕ̄(t) , (76)

with kx ≥0 being some scalar and ϕ̄ : R
+ → R

+ being piecewise continuous.
Let λ0 be the stability margin of A. Let cφ > 0 and γ < λ0 be such that
‖wφ(t)‖ ≤ cφe

−γt, ∀t, where wφ(t) is the impulse response corresponding to
the transfer function (sI −A)−1Bφ.

Lemma 2. For system (74)–(75), if kx <γ/cφ, then γx := γ − cφkx > 0, the
system (74) is bounded-input-bounded-state stable and ∃ci ≥ 0 (i = 0, . . . , 6)
such that the following inequality holds ∀t

‖x(t)‖ ≤ c2τ‖Uav(t)‖ + e−γxt ∗ [c3ϕ̄(t) + (c4 + τc5)‖Uav(t)‖ + c6‖d(t)‖]

+ [c0‖x(0)‖ + c1τ‖Uav(0)‖] e−γxt . (77)
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Proof. The proof consists in applying Lemma 1 and can be found in [19,
Appendix V]. ⊓⊔

Applying Lemma 2 to (28) and considering Assumption (A6), it is possible
to find a constant k∗x > 0 such that, for kx ∈ [0, k∗x] a norm-bound for X in
(28) can be obtained by using first order approximation filters, resulting in
the following inequality

‖X(t)‖ ≤ X̂(t) + π̂(t) , (78)

where the vanishing term π̂ comes from the initial conditions X(0) in (28)
and Uav(0) in (80). Note that π̂ can be bounded by Π0, a generic class KL
function with ‖z0(0)‖ being its first argument.

The norm state estimation X̂, modulo vanishing term π̂, is given by

X̂(t) := c2τav‖Uav‖ +
1

s+ λx

[c3ϕ+cω‖ω‖+cr‖r‖+(c4 + τavc5)‖Uav‖] (79)

with appropriate ci > 0 (i = 2, · · · , 5) defined in Lemma 2, cω, cr ≥ 0 are
determined from the parameter uncertainties ‖θ∗−θnom‖ and ‖θ∗4 −θ

nom
4 ‖, λx

being an appropriate positive constant, as detailed in [19], and the averaging
control Uav is redefined replacing U by UN in (75), i.e.,

Uav :=
I

τavs+ 1
UN . (80)

The upper bound (78) applies to the unmeasured norm ‖xp‖ recalling that
‖X‖2 = ‖xp‖

2 + ‖ω1‖
2 + ‖ω2‖

2. Now, an upper bound for ‖φ‖ can be derived

from X̂ through the application of the inequality (78) considering Assump-
tion (A6) [19].

7.2 Upper Bound for the Equivalent Nonlinear Input Disturbance

From Assumptions (A5)–(A7), (42) and (43), the following upper bound is
valid

‖dφ‖ ≤ Ψφ(‖xp‖) + kφ + kf2‖u‖ + ‖W̄φ(s) ∗ φ(xp, t)‖ . (81)

Since W̄φ(s) is strictly proper and BIBO stable ‖W̄φ(s) ∗ φ‖ can be directly

bounded using Lemma 1, Assumption (A6) and the upper bound X̂, resulting
in

‖W̄φ(s) ∗ φ(xp, t)‖ ≤ cφe
−λφt ∗ (kxX̂ + ϕ(y, t)) , (82)

with constants cφ>0 and 0<λφ<λo, where λo is the stability margin of Ac

in (31), see Lemma 1, with ϕ given in Assumption (A6). The term Ψφ(‖xp‖),

in (81), can be bounded by Ψφ(‖xp‖) ≤ Ψφ(X̂+Π0). Through the application

of Property 2, the upper bound term Ψφ(X̂ + Π0) can be decomposed as a

sum of a known term, depending on X̂, and some vanishing term, depending
on Π0. Thus, ‖dφ‖ can be bounded by
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‖dφ‖ = ‖Wφ(s) ∗ φ‖ ≤ d̂φ + Ψφ((α−1+1)Π0) , (83)

where

d̂φ := Ψφ((α+ 1)X̂) + kf2(‖Sp‖̺N + ‖unom‖)+

+ cφe
−λφt ∗ (kxX̂ + ϕ(y, t)) + kφ . (84)

7.3 Implementation of the Modulation Functions

Modulation functions that satisfy (61), modulo vanishing terms, can be imple-
mented using only the available signals X̂, ω and r, see [20, Section 7.1]. The
additional transient terms due to the filters used to implement the modulation
functions can be included in the state z0, which are considered in the stability
analysis.

For the design of ̺i, (i = 0, . . . , N), Lemma 1 is applied to the inequalities
(61), considering the definition of Ū (50) and Ud (55). For ̺0 it gives,

̺0 = δ0 + cε0‖ε0‖ + cω0‖L
−1(s)ω‖ + cU0‖L

−1(s)UN‖+

+ cr0‖L
−1(s)r‖ + d̂0(t) , d̂0(t) =

cd0

s+ λd0
d̂φ , (85)

with appropriate constants cε0, cω0, cU0, cr0, cd0 > 0, arbitrary δ0 ≥ 0, and
λd0 being the stability margin of the filter L−1(s).

Similarly, for ̺i, (i = 1, . . . , N − 1), one gets

̺i = δi + cωi

∥

∥

∥
F−1

1,i (τs)L−1
i+1,N (s)ω

∥

∥

∥
+ cri

∥

∥

∥
F−1

1,i (τs)L−1
i+1,N (s)r

∥

∥

∥
+

+ cUi

∥

∥

∥
F−1

1,i (τs)L−1
i+1,N (s)UN

∥

∥

∥
+ d̂i(t) , d̂i(t) =

cdi

s+ λdi

d̂φ , (86)

with arbitrary δi ≥ 0, appropriate constants cωi, cUi, cri, cdi > 0 and λdi

being the stability margin of the filter F−1
1,i (τs)L−1

i+1,N (s).
For ̺N one has that (61) and (70) must be satisfied. Thus,

̺N ≥ δN + cωNWF (τs) ‖ω‖ + crNWF (τs) ‖r‖ +WF (τs)d̂φ , (87)

with arbitrary δN ≥ 0, appropriate constants cωN , crN > 0 and WF (τs)
being a common FOAF for the transfer functions (applied to Ud) appearing
in the last inequality (61) and in (70). Note that the modulation functions
̺i, (i = 1, . . . , N −1) are implemented as a function of UN . Rewriting (84) as

d̂φ := d̄φ + kf2‖Sp‖̺N , (88)

where d̄φ := Ψφ((α+ 1)X̂) + kf2‖unom‖+ cφe
−λφt ∗ (kxX̂ + ϕ(y, t)) + kφ, one

may argue that (87) has no solution, since it is an implicit inequality in ̺N .
However, for kf2 sufficiently small, the filter (1−kf2‖Sp‖WF (τs))−1 is stable.
Thus (87) has a solution given by
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̺N = (1 − kf2‖Sp‖WF (τs))−1 ¯̺N , (89)

where

¯̺N = δN + cωNWF (τs) ‖ω‖ + crNWF (τs) ‖r‖ +WF (τs)d̄φ . (90)

Remark 4. Note that, from (18) and (20), one can choose a constant matrix
θT

av = [I nν−3I . . . n0I], with λ(s) = (sν−2 + nν−3s
ν−3 + . . . + n0)(s + α),

such that

I

τavs+ 1
u =

(s+ α)I

(τavs+ 1)
θT

avω1 . (91)

From (80) and (46), one has

SpUav =
I

τavs+ 1
unom −

I

τavs+ 1
u ,

thus, from (91), ‖(Uav)t‖∞ can be bounded affinely by ‖ωt‖∞.
Now, recalling that the norm-bound X̂, defined in (79), for the state vector

X holds for kx sufficiently small, and that (89) is valid for kf2 sufficiently
small, where kx is the growth rate described in the condition imposed on
the nonlinear term φ(xp, t), in Assumption (A6), and kf2 = k1 + . . . + kN ,
according to Assumption (A7.d). Then, by using the separability Property 2,
the restriction imposed on the admissible class of control laws described in
(44) is satisfied for kx and kf2 sufficiently small. Thus,

‖̺N (t)‖ ≤ ΨX(‖(Xe)t‖∞) + kred , (92)

is in agreement with the Assumption (A8).

8 Simulation Results

Consider the plant (8) with

Ap =









0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0









, Bp =









0 0
b21 b22
0 0
b41 b42









, Cp =

[

1 0 0 0
0 0 1 0

]

,

and φ(xp, t) given by

φ(xp, t) =









η1x
2
p1

0
η2xp2 sin(ωφt)

0









,
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where b41 =b42 =0.1 and the uncertain parameters are bounded by 0.6≤b21≤
2, −6≤ b22 ≤−2, 1 ≤ η1 ≤ 3, 0 ≤ η2 ≤ 0.5 and 8 rad/s ≤ ωφ ≤ 10 rad/s. The
nonlinear disturbance fy is composed of a quadratic function of the output
signal y1 =xp1 and is unmatched with respect to the control signal. Therefore,
this nonlinear system is locally Lipschitz and the disturbance term φ cannot
be trivially cancelled by input signals, in view of the uncertainties. The linear
subsystem has uniform relative degree n∗=2 and high frequency gain matrix
given by

Kp =

[

b21 b22
b41 b42

]

. (93)

It can be verified that the uncertain matrix −Kp is always Hurwitz. Thus,
Assumption (A4) is satisfied with Sp =I.

The chosen reference model is

WM (s) = diag

{

1

(s+ 4)2
,

1

(s+ 4)2

}

. (94)

The nominal control signal is important to allow smaller modulation functions.
The nominal parameter matrix was computed in view of the matching of
the closed-loop nominal linear subsystem to the reference model, considering
L(s)=Λ(s)=(s + 10)I and assuming that the nominal parameter values are
b21 =0.66, b22 =−2.

The modulation functions (85)(89)(90) were implemented with cω0 =cU0 =
cr0 = 1, cε0 = 0, cω1 = cr1 = 0.2, δ0 = δ1 = 0.1, kf2 = 0, Knom =Knom

p . The

upper bound d̄φ was implemented with α = 1, cφ = 0.4, λφ = 5, kx = 0.5,

ϕ = 3y2
1 and the state norm-bound estimate X̂, given by (79), with τav = 0.01,

ci = 0.5, (i = 2, . . . , 5), cω = cr = 1 and λx = 5.
In the simulation results presented in Figure 3, the reference signals r1 and

r2 are, respectively, a square wave of amplitude 1 and frequency 4 rad/s and
a sinusoid of amplitude 1 and frequency 3 rad/s. The true plant parameters,
assumed unknown, are b21 = 1, b22 = −3, η1 = 2, η2 = 0.5 and ωφ = 10.
The convergence of the plant output signals to the model reference signals
is apparent in Figure 3. The averaging filters time constant (τ = 0.01 s) was
chosen small enough to keep the region of stability of the closed loop system
large and to maintain the residual output error small.

9 Conclusion

In this chapter, an output-feedback model-reference sliding mode controller
for a class of uncertain nonlinear MIMO systems was developed. The proposed
controller is an extension of the UV-MRAC controller, introduced in [19], to
systems of arbitrary uniform relative degree. The central idea of the new UV-
MRAC design consists of reducing the nonlinear disturbance terms, possibly
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Fig. 3. Simulated plant output signals and reference model outputs.

unmatched, to an equivalent input disturbance. The generalized UV-MRAC
was shown to be, in general, semi-globally exponentially stable with respect
to a small residual set. The only parameter required to increase the domain
of stability is the time constant τ of the averaging filters. This time constant
is the analogue of the small parameter that characterizes high gain observers
(HGO) applied in output-feedback sliding mode controllers.

In contrast to the controllers based on high-gain observers, the proposed
sliding controller is free of peaking in the control signal without resorting to
saturation. Moreover, it was shown that the UV-MRAC ensures global expo-
nential stability with respect to a small residual set of order τ when the equiv-
alent nonlinear input disturbance is bounded by some globally Lipschitz class
K function. Simulations illustrate the performance of the proposed scheme
in the presence of polynomial output dependent unmatched disturbance. Ex-
perimental evaluation remains to be assessed, particularly in the presence of
measurement noise. However, from the successful experimental tests already
performed with the similar controller VS-MRAC applied to real underwater
vehicles [7], it is believed that the UV-MRAC will also perform well, even
in the presence of noise in real world applications. One important parameter
to attenuate noise effect is the averaging filter time constant, similar to the
observer gain of high gain observers.
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10 Notes and References

The importance of output-feedback in the application of sliding mode con-
trol has been well motivated in [5] in connection with chattering avoidance.
The related output feedback sliding mode (OFSM) control scheme based on
asymptotic state observers was analyzed. However, the plant was assumed
known except for singular perturbations representing fast dynamics of sensors
and actuators.

In the late 1980’s, several papers about OFSM control of uncertain plants
started to appear. Since then, OFSM stabilization control strategies for plants
of relative degree one, i.e., rank{CpBp} = n, have been considered by several
authors [44, 10] (see also references therein). In this case, static output feed-
back is possible [46]. In [18], an early version of the UV-MRAC controller,
named VS-MRAC (Variable Structure Model Reference Adaptive Control)
was first proposed as a solution for global output tracking of uncertain linear
SISO plants with relative degree one by output-feedback. The generalization
of the VS-MRAC to uncertain linear plants of arbitrary relative degree ap-
peared in [17, 21] (see also references therein) and an application to the control
of a flexible spacecraft can be founded in [47]. In [6], an extension of the VS-
MRAC to the MIMO case was developed. More recently, the UV-MRAC was
introduced in [20] and can be regarded as an alternative extension of the
VS-MRAC for MIMO linear plants which requires weaker prior knowledge of
the high frequency gain matrix Kp, thanks to the use of unit vector control
instead of the “sign(·)” vector control as in [6].

Early papers on OFSM control for nonlinear systems with arbitrary rela-
tive degree, were based on high-gain observers (HGO) [12, 11, 35, 36]. Com-
bined with saturation, HGO leads to a kind of separation principle (see [27, 2]),
which makes it very appealing for general nonlinear systems. While HGO has
been widely used in the literature during the last decade, it is well known
that it can lead to undesirable large transients known as the peaking phenom-
ena. This is linked to the fact that high gain observers are essentially filters
that estimate signal derivatives up to a certain order. Intentional saturation
of the control signal can attenuate peaking, however, global stability is lost,
in general. It is interesting to note that the application of the HGO to linear
systems also leads to peaking. Recently, in [9], a peaking free and globally
stable OFSM control was proposed for linear SISO systems based on HGO,
without the need of control saturation. An alternative promising trend for
OFSM control is to use higher order sliding modes and exact robust differ-
entiators [14], [4], [30]. Here also, the existing (truly) output feedback based
strategies do not lead to global stability properties, as a rule.

Within the context of VS-MRAC, nonlinear SISO plants started to be
considered in [33]. The resulting OFSM controller was not based on explicit
HGO and was free of peaking. Later on, a generalization to MIMO linear
plants with relative degree one and under the action of a class of locally (not
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necessarily globally) Lipschitz nonlinear disturbances was presented in [19],
where global exponential stability was demonstrated.

This chapter generalizes the UV-MRAC, described in [19], to the more
challenging problem of MIMO plants with arbitrary relative degree. The class
of plants considered here is formulated as in several other works, e.g. [11, 10].
It consists of linear plants under the action of matched or unmatched nonlinear
disturbances. Previous work in this direction were mostly based on matched
disturbances which should, by assumption, be norm-bounded by some function
of the plant measured output. The more challenging problem of unmatched
disturbances is included in the class considered here where mismatch is allowed
even for a class of disturbances depending on the unmeasured states.

Note that, to the best of the authors’ knowledge, no global stability result
has yet been achieved by OFSM control for uncertain systems with relative
degree higher than one, without the assumption of global Lipschitz condition
on the plant nonlinearities. In this case, only semi-global stability can be
guaranteed. Unfortunately, this is also true for the UV-MRAC described in
this chapter. On the other hand, output feedback global regulation or tracking
for a subclass of such systems (locally Lipschitz) can be achieved by other
nonlinear control designs [32], [1], [28].

Thus, the design of global regulation or tracking OFSM controllers for such
category of plants seems to represent a particularly challenging and interest-
ing problem, even in the case of SISO systems. A positive answer could be
expected when it is possible to design an output feedback controller for global
regulation or tracking, under the assumption that the plant is completely
known.

Among the topics for future research one could point out: the experimental
evaluation of the UV-MRAC strategy, the related sensitivity analysis with
respect to measurement noise, the inclusion of more general nonlinear systems,
the extension of the peaking free OFSM controller based on HGO introduced
in [9] to nonlinear plants, and the combination of the UV-MRAC with exact
robust differentiators based on higher order sliding modes for exact output
tracking, as in [34].
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Appendix: Proof of Theorem 3

In what follows, ki denote positive constants, Ψi(·) denote functions of class
K∞ and C(t) is a generic term of the form given in (66), with an appropriate
function ΨX ∈ K∞ and constant kred. From (29), (22) and (25) one has
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‖(xp)t‖∞, ‖ωt‖∞ ≤ k1‖(Xe)t‖∞ + k2 . (95)

From Assumptions (A6)–(A8), (81) holds. Now, from (95) and the fact that
UN also satisfies the inequality in Assumption (A8), then Ū , given in (50),
can be bounded by

‖Ū(t)‖ ≤ C(t) . (96)

Now, it is convenient to rewrite (54) as

εN = L−1
N [−UN − Ū ] + β̄uN − πeN − π0N , (97)

β̄uN = (F1,N − I)F−1
1,NL

−1
N Ū . (98)

Since the norm of the operator in (98) is of order O(τ), then ‖(β̄uN −
β̄0

uN )t‖∞ ≤ τ k̄βN‖(Ū)t‖∞ ≤ τ k̄βNC(t), where the last inequality comes from
(96) and k̄βN is a positive constant.

Recalling that u = unom − SpUN , one notes that L−1
N in (97) operates on

the same signal as the one in (31). From (31), (32), (50) and (54), the model

following error can be rewritten as: Ẋe = AcXe + BcK
nom

[

˙̂eN + αN êN

]

,

where êN :=εN −(β̄uN − πeN − π0N ). To eliminate the derivative term ˙̂eN , a
variable transformation X̄e := Xe −BcK

nomêN is performed yielding

˙̄Xe = AcX̄e + (Ac + αNI)BcK
nomêN . (99)

Applying Theorem 2, the bound (63) and the exponential stability of Ac imply
that X̄e(t) is bounded by ‖X̄e(t)‖ ≤ τC(t) + Π, where Π is a generic class
KL function represented here by V1(‖z(0)‖, t) (see Property 1). Similarly,

‖Xe(t)‖ ≤ τC(t) +Π . (100)

Let the generic C(t), defined in (66), be specified here as

C(t) := Ψ1(‖(Xe)t‖∞) + k1 . (101)

From (100) one has

‖(Xe)t‖∞ ≤ τC(t) + Ψ2(‖z(0)‖) , (102)

where Ψ2(‖z(0)‖) = V1(‖z(0)‖, 0) comes from the initial value of the term Π
appearing in the bound (100). Thus C(t), defined in (101), is bounded by

C(t) ≤ Ψ1(τC(t) + Ψ2(‖z(0)‖)) + k1 . (103)

Applying the separability Property 2 to (103) results in

C(t) ≤ Ψ1(τ(α+ 1)C(t)) + Ψ3(‖z(0)‖) + k1 , (104)

where α is an arbitrary positive constant. Now, given R > 0 and 0 < R0 < R,
then for some t∗ ∈ (0, tM ) and ‖z(0)‖ < R0 one has ‖z(t)‖ < R for t ∈ [0, t∗).
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Assume t ∈ [0, t∗). According to Assumptions (A5) and (A7), the function
Ψ1 can be chosen locally Lipschitz. In addition, while t ∈ [0, t∗), the complete
error state z is bounded by the arbitrary constant R. Thus, from (104), one has
Ψ1(τ(α+1)C(t)) ≤ τk(R)C(t), where k(·) = k0+ψ(·), with ψ(·) being of class
K. For a given R, k(R) is a positive constant which increases as R→ +∞, but
is not necessarily unbounded. Thus, from (104), the following upper bound
holds

C(t) ≤ τk(R)C(t) + Ψ3(‖z(0)‖) + k1 . (105)

Now, from (105), after simple algebraic manipulation one obtains

C(t) ≤
Ψ3(‖z(0)‖) + k1

1 − τk(R)
:= Ψ4(‖z(0)‖) +

k1

1 − τk(R)
, (106)

which is valid for τ <1/k(R). Applying (106) in (100) it follows

‖Xe(t)‖ ≤ τΨ4(‖z(0)‖) + O(τ) +Π . (107)

Now, with the partition zT = [(z0)T , zT
e ], where zT

e := [εT
N ,X

T
e ] and from

(107) and the bound (63) in Theorem 2, one gets

‖z(t)‖ ≤ V(‖z(0)‖, t) + τΨ5(‖z(0)‖) + O(τ) . (108)

where V(‖z(0)‖, t) ∈ KL is obtained from the Π terms in (107) and (63) and
considering the fact that the variables Xε, εi (i= 0, . . . , N − 1) and x0

F are
bounded by Π0 in Theorem 2.

Let Ψ6(‖z(0)‖) := V(‖z(0)‖, 0) + τΨ5(‖z(0)‖). Since Ψ6 ∈ K∞ one can
define R0 := Ψ−1

6 (R − O(τ)), for R > O(τ). Now, since z(t) is absolutely
continuous, ‖z(0)‖ ≤ R0 implies ‖z(t)‖ is bounded away from R as t→ t∗. If
one assumes that t∗ is finite then ‖z(t)‖<R − εR, ∀t<t∗ and some constant
εR > 0. Therefore, one cannot reach the boundary of BR = {z : ‖z(t)‖<R}
in finite time. This implies that z(t) is uniformly bounded and cannot escape
in finite time, i.e., tM = +∞. Furthermore, the constant R0 can be made
arbitrarily large when R increases and τ→+0.

From Assumption (A8) and (95), UN and ω are also uniformly bounded.
Thus, Uav, X̂ and ̺i (i = 0, 1, . . . , N − 1) are all bounded. Consequently,
the states of any (stable) realizations of the averaging filters and the filters
appearing in (79), (80), (85)–(89), are also uniformly bounded.

Noting that the initial time is irrelevant in deriving (108), then one has,
for arbitrary tk ≥ 0 and t ≥ tk

‖z(t)‖ ≤ V(‖z(tk)‖, t− tk) + τΨ5(‖z(tk)‖) + O(τ), ∀t ≥ tk . (109)

Now, any V ∈ KL can be bounded by V((·), t) ≤ Ψ7(·)ν(t), with Ψ7 ∈ K∞

and ν(t) ∈ L [39][proof of Lemma 8]. In addition, from Assumptions (A6)-
(A7), Ψ5(σ), Ψ7(σ) ∈ K∞ can be chosen locally Lipschitz. Thus, for a given
σ0 := ‖z(t0)‖, (109) implies ‖z(t)‖ ≤ σ̄(σ0) where σ̄(·) is a positive increasing
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function. Thus, there exists a positive increasing function κ(σ0) similar to
k(R), such that Ψ5(σ) ≤ κ(σ0)σ and Ψ7(σ) ≤ κ(σ0)σ, ∀σ ≤ σ̄(σ0). Recalling
that, ‖z(t)‖ ≤ σ̄(σ0),∀t, then

‖z(t)‖ ≤ κ(σ0) [ν(t− tk) + τ ] ‖z(tk)‖ + O(τ) , ∀t ≥ tk . (110)

Since ν ∈ L, then from (110), for τκ(σ0) < 1, there exists a large enough
constant T > 0 such that λ := κ(σ0)(ν(T ) + τ) < 1, and thus, for the state
samplings at t0, t1, . . ., defined by tk+1 = tk + T, (k = 0, 1, . . .), one has a
simple linear recursion

‖z(tk+1)‖ ≤ λ‖z(tk)‖ + O(τ) . (111)

Therefore, by continuity of the solutions z(t) with respect to initial conditions
z(tk), one concludes that, for τ small enough, the error system is semi-globally
exponentially stable with respect to a residual set of order τ which is inde-
pendent of the initial conditions. As a matter of fact, from (110) and (111)
one can establish the following inequality

‖z(t)‖ ≤ e−a(‖z(0)‖) t Ψ8(‖z(0)‖) + O(τ), ∀t ≥ 0 , (112)

where a(·) > 0 and Ψ8(·) ∈ K∞.
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