% % MatLab script for parameter initialization of the car % HGO control simulation and experiment. % % Jose Paulo V. S. da Cunha % % Rio de Janeiro, February 04, 2004. % % % PLANT PARAMETERS: % % Kp given by the V/V gain divided by the potentiometer gain (V/m): Kp = 17.0/10.7; % Electromechanical pole: p1 = -15; % % SPECIFIED Kpnom: % Kpnom = 25.8/10.7; % % REFERENCE MODEL PARAMETERS: % % Wm(s) = Km/(s^2+a1*s+a0) % a1 = 5 + 10; a0 = 5 * 10; Km = a0; pm = 2; % % SPECIFIED L(s) OPERATOR: % L = [ 1 10 ]' ; % % SPECIFIED alpha(s) FOR THE HGO FEEDBACK MATRIX: % alpha1 = 15 + 15; alpha0 = 15 * 15; % % SPECIFIED lambda(s) FOR THE STATE FILTERS: % lambda0 = 10; % % INITIAL CONDITIONS: % xp0 = [ 0.1 ; 0 ]; xm0 = [ 0 ; 0 ]; hat_zeta0 = [ 0 ; 0 ]; xsf0 = [ 0 ]; % % COMPUTATION OF SYSTEM PARAMETERS: % % Matrices of the plant: Ap = [ 0 1 ; 0 p1 ]; Bp = [ 0 ; Kp ]; Cp = [ 1 0 ]; % Reference model matrices: Am = [ -a1 1 ; -a0 0 ]; Bm = [ 0 ; Km ]; Cm = [ 1 0 ]; % State filters state space form: Phi = [ -lambda0 ]; Gamma = [ 1 ]; Csf = eye(1); Dsf = zeros(1,1); % HGO matrices: bar_Am = [ -a1*epsilon 1 ; -a0*epsilon^2 0 ] / epsilon; bar_Bm = Bm * ((epsilon^(pm-1))*Kpnom/Km); bar_alpha_am = - [alpha1 - a1*epsilon ; alpha0 - a0*epsilon^2 ] / epsilon ; % Sliding surface matrix: bar_S = - (inv( [ 0 1 ; 1 a1 ] ) * L )' * diag([1,epsilon^-1]) * (epsilon^(pm-1)) ; % Controller coefficients: theta_nomT = [ -1.6 , -22.56124 , -18.48031 , 20.736434 ]; c1 = 44; hat_d = 0.4;