%--------------------------------------------------------------------------- % % Parameters of the UV-MRAC for the third order system of relative % degree one. This system includes an input disturbance and uncertain % nonlinear parameter (alpha,alpha^2). % Copied from the file uvmrac_parameters_final.m of the paper TAC'2001. % % Parameters for the first example are now preceded by "%". % % Rio de Janeiro, September 16, 2003. % % Author: Jose' Paulo V. S. da Cunha % %--------------------------------------------------------------------------- % Reference model matrix: Am= [-2 0; 0 -2]; % Uniform upper bound for the norm of the input disturbance: bar_d = 5; % Value for the uncertain parameter: alpha = 0.35; % Plant matrices: Ap = diag([-1 1 1]); %Bp = [1 -1; 1 0; 0 1]*diag([1 alpha]); Bp = [1 -1; 1 0; 0 1]*inv([1,2;-2,1])*[1,2*(alpha^2);-2,alpha]; Cp = [-1 2 1; 1 -3 2]; Dp = zeros(2); % Plant initial condition: %xp0 = [-0.25; 0.25; 0.25]; xp0 = [-1; 1; 1]*(-10); % Transpose of the nominal parameter matrix: theta_nom = [ -0.99 -0.23 ; 0.57 -0.11 ; -0.42 -0.34 ; -0.42 -0.34 ; -0.39 -1.03 ; 1.41 -0.43 ; 0.2 0.4 ; -0.4 0.2 ] ; theta_nomT = theta_nom'; % Precompensation matrix: Sp = eye(2); % Modulation function coefficients: %c1 = 6.9; c1 = 17; c2 = 0; %c3 = 2.3; c3 = 6.9; %wdc = 2.3; wdc = 2.8; % Desired coefficient for finite-time convergence: delta = 0.1; % Resulting coefficient: dd = c3 * wdc * bar_d + delta;