%---------------------------------------------------------------------- % % Parametros do UV-MRAC para o comando de um sistema de suspensao. % Modelo de 2 entradas e 2 saidas com grau relativo 2. % % Rio de Janeiro, 12 de junho de 2001. % Jose Paulo V. S. da Cunha % %---------------------------------------------------------------------- % % Plant: G(s) = diag{1/s^2,1/s^2}.Kp % % %Poles: % p1=0; p2=0; p3=0; p4=0; % % High frequency gain: % % Mass (kg): m=10; % Distances (l=l1+l2): L=4; L2=3; L1=L-L2; % Moment of inertia (kg m2): J=1; % Gravity acceleration: g=9.81; % Plant: Kp=[L1/J -L2/J; 1/m 1/m]; Ap=[ p1 1 0 0; 0 p2 0 0; 0 0 p3 1; 0 0 0 p4]; Bp=[0 0; 1 0; 0 0; 0 1]*Kp; Cp=[1 0 0 0; 0 0 1 0]; Dp=zeros(2,2); x0p=[0.1 0 -0.05 0]'; % % Reference Model: Wm(s) = diag{((s+1)(s+5))^-1} % % Poles: % alpha1=-1; alpha2=-5; alpha3=-1; alpha4=-5; Am=[ alpha1 1 0 0; 0 alpha2 0 0; 0 0 alpha3 1; 0 0 0 alpha4]; Bm=[0 0; 1 0; 0 0; 0 1]; Cm=[1 0 0 0; 0 0 1 0]; Dm=zeros(2,2); x0m=[0 0 0 0]'; % % State filters: Lambda(s)^-1 = diag{(s+5)^-1} % ALambda=-5*eye(2); BLambda=eye(2); CLambda=eye(2); DLambda=zeros(2,2); x0Lambda=[0 0]'; % % Nominal parameters: % thetanom=zeros(2,8); Kpnom=0.1*eye(2); Sp=eye(2); % Nominal weight cancelation: dnom=[-50 ; -50]; % Disturbance: d=((Kp^-1)*[0; g])+dnom; % % Lead Filters: L(s)=(s+alpha2) ; L1(s)=(s+alpha2) % % Pole: % l=alpha2; ALw=l*eye(8); BLw=eye(8); CLw=eye(8); DLw=zeros(8,8); x0Lw=[0 0 0 0 0 0 0 0]'; ALUn=l*eye(2); BLUn=eye(2); CLUn=eye(2); DLUn=zeros(2,2); x0LUn=[0 0]'; ALi=l*eye(2); BLi=eye(2); CLi=eye(2); DLi=zeros(2,2); x0Li=[0 0]'; % % Prediction error feedback transfer function: Wm(s)L(s)Kpnom % AWmL=alpha1*eye(2); BWmL=Kpnom; CWmL=eye(2); DWmL=zeros(2,2); x0WmL=[10^-6 10^-6]'; % % Averaging filters: 1/Fi(s)=1/(tau s+1) % tau=0.003; AF=-(1/tau)*eye(2); BF=1/tau*eye(2); CF=eye(2); DF=zeros(2,2); x0F=[10^-6 10^-6]'; % % Auxiliary filters: Li(s)Fi(s)^-1 % ALFUnfi=-(1/tau)*eye(2); BLFUnfi=1/tau*eye(2); CLFUnfi=-l*eye(2); DLFUnfi=(1/tau)*eye(2); x0LFUnfi=[0 0]'; ALFwfi=-(1/tau)*eye(8); BLFwfi=1/tau*eye(8); CLFwfi=-l*eye(8); DLFwfi=(1/tau)*eye(8); x0LFwfi=[0 0 0 0 0 0 0 0]'; % % Modulation functions parameters: % epsilon0=0.1+250; cw0=1; cu0=1; epsiloni=0.1+50; cwi=0.2; cui=0.2; % % Integration parameters: % step_size=0.000001; final_time=15; % % Graphic parameters (step/dot): % number_steps=10000; number_steps_u=10;