% % MatLab script for parameter initialization of the three trailer chain % simulation. Actuator 1 is completely lost. % % Jose Paulo V. S. da Cunha % % Rio de Janeiro, January 10, 2003. % % % PLANT PARAMETERS: % % Nominal inertia matrix (kg): M_nominal = diag([1 2 0.5]); % Actual inertia matrix (kg): M = M_nominal; % Nominal linear dampers coefficients (Ns/m): B31 = 1; B23 = 1; % Failure coefficients matrix (Actuator 1 is completely lost): F = diag([0 1 1]); % Precompensation matrix: Sp = eye(2,2); % Reference model matrix: Am = [-4 0; 0 -4]; % State filters state space form: PHI = [-10 0;0 -10]; GAMMA = [1 0; 0 1]; % Inverse of the inertia matrix: M1 = M^-1; % S Matrix: S = eye(2,3)-[zeros(2,1) eye(2,2)]; % Matrices of the linear part of the plant: Ap = M1*[-B31 0 B31; 0 -B23 B23; B31 B23 -(B31+B23)]; Bp = M1*[1 0; 0 1; 0 0]*S*F*(S'); Cp = [1 0 0; 0 1 0]; % Controller coefficients: theta_nomT = [ 8.3655914 -2.3655914 41.096774 21.017921 -6.7885305 -4.7562724 ; 8.4021505 -2.4021505 41.206452 20.78638 -5.8007168 -7.065233 ]; theta4_nomT = [ 0.6666667 0.6666667 ; 0.3333333 1.3333333 ]; kx = 0.96; varphi = 2.1; gamma_x = 1.36; gamma_phi = 3.98; c1 = 110; c2 = 3.2; c3 = 0; c4 = 4.8; c5 = 21; c6 = 2.7; c7 = 2.5; c8 = 4.5; c9 = 23; c10 = 477; c11 = 7.2; delta = 0.1; tau = 0.01;