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A. Proof of Proposition 1
In what follows, ki denote positive constants that depends only

on the plant-controller parameters and Ψi(·) denote functions of
class K∞. Since fd≤‖(β̄U )t‖, from (23), (24) and (26), one has

‖(ε0)t,t1‖ ≤ |ε0(tp)| + a(k) + 3‖(β̄U )t‖ , ∀t∈ [t1, tM ) , (39)

where k ≥ 1, p = argmaxi∈{1,2,...,k}|ε0(ti)| and t ∈ [tk, tk+1].
From (15), one can conclude that ‖(e0

F )t,t1‖ ≤ k1|z(0)|,
with z defined in (27). From (13) and reminding that ē0 :=
ρ∗ML(s) [u − u∗], one has ē0 =ε0−βU−e0

F . Thus, the following
inequality holds ∀t∈ [t1, tM )

‖(ē0)t,t1‖ ≤ |ē0(tp)| + a(k) + 2k1|z(0)| + 5‖(β̄U )t‖ . (40)

Now, since Xe is the state of a stable non-minimal realization of
the transfer function ML(s) = km/(s + am); km, am > 0, it
is possible to linearly transform Xe to a new state X̄e = PXe =�

ē0 X̄T
e2

�T
, where X̄e2 is an exponentially decaying term [10].

Moreover, since xf is driven by the tracking error e0 = hT
c Xe, and

taking into account (28), an upper bound similar to (40) is also valid
for z (27), i.e., the state z satisfies ∀t∈ [0, tM )

‖(z)t‖ ≤ k2|z(0)|+k3|z(tp)|+k4a(k)+k5‖(β̄U )t‖+O(τ) . (41)

Now, from the small norm property of Wβ(s, τ) (18), since f(t) is
given by (12) with ω affinely bounded by |Xe| [9] and ‖Xe‖≤|z|,
then one has

‖(β̄U )t‖ ≤ τΨ1(‖(z)t‖) + τk6 . (42)

Now, given R > 0 and 0 < R0 < R, then for some t∗ ∈ [0, tM ),
which is independent of τ , and |z(0)|<R0 one has |z(t)|<R for
t∈ [0, t∗). Then,

Ψ1(|z|) ≤ kR
1 |z| , ∀|z| < R ,

with the positive constant kR
1 possibly dependent on R. Moreover,

from (41) and (42), for τ < 1/(kR
1 k5), we get ∀t∈ [0, tM )

‖(z)t‖ ≤ k7|z(tp)| + k8a(k) + k9|z(0)| + O(τ) . (43)

Then, noting that |z(tp)| ≤
�k

i=1 |z(ti)|, the following recursive
inequality follows

|z(tk+1)| ≤ k7

k�

i=1

|z(ti)| + k8a(k) + k9|z(0)| + O(τ) , (44)

whereby (29) results.

B. Proof of Theorem 1
The monitoring function (24) has to stop switching after a

finite number k = k∗ of switchings. The proof is obtained by
contradiction. Suppose that u (11) switches between u+ and u−

without stopping. Then, a(k) in (23) increases unboundedly as
k→∞. Thus, there is a finite value k1 such that

a(k1)>2Raeλ̄a t̄e (45)

and the control direction is correctly estimated. In this case, |ξ(t)|<
ϕm(t), ∀t≥ tk1 , where

ϕm(t) = (|ε0(tk1)|+|β̄U (tk1)|)e
−am(t−tk1

)+

+ a(k1)e
−λct+2fd(t) , (46)

is the monitoring function (24) valid ∀t≥ tk1 and

ξ(t) := (|ε0(tk1)| + |βU (tk1)|)e
−am(t−tk1

)+

+ (2Raeλ̄a t̄e)e−λ̄at+2fd(t) (47)

is a valid upper bound for |ε0(t)| if sgn(kp) is correct. Hence,
no switching will occur after that, which leads to a contradiction.
Therefore, the monitoring function has to stop switching after some
finite k=k∗. Now, from (45), it is not difficult to conclude that k∗

can be related to |z(0)|, reminding that Ra≤ka|z(0)| by definition.
In fact, one can write

k∗ ≤ Vk(R0) + k0 , (48)

where k0 > 0 is a constant and Vk ∈ K∞.
Now, from Proposition 1, for τ sufficiently small, one can

conclude that the full state error z is uniformly bounded by

|z(t)| ≤ Vz(R0) + cz , ∀t ∈ [0, tM ) , (49)

where, cz > 0 is a constant and Vz ∈ K∞. Given R > cz , there
exists R0 > 0 such that for |z(0)|< R0 then one has |z(t)|< R,
∀t∈ [0, tM ). Thus, stability with respect to the ball of radius cz is
guaranteed for initial conditions in the R0-ball. This implies that
z(t) is uniformly bounded and cannot escape in finite time, i.e.,
tM =+∞. Since R0 can be chosen arbitrarily large provided τ is
chosen sufficiently small, semi-global stability is concluded.

If the control direction is correctly found at k = k∗, then
|z(t)| → V(τ) exponentially (V ∈ K), as t → +∞, according to
[11, Theorem 3]. Otherwise, the control pursues with wrong control
direction estimate ∀t > tk∗ while all signals remain uniformly
bounded due to (49). Since we have chosen a modulation function
capable of making the closed loop unstable if wrong control
direction estimate is applied, one can show that there exists a sign
indefinite quadratic function V (z) which has positive time deriva-
tive outside a compact set around the error space origin. According
to a stability analysis similar to that of Cetaev’s Instability Theorem
[8], this implies that the system must enter a residual set where
|Xe(t)| < V(τ) after some finite time. A rigorous proof follows
closely the method of [16]. In addition, reminding that the state xf

is driven by the signal ē0 = hT
LXe, then the convergence of Xe

implies |xf (t)|, |z(t)|<V(τ), ∀t after some finite time.

C. Proof of Corollary 1

The hybrid lead filter only introduces a disturbance βα [5] which
is norm-bounded by a design constant of order O(τ), modulo
decaying exponential terms which can be embedded in e0

F (15).
This constant bound can be simply added to the bound of β̄U given
in (18). The monitoring function is redefined in an appropriate way
in order to monitor the perturbed auxiliary signal ε̃0. The exact
differentiator will eventually take over providing the exact estimate
of the ideal sliding variable ē0, i.e. ε̃0 = ē0, since the error state
enters the residual set (Theorem 1). After that the system becomes
exactly a relative degree one case, with sliding variable ē0.

To conclude the demonstration we now prove that the control
direction is correctly estimated after the last switching at k = k∗.
This can be shown by contradiction. Suppose we ended up with
an incorrect control direction estimate. Then, the equation for the
ideal sliding variable ē0 can be written as:

˙̄e0 = amē0 + |kp|(f(t)sgn(ē0) − u†) + π,

where am is a positive constant. In this case, due to the modulation
function (12), ē0 diverges as t → ∞ for all initial conditions except,
possibly, for a set of zero measure. Hence, ē0 would not remain in
the residual set of Theorem 1, leading to a contradiction. The same
conclusion can be achieved by using a Cetaev’s Theorem argument.



D. Proof of Lemma 1
Consider a detectable and stabilizable realization of (31)

ẋ = Ax + B(u − u∗) , (50)

e0 = Cx .

The high frequency gain is Kp = CB. System (50) can be
transformed to the regular form

ẋ1 = A11x1 + A12e0 , (51)

ė0 = A21x1 + A22e0 + Kp(u − u∗) . (52)

The state vector of this realization is xT
e = [xT

1 eT
0 ] and A11 is

Hurwitz. For simplicity, we will consider a controllable realization.
In this case, if there are unobservable states, the element A21 of
the regular form (51)–(52) is identically zero, i.e., A21 = 0. In the
case of a nonminimal realization which is noncontrollable and/or
nonobservable, the proof follows in a similar way, using the Kalman
Decomposition.

First, one proves that the switching stops after a finite number of
switchings, since for some finite k∗ the term (k∗+1)e−t/(k∗+1) of
(33) will be a bound for |π(t)| (32) such that |e0(t)|<ϕM (t), ∀t≥
tk∗ , and will then switch at most one more cycle throughout the
index set Q. Then, one concludes (independently of whether a
Hurwitz matrix −KpSq is selected at k = k∗ or not) that e0(t)
will converge to zero, at least exponentially, since ϕM converges
to zero exponentially.

In addition, reminding that the state x1 is driven by e0, then
the convergence of e0 implies |x1(t)|, |xe(t)|→ 0, ∀t≥ tk∗ . Also
from [13, Proposition 1], one can further conclude that e0 becomes
identically zero after a finite time ts, provided that δ>0 in (35).

As we can see in the SISO case, it is not difficult to conclude
that k∗ can be related to R0 := |xe(0)|. In fact, one can write

k∗ ≤ Vk(R0) + k0 , (53)

where k0 > 0 is a constant and Vk ∈ K∞. Moreover, we can
conclude that

|xe(t)| ≤ V(R0) + c , (54)

where, c > 0 is a constant and V ∈ K∞. Given R>c, there exists
R0 > 0 such that for |xe(0)|<R0 then one has |xe(t)|<R, ∀t≥0.
Thus, stability with respect to the ball of radius c is guaranteed for
initial conditions in the R0-ball. Since R0 can be chosen arbitrarily
large, global stability is concluded.
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