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A. Geometric Conditions for Normal Form
In order to consider explicitly the time dependence of

f(x, t) in (1)–(1), let: βk := Lfβk−1 + ∂βk−1
∂t +

∂[Lk−1
f h]

∂t ,
for k ∈ {1, . . . , ρ}, where β0 := 0. A sufficient condition to
assure that the time-varying plant (1)–(2) is transformable
to the normal form is given by: Lg[Lk

fh + βk] ≡ 0 (k ∈
{0, . . . , ρ− 2}), where Lie derivative of a function h along
a vector field f is denoted by Lfh, as in [23, pp. 510]. In
this case, the transformation T (x, t)=[ηT TT

ξ (x, t)] is such

that Tξ :=
[

L0
fh+β0 Lfh+β1 . . . Lρ−1

f h+βρ−1

]T
.

In addition, the plant HFG kp(x, t) = Lg[Lρ−1
f h + βρ−1],

the input disturbance d(x, t) = (Lρ
fh+βρ)/kp and T must

satisfy Assumption 1.

B. Norm Observer
In this section, we consider systems in the form (44)–(45)

satisfying (C0) and (C1) in Section VIII. In what follows,
we give the steps to obtain the norm observer (47)–(49),
according to Definition 1.

1) Norm bound for η: obtaining c0 and ϕ1 in (48):
From (C1), the function α1 is stiffening. It guarantees that
α1(σ) > λσ, ∀σ > ε, for any ε > 0 and 0 < λ < α1(ε)/ε.
Moreover, from (46), one can write V̇ ≤ −α1(V )+ϕη(y, t)
or, equivalently, V̇ ≤ −λV + [λV − α1(V )] + ϕη(y, t).
Now, given any V , either V ≤ ε or V > ε. Hence, either
V̇ ≤ −λV + [λε + α1(ε)] + ϕη or V̇ ≤ −λV + ϕη, leading
to the conclusion that V̇ ≤−λV+[λε+α1(ε)]+ϕη. Therefore,
by using comparison theorems [23], one has

V ≤ e−c0t ∗ ϕ1(y, t) + V (η(0))e−c0t ,

where ϕ1 = ϕη + c0ε + α1(ε), c0 = λ are known and the
operator ∗ denotes pure convolution. Reminding that λ|η|2 ≤
V , then one can obtain |η| ≤

√
|ω21|/λ + π0, with ω21 in

(48) and π0 is an exponentially decaying term depending on
|η(0)| and |ω21(0)|.

2) Norm bound for v: obtaining ϕ2 and ϕ3 in (49): It is
useful to rewrite (45) in the compact form

v̇ = Aρv + Bρkuu + φ(x, t) , (53)

where (Aρ, Bρ) is the Brunovsky’s canonical pair and apply
the change of variable v̄ = v −Bρkuτ1ω1 to obtain:

˙̄v = Aρv̄ + Bρkuω1 + φ .

By observability of the pair (Aρ, Cρ), where Cρ =
[1 0 . . . 0], there exist a matrix P = PT > 0 and an
arbitrary column vector L satisfying AT

LP + PAL = −I ,
where AL = Aρ − LCρ is a Hurwitz matrix.

Now, with T := diag(1, ε, ε2, . . . , ερ−1) and any given
constant ε> 0, the following properties can be checked: (i)

TAρT−1 = ε−1Aρ, (ii) CρT−1 = Cρ and (iii) TBρ =
Bρερ−1. Then, adding and subtracting the term (εT )−1LCρv̄
to the v̄-dynamics, one can write ˙̄v = [Aρ− (εT )−1LCρ]v̄+
Bρkuω1 + φ + (εT )−1Ly. Moreover, applying the transfor-
mation ϑ = T v̄ and the above properties (i)–(iii), one can
also write

ϑ̇ = ε−1ALϑ + Bρε
ρ−1kuω1 + ε−1Ly + Tφ .

The key step is to note that, due to the triangularity condition
(C0):

|Tφ| ≤ kϑϕr|ϑ|+ ϕϑ ,

where kϑ is ε-independent. Then, by using the Dini deriva-
tive4 and the bounding function Ψv given in (C0), the time
derivative of V := (ϑT Pϑ)1/2 along the solution of the ϑ-
dynamics satisfies

V̇ ≤ −c1

ε
V + c2ϕrV + ϕ̄1(ω21, ω1, y, t, ε) + π1 ,

where π1 is a exponentially decaying term and the non-
negative function ϕ̄1 and the non-negative constants c1, c2

are all known and satisfy c1 ≤ 1/(2λM [P ]), c2 ≥
|P |kϑ/λm[P ] and [|Bρερ−1kuω1 + ε−1Ly|+ ϕϑ]c3 ≤ ϕ̄1 +
π1, with c3 ≥ |P |/

√
λm[P ].

Therefore, given any V , either

V ≤ ϕ̄1 or V̇ ≤ −c1

ε
V + c2ϕrV + V + π1 . (54)

Now, let

ϕ̄4(ω21, y, t) := ϕ2(ω21) + ϕ3(y, t) , (55)

with the non-negative functions ϕ2, ϕ3 in (49) to be deter-
mined. Then, (49) can be rewritten as

ω̇22 = − 1
τ2

γ(ω22) + ϕ̄4 , (56)

with γ(σ) := 1−e−σ . Hence, by using the bounding function
Ψr, given in (C0), we must choose ϕ̄4 in (55) (and the
functions ϕ2, ϕ3) in order to satisfy:

c2ϕr + 1 ≤ ϕ̄4(ω21, y, t) .

Norm Bound for v

The norm bound for the v-subsystem can be obtained
considering two cases for the growth rate ϕr(|η|, y, t): ϕr >
kr and ϕr ≤ kr, where kr = 3/(c2τ2) and τ2 is the positive
design constant in (56).

Case 1: In this case, one has 3/τ2 ≤ c2kr+1 ≤ c2ϕr+1 ≤
ϕ̄4. Thus, one can verify that

γ(σ) ≤ 2 ≤ τ2ϕ̄4 − 1 , ∀σ . (57)

Now, let W := ln(V +1) [19]. Then, Ẇ = V̇ /(V +1) and,
from (54), one can write

V ≤ ϕ̄3 or Ẇ ≤ − 1
τ2

γ(W ) + ϕ̄4 + π1 , (58)

4To avoid the Dini derivative we could have used the relationship ab ≤
a2 + b2, valid ∀a, b > 0, at the expense of some conservatism.



with ε = c1τ2 and ϕ̄3 := ϕ̄1|ε=c1τ2 . Note that we have used
the relationship V/(V + 1) , 1/(V + 1) ≤ 1.

Now, given any W , we have two possibilities: W < ω22

or W ≥ ω22. Considering the later case, one can write
−γ(ω22) ≥ −γ(W ), since γ is a increasing function. There-
fore, from (58) and (56), one has ω̇22 ≥ Ẇ−π1. In addition,
from (57), ω̇22 also satisfies ω̇22 ≥ 1/τ2. Consequently,
adding the last two inequalities one has

Ẇ − 2ω̇22 ≤ −
1
τ2

+ π1 .

Now, recall that π1 = β1e−λ1t and let W̄ = W + π1/λ1,
for some positive constant λ1 and some β1 ∈ K∞. Then,
one has ˙̄W − 2ω̇22 ≤ − 1

τ2
, from which one can conclude

that, W̄ ≤ 2ω22 − t/τ2 + |W̄ (0)− 2ω22(0)|. Note that, it is
always possible to find an exponential decaying term which
is an upper bound for the above affine time function, i.e.,
−t/τ2 + |W̄ (0)− 2ω22(0)| ≤ π2, where π2 := β2(|W̄ (0)|+
|ω22(0)|)e−λ2t, with β2 ∈ K∞ and some constant λ2 > 0.
Finally, given W , one can conclude that W ≤ 2|ω22|+π2 +
π1/λ1 and, by using comparison theorems [23] and recalling
that V = eW − 1 one can write

V ≤ e2|ω22| + π3 , (59)

where π3 is an exponential decaying term.
Case 2: Assume now that ϕr ≤ kr and set ε = c1/(c2kr +

2) in (54). Then, one can write:

V ≤ ϕ̄2 or V̇ ≤ −V + π1 , (60)

where ϕ̄2 = ϕ̄1|ε=c1/(c2kr+2). In this case, adding the two
upper bounds obtained from (60) one can write

V ≤ ϕ̄2 + π4 , (61)

where π4 is an exponential decaying term. Then, from (59)
and (61) one has

V ≤ e2|ω22| + ϕ̄1(ω21, ω1, y, t, ε) + π5 , (62)

with ε = c1/(3/τ2 + 2) and using the Rayleigh’s inequality
one can obtain an upper bound for v.

Finally, putting together the norm bounds for v and η we
obtain the non-negative function ϕ4 and the non-negative
constants in (50).

C. Proof of Lemma 1
First, applying the coordinate transformation ξen = Tnξe,

where Tn := [ I ST ]T , system (12) can be rewriting into
the normal form and one can conclude that (12) is OSS w.r.t.
the output Sξe, i.e., ξe satisfies

|ξe| ≤ k1|Sξe|+ π1 ,

where k1 is a positive constant and π1 = β1(|ξe(0)|)e−λmt,
with some β1 ∈ K∞ and 0 < λm < λm[Am]. Given any
ξ̃e, either |Sξe| ≤ |Sξ̃e| or |Sξe| > |Sξ̃e|. Hence, either
|Sξe| ≤| Sξ̃e| or sgn(σ̂) = sgn(Sξe). Consider the later
case. Then, by using the storage function V = ξT

e P ξe, where
P = PT > 0 is the solution of AT

mP +PAm = −I , one can

conclude that the time derivative of V along the solutions of
(12) satisfies

V̇ ≤ −|ξe|2 − 2kp|Sξe|[1− |de|] .

Thus, since 1 in (18) satisfies (17), i.e., 1 > |de|, then one
has V̇ ≤ −|ξe|2, which leads to the conclusion that |Sξe| ≤
|Sξ̃e| + π2 and, consequently, the ξe-dynamics is ISS w.r.t.
ξ̃e.

D. Proof of Theorem 1
[STEP-1]: From Definition 1, Assumption 1 and (40), one

can verify that |z(t)|≤ β1(|z(0)|)+k1 , ∀t ∈ [0, tµ], where
β1∈K∞ and k1≥0 is a constant.

[STEP-2]: Consider the ζ-dynamics (27) and the storage
V = ζT P ζ, where P = PT > 0 is the solution of
AT

o P + PAo = −I . Then, the time derivative of V along
the solutions of (27) satisfies µV̇ = −|ζ|2 +(µ̇)[2ζT P∆ζ]+
(µν)[2ζT PBρ]. Now, designing µ to satisfy (P0)–(P2), (41)
holds and the following inequality is valid ∀t ∈ [tµ, tM ):
µV̇ ≤ −|ζ|2+O(µ̄)k1|ζ|2+O(µ̄)k2|ζ|, where k1 := 2|P ||∆|
and k2 := 2|P ||Bρ|. Moreover, since ab < a2 + b2, for any
positive real numbers a, b, then

µV̇ ≤ −[1−O(µ̄)k1 −O(µ̄)]|ζ|2 +O(µ̄) ,

from which one can conclude that µV̇ ≤ −λ1V +O(µ̄), with
an appropriate constant λ1 > 0. Now, either V ≤ 2O(µ̄)/λ1

or µV̇ ≤ −λ1V/2. Consider the later case. Since µ < µ̄,
then one has V̇ ≤ −λ1V/(2µ̄). Hence, one can conclude
that |ζ| , |ξ̃e| ≤ β2(|ζ(0)|)e−λ2t + O(µ̄), ∀t ∈ [tµ, tM ), with
an appropriate constant λ2 > 0 and some β2 ∈ K∞. In the
last inequality, the norm bound for ξ̃e was obtained by noting
that ξ̃e =T−1

µ ζ implies |ξ̃e|≤|ζ|, since |T−1
µ |≤1 for µ<1.

[STEP-3]: Applying Lemma 1, there exists an ISS Prop-
erty from |ξ̃e| to ξe and, considering the norm bound given
in STEP-1, one can further concluded that |ξe|, |z(t)| ≤
[β3(|z(0)|) + k3]e−λ3t + O(µ̄), ∀t ∈ [0, tM ), with an
appropriate constants λ3 > 0, k3 ≥ 0 and some β3 ∈ K∞.
Thus, |z(t)| cannot escape in finite time and it is uniformly
bounded in I := [0, tM ) (UBI).

[STEP-4]: Since z(t) is UBI, then ξe, σ=Sξe, ζ and ξ=
ξe+ξm are UBI and, from Assumption 2, η, x̄ are also UBI.
In addition, according to the lower bound for |T (x, t)| given
in Assumption 1 one has that x UBI. Thus, the bounding
functions given in Assumption 1 guarantee that d, kp, de are
also UBI. Now, rewriting (12) into the normal form one can
write σ̇ = −λ4σ+k4(u+de), for some constants λ4, k4 > 0.
Moreover, by linearity of the solution of the last equation,
one can further write σ = σ1+σ2, where σ̇1 = −λ4σ1+k4u
and σ̇2 = −λ4σ2 + k4de, with appropriate initial conditions.
Thus, since σ and de are UBI so are σ2 and σ1. Then, any
signal satisfying σ̇3 = −λ5σ3 + k5u, where λ5, k5 > 0 are
constants, is also UBI, in particular, ω1 defined in (3). Since
y, ω1 is UBI and ϕo is piecewise continuous in its arguments
then the ω2-dynamics, in Definition 1, cannot escape in finite
time. Finally, one can conclude that all system signals cannot
escape in finite time, i.e., tM →∞. Now, from STEP-3, one
can directly verify that the error system is GAS with respect



to the compact set {z : |z| ≤ b} and ultimate exponential
convergence of z(t) to a residual set of order O(µ̄).

Closed Loop Signals Boundedness: One can further con-
clude, subsequently, that |ξ|, y, |η|, |x|, σ1 and ω1 converge
to a set of order O(|r| + k5) after some finite time, where
k5 is a positive constant depending on the time-varying
disturbances. Then, there exists τ2 sufficiently small and
independent of the initial conditions, which assures that ω2

is bounded after some finite time. Finally, one can conclude
that all system signals are UB ∀t.

E. Proof of Corollary 1
Recalling that Aρ =Am−BρKm, ξ̂ = ξ̂e+ξm, ξ̂=ξe+ξm−

ξ̃e, ξ̂e = ξe−ξ̃e and ξ̃e = T−1
µ ζ, then from (22) one can write

˙̂ξe=Amξ̂e+Bρu+ ςm + ςe, where ςm = −Bρ(Kmξm +kmr)
and ςe = (BρKm + HµLoCρ)(ξ̃e− ξe) + HµLoe. Note that,
from Theorem 1, all system signals are uniformly bounded
and z(t)→ O(µ̄). Then, there exists a finite time T1 > 0
such that |ςe| ≤ δ1 , ∀t ≥ T1, for any δ1 >0. Now, consider
the storage function V = ξ̂T

e P ξ̂e, where P = PT > 0 is the
solution of AT

mP + PAm = −Q, where Q = QT > 0 and
PBρ = ST (recall that (Am, Bρ, S) is strictly positive real).
Then, computing V̇ along the solutions of the ξ̂e-dynamics,
one can verify that the condition for the existence of sliding
mode σ̂ ˙̂σ<0 is verified for some finite time T2≥T1 provided
that 1 ≥ ςm + δ, where δ > 0 is an arbitrary constant.


