Appendix

Title: Facing the Global Tracking Output-feedback Sliding Mode Control Problem via Norm Estimators and Variable High Gain Observer.

Authors: A. J. Peixoto, Tiago Roux Oliveira and Liu Hsu.

A. Geometric Conditions for Normal Form

In order to consider explicitly the time dependence of $f(x, t)$ in (1)-(1), let: $\beta_{k}:=L_{f} \beta_{k-1}+\frac{\partial \beta_{k-1}}{\partial t}+\frac{\partial\left[L_{f}^{k-1} h\right]}{\partial t}$, for $k \in\{1, \ldots, \rho\}$, where $\beta_{0}:=0$. A sufficient condition to assure that the time-varying plant (1)-(2) is transformable to the normal form is given by: $L_{g}\left[L_{f}^{k} h+\beta_{k}\right] \equiv 0(k \in$ $\{0, \ldots, \rho-2\}$), where Lie derivative of a function h along a vector field f is denoted by $L_{f} h$, as in [23, pp. 510]. In this case, the transformation $T(x, t)=\left[\eta^{T} T_{\xi}^{T}(x, t)\right]$ is such that $T_{\xi}:=\left[\begin{array}{llll}L_{f}^{0} h+\beta_{0} & L_{f} h+\beta_{1} & \ldots & L_{f}^{\rho-1} h+\beta_{\rho-1}\end{array}\right]^{T}$. In addition, the plant HFG $k_{p}(x, t)=L_{g}\left[L_{f}^{\rho-1} h+\beta_{\rho-1}\right]$, the input disturbance $d(x, t)=\left(L_{f}^{\rho} h+\beta_{\rho}\right) / k_{p}$ and T must satisfy Assumption 1.

B. Norm Observer

In this section, we consider systems in the form (44)-(45) satisfying (C0) and (C1) in Section VIII. In what follows, we give the steps to obtain the norm observer (47)-(49), according to Definition 1 .

1) Norm bound for η : obtaining c_{0} and φ_{1} in (48): From (C 1), the function α_{1} is stiffening. It guarantees that $\alpha_{1}(\sigma)>\lambda \sigma, \forall \sigma>\epsilon$, for any $\epsilon>0$ and $0<\lambda<\alpha_{1}(\epsilon) / \epsilon$. Moreover, from (46), one can write $\dot{V} \leq-\alpha_{1}(V)+\varphi_{\eta}(y, t)$ or, equivalently, $\dot{V} \leq-\lambda V+\left[\lambda V-\alpha_{1}(V)\right]+\varphi_{\eta}(y, t)$. Now, given any V, either $V \leq \epsilon$ or $V>\epsilon$. Hence, either $\dot{V} \leq-\lambda V+\left[\lambda \epsilon+\alpha_{1}(\epsilon)\right]+\varphi_{\eta}$ or $\dot{V} \leq-\lambda V+\varphi_{\eta}$, leading to the conclusion that $V \leq-\lambda V+\left[\lambda \epsilon+\alpha_{1}(\epsilon)\right]+\varphi_{\eta}$. Therefore, by using comparison theorems [23], one has

$$
V \leq e^{-c_{0} t} * \varphi_{1}(y, t)+V(\eta(0)) e^{-c_{0} t}
$$

where $\varphi_{1}=\varphi_{\eta}+c_{0} \epsilon+\alpha_{1}(\epsilon), c_{0}=\lambda$ are known and the operator $*$ denotes pure convolution. Reminding that $\underline{\lambda}|\eta|^{2} \leq$ V, then one can obtain $|\eta| \leq \sqrt{\left|\omega_{21}\right| / \underline{\lambda}}+\pi_{0}$, with ω_{21} in (48) and π_{0} is an exponentially decaying term depending on $|\eta(0)|$ and $\left|\omega_{21}(0)\right|$.
2) Norm bound for v : obtaining φ_{2} and φ_{3} in (49): It is useful to rewrite (45) in the compact form

$$
\begin{equation*}
\dot{v}=A_{\rho} v+B_{\rho} k_{u} u+\phi(x, t), \tag{53}
\end{equation*}
$$

where $\left(A_{\rho}, B_{\rho}\right)$ is the Brunovsky's canonical pair and apply the change of variable $\bar{v}=v-B_{\rho} k_{u} \tau_{1} \omega_{1}$ to obtain:

$$
\dot{\bar{v}}=A_{\rho} \bar{v}+B_{\rho} k_{u} \omega_{1}+\phi
$$

By observability of the pair $\left(A_{\rho}, C_{\rho}\right)$, where $C_{\rho}=$ $\left[\begin{array}{llll}1 & 0 & \ldots & 0\end{array}\right]$, there exist a matrix $P=P^{T}>0$ and an arbitrary column vector L satisfying $A_{L}^{T} P+P A_{L}=-I$, where $A_{L}=A_{\rho}-L C_{\rho}$ is a Hurwitz matrix.

Now, with $T:=\operatorname{diag}\left(1, \varepsilon, \varepsilon^{2}, \ldots, \varepsilon^{\rho-1}\right)$ and any given constant $\varepsilon>0$, the following properties can be checked: (i)
$T A_{\rho} T^{-1}=\varepsilon^{-1} A_{\rho}$, (ii) $C_{\rho} T^{-1}=C_{\rho}$ and (iii) $T B_{\rho}=$ $B_{\rho} \varepsilon^{\rho-1}$. Then, adding and subtracting the term $(\varepsilon T)^{-1} L C_{\rho} \bar{v}$ to the \bar{v}-dynamics, one can write $\dot{\bar{v}}=\left[A_{\rho}-(\varepsilon T)^{-1} L C_{\rho}\right] \bar{v}+$ $B_{\rho} k_{u} \omega_{1}+\phi+(\varepsilon T)^{-1} L y$. Moreover, applying the transformation $\vartheta=T \bar{v}$ and the above properties (i)-(iii), one can also write

$$
\dot{\vartheta}=\varepsilon^{-1} A_{L} \vartheta+B_{\rho} \varepsilon^{\rho-1} k_{u} \omega_{1}+\varepsilon^{-1} L y+T \phi .
$$

The key step is to note that, due to the triangularity condition (C0):

$$
|T \phi| \leq k_{\vartheta} \varphi_{r}|\vartheta|+\varphi_{\vartheta},
$$

where k_{ϑ} is ε-independent. Then, by using the Dini derivative ${ }^{4}$ and the bounding function Ψ_{v} given in (C0), the time derivative of $V:=\left(\vartheta^{T} P \vartheta\right)^{1 / 2}$ along the solution of the ϑ dynamics satisfies

$$
\dot{V} \leq-\frac{c_{1}}{\varepsilon} V+c_{2} \varphi_{r} V+\bar{\varphi}_{1}\left(\omega_{21}, \omega_{1}, y, t, \varepsilon\right)+\pi_{1}
$$

where π_{1} is a exponentially decaying term and the nonnegative function $\bar{\varphi}_{1}$ and the non-negative constants c_{1}, c_{2} are all known and satisfy $c_{1} \leq 1 /\left(2 \lambda_{M}[P]\right), c_{2} \geq$ $|P| k_{\vartheta} / \lambda_{m}[P]$ and $\left[\left|B_{\rho} \varepsilon^{\rho-1} k_{u} \omega_{1}+\varepsilon^{-1} L y\right|+\varphi_{\vartheta}\right] c_{3} \leq \bar{\varphi}_{1}+$ π_{1}, with $c_{3} \geq|P| / \sqrt{\lambda_{m}[P]}$.

Therefore, given any V, either

$$
\begin{equation*}
V \leq \bar{\varphi}_{1} \quad \text { or } \quad \dot{V} \leq-\frac{c_{1}}{\varepsilon} V+c_{2} \varphi_{r} V+V+\pi_{1} \tag{54}
\end{equation*}
$$

Now, let

$$
\begin{equation*}
\bar{\varphi}_{4}\left(\omega_{21}, y, t\right):=\varphi_{2}\left(\omega_{21}\right)+\varphi_{3}(y, t), \tag{55}
\end{equation*}
$$

with the non-negative functions φ_{2}, φ_{3} in (49) to be determined. Then, (49) can be rewritten as

$$
\begin{equation*}
\dot{\omega}_{22}=-\frac{1}{\tau_{2}} \gamma\left(\omega_{22}\right)+\bar{\varphi}_{4}, \tag{56}
\end{equation*}
$$

with $\gamma(\sigma):=1-e^{-\sigma}$. Hence, by using the bounding function Ψ_{r}, given in (C0), we must choose $\bar{\varphi}_{4}$ in (55) (and the functions $\left.\varphi_{2}, \varphi_{3}\right)$ in order to satisfy:

$$
c_{2} \varphi_{r}+1 \leq \bar{\varphi}_{4}\left(\omega_{21}, y, t\right)
$$

Norm Bound for v

The norm bound for the v-subsystem can be obtained considering two cases for the growth rate $\varphi_{r}(|\eta|, y, t): \varphi_{r}>$ k_{r} and $\varphi_{r} \leq k_{r}$, where $k_{r}=3 /\left(c_{2} \tau_{2}\right)$ and τ_{2} is the positive design constant in (56).

Case 1: In this case, one has $3 / \tau_{2} \leq c_{2} k_{r}+1 \leq c_{2} \varphi_{r}+1 \leq$ $\bar{\varphi}_{4}$. Thus, one can verify that

$$
\begin{equation*}
\gamma(\sigma) \leq 2 \leq \tau_{2} \bar{\varphi}_{4}-1, \quad \forall \sigma . \tag{57}
\end{equation*}
$$

Now, let $W:=\ln (V+1)$ [19]. Then, $\dot{W}=\dot{V} /(V+1)$ and, from (54), one can write

$$
\begin{equation*}
V \leq \bar{\varphi}_{3} \quad \text { or } \quad \dot{W} \leq-\frac{1}{\tau_{2}} \gamma(W)+\bar{\varphi}_{4}+\pi_{1} \tag{58}
\end{equation*}
$$

[^0]with $\varepsilon=c_{1} \tau_{2}$ and $\bar{\varphi}_{3}:=\left.\bar{\varphi}_{1}\right|_{\varepsilon=c_{1} \tau_{2}}$. Note that we have used the relationship $V /(V+1), 1 /(V+1) \leq 1$.

Now, given any W, we have two possibilities: $W<\omega_{22}$ or $W \geq \omega_{22}$. Considering the later case, one can write $-\gamma\left(\omega_{22}\right) \geq-\gamma(W)$, since γ is a increasing function. Therefore, from (58) and (56), one has $\dot{\omega}_{22} \geq \dot{W}-\pi_{1}$. In addition, from (57), $\dot{\omega}_{22}$ also satisfies $\dot{\omega}_{22} \geq 1 / \tau_{2}$. Consequently, adding the last two inequalities one has

$$
\dot{W}-2 \dot{\omega}_{22} \leq-\frac{1}{\tau_{2}}+\pi_{1}
$$

Now, recall that $\pi_{1}=\beta_{1} e^{-\lambda_{1} t}$ and let $\bar{W}=W+\pi_{1} / \lambda_{1}$, for some positive constant λ_{1} and some $\beta_{1} \in \mathcal{K}_{\infty}$. Then, one has $\bar{W}-2 \dot{\omega}_{22} \leq-\frac{1}{\tau_{2}}$, from which one can conclude that, $\bar{W} \leq 2 \omega_{22}-t / \tau_{2}+\left|\bar{W}(0)-2 \omega_{22}(0)\right|$. Note that, it is always possible to find an exponential decaying term which is an upper bound for the above affine time function, i.e., $-t / \tau_{2}+\left|\bar{W}(0)-2 \omega_{22}(0)\right| \leq \pi_{2}$, where $\pi_{2}:=\beta_{2}(|\bar{W}(0)|+$ $\left.\left|\omega_{22}(0)\right|\right) e^{-\lambda_{2} t}$, with $\beta_{2} \in \mathcal{K}_{\infty}$ and some constant $\lambda_{2}>0$. Finally, given W, one can conclude that $W \leq 2\left|\omega_{22}\right|+\pi_{2}+$ π_{1} / λ_{1} and, by using comparison theorems [23] and recalling that $V=e^{W}-1$ one can write

$$
\begin{equation*}
V \leq e^{2\left|\omega_{22}\right|}+\pi_{3} \tag{59}
\end{equation*}
$$

where π_{3} is an exponential decaying term.
Case 2: Assume now that $\varphi_{r} \leq k_{r}$ and set $\varepsilon=c_{1} /\left(c_{2} k_{r}+\right.$ 2) in (54). Then, one can write:

$$
\begin{equation*}
V \leq \bar{\varphi}_{2} \quad \text { or } \quad \dot{V} \leq-V+\pi_{1} \tag{60}
\end{equation*}
$$

where $\bar{\varphi}_{2}=\left.\bar{\varphi}_{1}\right|_{\varepsilon=c_{1} /\left(c_{2} k_{r}+2\right)}$. In this case, adding the two upper bounds obtained from (60) one can write

$$
\begin{equation*}
V \leq \bar{\varphi}_{2}+\pi_{4} \tag{61}
\end{equation*}
$$

where π_{4} is an exponential decaying term. Then, from (59) and (61) one has

$$
\begin{equation*}
V \leq e^{2\left|\omega_{22}\right|}+\bar{\varphi}_{1}\left(\omega_{21}, \omega_{1}, y, t, \varepsilon\right)+\pi_{5} \tag{62}
\end{equation*}
$$

with $\varepsilon=c_{1} /\left(3 / \tau_{2}+2\right)$ and using the Rayleigh's inequality one can obtain an upper bound for v.

Finally, putting together the norm bounds for v and η we obtain the non-negative function φ_{4} and the non-negative constants in (50).

C. Proof of Lemma 1

First, applying the coordinate transformation $\xi_{e n}=T_{n} \xi_{e}$, where $T_{n}:=\left[\begin{array}{ll}I & S^{T}\end{array}\right]^{T}$, system (12) can be rewriting into the normal form and one can conclude that (12) is OSS w.r.t. the output $S \xi_{e}$, i.e., ξ_{e} satisfies

$$
\left|\xi_{e}\right| \leq k_{1}\left|S \xi_{e}\right|+\pi_{1}
$$

where k_{1} is a positive constant and $\pi_{1}=\beta_{1}\left(\left|\xi_{e}(0)\right|\right) e^{-\lambda_{m} t}$, with some $\beta_{1} \in \mathcal{K}_{\infty}$ and $0<\lambda_{m}<\lambda_{m}\left[A_{m}\right]$. Given any $\tilde{\xi}_{e}$, either $\left|S \xi_{e}\right| \leq\left|S \tilde{\xi}_{e}\right|$ or $\left|S \xi_{e}\right|>\left|S \tilde{\xi}_{e}\right|$. Hence, either $\left|S \xi_{e}\right| \leq\left|S \tilde{\xi}_{e}\right|$ or $\operatorname{sgn}(\hat{\sigma})=\operatorname{sgn}\left(S \xi_{e}\right)$. Consider the later case. Then, by using the storage function $V=\xi_{e}^{T} P \xi_{e}$, where $P=P^{T}>0$ is the solution of $A_{m}^{T} P+P A_{m}=-I$, one can
conclude that the time derivative of V along the solutions of (12) satisfies

$$
\dot{V} \leq-\left|\xi_{e}\right|^{2}-2 k_{p}\left|S \xi_{e}\right|\left[\varrho-\left|d_{e}\right|\right]
$$

Thus, since ϱ in (18) satisfies (17), i.e., $\varrho>\left|d_{e}\right|$, then one has $\dot{V} \leq-\left|\xi_{e}\right|^{2}$, which leads to the conclusion that $\left|S \xi_{e}\right| \leq$ $\left|S \tilde{\xi}_{e}\right|+\pi_{2}$ and, consequently, the ξ_{e}-dynamics is ISS w.r.t. $\tilde{\xi}_{e}$.

D. Proof of Theorem 1

[STEP-1]: From Definition 1, Assumption 1 and (40), one can verify that $|z(t)| \leq \beta_{1}(|z(0)|)+k_{1}, \forall t \in\left[0, t_{\mu}\right]$, where $\beta_{1} \in \mathcal{K}_{\infty}$ and $k_{1} \geq 0$ is a constant.
[STEP-2]: Consider the ζ-dynamics (27) and the storage $V=\zeta^{T} P \zeta$, where $P=P^{T}>0$ is the solution of $A_{o}^{T} P+P A_{o}=-I$. Then, the time derivative of V along the solutions of (27) satisfies $\mu \dot{V}=-|\zeta|^{2}+(\dot{\mu})\left[2 \zeta^{T} P \Delta \zeta\right]+$ $(\mu \nu)\left[2 \zeta^{T} P B_{\rho}\right]$. Now, designing μ to satisfy (P0)-(P2), (41) holds and the following inequality is valid $\forall t \in\left[t_{\mu}, t_{M}\right)$: $\mu \dot{V} \leq-|\zeta|^{2}+\mathcal{O}(\bar{\mu}) k_{1}|\zeta|^{2}+\mathcal{O}(\bar{\mu}) k_{2}|\zeta|$, where $k_{1}:=2|P||\Delta|$ and $k_{2}:=2|P|\left|B_{\rho}\right|$. Moreover, since $a b<a^{2}+b^{2}$, for any positive real numbers a, b, then

$$
\mu \dot{V} \leq-\left[1-\mathcal{O}(\bar{\mu}) k_{1}-\mathcal{O}(\bar{\mu})\right]|\zeta|^{2}+\mathcal{O}(\bar{\mu})
$$

from which one can conclude that $\mu \dot{V} \leq-\lambda_{1} V+\mathcal{O}(\bar{\mu})$, with an appropriate constant $\lambda_{1}>0$. Now, either $V \leq 2 \mathcal{O}(\bar{\mu}) / \lambda_{1}$ or $\mu V \leq-\lambda_{1} V / 2$. Consider the later case. Since $\mu<\bar{\mu}$, then one has $\dot{V} \leq-\lambda_{1} V /(2 \bar{\mu})$. Hence, one can conclude that $|\zeta|,\left|\tilde{\xi}_{e}\right| \leq \beta_{2}(|\zeta(0)|) e^{-\lambda_{2} t}+\mathcal{O}(\bar{\mu}), \forall t \in\left[t_{\mu}, t_{M}\right)$, with an appropriate constant $\lambda_{2}>0$ and some $\beta_{2} \in \mathcal{K}_{\infty}$. In the last inequality, the norm bound for $\tilde{\xi}_{e}$ was obtained by noting that $\tilde{\xi}_{e}=T_{\mu}^{-1} \zeta$ implies $\left|\tilde{\xi}_{e}\right| \leq|\zeta|$, since $\left|T_{\mu}^{-1}\right| \leq 1$ for $\mu<1$.
[STEP-3]: Applying Lemma 1, there exists an ISS Property from $\left|\tilde{\xi}_{e}\right|$ to ξ_{e} and, considering the norm bound given in STEP-1, one can further concluded that $\left|\xi_{e}\right|,|z(t)| \leq$ $\left[\beta_{3}(|z(0)|)+k_{3}\right] e^{-\lambda_{3} t}+\mathcal{O}(\bar{\mu}), \forall t \in\left[0, t_{M}\right)$, with an appropriate constants $\lambda_{3}>0, k_{3} \geq 0$ and some $\beta_{3} \in \mathcal{K}_{\infty}$. Thus, $|z(t)|$ cannot escape in finite time and it is uniformly bounded in $\mathcal{I}:=\left[0, t_{M}\right)(\mathrm{UB} \mathcal{I})$.
[STEP-4]: Since $z(t)$ is UB \mathcal{I}, then $\xi_{e}, \sigma=S \xi_{e}, \zeta$ and $\xi=$ $\xi_{e}+\xi_{m}$ are $\mathrm{UB} \mathcal{I}$ and, from Assumption 2, η, \bar{x} are also $\mathrm{UB} \mathcal{I}$. In addition, according to the lower bound for $|T(x, t)|$ given in Assumption 1 one has that $x \mathrm{UB} \mathcal{I}$. Thus, the bounding functions given in Assumption 1 guarantee that d, k_{p}, d_{e} are also UBI. Now, rewriting (12) into the normal form one can write $\dot{\sigma}=-\lambda_{4} \sigma+k_{4}\left(u+d_{e}\right)$, for some constants $\lambda_{4}, k_{4}>0$. Moreover, by linearity of the solution of the last equation, one can further write $\sigma=\sigma_{1}+\sigma_{2}$, where $\dot{\sigma}_{1}=-\lambda_{4} \sigma_{1}+k_{4} u$ and $\dot{\sigma}_{2}=-\lambda_{4} \sigma_{2}+k_{4} d_{e}$, with appropriate initial conditions. Thus, since σ and d_{e} are UB \mathcal{I} so are σ_{2} and σ_{1}. Then, any signal satisfying $\dot{\sigma}_{3}=-\lambda_{5} \sigma_{3}+k_{5} u$, where $\lambda_{5}, k_{5}>0$ are constants, is also UB \mathcal{I}, in particular, ω_{1} defined in (3). Since y, ω_{1} is $\operatorname{UB} \mathcal{I}$ and φ_{o} is piecewise continuous in its arguments then the ω_{2}-dynamics, in Definition 1, cannot escape in finite time. Finally, one can conclude that all system signals cannot escape in finite time, i.e., $t_{M} \rightarrow \infty$. Now, from STEP-3, one can directly verify that the error system is GAS with respect
to the compact set $\{z:|z| \leq b\}$ and ultimate exponential convergence of $z(t)$ to a residual set of order $\mathcal{O}(\bar{\mu})$.

Closed Loop Signals Boundedness: One can further conclude, subsequently, that $|\xi|, y,|\eta|,|x|, \sigma_{1}$ and ω_{1} converge to a set of order $\mathcal{O}\left(|r|+k_{5}\right)$ after some finite time, where k_{5} is a positive constant depending on the time-varying disturbances. Then, there exists τ_{2} sufficiently small and independent of the initial conditions, which assures that ω_{2} is bounded after some finite time. Finally, one can conclude that all system signals are UB $\forall t$.

E. Proof of Corollary 1

Recalling that $A_{\rho}=A_{m}-B_{\rho} K_{m}, \hat{\xi}=\hat{\xi}_{e}+\xi_{m}, \hat{\xi}=\xi_{e}+\xi_{m}-$ $\tilde{\xi}_{e}, \hat{\xi}_{e}=\xi_{e}-\tilde{\xi}_{e}$ and $\tilde{\xi}_{e}=T_{\mu}^{-1} \zeta$, then from (22) one can write $\dot{\hat{\xi}}_{e}=A_{m} \hat{\xi}_{e}+B_{\rho} u+\varsigma_{m}+\varsigma_{e}$, where $\varsigma_{m}=-B_{\rho}\left(K_{m} \xi_{m}+k_{m} r\right)$ and $\varsigma_{e}=\left(B_{\rho} K_{m}+H_{\mu} L_{o} C_{\rho}\right)\left(\tilde{\xi}_{e}-\xi_{e}\right)+H_{\mu} L_{o} e$. Note that, from Theorem 1, all system signals are uniformly bounded and $z(t) \rightarrow \mathcal{O}(\bar{\mu})$. Then, there exists a finite time $T_{1}>0$ such that $\left|\varsigma_{e}\right| \leq \delta_{1}, \forall t \geq T_{1}$, for any $\delta_{1}>0$. Now, consider the storage function $V=\hat{\xi}_{e}^{T} P \hat{\xi}_{e}$, where $P=P^{T}>0$ is the solution of $A_{m}^{T} P+P A_{m}=-Q$, where $Q=Q^{T}>0$ and $P B_{\rho}=S^{T}$ (recall that $\left(A_{m}, B_{\rho}, S\right)$ is strictly positive real). Then, computing \dot{V} along the solutions of the $\hat{\xi}_{e}$-dynamics, one can verify that the condition for the existence of sliding mode $\hat{\sigma} \dot{\hat{\sigma}}<0$ is verified for some finite time $T_{2} \geq T_{1}$ provided that $\varrho \geq \varsigma_{m}+\delta$, where $\delta>0$ is an arbitrary constant.

[^0]: ${ }^{4}$ To avoid the Dini derivative we could have used the relationship $a b \leq$ $a^{2}+b^{2}$, valid $\forall a, b>0$, at the expense of some conservatism.

