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APPENDIX

A. Proof of Proposition 1

In what follows, ki denote positive constants that depends only on
the plant-controller parameters and Ψi(·) denote functions of class K∞.
Consider the solution of the state equation (4) and ∀t ∈ [0, tM ), i.e,

Xe(t) = k∗(sI − Ac)
−1bc ∗ [u(t) − ū(t)] + eActXe(0) . (64)

Applying [25, Lemma 2] (considering initial time t̄0 = 0) to (64), follows
that (∀t ∈ [0, tM )),

|Xe(t)| ≤ c1e−γt ∗ û(t) + c2e−λct|Xe(0))| , (65)

with 0 < λc < λc where λc is the stability margin of Ac, γ > 0 is lower
than the stability margin γc > 0 of the transfer function (sI − Ac)−1bc

and c1, c2 > 0 are positive appropriate constants, all obtained from [25,
Lemma 2] and |u(t) − ū(t)| ≤ û(t). Noting that, λc ≤ γc, then one can
choose γ = λc, resulting in the following upper bound, valid ∀t ∈ [0, tM ),

|Xe(t)| ≤ c1e−λct ∗ û(t) + c2e−λct|Xe(0))| . (66)

From Assumptions (A5)–(A6) ū satisfies (11), thus from Assumption (A7),
one has ∀t ∈ [0, tM ),

|u − ū| ≤ Ψ1(|Xe|) + e−γdt ∗ Ψ2(|Xe|) + k1 := û . (67)

Consequently, from (66) and (67) and using the Comparison Theorem [15],
follows that

|Xe(t)| ≤ x̄e(t) ≤ ¯̄xe(t) , ∀t ∈ [0, tM ) , (68)

where x̄e(t) := e−λ1t ∗ [Ψ3(|Xe(t)|) + k2] + c2e−λ1t|Xe(0))| is the
solution of the following differential equation (∀t ∈ [0, tM ))

˙̄xe = −λ1x̄e + [Ψ3(|Xe|) + k2] , x̄e(0) := c2|Xe(0))| , (69)

and ¯̄xe is the solution of

˙̄̄xe = −λ1 ¯̄xe + [Ψ3(¯̄xe) + k2] , ¯̄xe(0) := c2|Xe(0))| . (70)

Now, from (70) and (68) one can conclude that ∀R0 > 0, there exist
∀R ≥ R0 and some t∗ ∈ (0, tM ), which is independent of τ (the time
constant of the lead filter), such that |Xe(t)| < ¯̄xe(t) < R for t ∈ [0, t∗).
Thus,

Ψ3(¯̄xe) ≤ kR
3 |¯̄xe| , ∀¯̄xe < R ,

with the positive constant kR
3 possibly dependent on R. Thus, ¯̄xe satisfies

˙̄̄xe ≤ (kR
3 − λ1)¯̄xe + k2 , ¯̄xe(0) := c2|Xe(0))| , (71)

which leads to

¯̄xe ≤ k2

(kR
3 − λ1)

(e(kR
3 −λ1)t − 1) + c2|Xe(0)|e(kR

3 −λ1)t , (72)

and, consequently, from (68), one has

|Xe(t)| ≤ c2eλ2t|Xe(0)| + k4(eλ2t − 1) , ∀t ∈ [0, t∗) , (73)

where λ2 := kR
3 −λ1. Since te(τ) is bounded by some class K function of

τ , thus there exists 0 < τ1 ≤ 1 such that te(τ) ≤ t∗ < tM , ∀τ ∈ (0, τ1].
Now, one can obtain the following norm bound for Xe,

|Xe(t)| ≤ (k5 + k6τ)|Xe(0)| + Ψ4(τ) , (74)

∀τ ∈ (0, τ1], ∀t ∈ [0, te(τ)] ⊂ [0, t∗]. Finally, from (74), ‖(Xe)t‖ ≤
(k5 + k6τ)|Xe(0)|+ Ψ4(τ), ∀t ∈ [0, te], in addition, recalling that e0 =
hT

c Xe, from (30), follows the proposition result (47), i.e.,

|z(t)| ≤ k7|z(0)| + Ψ5(τ) . (75)

B. Proof of Theorem 2

Given R > 0 and 0 < R0 < R, then for some t∗ ∈ (0, tM ) and
|z(0)| < R0 one has |z(t)| < R for t ∈ [0, t∗). Assume t ∈ [0, t∗).

From (54), one has

‖(z)t‖ ≤ kz1|z(0)| + kz2V(τ) + kz3‖(βU )t‖ , (76)

and, from (55), follows that

‖(z)t‖ ≤ k̄z1|z(0)| + k̄z2V(τ) + τ k̄z3 , (77)

which is valid if τ < 1
kz3kue

, where k̄z1 := kz1
1−τkz3kue

, k̄z2 :=
kz2

1−τkz3kue
and k̄z3 := kz3kred

1−τkz3kue
. Then, from (55)

‖(βU )t‖ ≤ τkuek̄z1|z(0)| + τkuek̄z2V(τ) +

+ τ2kuek̄z3 + τkred ,

≤ τkuek̄z1|z(0)| + τko1 , (78)

where ko1 := kuek̄z2V(τ) + τkuek̄z3 + kred. Thus, from (54), the
following upper bound holds

|z(t)| ≤ kz1|z(0)|e−λ2t + kz2V(τ)e−λ2t +

+ τkz4|z(0)| + τkz5 , (79)

where kz4 := kz3kuek̄z1 and kz5 := ko1kz3.
Rewrite (75) as

|z(t)| ≤
[
kz1e−λ2t + τkz4

]
|z(0)| +

+ kz2V(τ)e−λ2t + τkz5 . (80)

Noting that, for τ < 1/kz4, there exists T1 > 0 such that

λz :=
[
kz1e−λ2T1 + τkz4

]
≤ 1 ,

thus, for i = 0, 1, . . ., one has

|z(t̄i + T1)| ≤ λz |z(t̄i)| +
+ kz2V(τ)e−λ2T1 + τkz5 . (81)

Then, the simple linear recursive inequality (81) holds and easily lead to
the conclusion that, for τ small enough, the error system is semi-globally
exponentially stable with respect to a residual set of order τ . Moreover, one
can also conclude that the initial time is irrelevant in this analysis, thus the
stability result holds ∀t ≥ t̄0 ≥ 0.

C. Proof of Proposition 3

In what follows, ki denote positive constants that depends only on the
plant-controller parameters and Ψi(·) denote functions of class K∞. From
Proposition 2, |ε0(t)| ≤ |ϕm(t)| (∀t ∈ [t1, tM )), consequently from (58)-
(59), one has

|ε0(t)| ≤ |ε0(tk)| + a(k) + 3‖(β̄U )t‖ , (82)

which is valid ∀t ∈ [t1, tM ), where tk is the greatest switching time
such that 0 ≤ tk ≤ t ≤ tk+1 < tM (note that tk depends on t). The
relation |β̄U (tk)| ≤ ‖(β̄U )t‖ was used to derive (82). Now, considering
the sequence t1, t2, . . . , tk < tM of switching time instants that belongs
to the maximum time interval [0, tM ) of definition of ε0, the following
recursive inequality is verified

|ε0(tk+1)| ≤ |ε0(tk)| + a(k) + 3‖(β̄U )tk+1‖ , (∀k ≥ 1) , (83)

which leads to the conclusion that

|ε0(tk)| ≤ |ε0(t1)|+
(k−1)∑
i=1

a(i)+3

(k−1)∑
i=1

‖(β̄U )ti+1‖ , (∀k ≥ 2) . (84)

Noting that ‖(β̄U )ti‖ ≤ ‖(β̄U )ti+1‖(∀i), a simple but more conservative
upper bound is obtained from (84), resulting in

|ε0(tk)| ≤ |ε0(t1)| + aΣ(k) + 3(k − 1)‖(β̄U )tk‖ , (∀k ≥ 1) , (85)

where

aΣ(k) :=

{ ∑(k−1)
i=1 a(i) , k ≥ 2 ,

0 , k = 1 .



Now, from (85) and (82), one has

|ε0(t)| ≤ |ε0(t1)| + aΣ(k) + 3(k − 1)‖(β̄U )tk‖ +

+ a(k) + 3‖(β̄U )t‖ , (∀t ∈ [t1, tM ), k ≥ 1) (86)

Noting that ‖(β̄U )tk‖ ≤ ‖(β̄U )t‖ (since t ≥ tk), and redefining aΣ(k)
by

aΣ(k) :=

k∑
i=1

a(i) , k ≥ 1 ,

the following inequality holds ∀t ∈ [t1, tM ) (which implies k ≥ 1)

|ε0(t)| ≤ |ε0(t1)| + aΣ(k) + 3k‖(β̄U )t‖ . (87)

Now, since k, aΣ(k) and ‖(β̄U )t‖ are positive and increase as t increases,
then inequality (87) is also verified in terms of the L∞e norm of ε0 (∀t ∈
[t1, tM )), i.e,

‖(ε0)t,t1‖ ≤ |ε0(t1)| + aΣ(k) + 3k‖(β̄U )t‖ . (88)

Note that the relation ‖(β̄U )t,t1‖ ≤ ‖(β̄U )t‖ was used to derive inequality
(88).

Moreover, from (31) and (33), one has

ē0 = ε0 − βU − e0
F ,

thus, the following two relation can be obtained

|ε0(t1)| ≤ k1|Xe(t1)| + |βU (t1)| + |e0
F (t1)| , (89)

‖(ē0)t,t1‖ ≤ ‖(ε0)t,t1‖ + ‖(βU )t,t1‖ + ‖(e0
F )t,t1‖ , (90)

where k1 := |hL| and the relation ē0 = hT
LXe was used to derive (89),

see (24) for details. From (43), one has

|e0
F (t)| ≤ R1 ,∀t ≥ te ,

where R1 is given by

R1 := (|xf (0)| + (¯̄ke + 1)|Xe(0)|) ,

according to (44). Since t1 := t̄e ≥ te, then |e0
F (t1)| ≤ R1 and

‖(e0
F )t,t1‖ ≤ R1. Recalling that |βU (t1)| ≤ ‖(βU )t,t1‖, from (89), (90)

and (88), the following upper bound holds

‖(ē0)t,t1‖ ≤ k1|Xe(t1)| + 2R1 + aΣ(k) +

+ 2‖(βU )t,t1‖ + 3k‖(β̄U )t‖ . (91)

Note that, transforming the state realization (Ac, bc, hT
L) of the transfer

function ML(s), described in (4) with output ē0 given by (24), into the
regular form, the complete state Xe can be bounded by

‖(Xe)t,t1‖ ≤ k2|Xe(t1)| + k3‖(ē0)t,t1‖ . (92)

The upper bound (92) was obtained from the solution of the state equation
(in the regular form), with t1 being the initial time. Thus, from (90) and
(91), one has

‖(Xe)t,t1‖ ≤ k4|Xe(t1)| + 2k3R1 + k3aΣ(k) +

+ 2k3‖(βU )t,t1‖ + 3k3k‖(β̄U )t‖ , (93)

where k4 := k1k3 + k2. Now, from Proposition 1, one has

|(Xe)t| ≤ k5|Xe(0)| + Ψ1(τ) , ∀t ∈ [0, t1] . (94)

Adding (93) and (94) one can conclude that, ∀t ∈ [0, tM )

‖(Xe)t‖ ≤ k6|z(0)| + k3aΣ(k) + Ψ2(τ) +

+ 2k3‖(βU )t‖ + 3k3k‖(β̄U )t‖ , (95)

where the facts that ‖(βU )t,t1‖ ≤ ‖(βU )t‖ and |Xe(t1)| ≤ ‖(Xe)t1‖
were used. Note that the operators appearing in (34) and (57) are of order
O(τ). Then, recalling that ū satisfies (11), f(t) satisfies (15), and from
Assumption (A7), one can conclude that

‖(βU )t‖ , ‖(β̄U )t‖ ≤ τΨ3(‖(Xe)t‖) + k7τ . (96)

Now, from the proof of Proposition 1 one can conclude that ∀R0 > 0,
there exist ∀R ≥ R0 and some t∗ ∈ (0, tM ), which is independent of τ
(the time constant of the lead filter), such that |Xe(t)| < R for t ∈ [0, t∗).
Thus,

Ψ3(|Xe|) ≤ kR
8 |Xe| , ∀|Xe| < R ,

with the positive constant kR
8 possibly dependent on R. Now, from (95)

and (96), one has

|Xe(t)| ≤ k9|z(0)| + k10aΣ(k) +

+ Ψ4(τ) + k11kτ + k12τ , (97)

if τ ∈ (0, τ2], where τ2 < 1
k3kR

8 (2+3k)
. Finally, recalling that e0 = hT

c Xe

then, from (30), follows the proposition result (62), i.e.,

|z(t)| ≤ k13|z(0)| + k14aΣ(k) +

+ Ψ5(τ) + k15kτ + k16τ . (98)

D. Proof of Theorem 3
The switchings of the monitoring function stop at some index k∗. Indeed,

since a(k) increases unboundedly as k → ∞, there is a finite value of k1

such that for k ≥ k1 one has a(k) ≥ (2R1eλ̄2 t̄e ) (see (56)). Let k∗ be
the smallest such k1. It is not difficult to conclude that k∗ can be related
to R0 := |z(0)|, through R1, given by (44). In fact one can write

k∗ ≤ Vk(R0) + k0 (99)

where k0 > 0 is a constant and V0 ∈ K. Now, from Proposition 3, it
follows that, for τ sufficiently small

|z(t)| ≤ Vz(R0) + cz (100)

where, cz > 0 is a constant and Vz ∈ K. Thus, if R > Vz(R0) +
cz , the system will stay within the ball of radius R for all t ≥ 0. Thus,
stability with respect to the ball of radius cz is therefore guaranteed for
initial conditions in the R0-ball. Since R0 can be chosen arbitrarily large
provided that τ is chosen sufficiently small, semi-global stability ensues .
We can also conclude that, either the switching of the monitoring function
ϕk stops at a correct sign or, if not, then the state z has to stay in a residual
set of order τ for all future time after the last switching occurred. Indeed,
suppose that the latter is not true. Then, by a reverse time dynamics of the
case in which the correct control direction is used, for which a residual set of
order τ was shown to be semi-globally attractive, the trajectories would have
to diverge beyond the bound (100), which is absurd. Thus, in the (highly
improbable) case of wrong final control direction decision, the system would
have already converged to a residual set of order τ , independent of the radius
R0. If the control direction is correctly found at the last switching (at k∗),
then Theorem 2 applies. This demonstrates the Theorem 3.


