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Preface

Autonomous Versus Conventional Robots

It is at least two decades since the conventional robotic manipulators have become a
common manufacturing tool for different industries, from automotive to pharmaceu-
tical. The proven benefits of utilizing robotic manipulators for manufacturing in dif-
ferent industries motivated scientists and researchers to try to extend the applications
of robots to many other areas. To extend the application of robotics, scientists had
to invent several new types of robots other than conventional manipulators. The new
types of robots can be categorized in two groups: redundant (and hyper-redundant)
manipulators and mobile (ground, marine, and aerial) robots. These two groups of
robots have more freedom for their mobility, which allows them to do tasks that the
conventional manipulators cannot do.

Engineers have taken advantage of the extra mobility of the new robots to make
them work in constrained environments. The constraints can range from limited
joint motions for redundant (or hyper-redundant) manipulators to obstacles in the
way of mobile (ground, marine, and aerial) robots. Since these constraints usually
depend on the work environment, they are variable. Engineers have had to invent
methods to allow the robots deal with a variety of constraints automatically. A robot
that is equipped with those methods that make it able to automatically deal with
a variety of environmental constraints while performing a desired task is called an
autonomous robot.

Purpose of the Book

There are many books that discuss different aspects of Robotics. However, they
mostly focus on conventional robotic manipulators and at best, add a brief section
to address mobile robots. Recently, the application of autonomous robots (redundant
and hyper-redundant manipulators, and ground, marine, and aerial robots) is finding
its way into industries and even into people’s everyday life. One can mention several
examples such as robotic helicopters for surveillance, aerial photography, or farm
spraying, high-end cars that park themselves, robotic vacuum cleaners, etc. It is
becoming more important that our students learn about autonomous robots and our
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engineers have information resources for designing, analyzing, and controlling these
robots.

Since most of the robotic books only deal with conventional robots, nowadays,
students do not have a chance to learn about autonomous robots and engineers who
design autonomous robots have to resort to extracting information from research
literature to design them, which is tedious for them. The present book provides the
theories and methods that are useful for understanding and designing autonomous
robots to students and engineers in a form that is detailed and easy to follow.

The purpose of this book is to familiarize the Mechanical and Electrical Engi-
neering students and engineers with the methods of modeling/analysis/control that
have been proven efficient through research.

Scope of the Book

Similar to the conventional robotic manipulators, the autonomous robots are multi-
disciplinary machines and can be studied from different points of view, i.e., indus-
trial, electrical, mechanical, and controls points of view. Autonomous robots can
also be studied from the Artificial Intelligence point of view. Covering all these
aspects of autonomous robots in one book is almost impossible and each of these
aspects has their own audience. For these reasons, the scope of the present book is
the mechanics and controls of autonomous robots. The book covers the kinematic
and dynamic modeling/analysis of autonomous robots as well as the methods suit-
able for their control.

Level of the Book

This book is useful for last-year undergraduate and first-year graduate students as
well as engineers. The readers should have passed a second year course in Dynamics
and a third year course in Automatic Control (or similar) to be able to fully take
advantage of this book. The mentioned prerequisites are not an obstacle for Me-
chanical or Electrical Engineering students and engineers, since these courses are
offered in ABET (or CEAB for Canadaian higher education) accredited engineering
programs.

Features of the Book

The key feature of the present book is its contents, which have never been gathered
within one book and have never been presented in a form useful to students and
engineers.

• The present book contains the theoretical tools necessary for analyzing the dy-
namics and control of autonomous robots in one place. The topics that are prac-
tical and are of interest to autonomous robot designers have been picked from
advanced robotics research literature. These topics are sorted appropriately and
will form the contents of the book.
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• This book presents the theoretical tools for analyzing the dynamics of and con-
trolling autonomous robots in a form that is comprehensible for students and
engineers. The advanced robotics research literature have usually been authored
with the research community in mind. The mathematical notation and the pre-
sentation method of these publications are not easy to understand. These publi-
cations normally lack the necessary details and intermediate steps. The current
book uses a uniform notation, provides the mathematical background of the the-
ories presentred, expands the details, and includes the intermediate steps and
comprehensive examples to ease and accelerate the reader’s comprehension.

• The current book has problems at the end of each chapter. The problems allow the
reader to practice the theories presented in each chapter. The solution to most of
the problems need some computer aided analysis. Some of the longer problems
are more suitable for term projects.

The author hopes that the present book becomes an asset for learning the appli-
cation of dynamics and controls in the field of autonomous robots.

Edmonton, Alberta, Canada Farbod Fahimi
July 2008
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Chapter 1
Introduction

1.1 Redundant Manipulators

1.1.1 Kinematics

A kinematically redundant manipulator is a serial robotic arm that has more
independently driven joints than are necessary to define the desired pose (position
and orientation) of its end-effector. With this definition, any planar manipulator (a
manipulator whose end-effector motion is restrained in a plane) with more than
three joints is a redundant manipulator. Also, a manipulator whose end-effector can
accept a spatial pose is a redundant manipulator if it has more than six independently
driven joints. For example, the manipulator shown in Fig. 1.1 has two 7-DOF arms
mounted on a torso with three degrees of freedom (DOFs). This provides 10 DOFs
for each arm. Since the end-effector of each arm can have a spatial motion with six
DOFs, the arms are redundant. The degree of redundancy of each arm is four, which
is the difference between the joint number and the end-effector’s DOF for the arm.

It should be noted that kinematic redundancy as defined above should not be
confused with actuator or sensor redundancy. Actuator or sensor redundancy is
present if a manipulator has two actuators or sensors on one joint that serve the
same purpose. Actuator or sensor redundancy is introduced in a manipulator design
to increase the fault tolerance and reliability of the design. The kinematics of a
manipulator with redundant actuators or sensors can be treated similar to that of
a conventional manipulator, whereas the kinematics of a kinematically redundant
manipulator must be studied differently.

1.1.2 Redundancy Resolution

For a conventional manipulator, for which the end-effector DOF is equal to the
number of joints, the position/velocity of the joints can be found easily if the
position/velocity of their end-effector is specified. This process is called the “inverse
kinematics” solution. This can be done because the number of equations written
for the pose of the end-effector is exactly equal to the number of unknowns, i.e.,

F. Fahimi, Autonomous Robots, DOI 10.1007/978-0-387-09538-7 1
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Fig. 1.1 A 17-DOF redundant manipulator with two serial arms (Courtesy of Robotics Research
Corporation, Cincinnati, Ohio, USA)

joints’ positions/velocities. For a redundant manipulator, however, there are more
unknowns (joints’ positions/velocities) than there are equations (DOF of the end-
effector). Therefore, the inverse kinematics mathematical problem does not have a
unique solution. There is a need for approaches that can address this mathematical
problem with multiple solutions. These approaches that solve the inverse kinemat-
ics problem for a redundant manipulator are called the “redundancy resolution”
methods.

1.1.3 Use for Redundancy

These multiple solutions allow for a higher task flexibility for a redundant manip-
ulator compared to a conventional manipulator. The resources (structural strength,
force/torque output abilities, extra DOFs, joint accuracies) of a redundant manip-
ulator can be used optimally according to the task at hand. Since there are several
joint configurations for which the end-effector of a redundant manipulator can reach
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a certain desired pose, the manipulator can pick the one that serves an extra purpose
better through optimization. Examples of extra purposes are numerous. The manip-
ulator can choose the solution that best transmits force/torque to the end-effector.
Or it can maximize joint range availability by choosing the solutions for which the
joints’ positions are closest to their center positions. The manipulator can pick the
solution that requires the least amount of motion to minimize the joint velocities
or the consumed energy. It can maximize dexterity by selecting the solution that
avoids singularities. The manipulator can choose the solution that maximizes the
structural stiffness to reduce the deflection errors. The extra solutions can be used
by the manipulator to avoid obstacles that would otherwise prevent the end-effector
from reaching its desired pose. The redundant manipulator can reallocate resources
to compensate for the loss of a mechanical degree of freedom.

1.1.4 Mathematical Solution Methods

There are several mathematical solution approaches that allow a redundant manip-
ulator to automatically take advantage of its redundancy to satisfy extra tasks pre-
viously discussed. These mathematical methods can provide the manipulator with
some degree of “autonomy,” such that the manipulator is able to decide on the best
kinematic solution according to the different environmental constraints defined for
it. These methods are discussed throughly in Chapter 2.

The methods introduced in Chapter 2 provide the time history of the joint mo-
tions with which a desired task can be accomplished. However, since these methods
are only kinematic methods, they cannot provide the means for driving the joint
such that the desired task is physically performed by the robot. There are needs
for control methods that can guarantee the physical performance of a manipulator.
These control methods are presented in Chapter 5.

1.2 Hyper-Redundant Manipulators

Hyper-redundant manipulators are kinematically redundant manipulators that have
a very large degree of redundancy. These manipulators have a morphology and oper-
ation analogous to that of snakes, elephant trunks, and tentacles. There are a number
of very important applications where such robots would be advantageous. Working
in cluttered environments and in tight and tunnel-like spaces are the most important
features of hyper-redundant manipulators. Due to having their numerous DOFs and
small link lengths, hyper-redundant manipulators are able to reach inside pipelines
and ducts for repair or inspection. Their key applications are inspection, repair, and
maintenance of mechanical systems related to nuclear reactors [9]. Two snake-like
hyper-redundant manipulators are shown in Fig. 1.2.

Another unique feature of hyper-redundant manipulators is their grasping ability.
Because of numerous DOFs, the flexibility of the hyper-redundant manipulators
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Fig. 1.2 Two snake-like hyper-redundant robots
Source: http://en.wikipedia.org/wiki/Image:Robosnakes.jpg

allows them to grasp objects with various sizes and shapes easily. A typical hyper-
redundant manipulator can grasp a large range of sizes and shapes. If conventional
grippers found on nonredundant manipulators are used to cover the same range of
sizes and shapes of objects, several different grippers will be required.

Hyper-redundant manipulators have been the focus of investigation of many
researchers for nearly 20 years. However, they are mostly still in the laboratory
research phase. There might be a number of reasons for this. The previous kine-
matic modeling techniques, used extensively for redundant manipulators and to
be discussed in Chapter 2, are not suitable to or efficient enough for the needs of
hyper-redundant robot task modeling. This is because the computational cost of the
methods suitable for redundant manipulators is related to the degree of redundancy
of the manipulator, and for a hyper-redundant manipulator with a large degree of
redundancy, the computation cost of these methods become prohibitive. Also, the
complexity of the mechanical design and implementation of hyper-redundant robots
might have prevented their commercialization.

The material of Chapter 3 is meant to present efficient and straight forward re-
dundancy resolution methods specific to hyper-redundant manipulators, to reduce
the burdon of the kinematic computations to an acceptable level for real implemen-
tations. In Chapter 3, the history of joint motions that are required for a given task to
be successfully performed is found. In Section 4.10, a spatial path planning method
is presented that generates three-dimensional (3D) paths among obstacles. These
3D paths can be used as backbone curves for the hyper-redundant manipulators for
obstacle avoidance in a spatial environment. In Chapter 5, controllers are introduced
that use the desired trajectory of joint motions to calculate and apply driving forces
or torque at the joints such that the physical motion can take place.
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1.3 Mobile Robots

1.3.1 Common Types

There are two common types of mobile robots that have well-designed kinematic
drive chains, which reduce the chances of slip at the wheels of the robot. The two
mobile robot types are Hilare-type and car-like mobile robots. Hilare-type robots
have two independently driven wheels as the drive mechanism and are usually bal-
anced by a passive caster wheel. They have good maneuvering abilities, e.g., a zero
minimum turn radius, and are easier to control. They are also easier to build due to
their simple drive mechanism. The Hilare-type mobile robots have different sizes
and shapes depending on their application. Figure 1.3a shows a Hilare mobile robot
with applications in industries, research, hospitals, and offices. Figure 1.3b shows
another Hilare mobile robot used as an automated waiter. Figure 1.4 shows a robotic
vacuum cleaner of Hilare type.

The Hilare-type mobile robots can have different sizes and shapes; however,
since they share the same drive mechanism, their mathematical models are similar in
structure. For example, the models, introduced in Chapter 6, can simply be adjusted
to be useful for any Hilare-type mobile robot by using the physical parameters in
the model corresponding to the robot, as long as the modeling assumptions are still
valid.

Car-like mobile robots, as their name implies, have a drive mechanism similar to
that of cars. They are driven by a single motor that powers a differential, which in
turn distributes the motor’s torque to the rear wheels. They have a steering mecha-
nism at the front wheel(s), which is driven by a motor to generate steering angles

a) b)

Fig. 1.3 Hilare type-robots; (a) surveillance robot, (b) automated waiter
Source: (a) http://en.wikipedia.org/wiki/Image:PatrolBot.jpg;(b) http://en.wikipedia.org/wiki/
Image:Seoul-Ubiquitous Dream 11.jpg
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Fig. 1.4 A robotic vacuum cleaner
Source: http://en.wikipedia.org/wiki/Image:Roomba Discovery.jpg

to steer the robot. An indoor small car-like mobile robot can be seen in Fig. 1.5.
An outdoor mobile robot, developed for the 2007 DARPA Urban Challenge, a com-
petition in which robotic ground vehicles had to drive autonomously in an urban
situation, is shown in Fig. 1.6.

Fig. 1.5 A car-like robot (Courtesy of Neurotechnologija, Vilnius, Lithuania)
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Fig. 1.6 A car-like robot developed by Team ENSCO for 2007 DARPA Urban Challenge
Source: http://en.wikipedia.org/wiki/Image:ElementBlack2.jpg

1.3.2 Applications of Mobile Robots

Mobile robots have several applications in industries and factories. One can name
transporting parts between gantries, conveyors, air tubes and other processes, trans-
portation among non sequential processes, long-distance deliveries along winding
and trafficked paths, and individualized item positioning at designated stations as
the most common applications of mobile robots in industrial settings.

Many mobile robots are employed for environmental monitoring and inspection.
Application examples are monitoring Heating, Ventilating, and Air Conditioning
(HVAC) effectiveness, watching for hazards such as air quality, radon, radiation and
smoke, checking on buildings and inspect trouble sites remotely to reduce emer-
gency site visits, monitoring wifi reception and sniff for problem spots, and sending
for supplies and equipment from a partner on the other side of the building. A mobile
robot equipped with a closed circuit television can be used to detect intrusion and
hazard in a building.

Mobile robots can be used as automated home helpers. Some of the robots that
can be bought ready-made can map the environment where they are going to work
by driving around randomly or via remote control. They can use this map to travel
to any given point in the mapped environment and avoid obstacles in their way.
The mapping feature of mobile robots are not only useful for the robot navigation,
but are also accurate enough to be used as the measurement of an area. They can
reproduce the actual shape of a room independent of the geometry of the room. They
can follow people around and can vocally communicate with people if their path is
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completely blocked! They can serve food on a tray or carry drinks in their mobile
refrigerator.

Security and surveillance is another application of mobile robots. They can watch
for intruders to a secure remote site or a vacation home and vocally issue warnings if
they encounter intruders. They can be scheduled to move around and take snapshots
as they move and send the snapshots to a designated receiver.

To perform the above mentioned functions, a mobile robot must be able to sense
the environment boundary and obstacles, decide how to move from some point to
the other (motion planning), and finally, control its driving mechanism such that the
planned motion is actually executed in reality. Some of the more common theories
and methods for motion planning and control of the two common types of mobile
robots, Hilare-type and car-like, are introduced in Chapters 4 and 6.

1.4 Autonomous Surface Vessels

An autonomous surface vessel (ASV) is a robotic boat or ship that can react to the
environmental changes and accomplish a task with minimum human interference.
Similar to many advanced systems that have civilian use today, the ASVs devel-
opment started for military applications. An unmanned surface vessel is shown in
Fig. 1.7.

1.4.1 Military and Security Applications

One of the military applications of ASVs is reconnaissance and surveillance in the
open ocean and coastal waters. ASVs can furnish situational awareness to remote
command stations in real-time. ASVs operate via remote control from a command
center on a ship, or a plane, or on land, or autonomously. They can send pictures,
video, and other electronic data to a land-based, airborne, or ship-based command
center. ASVs can be powered by diesel engines, electric motors, or even with wind

Fig. 1.7 Silver Marlin unmanned surface vessel with autonomous obstacle avoidance, manufac-
turered by Elbit Systems (Courtesy of Oreet International Media Ltd.)
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power. They can be designed for speed and can perform over the horizon, long-
duration missions.

The ASVs are usually equipped with suites of ocean surveillance equipment,
for example, stabilized infrared, thermal imaging, and live video cameras. These
devices are uplinked with satellite or line-of-sight radio to transmit information to
a control platform in real-time. There is no personnel on-board of ASVs. There-
fore, they can intercept the targets of interest with minimal human and financial
resources, freeing more expensive vessels, helicopters or aircraft for other mission
assignments.

Autonomous Surface Vessels can play an important role in homeland security,
drug control, and search and rescue missions. ASVs can patrol coastal waters, ports,
and sensitive facilities and surveil for law enforcement and drug trafficking control.
By cooperation with manned or unmanned aerial vehicles, ASVs can closely ob-
serve suspicious activities in important maritime locations and passages and issue
early warning of any hostile or illegal activity to a command center. ASVs can pro-
tect the sovereignty of the remote lands with environmental resources. Groups of
ASVs can be used for a long and tiring search and rescue missions.

The ASVs can replace the manned vessels that work in hazardous and dangerous
situations. For example, during torpedo or missile exercises, and gun shoots, the
safety and security of the areas downrange of the test must be ensured. Doing this
using manned vessels, helicopters, or aircraft puts the humans in danger. ASVs can
do this job without any risk to humans. They can be equipped and programmed for
checking the target areas for unauthorized vessels, as well as endangered marine
species. The ASV can provide real-time videos and collect other required data by
being accurately positioned near intended weapon impact points. This eliminates
the risk to personnel or more expensive observation platforms.

Another application for ASVs is providing mine countermeasures. The areas that
are cleared from mines must be monitored to make sure that new mines are not
re-seeded. Because of their small size and draft, undetectable electronic and noise
footprint, and minimal effect on the radar, ASVs are highly suitable for monitoring
sensitive areas such as channels, harbor entrances, and seashore. Such missions do
not risk on-board personnel, since the ASV is unmanned.

1.4.2 Civilian Applications

One can think of many civilian applications for ASVs. Examples are protection of
maritime industrial assets and valuable shipments, protecting platforms for undersea
gas exploration, ocean survey and mapping, metrological data collection, fishery
support, marine biological research, and even recreational boating.

Open-sea operations are conducted by many commercial industries, who have
many valuable mobile (container ships or oil tankers) or stationary assets (piplines
on the sea bottom and off-shore oil rigs). ASVs can surveil the shipping lanes, bot-
tlenecks, and sensitive areas for the mobile assets and can monitor the security of
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areas both close and far from the stationary assets. These applications rely on the
advanced sensors that can be mounted on an ASV to provide real-time images and
sensory information and can make a control center aware of any threats.

The ASVs can benefit the undersea oil and mineral exploration in many ways.
The topographical mapping of the ocean floor, which is the beginning of any ex-
ploration before excavation, is done by using sound waves. The mapping demands
strict adherence to a predetermined course by the surface vessel. The ability of pre-
cise navigation for ASV make them a perfect tool for topographical mapping. Also,
ASVs can stay stationary at a given point for an extended period of time without the
need to be anchored or tethered. This feature allows an ASV to be used as a mo-
bile weather buoy for collecting weather and hydrological data, and for supporting
oceanographic investigations.

Fishery Support or compliance can be another application for ASVs. They can be
equipped with sonar sensors and deployed to search for areas with higher population
of fish. After locating the fish, ASVs can direct fishing vessels to the more fish-
populated areas. Equally, ASVs can be used for surveillance in the areas where
fishing is prohibited for protection of the ecosystem and inform the authorities if
illegal fishing activities are recognized.

To design and deploy ASVs, several subsystems must be designed and the sub-
systems must be integrated. Examples of these subsystems are the different sensory
systems needed for different applications of the ASV, the structural and dynamic
stability, the engine and the driveline, the autonomy for independently making deci-
sions, and the controls that actually make the ASV perform its task as planned. Some
part of the autonomy of an ASV that relates to path planning can be addressed by
using the methods introduced in Chapter 4, especially the two-dimensional (2D)
obstacle avoidance method. The nonlinear controls applicable to an ASV is intro-
duced in Chapter 7. Since many applications discussed in this subsection can be
accelerated by using multiple ASVs, some part of Chapter 7 is dedicated to forma-
tion control, with which a group of ASVs can move together with user-specified
distances for accomplishing a cooperative task.

1.5 Autonomous Helicopters

1.5.1 Research Platforms

Several aspects of the autonomy for autonomous helicopters have been and are
still under active research in universities and research centers. Since a real-size
helicopter can be very expensive to purchase, maintain, and fly, most researchers
have developed their own experimental platforms. These platforms are usually de-
veloped by adoption of remote control small-size model helicopters that are avail-
able for hobbyists and aerial photographers. The adapted platform is then modified
and equipped with navigational sensors (GPS receivers, accelerometers, rate gy-
ros, electronic compasses, etc.) and on-board embedded control computers. Some
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researchers, on the other hand, have used the commercially available model heli-
copters that are ready for autonomous flight. Some of these helicopters had been
used for crop spraying in Japan via remote control. Autonomous helicopters bought
from companies are usually several times more expensive than the cost of the in-
house development of autonomous helicopters with the same size and specifica-
tions. There are also some commercial platforms specifically developed for military
applications (Fig. 1.8).

Several projects for development and experimentation with autonomous model
helicopters started in the 1990s and is continuing still. Several autonomous heli-
copter projects were carried out in the University of Southern California (USC)
since 1991. The USC presented prototypes for Autonomous Vehicle Aerial Track-
ing and Retrieval/Reconnaissance (AVATAR) in 1994 and 1997. The AVATAR
was ranked first in the Association for Unmanned Vehicle Systems International
(AUSVI) robotics competition in 1994.

Some in-house made and commercially available autonomous helicopter plat-
forms have been modified and used by the Carnegie Mellon’s Robotics Institute.
Their autonomous helicopter succeeded to achieve the first place in the AUSVI’s
specialized aerial robotic competition. The AeRobot project, (BEAR in short), at
the University of Berkeley is one of the famous autonomous helicopter projects. The
BEAR team has used their autonomous helicopter as a test platform for evaluating
the feasibility and performance of their integrated approach to intelligent systems.
In the last several years, many aerial robots and autonomous helicopter platforms
have also been designed and built by the Unmanned Aerial Vehicle (UAV) research
facility in the Georgia Institute of Technology (GIT). The GIT also achieved the first
ranking in the AUVSI’s specialized aerial robotics competition.

Fig. 1.8 MQ-8B unmanned helicopter used by the US Marine Corps and the US Navy, manufac-
turered by Northrop Grumman
Source: http://en.wikipedia.org/wiki/Image:MQ-8B Fire Scout.jpeg
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Many European research centers work on autonomous helicopters and aerial
robots. The Wallenberg laboratory for research on Information Technology and
Autonomous Systems (WITAS) has had collaborative projects with private com-
panies on UAV research, in which commercial autonomous helicopters have been
used. Furthermore, many European Universities have adapted the conventional radio
controlled helicopters for experimention on coordination and control of multiple
heterogeneous vehicles. One can name the Universidad Polit’cnica de Madrid and
the Technical University of Berlin for their autonomous helicopter platforms, whose
helicopter won the AUSVI’s aerial robotics competitions in 2000.

1.5.2 Civilian Applications

Unmanned small-size helicopters already have numerous civilian applications. These
unmanned, helicopters are mostly remotely controlled, especially for take-off and
landing. However, they extensively use computer-controlled mode for stabilization
of the helicopter in hover and near hover maneuvers. Although the unmanned heli-
copters used for commercial applications are not autonomous (computer-stabilized
would be a more accurate term), in the future, they will take advantage of the re-
search being done about autonomy to accomplish their tasks easier and more accu-
rately. Some of these applications are presented below.

Perhaps aerial photography and videography is the most common application of
unmanned helicopters. The customers of such a service are as follows: real estate
agencies who need the aerial photographs and videos of estates for promotional
purposes and for providing virtual tours of inaccessible sites; publishers who use
pictures of landscapes, bridges, tall buildings, etc., in their publications; movie com-
panies who can film stunts and overhead angles with much lower cost than that of
using a full-size helicopter; news companies who can use them for traffic monitoring
and aerial coverage of news events.

Another common application of unmanned helicopters are for inspection and
security. Regular aerial survey of properties, aerial inspection of bridges, utility
towers, powerlines, piplines, rail roads, and structures are examples of the use of un-
manned helicopters. Furthermore, the unmanned helicopters are used for search and
rescue missions for natural disaster survivors, surveillance of sensitive suspected
areas for criminal activities, and patrolling political boarders for suspicious traffics.
They can be used for remote sensing and monitoring of biological, chemical, and
nuclear weapons.

The aerial robots have some agricultural applications such as crop dusting, crop
health monitoring, and mapping using infrared cameras. They can be used for car-
rying supplies from ground to higher floors, providing temporary and immediate
platforms for communications, and for delivering mail to remote areas.

1.5.3 Security and Military Applications

Drug control and search and rescue missions are ideal applications for autonomous
helicopters. Autonomous helicopters can patrol boarders, ports, and sensitive



1.6 Summary 13

facilities and surveil for law enforcement. They can closely monitor suspicious ac-
tivities in important border sections and passages and report any suspected hostile
or illegal activity. They can be used to protect the sovereignty of the remote lands
with environmental resources. Cooperative helicopters forming a group can be used
for long and tiring search and rescue missions.

Reconnaissance and surveillance in remote areas is one of the most common mil-
itary applications of autonomous helicopters. Autonomous helicopters can provide
situational awareness in real-time via sending pictures, video, and other electronic
data to a land-based or ship-based command center.

1.5.4 Mathematical Models and Methods

One part of autonomy of an autonomous helicopter is its ability to plan its trajectory
in an environment with obstacles. The material presented in Section 4.10 is one of
the efficient ways for path planning for aerial robots working in environments with
obstacles. After the trajectory of an autonomous helicopter is determined by path
planning methods, there is a need for a closed-loop feedback control algorithm to
ensure that the helicopter performs the calculated desired trajectory to avoid ob-
stacles. The material presented in Chapter 8 are useful for that purpose. Also, one
can see that many of the applications of autonomous helicopters mentioned in this
section can be accelerated by using multiple cooperative autonomous helicopters. A
part of Chapter 8 discusses methods with which the motion of a group of cooperative
helicopters can be coordinated.

1.6 Summary

The types and application of different autonomous robots were discussed in this
chapter. These types of robots are interdisciplinary machines and because of that
many researchers and engineers study them in different contexts. Each of these con-
texts relate to one important part of what makes an autonomous robot. For example,
mission planning, machine vision, global path planning and obstacle avoidance, co-
operative work of multiple robots, human-machine interaction, local path planning
and obstacle avoidance, middle level trajectory-tracking controller development,
low-level actuator controller design, navigational sensors, and platform develop-
ment are all active fields of research. Each of these fields have been approached
differently by researchers and engineers. It is close to impossible to address all these
fields and methods in one book. Therefore, this book aims at covering some of the
methods related to modeling, global and local path planning, obstacle avoidance,
and rather advanced control of autonomous robots as mechanical systems.



Chapter 2
Redundant Manipulators

2.1 Introduction

In the last decade, redundant manipulators have been the subject of study for many
researchers and engineers.1 While most manipulators have enough DOFs to perform
tasks in their end-effector task space, that is, providing any desired pose (position
and orientation), their workspace is limited due to mechanical constraints on joints
and obstacles that may be present in the work area. Redundant manipulators have
extra DOFs compared to the minimum DOFs required for reaching their task space.
This allows the redundant manipulators to perform tasks that require high dexterity.
They can use the extra DOFs in their benefit to avoid their joint limits and the ob-
stacles in the workspace, while still reaching a desired end-effector pose in the task
space.

Avoiding joint limits [70] and obstacles [19, 5] are two of the features of re-
dundant manipulators that have been exploited more often. However, the dexter-
ity of this kind of manipulators can be used to satisfy any desirable kinematic or
dynamic characteristic. An example of desired kinematic characteristics is posture
control [17], in which the manipulator is programmed to choose a desired set of
poses out of all possible poses that can perform a desired task. Examples of desired
dynamic characteristic are controlling the contact force of the end-effector [56] or
selecting poses that have optimum inertia [71].

The dexterity of redundant manipulators is sometimes comparable to that of a
human arm. Redundant manipulators are employed in very important applications
where dexterity is required. Perphaps, one of the most famous applications of redun-
dant manipulators is in the International Space Station, where the Special Purpose
Dexterous Manipulator (SPDM) (also known as Dexter or Canada Arm 2 in short)
is being employed.

Note that the extra DOFs of a redundant manipulator make it kinematically dif-
ferent than a non redundant one. Therefore, the mathematical methods developed

1 The theories in chapter are strongly based on the second chapter of the book titled: “Control of
Redundant Manipulators: Theory and Experiments,” by R. V. Patel and F. Shadpey, Springer-Verlag
Berlin Heidelberg 2005.

F. Fahimi, Autonomous Robots, DOI 10.1007/978-0-387-09538-7 2
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for non redundant manipulators are not applicable to a redundant one. Specifically,
the “inverse kinematic” problem for a redundant manipulator has multiple solutions
in general. Methods that deal with the multiple solutions of the “inverse kinematic”
problem for redundant manipulators and can find the best solution that satisfies a
desired criteria are known as “redundancy resolution” methods.

In this chapter, first, the kinematics of redundant manipulators is introduced.
Then, the most common methods for redundancy resolution are discussed. Finally,
the performance of different redundancy resolution methods are studied from two
different view points of robustness with respect to algorithmic and kinematic sin-
gularity, and flexibility with respect to incorporation of different additional desired
tasks, e.g., obstacle avoidance or joint limit avoidance.

2.1.1 Kinematics of Redundant Manipulators

For a manipulator, the task space is the space that defines the pose (position and
orientation) of the end-effector. For example, for a manipulator whose end-effector
moves in a plane, the end-effector pose can be defined by two position components
and one orientation angle. Hence, the task space dimension is three. The joint space
for a manipulator is comprised of all the variables that define the configuration of
the joints.

For a redundant manipulator, there are more joint variables than there are DOFs
for the end-effector. In other words, when the dimension of the task space m for a
manipulator is larger than the dimension of the joint space n, the manipulator is said
to be redundant.

Normally, the variables that define the pose of the end-effect with respect to a
fixed frame of reference are gathered in one single vector as the end-effector pose.
Here, this vector is denoted by the (m × 1) vector x. Also, the variables that define
the configuration of the joints are organized in a vector. Here, this vector is named
q, (which is n × 1). The difference of the joint space dimension and the task space
dimension is called the degree of redundancy, that is, r = n − m, (r ≥ 1) is the
degree of redundancy.

As one can guess, the pose of the end-effector in space depends on the config-
uration of the joints. Mathematically, this can be expressed as a functional relation
between the end-effector pose vector x and the joint variables vector q as

x = f(q). (2.1)

This relation is known as the forward kinematics relation. Also, the (linear
and angular) velocity components for the end-effector can be related to the rate
of change of the joint variables. This relation can be expressed in mathematical
terms as

ẋ = Je(q)q̇, (2.2)
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where ẋ contains the linear and angular velocity components of the end-effector,
and Je is the (m × n) Jacobian of the end-effector. Equation (2.2) is known as the
differential kinematics of the manipulator.

Equation (2.2) has an interesting mathematical interpretation. All the possible
joint variable velocities q̇ form an n × 1-dimensional mathematical space that
is a subset of �n . Also, all the possible end-effector velocity vectors ẋ form an
m × 1-dimensional mathematical space that is a subset of �m . Here, � is a set of
real numbers. With these definitions, at any fixed q, the Jacobian matrix Je(q) can
be interpreted as a linear transformation that maps vectors from the space �n into
the space �m .

Similar to any other linear transformation, the input space �n of the Jacobian
matrix has two important associated subspaces. These two subspaces are called the
range and the null space (Fig. 2.1). The range of the Jacobian matrix is the subspace
of �n that is covered by the transformation. Physically, these are joint velocities that
are mechanically possible to be generated by the manipulator’s drive mechanism.
The range denoted by �(Je) is mathematically defined by

�(Je) = {Jeq̇|q̇ ∈ �n}. (2.3)

The null space of the Jacobian matrix is a subset of the input space �n that is
mapped to a zero vector in the output space �m by the Jacobian matrix. Physically,
these are the achievable joint velocities that do not generate any velocity at the
end-effector. The null space of the Jacobian matrix is denoted by ℵ(Je) and can be
mathematically defined by

ℵ(Je) = {q̇ ∈ �n|Jeq̇ = 0}. (2.4)

More information about the mathematical definition of the null space can be
found in Section A.1.

Fig. 2.1 The Jacobian matrix Je maps the joint velocity space onto the end-effector velocity space.
The null space of the Jacobian matrix ℵ(Je) maps a portion of the joint velocity space q̇ℵ onto zero
end-effector velocity
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The existence of the null space, as defined in Eq. (2.4), for the Jacobian matrix is
the underlying mathematical basis for redundant manipulators. Physically, Eq. (2.4)
implies that the velocities q̇ℵ picked from the null space ℵ(Je) do not generate any
velocity ẋ at the end-effector, i.e.,

Jeq̇ℵ = 0. (2.5)

Although the velocities q̇ℵ do not generate any motion at the end-effector, they
generate internal joint motions. Therefore, these velocities can be used to satisfy
any requirement that the redundant manipulator must meet, for example, obstacle
avoidance for the links, while the end-effector is performing its main task without
being disturbed. This can be mathematically described as follows. Consider a de-
sired end-effector velocity ẋd that can be generated by applying the joint rates q̇d .
This implies that

ẋd = Jeq̇d . (2.6)

Now, assume that the joint velocities q̇ℵ are selected from the null space ℵ(Je)
by an algorithm. The joint velocities q̇d + αq̇ℵ, where α is a scalar multiplier, still
generate the desired end-effector velocity because

Je(q̇d + αq̇ℵ) = Jeq̇d + 0 = ẋd . (2.7)

The dimension of the null space from which q̇ℵ’s can be selected depends on the
rank of the Jacobian matrix. If the Jacobian matrix Je(q) has full column rank (see
Section A.2) at a given joint position q, then the dimension of the null space ℵ(Je)
is equal to the degree of redundancy. If the Jacobian matrix has a rank of m ′ < m,
the dimension of ℵ(Je) is equal to (n − m ′).

Since the choice of velocities that belong to the null space is not unique, there are
several ways in which the desired main task ẋd can be achieved. In other words, there
are multiple solutions to the inverse kinematics problem for a redundant manipula-
tor. These multiple solutions can be used wisely to the benefit of the user. To wisely
use these multiple solutions, useful additional constraints can be defined. There
are two approaches for defining additional constraints: global and local. Global
approaches achieve optimal behavior along the whole trajectory which ensures su-
perior performance over local methods [64, 44, 76]. However, their computational
burden makes them unsuitable for real-time sensor-based manipulator control ap-
plications. For that reason, here, the local approaches, which lead to local optimal
behavior, are discussed.

Example 2.1. Consider a planar Prismatic-Revolute-Revolute (PRR) 3-DOF manip-
ulator with joint variables q1, q2, and q3 (Fig. 2.2). The Cartesian coordinates of the
end-effector x1 and x2 are assumed as the task space with two dimensions. The link
lengths for the second and third links are l2 and l3, respectively.

(a) Determine the degree of redundancy of this manipulator.
(b) Derive the Jacobian matrix for this manipulator.
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Fig. 2.2 A redundant Prismatic-Revolute-Revolute (PRR) manipulator

Solution. The joint space vector and the task space vector are defined as q =
[q1, q2, q3]T and x = [x1, x2]T , respectively.

(a) The dimension of the joint space and the task space are n = 3 and m = 2,
respectively. Therefore, the degree of redundancy is r = n − m = 1.

(b) To find the Jacobian, first, the position of the end-effector is written as a function
of joint parameters. By observing the geometry of the manipulator, one can write

x1 = q1 + l2 cos(q2) + l3 cos(q2 + q3), (2.8)

x2 = l2 sin(q2) + l3 sin(q2 + q3), (2.9)

which can be written in the matrix form of Eq. (2.1) as

x = f(q) =
[

q1 + l2 cos(q2) + l3 cos(q2 + q3)
l2 sin(q2) + l3 sin(q2 + q3)

]
. (2.10)

Differentiating the above equations with respect to time yields

ẋ1 = q̇1 − l2q̇2 sin(q2) − l3(q̇2 + q̇3) sin(q2 + q3), (2.11)

ẋ2 = l2q̇2 cos(q2) + l3(q̇2 + q̇3) cos(q2 + q3), (2.12)

which can be written in the matrix form of Eq. (2.2) as

ẋ = Jeq̇, (2.13)

where

Je =
[

1 −l2 sin(q2) − l3 sin(q2 + q3) −l3 sin(q2 + q3)
0 +l2 cos(q2) + l3 cos(q2 + q3) +l3 cos(q2 + q3)

]
. (2.14)

This completes the solution to the example.
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2.2 Redundancy Resolution at the Velocity Level

Usually, in the real world applications of manipulators, the desired trajectory (timed
position and orientation) of the end-effector is defined as the main task. For the
control of the manipulator, however, the trajectory of the joint variables are required.
Therefore, the solution to the inverse kinematics problem (more commonly referred
to as redundancy resolution for redundant manipulators) is necessary. At the first
step of redundancy resolution, the solution is done in the velocity level, that is, the
desired joint rates that generate a desired velocity for the end-effector are calculated.
This is known as the redundancy resolution at the velocity level.

The reader should be reminded that the redundancy resolution for a redundant
manipulator is not trivial. Because of the kinematic redundancy, there are always
more unknown joint velocities than there are equations. In this section, the mathe-
matical methods that allow the solution for redundant manipulators at the velocity
level are presented and discussed. The mathematical methods can be categorized
under two types of exact and approximate solution methods.

2.2.1 Exact Solutions

The pseudo-inverse method and the augmented Jacobian are two exact solution
methods that are discussed in this section.

2.2.1.1 Pseudo-Inverse Method

Here, a joint instantaneous velocity q̇ must be found such that it generates a given
desired instantaneous velocity ẋ at the end-effector of a redundant manipulator. The
instantaneous joint velocities can be found by seeking the exact solution of Eq. (2.2)
for q̇ for a given ẋ. One of the methods used for obtaining this exact solution is
finding the pseudo-inverse of the matrix Je, denoted by J†e, and using it as

q̇p = J†eẋ, (2.15)

where the subscript p indicated that this is the primary solution to Eq. (2.2). This
solution can be later enhanced by adding solutions q̇ℵ from the null space of the
Jacobian matrix Je. The pseudo-inverse of Je can be written as

J†e = vσ ∗uT , (2.16)

where σ , v, and u are obtained from the singular-value decomposition (SVD) of
Je [35], and σ ∗ is the transpose of σ with all the non-zero values reciprocated (see
Section A.3 for more details). Equation (2.16) can also be written in the following
summation form
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J†e =
m ′∑

i=1

1

σ i
v̂i ûT

i , (2.17)

where m ′ is the number of nonzero diagonal components of the matrix σ , and σi is
the i-th nonzero diagonal element of the matrix σ , and v̂i and ûi are the i-th column
of the matrices v and u, respectively.

If Je has full row rank, then its pseudo-inverse is given by

J†e = JT
e (JeJT

e )−1. (2.18)

The pseudo-inverse method can provide a solution independent of any unbalance
in the number of equations and unknowns in Eq. (2.2). In other words, even if the
forward kinematic equation is under-specified, square, or over-specified, the pseudo-
inverse method can easily specify a solution. However, there are some disadvantages
in using this simple method alone.

For example, as mentioned before, Eq. (2.15) only provides the primary solution,
which is not in the null space of the Jacobian Je. This means that the redundancy of
the manipulator, which has extra DOFs, cannot be exploited for any useful purpose
that could be defined as additional task by a user. This problem can be solved by
adding a joint velocity vector q̇ℵ that belongs to the null space of the Jacobian matrix
Je to the primary solution as [25]

q̇ = q̇p + q̇ℵ. (2.19)

As shown in Eq. (2.7), the new joint velocity q̇ still satisfies Eq. (2.2). The term q̇ℵ
can be selected as

q̇ℵ = (I − J†eJe)ν, (2.20)

where ν is an arbitrary n-dimensional vector, which will be wisely chosen to satisfy
a desired additional task. This desired additional task can be torque and accelera-
tion minimization [70], singularity avoidance [63], or obstacle avoidance [19, 5].
To achieve any of these additional tasks, a cost function can be defined �(q), whose
optimum value would ensure the desired additional task. Then, the arbitrary vector ν

can be selected such that the solution given by Eq. (2.19) converges to the optimum
value of the cost function. This can be done by choosing the arbitrary vector as

ν = −∇�(q) = −��

�q
= −[

��

�q1
. . . . . .

��

�qn
]T . (2.21)

Another problem with the solutions provided by Eq. (2.15) is that they may lead
to singular configurations for the manipulator, at which the Jacobian matrix Je does
not have full rank [59]. At those singular configurations, the end-effector of the
manipulator cannot generate velocity components in certain directions, which is not
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desirable. Close to a singular position, very large joint rates are needed to generate
an end-effector velocity in certain directions. Mathematically, for a singular posture,
even the largest element of the matrix σ is very close to zero. Since the reciprocals
of the elements of σ appear in the matrix σ ∗ in Eq. (2.16) or (2.17), the joint rates
resulting from Eq. (2.15) are very large.

Example 2.2. Consider the PRR redundant manipulator of Example 2.1 (Fig. 2.2).
If the link lengths l2 and l3 are 0.5 m, find

(a) the joint rates that generate an end-effector velocity of ẋd = [0.5, 0.0]T m/s, if
the arm is at a non singular posture q = [0.25 m, π/12 rad, π/3 rad]T ;

(b) the joint rates that generate an end-effector velocity of ẋd = [0.5, 0.0]T m/s, if
the arm is at the singular posture q = [0.25 m, π/2 rad, 0 rad]T .

Solution. The Jacobian matrix of Eq. (2.14) derived in Example 2.1 is used in this
example.

(a) The Jacobian matrix (2.14) at the non singular posture is

Je =
[

1.0000 −0.6124 −0.4830
0.0000 0.6124 0.1294

.

]
(2.22)

As seen from the above matrix, at a non singular posture, the Jacobian matrix
has full row rank (the rank of Je = 2, which is equal to the number of rows of
the Jacobian, n = 2). In this situation, the expression JeJT

e is non singular and
the pseudo-inverse J†e can be calculated from

J†e = JT
e (JeJT

e )−1. (2.23)

For q1 = 1.25 m, q2 = π/12 rad, and q3 = π/3 rad, this yields

J†e =
⎡
⎣ 0.8931 0.9974

0.0634 1.6345
−0.3023 −0.0072

.

⎤
⎦ (2.24)

Since ẋd = [0.5, 0.0]T m/s,

q̇p = J†eẋd =
⎡
⎣ 0.4466

0.0319
−0.1511

⎤
⎦ m/s

rad/s
rad/s

. (2.25)

(b) At a singular posture, the Jacobian matrix does not have full row rank (rank
of Je < n). Calculating the Jacobian matrix (2.14) confirms that its rank is 1
(m ′ = 1).
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Je =
[

1.00 −1.00 −0.50
0.00 0.00 0.00

]
(2.26)

Since the Jacobian matrix does not have full row rank, the expression JeJT
e is

singular (has no inverse) and the method used in the previous part of this exam-
ple fails. In such a situation, the pseudo-inverse of the Jacobian matrix must be
calculated using the SVD method. In this method, three matrices u, σ , and v are
found such that uσv = Je.2

u =
[−1.0000 0.0000

0.0000 1.0000

]
σ =

[
1.5000 0.0000 0.0000
0.0000 0.0000 0.0000

]
(2.27)

v =
⎡
⎣−0.6667 −0.7452 −0.0000

0.6667 −0.5963 −0.4472
0.3333 −0.2981 0.8944

⎤
⎦ . (2.28)

The matrix σ ∗ is

σ ∗ =
⎡
⎣0.6667 0.0000

0.0000 0.0000
0.0000 0.0000

⎤
⎦ . (2.29)

The pseudo-inverse of the Jacobian is calculated as follows

J†e = vσ ∗uT , (2.30)

which results in

J†e =
⎡
⎣ 0.4444 0.0000

−0.4444 0.0000
−0.2222 0.0000

⎤
⎦ . (2.31)

Finally the joint rates are

q̇p = J†eẋ =
⎡
⎣ 0.2222

−0.2222
−0.1111

⎤
⎦ m/s

rad/s
rad/s

. (2.32)

This completes the solution to the example.

2 The following command in MATLAB calculates the SVD matrices: [u, σ , v] = SVD(Je).
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2.2.1.2 Augmented Jacobian Method

In the augmented Jacobian method [27, 67], for a redundant manipulator with the
degree of redundancy of r = n − m, r additional tasks are defined. These additional
tasks, which are a function of joint variables q, are organized in an r × 1 vector,
represented by z. Since the additional task z is a function of the joint variables
vector q, an r × n Jacobian matrix Jc, known as the Jacobian of the additional task,
can be defined that relates their rate of change as

ż = Jcq̇. (2.33)

Equation (2.33) adds r equations to the forward kinematics equations (2.2),
which brings the total number of equations to n. Since there are n unknown joint
rates in q̇, as long as the derivative of the additional task ż is defined, the number
of equations and unknowns are balanced. This can be mathematically expressed by
defining an augmented task vector as

y =
[

x
z

]
, (2.34)

and expressing the augmented task in terms of the joint rate vector as

ẏ =
[

ẋ
ż

]
= Ja q̇, (2.35)

where Ja is the (n × n) augmented Jacobian matrix,

Ja =
[

Je

Jc

]
. (2.36)

Je and Jc are the (m × n) and (r × n) Jacobian matrices of the main and addi-
tional tasks, respectively. Once again, x, y, and z are the task vectors of the main,
augmented, and additional tasks, respectively.

Since the augmented Jacobian matrix in Eq. (2.35) is square, the solution for
the joint rates q̇ can be simply found by using the inverse of Ja . This is a really
simple approach, however, there are two major disadvantages associated with this
method [71].

Calculation of the inverse of the augmented Jacobian matrix is required in this
method. For the inverse of the augmented Jacobian matrix to exist at all times, the
additional tasks must be defined at all times. In other words, part-time additional
tasks such as obstacle avoidance or joint limit avoidance that are defined based on
some conditions that may not exist at all times cannot be used as additional tasks.
Hence, this method is not suitable for part-time tasks.

Another disadvantage is that extra singularities can be introduced into the kine-
matics of the redundant manipulator by defining the additional task. This may be
caused by extra singularities that are a consequence of possible rank deficiencies
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of the additional task Jacobian Jc at certain postures. Or this can be caused by an
unwanted conflict between the main and the additional task at certain postures, at
which the rows of Je or Jc become linearly dependent. This linear dependency,
which leads to singularity in the matrix Ja , is task dependent and very hard to pre-
dict. In this situation, the solution of Eq. (2.35) based on the inverse of the extended
Jacobian Ja may result in instability near a singular configuration.

Example 2.3. Consider the PRR redundant manipulator of Example 2.1 (Fig. 2.2)
at a posture q1 = 0.25 m, q2 = π/12 rad, and q3 = π/3 rad. If the end-effector’s
angular velocity is defined as an additional task, find the joint rates required to gen-
erate a velocity of ẋd = [0.5, 0.0]T m/s and an angular velocity of ωd

3 = π/12 rad/s
for the end-effector.

Solution. The additional task is defined based on the desired angular velocity of the
end-effector as

ż1 = ω3 = q̇2 + q̇3 = Jcq̇, (2.37)

where the additional task’s Jacobian matrix is

Jc = [0 1 1
]

. (2.38)

The augmented Jacobian for the manipulator becomes

Ja =
[

Je

Jc

]
=
⎡
⎣1 −l2 sin(q2) − l3 sin(q2 + q3) −l3 sin(q2 + q3)

0 +l2 cos(q2) + l3 cos(q2 + q3) +l3 cos(q2 + q3)
0 1 1

⎤
⎦ . (2.39)

Substituting the values for q1, q2, and q3 and inverting Ja yields

J−1
a =

⎡
⎣1 0.2979 0.4483

0 2.0706 −0.2679
0 −2.0706 1.2679

.

⎤
⎦ (2.40)

The first time derivative of the augmented task y is

ẏ =
⎡
⎣ẋ1

ẋ2

ż1

⎤
⎦ =

⎡
⎣ 0.5

0.0
π/12

⎤
⎦ m/s

m/s
rad/s

. (2.41)

This results in the following joint rates

q̇ = J−1
a ẏ = J−1

a

⎡
⎣ 0.5

0.0
π/12

⎤
⎦ =

⎡
⎣ 0.6174

−0.7010
0.3319

⎤
⎦ m/s

rad/s
rad/s

. (2.42)

This completes the solution to the example.
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2.2.2 Approximate Solution Methods

2.2.2.1 Singularity Avoidance

Singular postures for a manipulator is not desirable because at a singular posture, the
inverse kinematics of a manipulator does not have a meaningful solution. In prac-
tice, this means that close to a singular posture, generating a velocity component in
certain directions at the end-effector of a manipulator requires very high joint rates,
which are not physically possible for the joints to afford. A redundant manipulator
can avoid singular postures by exploiting its extra DOFs than that required for a
given main task. Here, the use of this feature of redundant manipulators is discussed.

If ẋd is the desired main task, the redundancy resolution problem can be formu-
lated as finding the joint rate q̇ that approximately satisfies Eq. (2.2) by minimizing
the cost function

F = ‖Jeq̇ − ẋd‖2. (2.43)

To avoid the singularities, the weighted norm of the joint rates is added to the above
cost function. That way, high joint rates are penalized, causing the manipulator not
to move close to the singularity posture.

F = ‖Jeq̇ − ẋd‖2 + ‖λq̇‖2 (2.44)

This cost function can be expanded in the following form

F = (Jeq̇ − ẋd )T (Jeq̇ − ẋd ) + λ2q̇T q̇,

= q̇T JT
e Jeq̇ − 2q̇T JT

e ẋd + (ẋd )T ẋd + λ2q̇T q̇. (2.45)

The partial derivate of the cost function F with respect to q̇T vanishes for q̇ that
minimizes F .

�F

�q̇T
= 2(JT

e Jeq̇ + λ2q̇ − JT
e ẋd ) = 0 (2.46)

Solving the partial derivative of the cost function F for the unknown q̇ results in

q̇λ = (JT
e Je + λ2I)−1JT

e ẋd . (2.47)

The solution to Eq. (2.47), which is unique, closely approximates the exact solution
while avoids high joint rates.

One can compare this approximate result with the exact solution by studying the
SVD of the exact pseudo-inverse (Eq. 2.17) and that of the coefficient matrix of ẋd

in Eq. (2.47). The singular values of the exact and the approximate solution are

1

σi
,

σi

σ 2
i + λ2

, (2.48)
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respectively. The weight λ is what makes the actual difference between the singular
values of the two solutions. Since λ �= 0, there are no singularities for the approxi-
mate solution. Also, if λ is selected to be small, when the manipulator is far from a
singular posture and σi ’s are large, the singular values of the exact and approximate
solutions are very close, causing close solutions for q̇. Furthermore, when the ma-
nipulator is close to a singular posture, the singular values have the same order as λ.
In these cases, the weight λ2 in the denominator reduces the potentially high norm
joint rates.

Example 2.4. Consider the PRR redundant manipulator of Example 2.1. Using the
approximate solution method, find the joint rates that generate a velocity of ẋd =
[0.5, 0.0]T m/s for the end-effector when the manipulator is

(a) at a non singular posture of q1 = 0.25 m, q2 = π/12 rad, and q3 = π/3 rad;
(b) at a singular posture of q1 = 0.25 m, q2 = π/2 rad, and q3 = 0 rad.

Solution. Assume λ = 0.1.

(a) The Jacobian matrix derived in Eq. (2.14) at the non singular posture is

Je =
[

1.0000 −0.6124 −0.4830
0.0000 0.6124 0.1294

.

]
(2.49)

The approximate solution is

q̇p = (JT
e Je + λ2I)−1JT

e ẋd =
⎡
⎣ 0.4379

0.0239
−0.1498

⎤
⎦ m/s

rad/s
rad/s

, (2.50)

which is close to the exact solution obtained in Example 2.1 (Eq. 2.25). The
error in the end-effector’s velocity introduced due to the approximate solution is

eẋ = Jeq̇p − ẋd =
[−0.0044
−0.0048

]
m/s
m/s

. (2.51)

This error is negligible.
(b) The Jacobian matrix derived in Eq. (2.14) at the singular posture is

Je =
[

1.0000 −1.0000 −0.5000
0.0000 0.0000 0.0000

]
. (2.52)

The approximate solution is

q̇p = (JT
e Je + λ2I)−1JT

e ẋd =
⎡
⎣ 0.2212

−0.2212
−0.1106

⎤
⎦ m/s

rad/s
rad/s

, (2.53)
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which is close to the exact solution obtained in Example 2.1 (Eq. 2.32). The
error in the end-effector’s velocity introduced due to the approximate solution is

eẋ = Jeq̇p − ẋd =
[−0.0022

0.0000

]
m/s
m/s

. (2.54)

This error is negligible. Since the posture under consideration is a singular con-
figuration for the PRR manipulator, the method would not result in a solution if
λ was assumed to be zero.

2.2.2.2 Configuration Control

The configuration control is another approximate solution method. It is derived by
using the same idea of minimization of a cost function as was used for singularity
avoidance [69, 70, 68]. In the configuration control method, in addition to the main
task ẋ, an additional task ż, and a singularity avoidance task are considered.

ẋ = Jeq̇ (2.55)

ż = Jcq̇ (2.56)

Note that there is no restriction on the dimension of the additional task unlike for
the augmented Jacobian method of Section 2.2.1.2.

The desired velocities for the main and additional tasks are defined as ẋd and żd ,
respectively. Then, the joint rates q̇ are found such that the error for the main and the
additional tasks are minimized while high joint rates are penalized. To implement
this idea, a cost function is defined as follows

F = (Jeq̇ − ẋd )T We(Jeq̇ − ẋd ) + (Jcq̇ − żd )T Wc(Jcq̇ − ẋd ) + q̇T Wvq̇, (2.57)

where We(m ×m) , Wc(k ×k), and Wv(n×n) are diagonal positive-definite weight-
ing matrices that assign priority to the main, additional, and singularity avoidance
tasks. In Eq. (2.57), the first term penalizes the error in the main task’s velocity, the
second term penalizes the error in the additional task’s velocity, and the third term
penalizes high joint rates, hence, causes the manipulator to avoid singularities.

The joint rates that minimize the cost function (2.57) can be found by equating
the derivative of F to zero. The derivate of the cost function is

�F

�q̇T
= 2(JT

e WeJe + JT
c WcJc + Wv)q̇ − 2(JT

e Weẋd + JT
c Wcżd ). (2.58)

The joint rates are

q̇ = (JT
e WeJe + JT

c WcJc + Wv)−1(JT
e Weẋd + JT

c Wcżd ). (2.59)
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Note that there is no restriction on the dimension of the additional task unlike for
the augmented Jacobian method of Section 2.2.1.2. Therefore, the disadvantages of
the augmented Jacobian method do not exist for the configuration control method.
Any part-time additional task, for example, joint limit avoidance or obstacle avoid-
ance, can be defined as the additional task. When the additional task is not active, for
example, the joints are not close to their limits, there are not as many active tasks as
the degree of redundancy (k < r ). In these situations, Eq. (2.59) provides a solution
similar to that of the singularity avoidance method. When the additional task is
active, for example, when some of the joints are close to their limits, the number of
active additional tasks can be larger than the degree of redundancy (k > r ). In those
cases, Eq. (2.59) gives the best solution that minimizes the cost function F .

Since there are no hard limitations on the dimension of the additional tasks,
the method of configuration control is very powerful and flexible. Any desirable
kinematics for the manipulator (such as posture control, joint limit avoidance, and
obstacle avoidance [70]), or any dynamic measure of performance that can be for-
mulated as a kinematic function of joint positions or rates (such as contact force,
inertia, etc. [71]) can be used as an additional task.

Example 2.5. Consider the PRR redundant manipulator of Example 2.1 and the ad-
ditional task introduced in Example 2.3. Assume that the main task is three times
more important than the additional task and 30 times more important than singular-
ity avoidance. Find the joint rates that generate a velocity of ẋd = [0.5, 0.0]T m/s
and an angular velocity of ωd

3 = π/12 rad/s for the end-effector, if the manipulator
is at

(a) a non singular posture of q1 = 0.25 m, q2 = π/12 rad, and q3 = π/3 rad;
(b) a singular posture of q1 = 0.25 m, q2 = π/2 rad, and q3 = 0 rad.

Solution. The dimensions of the main task x, the additional task z, and the joint
space are m = 2, k = 1, and n = 3, respectively. The weight matrices are defined as

We =
[

3 0
0 3

]
, Wc = [1] , Wv =

⎡
⎣ 0.1 0 0

0 0.1 0
0 0 0.1

⎤
⎦ . (2.60)

(b) Using Eq. (2.59) with Je (Eq. 2.14) and Jc (Eq. 2.38) and ẋd = [0.5, 0.0]T m/s
and żd = [π/12] rad/s results in

q̇ =
⎡
⎣ 0.5764

−0.0283
0.2338

⎤
⎦ m/s

rad/s
rad/s

. (2.61)
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The errors in the main and augmented tasks are

ėe = Jeq̇ − ẋd =
[−0.0192

0.0129

]
m/s
m/s

, (2.62)

ėc = (q̇2 + q̇3) − żd
1 = −0.0562 rad/s. (2.63)

(b) Using Eq. (2.59) with Je (Eq. 2.14) and Jc (Eq. 2.38) and ẋd = [0.5, 0.0]T m/s
and żd = [π/12] rad/s results in

q̇ =
⎡
⎣ 0.5669

−0.0373
0.2461

⎤
⎦ m/s

rad/s
rad/s

. (2.64)

The errors in the main and augmented tasks are

ėe = Jeq̇ − ẋd =
[−0.0189

0.0000

]
m/s
m/s

, (2.65)

ėc = (q̇2 + q̇3) − żd
1 = −0.0530 rad/s. (2.66)

This completes the solution to this example.

2.3 Redundancy Resolution at the Position Level

So far, different methods were studied with which required joint velocities can be
determined such that a given velocity can be achieved at the end-effector of a re-
dundant manipulator. These methods by themselves are not able to provide a set of
joint positions that result in a desired postion for the end-effector. To find the joint
postions required to bring the end-effector to a given position, the joint rates calcu-
lated by the redundancy resolution methods at the velocity level must be integrated.
In this subsection, the integration procedure is presented.

The mathematical formulation of the redundancy resolution problem in the posi-
tion level is described as finding q such that

xd = f(q), (2.67)

where xd is the desired position of the end-effector. Since this problem is to be
solved by integrating the joint velocities, an initial condition is needed. In the physi-
cal sense, this initial condition represents the initial posture of the manipulator from
which the motion toward the desired position starts. Assume that the initial posture
of the manipulator is described by q1. At this initial posture, the end-effector is
located at x1, where
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x1 = f(q1) (2.68)

A path lying in the workspace of the manipulator must be assumed. The path
starts from the initial position of the end-effector, x1, to its desired position, xd . The
simplest assumption for this path is a line segment connecting the two positions in
the Euclidean space. This line segment is divided into N smaller line segments for
numerical integration. At any integration step, the joint rates required to move the
end-effector along this line are calculated. These joint velocities are integrated se-
quentially until the end-effector reaches the desired point. The integration algorithm
follows.

1. Assume an initial posture, q1, for the manipulator and calculate the initial posi-
tion of the end-effector, x1, from Eq. (2.68).

2. Plan a trajectory from x1 to xN+1 = xd with N intervals, and assume the period
of the motion, T .

3. Calculate a planned velocity at the interval k that moves the end-effector toward
the desired position as

ẋk = α
xd − xk

(N + 1 − k)�t
, �t = T

N
, (2.69)

where α is the deceleration factor greater than 1, which results in faster velocities
at the beginning of the motion and slower velocities closer to the desired position.

4. Find the joint rates that generate the planned end-effector velocity at step k.
Any of the methods discussed so far can be used for joint rate calculation, for
example, the exact redundancy resolution method using a pseudo-inverse Jaco-
bian matrix.

q̇k = J†e(qk)ẋk (2.70)

5. Find qk at the next interval by numerically integrating (2.70). Any method of
integration can be used, for example the simple method of Euler.

qk+1 = qk + q̇k�t (2.71)

6. Find the new end-effector position

xk+1 = f(qk+1) (2.72)

7. Repeat steps 3 to 6 for k = 1, . . . , N .

When the above algorithm runs to the end, when k = N , the last step represents
xN+1 = xd = f(qN+1). This indicates that the joint posture corresponding to the
last step, qN+1, is the solution to the redundancy resolution problem at the position
level.
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The solution to the redundancy resolution at the position level via integration
can be used in two different ways. Note that the above algorithm actually results
in the time history of the joint positions and velocities (joint trajectories) that
cause the end-effector to move along the planned path from the initial position, x1, to
the desired position, xd . If the planned path is important to the user, the history
of the joint position and velocities derived from this algorithm must be used to
control the manipulator on the planned path. If the planned path is not important to
the user and only the desired position is important, simpler joint trajectories can be
used to move the manipulator joints form the initial posture to the desired posture,
qN+1, found at the N th step of the above algorithm.

Example 2.6. Consider the PRR redundant manipulator of Example 2.1 at an initial
posture q1 = [0, 0, 0]T . Find the trajectory of the joints required to move the end-
effector of the manipulator from its initial position to the desired position xd =
[1.25, 0.25]T m. Assume a period of T = 10 s for this motion. Use N = 1, 000
integration intervals and a deceleration factor of α = 2.

Solution. The redundancy resolution algorithm presented in this section is used to
solve this example. The approximate redundancy resolution method with singularity
avoidance (Eq. 2.47 with λ = 0.1) is used for calculating the joint rates at Step 4 of
the algorithm. Application of the algorithm introduced in this section results in the
joint trajectories shown in Fig. 2.3. As can be seen in Fig. 2.4, these joint trajectories
cause the end-effector of the manipulator to move from the initial position x1 =
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Fig. 2.3 The joint trajectories for the PRR manipulator via the approximate solution method
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Fig. 2.4 The end-effector trajectory for the PRR manipulator via the approximate solution method

[1.0, 0.0]T m to the desired position xd = [1.25, 0.25]T m in 10 s. Because of the
application of the deceleration factor α, the manipulator slows down when the end-
effector gets closer to the desired position. The posture of the manipulator, q, and
the position of the end-effector, x, at the end of the motion are

q =
⎡
⎣0.2830

0.2040
0.0979

⎤
⎦ m

rad
rad

, x =
[

1.2500
0.2500

]
m
m

. (2.73)

The manipulator at the end of the motion and the path of the end-effector are
shown in Fig. 2.5. Since the approximate solution with a small λ (0.1) has been used
for redundancy resolution at Step 4 of the algorithm, the path of the end-effector is
very close to the planned linear path from the initial to the desired position of the
end-effector.
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Fig. 2.5 The final posture of the PRR manipulator and the path of the end-effector via the approx-
imate solution method
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2.4 Joint Limit Avoidance and Obstacle Avoidance

Joint Limit Avoidance (JLA) and Obstacle Avoidance are two important issues that
have to be dealt with when planning the trajectory of the manipulator joints for a
certain task at the position level. These two issues can be addressed by using the
Configuration Control method, which can serve as a general framework for resolv-
ing redundancy. In this section, two general approaches for representing additional
tasks are formulated.

2.4.1 Joint Limit Avoidance (JLA)

There are two methods with which the joint limits of a redundant manipulator can
be considered when finding joint trajectories that satisfy a given task.

2.4.1.1 Inequality Constraints

In this method, the limits for the joints are defined by part-time constraints as ad-
ditional tasks. These part-time additional tasks are active for a joint, when the joint
position is close to the joint limit. When a joint position is far from the joint limit,
the JLA additional task becomes inactive for that joint. In this case, the redundancy
can be used for other additional tasks.

A JLA additional task is activated and deactivated by wisely selecting its corre-
sponding weight matrix in the configuration control formulation (Wc in Eq. (2.59)).
It is always a good idea to define a continuous weight for each joint to ensure a
smooth joint trajectory. Usually, the weight of the JLA task for a joint is selected to
be zero in a region of the joint motion around the center of the joint range. Then,
a “buffer” region is assumed with a width τi . When the joint position enters this
region, the weight of the JLA task is increased from zero to a maximum at the lower
limit (qimin) or upper limit (qi max). The i-th diagonal entry of the weight matrix Wc

corresponding to joint i is

Wcii =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

W0 if qi < qi min
W0
2 [1 + cos(π ( qi −qi min

τi
))] if qi min ≤ qi ≤ qi min + τi

0 if qi min + τi < qi < qi max − τi
W0
2 [1 + cos(π ( qi max−qi

τi
))] if qi max − τi ≤ qi ≤ qi max

W0 if qi > qi max

, (2.74)

where W0 is a user-defined constant representing the coefficient for the weight. This
coefficient is normally selected much larger than that of the main task and the sin-
gularity avoidance task.

The weight matrix (2.74) is accompanied with an additional task. Since all the
joints need to be monitored for the limits, the additional task is defined as a one-to-
one function of the joint positions.
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z = q (2.75)

With this definition, the corresponding Jacobian for the additional task, Jc, is de-
fined by

Jc = �z
�q

= I. (2.76)

Also, since the joint rates must vanish when the joint limits are reached, the desired
joint rates when the JLA additional task is active must be selected to be zero.

żd = 0 (2.77)

The Jacobian for the additional task (2.76) and a weight matrix whose entries are
defined by Eq. (2.74) are used with the configuration control method, representred
by Eq. (2.59) for joint limit avoidance. An illustrative example follows.

Example 2.7. Consider the redundant PRR manipulator of Example 2.1. Assume a
joint limit of q2 max = 0.1 rad for the robot’s second joint with an activation buffer
of τ2 = 0.02 rad. If the manipulator is at the initial posture of q1 = [0, 0, 0]T ,
find the joint trajectories that cause the end-effector to move to a desired position of
xd = [1.25, 0.25]T m.

Solution. Since, in general, it could be assumed that all the joints have a limited
range of motion, the additional task, z, contains all the joint variables q1, q2, and q3.
Also, the desired additional task rate, żd , for joint limit application is always zero.
That is

z =
⎡
⎣q1

q2

q3

⎤
⎦ , żd =

⎡
⎣0

0
0

⎤
⎦ . (2.78)

With the above definition, the Jacobian of the additional task is derived as

Jc = �z
�q

=
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ . (2.79)

The diagonal additional task’s weight matrix is chosen such that, in this example,
only the second diagonal component is non zero, reflecting the fact that only the
second joint is assumed to have limited range of motion.

Wc =
⎡
⎣0 0 0

0 Wc22 0
0 0 0

⎤
⎦ , (2.80)
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where

Wc22 =

⎧⎪⎨
⎪⎩

0 if q2 < 0.08
50
2 [1 + cos(π ( 0.1−q2

0.02 ))] if 0.08 ≤ q2 ≤ 0.1

50 if q2 > 0.1

. (2.81)

To find the joint trajectories, the algorithm presented in Section 2.3 must be used.
However, the above additional task must be incorporated in the algorithm. Further-
more, since the start posture is a singular configuration, a singularity avoidance task
must also be incorporated into the algorithm. These are done by replacing the joint
rate formula in Step 4 of the algorithm by Eq. (2.59). Since żd = [0, 0, 0]T , we have

q̇k = [JT
e WeJe + JT

c WcJc + Wv]−1JT
e Weẋk, (2.82)

in which the following weight matrices for the main task and the singularity avoid-
ance task are assumed.

We =
[

3 0
0 3

]
, Wv =

⎡
⎣ 0.1 0 0

0 0.1 0
0 0 0.1

⎤
⎦ . (2.83)
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Fig. 2.6 The joint trajectories for the PRR manipulator with JLA via inequality constraints
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Fig. 2.7 The end-effector trajectory for the PRR manipulator with JLA via inequality constraints

The application of the algorithm in Section 2.3 with the described modifications
results in the joint trajectories shown in Fig. 2.6. Because of the application of the
joint limit additional task, the second joint stops close to its limit at q2 ≈ 0.0887 rad
while the other joints continue their motions until the desired end-effector position is
achieved. As can be seen in Fig. 2.7, these joint trajectories cause the end-effector of
the manipulator to move from the initial position x1 = [1.0, 0.0]T m to the desired
position xd = [1.25, 0.25]T m in 10 s. Since a deceleration factor of α = 2 has been
used, the manipulator slows down when the end-effector gets closer to the desired
position. The posture of the manipulator, q, and the position of the end-effector, x,
at the end of the motion are

q =
⎡
⎣0.2962

0.0887
0.3353

⎤
⎦ m

rad
rad

, x =
[

1.2500
0.2500

]
m
m

. (2.84)

The manipulator at the end of the motion and the path of the end-effector are
shown in Fig. 2.8. Since the weighted additional task and singularity avoidance has
been introduced at Step 4 of the algorithm for redundancy resolution, the solution
for the main task is approximate and the path of the end-effector is not too close to
the planned linear path from the initial to the desired position of the end-effector.

2.4.1.2 Kinematic Optimization

In the inequality constraint method, a part-time JLA task was defined. A disadvan-
tage of that method is that the joints move freely until they are close to their limits.
There is no sophisticated planning to prevent the joints from reaching their limits.
Here, another method for JLA is discussed, in which the JLA task is a full-time task.
This method tends to monitor the joints at all times to prevent them from getting
close to their limits.

This method takes advantage of the null space of the Jacobian of a redundant
manipulator. Normally, an exact solution to the redundancy resolution problem is
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Fig. 2.8 The final posture of the PRR manipulator and the path of the end-effector with JLA via
inequality constraints

found using Eq. (2.15). This solution for the joint rates generates the desired mo-
tion at the end-effector. Then, the exact joint rate solution is completed by adding
a joint rate solution belonging to the null space of the manipulator’s Jacobian as
shown by Eq. (2.19). The null space solution is found using Eq. (2.20) along with
Eq. (2.21). The arbitrary vector ν in the null space solution comes from optimizing
a cost function.

Here, since the goal is to keep the joint far from their limits, a representative of
the difference of the position of a joint i to the center qci of the joint range �qi is
defined as a cost function to be minimized. The simplest form of such a function is
the quadratic form

�(q) =
n∑

i=1

[
qi − qci

�qi

]2

. (2.85)

The JLA is now achieved by finding a ν that optimizes Eq. (2.85), while the
end-effector motion is generated by the exact solution. The cost function (2.85)
tends to keep the trajectory for the joints around the center of their ranges at all
times.

The JLA cost function can be defined with a different view. Similar to the JLA
through the inequality constraint method, one may decide to only focus on the joint
that is farthest from its center of the range compared to all other joints [48]. This
can be translated into the following mathematical relation

�(q) = max
|qi − qci |

�qi
= ‖q − qc

�q
‖∞, (2.86)

which is known as the infinity norm. Although concentrating on the joint closet to its
limit using the infinity norm as a cost function is intuitive, it leads to a mathematical
complication because the infinity norm is not differentiable. In mathematics, the
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p-norm of a vector defined by

‖x‖p =
(

n∑
i=1

|xi |p

)1/p

(2.87)

is an acceptable approximation for the infinity norm. Using the p-norm, a proper
cost function for JLA via kinematic optimization can be defined as

�(q) = ‖q − qc

�q
‖p. (2.88)

Theoretically, the higher p is, the closer the cost function is to the infinity norm.
However, p = 6 is sufficient for most practical cases. Also, in some practical cases,
avoiding joint limits is more importance for certain joints. In such cases, a weighted
version of Eq. (2.88) is used.

�(q) = ‖K(
q − qc

�q
)‖p (2.89)

where K is an n × n diagonal matrix.

Example 2.8. Consider the redundant PRR manipulator of Example 2.1 with a lim-
ited joint range for the second joint of q2 ∈ [−0.1, 0.1] rad. Use the 2-norm function
to incorporate this joint motion limitation in the kinematic redundancy resolution
via kinematic optimization. Assume that the manipulator is at the initial posture of
q1 = [0, 0, 0]T . Find the joint trajectories that cause the end-effector to move to the
desired position xd = [1.25, 0.25]T m.

Solution. The 2-norm function for optimization is defined based on Eq. (2.89) as

� = ‖K(
q − qc

�q
)‖2 =

(
3∑

i=1

|Kii
qi − qci

�qi
|2
)1/2

. (2.90)

Since the joint limitation is assumed to exist only for the second joint, K11 and K33

are selected to be zero. Only K22 is assigned a non zero value of 0.01. Furthermore,
since the range of the motion of the second joint is q2 ∈ [−0.1, 0.1] rad, the center
of the range is qc2 = 0 and the range is �q2 = 0.2 rad. With these definitions,
Eq. (2.90) is reduced to

� = |K22
q2 − qc2

�q2
| =

{
K22

q2−qc2
�q2

if q2 ≥ qc2

K22
qc2 −q2

�q2
if q2 < qc2

. (2.91)

The gradient of this cost function is needed for taking advantage of the null space
of the manipulator’s Jacobian to incorporate the joint limit via kinematic optimiza-
tion. It is calculated as
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ν = −∇� = −[
��

�q1
,

��

�q2
,

��

�q3
]T = [0,− ��

�q2
, 0]T , (2.92)

where

��

�q2
=
{

K22
�q2

if q2 ≥ qc2

− K22
�q2

if q2 < qc2

. (2.93)

The algorithm presented in Section 2.3 must be used for redundancy resolution in
the position level and finding the required joint trajectories. Note that the Step 4 of
the presented algorithm, at which the joint rates are calculated, must be modified to
address the joint limit avoidance via kinematic optimization. The joint rates required
to perform the main task, q̇p, are calculated via the approximate solution (Eq. 2.47)

q̇p = (JT
e Je + λ2I)−1JT

e ẋd , (2.94)

which also includes singularity avoidance. A null space solution, q̇ℵ from Eq. (2.20),
is added to the main task solution. This null space solution does not affect the end-
effector’s motion, however, it implements the joint limit requirement.

q̇ℵ = (I − J†eJe)ν, (2.95)

where the pseudo-inverse of the Jacobian in the above equation is calculated via
approximate solution for singularity avoidance, that is,

J†e = (JT
e Je + λ2I)−1JT

e . (2.96)

Finally, the joint rates that replace Step 4 of the position level redundancy resolution
algorithm are

q̇k = (JT
e Je + λ2I)−1JT

e ẋk + (I − J†eJe)ν. (2.97)

The application of the algorithm in Section 2.3 with the described modifications
results in the joint trajectories shown in Fig. 2.9. Because of the application of the
joint limit via kinematic optimization, the second joint operates well within its limits
q2 ∈ [−0.1, 0.1] rad. Also, since the optimization criterion is active during the
whole motion, the trajectory of the joints are smoother compared to the previous
example, in which the joint limit criterion is only active in the “buffer” zone. As can
be seen in Fig. 2.10, these joint trajectories cause the end-effector of the manipulator
to move from the initial position x1 = [1.0, 0.0]T m to the desired position xd =
[1.25, 0.25]T m in 10 s. Since a deceleration factor of α = 3 has been used, the
manipulator slows down when the end-effector gets closer to the desired position.
The posture of the manipulator, q, and the position of the end-effector, x, at the end
of the motion are
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Fig. 2.9 The joint trajectories for the PRR manipulator with JLA via kinematic optimization
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Fig. 2.10 The end-effector trajectory for the PRR manipulator with JLA via kinematic
optimization

q =
⎡
⎣0.3116

0.0193
0.4821

⎤
⎦ m

rad
rad

, x =
[

1.2500
0.2500

]
m
m

. (2.98)
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Fig. 2.11 The final posture of the PRR manipulator and the path of the end-effector with JLA via
kinematic optimization

The manipulator at the end of the motion and the path of the end-effector are
shown in Fig. 2.11. Since the singularity avoidance factor λ has been selected very
small (0.1) and the joint limit avoidance has been incorporated as a null space solu-
tion, the joints rates calculated at Step 4 of the algorithm for redundancy resolution
are very close to the exact solution. As a consequence, the path of the end-effector
is very close to the linear path planned from the initial to the desired position of the
end-effector.

2.4.2 Obstacle Avoidance

In this section, an outline of an obstacle avoidance algorithm for the 2D workspace
of a planar redundant manipulator, applicable to both static and moving obstacles,
is given.

2.4.2.1 Algorithm Description

Obstacle avoidance, similar to JLA, is a part-time task, which is only activated when
a possibility of collision is detected. The configuration control method, which is
useful when part-time additional tasks are involved, is used here for redundancy
resolution.

The obstacle avoidance algorithm has three layers [19]. First, the distance of all
the manipulators’ links to the obstacles must be calculated at any given time. Sec-
ond, for each link, a decision must be made based on the distance of the link to the
obstacle to determine if the obstacle avoidance additional task must be activated for
the link. And third, the configuration control method must be used for redundancy
resolution to find the joint rates that avoid collision of the links with obstacles.

The distance of a link to an obstacle is calculated through some simplifying as-
sumptions (Fig. 2.12). The links of the planar manipulator are considered as straight
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Fig. 2.12 Determination of the critical point and the distance between a link and a Surface of
Influence

lines connecting the center of joint coordinate frames. Obstacles are enclosed in
circles with diameters larger than the largest obstacle dimension. The thickness of
the manipulator links should also be added to the radii of these circles. These circles
are called the Surface of Influence (SOI).

With these assumptions, the calculation of the location of the potential point of
collision, also known as the critical point, becomes rather simple. The calculation
procedure for finding the location of the critical point follows.

If link i is modeled by a line from joint i at the Cartesian coordinates xi to joint
i + 1 at the Cartesian coordinates xi+1, the unit vector representing the direction of
the link with length li is

êi = xi+1 − xi

li
. (2.99)

Assume that the center of the SOI is at the Cartesian coordinates xo. The projection
of a line from joint i to the center of the SOI on the link i is

αi = êT
i (xo − xi ), (2.100)

which represents the dot product of the unit vector êi and the vector xo − xi in the
matrix notation. Now, the Cartesian coordinates of the critical point can be calcu-
lated as

xci = xi + αi êi . (2.101)

The distance of the critical point with the center of the SOI is

dci = ‖xci − xo‖. (2.102)

Based on this distance, the unit vector pointing from the critical point to the center
of the obstacle is determined.
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ûi = xci − xo

dci

, (2.103)

or

dci = ûT
i (xci − xo). (2.104)

All the links and SOIs are considered, and a critical distance dci is calculated
for each. If, for a link i , this critical distance is smaller than the radius of the SOI
(or ro − dci > 0), the obstacle avoidance additional task for that link is activated.
For each link i , the obstacle avoidance additional task can be defined as the normal
distance of the link to the SOI. That is

zi = fi (q, t) = ro − dci . (2.105)

Using Eq. (2.104), one can write the derivative of the additional task as

żi = − d

dt
(dci ) = −ûT

i

(
�xci

�q
q̇ − ẋo

)
, (2.106)

where ẋo is the velocity of the center of the SOI, or, in other words, the obstacle [2].
The obstacle avoidance additional task must be defined such that a link i does

not enter the SOI of its corresponding obstacle. Therefore, when the additional task
becomes active, the desired value for the additional task is

zd
i = 0, (2.107)

which also implies that

żd
i = z̈d

i = 0. (2.108)

The Jacobian of the obstacle avoidance additional task must be calculated. Since
each link i has its own unique condition regarding the obstacles, each row i of the
Jacobian matrix for the additional task is calculated separately based on the position
of the critical point on link i . The i-th row of the Jacobian is derived by observing
Eq. (2.106).

Jci = −ûT
i Jxci

, (2.109)

where

Jxci
= �xci

�q
. (2.110)

The Jacobian of the additional task is assembled from Jci of each link that is facing
a SOI.
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Example 2.9. Assume an obstacle at the Cartesian coordinate (0.6, 0.0) m in the
workspace of the redundant PRR manipulator of Example 2.1. Assume a Surface of
Influence with radius r0 = 0.15 m for the obstacle. The manipulator is at an initial
posture of q1 = [0, 0.5, 0.5]T . The end-effector must reach the desired position
of xd = [1.15, 0.15]T m in 10 s. Determine the joint trajectories for the redundant
manipulator.

Solution. To simplify the solution to this example, it is assumed that only link 2
may collide with the obstacle. First, the distance of the critical point on link 2 with
the center of the SOI is calculated and an additional task is defined based on this
distance. Then, the Jacobian of the additional task is determined. Finally, this aug-
mented task is incorporated into the redundancy resolution via the configuration
control method. The details of the solution procedure follow.

The Cartesian coordinates of joints 2 and 3 are written as

x2 =
[

q1

0

]
, x3 =

[
q1 + l2 cos q2

l2 sin q2

]
. (2.111)

The unit vector representing the direction of link 2, ê2, and the distance of the critical
point with joint 2, α2, can be derived as

ê2 = x3 − x2

l2
=
[

cos q2

sin q2

]
, (2.112)

α2 = êT
2 (xo − x2). (2.113)

The Cartesian coordinates of the critical point, xc2 , and the distance of the critical
point to the center of the SOI, dci , are

xc2 = x2 + α2ê2 =
[

q1 + α2 cos q2

α2 sin q2

]
, (2.114)

dci = ‖xc2 − xo‖ =
√

(xc2,1 − xo,1)2 + (xc2,2 − xo,2)2. (2.115)

The unit vector pointing from the critical point to the obstacle center is

û2 = xc2 − xo

dc2

. (2.116)

The Jacobian of the critical point is calculated as

Jxc2
= �xc2

�q
=
[

1 −α2 sin q2 0
0 α2 cos q2 0

]
. (2.117)
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The second column of the Jacobian of the additional task, which corresponds to
obstacle avoidance for link 2, is

Jc2 =
{

[0, 0, 0] if dc2 > ro

−ûT
2 Jxc2

if dc2 ≤ ro
. (2.118)

This means that, the additional task corresponding to link 2 is only active when the
distance of the critical point to the center of the SOI, dc2 , is smaller than the radius
of the SOI for the obstacle, ro.

Now, the Jacobian for the additional task for the whole manipulator, Jc, must be
assembled using the augmented tasks corresponding to each link. Note that the first
and the third row of the Jacobian of the additional task, Jc, have all zero components,
because no obstacle avoidance is being considered for links 1 and 3 in this example
for simplicity. The above note dictates that the Jacobian of the additional task, Jc,
becomes

Jc =
⎡
⎣ 0 0 0

Jc2,1 Jc2,2 Jc2,3

0 0 0

⎤
⎦ . (2.119)

The Step 4 of redundancy resolution algorithm the position level presented in
section 2.3 must be modified such that the incorporation of the additional task is
possible. This is done by using Eq. (2.59). Since the desired rate for the additional
task, żd , is zero, Eq. (2.59) is reduced to

q̇k = [JT
e WeJe + JT

c WcJc + Wv]−1JT
e Weẋk . (2.120)

The following weight matrices are assumed

We = I, Wc = (1000)I, Wv = (0.1)I. (2.121)

where I is a 3 × 3 identity matrix. The application of the algorithm in Section 2.3
with the described modifications results in the joint trajectories shown in Fig. 2.13.
Because of the implementation of the obstacle avoidance for link 2 via configuration
control method, the second link stops far from the obstacle. Also, in this example,
the deceleration factor α was chosen equal to 3.0, which makes the joint speeds
much slower toward the end of the motion compared to the joint speeds at the be-
ginning of the motion. As can be seen in Fig. 2.14, these joint trajectories cause
the end-effector of the manipulator to move from its initial position to the desired
position xd = [1.15, 0.15]T m in 10 s. The posture of the manipulator, q, and the
position of the end-effector, x, at the end of the motion are

q =
⎡
⎣ 0.1841

0.3668
−0.4254

⎤
⎦ m

rad
rad

, x =
[

1.1500
0.1500

]
m
m

. (2.122)
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Fig. 2.13 The joint trajectories for the PRR manipulator with obstacle avoidance via configuration
control
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Fig. 2.14 The end-effector trajectory for the PRR manipulator with obstacle avoidance via config-
uration control
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Fig. 2.15 The final posture of the PRR manipulator and the end-effector path with obstacle avoid-
ance via configuration control

The manipulator at the end of the motion and the path of the end-effector are
shown in Fig. 2.15. Since the obstacle avoidance has been implemented via the
configuration control method, the solution to joint rates used in Step 4 of the al-
gorithm (based on Eq. 2.59) is a trade-off between the main and the additional
tasks, with a higher weight for the additional task. As a consequence, the path of
the end-effector is far from the linear path planned from the initial to the desired
position of the end-effector.

2.5 Summary

In this chapter, the basic issues needed for the analysis of kinematically redun-
dant manipulators were presented. Different redundancy resolution schemes were
reviewed. The formulation of the additional tasks to be used by the redundancy
resolution module were presented in this chapter. Joint limit avoidance, which is one
of the most useful additional tasks, was studied in detail. The basic formulation of
static and moving obstacle collision avoidance task in 2D workspace was presented.

Problems

Problem 2.1. Consider the 3DOF planar Revolute-Revolute-Prismatic (RRP) ma-
nipulator shown in Fig. 2.16 with joint variables q1, q2, and q3. The Cartesian
coordinates of the end-effector x1 and x2 are assumed as the task space with two
dimensions. The link lengths for the first, second, and third links are l1, l2, and l3,
respectively.

(a) Determine the degree of redundancy of this manipulator.
(b) Derive the Jacobian matrix for this manipulator.
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Fig. 2.16 A RRP manipulator

Problem 2.2. Consider the RRP redundant manipulator of Problem 2.1. If the link
length l1 is 1.0 m and the lengths l2 and l3 are 0.5 m, find

(a) the joint rates that generate an end-effector velocity of ẋd = [0.5, 0.0]T m/s, if
the arm is at a posture q = [π/12 rad, π/3 rad, 0.25 m]T ;

(b) the joint rates that generate an end-effector velocity of ẋd = [0.5, 0.0]T m/s, if
the arm is at a posture q = [π/2 rad, 0 rad, 0.25 m]T .

Problem 2.3. Consider the RRP redundant manipulator of Problem 2.1 at a posture
q1 = π/6 rad, q2 = π/12 rad, and q3 = 0.25 m. If the end-effector’s angular
velocity is defined as an additional task, find the joint rates required to generate a
velocity of ẋd = [0.5, 0.0]T m/s and an angular velocity of ωd

3 = π/12 rad/s for the
end-effector.

Problem 2.4. Consider the RRP redundant manipulator of Problem 2.1. Using the
approximate solution method, find the joint rates that generate a velocity of ẋd =
[0.5, 0.0]T m/s for the end-effector when the manipulator is

(a) at a posture of q1 = π/12 rad, q2 = π/3 rad, and q3 = 0.25 m.
(b) at a posture of q1 = π/2 rad, q2 = 0 rad, and q3 = 0.25 m.

Problem 2.5. Consider the RRP redundant manipulator of Problem 2.1 and the ad-
ditional task introduced in Problem 2.3. Assume that the main task is three times
more important than the additional task and 30 times more important than singular-
ity avoidance. Find the joint rates that generate a velocity of ẋd = [0.5, 0.0]T m/s
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and an angular velocity of ωd
3 = π/12 rad/s for the end-effector, if the manipulator

is at

(a) a posture of q1 = π/3 rad, q2 = π/12 rad, and q3 = 0.25 m;
(b) a posture of q1 = π/2 rad, q2 = 0 rad, and q3 = 0 m.

Problem 2.6. Consider the 3DOF planar RRP manipulator of Problem 2.1. The joint
variables are q1, q2, and q3. The Cartesian coordinates of the end-effector x1 and
x2 are assumed as the main task space with two dimensions. The link lengths are
l1 = 1 m and l2 = l3 = 0.5 m.

Assume a joint limit of q3 min = −0.3 m and q3 max = 0.3 m for the third joint
with an activation buffer of τ3 = −0.02 m. If the manipulator is at the initial posture
of q1 = [−0.86, 0.15, 0.00]T , find the joint trajectories that cause the end-effector
to move to a desired position of xd = [1.78, 1.42]T m. Plot the components of q, q̇,
x, ẋ, and the path of the end-effector.

(a) Use the Inequality Constraint method.
(b) Use the Kinematic Optimization method.
(c) Discuss the difference in the obtained plots in part (a) and (b).

Problem 2.7. Assume an obstacle at the Cartesian coordinate (1.25, 0.0) m in the
workspace of the redundant RRP manipulator of Problem 2.1. Assume a SOI with
radius r0 = 0.15 m for the obstacle. The manipulator is at an initial posture of
q1 = [π/2, 0, 0]T . The end-effector must reach the desired position of xd = [2, 0]T

m in 15 s. Determine the joint trajectories for the redundant manipulator.



Chapter 3
Hyper-Redundant Manipulators

3.1 Introduction

A hyper-redundant manipulator has many more kinematic DOFs than the number
of its task space coordinates. Therefore, the classical methods cannot be used for
solving their inverse kinematics. Many investigations have been focused on the re-
dundancy resolution of this type of manipulators based on the manipulator Jacobian
pseudo-inverse [47]. Singularity avoidance [81, 4], obstacle avoidance [48, 60, 5],
and keeping joint variables in their physical limitation [47] are some examples of
supplementary tasks. Extended Jacobian inverse [4] and augmented inverse Jacobian
[69] are also utilized extensively. In the case of spatial hyper-redundant manipula-
tors with hundreds of DOFs, the computational burden of pseudo-inverse Jacobian
becomes prohibitive, despite of proposed improvements [36]. Furthermore, most of
the proposed schemes handle the inverse kinematic problem at velocity level only.

The modal approach, which is the focus of this chapter, has been presented as
a unique method for redundancy resolution of hyper-redundant manipulators [14,
15]. In this method, a backbone curve is defined as a piecewise continuous curve
that captures the important macroscopic geometric features of a hyper-redundant
robot. The backbone curve is restricted by a set of intrinsic shape functions to a
modal form. The mode shape functions are arbitrary and lead to an efficient inverse
kinematics solution at the position level. Once the backbone curve is determined
for an assumed location of end-effector, depending on the physical implementation
morphology of a particular manipulator, various fitting algorithms can be developed.
This method has been utilized to form the foundation for obstacle avoidance [13],
locomotion [16], and motion control [58, 62].

In this chapter, a spatial hyper-redundant robot that does not have macroscopic
branches1 or closed loops is considered. Also, it is assumed that the robot has a
sufficiently large number of links so that its geometry can be nominally captured by
a spatial curve closely, though not exactly. This curve, called the backbone curve, is

1 A manipulator is said to have a macroscopic branch when a series of links and joints branch
out from one of the manipulator’s intermediate joints. Such a manipulator has more than one end-
effector.

F. Fahimi, Autonomous Robots, DOI 10.1007/978-0-387-09538-7 3
C© Springer Science+Business Media, LLC 2009
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piecewise continuous and captures the important macroscopic geometric features of
the hyper-redundant robot.

The modal approach is utilized to resolve the redundancy of a spatial hyper-
redundant manipulator. Useful shape functions are introduced to achieve a more
complete workspace. Two fitting methods are introduced, the Constrained Least
Square Fitting Method (CLSFM) and the Recursive Fitting Method (RFM). The
application of the CLSFM is only discussed for planar manipulators due to its high
algebraic and numerical computation time. However, the application of the RFM is
presented for spatial hyper-redundant manipulators with universal joints. The RFM
solves a single nonlinear algebraic equation per link and avoids systems of nonlin-
ear simultaneous equations. This method can be used for spatial universal-jointed
robots with any number of links without requiring a heavy computation. Finally,
the velocity property of the backbone curve is investigated and an inverse velocity
propagation scheme is introduced. The inverse velocity propagation scheme uses
velocity information of the backbone curve. This scheme is recursive and free from
singularity in the workspace, and can be applied easily to spatial arms with an arbi-
trary number of links.

3.2 Parameterization of the Backbone Curve

A spatial (backbone) curve can be parameterized as follows

x(s) =
∫ s

0
Lu(σ )dσ , (3.1)

where s ∈ [0, 1] is the curve length parameter, u(σ ) is the unit vector tangent to the
curve at σ , and L is the length of the curve. The parameterization shown in Fig. 3.1
has been used for u(s). Therefore, Eq. (3.1) expands to

x(s) =
⎡
⎣
∫ s

0 L sin φ(σ ) cos ψ(σ )dσ∫ s
0 L cos φ(σ ) cos ψ(σ )dσ∫ s

0 L sin ψ(σ )dσ

⎤
⎦ . (3.2)

The functions φ(s) and ψ(s) may be represented as a linear combination of mode
shapes, as follows

φ(s) =
n1∑

i=1

ai fi (s) +
2∑

i=1

biφgi (s),

ψ(s) =
n2∑

i=n1+1

ai fi (s) +
2∑

i=1

biψ gi (s),

(3.3)
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Fig. 3.1 Parameterization of u(s), curve parameters, and azimuth and meridian angles

where [ fi (s)] are the mode shapes, ai ’s are the mode participation factors, n1 is
the number of mode shapes corresponding to φ(s), n2 is the total number of mode
shapes, and [gi (s)] and

[
biφ, biψ

]
are used to specify the orientation of the backbone

curve at the start and end points. This modal approach reduces the inverse kinematic
problem to the determination of ai ’s that satisfy the task constraints, i.e., x(1) = xD ,
where xD represents the desired position vector of the backbone curve end point.

Example 3.1. Consider a spatial hyper-redundant manipulator. Specify the mode
shapes.

Solution. Since the end point of the corresponding backbone curve is determined by
three coordinate components, there are three task constraints. Therefore, three mode
shapes and three mode participation factors are needed. The three mode shapes can
be selected as follows

φ(s) = a1 sin(2πs) + a2(1 − cos(2πs))

+ b1φ(1 − sin(πs/2)) + b2φ sin(πs/2), (3.4)

ψ(s) = a3(1 − cos(2πs))

+ b1ψ (1 − sin(πs/2)) + b2ψ sin(πs/2), (3.5)

where
[
b1φ, b1ψ

] = [φ(0), ψ(0)] and
[
b2φ, b2ψ

] = [φ(1), ψ(1)]. This completes the
solution to this example.

Once the mode shapes are selected, the vector of the modal participation factors,
a, can be found by using the following iterative approximation

am+1 = am + αJ−1
a (am, 1)[xD − xm], (3.6)
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where α is a constant that controls the convergence rate and m is the iteration
counter, and the modal Jacobian is

Ja(a, s) = �x(s)

�aT
=

⎡
⎢⎣

�x1
�a1

. . . �xm
�an2

: . . . :
�xm
�a1

. . . �xm
�an2

⎤
⎥⎦ . (3.7)

The modal Jacobian matrix, Ja(a, s), is evaluated at s = 1 in Eq. (3.6). This
matrix is the Jacobian for the kinematics equation x(1) = xD , where xD represents
the desired position vector of the backbone curve end point. The partial derivatives
of the elements of x(1) are derived using Eq. (3.3) and evaluated by numerical in-
tegration. Note that the numerical solution presented in Eq. (3.6) is independent of
the number of links.

Example 3.2. Assuming the mode shapes given in Eq. (3.5), compute the mode par-
ticipation factors, if the end point of a backbone curve with 1-m length is to be lo-
cated at xD = [0.4 0.2 0.2

]T
m. Also assume that the backbone curve has a tangent

defined by φ(0) = 255◦ and ψ(0) = 0◦ at the start point. Consider a tangent to the
endpoint of the backbone curve defined by φ(1) = 0◦, and ψ(1) = 0◦. See Fig. 3.1.

Solution. According to the problem specifications, one can write

[
b1φ, b1ψ

] = [255π/180, 0] ,
[
b2φ, b2ψ

] = [0, 0] .

Now, the modal Jacobian matrix, Ja(a, s), which was introduced in Eq. (3.6), can be
computed. This matrix is defined by

Ja(a, s) = �x(s)

�aT
=

⎡
⎢⎣

�x1
�a1

�x1
�a2

�x1
�a3

�x2
�a1

�x2
�a2

�x2
�a3

�x3
�a1

�x3
�a2

�x3
�a3

⎤
⎥⎦ . (3.8)

By using the above relation, one can show that the components of the modal Jaco-
bian matrix are as follows

J11(a, s) =
∫ s

0
cos φ(σ ) cos ψ(σ ) sin(2πσ )dσ ,

J12(a, s) =
∫ s

0
cos φ(σ ) cos ψ(σ )(1 − cos(2πσ ))dσ ,

J13(a, s) =
∫ s

0
− sin φ(σ ) sin ψ(σ )(1 − cos(2πσ ))dσ ,

J21(a, s) =
∫ s

0
− sin φ(σ ) cos ψ(σ ) sin(2πσ )dσ ,
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J22(a, s) =
∫ s

0
− sin φ(σ ) cos ψ(σ )(1 − cos(2πσ ))dσ ,

J23(a, s) =
∫ s

0
− cos φ(σ ) sin ψ(σ )(1 − cos(2πσ ))dσ ,

J31(a, s) = 0,

J32(a, s) = 0,

J33(a, s) =
∫ s

0
cos ψ(σ )(1 − cos(2πσ ))dσ .

At the first iteration, m in Eq. (3.6) is equal to 0. Also, a first guess for mode
particpation factors is assumed as a0 = [

1.0 1.0 0.5
]T

. Then, x0 can be computed
by using the first guess, a0, in Eq. (3.2) with s = 1. Now that all the right hand
terms of Eq. (3.6) are at hand, a new value for a1 (second iteration) is obtained.
This procedure continues until xm converges to xD . The final value of the mode
participation vector is

a = [0.54 0.18 0.20
]T

.

The corresponding backbone curve is shown in Fig. 3.2. This completes the inverse
kinematics problem at the backbone curve level.
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Fig. 3.2 The backbone curve obtained in Example 3.2
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3.2.1 Workspace Considerations

The workspace of the standard mode shapes will be limited if the backbone curve at
its start point is assumed to be always tangent to the Y -axis. The workspace will be
improved by setting the meridian angle of tangent at the start point to zero (Ms = 0)
and its azimuth angle, As , to

As = β + π (1 − δ), Ms = 0, (3.9)

δ =
√

x1(1)2 + x2(1)2 + x3(1)2

L
, β = arctan

(
x1(1)√

x2(1)2 + x3(1)2

)
. (3.10)

where

tan φ(s) = tan A/ cos M sin ψ(s) = sin M cos A (3.11)

Please see Fig. 3.1. (x1(1), x2(1), x3(1)) is the specified position of the curve
end point and L is the backbone curve length. In Eq. (3.9), β makes the tangent
at the start point coincident with the line of view of the end-effector from the base
(Fig. 3.3). The second term in Eq. (3.9) rotates the tangent away from the end-
effector, depending on the distance between the end-effector and the base. When
δ ≈ 1, the end-effector is at the maximum distance from the base and the backbone
curve tends to become a straight line. When δ � 1, the end-effector is near the
base. Therefore, the second term rotates the tangent to allow more space for the
end-effector (Fig. 3.3).

One can show that using these mode shapes the workspace is much improved.
The larger workspace avoids mode switching, which imposes more computational
effort, particularly when it is required to simultaneously fix the end-effector [30].

Fig. 3.3 Determining the azimuth angle of the start point tangent
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3.3 Fitting Methods

Once the backbone curve, which captures the gross configuration of a hyper-
redundant manipulator, is determined, there is a need for an algorithm that deter-
mines the joint postures of the manipulator such that the segmented manipulator is
positioned in a configuration as close as possible to the backbone curve. The algo-
rithm that determines the joint angles is called the fitting algorithm. In this section,
we discuss two different methods of deriving such an algorithm, the CLSFM and the
RFM. Since the CLSFM has a high algebraic and numerical computation load, only
its 2D implementation is presented. For the RFM, which is computationally more
efficient than the CLSFM, the spatial case is presented, from which the reader can
derive the planar case implementation. At the end of this section, the computational
load of the two methods are compared for 2D hyper-redundant manipulators.

3.3.1 Constraint Least Square Fitting Method (CLSFM)

A planar n-link manipulator is considered. It is assumed that the link lengths are the
same for all the links, with a value of 1/n. The first joint is located at (x1, x2) =
(0, 0), where (x1, x2) are the Cartesian coordinates describing the 2D plane in which
the manipulator lies. The Cartesian components of the position of the end-effector,
x1 and x2, and the orientation of the end-effector with respect to the x2 axis, z1, are
defined as the manipulator’s task space.

x = [x1 x2 z1
]T

. (3.12)

If qi is the angle that link i makes with the x2-axis, the forward kinematics of the
manipulator simply is

x1 = 1

n

n∑
i=1

sin qi , x2 = 1

n

n∑
i=1

cos qi , z1 = qn , (3.13)

where z1 is the extra task added so that one can specify the end-effector’s direction.
Our goal is to determine qi ’s such that the end-effector is at the desired point in the
task space, while the joints of the manipulator are positioned as close as possible to
their corresponding point on the backbone curve. To position the joints as close as
possible to their corresponding point on the backbone curve, a fitting error function
is defined as follows

G = 1

2

n∑
i=1

[(x1(si ) − x1i )
2 + (x2(si ) − x2i )

2], (3.14)

where x1(si ) and x2(si ) are the x1 and x2 position components of the points on the
continuous backbone curve at a length parameter of si = i/n for i = 1, . . . , n,
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respectively. The location of joint i + 1 (or the end-effector tip, if i = n) can be
calculated as

x1i = 1

n

i∑
j=1

sin q j , x2i = 1

n

i∑
j=1

cos q j . (3.15)

Finding the qi ’s that minimize the quadratic fitting cost function defined in
Eq. (3.14) is done numerically. To simplify the formulation and the linearization
procedure, an estimation for the solution, q̃ j , is considered and the procedure is
formulated based on corrections, ε j , that are applied to the estimated solution.

q j = q̃ j + ε j . (3.16)

For the estimated solution, an estimation of the slope of the backbone curve at
the point corresponding to the j th joint is used. When a large n is assumed, the j th
joint angle might be approximated by

q̃ j = arctan

(
x1(s j ) − x1(s j−1)

x2(s j ) − x2(s j−1)

)
, j = 1, . . . , n, (3.17)

where x1(s0) and x2(s0) are the position components of the manipulator’s base, i.e.,
(0, 0). The correction angle ε j is assumed to be small, and one can linearize the
fitting error and the end-effector position constraint equations with respect to ε j ,
which results in

G = 1

2

n∑
i=1

[(x1(si )−1

n

i∑
j=1

(sin q̃ j+ε j cos q̃ j ))
2+(x2(si )−1

n

i∑
j=1

(cos q̃ j−ε j sin q̃ j ))
2].

(3.18)
Now, the fitting method problem reduces to finding ε j ’s that minimize the cost

function defined in Eq. (3.18) subject to the following constraints

g1 = xd
1 − x1n ≈ xd

1 − 1

n

n∑
j=1

(sin q̃ j + ε j cos q̃ j ) = 0,

g2 = xd
2 − x2n ≈ xd

2 − 1

n

n∑
j=1

(cos q̃ j − ε j sin q̃ j ) = 0, (3.19)

g3 = zd
1 − (q̃n + εn) = 0.

These constraints guarnatee that the end-effector is fixed at its desired position. To
minimze the cost function (3.19), its gradient with respect to the correction angles
must be put equal to zero and the above constraints must be applied using Lagrange
multipliers. With these conditions, a necessary condition for the constrainted min-
ima of (3.19) is
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�G

�εk
+

3∑
l=1

λl
�gl

�εk
= 0, k = 1, . . . , n. (3.20)

Equation (3.20) and the constraint Eq. (3.19) provide n + 3 linear equations for the
n unknown correction angles ε j and three Lagrange multipliers λl’s. These can be
solved for ε j ’s that minimize Eq. (3.18).

Equation (3.20) expands as follows

n∑
i=1

[(x1(si ) − 1

n

i∑
j=1

(sin q̃ j + ε j cos q̃ j ))(
−1

n

i∑
m=1

δmk cos q̃m)

+(x2(si ) − 1

n

i∑
j=1

(cos q̃ j − ε j sin q̃ j ))(
1

n

i∑
m=1

δmk sin q̃m)]

−λ1

n

n∑
j=1

δ jk cos q̃ j + λ2

n

n∑
j=1

δ jk sin q̃ j − λ3δnk = 0, (3.21)

k = 1, . . . , n,

where

δ jk = �ε j

�εk
=
{

0 j �= k

1 j = k
. (3.22)

Rearranging Eq. (3.21) in terms of ε j ’s yields

n∑
i=1

[
1

n2

i∑
j=1

ε j (cos q̃ j

i∑
m=1

δmk cos q̃m + sin q̃ j

i∑
m=1

δmk sin q̃m)]

+
n∑

i=1

[x1(si )(
−1

n

i∑
m=1

δmk cos q̃m) + x2(si )(
1

n

i∑
m=1

δmk sin q̃m)]

+
n∑

i=1

[
1

n2
(

i∑
j=1

sin q̃ j (
i∑

m=1

δmk cos q̃m) −
i∑

j=1

cos q̃ j (
i∑

m=1

δmk sin q̃m))]

−[
1

n

n∑
j=1

δ jk cos q̃ j ]λ1 + [
1

n

n∑
j=1

δ jk sin q̃ j ]λ2 − [δnk]λ3 = 0,

k = 1, . . . , n. (3.23)

Equation (3.23) represents n equations for k = 1, . . . , n. The coefficients of εp’s in
the kth equation are (p = 1, . . . , n) denoted as:
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Akp =
n∑

i=1

[
1

n2

i∑
j=1

δ j p(cos q̃ j

i∑
m=1

δmk cos q̃m + sin q̃ j

i∑
m=1

δmk sin q̃m)]. (3.24)

The coefficients of λl’s (l = 1, . . . , 3) in the kth (k = 1, . . . , n) equation in (3.23)
are denoted as

Ak(n+1) = −1

n

n∑
j=1

δ jk cos q̃ j , (3.25)

Ak(n+2) = 1

n

n∑
j=1

δ jk sin q̃ j , (3.26)

Ak(n+3) = −δnk . (3.27)

The coefficients of ε j ’s ( j = 1, . . . , n) in Eq. (3.19) are denoted as

A(n+1) j = −1

n
cos q̃ j , (3.28)

A(n+2) j = 1

n
sin q̃ j , (3.29)

A(n+3) j = −δnj . (3.30)

The constant term in the kth (k = 1, . . . , n) equation in (3.23) is denoted as

Bk =
n∑

i=1

[x1(si )(
−1

n

i∑
m=1

δmk cos q̃m) + x2(si )(
1

n

i∑
m=1

δmk sin q̃m)]

+
n∑

i=1

[
1

n2
(

i∑
j=1

sin q̃ j (
i∑

m=1

δmk cos q̃m) −
i∑

j=1

cos q̃ j (
i∑

m=1

δmk sin q̃m))], (3.31)

k = 1, . . . , n.

The constant terms in Eq. (3.19) are denoted as

Bn+1 = xd
1 − 1

n

n∑
j=1

sin q̃ j , (3.32)

Bn+2 = xd
2 − 1

n

n∑
j=1

cos q̃ j , (3.33)

Bn+3 = zd
1 − q̃n . (3.34)

By using the definitions in Eqs. (3.24), (3.25), (3.26), (3.27), (3.28), (3.29), (3.30),
(3.31), (3.32), (3.33), and (3.34), one can form a (n + 3) × (n + 3) linear system
of algebraic equations in terms of n unknown ε j ’s and three unknown λl’s in the
following matrix format
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A(n+3)×(n+3)

[
εn×1

λ3×1

]
+ B(n+3)×1 = 0. (3.35)

The numerical solution procedure for the above optimization problem can be
described as follows.

1. For a desired augmented task space of the end-effector, xd = [xd
1 , xd

2 , zd
1 ]T , a

backbone curve is determined.
2. Based on the backbone curve, the desired joint positions of the n joints of the

manipulator, (x1(si ), x2(si ) for i = 1, . . . , n), are calculated.
3. Based on the approximate backbone curve slope at the desired joint positions,

the joint angles are approximated as q̃ j ’s (Eq. 3.17).
4. With the approximate joint angles, the matrices A and B are calculated (Eqs. 3.24

to 3.34), and the joint correction angles are found using Eq. (3.35).
5. If the joint angle corrections ε j ’s are small enough, the corrected joint angles

q j = q̃ j + ε j are the final solution for the manipulator’s joint postures.
6. If the calculated ε j ’s are not small enough, the corrected joint angles q j = q̃ j +ε j

are used as the new joint angle estimate q̃ j and this procedure is repeated starting
from Step 4.

Example 3.3. Consider a 10-link manipulator with a total length of 1 m. If the base
of the manipulator is fixed at (x1, x2) = (0, 0) m, compute the manipulator’s joint
angles such that the end-effector makes a 90◦ angle with the x2 coordinate axis and
its tip positions at (x1, x2) = (0.4, 0.5) m. Assume that the first link approximately
makes a −15◦ angle with the x2 coordinate axis.

Solution. For solving this example, the procedure explained above must be used.
The details of the solution procedure follows:

1. Since the manipulator is a planar one, the planar Cartesian coordinates x =
[x1, x2]T can adequately describe the position of the end-effector. A backbone
curve that lies in the plane of motion of the manipulator is defined as

x(s) =
[∫ s

0 L sin φ(σ )dσ∫ s
0 L cos φ(σ )dσ

]
, (3.36)

where the manipulator length is L = 1 m. Since the manipulator is planar, only
two mode shapes and two mode participation factors (a = [a1, a2]T ) are used to
define the backbone curve. The first equation in (3.3) becomes

φ(s) = a1 sin(2πs) + a2(1 − cos(2πs))

+ b1φ(1 − sin(πs/2)) + b2φ sin(πs/2), (3.37)

where according to the problem definition, one must set b1φ = −π/12 rad, b2φ =
π/2 rad, and xD = [0.4, 0.5]T m. After the Jacobian is derived from Eq. (3.7),
the mode participation factors can be found by using the iterative Eq. (3.6) as
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Table 3.1 Desired joint positions (xi (s j )) and the results for joint angle estimates and corrections
for the first iteration
Link j s j x1(s j )(m) x2(s j ) (m) q̃ j (deg) ε j (deg) q j (deg)

1 0.1 −0.029 0.096 −16.9 0.1 −16.8
2 0.2 −0.063 0.190 −20.1 −0.2 −20.3
3 0.3 −0.093 0.285 −17.3 −0.3 −17.7
4 0.4 −0.100 0.384 −4.0 −0.3 −4.3
5 0.5 −0.066 0.477 19.9 −0.0 19.9
6 0.6 0.009 0.540 50.2 0.5 50.7
7 0.7 0.107 0.559 79.4 0.7 80.1
8 0.8 0.205 0.542 99.7 0.4 100.2
9 0.9 0.301 0.514 106.2 8.0 114.2

10 1.0 0.400 0.500 98.1 −8.1 90.0

a = [−0.5350,−0.2150]T . (3.38)

2. Using Eq. (3.36), the coordinates of 10 equi-distant points along the backbone
curve, xi (s j ), are determined. These coordinates correspond to the desired posi-
tion of the link j’s end-point. The results are listed in the third and forth column
of Table 3.1.

3. Using Eq. (3.17), the first estimations of the joint angles q̃ j are calculated. The
results are listed in the fifth column of Table 3.1.

4. The matrices A and B are formed, and the first correction angles ε j are found by
solving Eq. (3.35). The results for the first iteration are listed in the sixth column
of Table 3.1.

5. As can be seen in the sixth column of Table 3.1, some of the calculated joint angle
corrections are quite large. Therefore, the solution procedure must be iterated
for a better convergence. A convergence condition must be defined. Limiting the
average per joint of the 2-norm of the correction angles, ‖ε‖2/n, to 10−4 rad
seems to be a good choice. This means the average correction angle for the final
solution will be less than 0.0057 degrees.

6. For each new iteration, the new estimated joint angles are set as q̃ j + ε j . After 4
iterations, the average per joint of the 2-norm of the correction angles becomes
‖ε‖2/n = 2.7372 × 10−5 rad, which is less than the limit selected in the pre-
vious step. The joint angles, q j = q̃ j + ε j , after the 4th iteration, as the final
solution, are

q = [−16.8,−20.2,−17.6,−4.2, 20.2, 51.1, 80.1, 100.5, 113.4, 90.0]T deg.
(3.39)

Note that the results for the angles are converted to degrees only for ease of imagina-
tion. All the angles used in the actual calculations are in radians. The manipulator at
a posture corresponding to the final solution and its corresponding backbone curve
are shown in Fig. 3.4.
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Fig. 3.4 A 10-link hyper-redundant manipulator fitted on its backbone curve via the CLSFM

3.3.2 Recursive Fitting Method (RFM)

A spatial hyper-redundant robot that consists of n links connected by n universal
joints (Fig. 3.5) is considered. The universal joint frames are shown in Fig. 3.6,
where the frames are attached using the Denavit-Hartenberg convention. The local
coordinate systems, {k} and {k ′}, are defined such that the Xk-axis is along the link
k and the two angles of the universal joint, θk and γk , are about the local Zk ′ and
Zk axes, respectively. A RFM is introduced to determine the joint positions and the
joint angles that will fit the links on the backbone curve.

Fig. 3.5 The vectors representing the links of a spatial hyper-redundant robot
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Fig. 3.6 The joint frames for a universal jointed hyper-redundant manipulator. Frame {k − 1} is
attached to link k −1. Frame {k ′} is the intermediate universal joint frame, representing the rotation
for the first joint parameter θk . Frame {k} is attached to link k. This frame represents the rotation
for the second joint parameter γk

3.3.2.1 Joint Positions on the Backbone Curve

Since the position, xe, and the orientation of the end-effector are known, the coordi-
nates of the last joint can be obtained as xn = xe − Ln , (Fig. 3.5). Next, a backbone
curve is introduced. The backbone curve ends at the last joint (xD = xn) with its
orientation tangent to the end-effector and has a length of L at least equal to the sum
of the robot link lengths excluding the end-effector. The position of the remaining
joints on the backbone curve, xk = x(sk), are determined by

‖xk+1 − x(sk)‖ = lk k = n − 1, . . . , 3, (3.40)

where lk is the length of link k. The above nonlinear equations are solved recur-
sively backward for sk using a numerical method, such as the bisection method (see
Section A.5).

Example 3.4. Consider an 11-link hyper-redundant manipulator (n = 11) with
link lengths equal to 0.1 m. Let us specify the end-effector tip position as xe =[
0.4 0.3 0.2

]
m. The end-effector is oriented such that both its azimuth, A, and

meridian angle, M , are zero (see Fig. 3.1 for the definition of angles). Compute the
position of the joints on the backbone curve.

Solution. Using the information given, one can compute the vector representing the
end-effector as
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Ln = l11
[
sin A cos A cos M cos A sin M

]T = [0.0 0.1 0.0
]T

m. (3.41)

Therefore, the position of the end-effector’s joint, j11, is

x11 = xe − L11 = [0.4 0.2 0.2
]T

m. (3.42)

Now, we consider a backbone curve with unit length corresponding to the 10
links (excluding the end-effector). The end of this backbone curve coincides with
the end-effector joint. The mode participation factor of Example 3.2 can be used
here. The position of link 10 joint, j10, on the backbone curve will be determined by
using Eq. (3.40) as

‖x11 − x(s10)‖ = l10. (3.43)

If the backbone curve was a straight line, s10 would be equal to 0.9. Therefore,
we choose s10 = 0.9 as the first guess for the solution to Eq. (3.43). Using Eq. (3.1),
we evaluate x(s10) and using Eq. (3.43), we compute l10. We iterate Eq. (3.43) by
utilizing the bisection method (see Section A.5) until l10 converges to 0.1. The final
value for s10 is 0.8999, which corresponds to the joint position

x(s10) = x10 = [0.4132 0.1009 0.1993
]T

m. (3.44)

This procedure is repeated for other links except the first and second links. The
results are given in Table 3.2. In this fitting method, the backbone curve is approx-
imated with a number of lines with specified lengths. The backbone curve length
L is chosen at least equal to the sum of the robot link lengths excluding the end-
effector. Each link consumes a portion of the backbone curve that is longer than the
link length. Consequently, when the third joint is located on the backbone curve,
the remaining portion of the backbone curve will be shorter than the sum of the
remaining two links lengths. Hence, it is guaranteed that one can fit the first two
links between the third joint, located at x(s3). To position the first two links, we

Table 3.2 Joints length parameters and positions for Examples 3.4 and 3.5

k s (xk )1 (m) (xk )2 (m) (xk )3 (m)

11 1.0000 0.4000 0.2000 0.2000
10 0.8999 0.4132 0.1009 0.1993
9 0.7999 0.4409 0.0052 0.1908
8 0.6999 0.4561 −0.0915 0.1704
7 0.5989 0.4339 −0.1836 0.1384
6 0.4975 0.3670 −0.2468 0.0993
5 0.3962 0.2757 −0.2591 0.0605
4 0.2954 0.1880 −0.2226 0.0290
3 0.1951 0.1156 −0.1565 0.0092
2 – 0.0396 −0.0916 0.0054
1 0.0000 0.0000 0.0000 0.0000
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Fig. 3.7 Notation used in Example 3.5

arbitrarily assume that they are always in the same plane, i.e., θ2 and θ̇2 are always
zero (other assumptions are also possible). The vectors representing the first and the
second links are shown in Fig. 3.7. Note that the vector x3, showing the position of
joint 3 with respect to the inertial coordinate system, is already determined in the
previous example. With the aid of the angles shown in Fig. 3.7, one can find x2,
which is the vector representing the position of joint 2 with respect to the inertial
coordinate system.

Example 3.5. Use the position of the third joint obtained in Example 3.4 and com-
pute the position of the second joint. Assume that the first and second link lay in the
same plane perpendicular to the x2 − x3 plane and have the same length l. Joint one
is located at the origin of the coordinate system.

Solution. The length of vector x3, defining the poisition of the third joint with respect
to the origin of the inertial frame is given as

|x3| =
√

(x3)2
1 + (x3)2

2 + (x3)2
3 = 0.1948 m.

The length of the projection of x3 on the YZ plane is

|x′
3| =

√
(x3)2

2 + (x3)2
3 = 0.1568 m.

The angles shown in Fig. 3.7 may be computed as
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Fig. 3.8 Links and joints based on the position data listed in Table 3.2

α = arccos(
|x3|/2

l
) = 13.05◦,

β = arctan(
x3 − x1

|x′
3|

) = 36.41◦,

γ = arctan

(
(x3)3

(x3)2

)
= 176.62◦,

Finally, the position of the second joint can be obtained as

(x3)1 = l sin(β − α) = 0.0396 m,

(x3)2 = l cos(β − α) cos(γ ) = −0.0916 m,

(x3)3 = l cos(β − α) sin(γ ) = 0.0054 m.

These values are listed in Table 3.2. Note that since the second joint is not on the
backbone curve, there is no corresponding backbone curve length parameter s for
this joint. Figure 3.8 shows the links and joint based on the data listed in Table 3.2.

3.3.2.2 Joint Angles from Joint Positions

The universal joint angles can be calculated when the joint positions are known.
The vector representing each link k, Lk , is written in the link k’s local frame {k}
as L(k)

k = [
lk 0 0

]T
. The same vector can be written in frame {k − 1} as L(k−1)

k =
k−1
k RL(k)

k , where k−1
k R is the rotation matrix that relates the orientation of frames {k}

and {k − 1}. Lk and L(k)
k are related as

k−1
k RL(k)

k = 0
k−1R

−1Lk , k = 1, 2, . . . , n. (3.45)
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Equation (3.45) can be solved for the angles of the k-th universal joint, θk and γk .

Example 3.6. Using the joint positions listed in Table 3.2, compute the joint angles
of the first joint.

Solution. For the first link, k = 1. Therefore, Eq. (3.45) reduces to

0
1RL(1)

1 = 0
0R−1L1.

Note that 0
0R is the identity matrix. 0

1R, which transfers the reference frame to the
frame of link one, consists of two rotation matices. The first rotation matrix, 0

1′R,
transfers the reference frame to the first joint frame of joint one, {1′}. The second
rotation matrix, 1′

1 R, transfers the first joint frame of joint one to second joint frame
of joint one, {1}. According to Fig. 3.6 and by using the Denavit-Hartenberg frame
convention, one can show that the rotation matrices are

0
1′R =

⎡
⎣cos(θ1) − sin(θ1) 0

sin(θ1) cos(θ1) 0
0 0 1

⎤
⎦ , 1′

1 R =
⎡
⎣cos(−γ1) 0 − sin(−γ1)

0 1 0
sin(−γ1) 0 cos(−γ1)

⎤
⎦ ,

and

1′
1 R 0

1′R =0
1 R.

Also, the vector defining the link in joint one frame and in the reference frame are

L(1)
1 = [l1 0 0

]T
, L1 = [(x2)1 − (x1)1 (x2)2 − (x1)2 (x2)3 − (x1)3

]T
,

respectively. Note that the first joint is always assumed to be at the origin of the
inertial coordinate system therefore, x1 = [(x1)1, (x1)2, (x1)3]T = [0, 0, 0]T . Using
Eq. (3.45) yields

⎡
⎣l1 cos(θ1) cos(−γ1)

l1 sin(θ1)
l1 cos(θ1) sin(−γ1)

⎤
⎦ =

⎡
⎣(x2)1 − (x1)1

(x2)2 − (x1)2

(x2)3 − (x1)3

⎤
⎦ .

Solving the above equations in terms of θ1 and γ1, one can show that

θ1 = arcsin

(
(x2)2

l1

)
= −66.35◦, γ1 = − arctan

(
(x2)3

(x2)1

)
= −7.77◦.

After computing θ1 and γ1, the matrix 0
1R is known and can be used in the following

relation to compute θ2 and γ2.

1
2RL(2)

2 = 0
1R−1L2
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Table 3.3 Joints angles for Example 3.6

k θk (deg) γk (deg)

1 −66.42 −7.77
2 25.80 4.13
3 −0.75 −11.51
4 20.31 −6.59
5 29.22 −3.41
6 34.23 −0.26
7 32.88 4.95
8 22.88 12.38
9 5.67 18.16

10 −10.35 16.79
11 −8.79 19.14

Using the same procedure discussed in this example, one can compute the other
joint angles. All joint angles are listed in Table 3.3.

3.3.3 Comparison Between the CLSFM and the RFM

The CLSFM method has a much higher computational cost compared to that of
the RFM. Because of the high computational load of the CLSFM, the real-time
implementation of this method for spatial hyper-redundant manipulators is very dif-
ficult to realize. That is the reason why the application of this method has only been
presented for the planar hyper-redundant manipulators.

The dimensions of the coefficient matrix A and the constant matrix B for the
CLSFM depend on the manipulator’s number of joints. A spatial manipulator with
n links has 2n joint parameters. For each iteration for finding the joint angle correc-
tions in the CLSFM for spatial case, the 2n by 2n linear system of Eq. (3.35) must
be solved. This solution has a computational load proportional to 4n2. In the RFM,
the nonlinear Eq. (3.40) is solved via iterations for n − 2 Cartesian joint positions.
However, since there are extra calculations needed for finding the end-effector’s
and the second joint’s Cartesian positions, one can assume the computation load for
finding the joint Cartesian positions is proportional to n. Finding the joint angles in
the RFM is proportional to 2n for the spatial case, since there are two joint angles to
be determined for each link. Therefore, finding the joint angles via the RFM has a
computational load proportional to 3n, which is much less than that of the CLSFM.

The above argument only considers the computational load for one iteration.
The nature of equations to be solved iteratively in the RFM (e.g., Eq. 3.40) is such
that they converge faster to a given accuracy tolerance compared to the CLSFM. In
other words, CLSFM needs more iterations to achieve a given solution convergence
tolerance than the RFM.

Another important feature of the RFM is that it allows the inverse kinematic
solution at the velocity level. This is because, in this method, the joints are located
on the backbone curve at all times. Therefore, the velocity information of the points
on the backbone curve provide means to calculate joint velocities. This is discussed
in more details in the next section.



70 3 Hyper-Redundant Manipulators

3.4 Inverse Velocity Propagation

In the inverse velocity problem, the joint rotation rates must be determined such that
a given velocity vector is generated at the end-effector. Here, the velocity propaga-
tion problem is solved by utilizing the results of the RFM. The solution procedure
is as follows. First, the linear velocity of an arbitrary point on the backbone curve
is calculated. Next, the linear velocities of the joints on the backbone curve are
computed. Finally, the equations for the calculation of the joint angular velocities
are presented.

3.4.1 Velocity of a Point on the Backbone Curve

The linear velocity of joint k, vk , and the linear velocity of its corresponding point
on the backbone curve, wk , are related as

vk = wk + Ṡk , (3.46)

where Ṡk = Ṡkuk denotes the relative velocity of joint k and its corresponding
point on the backbone curve in the direction uk . wk is calculated by taking the time
derivative of Eq. (3.2),

wk = ẋ(sk) = Ja(a, sk)ȧ + Jb1(sk)ḃ1 + Jb2(sk)ḃ2, (3.47)

where Ja(a, sk) is the modal Jacobian matrix, Jb1(sk) and Jb2(sk) are 3×2 Jacobians
with respect to b1 = [b1φ, b1ψ ]T and b2 = [b2φ, b2ψ ]T , and sk is the curve length
parameter derived in Eq. (3.40). Note that the linear velocity of joint n, located at
the end of the backbone curve (sn = 1), can be computed by specifying the linear
velocity of the tip of the end-effector and the rate of change of its azimuth and
meridian angles. Then, the modal participation velocity vector ȧ can be computed,
given ẋ(1) and rearranging Eq. (3.47) as

ȧ = [Ja(a, 1)]−1
(
ẋ(1) − Jb1ḃ1 − Jb2ḃ2

)
. (3.48)

Example 3.7. Derive the Jacobian matrices introduced in Eq. (3.47). Assume the
mode shapes given in Eqs. (3.3).

Solution. The Jacobian matrices are defined as follows

Ja(a, s) = �x(s)

�aT
,

where x(s) is defined in Eq. (3.2). The above equation for Ja(a, s) is similar to the
Jacobian matrix derived in Example 3.2. There is no need to derive the components
again. The Jacobian matrix corresponding to b1 is
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Jb1(s) = �x(s)

�bT
1

=

⎡
⎢⎣

�x1
�b1φ

�x1
�b1ψ

�x2
�b1φ

�x2
�b1ψ

�x3
�b1φ

�x3
�b1ψ

⎤
⎥⎦ ,

where

�x1

�b1φ

=
∫ s

0
L(1 − sin(πs/2)) cos φ(σ ) cos ψ(σ )dσ ,

�x1

�b1ψ

=
∫ s

0
−L(1 − sin(πs/2)) sin φ(σ ) sin ψ(σ )dσ ,

�x2

�b1φ

=
∫ s

0
−L(1 − sin(πs/2)) sin φ(σ ) cos ψ(σ )dσ ,

�x2

�b1ψ

=
∫ s

0
−L(1 − sin(πs/2)) cos φ(σ ) sin ψ(σ )dσ ,

�x3

�b1φ

= 0,

�x3

�b1ψ

=
∫ s

0
L(1 − sin(πs/2)) cos ψ(σ )dσ .

The Jacobian matrix corresponding to b2 is

Jb2(s) = �x(s)

�bT
2

=

⎡
⎢⎣

�x1
�b2φ

�x1
�b2ψ

�x2
�b2φ

�x2
�b2ψ

�x3
�b2φ

�x3
�b2ψ

⎤
⎥⎦ ,

where

�x1

�b2φ

=
∫ s

0
L sin(πs/2) cos φ(σ ) cos ψ(σ )dσ ,

�x1

�b2ψ

=
∫ s

0
−L sin(πs/2) sin φ(σ ) sin ψ(σ )dσ ,
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�x2

�b2φ

=
∫ s

0
−L sin(πs/2) sin φ(σ ) cos ψ(σ )dσ ,

�x2

�b2ψ

=
∫ s

0
−L sin(πs/2) cos φ(σ ) sin ψ(σ )dσ ,

�x3

�b2φ

= 0,

�x3

�b2ψ

=
∫ s

0
L sin(πs/2) cos ψ(σ )dσ .

For every given backbone curve configuration, a, and at any given point on the
backbone curve defined by sk , one can evaluate these integrals numerically.

Example 3.8. Assume the azimuth and the meridian angles of the tangent to the end
point of a backbone curve as is given in Eq. (3.9). Compute ḃ1 and ḃ2 introduced in
Eq. (3.47).

Solution. Equations (3.10) are rewritten for the start point of the backbone curve
(s = 0).

φ(0) = b1φ = arctan

(
tan As

cos Ms

)

ψ(0) = b1ψ = arcsin (sin Ms cos As)

Substituting Eqs. (3.9) in the above equations yields

b1φ = β + π (1 − δ),

b1ψ = 0.

Therefore,

ḃ1 =
[
β̇ + π (1 − δ̇)

0

]
.

Note that β̇ and δ̇ can be computed in terms of ẋ1(1), ẋ2(1), and ẋ3(1) by differen-
tiating Eqs. (3.10). This means that when the linear velocity of the backbone curve
end point (s = 1) is known, the numerical value of ḃ1 can be evaluated.

Now, Eqs. (3.10) are rewritten for the end point of the backbone curve (s = 1).
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φ(1) = b2φ = arctan

(
tan Ae

cos Me

)
,

ψ(1) = b2ψ = arcsin (sin Me cos Ae) ,

where Ae and Me are the azimuth and meridian angle of the tangent to the backbone
curve at its end point. Differentiating the above equations gives

ḃ2 =
[

ḃ2φ

ḃ2ψ

]
.

Note that ḃ2φ and ḃ2ψ can be written in terms of Ȧe and Ṁe by differentiating b2φ

and b2ψ , respectively. This means that when the changes in azimuth and meridian
angle of the tangent to the backbone curve at the end point are given, the numerical
value of ḃ2 can be evaluated.

Example 3.9. Compute the linear velocity of a point on the backbone curve in Exam-
ple 3.4 coincident with joint ten. The velocity of the curve end point is specified as

ẋ(1) = [0.1175 0.1000 0.0825
]T

m/s.

Also, assume that the change in the azimuth and meridian angle of the tangent at the
curve end point is specified as

Ȧe = (π/18) rad/s, Ṁe = (π/18) rad/s.

Solution. ḃ1 can be calculated based on the curve end point linear velocity.

ḃ1 =
[−0.6121

0

]
rad/s.

Also, ḃ2 is computed using the values of Ȧe and Ṁe as

ḃ2 =
[

0.1745
0.1745

]
rad/s.

Now, Eq. (3.48) is used to evaluate the rate of change of the mode participation
vector as

ȧ = [0.0535 −0.0109 −0.0262
]T

1/s.

Substituting the obtained ȧ in Eq. (3.47) along with s10 = 0.8999 for joint ten (from
Table 3.2) gives
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Table 3.4 Linear velocity of points on the backbone curve coincident with joints

k s (wk )1 (m/s) (wk )2 (m/s) (wk )3 (m/s)

11 1.0000 0.1175 0.1000 0.0825
10 0.8999 0.1022 0.0981 0.0654
9 0.7999 0.0918 0.0965 0.0496
8 0.6999 0.0865 0.0983 0.0363
7 0.5989 0.0875 0.1013 0.0261
6 0.4975 0.0929 0.0998 0.0184
5 0.3962 0.0963 0.0902 0.0126
4 0.2954 0.0909 0.0740 0.0079
3 0.1951 0.0732 0.0537 0.0040
2 – – – –
1 0.0000 0.0000 0.0000 0.0000

w10 = ẋ(s10) = [0.1022 0.0981 0.0654
]T

m/s.

Note that the same ȧ can be used to evaluate the velocity of the other points on the
backbone curve, including but not limited to the points coincident with the other
joints. The linear velocity of the points on the backbone curve coincident with
the other joints are calculated by using the discussed procedure and are listed in
Table 3.4.

3.4.2 Linear Velocity of Joints Located on the Backbone Curve

The linear velocities of the joints at the two ends of each link k, vk+1 and vk , are
related as

vk = vk+1 − ωk × Lk , k = n − 1, . . . , 3, (3.49)

where

ωk = Ṁk î + Ȧk(sin Mk ĵ − cos Mk k̂). (3.50)

Ȧk and Ṁk are the rates of change of azimuth and meridian angles of link k, and ωk

is the angular velocity vector of link k. Substituting from Eq. (3.46) into Eq. (3.49)
and rearranging leads to

vk+1 − wk = ωk × Lk + Ṡkuk , k = n − 1, . . . , 3. (3.51)

Equation (3.51) represents three linear simultaneous equations, which can be solved
for Ȧk , Ṁk , and Ṡk . Then, these results are substituted back into Eq. (3.51) and (3.50)
to evaluate vk and ωk , for k = n − 1, . . . , 3.
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Example 3.10. Calculate the linear velocity of joint ten of the manipulator described
in Example 3.4. Consider the velocity of the backbone curve end point (joint eleven)
given in Example 3.9.

Solution. First, Eq. (3.51) is expanded. It can be shown that

vk+1 − wk =
⎡
⎣((lk)1 sin Mk + (lk)2 cos Mk) Ȧk

(−(lk)1 cos Mk) Ȧk + (lk)3 Ṁk

(−(lk)1 sin Mk) Ȧk + (lk)2 Ṁk

⎤
⎦+

⎡
⎣Ṡk(uk)1

Ṡk(uk)2

Ṡk(uk)3

⎤
⎦ , (3.52)

where according to Eqs. (3.1) and (3.2)

⎡
⎣(uk)1

(uk)2

(uk)3

⎤
⎦ =

⎡
⎣L sin φ(sk) cos ψ(sk)

L cos φ(sk) cos ψ(sk)
L sin ψ(sk)

⎤
⎦ ,

and

Lk =
⎡
⎣(xk+1)1 − (xk)1

(xk+1)2 − (xk)2

(xk+1)3 − (xk)3

⎤
⎦ =

⎡
⎣(lk)1

(lk)2

(lk)3

⎤
⎦ .

Equation (3.52) can be rearranged in terms of unknowns, Ȧk , Ṁk and Ṡk as follows

vk+1 − wk =
⎡
⎣(lk)3 sin Mk + (lk)2 cos Mk 0 (uk)1

−(lk)1 cos Mk (lk)3 (uk)2

−(lk)1 sin Mk (lk)2 (uk)3

⎤
⎦
⎡
⎣ Ȧk

Ṁk

Ṡk

⎤
⎦ . (3.53)

From Table 3.2, one can see

L10 = x11 − x10 = [−0.0132 0.0991 0.0007
]T

m.

Also, from Example 3.9, one can write

w10 = [0.1022 0.0981 0.0654
]T

m/s.

The linear velocity of the backbone curve end point was given as

x11 = ẋ(1) = [0.1175 0.1000 0.0825
]T

m/s.

Substituting the above numerical values along with k = 10 in Eq. (3.53) and solving
for Ȧk , Ṁk and Ṡk yields

Ȧ10 = −0.1537 rad/s, Ṁ10 = 0.1729 rad/s, Ṡ10 = 0.0000 m/s.

Now, ω10 is evaluated by using Eq. (3.50) as
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Table 3.5 Linear velocity of joints on the backbone curve

k s Ȧk (rad/s) Ṁk (rad/s) Ṡk (m/s) vkx (m/s) vky (m/s) vkz (m/s)

10 0.8999 −0.1537 0.1729 0.0000 0.1022 0.0981 0.0654
9 0.7999 −0.1086 0.1623 0.0000 0.0918 0.0965 0.0496
8 0.6999 −0.0533 0.1349 0.0001 0.0865 0.0984 0.0364
7 0.5989 0.0117 0.1093 0.0004 0.0877 0.1017 0.0262
6 0.4975 0.0789 0.0743 0.0008 0.0935 0.1001 0.0188
5 0.3962 0.0928 −0.1935 0.0011 0.0973 0.0900 0.0130
4 0.2954 −0.1097 −0.3032 0.0014 0.0920 0.0732 0.0083
3 0.1951 −0.2581 −0.1427 0.0016 0.0742 0.0525 0.0042
2 – – – – – – –
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ω10 = [0.1729 0.0010 −0.1537
]T

rad/s.

Finally, Eq. (3.49) with k = 10 results in the joint ten linear velocity,

v10 = [0.1022 0.0981 0.0654
]T

m/s.

By using the same procedure discussed above, other joints’ linear velocities can be
computed. The results are listed in Table 3.5.

3.4.3 Joint Angular Velocities

The first two joint velocities are determined separately since the second joint is not
on the backbone curve in the RFM. Starting from the base, the linear velocity vector
of the third joint is written in terms of the angular velocities of the first two joints as

v3 = �(L1 + L2)

��T · �, (3.54)

where � = [θ1 γ1 γ2
]T

. Transforming Eq. (3.54) to frame {2} results in

⎡
⎣ lγ̇1 sin γ2

l(γ̇1 cos γ2 + γ̇1 + γ̇2)
−l θ̇1(cos γ1 + cos(γ1 + γ2))

⎤
⎦ = 2

0Rv3, (3.55)

which is solved for θ̇1, γ̇1, and γ̇2. Note that θ̇2 = 0 (see Section 3.3.2.1). The link
lengths are assumed to be equal to l.

The linear velocity of joint k + 1 in inertial frame {0}, vk+1, is related to joint k
velocity, vk , as

0
kR−1vk+1 = l(kJk+1�k +k Kk+1ωk−1) +k Kk+1vk , k = 3, . . . , n, (3.56)
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where

kJk+1 =
⎡
⎣ 0 0

0 1
− cos γk 0

⎤
⎦ , kKk+1 =

⎡
⎣ cos γk 0 sin γk

− sin γk 0 cos γk

0 1 0

⎤
⎦ ,

kHk+1 =
⎡
⎣ 0 0 0

sin θk 0 cos θk

cos θk sin γk cos γk − sin γk sin θk

⎤
⎦ .

(3.57)

Since the relative linear velocity of joint k + 1 with respect to joint k is always zero
along the local Xk-axis (i.e., along the link), the first component of Eq. (3.56) is
identically satisfied. Therefore, the second and third components of Eq. (3.56) can
be solved for �k = [

θ̇k γ̇k
]T

as long as the lower 2 × 2 part of matrix kJk+1 is
nonsingular.

Derivation of Eqs. (3.56) to (3.57) are left to the reader as an exercise. These
relations can be derived by writing the joint transformation matrices.

Example 3.11. Using Eqs. (3.56) to (3.57) evaluate the joint angular velocities.

Solution. Note that 2
0R and v3 in Eq. (3.55) are known from Examples 3.6 and 3.10,

respectively. Therefore, Eq. (3.56) can be solved in terms of θ̇1, γ̇1, and γ̇2.

θ̇1 = 2.91 deg/s, γ̇1 = 29.07 deg/s, γ̇2 = −4.78 deg/s.

Then, Eq. (3.56) is rewritten for k = 3 to k = 11 and is solved for remaining
unknown joint angular velocities two at a time. The results are listed in Table 3.6.

3.4.4 Singularity Considerations in Inverse Velocity Propagation

The possible sources of singularity are Eqs. (3.48), (3.51), and (3.55). If the position
problem has a solution, the modal Jacobian, Ja(a, 1), is nonsingular and Eq. (3.48)

Table 3.6 Joints angular velocities for Example 3.11

k θ̇k (deg/s) γ̇k (deg/s)

1 2.91 29.07
2 0.00 −4.78
3 −3.76 −9.15
4 −1.84 −5.20
5 −1.56 −4.45
6 −1.31 −4.52
7 −18.04 51.27
8 16.90 −61.96
9 1.48 −3.07

10 1.81 0.00
11 0.00 0.00
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will always have a solution. For the other equations, one must consider that the
mode shapes presented in Eqs. (3.4) and (3.5) generate low curvatures, i.e., |θk | and
|γk | � π/2.

Equation (3.51) has a solution as long as ωk × Lk and uk are not parallel. They
are never parallel since Lk is always nearly fitted tangent to the backbone curve
(nearly parallel to uk). In Eq. (3.55), singularity occurs if γ2 = 0, γ2 = π , or
|2γ1 + γ2| = π . However, γ2 �= 0 in the RFM (see Section 3.3.2.1). Also, γ2 �= π

and |2γ1 + γ2| << π , since all joint angles are small. Finally, singularity in
Eq. (3.56) occurs only if the lower 2 × 2 part of matrix kJk+1 is singular (i.e.,
cos γk = 0), which again is not possible since |γk | � π/2.

3.5 Summary

The modal approach was used to resolve the redundancy of spatial hyper-redundant
manipulators. New shape functions were introduced to achieve a more complete
workspace. The CLSFM and RFM were presented for planar and spatial manipula-
tors, respectively. The CLSFM was not efficient for spatial manipulators due to its
highly complex formulation and a high computational burden. The computational
cost of the CLSFM is high because this method requires the solution to a system of
nonlinear simultaneous equations. The RFM, on the other hand, was much simpler
to formulate and required a rather low computational effort. The RFM needed to
solve a single nonlinear algebraic equation per link thus avoiding systems of nonlin-
ear simultaneous equations. Finally, the velocity property of the backbone curve was
investigated and an inverse velocity propagation scheme was introduced. The fitting
method was shown to guarantee the existence of the inverse kinematics solution
at velocity level. This scheme is recursive and free from singularity as long as the
position problem has a solution, and can be easily applied to spatial universal-jointed
arms with an arbitrary number of links.

Problems

Problem 3.1. Consider a planar hyper-redundant manipulator lying the x1-x2 plane.

(a) Write an appropriate backbone curve parameterized equation in term of the
curve length parameter s for the manipulator (see Eq. 3.1).

(b) Define appropriate mode shape functions for the manipulator (see Eq. 3.3).
(c) Determine the modal Jacobian for the planar manipulator (see Eq. 3.7).

Problem 3.2. Consider a spatial backbone curve for a hyper-redundant manipulator
with the mode shape functions defined as in Eqs. (3.4) and (3.5). If the desired
azimuth and meridian angles at the start and the end point of the backbone curve are
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Fig. 3.9 A ten-link planar hyper-redundant manipulator

Ms = 10◦ As = 35◦,

Me = 25◦ Ae = 15◦,

find the slope parameters for the backbone curve at its start (b1φ, b1ψ ) and end
(b2φ, b2ψ ) points.

Problem 3.3. Consider a planar 10-link manipulator with a total length of 2 m and
the joint parameters shown in Fig. 3.9. If the base of the manipulator is at [x1, x2]T =
[0, 0]T , compute the joint angles of the manipulator such that its end-effector makes
a 105◦ angle with the positive x2 axis and its end-effector positions at [xd

1 , xd
2 ]T =

[0.8, 1.0]T m. Assume that the first link is approximately aligned with the x2 axis.
Use a 2D backbone curve and the CLSFM.

Hint: Note that the derivations in Section 3.3.1 assumes a manipulator with a
unit length, which do not apply to a manipulator with a different length. Scale down
the manipulator of this problem into a manipulator with 1-m length and recalculate
the desired end-effector position accordingly for joint angle calculations instead of
reformulating the equations derived in Section 3.3.1!

Problem 3.4. Consider a 16-link planar hyper-redundant manipulator (n = 16) with
link lengths equal to 0.1 m. Assume the end-effector tip position as
xe = [

0.4 0.3
]

m. The end-effector is oriented such that it is parallel to the x2

axis. Compute the position of the joints on the backbone curve.

Problem 3.5. Consider the 11-link spatial manipulator of Example 3.4. Use the po-
sitions of the joints six and seven obtained in Example 3.4 and listed in Table 3.2
and compute the angles of the universal joint six, θ6 and γ6.

Problem 3.6. Consider the 10-link planar manipulator introduced in Problem 3.3.
Assume that at the desired posture of [xd

1 , xd
2 ]T = [0.8, 1.0]T m, the end-effector
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velocity is [ẋ d
1 , ẋ d

2 ]T = [0.0, 1.0]T m/s. The angular velocity of the end-effector link
is π/12 rad/s.

(a) Derive the orientation Jacobian matrices introduced in Eq. (3.47).
(b) Calculate the rate of the mode participation vector a.
(c) Compute the velocity of the backbone curve at its midpoint.
(d) Determine the linear velocity of joint six and the angular velocity of link six of

the manipulator, if the linear velocity of joint seven is v7 = [0.0875, 0.1013]T m/s.



Chapter 4
Obstacle Avoidance Using Harmonic
Potential Functions

4.1 Introduction

Path planning for single mobile robots has been the essential first step for real-
izing autonomous ground vehicles. There are numerous methods and algorithms
initially developed for single mobile robots working in environments containing
static obstacles. One can name the roadmap, cell decomposition, and potential field
methods [10, 84, 50] among others.

The roadmap and cell decomposition methods rely on rules that are derived us-
ing the geometry of the obstacle field. Many problems such as motion planning
for a number of circular [66] or rectangular [40] objects bounded by walls and
motion planning for multiple robots [51, 38, 53] have been solved using the ge-
ometrical methods. These methods have even been extended to the case moving
obstacles [8].

Different control theories have also been used for path planning for groups of
mobile robots. The dynamic motion planning problem has been transformed into
a conventional optimal control problem [43]. In another work, a decoupled con-
troller, consisting of a force controller and a torque controller, has been introduced
to address the presence of multiple obstacles in a robot’s workspace [55]. A cen-
tralized control approach for keeping a group of robots in desired formation in
presence of obstacles has also been used as path planning method [24, 39]. Sev-
eral different control laws have been developed for decentralized control includ-
ing hybrid control algorithms [52, 80, 72]. Behavior-based approach has also been
introduced to simplify the definition of control laws in the decentralized control
approach [6, 11].

Different path planning approaches have been integrated in a hierarchical man-
ner to address obstacle avoidance for mobile robots in cluttered environments. For
example, a three-layer hierarchical path planning system has been presented that
consists of global planning, local navigator, and collision avoidance algorithms [37].
Also, a two-layered hierarchical path planning for multiple robots has been intro-
duced, where the second layer mimics the behavior of a mass-spring-damper system
to modify a globally planned path of a robot when it is close to other robots or
stationary obstacles [3].
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Another approach that has been extensively used for obstacle avoidance for sin-
gle mobile robots, multiple mobile robots, and moving obstacles is the potential field
approach. In the potential field method, an artificial potential field is assigned to the
area where a robot works. The obstacles in the area are assigned a repulsive potential
while the goal position of the robot is described by an attractive potential. Then, the
path of the robots is calculated by using the gradient of the total artificial potential.
Different mathematical definitions have been used for defining the artificial potentail
fields and different strategies have been introduced for using the gradient of the total
potential to find a path for the robot.

To extend the application of the potential field approach to the case of multiple
robots, where the timing of the robots motions is important for collision avoidance,
artificial potential fields in the robots’ extended configuration space-time have been
introduced [61]. Priority assignment to the robots of a group has been able to en-
hance path planning for multiple mobile robots in configuration space-time [78].
Another method for addressing multiple mobile robots using the potential field ap-
proach is using potentials that are functions of the relative speeds of the robots as
well as their distances [33].

The possibility of the existence of local minima in the artificial potential field
could be one of the drawbacks of the potential field methods. A local minimum
can attract and trap the robot, preventing it from reaching its final goal. Search
methods have been introduced to address this problem at a high computational
cost [73, 82]. Another method for avoiding the generation of local miming is adding
multiple auxiliary attraction potentials, whose positions are determined by a ge-
netic algorithm [21]. Also, a set of analytical guidelines have been given for de-
signing potential functions to avoid local minima for a number of representative
scenarios [45].

It has been shown that harmonic potential functions do not suffer from local
minima [12, 46] and lead to unique solutions. This property of harmonic poten-
tial functions allows the potentials to be defined in Euclidean space rather than
the configuration space [20]. The application of harmonic potentials to the case
of moving obstacles has also been reported [1, 75]. Harmonic potential fields have
been utilized for single mobile robots and planar manipulators with low degrees of
redundancy in known environments containing stationary obstacles by employing
the panel method known in fluid mechanics [49, 31]. The panel method is quite
suitable for real-time applications. The panel method has also been extended to the
case of unknown environments [85] and 3D environments [86].

In this chapter, harmonic potential functions are introduced and the panel method
is discussed. A complement to the traditional panel method [46] is presented to gen-
erate a more effective harmonic potential field for obstacle avoidance. This makes
the traditional panel method suitable for dynamically changing environments. The
application of the panel method to the case of a single mobile robot working in
an environment with static obstacles is shown. The extension of the panel method
to the case of multiple robots and moving obstacles is discussed. Finally, the 3D
version of the panel method, which is applicable to path planning for aerial robots,
is presented.
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4.2 Potential Theory and Harmonic Functions

Potential theory is used in describing many conservative systems such as irrotational
fluid flows. In the absence of viscous effects and rotational force, the originally
irrotational flow will remain so in the region around a body inside the flow field. Let
us denote the vectorial velocity field in this region by V. Vorticity vanishes when
the flow is irrotational. That is,

curl V = ∇ × V = 0, (4.1)

where

∇ = �

�x1
î + �

�x2
ĵ + �

�x3
k̂. (4.2)

This equation implies that the fluid velocity field can be written as

V = −∇φ, (4.3)

where φ is a scalar velocity potential. Furthermore, when the fluid is incompressible,
the velocity field must satisfy the continuity equation.

V.V = 0. (4.4)

Substituting Eq. (4.3) into Eq. (4.4) results in

∇2φ = 0, (4.5)

where ∇2 = ∇.∇ is the Laplacian operator. Equation (4.5) is called the Laplace
or potential equation and its solutions are called harmonic or potential functions. In
the real world, many physical problems are described by the Laplace equation. An
example is the incompressible fluid irrotational flow mentioned above.

4.2.1 Properties of Harmonic functions

The properties of harmonic functions related to local minimum are described in the
following.

1. Superposition Property. This property of the potential functions are related to
the linearity of the Laplace equation. If φ1 and φ2 are harmonic functions (they
satisfy the Laplace equation), then any linear combination of φ1 and φ2 is also a
harmonic function and a solution of Laplace equation.

2. Mean-value Property. A 2D potential function φ(x1, x2) that is harmonic in a
circle with center at (xo1 , xo2 ), there exists the mean-value of property of φ
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φ(xo1 , xo2 ) = 1

2π

∮
φ(xo1 + r cos θ, xo2 + r sin θ )dθ (4.6)

In words, the value of the potential at the center of any arbitrary circle is equal
to the average of the potential integrated over the circumference of the circle.
This property is independent of the radius r of the circle only if the function
is harmonic inside the circle. A similar result holds for an arbitrary number of
dimensions. For example, in three dimensions, the potential at (xo1 , xo2 , xo3 ) can
be obtained by integration over the whole surface of a sphere S.

φ(xo1 , xo2 , xo3 ) = 1

4π

∫ ∫
φ(S)d S (4.7)

The converse of this Property is also true. If φ(x1, x2) is continuous and has
the mean-value property for every circle in a domain, then φ is harmonic. This
property can be used to prove the maximum and minimum principle of harmonic
functions.

3. The Maximum Potential Property. The maximum of a nonconstant harmonic
function occurs on singular boundaries where the potential tends to infinity.

4. The Minimum Potential Property. The minimum of a nonconstant harmonic
function also occurs on singular boundaries where the potential tends to infinity.
The above properties of a harmonic function are very useful in building an
artificial potential field for obstacle avoidance problem. Because the harmonic
function completely eliminates local minima, which eliminates the possibility of
generating a stationary point in the velocity field except the goal point.

4.3 Two-Dimensional Harmonic Potential Functions

In this section, examples of harmonic functions that will be used to build an artifi-
cial potential are introduced. First, harmonic functions with spherical symmetry are
introduced. These functions should be expressed in an spherical coordinate system.
For a spherical symmetry, the potential function must not depend on angular terms.
It must only depend on r (distance from the origin), e.g., φ = φ(r ). The general
n-dimensional expression of the Laplace equation in spherical coordinate system
can be written as

∇2φ = φrr + n − 1

r
φr + angular terms, (4.8)

where φr is the first partial derivative of φ with respect to r and φrr is the second par-
tial derivative of φ with respect to r . Since φ = φ(r ), the angular terms in Eq. (4.8)
vanish and the Laplace equation becomes

φrr + n − 1

r
φr = 0, (4.9)
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or

φrr

φr
+ n − 1

r
= 0. (4.10)

Integration of Eq. (4.10) once results

φr = C1

rn−1
. (4.11)

For n = 2, the integration of Eq. (4.11) results in

φ = C1 ln r + C2. (4.12)

For n > 2, the solution to Eq. (4.11) for φ becomes

φ = C3

rn−2
+ C4. (4.13)

In Eqs. (4.12) and (4.13), Ci ’s are constant. From Eqs. (4.12) and (4.13), it is ob-
served that every harmonic function with spherical symmetry has its singularity at
origin (e.g., at r = 0) and is not harmonic at this singular point. According to the
Property 3 and 4 for harmonic functions, the maximum or minimum of a potential
function with spherical symmetry occurs at the origin (the singularity point). Since
the origin can be placed anywhere (the Laplace equation is invariant under transla-
tion), one can always choose the location of the origin outside the free space for a
manipulator or a mobile robot. That is, by locating the origins of the harmonic func-
tions on the surface of the obstacles or inside obstacles. We can build an artificial
potential field with no local minimum and only one global minimum in free space.

4.3.1 Potential of a Point Source or a Point Sink

In hydrodynamics, a harmonic function with spherical symmetry, for Example (4.12)
or (4.13), is called a source or a sink, depending on the sign of C1 in Eq. (4.12) and
C3 in (4.13). A sink is similar to a drain in a bathtub and a source is like a faucet. In
a 2D space, a source/sink at the origin can be represented by

φ = λ

2π
ln(r ). (4.14)

The magnitude of λ is the strength of the source (λ < 0) or sink (λ > 0). Since both
a source and a sink are singular at the origin, they are called singularity potentials.

Example 4.1. Using Eq. (4.14), plot the potential of a point sink located at the origin
with a strength of λ = 1 in a square area of 2 by 2 m around the origin.
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Fig. 4.1 Potential of a point sink

Solution. For a point source at the origin, the distance variable r in terms of the
Cartesian coordinate components (x1, x2) become

r =
√

x2
1 + x2

2 . (4.15)

The potential is plotted in Fig. 4.1. Note that at the origin the potential is infinite.
One can imagine the direction of the motion of a fluid particle (or a mobile robot)
caused by this potential field by assuming a bead that is released from a point on
this surface. If one imagines a bead on the surface shown in Fig. 4.1, they can see
that the bead (or a mobile robot) will roll toward the point sink (representative of
the goal position). The other important observation that can be made using Fig. 4.1
is that the singularity point is the global maximum of the potential field. This is a
property of a harmonic potential function. There is no local minimum. Therefore, a
fluid particle (or a mobile robot) moves toward the sink (or the goal position) and
will never be trapped in a local minimum.

4.3.2 Potential of a Uniform Flow

Another harmonic function useful for building artificial potentials is the uniform
flow potential, which varies linearly along the direction of the uniform flow it repre-
sents. In a 2D space, when the fluid flows in a direction that makes an angle α with
the x1-axis, the potential function for this uniform flow is
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φ = −U (x1 cos α + x2 sin α). (4.16)

The magnitude of the coefficient U is called the strength of uniform flow. The
source/sink singularities in Eq. (4.14) is used to derive the repulsive force (high
potential) of the obstacles and the attractive force (low potential) of goal position.
The uniform flow in (4.16) is used to derive a more effective artificial potential field
from a starting point to the goal position. This uniform flow provides a linearly
decreasing potential in the direction from a starting point to a goal position for the
unbounded environment.

Example 4.2. Using Eq. (4.16) plot the potential of a uniform flow with a direction
of 45◦ with respect to the x1-axis and with a strength of U = −1 in a square area of
2 by 2 m around the origin.

Solution. For a uniform flow along a directions that makes a 45◦ angle with the
x1-axis, the direction variable α becomes

α = π

4
(4.17)

The potential is plotted in Fig. 4.2. If one imagines a bead on the surface shown in
Fig. 4.2, they can see that the bead (or a mobile robot) will roll along a 45◦ line
toward the third Cartesian quadrant (because U is negative). The other important
observation that can be made using Fig. 4.2 is that there is no singularity. Therefore,
there is no global optimum for the potential field and the potential is decreasing
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Fig. 4.2 Potential of a uniform flow
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monotonically in one direction. This is a property of a harmonic potential function.
There is no local minimum. Therefore, a fluid particle (or a mobile robot) moves
indefinitely and will never be trapped in a local minimum.

4.3.3 Potential of a Line Segment (a Panel)

Since the boundary of the obstacles in 2D spaces will be approximated by line seg-
ments and define repulsive potential for them, the potential of a line segment, also
known as a panel in fluid mechanics, must be defined. The single panel in Fig. 4.3
is distributed with uniform sources, with strength per unit length λ. The potential at
any point (x1, x2) induced by the sources contained within the small element dl of
the panel at (0, l) is

dφ = λdl

2π
ln r = −λ

2π
ln
√

x2
1 + (x2 − l)2dl. (4.18)

The induced potential function by the whole panel is

φ(x1, x2) = λ

4π

∫ L

−L
ln(x2

1 + (x2 − l)2)dl. (4.19)

Example 4.3. Using Eq. (4.19), plot the potential of a 1-m-long source line segment
(L = 0.5 m) as shown in Fig. 4.3 with a strength per unit length of λ = −1 in a
square area of 2 by 2 m around the origin.

Solution. To calculate the potential of a source panel, Eq. (4.19) must be integrated
numerically for different values of x1 and x2. The potential is plotted in Fig. 4.4. If
one imagines a bead on the surface shown in Fig. 4.4, they can see that the bead

Fig. 4.3 A single line source (panel)
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Fig. 4.4 Potential of a source line segment (or source panel)

(or a mobile robot) will roll away from the source panel (representative of a line
obstacle). The other important observation that can be made using Fig. 4.4 is that
the global maximum occurs on the panel itself (since a singularity is distributed
along the panel). This is a property of a harmonic potential function. There is no
local minimum. Therefore, a fluid particle (or a mobile robot) moves away from the
obstacle indefinitely and will never be trapped in a local minimum.

The velocity field generated by a line panel can be found by partial differentiation
of the potential field function. Differentiation with respect to x1 and x2 gives the
expressions for the velocity components u1 and u2 corresponding to the Cartesian
coordinates x1 and x2, respectively.

u1(x1, x2) = − �φ

�x1
= −λ

2π

∫ L

−L

x1

x2
1 + (x2 − l)2

dl, (4.20)

u2(x1, x2) = − �φ

�x2
= −λ

2π

∫ L

−L

x2 − l

x2
1 + (x2 − l)2

dl, (4.21)

which result in

u1(x1, x2) = −λ

2π

(
arctan

x2 + L

x1
− arctan

x2 − L

x1

)
, (4.22)
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u2(x1, x2) = −λ

4π
ln

(
x2

1 + (x2 + L)2

x2
1 + (x2 − L)2

)
. (4.23)

The limiting value of normal velocity u1(x1, x2) in Eq. (4.22) is u1(0−, x2) = −λ/2
on the left face of the panel. This limit is u1(0+, x2) = λ/2 on the right face of
the panel. This shows that a source panel with a strength per unit length λ creates
a uniform normal outward velocity of magnitude λ/2 at the surface. The tangential
velocity starts at zero at the center of the panel and increases along the panel to the
edges, where the normal velocity is not defined and the tangential velocity becomes
infinite. The single panel has a singular point at each edge.

4.3.4 Superposition of Potentials

Any number of potential fields can be added to form a complicated potential field.
Since the summation of any number of harmonic potential fields still satisfy the
Laplace equation, the summation itself is a harmonic potential function.

Here, two potential functions are added as an example. A uniform flow of
strength U that flows in the direction of positive x1-axis (α = 0) is considered as

φ(x1, x2) = −U x1. (4.24)

The velocity components of this uniform flow are

u1(x1, x2) = U , (4.25)

u2(x1, x2) = 0. (4.26)

Note that these velocity components correspond to a flow in the positive x1 di-
rection. A simple superposition of the two harmonic functions in (4.19) and (4.24)
results in the uniform flow deflected by the source panel. The total x1 direction
velocity component of the source panel and the uniform flow at the left face of
panel −L < x2 < L is

u1(0−, x2) = U + λ

2
. (4.27)

This normal velocity on the left face of the panel is important, because the uni-
form flow, which flows to the right, is deflected by the left side of the panel. If U
equals λ/2, then u1(0−, x2) becomes zero for −L < x2 < L . That is, the induced
normal velocity from the source panel exactly cancels the velocity of the uniform
flow on the left face. Therefore, the resulting flow becomes tangential to the surface.
Both normal and tangential velocities at the origin (0−, 0) are zero. This is a stag-
nation point that the velocity of a fluid particle becomes zero instantaneously and
changes its direction to −x2 or +x2 direction.

In hydrodynamics, u1(0−, x2) is set to zero to satisfy the requirement that the
oncoming flow must be tangent to the panel, which represents the boundary of a
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solid. However, for our problem of obstacle avoidance, this requirement must be
modified. That is, the normal velocity must be greater than or equal to zero. This
requirement can be represented by

Vn = −u1(0−, x2) ≥ 0 (4.28)

Three examples of different Vn’s are shown in Figs. 4.5, 4.6, and 4.7. Here U = 1,
L = 1, and λ is determined by the given Vn:

λ = −2(U + Vn) (4.29)

Figures 4.5, 4.6, and 4.7 correspond to Vn = 0, Vn = 0.5, and Vn = 2.0, respec-
tively. The corresponding strengths are λ = −2, −3, and −6 from Eq. (4.29). These
figures show the trajectories of some fluid particles starting at different positions.
Again, note that the motion of a fluid particle can be thought of as the navigation
of a point mobile robot that avoids a line obstacle. We can observe that the fluid
particle (or mobile robot) moves further away from the panel as the strength of
the panel increases. This is a matter of economy or safety. When we increase the
strength, the path is longer, however, the trajectory is safer.

Note that Fig. 4.5 represents the solution used for actual fluid flow simulations,
in which Vn = 0 indicates that the velocity of any fluid particle that touches the
panel (as the boundary of a solid body) is zero. However, since Vn = 0 allows a
fluid particle (a mobile robot) to touch the panel, it is not safe for use for obsta-
cle avoidance. The two main differences between hydrodynamics and our obstacle
avoidance problem are as follows.
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Fig. 4.5 Single panel with strength, λ = −2, for Vn = 0.0
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Fig. 4.6 Single panel with strength, λ = −3, for Vn = 0.5

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

 x1 (m)

 x
2 (

m
)

Fig. 4.7 Single panel with strength, λ = −6, for Vn = 2.0
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1. For obstacle avoidance, the normal velocity on the left face of a panel is recom-
mended to be greater than zero to avoid a path very close to the obstacle.

2. The obstacle avoidance problem has a goal point that robot must reach. Thus,
the potential for the obstacle avoidance will be composed of a uniform flow,
distributed singularities on the panels (obstacle boundaries), and a sink (a goal
singularity). In the next section, we consider the use of multiple panels to repre-
sent complex obstacles.

Until now, it was shown how a particle moving in a potential flow is analogous
to a mobile platform avoiding obstacles. Then, the equations of potential flow for
a single line-shaped obstacle were derived. In the next section, the potential field
method is extended to the case of arbitrary shaped obstacles. The arbitrary-shaped
obstacles are represented by polygons. The polygons are modeled using multiple
line obstacles.

4.3.5 Multiple Line Obstacles

Figure 4.8 illustrates the use of a set of source/sink line obstacles for representing an
arbitrarily shaped obstacle in two dimensions. The obstacle is approximated by a set
of line obstacles, which are numbered clockwise. Figure 4.9 shows the details of the
line obstacle geometry. The desired outward normal velocity generated by each line
obstacle at its center point is considered as an input variable. The boundary points
are the intersections of neighboring line obstacles. The angle between line obstacle
i and the x1-axis is denoted by θi , and the angle between the outward normal unit

Fig. 4.8 Approximating the geometry of an obstacle by a number of line obstacles
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Fig. 4.9 Two line obstacles i and j . The effect of the source/sink singularity distributed along the
length of line obstacle j is integrated at the center point of line obstacle i

vector n̂ of line obstacle i and the x1-axis is denoted by βi . One can see that βi =
θi + π/2.

m is the total number of line obstacles, whose lengths are usually not equal.
Sources/sinks of uniform density are distributed on each of the m line obstacles and
λ1 to λm represent source/sink strengths per unit length on these line obstacles. Line
obstacle j produces the following velocity potential at any point (x1, x2) in the 2D
space

φ j = λ j

2π

∫
j
ln R j dl j , (4.30)

where

R j =
√

(x1 − x j1 )2 + (x2 − x j2 )2. (4.31)

Since it is assumed that the robot should reach a goal, an attractive potential is
needed at this goal, where the potential has only one global minimum. This attractive
goal can be represented by a singular point sink. This sink works similar to a point
drain in a bathtub. It is assumed that the goal sink have a strength of λ j > 0. Then
its potential is

φg = λg

2π
ln Rg , (4.32)

where

Rg =
√

(x1 − xg1 )2 + (x2 − xg2 )2 (4.33)
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is the distance between the point (x1, x2) and the goal point (xg1, xg2 ). The potential
of uniform flow, which tends to push the robot to the goal, is rewritten as

φu = −U (x1 cos α + x2 sin α), (4.34)

where α is the angle between the x1-axis and direction of the uniform flow. The
obstacles, goal, and uniform flow generate a total potential as follows

φ(x1, x2) = φu + φg +
m∑

j=1

φ j . (4.35)

If the strength of the uniform flow U and the strength of the goal sink λg are
specified, our objective is to derive the strengths of the m line obstacles. At least
m independent equations are needed to solve this problem. If the outward normal
velocities generated at the center of the m line obstacles are specified, these m equa-
tions can be derived. In Eq. (4.29), the relationship between the normal velocity on
a line obstacle and the line obstacle strength for a single line obstacle was derived.
A similar expression for the general case can be derived with given desired outward
normal velocity on each line obstacle. A Vi > 0 is assumed for the desired outward
normal velocity at the center point (xc1 , xc2 ) of line obstacle i . Note that this out-
ward normal velocity is satisfied only at the center point of each line obstacle. The
resulting m equations are

�

�ni
φ(x1, x2) = −Vi i = 1, . . . , m (4.36)

These are m linearly independent equations with m unknowns λ1 to λm . The poten-
tial at the center point (xc1 , xc2 ) is as follows

φ(xci1 , xci2 ) = −U (xci1 cos α+xci2 sin α)+ λg

2π
ln Rgi +

m∑
j=1

λ j

2π

∫
j
ln Ri j dl j , (4.37)

where Ri j is the distance between the goal and the center point of line obstacle i ,
(xci1 , xci2 ), and Ri j is the distance between (xci1 , xci2 ) and a point on line obstacle j
as shown in Fig. 4.9.

Equation (4.37) is substituted into Eq. (4.36). Note that the contribution to the
normal velocity on line obstacle i by itself is λi/2 (as shown with a single line
obstacle in the previous section). Therefore, Eq. (4.36) becomes

λi

2
+

m∑
j �=i

λ j

2π
Ii j = −Vi+U

�

�ni
(xci1 cos α+xci2 sin α)− λg

2π

�

�ni
ln Rgi , i = 1, . . . , m,

(4.38)
where
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Ii j =
∫

j

�

�ni
ln Ri j dl j , (4.39)

and

Ri j =
√

(x j1 − xci1 )2 + (x j2 − xci2 )2. (4.40)

Using the geometric relations

x j1 = x0 j1 + l j cos θ j , (4.41)

x j2 = x0 j2 + l j sin θ j , (4.42)

where θ j is the angle between line obstacle j and x1-axis, and is positive in counter-
clockwise direction, Ii j can be integrated as

Ii j = 1

2
C ln

(
1 + L2

j + 2L j A

B

)
−
(

arctan
L j + A

E
− arctan

A

E

)
cos(θi − θ j )

(4.43)
for E �= 0, and

Ii j = C

(
ln

∣∣∣∣ L j + A

B

∣∣∣∣− L j

L j + A

)
+ D

(
1

A
− 1

L j + A

)
(4.44)

for E = 0, where

A = −(xci1 − x0 j1 ) cos θ j − (xci2 − x0 j2 ) sin θ j , (4.45)

B = (xci1 − x0 j1 )2 + (xci2 − x0 j2 )2, (4.46)

C = sin(θi − θ j ), (4.47)

D = −(xci1 − x0 j1 ) sin θi − (xci2 − x0 j2 ) cos θi , (4.48)

E = (xci1 − x0 j1 ) sin θ j − (xci2 − x0 j2 ) cos θ j . (4.49)

The parameter E becomes zero when the center point of line obstacle i is on the
extension of line obstacle j . Other terms of Eq. (4.38) are as follows

U
�

�ni
(xci1 cos α + xci2 sin α) = U sin(α − θi ), (4.50)

λg

2π

�

�ni
Rgi = λg

4π

�

�ni
ln((xci1 − xg1 )2 + (xci2 − xg2 )2)

= λg

2π

−(xci1 − xg1 ) sin θi + (xci2 − xg2 ) cos θi

(xci1 − xg1 )2 + (xci2 − xg2 )2
. (4.51)
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Now, Eq. (4.38) can be written as

P� = q, (4.52)

where

Pi j =
{

1/2, if i = j

Ii j/2π, if i �= j
, (4.53)

qi = −Vi + U
�

�ni
(xci1 cos α + xci2 sin α) − λg

2π

�

�ni
ln Rgi , (4.54)

and

� = [λ1, . . . , λm]T . (4.55)

Now, Eq. (4.52) is solved to determine the strengths per unit length of the line
obstacles. Once the strengths are obtained, the following velocity equations are used
to derive a trajectory for mobile robot

u1(x1, x2) = − �φ

�x1
= U cos α − λg

2π

�

�x1
ln Rgi −

m∑
j=1

λ j

2π

∫
j

�

�x1
ln Ri j dl j , (4.56)

u2(x1, x2) = − �φ

�x2
= U sin α − λg

2π

�

�x2
ln Rgi −

m∑
j=1

λ j

2π
,
∫

j

�

�x2
ln Ri j dl j (4.57)

where

�

�x1
ln Rgi = x1 − xg1

(x1 − xg1 )2 + (x2 − xg2 )2
, (4.58)

�

�x2
ln Rgi = x2 − xg2

(x1 − xg1 )2 + (x2 − xg2 )2
, (4.59)

∫
j

�

�x1
ln Ri j dl j = − 1

2
ln(1 + L2

j + 2L j A1

B1
) cos θ j

+ (arctan
L j + A1

E1
− arctan

A1

E1
) sin θ j , (4.60)
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∫
j

�

�x2
ln Ri j dl j = − 1

2
ln(1 + L2

j + 2L j A1

B1
) sin θ j

− (arctan
L j + A1

E1
− arctan

A1

E1
) cos θ j , (4.61)

and

A1 = −(x1 − x0 j1 ) cos θ j − (x2 − x0 j2 ) sin θ j , (4.62)

B1 = (x1 − x0 j1 )2 + (x2 − x0 j2 )2, (4.63)

E1 = (x1 − x0 j1 ) sin θ j − (x2 − x0 j2 ) cos θ j . (4.64)

4.3.6 Uniform Flow

The uniform flow, which is added to the potential field, generates a more effective
potential field from a starting position to a goal position. This acts as an intuition for
the robot to persue the goal. The direction of the uniform flow can be determined as

α = arctan
xg2 − xs2

xg1 − xs1

, (4.65)

where (xs1 , xs2 ) is the coordinate of the start point for the robot. The uniform flow is
directed along a straight line connecting the start and goal positions. The relation-
ship between the strength of a uniform flow and the strength of a single source line
obstacle was presented in the previous section. Increasing the strength of a uniform
flow affects the resulting trajectory the same as decreasing the strength of a source
line obstacle. Again, the strength of a uniform flow is assumed, but the strengths
of line obstacles are determined by Eq. (4.52). If the strength of a uniform flow is
increased, the strengths of line obstacles, obtained from Eq. (4.52), also increase to
satisfy the given normal velocity Vj .

4.3.7 Goal Sink

The purpose of using the goal sink is to provide a global minimum. That is, the
potential function of (4.35) has only one global minimum at the location of this goal
sink. The strength of this goal sink must be large enough such that it can attract the
robot. If not, a robot may follow the uniform flow and can miss the goal and pass
by it. To minimize the possibility of collision of the robot with obstacles and the
possibility of missing the goal, the strength of the goal sink and the source/sink line
obstacles of the obstacle must satisfy the following inequality

− λg < λo < 0, (4.66)
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where the obstacle strength λo is defined as

λo =
m∑

i=1

λi Li . (4.67)

If the obstacle strength λo is positive, one can conclude that there is more sink
than source in the line obstacles and the net effect of obstacle is attractive. Thus,
with the resulting potential function, the robot may collide with the obstacles. This
positive obstacle strength can be derived, if velocities Vi ’s in Eq. (4.38) are too
small. For an obstacle to provide a repulsive potential, line obstacles must have more
source than sink. On the contrary, if velocities Vi ’s are very large, it is possible that
−λg > λo. Then, the velocity field created by the obstacles may prevent the particles
in the flow from going into the goal sink. That is, a mobile robot cannot reach the
goal and will move to infinity following the uniform flow. In conclusion, one can
say that the inequality (4.66) indirectly gives the bounds of Vi ’s, which we have
to specify to derive the strengths of line obstacles. Large Vi ’s imply a safer but less
economical (longer) trajectory away from obstacles. However, there is a limit of how
high Vi ’s can be. This limit is indirectly set by the inequality (4.66). The following
example illustrates this concept.

Example 4.4. Consider an equilateral triangle as an obstacle. The vertices of the
triangle are located at (−1, 0) m, (0, 1.73) m, and (1, 0) m. A mobile robot is initially
located at the start point xs = (−1,−4) m and must go to the goal point xg = (1, 4)
m. Using the potential field method with harmonic potentials, plan a path from the
start point to the goal point. Assume that the uniform flow has a unit strength (U =
1) and the strength of the goal is 30 (λg = 30). Use equal Vi ’s for all the sides of the
triangle (line obstacles). Test Vi equal to 0.0, 1.0, 2.0, 3.0, 4.0, and 5.0 and compare
the corresponding calculated paths.

Solution. The parameters that define the line obstacles of the triangular obstacle
are determined. Figure 4.9 is used as a template. It is crucial that the line obstacle
parameters are determined such that the normal vector of all line obstacle, ni ’s, point
toward outside of the obstacle. The parameters for line obstacles 1–3 are shown in
Table 4.1.

The uniform flow direction is calculated such that the flow directed from the
robot’s start point to its goal point. Using Eq. (4.65) results in

α = arctan
4 − (−4)

1 − (−1)
= 1.3258 rad. (4.68)

Table 4.1 Parameters of line obstacles forming the triangular obstacle

Line obstacle j x0 j1 (m) x0 j2 (m) L j (m) θ j (rad)

1 −1.00 0.00 2.00 π/3
2 0.00 1.73 2.00 −π/3
3 1.00 0.00 2.00 π
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All the parameters required to calculate the terms in Eq. (4.52) are at hand at
this stage, and the matrices needed for solving for the line obstacle strengths can be
determined.

For Vi ’s equal to 0.0, the following matrices can be derived.

P =
⎡
⎣0.5000 0.2007 0.2007

0.2007 0.5000 0.2007
0.2007 0.2007 0.5000

⎤
⎦ q =

⎡
⎣ 0.3810

1.6432
−2.0936

⎤
⎦ (4.69)

These matrices result in the following strengths per unit length for the line obstacles.

� =
⎡
⎣ 1.3247

5.5421
−6.9437

⎤
⎦ (4.70)

The strengths corresponding to the other values of Vi can be determined by using
a similar procedure as described above. The results are listed in Table 4.2.

Once the strengths are determined, one can use Eqs. (4.56) and (4.57) to find
the flow particle velocities at any point (x1, x2). These velocities are numerically
integrated to obtain a path from the robot’s start point to its goal point. The path is
defined as an array of points. The coordinates of each point k + 1 of this array is
calculated based on the coordinates of the previous point k and the particle velocities
at that point k.

xk+1 = xk + uk

|uk |�s, (4.71)

where �s is a small path step for integration, and u = [u1, u2] is the particle velocity
vector, whose components are calculated using Eqs. (4.56) and (4.57). The start
point’s coordinates are used to initialize the integration. That is,

x1 = xs (4.72)

The numerical integration procedure is terminated when an xk is found that is closer
to the robot’s goal point than a predefined tolerance.

Table 4.2 Obstacle’s total strength for different Vi ’s

Vi λ1 λ2 λ3 λo λg Eq. (4.66) true?

0.0 1.3247 5.5421 −6.9437 −0.1537 30 Yes
1.0 0.2154 4.4328 −8.0530 −6.8099 30 Yes
2.0 −0.8940 3.3234 −9.1624 −13.4660 30 Yes
3.0 −2.0033 2.2141 −10.2718 −20.1221 30 Yes
4.0 −3.1127 1.1047 −11.3811 −26.7782 30 Yes
5.0 −4.2220 −0.0046 −12.4905 −33.4343 30 No
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Fig. 4.10 Paths for a robot avoiding a triangular obstacle for different Vi ’s

The above integration procedure is used to find the paths for different Vi ’s. These
paths are shown in Fig. 4.10. The path corresponding to Vi = 0.0 is the closest to the
obstacle. (This is actually an approximation of the streamline of a fluid flow around
the triangle as a solid body.) Note that this path is not practical for a robot with a
finite size. As it was anticipated, larger Vi ’s result in a longer path farther from the
obstacle. Depending on the size of the robot, any of the paths for Vi = 1.0–4.0 are
acceptable solutions.

Note that although higher values for Vi result in safer paths, there is a limit for
valid Vi ’s. As shown in Table 4.2, the obstacle’s total strength increases as the
value for Vi ’s increases. At some Vi value, the total repulsive source strength of
the obstacle becomes stronger than the attractive sink strength of the goal and the
inequality (4.66) no longer holds (see Table 4.2). This situation has occurred for
Vi = 5.0 for this example. As can be seen in Fig. 4.10, the goal cannot attract the
robot and the robot misses the goal.

The above example shows how the effectiveness of the potential field is affected
by the value selected for Vi ’s. The correct value for Vi ’s depends on the size and
shape of the obstacle and the relative position of the robot’s start point and the goal
point with respect to the obstacle. Determining this value by trial and error in real
world situations is not practical. A method is required to determine the safe value
automatically. The next section discusses this method.
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4.4 Two-Dimensional Robust Harmonic Potential Field

In the previous section, for generating an artificial potential field, the velocity of
particles at the center point of each panel had to be specified to be able to solve a
path planning problem. The value of this velocity must have been selected such that
the total obstacle repulsive strength becomes less than the goal attractive strength.

This is required to guarantee that the robot does not miss the goal and the goal
is the global minimum of the potential. The value of these velocities highly depend
on the size and shape of the obstacles. Since the sizes of the obstacles are different
for different path planning problems, it is impossible to decide the value of normal
velocities by trial and error. Therefore, a method for automatically adjusting the po-
tential field parameters based on the obstacle sizes is needed. This section presents
the innovative method. A robust artificial potential field can be generated for any
sizes of obstacles by using the method to be presented in this section. This potential
field is used for obstacle avoidance.

In the previous section, the artificial potential field was generated using the su-
perposition of a number of harmonic potential functions.

φ(x1, x2) = φu + φg +
m∑

j=1

φ j (4.73)

In the above equation, which is a repeat of Eq. (4.35), U and λg must be specified.
Then, to compute the m panel strengths, m normal outward velocities Vi on each
panel must be specified and the following system of linear equations must be solved
in terms of m panel strengths per unit length λ j . This equation is the repeat of
Eq. (4.38).

λi

2
+

m∑
j �=i

λ j

2π
Ii j = −Vi+U

�

�ni
(xci1 cos α+xci2 sin α)− λg

2π

�

�ni
ln Rgi i = 1, . . . , m

(4.74)
The m normal outward velocities Vi must be chosen such that, after solving (4.74),
the following condition is satisfied.

− λg > λo > 0, (4.75)

where the obstacle strength λo was defined as

λo =
m∑

i=1

λi Li . (4.76)

Equation (4.75) is called the convergence condition because it indicates that the
summation of obstacle repulsive strengths is less than the goal attractive strength.
If the convergence condition is true, it is guaranteed that the robot does not miss
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the goal and the goal is the global minimum of the potential. But whether or not
this condition is true highly depends on how the m normal outward velocities Vi on
each panel are specified. In the case of known obstacles, it may be enough to specify
them once with trial and error and the potential field could be useful. However, in
the case of unknown obstacles, a method is needed to compute them automatically
such that the inequality (4.75) is satisfied.

Equation (4.74) is rewritten as

m∑
j=1

Pi jλ j = −Vi + Wi , (4.77)

where

Pi j =
{

1/2 if i = j

Ii j/2π if i �= j
, (4.78)

and

Wi = U
�

�ni
(xci1 cos α + xci2 sin α) − λg

2π

�

�ni
ln Rgi i = 1, . . . , m. (4.79)

If J = P−1, one can write

λi =
m∑

j=1

Ji j (−Vj + W j ) i = 1, . . . , m. (4.80)

Substituting Eq. (4.80) into (4.76) and (4.75) results in

m∑
i=1

Li

m∑
j=1

Ji j Vj < λg +
m∑

i=1

Li

m∑
j=1

Ji j W j . (4.81)

If it is assumed that the outward normal velocity of a panel is proportional to its
length, that is,

Vj = aL j , (4.82)

then Eq. (4.81) reduces to

a < amax, (4.83)

where

amax = λg +∑m
i=1 Li

∑m
j=1 Ji j W j∑m

i=1 Li
∑m

j=1 Ji j L j
. (4.84)
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Since all the parameters on the right hand side of Eq. (4.84) are known, one can
simply calculate amax and choose a value for a that satisfies the inequality (4.83).
Then, the outward normal velocities that are guaranteed to satisfy Eq. (4.66) are
computed from Eq. (4.82).

The parameter a is called the safety parameter. Larger a’s result in larger Vi ’s,
which in turn result in a safer path far from the obstacle. amax is the maximum allow-
able safety parameter, based on which one can determine the maximum allowable
Vi ’s. If a is greater than amax, the repulsive strength of the obstacle will be too much
and the robot will miss the goal point. The safety ratio is defined as

ra = a

amax
, 0 < ra < 1. (4.85)

For practical purposes, the safety ratio ra is selected by the robot’s user. Then,
the maximum allowable safety parameter is determined using Eq. (4.84) and a is
determined using Eq. (4.85). When a is at hand, the robust panel strengths are com-
puted as

λi =
m∑

j=1

Ji j (−aL j + W j ) i = 1, . . . , m. (4.86)

These panel strengths are used for forming the total potential field, calculating
the fluid particle velocities. The corresponding velocity field, u = (u1, u2), is then
derived from u = −∇φ and using Eq. (4.73).

u1(x1, x2) = U cos α − λg

2π

�

�x1
ln Rg −

m∑
j=1

λ j

2π

∫
j

�

�x
ln R j dl j (4.87)

u2(x1, x2) = U sin α − λg

2π

�

�x2
ln Rg −

m∑
j=1

λ j

2π

∫
j

�

�y
ln R j dl j (4.88)

Note that these velocities correspond to the artificial potential field built for ob-
stacle avoidance. Once again, one may use the analogy of this artificial potential to
that of an irrotational incompressible fluid flow, and note that these velocities can
be thought of as the velocity of fluid particles, which are not the real velocity of
the robots. In fact, it may not be possible to use these velocities directly to control
the velocity of the robots because they could be too high for the robots to achieve.
In this situation, a control strategy is needed to use the velocity information of the
potential field and plan a trajectory for the robots. In the following section, these
issues are discussed and methods to use the velocity field information for obstacle
avoidance are proposed.
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4.5 Path Planning for a Single Mobile Robot

The following steps summarize the use of the developed theories for path planning.

4.5.1 Algorithm for a Single Robot

1. The uniform flow strength U , the goal strength λg , and the safety ratio ra are
selected. It is recommended that the goal strength should be much larger than
the uniform flow strength for a more effective potential field.

2. The start position xs = (xs1, xs2) and the goal position xg = (xg1, xg2) are de-
fined.

3. The obstacle line segments’ parameters according to the notation introduced for
line obstacle i in Fig. 4.9 are determined. Extra care must be taken in defining
the reference point (x0i1, x0i1) and θi such that the normal unit vector ni points to
the outside of the obstacle. If this condition is not met, the generated paths may
interfere with the obstacles.

4. The direction of the uniform flow is obtained from Eq. (4.65).
5. The elements Pi j are calculated using Eq. (4.53) [or (4.78)], and Wi from

Eq. (4.79).
6. The parameter amax is evaluated using Eq. (4.84) and a is found from Eq. (4.85).
7. The strength per unit length for the m panels are calculated using Eq. (4.86).
8. The velocity components given by Eqs. (4.87) and (4.88) are used to find the

direction of the local tangent to the path. The path is generated numerically. The
path starts at x1 = xs . At any step k, the direction of the instantaneous velocity
(the direction of local tangent to the path) and the new position are calculated as
follows.

uk = u(xk), (4.89)

ûk = uk

|uk | , (4.90)

xk+1 = xk + �sûk , (4.91)

where �s is an arbitrary small distance. The iteration in k continues until the
point found for the path is closer than the defined small distance �s.

||xk+1 − xg|| ≤ �s (4.92)

9. The array of points xk is the planned path.

In the following, a path planning example is presented.

Example 4.5. Consider the obstacle avoidance scenario laid out in Example 4.4. Cal-
culate the maximum allowable safety parameter and the maximum allowable Vi ’s
for all the line obstacles. Plan the path of the robot from its start position to its goal
position for the safety ratio values of 0.0–1.0 with increments of 0.2.
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Table 4.3 Obstacle’s total strength for different ra’s

ra a Vi λ1 λ2 λ3 λo λg

0.0 0.0000 0.0000 1.3247 5.5421 −6.9437 −0.1537 30
0.2 0.4484 0.8968 0.3298 4.5472 −7.9386 −6.1230 30
0.4 0.8968 1.7936 −0.6650 3.5524 −8.9335 −12.0922 30
0.6 1.3452 2.6904 −1.6599 2.5575 −9.9283 −18.0615 30
0.8 1.7936 3.5872 −2.6548 1.5626 −10.9232 −24.0307 30
1.0 2.2420 4.4840 −3.6496 0.5677 −11.9181 −30.0000 30

Solution. For the robot’s start and goal positions and the obstacle given in Exam-
ple 4.4, one can calculate the matrices J and W.

J =
⎡
⎣ 2.5973 −0.7440 −0.7440

−0.7440 2.5973 −0.7440
−0.7440 −0.7440 2.5973

⎤
⎦ W =

⎡
⎣ 0.3810

1.6432
−2.0936

⎤
⎦ (4.93)

Substituting these values into Eq. (4.84) results in

amax = 2.2420 (4.94)

Since all the line obstacles have the same length of Li = 2.0 m (i = 1, . . . , 3), the
maximum allowable Vi for all the line obstacles are equal to

Vimax = amaxLi = 4.4840 (4.95)

This confirms the result of Example 4.4, in which a Vi = 5.0 > 4.4840 caused the
robot to miss its goal point.

After amax is at hand, one can use the safety ratio ra to find a and the allowable
Vi ’s, calculate the line obstacle strengths using Eq. (4.86), and plan a path for the
robot. The line obstacle strengths for different values of the safety ratio are listed
in Table 4.3. As a conclusion from Table 4.3, note that as long as one selects a
safety ratio less than (or equal to) one, the obstacle strength is smaller than (or equal
to) the goal’s strength, and the robot does not miss its goal point. The robot’s path
corresponding to different safety ratios are shown in Fig. 4.11.

4.6 Path Planning for Multiple Mobile Robots

In this section, the case in which more than one robot is working in an environment
with obstacles is considered. The method discussed in this section also applies to a
single robot in an environment with moving obstacles.1

1 Some of the material of this section has been adapted from the article titled: “Real-time obstacle
avoidance for multiple mobile robots,” By Farbod Fahimi, C. Nataraj and Hashem Ashrafiuon,
Robotica, Copyright 2008 Cambridge University Press, UK.
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Fig. 4.11 Paths for a robot avoiding a triangular obstacle for different ra’s

In the case of path planning for a single robot in an environment with stationary
obstacles, the potential field does not change; hence, it is sufficient to specify the
potential gradients once such that the convergence condition is satisfied.

However, in the case of a group of robots, where each robot must consider the
other robots of the group as moving obstacles, the obstacles’ positions are constantly
changing. When the obstacles’ positions are constantly changing, it is necessary
to update the potential field, Eq. (4.73), as the robots move. In other words, the
changing potential field has to satisfy the convergence condition (4.75) at all times.

The implementation of the potential method for trajectory planning of a group
of n mobile robots follows. It is assumed that a typical robot in the group considers
the other robots of the group as moving obstacles. This means that each robot of the
group has a different artificial potential field, which is time-dependent. Let u(i)(t) =
−∇φ(i)(t) be the potential gradient that is computed for the robot i . Also, without
loss of generality, it can be assumed that all members of the group have a maximum
velocity of vmax. Then, the normalized instantaneous velocity of each robot is set as

v(i)(t) = vmax

umax(t)
u(i)(t), (4.96)

where umax(t) is the magnitude of the largest potential gradient of those computed
for the robots at time t .
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umax(t) = max(|u(i)(t)|, i = 1, . . . , n), (4.97)

where n is the number of robots. Given the initial position vector of the robot i ,
P(i)

0 , one can compute the trajectory of each robot by integrating the instantaneous
velocity.

P(i)(t) = P(i)
0 +

∫ t

0
v(i)(τ )dτ . (4.98)

Once the trajectory has been determined, it can be fed to a trajectory-tracking con-
troller, which controls the robots such that they follow the planned trajectory. The
trajectory-tracking controllers are discussed in the next chapter.

4.6.1 Algorithm for Multiple Robots

A group of n mobile robots are considered in a field of moving and stationary ob-
stacles. It is assumed that the starting position and geometry of robots and obstacles
are known. The goal position of all the robots, the uniform flow strength, U , the
goal strength, �g , the safety ratio ra = a/amax, and the update time interval �t are
preselected. Also, the trajectories of the moving obstacles are assumed to be known.
A ground station, which plans the trajectories, is in communication with the robots.
The ground station and the robots execute the following algorithm.

1. At time t , the robots sequentially communicate their positions to the ground
station. The ground station sets up an obstacle field for robot i based on the
panels corresponding to the stationary and moving obstacles plus 4(n −1) panels
representing the other robots of the group. The goal sink is defined at the corre-
sponding goal position of the robot i , and the uniform flow potential is directed
from the current position of this robot to its goal position.

2. For robot i , the ground station uses the above artificial potential setup along with
Eqs. (4.53), (4.79), and (4.84) and computes the robot i’s corresponding amax.

3. Then, it obtains a by using the specified value for the safety ratio ra and calcu-
lates the corresponding panel strengths, λ j ’s from Eq (4.86).

4. For robot i , the ground station determines the potential gradient, u(i)(t), corre-
sponding to the robot i’s current location from Eqs. (4.87) and (4.88). The ground
station executes Steps 2 to 4 for all the robots.

5. The ground station searches for equal magnitudes of the potential gradients
among all the robots. If it detects a subgroup of robots that see equal poten-
tial gradients, it modifies the potential gradients of that subgroup. The potential
gradient of the robot with the lowest number in the subgroup remains unchanged,
and the potential gradient for the robot with the highest number in the subgroup
is set to zero. Then, the ground station determines the potential gradient of the
rest of the robots in the subgroup by linear interpolation between the equal
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potential gradient and zero. This step is necessary, or members of the subgroup
may collide with each other.

6. The ground station searches for the maximum potential gradients that are cal-
culated for the group of robots, Eq. (4.97), and plans the robots’ instantaneous
velocities at current time t using the control strategy defined in Eq. (4.96). Then,
it sequentially sends the calculated instantaneous velocities to all the robots.

7. Robot i computes its desired position at time t + �t from Eq. (4.98) and tracks
this trajectory using a trajectory-tracking controller.

At time t + �t the robots have moved to new positions. The algorithm starts from
the first step and repeats for the new positions. This procedure continues until all the
robots are at their goal positions.

Note that although the robots are numbered from 1 to n, the numbers are not
priority numbers by any means and are only for reference. In general, the numbering
does not affect the result of the algorithm because the velocity of the robots are
determined only based on the potential gradients. The only minor exception is when
a subgroup of robots see equal potential gradients. In this case, the robot numbers
affect the calculation of the velocity of the robots in the subgroup as explained
above.

Example 4.6. Consider three robots 1, 2, and 3 that are initially located at start
positions S1(0.6, 1.5), S2(−0.6, 1.5), and S3(0.0, 1.5) m, respectively. The robots’
goal points are defined at G1(−0.6,−1.2), G2(0.6,−1.5), and G3(0.0,−1.2) m for
robots 1, 2, and 3, respectively. All the robots have the same size of 0.20 m by
0.15 m and a maximum speed of 0.1 m/s. Two long obstacles with a depth of 0.4 m
have left an opening of 0.45 m. The opening is centered around the y axis. Apply
the procedure described in Section 4.6.1 to plan the trajectory of the three robots.

Solution. The values U = 1 m/s and λg = 30 m2/s are used for uniform flow strength
and goal attractive strength, respectively, for all robots. Also, safety ratio ra is set to
0.99 to minimize the possibility of collision. The robots’ geometry are approximated
by rectangles with dimensions twice as large as the robots’ dimensions. This is
required because when the potential field is generated for a typical robot in the
group, the robot itself is treated as a point. By assuming larger dimensions for the
other robots, it is guaranteed that the robots do not collide. The same argument
is valid for the dimensions of the obstacles. Therefore, the stationary and moving
obstacles are approximated by polygons that are larger than the actual obstacles
by half of the largest dimension of the largest robot. The procedure described in
Section 4.6.1 is applied to plan the trajectory of the three robots.

Figure 4.12 shows six snapshots of the robot group motion. The start and goal
points are marked on the figure. The two obstacles forming a narrow passage are
shown by thick lines. Robots are shown by rectangles with arrows indicating the
direction of their movement. The traces of the robots are also shown.

It is seen that due to the width of the narrow passage, the robots cannot pass
the opening at the same time and are on a collision course. The only way is to go
through the opening one at a time. Also, note that robots 1 and 2 are symmetrical
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Fig. 4.12 Snapshots of the motion of three robots avoiding obstacles

with respect to obstacles, which means that they are at points with equal potentials.
The symmetry detecting algorithm, described in Section 4.6.1, slows down robot
1 to avoid collision. As seen in Fig. 4.12, robots 1 and 2 slow down while robot
3 is passing the opening, after which robot 2 speeds up and robot 1 follows. The
robots manage to arrive at their corresponding goal points without colliding with
each other and the obstacles. Robots 1, 2, and 3 are at their goals after 58, 50, and
27 s, respectively.



4.8 Three-Dimensional Harmonic Potential Functions 111

4.7 Structural Local Minimum and Stagnation Points

Maybe the most common disadvantage of the potential field methods is the prob-
lem of local minima. Fortunately, this problem can be addressed by using harmonic
potentials and the panel method. However, attention must be paid to the general lim-
itations of the potential field methods and the particular issues of the panel method
(or harmonic potential fields).

Generally, in the potential field methods, the robot is considered as a point without
physical dimensions. With this assumption, a planned trajectory among obstacles that
is valid for a point robot may not be valid for a robot with real physical dimensions.
This is known as the structural local minimum. To avoid the structural local minimum,
the size of the mobile robot whose path is being planned must be considered. This can
be done by extending the size of the obstacles and other robots in the workspace by at
least half of the size of the mobile robot. When the size of the obstacles are extended as
described above, an opening between two obstacles that has a dimension just equal to
the size of the robot appears to be blocked. Therefore, no path will be planned through
that opening, which is impossible to be passed by the robot.

Another issue of harmonic potential fields is the existence of stagnation points
(local maxima) at which the potential gradient is zero. In the vicinity of these points,
the planned velocity for a robot becomes very close to zero and there is a possibility
that a robot will be trapped at these points. However, these points are not considered
as stable equilibrium points in the potential because the gradient of the potential
in the vicinity of these points (local maxima) is negative. This means that if the
robot is disturbed from a stagnation point, it will continue its way toward the global
minimum of the potential. A step can be easily incorporated into the path planning
algorithm, which will assign a small velocity away from the obstacle to the robot if
it detects a stagnation point.

4.8 Three-Dimensional Harmonic Potential Functions

In the previous section, the 2D path planning problem was considered. A 2D path
can be used for vehicles that work in 2D environments, for example, on the ground
or in the sea. However, to plan a path for the end-effector of a spatial manipulator or
for an aerial robot moving in a 3D space, a spatial method is required. This section
presents such a method.

In this section, the basic idea of using a harmonic potential field, as discussed in
the previous section, is used. The formulations, however, are designed for the case
of a spatial motion. Here, a systematic method can be found to plan a spatial path for
a single aerial robot or a manipulator’s end-effector to avoid known 3D obstacles.

4.8.1 Uniform Flow

Similar to the 2D case, a uniform flow from a starting position to a goal position
is used to setup the potential field to generate a more effective field. When the start
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point is far from the goal point, the goal point’s potential is too weak to attract the
robot effectively. The uniform flow drives the robot toward the goal point in such a
situation, resulting to a more effective potential. The 3D potential of uniform flow,
φu , is written as

φu = −(a1x1 + a2x2 + a3x3)U , (4.99)

where a1, a2, and a3 are the direction cosines of a line connecting the start point to
the goal point and U is the strength of the potential. Note that the potential function
defined for φu is harmonic, i.e., it satisfies the 3D form of the Laplace equation (4.5).

Example 4.7. Plot the potential generated by a uniform potential of

φu = (x1 + x2 + x3)U , U = 1 m/s, (4.100)

on a 2 by 2 m flat surface parallel to the x1 − x2 plane passing through x3 = 0 m and
centered at the origin

Solution. The target plane can be described by

− 2 ≤ x1 ≤ 2 m, − 2 ≤ x2 ≤ 2 m, x3 = 0 m. (4.101)

The x1 and x2 intervals are divided into 30 equal increments, summing to a total
of 961 points. The potential at these points are calculated and plotted as a mesh.
Figure 4.13 shows the resulting mesh. The slope of this potential in the x1 and
x2 directions, observed from the figure, are −1 (m2/s)/m. The velocity field that
this potential generates is negative of the gradient of the potential field. Therefore,
the components of the generated velocity field along the x1 and x2 directions are
+1 m/s. The component of the velocity field in the x3 direction cannot be observed
from Fig. 4.13.

4.8.2 Goal Sink

Since the robot must reach the goal, an attractive harmonic potential is needed at
the goal, where the superposed potential has only one global minimum. This attrac-
tive goal can be represented by a singular point sink. The 3D harmonic potential
generated by the goal sink is expressed as

φg = − λg

Rg
, (4.102)

where Rg is the distance between the point (x1, x2, x3) (the current location of the
robot) and the goal point G(xg1, xg2, xg3) and λg is the goal sink strength. It can
be shown that the goal potential, as defined in Eq. (4.102), satisfies the Laplace
equation (4.5).
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Fig. 4.13 The potential generated on a 2 by 2 m horizontal plane by a uniform flow

Example 4.8. Plot the potential generated by a goal sink of

φg = − λg

Rg
, λg = 1 m3/s, (4.103)

located at the origin on two 2 by 2 m flat surfaces parallel to the x1–x2 plane passing
through x3 = 0.1 and 1.0 m and centered at the origin

Solution. The target planes can be described by

− 2 ≤ x1 ≤ 2 m, − 2 ≤ x2 ≤ 2 m, x3 = 0.1 m, (4.104)

and
− 2 ≤ x1 ≤ 2 m, − 2 ≤ x2 ≤ 2 m, x3 = 1.0 m. (4.105)

The x1 and x2 intervals are divided into 30 equal increments, summing to a total
of 961 points. The potential at these points are calculated and plotted as a mesh.
Figure 4.14 shows the resulting mesh. As can be seen in the figure, the potential is
maximum at the center of the 2 by 2 plane because this point is the closest point
on the plane to the goal position. As the distance of the 2 by 2 plane with the goal
position increases from 0.1 to 1.0 m, the maximum potential decreases. This can be
seen by comparing Fig. 4.14a and b.
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Fig. 4.14 The potential generated by a goal sink on a 2 by 2 m horizontal plane located at a distance
of (a) 0.1 m, (b) 1.0 m, from the goal sink

4.8.3 Spatial Panel

Any 3D obstacle can be approximated by a number of spatial panels as shown in
Fig. 4.15. The potential due to the obstacles can be obtained by calculating the
potential for each polygonal panel and superposing the results. Harmonic sources or
sinks of uniform density, similar to the functions defined for the goal potential, are
distributed on each panel. A single panel is a planar on which uniform sources or
sinks, with the strength per unit area λi , are distributed. The total potential resulting
from this distribution must be calculated for each 3D panel. The calculation is done
by integration.

Fig. 4.15 Representation of a three-dimensional obstacle by multiple spatial panels
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Fig. 4.16 A single spatial panel

Figure 4.16 shows a single panel, which is a spatial polygon in general. The unit
vector n̂ is perpendicular to the surface of the panel and is directed outward of the
obstacle volume. The unit vector l̂ is directed along a leg of the panel, generally
shown by �S. The unit vector û is in the plane of the panel and perpendicular to the
unit vector l̂. Panel j , with surface Sj , produces the following potential at a point
C(x1, x2, x3).

φ j (x1, x2, x3) = λ j

∫
Sj

d S j

R j
(4.106)

where R j is the distance of the point C(x1, x2, x3) to an arbitrary point on the spatial
panel j . The origin of the coordinate system is located at point O (Fig. 4.17). The
vector representing point C , at which the potential is being calculated, is denoted by
rC . If r′ is the vector pointing from the origin to an arbitrary point on leg �Sk of the
polygon S, then Rk can be expressed as

1

Rk
= 1

|rC − r′| . (4.107)

The integral (4.106) can be converted to a summation of integrals over the boundary
of the panel S, in which the position of an arbitrary point on the edges of the panel,
Eq. (4.107), appear. The details of integration are beyond this text, therefore, only
the integration result is presented here. More information about the derivation of the
integral (4.106) can be found in [79].

φ j = λ j

∑
k

P̂0
k .ûk[P0

k ln
R+

k + l+k
R−

k + l−k

−|d|
(

arctan
P0

k l+k
(R0

k )2 + |d|R+
k

− arctan
P0

k l−k
(R0

k )2 + |d|R−
k

)
] (4.108)
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Fig. 4.17 Geometrical quantities associated with a line segment k as a leg of the panel Si shown
by a thick line. The point C , with coordinates (x1, x2, x3), at which the potential is being observed,
is located by the position vector rC with respect to the coordinate origin O . Subscript k, indicating
the line segment k, is dropped for simplicity

The geometric parameters (lengths) used in Eq. (4.108) are shown in Fig. 4.17 (note
that the subscript k is dropped for the parameters in this figure for simplicity). These
parameters must be calculated before the potential at point C can be determined.

All these parameters can be evaluated when the edges of the panel Si are defined.
An edge k of the panel Si is defined as a line segment by specifying the position
of the two ends of the edge k with respect to the origin O as vectors r+

k and r−
k ,

respectively. In addition, a unit vector ûk is defined such that it is perpendicular to
the edge k and lies in the plane of the polygon Si .

With the position of the two ends of the edge k given, the distances R0
k , R−

k , and
R+

k (Fig. 4.17) can be found.

R0
k = |(r+

k − r−
k ) × (rC − r−

k )|
|r+

k − r−
k | , (4.109)

R−
k = |r−

k − rC |, (4.110)

R+
k = |r+

k − rC |. (4.111)

The distance d is the height of the observation point C above the plane of Sk , mea-
sured positively in the direction of n̂, may be calculated as

d = n.(r − r+
k ) = n.(r − r−

k ). (4.112)
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The three distances R0
k , d, and P0

k form a right triangle, which results in

P0
k =

√
(R0

k )2 − d2. (4.113)

The signed distances l−k and l+k from point D on the extension of the edge k to the
two ends of the edge k must be calculated. The sign of these distances is positive
if the vector pointing from D to the corresponding end of the line segment has the
same direction as l̂k’s. The signed distances l−k and l+k can be determined after the
position of point D is calculated. The position of point D is obtained by following
the procedure discussed below. First, the unit vector of the edge k is defined as

l̂k = r+
k − r−

k

|r+
k − r−

k | . (4.114)

Then, the position of point D can be found as

rDk = [l̂.(rC − r−
k )
]

l̂ + r−
k . (4.115)

Using the position of point D from Eq. (4.115), one can obtain the two signed
distances l−k and l+k as

l−k = (r−
k − rDk).l̂k , (4.116)

l+k = (r+
k − rDk).l̂k . (4.117)

Finally, the unit vector P̂0
k can be written by observing Fig. 4.17 as

P̂0
k =

[
(rDk − rC ).ûk

|(rDk − rC ).ûk |
]

ûk , (4.118)

where

ûk = n̂k × l̂k . (4.119)

Note that in Eq. (4.118), the vectors P̂0
k and ûk are always parallel. The term in

the brackets determines if the two vectors have the same direction or have opposite
directions. This fact can also be seen in Fig. 4.17. At configuration shown for the
position of point C , the two vectors P̂0

k and ûk have the same direction. If the pro-
jection of point C on the panel Si (point Q) were on the other side of the edge k, the
two vectors P̂0

k and ûk would have opposite directions.

Example 4.9. Consider a square panel in a 3D space with sides of 2 m long. The
square panel lies in the x1–x2 plane and its center of area is located at the origin of
a fixed Cartesian coordinate system. The strength per unit area of the panel is λ =
−1 m/s. Plot the potential φ(x1, x2, x3) generated by this panel on 4 by 4 m2 surfaces
with the centers of area at (0, 0, 0.1), (0, 0, 0.5), (0, 0, 1.0), and (0, 0, 1.5) m.
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Solution. First the geometry of the panel is defined by setting up the correct r−
j and

r+
j vectors ( j = 1, . . . , 4 for the four sides of the square panel), which point to the

vertices of the polygon. Since the direction of integration of the potential field along
all the edges of the polygon must be consistant, care must be taken in defining the
order of polygon vertices. A good practice is to number the vertices starting from an
arbitrary vertex in the direction a of right hand rotation about the vector n̂ j , which is
perpendicular to the panel and pointing outward of an obstacle volume. This is done
for the square panel.The results for the vectors r−

j and r+
j are shown in Table 4.4.

After the panel geometry is defined, the geometrical parameters defined in
Fig. 4.17 can be calculated using Eqs. (4.111), (4.112), (4.113), (4.114), (4.115),
(4.116), (4.117), (4.118), and (4.119). These parameters are related to the coordinate
of the point C at which the potential is being calculated. The result of these calcula-
tion for point C(0, 0, 1) m for this example are shown in Table 4.5. These numbers
along with the position of point C are substituted into Eq. (4.108) to calculate the
potential generated by the square panel at point C .

φ(0, 0, 1) =
4∑

i=1

φi (0, 0, 1) = 3.173 m2/s (4.120)

The potential generated by the square panel on 4 by 4 m surfaces parallel to the
panel and with different distances are shown as 3D meshes is Figs. 4.18 and 4.19.
The scale and the range of the φ-axis is fixed for all the figures for easier comparison.
For all the figures, the maximum potential happens at the center of the panel due to
its symmetry. As expected, the maximum potential diminishes as the target surface
is positioned farther from the square panel. When the target surface is at a distance
of 1 m from the square panel (Fig. 4.19a), the peak of the potential is 3.172 m2/s as
confirmed by Eq. (4.120).

Table 4.4 Parameters of the three-dimensional square panel

Edge j r−
j (m) r−

j (m)

1 [0, 1, 1] [0,−1, 1]
2 [0,−1, 1] [0,−1,−1]
3 [0,−1−, 1] [0, 1,−1]
4 [0, 1,−1] [0, 1, 1]

Table 4.5 Geometrical parameters, defined in Fig. 4.17, for the three-dimensional square panel at
point C(0, 0, 1) m

Side j R−
j R+

j R0
j d P0

j l̂ j rDj l−j l+j P̂0
j

1 1.73 1.73 1.41 1.00 1.00 [−1, 0, 0] [0, 1, 0] −1.00 1.00 [−0, 1, 0]
2 1.73 1.73 1.41 1.00 1.00 [0,−1, 0] [−1, 0, 0] −1.00 1.00 [−1, 0, 0]
3 1.73 1.73 1.41 1.00 1.00 [1, 0, 0] [0,−1, 0] −1.00 1.00 [−0,−1, 0]
4 1.73 1.73 1.41 1.00 1.00 [0, 1, 0] [1, 0, 0] −1.00 1.00 [1, 0, 0]
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Fig. 4.18 Potential generated by a square polygon on a surface parallel to the polygon at a distance
(a) 0.1 m, and (b) 0.5 m
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Fig. 4.19 Potential generated by a square polygon on a surface parallel to the polygon at a distance
(a) 1.0 m, and (b) 1.5 m

4.9 Three-Dimensional Robust Harmonic Potential Field

Similar to the 2D potential field for path planning, a 3D potential field for obstacle
avoidance consists of a uniform potential pointing from the start to the goal of the
desired path, a goal sink potential at the goal of the desired path, and several spatial
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panels surrounding and representing the obstacles. To obtain an effective potential,
the potential gradients at the center of the faces of the spatial panels must point out-
ward of the obstacles volume. The strength of the spatial panels must be determined
such that the conditions on the total potential gradients at the center of the panels
are satisfied.

Vi = − �φ

�ni
> 0 i = 1, .., m (4.121)

The notation ni in Eq. (4.121) means the gradient in the ni direction (unit vector
perpendicular to the spatial panel) and m is the number of spatial panels. Normally,
after Vi ’s are specified, the m equations (4.121) are solved for the unknown panel
strengths per unit area.

The other condition on the panel strengths (per unit area) is the 3D convergence
condition, which is an extention of the 2D convergence condition described by
Eq. (4.75).

− λg > λo > 0 (4.122)

In Eq. (4.122), λo is the total strength of all the spatial panels.

λo =
m∑

i=1

Aiλi , (4.123)

where Ai is the area of panel i . Note that not all the arbitrarily specified Vi ’s guar-
antee the satisfaction of the condition (4.122). It is more effective to determine the
range of Vi ’s for which the resulting panel strengths per unit area satisfy Eq. (4.122)
by a systematic approach rather than trying a guess to solve Eq. (4.121) for the i
spatial panel strengths and checking to see if Eq. (4.122) is satisfied. In the follow-
ing, this systematic procedure, which is somehow similar to that of the 2D case, is
presented.

The total potential field at point C(x1, x2, x3) is

φ(x1, x2, x3) = φu + φg +
m∑

j=1

φ j , (4.124)

where φu (Eq. 4.99), φg (Eq. 4.102), and φ j (Eq. 4.108) are the potential fields due
to the uniform, goal, and panel j’s strengths. If φ′

j defines the potential of the spatial
panel j per unit strength per unit area (e.g., λ j = 1), Eq. (4.124) can be rewritten as

φ(x1, x2, x3) = φu + φg + λ j

m∑
j=1

φ′
j . (4.125)

Substituting Eq. (4.125) into Eq. (4.121) results in
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Vi = −�φu

�ni
|ci − �φg

�ni
|ci − λ j

m∑
j=1

�φ′
j

�ni
|ci i = 1, . . . , m, (4.126)

where

�φu

�ni
|ci = −n̂i .(a1 î + a2 ĵ + a3k̂), (4.127)

and

�φg

�ni
|ci = −n̂i .

λg(xci − xg)

|xci − xg|3 , (4.128)

and

�φ′
j

�ni
|ci = −n̂i .(

�φ′
j

�x1
|ci î + �φ′

j

�x2
|ci ĵ + �φ′

j

�x3
|ci k̂). (4.129)

The partial derivatives in Eq. (4.129) can be calculated by differentiating the sum-
mation term in Eq. (4.108). However, since this differentiation is cumbersome, a
numerical approximation is considered.

�φ′
j

�x1
|ci ≈ φ′

j (xci1 + �xci1, xci2, xci3) − φ′
j (xci1, xci2, xci3)

�xci1
(4.130)

The other derivative terms in Eq. (4.129) are derived similarly by taking an incre-
ment in the correct direction.

Now that the terms in Eq. (4.126) are introduced, it can be rearranged for the
unknown panel strengths per unit area λ j .

⎛
⎝ m∑

j=1

�φ′
j

�ni
|ci

⎞
⎠ λ j = −Vi − �φu

�ni
|ci − �φg

�ni
|ci i = 1, . . . , m (4.131)

Equation (4.131) is written in the matrix form

P� = −V + W, (4.132)

where

Pi j =
m∑

j=1

�φ′
j

�ni
|ci i, j = 1, . . . , m, (4.133)

� = [λ1, λ2, . . . , λm]T , (4.134)
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V = [V1, V2, . . . , Vm]T , (4.135)

and

Wi = −�φu

�ni
|ci − �φg

�ni
|ci i = 1, . . . , m. (4.136)

Equation (4.132) can be solved for the unknown panel strengths.

� = P−1(−V + W). (4.137)

The panel strengths found from Eq. (4.137) must satisfy the convergence condi-
tion (4.122), in which the total strength of the spatial panels λo appears. The relation
for λo (Eq. 4.123) accepts the following matrix form

λo = AT �, (4.138)

where

A = [A1, A2, . . . , Am]T . (4.139)

Substituting Eqs. (4.138) and (4.137) into the convergence condition (4.122) re-
sults in

AT P−1(−V + W) < −λg . (4.140)

The desired outward normal velocities at the center of the spatial panels are as-
sumed to be proportional to the panel areas. This assumption is logical. It helps the
planned trajectory to be diverted at a farther distance away from the larger panels.
This assumption can be formulated as

V = aA, (4.141)

where a is called the safety parameter. Substituting V into Eq. (4.140) yields

a <
λg + AT P−1W

AT P−1A
. (4.142)

Equation (4.142) limits the maximum value of the proportional parameter a, also
known as the safety factor. The following notation is adapted

amax = λg + AT P−1W
AT P−1A

, (4.143)
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and the safety ratio is defined as

ra = a

amax
. (4.144)

Now, the safe λ j ’s that satisfy the convergence condition (4.122) can be found from

� = P−1(−raamaxA + W), (4.145)

which is derived by substituting Eqs. (4.141) and (4.144) into Eq. (4.137).
Once the panel strengths are obtained from Eq. (4.145), the components of the

velocity field are determined by taking the gradient of the potential field (4.125) as
follows

u1(x1, x2, x3) = −�φu

�x1
− �φg

�x1
− λ j

m∑
j=1

�φ′
j

�x1
,

u2(x1, x2, x3) = −�φu

�x2
− �φg

�x2
− λ j

m∑
j=1

�φ′
j

�x2
, (4.146)

u3(x1, x2, x3) = −�φu

�x3
− �φg

�x3
− λ j

m∑
j=1

�φ′
j

�x3
.

4.10 Path Planning for Aerial Robots
or Hyper-Redundant Manipulators

The robust spatial potential field introduced in the previous section can be used as a
tool for path planning for aerial robots with high maneuvering capabilities, such as
autonomous helicopters or other rotary wing aircraft. It is assumed that the obstacles
in the environment are known or can be recognized by a vision system. A start point
for the aerial robot is assumed and and a destination point is defined. The procedure
with which a 3D path can be planned is based on the formulation introduced in the
previous section. The algorithm is summarized in the following section.

4.10.1 Algorithm for an Aerial Robot

1. The uniform flow strength U , the goal strength λg , and the safety ratio ra are
selected. Experience shows that a goal strength much larger than the uniform
flow strength results in a more effective potential field.

2. The start position xs = (xs1, xs2, xs3) and the goal position xg = (xg1, xg2, xg3)
are defined.

3. The 3D obstacles in the environment must be approximated by volumes that can
be contained in a number of 3D polygons. The parameters of the polygons are
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determined with a procedure similar to the one presented in Example 4.9. Since
the direction of integration of the potential field along all the edges of the polygon
must be consistant, care must be taken in defining the order of polygon vertices.
A good practice is to number the vertices starting from an arbitrary vertex in the
direction a of right hand rotation about the vector n̂ j , which is perpendicular to
the panel and pointing outward of an obstacle volume.

4. The direction of the uniform flow is calculated such that the uniform flow points
from the start point to the goal point.

a1 î + a2 ĵ + a3k̂ = xg − xs

|xg − xs | (4.147)

5. The matrix P is evaluated using Eq. (4.133) and Wi is obtained from Eq. (4.136).
6. The parameter amax is calculated using Eq. (4.143).
7. A safety ratio (0 < ra < 1) is selected. Larger safety ratios yield to longer paths

farther from the obstacle. Too small safety factors should be avoided. They may
result in a path colliding with the obstacles, especially larger panels, because the
outward normal velocity condition (Vi > 0) is only satisfied for the center point
of each panel.

8. The strength per unit area for the m panels are calculated using Eq. (4.145).
9. Equations (4.146) are used to determine the direction of the local tangent to

the path. The path is generated by stepping a small constant length along the
calculated local tangent. This procedure is done numerically. The path starts
at x1 = xs . At any integration step k, the direction of the local tangent to the
path (the direction of the instantaneous velocity) and the new position are calcu-
lated as

uk = u(xk), (4.148)

ûk = uk

|uk | , (4.149)

xk+1 = xk + ûk(�s). (4.150)

where �s is an arbitrary small distance. The iteration in k continues until the
point found for the path is closer than the defined small distance �s.

||xk+1 − xg|| ≤ �s (4.151)

10. The array of points xk is the 3D planned path.

In the following a path planning example is presented.

Example 4.10. Consider a spatial environment with two obstacles represented by a
cubic and a rectangular box, which are shown in the front and top view in Figs. 4.20a
and b. The start position and the goal position are xs = (−0.5,−0.5, 1.5) m and
xg = (1.5, 3.5,−2.5) m, respectively. Using a robust 3D potential field, plan a
spatial path from the start position to the goal position. Assume a safety ratio of
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Fig. 4.20 One cubic and one rectangular box confining obstacles with arbitrary shapes (not
shown); (a) front view, (b) top view

ra = 0.3, a uniform flow strength of U = 1 m2/s, and a goal strength of λg =
30 m2/s.

Solution. Each face of the cubic and the rectangular obstacles are considered a
polygon with four sides. Therefore, a total of 12 polygons must be defined. Each
of these rectangular polygons are parameterized with a procedure similar to that
demonstrated in Example 4.9 for a square panel. For each polygon, the global coor-
dinates of the four vertices are determined and a table similar to Table 4.4 is formed.

To calculate the strengths per unit area for the panels using Eq. (4.133), the com-
ponents of the matrix P (Eq. 4.133) must be calculated. For this calculation, the
coordinates of the center of each panel should be used.
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Table 4.6 Panel strength per unit area (1/s)

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11 λ12

0.028 −0.787 −1.009 −0.058 −0.536 −0.221 0.357 −1.602 −3.021 0.281 0.512 0.836

xci = 1

nv

nv∑
k=1

r+
i , (4.152)

where nv is the number of vertices of panel i . However, since the potential φ′
j gen-

erated by some of the panels at the center of other panels is singular, the modified
center of panel is used. This modified center is shifted 0.1 m outward of the panel i .

xci = 1

nv

nv∑
k=1

r+
i + 0.1n̂i (4.153)

The above modified centers of area for the panels are used for calculating P and
W from Eqs. (4.133) and (4.136), respectively. The parameter amax = 14.144 is
calculated using Eq. (4.143). Finally, the strength per unit areas for the panels are
found by using Eq. (4.145). The results for λ j ’s are shown in Table 4.6. The total
obstacle strength becomes λo = −8.805 m2/s, which is less than the goal’s strength.
Therefore, the convergence condition (4.122) is satisfied.

The planned path is shown in Fig. 4.21. The path is diverted by the obstacles. It
ends at the goal position.

4.11 Summary

The path planning problem for single mobile robots, multiple mobile robots, and
single aerial vehicles in the presence of known obstacles was addressed. Harmonic
potential functions and the panel method were adapted to solve the obstacle avoid-
ance problem. This chapter also introduced a complement to the traditional panel
method to generate a more effective harmonic potential field for obstacle avoidance,
which rendered the traditional harmonic potential method more suitable for dynam-
ically changing environments. An algorithm for a group of mobile robots working
in an environment with stationary and moving obstacles was developed. In this al-
gorithm, robots move from one position to another without maintaining a formation
during the motion. Every robot considered the other robots of the group as moving
obstacles. Hence, the physical dimensions of the robots were considered in path
planning. The path of each robot was planned based on the changing position of the
other robots and moving obstacles, and the position of stationary obstacles. Finally,
the effectiveness of the scheme was shown through examples and simulations.

Although the obstacles are assumed to be known in this chapter, the methods
introduced here are not limited to the cases with known obstacles. In the case of
unknown obstacles, a vision system along with an obstacle identification algorithm



Problems 127

−1

0

1

2
−1

0

1

2

3
−2

−1

0

1

goal

 x
2
 (m)

 x
1
 (m)

start

 x
3 (

m
)

Fig. 4.21 The planned path for an aerial vehicle that avoids one cubic and one rectangular box
obstacles

can provide the geometry of the obstacles to a planner algorithm written based on
the methods presented in this chapter. When the obstacle identification algorithm
can detect new obstacles as they enter the range of the vision system while the
vehicle moves, the potential field is recalculated and a new path is generated for the
new situation.

The methods proposed in this chapter are simple, efficient, accurate, and scalable,
and are suited for practical situations as shown by the numerical simulations.

Problems

Problem 4.1. Show that the 2D goal potential defined in Eq. (4.14) is a harmonic
function.

Problem 4.2. Show that the 2D uniform flow potential defined in Eq. (4.16) is a
harmonic function.

Problem 4.3. Show that the potential of a line obstacle defined in Eq. (4.19) is a
harmonic function in a 2D space.

Problem 4.4. Derive the contribution of a vertical line panel (Fig. 4.3) to the normal
velocity at its own center point using Eq. (4.22).
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Fig. 4.22 Two square obstacles

Problem 4.5. Using Eqs. (4.16) and (4.19), plot the potential of the superposition of
a uniform flow with a direction of 45◦ with respect to the x1-axis and with a strength
of U = −1 and a 1-m-long source line segment (L = 0.5 m) as shown in Fig. 4.3
with a strength per unit length of λ = −1 in an square area of 2 by 2 m around the
origin.

Problem 4.6. Consider a mobile robot that has to work in an environment con-
taining obstacles as shown in Fig. 4.22. The robot has to reach the goal position
xg = (xg1, xg2) = (0.0, 5.0) m from different start points listed in Table 4.7.

(a) Determine the correct line obstacle parameters for the the eight line segments in
the obstacle field according to the standard notation in Fig. 4.9. Make sure that
the angles θi for the panels are defined such that the normal vector to the line
obstacles are outward for all the panels.

(b) Determine the direction of the uniform flow for each start point.
(c) Form a robust harmonic potential field for each start point and find the maximum

safety factor, amax.
(d) Derive safe paths for the robot for each start point using two different safety

ratios of ra = 0.5 and ra = 0.99.
(e) Plot the paths for the two safety ratios for each start point and compare and

discuss the resulting plots.

Problem 4.7. Assume two identical robots, with 0.25 by 0.25 m dimensions, work-
ing simultaneously in an environment with obstacles as shown in Fig. 4.22. The
two robots are initially at the start points xs1 = [−2.0,−5.0]T m and xs2 =

Table 4.7 List of desired start points (in meters)

xs1 = [−4.0,−5.0] xs2 = [−3.0,−5.0]
xs3 = [−2.0,−5.0] xs4 = [−1.0,−5.0]
xs5 = [0.0,−5.0] xs6 = [1.0,−5.0]
xs7 = [2.0,−5.0] xs8 = [3.0,−5.0]
xs9 = [4.0,−5.0]
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[2.0,−5.0]T m. The goal points for the two robots are xg1 = [2.0, 5.0]T m and
xg2 = [−2.0, 5.0]T m. The maximum velocity of the robots is 0.25 m/s. Using the
algorithm presented in Section 4.6.1, plan the trajectory for the robots such that they
do not collide with each other or the obstacles.

Problem 4.8. Show that the 3D uniform flow potential defined in Eq. (4.99) is a
harmonic function.

Problem 4.9. Show that the 3D goal potential defined in Eq. (4.102) is a harmonic
function.

Problem 4.10. Show that the 2D potential defined in Eq. (4.106) for a spatial flat
polygon is a harmonic function.

Problem 4.11. Consider an aerial robot that has to work in an environment contain-
ing a cubic obstacle with 1-m sides centered at the origin of the coordinate system.
The aerial robot has to reach the goal position xg = (3, 0, 0) m from its starting
point at xs = (−3, 0.1, 0.1) m.

(a) Consider the sides of the cube as six independent squares. Determine the cor-
rect parameters for the edges of the squares using a procedure similar to that
introduced in Example 4.9.

(b) Determine the direction of the 3D uniform flow.
(c) Form a robust harmonic potential field for each start point and find the maximum

safety factor, amax.
(d) Derive safe paths for the robot for each start point using two different safety

ratios of ra = 0.5 and ra = 0.99.
(e) Plot the paths for the two safety ratios for each start point and compare and

discuss the resulting plots.



Chapter 5
Control of Manipulators

5.1 Introduction

For general multi-input nonlinear systems, including robotic manipulators, feedback
control and, especially, robustness issues are still research topics.

In this chapter, we discuss the application of different control methods for con-
trolling manipulators and present the advantages and disadvantages of each method.
We try to explain the physical interpretation of the mathematical methods used for
controller development.

In the following, we first consider simpler control methods to build the ground for
physical interpretations and justify the motivation for using more advanced methods.
Later in this chapter, we use the Lyapunov theory for designing advanced robust
controllers for manipulators. The Lyapunov theory itself is based on physical un-
derstanding of mechanical systems.

5.2 Evolving Control Requirements

Today’s robotic manipulators are expected to work faster and more accurately. Most
of the time, to accomplish a certain job, a manipulator’s end-effector must follow a
trajectory precisely. This in turn requires robust trajectory-tracking for the joints
variables. Since manipulators have non linear dynamics, their controller design
presents a challenging problem.

The traditional linear control approaches used to lead to a controller with an
acceptable performance for the past generation of manipulators. The reason was
that those manipulators were highly geared, which reduced the strong interactive
dynamic effects between links. The typically used gear ratios of about 100 caused
the torque transmission ratios of 1/100 between the links. In the next generation
manipulators, these gears had to be eliminated to achieve greater position and force
control accuracy. The joint drives were replaced by gear-free direct-drive motors,
which reduced friction and avoided gear backlash all together. This came at the cost
of high transmission of the driving torque between the links, causing the higher non
linear dynamic interaction between the links. In this situation, explicit account of
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the nonlinear dynamic effects became critical in order to exploit the full dynamic
potential of the new high-performance manipulator arms.

Since the non linear dynamic of a manipulator plays an important role in the
controller design, the first step of any successful controller design is formulating
the mathematical dynamic model of the manipulator. In the following, the dynamic
modeling is discussed.

5.3 General Dynamic Model

5.3.1 Standard Second-Order Form

Consider, for example, a Prismatic-Revolute (PR) planar manipulator (Fig. 5.1). The
joint positions of the manipulator are organized in a 2 by 1 vector q. The actuator
input forces/torques applied at the manipulator joints are set in a 2 by 1 vector τ .
The general form of the nonlinear dynamic equations of this manipulator can be
presented as

H(q)q̈ + C(q, q̇)q̇ + G(q) = τ . (5.1)

In the above equation, H(q) is the symmetric positive-definite 2 by 2 manipulator
inertia matrix. C(q, q̇)q̇ contains the terms representing the centripetal and Coriolis
torques. It can be easily verified that C(q, q̇) is a 2 × 2 matrix. G(q) is the 2 by 1
vector of gravitational torques. Now, a controller must be designed that determines
the required actuator inputs such that the joint positions q and velocities q̇ follow a
desired trajectory. The vector q of joint angles and the vector q̇ of joint velocities
are called the states of the manipulator.

Note that the inertia matrix H is a function of the joint position vector q. This
mathematical dependency emphasizes the physical fact that a manipulator arm has
a different inertia when it is folded compared to when it is extended. The centripetal
torque components are a function of the square of each joint velocity. Also, the
products of velocities at two different joints appear in the Coriolis torque terms.

The kinetic energy of the manipulator can be found based on the mass matrix as

Fig. 5.1 A PR manipulator
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1

2
q̇T H(q)q̇. (5.2)

The above equation can be seen as the vectorial version of the familiar one-
dimensional form of kinetic energy 1

2 mv2. Note that the kinetic energy must be
strictly positive independent of the value of q, if the joint velocity q̇ is nonzero. This
physical fact translates to a mathematical requirement for the mass matrix H(q), i.e.,
the mass matrix must be strictly positive-definite. In other words, the eigenvalues
of the mass matrix must be uniformly positive for any value of q. If there existed a
position q in the workspace where the inertia matrix has a zero eigenvalue, the robot
arm could have moved with a nonzero velocity but with zero kinetic energy, which
is physically impossible. Thus, H(q) is indeed uniformly positive-definite.

Example 5.1. PR manipulator shown in Fig. 5.1. Using the Lagrange method, derive
the dynamic equations of motion for the manipulator. Write the equations of motion
in the standard form (5.1). Neglect the moment of inertia of the second link.

Solution. To use the Lagrange method for deriving the equations of motion, first, we
write the Lagrangian L = T − V for the manipulator, where T is the total kinetic
energy and V is the total potential energy of the manipulator at an arbitrary state:

L = 1

2
m1q̇2

1 + 1

2
m2((q̇1 − l2q̇2 sin q2)2 + (l2q̇2 cos q2)2) − m2gl2 sin q2. (5.3)

Once the Lagrangian is determined, one can derive the equations of motion by
applying the following general form of the Lagrange equations of motion:

d

dt

(
�L

�q̇i

)
− �L

�qi
= τi , i = 1, . . . , n, (5.4)

where n is the number of joints. Note that right hand side of the above form has been
simplified for manipulators and it is only correct when the the driving force/torque
τi is directly acting on the joint qi , allowing us to write the work done by τi as τi qi .
For other situations, a more general form must be used for the right hand side of
Eq. (5.4).

Substituting Eq. (5.3) into (5.4) results in the following dynamic equations of
motion for the PR manipulator:

(m1 + m2)q̈1 − m2l2q̈2 sin q2 − m2l2q̇2
2 cos q2 = τ1, (5.5)

m2l2
2 q̈2 − m2l2q̈1 sin q2 + m2gl2 cos q2 = τ2. (5.6)

These equations can be written in the standard form (5.1) as

H(q)

[
q̈1

q̈2

]
+ C(q, q̇)

[
q̇1

q̇2

]
+ G(q) =

[
τ1

τ2

]
, (5.7)
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where

H(q) =
[

m1 + m2 −m2l2 sin q2

−m2l2 sin q2 m2l2
2

]
, (5.8)

C(q, q̇) =
[

0 −m2l2q̇2 cos q2

0 0

]
, (5.9)

G(q) =
[

0
m2gl2 cos q2

]
. (5.10)

This completes the solution to this example.

5.3.2 Standard First-Order Form

Although the second-order standard form is sufficient for controller design deriva-
tions, there is always a need for a first-order form of the dynamic model for simula-
tion purposes. The dynamic state of the manipulator not only depends on the joint
positions, as a representative of the geometrical configuration of the manipulator,
but also depends on the joint speeds, which reflect the motion of the manipulator.
Therefore, to uniquely define the dynamic state of the manipulator, one should group
the joint positions and speeds in a single vector, known as the state vector of the
manipulator:

x =
[

q
q̇

]
. (5.11)

With the above definition, the general form of the first-order equations of motion for
a manipulator can be written as

ẋ =
[

q̇
q̈

]
=
[

q̇
H−1(τ − Cq̇ − G)

]
. (5.12)

Example 5.2. Consider the PR manipulator shown in Fig. 5.1. Using the Lagrange
method, derive the dynamic equations of motion for the manipulator. Write the first-
oder form of the equations of motion.

Solution. The state vector for the PR manipulator is assembled as

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

q1

q2

q̇1

q̇2

⎤
⎥⎥⎦ . (5.13)

The first-order equations are derived by differentiating the above definition of the
state vector and substituting for q̈ from the second-order form of the dynamic model
in the result.
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ẋ =
⎡
⎣q̇1

q̇2

q̈

⎤
⎦ =

⎡
⎣ x3

x4

H−1(x1, x2)(τ − C(x)q̇) − G(x1, x2)

⎤
⎦ , (5.14)

where

H(x1, x2) =
[

m1 + m2 −m2l2 sin x2

−m2l2 sin x2 m2l2
2

]
, (5.15)

C(x) =
[

0 −m2l2x4 cos x2

0 0

]
, (5.16)

G(x1, x2) =
[

0
m2gl2 cos x2

]
. (5.17)

This completes the solution to this example.

5.4 Position Control

In the position control problem, the manipulator task is to reach a final desired joint
position vector, specified by a constant vector qd . For position control, we assume
that each joint is controlled independently. The independent controller is assumed
to be a joint proportional-derivative (PD) controller. The PD feedback control law
selects each actuator input based on the local measurements of position errors q̃ j =
q j − qd

j and joint velocities q̇ j ( j = 1, 2). The PD control law is formulated as

τ j = −kP j q̃ j − kDj q̇ j , (5.18)

where kP j and kDj are strictly positive constants. Note that this control law can be
physically interpreted as a spring-damper system mounted on the joint. The first
term in the control law (5.18) acts like a spring with constant kP j with the desired
rest position of qd

j , where the spring force vanishes. The second term of this control
law acts like a damper that resists the joint velocities, causing the motion to eventu-
ally diminish at the equilibrium point of the spring. The resulting passive physical
system would simply show damped oscillations toward the rest position qd .

The behavior of a spring-damper system attached to a mass is easier to under-
stand when the energy of the system is studied. Consider the manipulator at an
initial position different than the desired position. At such a position, q̃ j is not zero.
Thus, there is some energy stored in the virtual spring with constant kP j . If the
damper with constant kDj can drain the system out of this energy, the system will
eventually come to a stop at the spring equilibrium point, which happens to represent
the desired joint position.

In order to formulate the above discussion, we rewrite the system’s dynamics in
a Hamiltonian form, which shows the energy transfer:
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1

2

d

dt
(q̇T Hq̇) = q̇T τ . (5.19)

This equation implies that the rate of the kinetic energy of the manipulator (the
left-hand side of Eq. 5.19) is equal to the work of the external forces/torques acting
on the manipulator (the right-hand side of Eq. 5.19). Note that taking the derivative
in the left-hand side term will of course result in the Coriolis and centripetal terms
appearing in Eq. (5.1). This rate of energy and work balance equation can be used
to derive stability and convergence proof for the PD controller. Let us continue with
writing the vectorial version of Eq. (5.18).

τ = −kP q̃ − kDq̇, (5.20)

where kP and kD are constant symmetric positive-definite matrices. One valid
choice for these matrices could be forming diagonal matrices with kP j ’s and kDj ’s
of Eq. (5.18) as diagonal components. If the control law (5.20) were implemented
using physical springs and dampers, one could write the total mechanical energy of
the manipulator and spring-dampers as

V = 1

2
(q̇T Hq̇ + q̃T kP q̃). (5.21)

We can use this virtual mechanical energy V as a Lyapunov function and ana-
lyze the closed-loop behavior of the controlled system. Given Eq. (5.19), the time-
derivative of V can be written as

V̇ = q̇T (τ + kP q̃). (5.22)

One can use the control law (5.20), and simplify the above equation as

V̇ = −q̇T kDq̇ ≤ 0. (5.23)

The above equation implies that the rate of the total energy of the manipulator
and the virtual spring-dampers as the controller, represented by V̇ , is negative. This
means that V decreases as time is passed until q̇ becomes zero and the manipulator
stops at an equilibrium position, which verifies the stability of such a controller.
However, we have to make sure that the equilibrium position is actually the desired
position and the manipulator does not stop at a position other than the desired posi-
tion, where V equal 0 while q does not equal qd .

To further discuss this concept, let us assume a planar manipulator that works in a
horizontal plane, which imples that the gravitational term G(q) in Eq. (5.1) vanishes.
Since V̇ = 0 implies that q̇ = 0, the dynamics at the equilibrium reduces to

q̈ = −H−1kP q̃. (5.24)
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The above equation implies that V̇ is identically 0 only if q̃ equals 0, since at the
equilibrium q̈ is also zero. This means that the equilibrium point is in fact q̃ = 0
and the system does converge to the desired state.

On the other hand, if the manipulator is working in the vertical plane, G(q) is not
zero. In this case, the dynamics at the equilibrium reduces to

q̈ = H−1(G(q) − kP q̃). (5.25)

This implies that the equilibrium point (or the steady-state error) is

q̃ss = −k−1
P G(q). (5.26)

In this case, depending on how large the components of kP are, there will be some
offset with the desired position at the equilibrium point. The following example
illustrates these concepts further.

Example 5.3. Consider the PR manipulator of Example 5.1. Design a PD controller
that can bring the manipulator to any given desired position. Assume the following
for the properties of the manipulator.

m1 = 1 kg, m2 = 1 kg, l2 = 1 m. (5.27)

Simulate the manipulator’s response under the control if it starts from the initial
posture q = [0.0 m,−π/2 rad]T and is trying to reach a desired posture of qd =
[0.1 m,−π/3 rad]T .

Solution. The PD feedback control law (5.20) is used here to derive the controller.

[
τ1

τ2

]
= −

[
kP1 0
0 kP2

] [
q1 − qd

1
q2 − qd

2

]
−
[

kD1 0
0 kD2

] [
q̇1

q̇2

]
, (5.28)

where kPi and kDi (i = 1, 2) are selected as

kPi = 300, kDi = 100, i = 1, 2. (5.29)

These numbers are selected by trial and error such that the time required for the
joints to reach their desired values are small, while the driving force and torque are
reasonable, the response is not oscillatory and the final errors are acceptable.

To simulate the motion of the joints, one substitutes the control law (5.28) in the
first-order equations of motion (5.14) for the manipulator and the set of differential
equations are numerically integrated. The results of the numerical simulation are
discussed in the following.

Figure 5.2 shows the trajectory of the joint variables. Recall the analogy of the
control law (5.28) to a set of springs and dampers controlling the joint positions.
Since the weight of the manipulator does not disturb the position of the first joint,
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Fig. 5.2 Trajectory of the joints for the PR manipulator under PD position control

the first proportional term of the controller (the spring kP1) does not have to compen-
sate any weights, and the controller has been able to bring that joint to the desired
position qd

1 = 0.1 m. This is not true for the final position of the second joint, which
has stopped at an angle less than the desired angle of −π/3 (or 60◦). A steady-state
error (offset) in the position of the second joint exists. This offset, q̃2ss , must exist
so that the steady state value of the second joint torque, τ2ss , can balance the weight
of the second link. That is,

− kP2q̃2ss = τ2ss , (5.30)

where

τ2ss ≈ m2gl2cos
π

3
= 4.905 Nm. (5.31)

Note that the approximate sign is used because q2 is not exactly π/3. One can cal-
culate the approximate steady-state error as

q̃2ss = −τ2ss

kP2
≈ −4.905

300
= −0.01635 rad ≈ −0.94 deg. (5.32)
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Fig. 5.3 Joints speeds for the PR manipulator under PD position control

This offset is easily seen in Fig. 5.2. Note that this offset can be eliminated by
adding a weighted integral of joint errors to the control law. Figure 5.3 shows that
the joint speeds vanish at the steady state, indicating that the manipulator remains
at an equilibrium state. Figure 5.4 shows the time response of the joints’ force and
moment. These responses confirm that the first joint can stay at its equilibrium po-
sition without a steady-state force, while the second joint needs a constant torque
at the steady state to balance the weight of the second joint. The amount of this
steady-state force matches the value that was previously calculated in this example.

5.5 Trajectory-Tracking Control

In many practical cases, position control is not enough and the manipulator’s joints
actually have to follow a time dependent desired trajectory to generate a specified
time dependent path at the end-effector. Examples of these practical situations are
when the end-effector has to move on a prescribed path with a prescribed velocity,
e.g., when welding 3D parts, avoiding obstacles, spraying paint, etc. In these sit-
uations, the problem is how close the manipulator can track a given trajectory. In
other words, the tracking accuracy becomes important during the whole period of
the motion.
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Fig. 5.4 Driving force and torque for the PR manipulator under PD position control

The dynamic demands of trajectory tracking cannot be met by the simple PD
controller. Consider the physical analogy of the PD controller with a spring-damper
system. In such a system, setting the desired point could be seen as changing the
position of the base of the spring, in which case, the spring would adjust the system
with the new base position. We can see that by specifying a time dependent mo-
tion for the spring base, excessive vibrations may happen, which is not desireable.
Therefore, the simple PD cannot handle the dynamic demands of trajectory tracking
effectively. More advanced controllers are needed for trajectory tracking.

In the following, first, we present the feedback linearization method for controller
design. We then discuss the sliding mode control method for a robust controller
design, for which external disturbances have a minimal effect on the performance
of the manipulator. All the formulations presented here are applicable to manipu-
lators with an arbitrary number of DOFs and having revolute or translational joints
(or both).

5.5.1 Feedback Linearization

In the feedback linearization method, a different control input representation is de-
fined for the system such that the dynamic equation seems similar to that of a linear
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system. Then, a controller is designed for the linear system using any classical con-
trol method. The control law, then, is derived by transforming the equations for the
input back to the initial input representation.

We start with the general dynamic model of a manipulator presented in Eq. (5.1).
Here, let us define the new control input v as

v = H−1(q)[τ − C(q, q̇)q̇ − G(q)]. (5.33)

Substituting this new control input in the general equation of motion (5.1) results in
the following simple system, which looks similar to a linear system:

q̈ = v. (5.34)

Now, we need to design a control law for this simple system. If we define q̃ = q−qd

as the tracking error, we can show that the control law

v = q̈d − 2λ ˙̃q − λ2q̃ (5.35)

with λ > 0, leads to an exponentially stable closed-loop dynamics. The closed-loop
error dynamics can be derived by substituting Eq. (5.35) into Eq. (5.34), which
results in

¨̃q + 2λ ˙̃q + λ2q̃ = 0. (5.36)

After the control law is designed for the new input of the linear-looking sys-
tem (5.34), we can convert it to the initial control input by using Eq. (5.33):

τ = H(q)v + C(q, q̇)q̇ + G(q). (5.37)

Expression (5.37) is known as the “computed torque” in the robotics literature. This
assumes, of course, that the dynamic model, used in Eq. (5.37), is exact. If there are
uncertainties in determining the dynamic parameters of the manipulator, or the dy-
namic parameters of the manipulator changes (e.g. due to handling different external
loads), the performance of the controller is adversely affected.

Example 5.4. Consider the PR manipulator of Example 5.1. Derive a tracking con-
trol law for the manipulator using the feedback linearization method. Investigate the
performance of the manipulator for an uncertain parameter m2. This uncertainty rep-
resents the variations in loads carried by the second link. Assume ±20% bounds for
uncertainty in m2. For the performance investigations, use the following scenarios.

(a) Position control performance: The manipulator is at rest at an initial posture of
(0.0 m,−π/2 rad). It should reach the desired posture of (0.1 m,−π/3 rad).

(b) Trajectory-tracking performance: The manipulator is at rest at an initial posture
of (0.1 m,−π/36 rad). Both the manipulator’s joints must follow the following
desired time dependent trajectory.
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qd
i (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.2t if t ≤ 3.333

0.667 if 3.333 < t ≤ 6.667

0.667 − 0.2(t − 6.667) if 6.667 < t ≤ 10.000

0.0 if t > 10.00

i = 1, 2,

(5.38)
where qd

1 (t) is in meters and qd
2 (t) is in radians.

Solution. The dynamic model of the PR manipulator that was derived in Example 5.1
is used here. When the dynamic model is at hand, the feedback control law can be
determined by simply substituting Eq. (5.35) into Eq. (5.37):

τ = H(q)(q̈d − 2λ ˙̃q − λ2q̃) + C(q, q̇)q̇ + G(q). (5.39)

This control law is applied to the first-order form of the dynamic equation for the
PR manipulator, Eq. (5.14), for simulations.

(a) For the position control scenario, the desired joint positions are

qd =
[

0.1
−π

3

]
m
rad

. (5.40)

The desired joint positions, qd
i , are not a function of time. Therefore, one can

write

q̇d =
[

0
0

]
m/s
rad/s

q̈d =
[

0
0

]
m/s2

rad/s2. (5.41)

These information are used to calculate q̈d , ˙̃q, and q̃ used in Eq. (5.39).
To simulate the performance of a controller under the uncertainty of the dy-

namic parameters, one must “always” use the nominal dynamic parameters (i.e.,
m2 = 1.0 kg) for calculating the control law (5.39), while using an assumed
uncertain parameter (e.g., m2 = 1.2 kg) in the dynamic model (5.14). To inves-
tigate the performance of the position control via feedback linearization for the
PR manipulator with ±20% uncertainty in parameter m2, one must consider at
least three cases to simulate.

One simulation must be done with m2 set to 1.0 kg (i.e., using the nominal
parameters) in the dynamic model, representing the nominal situation. The result
of this simulation case must be satisfactory before the uncertainty is introduced
to the dynamic model. Therefore, any controller gain that must be set by trial
and error for a good performance must be determined here. For this example,
the controller gain λ = 8 in Eq. (5.39) showed a satisfactory performance for
the nominal case.
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Once the controller gains are tuned for a satisfactory performance in the nom-
inal case, two simulations must be done, each for the uncertain parameter set at
the bounds of the uncertainty. In this example, m2 is set at 0.8 and 1.2 kg for the
two simulations.

The trajectory of the joints for the three simulated cases are shown in Fig. 5.5.
As can be seen in the figure, the controller is able to accurately position the
joints for the nominal case. There are no steady-state errors in this case, which
indicates a better performance compared to that of the PD position controller of
the previous section. However, this is only true when the exact dynamic param-
eters of the manipulator are known. The two simulations for the bounds of the
uncertain m2 show a steady-state error in the joint positions. These errors may
or may not be acceptable depending on the application. Higher values for the
controller gain λ can result in a better performance, however, care must be taken
in increasing λ such that the driving forces/torques do not exceed the limits of
the joint motors. Figures 5.6 and 5.7 show the joint speeds and the driving force
and torque for the PR manipulator in three simulation cases. The difference in
joint speeds for the three cases are negligible. This is because the convergence
rate of the joint positions mostly depends on the value of λ, which remains the
same for all the cases. The driving forces for the three cases are very close, while
the driving torque shows a rather larger difference between the three cases. The
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Fig. 5.5 Trajectory of the joints for the PR manipulator under feedback linearized control
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reason for this larger difference is that the second joint is more affected by the
uncertainty in the second link’s mass than the first joint.

(b) For the trajectory-tracking scenario, the desired joint speeds and acceleration are
derived from the given desired joint position trajectories.

q̇d
i (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.2 if t ≤ 3.333

0.0 if 3.333 < t ≤ 6.667

−0.2 if 6.667 < t ≤ 10.000

0.0 if t > 10.00

i = 1, 2, (5.42)

and

q̈d
i (t) = 0, i = 1, 2, (5.43)

where q̇d
1 (t) is in m/s; q̇d

2 (t) is in rad/s; q̈d
1 (t) is in m/s2; and q̈d

2 (t) is in rad/s2.
The three cases of uncertainty for m2 as described in part (a) of this example

are simulated with the above desired values and the same controller gain λ =
8. Figure 5.8 shows the trajectory of the joint positions for the three cases of
uncertainty along with the desired trajectories. The uncertainty in the mass of the
second link has more strongly affected the position of the second joint compared
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Fig. 5.8 Trajectory of the joints for the PR manipulator under feedback linearized control
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Fig. 5.9 Joint speeds for the PR manipulator under feedback linearized control

to that of the first joint. However, as shown in Fig. 5.9, the joint speeds for the
three cases are almost identical, except for the initial transient response, when
the controller is trying to accelerate the manipulator from rest to the desired
nonzero joint speeds. Finally, as seen in Fig. 5.10, the driving forces for the three
cases are very close, while the driving torques show a rather larger difference
between the three cases. This is consistant with the simulation results for the
position control scenario. Here, the control force curve has rather large spikes.
This may concern a control engineer regarding whether or not the joint actuator
can generate such a fast response. If the actuator’s response is not fast enough,
the designed controller may not perform as well as the simulation shows in real
application.

5.5.2 Robust Control

In Example 5.4, it was shown that although the feedback linearization method has a
good performance when the manipulator’s model is very accurate, its performance
deteriorates when there are uncertainty in the manipulator’s model. In practical sit-
uations, there is not only a high possibility that the nominal dynamic parameters
of a manipulator are not very accurate, but also they will even change by adding
or reducing loads at the end-effector. Therefore, the feedback linearization method
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Fig. 5.10 Driving force and torque for the PR manipulator under feedback linearized control

can only have limited control performance for manipulators. There is a need for
a controller that performs well even when there are uncertainties in the dynamic
model. A controller that performs well in presence of uncertainties in the dynamic
model is called a robust controller.

In this section, we present a robust controller suitable for manipulators based on
the sliding mode control method. The sliding mode control method, also known as
the variable structure control method, is a general robust control method that can be
applied to any dynamic system with equal number of inputs and outputs.

5.5.2.1 The Sliding Mode Control Method

Since the sliding mode control is a model based control method, we need the dy-
namic model of the manipulator. The general form of the equations of motion for a
manipulator, Eq. (5.1), is repeated here for convenience:

H(q)q̈ + C(q, q̇)q̇ + G(q) = τ . (5.44)

In sliding mode control, the required behavior of the closed-loop system (plant
plus controller) from an initial state q to the desired dynamic equilibrium state qd is
defined as
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s = ˙̃q + �q̃, (5.45)

where

q̃ = q − qd , (5.46)

and � is a diagonal gain matrix with positive diagonal components.
Now, a controller must be designed to guarantee the generation of the desired

behavior of the plant states as defined in Eq. (5.45). The idea behind the sliding
mode control design is as follows. If a controller can be derived such that it can
stabilize the variable s at zero despite of uncertainties of the plant model, the states
of the plant will follow the desired behavior

˙̃q + �q̃ = 0, (5.47)

which asymptotically approaches q̃ = 0, because the diagonal gain matrix � has
positive diagonal components. The required behavior of the closed-loop system for
s = 0, i.e., Eq. (5.47), is called the surface. When q̃ is zero, q = qd , i.e., the system
follows the desired trajectory.

With this in mind, one can define the sliding mode control design problem
as finding a control law that guarantees the stabilization of s at zero despite any
bounded uncertainty in the plant’s dynamic model, and ensures the states of the
system follow the surface s = 0 to the dynamic equilibrium states.

5.5.2.2 Sliding Model Controller Design for Manipulators

As noted above, a sliding mode controller has two major parts. One part, known
as the equivalent control, ensures that the states of the system slide on the surface
to the dynamic equilibrium states. The other part, which brings robustness to the
controller, guarantees that the states of the system reach the surface from any initial
condition and remain on the surface. These two parts are designed rather separately.
In the following, first, some notations are defined. Next, the first part of the controller
is derived. And finally, the derivation of the second part is discussed.

Definitions. One of the properties of the sliding mode control method is its robust-
ness to model parameter uncertainty. When designing a sliding mode controller, one
should be able to distinguish between the nominal dynamic model (with nominal
system parameters) and the real dynamic model (with uncertain dynamic parame-
ters). Let us assume that the general form (5.44) represents the real dynamic model.
The nominal model has the same form as the real model, except it uses the nominal
system parameters. This model is described by

Ĥ(q)q̈ + Ĉ(q, q̇)q̇ + Ĝ(q) = τ . (5.48)

The matrices in this equation are the same as the ones defined for Eq. (5.1).
The “hat” for these terms emphesis the fact that these terms are calculated using
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the nominal parameters of the manipulator. Also, to simplify the notation of the
derivations, let us rewrite the definition of the required behavior of the closed-loop
system, Eq. (5.45), in the following form:

s = q̇ − sr , (5.49)

where

sr = q̇d − �q̃. (5.50)

With this definition, the equation defining the surface becomes

q̇ − sr = 0. (5.51)

Equivalent control. The equivalent control part of a sliding mode control law
must ensure that the states of the closed-loop system follow the surface to the dy-
namic equilibrium of the system. We use the definition of the surface, Eq. (5.51), and
the nominal model of the manipulator to derive the equivalent control. We calculate
q̈ by differentiating Eq. (5.51) with respect to time and substitute the result into the
nominal dynamic model (5.48).

τ̂ = Ĥṡr + Ĉsr + Ĝ, (5.52)

where Eq. (5.51) has also been used to replace q̇ with sr . The control command, τ̂ ,
that is defined by the above equation is the equivalent control.

Robust control law. The equivalent control has been developed with the assump-
tion that the states of the systems are already on the surface, which is not generally
true for an arbitrary initial state conditions. Furthermore, since the equivalent control
is calculated based on the nominal parameters of the the manipulator, if any amount
of uncertainty exists in the dynamic model, the trajectory of the states will depart
from the surface, which means that the manipulator will not reach the dynamic
equilibrium states. The second part of a sliding mode controller must guarantee that
s becomes zero and stays zero even when there are model parameter uncertainties.

The second part of a sliding mode controller is a discontinuous function of s that
is added to the equivalent control. A complete sliding mode control law is written as

τ = τ̂ − K sgn(s), (5.53)

or

τ = (Ĥṡr + Ĉsr + Ĝ) − K sgn(s), (5.54)

where K is a diagonal controller discontinuity gain matrix whose diagonal compo-
nents must be properly determined, and the “sgn” function returns a vector with the
sign of the components of s.
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Although the control law (5.53) seems complete, the diagonal components of the
controller discontinuity gain K must still be determined such that the control law
is robust to a given bounded parameter uncertainty. To determine the discontinuity
gains such that s approaches zero even in the presence of uncertainties, one must use
the Lyapunov stability method. In this method, a function of the variables that have
to approach zero as time passes is defined. This function, known as the Lyapunov
function, must be positive for all values of the variables and must be zero only when
the variables are zero. Now, if one can find the conditions under which the time
derivative of this function is always negative, it is guaranteed that, for those condi-
tions, the variables approach zero as time passes independent of the variables’ initial
value at time zero. The conditions give information about the required controller
gains. The following simple example illustrates the use of a Lyapunov function for
controller design.

Example 5.5. Consider a 1 DOF spring-mass system with the following dynamic
model.

mẍ + kx = f , (5.55)

where m, k, and f are the body mass, the spring stiffness, and the force applied to
the body. Assume that the position of the mass has to be controlled using a force.
The force is generated according the following control law:

f = −cẋ . (5.56)

Define a proper Lyapunov function for the spring-mass system. Find the conditions
under which the assumed control law can stabilize the system at x = 0.

Solution. A proper Lyapunov function must contain all the states of the system, must
be positive for all values of the system states, and must be zero only when the states
of the system are at the desired state (here, x = 0 and ẋ = 0). One can verify that
the following function possesses all these properties:

V = 1

2
mẋ2 + 1

2
kx2. (5.57)

For the controlled system (close-loop system) to stabilize at the desired state, the
time rate of the Lyapunov function must be negative for all values of the states:

V̇ < 0. (5.58)

For the defined Lyapunov function, the rate is obtained as

V̇ = mẋ ẍ + kẋx . (5.59)

Substituting the dynamics of the system and the control law into the above equation
results in
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V̇ = f ẋ = −cẋ2. (5.60)

The rate of the Lyapunov function must be negative, therefore,

− cẋ2 < 0, (5.61)

which results in the following condition on the controller gain c:

c > 0. (5.62)

This means that as long as a positive number is selected as the controller gain, the
controlled system will be stabilized at the desired states regardless of the initial
states.

The same procedure as the solution procedure of Example 5.5 is followed for
determining the discontinuity gain K of the sliding mode robust controller for a
manipulator. First, a proper Lyapunov function must be defined. Since the goal of
the second part of a sliding mode controller is to stabilize s, the Lyapunov function
must contain s.

V = 1

2
sT Hs. (5.63)

Note that the matrix H, appearing in the dynamic model of the manipulator is
positive-definite. Therefore, the above Lyapunov function is positive for all values
of s and is zero only when s is equal to zero. Now, the rate of this Lyapunov function
must be investigated.

V̇ = 1

2
ṡT Hs + 1

2
sT Ḣs + 1

2
sT Hṡ. (5.64)

Since H is always symmetric for serial manipulators, the first and the last term of
the right hand side of the above expression are equal.

V̇ = sT Hṡ + 1

2
sT Ḣs. (5.65)

Substituting for ṡ from Eq. (5.49) results in

V̇ = sT H(q̈ − ṡr ) + 1

2
sT Ḣs. (5.66)

Substituting for q̈ from the dynamic model of the manipulator, Eq. (5.44), yields

V̇ = sT (τ − Cq̇ − G − Hṡr ) + 1

2
sT Ḣs. (5.67)

Using q̇ = s + sr (from Eq. (5.49)) reduces the above equation to
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V̇ = sT (τ − Csr − G − Hṡr ) + 1

2
sT (Ḣ − 2C)s. (5.68)

At this stage, let us assume that the matrix Ḣ − 2C is skew-symmetric, which
causes the last term of the right hand side of the above equation to vanish. Later, it
will be shown that indeed one can always find the matrix C in the dynamic model of
the manipulator such that this assumption is correct. With this assumption, the rate
of the Lyapunov function becomes

V̇ = sT (τ − Hṡr − Csr − G). (5.69)

Now, the derived control law (5.54) must be substituted into the above relation
so that the controller discontinuity gains appear in the expression for the rate of the
Lyapunov function. After some simplification, this results in the following:

V̇ = sT [(Ĥ − H)ṡr + (Ĉ − C)sr + (Ĝ − G) − K sgn(s)]. (5.70)

Interestingly enough, the differences between the major terms in the nominal
dynamic model and the real (uncertain) dynamic model have appeared in the ex-
pression for the rate of the Lyapunov function. This fortunate event allows us to
determine the discontinuity gain of the controller based on some estimated bounds
on these differences. The differences in these major terms of the dynamic model
need some new notation as follows:

H̃ = Ĥ − H, C̃ = Ĉ − C, G̃ = Ĝ − G. (5.71)

With this notation, V̇ becomes

V̇ = sT (H̃ṡr + C̃sr + G̃) − sT K sgn(s). (5.72)

The matrix multiplications in the above equations are converted to summations so
that the components of the discontinuity gain appear in the expression.

V̇ =
n∑

i=1

si (H̃ṡr + C̃sr + G̃)i − Ki |si |. (5.73)

To simplify the derivations, the terms being multiplied in the first term of the
right hand side of the above equation are replaced by their absolute values. This
increases the total summation of the right hand side, which forces us to also replace
the equal sign with a “less than or equal” sign.

V̇ ≤
n∑

i=1

|si |.|(H̃ṡr + C̃sr + G̃)i | − |si |Ki . (5.74)
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The above expression is further simplified.

V̇ ≤ −
n∑

i=1

|si |.(Ki − |(H̃ṡr + C̃sr + G̃)i |). (5.75)

This expression implies that if the discontinuity gains of the sliding mode controller
are selected such that

Ki ≥ |(H̃ṡr + C̃sr + G̃)i | + ηi , (5.76)

where ηi ’s are arbitrary positive constants, then

V̇ ≤ −
n∑

i=1

|si |.ηi . (5.77)

This means that the rate of the Lyapunov function V defined in Eq. (5.63) is al-
ways negative if Ki ’s are selected such that they satisfy Eq. (5.76). Therefore, s
approaches zero as time passes regardless of its initial value and regardless of an
uncertainty in the dynamic model whose bounds are defined in Eq. (5.71).

Chattering. The discontinuity of the sliding mode control law can not only cause
problems for numerical differential equation solvers during the simulations, but also
can lead to chattering of the system (high-frequency actuation and vibration) in
practical applications. The reason for chattering is that the surface parameters si are
never exactly zero to the last precision digit during the computer control calcula-
tions. Therefore, the discontinuity term keeps switching from a small positive si to a
small negative si . These switchings are magnified by the multiplier Ki in the control
law. This magnification may cause significant fluctuations in τi , which in turn may
cause the manipulator to vibrate.

To avoid chattering, a saturation function replaces the sign function in the sliding
mode control law (5.54). The saturation function is continuous around the surface
si = 0, which allows si to smoothly converge to zero. The saturation function is
defined as follows:

sat(x) =
{

sgn(x), if abs(x) ≥ 1

x, if x < 1
. (5.78)

The saturation function must be only activated inside a boundary around the surface.
The thickness of this boundary is represented by φi . After replacing the sign function
with the saturation function, the control law (5.54) becomes

τ = (Ĥṡr + Ĉsr + Ĝ) − K sat(s/φ), (5.79)
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where sat(s/φ) is a n × 1 column vector with components

sat(si/φi ). (5.80)

Condition on the dynamic model. The reader should be reminded that the con-
dition on the discontinuity gains, Eq. (5.76), has been derived with the assumption
that the matrix Ḣ−2C is skew-symmetric. In fact, when the dynamic model is being
written in the standard form (5.44), there are many correct options for the matrix C.
However, if the dynamic model is to be used for designing a robust controller, the
matrix C must be selected such that the term Ḣ − 2C is skew-symmetric. It can
be shown that if the components of C are derived using the following relation, the
matrix Ḣ − 2C is skew-symmetric.

Ci j = 1

2
Ḣi j + 1

2

n∑
k=1

(
�Hik

�q j
− �Hjk

�qi
)q̇k . (5.81)

The following example shows the usage of Eq. (5.81).

Example 5.6. Consider the PR manipulator of Example 5.1. The term H in the stan-
dard form of the PR manipulator’s dynamic model was derived as

H(q) =
[

m1 + m2 −m2l2 sin q2

−m2l2 sin q2 m2l2
2

]
. (5.82)

Derive the C matrix suitable for sliding mode robust controller design.

Solution. A C matrix suitable for sliding mode robust controller design must ensure
that the term Ḣ−2C is a skew-symmetric matrix. Equation (5.81) is used to calculate
such a C matrix. Since the PR-manipulator has two joint variables, n is equal to 2
and C is a 2 × 2 matrix. The components of C are calculated as follows:

C11 = 0, (5.83)

C12 = −m2l2q̇2 cos q2, (5.84)

C21 = 0, (5.85)

C22 = 0. (5.86)

Therefore,

C(q, q̇) =
[

0 −m2l2q̇2 cos q2

0 0

]
. (5.87)

The term Ḣ − 2C is calculated as

Ḣ − 2C =
[

0 m2l2q̇2 cos q2

−m2l2q̇2 cos q2 0

]
, (5.88)

which is skew-symmetric.
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Example 5.7. Consider the PR manipulator of Example 5.1. Derive a sliding mode
robust control law for the manipulator. Design the discontinuity gain of the con-
troller such that the controller is robust to up to ±25% uncertainty in the manipulator
parameters m1, m2, and l2. Assume the desired trajectory introduced in Example 5.4.
Investigate the performance of the manipulator for ±20% uncertainty in parameter
m2. Also, verify that the required response of the states of the system under the
sliding mode control is defined by Eq. (5.45) as expected.

Solution. For the 2DOF PR manipulator, the required response of the states of the
system under the sliding mode control is defined based on Eq. (5.45) as follows:

[
s1

s2

]
=
[

q̇1 − q̇d
1

q̇2 − q̇d
2

]
+
[
λ1 0
0 λ2

] [
q1 − qd

1
q2 − qd

2

]
. (5.89)

The auxiliary terms sr and ṡr are derived as follows:

[
sr1

sr2

]
=
[

q̇d
1

q̇d
2

]
−
[
λ1 0
0 λ2

] [
q1 − qd

1
q2 − qd

2

]
, (5.90)

[
ṡr1

ṡr2

]
=
[

q̈d
1

q̈d
2

]
−
[
λ1 0
0 λ2

] [
q̇1 − q̇d

1
q̇2 − q̇d

2

]
. (5.91)

The required response of the states of the system under the sliding mode control
when s is zero can be set by selecting the gain matrix � components. In this example,
this gain matrix is selected as

� =
[

8 0
0 8

]
. (5.92)

The equivalent control is derived based on the nominal dynamic model, which
uses the nominal parameters of the manipulator. For the PR manipulator of this
example, these nominal parameters are

m̂1 = 1.0 kg, m̂2 = 1.0 kg, l̂2 = 1.0 m. (5.93)

The terms of the manipulator’s nominal dynamic model are

Ĥ =
[

m̂1 + m̂2 −m̂2l̂2 sin q2

−m̂2l̂2 sin q2 m̂2l̂2
2

]
, (5.94)

Ĉ =
[

0 −m̂2l̂2q̇2 cos q2

0 0

]
, (5.95)

Ĝ =
[

0
m̂2gl̂2 cos q2

]
. (5.96)
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To design the discontinuity gains such that the controller is robust to up to ±25%
uncertainty in the manipulator’s dynamic model parameters, the following uncertain
parameters are assumed as the worst case.

m1 = 1.25 kg, m2 = 1.25 kg, l2 = 1.25 m. (5.97)

The terms of the manipulator’s uncertain dynamic model are

H =
[

m1 + m2 −m2l2 sin q2

−m2l2 sin q2 m2l2
2

]
, (5.98)

C =
[

0 −m2l2q̇2 cos q2

0 0

]
, (5.99)

G =
[

0
m2gl2 cos q2

]
. (5.100)

To calculate the discontinuity gain of the controller, first, the derived matrices Ĥ,
Ĉ, Ĝ, H, C, and G are substituted into Eq. (5.71). Then, the results are used in
Eq. (5.76). For this example, ηi ’s are selected to be 1. With the components of K
calculated, Eq. (5.79) is used to control the PR manipulator. The boundary layer
widths for the saturation function in Eq. (5.79) are selected as

φ1 = 0.01 m/s, φ2 = 0.05 rad/s. (5.101)

Three scenarios similar to the ones discussed in Example 5.4 are considered for
investigating the performance of the controller under uncertain dynamic
model when tracking the desired trajectory. Figure 5.11 shows the trajectory of
the joint positions for the three scenarios. Since the robust controller’s disconti-
nuity gains have been calculated based on a maximum of ±25% uncertainty, the
controller’s performance does not deteriorate for m2 = 0.8 and 1.2 kg (i.e., ±20%
uncertainty).

Figure 5.12 shows the speed of the joints while the manipulator is tracking the
desired trajectory. Once again, all of the responses for the nominal and the uncertain
dynamics of the system are coincident, and the desired speeds are tracked accurately
despite of uncertainty in the dynamic model.

Figure 5.13 illustrates the history of the driving force and torque for the joints.
The uncertainty in the mass of the second link has very limited effect on the force
of the first joint. However, the second joint actuator, which is under the direct effect
of the mass of the second link, has been automatically adjusted by the controller to
provide the appropriate torque for the lower or the higher mass conditions.

The trajectory of the manipulator’s states errors in the phase plane (a diagram of
˙̃qi versus q̃i ) shows how the two parts of the robust sliding mode controller operate.
Figure 5.14 illustrates such a trajectory for both of the joint variables.

The top diagrams shows the error in the state variables of the first joint. The initial
position and speed of the first joint are q1(0) = 1.0 and 0.0 m/s, respectively. Since
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Fig. 5.11 Trajectory of the joints for the PR manipulator under robust control
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the desired position and velocity of the first joint at time zero are qd
1 (0) = 0.0 m and

q̇1(0) = 0.2 m/s, respectively, the initial error of the states of the first joint is

q̃1(0) = q1(0) − qd
1 (0) = 0.1 m ˙̃q1(0) = q̇1(0) − q̇d

1 (0) = −0.2 m/s (5.102)

This is the point where the trajectory of the error in the phase plane starts. As seen in
the top diagram of Fig. 5.14, this initial point is not on the defined surface (s = 0),
which is the required bahavior of the system that leads to equilibrium. The second
part of the sliding mode controller, the discontinuity term, pushes the error trajectory
from the initial condition onto the surface and assures that the trajectory remains on
the surface. This can be seen in Fig. 5.14. Now, note that, for the first joint, the
equation describing the surface, Eq. (5.47), becomes

0 = ˙̃q1 + λ1q̃1, (5.103)

which has an asymptotically stable equilibrium point at ˙̃q1 = 0 and q̃1 = 0. The
equivalent control is responsible for this behavior of the system. This means that
when the trajectory of the error reaches the surface, it will be pushed on the sur-
face to the equilibrium point by the equivalent control. This has happened to the
trajectory of the error for the first joint, as can be seen in the top plot of Fig. 5.14.
However, the trajectory will not remain at the equilibrium point for our simulation
because, at time t = 0.333 s, the desired value for the joint speed changes abruptly.
At this moment, suddenly, there is an error of ˙̃q = 0.2 m/s in the speed of the first
joint, while the position has no error. Therefore, the trajectory of the error jumps to
the point (0.0 m, 0.2 m/s) on the phase plane. The controller acts rapidly and pushes
the trajectory back onto the surface and slides the trajectory on the surface to the
equilibrium once again. This procedure repeats when the desired speed jumps to
−0.2 m/s once again at time t = 6.667 s.

The same argument can be repeated for the trajectory of the error for the second
joint.

Problems

Problem 5.1. Consider the Revolute-Prismatic (RP) manipulator shown in Fig. 5.15.
The manipulator is working in the vertical plane.

(a) Using the Lagrange method, derive the dynamic equations of motion for the
manipulator.

(b) Write the equations of motion in the standard form (Eq. 5.1).
(c) Write the first-oder form of the equations of motion (Eq. 5.12).

Problem 5.2. Consider the RP manipulator of Problem 5.1. Design a PD controller
that can bring the manipulator to any given desired position. Assume a mass of
2 kg and a moment of inertia of 0.04 kg.m2 about the center of mass for each link.
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Fig. 5.15 A 2-DOF Revolute-Prismatic (RP) manipulator

The link lengths as shown in Fig. 5.15 are 0.5 m each. Simulate the manipulator’s
response under the control if it starts from the initial posture q = [0 rad, 0 m]T and
is trying to reach a desired posture of qd = [π/3 rad, 0.3 m]T .

Problem 5.3. Consider the PR manipulator of Problem 5.2. Derive a tracking con-
trol law for the manipulator using the feedback linearization method. Investigate the
performance of the manipulator for an uncertain mass for the second link, m2. This
uncertainty represents the variations in loads carried by the second link. Assume
±20% bounds for uncertainty in m2. For the performance investigations, use the
following scenarios.

(a) Position control performance: the manipulator is at rest at an initial posture of
(0 rad, 0 m). It should reach the desired posture of (π/3 rad, 0.3 m).

(b) Trajectory-tracking performance: the manipulator is at rest at an initial posture
of (0 rad, 0 m). The manipulator’s joints must follow the following desired time
dependent trajectory.

qd
1 (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3π
50 t2 − π

125 t3 if 0 < t ≤ 5
π
2 if 5 < t ≤ 10
π
2 − 3π

50 (t − 10)2 + π
125 (t − 10)3 if 10 < t ≤ 15

0 if t > 15

,

qd
2 (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3
100 t2 − 1

250 t3 if 0 < t ≤ 5
1
4 if 5 < t ≤ 10
1
4 − 3

100 (t − 10)2 + 1
250 (t − 10)3 if 10 < t ≤ 15

0 if t > 15

,

where qd
1 (t) is in radians and qd

2 (t) is in meters.
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Problem 5.4. Consider the RP manipulator of Problem 5.2. The robot must be able
to handle different loads with masses of up to 0.3 kg, with negligible moments of
inertia, without loss of tacking accuracy. The load’s center of mass is assumed to be
coincident with the center of mass of the second link. Design a sliding mode robust
controller that can control the manipulator on any given trajectory. Investigate the
performance of the robust controller for three cases:

(a) no load at the end-effector;
(b) a 0.15-kg load at the end-effector; and
(c) a 0.5-kg load at the end-effector.

Use the desired joint trajectory defined in Problem 5.3.

Problem 5.5. Consider the spatial (3-Revolute) manipulator shown in Fig. 5.16.
Link one of the manipulator lies in the horizontal x1–x2 plane, while links two and
three are working in the vertical plane.

Fig. 5.16 A 3-DOF 3-Revolute (3R) manipulator. The joint angle q3 is shown in a negative con-
figuration
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(a) Using the Lagrange method, derive the dynamic equations of motion for the
manipulator.

(b) Write the equations of motion in the standard form (Eq. 5.1).
(c) Write the first-oder form of the equations of motion (Eq. 5.12).

Problem 5.6. Consider the 3-R manipulator of Problem 5.5. Design a PD controller
that can bring the manipulator to any given desired position. Assume a mass of
3 kg and a moment of inertia of 0.06 kg.m2 about the center of mass for each link.
The link lengths as shown in Fig. 5.16 are 0.5 m each. Simulate the manipulator’s
response under the control if it starts from the initial posture q = [0, 0, 0]T rad and
is trying to reach a desired posture of qd = [π/3, π/4,−π/12]T rad.

Problem 5.7. Consider the PR manipulator of Problem 5.5. Derive a tracking con-
trol law for the manipulator using the feedback linearization method. Investigate the
performance of the manipulator for an uncertain mass for the third link, m3. This
uncertainty represents the variations in loads carried by the second link. Assume
±20% bounds for uncertainty in m3. For the performance investigations, use the
following scenarios.

(a) Position control performance: the manipulator is at rest at an initial posture of
(0, 0, 0) rad. It should reach the desired posture of (π/3, π/4,−π/12).

(b) Trajectory-tracking performance: the manipulator is at rest at an initial posture
of (0, 0, 0) rad. All the manipulator’s joints must follow the following desired
time dependent trajectory.

qd
i (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3π
50 t2 − π

125 t3 if 0 < t ≤ 5
π
2 if 5 < t ≤ 10
π
2 − 3π

50 (t − 10)2 + π
125 (t − 10)3 if 10 < t ≤ 15

0 if t > 15

i = 1, 2, 3,

where qd
i (t) is in radians.

Problem 5.8. Consider the RP manipulator of Problem 5.5. The robot must be able
to handle different loads with masses of up to 0.5 kg, with negligible moments of
inertia, without loss of tacking accuracy. The load’s center of mass is assumed to be
coincident with the center of mass of the second link. Design a sliding mode robust
controller that can control the manipulator on any given trajectory. Investigate the
performance of the robust controller for three cases:

(a) no load at the end-effector;
(b) a 0.25-kg load at the end-effector; and
(c) a 0.6-kg load at the end-effector.

Use the desired joint trajectory defined in Problem 5.7.



Chapter 6
Mobile Robots

6.1 Introduction

In this chapter, the mechanics and controls for two types of mobile robots is studied.
The two mobile robot types are Hilare-type and car-like mobile robots. Hilare-type
robots have two independently driven wheels as the drive mechanism and are usually
balanced by a passive caster wheel. They have good maneuvering abilities, e.g., a
zero minimum turn radius, and are easier to control. They are also easier to build
due to their simple drive mechanism. Car-like mobile robots, as their name implies,
have a drive mechanism similar to cars. They are driven by a single motor that
powers a differential, which in turn distributes the motor’s torque to the rear wheels.
They have a steering mechanism at the front wheel(s), which is driven by a motor to
generate steering angles to steer the robot. Car-like robots have a nonzero minimum
turn radius. The nonzero minimum turn radius limits the manovering ability of car-
like robots. Care must be taken when defining a desired path such that the minimum
radius of curvature of the path is not less than the minimum turn radius of the car-like
robot. Otherwise, the robot will not be able to follow that path correctly independent
of the controller that is being used for the trajectory tracking.

The rest of this chapter is organized as follows. Since the kinematic model of
mobile robots are common for simulating this system and are usually used for con-
troller design, we present the kinematics models of Hilare and car-like robots. Then,
we use these kinematic models to derive trajectory-tracking control laws for the
robots. Finally, the dynamic model of the mobile robots are presented at the end of
this chapter.

6.2 Kinematic Models of Mobile Robots

6.2.1 Hilare Mobile Robots

A schematic figure of a Hilare mobile robot is shown in Fig. 6.1. This type of
robot is mostly used for indoor applications. The drive mechanism of a Hilare-type
robot has two independent motors. Each of these motors power one of the robot’s
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Fig. 6.1 A Hilare mobile robot

wheels. Thus, the actual kinematic inputs that drive the robot and affect its speed
and direction of motion are the two wheel speeds. With this in mind, at first glance
it seems intuitive to write the kinematic equations of motion of a Hilare mobile
robot in terms of these speeds. However, on most commercial mobile robots, there
exists a low-level controller that controls the linear and angular velocity of the robot.
Therefore, for application purposes, it is more convenient to choose the linear and
angular velocity of the mobile robot as the inputs of the kinematic model. When a
control law is found later based on this model, it can be more easily applied using
the development packages available for commercial robots.

Now, consider the Hilare-type mobile robot shown in Fig. 6.1. Assume that the
robot motion is reasonably slow such that the longitudinal traction and lateral force
exerted on the robot’s tires do not exceed the maximum static friction between the
tires and the floor in the longitudinal and lateral directions. In other words, assume
that no-slip happens between the robot’s tire and the floor during the whole motion
of the robot.

The first direct result of this assumption is that the velocities of the center of
the robot’s wheels do not have any lateral components. As a consequence, one can
assume that the velocity of point (x1, x2), the midpoint of the line attaching the
center of the wheels, does not have any lateral component and is parallel with the
wheel planes. The second result of the no-slip assumption is that one can relate the
velocity of point (x1, x2), the midpoint of the line attaching the center of the wheels,
to the rotational velocity of the wheels.

Before writing the kinematic equations of motion for the robot, one has to define
the configuration variables of the robot. Let the coordinates of point (x1, x2) define
the global position of the robot with respect to the inertial coordinate system x1 −x2.
Consider a line that is perpendicular to the wheel axis and goes through the point
(x1, x2) as an orientation reference for the robot. The angle that this line makes with
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the positive x1 axis, θ , represents the orientation of the robot. The three variables
that define the geometrical configuration of the robot at any given time are

q =
⎡
⎣x1

x2

θ

⎤
⎦ . (6.1)

Assume that the point (x1, x2) on the robot moves with a linear speed of v, while
the robot has an angular velocity of ω. Now, one can use the first direct result of
the no-slip assumption and write the velocity components of the point (x1, x2) in the
inertial frame as

ẋ1 = v cos θ ,

ẋ2 = v sin θ . (6.2)

Also, the rate of change of the robot’s orientation is

θ̇ = ω. (6.3)

Combining Eqs. (6.2) and (6.3) results in the kinematic equations of motion of the
robot, which can be written in the following matrix form:

q̇ =
⎡
⎣cos θ 0

sin θ 0
0 1

⎤
⎦ u, (6.4)

where u = [v ω
]T

. Once the input vector u is known as a function of time, Eq. (6.4)
can be numerically integrated to predict the motion of the robot. Note that one can
choose inputs different than the ones that are used here. Example of other sets of in-
puts are the rotational velocity of the wheels, the linear velocity of the point (x1, x2)
and the difference of the linear velocity of the wheels, etc.

Example 6.1. Consider the Hilare-type mobile robot shown in Fig. 6.1. Assume the
inputs are selected to be the linear velocity of the robot v1 and the difference of
the velocity of the two wheels v2 = vr − vl , where vr and vl are the velocities of
the right and the left wheel centers, respectively. Revise the kinematic equations of
motion of the robot and write them in terms of the new inputs.

Solution. The linear velocity of the robot is assumed to be v1, therefore v = v1. Also,
the angular velocity of the robot can be calculated as ω = (vr − vl)/T = v2/T ,
where T is the robot’s track (see Fig. 6.1). With these in mind, one can write the
revised kinematic equation of motion as

q̇ =
⎡
⎣cos θ 0

sin θ 0
0 1

T

⎤
⎦ u, (6.5)

where u = [v1 v2
]T

. This completes the solution to this example.
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6.2.2 Car-Like Mobile Robots

Consider the car-like robot shown in Fig. 6.2. The body coordinate system of the
robot has an origin at the midpoint of the rear axle of the robot. The longitudinal
axis xr1 points toward the front of the robot and the transversal axis xr2 point toward
the left wheel. The geometrical configuration of the robot at any given time can be
defined by knowing four variables, the two components of the global position of the
origin of the body frame, (x1, x2), the angle between the robot’s longitudinal axis
and the inertial x1 axis, θ and the steering angle, φ, (the angle between the plane
of the front wheel and the body axis xr1). The configuration variables are grouped
togother as

q =

⎡
⎢⎢⎣

x1

x2

θ

φ

⎤
⎥⎥⎦

T

. (6.6)

The drive mechanism of a car-like robot, as its name implies, is similar to that of
a car. The driving inputs for such a robot are the linear velocity of the origin of the
body coordinate system of the robot, v1, and the time rate of the steering angle of
the front wheels, v2. These inputs are grouped as

Fig. 6.2 A car-like mobile robot
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u =
[
v1

v2

]T

. (6.7)

Here, we are going to derive the differential relations between the configura-
tion variables and the driving inputs, known as the kinematic model of the robot.
For deriving these relations, we, once again, assume the no-slip condition, i.e., the
acceleration of the motion of the car-like robot is such that the interaction forces
between the tires and floor (ground) do not exceed their maximum allowable static
friction. One of the consequences of this assumption is that the robot wheels have
no lateral velocity component. Based on this, we can also assume that the lateral
component of the velocity of the midpoint of the front and the rear axle are zero.
We must use the mathematical representation of the no-slip condition to derive the
kinematic equations of the robot. The lateral no-slip condition for the midpoint of
the front and the rear wheel axles can be expressed as

ẋ1 sin θ − ẋ2 cos θ = 0, (6.8)

ẋ f 1 sin(θ + φ) − ẋ f 2 cos(θ + φ) = 0, (6.9)

where (x f 1, x f 2) is the Cartesian position of the front wheel center. A more useful
form of the lateral no-slip condition for the front wheel, Eq. (6.9), would solely be
expressed in terms of the configuration variables and their derivate. This form can
be obtained by using the following relations

x f 1 = x1 + L cos θ ,

x f 2 = x2 + L sin θ , (6.10)

which indicate that the robot is a rigid body, and one can calculate the position of
the midpoint of the front axle by knowing the position of the midpoint of the rear
axle, the orientation of the robot, and the wheel-base L of the robot. The derivatives
of Eqs. (6.10) are substituted in Eq. (6.9) to obtain the more useful form of

ẋ1 sin(θ + φ) − ẋ2 cos(θ + φ) − L θ̇ cos φ = 0 (6.11)

for the front wheel no-slip condition.
Now, we are ready to write the kinematic model of the car-like robot. The velocity

components of the midpoint of the rear axle, i.e., the origin of the robot’s body
frame, expressed in the inertial coordinate system are

ẋ1 = ẋr1 cos θ − ẋr2 sin θ ,

ẋ2 = ẋr1 sin θ + ẋr2 cos θ , (6.12)
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where ẋr1 and ẋr2 are the longitudinal and lateral velocity components expressed in
the robot’s body frame. The no-slip condition dictates that ẋr2 = 0. Also, the linear
velocity of the robot was assumed to be a driving input, i.e., ẋr1 = v1 is a driving
input. Using these information, one can write the first two kinematic equations of
motion for the robot based on Eqs. (6.12):

ẋ1 = v1 cos θ ,

ẋ2 = v1 sin θ . (6.13)

The third kinematic equation is obtained by substituting Eqs. (6.13) in the front
wheel no-slip condition Eq. (6.11), which results in

(cos θ sin(θ + φ) − sin θ cos(θ + φ))v1 − L θ̇ cos φ = 0, (6.14)

which after simplification yields to

θ̇ = tan φ

L
v1. (6.15)

The last kinematic equation is obtained by considering the fact that the rate of
the steering angle has been selected as the second driving input, i.e.,

φ̇ = v2. (6.16)

The whole kinematic model, in matrix form, is derived by gathering Eqs. (6.13), (6.15),
and (6.16).

q̇ =

⎡
⎢⎢⎣

cos θ 0
sin θ 0
tan φ

L 0
0 1

⎤
⎥⎥⎦ u. (6.17)

By specifying the driving input, u = [v1, v2]T , one can predict the motion of the
car-like robot using the kinematic model (6.17).

6.3 Trajectory-Tracking Control Based on Kinematic Models

6.3.1 Hilare-Type Mobile Robots

A trajectory-tracking controller is needed for the robots to be able to follow the
planned trajectory [57]. In this section, we present the controller based on the kine-
matic model of Hilare nonholonomic robots, as shown in Fig. 6.1. The control inputs
for the mobile robot are assumed to be v and ω as defined previously. The kinematics
equations of a Hilare robot are written as



6.3 Trajectory-Tracking Control Based on Kinematic Models 169

ẋ = v cos θ,

ẏ = v sin θ, (6.18)

θ̇ = ω.

Assume that the desired trajectory for the mobile robot in the inertial coordinate
system is defined by selecting the two position components of the origin of the
robot’s body frame as functions of time.

xd
1 = xd

1 (t),

xd
2 = xd

2 (t). (6.19)

The desired velocity components of the robot can be derived by differentiating
Eqs. (6.19).

ẋ d
1 = ẋ d

1 (t),

ẋ d
2 = ẋ d

2 (t). (6.20)

Note that these velocities are in general a function of time, which implies the
robot must follow a desired user-defined speed. This user-defined speed is also de-
terminted when the user is defining the desired positions as a function of time. In
fact, the desired path of the robot, as a function of x1 and x2 only, can be found by
eliminating the time t between the desired position components listed in Eq. (6.19).
Therefore, the desired postions as defined in Eq. (6.19) contain the information
about the desired speed as well as the geometry of the desired path. A user must
keep this in mind while determining these functions.

Once the desired velocity components are derived from Eq. (6.20), the desired
orientation of the robot must be derived. Since the Hilare-type mobile robot has a
nonholonomic constraint, any desired orientation can not be selected by the user.
The desired orientation must conform to the robot’s kinematic constraint, i.e., it has
to obey the lateral no-slip condition. The lateral no-slip condition states that there is
no lateral slip, i.e., the lateral velocity of the robot is zero at all times. The no-slip
condition can mathematically be expressed as follows:

ẋr2 = −ẋ1 sin θ + ẋ2 cos θ = 0. (6.21)

The above relation dictates that once the desired velocities are determined from
Eq. (6.20), the desired orientation can be derived as follows:

θd (t) = arctan

(
ẋ d

2 (t)

ẋ d
1 (t)

)
. (6.22)

By observing the kinematic model, one can find a new set of configuration vari-
ables that can simplify the kinematic model. These new variables are listed in the
following:



170 6 Mobile Robots

z1 = x1,

z2 = tan θ, (6.23)

z3 = x2.

One can show that the new configuration variables, along with the following new
control inputs can further simplify the form of the robot’s kinematic equations. The
new control inputs are listed below:

u1 = v cos θ,

u2 = ω(1 + tan2 θ ). (6.24)

Applying these new variables to Eqs. (6.2) and (6.3) results in a new form for the
kinematic equations of motion of the robot.

ż1 = u1,

ż2 = u2, (6.25)

ż3 = z2u1.

This equation is known as the “chain form” for kinematic equations of the robot.
In fact, this form can be extended for mobile robots with other types of drive mech-
anism (e.g., car-like robots) that have different number of DOFs (configuration vari-
ables). The general formula of the chain form is

ż1 = u1,

ż2 = u2, (6.26)

żk = zk−1u1, (k = 3, . . . , n).

The desired trajectory for the new configuration variables can be found by sub-
stituting Eqs. (6.22) into Eqs. (6.23):

zd
1 (t) = xd

1 (t),

zd
2 (t) = ẋ d

2 (t)

ẋ d
1 (t)

, (6.27)

zd
3 (t) = xd

2 (t).

One can determine the new inputs corresponding to the new desired configuration
variables by substituting Eqs. (6.27) into Eqs. (6.25):
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ud
1 = ẋ d

1 (t),

ud
2 = d

dt

(
ẋ d

2 (t)

ẋ d
1 (t)

)
,

= ẍ d
2 (t)ẋ d

1 (t) − ẍ d
1 (t)ẋ d

2 (t)

(ẋ d
1 (t))2

. (6.28)

Now, our goal is to control the new kinematic equations (6.25) to follow the
desired new trajectory (6.27). We write the nonlinear error equations as

˙̃z1 = ũ1,

˙̃z2 = ũ2, (6.29)
˙̃z3 = zd

2 ũ1 + z̃2ud
1 + z̃2ũ1,

where

z̃i = zi − zd
i , i = 1, 2, 3, (6.30)

ũi = ui − ud
i , i = 1, 2. (6.31)

Now, we linearize the nonlinear system (6.29) by neglecting the term z̃2ũ1 and
assume the following time-variant feedback control law,

[
ũ1

ũ2

]
=
[

k1 0 0
0 k2 k3/ud

1

]⎡⎣z̃1

z̃2

z̃3

⎤
⎦ , (6.32)

in which k1, k2, and k3 are constant controller gains. One can show that by applying
the control law (6.32) on the linearized form of state error equations (6.29) the
following linear time-variant closed loop system is obtained:

⎡
⎣ ˙̃z1

˙̃z2
˙̃z3

⎤
⎦ =

⎡
⎣ k1 0 0

0 k2 k3/ud
1

k1zd
1 ud

1 0

⎤
⎦
⎡
⎣z̃1

z̃2

z̃3

⎤
⎦ . (6.33)

Note that although the linear system (6.33) is time dependent, its characteristic
equation is time independent. Therefore, if one selects the controller gains as

k1 = −λ1, k2 = −2λ2, k3 = −(λ2
2 + λ2

3), (6.34)

where λ1 and λ2 are positive constants. Then, the closed loop system (6.33) will be
asymptotically stable with poles at −λ1, −λ2 + iλ3, and −λ2 − iλ3.

Finally, the new inputs, ũ1 and ũ2, can be computed based on configuration errors
with respect to the trajectory, z̃1 to z̃3, from the feedback control law (6.32). By using
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Eqs. (6.31) and (6.24), one can obtain the control laws for the original inputs, the
robot linear and angular velocity, v and ω.

v = ũ1 + ud
1

cos θ
,

ω = ũ2 + ud
2

1 + tan2 θ
. (6.35)

Example 6.2. Consider a Hilare-type mobile robot. Assume that the robot is initially
located at (0.0, 0.5) m. Use the derived control laws to control the robot on the
following two paths.

(a). A piecewise-linear path defined by

x2 = f (x1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 if 0 < x1 ≤ 3 1
3

3 1
3 if 1 1

3 < x1 ≤ 6 2
3

10 − x1 if 6 2
3 < x1 ≤ 10

0 if x1 > 10

, (6.36)

where all the distances are in meters. Assume that the robot must move with a
desired velocity of vd = √

2/2 m/s on the first and the third segment, while it
must have a velocity of vd = 1/2 m/s on the second and the fourth segment.

(b). A sinusoidal path with an amplitude of 2 m defined by

x2 = f (x1) = 2 sin(x1) 0 < x1 < 13
1

3
, (6.37)

where all the distances are in meters. Assume that the robot has to keep a con-
stant velocity component of 1/2 m/s in the x1 direction.

Solution. First, the desired position, velocity, and acceleration, as functions of time,
required by Eqs. (6.27) and (6.28), must be derived based on the assumptions given
in the problem definition. Then, the desired values along with the current values
of the configuration variables are used in Eqs. (6.30) and (6.31) to calculate the
errors at any given time. These errors in turn are used in Eq. (6.32) to find the
control commands ũ1 and ũ2. These control commands are transformed into the
actual linear and angular velocity control commands v and ω by using Eq. (6.35).
The actual control commands are applied to the kinematic equations (6.18) to obtain
the simulated control behavior of the mobile robot. Here, the results of each part are
discussed separately.
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(a). The desired position components as functions of time become

xd
1 (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.5t if 0 < t ≤ 6 2
3

0.5t if 6 2
3 < t ≤ 13 1

3

0.5t if 13 1
3 < t ≤ 20

0.5t if t > 20

, (6.38)

and

xd
2 (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.5t if 0 < t ≤ 6 2
3

3 1
3 if 6 2

3 < t ≤ 13 1
3

3 1
3 − 0.5(t − 13 1

3 ) if 13 1
3 < t ≤ 20

0 if t > 20

. (6.39)

The desired velocity components as functions of time become

ẋ d
1 (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.5 if 0 < t ≤ 6 2
3

0.5 if 6 2
3 < t ≤ 13 1

3

0.5 if 13 1
3 < t ≤ 20

0.5 if t > 20

, (6.40)

and

ẋ d
2 (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.5 if 0 < t ≤ 6 2
3

0 if 6 2
3 < t ≤ 13 1

3

−0.5 if 13 1
3 < t ≤ 20

0 if t > 20

. (6.41)

The desired acceleration components as functions of time become

ẍ d
1 (t) = 0, ẍ d

2 (t) = 0, for all t . (6.42)

By using this desired trajectory and applying the control laws as discussed
in this section, one can simulate the response of the mobile robot. For these
simulations, the values for λ1 and λ2, which determine the convergence rate of
the robot to the path, are selected to be 3. The simulation time, 26 2/3 s, was
selected such that the robot can complete the path with specified velocity.

The path that the robot follows is shown in Fig. 6.3. Although the desired
path has sharp corners, the robot has been able to follow it rather closely. At the
sharp corners, the robot has a transient response, however, it aligns itself with
the linear path after a while.

The orientation of the robot is shown in Fig. 6.4. Note that the desired ori-
entation is not directly fedback in the control system. However, it is enforced
indirectly by defining the configuration variable zd

2 in Eq. (6.27), which is
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Fig. 6.3 A Hilare mobile robot tracking a piecewise-linear path
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Fig. 6.4 The orientation of a Hilare mobile robot tracking a piecewise-linear path

related to the orientation θ via Eq. (6.23). It can be seen from Fig. 6.4 that the
robot aligns its orientation with the desired path rapidly.

(b). The desired position components as functions of time become

xd
1 (t) = 0.5t, (6.43)

and

xd
2 (t) = 2 sin(0.5t). (6.44)

The desired velocity components as functions of time become

ẋ d
1 (t) = 0.5, (6.45)
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Fig. 6.5 A Hilare mobile robot tracking a sinusoidal path

and

ẋ d
2 (t) = 2(0.5) cos(0.5t). (6.46)

The desired acceleration components as functions of time become

ẍ d
1 (t) = 0, (6.47)

and

ẍ d
2 (t) = −2(0.5)2 sin(0.5t). (6.48)

The path that the robot follows is shown in Fig. 6.5. Although the desired path’s
curvature dynamically changes, the robot has been able to follow it closely. Even
at the sharper corners, the robot does not have any transient response, because
the path is smooth and no sudden errors are imposed on the system, unlike the
case with the piecewise-linear path.

The orientation of the robot is shown in Fig. 6.6. This figure shows that, after
a transient response, the robot keeps its orientation aligned with the desired path
at all times. The transient response exists because the robot is facing toward the
positive x1-axis at the beginning of the motion.

6.3.2 Car-Like Mobile Robots

The trajectory-tracking controller design for a car-like robot is very similar to that
for a Hilare-type robot. The difference is the number of configuration variables and
the driving inputs, which will be used as control inputs. The kinematic equations of
motion for a car-like robot are
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Fig. 6.6 The orientation of a Hilare mobile robot tracking a sinusoidal path

ẋ1 = v1 cos θ,

ẋ2 = v1 sin θ,

θ̇ = tan φ

L
v1,

φ̇ = v2. (6.49)

Here, we must define the desired trajectory for the car-like robot. The desired posi-
tion components for the midpoint of the rear axle are

xd
1 = xd

1 (t),

xd
2 = xd

2 (t). (6.50)

Any desired velocity, acceleration, and jerk (the time derivative of acceleration)
can be derived from this desire position as functions of time. A user must be careful
defining these desired position components as functions of time because they not
only contain information about the desired position, but also contain information
regarding the desired velocity, acceleration, and even jerk.

For the purpose of controller development, let us define a new set of configuration
variables similar to what was defined for the Hilare mobile robot. These new sets of
configuration variables are

z1 = x1,

z2 = tan φ

L cos3 θ
,

z3 = tan θ,

z4 = x2. (6.51)

By substituting the new configuration variables (6.51) into the kinematic model,
Eq. (6.49), one can see that the following new control inputs are relevant.
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u1 = v1 cos θ,

u2 = (3 sin θ sin2 φ)v1 + (L cos θ )v2

L cos2 θ cos2 φ
. (6.52)

Using the new driving inputs (6.52), one can reduce the kinematic model of the
car-like robot to the “chain form,” as follows.

ż1 = u1,

ż2 = u2,

ż3 = z2u1, (6.53)

ż4 = z3u1. (6.54)

Note that these equations conform to the general chain form template given by
Eq. (6.26) with n = 4. The desired driving inputs ud

1 and ud
2 as functions of time

are derived by combining Eq. (6.50) and its derivatives and the new configuration
variables defined in Eq. (6.51).

zd
1 (t) = xd

1 (t),

zd
2 (t) = ẍ d

2 (t)ẋ d
1 (t) − ẍ d

1 (t)ẋ d
2 (t)

(ẋ d
1 (t))3

,

zd
3 (t) = ẋ d

2 (t)

ẋ d
1 (t)

, (6.55)

zd
4 (t) = xd

2 (t).

One can determine the new inputs corresponding to the new desired configuration
variables by substituting Eqs. (6.56) into Eqs. (6.54).

ud
1 (t) = ẋ d

1 (t),

ud
2 (t) =

...
x d

2 (t)(ẋ d
1 (t))2 − ...

x d
1 (t)ẋ d

1 (t)ẋ d
2 (t) − 3ẍ d

2 (t)ẋ d
1 (t)ẍ d

1 (t) + 3ẋ d
2 (t)(ẍ d

1 (t))2

(ẋ d
1 (t))4

.

(6.56)

After deriving the new desired configuration variables, one can define the error
in the new configuration variables as

z̃i = zi − zd
i , i = 1, 2, 3, 4, (6.57)

ũi = ui − ud
i , i = 1, 2. (6.58)

The kinematic equations in terms of the new configuration variables and the de-
fined errors are obtained by combining the error Eqs. (6.58) with the kinematic
Eqs. (6.54). The result is



178 6 Mobile Robots

˙̃z1 = ũ1,

˙̃z2 = ũ2,

˙̃z3 = zd
2 ũ1 + z̃2ud

1 + z̃2ũ1, (6.59)
˙̃z4 = zd

3 ũ1 + z̃3ud
1 + z̃3ũ1.

Let us assume that the terms z̃2ũ1 and z̃3ũ1 are small compared to the other terms
in their corresponding equations. Then, the error system (6.59) can be written as a
time dependent linear system as

˙̃z =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 ud

1 (t) 0 0
0 0 ud

1 (t) 0

⎤
⎥⎥⎦ z̃ +

⎡
⎢⎢⎣

1 0
0 1

zd
2 (t) 0

zd
3 (t) 0

⎤
⎥⎥⎦ ũ. (6.60)

We select the following time varying linear feedback control law, which can be
proved to guarantee asymptotic stability for linear time varying systems.

ũ =
[

k1 0 0 0
0 k2

k3

ud
1 (t)

k4

(ud
1 (t))2

]
z̃. (6.61)

The parameters k1, k2, k3, and k4 are the control gains. To obtain a fast conver-
gence to zero in the trajectory tracking, the gains should be chosen in such a way
that the closed-loop eigenvalues are located in the left half plane. For example, if
we would like to have two negative real eigenvalues λ1 and λ2 and two eigenval-
ues with negative real part, with modulus ωn and damping coefficient ζ , the gains
should be

k1 = −λ1,

k2 = −(λ2 + 2ζωn),

k3 = −(ω2
n + 2ζωnλ2), (6.62)

k4 = −(ω2
nλ2). (6.63)

Finally, the physical control inputs can be calculated based on the control inputs
derived in Eq. (6.61). Using Eq. (6.52), one can find the physical control inputs as

v1 = 1

cos θ
(ũ1 + ud

1 ),

v2 = −3 sin θ sin2 φ

L cos2 θ
(ũ1 + ud

1 ) + L cos3 θ cos2 φ(ũ2 + ud
2 ). (6.64)

By applying the control law (6.64) to the car-like robot modeled by kinematic
equations (6.49), one can make the robot drive on the desired trajectory defined
by Eq. (6.50).
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Example 6.3. Consider a car-like robot with a wheel-base of L = 0.2 m. Assume
that the robot is initially located at (0, 0.5) meter. Use the derived control laws (6.64)
to control the robot on the two paths defined in parts (a) and (b) of Example 6.2.

Solution. Deriving the desired position, velocity, and acceleration of the robot as
functions of time for this example is similar to what was done in Example 6.2.
However, for a car-like robot, the desired jerk (first time derivative of the acceler-
ation) must also be determined. This is simply done by differentiating the desired
acceleration. One can simulate the response of the car-like robot by using the above
desired trajectory and the control laws derived in Eq. (6.64) and applying them to
the car-like kinematic model given by Eqs. (6.49). The following controller gains
have been used for this simulation.

λ1 = λ2 = −10, ωn = 1.0, ζ = 1.0. (6.65)

The simulation time is 26 2/3 s, so that the robot can complete the paths with its
specified velocity. The simulations results for part (a) and (b) follow.

(a) Piecewise-linear path: The desired jerk is

...
x d

1 (t) = 0,
...
x d

2 (t) = 0, for all t . (6.66)

The path that the robot follows under the closed-loop control is shown in
Fig. 6.7. The piecewise linear desired path has sharp corners that are not pos-
sible for a car-like robot to follow. This is because the minimum turn radius of
a car-like robot is limited. This fact is reflected in Fig. 6.7. The robot departs
from the path at the sharp corners no matter how high the control gains are. Too
high control gains result in a very jerky steering angle output form the controller.
Hilare-type mobile robots can deal better with sharp corners because their mini-
mum turn radius is zero, i.e., they can turn around themselves at a fixed position.
Comparison of Fig. 6.7 with Fig. 6.3 confirms this claim.
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Fig. 6.7 A car-like mobile robot tracking a piecewise linear path
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Fig. 6.8 The orientation of a car-like mobile robot tracking a piecewise linear path

The orientation of the car-like robot is shown in Fig. 6.8. It can be seen that
the orientation response of the car-like robot is also slower than that of a Hilare
mobile robot (Fig. 6.4). This is once again because of the kinematic property of
a car-like robot, which has a nonzero minimum turn radius.

Figure 6.9 shows the steering angle of the car-like robot, which is one of the
control inputs. At the sharp corners, the steering angle changes suddenly. The
peak of this steering angle depends on the controller gains. Larger controller
gains cause higher peaks for the steer angle input. The physical limit of the steer
angle must be considered when tuning the controller.

(b) Sinusoidal path: the desire jerk is

...
x d

1 (t) = 0,
...
x d

2 (t) = −2(0.5)3 cos(0.5t). (6.67)

The path that the robot follows under the closed-loop control is shown in
Fig. 6.10. The sinusoidal path is smooth and has no sharp corners and it is easy
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Fig. 6.9 The steering input for a car-like mobile robot tracking a piecewise-linear path
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Fig. 6.10 A car-like mobile robot tracking a sinusoidal path

for the robot to follow, as long as the minimum radius of curvature of the path
is not less than the minimum turn radius of the robot. The performance of the
car-like robot for this smooth path is rather similar to that of the Hilare robot
(Fig. 6.5).

The orientation of the car-like robot is shown in Fig. 6.11. The orientation
response of the car-like robot for a smooth path is much better than that for the
piecewise linear path. The orientation performance of the car-like robot resem-
bles that of the Hilare robot (Fig. 6.6). One of the control inputs, the steering
angle of the car-like robot is shown in Fig. 6.12. At the corners, the steering
angle changes faster. Once again, the peak of this steering angle depends on the
controller gains. Larger controller gains cause higher peaks for the steer angle
input. The physical limit of the steer angle must be considered when tuning
the controller. It should be noted that the steering angle is in phase with the
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Fig. 6.11 The orientation of a car-like mobile robot tracking a sinusoidal path
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Fig. 6.12 The steering input for a car-like mobile robot tracking a sinusoidal path

sinusoidal path being tracked. The reason for this is that the steering angle is a
representative of the path’s curvature. Where the radius of curvature of the path
is smaller, the steering angle is larger. This fact can be confirmed by comparing
the path (Fig. 6.10) and the steering angle input curves (Fig. 6.12).

6.4 Formation Control for Hilare Mobile Robots

This section focuses on control and coordination for multiple robots that have to
move as a group with user-defined relative positions, i.e., in formations. To address
the control issues of mobile robots moving in formations, several approaches exist.
The most common approach is the behavior-based approach [7]. In this approach,
emergent or complex behaviors from organizations of many small, individual, and
often heterogeneous robots are defined. Generally, this approach either relies on su-
pervisory (centralized) control and process planning, or utilizes theory of evolution
to generate a pre-specified system behavior. Although this approach is effective if
the behaviors are defined well, the mathematical proof of their performance qual-
ities is very difficult to achieve. This limits the application of the behavior-based
approach to situations where uncertainty in the robots behavior can be tolerated,
e.g., for soccer robots.

In an industrial setting, where multiple robots may be used for handling a large
load, the behavior of the robots must be completely predictable. This predictability
must be achieved by using control algorithms with provable performance and deriv-
able limitations. Therefore, the goal being pursued here is to generate rigorously
provable measures/bounds on the performance of the multiple robot system.

Here, the problem of control and coordination for many robots moving in for-
mation is considered using decentralized controllers. It is assumed that the overall
motion for the formation as a group is given by an external path planner, for ex-
ample, the potential field obstacle avoidance method presented in Chapter 4. This
motion plan is then used to control a single lead robot.
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It is also assumed that each robot is aware of the relative position of other robots
that are immediately adjacent to it via communication or some kind of vision. While
the lead robot follows the given trajectory, the rest of the robots in the formation are
controlled by local (decentralized) control laws. The control law for each robot in
the formation is derived based on the dynamics of its relative postion with respect
to the neighboring robots in the formation. This type of decentralized control law
has the advantage of providing easily computable, real-time feedback control, with
provable performance for the entire system.

6.4.1 Geometrical Leader-Follower Formation Schemes

Based on the methodology introduced in [22], in this section, two schemes for feed-
back control of the relative distance of the robots within a formation are described.
The first scheme is a controller that controls the relative distance and view angle of
one robot (the local follower) relative to one neighboring robot (the local leader).
This control scheme is used in situations where each robot has one leader, for exam-
ple, where robots march in a single file or at an edge of a 2D formation geometry.
The second scheme is a controller that allows a robot (a local follower) to maintain
its position in the formation by keeping specified distances with two neighboring
robots (local leaders).

6.4.2 Design of the l – α Controller

Two neighboring robots in the formation are shown in Fig. 6.13. The distance of the
center of axle of robot 1 and the control point, p, of robot 2 is l12. The control point
is on the longitudinal axis of robot 2 and has a distance d from the center of the axle

Fig. 6.13 The l – α control scheme
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of robot 2. To maintain the formation, robot 2 must keep a desired distance of ld
12

and view angle αd
12 with robot 1. A control law for the driving inputs of robot 2, v2

and ω2, must be determined such robot 2 maintains the desired distance and view
angle.

To design such a control law, explicit relations between the control inputs (v2 and
ω2) and the control outputs (l12 and α12) are required. These relations are known as
the input–output relations. In the following, first, these input–output relations are
found, then, the control laws are derived. The explicit relations between the input
and the output are found by a kinematic analysis of the relative motion of the robots
1 and 2.

6.4.2.1 Kinematic Analysis

A moving coordinate system is assumed with an origin at the center of axle of robot
1. This coordinate system is rotating with the vector l12, which is the line of sight
of robot 2 from robot 1’s center of axle (Fig. 6.13). Also, two coincident points are
assumed. The first one is p1, and is attached to this moving coordinate system. The
second one is p2, which is attached to robot 2. Both points are coincident with the
instantaneous location of the control point p. One can see that, in the eye of an
observer attached to the defined moving coordinate system standing at p1, point p2

moves along the vector l12. Mathematically, this can be expressed by the following
kinematic equation for the inertial velocity of p2:

vp2 = vp1 + vp2/1,

= (v1 + α̇0k̂ × l12) + l̇12, (6.68)

where v1 is the velocity of the center of axle of robot 1, and

α0 = θ1 + α12, (6.69)

α̇0 = ω1 + α̇12. (6.70)

Now, the the velocity of point p2 on robot 2 can also be written in terms the
velocity of the center of axle of the robot 2, v2:

vp2 = v2 + ω2k̂ × d. (6.71)

The vectorial Eqs. (6.68) and (6.71) are combined, expanded, and solved for the
highest derivatives of the outputs, l̇12 and α̇12, to result in

l̇12 = v2 cos γ1 − v1 cos α12 + dω2 sin γ1, (6.72)

α̇12 = 1
l12

(v1 sin α12 − v2 sin γ1 + dω2 cos γ1 − l12ω1), (6.73)



6.4 Formation Control for Hilare Mobile Robots 185

where

γ1 = θ1 + α12 − θ2. (6.74)

6.4.2.2 Input–Output Equations

The kinematic equations (6.72) and (6.73) already relate the controller inputs
[v2, ω2] of the follower robot to the formation scheme outputs [l12, α12], and pro-
vide the input–output equations. Here, the input–output relations are written in the
matrix form:

ż = f + bu, (6.75)

where

z =
[

l12

α12

]
, f =

[ −v1 cos α12
1

l12
(v1 sin α12 − l12ω1)

]
, b =

[
cos γ1 d sin γ1

− sin γ1

l12

d cos γ1

l12

]
, u =

[
v2

ω2

]
.

(6.76)

6.4.2.3 Control Laws

With the input–output equations at hand, nonlinear control laws can be proposed.
Here, a nonlinear controller is designed based on the input–output equation (6.75).
A stable first-order nonlinear error dynamics is introduced (ki > 0, i = 1, 2):

˙̃zi + ki z̃i = 0, i = 1, 2, (6.77)

where z̃1 and z̃2 are the output errors defined as

z̃1 = l12 − ld
12 z̃2 = α12 − αd

12. (6.78)

For a constant ki > 0, the error dynamics (6.77) results in a damped linear first-
order closed-loop input-output system. The desired error behavior (6.77) is written
in the matrix form for convenience.

˙̃z + K z̃ = 0, (6.79)

where

K =
[

k1 0
0 k2

]
. (6.80)

Equation (6.79) can be solved for ż.

ż = żd − K z̃. (6.81)
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Substituting for ż from Eq. (6.81) into Eq. (6.75) and solving for the control input
u results in

u = b−1(żd − K z̃ − f). (6.82)

Note that the matrix b must be inverted for calculating the control law. Therefore,
the determinant of this matrix must be nonzero at all times. This determinant is
obtained as

det(b) = d

l12
. (6.83)

As can be seen, this determinant is nonzero as long as the parameter d, defining
the location of the control point, is not zero. This emphasizes the importance of
the distance between the control point of the robot 2 and its center of axle, d. If
the control point was chosen to be coincident with the center of axle of the robot 2
(d = 0), the formation scheme would have become uncontrollable.

Fig. 6.14 Two robots moving side by side using the l – α control scheme
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Example 6.4. Two Hilare-type mobile robots have to move side by side with a dis-
tance of 1.732 m between their centers of axle (Fig. 6.14).

(a) Calculate the desired formation parameters [ld
12, α

d
12]. Assume d = 1 m.

(b) Assume that one of the robots moves on a desired trajectory defined as follows:

x1(t) = 0.5t,

x2(t) = 0.2 sin(0.5t).

Apply the l – α control scheme to control the motion of the second robot, which
starts it motion form rest at point (0, 1) m.

Solution.

(a) The desired formation parameters are shown in Fig. 6.14. They can be calculated
based on the geometry of the formation as follows.

ld
12 =

√
1.7322 + 12 = 2.000 m

αd
12 = arctan(

2

1
) = 63.43◦

(b) The l – α control law (6.82) is used and applied to the kinematic equations (6.4)
of the Hilare-type robot. Note that the controller needs the outputs, the forma-
tion parameters, at any instant as feedback. The formation parameters can be
calculated at any instant in time by knowing the instantaneous pose (position
and orientation) of the leader and the follower robots. The follower robot that
knows its own pose must receive the pose data from the leader robot to be able
to carry out the control calculations in a real application situation. However, for
the simulations, the given path of the leader provides the necessary information
for determining the instantaneous formation parameters.

The diagonal elements of the gain matrix K has been selected to be 1. The
response of the follower robot is simulated. Figure 6.15 shows the path of the
leader and the follower robots. The follower robot is initially closer to the leader
than what is specified by the desired formation parameter, however, after some
time, the follower keeps the desired distance with the leader robot. One can see
the side by side relative postion of the two robots by looking at their positions at
the end of their paths. The leader robot is moving on a sinusoidal curve and the
follower is able to capture that motion.

The formation parameters are shown in Fig. 6.16. This figure indicates that the
follower robot reaches its correct position in the formation in about 5 s. Despite
the variable velocity and orientation of the leader throughout the motion, the
follower has been able to keep the formation parameters at the constant desired
values.
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Fig. 6.15 The path of the leader and the follower robot using the l – α control scheme
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Fig. 6.16 The formation parameters for the leader and the follower robot using the l – α control
scheme

6.4.3 Design of the l – l Controller

Three neighboring robots in the formation structure are shown in Fig. 6.17. Assume
that the formation structure is defined such that robot 3 is designated to keep spec-
ified distances ld

13 and ld
23, with robots 1 and 2, respectively. A controller must be
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Fig. 6.17 The l – l control scheme

designed to stabilize these distances, which are measured from the centres of the
axle of robot 1 and 2 to a control point on robot 3. The driving velocity and the
angular rate of robot 3, v3 and ω3, are the control inputs, whereas the distances
l13 and l23 are the control outputs. The equations relating the control inputs to the
output, known as the input–output relations, must be obtained for designing the
controller.

6.4.3.1 Kinematic Analysis

Similar to the l – α case, the relative velocity equations for the control point p on
the follower robot 3 with respect to the center of the axle of the leader robot 1 is
written. Similar relative velocity relations are written for the follower robot 3 and
the leader robot 2. These velocity equations are, then, solved for (l̇13, α̇13), and (l̇23,
α̇23), respectively. However, since the distances are the controller outputs, only the
following resultant kinematic equations are relevant:

l̇13 = v3 cos γ2 − v1 cos α13 + dω3 sin γ2, (6.84)

l̇23 = v3 cos γ3 − v1 cos α23 + dω3 sin γ3, (6.85)
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where

α1 = θ1 + α13, γ2 = θ1 + α13 − θ3,

α2 = θ2 + α23, γ3 = θ2 + α23 − θ3.

6.4.3.2 Input–Output Equations

The kinematic equations (6.84) and (6.85) relate the formation scheme outputs
[l13, l23] to the control inputs of the follower robot 3. Therefore, they can be used as
the input–output equations. They are written in the matrix form for simplicity of the
control development notations.

ż = f + bu, (6.86)

where

z =
[

l13

l23

]
, f =

[−v1 cos α13

−v1 cos α23

]
, b =

[
cos γ2 d sin γ2

cos γ3 d sin γ3

]
, u =

[
v3

ω3

]
. (6.87)

6.4.3.3 Control Law

The controller is proposed based on the input–output equation (6.86). The output
errors are defined as:

z̃1 = l13 − ld
13, z̃2 = l23 − ld

23, (6.88)

and a stable first-order nonlinear error dynamics is assumed (ki > 0, i = 1, 2):

˙̃zi + ki z̃i = 0, i = 1, 2. (6.89)

The desired error behavior (6.89) is written in the matrix form for convenience.

˙̃z + K z̃ = 0, (6.90)

where

K =
[

k1 0
0 k2

]
. (6.91)

Equation (6.90) can be solved for ż.

z̈ = z̈d − K z̃. (6.92)

Substituting for ż from Eq. (6.92) into Eq. (6.86) and solving for the control input
u results in
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u = b−1(żd − K z̃ − f). (6.93)

Note that the matrix b must be inverted for calculating the control law. Therefore,
the determinant of this matrix must be nonzero at all times. This determinant is
obtained as

det(b) = d sin(γ3 − γ2),

= d sin(α3 − α2). (6.94)

By observing this determinant, once again, one can see the importance of the
choice of the control point such that it is not coincident with the center of the axle
of the robot (d �= 0). However, by observing this determinant, one can recognize
another condition under which the system becomes uncontrollable, that is if sin(α2−
α1) becomes zero. This is equivalent to (θ2 + α23) − (θ1 + α13) = nπ and happens
when the origin of the coordinate systems of robot 1 and 2 and the control point of
robot 3 are collinear (Fig. 6.17). This situation must be avoided by defining proper
desired formation structures. However, if such a configuration is approached during
a change in formation, the robot 3 temporarily switches to the l – α controller with
one of the robots 1 or 2 until the singularity is cleared. Then, robot 3 switches back
to the l – l controller. This switch can be triggered if |α2 − α1| becomes less than a
predefined threshold.

It is also important to note that the above control scheme has two distinct equilib-
rium points for a given set of desired values [l13, l23]. The two points have different
corresponding angle sets [α13, α23]. One of these equilibrium points is desirable
depending on the desired formation. Therefore, in practical applications, these an-
gles should be monitored by the robot’s computer. If the robot detects that it is
approaching the wrong equilibrium point, it temporarily switches to using the l – α

scheme with one of the neighbors until it is close to the correct equilibrium position.
Then, it switches back to using the l – l scheme with both its neighbors.

Example 6.5. Three Hilare-type mobile robots have to move in an equilateral trian-
gular formation with 2-m-long sides (Fig. 6.18).

(a) Calculate the desired formation parameters [ld
13, ld

23]. Assume d = 1 m.
(b) Assume that two leader robots move on a desired trajectory defined as follows:

Leader 1

{
x1(t) = 0.5t

x2(t) = 1 + 0.2 sin(0.5t)
,

Leader 2

{
x1(t) = 0.5t

x2(t) = −1 + 0.2 sin(0.5t)
.

Apply the l – l control scheme to control the motion of the third robot, which
starts its motion form rest at point (−2, 1) m.
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Fig. 6.18 Three robots in a triangular formation using the l – l control scheme

Solution.

(a) The desired formation parameters are shown in Fig. 6.18. They can be calculated
based on the geometry of the formation as follows:

ld
13 = ld

23 =
√

(2 cos 30◦ − 1)2 + 12 = 1.239 m.

(b) The l – l control law (6.93) is used and applied to the kinematic Eq. (6.4)
of the Hilare-type robot. For the simulations, the given path of the leaders
provide the necessary information for determining the instantaneous formation
parameters.

The diagonal elements of the gain matrix K has been selected to be 1. The
response of the follower robot is simulated. Figure 6.19 shows the path of the
two leader robots and the follower robot. The follower robot is initially far from
the desired formation, however, after some time, it gains the desired distances
with the leader robots. One can see the triangular formation of the three robot by
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Fig. 6.19 The path of the leaders and the follower robot using the l – l control scheme
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Fig. 6.20 The formation parameters for the leader and the follower robot using the l – α control
scheme
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looking at their positions at the end of their paths. The leader robots are moving
on a sinusoidal curve and the follower is able to capture that motion.

The formation parameters are shown in Fig. 6.20. This figure indicates that the
follower robot reaches its correct position in the formation in about 5 s. Despite
the variable velocity and orientation of the leader robots throughout the motion,
the follower has been able to keep the formation parameters at the constant de-
sired values.

6.5 Dynamics of Mobile Robots

In this section, the dynamic equations of motion of some mobile robots are derived
and presented.

6.5.1 Hilare-Type Mobile Robots

Consider the Hilare-type mobile robot shown in Fig. 6.1. The body coordinate sys-
tem xr1 − xr2 is attached to the robot’s body at the middle of the line connecting the
center of the two wheels. Note that the center of gravity of the robot is assumed to
be on the body longitudinal axis xr1 with a distance c from the origin of the body
coordinate system. For dynamic modeling of a mobile robot, one must assume the
torques exerted by the motors to the wheels as the input. The mass of the robot
wheels usually have the same order of magnitude as that of the robot’s body. There-
fore, neglecting the wheels rotation and assuming the whole robot as one rigid body
may result in an inaccurate dynamic model. It is best to include the effect of the
wheel rotations in the dynamic model.

There are several methods available for deriving the dynamic equations of mo-
tion for mobile robots. Here, we are using the Newton-Euler equations of motion.
We will use a more systematic approach. The steps of this systematic approach
follow:

1. The generalized coordinates and the generalized speeds that define the dynamic
state of the system are defined.

2. The acceleration of the centers of mass of the robot and the wheels are expressed
in terms of the derivative of the generalized speeds.

3. The free body diagram of the robot and the wheels are drawn and all the involved
forces are shown on the diagram. Since the robot body and the wheels have
different motions, each must be drawn separately in the free body diagram. Also,
the kinetic diagram of the robot and the wheels are drawn and the components
of all the inertial forces and moments caused by acceleration are shown.

4. The equations of motion are written using the balance of all the forces and the
moments with the inertia forces and moments. This usually results in a set of
second-order equations. As we will see later, these equations are not integrable.
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5. The non integrable (nonholonomic) constraint equation, which is derived from
the no-slip condition, is used to complete the dynamic equations of motion.

6. Finally, the equations of motion are converted to the first-order form to allow for
simpler numerical simulations.

6.5.1.1 Generalized Coordinates and Generalized Speeds

The generalized coordinates for a dynamic system are the variables that uniquely
define the geometrical configuration of the system at any given time. These coordi-
nates must be independent, in which case the number of them is equal to the number
of DOFs of the dynamic system. If the generalized coordinates are not chosen to be
independent, there must be geometrical constraint equations that define the rela-
tion between the ones that are dependent. For a mobile robot that works in a 2D
space, there exists three DOFs. Therefore, three independent variables are needed to
uniquely define the geometrical configuration of the robot. These variables are the
two components of the inertial position vector of the midpoint of the transverse line
attaching the wheel centers, (x1, x2), and the angle between the longitudinal axis of
the robot with the inertial x1 axis, θ (see Fig. 6.1).

The generalized coordinates uniquely define the geometrical configuration (i.e.,
position and orientation) of the dynamic system, however, to completely define the
dynamic state of a system, the time rate of change of the generalized coordinates
must also be involved. These rates are included in the dynamic model by defining
the generalized speeds. By definition, the generalized speeds are independent func-
tions of the first-order derivatives of the generalized coordinates. These speeds are
selected such that the form of the dynamic equations of motion becomes simple.
In general, the number of generalized speeds are equal to the number of degrees
of freedom of the dynamic system. If some of the generalized speeds are depen-
dent, velocity constraint equations must be written. For a mobile robot, two of
the generalized speeds are selected to be the components of the velocity of the
point (x1, x2) defined in terms of the body axis, (ẋr1, ẋr2). The angular velocity
of the robot body, θ̇ , is selected as the third generalized speed. Note that because
of the no-slip condition, a velocity constraint equation can be written in terms
of ẋr1 and ẋr2.

The above defined generalized coordinates and speeds are grouped together in a
single vector, q, known as the state vector of the mobile robot.

q =

⎡
⎢⎢⎢⎢⎢⎢⎣

q1

q2

q3

q4

q5

q6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

θ

ẋr1

ẋr2

θ̇

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.95)
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The no slip condition for the lateral motion results in the following kinematic
constraint.

ẋr2 = −ẋ1 sin θ + ẋ2 cos θ = 0 (6.96)

We shall use this kinematic constraint later when writing the equations of mo-
tion. Note that this constraint equation defines a condition on the robot’s velocity
components. This equation cannot be integrated with respect to time because θ is
not known as a function of time before any dynamic simulation. Therefore, this
constraint cannot be converted into a constraint between the generalized coordinates
by integration. Such a non integrable constraint on velocity components is called a
nonholonomic constraint. A nonholonomic constraint equation must be integrated
during a dynamic simulation because θ as a function of time only becomes known
during the simulation. In fact, as we will see later, the dynamic equations cannot be
integrated without using this kinematic constraint. Therefore, this kinematic equa-
tion is an inseparable part of the dynamic model. In general, any dynamic system
that has a non integrable constraint equation is called a nonholonomic dynamic
system.

6.5.1.2 The Acceleration of the Centers of Mass of the Robot and the Wheels

The second step of the systematic approach to finding the equations of motion using
the Newton-Euler method is finding the accelerations of the centers of mass for all
the bodies. Here, the robot as a dynamic system consists of three rigid bodies: the
robot body and two wheels. The form of the equations will be simpler if one uses
the body coordinate system to express the inertial accelerations of the three bodies.

Let us assume that the inertial acceleration of the origin of the body coordinate
system is

ao = ẍr1 îr + ẍr2 ĵr , (6.97)

where îr and ĵr are the unit vectors of the body coordinate system. The angular
velocity and acceleration of the body coordinate system are

ω = θ̇ k̂r , α = θ̈ k̂r . (6.98)

If the distance of the center of mass of the robot’s body with the origin of the
robot’s body frame is denote by c = cĵr , then the inertial acceleration of the center
of mass of the robot body expressed in the body coordinate system is

ar = ao + α × c − ω2c,

ar1 îr + ar2 ĵr = (ẍr1 − cθ̇2)îr + (ẍr2 + cθ̈ )ĵr . (6.99)

If the distance of the center of mass of the robot’s right wheel with the origin of
the robot’s body frame is denote by dr = −(T/2)îr , then the inertial acceleration of
the center of mass of the robot right wheel expressed in the body frame is
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awr = ao + α × dr − ω2dr ,

awr1 îr + awr2 ĵr = (ẍr1 + T

2
θ̇2)îr + (ẍr2 + T

2
θ̈ )ĵr . (6.100)

If the distance of the center of mass of the robot’s left wheel with the origin of
the robot’s body frame is denote by dl = (T/2)îr , then the inertial acceleration of
the center of mass of the robot left wheel expressed in the body frame is

awl = ao + α × dl − ω2dl ,

awl1 îr + awl2 ĵr = (ẍr1 − T

2
θ̇2)îr + (ẍr2 − T

2
θ̈ )ĵr . (6.101)

6.5.1.3 Free Body and Kinetic Diagrams

Since in this modeling the dynamic effect of the wheels’ rotation is being considered
in deriving the equations of motion, the wheels and the body must be separated in
the free body diagram. The free body diagram of the mobile robot body and the
wheels is shown in Fig. 6.21. This free body diagram helps us better visualize the
forces on the wheels. Now, the 2D version of the free body and kinetic diagrams for
the whole robot and the wheels as separate parts can be drawn. These diagrams are
shown in Figs. 6.22 and 6.23, respectively.

6.5.1.4 The Equations of Motion

The free body and kinetic diagrams shown in Figs. 6.22 and 6.23 simplify the writ-
ing of the equations of motion. By observing Fig. 6.22, one can write the external
force and the inertia force balance in the xr1 direction.

Fr + Fl = mwawr1 + mwawl1 + mr ar1,

= mw(ẍr1 + T

2
θ̈ ) + mw(ẍr1 − T

2
θ̈ ) + mr (ẍr1 − cθ̇2),

= (mr + 2mw)ẍr1 − mr cθ̇2. (6.102)

Fig. 6.21 The detailed free body diagram for a Hilare mobile robot
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Fig. 6.22 The free body and kinetic diagram for a Hilare mobile robot as a single system

Fig. 6.23 The free body and the kinetic diagram for the right wheel

By observing Fig. 6.22, one can write the external force and the inertia force
balance in the xr2 direction.

Nr + Nl = mwawr2 + mwawl2 + mr ar2,

= mw(ẍr2 − T

2
θ̇2) + mw(ẍr2 + T

2
θ̇2) + mr (ẍr2 + cθ̈ ),

= (mr + 2mw)ẍr2 + mr cθ̈ . (6.103)

By observing Fig. 6.22, one can write the external moment and the inertia mo-
ment balance in the xr3 direction.

(Fr − Fl)
T

2
= (Ir + 2Iw)α + mwawr1

T

2
− mwawl1

T

2
+ mr ar2c,

= (Ir + 2Iw)θ̈+mw(ẍr1 + T

2
θ̈ )

T

2
−mw(ẍr1 − T

2
θ̈ )

T

2
+mr (ẍr2 + cθ̈ )c,

= (Ir + 2Iw + mw

T 2

2
)θ̈ + mr c(ẍr2 + cθ̈ ). (6.104)

By observing Fig. 6.23, one can write the external moment and the inertia mo-
ment balance in the xr2 direction.
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−Frr + τr = Iw2αw,

= Iw2
1

r

(
ẍr1 + T

2
θ̈

)
.

This results in the following for the traction force, Fr , on the right wheel:

Fr = 1

r

(
τr − Iw2

r
(ẍr1 + T

2
θ̈ )

)
. (6.105)

A similar result for the traction force of the left wheel, Fl , can be achieved.

Fl = 1

r

(
τl − Iw2

r
(ẍr1 − T

2
θ̈ )

)
. (6.106)

In Eqs. (6.105) and (6.106), τr and τl are the right and the left wheel’s driv-
ing torque, respectively. Since these torques are the input to the system, we shall
write the equations of motion in terms of these torques, rather than in terms of the
wheel tractions. This goal is achieved by substituting Eqs. (6.105) and (6.106) into
Eqs. (6.102), (6.103), and (6.104). The resulting dynamic equations of motion are

(mr + 2mw + 2

r2
Iw2)ẍr1 − mr cθ̇2 = 1

r
(τr + τl),

(mr + 2mw)ẍr2 + mr cθ̈ = Nr + Nl , (6.107)

(Ir + 2Iw + mw

T 2

2
+ Iw2

T 2

2r2
+ mr c)θ̈ + mr ẍr2 = T

2r
(τr − τl).

Although the dynamic equations (6.107) are complete and accurate, they cannot
be used in this form to simulate the motion of the robot. The reason for this fact is
that the lateral tire force Nr + Nl is unknown. This lateral tire force is a function of
the lateral and angular acceleration of the robot and it changes dynamically. An extra
equation is needed to for us to be able to determine this lateral force as a function of
time. By observing the dynamic equations (6.107) more closely, once can see that
if one can find a kinematic relation for the lateral acceleration, they can calculate
this unknown lateral force during the simulation of the dynamic equations (6.107).
Finding this kinematic relation is discussed in the following.

6.5.1.5 The Role of the Nonholonomic Constraint Equation

Knowing the lateral acceleration of the robot, ẍr2, is one of the requirements for the
integration of the dynamic equations (6.107). The nonholonomic constraint defined
in Eq. (6.96) can be used for determining the lateral acceleration component ẍr2.
The nonholonomic constraint is repeated here.

ẋr2 = −ẋ1 sin θ + ẋ2 cos θ = 0. (6.108)
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Note that although the lateral velocity ẋr2 is zero due to the no-slip condition, ẍr2

could be nonzero under certain conditions. Here, we shall investigate whether ẍr2 is
in fact zero. The lateral acceleration can be found by differentiating Eq. (6.108).

ẍr2 = −ẍ1 sin θ + ẍ2 cos θ − θ̇ (ẋ1 cos θ + ẋ2 sin θ ),

= −ẍ1 sin θ + ẍ2 cos θ − θ̇ ẋr1. (6.109)

To complete the calculation of ẍr2, let us try to determine the robot’s acceleration
components expressed in the inertial coordinate system, ẍ1 and ẍ2. Equation (6.108)
implies that

ẋ2 = ẋ1 tan θ . (6.110)

Differentiating the above equation results in

ẍ2 = ẍ1 tan θ + ẋ1θ̇ (1 + tan2 θ ). (6.111)

Substituting the above relation into Eq. (6.109) yields

ẍr2 = θ̇(ẋ1(1 + tan2 θ ) cos θ − ẋr1). (6.112)

However, we know that ẋ1 = ẋr1 cos θ − ẋr2 sin θ and ẋr2 = 0. Using these
relations with the above equation shows that the lateral acceleration component of
the robot becomes

ẍr2 = 0. (6.113)

Equation (6.113) is an important result. It allows us to neglect the second dynamic
equation in (6.107) and simplify the third dynamic equation in (6.107). Finally, the
dynamic equations of motion for the robot reduce to the following:

(mr + 2mw + 2

r2
Iw2)ẍr1 − mr cθ̇2 = 1

r
(τr + τl),

(Ir + 2Iw + mw

T 2

2
+ Iw2

T 2

2r2
+ mr c)θ̈ = T

2r
(τr − τl ). (6.114)

6.5.1.6 The First-Order Form of the Dynamic Equations

For simulation purposes, it is desirable to write the equations of motion of the mobile
robot in the first-order form. Let us define a new set of state variable to exclude ẋr2,
which is zero.
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q =

⎡
⎢⎢⎢⎢⎣

q1

q2

q3

q4

q5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

x1

x2

θ

ẋr1

θ̇

⎤
⎥⎥⎥⎥⎦ . (6.115)

Using the definition in Eq. (6.115) for the dynamic states of the robot, the equa-
tions of motion are written as follows:

q̇1 = q4 cos q3,

q̇2 = q4 sin q3,

q̇3 = q5,

q̇4 = 1

m
(
1

r
(τr + τl) + mr cq2

5 ),

q̇5 = T

2I

1

r
(τr − τl), (6.116)

where

m = mr + 2(mw + 1

r2
Iw2),

I = Ir + 2Iw + (mw + 1

r2
Iw2)

T 2

2
+ mr c. (6.117)

6.6 Trajectory-Tracking Control Based on Dynamic Models

Although the control methods discussed in Section 6.3 are successful in driving
a mobile robot on a desired trajectory, they have some shortcomings. One of the
shortcomings of the methods discussed in Section 6.3 is that their control input are
linear and angular velocity. Once the controller calculates these velocities, there is
no guarantee that the robot’s drive train can generate them. If the desired trajectory
is not defined with care such that sudden change in desired velocity or acceleration
are not avoided, it is highly possible that the calculated large velocity (and their
corresponding acceleration) is too high for the robot’s drive train to generate. In this
situation, a better control method must be used in which the torques generated by
the controller can be limited to a maximum value. Such a method, of course, must
be based on the dynamic model of the robot, so that its control inputs are torques
(or forces).

Model predictive control, which determines a series of future control commands
based on a real-time optimization, is a very good method for controlling systems
with constraints. In the following section, the model predictive control method is
used for controlling a Hilare-type mobile robot with motors with limited torque
capability. The model predictive control method presented here is also applicable to
any dynamic system without constrained inputs.
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6.6.1 Hilare-Type Mobile Robots

A Hilare-type mobile robot is assumed. A control law for two limited control inputs
u1 = τr and u2 = τl must be found to drive the robot on a desired trajectory. It is
assumed that the motors that drive the left and the right wheels of the robot have
limited torques such that

u1 ≤ u1 max, u2 ≤ u2 max. (6.118)

Inequalities (6.118) must be converted to equalities before they can used as
constraints in an optimization-based control method such as the model predictive
control. To convert the inequalities (6.118) to equalities, two dummy control inputs
u3 and u4 are defined such that

u2
1 max − u2

1 = u2
3 ≥ 0,

u2
2 max − u2

2 = u2
4 ≥ 0. (6.119)

The dummy control parameters are calculated at each step of the control such
that they guarantee the satisfaction of Eqs. (6.119). The equalities (6.119) can be
written in the form of constraint equations.

C1(u1, u3) = u2
1 + u2

3 − u2
1 max = 0,

C2(u2, u4) = u2
2 + u2

4 − u2
2 max = 0. (6.120)

The constraint Eqs. (6.120) are written in the following matrix form:

C(u) = 0, (6.121)

where the augmented control input u is

u =

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦ . (6.122)

The dynamic model of a Hilare-type robot, presented in Eq. (6.116), can be writ-
ten in the following general form:

q̇ = f(q, u), (6.123)

where q is defined in Eq. (6.115).
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6.6.1.1 Model Predictive Control Problem

In the model predictive control method, at any time t , the future control action is
predicted for a time T into the future such that it minimizes a cost function penal-
izing the state errors and high control actions. In mathematical notation, this can be
expressed as finding the control action as a function of time

u(t) τ ∈ [t, t + T ], (6.124)

such that the cost function

J = φ(q(t + T )) +
∫ t+T

t
L(q(τ ), u(τ ))dτ (6.125)

is minimized. The functions φ(q(t +T )) and L(q(τ ), u(τ )) are positive-definite. The
dynamic model (6.123) and the equality constraint (6.121) are also imposed over the
time interval T , also known as the control horizon.

Solving analytically for u(τ ) is very difficult for most nonlinear models repre-
senting real physical systems, including the Hilare-type dynamic model. Therefore,
numerical methods are used. To use the numerical methods, the future control action
u(τ ) is approximated by a stepwise function with N steps. The step widths are equal
to ts = T/N . The height of step i is represented by the following notation:

uk = u(t + kts), k = 0, . . . , N − 1. (6.126)

With this assumption, the integral in the cost function (6.125) can be replaced by
the summation

J = φ(qN ) +
N−1∑
k=0

Lk(qk, uk)ts, (6.127)

where qk’s are “predicted” based on the discretized dynamic “model” of the system
derived from Eq. (6.123).

qk+1 = qk + T

N
fk(qk, uk), k = 0, . . . , N − 1, (6.128)

where

q0 = q(t). (6.129)

To solve for the future discretized control action uk , k = 0, . . . , N − 1 at any
control time t , the discretized cost function (6.127) must be minimized in real-time
using numerical calculations. The solution to the minimization problem must be
compatible with the dynamics of the system to be controlled and must satisfy the
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constraints. To address these requirements, the cost function (6.127) is augmented
with (zero) terms representing the dynamic model and constraints.

J = φ(qN ) +
N−1∑
k=0

[Lk + λT
k+1(fk − qk+1) + μT

k Ck]ts, (6.130)

where λk’s are the costates and μk’s are the Lagrange multipliers. The augmented
cost function (6.130) accepts a simpler form by introducing a notation for Hamilto-
nian H as follows:

Hk = Lk + λT
k+1fk + μT

k Ck . (6.131)

Now, the augmented discretized cost function in terms of Hamiltonian becomes

J = φ(qN ) +
N−1∑
k=0

(Hk − λT
k+1qk+1)ts . (6.132)

The indices in the summation term of Eq. (6.132) can be equalized by rearraging
the terms of the summation.

J = φ(qN ) − λT
N qN ts + H0ts +

N−1∑
k=1

(Hk − λT
k qk)ts . (6.133)

The minimization is done by equating to zero the complete differential of the
cost function J , which vanishes at the function’s optimum point.

d J =
N∑

k=0

�J

�qT
k

dqk +
N−1∑
k=0

(
�J

�uT
k

duk + �J

�μT
k

dμk) = 0. (6.134)

For the complete differential to vanish, all partial derivatives must vanish. In the
following, these partial derivatives are calculated to provide the system of equa-
tions needed for solving for the discretized future control action uk . First, the partial
derivative of J with respect to the states is derived.

�J

�qT
0

dq0 = �H0

�qT
0

tsdq0, (6.135)

�J

�qT
k

dqk =
N−1∑
k=1

(
�Hk

�qT
k

− λT
k

)
tsdqk, k = 1, . . . , N − 1 (6.136)

�J

�qT
N

dqN =
(

�φ

�qT
N

− λT
N ts

)
dqN . (6.137)
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Note that q0 = q(t) is the states of the system at which the control calculations
are being done. Since these states are not a function of the future control action,
dq0 is zero. Therefore, the partial derivative in Eq. (6.135) is identically zero. The
partial derivatives in Eqs. (6.136) and (6.137) must also vanish. This is done by
selecting the right costates. Since the costates λk’s are the coefficient of zero terms
in the augmented cost function (6.130), they can be chosen arbitrarily. This fact is
exploited and the costates are selected such that Eqs. (6.136) and (6.137) are zero.

λT
N = �φ

�qT
N

, (6.138)

λT
k = �Hk

�qT
k

,

= �Lk

�qT
k

+ λT
k+1

�fk

�qT
k

+ μT
k

�Ck

�qT
k

, k = N − 1, . . . , 1. (6.139)

The partial derivatives of J with respect to the discretized control input uk is
derived as follows:

�J

�uT
k

= �Hk

�uT
k

= 0,

= �Lk

�uT
k

+ λT
k+1

�fk

�uT
k

+ μT
k

�Ck

�uT
k

= 0, k = 1, . . . , N − 1. (6.140)

The partial derivatives of J with respect to the Lagrange multipliers μk is derived
as follows:

�J

�μT
k

= �Hk

�μT
k

= 0,

= Ck = 0, k = 1, . . . , N − 1. (6.141)

Once the costates are calculated using Eqs. (6.138) and (6.139), Eqs. (6.140)
and (6.141) must be simultaneously solved for the future control command steps
uk (k = 0, . . . , N ) and the Lagrange multipliers μk (k = 0, . . . , N ). Note that the
actual number of scalar unknowns for a Hilare robot are a total of 6N components;
that is, 4N component for the stepwise control uk plus 2N components for the La-
grange multipliers μk . These unknowns are gathered in a single 6N × 1 unknown
vector U.

U = [uT
0 μT

0 . . . uT
k μT

k . . . uT
N−1 μT

N−1

]T
. (6.142)

Equations (6.140) and (6.141) are also gathered in the form of a system of 6N
nonlinear equations in terms of the components of U.
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F(U, q0, t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(�H0/�uT
0 )T

C0

:
:

(�Hk/�uT
k )T

Ck

:
:

(�HN−1/�uT
N−1)T

CN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (6.143)

The system of nonlinear Eqs. (6.143) must be solved for the control input and
Lagrange multiplier components U in real-time. There are several ways for solv-
ing this nonlinear system, however, a method must be chosen that is fast enough
for real-time calculations and has a constant calculation cycle time throughout the
real-time control. One of the most efficient methods of solution is called the con-
tinuation/GMRES (Generalized Minimum RESidual) method. This method is dis-
cussed next.

6.6.1.2 Model Predictive Control Solution Method

The Continuation Method

The algebraic system of nonlinear equations (6.143) is computationally expensive
to be solved using classical (e.g., Newton iterative) methods. The time required
for such calculations is prohibitive for real-time applications. Instead, the sys-
tem (6.143) is converted to a differential system of equations whose equilibrium
point is F(U, q0, t) = 0. This system of differential equations with an appropri-
ate initial condition is integrated through time in real-time to calculate U(t) at any
control time t .

The following system of simultaneous differential equations with a proper initial
condition U(0) = U0 is introduced:

Ḟ(U(t), q(t), t) = AsF(U(t), q(t), t), (6.144)

where U0 is the solution of F(U0, q(0)) = 0, and As is a negative definite matrix
such that the system (6.144) is stable. The left hand side of the system (6.144) can
be expanded.

Ḟ = FU U̇ + Fq q̇ + Ft , (6.145)

where

FU = �F
�UT

, Fq = �F
�qT

, Ft = �F
�t

. (6.146)
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The time rate of U can now be determined by combining Eqs. (6.144) and (6.145).

U̇ = F−1
U (AsF − Fq q̇ − Ft ). (6.147)

The differential system (6.147) along with the initial condition U(0) = U0 is
integrated through time in real-time to find U(t) at any given time t . Since U(t)
includes the steps of the control action uk , it can determine the required control
action at time t .

However, calculating the right hand side of the system (6.147) using the con-
ventional way includes the determination of the Jacobian matrices FU (6N × 6N )
and Fq (6N × 5N ). Since these matrices are very difficult to determine analytically,
an approximation method should be used. However, approximating the Jacobian
matrices directly is computationally cumbersome due to the large sizes of these
matrices. A better way is approximating the product of these matrices with their
corresponding multipliers, i.e., FU U̇ and Fq q̇ + Ft . This approximation is written
using a simple finite difference method.

FU U̇ ≈ F(U + U̇ts, q, t) − F(U, q, t)

ts
, (6.148)

and

Fq q̇ + Ft ≈ F(U, q + q̇ts, t + ts) − F(U, q, t)

ts
. (6.149)

With this approximation, the solution for U̇ from Eq. (6.147) can be found using
an efficient and fast numerical method called the GMRES method.

The Generalized Minimum Residual Method

In mathematics, the GMRES method is an iterative method for the numerical solu-
tion of a system of equations. The method approximates the solution of the system
by a vector in a Krylov subspace with a minimal residual. The Arnoldi iteration is
used to find this vector. This method was developed in 1986 [65].

This method, applied to the current problem, can calculated U̇ at each control
time t such that the residual

r = ||FU U̇ − (AsF − Fq q̇ − Ft )|| (6.150)

is minimized. The GMRES method converges to the exact solution after 6N itera-
tions, however, the idea is that after a small number of iterations (relative to 6N ),
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the vector U̇ is already a good approximation to the exact solution.1 In practice, a
fixed low number of iterations are specified for the real-time calculations. This not
only helps to speed up the real-time control, but also guarantees that the calculation
burden for the real-time control stays constant over time, which is a crucial factor in
control applications.

Note that the GMRES method needs an initial guess for U and U̇ for the first
iteration. At the start of control at time zero, the initial guess for U is provided by
the initial condition of the continuous system U0. At any time t during the control,
the initial guess for U is the control input calculated for the previous control step.
The initial guess for U̇ can always be zero.

Once the rate of the stepwise control and the Lagrange multipliers U̇ are deter-
mined at a control step at time t , the control step heights and the Lagrange multipli-
ers are found by intergrating their corresponding rates. Since the rate is

U̇ = [u̇T
0 μ̇T

0 . . . u̇T
k μ̇T

k . . . u̇T
N−1 μ̇T

N−1

]T
, (6.151)

the step heights of the control commands and the Lagrange multipliers are

u0 = u0g + u̇0ts (6.152)

uk = uk−1 + u̇k ts k = 1, . . . , N − 1 (6.153)

μ0 = μ0g + μ̇0ts (6.154)

μk = μk−1 + μ̇k ts k = 1, . . . , N − 1 (6.155)

where u0g and μ0g are extracted from U calculated at the previous control step.

Hilare-Type Robot Specific Derivations

The following forms are defined for the terms that appear in the cost function (6.127)
for the real-time optimization method:

φ(qN ) = 1

2
(qN − qd

N )T Q0(qN − qd
N ), (6.156)

Lk = 1

2
((qk − qd

k )T Q(qk − qd
k ) + uT

k Ruk − Suk). (6.157)

In Eqs. (6.156) and (6.157), Q0 and Q are 5×5 positive-definite diagonal weight ma-
trices. R is a 4 × 4 positive-semi definite matrix penalizing the control effort. Since,
u3 and u4 are dummy inputs defined to convert the inequality constraint (6.118) to
the equality constraint (6.119), they must not be penalized. Therefore, the diagonal
matrix R is defined as

1 The GMRES method, despite being new, is used extensively in numerical calculations. Some
scientific and engineering calculation software such as MATLAB have built in functions that apply
this solution method. See the MATLAB help on GMRES for more information.
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R =

⎡
⎢⎢⎣

R11 0 0 0
0 R22 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ . (6.158)

The sign of the dummy inputs u3 and u4 do not affect the optimality, since only
their second powers are present in Eq. (6.119). In this situation, the solution for U
can bifurcate when the dummy inputs become zero. To avoid this problem, a small
4 × 4 positive-semi definite dummy penalty weight matrix S has been added to the
cost function (6.157). This matrix must not penalize the real control inputs u1 and
u2. Therefore, it is selected to be

S =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 S33 0
0 0 0 S44

⎤
⎥⎥⎦ . (6.159)

With the definition of the terms in the cost function, their partial derivatives,
which appear in Eqs. (6.139) and (6.140) can be derived as

�φ

�qT
N

= (qN − qd
N )T Q0, (6.160)

and

�Lk

�qT
k

= (qk − qd
k )T Q, (6.161)

and

�Lk

�uT
k

= uT
k R − S. (6.162)

In the discretized model (6.128), the matrix fk is

fk =

⎡
⎢⎢⎢⎢⎣

qk4 cos qk3

qk4 sin qk3

qk5
1
m ( 1

r (uk1 + uk2) + mr cq2
k5)

T
2I

1
r (uk1 − uk2)

⎤
⎥⎥⎥⎥⎦ . (6.163)
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The partial derivative in Eqs. (6.139) and (6.140) can be calculated as

�fk

�qT
k

=

⎡
⎢⎢⎢⎢⎣

0 0 −qk4 sin qk3 cos qk3 0
0 0 +qk4 cos qk3 sin qk3 0
0 0 0 0 1
0 0 0 0 2mr cqk5/m
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , (6.164)

and

�fk

�uT
k

=

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
1

mr
1

mr 0 0
T

2I r − T
2I r 0 0

⎤
⎥⎥⎦ . (6.165)

The partial derivatives of the input constraint relation (6.120) that appear in
Eq. (6.140) can also be determined.

�Ck

�uT
k

=
[

u1 0 u3 0
0 u2 0 u4

]
, (6.166)

�Ck

�μT
k

= 0. (6.167)

Example 6.6. Consider a Hilare-type robot with the following geometrical and mass
properties.

m = 5 kg, mr = 0.5 kg, c = 0 m, r = 0.1 m, T = 0.5 m, I = 0.05 kg.m2

The maximum driving torques at the wheels of the robot are u1 max = u2 max =
0.35 Nm. Use the model predictive method to control the robot on the following
desired trajectories.

(a) On a straight line with equation x2 = x1 with a linear speed of
√

2/2 m/s. As-
sume that the robot is at rest at (0, 0) m and its longitudinal axis is aligned with
the desired path.

(b) A sinusoidal path as defined in part (b) of Example 6.2. Assume that the robot
is at (0, 0) m moving with a speed of

√
5/2 m/s with a direction of θ = π/4 rad.

Solution. First the control horizon T is selected as 0.05 s. This horizon is discretized
into the N = 5 steps, leading to a time step of ts = T/N = 0.01 s. Then, the
controller cost function weight matrices in Eqs. (6.156) and (6.157), and the contin-
uation gain As in Eq. (6.144) must be selected.
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Q0 = diag(5×5)[1, 1, 1, 1, 1],

Q = diag(5×5)[1, 1, 1, 1, 1],

S = diag(4×4)[0, 0, 0.1, 0.1],

R = diag(4×4)[0.1, 0.1, 0, 0],

As = diag(6N×6N )[−10,−10,−10,−10].

At the first step of control at time zero (t = 0), Eq. (6.143) must be solved for U0

to provide the initial condition for the continuation Eq. (6.144). This is done via the
following procedure.

1. The initial condition q(0) and an initial guess for U0 is used along with the
discretized model of the robot (6.128) to predict the behavior of the robot at
discretized times (qk+1, k = 0, . . . , N − 1).

2. The costates are calculated from Eqs. (6.138) to (6.139).
3. The components of F(U0, q(0), 0) (Eq. (6.143)) are calculated using Eqs. (6.140)

and (6.141).
4. The above procedure provides the input function F(U0, q(0), 0) to a Gauss-

Newton iterative algorithm, which finds the solution U0 through iterations.2

Note that this method is computationally very expensive and should be used
only for the first step of control calculations, when the system is being initialized
and the calculation time is not crucial.

After the initial control command U0 is calculated, the continuation Eq. (6.144) is
integrated in real-time for U. This is done via the following procedure.

1. As any control time t , the current state of the system q(t) and an initial guess
for the future control action Ug , which is normally chosen equal to the previous
control action for faster convergence, are used along with the discretized model
of the robot Eq. (6.128) to predict the behavior of the robot at discretized times
(qk+1, k = 0, . . . , N − 1).

2. The costates are calculated from Eqs. (6.138) to (6.139).
3. The matrices FU U̇ and Fq q̇ + Ft are calculated from Eqs. (6.148) to (6.149).
4. The terms FU U̇ and AsF−Fq q̇−Ft from the inputs to a standard GMRES solver,

which calculates U̇ using minimum iterations.
5. The control action U for time t is found by integrating U̇ using Eqs. (6.152),

(6.153), (6.154), and (6.155).
6. Only the control action u0 is applied to the robot at time t because the approxi-

mation accuracy of other control actions found for the rest of the control horizon
may not be adequate. The calculations resume at step one of this procedure for
time t + ts .

2 The Gauss-Newton algorithm is a standard routine in many scientific and engineering calculation
software. For example, the function lsqnonlin in the optimization toolbox of MATLAB can be
used. For more information, see the MATLAB help.
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Table 6.1 The result of initialization procedure for the straight-line scenario

k uT
k = [u1, u2, u3, u4]T

k (Nm) μT
k = [μ1, μ2]T

k
(dimensionless)

0 [0.3494, 0.3494, 0.0253, 0.0253] [3.9464, 3.9498]
1 [0.3492, 0.3492, 0.0256, 0.0256] [3.9088, 3.9093]
2 [0.3491, 0.3491, 0.0258, 0.0258] [3.8687, 3.8688]
3 [0.3494, 0.3494, 0.0262, 0.0262] [3.8224, 3.8216]
4 [0.3493, 0.3492, 0.0282, 0.0282] [3.5484, 3.5502]

The above procedures for initialization and real-time calculations are applied to
the Hilare robot introduced in this example. The results for parts (a) and (b) follow.

(a) The result of the initialization procedure for U0 for the straight line motion sce-
nario is listed in Table 6.1. The vector U0 is broken into its components using
Eq. (6.142) for easier comprehension. As can be seen in Table 6.1, the u1 and
u2 components are saturated at a value close to the maximum allowed control
input of 0.35 Nm. The u3 and u4 dummy control input components are close
to zero so that the actual inputs are penalized more strongly in the constraint
Eqs. (6.120). The value of the Lagrange multipliers are also high compared to
that of the cost function weights to emphasize more on the satisfaction of the
constraint equations. These are all done automatically because of the way the
optimization problem has been set up.

The initialization control action U0 is used with the real-time control proce-
dure discussed previously. The control action U at time t is calculated, u0 is
extracted from U, and is applied to the equations of motion of the robot as a
constant input from time t to t + ts . The behavior of the robot is recorded and
the value of q(t + ts) is used for calculation of the control input for the next
step in time. The results for the robot behavior are shown and discussed in the
following.

The path of the robot is shown in Fig. 6.24. The robot stays on the desired
linear path, however, its velocity is not the desired velocity at the beginning
of the motion because it starts from rest. Figure 6.25 shows the linear speed
of the robot. At the beginning of the motion, the curve of the robot’s speed is
linear. This is because of the fact that the driving torque of the robot wheels are
saturated at a constant value, causing a constant linear acceleration. The robot
has to move faster than the desired speed to catch up with its timed position
on the path. After a while, the robot moves on the desired trajectory with the
desired speed.

The control inputs to the robot are shown in Fig. 6.26. The two driving torques
u1 and u2 are saturated at the maximum value at the beginning of the motion.
The dummy inputs have low values at the beginning of the motion because the
real inputs are high enough to satisfy the constraint equations. After the robot
reaches its timed position on the path, the input torques are reduced to zero,
which is the equilibrium input due to the absence of friction in the model. At
this time, the dummy inputs are increased to 0.35 Nm to satisfy the constraints.
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Fig. 6.24 The path of the Hilare mobile robot
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Fig. 6.25 The speed of the Hilare mobile robot

Lagrange multipliers for the real-time optimization of the control action are
plotted in Fig. 6.27. When the inputs are saturated, the multiplier gains a larger
value to penalize the constraint equation more strongly. The multipliers reduce
when the dummy inputs are saturated.

(b) The result of the initialization procedure for U0 for the sine path scenario is
listed in Table 6.2. It can be seen that the u1 and u2 components are much lower
than the maximum value for allowed control input of 0.35 Nm because the robot
is already moving with the desired speed at the beginning of the motion. The u3

and u4 dummy control input components are 0.35 Nm to satisfy the constraint
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Fig. 6.26 The driving torques and the dummy control inputs for the Hilare mobile robot
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Fig. 6.27 The Lagrange multiplier for the real-time optimizations for the Hilare mobile robot
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Table 6.2 The result of initialization procedure for the sine path scenario

k uT
k = [u1, u2, u3, u4]T

k (Nm) μT
k = [μ1, μ2]T

k
(dimensionless)

0 [−0.0011, 0.0009, 0.3500, 0.3500] [0.2857, 0.2857]
1 [−0.0012, 0.0008, 0.3500, 0.3500] [0.2857, 0.2857]
2 [−0.0014, 0.0006, 0.3500, 0.3500] [0.2857, 0.2857]
3 [−0.0017, 0.0003, 0.3500, 0.3500] [0.2857, 0.2857]
4 [−0.0019, 0.0000, 0.3500, 0.3500] [0.2857, 0.2857]

Eqs. (6.120). The value of the Lagrange multipliers are also low compared to
that of the cost function weights to emphasize more on the satisfaction of the
desired states. The results for the robot behavior are shown and discussed in the
following.

The path of the robot is shown in Fig. 6.28. The robot stays on the desired
sine path, while its velocity is the desired velocity. Figure 6.29 shows the linear
speed of the robot. The x1 component of the robot’s velocity is constant, while
the x2 component changes from a maximum of 1 m/s to a minimum of −1 m/s.
Therefore, the minimum speed of 0.5 m/s happens when the x2 component of
the robot’s velocity vanishes. The maximum velocity of the robot is 1.118 m/s
(
√

1.02 + 0.52). These values are confirmed by Fig. 6.29.
The control inputs to the robot are shown in Fig. 6.30. The two driving torques

u1 and u2 are below the maximum value at all times. These torques vary with
time to provide the required change in the robot’s momentum while moving on
a sine curve. The dummy inputs remain close to the maximum value of 0.35 Nm
to satisfy the control input constraints.
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Fig. 6.28 The path of the Hilare mobile robot
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Fig. 6.29 The speed of the Hilare mobile robot
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Fig. 6.30 The driving torques and the dummy control inputs for the Hilare mobile robot

Lagrange multipliers for the real-time optimization of the control action are
plotted in Fig. 6.31. The multipliers are small compared to the cost function
weights for the states errors, which gives more priority for error reduction rather
than the input saturation. The values of the Lagrange multipliers only change
marginally through the motion.
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Fig. 6.31 The Lagrange multiplier for the real-time optimizations for the Hilare mobile robot

Problems

Problem 6.1. Consider the Hilare robot shown in Fig. 6.1 with the following geo-
metrical and mass properties:

m = 5 kg, mr = 0.5 kg, c = 0 m, r = 0.1 m, T = 0.5 m, I = 0.05 kg.m2.

(a) Design a control law based on the chain form of the kinematic equations of the
robot such that the eigenvalues of the closed-loop system are

p1 = −λ1,

p2 = −λ2 + iλ3,

p3 = −λ2 − iλ3,

where λi > 0.
(b) Apply the control law to the kinematic model of the Hilare robot such that the

robot follows the path shown in Fig. 6.32 with a constant linear velocity of
0.25 m/s. The two linear sections have a length of a = 0.5 m and the two middle
sections are circular arcs with a radius of r = 2/(2 − √

2) m. Assume that the
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robot is initially at the origin and its longitudinal axis makes a 45◦ angle with
the x1 axis.

(c) Using the dynamic model (6.116), calculate the wheel torques required to con-
trol the robot on the desired path. Obtain the minimum power of the motors
wheels for completing this maneuver. What could happen if the minimum power
requirement is not met?

(d) Determine the maximum lateral force that the robot wheel must be able to with-
stand for the robot to move on this path. What could happen if the minimum
lateral force requirement is not met?

(e) Calculate the force that the wheels exert on the ground. Determine the minimum
longitudinal coefficient of friction between the wheels and the ground for the
robot to be able to successfully complete this maneuver. What could happen if
the minimum friction requirement is not met?

(f) Investigate the effect of the controller gains on the maximum power, the maxi-
mum lateral force, and the minimum required coefficient of longitudinal friction
between the wheels and the ground. Could these be used as criteria for designing
the controller gains?

(g) Can the definition for the desired path be improved to allow for less demanding
design criteria for the robot? How can the path be improved?

Problem 6.2. Consider the car-like robot shown in Fig. 6.2 with a wheelbase of
L = 0.25 m.

(a) Design a control law based on the chain form of the kinematic equations of the
robot such that the eigenvalues of the closed-loop system are

p1 = −λ1,

p2 = −λ2,

p3 = −λ3 + iλ4,

p4 = −λ3 − iλ4,

where λi > 0.
(b) Apply the control law to the kinematic model of the car-like robot such that

the robot follows the path shown in Fig. 6.32 with a constant linear velocity of
0.25 m/s. The two linear sections have a length of a = 1.0 m and the two middle
sections are circular arcs with a radius of r = 1/(2 − √

2) m. Assume that the
robot is initially at the origin and its longitudinal axis makes a 45◦ angle with
the x1 axis.

(c) Find the maximum steering rate φ̇max that the car-like robot needs for following
the desired trajectory. Assume that the robot has a maximum allowed steering
rate φ̇allowed that is 10% lower than the φ̇max. Saturate the control input φ̇ in your
simulation program by reassigning a value of φ̇allowed to it if the calculated value
at any step is larger than φ̇allowed. Investigate the behavior of the car-like robot
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Fig. 6.32 The desired path for the mobile robot

for this case. Try lower values for φ̇allowed. How do they affect the response of
the car-like robot?

(d) The only model parameter that is used for control design is the wheelbase of the
car-like robot, which normally can be measured rather accurately. Assume ±2%
uncertainty in this length. Introduce this uncertainty in the kinematic model
of your simulation program, while the control calculations are based on the
nominal wheelbase given in this problem. Compare the response of the robot
with uncertainty in the wheelbase against that of nominal model. Is the loss of
performance acceptable? Do the controller gains affect this loss of performance?

Problem 6.3. Consider the Hilare robot of Problem 6.1. Use the control law (6.82)
derived for the l – α control scheme to make the robot follow a leader robot with a
distance of ld

12 = 2 m and a view angle of α12 = π/4 rad. Assume the leader moves
on a straight line coincident with the x1 inertial axis with a constant speed of 1 m/s
and starts its motion at time zero at the origin. The follower is initially located at
(0, 2) m with θ2(0) = 0 rad.

Problem 6.4. Consider the Hilare robot of Problem 6.1. Use the control law (6.93)
derived for the l – l control scheme to make the robot follow two leader robots with
a distance of ld

13 = ld
23 = 2 m. Assume the leaders move on straight lines parallel to

the x1 inertial axis with a constant speed of 1 m/s and start their motion at time zero
at points (0, 1) and (0,−1) m, respectively. The follower is initially located at (0, 2)
m with θ3(0) = 0 rad.

Problem 6.5. Design a l – α formation controller for the car-like robot of Prob-
lem 6.2 based on a kinematic model using the input–output linearization method.
Simulate the motion of the follower car-like robot, if the leader robot moves on a
straight line coincident with the x1 inertial axis with a constant speed of 1 m/s and
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starts its motion at time zero at the origin. The follower is initially located at (0, 2)
m with θ2(0) = 0 rad.

Problem 6.6. Repeat Problem 6.5 for a l – l formation controller.

Problem 6.7. Consider the Hilare robot shown in Fig. 6.1 with the following geo-
metrical and mass properties:

m = 5 kg, mr = 0.5 kg, c = 0 m, r = 0.1 m, T = 0.5 m, I = 0.05 kg.m2.

Assume that the wheel torques are limited to 0.35 Nm.

(a) Use the model predictive control method (continuation/GMRES) to design a
controller based on the dynamic model of the robot given in Eq. (6.116) that
meets the maximum torque constraints. Use this controller and simulate a Hilare
robot to follow the desired trajectory shown in Fig. 6.32 with a constant speed
of 0.5 m/s. Assume that the robot is at rest at the origin while its longitudinal
axis is aligned with the x2 axis.

(1)Plot the path of the robot over the desired path.
(2)Plot the actual and the dummy control inputs.
(3)Plot the Lagrange multipliers.
(4)Plot the speed of the robot.
(5)Interpret and discuss all of the plots.

(b) Assume that there are ±5% uncertainties in the values of the robot equivalent
mass m, the wheel mass mr , the equivalent moment of inertia of the robot I ,
and the location of the center of gravity c. Incorporate these uncertainties in the
dynamic model for simulating the response of the robot, while using the nominal
parameter for control calculations. Introduce two unequal friction forces at the
wheels in the dynamic model. Simulate the response of the robot with uncertain-
ties compare the results to that of the response of the nominal system found in
part (a) of this problem. Discuss the differences. Is the model predictive control
method robust against unmodeled dynamics and parameter uncertainty?

Problem 6.8. Assume that the power at wheels of the Hilare-type robot of Prob-
lem 6.7 is limited to Pmax. Write the appropriate constraint equations to be used
with a model predictive control method. What terms in the control derivations are
affected by a change of constraint from the constraint on maximum driving torque
at the wheels to the constraint on the driving power at the wheels? Recalculate those
terms.

Problem 6.9. Derive a model predictive control algorithm based on the kinematic
model of a car-like robot. Incorporate the maximum speed and the maximum steer-
ing rate as constraints. What benefits are anticipated by using a model predictive
controller rather than a controller designed based on the chain form?



Chapter 7
Autonomous Surface Vessels

7.1 Introduction

The control of surface vessels has been investigated by many researchers in the
past decade. In most classical literature, the controllers have been designed to main-
tain the motion of a surface vessel on a linear course with a constant speed. These
controllers are known as autopilots. They are meant to assist the vessel’s crew in
controlling the vessel on long trips, and work similar to an automobile’s cruise con-
trol. The controllers have been used on large- and medium-size ships. However, they
cannot be used for faster smaller surface vessels that must work autonomously, for
which controllers capable of trajectory tracking are needed.

Designing controllers for fast surface vessels is challenging. Uncertainty in dy-
namic models, significant sea disturbances, underactuated dynamics, and lack of
nonholonomic kinematic constraints are the issues that a designer must deal with
while designing a robust controller for a surface vessel. The more accurate model
of a surface vessel has six DOFs. It is common to simplify this model to a 3-DOF
model that only reflects surge, sway, and yaw DOFs, the ones that have to be con-
trolled by a trajectory-tracking controller. With this simplification, the model of a
surface vessels seems similar to that of a mobile robot. However, there are strong
reasons why these two are very different and have to be treated differently.

• The dynamic rather than the kinematic model of the surface vessel must be used
for designing the controllers. Because, first, forces and moments are the available
physical control inputs. Second, a kinematic model alone cannot determine the
lateral motion response of a surface vehicle due to the lack of a nonholonomic
lateral motion constraint.

• A surface vessel has a nonlinear dynamic model. The controller development for
a surface vessel may be simplified by using lineariazed models and the classi-
cal PID control methods. However, with linearized dynamic model and classical
control methods, one can only prove the quality of performance of the controller
for the maneuvers in which the state of the system is in the vicinity of the lin-
earization state. Using nonlinear control theories, on the other hand, one can
conclude about the quality of the system response for the full range of vessel’s
motion.

F. Fahimi, Autonomous Robots, DOI 10.1007/978-0-387-09538-7 7
C© Springer Science+Business Media, LLC 2009
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• Since there is no constraint for the lateral motion of surface vessels, they can be
categorized as holonomic systems. Also, a surface vessel has more DOFs than
actuators. Therefore, surface vessels are considered as underactuated systems.
This makes the controller design for such a system even a more challenging task.
For a surface vessel as an underactuated holonomic system, due to the absence
of the lateral motion constraint, the vessel’s orientation during its motion is not
necessarily tangent to the motion path. Therefore, the stability of the zero dynam-
ics of the vessel’s unactuated DOF needs rigorous proof based on the vessel’s
dynamic model.

These three problems, which are specific to the control of surface vessels, are ad-
dressed in this chapter. First, the 6-DOF dynamic model of a surface vessel is pre-
sented. This dynamic model is reduced to a 3-DOF model. Then, a control strategy
based on the “control point” is presented, in which the unactuated dynamics of the
vessel can be analyzed separately than the actuated DOFs. The inherent stability of
the unactuated DOF is investigated. Next, two methods for trajectory-tracking con-
troller design for a surface vehicle are introduced. These methods are the feedback
linearization method and the robust sliding mode control. Finally, the problem of
controlling multiple surface vessels simultaneously in group formation maneuvers
is solved using a decentralized leader-follower approach.

7.2 Dynamics of a Surface Vessel

In this section, first, the 6-DOF dynamic model of a surface vessel is presented.
The 6-DOF dynamic model is useful for simulating the motion of a surface vessel.
However, for control development, a simpler 3-DOF model is more appropriate.
Therefore, later in this section, the 6-DOF dynamic model is reduced to derive a
3-DOF model.

The six DOFs for a surface vessel consist of the three global position components
of the center of mass of the vessel and three angles that define the orientation of
the vessel’s body frame with respect to the inertial global frame. These six DOFs,
which can uniquely define the configuration of the vessel at any instant in time, are
accompanied by six generalized speed components, which define the dynamic state
of vessel. These generalized speeds are defined in terms of the vessel’s body frame.
They are the surge (u), sway (v), and heave (w) linear speeds, and the angular speeds
about the longitudinal (p), transversal (q), and normal (r ) axes.

For a surface vessel, normally there are two control inputs. The types of inputs
depend on the drive train of the vessel. For example, two independent propellers can
provide the driving force (F) and steering torque (T ) for the system. If the inertia of
the vessel can be assumed to be constant, the vessel has an elliptical body, and the
higher-order damping forces can be neglected, the following equations describe the
dynamics of the vessel in the local coordinate system [32]:
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m11u̇ − m22vr + m33wq + d11u = Wu + F ,

m22v̇ − m33wp + m11ur + d22v = Wv ,

m33ẇ − m11uq + m22vp + d33w = Ww + mg + Zw, (7.1)

Ixx ṗ + (m33 − m22)wv + (Izz − Iyy)rq + d44 p = K p,

Iyyq̇ + (m11 − m33)uw + (Ixx − Izz)pr + d55q = F , ¯FG + Mq

Izzṙ + (m22 − m11)vu + (Izz − Iyy)qp + d66r = T ,

where mi j ’s denote the added mass of the vessel (including the effect of hydrody-
namics), di j ’s represent the linear hydrodynamic damping coefficients, Iii denote the
moment of inertia, and Wi are the wave force components described in terms of the
vessel’s local frame. F ¯FG is the torque of the thruster’s force about the transversal
(pitch) axis passing through the vessel’s center of mass. Zw, K p, and Mq are the
buoyancy force, and roll and pitch restoring torques, respectively. That is

K p = −mgM̄T p sin φ, Mq = −mgM̄T q sin θ , Zw = −ρg Awpz. (7.2)

In the above relations, the transverse and longitudinal metacentric heights are
denoted by M̄T p and M̄T q , respectively, and the water plane area is presented by
Awp. The roll and pitch angles of the vessel’s local frame are denoted by φ and θ .

As can be seen in Eq. (7.2), this dynamic model is rather complicated. The deriva-
tion of control laws become simpler if this model can be reduced. For this reduction,
the inherent stability of some of the vessel’s DOFs, which is intentionally built into
the vessel’s dynamics by a good vessel design, must be used. The buoyancy force
of the vessel stabilizes the heave motion. Also, since the vessels is designed to have
adequate longitudinal and transversal metacentric heights, the roll and pitch motion
of the vessel is stabilized. The stability of the heave (w), roll (p), and pitch (q) mo-
tions, and the assumption that the angular DOFs are small, allow us to neglect them
for the controller design. With this in mind, one can reduces the 6-DOF dynamic
model to a 3-DOF one.

Figure 7.1 shows the reduced 3-DOF model of a surface vessel. Only, u, v, and r
are considered as the three generalized speeds of the vessel expressed in the vessel’s
body frame. With this assumption, the following equations describe the dynamics
of the vessel in the local coordinate system [32].

m11u̇ − m22vr + d11u = Wu + F ,

m22v̇ + m11ur + d22v = Wv , (7.3)

Izzṙ + (m22 − m11)uv + d66r = T .

Note that the second equation is not directly affected by the controller inputs.
However, this equation determines the lateral motion response of the surface vessel.

When the control inputs are given, the local equations of motion (7.3) can sim-
ulate the behavior of the surface vessel. However, since, in the future sections of
this chapter, the control of relative distances of multiple surface vessels will be
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Fig. 7.1 A 3-DOF dynamic model of a vessel

considered, the equations of motion of the surface vessel in the global coordinate
system becomes very useful. Therefore, here, these equations are also presented.

The dynamic equations in terms of the global coordinated can be found by using
Eq. (7.3) along with the kinematic relations between the local speed components
(u, v, r ) and the global speed components (ẋ, ẏ, ψ̇). The result is

ẍ = 1

m11
( fx + F cos ψ) ,

ÿ = 1

m22

(
fy + F sin ψ

)
, (7.4)

ψ̈ = 1

Izz

(
fψ + T

)
,

where
fx = mr d22v sin ψ − d11u cos ψ + ψ̇(v cos ψ − mr u sin ψ)md ,

fy = −mr d22v cos ψ − d11u sin ψ + ψ̇(v sin ψ + mr u cos ψ)md , (7.5)

fψ = −mduv − d33ψ̇ ,

u = ẋ cos ψ + ẏ sin ψ ,

v = −ẋ sin ψ + ẏ cos ψ ,

and
md = m22 − m11,

mr = m11

m22
.

Equations (7.4) and (7.5) describe the dynamics of the vessels in terms of the
global coordinate components.
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7.3 The Control Point Concept for Underactuated Vehicles

As discussed previously, the reduced model of the surface vessel has three DOFs,
whereas there are only two control inputs available. At the first glance, it may seem
impossible to control a 3-DOF system with only two control inputs. In fact, an
underactuated system must have some inherent stability to be controllable. For a
surface vessel, the two control inputs usually affect the surge and the yaw motions
directly. The lateral (sway) motion of the vehicle is not directly actuated. This fact
can be observed from the equations of motion (7.3) of a surface vessel. However,
one can reflect on their real world experience with surface vessels and remember
that humans can successfully control these vessels using only two inputs. This can
only mean that the unactuated DOF for a surface vessel is inherently stable. In fact,
this stability has been designed into the system. Using this real world experience
with the system, a control engineer can confidently choose a representative of two
of the three DOFs of the surface vessel as the output of the controller and design
a controller to make them track a desired trajectory. However, the control engineer
must not only rely on their real world experience about the stability of the unactuated
DOF, but also mathematically prove the inherent stability of a representative of the
uncontrolled DOF.

7.3.1 The Role of the Control Point

For an underactuated system, one has to select the most important DOFs to control
directly. The number of these DOFs must be equal to the number of control inputs.
For a surface vessel, if the goal is to make the vessel follow a path (or a trajectory,
to be more precise), the two position components are the most important out of
the three DOFs. Based on this justification, the simplest choice of the controller
outputs seems to be the the two position components of the vessel’s center of mass.
However, this simple choice is not the best choice. If the components of the vessel’s
center of gravity are used as the controller output, the controller will not sense any
disturbance in the other DOF, the yaw. It is never a good idea to make a controller
unaware of any states of the system.

Controlling the position components of a point on the vessel’s body other that the
center of mass can solve this problem. This point is called the “control point.” The
postion of this point is a function of all the DOFs of the vessel. When the control
point’s position components are chosen as the controller output, a disturbance gen-
erated by an external source only in the orientation of the vessel will also disturb the
controller output, to which the controller can react. This reaction would not happen
if the postion of the center of gravity was chosen as the controller output.

Let us pick the control point on the positive longitudinal axis of the surface vessel
with a distance d from the vessel’s center of gravity. Assuming the control point on
the longitudinal axis of the vessel simplifies the relations between the inputs and
outputs of the controller. The controller outputs are defined as
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x p1 = x1 + d cos ψ ,

x p2 = x2 + d sin ψ . (7.6)

The desired values of these outputs (the trajectory of the surface vessel) is defined
by functions of time. That is,

xd
p1 = xd

p1(t),

xd
p2 = xd

p2(t). (7.7)

One can assume that a controller will be designed can stabilize the control outputs
(the position of the control point). However, the inherent stability of a representative
of the DOF that is not directly controlled must be investigated. This is done in the
following subsection.

7.4 Zero-Dynamics Stability for a Surface Vessel

Let us assume that the controllers, to be designed, guarantee that the position of the
control point follows the desired trajectory. Although the trajectory of the control
point is stabilized, there may be a possibility that the vessel oscillates about the
control point p during the motion. The oscillation may cause the vessel to become
unstable. In such a situation, the vessel’s behavior may resemble that of a pendulum
oscillating about the moving pivot (the control point). In this case, the position com-
ponents of the center of mass and the orientation of the vessel may have periodic
or unstable trajectories. Therefore, the stability of the zero dynamics of the vessel
must be investigated.

Since the oscillations would take place about the control point, the position com-
ponents of the center of mass and the orientation of the vessel will not be indepen-
dent. In fact, the trajectory of the center of mass can be determined by knowing
the control point’s motion, and the orientation of the vessel. Therefore, analyzing
the stability of the orientation only can conclude the stability of the vessel as a
system. This is consistant with the fact that there is only one underactuated degree
of freedom for a 3-DOF vessel.

In the following, the stability of the orientation of the vessel, as a representative
of the stability of the zero dynamics of the vessel, is investigated. A general planar
motion is assumed for the control point p. The velocity and acceleration vectors of
point p can be written as

vp = u p t̂, ap = u̇ p t̂ + u2
p

ρ
n̂, (7.8)

where u p is the linear velocity, u̇ p is the linear acceleration of the motion of the con-
trol point, and ρ is the radius of curvature of control point’s path. Also, t̂ and n̂ are
the unit vectors tangent and perpendicular to the path of p, respectively (Fig. 7.2).
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Fig. 7.2 The velocity of point p, which is along t̂, makes an angle δ with the orientation of the
follower

The second equation of motion in Eq. (7.3) is not affected by any of the control
inputs. This equation is perfect for zero-dynamic stability analysis. However, this
equation must be written in terms of only one variable, representing the orientation
of the vessel. An angle δ is defined as the difference between the orientation of the
vessel and the direction of the velocity of point p. Then, the velocity and acceler-
ation of the center of mass are calculated in terms of the velocity and acceleration
of the control point. These are substituted into the second equation of motion in
Eq. (7.3). The result is

δ̈ +
(

d22d − m11u p cos δ

m22d

)
δ̇ +

(
m22u̇ p + d22u p

m22d

)
sin δ

−
(

m22u2
p/ρ + m11u prp

m22d

)
cos δ = −

(
d22rp + m22ṙ p

m22

)
, (7.9)

where rp is the rate of change of the direction of the velocity of point p. Lineariza-
tion of this equation about δ = 0 yields

δ̈ + d22

m22
δ̇ +

(
m22u̇ p + d22u p

m22d

)
δ = −

(
d22rp + m22ṙ p

m22

)
. (7.10)

Once again, it should be noted that the trajectory of the control point is dictated
by the controller. The variable δ represents the response of the orientation of the
surface vessel to the motion of the control point. Equation (7.10) defined the behav-
ior of the variable δ, as the representative of the stability of the zero dynamics of
the vessel, as a function of the motion of the control point. In the following, this
behavior is investigated for different motions of the control point as an excitation.
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7.4.1 Stability in Case of General Motions with Constant Speed

In this section, a general motion with constant speed is considered for the control
point and the behavior of the unactuated DOF is investigated. Constant speed im-
plies that

u p = ū p, u̇ p = 0. (7.11)

The direction of the control point’s velocity is variable for a general motion. This
orientation is denoted by nonzero rp and ṙ p. When these relations are substituted
into Eq. (7.10), the following equation results:

δ̈ + cδ̇ + (
c

d
ū p)δ = −(crp + ṙ p), (7.12)

where

c = d22

m22
. (7.13)

The roots of the characteristic equations of this second-order equation determine
its stability. These roots are

r1,2 = −(
c

2
) ±

√
�, � = (

c

2
)2 − c

d
ū p. (7.14)

Stability can be guaranteed if one of the following cases is true: either the roots
of the characteristic equations must be negative real numbers or it must be complex
conjugates with negative real parts. The conditions on ū p that satisfy these two cases
must be investigated.

1. Case 1: Two negative real roots. The following inequalities must be true for the
characteristic equation to have two negative real roots:

� > 0, r1 = −(
c

2
) −

√
� < 0, r2 = −(

c

2
) +

√
� < 0. (7.15)

For the first inequality to be true, ū p < cd/2. Since both c and � are positive,
if the first inequality is true, the second inequality is identically satisfied. Also,
since d > 0, if

ū p > 0, (7.16)

the third inequality is satisfied.
2. Case 2: Two complex conjugate roots with negative real parts. Another con-

dition under which the zero dynamics is stable is that the characteristic equation
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has two complex conjugate roots with negative real parts. This may be the case
if � < 0, which results in another condition for the linear speed ū p:

ū p >
cd

2
(7.17)

It is important to note that the real part of the roots is negative because c > 0.

Two conditions have been found for ū p based on the mentioned two possible
cases. These two conditions must be combined to conclude the zero-dynamic stabil-
ity of the vessel. It can be concluded that the zero dynamics of the vessel is stable
for a forward motion, that is, when ū p > 0. The second-order zero dynamics of the
vessel is over-damped when 0 < ū p < cd

2 , and is critically-damped when ū p = cd
2 ,

and is damped oscillatory when ū p > cd
2 . Note that the distance of the vessel’s

control point from its center of mass, d, determines the quality of the zero-dynamics
response. While c depends on the dynamic properties of the vehicle, a larger d can
expand the range of operational speeds for which the response of the zero dynamics
is over-damped.

7.4.2 Equilibrium Point for Circular and Linear Motions
with Constant Speed

In the previous section, it was shown that the zero-dynamic response of a surface
vessel is in fact stable. In this section, the equilibrium point for the orientation of the
vessel, when the control point has a circular motion with constant speed, is derived.

The control point velocity components for the circular motion with constant
speed become

u p = ū p,u̇ p = 0,rp = r̄ p,ṙ p = 0. (7.18)

To find the equilibrium orientation, δe, the derivatives δ̈ and δ̇ in Eq. (7.9) must
vanish. This results in

d22ū p sin δe − (m22ū2
p/ρ + m11ū pr̄ p) cos δe = −d22dr̄p. (7.19)

Solving this equation in terms of δe yields

δe = arccos

(
d22dr̄p

β1

)
− β2, (7.20)

where

β1 =
√

(d22ū p)2 + (m22ū2
p/ρ + m11ū pr̄ p)2, (7.21)
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β2 = arctan

(
d22ū p

m22ū2
p/ρ + m11ū pr̄ p

)
. (7.22)

Equation (7.20) indicates that when the control point p has a circular motion with
constant speed, δ, the difference between the orientation of the surface vessel and
the direction of the velocity of the control point p converges to a constant value.

Note that the direction of the desired motion of point p is the desired path’s slope.
When the vessel’s orientation reaches an equilibrium offset δe with the slope of the
desired path, it has a constant offset with the tangent to the desired path.

The equilibrium δ when the motion of the control point is linear with a constant
speed can be derived from the result for a circular control point motion. ρ is infi-
nite and r̄ p is zero for a linear motion. If these values are substituted in the above
equations, it can be seen that β2 = arctan(∞) = π/2 and

δe = arccos

(
0

d22ū p

)
− π/2 = 0 (7.23)

Note that when the control p moves on a line, the orientation of the motion of
point p is equivalent to the slope of the linear path. A zero δ at the equilibrium as
indicated by Eq. (7.23) means that the vessel’s longitudinal axis becomes collinear
with the linear path.

7.4.3 Permissible Practical Motions

The zero-dynamics stability analysis was done only for control point trajectories
with constant speed. Furthermore, linearization was necessary for arriving at a con-
clusion about the zero-dynamic stability. The result of this stability analysis is only
valid in the vicinity of the equilibrium point, around which the linearization was
done, and for speeds that are vary very slowly such that they can be considered
constant. These limitations must be considered when defining desired trajectories
for the control point. It is recommended to define trajectories consisting of lines and
circular arcs, for which the equilibrium point of the zero dynamics is known. Also,
abrupt changes in desired velocities must be avoided. Hardware experiments are the
only means for practical determination of the extents of the zero-dynamic stability.

7.5 Trajectory-Tracking Controller Design

The controller design problem can be defined as finding control laws for the driving
force and torque appearing in the 3-DOF dynamic equations of the surface vessel
such that the control point of the vessels follows a desired trajectory defined in
Eq. (7.7). To find such control laws, the dynamic relation between the control inputs
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F and T and the control outputs x p1 and x p2 must be derived. The next section
presents the derivations.

7.5.1 The Input–Output Relations

The first-order derivative of the control outputs can be written in terms of the speed
components of the surface vessel expressed in the vessel’s local frame.

ẋ p1 = u cos ψ − (v + rd) sin ψ ,

ẋ p2 = u sin ψ + (v + rd) cos ψ . (7.24)

The second-order derivative of the controller outputs are computed as

ẍ p1 = u̇ cos ψ − uψ̇ sin ψ − (v̇ + ṙd) sin ψ − (v + rd)ψ̇ cos ψ ,

ẍ p2 = u̇ sin ψ + uψ̇ cos ψ + (v̇ + ṙd) cos ψ − (v + rd)ψ̇ sin ψ . (7.25)

Substituting for u̇, v̇, and ψ̇ from Eq. (7.3) into the second-order output relations
and rearranging in terms of control inputs F and T results in

ẍ p1 =
(

cos ψ

m11

)
F −

(
d sin ψ

Izz

)
T + fx1,

ẍ p2 =
(

sin ψ

m11

)
F +

(
d cos ψ

Izz

)
T + fx2, (7.26)

where

fx1 = (m22vr − d11u)
cos ψ

m11
− ur sin ψ + (m11ur + d22v)

sin ψ

m22

−d sin ψ

Izz
((m11 − m22)uv − d66r ) − (v + rd)r cos ψ ,

fx2 = (m22vr − d11u)
sin ψ

m11
+ ur sin ψ − (m11ur + d22v)

cos ψ

m22

+d cos ψ

Izz
((m11 − m22)uv − d66r ) − (v + rd)r sin ψ . (7.27)

Equations (7.26) can be written in the following general matrix form:

[
ẍ p1

ẍ p2

]
=
[

fx1

fx2

]
+
[

cos ψ

m11
− d sin ψ

Izz
sin ψ

m11

d cos ψ

Izz

][
F
T

]
, (7.28)

or

z̈ = f + bu. (7.29)
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The control input u must be determined such that the output z converges to the
desired output zd as time goes to infinity. This control law can be determined using
different methods. In the following, the feedback linearization and the robust sliding
mode control method are used.

7.5.2 Feedback Linearization

In this method, a new control input is defined such that the form of the input–output
equation is linear. The new control input

v = f + bu. (7.30)

simplifies the input–output equations in the following linear form:

z̈ = v. (7.31)

Let us assume a second-order asymptotically stable desired error dynamic be-
havior as

¨̃z + 2� ˙̃z + �2z̃, (7.32)

where

z̃ = z − zd , (7.33)

and

� =
[
λ1 0
0 λ2

]
. (7.34)

The new control input v must be determined such that the error behavior (7.32)
is achieved. Combining Eqs. (7.31) and (7.32) results in the new control as

v = z̈d − 2� ˙̃z − �2z̃. (7.35)

The original control input u can be obtained based on the control law (7.35)
found for the new control input and the definition of the new control input (7.30).

u = b−1(z̈d − 2� ˙̃z − �2z̃ − f). (7.36)

Example 7.1. Consider a surface vessel whose dynamics can be reduced to a 3-DOF
model. The parameters of the 3-DOF dynamic model of the surface vessel are listed
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Table 7.1 Vessel’s dynamic parameters

m11 = 200 kg m22 = 250 kg Izz = 700 kg.m2

d11 = 70 kg/s d22 = 100 kg/s d66 = 50 kg.m2/s

in Table 7.1. Using the control law (7.36), simulate the autonomous motion of the
surface vessel on a desired circular path for the control point with a radius of 10 m
centered at the origin of the inertial coordinate system. Assume a constant linear
velocity of 1 m/s. Plot the orientation stability parameter δ introduced in Section 7.4
and comment on the stability of the zero dynamics of the surface vessel. The vessel
is moving with a longitudinal velocity of 1 m/s at the beginning of the motion, its
longitudinal axis is parallel to the positive x2 axis, and its control point is initially at
(11,−3) m. Assume d = 1 m.

Solution. The desired trajectory of the control point of the surface vessels can be
parameterized in terms of time as follows.

xd
p1(t) = xc + R cos(V t/R),

xd
p2(t) = yc + R sin(V t/R),

ẋ d
p1(t) = −V sin(V t/R),

ẋ d
p2(t) = V cos(V t/R),

ẍ d
p1(t) = −V 2/R cos(V t/R),

ẍ d
p2(t) = −V 2/R sin(V t/R), (7.37)

where

R = 10, V = 1, xc = 0, yc = 0. (7.38)

The initial conditions for the surface vessel are

x1(0) = 11 m, u(0) = 1 m/s,
x2(0) = −4 m, v(0) = 0 m/s,
ψ(0) = π/2 rad, r (0) = 0 rad/s.

(7.39)

The first-oder form of the dynamic equations of motion used for the simula-
tions are

ẋ1 = u cos ψ − v sin ψ ,

ẋ2 = u sin ψ + v cos ψ ,

ψ̇ = r ,

u̇ = (F + m22vr − d11u)/m11,

v̇ = (−m11ur − d22v)/m22,

ṙ = (T − (m22 − m11)uv − d66r )/Izz . (7.40)
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Fig. 7.3 The circular path of the control point

The control law (7.36) determines the control inputs u = [F, T ]T . The con-
troller gains λ1 and λ2 are selected to be 3. These control inputs are directly
applied to the first-order equations of motion of the surface vessel (7.40) for
simulations.

Figure 7.3 shows the path of the vessel’s control point drawn on top of the desired
path of the control point. It can be seen that the controller successfully brings the
surface vessel from its initial location onto the desired path. Since the vessel’s con-
trol point desired speed is 1 m/s, it takes 62.8 s for the vessel to complete the desired
circle with a 62.8 m circumference. The simulation time has been set to 62.8 s. Al-
though Fig. 7.3 shows how the controller performs, the velocity information cannot
be directly seen from this figure.

The linear and angular velocity components of the surface vessel are shown in
Fig. 7.4. The longitudinal (surge) speed of the center of mass of the vessel is very
close to 1.00 m/s. The lateral (sway) speed of the center of gravity of the vessel has a
significant nonzero magnitude of 0.1992 m/s. This is an expected result, since there
is no kinematic lateral motion constraint. This limit speed is solely determined by
the lateral hydrodynamic damping forces. These magnitudes, at first, may seem to
be contradicting the desired speed of 1 m/s for the control point. However, a closer
analysis shows that the magnitude of the speed of the control point is in fact very
close to the desired speed of 1 m/s. The speed of the control point in terms of the
speed component of the center of gravity can be written as
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Fig. 7.4 The linear and angular velocity components of the surface vessel in its local frame

V =
√

u2
p + v2

p,

=
√

u2 + (v + rd)2,

=
√

0.99602 + (−0.1992 + (0.1)(1))2,

= 1.00 m/s, (7.41)

in which r = 0.1 rad/s has been used. This value for the yaw rate is also expected
because the vessel’s direction changes 2π radians in almost 62.8 s. The third plot of
Fig. 7.4 confirms this value.

The control force and torque are shown in Fig. 7.5. The steady-state value of
the driving force is 70 N to mostly compensate for the longitudinal hydrodynamic
damping of d11 = 70 kg/s acting on a speed of 1 m/s. The magnitude of the steady-
state torque is very close to zero due to small hydrodynamic effects on the yaw
motion. This completes the solution to this example.

Figure 7.6 shows the orientation difference between the velocity vector of the
control point and the heading of the surface vessel. This orientation difference δ,
defined in Section 7.4, is the representative of the unactuated DOF of the surface
vessel. In Section 7.4, it was concluded that for a circular motion, δ converges to a
constant value, i.e., the orientation of the vessel will have a constant offset with the
orientation of the control point’s velocity. Figure 7.6 confirms that result.
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Fig. 7.5 The driving force and torque
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Fig. 7.6 The orientation difference between the velocity vector of the control point and the heading
of the surface vessel

The performance of the control law based on feedback linearization is acceptable
if there are very small unknown external disturbaces and dynamic model uncertain-
ties. However, for large disturbances and uncertainties, the performance deteriora-
tion may not be acceptable. Since, large disturbances and uncertainties can be easily
present for a surface vessel, there is a need for more robust controllers. Investigating
this fact remains as an exercise for the interested reader. In the next section, a robust
controller is designed for the surface vessel based on the robust sliding mode control.
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7.5.3 Robust Control Using the Sliding Mode Method

The controller derived in the previous section may not have an acceptable perfor-
mance if the external disturbances and model uncertainties are too high. In these
situtations, a robust controller is needed. In this section, a robust controller is de-
signed using the sliding mode control method.

An asymptotically stable surface is defined for the error in each of the controller’s
output. The matrix form of this surface is written as

˙̃z + �z̃ = 0, (7.42)

where � is a positive-definite 2×2 matrix. Since � is a positive-definite matrix, if the
errors’ conditions satisfy the surface equation (7.42) at all times, they asymptotically
approach the zero equilibrium point of z̃ = 0. However, this is in no way guaranteed.
Therefore, the actual error behavior is more precisely defined by

˙̃z + �z̃ = s, (7.43)

where s is a parameter reflecting the offset of the error trajectory with the desired
error trajectory of Eq. (7.42). A complete sliding mode control law must guaran-
tee that, first, if the offset s is zero, the desired error trajectory becomes equal to
Eq. (7.42), and second, if the offset s is not zero, it will approach zero and stay zero.
The first part of the sliding mode controller is called the equivalent control. The
second part is a nonlinearity term. These two parts are derived in the following.

7.5.3.1 Equivalent Control

Consider the input–output relation (7.29). This relation is written with the nominal
parameters of the dynamic model as

z̈ = f̂ + b̂u. (7.44)

Equation (7.43) can be written in a more consize form as

s = ż − sr , (7.45)

where

sr = żd − �z̃. (7.46)

The equivalent control û should guarantee that if s is zero, the error behavior is
given by Eq. (7.42) or equivalently by Eq. (7.45). Therefore, one should combine
the input–output relation (7.44) with Eq. (7.45) to find û. To do this, the second
derivative of z must appear in Eq. (7.45). For s equal to zero, Eq. (7.45) is differen-
tiated,
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z̈ − ṡr = 0. (7.47)

Substituting for z̈ from the input–output relation (7.44) and solving the result for
u results in the equivalent control denoted by û,

û = b̂−1(−f̂ + ṡr ). (7.48)

7.5.3.2 Robust Control Law

To complement the first part of the sliding mode controller, a second part is needed
to guarantee that the surface offset parameter s approaches zero regardless of the
error initial condition and uncertainty in the model parameters. This is done by
adding a discontinuous term to the equivalent control,

u = b̂−1(−f̂ + ṡr − Ksgn(s)), (7.49)

where K is a positive-definite diagonal matrix and sgn(s) returns a vector with the
sign of the components of s. Although the control law (7.49) seems complete, the
discontinuity gain K must still be determined such that the surface offset parameter
s converges to zero despite uncertainties in the dynamic model parameters.

A Lyapunov function is defined as

V = 1

2
sT s. (7.50)

This Lyapunov function is admissible because it satisfies all the required prop-
erties of such a function. It is positive for all values of s and is only zero when s
is identically zero. With these properties, if one can show that the time derivative
of the Lyapunov function is always negative and is only zero when s is identically
zero, then, one can conclude that s converges to zero from any initial condition and
remains at zero.

The first derivative of the Lyapunov function (7.50) is

V̇ = sT ṡ. (7.51)

Substituting for ṡ from Eq. (7.45) results in

V̇ = sT (z̈ − ṡr ). (7.52)

Substituting for z̈ from the input–output relation yields

V̇ = sT (f + bu − ṡr ). (7.53)
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Substituting for u from Eq. (7.49) gives

V̇ = sT (f + bb̂−1(−f̂ + ṡr − Ksgn(s)) − ṡr ). (7.54)

For simplicity, it is assumed that there are no uncertainty in parameters that ap-
pear in b. Therefore, b = b̂. Equation (7.54) reduces to

V̇ = sT (f̃ − Ksgn(s)), (7.55)

where

f̃ = f − f̂. (7.56)

Since the components of K are to be designed, Eq. (7.55) is written in component
notation.

V̇ =
2∑

i=1

si ( f̃i − Ki sgn(si )),

=
2∑

i=1

si f̃i − Ki |si |,

≤
2∑

i=1

|si || f̃i | − Ki |si |,

≤ −
2∑

i=1

|si |(Ki − | f̃i |). (7.57)

It can be seen from Eq. (7.57) that if one selects

Ki ≥ | f̃i | + ηi , (7.58)

where ηi ’s (i = 1, 2) are positive numbers, then, the rate of the Lyapunov function
becomes

V̇ ≤ −
2∑

i=1

ηi |si |. (7.59)

This means that by choosing Ki ’s that satisfy Eq. (7.58), the rate of the Lyapunov
function is always negative, implying that si ’s decrease monotonically from any
initial condition to zero, at which point the rate of Lyapunov function becomes zero,
which means that si ’s stay at zero.

Example 7.2. Consider the surface vessel and its dynamic model discussed in Exam-
ple 7.1. Assume that the maximum uncertainty in parameters m22, d11, d22, and d66

is 25% and there is no uncertainty in m11 and Izz . Apply the control law (7.49) with
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Ki ’s determined from Eq. (7.58) to the dynamic model. Investigate the performance
of the controller for the cases where there are −20%, 0%, and 20% uncertainty in
the uncertain parameters. The vessel’s control point is at the origin of the inertial
frame at time zero. Assume a desired trajectory for the control point defined by

xd
p1(t) = t for all t , (7.60)

xd
p2(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 < t ≤ 5

(0.0008t4 − 0.0099t3 + 0.0588t2

−0.1715t + 0.1969) if 5 < t ≤ 35

5 if 35 < t ≤ 40

(0.0003t5 − 0.0254t4 + 1.3353t3 − 41.4047t2

+702.6246t − 5033.6465) if 40 < t ≤ 70

0 if 70 < t

.

(7.61)
These polynomials have been planned such that the position, velocity, acceler-

ation, jerk, and curvature at the transition points between the segments are contin-
uous. This is important for a practical trajectory because the controller resulting
forces and torques will become continuous and are more likely to be applicable.

Solution. The first-order dynamic equations presented in Example 7.1 are also used
here for simulating the motion of the surface vessel under control. The control
law (7.49) with Ki ’s determined from Eq. (7.58) is used to obtain the control inputs.
To cover a maximum uncertainty of 25%, f̃ = f − f̂, whose components appear
in Eq. (7.58), is calculated as follows. f̂ is computed using the nominal dynamic
parameters listed in Table 7.1. f, on the other hand, is calculated using the uncertain
parameters as

m22 = 1.25m̂22, d11 = 1.25d̂11, d22 = 1.25d̂22, d66 = 1.25d̂66, (7.62)

where the nominal parameters with hat are from Table 7.1.
In order to investigate the performace of the designed controller under parameter

uncertainty, the uncertain parameters m22, d11, d22, and d66 used in this dynamic
model are varied. For the three simulations, the uncertain parameters are multiplied
by 0.8 (−20%), 1.0 (0%), and 1.2 (20%), respectively. Note that in this way, the
controller is not aware of the actual value of the uncertain parameters, but only the
bound of these parameters.

The path of the vessel with different degrees of uncertainty are shown in Fig. 7.7.
As can be seen in this figure, the trajectory-tracking performance of the vessel does
not deteriorate due to parameter uncertainty, as long as the uncertainty is within the
assumed bounds.

The linear and angular velocity components of the center of gravity of the surface
vessel are shown in Fig. 7.8. Note that these components are different than that of
the control point. For the underactuated surface vessel, the controller is actually
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Fig. 7.8 The linear and angular velocity components of the surface vessel in its local frame

controlling the velocity and position of the control point. The controller is not capa-
ble of controlling the unactuated mode of the dynamics of the vessel. The behavior
of this DOF is determined by the zero dynamics of the vehicle. When the dynamic
parameters change, the behavior of the unactuated DOF also changes.

This fact is somehow reflected in Fig. 7.8. The unactuated DOF for this surface
vessel is the lateral direction of motion. Since the control point has a controlled
motion, the unactuated lateral motion of the center of gravity shows itself as an
oscillation about the control point. The longitudinal speed of the center of gravity is
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Fig. 7.9 The driving force and torque

affected less by this oscillation than the longitudinal speed and the yaw rate, as seen
in Fig. 7.8.

The control force and torque are shown in Fig. 7.9. The control force, when there
is no uncertainty (0%), is about 70 N to drive the vessel with a constant speed of
1 m/s on the straight portions of the trajectory. The curved portions of the trajectory
have a slightly higher desired velocity due to motion in the x2 direction, hence, the
driving force increases for those portions. For the uncertain cases, the driving force
has been adjusted by the controller to address the lower and higher longitudinal
dampings. As can be seen from Fig. 7.9, the steering torque is nonzero to steer the
vessel on the trajectory. The magnitude of the torque slightly varies between the dif-
ferent cases of uncertainty to compensate for different dampings and hydrodynamic
effects.

Figure 7.10 shows the orientation difference between the velocity vector of the
control point and the heading of the surface vessel. This orientation difference δ,
defined in Section 7.4, is the representative of the unactuated DOF of the surface
vessel. In Section 7.4, it was shown that this variable has a second-order damped
response and is excited by the rate of the change of the desired trajectory’s slope. It
was also shown in Section 7.4 that, for a straight line trajectory, the equilibrium point
of this variable is zero. Figure 7.10 confirms these findings. For the first portion of
the trajectory, which is a straight line, δ remains zero. For the other portions where



7.5 Trajectory-Tracking Controller Design 243

0 10 20 30 40 50 60 70
−5

0

5
δ 

(d
eg

)

time (s)

−20% 0% 20%

Fig. 7.10 The orientation difference between the velocity vector of the control point and the head-
ing of the surface vessel

the slope of the desired trajectory changes, δ has a damped response. It comes back
to its equilibrium point of zero (after some time lag) wherever the trajectory is a
straight line. The absolute of δ remains less than 5◦ for this maneover.

The phase planes for the controller output errors are shown in Fig. 7.11. As is
seen in this figure, both the controller outputs are attracted to an equilibrium point.
The equilibrium point of the error in x p1 control point’s position component has a
small offset with zero in the order of millimeters, whereas the equilibrium point for
the error in x p2 component has no offset with zero. This may be due to the fact that
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Fig. 7.11 The phase plane for the controller output errors
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the x p1 component is tracking a dynamic function, whereas the x p2 component is
mostly constant throughout the motion.

7.6 Formation Control for Surface Vessels

In the previous section, the trajectory control for a single ASV was investigated.
While a single surface vessel may be useful for simple tasks, the use of multiple
cooperative vessels may be crucial or may accelerate the accomplishment of more
complicated tasks. For a successful cooperative work, the autonomous vessels must
intelligently maintain user-specified distances to each other, which is known as for-
mation control.

During the last several years, the formation control problem for different types of
vehicles is investigated by researchers, The studied vehicles include ground vehicles
(indoor mobile robots and large outdoor vehicles), aerial and space vehicles, and un-
derwater and surface vessels. Three major approaches that have been introduced are
virtual structure [54], behavior-based [7, 26], or leader-follower approaches [74, 23].
The virtual structure approach a generic method in which the holonomic kinematics
of the motion for the group is planned. For the actual navigation, the vehicles rely
on existing conventional controllers. In contrary to the virtual structure method, in
behavior-based and leader-follower approaches, the controller design is an integral
part of the formation control design. Therefore, for these approaches, the accuracy
of the kinematic model and consideration of the nonholonomic constraints of the
vehicles are important.

The formation control problem for different types of marine vehicles has been
investigated by many researches. The the leader-follower approach combined with
the sliding mode control method [29] and the virtual structure method [42] have
been used for formation control of marine craft. A method for formation control of
marine surface craft inspired by Lagrangian mechanics has also been presented [41].

In this section, the problem of control and coordination for many unmanned sur-
face vessels moving in general user-defined formations is investigated. The planar
motion of surface vessels for control development with three DOFs of surge, sway,
and yaw is considered. With this assumption, two modular leader-follower geomet-
rical formation schemes [23] can be used. In these schemes, local parameters are
utilized to define the internal geometry of the formation.

7.6.1 Geometrical Leader-Follower Formation Schemes

Let us assume that a trajectory planning and obstacle avoidance algorithm char-
acterizes the gross motion of the group of vessels. A real or hypothetical leader
vessel adapts the planned gross trajectory. If the leader vessel is a real vessel, it can
use the trajectory-tracking controller designed in the previous section for tracking
the desired gross trajectory. Other vessels of the group follow either the hypothetical
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group leader or their neighboring vessels. The follower vessels must have controllers
that control the internal geometry of the formation. The internal formation structure
is defined by using two geometrical formation schemes. These schemes provide the
building blocks for defining a general formation structure for any type of vehicles
with planar motion [23].

To define a 2D formation structure uniquely, a mesh with triangular cells must
be defined in which the vertices of the triangular cells represent the control points
of the surface vessels. The legs of the triangular cells represent the distances that
the vessels must keep while moving to maintain the formation. These triangular
cells can be formed with two types of formation building blocks, also known as the
formation schemes.

The first geometrical scheme is called the l – α scheme. As the name implies, the
desired relative distance and view angle of a vessel with respect to a neighboring
vessel are defined as the geometrical formation parameters. With this formation
control scheme, one can define the formation structure of vessels marching at an
edge of the 2D formation structure or in a single file, if the formation structure is
one dimensional.

Note that the l – α scheme alone can only define one side of a triangular cell
in a 2D formation structure. A second geometrical scheme is needed to define the
two other legs of the triangular cell. The second geometrical scheme is called the
l – l scheme, in which the distances of a vessel to two neighboring vessels or to one
vessel and an obstacle are controlled.

The l – α scheme is used for the vessels at the edge of the formation structure
geometry and the l – l scheme is used for other vessels such that a formation mesh
with triangular cells connecting all the vessels is generated.

Controllers must be designed to ensure that the vehicles autonomously reach and
keep the desired formation parameters. These controllers determine the required
physical control signals to obtain the desired formation parameters as controller out-
puts. In the following, the details of formation controller design for surface vessels
based on the mentioned geometrical schemes are discussed.

7.6.2 Design of the l – α Controller

Two neighboring vessels in the formation are shown in Fig. 7.12. The distance of
the center of mass of vessel 1 and the control point, p, of vessel 2 is l12. The control
point is on the longitudinal axis of vessel 2 and has a distance d from the center of
mass of vessel 2. In order to maintain the formation, vessel 2 must keep a desired
distance of ld

12 and view angle αd
12 with vessel 1. A control law for the driving inputs

of vessel 2, F2 and T2, must be determined such that vessel 2 maintains the desired
distance and view angle.

To design such a control law, explicit relations between the control inputs (F2

and T2) and the control outputs (l12 and α12) are required. These relations are known
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Fig. 7.12 The l – α scheme geometry

as the input–output relations. In the following, first, these input–output relations are
found; then, the control laws are derived.

The explicit relations between the input and the output are found with the fol-
lowing procedure. First, the dynamic equations (7.4) for vessel 2 are written. These
equations relate the control inputs F2 and T2 to the acceleration components of
vessel 2, (ẍ2, ÿ2, ψ̈2). Second, some kinematic equations are used to realted these
acceleration components to the derivatives of l12 and α12. Finally, the input–output
relations are obtained by eliminating the acceleration components between the dy-
namic and kinematic equations.

Writing the dynamic equations (7.4) for vessel 2 is simply done by adding a
subscript 2 to the variables. However, writing the kinematic equations require the
acceleration analysis of the used l – α scheme.

7.6.2.1 Kinematic Analysis

A moving coordinate system is assumed with an origin at the center of mass of ves-
sel 1. This coordinate system is rotating with the vector l12, which is the line of sight
vessel 2 from vessel 1’s center of gravity (Fig. 7.12). Also, two coincident points are
assumed. The first one is p1 and is attached to this moving coordinate system. The
second one is p2, which is attached to vessel 2. Both points are coincident with
the instantaneous location of the control point p. One can see that, to the eye of an
observer attached to the defined moving coordinate system standing at p1, point p2

moves along the vector l12. Mathematically, this can be expressed by the following
kinematic equation for the inertial acceleration of p2:
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ap2 = ap1 + ap2/1, (7.63)

= (a1 + α̈0k̂ × l12 − α̇2
0 l12) + (2α̇0k̂ × l̇12 + l̈12), (7.64)

where a1 is the acceleration of the center of mass of vessel 1, and

α0 = ψ1 + α12. (7.65)

Now, the the acceleration of point p2 on vessel 2 can also be written in terms the
acceleration of the center of mass of the vessel 2, a2:

ap2 = a2 + ψ̈2k̂ × d − ψ̇2
2 d. (7.66)

The vectorial equations (7.64) and (7.66) are combined, expanded, and solved
for the highest derivatives of the outputs, l̈12 and α̈12, to result in

l̈12 = (ÿ2 − ÿ1) sin α0 + (ẍ2 − ẍ1) cos α0 + dψ̈2 sin γ1

− dψ̇2
2 cos γ1 + l12α̇

2
0, (7.67)

α̈12 = 1

l12
[(ÿ2 − ÿ1) cos α0 − (ẍ2 − ẍ1) sin α0 + dψ̈2 cos γ1

+ dψ̇2
2 sin γ1 − 2l̇12α̇0 − l12ψ̈1], (7.68)

where

γ1 = ψ1 + α12 − ψ2. (7.69)

7.6.2.2 Input–Output Equations

Now, ẍ2, ÿ2, and ψ̈2 in the kinematic equations (7.67) and (7.68) are replaced by
terms from the dynamic equations (7.4) written for the vessel 2 to obtain the follow-
ing input–output equations:

l̈12 =
[

fl + 1

m11
F2 cos γ1 + 1

Izz
T2d sin γ1

]
, (7.70)

α̈12 = 1

l12

[
fα − 1

m11
F2 sin γ1 + 1

Izz
T2d cos γ1

]
, (7.71)

where

fl = 1

m11
( fx cos α0 + fy sin α0) + 1

Izz
fψd sin γ1 − ẍ1 cos α0 − ÿ1 sin α0

− dψ̇2
2 cos γ1 + l12α̇

2
0,

fα = 7
1

m11
(− fx sin α0 + fy cos α0) + 1

Izz
fψd cos γ1 + ẍ1 sin α0 − ÿ1 cos α0

+ dψ̇2
2 sin γ1 − 2l̇12α̇0 − l12ψ̈1.
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The input–output relations (7.70) and (7.71) can be written in the matrix form.

z̈ = f + bu, (7.72)

where

z =
[

l12

α12

]
, f =

[
fl
fα
l12

]
, b =

[
cos γ1

m11

d sin γ1

Izz

− sin γ1

m11l12

d cos γ1

Izz l12

]
, u =

[
F2

T2

]
. (7.73)

7.6.2.3 Control Laws

With the input–output equations at hand, nonlinear control laws can be proposed.
Here, a nonlinear controller is designed based on the input–output equation (7.72).
A stable second order nonlinear error dynamics is introduced (ki (z̃i ) > 0):

¨̃zi + 2
√

ki (z̃i )˙̃zi + ki (z̃i )z̃i = 0, i = 1, 2, (7.74)

where z̃1 and z̃2 are the output errors defined as

z̃1 = l12 − ld
12, z̃2 = α12 − αd

12. (7.75)

For a constant ki , the error dynamics (7.74) results in a critically damped linear
second-order closed-loop input–output system, whose behavior is similar to that of
a mass-spring-damper system. Such a system can show a smooth convergence rate
when ki is relatively low, however, it exhibits large offsets when external disturbace
(equivalent of a force on the mass) are present. The offset can be reduced if a high
ki is selected at the cost of an extra fast transient response.

To find a compromise between a response with a reasonable rate and a low offset
in presence of external disturbances, ki must be defined as a function of the error.
The continuous function ki (z̃i ) must have a relatively small value when the error is
high for a reasonable rate of convergence, and must have a relatively large value
when the error is zero for an acceptable offset in the presence of external distur-
bances. The following function meets the above criteria:

ki (z̃i ) = nλi + (1 − n)
λ2

i

λi + ai z̃2
i

, (7.76)

where λi > 0 is the controller gain when the error is zero and n << 1 determines
the reduction ratio in the controller gain when the error is infinite. The parameter
ai > 0 affects how fast the controller gain is increased as the error approaches zero.
By using the following Lyapunov function,

V = 1

2
(˙̃z2

i + nλi z̃
2
i + λ2

i (1 − n)

a
ln(

λi + ai z̃2
i

λi
)) ≥ 0, (7.77)
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one can show that

V̇ = −2
√

ki (z̃i )˙̃z2
i ≤ 0, (7.78)

which implies that the nonlinear error dynamics (7.74) is in fact stable with an equi-
librium position (z̃i , ˙̃zi ) = (0, 0).

The desired error behavior (7.74) is written in the matrix form for convenience.

¨̃z + 2
√

K ˙̃z + K z̃ = 0, (7.79)

where
√

K =
[√

k1 0
0

√
k2

]
, K =

[
k1 0
0 k2

]
. (7.80)

Equation (7.79) can be solved for z̈. This yields

z̈ = z̈d − 2
√

K ˙̃z − K z̃. (7.81)

Substituting for z̈ from Eq. (7.81) into Eq. (7.72) and solving for the control input
u results in

u = b−1(z̈d − 2
√

K ˙̃z − K z̃ − f). (7.82)

Note that the matrix b must be inverted for calculating the control law. Therefore,
the determinant of this matrix must be nonzero at all times. This determinant is
obtained as

det(b) = d

m11 Izzl12
. (7.83)

As can be seen, this determinant is nonzero as long as the parameter d, defining
the location of the control point, is not zero. This emphasizes the importance of
the distance between the control point of the vessel 2 and its center of mass, d. If
the control point was chosen to be coincident with the center of mass of vessel 2
(d = 0), the formation scheme would have become uncontrollable. This distance
also has an important effect on the quality of the system’s zero dynamics response,
which was discussed in Section 7.4.

Example 7.3. Consider a 6-DOF surface vessel 2 whose dynamic parameters are
listed in Table 7.2. The vessel 2, initially located at (3, 0) m, is commanded to keep

Table 7.2 Vessel’s dynamic parameters

m = 300 kg Ixx = 300 kg.m2 Iyy = 700 kg.m2 Izz = 700 kg.m2

m11 = 200 kg m22 = 250 kg m33 = 300 kg m66 = 80 kg.m2

d11 = 70 kg/s d22 = 100 kg/s d33 = 100 kg/s d44 = 500 kg.m2/s
d55 = 500 kg.m2/s d66 = 50 kg.m2/s M̄T p = 0.5 m M̄T q = 0.5 m
Ḡ F = 0.5 m ρ = 1000 kg/m3 g = 9.81 m/s2 Awp = 1 m2
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a specified distance, ld
12 = 3.0 m, and view angle, αd

12 = π/2 rad, with respect to
vessel 1. Vessel 1 is moving on a circle (dashed curve) with a radius of 15 m with a
constant longitudinal speed of 1.57 m/s.

Apply the l – α control law (7.82) to this 6-DOF vessels to more closely investi-
gate the performance of the designed controller on a real 6-DOF vessel. Simulate the
response of vessel 2 for two different scenarios to investigate the robustness of the
controller to external disturbances. For both scenarios, assume that the steady-state
longitudinal speed of the vessel is uss ≈ 1.5 m/s. In the first scenario, assume that
no sea current is present. For the second scenario, assume that a constant global sea
current is flowing along the negative x2-axis that exerts an equivalent force of 50 N
on the vessel.

Solution. A list of the controller parameters can be found in Table 7.3. The path of
the leader and the follower vessels are shown in Fig. 7.13. The path of vessel 2, the
follower, is shown by a solid curve. The initial position of the follower vessel is such
that there is an initial error in the formation parameters. The follower reaches the
desired formation successfully after some time. The small line segments show the

Table 7.3 Controller parameters for Example 7.3

l – α

n = 0.05
d = 2.0
λ1 = 5, λ2 = 8
a1 = 1000, a2 = 1000
ld
12 = 2.0 m, αd

12 = π/2 rad
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Fig. 7.13 The l – α scheme – circular motion with constant speed
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Fig. 7.14 The l – α scheme – formation parameters

snapshots of the orientation of the follower. The orientation of the surface vessel is
not tangent to the vessel’s path as expected from zero-dynamics stability analysis.
This orientation is stabilized.

Figure 7.14 shows the response of the controller outputs, [l12, α12]. It can be seen
that the controller outputs converge to their corresponding desired values for both
scenarios. The control performance has been minimally affected by the disturbing
current. The profile of the output responses confirms the stable error dynamics de-
scribed in Eq. (7.74).

The difference in the orientation of vessel 2 and its control point’s velocity direc-
tion, δ, is shown in Fig. 7.15. As predicted by Eq. (7.20), this difference becomes a
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Fig. 7.15 The l – α scheme – orientation difference
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Fig. 7.16 The l – α scheme – speed local components and the ZYX Euler angles (ψ, θ, φ)

constant value when there is no disturbance from the sea current. When the current is
present, δ fluctuates. This is because the direction of the vessel relative to that of the
current changes as the vehicle moves on a circular path. This affects the orientation
of the vessel as it moves along the circle.

Some selected states of the 6-DOF model for the two scenarios are shown in
Fig. 7.16. The longitudinal and lateral speeds are somewhat different for the two
scenarios. However, the current has minimal effect on the the balance of the buoy-
ancy force and the vessel’s weight. That is the reason why, for both scenarios, the
normal velocity vanishes. Also, the vessel’s change of direction in a circular motion
is indicated by the yaw Euler angle’s (ψ) monotonic increase. The roll (φ) and pitch
(θ ) angles are stabilized close to zero.

The result of this simulation shows that the l – α controller designed based on
the 3-DOF vessel’s model is suitable for controlling a real 6-DOF vessel, and it per-
forms well when disturbance is present. Furthermore, the results of zero dynamics
stability analysis, which predicated a constant δ for a circular motion is confirmed
by the simulation results.

7.6.3 Design of the l – l Controller

Three neighboring vessels in the formation structure are shown in Fig. 7.17. As-
sume that the formation structure is defined such that vessel 3 is designated to keep
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Fig. 7.17 The l – l scheme geometry

specified distances ld
13 and ld

23, with vessels 1 and 2, respectively. A controller must
be designed to stabilize these distances, which are measured from the centres of
mass of vessels 1 and 2 to a control point on vessel 3. The driving force and the
steering torque of vessel 3, F3 and T3, are the control inputs, whereas the distances
l13 and l23 are the control outputs. The equations relating the control inputs to the
output, known as the input–output relations, must be obtained for designing the
controller.

7.6.3.1 Kinematic Analysis

Similar to the l – α case, the relative acceleration equations for the control point p
on the follower vessel 3 with respect to the center of gravity of the leader vessel 1 is
written. Similar relative acceleration relations are written for the follower vessel 3
and the leader vessel 3. These acceleration equations are, then, solved for (l̈13, α̈13)
and (l̈23, α̈23), respectively. However, since the distances are the controller outputs,
only the following resultant kinematic equations are relevant.

l̈13 = (ÿ3 − ÿ1) sin α1 + (ẍ3 − ẍ1) cos α1 + dψ̈3 sin γ2

− dψ̇2
3 cos γ2 + l13α̇

2
1 , (7.84)

l̈23 = (ÿ3 − ÿ2) sin α2 + (ẍ3 − ẍ2) cos α2 + dψ̈3 sin γ3

− dψ̇2
3 cos γ3 + l23α̇

2
2 , (7.85)
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where

α1 = ψ1 + α13, γ2 = ψ1 + α13 − ψ3,

α2 = ψ2 + α23, γ3 = ψ2 + α23 − ψ3.

7.6.3.2 Input–Output Equations

Then, the input-output equations are obtained by writing the dynamic equations (7.4)
for vessel 3 and substituting the results for ẍ3, ÿ3, and ψ̈3 into the kinematics
equations (7.84) and (7.85), which yields

l̈13 = f1 + 1
m11

F3 cos γ2 + 1
Izz

T3d sin γ2, (7.86)

l̈23 = f2 + 1
m11

F3 cos γ3 + 1
Izz

T3d sin γ3, (7.87)

where

f1 = 1

m11
( fx cos α1 + fy sin α1) + 1

Izz
fψd sin γ2 − ẍ1 cos α1 − ÿ1 sin α1

−dψ̇2
3 cos γ2 + l13α̇

2
1,

f2 = 1

m11
( fx cos α2 + fy sin α2) + 1

Izz
fψd sin γ3 − ẍ2 cos α2 − ÿ2 sin α2

−dψ̇2
3 cos γ3 + l23α̇

2
2.

The input–output relations (7.86) and (7.87) can be written in the matrix form.

z̈ = f + bu, (7.88)

where

z =
[

l13

l23

]
, f =

[
f1

f2

]
, b =

[
cos γ2

m11

d sin γ2

Izz
cos γ3

m11

d sin γ3

Izz

]
, u =

[
F3

T3

]
. (7.89)

7.6.3.3 Control Law

The controller is proposed based on the input–output equation (7.88). The output
errors are defined as

z̃1 = l13 − ld
13 z̃2 = l23 − ld

23, (7.90)

and a stable second order nonlinear error dynamics is assumed (ki (ei ) > 0):

¨̃zi + 2
√

ki (z̃i )˙̃zi + ki (z̃i )z̃i = 0, i = 1, 2. (7.91)
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The desired error behavior (7.91) is written in the matrix form for convenience.

¨̃z + 2
√

K ˙̃z + K z̃ = 0, (7.92)

where

√
K =

[√
k1 0
0

√
k2

]
, K =

[
k1 0
0 k2

]
. (7.93)

Equation (7.92) can be solved for z̈.

z̈ = z̈d − 2
√

K ˙̃z − K z̃. (7.94)

Substituting for z̈ from Eq. (7.94) into Eq. (7.88) and solving for the control input
u results in

u = b−1(z̈d − 2
√

K ˙̃z − K z̃ − f). (7.95)

Note that the matrix b must be inverted for calculating the control law. Therefore,
the determinant of this matrix must be nonzero at all times. This determinant is
obtained as

det(b) = d

m11 Izz
sin(γ3 − γ2),

= d

m11 Izz
sin(α3 − α2). (7.96)

The determinant of b is zero, if d = 0. Once again, one can see the importance
of using a control point other than the center of mass of the vessel, that is, d �= 0.
The determinant, also, reveals another condition under which the vessel becomes
uncontrollable. That is when sin(α2 − α1) becomes zero. Substituting the values for
α1 and α2, this condition reduces to

(ψ2 + α23) − (ψ1 + α13) = nπ . (7.97)

This represents the configuration at which the control point of the follower ve-
hicle becomes collinear with the center of mass of the leaders (vessels 1 and 2)
(Fig. 7.17). One must try to avoid this situation by defining proper formation struc-
tures. If this situation arises during a transient part of a formation change, the fol-
lower must temporarily switch to using the l – α scheme with one of the leaders until
the singularity is cleared, after which the follower must switch back to using the l – l
scheme. This switch can be triggered if |α2 − α1| becomes less than a predefined
threshold.

It should be noted that, for a given set of desired formation parameters [l13, l23],
the l – l scheme has two distinct equilibrium points. These two equilibrium points
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have two distinct corresponding angle sets [α13, α23]. Only one of these angle sets
define the true desired relative position of the follower with respect to the leaders.
During a formation transition, the on-board computer can detect if the wrong equi-
librium is being reached by observing the angle sets [α13, α23]. In that case, the
controller switches to using the l – α scheme with one of the neighbors until the
follower is at the correct equilibrium point. It then switches back to using the l – l
scheme with both its neighbors.

7.6.4 Implementation Notes

The formation control laws (7.82) and (7.95) need the inertial information of the
leader vessel(s) for calculating the control action. The leader(s) can easily provide
these information to the followers via communication using an on-board naviga-
tional sensor package, which is already present on the autonomous vessels. If the
formation mesh is defined using triangular building blocks such that the vessels are
not over-constrained, the communications can be minimized. Figure 7.18 shows two
examples of formations with triangular building blocks. Each vessels, as a follower,

Fig. 7.18 Six vessels in triangular and rectangular formations. In both formation meshes, 1 is the
group leader; 2 follows 1; 3 follows 1 and 2; 4 follows 2; 5 follows 3 and 4; 6 follows 3 and 5.
Table 7.4 shows the used control schemes for each of the vessels
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Table 7.4 Formation structure setup

Vessel Scheme Follows

1 – A predefined trajectory
2 l – α Vessel 1
3 l – l Vessels 1 & 2
4 l – α Vessel 2
5 l – l Vessels 3 & 4
6 l – l Vessels 3 & 5

has to receive linear and angular position, velocity, and acceleration from two leader
vessels. If the formation mesh is defined correctly, each vessel has only to send its
motion information to a very limited number of followers. For example, in the for-
mations defined in Fig. 7.18, vessels 1, 2 ,and 3 have to sent their motion information
to only two vessels and the rest of the vessels have to sent their motion information
to only one vessel. From this discussion, one can conclude that the total number
of vehicles in the group is not a factor in determining the required communication
bandwidth. The communication bandwith can at most limit the number of followers
that can be defined for a single vessel in the formation.

Example 7.4. Consider a 6-DOF surface vessel 3 whose dynamic parameters are
listed in Table 7.2. The vessel 3, initially located at (2,−10) m, is commanded to
keep specified distances, ld

13 = 5.0 and ld
23 = 5.0 m, from vessels 1 and 2, respec-

tively. The vessels 1 and 2 are moving on a straight line, shown by dashed lines, at
a constant linear velocity of 1.5 m/s.

Apply the l – l control law (7.95) to this 6-DOF vessels to more closely inves-
tigate the performance of the designed controller on a real 6-DOF vessel. Simulate
the response of vessel 2 for two different scenarios to investigate the robustness
of the controller to external disturbances. In the first scenario, assume that no sea
current is present. For the second scenario, assume that a constant global sea current
is flowing along the negative x2-axis that exerts an equivalent force of 50 N on the
vessel.

Solution. The controller parameters are listed in Table 7.5. The path of the three
vessels are shown in Fig. 7.19. Vessel 3’s path is shown by a solid curve. The path
of vessels 1 and 2 are shown by dashed lines.

As can be seen in the figure, vessel 3 is not initially at the desired formation.
However, after some time, it reaches its correct formation. The orientation of vessel
3 is shown by small line segments. Since the desired trajectory of the control point
of the follower is a line, the orientation parameters of vessel 3 is stabilized at zero.

Table 7.5 Controller parameters for Example 7.4

l – l

n = 0.05
d = 1.0
λ1 = 10, λ2 = 10
a1 = 1000, a2 = 1000
ld
13 = 6.0 m, ld

23 = 6.0 m
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Fig. 7.20 The l – l scheme – formation parameters

This also indicated the stability of the zero dynamics of the vessel. Figure 7.20
shows the responses of the controller outputs. It can be seen that the error dynamics
as indicated by Eq. (7.91) is stable for both the sea current scenarios. The repre-
sentative of the zero dynamics of the vessel, δ, which indicates the difference in
the orientation of vessel 3 and its control point’s velocity direction, is shown in
Fig. 7.21. When the sea current is absent, this angle is zero. However, when the sea
current exists, the vessel must have a constant angle with the direction of its motion
such that the propeller thrust can compensate for the lateral force caused by the sea
current. Therefore, δ becomes nonzero when the sea current exists. It can be seen in
Fig. 7.22 that the longitudinal and lateral speeds of the vessel are not affected very
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Fig. 7.22 The l – l scheme – speed local components and the ZYX Euler angles (ψ, θ, φ)

much by the sea current. Also, the normal velocity vanishes for both scenarios. The
yaw Euler angle (ψ), representing the heading of the vessel’s motion, stabilizes at
0◦ when there is no disturbance, while the roll (φ) and pitch (θ ) angles are stabilized
close to zero.

The results of this simulation shows that the l – l controller designed based on the
3-DOF vessel’s model is suitable for controlling a real 6-DOF vessel. The controller
performace is acceptable when disturbance is present. Furthermore, the results of
zero-dynamics stability analysis, which predicated a δ equal to zero for a linear
motion, is confirmed by the simulation results.



260 7 Autonomous Surface Vessels

7.7 Summary

In this chapter, first, the 6-DOF dynamic model of a surface vessel was presented.
Normally, only two control actuations are available for a surface vessel. The large
unbalance in the number of DOF and number of control actuations lead to difficul-
ties in controller design. However, in practice, three of the 6 DOFs are inherently
stable because of the design of a surface vessel. These DOFs were assumed to be
close to their corresponding equilibrium states. With this assumption, the dynamic
equations of motion of a surface vessel were reduced to a 3-DOF dynamic model.

Since the vessels are underactuated, the stability of the internal dynamics of the
system had to be investigated. It was shown that for a general motion with constant
speed, the internal dynamics of a 3-DOF surface vessel has a second-order damped
response. The equilibrium points of the zero dynamics were derived for circular and
linear motions of the formation.

The 3-DOF dynamic model was used for trajectory-tracking controller design.
Two methods were presented: the input–output linearization and the sliding mode
control method. The performance of these two methods in presence of uncertainties
and disturbances were compared. The sliding mode control method proved to be
more robust.

Then, the problem of controlling multiple surface vessels in user-defined for-
mations was investigated. Two control schemes were presented than can define the
internal geometry of the a desired formation. These schemes define the desired rel-
ative positions of neighboring vessels to form a unique formation mesh. Since the
geometrical schemes are local, each vessel has to have information about only one
or two of its neighbors, depending on the location of the vessel in the formation. The
3-DOF dynamic model of the surface vessels were used for designing two nonlinear
controllers for the surface vessels. The parameters that define the internal geometry
of the formation are directly used as the controller output. It was shown that the
nonlinear controllers can stabilize the formation parameters even in the presence of
sea disturbances, hence, they can position the vessels in user-defined formations.
The effectiveness of the control laws was shown by numerical simulations using a
comprehensive 6-DOF dynamic model.

Problems

Problem 7.1. Consider a surface vessel whose dynamics can be reduced to a 3-DOF
model. The parameters of the 3-DOF dynamic model of the surface vessel are listed
in Table 7.1. Using the control law (7.36), simulate the autonomous motion of the
surface vessel on a desired sinusoidal path for the control point.

x2 = 2 sin(
x1

2
), 0 < x1 < 4π , (7.98)
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where all the distances are in meters. Assume that the vessel has to maintain a
constant linear velocity of 0.5 m/s in the x1 direction. Plot the orientation stability
parameter δ introduced in Section 7.4 and comment on the response of the zero
dynamics of the surface vessel. The vessel is moving with a longitudinal velocity
of 0.5 m/s at the beginning of the motion, its longitudinal axis makes an angle of
ψ = arctan(2) rad with the positive x1 axis, and its control point is initially at (0, 0)
m. Assume d = 1 m.

Problem 7.2. Consider simplified 3-DOF dynamic model for a surface vessel as
presented in Eq. (7.3). Assume the presence of unknown wave disturbances repre-
sented by Wu and Wv and uncertainty in parameters m22, d11, d22, and d66. Assume
no uncertainty in m11 and Izz .

(a) Design a robust sliding mode controller to pilot the control point of the vessel on
a desired trajectory in presence of an unknown wave disturbance and parameter
uncertainty.

(b) Apply the control law derived in part (a) of this problem to the dynamic model.
Assume that the nominal wave is zero. Use the nominal parameters given in
Table 7.1. Consider a ±5% uncertainty bound for the uncertain parameters of
the dynamic model and ±10 N bounds for the longitudinal and the lateral wave
forces.

(c) Using the 3-DOF simplified model of the surface vessel (Eq. (7.3)), investigate
the performance of the controller for a case in which the uncertainty in the dy-
namic parameters are 2% of their corresponding nominal value. Suppose a wave
force of W = 5 sin(2π t/10) N is acting on the vessel parallel to the global x2

axis. Simulate the motion of the surface vessel for 20 s on a desired linear path.

xd
1 (t) = 0.5t ,

xd
2 (t) = 0.

The vessel is initially at rest at the origin oriented parallel to the x2 axis.
(d) Plot the path of the control point of the vessel on top of the desired path. Plot

the control force and moment. Tune the controller parameters for an acceptable
response. Can the controller be tuned to perform well even in the presence of
the unknown wave disturbance?

(e) Plot the path of the center of mass of the vessel on top of the desired path.
Discuss the difference of the path of the center of mass and that of the control
point. Why does this difference exist?

(f) Plot the orientation stability parameter δ introduced in Section 7.4 and comment
on the response of the zero dynamics of the surface vessel. Is the zero-dynamics
response reasonable?

(g) Apply the controller designed based on the input–output linearization method to
the vessel’s model that includes the wave disturbance. Simulate the motion of
the vessel for the desired linear motion in part (7.2). How do the results of the
sliding mode control and the input–output linearization method compare?
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Problem 7.3. Nine ASVs have to move in a square formation with three vessels at
each side of the square. The sides of the square are 15 m long.

(a) Assign either a l – l or a l – α scheme to each vessel in the formation to form
a formation mesh with triangular building blocks for a better mesh interconnec-
tion. Assume that the group leader (vessel 1) is at one of the leading edges of
the formation.

(b) Number the vessels such that each vessels follows a vessel or vessels with a
number lower than themself. Although the numbering is optional for real-time
implementation, this numbering scheme makes the simulations possible. The
motion of a lower numbered vessel must be simulated first to provide informa-
tion for simulating the proceeding vessels.

(c) If the distance of the control point to the center of mass of the vessels is chosen
to be d = 1 m, calculate and tabulate the desired formation parameters for each
of the vessels in the formation.

(d) Suppose that the center of the group is designated to move on a desired line as
given in part (7.2) of Problem 7.2. Calculate the initial position of all the vessels
and the desired trajectory of the group leader. Simulate the motion of the nine
vessels using the following sequence. First, simulate the motion of the group
leader by applying a trajectory-tracking method presented in this chapter. Then,
use the response of the group leader to simulate the motion of its immediate fol-
lowers. Use the response of the followers for simulating the motion of the their
second-level followers in sequence until all the vessels have been processed.

(e) Is this sequential scheme needed for the real-time implementation? How would
the real-time implementation work if the leaders are able to communicate with
their corresponding followers in real-time?



Chapter 8
Autonomous Helicopters

8.1 Introduction

The use of UAVs has been increasing in the past few years. The serious applica-
tion of these vehicles, similar to many advanced technologies, started in military
in different countries. Different types of unmanned vehicles have been used. How-
ever, the fixed wing unmanned aerial vehicles have been more common in military
applications due to their longer range, flight efficiency, and ease of control. Heli-
copters, on the other hand, are more maneuverable. Unmanned helicopters already
have far more civilian applications than the fixed wing aircraft. They are used for
aerial photography, timber survey, agriculture, etc.

Most of these UAVs are controlled remotely by a pilot on the ground. Piloting
these vehicles remotely is not a trivial task. Hours of training and good intuitive
skills are necessary for a pilot to acquire enough expertise to become a safe pilot.
Even then, piloting these vehicles is prone to human errors. In addition, mostly
the range of operation of the remote controlled vehicle is limited because the pilot
has to see the vehicle’s exact motion to be able to control it. As the application
areas and the number of UAVs grow, there is a need for more intelligent aerial vehi-
cles that are able to fly with minimum to no human interaction. There are so many
problems in different areas related to intelligent (autonomous) aerial vehicles that
have to be solved before a fully autonomous aerial vehicle can materialize. These
areas, without any particular order of importance, include mission planning, ma-
chine vision, path planning and obstacle avoidance, platform development, naviga-
tional sensor development, dynamic modeling and model identification, and, finally,
control.

The goal of this chapter is to introduce the dynamics of unmanned helicopters
and present the classical and modern methods for controlling autonomous heli-
copters. First, the 6-DOF rigid body model of a helicopter is presented. Then,
the position control for the helicopter using the classical PID method is dis-
cussed. Later, the trajectory-tracking control of autonomous helicopters will be
presented.

F. Fahimi, Autonomous Robots, DOI 10.1007/978-0-387-09538-7 8
C© Springer Science+Business Media, LLC 2009
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8.2 A 6-DOF Dynamic Model of a Helicopter

This section presents the dynamic model of a helicopter, shown in Fig. 8.1. Two
frames are defined for this dynamic model: the inertial frame {0}, and the helicopter
body frame {B} with an origin at the center of mass. Six DOFs are assumed for
each helicopter. Three translational DOFs, the surge, sway, and bounce of the center
of mass, are expressed in the inertial frame {0} and are denoted by (x1, x2, x3).
Three rotational DOFs are represented by the yaw-pitch-roll (ZY X ) Euler angles
(ψ, θ, φ). These Euler angles define the orientation of the body frame with respect
to the inertial frame through the following transformation matrix [34]:

R0B =
⎡
⎣ cψ cθ (− sψ cφ + cψ sθ sφ) ( sψ sφ + cψ sθ cφ)

sψ cθ ( cψ cφ + sψ sθ sφ) (− cψ sφ + sψ sθ cφ)
− sθ cθ sφ cθ cφ

⎤
⎦ , (8.1)

where c = cos and s = sin. The inertial position of the helicopter along with the
ZY X Euler angles determine the geometrical configuration of the helicopter at any
given time. These variables represent the generalized coordinates (or configuration
variables) of the helicopter as a dynamic system.

q = [x1 x2 x3 φ θ ψ
]T

. (8.2)

The configuration variables represent only the geometrical configuration of the
helicopter as a dynamic system. To define the dynamic state of the helicopter at
any given time, the rate of change of these configuration variables must also be
known. Using the rate of change of the configuration variables for completing the
state variables for the helicopter is the first choice that comes to mind. However, for
some dynamic systems, and especially for spatial dynamic systems, the equations
of motion become less complicated, if linear combinations of the rate of the con-
figuration variables are used. These linear combination of the rate of configuration
variables are called the generalized speeds. Here, the inertial velocity of the center of

Fig. 8.1 A 6-DOF dynamic model of a helicopter
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mass of the helicopter and the components of the angular velocity of the helicopter
in its body frame are selected as the generalized speeds.

v = [ẋ1 ẋ2 ẋ3 ωB
1 ωB

2 ωB
3

]
. (8.3)

These generalized speeds are related to the rate of the configuration variables
through the following relation.

v =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 − sin θ

0 0 0 0 cos φ cos θ sin φ

0 0 0 0 − sin φ cos θ cos φ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

φ̇

θ̇

ψ̇

⎤
⎥⎥⎥⎥⎥⎥⎦

, (8.4)

or

v = TR q̇, (8.5)

where TR is called the rate transformation matrix. Although this matrix is singular
at θ = ±π/2, the helicopter is not expected to operate in that orientation (pointing
straight up or down). The 12×1 state vector of the helicopter as a dynamic system is

x =
[

q
v

]
. (8.6)

Now that the generalized coordinates and the generalized speeds are defined, one
can derive the equations of motion. Here, the Newton-Euler approach is used.

The external force and torque expressed in the body frame are FB and MB . The
external force includes the aerodynamic drag force vector in the body frame DB , the
main and tail rotor thrust vector in the body frame TB , and the gravitational force in
the inertial frame W:

FB = TB + DB + RT
0BW, (8.7)

where

TB =
⎡
⎣ 0

−TT

−T

⎤
⎦ , (8.8)

and

W =
⎡
⎣ 0

0
mg

⎤
⎦ . (8.9)
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The external torque includes the three main directional torques Mφ , Mθ , and TT lt

as well as a torque T lr due to the offset of the rotor hinge with respect to the body
z-axis, and the motor torque τm :

MB =
⎡
⎣ Mφ

Mθ + T lr

TT lt + τm

⎤
⎦ . (8.10)

Usually, τm is assumed to be proportional to the main rotor thrust, T . That is,

τm = Km T . (8.11)

The translational and rotational equations of motion of the helicopter can be writ-
ten as

m

⎡
⎣ẍ1

ẍ2

ẍ3

⎤
⎦ = R0BTB + R0BDB + W, (8.12)

I

⎡
⎣ω̇B

1
ω̇B

2
ω̇B

3

⎤
⎦ = MB − ωB × IωB , (8.13)

where m is the helicopter mass and I is

I =
⎡
⎣I11 0 0

0 I22 0
0 0 I33

⎤
⎦ . (8.14)

By combining Eqs. (8.5), (8.6), (8.12), and (8.13), one can write the first-order
form of the equations of motion for the helicopters as follows.

ẋ =
[

q̇

v̇

]
=

⎡
⎢⎣

T−1
R v

m−1(R0BTB + R0BDB + W)
I−1(MB − ωB × IωB)

⎤
⎥⎦ . (8.15)

The independent inputs that control the helicopter’s motion are organized in a
column vector.

u = [T Mφ Mθ TT
]T

. (8.16)

If the control input u is known, one can find the trajectory of the helicopter’s
motion by integrating Eq. (8.15). Our goal is to find a control law that determines
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u such that the helicopter is stabilized at a given point or follows a desired 3D
trajectory.

8.3 Position Control for Autonomous Helicopters

In the previous section, we defined six generalized coordinates to describe the con-
figuration of the helicopter uniquely at any given time. However, we also saw that
only four control inputs are available for controlling these six generalized coor-
dinates. This indicates that a helicopter is an underactuated system. The control
development for a helicopter as an underactuated dynamic system is challenging.
Understanding the physics of how these four control inputs affect the configuration
variables of the helicopter is essential for taking advantage of the limited number of
inputs for control design.

By observing the control inputs shown in Fig. 8.1, one can see that, when the
helicopter is in hover, the four control inputs, T , Mφ , Mθ , and TT directly affect the
configuration variables x3, φ, θ , and ψ , respectively. At hover with no wind, φ and
θ are approximately zero.1 This allows the main rotor thrust to mainly balance the
weight of the helicopter. The pilot can accelerate the helicopter forward or back-
ward by producing a non zero pitch angle θ , which is generated by the applying
the control input Mθ .2 Similarly, the helicopter accelerates sideways if the pilot
changes the roll angle φ by using the control input Mφ . A diagonal acceleration can
be generated by applying the two control inputs Mθ and Mφ . Therefore, the pitch
and the roll angle affect the acceleration in the x1 and x2, respectively, hence, they
affect the x1 and x2 positions indirectly.

The above explanation helps us to formulate a position control strategy. The con-
trol strategy and the steps involved in deriving the control laws follow.

1. First, the helicopter should be able to hover at any height (xd
3 ) with any heading

(ψd ) before it can be commanded to move from one position to another. The
hovering condition corresponds to a unique set of roll and pitch angles (φh, θh)
(close to zero), at which the main rotor’s thrust is in equilibrium with the he-
licopter’s weight and the tail rotor thrust. These angles are called “the hover
trimming angles.” The values of the trimming angles at hover (equilibrium) can
be found using the dynamic equations of motion for the helicopter.

2. Control laws for the four control input (T ,Mφ ,Mθ ,TT ) are derived that can sta-
bilize the four configuration variables that correspond to hover at their desired
values (xd

3 ,φh ,θh ,ψd ). These control laws receive no direct feedback from the

1 A helicopter with a tail rotor has a slight non zero roll angle φ such that a lateral component of
the main rotor thrust can compensate for the tail rotor’s thrust.
2 Note that when the helicopter leans forward, the vertical component of the main rotor thrust
decreases. The pilot has to increase the thrust at the same time to ensure that the vertical component
of the main rotor thrust can still balance the weight of the helicopter.
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other two configuration variables (x1, x2). Hence, they cannot control these two
position components.

3. In order to move the helicopter in the x1 and x2 directions, the roll and pitch
angles must depart from their corresponding hover equilibrium positions. These
departures from the hover equilibrium angles must be such that the thrust of the
main rotor leans toward the desired position (xd

1 xd
2 ), which causes the helicopter

to accelerate toward the desired position. Once the helicopter gets close to the
desired position, these departure angles must vanish. Therefore, a control law
that determines the roll and pitch departure angles (φp, θp) based on the errors
in x1 and x2 positions must be derived.

4. Now, the actual desired roll and pitch angles are a combination of the ones corre-
sponding to the hovering position and the departure angles corresponding to the
positioning. If the combination angles (φc = φh + φp and θc = θh + θp) are fed
to the control law derived in the first step of this strategy (instead of φh and θh),
hovering and positing can be performed simultaneously.

Figure 8.2 shows the block diagram of the PID control strategy. In the follow-
ing, the different blocks and parts of this control strategy are discussed and their
corresponding control laws and relations are derived.

8.3.1 The Hover Trimming Angles

The hover trimming angles, φh and θh , can be found by considering the dynamic
equations of motion of the helicopter at equilibrium, where the accelerations and
velocities are zero. In other words, the inertia force and damping forces vanish at
equilibrium. Let us start with Eq. (8.12), which, for zero accelerations and zero
damping, becomes

Fig. 8.2 The block diagram for the PID position control
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(R0B)hTB
h + W = 0, (8.17)

where the subscript h indicates the hovering condition. The rotation matrix in
Eq. (8.17) is the result of three consequent rotations defined by the Euler ZY X
angles and can be expanded as follows:

(R0B)h = Rx3 (ψd ).Rx2 (θh).Rx1 (φh), (8.18)

Substituting the above relation in Eq. (8.17) and rearranging results in

Rx2 (θh).Rx1 (φh)TB
h = −R−1

x3
(ψd )W. (8.19)

Assuming small trimming angles, one can expand the above equation as follows:

⎡
⎣ 1 0 θh

0 1 0
−θh 0 1

⎤
⎦
⎡
⎣1 0 0

0 1 −φh

0 φh 1

⎤
⎦
⎡
⎣ 0

−TT h

−Th

⎤
⎦ =

⎡
⎣ cos ψd sin ψd 0

− sin ψd cos ψd 0
0 0 1

⎤
⎦
⎡
⎣ 0

0
−mg

⎤
⎦ . (8.20)

Note that the tail and the main rotor thrusts at the hover condition (two trimming
inputs TT h and Th) are present in this equation. These are unknown at this stage.
Therefore, the above equation cannot result in a definite solution for the trimming
angles. The above equation must be completed by using Eq. (8.13) at the hover
condition, where the angular accelerations and velocities are zero. Equation (8.13)
at equilibrium becomes

(MB)h =
⎡
⎣ Mφh

Mθh + Thlr

TT hlt + Km Th

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦ . (8.21)

Solving the six equations resulting from Eqs. (8.20) and (8.21) for the two un-
known trimming angles and and the four unknown trimming inputs results in the
following:

φh = Km

lt
,

θh = 0,

Th = mg

1 − (Km/ lt )2
,

Mφh = 0,

Mθh = −mglr

1 − (Km/ lt )2
,

TT h = −mg(Km/ lt )

1 − (Km/ lt )2
. (8.22)



270 8 Autonomous Helicopters

Note that finding the trimming angles led to finding the trimming inputs. In fact,
these trimming inputs will prove very useful when deriving the PID control laws.

8.3.2 The Longitudinal and Lateral Control Law

In this section, the roll and pitch angles that will cause the helicopter to move from
its current x1 and x2 position toward the desired xd

1 and xd
2 position are derived. The

helicopter must initially accelerate in the direction connecting its current position to
the desired position. This can be done by tilting the helicopter such that the vector
representing the main rotor’s thrust force has a horizontal component, Tp, pointing
toward the desired position. This component must vanish gradually as the helicopter
gets closer to the desired position. It is intuitive to define a control law for this
component based on the lateral and longitudinal position errors. In the following,
the mathematical formulation representing the discussed idea are derived.

Let the notation T̂ represent the unit vector of representing the main rotor’s thrust
direction. The projection of this unit vector on the horizontal plane x1 − x2 can be
derived as:

T̂p = T̂ − (T̂.î3)î3. (8.23)

A control law for the unit horizontal projection of the main thrust vector must
be defined such that it vanishes when the lateral and the longitudinal position errors
become zero. A PID control law can be selected as follows.

T̂p =
⎡
⎣−(kx1P )e1 − (kx1D)ė1 − (kx1I )

∫ t
0 e1dt

−(kx2P )e2 − (kx2D)ė2 − (kx2I )
∫ t

0 e2dt
0

⎤
⎦ , (8.24)

where all k’s are positive numbers and the helicopter’s longitudinal and lateral po-
sition errors projected are expressed as

e1 = x1 − xd
1 , (8.25)

e2 = x2 − xd
2 . (8.26)

Note that the derivative of the desired values are assumed to be zero for position
control. The unit horizontal thrust component is related to the departure angles φp

and θp. In the following, this relation is used to write the control law (8.24) in terms
of the departure angles.

The unit vector of representing the main rotor’s thrust direction when the depar-
ture angles are applied can be written as

T̂ = Rx3 (ψ).Rx2 (θp).Rx1 (φp)

⎡
⎣ 0

0
−1

⎤
⎦ . (8.27)
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Substituting Eq. (8.23) into the above relation yields

Rx2 (θp).Rx1 (φp)

⎡
⎣ 0

0
−1

⎤
⎦ = R−1

x3
(ψ)(T̂p + (T̂.î3)î3). (8.28)

For small departure angles φp and θp, the above equation yields to a simple form:

⎡
⎣−θp

φp

−1

⎤
⎦ = R−1

x3
(ψ)(T̂p + (T̂.î3)î3). (8.29)

The first two components of the above equation give the longitudinal and lateral
control law for the departure angles, with yields

[
φp

θp

]
=
[− sin ψ cos ψ

− cos ψ − sin ψ

] [
(kx1P )e1 + (kx1D)ė1 + (kx1I )

∫ t
0 e1dt

(kx2P )e2 + (kx2D)ė2 + (kx2I )
∫ t

0 e2dt

]
. (8.30)

The control law (8.30) allows the helicopter to gain the correct roll and pitch
angle that moves it toward the lateral and longitudinal desired positions. When the
helicopter arrives at the desired position, these departure angles become zero. How-
ever, the helicopter has to maintain the hovering roll and pitch angles to be able to
stay at the desired postion. Therefore, the internal desired roll and pitch angles for
the controller are

φc = φh + φp, (8.31)

θc = θh + θp. (8.32)

Now, another control law is required to assure that the internal desired roll and
pitch angles are maintained during the motion of the helicopter from the initial po-
sition to the desired postion. This control law also makes sure that the helicopter
remains at the desired height and heading angle. Since this control deals with the
roll, pitch, and heading angles and the height, it is called the latitude and altitude
controller, whose associated control law is derived in the next section.

8.3.3 The Latitude and Altitude Control Law

In this section, the latitude and altitude control law is derived such that the helicopter
maintains the internal desired roll and pitch angles for the controller, φc and θc, the
desired heading angle ψd , and the desired height xd

3 . The physical control inputs
available for the helicopter, T , Mφ , Mθ , and TT , directly affect the four desired
parameters list above, respectively. Therefore, selecting PID control laws appears
straight forward. Here are the control laws for the physical inputs:
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T = Th + [(kx3P )e3 + (kx3D)ė3 + (kx3I )
∫ t

0
e3dt], (8.33)

Mφ = Mφh − [(kφP )e4 + (kφD)ė4 + (kφ I )
∫ t

0
e4dt], (8.34)

Mθ = Mθh − [(kθ P )e5 + (kθ D)ė5 + (kθ I )
∫ t

0
e5dt], (8.35)

TT = TT h − [(kψ P )e6 + (kψ D)ė6 + (kψ I )
∫ t

0
e6dt], (8.36)

where all k’s are positive numbers and the errors are defined as

e3 = x3 − xd
3 , (8.37)

e4 = φ − φc, (8.38)

e5 = θ − θc, (8.39)

e6 = ψ − ψd . (8.40)

Note that the derivative of the desired values are assumed to be zero for position
control. The control laws (8.33), (8.34), (8.35), and (8.36) are selected such that
when the errors vanish, the controller maintains the control inputs at the required
level for hovering, which allows the helicopter to hover after it arrives at the desired
position and heading.

Now, almost all the control blocks shown in Fig. 8.2 have been derived. In
that figure, the “lateral and longitudinal control” block represents Eq. (8.30), the
“altitude and latitude control” block corresponds to Eqs. (8.33) (8.34), (8.35), and
(alt-lat-cont-law-4), the “helicopter dynamic model” block reflects Eq. (8.15), and
the “rate transformation” block can be derived by investigating the submatrices of
Eq. (8.4). In other words, this block corresponds to the following relation.

⎡
⎣φ̇

θ̇

ψ̇

⎤
⎦ =

⎡
⎣1 sin φ tan θ cos φ tan θ

0 cos φ − sin φ

0 sin φ sec θ cos φ sec θ

⎤
⎦
⎡
⎣ωB

1
ωB

2
ωB

3

⎤
⎦ . (8.41)

This concludes the PID position controller design for an autonomous helicopter.

Example 8.1. Consider a small autonomous helicopter with the mass and geo-
metrical properties listed in Table 8.1. In this table, C’s are the aerodynamic
damping coefficients to be used for calculating the damping force matrix in the
helicopter’s dynamic equations. The helicopter is hovering at an initial position of
(3.0, 15.0, 0.0) m. The autonomous controller is given a desired position and head-
ing of (xd

1 , xd
2 , xd

3 , ψd ) = (4.0 m, 14.0 m,−1.0 m,−π/4 rad). Using the dynamic
model (8.15) and the PID control laws derived in the previous section, simulate the
motion of the helicopter under autonomous position control.
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Table 8.1 Properties of a small autonomous helicopter

m = 1.36 kg lt = 0.635 m Cx1 = 1.0 Ns/m
I11 = 0.137 kg m2 lr = 0 m Cx2 = 1.0 Ns/m
I22 = 0.221 kg m2 Km = 0.0178 N m/N Cx3 = 1.0 Ns/m
I22 = 0.0323 kg m2

C’s are the aerodynamic damping coefficients to be used for calculating
the damping force matrix in the helicopter’s dynamic equations.

Table 8.2 PID controller gains for position control

kx1P = 1.0 kx2P = 1.0 kx3P = 1.5 kφP = 2.0 kθ P = 2.0 kψ P = 2.0
kx1D = 1.0 kx2D = 1.0 kx3D = 1.0 kφD = 5.0 kθ D = 5.0 kψ D = 1.0
kx1I = 0.1 kx2I = 0.1 kx3I = 0.1 kφ I = 0.1 kθ I = 0.1 kψ I = 1.0

Solution. The selected controller gains are shown in Table 8.2. These gains have
been tuned by trial and error, since the PID tuning rules are not easy to implement
to the nonlinear dynamic model of the helicopter. The simulations results are dis-
cussed below. The response of the position components of the helicopter are shown
in Fig 8.3. This figure shows that all of the position components are stabilized at
their corresponding desired positions by the 30th second of the simulation. Because
of the introduction of the integral term in the control laws, there is no steady-state
error.
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Fig. 8.3 The time response of the position components
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Fig. 8.4 The time response of the Euler angles

The time history of the Euler angles as representatives of the altitude of the
helicopter are shown in Fig. 8.4. In order for the helicopter to move forward and
to the right toward the desired position, the roll and pitch angles gain an initial
positive and negative values, respectively. These departure angles vanish when the
helicopter reaches its desired position. The hover trimming roll and pitch angles can
be calculated using Eq. (8.22), which results in φh ≈ 1.6◦ and θh = 0◦. These values
are confirmed by Fig. 8.4. The heading angle has also converged to its desired value
without any steady-state error.

Figure 8.5 shows the control effort for this position control scenario. The main
rotor thrust starts from a large magnitude to elevate the helicopter for 1 m. This thrust
stabilizes at a constant value that corresponds to hovering. This values is 13.34 N,
which can also be verified by Eq. (8.22). The roll and pitch moments are initially non
zero to generate the required roll and pitch departure angles. These moments vanish
at hovering as is suggested by Eq. (8.22). The tail rotor thrust is non zero initially,
which causes the change in the helicopter’s heading. The steady-state of this thrust
is also non zero because it has to counter balance the main rotor’s reaction torque.
The magnitude of the tail rotor thrust at hovering is consistant with what Eq. (8.22)
suggests.
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Fig. 8.5 The time response of the control effort

The spatial path of the helicopter is shown in Fig. 8.6. The overshoot of the
helicopter response is easier to see in this figure. This overshoot could have been
improved or prevented by fine tuning the controller gains.

8.4 The Control Point Concept for Underactuated Vehicles

As was shown previously, the dynamic model of the helicopter has six DOFs,
whereas there are only four control inputs available. At the first glance, it may seem
impossible to control a 6-DOF system with only four control inputs. In fact, an
underactuated system must have some inherent stability to be controllable. For a
helicopter, the four control inputs affect the bounce, roll, pitch, and yaw motions
directly. The longitudinal and the lateral motion of the helicopter are not directly
actuated. However, one can reflect on their real world experience with helicopters
and remember that humans can successfully control these vehicles using only four
inputs. This can only mean that the unactuated DOFs for a helicopter is inherently
stable. In fact, this stability is inherent in the helicopter design, in which the lateral
and longitudinal accelerations are a direct function of the roll and pitch angles. Also,
the flybar mechanism of the main rotor enhances that stability of the zero dynamics
of the system. Using such real world experience with the system, a control engineer
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can confidently choose a representative of four of the six DOFs of the helicopter
as the output of the controller and design a controller to make them track a desired
trajectory.

8.4.1 The Role of the Control Point

For an underactuated system, one has to select the most important DOFs to con-
trol directly. The number of these DOFs must be equal to the number of control
inputs for a simpler controller design. For a helicopter, if the goal is to make the
vehicle follow a path 3D (or a trajectory, to be more precise) with a user-specified
heading, three position components and the yaw angle of the helicopter are the most
important out of the six DOFs. Based on this justification, the simplest choice of
the controller position outputs seems to be the three position components of the
helicopter’s center of mass. However, this simple choice is not the best choice.
If the components of the helicopter’s center of gravity are used as the controller
output, the controller will not sense any disturbance in the remaining DOFs, the roll
and pitch. It is never a good idea to make a controller unaware of any states of the
system. Controlling the position components of a point on the helicopter’s body,
except the center of mass, can solve this problem. This point is called the “control
point.” The postion of this point is a function of all the DOFs of the helicopter.
When the control point’s position components are chosen as the controller output, a
disturbance generated by an external source only in the roll and pitch orientation of
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Fig. 8.7 The control point p and the desired trajectory defined for the control point

the helicopter will also disturb the control point’s position, to which the controller
can react. This reaction would not happen if the postion of the center of gravity was
chosen as the controller output. Let us pick the control point p on the negative local
yaw axis of the helicopter with a distance d from the helicopter’s center of gravity
as shown in Fig. 8.7. This choice simplifies the relations between the inputs and
outputs of the controller. The controller outputs are defined as

z = [x p1, x p2, x p3, ψ]T . (8.42)

The desired values of these outputs (the trajectory of the helicopter) is defined by
functions of time.

8.5 Robust Trajectory-Tracking Control
for Autonomous Helicopters

In this section, a robust trajectory-tracking controller is designed based on the
sliding mode control method. This controller must determine the four inputs u =
[T, Mφ, Mθ , TT ]T , such that the outputs defined in Eq. (8.42) follow a given desired
trajectory zd . First, an input–output equation relating the second-order dynamics
of z to the control inputs u is derived. Then, this input–output equation is used to
design a robust sliding mode controller.
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8.5.1 The Input–Output Equations

The components of the inertial position of the control point p are among the con-
troller outputs. The dynamics of these components can be found by formulating
the acceleration vector of the control point in terms of the acceleration of the heli-
copter’s center of gravity.

ẍp = ẍ + R0B(ωB × (ωB × dB) + ω̇B × dB), (8.43)

where

dB = [0, 0,−d]T (8.44)

is the position vector of the control point with respect to the helicopter’s center of
gravity and d > 0. ẍ is the inertial acceleration of the helicopter’s center of mass.

The outputs must be realted to the inputs. Therefore, ẍ and ω̇B are substituted
from Eqs. (8.12) and (8.13). Equation (8.43) becomes

ẍp = R0B(m−1TB + I−1(MB × dB))

+ m−1(R0BDB + W) + R0B(ωB ×(ωB ×dB) − I−1(ωB ×IωB)). (8.45)

In order to write Eq. (8.45) in terms of the input vector u = [T, Mφ, Mθ , TT ]T , the
terms TB and MB must be expanded in terms of u.

TB =
⎡
⎣ 0 0 0 0

0 0 0 −1
−1 0 0 0

⎤
⎦
⎡
⎢⎢⎣

T
Mφ

Mθ

TT

⎤
⎥⎥⎦ = Tuu, (8.46)

and

MB × dB = (M B
1 î + M B

2 ĵ + M B
3 k̂) × (−dk̂),

= M B
1 d ĵ − M B

2 d î,

=
⎡
⎣−(Mθ + T lr )d

Mφd
0

⎤
⎦ ,

=
⎡
⎣−lr d 0 −d 0

0 d 0 0
0 0 0 0

⎤
⎦
⎡
⎢⎢⎣

T
Mφ

Mθ

TT

⎤
⎥⎥⎦ ,

= Muu. (8.47)

Substituting Eqs. (8.46) and (8.47) into Eq. (8.45) and rearranging yields
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ẍp = R0B(m−1Tu + I−1Mu)u

+ m−1(R0BDB + W) + R0B(ωB ×(ωB ×dB) − I−1(ωB ×IωB)). (8.48)

Equation (8.48) can be written in a standard short form as

ẍp = f1 + b1u, (8.49)

where

f1 = m−1(R0BDB + W) + R0B(ωB × (ωB × dB) − I−1(ωB × IωB)),

b1 = R0B(m−1Tu + I−1Mu). (8.50)

Note that Eq. (8.50) describes the dynamic behavior of only three components
of the controller output z = [x p1, x p2, x p3, ψ]T . The dynamic behavior of the last
component of ψ can be augmented to Eq. (8.50) to give the complete input–output
description of the control system. The dynamics of ψ can be derived from Eq. (8.4).

The last three equations in Eqs. (8.4) are

⎡
⎣ωB

1
ωB

2
ωB

3

⎤
⎦ =

⎡
⎣1 0 − sin θ

0 cos φ cos θ sin φ

0 − sin φ cos θ cos φ

⎤
⎦
⎡
⎣φ̇

θ̇

ψ̇

⎤
⎦ . (8.51)

Solving this equation for ψ̇ results in

ψ̇ = sin φ sec θωB
2 + cos φ sec θωB

3 . (8.52)

Differentiating Eq. (8.52) and substituting for ω̇B
2 and ω̇B

3 from Eq. (8.13) and for
τm from Eq. (8.11) in the results yield

ψ̈ = f2 + b2u, (8.53)

where

f2 = (φ̇ cos φ sec θ + θ̇ sin φ sec θ tan θ )ωB
2

+ (−φ̇ sin φ sec θ + θ̇ cos φ sec θ tan θ )ωB
3

+ (sin φ sec θ )((I33 − I11)ωB
1 ωB

3 /I22)

+ (cos φ sec θ )((I11 − I22)ωB
1 ωB

2 /I33), (8.54)

and

b2 =
[

sin φ sec θlr
I22

− cos φ sec θ Km

I33
0 sin φ sec θ

I22

cos φ sec θlr
I33

]
. (8.55)

Finally, Eqs. (8.50) and (8.53) are combined to give the final form of the input–
output equations.
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[
ẍp

ψ̈

]
=
[

f1

f2

]
(4×1)

+
[

b1

b2

]
(4×4)

u, (8.56)

or in a more concise form

z̈ = f + bu. (8.57)

The standard form of Eq. (8.57) represents the relation between four outputs z
and four inputs u of the helicopter as a control system. By taking advantage of the
control point concept and the wise definition of the control point, this input–output
system takes the simple form of Eq. (8.57), which represents a square system in
which the number of inputs and outputs are equal. This simple form makes the appli-
cation of many control theories possible for controlling an underactuated helicopter
with a complex dynamics. Note that this simple form can still be preserved even if
the aerodynamic model of the helicopter’s main and tail rotors are also considered.

In the next section, the standard form is used for designing a sliding mode con-
troller for robust trajectory tracking.

8.5.2 Robust Control Using the Sliding Mode Method

In sliding mode control method, the desired dynamic behavior of the system error
is defined as

˙̃z + �z̃ = s, (8.58)

where

z̃ = z − zd . (8.59)

and � is a diagonal matrix with positive numbers on the diagonal and s is called
the surface parameter. When s is zero, Eq. (8.58) is asymptotically stable. A sliding
mode control law must achieve two goals. First, the control law must guarantee that
the error behavior follows the surface to the equilibrium point. Second, the control
law must guarantee that the surface variable s approaches zero and stays zero. The
first goal is met by deriving û called the equivalent control, while the second goal is
reached by adding a discontinuous term to the equivalent control.

8.5.2.1 Equivalent Control

The input–output equations for the nominal parameters of the helicopter are as-
sumed.

z̈ = f̂ + b̂u. (8.60)
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Interestingly enough, the input–output form (8.57) is similar to that of the surface
vessel trajectory-tracking problem introduced in Section 7.5.1 (Eq. (7.29)). Since
the form of the input–output relations (7.29) and (8.57) are similar, the same pro-
cedure as presented in Section 7.5.3.1 for surface vessels can be used to find the
equivalent control for the helicopter trajectory-tracking control law, which results in
a similar form to Eq. (7.48).

û = b̂−1(−f̂ + ṡr ), (8.61)

where

ṡr = z̈d − � ˙̃z. (8.62)

8.5.2.2 Robust Control Law

To complement the first part of the sliding mode controller, a second part is needed
to guarantee that the surface offset parameter s approaches zero regardless of the
error initial condition and uncertainty in the model parameters. This is done by
adding a discontinuous term to the equivalent control.

u = b̂−1(−f̂ + ṡr − Ksgn(s)), (8.63)

where K is a positive-definite diagonal matrix and sgn(s) returns a vector with the
sign of the components of s. Although the control law (7.49) seems complete, the
discontinuity gain K must still be determined such that the surface offset parameter
s converges to zero despite uncertainties in the dynamic model parameters.

A Lyapunov function is defined as

V = 1

2
sT s. (8.64)

This Lyapunov function is admissible because it satisfies all the required prop-
erties of such a function. It is positive for all values of s and is only zero when s
is identically zero. With these properties, if one can show that the time derivative
of the Lyapunov function is always negative and is only zero when s is identically
zero, then, one can conclude that s converges to zero from any initial condition and
remains at zero.

With the same procedure that is used in Section 7.5.3.2 for surface vessels, it can
be shown that the rate of the Lyapunov function is

V̇ = sT (f + bb̂−1(−f̂ + ṡr − Ksgn(s)) − ṡr ). (8.65)

Note that in the ideal conditions (e.g., when there is no uncertainty and b = b̂),
bb̂−1 is the identity matrix Im . Therefore, it is logical to define the uncertainty in b
in terms of the difference of bb̂−1 and the identity matrix Im .
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δ = bb̂−1 − Im ., (8.66)

Equation (8.65) is rewritten in terms of the uncertainty δ.

V̇ = sT (f + (Im + δ)(−f̂ + ṡr − Ksgn(s)) − ṡr ),

= sT (f − f̂ + δ(−f̂ + ṡr ) − Ksgn(s) − δKsgn(s)). (8.67)

As this stage, some bounds must be assumed for the parameter uncertainties.
These bounds are defined for the components of f − f̂ and δ.

| fi − f̂i | ≤ Fi , |δi j | ≤ �i j , i = 1, . . . , 4. (8.68)

If f − f̂ and δ in Eq. (8.67) are replaced by the uncertainty bounds defined in
Eq. (8.68), the right hand side of the resulting equation increases in value. Hence,
the equal sign should be replaced by an inequality sign.

V̇ ≤ sT (F + �| − f̂ + ṡr | − Ksgn(s) + �Ksgn(s)). (8.69)

Equation (8.69) in component notation becomes

V̇ ≤
4∑

i=1

si (Fi +
4∑

j=1

(�i j | − f̂ j + ṡr j |) − Ki sgn(si )+
4∑

j=1

�i j K j sgn(s j )),

≤ −
4∑

i=1

|si |(−Fi −
4∑

j=1

(�i j | − f̂i + ṡr i |) + Ki −
4∑

j=1

�i j K j ). (8.70)

Equation (8.70) implies that if Ki ’s are found such that

− Fi −
4∑

j=1

(�i j | − f̂i + ṡr i |) + Ki −
4∑

j=1

�i j K j = ηi , i = 1, . . . , 4, (8.71)

where ηi are positive numbers, then, the rate of the Lyapunov function becomes

V̇ ≤ −
4∑

i=1

|si |ηi . (8.72)

In other words, if Ki ’s are determined from Eq. (8.71), the rate of the Lyapunov
function is always negative, except when all si ’s are zero, at which point the rate of
the Lyapunov function is zero. This implies that the Lyapunov function decreases
to zero despite of any initial value and remains at zero. Consequently, si ’s approach
zero and remain zero, because V is zero if and only if all si ’s are zero.

For simplicity of implementation, Eq. (8.71) is written in the matrix form.
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Kv = (Im − �)−1(F + �| − f̂ + ṡr | + η), (8.73)

where Kv = [K1, K2, K3, K4]T and η = [η1, η2, η3, η4]T .

Example 8.2. Consider the autonomous helicopter introduced in Example 8.1, whose
inertial and geometrical properties are shown in Table 8.1. Assume that the distance
of the control point with the helicopter’s center of gravity d = 1 m. Use the sliding
mode control law derived in this section to control the control point of the helicopter
on the following desired trajectory:

xd
p1(t) = R cos

2π t

τ
,

xd
p2(t) = R sin

2π t

τ
,

xd
p3(t) = −H sin

4π t

τ
,

ψd (t) = 4π t

τ
+ π

2
, (8.74)

where R = 10 m, H = 2 m, and τ = 60 s. Note that the projection of this 3D
desired trajectory on the x1 − x2 plane is a circle with a radius R. It takes τ seconds
for the helicopter to complete this circle. The altitude of the helicopter starts at zero,
increases H meters in τ/4 seconds, returns back to zero altitude in the next τ/4
seconds, decreases H meters in the third τ/4 seconds, and once again returns to
zero altitude in the last τ/4 seconds.

The helicopter is at rest at time zero and its initial position and orientation are as
follows.

x1(0) = 10 m, x2(0) = 0 m, x3(0) = 1 m, (8.75)

φ(0) = 0 rad, θ (0) = 0 rad, ψ(0) = π/2 rad. (8.76)

Assume that the inertial properties of the helicopter can be uncertain up to 1.3
times of the nominal properties. This uncertainty can cover the pay load of the
helicopter. Simulate the motion of the helicopter under control for three cases of
uncertainty in the inertial properties of the helicopter. Assume that the actual inertial
properties are

(a) 0.8 times the nominal values (−20% uncertainty),
(b) equal the nominal values (0% uncertainty),
(c) and 1.2 times the nominal values (20% uncertainty).

Solution. The first- and second-order derivatives of the desired trajectory is required
for calculating the sliding mode surfaces in the sliding mode control method. These
derivatives are calculated by differentiating Eq. (8.74) versus time.
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To calculate the discontinuity gain Kv from Eq. (8.73), the uncertainty bounds F
and � must be determined. These bounds are determined from Eq. (8.68), in which
f̂ and b̂ are evaluated using the helicopter’s nominal parameters listed in Table 8.1,
while f and b are evaluated based on the values of 1.3 times the nominal values.

The controller parameters are selected as follows.

� =

⎡
⎢⎢⎣

0.6 0 0 0
0 0.6 0 0
0 0 0.6 0
0 0 0 0.6

⎤
⎥⎥⎦ , (8.77)

η = [5 5 5 5
]T

, (8.78)

� = [0.05 0.05 0.05 0.05
]T

. (8.79)

The above parameters and the discontinuity gains mentioned above are used to
calculate the surface parameter s from Eq. (8.58) and the auxiliary parameter ṡr

from Eq. (8.62). Finally, the control law is evaluated using Eq. (8.63). The control
input evaluated from the control law is applied to the dynamic model (8.15). The
simulations are run three times, in which the actual inertial properties defined in (a)
to (b) are used.

Figure 8.8 shows the output of the controller for the three cases of uncertainty
and the desired profile for the outputs. The difference between the behavior of the
helicopters for the three cases of uncertainty is so small that the curves represent-
ing them seem to completely overlap. The response curves also overlap the desired
curve very closely. This means that the controller has a good performance with
minimal errors and is very robust to parameter uncertainty.

The control effort is shown in Fig. 8.9. The magnitude of all the control forces
and moments are reasonable and achievable by the modeled helicopter. It is seen that
the magnitude of the main rotor thrust is automatically adjusted by the controller to
compensate for less or more actual mass. The tail rotor thrust, which balances the
reaction torque of the main rotor on the helicopter body, is also smartly decreased
or increased by the controller according to the magnitude of the main rotor. The
roll and pitch moments for the three different cases are very close to zero and no
variations can be seen in their corresponding figures. This is because the roll and
pitch acceleration for the desired motion are negligible.

Since the helicopter is an underactuated dynamic system, observing the con-
trolled outputs are not enough for performance verifications. While the response of
the outputs are as expected due to the effect of a well-designed controller, the states
of the helicopter could have oscillatory responses. For example, for the presented
control strategy, which is based on the control point, the control point could perform
the desired trajectory while the roll and pitch angle responses could be oscillatory.
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Fig. 8.10 The helicopter’s roll, pitch, and yaw Euler angles

This would not be desirable. To check if such oscillations have happened for the
simulated scenario, one has to check the response of the states of the helicopter.

Figure 8.10 shows the the roll, pitch, and yaw Euler angles of the helicopter.
The roll and pitch components are stabilized at constant values after a transient
response. The transient response is due to the fact that the helicopter is initially
at rest and is trying to catch up with the desired velocity dictated by the desired
trajectory. The responses of the helicopter’s roll and pitch angles are different for
the three difference uncertainty cases in the transient portion because of the effect
of rotational inertia in dynamic situations. The difference in responses are negligible
when the roll and pitch angles approach their constant equilibrium.

Figure 8.11 shows the position of the center of mass of the helicopter. Since the
center of gravity of the helicopter has an offset with the control point, its motion is
directly related to the control point motion and the roll and pitch responses. In this
example, the roll and pitch angles are approximately constant after a transient re-
sponse, therefore, the response of the postion components of the helicopter’s center
of mass are the offset of that of the control point. It can be concluded from Fig. 8.11
that the center of mass of the helicopter has a smooth motion. The projection of this
motion on the x1 − x2 plane is a circle with an approximate radius of 10 m. The
change in altitude of the helicopter’s center of mass for the whole 60-s motion is
approximately 4 m, which is in agreement with that of the desired trajectory of the
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control point. The 1-m offset that is observed in x3 compared to x p3 in Fig. 8.8 is
due to the distance of the control point with the center of mass (d = 1 m).

Figure 8.12 shows the path of the control point of the helicopter for the three
cases of uncertainty. As expected from the small differences in the output responses
for the three uncertainty cases in Fig. 8.8, the path of the control point for the three
cases are so close that they seem to overlap one another. This, once a gain, shows
the high degree of robustness of the controller to parameter uncertainty. The heli-
copter icons on this path is shown at times 0, 15, 30, 45, and 60 s, respectively. The
helicopter icons for time 0–60 s are coincident, indicating that the helicopter has
successfully finished the desired trajectory on time.

8.6 Leader-Follower Formation Control
for Autonomous Helicopters

Recently, the research in the area of autonomous aerial vehicles has moved beyond
considering a single vehicle.3 Researchers have considered aerial pursuit/evasion
games in three dimensions on a fixed wing aircraft by implementing and testing a

3 Some of the material of this section has been adapted from the article titled: “Full forma-
tion control for autonomous helicopter groups,” by Farbod Fahimi, Robotica (2008) volume 26,
pp. 143–156. Copyright 2008 Cambridge University Press, UK.
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Fig. 8.12 The path of the helicopter’s center of mass and control point

Nonlinear Model Predictive tracking controller [28]. The pursuit/evasion games has
been extended to heterogeneous teams of autonomous agents, in which the problem
of having a team of agents pursue a second team of evader while building a map
of the environment has been considered [77]. Another aspect of formation control
is formation planning. In formation planning, the initial and final configurations are
given for a group of autonomous vehicles and the nominal input trajectory for each
vehicle is determined such that the group can start from the initial configuration and
reach their final configuration at a specified time [83]. Another approach to forma-
tion control is to introduce carefully designed inter-agent coupling terms in each
performance index of a Nonlinear Model Predictive controller for the vehicles [18].

The objective of the current paper is to introduce a new approach for forma-
tion control of autonomous helicopters. Formation control of helicopters shares
the same challenges with that of other types of vehicles. Need for decentralized
controllers, minimum communication, and scalability are among these challenges.
The nonlinear dynamics, parameter and model uncertainty, and disturbances add to
the common formation control problem difficulties. The current paper contributes to
the low-level formation control design for autonomous helicopters, while addressing
these difficulties.

The problem of control and coordination for small helicopters moving in a for-
mation is investigated by introducing a leader-follower approach. The overall mo-
tion plan for a single virtual lead helicopter is assumed. This motion plan defines
the gross motion of the formation. A 6-DOF dynamic model of the helicopters is
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considered for designing the controllers. It is assumed that four independent ac-
tuators control the four control inputs: the main and the tail rotor thrust, and the
roll and pitch moments. Two nonlinear decentralized control schemes are required
to define a unique 3D formation. In the first scheme, one helicopter controls its
relative distance and orientation with respect to a neighboring helicopter. In the
second scheme, a helicopter maintains its position in the formation by maintaining
specified distances from two neighboring helicopters.

The proposed control schemes only use the state information of the neighboring
helicopters. The sliding mode method is used. It is shown that the relative distances
and orientations of the helicopters are stabilized even in the presence of wind distur-
bance. Numerical simulations are presented to demonstrate the efficiency of these
techniques.

8.6.1 Formation Control Schemes

The bulk motion of the group of helicopters can be characterized by trajectory
planning and obstacle avoidance algorithms, for example, the method of artificial
potential fields. It is assumed that a virtual helicopter as a group leader adapts the
bulk motion of the group as its planned trajectory. Other helicopters of the group
follow either the virtual group leader or their neighboring helicopters. Therefore,
our attention is focused on controlling the internal geometry of the formation. Two
types of feedback controllers are introduced for controlling the internal geometry.

The first feedback controller is called the l – α controller. It controls the relative
distance and view angle of a helicopter with respect to a neighboring helicopter.
This controller is used for helicopters marching in a single file (for example, in a
line formation) or at an edge of the formation geometry. Note that when the l – α

controller is used, a follower can only be related to one leader, which may not be
very safe for the formations in which each helicopter is surrounded by more than
one helicopter (for example, a rectangular formation). In these situations, forming
a triangular formation mesh (Fig. 8.13) is desirable. The mesh generates a more

Fig. 8.13 General formation control configuration
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dense interconnection between the helicopters, which is safer and more robust. To
complete a triangular formation mesh, a second controller is needed to control the
3D distances of the helicopter from two neighboring helicopters. This controller is
called the l – l controller.

These two local control schemes can be used to define a solid general forma-
tion (Fig. 8.13). Usually, the helicopters at an edge of the formation geometry con-
trol their distance with their immediate front helicopter using the l – α controller.
The other helicopters control their distances to their immediate front and side heli-
copters using the l – l controller. This is necessary so that a helicopter can also avoid
its side helicopter.

The sliding mode control method is used for deriving low-level control laws for
each of the mentioned schemes. Designing a sliding mode control law requires the
input–output description of the control system, whereas the equations of motion of
the helicopter has been written in state-space form in the previous section. In the
next two subsections, the control outputs of the two formation control schemes are
defined and the input–output descriptions are derived for the two control system.

8.6.1.1 Input–Output Description for the l – α Control Scheme

In Fig. 8.14, a system of two neighboring helicopters in the formation is shown.
The helicopters are separated by a vectorial distance l12 + z12 between an arbitrary
control point, p1, on helicopter 1 (the leader) and the control point, p2, on helicopter
2 (the follower). The control point has a fixed distance d with the helicopter center
of mass along the negative z direction of the helicopter’s body frame. Note that
the helicopters are not physically coupled in any way. A feedback control law for
control inputs u = [T, Mφ, Mθ , TT ]T must be determined to control helicopter 2
such that the desired distance ld

12, view angle αd
12, height offset zd

12, all defined in
body frame {1}, to helicopter 1 are maintained, while the yaw angle of helicopter

Fig. 8.14 l – α control configuration. Frames 1 and 2 correspond to the leader and the follower
respectively. The helicopters’ centres of mass are denoted by c and their control points are denoted
by p
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2, ψd
2 , follows the yaw angle of helicopter 1. Therefore, the outputs of the control

system are y = [l12, α12, z12, ψ2]T .
Here, the input–output description of the control system are derived, which relate

the output y to the input u directly. First, through a kinematic analysis, the state
variables of helicopter 2, which are

q2 = [x (0)
2 y(0)

2 z(0)
2 ẋ (0)

2 ẏ(0)
2 ż(0)

2

φ2 θ2 ψ2 ω
(2)
2x ω

(2)
2y ω

(2)
2z ]T ,

(8.80)

are related to the output y. Then, the equations of motion, containing u are substi-
tuted in the resulting equations to give the input–output relations. The details follow.

Kinematic Analysis

Let us consider the moving body frames of helicopters 1 and 2 (Fig. 8.14). We as-
sume two coincident points; point p′

2, attached to frame {1}, and point p2, attached to
frame {2}, both coincident with the instantaneous location of the follower’s control
point. If v(1)

p2/1 and a(1)
p2/1 are the apparent velocity and acceleration of the point p2 as

seen by an observer at point p′
2 attached to frame {1} expressed in {1}, one can write

v(1)
p2/1 = (l̇12 + ˙z12), (8.81)

a(1)
p2/1 = (l̈12 + z̈12). (8.82)

If ac(1)
p2/1 is the Coriolis acceleration of the point p2 as seen by an observer at point

p′
2 expressed in {1}, one can write

a(1)
p2 = a(1)

p′2 + ac(1)
p2/1 + a(1)

p2/1, (8.83)

where

a(1)
p′2 = a(1)

p1 + ω̇
(1)
1 × (l12 + z12) + ω

(1)
1 × (ω(1)

1 × (l12 + z12)), (8.84)

a(1)
p1 = RT

01(ẍ (0)
1 î0 + ÿ(0)

1 ĵ0 + z̈(0)
1 k̂0) + ω

(1)
1 × d(1), (8.85)

ac(1)
p2/1 = 2ω

(1)
1 × v(1)

p2/1. (8.86)

After combining these relations, the absolute acceleration of the control point p2

becomes

a(1)
p2 = RT

01a(0)
p1 + ω̇

(1)
1 × (l12 + z12)

+ω
(1)
1 × (ω(1)

1 × (l12 + z12))

+ 2ω
(1)
1 × v(1)

p2/1 + (l̈12 + z̈12). (8.87)
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On the other hand, the acceleration of the same point p2 can be calculated in
terms of the absolute acceleration of the center of mass of helicopter 2 as

a(1)
p2 = RT

01R02(a(2)
c2 + ω̇

(2)
2 × d(2) + ω

(2)
2 × (ω(2)

2 × d(2))), (8.88)

where

a(2)
c2 = RT

02(ẍ (0)
2 î0 + ÿ(0)

2 ĵ0 + z̈(0)
2 k̂0), (8.89)

d(2) = −dk̂2. (8.90)

The absolute acceleration of point p2 must be the same, independent of how
it is calculated. Therefore, one can equate Eqs. (8.87) and (8.88). By solving the
resulting vectorial equation for l̈12 + z̈12, one can obtain the following vectorial
kinematic equation:

(l̈12 + ¨z12) = RT
01[a(0)

c2 + R02(ω̇(2)
2 × d(2))] + B0, (8.91)

where

B0 = RT
01[−a(0)

p1 + R02(ω(2)
2 × (ω(2)

2 × d(2)))]

− ω̇
(1)
1 × (l12 + z12)

−ω
(1)
1 × (ω(1)

1 × (l12 + z12))

− 2ω
(1)
1 × (l̇12 + ż12). (8.92)

Since l12 + z12 = [l12 cα12, l12 sα12, z12]T , the left hand side of Eq. (8.91) can be
expanded as

(l̈12 + z̈12) = A1ÿ1 + B1, (8.93)

in which

A1 =
⎡
⎣ cα12 −l12 sα12 0

sα12 l12 cα12 0
0 0 1

⎤
⎦ , y1 =

⎡
⎣ l12

α12

z12

⎤
⎦ ,

B1 =
⎡
⎣−2l̇12α̇12 sα12 − l12α̇

2
12 cα12

2l̇12α̇12 cα12 − l12α̇
2
12 sα12

0

⎤
⎦ . (8.94)

By combining Eqs. (8.91) and (8.93), one can arrive at an equation that relates a
subset of the output vector, y1, to the state variables of the helicopters:

ÿ1 = A−1
1 [RT

01[a(0)
c2 + R02(ω̇(2)

2 × d(2))] + B0 − B1]. (8.95)
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Note that A1 is invertible as long as l12 �= 0, which can be easily avoided by defining
an appropriate desired formation.

Input–Output Equations

The linear and angular acceleration of helicopter 2, the follower, appear in Eq. (8.95).
In this subsection, first, these accelerations are substituted by the dynamics equa-
tions of helicopter 2, which include the inputs, to give a subset of the input–output
equations. Then, the input–output equations are completed by including the dynam-
ics of the follower’s yaw degree of freedom, ψ2.

The translational dynamic equation (8.12) is customized for helicopter 2 by
adding an index 2 to the variables and noting that the body frame notation {B}
is replaced by notion {2}. The resulting dynamic equation can be rearranged and
written in the following matrix form:

a(0)
c2 = C1u + D1 + W1, (8.96)

where

C1 = 1
m R02

⎡
⎣ 0 0 0 0

0 0 0 −1
−1 0 0 0

⎤
⎦ , D1 = 1

m R02D(2), W1 =
⎡
⎣0

0
g

⎤
⎦ . (8.97)

Also, the term (ω̇(2)
2 × d(2)) is derived by customizing the rotational equation of

motion (8.13) for helicopter 2 and calculating the cross product. This results in

ω̇
(2)
2 × d(2) = C2u + D2, (8.98)

where

C2 =
⎡
⎣− dlr

Iyy
0 − d

Iyy
0

0 d
Ixx

0 0
0 0 0 0

⎤
⎦ ,

D2 = −[I−1(ω(2)
2 × Iω(2)

2 )] × d(2). (8.99)

Now, a subset of the required input–output equations can be obtained by substi-
tuting Eqs. (8.96) and (8.98) into Eq. (8.95):

ÿ1 = f1 + b1u, (8.100)

where

f1 = A−1
1 [RT

01(W1 + R02D2) + B0 − B1 + RT
01D1],

b1 = A−1
1 [RT

01(C1 + R02C2)]. (8.101)
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Note that the yaw angle of helicopter 2 (ψ2) as the last output component is
missing from this subset of input–output equations because y1 only contains the
three outputs l12, α12, and z12. This component must also be included in the input–
output equations. The dynamics of the yaw angle is derived by differentiating the
third component of Eq. (8.41). The result of this differentiation takes the following
standard matrix form:

ψ̈2 = f2 + b2u, (8.102)

where

f2 = (φ̇2 cos φ2 sec θ2 + θ̇2 sin φ2 sec θ2 tan θ2)ω(2)
2y

+ (−φ̇2 sin φ2 sec θ2 + θ̇2 cos φ2 sec θ2 tan θ2)ω(2)
2z

+ (sin φ2 sec θ2)((Izz − Ixx )ω(2)
2x ω

(2)
2z /Iyy)

+ (cos φ2 sec θ2)((Ixx − Iyy)ω(2)
2x ω

(2)
2y /Izz), (8.103)

b2 =
[

sin φ2 sec θ2lr

Iyy
− cos φ2 sec θ2 Km

Izz
, 0,

sin φ2 sec θ2

Iyy
,

cos φ2 sec θ2lt

Izz

]
. (8.104)

The full set of input–output equations are obtained by combining Eqs. (8.100)
and (8.102) into a single matrix form:

⎡
⎢⎢⎣

l̈12

α̈12

z̈12

ψ̈2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ f1(3×1)

f2

⎤
⎥⎥⎦+

⎡
⎢⎢⎣b1(3×4)

b2(1×4)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

T
Mφ

Mθ

TT

⎤
⎥⎥⎦ , (8.105)

or in a more concise form:

ÿ = f + bu. (8.106)

8.6.1.2 Input–Output Description for the l – l Control Scheme

In Fig. 8.15, a system of three neighboring helicopters in the formation is shown.
The control point of the follower helicopter, p3, is separated from the control points
of leader 1 and leader 2, p1 and p2, by two 3D vectorial distances l13 and l23, re-
spectively. The formation plane p1 p2 p3 makes an angle of β123 with a reference
direction (Fig. 8.16). Note that the helicopters are not physically coupled in any
way. A feedback control law for control inputs u = [T, Mφ, Mθ , TT ]T must be de-
termined to control helicopter 3 such that the desired distances ld

13, ld
23, and angle βd

123



8.6 Leader-Follower Formation Control for Autonomous Helicopters 295

Fig. 8.15 l – l control configuration. Frames 1, 2, and 3 correspond to the first leader, the second
leader, and the follower, respectively. The helicopters’ centres of mass are denoted by c and their
control points are denoted by p

Fig. 8.16 Definition of the formation frame for the l – l control scheme. The three helicopters’
control points are denoted by p1, p2, and p3. Unit vector n1 points from p1 to p2. Unit vector
n3 is perpendicular to the formation plane p1 p2 p3. Unit vector n2 lies in the formation plane and
makes a right-hand frame { f } with n1 and n3. The frame { f } is called the formation frame. Unit
vector nr lies in the global horizontal plane and is perpendicular to n1. When the formation plane
is horizontal, β123 = π

2
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are maintained, while the yaw angle of helicopter 3, ψ3, follows a desired trajectory.
With these definitions, the outputs of the control system are y = [l13, l23, β123, ψ3]T .

Here, the input–output description of the control system are derived, which relate
the output y to the input u directly. First, through a kinematic analysis, the state
variables of helicopter 3, which are

q3 =
[
x (0)

3 , y(0)
3 , z(0)

3 , ẋ (0)
3 , ẏ(0)

3 , ż(0)
3 , φ3, θ3, ψ3, ω

(3)
3x , ω

(3)
3y , ω

(3)
3z

]T
, (8.107)

are related to the output y. Then, the equations of motion, containing u are substi-
tuted in the resulting equations to give the input-output relations. The details follow.

Kinematic Analysis

The control points of the three helicopters in an l – l scheme form a three-
dimensional plane (the formation plane). The plane of formation p1 p2 p3 and its
local coordinate frame { f } are shown in Fig. 8.16. Since the unit vectors of the
coordinate frame { f } are defined based on the location of the three helicopters, this
frame moves and rotates when the three helicopters move. The angular velocity and
acceleration of this frame is required for calculating the rate of change of the forma-
tion parameters (control outputs) defined in the previous section. In the following,
first, the formation frame is defined. Then, the angular velocity and acceleration of
this frame are determined. And finally, the rate of change of the formation parame-
ters (control outputs) are calculated.

The mutually perpendicular unit vectors of the formation frame { f }, whose ori-
gin is at p1, are defines as

n1 = l12

|l12| , n3 = l12 × l13

|l12 × l13| , n2 = n3 × n1. (8.108)

A reference nr for rotation of the formation plane about l12 is needed to define
the formation parameter β123. This reference unit vector vector is assumed to lie in
the global horizontal plane and to be perpendicular to l12. It is calculated as

nr = l12 × k0

|l12 × k0| . (8.109)

Now, the rotation of the formation plane about l12 in reference to nr , which is
one of the formation parameters, is defines as

β123 = arccos(nr .n3). (8.110)

The angular velocity of the formation frame described in the formation frame is
defined as

ω
( f )
f = β̇123n1 + ω f 2n2 + ω f 3n3. (8.111)



8.6 Leader-Follower Formation Control for Autonomous Helicopters 297

The second and third components of ω
( f )
f can be found by observing the relative

velocity of points p1 and p2.

v( f )
p2 = v( f )

p1 + ω
( f )
f × l( f )

12 + l̇( f )
12 , (8.112)

where l( f )
12 = l12n1 and l̇( f )

12 = l̇12n1. Two of the three components of ω
( f )
f can be

obtained by rearranging Eq. (8.112) as

⎡
⎣ l̇12

l12ω f 3

−l12ω f 2

⎤
⎦ = RT

0 f (v(0)
p2 − v(0)

p1). (8.113)

The first component of ω
( f )
f is found by writing a relative velocity equation be-

tween points p1 and p3.

v( f )
p3 = v( f )

p1 + ω
( f )
f × l( f )

13 + l̇( f )
13 . (8.114)

where l( f )
13 = l13(cos γ13n1 + sin γ13n2) and l̇( f )

13 = l̇13(cos γ13n1 + sin γ13n2), as
concluded from Fig. 8.16. β̇123 can be found by simplifying the third component of
Eq. (8.114).

β̇123 = v
( f )
p3z − v

( f )
p1z + ω f 2l13 cos γ13

l13 sin γ13
. (8.115)

β̇123 can be calculated as long as l13 and γ13 are nonzero. These situations can be
avoided when defining the desired formation parameters. ld

13 = 0 means that the
helicopters are coincident, which is physically impossible and must not be used.
γ d

13 = 0 corresponds to the situation when the three helicopters’ control points are
on the same line. In this situation, two l – α schemes must be used to define the
desired formation. Note that if the control points p2 and p3 are used for finding the
rate β̇123, the same result will be obtained. This remains for the reader to prove as
an exercise.

The angular acceleration of the formation frame, ω̇
( f )
f , is also required for de-

riving the input–output equations of the l – l control scheme. Two components of
this acceleration can be obtained by observing the relative acceleration of points p1

and p2.

a( f )
p2 = a( f )

p1 + ω̇
( f )
f × l( f )

12 + ω
( f )
f × (ω( f )

f × l( f )
12 ) + 2ω

( f )
f × l̇( f )

12 + l̈( f )
12 , (8.116)

where l̈( f )
12 = l̈12n1 and ω̇

( f )
f = β̈123n1 + α f 2n2 + α f 3n3. The second and third

components of the formation frame angular acceleration are obtained by rearranging
Eq. (8.116).
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⎡
⎣ l̈12

l12α f 3

−l12α f 2

⎤
⎦ = RT

0 f (a(0)
p2 − a(0)

p1) − ω
( f )
f × (ω( f )

f × l( f )
12 ) − 2ω

( f )
f × l̇( f )

12 . (8.117)

After the angular motion of the formation frame is known, the rate of change of
the formation parameters l13, l23, and β123 can be determined by investigating the
relative motion of point p3 with respect to points p1 and p2 separately. This is first
shown by considering the relative motion of point p3 with respect to p1 to obtain l̈13

and β̈123. Then, the results are simply extended for l̈23. The acceleration of p3 can
be formulated as

a( f )
p3 = a( f )

p1 + ω̇
( f )
f × l( f )

13 + ω
( f )
f × (ω( f )

f × l( f )
13 ) + 2ω

( f )
f × l̇( f )

13 + l̈( f )
13 . (8.118)

On the other hand, the same acceleration can be derived with respect to the fol-
lower’s center of mass c3.

a( f )
p3 = a( f )

c3 + ω̇
( f )
3 × d( f ) + ω

( f )
3 × (ω( f )

3 × d( f )). (8.119)

Combining Eqs. (8.118) and (8.119) and defining the terms

N1 = ω
( f )
3 × (ω( f )

3 × d( f )) − a( f )
p1 − ω

( f )
f × (ω( f )

f × l( f )
12 ) − 2ω

( f )
f × l̇( f )

12 , (8.120)

M1 = [0 0 −α f 2l13 cos γ13
]T

, (8.121)

results in

⎡
⎣l̈13 cos γ13 − α f 3l13 sin γ13

l̈13 sin γ13 + α f 3l13 cos γ13

β̈123l13 sin γ13

⎤
⎦ = a( f )

c3 + ω̇
( f )
3 × d( f ) + N1 − M1. (8.122)

Equation (8.122) can be further simplified to obtain l̈13 and β̈123.

⎡
⎣ l̈13

l13α f 3

β̈123

⎤
⎦ = A−1

3 (a( f )
c3 + ω̇

( f )
3 × d( f ) + N1 − M1), (8.123)

where

A3 =
⎡
⎣cos γ13 − sin γ13 0

sin γ13 cos γ13 0
0 0 l13 sin γ13

⎤
⎦ . (8.124)

This matrix is invertible as long as l13 and γ13 are nonzero.
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The rate of change for l23 can be obtained with the same procedure as mentioned
above. The results is

⎡
⎣ l̈23

l23α f 3

β̈123

⎤
⎦ = A−1

4 (a( f )
c3 + ω̇

( f )
3 × d( f ) + N2 − M2), (8.125)

where

A4 =
⎡
⎣cos γ23 − sin γ23 0

sin γ23 cos γ23 0
0 0 l23 sin γ23

⎤
⎦ . (8.126)

N2 = ω
( f )
3 × (ω( f )

3 × d( f )) − a( f )
p2 − ω

( f )
f × (ω( f )

f × l( f )
23 ) − 2ω

( f )
f × l̇( f )

23 , (8.127)

M2 = [0 0 −α f 2l23 cos γ23
]T

. (8.128)

A4 can be inverted as long as l23 and γ23 are nonzero.
The singularities arising from Eqs. (8.124) and (8.126) can be avoided when

defining the desired formation parameters. ld
13 = 0 or ld

23 = 0 means that the leader
and the follower helicopters are coincident, which is physically impossible and must
not be used. γ d

13 = 0 or γ d
23 = 0 corresponds to the situation when the three heli-

copters’ control points are on the same line. In this situation, two l – α schemes
must be used to define the desired formation.

It can be shown that the result for β̈123 from Eq. (8.125) is equal to the result
obtained in Eq. (8.123). This remains for the reader to prove as an exercise. Now,
a subset of the output vector y2 = [l13, l23, β123]T can be formed by combining
Eqs. (8.123) and (8.125) as follows.

ÿ2 =
⎡
⎣ l̈13

l̈23

β̈123

⎤
⎦ = C3

⎡
⎣ l̈13

l13α f 3

β̈123

⎤
⎦+ C4

⎡
⎣ l̈23

l23α f 3

β̈123

⎤
⎦ , (8.129)

where

C3 =
⎡
⎣1 0 0

0 0 0
0 0 1

⎤
⎦ , C4 =

⎡
⎣0 0 0

1 0 0
0 0 0

⎤
⎦ . (8.130)

Input–Output Equations

Part of the input–output description of the l – l control scheme is derived by substi-
tuting Eqs. (8.123) and (8.125) into Eq. (8.129).
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ÿ2 = (C3A−1
3 +C4A−1

4 )(a( f )
c3 + ω̇

( f )
3 ×d( f ))+C3A−1

3 (N1 −M1)+C4A−1
4 (N2 −M2).

(8.131)
This part of the input–output description is completed by using frame conversions

a( f )
c3 = RT

0 f a(0)
c3 , ω̇

( f )
3 × d( f ) = RT

0 f R03(ω̇(3)
3 × d(3)), (8.132)

and substituting for a(0)
c3 and ω̇

(3)
3 × d(3) using equations similar to Eqs. (8.96)

and (8.98) for the dynamics of the follower. The result can be rearranged as

ÿ2 = f3 + b3u, (8.133)

where

b3 = (C3A−1
3 + C4A−1

4 )(RT
0 f C1 + RT

0 f R03C2), (8.134)

f3 = (C3A−1
3 + C4A−1

4 )(RT
0 f (D1 + W1) + RT

0 f R03D2)

+ C3A−1
3 (N1 − M1) + C4A−1

4 (N2 − M2). (8.135)

The full set of input–output equations are obtained by augmenting the yaw dy-
namics ψ̈3 of the follower as the fourth formation parameter with Eqs. (8.133).
Relations similar to Eqs. (8.102), (8.103), and (8.104) can be used, in which the
subscript 2 for the follower states is replaced by 3, indicating the use of the follower
3 states.

ψ̈3 = f4 + b4u. (8.136)

This results in a single matrix form for the l –l input–output description:

⎡
⎢⎢⎢⎢⎣

l̈13

l̈23

β̈123

ψ̈3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

f3(3×1)

f4

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

b3(3×4)

b4(1×4)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

T
Mφ

Mθ

TT

⎤
⎥⎥⎦ , (8.137)

or in a more concise form:

ÿ = f + bu. (8.138)

8.6.2 Designing the Sliding Mode Control Law

In previous sections, the input–output description for both the l – α and l – l con-
trol schemes were derived. They were written in a similar general matrix form
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[Eqs. (8.106) and (8.138)] to simplify the control law development. The sliding
mode control method is used to design a controller based on the matrix form of the
input–output equations. In this method, four first-order asymptotically stable surface
functions are assumed:

s = (ẏ − ẏd ) + �(y − yd ), (8.139)

where � = diag(λ1, λ2, λ3, λ4), and all λi ’s are positive. Eq. (8.139) is written in
following form for convenience:

s = ẏ − sr , (8.140)

where

sr = ẏd − �(y − yd ). (8.141)

If the trajectory of the system can be controlled such that s approaches zero and
remains zero at all times, since the surface (8.139) is asymptotically stable, it is
guaranteed that the output y converges to its desired value. Therefore, the sliding
mode controller design reduces to finding a control law that brings and keeps the
output of the system on the sliding surface.

Since the input–output Eqs. (8.106) and (8.138) have the same form as the input–
output Eq. (8.57) for the helicopter trajectory-tracking control, a sliding mode con-
trol law in the form of Eq. (8.63) derived in Section 8.5.2.2 for trajectory tracking
can be used here as well.

u = b̂−1(−f̂ + ṡr − Ksgn(s)). (8.142)

The results of Section 8.5.2.2 also indicate that if the bounds of model uncertain-
ties are defined by

| fi − f̂i | ≤ Fi , |δi j | ≤ �i j , i = 1, . . . , 4, (8.143)

the diagonal elements of the discontinuity gain matrix K are found from

Kv = (Im − �)−1(F + �| − f̂ + ṡr | + η), (8.144)

where Kv = [K1, K2, K3, K4]T and η = [η1, η2, η3, η4]T . For a detailed derivation
of Eq. (8.144), refer to Section 8.5.2.2.

Note that the control law (8.142) requires the formation parameters, their first
order derivatives, and the states of the leader(s) and the follower helicopter at any
given time. The states of the leader helicopter(s), especially their Euler angles and
angular velocities are difficult to measure using vision sensors on the follower heli-
copter. Therefore, it is assumed that the leader(s) communicate their states with the
follower. Once the follower is aware of the states of the leader(s), it can calculate
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the formation parameters based on the leader(s)’ and its own positions, and the rate
of formation parameters based on the leader(s)’ and its own linear and angular ve-
locities. The required communication bandwith is bounded and is not a function of
the number of helicopters in the formation because the controllers are decentralized.
Each helicopter has to receive information from at most two helicopters and send
information to at most two helicopters.

Example 8.3. Consider the autonomous helicopter introduced in Example 8.1, whose
inertial and geometrical properties are shown in Table 8.1. Assume that the center of
gravity of the helicopter is not coincident with the main rotor’s axis (Fig. 8.1), such
that lr = 0.1 m. Assume that the distance of the control point with the helicopter’s
center of gravity d = 1 m. Use the l – ψ control law to make the helicopter keep a
distance of 10 m (ld

12 = 10 m) to the right side of a leader (αd
12 = 90◦), while flying

at the same altitude of the leader (zd
12 = 0 m) and heading parallel to the positive

global x direction (ψd
2 = 0◦). The motion of the leader is defined by

x1(t) = Vx t ,

y1(t) = Ry sin(
2π t

τ
),

z1(t) = Rz sin(
2π t

τ
), (8.145)

where Vx = 1 m/s, τ = 30 s, Ry = Rz = 2 m. The follower helicopter is initially at
(0, 10, 0) m and facing toward the positive global x direction and has an initial ve-
locity of 2π t

τ
(Ry ĵ+ Rz k̂) m/s. Simulate the motion of the helicopter for the following

two conditions.

(a) There is no wind.
(b) There is a constant wind with a 5 m/s speed blowing along the negative global y

direction.

Solution. To include the wind disturbance, the shape of the helicopter fuselage is
approximated by a box to estimate the wind forces, where L is the length and H is
the height of the helicopter fuselage. Also, ρ is the air density and vw is the wind
velocity. The following numerical values are used:

L = 0.3 m, H = 0.2 m,

ρ = 1.2 kg/m3, vw = 5 m/s. (8.146)

This wind results is an approximate force of

Fw = 1

2
ρv2

w H L = 1.8 N, (8.147)
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which is approximately 13.5% of the helicopter’s weight (or main rotor’s thrust at
hovering condition). These data are used with the dynamic model when the effect
of wind on the helicopter’s performance is to be shown. Note that the formation
controllers are not aware of the presence of the wind forces and do not directly
compensate for them.

The control law (8.142) calculates the required inputs u without being aware of
the presence or absence of the wind. The controller parameters are as follows.

� =

⎡
⎢⎢⎣

0.3 0 0 0
0 0.3 0 0
0 0 0.3 0
0 0 0 0.3

⎤
⎥⎥⎦ , (8.148)

η = [1 1 1 1
]T

, (8.149)

� = [0.1 0.1 0.1 π/40
]T

. (8.150)

The control commands are directly applied to the equations of motion of the
follower helicopter. In the no-wind simulation case, the equations of motion (8.15)
are used for integration. In the case where wind is present, a force term representing
the wind force is added to the translational equations of motion of the follower. The
results of the simulations and the discussions are presented in the following.

Figure 8.17 shows the paths of the motion for the two cases. Two coincident
curves show the resulting motion of the follower helicopter in no-wind and lateral
wind situations. As is seen in the figure, there is not much difference in the path of
the follower in the two cases.

Figure 8.18 shows the global position components of the follower helicopter. It
can be seen that the x and z components of motion are not affected by the presence
of the lateral wind. Only the y component is slightly disturbed because of the wind.
However, the controller is successful in rejecting the disturbances and bringing the
y component to the desired dynamic equilibrium.

Figure 8.19 shows the orientation of the follower helicopter. The pitch and yaw
motions are minimally affected by the wind force. After a transient response, the
roll angle fluctuates around 1.6◦ when there is no wind. This small offset angle is
necessary so that the lateral components of the main rotor and the tail rotor forces
reach an equilibrium. When the lateral wind is blowing, after a transient response,
the roll angle fluctuates around 7◦. In such a situation, the helicopter has to lean more
against the wind direction to equalize the wind force with the lateral component of
the main rotor thrust, which explains the higher roll angle compared to when the
wind is not present.

Figure 8.20 shows the four l – α formation parameters or the control outputs.
Once again, it is seen that the effect of the wind on these outputs are minimal.
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Fig. 8.17 Path of the motion for the l – α scheme. The follower robustly follows the leader with
a given relative position despite of a 10 m/s lateral wind. The effect of the wind on the path of the
follower is negligible
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Fig. 8.18 Position trajectories for the l – α scheme. The follower’s position trajectories in the pres-
ence and the absence of the wind disturbance are fairly close. The difference in the y component
is because the follower tries to reach a steady-state roll angle to resist the lateral wind force when
the wind is present
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Fig. 8.19 Orientation trajectories for the l – α scheme. The follower’s orientation trajectories in
the presence and the absence of the wind disturbance are fairly close, except for the roll angle. The
steady-state roll angle is larger when wind is present because the follower tries to counteract the
lateral wind force

The steady-state values of the formation parameters do not experience any offsets,
except for the l12, which is directly affected by the wind in the global y direction.
The control points of the leader and the follower helicopters keep a distance of
approximately 10 m (l12 ≈ 10 m). The helicopters move side by side (α12 ≈ 90◦)
and at the same height (z12 ≈ 0 m). And the follower helicopter faces straight ahead
(ψ2 ≈ 0◦).

Figure 8.21 shows the four helicopter control inputs. The thrust force T is higher
when the wind blows, because it has to provide a lateral component to counterbal-
ance the lateral wind force. The larger roll angle in the wind situation allows for this
component. Since the main rotor axis does not pass through the helicopter’s center
of mass, the main rotor’s thrust generates a moment about this point. This moment
is counterbalanced by the pitch moment, which is not fluctuating around zero. An
increased thrust requires a higher pitch moment. This fact is reflected in the Mθ plot.
The tail rotor thrust also has to equalize the reaction torque on the fuselage caused
by T . Hence, a higher tail rotor thrust TT is required when the wind is present.

Example 8.4. Consider the autonomous helicopter introduced in Example 8.1, whose
inertial and geometrical properties are shown in Table 8.1. Assume that the center of
gravity of the helicopter is not coincident with the main rotor’s axis (Fig. 8.1), such
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Fig. 8.20 Output trajectories for the l – α scheme. The formation parameters’ steady-state val-
ues are not significantly affected by the lateral wind. The initial disturbance in l12 is because the
follower tries to reach an equilibrium roll angle to counteract the lateral wind force

that lr = 0.1 m. Assume that the distance of the control point with the helicopter’s
center of gravity is d = 1 m. Use the l – l control law to make the helicopter keep a
distance of 10 m with two leader helicopters (ld

13 = ld
23 = 10 m), while flying at the

same altitude of the leaders (βd
123 = 90◦) and heading parallel to the positive global

x direction (ψd
3 = 0◦). The motion of the leaders are defined by

x1(t) = Vx t ,

y1(t) = Ry sin(
2π t

τ
) + y10,

z1(t) = Rz sin(
2π t

τ
), (8.151)

x2(t) = Vx t ,

y2(t) = Ry sin(
2π t

τ
) + y20,

z2(t) = Rz sin(
2π t

τ
), (8.152)
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Fig. 8.21 Input history for the l – α scheme. The required thrust T when wind exists is higher
than that of the no wind situation. Other control inputs are also higher in presence of wind to
counterbalance the higher thrust force, except Mφ . This is because T does not produce a moment
about the helicopter’s roll axis

where Vx = 1 m/s, τ = 30 s, y10 = −5 m, y20 = 5 m, Ry = Rz = 1.5 m. The fol-
lower helicopter is initially at (0,−8.66, 0) m and facing toward the positive global
x direction and has an initial velocity of 2π t

τ
(Ry ĵ + Rz k̂) m/s. Simulate the motion

of the helicopter for the following two conditions.

(a) There is no wind.
(b) There is a constant wind with a 5 m/s speed blowing along the negative global y

direction.

Solution. The wind force is calculated similar to the calculations in Example 8.3.
The control law (8.142) calculates the required inputs u without being aware of the
presence or absence of the wind. The controller parameters are as follows.

� =

⎡
⎢⎢⎣

0.3 0 0 0
0 0.3 0 0
0 0 0.3 0
0 0 0 0.3

⎤
⎥⎥⎦ , (8.153)
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η = [1 1 1 1
]T

, (8.154)

� = [0.1 0.1 π/40 π/40
]T

. (8.155)

The equations of motion of the follower helicopter are used with the control com-
mands to simulate the follower’s motion. In the case where wind is present, a force
term representing the wind force is added to the translational equations of motion of
the follower. The results of the simulations and the discussions are presented in the
following.

The paths of the motion of the leaders and the follower are shown in Fig. 8.22 for
the two cases. The simulation is run for 30 s. The figure shows a minimal difference
in the steady-state path of the follower in the two cases.

The global position components of the follower helicopter are plotted in Fig. 8.23.
The lateral wind does not affect x and z components of motion, whereas the y
component is initially disturbed. However, the controller successfully keeps the y
component very close to the desired dynamic equilibrium state.

The orientation of the follower helicopter can be seen in Fig. 8.24. Once again,
the mean values of the roll angles, after a transient response, are 1.6 and 7.0◦ for
the with and without wind cases, respectively. These values are compatible with the
result of the l – α controller because the equilibrium roll angle is inherent in the
dynamics of the helicopter and the disturbances.
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Fig. 8.22 Path of the motion for the l – l scheme. The effect of the wind on the path of the follower
is negligible. Despite a 10 m/s lateral wind, the follower robustly follows the leaders with a given
relative position
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Fig. 8.23 Position trajectories for the l – l scheme. The follower’s position trajectories for the zero
and non zero wind force situations are very similar. The difference in the y component is because
the follower tries to reach a larger steady-state roll angle at which it can resist the lateral wind force
when the wind is present

The four l – l formation parameters or the control outputs are presented in
Fig. 8.25. The steady-state values of the formation parameters do not experience
any offsets in any case. The control points of the follower stays at a distance of 5 m
with the control point of both leaders during the motion (l13 = l23 = 5 m). The
follower helicopter moves at the same height of the two leaders (β123 = 90◦). And
the follower helicopter faces straight ahead as instructed (ψ3 = 0◦).

The four helicopter control inputs are shown in Fig. 8.26. The control forces are
in general similar to that of the l – α controller. However, the inputs show more
chatter. The chatter can be reduced by fine tuning the controller gain nonlinearity
factor η and the boundary layer � for the l – l controller.

Example 8.5. Consider eight helicopters with the inertail and geometrical properties
given in Table 8.1. Assume that they initially make a rectangular formation with a
grid size of 5 m while moving forward with a constant speed of 1 m/s. At time zero,
they are commanded to form a desired spatial cubic formation with 5-m dimensions.
Use the developed formation control schemes as building blocks to interconnect the
group of eight autonomous helicopters in the initial rectangular formation. Derive
the desired formation parameters that can map the initial formation parameters into
the desired cubic formation. Show the change of formation resulting from the new
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Fig. 8.24 Orientation trajectories for the l – l scheme. Except for the roll angle, the follower’s
orientation trajectories in the presence and the absence of the wind disturbance are fairly close.
Since the follower tries to counteract the lateral wind force, the steady-state roll angle is larger
when wind is present

desired formation parameters by simulation. Investigate the performance of the con-
trollers for the following two cases.

(a) Assume no uncertainty in the inertial properties listed in Table 8.1.
(b) Assume +20% uncertainty in the inertial properties listed in Table 8.1.

Solution. The eight helicopters in their initial formation can be interconnected as
shown in Fig. 8.27. In this figure, the leader-follower relationship is shown by
arrows. The tip of the arrow correspond to a follower, while the tail of an arrow
points to a leader. The formation scheme assignments, consistant with the arrows
are as follows. Helicopter 1 is assigned to be the group leader. Helicopter 2 follows
helicopters 1 using the l –α scheme. Helicopter 3 follows helicopters 2 and 1 using
the l –l scheme. Helicopter 4 follows helicopter 3 and 1 using the l –l scheme.
Helicopters 5, 6, 7, and 8 follow helicopters 1, 2, 4, and 3, respectively, using the
l –α scheme.

The desired formation can be achieved by the same structure as that shown in
Fig. 8.27. If the squares in the front and back of this structure are folded upward as
shown in Fig. 8.28, a cubic formation is obtained. The desired formation parame-
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Fig. 8.25 Output trajectories for the l – l scheme. The formation parameters’ steady-state values
are not significantly affected by the lateral wind. The difference between the output trajectories for
the two wind conditions are negligible

ters are derived using the sketch for the desired formation. The desired formation
parameters are listed in Table 8.3.

The described change of formation is simulated for two different cases to show
the robustness of the controllers in the presence of parameter uncertainty. In both
cases, the control law is calculated based on the helicopters’ nominal parameters
listed in Table (8.1). However, the inertia parameters used with the dynamic model
to simulate the response of the helicopters are different for the two cases. In the
first case, the nominal mass and moment of inertia are used. In the second case,
the helicopters’ mass and moment of inertia is assumed to be 20% higher than the
nominal values.

Figure 8.29 shows the 35-s motion of the helicopters for the two cases. The
curves that show the path of the motion of each helicopter for the two different
cases are either very close or completely coincident with each other. This shows the
robustness of the formation controllers to parameter uncertainty. The helicopters
successfully achieve the new desired formation after 35 s despite of the wind and
inertia uncertainties.
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Fig. 8.26 Input history for the l – l scheme. The required thrust T when wind exists is higher
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about the helicopter’s roll axis
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Fig. 8.27 Eight helicopters in a planar rectangular formation. Helicopter 1 is the group leader. 2
follows 1 using the l –α scheme. 3 follows 2 and 1 using the l –l scheme. 4 follows 3 and 1 using
the l –l scheme. 5, 6, 7, and 8 follow 1, 2, 4, and 3, respectively, using the l –α scheme

Problems

Problem 8.1. Consider a small autonomous helicopter with the mass and geometri-
cal properties listed in Table 8.1. Use Eq. (8.22) to calculate the trimming values.

Problem 8.2. Consider a small autonomous helicopter with the mass and geomet-
rical properties listed in Table 8.1. The helicopter is hovering at an initial position
of (0.0, 0.0,−2.0) m, while facing the positive x1 axis. Simulate the motion of the
helicopter under PID position control for the following given desired positions and
headings.
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Fig. 8.28 Eight helicopters in a spatial cubic formation. The formation structure of these eight
helicopters are the same as that of the group shown in Fig. 8.27. However, the desired formation
parameters for the helicopters 5, 6, 7, and 8 are different than that of the planar configuration of
Fig. 8.27

Table 8.3 Desired formation parameters for the cubic formation shown in Fig. 8.28

Helicopter Control scheme Desired

1 Leader
2 l – α ld

12 = 5 m αd
12 = 90◦ zd

12 = 0 m ψd
2 = 0◦

3 l – l ld
13 = 5

√
2 m ld

23 = 5 m βd
123 = 90◦ ψd

3 = 0◦

4 l – l ld
13 = 5 m ld

23 = 5 m βd
123 = 90◦ ψd

3 = 0◦

5 l – α ld
12 = 5 m αd

12 = −90◦ zd
12 = −5 m ψd

2 = 0◦

6 l – α ld
12 = 5 m αd

12 = 90◦ zd
12 = −5 m ψd

2 = 0◦

7 l – α ld
12 = 5 m αd

12 = −90◦ zd
12 = −5 m ψd

2 = 0◦

8 l – α ld
12 = 5 m αd

12 = 90◦ zd
12 = −5 m ψd

2 = 0◦
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Fig. 8.29 Formation change of a group of eight helicopters with and without model inertia uncer-
tainty. The helicopters are initially in a planar rectangular formation as defined in Fig. 8.27. They
change formation while continuing their maneuver after a new set of desired formation parameters
are defined. The curves showing the path of the helicopters for the cases of 0% and +20% inertia
uncertainty are either very close or coincident
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(a) (xd
1 , xd

2 , xd
3 , ψd ) = (0.5 m, 0.5 m,−3.0 m,−π/4 rad).

(b) (xd
1 , xd

2 , xd
3 , ψd ) = (1.5 m, 1.6 m,−4.0 m,−π/4 rad).

(c) (xd
1 , xd

2 , xd
3 , ψd ) = (3.0 m, 3.0 m,−6.0 m,−π/4 rad).

Is the PID controller successful in stabilizing the helicopter for all of the above
scenarios? Why not? Discuss the simulation results.

Problem 8.3. Consider a small autonomous helicopter introduced in Problem 8.2.
The helicopter is hovering under PID position control at a desired position of
(0.0, 0.0,−2.0) m, while facing the positive x1 axis. Simulate the response of the
helicopter if a constant wind starts blowing in the positive x2 direction starting at
time t = 5 s. Assume the wind force is

(a) 5% of the helicopter’s weight,
(b) 10% of the helicopter’s weight,
(c) 15% of the helicopter’s weight,
(d) 20% of the helicopter’s weight.

Is the PID controller successful in stabilizing the helicopter in presence of wind
disturbance? Discuss the simulation results.

Problem 8.4. Consider the autonomous helicopter introduced in Problem 8.2, whose
inertial and geometrical properties are shown in Table 8.1. Assume that the distance
of the control point with the helicopter’s center of gravity d = 1 m. The control point
of the helicopter is initially at (0.0, 0.0,−2.0) m, while the helicopter is facing the
positive x1 axis. Use a sliding mode control law to position the control point of the
helicopter at the following desired points.

(a) (xd
p1, xd

p2, xd
p3, ψ

d ) = (0.5 m, 0.5 m,−3.0 m,−π/4 rad).
(b) (xd

p1, xd
p2, xd

p3, ψ
d ) = (1.5 m, 1.6 m,−4.0 m,−π/4 rad).

(c) (xd
p1, xd

p2, xd
p3, ψ

d ) = (3.0 m, 3.0 m,−6.0 m,−π/4 rad).

Is the sliding mode controller successful in stabilizing the helicopter for all of the
above scenarios? Why? Discuss the simulation results.

Problem 8.5. Consider the autonomous helicopter introduced in Problem 8.2. As-
sume that the distance of the control point with the helicopter’s center of gravity
d = 1 m. The control point of the helicopter is stabilized using an sliding mode
controller at the desired point (0.0, 0.0,−2.0) m, while the helicopter is facing the
positive x1 axis. Simulate the response of the helicopter if a constant wind starts
blowing in the positive x2 direction starting at time t = 5 s. Assume the wind
force is

(a) 5% of the helicopter’s weight,
(b) 10% of the helicopter’s weight,
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(c) 15% of the helicopter’s weight,
(d) 20% of the helicopter’s weight.

Is the sliding mode controller successful in stabilizing the helicopter in presence of
wind disturbance? What controller parameter can be tuned for a better performance?
What is the effect of that controller parameter on input chatter?

Problem 8.6. Consider the autonomous helicopter introduced in Problem 8.2. As-
sume that the distance of the control point with the helicopter’s center of gravity
d = 1 m. Use a sliding mode control law to control the control point of the helicopter
on the following desired trajectory.

xd
p1(t) = R cos

2π t

τ
,

xd
p2(t) = R sin

2π t

τ
,

xd
p3(t) = −H ,

ψd (t) = 0,

where R = 10 m, H = 2 m, and τ = 60 s. Note that this desired trajectory is a
circle with radius R parallel to the x1-x2 plane. It takes τ seconds for the helicopter
to complete this circle. The helicopter is at rest at time zero and its initial position
and orientation are as follows.

x1(0) = 0 m, x2(0) = 0 m, x3(0) = −2 m,

φ(0) = 0 rad, θ (0) = 0 rad, ψ(0) = π/2 rad.

Assume that the inertial properties of the helicopter can be uncertain up to 1.3
times of the nominal properties. This uncertainty can cover the pay load of the
helicopter. Simulate the motion of the helicopter under control for three cases of
uncertainty in the inertial properties of the helicopter. Assume that the actual inertial
properties are

(a) 0.8 times the nominal values (−20% uncertainty),
(b) equal the nominal values (0% uncertainty),
(c) and 1.2 times the nominal values (20% uncertainty).

Problem 8.7. Find the singularities of the l – α control scheme by investigating the
relative postions of the leader and follower helicopters for which the l – α formation
parameters are undefined.

Problem 8.8. Find the singularities of the l – l control scheme by investigating the
relative postions of the leader and follower helicopters for which the l – l formation
parameters are undefined.



316 8 Autonomous Helicopters

Problem 8.9. Three helicopters must maintain an equilateral triangular formation
with 5-m legs in a horizontal plane, while two of them must fly side by side behind
the other helicopter. Determine the desired geometrical formation parameters.

Hint: Use both the l – α and l – l formation control schemes to define a rigid for-
mation structure consisting of one triangular cell. Note that using two l – α schemes
does not connect two of the helicopters. If the motion of one of the unconnected he-
licopters is disturbed, the other helicopter will not sense the disturbance and cannot
adjust its motion. Therefore, the triangular formation will be lost.

Problem 8.10. Consider the autonomous helicopter introduced in Problem 8.2. As-
sume that the center of gravity of the helicopter is coincident with the main rotor’s
axis (Fig. 8.1), such that lr = 0 m. Assume that the distance of the control point with
the helicopter’s center of gravity d = 1 m. Use the l – ψ control law to make the
helicopter keep a distance of 8 m at a relative view angle of αd

12 = 90◦ with a leader
helicopter, while flying at the same altitude of the leader (zd

12 = 0 m) and heading
parallel to the positive global x direction (ψd

2 = 0◦). The motion of the leader is
defined by

x1(t) = Vx t ,

y1(t) = Vyt ,

z1(t) = Vzt ,

where Vx = 1 m/s and Vy = Vz = 0.5 m/s. The follower helicopter is initially at
(0, 10, 0) m and is facing toward the positive global x direction and has a zero initial
velocity. Simulate the motion of the helicopter for the following two conditions.

(a) There is no wind.
(b) There is a constant wind with a 5 m/s speed blowing along the negative global y

direction.

Problem 8.11. Consider the autonomous helicopter introduced in Problem 8.2. As-
sume that the center of gravity of the helicopter is coincident with the main rotor’s
axis (Fig. 8.1), such that lr = 0 m. Assume that the distance of the control point
with the helicopter’s center of gravity is d = 1 m. Use the l – l control law to make
the helicopter keep a distance of 8 m with two leader helicopters (ld

13 = ld
23 = 8 m),

while flying slightly above the leaders (βd
123 = 120◦) and heading parallel to the

positive global x direction (ψd
3 = 0◦). The motion of the leaders are defined by

x1(t) = Vx t ,

y1(t) = Vyt + y10,

z1(t) = Vzt ,
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x2(t) = Vx t ,

y2(t) = Vyt + y20,

z2(t) = Vzt ,

where Vx = 1 m/s, Vy = Vz = 0.5 m/s, y10 = −5 m, y20 = 5 m, and Ry = Rz =
1.5 m. The follower helicopter is initially at (0,−10) m and is facing toward the
positive global x direction, and has an initial velocity of 0 m/s. Simulate the motion
of the helicopter for the following two conditions.

(a) There is no wind.
(b) There is a constant wind with a 5 m/s speed blowing along the negative global y

direction.



Appendix A
Mathematics

In Appendix A, some more information about the mathematical methods used on
this book are presented.

A.1 Null Space

Definition. The null space of an m × n matrix A is the set

ℵ(A) = {x ∈ �n : Ax = 0
}

, (A.1)

where 0 denotes the zero vector with m components. The matrix equation Ax = 0
is equivalent to a homogeneous system of linear equations:

a11x1 + a12x2 + · · · + a1n xn = 0

a21x1 + a22x2 + · · · + a2n xn = 0

...
...

...
...

...

am1x1 + am2x2 + · · · + amn xn = 0.

(A.2)

From this viewpoint, the null space of A is the same as the solution set to the homo-
geneous system.

Example A.1. Consider the matrix

A =
[

2 3 5
−4 2 3

]
. (A.3)

The matrix can be seen as a transformation that maps a 3D space onto a 2D space.
The null space of this matrix consists of all vectors (x, y, z) ∈ �3 for which

[
2 3 5

−4 2 3

]⎡
⎣x

y
z

⎤
⎦ =

[
0
0

]
. (A.4)

319
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This can be written as a homogeneous system of linear equations involving x , y,
and z:

2x + 3y + 5z = 0,

−4x + 2y + 3z = 0. (A.5)

The null space of A is precisely the set of solutions to these equations, which repre-
sent two planes in the 3D space. The solution to the system (A.5) is the 3D line of
the intersection of the two planes. That line is the null space of the matrix A. This
means that the transformation A transforms any point on this line in the 3D space to
the origin of the destination 2D space, i.e., the 2D 0 vector.

A.2 Rank

Definition. The maximal number of linearly independent columns of A is called the
column rank of a matrix A. Similarly, the maximal number of linearly independent
rows of A is called the row rank.

The column rank and the row rank are always equal. Therefore, they are simply
called the rank of A. The common notation used for showing the rank of a matrix A
is either rk(A) or rankA.

The maximum possible rank of an m × n matrix is the smaller of the number of
columns or the number of rows, or in mathematical notation, rank (A) ≤ min(m, n).
A matrix is said to have a full rank when its rank is as large as possible. Otherwise,
the matrix is rank deficient.

Example A.2. Consider the following 3 × 4 matrix.

A =
⎡
⎣ 2 4 1 3

−1 −2 1 0
0 0 2 2

⎤
⎦ . (A.6)

One can notice by observation that the second column is twice the first column and
that the fourth column equals the sum of the first and the third. The first and the third
columns are linearly independent. Since there are only two independent columns,
the rank of A is two.

A.3 Singular Value Decomposition (SVD)

Definition. The singular value decomposition (SVD) is an important method in
linear algebra for factorizing a rectangular real or complex matrix. The SVD has sev-
eral applications in signal processing and statistics such as computing the pseudo-
inverse of a rectangular matrix, approximating matrices, and determining the rank,
range, and null space of a matrix.
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Suppose A is an m × n matrix whose entries come from the field of real numbers
�.1 Then, there exists a factorization of the form

A = uσvT , (A.7)

where u is an m ×m matrix over �, the matrix σ is m ×n with nonnegative numbers
on the diagonal (as defined for a rectangular matrix) and zeros off the diagonal, and
vT is the transpose2 of v, which denotes an n×n matrix over �. Such a factorization
is called a SVD of A. The matrix A can be looked at as a transformation between
two input and output spaces, with sample vectors x and y, as

y = Ax = u.[σ .(vT .x)]. (A.8)

The matrices v, u, and the diagonal entries of σ can be interpreted as follows.

• The matrix vT , which contains a set of orthonormal vectors, “rotates” the input
vector as a the first part of the transformation A.

• The matrix σ contains the singular values on the diagonal. The diagonal values
can be thought of as scalar factors by which each corresponding rotated input
direction is “scaled” to give a corresponding output direction.

• The matrix u, which contains a set of orthonormal vectors, “maps” the result of
the “rotation” and “scaling” of the input vector onto the output space as the final
part of the transformation A.

A common convention is to order the diagonal values σi i in non increasing fashion.
In this case, the diagonal matrix is uniquely determined by A (though the matrices
u and v are not).

A.3.1 Computing SVD

The matrices vT , σ , and v are claculated via the eigenvalue decomposion of the
matrix AT A. Assume an m × n size for the matrix A. First, the eigenvalues and
the eigenvectors of the matrix AT A are claculated. The eigenvalues are sorted from
the greatest to the smallest values, which are named λ1 to λn . The m × n matrix
σ is formed with all zero enteries except the diagonal, which are filled with σi i =√

λi (i = 1, . . . , max(m, n)). The eignvectors corresponding to λ1 to λn form the n
columns of the matrix v. Finally, the columns ui of the m × m matrix u is formed
using the following relation.

1 The enteries of A, in general, can be complex numbers. However, that case is not relevant to the
redundant and hyper-redundant robot applications.
2 If the enteries of A are complex numbers, vT is the conjugate transpose of v.
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ui =
{

1
σi i

Avi i = 1, . . . , max(m, n)

0 i = max(m, n) + 1, . . . , m
, (A.9)

where vi the column i of the matrix v. If for any i the value of σi i is zero, ui is
assigned zero. Also, if m < n, the second realtion in Eq. (A.9) is ignored.

Example A.3. Consider the following rectangular matrix.

A =

⎡
⎢⎢⎣

1 0 0 0 2
0 0 3 0 0
0 0 0 0 0
0 6 0 0 0

⎤
⎥⎥⎦ . (A.10)

The eigenvalues of the matrix AT A are

λ1 = 36, λ2 = 9, λ3 = 5, λ4 = 0, λ5 = 0.

The eigenvectors of the matrix AT A are

vT
1 = [0, 1, 0, 0, 0],

vT
2 = [0, 0, 1, 0, 0],

vT
3 = [

√
0.2, 0, 0, 0,

√
0.8],

vT
4 = [0, 0, 0,−1, 0],

vT
5 = [

√
0.8, 0, 0, 0,−

√
0.2].

Based on these eigenvalues and eigenvectors, the matrices σ and v are determined as

σ =

⎡
⎢⎢⎣

6 0 0 0 0
0 3 0 0 0
0 0

√
5 0 0

0 0 0 0 0

⎤
⎥⎥⎦ , v =

⎡
⎢⎢⎢⎢⎣

0 0
√

0.2 0
√

0.8
1 0 0 0 0
0 1 0 0 0
0 0 0 −1 0
0 0

√
0.8 0 −√

0.2

⎤
⎥⎥⎥⎥⎦ . (A.11)

Now, since max(m, n) = max(4, 5) = 4, the columns ui (i = 1, . . . , 4) are deter-
mined from Eq. (A.9). Finally the matrix u is

u =

⎡
⎢⎢⎣

0 0 1 0
0 1 0 0
0 0 0 0
1 0 0 0

⎤
⎥⎥⎦ . (A.12)

One can verify that uσvT is, indeed, equal to A.
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A.4 Pseudo-Inverse for a Rectangular Matrix

The SVD can be used for computing the pseudo-inverse of a matrix. Indeed, the
pseudo-inverse of the matrix A with SVD of uσvT is

A† = vσ ∗uT , (A.13)

where σ ∗ is the transpose of σ with every nonzero entry replaced by its reciprocal.

Example A.4. Consider the matrix A given in Example A.3. The psedue-inverse of
this matrix is

A† = vσ ∗uT =

⎡
⎢⎢⎢⎢⎣

1/5 0 0 0
0 0 0 1/6
0 1/3 0 0
0 0 0 0

2/5 0 0 0

⎤
⎥⎥⎥⎥⎦ , (A.14)

where

σ ∗ =

⎡
⎢⎢⎢⎢⎣

1/6 0 0 0
0 1/3 0 0
0 0 1/

√
5 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎦ . (A.15)

A.5 Bisection Method

The bisection method is an numerical method that finds the root of a single equation
in a continuous given interval. It approaches the root by repeatedly dividing the
interval in half and selecting the resulting subinterval in which a root exists. The
bisection method is less efficient than Newton’s method but it is numnerically much
more robust.

Assume that the equation can be expressed as f (x) = 0, where x is an inde-
pendent variable. First, two points a and b, for which f (a) and f (b) have opposite
signs, must be selected heuristically. Also, the function f must be continuous in the
interval [a, b]. With these assumptions, the intermediate value theorem predicts that
f must have at least one root in the interval [a, b]. The bisection method divides the
interval in two by computing c = (a + b)/2. There are now two possibilities: either
f (a) and f (c) have opposite signs or f (c) and f (b) have opposite signs. Since
the root belongs to the interval for which the sign change accurs, it is picked for
the next bisection application. The bisection algorithm is then applied recursively to
the sub-interval where the sign change occurs. The bisection method converges to a
root of f , if f is a continuous function on the interval [a, b] and f (a) f (b) < 0.
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Table A.1 The results of the bisection algorithm

Iteration a b c e

1 1.500000 3.000000 2.250000 0.750000
2 1.500000 2.250000 1.875000 0.375000
3 1.875000 2.250000 2.062500 0.187500
4 1.875000 2.062500 1.968750 0.093750
5 1.968750 2.062500 2.015625 0.046875
6 1.968750 2.015625 1.992188 0.023438
7 1.992188 2.015625 2.003906 0.011719
8 1.992188 2.003906 1.998047 0.005859
9 1.998047 2.003906 2.000977 0.002930

10 1.998047 2.000977 1.999512 0.001465
11 1.999512 2.000977 2.000244 0.000732

Normally, when the half width of the resulting sub-interval is smaller than a
treshold ε, the iterations are stopped and the midpoint of the sub-interval in which
the sign change happens is accepted as the approximate solution. In this case, the
absolute error is halved at each iteration. After n iterations, the maximum absolute
error is

|b − a|
2n+1

. (A.16)

The following algorithm summerizes the bisection method.

1. Initialize a, b, and the convergence treshold ε.
2. Check if f (a). f (b) is less than zero. If not, restart from Step 1.
3. Calculate c = (a + b)/2.
4. If f (a). f (c) is less than zero, assign the value of c to b, i.e., b := c. Otherwise,

assign the value of c to a, i.e., a := c.
5. The approximate solution is x = (a + b)/2.
6. If |b − a|/2 is smaller than the treshold ε, accept the approximate solution x and

stop the iterations. Otherwise, repeat the steps from Step 3.

Example A.5. Consider the following equation:

f (x) = x2 − 4. (A.17)

Here, the solution must be found within the treshold ε = 0.001. The interval
[a, b] = [0, 3] is picked, for which f (0). f (3) = −20 < 0. Applying the bisection
method algorithm recursively results in the sub-intervals listed in Table A.1, along
with the approximate solution and the maximum error of the approximation. Since
the root of the assumed equation is known, it is easy to see the correctness of the
maximum error estimates.
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B.1 Feedback Linearization

In the feedback linearization method, a different control input representation is
defined for the system such that the dynamic equation seems similar to that of a
linear system. Then, a controller is designed for the linear system using any classi-
cal control method. The nonlinear control law, then, is derived by transforming the
equations for the new input back to the initial input representation. The steps that
can be used for model based control of many mechanical systems is summerized
below.

(a) Most of the mathematical models describing mechanical systems can be written
in the companion form or the controllability canonical form.

x(n) = f(x) + b(x)u, (B.1)

where the superscript (n) indicates the nth time derivative, u is the original con-
trol input, x is the vectorial output of the control system, and f(x) and b(x) are
nonlinear matrix functions of the output vector x. Note that the matrix b(x) must
have full rank (non zero determinant) for all x; otherwise, the output system will
not be controllable.

(b) A new control input v(x, u) is defined such that it can be determined uniquely
for a given x and u. The new control input must captures all the nonlinearities
of the system. For a system with the campanion form, all the nonlinearities are
in the terms f(x) and b(x). Therefore, the new input can be defined as

v = f(x) + b(x)u. (B.2)

Note that when the system’s model is rewritten in terms of this new input, its
form looks similar to a simple linear system (also called the multiple integra-
tor form):

x(n) = v. (B.3)

325



326 B Control Methods Review

(c) A desired asymptotically stable error behavior is defined for the output system.
The error is defined as

e(t) = x(t) − xd (t). (B.4)

where the subscript d denotes the desired output trajectory. For each component
of the error vector e, denoted by ei , the desired behavior is

e(n)
i + k1,i e

(n−1)
i + . . . + kn,i e = 0. (B.5)

To ensure that the error behavior (B.5) is asymptotically stable, the gains ki, j are
chosen such that all the roots of the characteristic polynomial of Eq. (B.5) have
negative real parts. The charateristic polynomial corresponding to Eq. (B.5) is
defined as

pn + k1,i pn−1 + . . . + kn,i p = 0. (B.6)

(d) The new control input v is calculated such that, when applied to the system, it
can generate the desired error behavior (B.5). This calculation is done by solving
Eq. (B.5) for x(n) and substituting the result into Eq. (B.3).

v = x(n)
d − k1e(n−1) − . . . − kne. (B.7)

where ki is a diagonal matrix with the diagonal enteries k1,i .
(e) Finally, the original control input is calculated using the first definition of the

new control input in Eq. (B.2):

u = b−1(x)
[
x(n)

d − f(x) − k1e(n−1) − . . . − kne
]

. (B.8)

Note that since the output system is assumed to be controllable, the matrix b(x)
has full rank for all x and is invertable.

B.2 Sliding Mode Control

Modeling inaccuracies in the form of parameter uncertainties or unmodeled dyan-
mics can have strong negative effects on the performance of a nonlinear control
system. There always have been a need for control methods that can perform well
despite of modeling inaccuracies. The sliding mode method is one of them.

A sliding mode controller is composed of two parts, a nominal part and a dis-
continuous part. The nominal part, also known as the equivalent control, is similar
to a feedback linearizing control law and captures the nonlinearity of the nominal
plant’s model. The discontinuous part, which is the unique feature of the sliding
mode control method, aims at dealing with the modeling inaccuracies.
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In the following, a systematic approach for designing a sliding mode controller
for nonlinear systems, whose mathematical model can be written in the controlla-
bility canonical form, is presented.

(a) The nominal input–output representation of the system is written in the control-
lability canonocal form.

x(n) = f̂(x) + b̂(x)u, (B.9)

where the superscript (n) indicates the nth time derivative, u is the original con-
trol input, x is the vectorial output of the control system, and f̂(x) and b̂(x) are
nonlinear matrix functions of the output vector x with the “nominal” parameters
of the system. Note that the matrix b̂(x) must have full rank (non zero determi-
nant) for all x; otherwise, the output system will not be controllable.

(b) The tracking error of the outputs are defined.

e(t) = x(t) − xd (t), (B.10)

where xd (t) is the desired trajectroy for the outputs. For the tracking task to be
achievable using a finite control input u, the intial desired outputs must be equal
to the outputs at time zero, i.e., xd (0) = x(0) or e(0) = 0.

(c) The desired behavior of the error components are defined as

si (xi , t) =
(

d

dt
+ λi

)n−1

ei . (B.11)

where λi ’s are stricyly positive. Note that, in general, the initial conditions of
the output error derivatives are not zero. Therefore, there is no guarantee that
si (xi (0), 0) is zero. The idea is that a control law must be designed to, first,
ensure that variables si approach zero and stay at zero despite modeling accu-
racies, and second, the error components follow the desired trajectory (B.11)
when si ’s have been stabilized at zero. A sliding mode control law that can
meet the above mentioned requirements has two parts. The first part, called
the equivalent control, ensures the realization of the second requirement. The
second part, called the discontinuous term, ensures that the first requirement is
satisfied.

(d) The equivalent control part of a sliding mode controller is designed solely based
on the nominal model of the input–output system. Assuming that si ’s are already
stabilized at zero, one can determine the equivalent control. First, to simplify the
notation, the desired error behavior is written as

si (xi , t) = x (n−1)
i − sri , (B.12)
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where

sri = x (n−1)
di −

(
d

dt
+ λi

)n−1

ei + e(n−1)
i . (B.13)

The matrix form of Eq. (B.12) is

s(x, t) = x(n−1) − sr . (B.14)

Since it is assumed that si ’s are already stabilized, s(x, t) = 0. Now, the equiv-
alent control can be derived by differentiating Eq. (B.14) and substituting for
x(n) from Eq. (B.9) and solving for u. The notation û is used for the equivalent
control.

û = b̂−1
(−f̂ + ṡr

)
. (B.15)

(e) A discontinuous term is added to the equivalent control to guarantee that the
parameter s approaches zero regardless of the error initial condition and uncer-
tainty in the model parameters.

u = b̂−1(−f̂ + ṡr − Ksgn(s)), (B.16)

where K is a positive-definite diagonal matrix and sgn(s) returns a vector with
the sign of the components of s. Although the control law (B.16) seems com-
plete, the discontinuity gain K must still be determined such that the parameter
s converges to zero despite inaccuracies in the nominal dynamic model.

(f) To determine the discontinuity gain K, a Lyapunov function is defined as

V = 1

2
sT s. (B.17)

This Lyapunov function is admissible because it is positive for all values of s
and is only zero when s is identically zero. With these properties, if one can
show that the time derivative of the Lyapunov function is always negative and
is only zero when s is identically zero, then, one can conclude that s converges
to zero from any initial condition and remains at zero. The first derivative of the
Lyapunov function (B.17) is

V̇ = sT ṡ. (B.18)

Substituting for ṡ from Eq. (B.14) results in

V̇ = sT (x(n) − ṡr ). (B.19)

Substituting for x(n) from the input–output relation (B.9) yields
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V̇ = sT (f + bu − ṡr ). (B.20)

Note that in the above equation, “.̂” is dropped from the notation to indicate
the use of the uncertain input–output model. Substituting for u from Eq. (B.16)
gives

V̇ = sT (f + bb̂−1(−f̂ + ṡr − Ksgn(s)) − ṡr ). (B.21)

Note that in the ideal conditions (e.g., when there is no uncertainty and b = b̂),
bb̂−1 is the identity matrix Im . Therefore, it is logical to define the uncertainty
in b in terms of the difference of bb̂−1 and the identity matrix Im .

δ = bb̂−1 − Im . (B.22)

Equation (B.21) is rewritten in terms of the uncertainty δ.

V̇ = sT (f + (Im + δ)(−f̂ + ṡr − Ksgn(s)) − ṡr ),

= sT (f − f̂ + δ(−f̂ + ṡr ) − Ksgn(s) − δKsgn(s)). (B.23)

As this stage, some bounds must be assumed for the parameter uncertainties.
These bounds are defined for the components of f − f̂ and δ.

| fi − f̂i | ≤ Fi , |δi j | ≤ �i j , i = 1, . . . , 4. (B.24)

If f − f̂ and δ in Eq. (B.23) are replaced by the uncertainty bounds defined
in Eq. (B.24), the right hand side of the resulting equation increases in value.
Hence, the equal sign should be replaced by an inequality sign.

V̇ ≤ sT (F + �| − f̂ + ṡr | − Ksgn(s) + �Ksgn(s)). (B.25)

Equation (B.25) in component notation becomes

V̇ ≤
4∑

i=1

si (Fi +
4∑

j=1

(�i j | − f̂ j + ṡr j |) − Ki sgn(si ) +
4∑

j=1

�i j K j sgn(s j )),

≤ −
4∑

i=1

|si |(−Fi −
4∑

j=1

(�i j | − f̂i + ṡr i |) + Ki −
4∑

j=1

�i j K j ). (B.26)

Equation (B.26) implies that if Ki ’s are found such that

− Fi −
4∑

j=1

(�i j | − f̂i + ṡr i |) + Ki −
4∑

j=1

�i j K j = ηi , i = 1, . . . , 4, (B.27)
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where ηi are positive numbers, then, the rate of the Lyapunov function becomes

V̇ ≤ −
4∑

i=1

|si |ηi . (B.28)

In other words, if Ki ’s are determined from Eq. (B.27), the rate of the Lyapunov
function is always negative, except when all si ’s are zero, at which point the
rate of the Lyapunov function is zero. This implies that the Lyapunov function
decreases to zero despite of any initial value and remains at zero. Consequently,
si ’s approach zero and remain zero because V is zero if and only if all si ’s
are zero.
For simplicity of implementation, Eq. (B.27) is written in the matrix form:

Kv = (Im − �)−1(F + �| − f̂ + ṡr | + η). (B.29)

where Kv = [K1, K2, K3, K4]T and η = [η1, η2, η3, η4]T .
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