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Preface

In the early 1990s, NASA Goddard Space Flight Center started researching
and developing autonomous and autonomic ground and spacecraft control
systems for future NASA missions. This research started by experimenting
with and developing expert systems to automate ground station software and
reduce the number of people needed to control a spacecraft. This was followed
by research into agent-based technology to develop autonomous ground con-
trol and spacecraft. Research into this area has now evolved into using the
concepts of autonomic systems to make future space missions self-managing
and giving them a high degree of survivability in the harsh environments in
which they operate.

This book describes much of the results of this research. In addition, it
aims to discuss the needed software to make future NASA space missions more
completely autonomous and autonomic. The core of the software for these new
missions has been written for other applications or is being applied gradually
in current missions, or is in current development. It is intended that this book
should document how NASA missions are becoming more autonomous and
autonomic and should point to the way of making future missions highly au-
tonomous and autonomic. What is not covered is the supporting hardware
of these missions or the intricate software that implements orbit and atti-
tude determination, on-board resource allocation, or planning and scheduling
(though we refer to these technologies and give references for the interested
reader).

The book is divided into three parts. The first part gives an introduction
to autonomous and autonomic systems and covers background material on
spacecraft and ground systems, as well as early uses of autonomy in space and
ground systems. The second part covers the technologies needed for develop-
ing autonomous systems, the use of software agents in developing autonomous
flight systems, technology for cooperative space missions, and technology for
adding autonomicity to future missions. The third and last part discusses ap-
plications of the technology introduced in the previous chapters to spacecraft
constellations and swarms, and also future NASA missions that will need the
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discussed technologies. The appendices cover some detailed information on
spacecraft attitude and orbit determination and some operational scenarios
of agents communicating between the ground and flight software. In addi-
tion, a list of acronyms and a glossary are given in the back before the list of
references and index.

In Part One of the book, Chap. 1 gives an overview of autonomy and
autonomic systems and why they are needed in future space missions. It also
gives an introduction to autonomous and autonomic systems and how we
define them in this book. Chapter 2 gives an overview of ground and flight
software and the functions that each supports. Chapter 3 discusses the reasons
for flight autonomy and its evolution over the past 30 plus years. Chapter 4
mirrors Chap. 3 for ground systems.

In Part Two, Chap. 5 covers the core technologies needed to develop
autonomous and autonomic space missions, such as planners, collaborative
languages, reasoners, learning technologies, perception technologies and veri-
fication and validation methods for these technologies. Chapter 6 covers de-
signing autonomous spacecraft from an agent-oriented perspective. It covers
the idea of a flight software backbone and the spacecraft functions that this
backbone will need to support, subsumption concepts for including spacecraft
functionality in an agent context, and the concept of designing a spacecraft
as an interacting agent. Chapter 7 covers the technologies needed for cooper-
ative spacecraft. It starts by discussing the need for cooperative spacecraft, a
model of cooperative autonomy, mission management issues for cooperation,
and core technologies for cooperative spacecraft. Chapter 8 covers autonomic
systems and what makes a system autonomic, why autonomicity is needed
for future autonomous systems, and what functions would be needed to make
future missions autonomic.

Part Three starts with Chap. 9, which discusses spacecraft constellations,
cooperation between or among the spacecraft in the constellation, difficulties
in controlling multiple cooperative spacecraft, and a multiagent paradigm
for constellations. Chapter 10 gives an overview of swarm technology, some
example missions that are being proposed that use this technology, and issues
in developing the software for swarm-based missions. Chapter 11 discusses
some future missions that NASA is planning or developing conceptually. This
chapter discusses how the technology discussed in the previous chapters would
be applied to these missions, as well as additional technology that will need
to be developed for these missions to be deployed.

The Appendix offers additional material for readers who want more infor-
mation concerning attitude and orbit determination and control, or concerning
operational scenarios of agents communicating between the ground and flight
software. This is followed by a list of acronyms used in the book and a glossary
of terms. All references are included in the back of the book.

There are three types of people who will benefit from reading this book.
First are those who have an interest in spacecraft and desire an overview
of ground and spaceflight systems and the direction of related technologies.
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The second group comprises those who have a background in developing cur-
rent flight or ground systems and desire an overview of the role that autonomy
and autonomic systems may play in future missions. The third group com-
prises those who are familiar with autonomous and/or autonomic technologies
and are interested in applying them to ground and space systems.

Different readers in each of the above groups may already have some of
the background covered in this book and may choose to skip some of the
chapters. Those in the first group will want to read the entire book. Those
in the second group could skip Chap. 2 as well as Chaps. 3 and 4, though the
latter two may be found interesting from an historical view. The third group
of people could skip or skim Chap. 5, and though they may already be familiar
with the technologies discussed in Chaps. 6–8, they may find the chapters of
interest to see how AI technologies are applied in the space flight domain.

We hope that this book will not only give the reader background on some of
the technologies needed to develop future autonomous and autonomic space
missions, but also indicate technology gaps in the needed technology and
stimulate new ideas and research into technologies that will enable future
missions possible.

MD, USA Walt Truszkowski
MD, USA Lou Hallock
VA, USA Christopher Rouff
MD, USA Jay Karlin
MD, USA James Rash
Limerick, Ireland Mike Hinchey
Belfast, Northern Ireland Roy Sterritt
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1

Introduction

To explore new worlds, undertake science, and observe new phenomena, NASA
must endeavor to develop increasingly sophisticated missions. Sensitive new
instruments are constantly being developed, with ever increasing capability
of collecting large quantities of data. The new science performed often re-
quires multiple coordinating spacecraft to make simultaneous observations of
phenomena. The new missions often require ground systems that are corre-
spondingly more sophisticated. Nevertheless, the pressures to keep mission
costs and logistics manageable increase as well.

The new paradigms in spacecraft design that support the new science bring
new kinds of mission operations concepts [165]. The ever-present competition
for national resources and the consequent greater focus on the cost of opera-
tions have led NASA to utilize adaptive operations and move toward almost
total onboard autonomy in certain mission classes [176,195]. In NASA’s new
space exploration initiative, there is emphasis on both human and robotic
exploration. Even when humans are involved in the exploration, human tend-
ing of space assets must be evaluated carefully during mission definition and
design in terms of benefit, cost, risk, and feasibility.

Risk is a major factor supporting the use of unmanned craft: the loss of hu-
man life in two notable Shuttle disasters has delayed human exploration [160],
and has led to a greater focus on the use of automation and robotic technolo-
gies where possible. For the foreseeable future, it is infeasible to use humans
for certain kinds of exploration, e.g., exploring the asteroid belt, for which the
concept autonomous nano technology swarm (ANTS) mission was posed –
discussed in Chap. 10 – where uncrewed miniature spacecraft explore the as-
teroid belt. A manned mission for this kind of exploration would be pro-
hibitively expensive and would pose unacceptable risks to human explorers
due to the dangers of radiation among numerous other factors.

Additionally, there are many possible missions where humans simply can-
not be utilized for a variety of reasons such as the long mission timeline
reflecting the large distances involved. The Cassini mission taking 7 years to
reach Titan, the most important of Saturn’s moons, is an example. Another
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example is Dawn, a mission to aid in determining the origins of our universe,
which includes the use of an altimeter to map the surface of Ceres and Vesta,
two of the oldest celestial bodies in our solar system.

More and more, these unmanned missions are being developed as au-
tonomous systems, out of necessity. For example, almost entirely autonomous
decision-making will be necessary because the time lag for radio communi-
cations between a craft and human controllers on earth will be so large that
circumstances at the craft will no longer be relevant when commands arrive
back from the earth. For instance, for a rover on Mars during the months of
mission operations when the earth and Mars are on opposite sides of the sun
in their respective orbits, there would be a round-trip delay of upwards of
40 min (earth) in obtaining responses and guidance from mission control.

Historically, NASA missions have been designed around a single spacecraft
carrying one instrument, or possibly a small number of related instruments.
The spacecraft would send its raw data back to earth to a dedicated ground
control system which had a dedicated staff that controlled the spacecraft and
would trouble-shoot any problems. Many of the new missions are either very
complex, or have long communications delays, or require very fast responses
to mission circumstances. Manual control by humans becomes problematic or
impractical for such missions. Consequently, the onboard software to operate
the missions is increasingly complex, placing increasing demands on software
development technologies.

In anticipation of these missions, NASA has been doing research and devel-
opment into new software technologies for mission operations. Two of these
technologies enable autonomous and autonomic operations. Technology for
autonomy allows missions to operate on their own with little or no directions
from humans based on internal goals. Autonomicity builds on autonomy tech-
nology by giving the mission what is called self-awareness. These technologies
will enable missions to go to new planets or distant space environments with-
out constant real-time direction from human controllers.

Recent robotic missions to Mars have required constant inputs and com-
mands from mission control to move the rovers only inches at a time, as a
way to ensure that human controllers would not be too late in learning about
changed conditions or circumstances or too late in returning appropriate di-
rections to the rovers. With 20 min required for one-way communications be-
tween the earth and Mars, it takes a minimum of 40 min for mission control
to receive the most recent video or sensor inputs from a robot and send the
next commands back. Great care is required when moving a robot on Mars
or other distant location, because if it flipped over or got stuck, the mission
could be ended or become severely limited. There often elapsed several hours
between the receipt of new images from Mars and the transmission of move-
ment commands back to the robot. The result of the delays was a great, but
unavoidable, limitation on exploration by the robots.

If these missions could instead operate autonomously, much more explo-
ration could be accomplished, since the rovers, reacting independently and
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immediately to conditions and circumstances, would not have the long wait
times for communications, or for human recalculation and discussion of the
next moves. Until recently, there was not enough computational power on-
board spacecraft or robots to run the software needed to implement the
needed autonomy. Microprocessors with requisite radiation-hardening for use
in space missions now have greatly increased computing power, which means
these technologies can be added to space missions giving them much greater
capabilities than were previously possible.

This book discusses the basics of spaceflight and ground system software
and the enabling technologies to achieve autonomous and autonomic missions.
This chapter gives examples of current and near-term missions to illustrate
some of the challenges that are being faced in doing new science and explo-
ration. It also describes why autonomy in missions is needed not only from
an operations standpoint, but also from a cost standpoint. The chapter ends
with an overview of what autonomy and autonomicity are and how they differ
from each other, as well as from simple automation.

1.1 Direction of New Space Missions

Many of the planned future NASA missions will use multiple spacecraft to
accomplish their science and exploration goals. While enabling new science
and exploration, multispacecraft and advanced robotic missions, along with
the more powerful instruments they carry, create new challenges in the ar-
eas of communications, coordination, and ground operations. More powerful
instruments will produce more data to be downlinked to mission control cen-
ters. Multispacecraft missions with coordinated observations will mean greater
complexity in mission control. Controlling operations costs of such missions
will present significant challenges, likely entailing streamlining of operations
with fewer personnel required to control a spacecraft.

The following missions that have been recently launched or that will be
launched in the near future illustrate the types of missions NASA is planning.

1.1.1 New Millennium Program’s Space Technology 5

The New Millennium Program’s (NMP) Space Technology 5 (ST5) [171] is
a technology mission that was launched in March of 2006 with a 90 day mis-
sion life. The goal of the mission was to demonstrate approaches to reduce the
weight, size, and, therefore, cost of missions while increasing their capabilities.
The science it accomplished was mapping the intensity and direction of mag-
netic fields within the inner magnetosphere of the earth. To accomplish this,
it used a cluster of three 25-kg class satellites (Fig. 1.1). Each micro satellite
had a magnetometer onboard to measure the earth’s magnetosphere simulta-
neously from different positions around the earth. This allowed scientists to
determine the effects on the earth’s magnetic field due to the solar wind and
other phenomena.
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Fig. 1.1. New Millennium Program (NMP) Space Technology 5 (ST5) spacecraft
mission (image credit: NASA)

ST5 was designed so that the satellites would be commanded individually
and would communicate directly to the ground. There was a 1-week period
of “lights out” operation where the microsats flew “autonomously” with pre-
programmed commands in a test to determine whether commanding could be
done onboard instead of from ground stations. In the future, this approach
would allow the spacecraft to react to conditions more quickly and save on
ground control costs. Preprogrammed commands are considered only as a
step toward autonomy and as a form of automation, since the commands are
not determined by internal goals and the current conditions of the spacecraft
software.

1.1.2 Solar Terrestrial Relations Observatory

The Solar Terrestrial Relations Observatory (STEREO) mission, launched in
March 2006, is studying the Sun’s coronal mass ejections (CMEs), which are
powerful eruptions in which as much as 10 billion tons of the Sun’s atmosphere
can be blown into interplanetary space [37]. CMEs can cause severe magnetic
storms on earth. STEREO tracks CME-driven disturbances from the Sun to
earth’s orbit, producing data for determining the 3D structure and dynam-
ics of coronal and interplanetary plasmas and magnetic fields, among other
things. STEREO comprises two spacecraft with identical instruments (along
with ground-based instruments) that will provide a stereo reconstruction of
solar eruptions (Fig. 1.2).
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Fig. 1.2. STEREO mission spacecraft (image credit: NASA)

The STEREO instrument and spacecraft will operate autonomously for
most of the mission due to the necessity of the two spacecraft maintaining
exact distances from each other to obtain the needed stereographic data. The
spacecraft use a beacon mode where events of interest are identified. Broad-
casts are then made to the ground for notification and any needed support.
The beacon mode automatically sends an alert to earth when data values ex-
ceed a threshold level. Each of the STEREO spacecraft is able to determine
its position, orientation, and orbit, and react and act autonomously to main-
tain proper position. Autonomous operation means significant savings over
manual operation.

1.1.3 Magnetospheric Multiscale

The Magnetospheric Multiscale (MMS) mission, scheduled to launch in 2014,
will use a four-spacecraft cluster that will study magnetic reconnection,
charged particle acceleration, and turbulence in regions of the earth’s magne-
tosphere (Fig. 1.3). The four spacecraft will be positioned in a hexahedral or
quad tetrahedral configuration with separations of 10 km up to a few 10 s of
thousands of kilometers [51]. This arrangement will allow three-dimensional
(3D) structures to be described in both the magnetosphere and solar wind.

Distances between the Cluster spacecraft will be adjusted during the mis-
sion to study different regions and plasma structures. Simultaneous measure-
ments from the different spacecraft will be combined to produce a 3D picture
of plasma structures. The spacecraft will use interspacecraft ranging and com-
munication and autonomous operations to maintain the correct configuration
and the proper distances between spacecraft.
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Fig. 1.3. Magnetospheric Multiscale (MMS) spacecraft (image credit: NASA)

1.1.4 Tracking and Data Relay Satellites

The Tracking and Data Relay Satellites (TDRS) relay communications be-
tween satellites and the ground (Fig. 1.4, [186]). The original TDRS required
ground commands for movement of the large single-access antennas. TDRS-H,
I and J autonomously control the antenna motion and adjust for spacecraft
attitude according to a profile transmitted from the ground. This autonomous
control greatly reduces the costs of operations and the need for continuous
staffing of ground stations.

1.1.5 Other Missions

Other proposed or planned near-term missions that will have onboard auton-
omy include the following:

• Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission,
which will stereoscopically image the magnetosphere.

• Geospace Electrodynamic Connections (GEC) mission, which is a cluster
of three satellites that will study the ionosphere-thermosphere (2013+).

• Laser Interferometer Space Antenna (LISA) mission, which will consist of
three spacecraft to study gravitational waves (2020).

• Magnetotail Constellation (MC) mission, which will consist of 30+ nano-
statellites that will study the earth’s magnetic and plasma flow fields
(2011+).

Relying on spacecraft that coordinate and cooperate with each other,
NASA will be able to perform new science that would be difficult or im-
possible to do with a single spacecraft. And recognition of the challenges of
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Fig. 1.4. Tracking and Data Relay Satellites (TDRS) spacecraft (image credit:
NASA)

real-time control of such complex missions would lead naturally to designing
them to operate autonomously, with goals set at a higher level by human
operators and scientists.

1.2 Automation vs. Autonomy vs. Autonomic Systems

In this section, the differences between automation, autonomy, and autonomic-
ity are discussed. This establishes working definitions for this book, and aids in
understanding the current state of flight automation/autonomy/autonomicity.

1.2.1 Autonomy vs. Automation

Since “autonomy” and “automation” seem to have a wide range of definitions,
it is appropriate to establish how those terms will be used in the context of
this book. Both terms refer to processes that may be executed independently
from start to finish without any human intervention. Automated processes
simply replace routine manual processes with software/hardware ones, which
follow a step-by-step sequence that may still include human participation.
Autonomous processes, on the other hand, have the more ambitious goal of
emulating human processes rather than simply replacing them.

An example of an automated ground data trending program would be
one that regularly extracts from the data archive a set list of telemetry pa-
rameters (defined by the flight operations team (FOT)), performs a standard
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statistical analysis of the data, outputs in report form the results of the anal-
ysis, and generates appropriate alerts regarding any identified anomalies. So,
in contrast to an autonomous process, in this case, the ground system per-
forms no independent decision making based on realtime events, and a human
participant is required to respond to the outcome of the activity.

An automated onboard process example could be an attitude determina-
tion function not requiring a priori attitude initialization. The steps in this
process might be as follows. On acquiring stars within a star tracker, an algo-
rithm compares the measured star locations and intensities to reference posi-
tions within a catalog, and identifies the stars. Combining the reference data
and measurements, an algorithm computes the orientation of the star tracker
to the star field. Finally, using the known alignment of the star tracker rel-
ative to the spacecraft, the spacecraft attitude is calculated. The process is
an automated one because no guidance from FOT personnel is required to
select data, perform star identification, or determine attitudes. However, the
process does not define when the process should begin (it computes attitudes
whenever star data are available), simply outputs the result for some other
application to use, and in the event of an anomaly that causes the attitude
determination function to fail, takes no remedial action (it just outputs an
error message). In fact this calculation is so easily automatable that the pro-
cess described, up to the point of incorporating the star tracker alignment
relative to the spacecraft, now can be performed within the star tracker itself,
including compensations for velocity aberration.

On the other hand, the more elaborate process of autonomy is displayed
by a ground software program that independently identifies when commun-
ications with a spacecraft is possible, establishes the link, decides what files
to uplink, uplinks those files, accepts downlinked data from the spacecraft,
validates the downlinked data, requests retransmission as necessary, instructs
the freeing-up of onboard storage as appropriate, and finally archives all vali-
dated data. This would be an example of a fully autonomous ground process
for uplink/downlink.

Similarly, a flight software (FSW) program that (a) monitors all key
spacecraft health and safety (H&S) data, (b) identifies when departures from
acceptable H&S performance has occurred and (c) independently takes any ac-
tion necessary to maintain vehicle H&S, including (as necessary) commanding
the spacecraft to enter a safemode that can be maintained indefinitely without
ground intervention, would be a fully autonomous flight fault detection and
safemode process.

1.2.2 Autonomicity vs. Autonomy

In terms of computer-based systems-design paradigms, autonomy implies
“self-governance” and “self-direction,” whereas autonomic implies “self-
management.” Autonomy is self-governance, requiring the delegation of
responsibility to the system to meet its prescribed goals. Autonomicity is
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system self-management, requiring automation of responsibility including
some decision making for the successful operation of the system). Thus, au-
tonomicity will often be in addition to self-governance to meet the system’s
own required goals. It may be argued at the systems level that the success
of autonomy requires successful autonomicity. Ultimately, ensuring success in
terms of the tasks requires that the system be reliable [158].

For instance, the goals of a system may be to find a particular phe-
nomenon using its onboard science instrument. The system may have auton-
omy (the self-governance/self-direction) to decide between certain parameters.
The goals to ensure the system is fault tolerant and continues to operate under
fault conditions, for instance, would not fall directly under this specific dele-
gated task of the system (its autonomy), yet ultimately the task may fail if the
system cannot cope with uncertain dynamic changes in the environment. From
this perspective, the autonomic and self-management initiatives may be con-
sidered specialized forms of autonomy, that is, the autonomy (self-governance,
self-direction) is specifically to manage the system (to heal, protect, configure,
optimize, and so on).

Taking the dictionary definitions (Table 1.1) of autonomous and auto-
nomic, autonomous essentially means “self-governing” (or “self-regulating,”
“self-directed”) as defined [109, 162]. “Autonomic” is derived from the noun
“autonomy,” and one definition of autonomous is autonomic, yet the main dif-
ference in terms of the dictionary definitions would relate to speed; autonomic
being classed as “involuntarily,” “reflex,” and “spontaneous.”

“Autonomic” became mainstream within computing in 2001 when IBM
launched their perspective on the state of information technology [63]. Auto-
nomic computing has four key self-managing properties [69]:

• Self-configuring
• Self-healing
• Self-optimizing
• Self-protecting

With these four properties are four enabling properties:

Self-aware: of internal capabilities and state of the managed component
Self-situated : environment and context awareness
Self-monitor and self-adjust : through sensors, effectors, and control loops

In the few years since autonomic computing became mainstream, the “self-x”
list has grown as research expands, bringing about the general term “selfware”
or “self-∗,” yet the four initial self-managing properties along with the four
enabling properties cover the general goal of self management [156].

The tiers for Intelligent Machine Design [101, 136, 139, 140] consist of a
top level (reflection), a middle level (routine), and a bottom level (reaction).
Reaction is the lowest level where no learning occurs, but is the immediate re-
sponse to state information coming from sensory systems. Routine is the mid-
dle level, where largely routine evaluation and planning behaviors take place.
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Table 1.1. Dictionary definitions of autonomic, autonomicity and autonomous [109]

au·to·nom·ic (àwt nómmik)
adj.

1. Physiology.
(a) Of, relating to, or controlled by the autonomic nervous system.
(b) Occurring involuntarily; automatic: an autonomic reflex.

2. Resulting from internal stimuli; spontaneous.

au·ton·o·mic·i·ty (àwt nóm i śıttee)
n.

1. The state of being autonomic.

au·ton·o·mous (aw tónn m s)
adj.

1. Not controlled by others or by outside forces; independent: an autonomous
judiciary; an autonomous division of a corporate conglomerate.

2. Independent in mind or judgment; self-directed.
3.

(a) Independent of the laws of another state or government; self-governing.
(b) Of or relating to a self-governing entity: an autonomous legislature.
(c) Self-governing with respect to local or internal affairs: an autonomous

region of a country.
4. Autonomic.

[From Greek autonomos: auto-, auto- + nomos, law]

It receives input from sensors as well as from the reaction level and the reflec-
tion level. Reflection, a meta-process where the mind deliberates about itself,
at the top level receives no sensory input and has no motor output; it receives
input from below. The levels relate to speed. For instance, reaction should be
immediate, whereas reflection is consideration over time. Other variations of
this three-tier architecture have been derived in other research domains (see
Table 1.2) [158]. Each approach is briefly discussed below.

In the future communications-paradigms research domain, a new con-
struct, a knowledge plane, has been identified as necessary to act as a per-
vasive system element within the network to build and maintain high-level
models of the network. These indicate what the network is supposed to do
to provide communication services and advice to other elements in the net-
work [28]. It will also work in coordination with the management plane and
data planes. This addition of a knowledge plane to the existing data and
management/control planes would form a three-tier architecture with data,
management/control, and knowledge planes [28].

In the late 1990s, Defense Advanced Research Projects Agency (DARPA)/
ISO’s autonomic information assurance (AIA) program studied defense
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Table 1.2. Various similar three-tier approaches in different domains

Intelligent
machine
design

Future
comms.

paradigm

DARPA/ISO’s
autonomic
information
assurance

NASA’s
science
mission

Self-directing and
self-managing

system
potential

Reflection Knowledge
plane

Mission
plane

Science Autonomous

Routine Management
control
plane

Cyber
plane

Mission Selfware

Reaction Data
plane

Hardware
plane

Command
sequence

Autonomic

mechanisms for information systems against malicious adversaries. The pro-
gram developed an architecture consisting of three planes: mission, cyber, and
hardware. One finding from the research was that fast responses are necessary
to counter advanced cyber-adversaries [87], similar to a reflex action discussed
earlier.

As will be defined later in this book, NASA’s science mission management,
from a high level perspective, may be classified into:

Science planning: Setting the science priorities and goals for the mission.
Mission planning: Involving the conversion of science objectives to instrument

operations and craft maneuvering, housekeeping and scheduling, comm-
unications link management, etc.

Sequence planning: Production of detailed command sequence plans.

These versions of a high-level, three-tier view of self-governing and self-
managing systems may be generalized into autonomous-selfware-autonomic
tiers. Of course, this is intended neither to be prescriptive nor to be in con-
flict with other views of autonomic systems. The intention in examining and
viewing systems in this light is to assist in developing effective systems.

1.3 Using Autonomy to Reduce the Cost of Missions

Spacecraft operations costs have increasingly concerned NASA and others and
have motivated a serious look into reducing manual control by automating as
many spacecraft functions as possible. Under current designs and methods
for mission operations, spacecraft send their data (engineering and science)
to earth for processing and receive commands from analysts at the control
center. As the complexity and number of spacecraft increase, it takes a pro-
portionately larger number of personnel to control the spacecraft. Table 1.3
shows some current and future missions with the number of people needed
to operate them [122]. People-to-spacecraft ratios are shown (a) for past and
present missions based on current technology, and (b) for expected future mul-
tispacecraft missions with the current technology and operations approaches.
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Table 1.3. Ratio goals for people controlling spacecraft

Number of people Current Goal
Number of to operate with people: people:

Year Mission spacecraft current technology S/C S/C

2000 WMAP 1 4 4:1 –

2000 Iridium 66 200 3:1 –

2000 GlobalStar 48 100 2:1 –

2007 NMP ST5 3 12 – 1:1

2012 MC 30–40 120–160 – 1:10

WMAP Wilkinson Microwave Anisotropy Probe; NMP New Millennium Program;
MC magnetotail constellation

The figure also shows the operator-to-spacecraft goal for the future missions.
Missions capable of performing the desired science will achieve the operator-
to-spacecraft ratio goals only if designed to operate without intensive control
and direct commanding by human operators. Clearly, a combination of au-
tomation, autonomy, and autonomicity will be needed.1

In many cases, multispacecraft missions would be impossible to operate
without near-total autonomy. There are several ways autonomy can assist
multispacecraft missions. The following section describes some of the ways by
which autonomy could be used on missions to reduce the cost of operations
and perform new science.

1.3.1 Multispacecraft Missions

Flying multispacecraft missions can have several advantages, including:

• Reducing the risk that the entire mission could fail if one system or in-
strument fails

• Making multiple observations of an object or event at the same time from
multiple locations (giving multiple perspectives or making the equivalent
of a large antenna from many small ones)

• Reducing the complexity of a spacecraft by reducing the number of
instruments and supporting subsystems

• Replacing or adding an instrument by adding a new spacecraft into an
already existing constellation or swarm

The Wilkinson Microwave Anisotropy Probe (WMAP) mission, launched
in 2001, was forecast to use an average of four people to operate the mis-
sion (Table 1.3). This mission consists of a single spacecraft and utilizes a
small number of people for operations. The Iridium satellite network has 66

1To simplify, in the remainder of this book, since autonomicity builds on auton-
omy, we will simply refer to the combination of autonomous and autonomic systems
simply as autonomy, except where explicitly noted.
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satellites, and it is estimated that initially, its primary operations consisted
of 200 people, approximately three people per spacecraft – a 25% improve-
ment over the WMAP mission. The GlobalStar satellite system consists of 48
satellites and requires approximately 100 people to operate it, approximately
two people per satellite. The Iridium and GlobalStar satellites are mostly ho-
mogeneous, which makes for easier operations than heterogeneous satellites.
Understandably, many of the future NASA missions are proposing multiple
homogeneous spacecraft.

The last two examples in Table 1.3 show future NASA multisatellite mis-
sions along with the operation requirement using current technology, and the
goal. Keeping to the current technology of approximately four people per
spacecraft, the cost of operations will become prohibitive as the number of
spacecraft increases. Missions are currently being planned and proposed that
will include tens and hundreds of spacecraft. The most effective way of avoid-
ing excessive cost of operations is by reducing the operators-to-spacecraft
ratio. To do this, operators need to work at a higher level of abstraction and
be able to monitor and control multiple spacecraft simultaneously.

In addition to saving costs on operations, autonomy can play a vital role
in reducing the size of the communications components. This, in turn, reduces
weight and the cost of the mission not only in components, but also in the
amount of lift needed to put the spacecraft into orbit. Historically, the mis-
sion principal investigator (PI) would want all of the data to be transmitted
back to earth for archival purposes and for rechecking calculations. Earlier,
instruments did not generate as much data as they do now and it was not an
issue in transmitting it because the onboard resources were available. Newer
instruments now produce more data and many mission are now flying more
remote orbits. Both of these require higher-gain antennas and more power,
which increase costs, including greater cost for launch. An alternative is to
do onboard processing of science data or transmit less data by stripping out
nonscience data, both of which result in less data to download. This is an
example of one tradeoff, i.e., in basic terms, design the mission to either (a)
download all of the data, or (b) download only part of it (thereby reducing
the cost of one part of the mission) and doing more science by adding more
instruments.

1.3.2 Communications Delays

Autonomous onboard software is needed when communications can take more
than a few minutes between the spacecraft and the ground. When communica-
tions is lengthened, mission risks increase because monitoring the spacecraft
in real-time (or near real-time) by human operators on earth becomes less
feasible. The mission is then flown less on a real-time, current basis, and the
operator needs to stay ahead of the mission by visualizing what is happening
and confirming it with returned data.
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Though science of opportunity is not necessarily restricted by communi-
cation delays, it often has required a human in the loop. This can present
a problem since the phenomenon may no longer be observable by the time
initial data are transmitted back to earth, a human analyzes it, and com-
mands are sent back to the spacecraft. Autonomy can be useful in this area
because it enables immediate action to be taken to observe the phenomenon.
Challenges in this area include devising the rules for determining whether the
new science should interrupt other on-going science. Many factors may be in-
volved, including the importance of the current observation, the time to react
to the new science (it could be over by the time the instrument reacts), the
spacecraft state, and H&S issues. The rules would have to be embedded in
an onboard expert system (or other “intelligent” software) that could be up-
dated as new rules are learned. An example of a mission that does autonomous
onboard target-of-opportunity response is the Swift mission. It has a survey
instrument that finds possible new gamma ray bursters, determines whether
an object has high priority, and has autonomous commanding that can slew
the spacecraft so the narrow-field-of-view instrument can observe it.

For spacecraft H&S, a large communications latency could mean that a
spacecraft could be in jeopardy unknown to human operators on the earth and
could be lost before any corrective commands could be received from earth.
As in the case of science of opportunity, many aspects need to be taken into
account, to be embedded in onboard software, and to be updateable as the
mission progresses.

1.3.3 Interaction of Spacecraft

Spacecraft that interact and coordinate with each other, whether formation
flying or performing the science itself, may also have to communicate with a
human operator on earth. If the spacecraft does not have onboard autonomy,
the human operator performs analysis and sends commands back to the space-
craft. For the case of formation flying, having the formation coordination done
autonomously or semiautonomously through inter-spacecraft communications
can save the lag time for downloading the appropriate data and waiting for a
human operator to analyze it and return control commands. In many cases,
inter-spacecraft coordination can also save spacecraft resources such as power
and communication. However, the more the spacecraft interact and coordinate
among themselves, the larger the onboard memory needed for the state space
for keeping track of the interactions.

Whether formation flying needs autonomy depends on how accurately
spacecraft separations and orientations need to be maintained, and what per-
turbing influences affect the formation. If the requirements are loose and the
perturbations (relative to the requirements) are small, the formation can prob-
ably be ground-managed, with control only applied sporadically. If the require-
ments are stringent and the perturbations (relative to the requirements) are
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large, then control will need to be exercised with minimum delay and at high
rates, necessitating autonomous formation control.

1.3.4 Adjustable and Mixed Autonomy

Complete autonomy may not be desirable or possible for some missions. In
these missions, adjustable and mixed autonomy may need to be used [132].
In adjustable autonomy, the level of autonomy of the spacecraft can be varied
depending on the circumstances or the desires of mission control. The auton-
omy can be adjusted to be either complete, partial, or no autonomy. In these
cases, the adjustment may be done automatically by the spacecraft depending
on the situation (i.e., the spacecraft may ask for help from mission control), or
may be requested by mission control either to help the spacecraft accomplish
a goal or to perform an action manually. Challenges in adjustable autonomy
include knowing when it needs to be adjusted, as well as how much and how
to make the transition between levels of autonomy.

In mixed autonomy, autonomous agents and people work together to ac-
complish a goal or perform a task. Often the agents perform the low level
details of the task (analogous to the formatting of a paper in a word pro-
cessor), while the human performs the higher-level functions (e.g., analogous
to writing the words of the paper). Challenges in this area are how to get
humans working with the agents, how to divide the work up between the hu-
mans and agents, and how to impart to the humans a sense of cooperation
and coordination, especially if the levels of autonomy are changing over time.

1.4 Agent Technologies

Agent technologies have found themselves in many domains with very different
purposes and competencies. This section discusses some of the issues involved
in the design and implementation of agents, and then it will focus on three
important classes: software agents, robots, and immobots (immobile robots).

Figure 1.5 lists some of the attributes used to describe agents. From the
top-level viewpoint, the two most important attributes of an agent are its
purpose and the domain in which it operates. All other attributes can be
inferred from these two. It is from these attributes that the agent will be
designed and technologies selected.

Figure 1.5 also shows three important classes of agents. Software agents
are intelligent systems that pursue goals for their human owners. An example
would be an information locator that receives some objectives from its owner,
interacts with electronic information sources, locates the desired information,
organizes and prioritizes it, and finally presents it to the owner. Software
agents exist in a virtual computer world and their sensors and actuators are
distributed among the computer systems with which they interact. They may
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Robots

Software
Agents

Agents

Immobots

Mobile Physical

Distributed
Sensors and Actuators

Agent Specific Attributes
• Purpose
• Domain of expertise
• Nature of sensors and actuators
• Mobility
• Physical or virtual
• How domain is divided between agents
• How agents negotiate and cooperate
• Degree of cooperation
• Degree of individual identity

Fig. 1.5. Agent attributes

be able to migrate from one system to another, and some software agents can
interact with other agents to cooperate on achieving common objectives.

Robots are mobile systems that pursue goals in the physical world. Robots
are outwardly focused, with the primary goals of measuring and interacting
with the external world using their sensors and actuators. Although the field
of robotics has been active for many years, cooperative robotics is a relatively
new area of investigation. A space-based robotics example would be the Mars
Sojourner whose expertise was collecting scientific information on Mars’ sur-
face. This successful agent achieved its goals with constrained autonomy and
limited ability to cooperate. After Sojourner’s top-level goals were downloaded
from earth, it would perform multiple steps to achieve the desired objective.
During task execution, it would continually monitor the situation and protect
itself from unexpected events.

Immobots are immobile robotic systems that manage a distributed net-
work of physical sensors and actuators. They are inwardly focused, with goals
to monitor and maintain the general health of the overall system. There is so
far only limited experience with immobots cooperating with other agents.
A modern factory floor would be an example of an immobot. Integrated
throughout the shop floor is a network of sensors that the immobot mon-
itors along with actuators that are used when some action is needed. If a
dangerous situation arises, the human operator must be notified and the
situation explained.

These examples are all quite different, but in each of them, some form of
computer-based agency is necessary for them to carry out their mission.

The types of sensors and actuators change from agent to agent. Software
agents usually sense and manipulate the computational environment by trans-
porting information. This information is a mixture of data to use or interpret
and commands to execute. Robots’ and immobots’ primary sensors measure
and sense the physical world and their actuators modify and interact with
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the physical world. In addition to their primary sensors, many robots have
the ability to communicate with other agents to receive orders and report
problems and results.

Many agents have mobility. Mobility in robots is easy to understand since
many robots travel to achieve their objectives. Some software agents are mo-
bile and are able to move themselves (their code and data) from one computing
platform to another. Software agents may move to gain access to resources
they cannot access efficiently from their original computing platform.

Agents work in either the physical or the virtual world. When in the phys-
ical world, the sensors and actuators take up space, cost money, undergo wear
and tear, and consume resources while performing their mission. If the mis-
sion goal requires the physical world to be sensed and manipulated, then these
costs must be paid. Software agents live in a virtual world made up of one or
more computers connected by networking. In this world, moving information
fulfills the roles of sensing and acting and the only direct resource consumed
is computation.

1.4.1 Software Agents

Software agents are being used in many domains and encompass a wide range
of technologies. At least three broad categories of software agents are being
developed and applied:

Informational agents: Informational agents interact with their owner to de-
termine the types and quantities of information the owner desires. These
agents then utilize electronic sources to locate the appropriate informa-
tion, which the agent then organizes and formats for presentation to the
owner.

As an example, currently FSW provides subscription services so that
onboard applications can subscribe to spacecraft ephemeris information
and receive that information when it is calculated. An agent-based en-
hancement of this arrangement might entail a scenario like the following.
Suppose that predicted spacecraft ephemeris is generated onboard once
per second (which is typical of current spacecraft) and represents, second
by second, the best available estimation of the spacecraft position and ve-
locity. The informational agent ensures that the information is provided
once per second to applications that need it.

But occasionally the spacecraft needs to plan and schedule an orbit
stationkeeping maneuver, which would be planned so as to minimize dis-
ruption to high priority onboard activities, but could (depending on orbit
geometric constraints) disrupt scheduled routine onboard activities, in-
cluding science. To devise the plan and incorporate the maneuver into the
schedule, it needs the best predicted spacecraft ephemeris data available
for an interval covering a few days in the future from the current time.
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When the spacecraft’s onboard maneuver agent determines that this
planning must be done, the maneuver agent would contact the informa-
tional agent and describe its needs, including both the time interval to
be covered and the required modeling accuracy. The informational agent
then passes the request to the onboard ephemeris agent, which determines
whether or not it can create a special ephemeris product that can meet
the maneuver agent’s needs. If the ephemeris agent can do so, the infor-
mational agent supplies it to the maneuver agent when the data becomes
available.

If the accuracy requirement cannot be met using the latest extended
precision seed vectors that were most recently received from the ground,
the informational agent requests that the communications agent send a
message to the ground station that an ephemeris update will have to be
uplinked before the maneuver planning agent can do its job.

Normally, the ground would then schedule a tracking event to update
the ephemeris knowledge and uplink an update to the spacecraft. However,
if time is short, the ground may elect to use the improved ephemeris
information to plan and schedule the next stationkeeping maneuver and
uplink it (including the entire schedule with all the spacecraft attitude
adjustment and subsequent rocket- or thruster-firing parameters) to the
spacecraft. The informational agent would then pass on the stationkeeping
maneuver (and the whole schedule itself) to the onboard scheduling agent,
informing the maneuver agent that it no longer needs to worry about the
next stationkeeping maneuver.

Personal assistant agents: Personal assistant agents act like a personal sec-
retary or assistant. They know the owner’s goals, schedule, and personal
demands and help the owner manage his or her activities. More advanced
forms of assistants can interact with other agents or humans to offload
activities.

One could imagine adapting and employing a personal-assistant type of
agent in the spacecraft operations domain by providing such an assistant
to a planner/scheduling agent in a scenario like the following. Suppose
that normally the planner/scheduler agent receives requests to schedule
various activities from other applications (attitude control, orbit maneu-
vering, power, communications, science instruments, etc.) and interleaves
all these requests to produce a conflict-free schedule. However, occasion-
ally a request will come either from an odd source (like a realtime ground
command) or a request might arrive after the schedule has been generated
and would affect the viability of activities already scheduled.

A personal assistant could be useful to the scheduling agent as a means
to intercept the “out-of-the-blue” requests and figure out what to do with
them. In other words, the personal assistant could decide that it is a re-
quest important enough to bother the scheduler regarding changing the
existing schedule (a realtime ground command would always be that im-
portant), or could decide the request is not important enough to make
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a plan modification (in which case it might send it back requesting that
the submitter determine whether the request could be re-submitted at a
later time). The personal assistant might also determine that other agents
need to be consulted and could set up a “meeting” between the various
relevant agents to try to resolve the question.

Buying/negotiating agents: Buying/negotiating agents are asked to acquire
some product or service. The agent interacts with potential suppliers, ne-
gotiates the best overall deal, and sometimes completes the transaction.
One could imagine this type of agent adapted for use in the spacecraft op-
erations domain, acting as an electrical power agent tasked with managing
onboard power resources, in the following scenario.

Suppose that the power agent monitors overall power resources and
has allocated power so as to satisfy all customers’ needs (for example,
attitude control subsystem (ACS), propulsion, communication, thermal,
science instruments 1, 2, and 3, etc.). Suddenly the power agent realizes
that a large portion of one of the solar arrays is not producing electrical
power, leading to what will soon be an insufficient amount of power to
satisfy all the customers’ needs.

The power agent knows what the spacecraft critical functions are and
immediately allocates whatever power those functions need. There re-
mains enough power to continue to perform some science, but not all the
science currently scheduled. At this point, the negotiating agent (possibly
the power agent itself) “talks” with each of the three science instruments
and the science scheduler to decide how best to allocate the remaining
power. The scheduler points out which science (done by which instru-
ments) are the highest priority from a mission standpoint.

The science instruments (which have already been guaranteed the
power they will need to enter and maintain safemode) report what their
special needs are when they transition from safemode to do their science
(for example, warm-up times, re-calibrations, etc.). The scheduler then
produces a draft modified schedule, which the negotiating agent checks
for power validity, i.e., do they have enough power to “buy” the pro-
posed schedule. If they do, the negotiating agent contacts ground con-
trol (through the communications agent) to obtain ground control’s bless-
ing to change the schedule, while ground control figures out how to re-
store (if possible) nominal power capabilities. If ground control cannot be
contacted, the negotiating agent will approve executing the draft schedule
until it hears from the ground or some new problem develops (or, less
likely, the original problem disappears on its own).

1.4.2 Robotics

Intelligent robots are self contained mechanical systems under the guidance of
computerized control systems. Intelligent robots have a long history that goes
back to the beginning of computer control. While they share many features
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of software agents, the complex constraints placed on them by their physical
environment have forced robot designers to augment the technologies used in
software agents or to develop completely different architectures.

The sensors used by robots measure physical quantities such as environ-
mental image properties, direction and speed of motion, and effector tactile
feedback. They have many attributes that mean complexity in robot designs.
The complex nature of the physical world makes exact sensor measurements
difficult. Two readings taken moments apart or readings taken by two “iden-
tical” and “healthy” devices often differ. Physical sensors can fail in many
ways. Sometime the failure will result in a device that will give correct results
intermittently. Some sensors require complex processing and in many situa-
tions, the information is difficult to interpret. A vision system using even an
off-the-shelf charge-coupled device (CCD) array can easily supply millions of
bytes of image data every second. Image processing techniques must be used
to examine the data and determine the features of the image relevant to the
robot control system.

Actuators are used to make changes in the physical world. Examples are
opening a valve, moving a wheel, or firing an engine. Like sensors, actuators
can fail in complex ways due possibly to design deficiencies, wear and tear, or
damage caused by the environment. The designers of actuators must also deal
with complex interactions with the rest of the robot and the environment. For
example, if a robot arm and its cargo are heavy, then actions that move the
arm will also apply torque to the robot body that can significantly affect the
sensor readings in other parts of the robot and can even alter the position of
the robot on the supporting surface.

Since both sensors and actuators have complex failure modes, robust sys-
tems should keep long-term information on the status of internal systems and
develop alternative plans accounting for known failures. The unexpected will
happen, so robust systems should actively detect failures, attempt to deter-
mine their nature, and plan alternative strategies to achieve mission objec-
tives. Some systems reason on potential failures during planning in an attempt
to minimize the effects that possible sensor or actuator failures could have on
the ultimate outcome.

Robots exist in a world of constant motion. This requires the robot to
continually sense its environment and be prepared to change its plan based on
unexpected events or circumstances. For example, a robotic arm attempting
to pick up an object in a river bed must be prepared to adapt to changes
in the object’s position caused by dynamically changing river currents. Many
robotic systems use reactive control systems to perform such low-level tasks.
They continually sense and analyze the environment and their effect on it
and, within constraints, dynamically change their strategy until the objective
is achieved. The realities of reactive control systems often make them interact
poorly with the slower and symbolic, high-level control systems.

Because of their mobile nature, many robots commit a large percentage of
their resources to navigation. Sensors must support detection, measurement,
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and analysis of all relevant aspects of the environment to enable the robot to
see potential paths and recognize potential hazards. Actuators run motor and
drive trains to move the robot. Finally, complex software analyzes the current
situation in light of the goals and determine the best path to take to reach
the destination.

1.4.3 Immobots or Immobile Robots

Immobot is a recent term described by Williams and Nayak [193]. An immobot
is a large distributed network of sensors and actuators under the guidance of a
computerized control system. While immobots share core robotic technologies,
they differ in structure and perspective. Immobots have a robotic control
system surrounded by a large number of fixed sensors and actuators connected
by a network. These sensors and actuators are physically embedded in the
environment they are attempting to measure and control, and the sensors can
be located at great distances from the control system.

The primary objectives of immobots are different from those of robots.
Robots spend considerable resources (hardware, consumables, and software)
on externally focused activities such as navigation, sensing the world, and en-
vironmental manipulation. The immobot’s sensors and actuators are fixed into
their environment and their focus is internal. Their resources are dedicated
to managing the environment they control to get the system into appropriate
configurations to achieve objectives and to monitor and mitigate problems
that occur. Immobots often monitor their systems for years, and yet when
certain events occur, they need to react in real-time.

1.5 Summary

Incorporating further degrees of autonomy and autonomicity into future space
missions will be crucial not only in reducing costs, but also in making some
missions possible at all. The following chapters give an overview of how
space and ground software has operated in the past, the enabling technol-
ogy to make autonomous and autonomic missions possible, some applications
of autonomy in past systems, and future missions where this technology will
be critical.
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Overview of Flight and Ground Software

To provide a context for later chapters, this chapter presents brief summaries
of the responsibilities and functionalities of traditional ground and flight sys-
tems as viewed from the framework of a total system process, followed by
highlights of the key drivers when making flight-ground trades. Details in
the areas of attitude and orbit determination and control, mission design,
and system engineering [47,84,92,189,191], which are essential for successful
space missions, are beyond the scope of this book, but are well developed and
interesting in their own right.

2.1 Ground System Software

Traditionally, the ground system has been responsible almost entirely for
spacecraft planning and scheduling (P&S), establishment of communications
for uplink and downlink, as well as science data capture, archiving, distribu-
tion, and (in some cases) processing. The ground has also shouldered the bulk
of the calibration burden (both science and engineering) and much of the job
of health and safety (H&S) verification. And when major onboard anoma-
lies or failures arise, flight operation team (FOT) personnel are charged with
determining the underlying cause and developing a long-term solution.

So the traditional ground system has occupied the ironic position of having
most of the responsibility for managing the spacecraft and its activities, and
yet (with the exception of the planning and scheduling function) relying on
the spacecraft to provide nearly all information required for carrying out those
responsibilities. Today, in a more conventional workplace setting, this kind of
work organization might be analyzed (from a reengineering perspective) to
be an artificially fragmented process with unnecessary management layering
leading to degraded efficiency and wasteful costs.

In the context of reengineering, the standard solution to this sort of prob-
lem is to re-integrate the fragmented process or processes by empowering the
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local areas where the information originates, and eliminating unneeded man-
agement layers whose only function is to shuttle that information between
boxes on a classic pyramid-shaped table of organization while providing non-
value added redundant checking and counter-checking.

Leaving the conventional fully earth-embedded workplace behind and re-
turning to the modern spacecraft control center, the reengineering philosophy
is still a valid one, except now the analysis of the system’s fundamental pro-
cesses must extend into the spacecraft’s (or spacecrafts’) orbit (or orbits) and
must include trades between ground system functionality and flight system
functionality, as will be discussed later.

A prerequisite to perform these flight-ground trades is to identify all the
components of the spacecraft operations process, initially without considering
whether that component is performed onboard or on the ground. The following
is a breakdown of operations into a set of activity categories, at least in the
context of typical robotic (i.e., uncrewed) space missions. The order of the
categories is, roughly, increasing in time relative to the end-to-end operations
process, from defining spacecraft inputs to utilizing spacecraft outputs, though
some activities (such as fault detection and correction, FDC) are continuous
and in parallel with the main line.

1. P&S
2. Command loading (including routine command-table uplink)
3. Science schedule execution
4. Science support activity execution
5. Onboard engineering support activities (housekeeping, infrastructure,

ground interface, utility support functions, onboard calibration, etc.)
6. Downlinked data capture
7. Data and performance monitoring
8. Fault diagnosis
9. Fault correction

10. Downlinked data archiving
11. Engineering data analysis/calibration
12. Science data processing/calibration

Many of the operations activity groups listed above currently are partially
automated at this time (for example, P&S, and data and performance moni-
toring), and may well become fully autonomous (within either the ground or
flight systems) in the next 10 years. Some of these functions are already largely
performed autonomously onboard. A working definition of the difference be-
tween autonomy and automation was supplied in Chap. 1. A description of the
current state of the art of onboard autonomy/automation will be supplied in
Chap. 3. Next, we will briefly discuss each of the steps in the overall spacecraft
operations process.
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2.1.1 Planning and Scheduling

Especially for low earth orbit (LEO) missions, the ground system P&S func-
tion traditionally has been responsible for generating a detailed desired opti-
mized timeline of spacecraft activities, sometimes (as in the case of Hubble
Space Telescope (HST)) based on rather complex predictive modeling of the
spacecraft’s environment and anticipated behavior. The ground system then
recasts (and augments) the timeline information in an appropriate manner
for processing on the spacecraft. The timeline is then executed onboard via a
(largely) time-driven processor. Often along with the nominal, expected time-
line, the ground interleaves it with a large array of alternate branches, to be
executed in place of the nominal timeline when certain special conditions or
anomalies are encountered. The resulting product is a highly coupled, time-
dependent mass of data, which, in the past, occupied a substantial fraction of
available onboard storage.

Ironically, the ground system’s creation of the timeline data block is it-
self a process almost as highly time-dependent as the execution of the actual
timeline onboard. HST provides a particularly complex example. Long-term
scheduling (look-ahead intervals of several months to a year) was used to
block-out accepted proposal targets within allowed geometric boundary con-
ditions. The geometry factors are typically dominated by Sun-angle consid-
erations, with additional contributions from issues such as moon avoidance,
maximizing target orbital visibility, obtaining significant orbital dark time or
low sky brightness, and meeting linkages between observations specified by
the astronomer.

On the intermediate term (a few weeks to a couple of months), LEO space-
craft targets were ordered and scheduled relative to orbital events such as
South Atlantic Anomaly (SAA) entrance/exit and earth occultations, and the
duration of their associated observations was estimated based on required ex-
posure time computations. Concurrently, support functions requiring schedul-
ing, like communications, were interleaved with the science-target scheduling.

Lastly, on the short term (a day to a week), final detailed scheduling (both
of science targets and support functions) to a precision of seconds was per-
formed using the most accurate available model data (for example, the most
recent predicted spacecraft ephemeris), with the possibility for including new
targets (often referred to as targets of opportunity (TOOs)) not previously
considered.

At times, the software needed to support the intermediate and short-term
scheduling process performed by the ground system has been massive, com-
plex, and potentially very brittle. Further, multiple iterations of the process,
frequently involving a lot of manual intervention (at considerable expense),
were often required to produce an error-free schedule. Although considerable
progress has been made in streamlining this process and reducing its associ-
ated costs, the mathematical modeling remains fairly sophisticated and some
amount of operational inefficiency is inevitable due to the necessity of relying
on approximations during look-ahead modeling.
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2.1.2 Command Loading

By contrast to the P&S function, command loading is quite straightforward.
It consists of translating the directives output from planning and scheduling
(plus any realtime directives, table loads, etc., generated at and output from
the control center) into language/formats understandable by the flight com-
puter and compatible with the communications medium. As communications
protocols and the input interfaces to flight computers become more standard-
ized, this ground system function will become steadily more automated via
commercial off-the-shelf (COTS) tools.

2.1.3 Science Schedule Execution

Science schedule execution refers to all onboard activities that directly relate
to performing the science mission. They include target acquisition, science in-
strument (SI) configuration, and SI operation on target (for example, exposure
time management).

2.1.4 Science Support Activity Execution

Science support activities are those that are specifically performed to ensure
the success of the science observation, but are not science observations them-
selves, nor are they routine housekeeping activities pertaining to maintenance
of a viable observing platform. They are highly mission/SI specific activities
and may include functionality such as optical telescope assembly (OTA) cal-
ibration and management and SI direction of spacecraft operation (such as
pointing adjustment directives). These activities may be performed in imme-
diate association with ongoing science, or may be performed as background
tasks disjoint from a current observation. Although executed onboard, much
(if not all) of the supporting calculations may be done on the ground and the
results uplinked to the flight computer in the form of tables or commands.

2.1.5 Onboard Engineering Support Activities

Onboard engineering support activities are routine housekeeping activities
pertaining to maintenance of a viable observing platform. The exact form of
their execution will vary from spacecraft to spacecraft, but general categories
are common within a mission type (e.g., geosynchronous earth orbit (GEO)
earth-pointer, LEO celestial-pointer, etc.). Engineering support activities in-
clude angular momentum dumping, data storage and management, antenna
pointing, attitude and orbit determination and/or prediction, attitude control,
and orbit stationkeeping. These activities may be performed in immediate as-
sociation with ongoing science, or may be performed as background tasks
disjoint from a current observation. Again, although executed onboard, some
of the supporting calculations may be done on the ground and the results
uplinked to the flight computer in the form of tables or commands.
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2.1.6 Downlinked Data Capture

Capture of downlinked telemetry data is rather straightforward and highly
standardized. This ground system function will become steadily more auto-
mated via COTS tools.

2.1.7 Performance Monitoring

Monitoring of spacecraft performance and H&S by checking the values of
telemetry points and derived parameters is a function that is currently shared
between flight and ground systems. While critical H&S monitoring is an on-
board responsibility (especially where triggers to safemode entrance are con-
cerned), the ground, in the past, has performed more long-term nonrealtime
quality checking, such as hardware component trending and accuracy analysis,
as well as analysis of more general performance issues (e.g., overall observing
efficiency).

2.1.8 Fault Diagnosis

Often the term “FDC” has been used in connection with spacecraft H&S
autonomy. Such terminology tends to conceal an important logical step in the
process, which in the past has been exclusively the preserve of human systems
engineers. This step is the diagnosis of the fundamental cause of problems
based on measured “symptoms.”

Traditionally, prior to launch, the systems and subsystem engineers would
identify a whole host of key parameters that needed to be monitored on-
board, specify tolerances defining in-range vs. out-of-range performance, and
identify FSW responses to be taken in realtime and/or FOT responses to be
taken in near-realtime. But what has actually occurred is that the engineers
have started with a set of failure scenarios in mind, identified the key param-
eters (and their tolerances/thresholds) that would measure likely symptoms
of those failures, figured out how to exclude possible red-herrings (i.e., differ-
ent physical situations that might masquerade as the failure scenario under
consideration), and (in parallel) developed corrective responses to deal with
those failures. So the process of transitioning from the symptoms specified by
the parameters to the correction action (often a static table entry) that con-
stitutes the diagnosis phase conceptually actually occurs (prelaunch) in the
reverse order and the intellectual content is sketchily stored rigidly onboard.

In the postlaunch phase, the systems engineers/FOT may encounter an
unanticipated problem and must perform a diagnosis function using the
telemetry downlinked to the ground. In such cases, operations personnel must
rely on their experience (possibly with other spacecraft) and subject matter
expertise to solve the problem. When quick solutions are achieved, the pro-
cess often used is that of pattern recognition (or, more formally, case-based
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reasoning, as will be discussed later), i.e., the recognition of a repetition of
clues observed previously when solving a problem in the past. The efficient
implementation of a capability of this sort lies in the domain of artificial in-
telligence. Failing at the pattern recognition level, a more lengthy general
analytical phase (the human equivalent of state modeling) typically ensues
that is manually intensive and at times very expensive.

So a spacecraft called upon to diagnose and isolate its own anomalies is
being asked not just to emulate the capabilities of human beings. In fact, it
is being asked to emulate the capabilities of the most senior and knowledge-
able individuals associated with the operations staff. Therefore, as a FSW
implementation of this function must by its nature be extremely costly, a
very careful trade must be conducted prior to migrating this function to the
spacecraft.

2.1.9 Fault Correction

Currently at GSFC, generating a plan to correct an onboard anomaly, fault,
or failure is exclusively a ground responsibility. These plans may be as simple
as specification of a mode change, or as complex as major hardware reconfigu-
ration or FSW code modification. In many cases, canned solutions are stored
onboard for execution in response to an onboard trigger or ground command,
but creation of the solution itself was done by ground system personnel, either
in immediate response to the fault, or (at times) many years prior to launch,
in anticipation of the fault. And even where the solution has been worked out
and validated years in advance, a conservative operations philosophy has of-
ten kept the initiation of the solution within the ground system. So at GSFC,
although future technical improvements in onboard computing power and ar-
tificial intelligence tools may allow broader onboard independence in fault cor-
rection, major changes in operations management paradigms will be needed
before we see more widespread migration of this functionality onboard.

2.1.10 Downlinked Data Archiving

Archiving of downlinked telemetry data (including, in some cases, distribu-
tion of data to users) is rather straightforward and highly standardized. This
ground system function will become steadily more automated via COTS tools.

2.1.11 Engineering Data Analysis/Calibration

Traditionally, nearly all spacecraft engineering analysis and calibration func-
tions (with the exception of gyro drift-bias calibration and, for the small
explorer (SMEX) missions, magnetometer calibration) have been per-
formed on the ground. These include attitude-sensor alignment and poly-
nomial calibrations, battery depth-of-discharge and state-of-charge analyzes,
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communications-margins evaluations, etc. Often the work in question has
been iterative and highly manually intensive. Some progress has been made
toward further automating of at least portions of these tasks, yielding reduced
production costs. It appears at this time to be less significant, from a purely
cost basis, as to whether this functionality is performed onboard or on the
ground.

2.1.12 Science Data Processing/Calibration

Science data processing and calibration have been nearly exclusively a ground
system responsibility for two reasons. First, the low computing power of radia-
tion hardened onboard computers (OBCs) relative to that available in ground
systems has limited the degree to which science data processing can be per-
formed onboard. Second, the science community generally has insisted that all
the science data be brought to the ground. Their position arises from a con-
cern that the data might not be processed as thoroughly onboard as it might
be on the ground, and that the science data users often process the same data
multiple times using different algorithms, calibrations, etc., sometimes years
after the data were originally collected.

Given the science customers’ strong views on this subject, independent
of potential future advances in radiation hardened processing capabilities, it
would be ill-advised to devise a mission concept that relies exclusively on such
onboard autonomy features. A more appropriate approach would be to offer
these features as options to users, thereby allowing them to take advantage
of cost-saving opportunities as they deem appropriate. One can envision a
dual scenario where missions not only would send back the raw data for the
science community, but also would process it onboard to permit the exercise of
onboard autonomy through which the spacecraft might spot potential TOOs
and take unplanned science observations without having to wait for possibly
(likely) untimely instructions from ground control.

2.2 Flight Software

Although highly specialized to serve very precise (and often mission-unique)
functions, FSW must simultaneously satisfy a broad range of competing needs.
First, it is the FSW that provides the ground system an interface with the
flight hardware, both engineering and science. Since spacecraft hardware com-
ponents (including SIs) are constantly being upgraded as their technologies
continue to advance, the FSW elements that communicate to the hardware
components must regularly be updated as well. Fortunately, as the interface
with the ground system has largely been standardized, the FSW elements that
communicate to the ground remain largely intact from mission to mission. It is
in fact the ability of the FSW to mask changes in flight hardware input/output
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(I/O) channels that has provided the ground system a relatively stable envi-
ronment for the development of standardized COTS products, which, in turn,
has enabled dramatic reductions in ground system development costs.

Second, it is the responsibility of the FSW to respond to events that the
ground system cannot deal with because of the following:

1. The spacecraft is out of contact with the ground
2. The response must be immediate
3. Critical spacecraft or payload issues are involved, or
4. The ground lacks key onboard information for formulating the best re-

sponse

Historically, the kinds of functions allocated to FSW for these reasons were
ones such as the attitude control subsystem (ACS), safemode processing and
transition logic, fault detection and correction, target acquisition logic, etc.

Third, the FSW can be used to streamline (at least in part) those (pre-
viously considered ground system) processes where an onboard, autonomous
response is cheaper or more efficient. In many of these cases, routine processes
may first be performed manually by operations personnel, following which au-
tomated ground software is developed to reduce costs. After the automated
ground process has been fully tested operationally, the software or algorithms
may then be migrated to the flight system where further cost reductions may
be achievable.

Fourth, the process may be performed onboard in order to reduce demand
on a limited resource. For example, downlink bandwidth is a valuable, limited
quantity on most missions, either because of size/power constraints on space-
craft antennas/transmitters, or because of budget limitations on the size of
the ground antenna. In such cases, FSW may be used to compress the out-
put from payload instruments or prune excessive detail from the engineering
telemetry stream to accommodate a smaller downlink data volume.

As can be seen from even casual consideration of these few examples, the
demands placed on FSW have a widely varying nature. Some require high
precision calculation of complex mathematical algorithms. These calculations
often must be performed extremely quickly and the absolute time of the calcu-
lation must be accurately placed relative to the availability of key input data
(here, we are referring to the data-latency issue). On the other hand, some
FSW functions must process large quantities of data or must store and manage
the data. Other functions must deal with intricate logic trees and orchestrate
realtime responses to anomalies detected by self-monitoring functions. And
because the FSW is the key line of defense protecting spacecraft H&S, all
these functions must be performed flawlessly and continuously, and for some
missions (due to onboard processor limitations), must be tightly coupled in
several processing loops.
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The following is a list of the traditional FSW functions:

1. Attitude determination and control
2. Sensor calibration
3. Orbit determination/navigation (traditionally orbit maneuver planning

has been a ground function)
4. Propulsion
5. Executive and task management
6. Time management
7. Command processing (target scheduling is traditionally a ground

function)
8. Engineering and science data storage and handling
9. Communications

10. Electrical power management
11. Thermal management
12. SI commanding
13. SI data processing
14. Data monitoring (traditionally no trending)
15. FDC
16. Safemode (separate ones for spacecraft and payload instruments)

2.2.1 Attitude Determination and Control, Sensor
Calibration, Orbit Determination, Propulsion

Often in the past, attitude determination and control, sensor calibration, or-
bit determination/navigation, and propulsion functions have resided within a
separate ACS processor because of the high central processing unit (CPU) de-
mands of its elaborate mathematical computations. As OBC processing power
has increased, this higher cost architecture has become more rare, and nowa-
days, a single processor usually hosts all the spacecraft bus functions. Attitude
determination includes the control laws responsible for keeping the spacecraft
pointing in the desired direction and reorienting the spacecraft to a new di-
rection. Currently, at GSFC, onboard attitude sensor calibration is limited to
gyro drift-bias calibration (and for some spacecraft, a coarse magnetometer
calibration).

Orbit determination may be accomplished by measurement (global posi-
tioning system (GPS) for example), solving the equations of motion, or by
use of an orbit propagator. Traditionally, orbit maneuver planning has been
the responsibility of the ground, but some experiments have been performed
migrating routine stationkeeping-maneuver planning onboard, e.g., Earth
Observing-1 (EO-1). Regardless of whether the orbit-maneuver planning is
done onboard or on the ground, the onboard propulsion subsystem has re-
sponsibility for executing the maneuvers via commands to the spacecraft’s
thrusters, which also at times may be used for attitude control and momen-
tum management.
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2.2.2 Executive and Task Management, Time Management,
Command Processing, Engineering and Science Data Storage
and Handling, Communications

Command and data handling (C&DH) includes the executive, time man-
agement, command processing, engineering- and science-data storage, and
communication functions. The executive is responsible for coordinating and
sequencing all the onboard processing, and separate local executives may be
required to control lower level processing within a subsystem. The command
processor manages externally supplied stored or realtime commands, as well as
internally originated commands to spacecraft sensors, actuators, etc. Again,
depending on the design, some command management may be under local
control.

The C&DH also has management responsibility for engineering- and
science-data storage, in the past via tape recorders, but nowadays via solid
state storage. Depending on the level of onboard sophistication, much of the
bookkeeping job may be shared with the ground, though the trends are to-
ward progressively higher levels of onboard autonomy. Telemetry uplink and
downlink are C&DH responsibilities as well, though articulation of moveable
actuators (such as high gain antenna (HGA) gimbals) as well as any sup-
porting mathematical modeling associated with communications (e.g., orbit
prediction) are typically the province of the ACS.

2.2.3 Electrical Power Management, Thermal Management,
SI Commanding, SI Data Processing

Critical H&S functions like spacecraft electrical power and thermal manage-
ment are usually treated as separate subsystems, though the associated pro-
cessing may be distributed among several physical processor locations (or
located in the spacecraft bus processor) depending on the design of the flight
system. This distribution of subfunctionality is particularly varied with re-
gard to SI commanding and data processing, given the steadily increasing
power of the SIs’ associated microprocessors. Currently, any onboard process-
ing that is associated with a spacecraft’s Optical Telescope Assembly (OTA)
falls within the context of the SI functions, though as OTA processing becomes
more autonomous with the passage of time, it could well warrant independent
treatment.

2.2.4 Data Monitoring, Fault Detection and Correction

The processing associated with data monitoring and FDC is even more
highly distributed. Typically, the checking of individual data points and the
identification of individual errors (with associated flag generation) are done
locally, often immediately after the measurement is read out from its sensor.
On the other hand, fault correction is typically centralized, so responses to
multiple faults can be dealt with in a systematic manner.



2.3 Flight vs. Ground Implementation 35

2.2.5 Safemode

The last item, safemode, may include several independent subfunctions, de-
pending on the cost and complexity of the spacecraft in question. Typical
kinds of safemode algorithms include Sun acquisition modes (to maintain
power positive, maintain healthy thermal geometry, and protect sensitive op-
tics), spin-stabilized modes (to maintain attitude stability), and inertial hold
mode (to provide minimal perturbation to current spacecraft state). Usually,
the processing for one or more of these modes is located in the main space-
craft bus processor, but often in the past, there has been a fall back mode in a
special safemode processor, the attitude control electronics (ACE) processor,
in case the main processor itself has gone down. In addition to its safemode
responsibilities, the ACE was the interface with the coarse attitude sensors
and actuator hardware, obtaining their output data, and providing command
access. The individual SIs themselves also have separate safemode capabili-
ties, executed out of their own processor(s). Anomalies causing the main bus
processor to become unavailable are dealt with via a special uplink-downlink
card, which, in the absence of the main processor, enables continued (though
limited) ground communication with the spacecraft.

2.3 Flight vs. Ground Implementation

Increasing levels of onboard autonomy are being enabled by increases in flight
data system capacities (CPU, I/O, storage, etc.), as well as by the new ap-
proaches/structures for FSW design and development (object-oriented design,
expert systems, remote agents, etc.). In particular, operational activity cat-
egories that previously were virtually the private domain of the ground sys-
tems (such as P&S, engineering data analysis and calibration, and science
data processing and calibration) now provide exciting opportunities for shift-
ing responsibility from the ground to the flight component in order to take
advantage of the strengths inherent in a realtime software system in direct
contact with the flight hardware.

The key advantages possessed by the flight component over the ground
component are immediacy, currency, and completeness. Only the flight
component can instantly access flight hardware measurements, process the
information, and respond in realtime. For example, for performance of basic
spacecraft functions such as attitude control and thermal/power management,
only the FSW has direct access in realtime to critical information needed to
define the spacecraft’s operational state, as well as the direct access to the
spacecraft actuator hardware required to create and maintain the desired
state. The FSW is also the only component of the integrated flight/ground
operational system with full-time access to all relevant information for appli-
cations such as fault detection and SI target acquisition.

By contrast, in the past, the advantage of the ground over the flight seg-
ment has been the larger, more powerful ground computers that (for example)
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have enabled the ground system to execute extremely intricate schedule op-
timization algorithms using highly complex predictive models. However, as
the power of the flight computers continues to grow with time, a partial shift
of even some of these traditional ground monopolies may be justified to take
advantage of the realtime information exclusively available onboard. In fact,
as these hardware differences between the two platform environments narrow,
the distinction between flight-based vs. ground-based may begin to blur some-
what, bringing with it the potential for more mission-customized allocation
of functions between flight and ground systems.



3

Flight Autonomy Evolution

As new ideas surface for implementing advanced autonomous functions
onboard spacecraft, the extent to which spacecraft already possess au-
tonomous capability is often not fully appreciated. Many of these capabilities,
in fact, have been in place for so long that they have become absorbed within
the flight software (FSW) infrastructure, and as a result, typically are not
even considered when FSW autonomy is discussed.

Another aspect of flight autonomy not often formally recognized is that the
current state of flight autonomy is actually the product of an implicit process
driven by the users and developers of FSW. Each autonomous function in
place onboard NASA GSFC spacecraft has been developed either in response
to the needs of the users of spacecraft, both the science users and the flight
operations team (FOT), or in response to FSW development team insights
into how their product can be made more useful to its customers. Because
of the rightfully conservative nature of all three groups (scientists, FOT, and
FSW developers), the pace of autonomy introduction tends to be measured,
evolutionary, and targeted to very specific needs and objectives, rather than
sweeping and revolutionary.

Also, the budget process, which typically targets funds to the performance
of individual missions rather than allocating large research and development
(R&D) funds for the development of generic functionality for future missions,
tends to select against funding of major change and select for funding of in-
cremental change. As mission budgets have steadily shrunk, funds available
to mission project managers must be dedicated more to flight-proven auton-
omy functionality applicable to meeting immediate mission needs, as opposed
to being used for risky, breakthrough autonomy concepts that might greatly
reduce costs of both the current and other missions.

To provide a somewhat more balanced perspective on this issue, the evolv-
ing role of flight autonomy in spacecraft operations will be described within
the context of uncrewed space missions from the following perspectives:
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1. The reasons for providing flight autonomy and what autonomous
capabilities have been developed to support these needs

2. The general time frame in which these capabilities have been developed
3. Possible future trends in flight autonomy development

While the material in this chapter relates particularly to science missions
(e.g., astronomical observatories, communications satellites, and satellites that
observe the surface of the earth), it should be applicable as well to the de-
velopment of missions that conduct robotic explorations of planets, moons,
asteroids, etc. Many of the philosophies, cultures, budgetary constraints, and
technologies span across all groups and agencies developing and flying any
type of uncrewed mission. Brought to the fore by crewed missions, however,
are numerous different considerations and constraints under which it makes
little sense to try to design crewed assets with autonomy. Consequently, crewed
missions are beyond the scope of this book.

3.1 Reasons for Flight Autonomy

Flight autonomy capabilities typically are developed at NASA Goddard Space
Flight Center (GSFC) in order to

1. Satisfy mission objectives
2. Support spacecraft operations
3. Enable and facilitate efficient spacecraft operations

The object of a science mission, of course, is to perform the science for which
the spacecraft has been constructed in an accurate and efficient manner. As
the lifetime of a spacecraft (and the mission as a whole) is limited both by
onboard hardware robustness and budget allocations, it is crucially important
to optimize science data gathering as a function of time. And since all science
observations are not of equal importance, the optimization strategy cannot
be simply a matter of maximizing data bit capture per unit time. So a GSFC
science mission must be conducted in such a manner as to support efficient,
assembly line-like collection of data from routine, preplanned observations
while still permitting the flexibility to break away from a programmed plan
to exploit unforeseen (in the short term) opportunities to perform time-critical
measurements of ground-breaking significance.

Reconciling these inherently contradictory goals requires a subtle inter-
play between flight and ground systems, with carefully traded allocations of
responsibility in the areas of schedule planning and execution. Typically, the
superior computing power of the ground system is utilized to optimize long-
and medium-range planning solutions, while the quick responsiveness of the
flight system is used to analyze and react to realtime issues. In the next
section, we will discuss what autonomous capabilities have been developed to
support the flight system’s role, and how they enable higher levels of efficiency
and flexibility.
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To achieve all of its mission objectives, a spacecraft must maintain near-
nominal performance over a minimum lifetime. This day-to-day maintenance
effort implies the presence of an onboard infrastructure supporting routine
activities such as command processing and resource management, as well
as performance of these activities themselves. Furthermore, since a space-
craft’s lifetime may be compromised by onboard hardware failures, latent
software bugs, and errors introduced operationally by the ground system, the
infrastructure must include the capability to safeguard the spacecraft against
further damage or loss from these causes. Therefore, the flight system must
routinely monitor spacecraft health and, on detection of an anomaly, either
fix the problem immediately so that the mission can continue, or configure
the spacecraft so that (at a minimum) it remains in a benign, recoverable
state until the problem can be analyzed and solved by operations support
personnel.

In addition, to accomplish its mission objectives as economically as pos-
sible, the entire system (spacecraft platform and payload, flight data system,
and ground system) must be developed not only within increasingly strin-
gent cost constraints, but must also be designed so as to make the conduct
of the mission as inexpensive as possible over the entire mission lifetime. To
achieve this, the flight system must be designed to carry out spacecraft activi-
ties accurately, efficiently, and safely, while at the same time performing these
activities in a manner that reduces the complexity and mission-uniqueness of
the flight and ground system, and facilitates the reduction of FOT staffing
during routine operations.

In the following sections, each of these three major drivers for flight au-
tonomy will be examined relative to more specific objectives or goals to be
achieved and the means by which these goals are achieved. A summary of this
breakdown is provided1 in Table 3.1.

3.1.1 Satisfying Mission Objectives

GSFC spacecraft mission objectives can be grouped in three major classifica-
tions:

1. Science execution
2. Resource management
3. Health and Safety maintenance

Put briefly, these objectives encompass what must be done to perform science
efficiently, what onboard resources must be managed in support of science
execution, and what precautions must be taken to safeguard the spacecraft
while these activities are being performed. The flight system has a critical

1In this table and frequently in this book, the simple term “ground” will be
used to mean “ground system” or “ground operations” in reference to personnel
and spacecraft control capabilities on earth.
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Table 3.1. Reasons for flight autonomy

Reason Objective Means

Satisfy Efficient science execution Stored commanding
mission Autonomous pointing control
objectives Autonomous target acquisition

Onboard science data packaging
Efficient resource Manage computing power
management Manage internal data transfer

Manage time
Manage electrical power
Manage data storage
Manage telemetry bandwidth
Manage angular momentum
Manage propulsion fuel

Health and safety Monitor spacecraft functions
maintenance Identify problems

Institute corrections

Support Command validation Verify transmission accuracy
infrastructure associate command with appl.

Verify arrival at application
Check content validity
Verify successful execution

Request orchestration Stored commands
Realtime ground requests
Autonomous onboard commands
Event-driven commanding

Efficient resource See list above
management
H&S maintenance See list above

Efficient Access to S/C systems Commanding infrastructure
spacecraft Model parameter modification
operations FSW code modification

Insight into S/C systems Optimized telemetry format
Multiple telemetry formats
Telemetry filter tables

Lifecycle cost minimization Remove ground from loop
Break couplings between functions
Exploit S/C realtime knowledge

role to play in each of these areas, both by reliably and predictably executing
the ground system’s orders and by autonomously reacting to realtime events
to provide enhanced value above and beyond a “simple-minded” response to
ground requests. In the following subsections, each of the three objectives
will be discussed in a general fashion, with some specific examples cited to
illustrate general concepts and principles. Later, these topics will be touched
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upon again in a more detailed fashion when current and possible future flight
system autonomous capabilities are discussed.

Flight Autonomy Enablers of Efficient Science Execution

For science that is predictable and can be scheduled in advance (e.g., science
that is characteristic of a LEO celestial-pointer spacecraft), the objective is to
pack as much science into the schedule as possible with minimal time overhead
or wastage. Traditionally, it is the responsibility of the ground system to solve
the “traveling salesman” problem by generating an error-free schedule that
optimizes data collection per unit time elapsed. Although schedule generation
is the most complex part of the problem, the ground cannot cause its schedule
to be executed effectively without the cooperation and support of several
autonomous flight capabilities.

Command Execution

First, the flight system must execute the activities specified by the ground at
the required times. Traditionally, the ground-generated schedule has defined
both the activities and their execution times in a highly detailed manner. An
activity can be viewed as a collection of directives that specify the steps that
must be performed for the activity to be completed successfully. The directives
themselves are decomposed into actual flight hardware or software commands
that cause the directives to be executed. Depending on the sophistication of
the flight system, the decomposition of the directives into commands may
be done by the ground system and uplinked in detail to the spacecraft, or
may be specified at a much higher level by the ground system, leaving the
decomposition job to the flight system. In practice, most missions share the
decomposition responsibility between ground and flight systems, trading on-
board storage resources vs. onboard processing complexity.

However the decomposition issues are decided, the collection of directives
and commands are uplinked and stored onboard until executed by the flight
system in one of the following three ways: absolute-timed, relative-timed, or
conditional. Note that this discussion is limited to stored commanding, as
opposed to other approaches for commanding the spacecraft in realtime. The
way the FSW orchestrates the potentially competing demands of stored com-
manding with realtime commanding – the commanding originating externally
from the ground as well as internally from within the flight system – will be
touched upon in later sections dealing with FSW infrastructure.

Absolute-timed commands include an attached time specified by the
ground defining precisely when that command is to be executed. This ap-
proach is most appropriate for a ground scheduling program that accurately
models both planned spacecraft activities as well as ground track and external



42 3 Flight Autonomy Evolution

events or phenomena. It allows an extremely efficient packing of activities, pro-
vided no serious impacts occur due to unforeseen events. Major anomalous
events would break the plan and potentially invalidate all downstream events.
In such cases, science observations (especially for LEO celestial-pointers)
might have to be postponed until the ground scheduling system can re-plan
and intercept the timeline. Alternatively, for events only affecting the current
observation, the spacecraft could simply skip the impacted observation and
recommence science activities (supported by any required engineering activi-
ties, such as antenna slewing) at the start time of the next observation. This
latter alternative can be particularly appropriate for earth-pointers, where
the spacecraft’s orbit will automatically carry it over the next target. For
such cases, resolving a problem in the scheduled timeline can simply involve
“writing off” the problem target and reconfiguring the spacecraft and SI so
that they are in the correct state when the orbit ground track carries them
over the next target. Minor anomalous events can be handled by padding the
schedule with worst-case time estimates, thereby reducing the operational ef-
ficiency, or uplinking potentially extensive “what if” contingency scenarios,
increasing demands on onboard storage.

Use of relative-timed commands reduces somewhat the accuracy demands
on ground-system modeling. The ground system still specifies an accurate
delta-time (with respect to a spacecraft or orbital event) for executing the
activity, but the flight system determines when that key event has occurred.
Although the treatment of timing issues differs in the two cases (absolute- vs.
relative-timed), the treatment of the activity definition (i.e., how the activity
is decomposed into directives and commands) would remain the same.

By contrast, conditional commanding requires the flight system to make
realtime decisions regarding which directives or commands will be executed,
as well as when they will be executed. When conditional commanding is em-
ployed, the ground specifies a logic tree for execution of a series of directives
and/or commands associated with the activity, but the flight system deter-
mines when the conditions have been met for their execution, or chooses be-
tween possible branches based on observed realtime conditions. For current
GSFC spacecraft, conditional commanding typically is used for detailed-level
commanding within a larger commanding entity (e.g., an activity), with time-
padding used to ensure that no time conflicts will occur, regardless of what
decisions are made by the flight system within the conditional block. These
various commanding methods provide an infrastructure enabling accurate and
effective execution of ground-specified activities. Traditional applications uti-
lizing this commanding infrastructure include pointing control and SI con-
figuration. Conditional commanding can also enable more flexible onboard
planning and scheduling functions than would be achieved through absolute-
timed commanding, permitting selective target scheduling and autonomous
target rescheduling (e.g., High Energy Astronomical Observatory-2’s (HEAO-
2’s) very flexible onboard scheduling scheme driven by its target list).
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Pointing Control

The second major enabler of science execution is autonomous pointing control.
Without autonomous spacecraft pointing control, efficient spacecraft opera-
tions would be impossible. In fact, the survival of the spacecraft itself would
be highly unlikely for other than passively stabilized spacecraft. For space-
craft requiring active attitude control, it is the exclusive responsibility of the
flight system to maintain the spacecraft at the desired fixed pointing within
accuracy requirements, to reorient the attitude to a new pointing (as specified
by the ground), or (in the case of survey spacecraft) to cause the attitude to
follow a desired trajectory. Put somewhat more simply, it is the flight system’s
job to point the spacecraft in the direction of a science target and maintain
that pointing (or pointing trajectory) throughout the course of the science
data collection.

Once the required spacecraft orientation for science activities has been
achieved, the SI(s) must be configured to support target identification, ac-
quisition, and observation. Although target identification and acquisition can
be performed with the ground system “in the loop” for missions where real-
time communications are readily available and stable, typically optimization
of operations requires that these functions be conducted autonomously by the
flight system. For most missions, routinely supplying realtime science data to
the ground is precluded by orbit, geometry considerations, timing restrictions,
and/or cost.

As a general rule, the flight system will autonomously identify the science
target (sometimes facilitated by small attitude adjustments) and acquire the
target in the desired location within the field of view (FOV) of the SI (also, at
times, supported by small spacecraft re-orientations). Once these goals have
been achieved, the flight system will configure the SI(s) to perform the de-
sired observation in accordance with the activity definition uplinked by the
ground. Note that the flight system may even be assigned some of the respon-
sibility for defining the details for how the science observation activity should
be performed. This autonomy is enabled by relative-timed and conditional
commanding structures. For example, for a LEO spacecraft whose SIs are ad-
versely impacted by energetic particles within the South Atlantic Anomaly
(SAA), the flight system could determine start and stop times for data tak-
ing relative to exit from and entrance into SAA contours. Or, based on its
realtime measurement of target intensity, the flight system could determine
via conditional commanding how long the SI needs to observe the target to
collect the required number of photons.

Data Storage

Once a target has been successfully acquired and science data start flowing out
of a SI, the flight system must store the data onboard in a manner such that
unnecessary burdens are not forced on the ground system’s archive and science
data processing functions. To that end, the FSW may evaluate science data
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as they are generated. Data passing validation can then be routed to onboard
storage, while data failing validation can be deleted, saving onboard storage
space, downlink bandwidth, and ground system processing effort. In practice,
a requirement of many science missions is that all the raw science data be
downlinked; so often this potentially available flight capability is not imple-
mented or exercised. Even for those missions, however, lossless compression
of data may be performed onboard (usually in hardware), yielding significant
savings in onboard space and bandwidth (as much as a 3-to-1 reduction in
data without loss of information content), while at the same time affording
the science customer full information, even to the point of backing out the
original raw science data. Finally, the flight system can play a valuable role by
exploiting the realtime availability (onboard) of both science and engineering
data to synchronize time-tagging and even to package data into organized files
tailored to the needs of the customer for whom those data are targeted.

Flight Autonomy Enablers of Efficient Resource Management

In addition to these fundamental applications (command execution, pointing
control, and data storage) that are the primary components of conducting
science, the flight system must also support auxiliary applications associated
with managing limited onboard resources, including computing power, inter-
nal data transfer, electrical power, data storage, telemetry downlink band-
width, angular momentum, and rocket/thruster propellant.

Computing Power and Internal Data Transfer

The first two items, computing power and internal data transfer, are man-
aged both through the design of the FSW and realtime monitoring of FSW
performance. Traditionally, at its high level design, FSW functions have been
carefully scheduled so as to ensure that adequate computational resources are
available to permit the completion of each calculation within timing require-
ments without impacting the performance of other calculations. Although the
FSW may often be operated below peak intensity levels, the FSW is designed
to be capable of handling worst case demands. Similarly with respect to inter-
nal data flows, the bus capacities are accounted for when analyzing the feasi-
bility of moving calculation products, sensor output, and commands through
the flight data system. To deal with anomalous or unexpected conditions caus-
ing “collisions” between functions from either a CPU or I/O standpoint, the
flight system monitors itself in realtime and, in the event of a conflict, will
autonomously assign priority to those functions considered most critical. If
an acceptable rationing of resources is not proved to be possible, or if the
conflict persists for an unacceptably long period of time, the flight system
(or a major component of the flight system such as an individual SI) will
autonomously transition itself to a state or mode of reduced functionality
(usually a safemode) with correspondingly lower CPU and/or I/O demands.
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Power Management

The flight system plays a role in electrical power management at three levels:
positioning solar arrays (SAs), managing battery charging and discharging,
and overall power monitoring and response. For celestial-pointing spacecraft
having movable SAs, the FSW will select the appropriate SA position for
each attitude that produces the desired energy collection behavior. Usually
the position is chosen to optimize power generation, though for missions where
over-charging batteries is a concern, the FSW may offset the SA(s) from their
optimal position(s). For earth-pointing spacecraft, the FSW will rotate the SA
to track the Sun as the spacecraft body is rotated oppositely so as to maintain
nadir pointing. The FSW will also autonomously control battery discharging
and charging behavior consistent with algorithms defined prelaunch and re-
fined postlaunch by operations personnel. While carrying out these functions
on an event-driven basis, the FSW also actively monitors the state-of-charge
of batteries. If power levels fall below acceptable minimums, the flight system
will autonomously transition itself (or individual, selected components) to a
state or mode of reduced functionality (usually a safemode) with correspond-
ingly lower electrical power demands.

Data Storage and Downlink Bandwidth

Onboard data storage utilization and downlink bandwidth allocation typi-
cally fall out of trade studies for ground system operations costs. The ground
system will plan its observations to ensure that adequate space is available
to store any science data collected during an observation. Similarly, FSW
development personnel will design the formats of all telemetry structures to
ensure that operations personnel have access to key performance data at re-
quired frequencies and to guarantee that customers receive their science data
packaged appropriately for ground system processing. However, even in these
cases dominated by prelaunch considerations, the flight system has its own au-
tonomous realtime role to play. Specifically, the FSW must monitor free space
availability on the storage device and, in the event of a potential overflow,
determine (based on ground-defined algorithms) priorities for data retention
and execute procedures regarding future data collection. It also must contin-
uously construct the predefined telemetry structures and insert fill data as
necessary when data items supposed to be present in the telemetry structure
are unavailable. Further, to ensure that the necessary link with the ground
is maintained to enable successful telemetry downlink, the flight system must
appropriately configure transmitters and orient movable antennas to establish
a link with the ground antenna.

Angular Momentum and Propulsion

The last two onboard resources, angular momentum (for reaction wheel-
based spacecraft) and propulsion subsystem fuel, can be viewed as physical
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depletable resources, though the first item more strictly describes the phys-
ical behavior or state of the spacecraft. For LEO spacecraft, angular mo-
mentum (for reaction wheel-based spacecraft) management typically is fully
autonomous and is performed via the interaction of magnetic torquer coils
with the geomagnetic field. For orbital geometries where the geomagnetic field
strength has diminished below useful levels, excess angular momentum must
be dumped via a propulsion system of some sort (hot gas thrusters, cold gas
thrusters, or ion jets). Where a propulsion system is utilized to dump angular
momentum, often the ground’s planning and scheduling system will play a
role (even dominate) when angular momentum dumping will occur because of
safety concerns regarding autonomous thruster commanding. However, even
for missions following this conservative operational philosophy, there often
will be a contingency mode/state in which autonomous angular-momentum
reduction via thruster firing is enabled to deal with inflight anomalies jeop-
ardizing the control and safety of the spacecraft. For spacecraft not using
reaction wheels (for example, the future Laser Interferometer Space Antenna
(LISA)), angular momentum management is not an issue.

By contrast, management of thruster fuel resources is traditionally almost
exclusively a ground responsibility. This allocation of functionality, histori-
cally, has been due to the mathematical complexity of orbit maneuver planning
and the earlier limited computational power of OBCs. So, if the planning of
orbit maneuvers (the activity expending the bulk of the onboard fuel supply)
is a province of the ground system, then management of the propulsion subsys-
tem’s fuel budget quite logically would belong to the ground as well. Recently
however, considerable interest has been generated regarding the feasibility of
autonomous performance of spacecraft orbit stationkeeping activities. In its
more elaborate form, autonomous orbit stationkeeping may even be performed
in support of maintenance of a spacecraft constellation, coordinating the or-
bital motions of several independent spacecraft to achieve a common goal,
also referred to as formation flying. For these applications where planning
and scheduling of the orbit maneuvering function itself are moved onboard,
migrating management of the fuel resources to the flight system will be nec-
essary as well.

Flight Autonomy Enablers of Health and Safety Maintenance

Although each spacecraft has ideally been designed to support completion
of its assigned science program within its nominal mission lifetime, unpre-
dictable, potentially damaging events threatening termination of spacecraft
operations inevitably will occur sporadically throughout the course of the
mission. Many of these events will develop so quickly that by the time the
ground would have recognized the onset of the threat, developed a solution,
and initiates a response, conditions would have worsened to the point that loss
of the spacecraft is unavoidable. To deal with these highly dangerous potential
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problems, as well as a host of lesser anomalies, the flight system is provided
with an autonomous fault detection and correction (FDC) capability.

The first responsibility of the flight system’s FDC is to monitor ongoing
spacecraft function. To this end, FSW analysis personnel, in conjunction with
systems engineers and operations personnel, identify a rather large number of
hardware output items and FSW-computed parameters that together provide
a thorough description of the state of the spacecraft. The FSW then samples
these values periodically and compares them to nominal and/or required val-
ues given the spacecraft operational mode. This comparison may be achieved
via simple rules and limit checks, or by running models associated with a
state-based system. Regardless of the sophistication of the approach, the re-
sult of the procedure will either be a “clean bill of health” for the spacecraft
or identification of some element not performing within a nominal envelope.

After identification of the existence of a potential problem, the FSW then
autonomously commands an appropriate corrective response. The elaborate-
ness and completeness of the corrective response vary depending both on the
nature of the problem and the degree of independence a given mission is will-
ing to allocate to the FSW. Ideally, the level of response would be a precisely
targeted correction that immediately restores the spacecraft to nominal func-
tion allowing continuance of ongoing science observations. Usually, a complete
solution of this sort will be possible only for minor anomalies, or significant
hardware problems where an autonomous switch to a redundant component or
a transition to an appropriate FSW state may be performed without incurring
additional risk. However, for most major inflight problems, the flight system’s
responsibility is less ambitious. It is usually not tasked with solving the prob-
lem, but simply placing the spacecraft in a stable, protected configuration, for
example, transitioning the spacecraft (or an SI) to safemode. The spacecraft
then remains in this state while ground personnel analyze the problem and
develop and test a solution. Once this process has been completed, the flight
system is “told” what its job is with respect to implementing the solution,
and then proceeds again with conducting the mission once the solution has
been installed.

3.1.2 Satisfying Spacecraft Infrastructure Needs

In addition to its direct, active role in achieving overall mission objectives,
FSW has a key role to play as the middle-man between the ground system and
the spacecraft hardware. To serve effectively in this capacity, the FSW must
provide a user-friendly but secure command structure enabling the ground
system to make requests of the spacecraft that will be carried out precisely,
and yet will not simply be acted on mindlessly in a manner that might put the
spacecraft at risk. Further, to ensure the spacecraft is capable of responding to
these requests in a timely manner, the FSW performs those routine functions
necessary to keep the spacecraft available and in near-nominal operational
condition.
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These functions may be thought of generically as the spacecraft’s auto-
nomic system, in much the way that one views a human’s respiratory and
circulatory system. Since they are so common from spacecraft to spacecraft,
and so essential to spacecraft operations, they ironically are often neglected in
discussions of spacecraft autonomy. In the following sections, the various ele-
ments of this spacecraft operational infrastructure will be described in more
detail. Some of this discussion will be a bit redundant with material presented
in Sect. 3.1.1, which dealt with how the FSW enables satisfaction of space-
craft mission objectives. Such material is repeated here more in the context of
what the flight system must do in order to keep the spacecraft available and
responsive to the ground’s needs, as opposed to what it does to accomplish
what the ground wants done.

Flight Autonomy Enablers of Command Execution: Validation

Earlier, the various stored command types (absolute-timed, relative-timed,
and conditional) were described to illustrate how the FSW is able to execute
ground requests faithfully, while still exploiting realtime information that was
unavailable to the ground system at the time their requests were generated
and uplinked – so as to provide a value-added response to the ground’s needs.
However, to make safe and reliable use of these command structures, the
FSW independently validates commands on receipt, validates them again on
execution, and monitors their passage through the C&DH subsystem as they
make their way to their local destination for execution.

The first step in the process is to verify that a command (or a set of com-
mands) has not been garbled. For this purpose, when the C&DH subsystem
first receives a command packet, the C&DH checks the bit pattern in the
header and verifies it matches the expected pattern. At the same time, the
C&DH examines the command packet at a high level to make sure it recog-
nizes the packet as something an onboard application could execute. Second,
when it is time for the command to be executed, the C&DH determines to
which application the command should be sent and ships the command out to
be loaded into that application’s command buffer. The C&DH then looks for
a message verifying that the command was successfully loaded into the buffer
(i.e., that there was room in the buffer for the command). Third, as the ap-
plication works its way through the buffer contents, it examines the contents
of the individual commands to verify they are valid. It also will check the
command itself to verify there are no inherent conflicts to executing that kind
of command given the current spacecraft state. Finally, once the application
determines that the command may be executed, it carries out its prescribed
function or launches it toward its final destination for execution and verifies
that it then executes successfully. This multiple-tiered validation process en-
sures that only valid commands are executed, that they reach their proper
destination, and that they are executed properly once they get there.
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Flight Autonomy Enablers of Command Execution:
Request Orchestration

To this point, discussion of commanding has focused largely on the execu-
tion of stored ground requests, primarily relating directly to carrying out
the science observing program. However, the FSW must deal not only with
this class of commands, but also with realtime ground requests and with com-
mands dealing with engineering and/or housekeeping activities, in many cases
originating autonomously from within the FSW itself. In the past, although
the FSW was provided with sufficient “intelligence” to keep commands from
these various sources from “bumping into” each other, much of this complex-
ity could be managed by the ground. This was especially true for missions
where the spacecraft primarily executed absolute-timed stored commands, or
for missions like the International Ultraviolet Explorer (IUE) where continu-
ous ground contact (enabled by a Geostationary orbit) allowed the ground to
conduct observations via block scheduling and realtime commanding.

However, as more spacecraft take advantage of the benign space environ-
ment of earth-sun Lagrange points (e.g., the James Webb Space Telescope
(JWST) now in development), the opportunities presented by event-driven
commanding orchestrated by a more autonomous onboard scheduling system
likely will be increasingly exploited. This, in turn, will place a greater re-
sponsibility on the flight system to manage and prioritize commands from
these various sources to optimize science data gathering capabilities without
jeopardizing spacecraft health and safety.

Flight Autonomy Enablers of Efficient Resource Management

When the ground system generates the spacecraft’s science observation sched-
ule, it implicitly makes a series of assumptions regarding the spacecraft state,
e.g., that sufficient power is available to operate the hardware required for the
observations, that sufficient angular momentum capacity is present to enable
the spacecraft to be oriented properly to observe the targets, that enough
science data have been downlinked from onboard storage to permit the stor-
age of newly captured science data, etc. These considerations have already
been discussed in some detail in Sect. 3.1.1; however, it is worth repeating
here simply from the standpoint that some elements of resource management
(e.g., computing power and internal data transfer) are so intimately associ-
ated with the running of the FSW that they have effectively become part of
the spacecraft infrastructure. So, for these resources, one tends to view the
job of resource management not as an independent application running on
the FSW, but instead as an element of the FSW facilitating the running of
applications.
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Flight Autonomy Enablers of Health and Safety Maintenance

Previously the FDC capability was described at a high level to illustrate how
FSW autonomy is utilized to mitigate health and safety risks that might oth-
erwise lead to onboard failures that could, in turn, result in failure to achieve
spacecraft mission objectives. However, FDC can also be viewed as a key com-
ponent of the spacecraft infrastructure dedicated to maintaining the spacecraft
in a suitable state so the ground can schedule its science observations with
confidence, with the knowledge that the FSW will be capable of carrying out
its directives effectively, reliably, and safely. As with the case of onboard re-
source management, there are reasonable arguments for viewing FSW FDC
capability both as an enabler of achieving mission objectives and as a critical
component of the spacecraft infrastructure.

The most important safety check for all spacecraft is to verify that elec-
trical power capacity is adequate to keep the spacecraft alive. Detection of
unacceptably low power levels will engender the autonomous commanding of
major load-shedding and (usually) transition to safemode for the spacecraft
and its SIs. Verifying that no violations of thermal limits have occurred is
almost of equal importance as the power checks. Such violations at best may
lead to irretrievably degraded science data, and at worst, loss of the SI or even
the spacecraft itself due to potentially irreversible hardware failures such as
freezing of thruster propellant lines. At a more local level, celestial pointers, in
particular, are always very concerned with possible damage to their imaging
system and/or SIs due to exposure to bright objects or excessive radiation.
Another potentially lethal problem is loss of attitude control. Maintenance of
attitude control must be checked both to ensure that the spacecraft is able
to acquire and collect data from its science targets, and more importantly to
ensure that none of the previously discussed constraints (power, thermal, and
bright object avoidance) are violated.

Note that not all these safety checks are performed exclusively onboard.
The ground system will normally attempt to ensure that none of its commands
knowingly violate any of the constraints described above, and the ground
system as well will use telemetered engineering data to monitor the spacecraft
state to detect any violations that may have occurred. In practice, the crucial
job of maintaining the spacecraft system is distributed between flight and
ground systems, but when an offending event occurs in realtime onboard, it is
primarily the responsibility of the flight system to be the first to recognize the
advent of a problem and to take the initial (although not necessarily definitive)
steps to solve the problem.

3.1.3 Satisfying Operations Staff Needs

Unlike more mundane earth-bound situations where users typically are per-
mitted direct, physical access to the hardware they are using, for space-
craft applications the users effectively interface with the spacecraft exclusively
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through the FSW, with the exception of the cases of some classes of emer-
gency conditions and some special applications. (For example, if the Main
C&DH computer goes down, the ground can communicate directly to the
spacecraft via the uplink-downlink card and issue commands such as Turn
On Back-up Main C&DH Computer and Switch to Back-up). The FSW pro-
vides both access to the spacecraft for commanding purposes and insight into
ongoing spacecraft operations via telemetry. Furthermore, because the FSW
“sees” in realtime what is happening onboard and can take immediate action
in response to what it sees, the FSW often is capable of performing tasks that,
if assigned to the ground system and FOT, would be much more expensive
to do. These cost savings may arise from lower software costs due to simpler
modeling requirements onboard or from effective replacement of human staff
hours with FSW functionality. Additionally, where those reductions pertain
to replacement of repetitive FOT manual activities, one obtains a cost savings
multiplier over the entire mission duration. In the following subsections, each
of these three services to the operations team will be discussed in more detail.

Autonomy Enablers of Access to Spacecraft Systems

FSW is the mechanism enabling nearly all access to the spacecraft by the FOT.
The FSW provides a commanding infrastructure that translates very precisely
what the FOT wants done into appropriate hardware and/or software com-
mands, as discussed in previous sections. By this means, the FSW to a certain
degree provides the FOT “hands-on” capability with respect to the various
spacecraft hardware elements and subsystems. However, while it creates FOT
access to spacecraft systems, the commanding infrastructure (through its val-
idation capabilities) protects the spacecraft from the occasional operational
errors that might otherwise lead to irreparable damage to delicate hardware.

The FSW even allows the FOT to modify the operation of FSW functions
by changing the values of the key parameters that drive the functions’ models.
For example, most spacecraft model their own orbital position and the posi-
tions of other spacecraft, such as tracking and data relay satellites (TDRS),
through the use of onboard orbit propagators. The starting position and veloc-
ity from which future positions are calculated can be specified by the ground
in a table, updates to which are uplinked as frequently as required in order
to maintain ephemeris accuracy requirements. For other missions, ephemeris
updates are performed via command structures rather than tables, but the
basic process is effectively the same. Also, as a protection against missing a
routine ephemeris update (either due to inflight problems or simply a ground
operations error), FSW for the medium-class explorers (MIDEX) missions
notify the ground if the onboard parameters have grown “stale,” eventually
causing the FSW to terminate that ephemeris model’s processing. And if an
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erroneous update is made, a continuity check in the FSW (implemented on
most missions) can detect the mistake, allowing the FSW to reject the update
and continue using the existing parameters until an accurate set is supplied
by the ground.

Specifically with respect to missions developed by NASA Goddard, the
telemetry monitor (TMON) (and its more recent variant, the telemetry and
statistics monitor (TSM)) capability provides a yet more powerful access into
spacecraft function. TMON not only allows the FSW to monitor ongoing
spacecraft behavior by checking the values of specific telemetry data points,
it also includes a command interpreter program that can execute logical state-
ments and act upon them. As the operation of TMON is driven by uplinked
data table loads, TMON can be used to add new onboard functionality with-
out modifying the FSW itself, thereby providing the FOT with a way to work
around onboard hardware or software problems in a manner less demanding
on the FSW maintenance team.

In addition to supplying a means to influence the spacecraft and FSW
behavior, the ground can indirectly change the FSW itself. For small or local-
ized changes, a FSW maintenance development team can modify the FSW,
uplinking new code that effectively bypasses some existing code elements and
substitutes modified, or even entirely new functionality in its place. If the
number of modifications becomes excessive, or if the scale of the upgrade is
extremely large, a new version of the FSW program may be developed by the
maintenance team and uplinked, which, in turn, may be modified as future
changes are required. For long duration missions having extensive cruise du-
rations (e.g., Jet Propulsion Lab (JPL) missions that may take years to get on
station), the cruise phase often is used to re-write the flight code to compensate
for major hardware anomalies experienced after launch, or even to complete
development and testing of major functionality not finished prior to launch.
By these means (command infrastructure, table modification/command up-
link, TMON/TSM, and actual FSW coding changes), the FSW affords the
ground a remarkably high capacity for accessing, influencing, and modifying
spacecraft behavior in flight.

Flight Autonomy Enablers of Insight into Spacecraft Systems

To support the safe and effective utilization of the access to spacecraft systems
afforded by FSW, the FSW must also allow the ground a comparably high
level of insight into ongoing spacecraft operations. To this end, spacecraft
typically are designed so as to ensure that, catastrophic failures aside, the
ground will always receive, at the very least, some minimal level of health
and safety telemetry that summarizes the current spacecraft state, along with
significant error messages describing what, if anything, has gone wrong.

When operating in a more nominal state, the spacecraft regularly sup-
plies the ground with fairly detailed information concerning the operational
behavior of the spacecraft and its various hardware components. Additional
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telemetry fields are reserved for FSW-calculated products (and FSW inter-
mediate calculation parameters) deemed to be of value by the FOT and other
analytical support staff. As engineering and housekeeping downlink bandwidth
typically is in short supply due to optimization of communication hardware
trades relative to weight and cost, the allocation of telemetry slots and the
frequency with which they are reported is usually a rather difficult process as
individual subsystem information needs are traded to avoid exceeding com-
munication bandwidth limits.

However, in the event of an inflight anomaly or the scheduling of a special
activity such as an instrument calibration, at times the nominally optimized
engineering/housekeeping telemetry contents may not be adequate to support
the immediate needs of the ground. In such cases, the FOT can utilize a
capability provided by the FSW to modify telemetry contents. In the past,
this was achieved by “flying” several predefined telemetry formats, with the
current one in use being that selected by the ground. In response to changing
inflight conditions, the ground could simply command the use of a different
telemetry format more appropriate to current needs. The weakness of this
approach lay in its inflexibility, i.e., a telemetry format needed to be defined
and be onboard already for it to be used. So if some unexpected conditions
occurred requiring an allocation of telemetry slots and frequencies different
from that supported onboard, not much could be done immediately to address
the problem.

By contrast, the filter table approach utilized by recent spacecraft affords
much more flexibility. In principle, any desired presentation of telemetry-
accessible data points can be achieved. Of course, given a limited bandwidth,
increasing the frequency of a given telemetry item can crowd out other impor-
tant data items, so a careful trade must always be performed before changing
filter table settings. However, at least the higher degree of flexibility ensures
that any single FSW-accessible data point can, in principle, be viewed by the
ground as frequently as desired.

Flight Autonomy Enablers of Lifecycle Cost Minimization

As budgets for overall lifecycle costs steadily decrease, mission plan-
ners increasingly look to FSW as a means to reduce continuing costs of
operation. Many current onboard autonomous capabilities, though originally
implemented to satisfy mission-specific objectives or to promote enhanced
spacecraft H&S, in fact also reduce the work load of operations personnel,
thereby enabling the reduction of staffing levels without the loss of efficiency
or increased risk. For example, for decades, spacecraft have autonomously
maintained attitude control, calibrated gyro-drift biases, propagated their or-
bital ephemeris, managed battery charging, maintained thermal constraints,
packaged and stored science and engineering data, checked for limit vi-
olations, and (on detection of any violations) either fixed the problem or
placed the spacecraft (or localized element) in a benign state pending ground



54 3 Flight Autonomy Evolution

attention. Trying to perform any of these functions with ground personnel
“in the loop” would not only be less efficient and less safe, but also be far
more expensive than delegating the responsibility to the flight system.

Recently, more elaborate flight-autonomy capabilities have been intro-
duced specifically to reduce operational costs. For example, to break linkages
between spacecraft target-pointing and communications (antenna pointing),
the Rossi X-ray Timing Explorer (RXTE) mission introduced an autonomous
antenna-manager function responsible for selecting the appropriate high gain
antenna (HGA) that can be used compatibly with the current spacecraft
attitude. This capability not only supported greatly reduced lead times on
changing targets to observe a TOO, but also reduced staff efforts (and costs)
in scheduling TDRS contact times by eliminating couplings between TDRS
scheduling and onboard antenna selection, which often is a factor when opti-
mizing communications contact time.

And for JWST, the use of an onboard event-based scheduler could reduce
overhead time (in turn, raising observing efficiency) and reduce both ground-
system modeling costs as well as the need for spacecraft “hand holding.” And
further in the future, increased onboard processing of science data may not
only enable increased capabilities to exploit TOOs detected in real time on-
board, it could for some missions also permit a reduced science data downlink
volume, with associated operations cost reductions, as the science commu-
nity gains confidence in the accuracy and reliability on the onboard processed
product.

It should be noted that these reductions in operations costs do not them-
selves come without a cost. The development of new FSW functionality typ-
ically is an expensive undertaking, both from the standpoint of coding the
new capability and the testing required to ensure that no inadvertent harm is
done to the spacecraft. The impact of these software costs, however, is less-
ened when the new autonomous function is implemented for a long duration
mission where the costs can now be traded relative to the, say, 10 years of op-
erational effort that the FSW replaces. Similarly, when several missions can
use the new capability, the up-front development costs for the first mission can
be seen as a long-term investment yielding savings both on that mission and
downstream missions. Hopefully as the expense of developing FSW continues
to decline and as greater FSW reuse becomes possible, the trade of continuing
operations costs for new FSW autonomy will be an increasingly favorable one.

3.2 Brief History of Existing Flight Autonomy
Capabilities

In the previous sections, the reasons for developing flight autonomy and the
flight autonomy capabilities that were developed in response to those needs
were discussed in some detail. In the following sections, those flight autonomy
capabilities will be grouped in accordance with the general time periods in
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which they were developed at GSFC and examined relative to the contribu-
tions they made for specific spacecraft on which the FSW functionality was
flown. General time periods reviewed are the 1970s, 1980s, 1990s, and 2000s.

3.2.1 1970s and Prior Spacecraft

During the 1970s, NASA made the first attempt to standardize onboard flight
data systems with the creation of the NASA Standard Spacecraft Computer
(NSSC), versions I and II. The NSSC-I, a derivative of that flown on the
Orbiting Astronomical Observatory-3 (OAO-3) in 1972 and IUE in 1978, was
first flown on the Solar Maximum Mission (SMM) (Fig. 3.1) in 1980 (originally
scheduled for launch in 1979). Compared to modern flight computers, the
NSSC-I was slow, had very limited memory, was cumbersome when performing
mathematical functions due to its small word size and lack of floating point
arithmetic, and was awkward to program due to the exclusive use of assembly
language. However, it was extremely reliable and was used successfully to
support the onboard needs of many missions, from SMM in 1980 to the HST
payload in 1990.

The NSSC computers and other OBCs with comparable capabilities such
as those used on the HEAO series were employed successfully in the 1970s
to support a basic foundation of spacecraft autonomy, including stored com-
manding, telemetry generation, FDC, orbit propagation, and pointing control.
Stored commanding capabilities included the (now) standard set of absolute-
timed, relative-timed, and conditional commands, as discussed previously. A
degree of FDC (for constraints such as bright object avoidance and minimum
power levels) also was present in the form of limit checks on key onboard

Fig. 3.1. Solar maximum mission (SMM) (image credit: NASA)
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sensor measurements, with autonomous mode transition capabilities to famil-
iar safemodes, such as Sunpoint.

In the area of pointing control, for the case of HEAO-2, pointing control
and ground attitude determination accuracy (using star tracker data) were re-
quired to be good to 1 and 0.1 arcmin, respectively – a very demanding require-
ment for the time. And the SMM fine Sun sensor was so well calibrated that its
attitude could be controlled autonomously to 5 arcsec with respect to the Sun-
line. Attitude control was achieved using onboard closed-loop proportional-
integral-derivative (PID) control laws (including feed-forward specification of
environmental torques) and Kalman filters (for optimization of attitude-error
determination and gyro-drift bias calibration). So fundamentally, the control
approaches used on these spacecraft from the 1970s were quite similar to
those currently used on modern spacecraft in support of spacecraft slews, tar-
get acquisition, angular momentum management, and maintenance of attitude
during science observations.

Originally SMM also possessed the rudiments of an autonomous target
identification and acquisition capability that presaged the more elaborate ca-
pability implemented in HST (as discussed later), which, in turn, was the next
step on the road to a fully autonomous TOO response capability. Specifically,
when SMM’s SI detected a Solar flare, the data were processed onboard, the
flare’s location was determined, and the spacecraft was autonomously reori-
ented to observe the phenomenon. This feature enabled a far quicker response
than would have been the case if the data processing and commanding respon-
sibility resided in the ground system, allowing time-critical measurements to
be made during the early stages of the flare’s duration. The Orbiting Solar
Observatory-8 (OSO-8), launched in 1975, also could steer its payload plat-
form independently to expedite acquisition of its short-lived targets.

The evolving nature of flight autonomy can be seen within the decade of the
1970s itself just by noting the significant increase in pointing independence be-
tween HEAO-1 and HEAO-2. Specifically, HEAO-1 (launched in 1977) relied
on the ground to provide it periodic attitude reference updates (every 12 h)
based on ground attitude determination. Just 2 years later, HEAO-2 already
possessed the capability to compute its own attitude reference update, based
on ground-supplied guide-star reference information, a capability also imple-
mented in SMM’s ACS for autonomous control of roll about the Sunline.
Furthermore, HEAO-2 could autonomously sequence through a weekly target
list, adjusting the order of the targets so as to economize on the use of thruster
fuel used in momentum dumping, a remarkable degree of independence even
relative to the 1990s missions discussed later.

Examination of FDC also shows a dynamic quality. Although many space-
craft flew hard-coded limit checking and response code, SMM’s statistical
monitor performance function provided additional flexibility. It allowed op-
erations personnel to specify additional FSW parameters to be monitored
autonomously onboard beyond those specified in the at-launch flight code,
without making a modification to the code itself. This function was itself
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improved upon in the 1980s with the introduction of TMON, a telemetry
monitor that also supported an autonomous onboard response capability.

3.2.2 1980s Spacecraft

Relative to the 1970s, the period of 1980s saw the launch of larger, more
expensive, and more sophisticated spacecraft. Many of these spacecraft (e.g.,
HST and the Compton Gamma Ray Observatory (CGRO)) were supposed to
launch in the mid- to late-1980s, but in actuality launched in 1990 because of
delays due to the loss of the shuttle Challenger.

In the case of HST, a more powerful OBC (the DF224) enabled the devel-
opment of more elaborate pointing-related mathematical algorithms as well
as a wider variety of safemode options (supported by a larger number of FDC
checks) than had been present on previous spacecraft. In particular, use of
HST’s fine guidance sensors (FGSs) required the development of rather com-
plex (by onboard standards) mathematical algorithms to command the FGSs
and process their data. In fact, the processing demands of the FGS function-
ality was so high that the HST FSW’s 10 Hz processing rate was created for
and exclusively dedicated to this purpose. The FGS guide-star acquisition
algorithms were themselves extremely powerful, exploiting the full command-
construct repertoire to achieve the intricate branching/looping logic needed to
optimize the probabilities for acquiring the guide stars essential for performing
HST’s science.

The very existence of the 10 Hz processing rate points to an additional
noteworthy aspect of HST’s autonomy capabilities that often is taken for
granted, namely its executive function. For the sake of simplicity, most FSW
development efforts try to limit the number of tasks to as few as possible, usu-
ally one or two. However, because of HST’s unique computational, precision,
and timing demands, the HST pointing-control subsystem (PCS) software re-
quired five distinct processing rates, namely, 1,000 Hz for the executive, 40 Hz
for primary PCS control laws and gyro processing, 10 Hz for FGS processing,
1 Hz for star tracker processing, ephemeris modeling, and FDC, and 1/300 Hz
for the minimum energy momentum management control law. Just the man-
agement of these very different, and often competing, tasks demonstrated a
significant degree of executive autonomy.

HST’s FSW also displayed a high level of autonomy in acquiring science
targets through “conversations” between the NSSC-I computer supporting SI
commanding and processing, and the DF224 computer responsible for space-
craft platform functionality. For example, for science observations where the
target direction was not known to a sufficient level of accuracy to guaran-
tee acquisition in an SI’s narrow FOV, the DF224 could initiate (through
stored commanding) a small scan of the region of the sky surrounding the
estimated target coordinates. The passing of the target through the FOV of
the SI would then trigger a sudden increase in SI intensity measurements,
which would then be noted by the NSSC-I. On completion of the scan, the
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NSSC-I could then request (through a limited interface between it and the
DF224) that the spacecraft attitude be returned to that pointing. The DF2244
would then create and initiate a realtime slew command satisfying the NSSC-
I’s attitude change. As with the SMM autonomous target acquisition feature,
HST’s capability provided a far quicker response than would have been the
case had data processing and commanding responsibility resided in the ground
system, a very important consideration given the high cost of HST operations
and the extraordinary demand for HST observing time.

By contrast, because of its lower pointing accuracy requirements, the
Extreme Ultraviolet Explorer (EUVE), also originally scheduled for the 1980s
but actually launched in 1991, did not require a level of sophistication in its
ACS subsystem as high as that required on HST. However, it did provide a
higher level of flexibility with respect to onboard data monitoring and limit
checking. EUVE’s telemetry monitoring capability (referred to as TMON, and
also flown on CGRO and the Upper Atmosphere Research Satellite (UARS))
permitted the user to select, after launch, specific data points to monitor.
In addition, TMON provided a limited logic capability to respond onboard
to detected spacecraft conditions (observed via limit checks on data or flag
checking) through autonomous generation of commands. EUVE’s FSW also
included a separate statistics monitor program (called SMP) that was later
combined with TMON and flown on MIDEX spacecraft as the TSM program
(see Sect. 3.1.3). Finally, EUVE possessed an extremely user-friendly table-
driven limit-checking/response system that has served as the model for later
missions in the explorer series.

As an early predecessor of true event-driven operations, EUVE utilized
an Orbit Time Processor (a table-driven task) that allowed its FSW to de-
fine orbit-based events, a variation on the relative-time-based commanding
discussed earlier. Occurrence of the event could then trigger a relative time
sequence (RTS), a task, or set an event flag that in turn could be monitored by
a running task. The EUVE FOT employed this enhancement to the standard
stored commanding infrastructure to re-phase the timing of EUVE’s survey
mode, which operated within a third of an orbit duty cycle. EUVE also used its
Orbit Time Processor to send dusk/dawn commands to the survey instrument.

Although HST’s FDC capabilities are not as flexible as EUVE’s, HST
checks for a much wider spectrum of anomalous conditions, with a larger
range of autonomous responses. For example, HST provides four distinct
software safemodes: inertial hold, a multistaged Sunpoint, zero-gyro (derived
from Sunpoint), and spin-stabilized. Also, in response to guide-star reacqui-
sition problems associated with radiation hits on its fine guidance electronics
(FGE) following SAA entrances, HST’s FSW developers have implemented an
FGE memory-refresh function that restores key FGS commanding parameters
to their latest values prior to the SAA entrance. Note that many of HST’s
FDC capabilities were added postlaunch in response to problems experienced
inflight, which not only illustrates the power of FSW to solve unanticipated
operational problems that can be dealt with no other way, but also provides
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a strong argument in favor of creating and maintaining a strong FSW main-
tenance team capable of responding to those operational problems when they
do occur.

3.2.3 1990s Spacecraft

Relative to the 1970s and 1980s, the 1990s witnessed major hardware and
infrastructure advances that enabled greater onboard capabilities. The flight
computers were more powerful, with larger memories, and were faster, en-
abling more sophisticated algorithms and models. Floating point arithmetic
and higher level languages (such as C, C++, and Ada) allowed FSW code to
be written more like comparable ground system code. For example, object-
oriented design concepts can now be used to make flight code more re-usable,
and in the long run, potentially cheaper. Thanks to high capacity, lightweight,
and cheap solid state storage devices, larger amounts of science data may be
stored onboard and packaged more conveniently (with respect to end-user
needs) without undue concern for added overhead space costs (although in
practice this gain has been largely offset by corresponding increases in SI out-
put data volume). More sophisticated operating systems are now available to
handle the masses of data and manage the more elaborate computations. The
cumulative result of this technological progress has been to enable a series of
new individual flight autonomy capabilities targeted to the needs of specific
missions, as well as to support the development of entirely new FSW concepts.

To meet demanding time requirements for TOO response, the RXTE FSW
included three new flight autonomy capabilities: onboard target quaternion
computation, target quaternion validation, and the antenna manager. The
first two enable a science user to specify simply the target’s right ascension and
declination, and whether there are any special roll coordinate needs. The FSW
then takes this targeting information expressed in the natural “language” of
the user, transforms it appropriately (i.e., into quaternion format) for use
in slewing to and acquiring the target, quality-assures the attitude vs. Sun-
angle avoidance, and then slews the spacecraft to point to the target at the
ground-specified time.

A new RXTE autonomy capability was proposed as a post-launch update,
but could not be funded, which would have greatly enhanced RXTE’s already
superb TOO response time. If RXTE’s all sky monitor (ASM) detected the
signature of a possible gamma ray burster (GRB), the ASM FSW could have
determined the celestial coordinates of the potential TOO. After verifying
that those coordinates had not previously been observed, the ASM could then
have communicated the GRB celestial coordinates to the OBC, which could
then have utilized RXTE’s existing capabilities to compute and validate the
new target quaternion. Next, the FSW could have autonomously determined
the right time to break away from currently scheduled observations, slew to
that target, and then generate the appropriate SI configuration commands
so that observations by RXTE’s proportional counter array (PCA) could
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be made. Finally, using onboard SAA contour information and spacecraft
ephemeris, the FSW could have determined the time at which those PCA
observations could commence relative to earth occultation and SAA entrance
times. Although this capability was not flown on RXTE, it has been imple-
mented successfully and is the key to satisfying the rapid TOO response time
requirement, for the Swift mission (see Sect. 3.2.4).

The third item among the list of autonomy features implemented
prelaunch – the antenna manager – enabled de-coupling of science and com-
munications scheduling. For missions where HGA selection is preplanned by
the ground, a change in target attitude due to inclusion of a TOO can induce
changes in HGA commanding for that target observation period and even
future target observation periods downstream. Further, for ground algorithms
that optimize TDRS switchover times and HGA selection choices in order to
maximize total TDRS contact time, relatively small changes in the attitude
profile can cause major changes in desired TDRS schedule. By contrast,
RXTE’s antenna manager allowed the FSW to determine in realtime which
was the best HGA to use to close the link with the scheduled TDRS space-
craft, based on the FSW’s realtime knowledge of its attitude and the relative
orbital positions of RXTE and TDRS (derived from onboard orbit models).
Also, knowing the TDRS schedule, RXTE’s FSW could autonomously deter-
mine when HGA transmitters should be turned on and when playbacks from
the solid state recorder (SSR) should start. These autonomous features were
used routinely with great success until a transponder failure eliminated the
two-HGA capability.

RXTE and the Tropical Rainfall Mapping Mission (TRMM) also provided
enhanced flexibility in telemetry formatting via their telemetry filter tables.
In practice, the same amount of planning effort (the most laborious part of
the job) would be required to make major changes to its standard telemetry
configurations (identified as operationally necessary prelaunch) as would be
the case for earlier approaches to telemetry formatting, but once determined,
the modified telemetry formatting could be implemented via a simple table
uplink as opposed to a FSW change.

RXTE and TRMM also flew a more sophisticated version of TMON, called
TSM (originally developed for the Solar Anomalous and Magnetospheric Par-
ticle Explorer (SAMPEX) mission), which supported all the functionality of
TMON, i.e., monitoring telemetry points, performing limit checking, and ini-
tiating stored command sequences and associated event messages on limit
failure. In addition, TSM maintained statistical data for each monitor point
and accepted FSW reconfiguration commands. Statistical information gener-
ated includes telemetry-point current value and time, minimum and maxi-
mum values seen with associated times, average value, and number of times
the monitor point has been seen. TSM was particularly useful to the RXTE
mission as a means to deal with star tracker problems experienced inflight
without having to implement major changes in the flight code itself.
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Also in the area of diagnostic functionality, Landsat-7 (launched in 1999)
experimented with a high level FDC capability, in addition to flying a
more traditional one. The FDC functions for most GSFC spacecraft have
a one-to-one quality, i.e., a trigger is received and an associated response
is executed. The potential problem with this approach is that a higher level
problem (for example, a failure in the ACE) can corrupt output data from sev-
eral ACS sensors that could be misinterpreted as the individual failures of all
those ACS sensors, potentially resulting in unnecessary autonomous switches
to their redundant components. To protect against a problem of this kind,
Landsat-7 implemented a Boolean logic function that would examine all error
flags generated at a component level and, by comparing the error flag pattern
to a set of patterns maintained onboard defining the signature of higher level
problems, deduce the true cause of the current anomaly and respond accord-
ingly. By setting the counters associated with the triggers for the higher level
failures to lower values than for the counters associated with the component
level failures, the Landsat-7 FSW would be able to switch out the higher level
hardware element before the cascade to redundant components commenced.

At a somewhat more detailed level, SAMPEX incorporated a new au-
tonomous calibration function, which also has been flown on other spacecraft
in the small explorer (SMEX) series. SAMPEX possesses the capability to cal-
ibrate its magnetometer coupling constants (relative to the magnetic torquer
bars) inflight, relieving the FOT of the burden of collecting the necessary engi-
neering data, processing it, and uplinking the modified calibration parameters
to the spacecraft.

Lastly, some very interesting new ideas have been implemented at JPL.
Because of the long cruise periods until their spacecraft achieve their mission
orbits or swing-bys, JPL has the luxury of experimenting with their FSW
after launch and even making wholesale changes (or simply completing the
original coding effort) after launch. Their deep space missions also, by their
very nature, may require more autonomy than is typical of GSFC missions.
Because of the long communications-delay times inherent in a deep space mis-
sion and because of the time critical aspects associated with celestial flybys,
JPL has been experimenting with autonomous target identification and acqui-
sition functions that are more elaborate than those flown at GSFC. At a more
fundamental structural level, the New Millennium Program’s Deep Space One
(DS1) FSW was initially designed with Remote Agents having responsibility
for multitask management, planning and scheduling, and model-based FDC
[99,108]. In practice (due to schedule conflicts), the mission was flown using a
more conventional FSW implementation, but the Remote Agent-based version
was activated briefly for test purposes.

3.2.4 Current Spacecraft

A number of interesting new autonomy capabilities have been flown on GSFC
spacecraft launched in the 2000s. First, the recent development of quaternion
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star trackers has provided spacecraft like the Willsinson Microwave Anisotropy
Probe (WMAP) (launched in 2001), a true “Lost in Space” capability. Pre-
viously, the limited star catalogs flown on GSFC spacecraft, along with the
simple star identification algorithms utilized in the FSW, required that fairly
accurate a priori spacecraft attitude knowledge be available onboard for reli-
able fine attitude updates to be performed. Now, however, star trackers are
available that use more extensive internal catalogs and more powerful star
identification algorithms to provide quaternion information to the FSW with-
out previous attitude knowledge. This new autonomy capability both sup-
ports ongoing science observing and streamlines recovery from safemode entry.
These new star trackers also output the change in attitude, providing a di-
rect back-up and sanity check to the primary body-rate data supplied by the
gyros.

Second, the earth observing spacecraft (EOS) Aqua (formerly EOS-PM,
launched in 2002) has implemented an autonomous communication capabil-
ity referred to as “Call 911.” When a serious anomaly occurs on the space-
craft, a stored command sequence reconfigures the communications downlink
(from the spacecraft to the TDRS system (TDRSS) to the ground station)
and broadcasts an unscheduled multiple access (MA) message via the TDRS
Demand Access capability. The message is forwarded from White Sands to
the EOS Aqua control center, triggering an alarm that unexpected telemetry
has been received. The telemetry provides a status message describing the
anomaly. The ground can then be ready for contingency commanding at the
next scheduled ground contact, or declare an emergency and schedule TDRSS
S-band single access (SSA) contact time.

Third, on the Swift spacecraft (launched 2004), the key to the rapid TOO
response to detected GRBs was a capability considered previously as a post-
launch update to the RXTE’s FSW (see Sect. 3.2.3). When Swift’s survey
instrument (the burst alert telescope (BAT)) detects the signature of a possi-
ble GRB, the FSW determines the celestial coordinates of the potential TOO.
After verifying that those coordinates had not previously been observed, the
FSW communicates the GRB celestial coordinates to the OBC, which then
computes and validates the new target quaternion. The FSW autonomously
determines the right time to break away from currently scheduled observa-
tions, “swiftly” slews to that target, and generates the appropriate SI con-
figuration commands so that high precision observations by Swift’s narrow
field instruments (NFI) (the X-ray telescope (XRT) and UV/optical telescope
(UVOT)) can be made. Swift also (via TDRSS) can respond to TOO alerts
identified by other observatories. This new autonomy function is a very signif-
icant first step in the direction of “smart” SIs controlling the science mission
and all resources required to perform the science mission, as opposed to the
traditional operational approach in which the spacecraft/ground system con-
trols the mission and configures the SIs to perform the observations.

Fourth, a capability was considered for the Triana mission (launch post-
poned indefinitely for budgetary reasons) that would have utilized science
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data to point Triana’s imaging instrument at the earth. The FSW for the
Epic SI used to image the earth could have been used to process the sci-
ence data in order to derive the earth centroid. The centroid data would then
be communicated to the spacecraft platform FSW for use in improving the
accuracy of the spacecraft’s pointing toward the earth center, or a region
offset from the center. This basic autonomy capability will, however, fly on
the Solar Dynamics Observatory (SDO) (scheduled for launch in late 2009).
SDO’s guide telescopes (providing precision-pointing support to its science
instruments) will supply data to SDO’s FSW, which will then compute a Sun
centroid to support direct autonomous pointing of SDO’s science instruments
at the Sun without realtime ground-processing of science data.

Fifth, an experiment in spacecraft formation flying was performed in 2001
using the EO-1 (launched in 2000) mission and the existing Landsat-7 mis-
sion. Landsat-7 was a passive participant, simply executing its normal science
mission. EO-1, equipped with a global positioning system (GPS) receiver to
measure the EO-1 orbital coordinates in realtime and an orbit propagator sup-
plying predictive Landsat-7 orbital coordinates, maintained approximately a
1 min separation between its orbit and the Landsat-7 orbit. This experiment
successfully demonstrated an important capability that can be used by future
earth science constellation missions to synchronize science data taken at dif-
ferent local times and to use images gathered by the “lead” spacecraft over the
target to optimize science instrument configuration on the trailing spacecraft,
or establish for the trailing spacecraft that the target is “socked-in” so that
advance preparations for viewing the next target can begin.

3.2.5 Flight Autonomy Capabilities of the Future

Future GSFC missions are expected to advance current onboard capabilities
significantly in the areas of planning and scheduling and FDC. JWST (and
several other missions currently under development) have proposed the use of
onboard event-driven scheduling to exploit the benign thermal environment of
the L2 Lagrange point (Fig. 3.2). An observation plan execution (OPE) func-
tion would enable the spacecraft to move through its observation schedule on
an as-ready basis, rather than pausing to hit absolute time points dictated by
traditional fixed-time scheduling approaches. On the other hand, if anomalous
conditions occurred that precluded observing the desired target (for example,
guide stars not being acquired), the OPE function would simply move on to
the next target on the list without further loss of observing time. So the use of
the OPE function should produce some gains in overall observing efficiency.
Further, by taking advantage of realtime knowledge onboard concerning the
spacecraft’s angular momentum, the OPE function could intelligently plan
when to perform necessary angular momentum dumps with minimal impact
to science observations.

Other major enhancements in FSW capabilities are likely to be driven by
the needs of the interferometry missions proposed to study star formation,
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planet formation, etc. In the past, spacecraft were launched mounting rela-
tively smaller science instruments that were pointed at their science targets
by pointing the entire spacecraft (e.g., HST). Some science instruments were
equipped with swivels that allowed the science instrument to be pointed inde-
pendently and, in the case of survey SIs, the swivel could be rotated continu-
ously to map out a swath of the sky (e.g., RXTE and Swift). On a few missions,
the survey function was carried out without a swivel by continuously spinning
and precessing the entire spacecraft (e.g., WMAP). But for interferometry
missions, whose performance capabilities are driven by the length of their
baseline, in effect a small spacecraft bus supports a very large science instru-
ment (on the order of many tens of meters long). And for some interferometry
missions currently on the drawing boards, to achieve even larger baselines, the
science instrument is a composite object that is an amalgam of the individ-
ual light collecting capabilities of many individual detector spacecraft whose
data are consolidated within a hub spacecraft. For these missions, preproposal
planning usually concentrates on developing a feasible design for the science
instrument, paying less attention to the spacecraft bus whose design needs
are often assumed to be satisfiable by an existing Rapid Spacecraft Develop-
ment Office (RSDO) spacecraft design. This is a major paradigm change from
GSFC’s earlier approach of paying equal or greater attention to the spacecraft
bus design during the early planning phases.

The most interesting developments in flight autonomy may be those fea-
tures required to support formation flying and spacecraft constellations. Such
missions will demand a much heightened degree of spacecraft self-awareness
and self-direction, as well as an awareness of the “outside world.” Until now,
a spacecraft has needed to be knowledgeable regarding outside “entities” to
the extent that it needed to use them. For example, to use a TDRS space-
craft to communicate with the ground, a spacecraft had to know both its
own ephemeris and that of the TDRS spacecraft. But for a constellation of
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spacecraft (for example, for a distributed interferometry mission) to maintain
the collective grouping needed to achieve their overall mission objectives, one
or more (potentially even all) of the constellation will have to possess key
knowledge of all near-neighboring (or possibly all) constellation members in
order to synchronize orbital positions, SI configurations, onboard data pro-
cessing and communication schedules, etc.

The LISA mission is a particularly high technology example of this kind
of constellation mission. LISA, the first space-based attempt to detect grav-
itational radiation, will consist of three spacecraft maintaining a triangular
formation, with each leg of the triangle being 5 million kilometers in length
(Fig. 3.3). The constellation will be located within the earth’s orbit about the
Sun, about 20◦ “behind” the earth. Each spacecraft in the constellation will
mount two lasers. Each laser will be directed toward a cube (called a proof
mass) floating “drag free” within a containment cell housed within one of the
other spacecraft. So each spacecraft mounts two lasers and two cubes, and
each triangle leg is formed by two laser beams. The first beam is directed

Fig. 3.3. Laser beam exchanges between the three laser interferometer space
antenna (LISA) spacecraft
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from the master spacecraft to a “slave” spacecraft, which phase locks its laser
to the incoming beam and directs its reply back to the master. The master
then mixes the incoming light with a small fraction of its original outgoing
light to produce an interference pattern that can be processed to determine
changes in distance between the free-floating proof masses good to better
than the size of an atom. Once ground software processing (utilizing as input
data from all 6 laser links) has eliminated the many noise effects and other
perturbations that can mask the desired signal, the remaining information
can be used to detect the presence of gravity waves (whose existence is pre-
dicted by Einstein’s General Theory of Relativity, but has not as yet been
directly detected), which when passing through the antenna will cause the
proof masses to move apart by an amount comparable to the sensitivity of
the measuring apparatus.

3.3 Current Levels of Flight Automation/Autonomy

To better understand where those new automation/autonomy opportunities
may reside, it is useful to associate the items on the previous list of opera-
tional activities with rough estimates of the activity’s current level of flight
autonomy: “high”, “medium”, “low”, or “not applicable”. The annotated list
appears in Table 3.2.

Activity 2, command loading, is the ground activity responsible for up-
linking data to the spacecraft. It is already a mostly automated process, and
within the next 10 years, will likely be a fully autonomous ground process.
Downlinked data capture and archiving (activities 6 and 10) also have been
automated and will probably be fully autonomous ground processes in the

Table 3.2. Operational activities with rough estimates of current level of flight
autonomy

Current flight automation/
Activity autonomy level

1. Planning and scheduling Low
2. Command loading n.a.
3. Science schedule execution Medium
4. Science support activity execution Medium
5. Onboard engineering support activities High
6. Downlinked data capture n.a.
7. Data and performance monitoring Medium
8. Fault diagnosis Low
9. Fault correction Low
10. Downlinked data archiving n.a.
11. Engineering data analysis/calibration Low
12. Science data processing/calibration Low
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next decade. Part of data capture is data validation, which is a necessary part
of the flight/ground “conversation” required for onboard science data storage
management.

As all three of these areas are concerned nearly exclusively with processing
data within the ground system itself, there is no real role for the flight system
to play in expediting the process directly. However, there are indirect sup-
porting functions such as onboard packaging of data prior to downlink and
initiation of the communications link between flight and ground where the
flight system could play a larger role. Routine onboard operations of this sort
are subsumed under activity 5, onboard engineering support activities, as will
be discussed later.

The remaining nine operational areas all offer significant opportunities for
an expanded, autonomous flight presence. Those areas labeled “low” (activ-
ities 1, 8, 9, 11, and 12) currently are largely ground dominated, but could
be at least partially migrated onboard to produce overall system cost and/or
efficiency gains.

The “medium” activity areas (3, 4, and 7) already are performed on-
board, but either there will be room for expanded functional scope (poten-
tially replacing ground effort) or the ground system typically would have
to generate some support products to simplify current onboard processing.
So cost/efficiency gains potentially can be realized either by ground-to-flight
migration or by introducing entirely new functionality to the flight system.
Finally, the activity area 5 labeled “high” is today already fully autonomous
onboard, but new functionality could be introduced to produce improved sys-
tem performance.
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Ground Autonomy Evolution

Having focused on automation and autonomy in space-based systems in the
previous chapter, attention is now directed toward ground-based systems, par-
ticularly the automation of spacecraft control centers. We describe a strategy
for automating NASA ground-based systems by using a multiagent system
to support ground-based autonomous satellite-subsystem monitoring and re-
port generation supporting mission operations. Over the last several years,
work has progressed on developing prototypes of agent-based control cen-
ters [2,36,86,134]. With the prototypes has come an improved understanding
of the potentials for autonomous ground-based command and control activi-
ties that could be realized from the innovative use of agent technologies. Three
of the prototypes will be described: Agent-based Flight Operations Associate
(AFLOAT), Lights Out Ground Operations System (LOGOS), and Agent
Concept Testbed (ACT).

4.1 Agent-Based Flight Operations Associate

AFLOAT was a prototype of a multiagent system designed to provide auto-
mated expert assistance to spacecraft control center personnel. The overall
goals of AFLOAT were to prototype and evaluate the effectiveness of agent
technology in mission operations.

The technical goals of AFLOAT were to:

1. Develop a robust and complete agent architecture
2. Address the full spectrum of syntactic and semantic issues associated with

agent communication languages (ACLs)
3. Develop and evaluate approaches for dealing with the dynamics of an

agent community which supports collaborative activities
4. Understand the mechanisms associated with goal-directed activities
5. Develop a full range of user-agent interface capabilities including the de-

velopment and use of user modeling techniques to support adaptive user
interfaces and interactions

W. Truszkowski et al., Autonomous and Autonomic Systems, NASA Monographs 69
in Systems and Software Engineering, DOI 10.1007/978-1-84628-233-1 4,
c© Springer-Verlag London Limited 2009
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The following discusses the structure, architecture, behaviors, communi-
cation, and collaboration required to coordinate the activities of the agents in
supporting unattended mission operations in a satellite control center.

4.1.1 A Basic Agent Model in AFLOAT

An agent is a computer-based autonomous process that is capable of goal-
directed activities [17,45] and can accomplish tasks delegated to it with min-
imal reliance on human intervention. As it is goal-directed, it can allow the
user to specify simply what he/she wants [38], leaving to the agents how and
where to get the information or services. Each agent is also able to participate
in cooperative work as an associate with humans or as part of a community
of cooperating agents.

The agent architecture used in AFLOAT provided appropriate structural
elements and behavior to support basic requirements for adaptive reasoning
[172]. An agent is adaptive to the extent that it can respond to short-term and
long-term changes in its operational environment, deal with unexpected events
and reason opportunistically, maintain a focus of attention among multiple
goals, and select and perform appropriate actions.

Structural Elements of an AFLOAT Agent

Each agent in AFLOAT had three structural components (Fig. 4.1):

1. An inter-agent communication interface
2. A monitor
3. A knowledge base

The inter-agent communication interface was responsible for validating
the inter-agent semistructured language format, sending outgoing messages,
receiving incoming messages, and broadcasting messages to other agents. The
monitor was responsible for monitoring interactions between agents, incom-
ing and outgoing messages, and the state of the agent, and maintaining a
history of the agent’s actions. An agent’s history of past-actions supports the
agent’s learning from experience when presented with new tasks. Each agent’s
knowledge base consisted of three elements:

1. A strategist, or a decision-theoretic planner
2. Problem-specific context descriptor
3. A set of procedures or rules for domain-dependent actions

The strategist was responsible for planning and scheduling the actions that
an agent must perform to achieve its goal. The problem context descriptor
defined specific attributes of each request to ensure that each agent’s atten-
tion was focused on the problem at hand. Problem solutions were modeled
as domain-dependent procedures. The internal models maintained functions
(such as managing access to the skills of each agent or maintaining its message
buffer) that were private to each agent and not accessible to external agents.
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Fig. 4.1. Architecture definition for a domain-independent knowledge-based (a.k.a.
deliberative) agent in Agent-based Flight Operations Associate (AFLOAT)

The external models module maintained global functions that were accessi-
ble to other agents. Both types of models were used to maintain a set of
actions necessary to achieve the agent’s goals. The actions were stored as ei-
ther rules or procedures. In AFLOAT, the strategist was implemented as a
Strategy-Schema [172] that maintained each agent’s subgoals for each request
it received. The problem context descriptor was modeled as a Context-Schema
to hold the features of a specific request, such as attention-focusing informa-
tion, default knowledge, and standing orders. Request-specific procedures were
modeled as Procedure-Schemas.

Behavioral Elements of an Agent in AFLOAT

Each agent in the AFLOAT architecture had six high-level behavior character-
istics similar to Laufmann’s “action-oriented” attributes [103]. The attributes
or capabilities are:

1. Autonomy
2. Learning
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3. Migration
4. Persistence
5. Communication
6. Cloning/spawning

Autonomy/semiautonomy is the ability of an agent to respond to a dynamic
environment without human intervention, thereby improving the productivity
of the user. When presented with a request, it can use its own strategy to
decide how to satisfy the request. Each agent is capable of a type of learning
that enables it to more responsively interact with its user community over a
period of time. Learning also enables the agent to keep abreast of changes in
its operational environment. The dynamic behavior of the agents is triggered
by either command or event-driven stimuli. Migration is the ability of an agent
to relocate to other nodes to accomplish its tasks. This ability can support
load balancing, improve efficiencies of communication, and provide unique
services that may not be available at a local node. Persistence is the ability
to recover from environmental crashes and support time-extended activities,
thereby reducing the need for constant polling of the agent’s welfare by the
user and providing better use of the system’s communication bandwidth. A
communication ability provides an agent with the mechanisms for supporting
agent–agent and user–agent interactions either through an ACL or a domain-
specific natural language. Spawning is an agent’s ability to create other agents
to support the parent agent, thereby promoting dynamic parallelism and fault-
tolerance. It is our opinion that these capabilities are necessary for building
autonomous satellite control centers.

The agent architecture described above is generic enough for use in au-
tomating the operations of the control center of any spacecraft. The Explorer
Platform’s (EP’s) [137] satellite control center was selected as a domain to
test the feasibility of AFLOAT. Figure 4.2 depicts the interactions between
different components of the EP satellite control center. The elements shown
in the diagram are similar to those found in a typical satellite operations con-
trol facility. A taxonomy of the EP subsystems and data extraction system
is also shown in Fig. 4.2. The diagram describes the interactions between the
physical model (i.e., elements above the mnemonics database) and the logical
model (i.e., elements below the mnemonics database) of the components of
the EP system.

The main goal of the AFLOAT project was to implement a multiagent
architecture that could interface directly with sources of data from a satellite
and process and reason with the data to support autonomous operation of the
control center. This was achievable with the aid of a data server agent that
could interface directly with satellite telemetry and provide the information
as mnemonics to other specialist agents. Due to operational restrictions, mag-
netic tapes were used to transfer satellite data to a workstation for processing
by a data server agent. Even with that restriction, it was possible to demon-
strate the feasibility of an automated agent-based satellite operations control
center.
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Fig. 4.2. A taxonomy of Explorer Platform (EP) satellite system and data extrac-
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4.1.2 Implementation Architecture for AFLOAT Prototype

An architecture definition for AFLOAT is shown in Fig. 4.3. The multia-
gent system (MAS) employed direct communication between agents without a
mediator. All external requests, from either a user or a remote client, entered
the AFLOAT system through the Interface Services Agent (ISA), which then
forwarded them to appropriate agents. The Systems Services Agent (SSA)
maintained a database of agents’ names, skills, and locations (i.e., TCP/IP
socket address). It also monitored the health and status of each agent, and
provided essential resources for agent migration.
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Fig. 4.3. AFLOAT architecture definition

The architecture provided two classes of specialist agents – coordinator
specialist and regular specialist. The coordinator specialist handled complex
requests requiring the participation of three or more regular specialist agents
to process. The coordinator agent had access to the system’s global skill-
base and possessed the capability to assemble a group of specialist agents,
decompose the request into smaller tasks, and delegate the requests to them.
Upon completing their tasks, the specialist agents returned their results to
the coordinator, which in turn assembled them and freed up members of the
agent group to return to their original states. Each specialist agent also had
the capability to collaborate with other agents to process a task.

After accepting a request, a specialist agent examined it to determine
whether it would require the services of other agents. If another agent’s skill
was required to support the task, it sent a message to the SSA requesting the
location of the agent. After receiving a response from SSA, it formulated a
request and sent a message to the other specialist agent. The other specialist
agent would process the task and return a response (result) to the specialist
agent. Each agent depicted in Fig. 4.3 existed in a C-language Integrated Pro-
duction System (CLIPS) [46] process with a persistent socket connection to
the SSA for monitoring its health and safety.

Approaches for Addressing Multiagent Architectural Issues
in AFLOAT

To successfully develop AFLOAT as a MAS, the following four architectural
issues had to be addressed:

• An approach was established for describing and decomposing the tasks
that gave the coordinator specialist agents and regular specialist agents
the capability to describe and decompose tasks.
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• A format was defined for interaction and communication between agents
that employed a semistructured message format for defining a language
protocol for the agents.

• A strategy was formulated for distributing controls among agents. The
control strategy initiated by either the coordinator agent or the regular
specialist agent was driven by the requirements of the request or the task
at hand. In certain situations, control was distributed among the agents,
and in other situations, the coordinator agent assigned all tasks to a group
of specialist agents in the form of a semicentralized control framework.

• A policy for coordinating the activities of agents was employed. Our design
allowed the SSA to maintain a directory of the skills of all the agents
and dispense information on the location of other agents upon request. In
addition, SSA monitored the status of each agent and would reactivate,
clone, or migrate them when necessary.

4.1.3 The Human Computer Interface in AFLOAT

A major component of AFLOAT was the User Interface Agent (UIA). The
UIA was ultimately responsible for supporting dialogs and interactions with
outside users of the agent system. In reality, the UIA was a community of
agents, each with specific tasks. The UIA had a user agent that supported
multimodal interaction techniques. As an example, the user could communi-
cate with AFLOAT via typed text or spoken language. There was a Request
Analysis Agent that checked for ambiguities in the user’s request, checked
spelling, filtered superfluous words, and performed pattern recognition and
context-dependent analysis. A major component of the UIA was the User
Modeling Agent. This agent was responsible for developing user profiles, clas-
sifying users, dynamically adapting to user behaviors and preferences, and
resolving ambiguities. The Results Management Agent was responsible for in-
teraction with the community of domain specialist agents, collection of results
of work done by the domain specialist agents, integration of results, and noti-
fication of users. The UIA also supported a local request server that provided
the UIA user-environment management, common services such as e-mail and
printing, and results-display support.

AFLOAT also provided an operational domain-restricted natural language
interface. The domain restriction is a requirement both for keeping the prob-
lem tractable and for performance reasons. This interface allowed users simply
to make requests in sentence form. For the grammar component of the natural
language interface, a “semantic” grammar was used. This can be defined as a
grammar in which the syntax and semantics are collapsed into a single uni-
form framework [5]. This grammar looks like a context-free grammar except
that it uses semantic categories for terminal symbols. There are several ben-
efits of using a semantic grammar, the main one being that there is no need
for separate processing of semantics. Semantic processing is done in parallel
with syntactic processing. This also means that this method is very efficient,
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since no time is spent on a separate processing step. There is also the bene-
fit of simplicity. It is not much harder to build a semantic grammar than a
syntactical one. All requests either in the form of a natural language or struc-
tured queries were submitted to AFLOAT through one of the two interfaces
labeled 1 in Fig. 4.3. All requests were automatically converted to an ACL to
enable inter-agent communication and collaboration.

4.1.4 Inter-Agent Communications in AFLOAT

Inter-agent communication in AFLOAT was based on the following assump-
tions:

1. Agents in AFLOAT communicated through an asynchronous message pass-
ing mechanism (i.e., asynchronous input and output messages)

2. A common message structure was maintained for all agents
3. Communication between agents was achieved through TCP/IP-based

sockets

The format of the ACL employed in AFLOAT was an enhanced version
of that proposed by Steve Laufmann [103] for “coarse-grained” agents, to
which we have added “performatives” proposed by Finin and group for the
Knowledge Query Manipulation Language (KQML) [24, 81], and enhanced
to meet specific requirements of the domain of spacecraft mission operations.
The format for an ACL message in AFLOAT was as follows:

msg-id: A unique identifier composed of hostname, a random number, and
system time separated by dashes (e.g., kong-gen854-13412.35).

user-id: The user-id of the person who originally submitted the request.
sender: The name of the agent that the message is coming from.
receiver: The name of the agent that the message is going to (in general).

Asterisk (*) is used when we want the agent that is receiving the message
to decide to whom the message should finally go.

respond-to: The name of the agent to which the response to this request
should go. It does not apply to response messages.

reply-constraint: This is used for time constraints (e.g., ASAP, soon, when-
ever)

language: The programming language that the message expects. This is es-
pecially important when the performative is “evaluate” and the string
passed in the input-string slot is just evaluated. This would only apply to
interpreted languages (e.g., CLIPS, shell scripts, etc.).

msg-type: The message type (request, response, status, etc.).
performative: The basic task to be performed (e.g., parse, archive, generate).
recipient: The name of the user interface agent of the person to receive the

results of the request.
result-action: The type of action to invoke on the result message (display,

print, etc.).
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domain: The domain is the system the message is dealing with. The domain
in this case is usually “EP.”

object-type: The type of the main object that the message refers to. This is
a level in the object hierarchy (e.g., system, subsystem, or component).

object-name: The actual name of the object given in the user request.
object-specifiers: Any words from the user request that give more detailed

information about which object is being referred to. This covers specifica-
tion of a number of objects that are being referred to (e.g., “number 1,”
“this,” “any”).

parameters: Any information that adds detail about the task to be performed.
For example, when monitoring or reporting on the solar arrays, this field
would specify temperature, performance, etc.

action-start: The date/time at which the action being referred to in the mes-
sage is to begin.

action-duration: The length of time the action is to last.
function: An actual function that is to be called as a result of the message. If

the input-string field is not empty, it contains parameters that are to be
passed to the function.

input-string: This slot contains any data or text information required by other
slots of the message. If the function slot is populated, this slot would
contain input parameters. For a “parse” performative message, this slot
would contain the actual sentence submitted by the user.

Each ACL message format had a message header and a message body.
The message header consisted of the message attributes from msg-id through
result-format. The rest of the message was the body of the message. An ex-
ample of an ACL message generated from a user’s natural language input is
shown below. A user’s input is the value stored in the input-string at the
bottom of the message. Only pertinent values of the attributes of the message
need to be included. Because the performative for this message is “parse,” the
SSA would use the information in its skill base to route the request to the nat-
ural language parser for processing. An example of a REQUEST-MESSAGE
in an ACL format is the following:

(msg-id, gen001)
(user-id, john)
(sender, umbc-ui)
(receiver, loral-coord)
(respond-to, umbc-ui)
(reply-constraint, ASAP)
(language, CLIPS)
(msg-type, request)
(performative, parse)
(recipient, john-uia)
(result-action, nil)
(result-format, nil)
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(domain, "EUVE spacecraft")
(object-type, nil)
(object-name, nil)
(object-specifiers, nil)
(parameters, nil)
(action-start, nil)
(action-duration, nil)
(function, nil)
(input-string, "monitor the health and safety of the
spacecraft’s batteries")

Start-Up and Activation of a Community of Domain Specialist
Agents in AFLOAT

To initiate the prototype, a UNIX process loaded the System Services Agent
(SSA), labeled as box 3 in Fig. 4.3. The SSA then loaded each of the agents
depicted in boxes 2–11 and established a persistent socket connection with
each of them. The links were persistent to enable the SSA to monitor the
status of the nine agents. In addition to monitoring the status of the agents,
the SSA stored the location and skills base of other agents and provided ap-
propriate resources to support the agents’ migration requirements. To support
fault tolerance, the ISA had the capability to monitor the status of the SSA,
and to restart it if it died. Communications from clients (i.e., external in-
terfaces – either user interfaces or remote clients) needed to be registered at
the ISA. This was necessary to relieve the processing load of the SSA. The
agents numbered 2 and higher constituted the AFLOAT server. All the agents
communicated when necessary via TCP/IP sockets. At run time, the User In-
terface Agent (UIA) was loaded. Users submitted requests to AFLOAT from
a remote web client and received responses/results locally.

4.2 Lights Out Ground Operations System

LOGOS [175, 177, 181, 183] was a proof-of-concept system that used a com-
munity of autonomous software agents that worked cooperatively to perform
the functions previously undertaken by human operators who were using tra-
ditional software tools, such as orbit generators and command-sequence plan-
ners. The following discusses the LOGOS architecture and gives an example
scenario to show the data flow and flow of control.

4.2.1 The LOGOS Architecture

For reference, an architecture of LOGOS is shown in Fig. 4.4. LOGOS was
made up of ten agents, some of which interfaced with legacy software, some
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performed services for the other agents in the community, and others inter-
faced with an analyst or operator. All agents could communicate with any
other agent in the community, though not all of the agents were required to
communicate with other agents.

The System Monitoring and Management Agent (SysMMA) kept track
of all of the agents in the community and provided addresses of agents for
other agents requesting services, similar to the ISA in AFLOAT. Each agent
when started had to register with SysMMA to register their capabilities and
to obtain addresses of other agents whose services it needed.

The Fault Isolation and Resolution Expert (FIRE) agent resolved satellite
anomalies. FIRE was notified of anomalies during a satellite pass. It contained
a knowledge base of potential anomalies and a set of possible fixes for them.
If it did not recognize an anomaly or was unable to resolve it, it then sent the
anomaly to the user interface agent to be forwarded to a human analyst for
resolution.

The User Interface Agent (UIFA) was the interface between the agent
community and the graphical user interface that the analyst or operator used
to interact with the LOGOS agent community. UIFA received notification of
anomalies from the FIRE agent, handled login of users to the system, kept
the user informed with reports, routed commands to be sent to the satellite,
and performed other maintenance functions. If the attention of an analyst was
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needed but none was logged on, UIFA would send a request to the PAGER
agent to page the required analyst.

The VisAGE Interface Agent (VIFA) interfaced with the Visual Analysis
Graphical Environment (VisAGE) data visualization system. VisAGE was
used to display spacecraft telemetry and agent log information. Real time
telemetry information was displayed by VisAGE as it was downloaded during
a satellite pass. VIFA requested the data from the Genie Interface Agent
(GIFA) and Archive Interface Agent (AIFA) agents (see below). An analyst
could also use VisAGE to visualize historical information to help monitor
spacecraft health or to determine solutions to anomalies or other potential
spacecraft problems.

The Pager Interface Agent (PAGER) was the agent community interface
to the analyst’s pager system. If an anomaly occurred or other situation arose
that needed an analyst’s attention, a request was sent to the PAGER agent,
which then paged the analyst.

The Database Interface Agent (DBIFA) and the AIFA stored short-term
and long-term data, respectively, and the Log Agent (LOG) stored agent
logging data for debugging and monitoring purposes. The DBIFA stored in-
formation such as a list of the valid users and their passwords, and the AIFA
stored telemetry data.

The GenSAA/GIFA interfaced with the GenSAA/Genie ground station
software [65], which handled communications with the spacecraft. Gen-
SAA/Genie was used to download telemetry data and maintain scheduling
information and to upload commands to the spacecraft. As anomalies and
other data were downloaded from the spacecraft, GIFA routed the data to
other agents based on their requests for information.

The Mission Operations Planning and Scheduling System (MOPSS) Inter-
face Agent (MIFA) interfaced with the MOPSS ground-station planning and
scheduling software. MOPSS kept track of the satellite’s orbit and when the
next pass would occur and how long it would last. It also sent out updates to
the satellite’s schedule to requesting agents when the schedule changed.

4.2.2 An Example Scenario

An example scenario illustrating how the agents would communicate and co-
operate would start with MIFA receiving data from the MOPSS scheduling
software informing MIFA that the spacecraft would be in contact position in
2 min. MIFA would then send a message to the other agents to wake them
up, if they were sleeping, and let them know of the upcoming event. The
advance notice allowed them to do some preprocessing before the contact.
When GIFA received the message from MIFA, it would send a message to the
GenSSA Data Server to put it into the proper state to receive transmissions
from the control center.

After receiving data, the GenSSA Data Server would send the satellite
data to GIFA. GIFA had a set of rules that indicated which data to send
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to which agents. As well as sending data to other agents, GIFA also sent
all engineering data to the archive agent (AIFA) for storage, and sent trend
information to the visualization agent (VIFA). Updated schedule information
was sent to the scheduling agent (MIFA) and a report was sent to the user
interface agent (UIFA) to send on to an analyst for monitoring purposes. If
there were any anomalies, they were sent to the FIRE agent for resolution.

If there was an anomaly, the FIRE agent would try to fix it automatically
by using a knowledge base containing possible anomalies and a set of possible
resolutions for each anomaly. To fix an anomaly, FIRE would send a spacecraft
command to GIFA to be forwarded on to the spacecraft. After exhausting its
knowledge base, if FIRE was not able to fix the anomaly, it would forward
the anomaly to the user interface agent, which then would page an analyst
and display the anomaly on the analyst’s computer for action. The analyst
would then formulate a set of commands to send to the spacecraft to resolve
the situation. The commands would then be sent to the FIRE agent so that it
could add the new resolution to its knowledge base for future reference. The
commands then would be sent to the GIFA agent, which in turn sent them to
the GenSAA/Genie system for forwarding on to the spacecraft.

There were many other interactions between the agents and the legacy
software that were not covered above. Examples include the DBIFA request-
ing user logon information from the database, the AIFA requesting archived
telemetry information from the archive database to be sent to the visualiza-
tion agent, and the pager agent sending paging information to the paging
system to alert an analyst of an anomaly needing his or her attention.

4.3 Agent Concept Testbed

The motivation behind ACT was to develop a more flexible architecture than
LOGOS for implementation of a wide range of intelligent or reactive agents.
After developing the architecture, sample agents were built to simulate ground
control of a satellite constellation mission as a proof of concept. The following
discusses the ACT agent architecture and gives an operational scenario using
the satellite constellation proof of concept.

4.3.1 Overview of the ACT Agent Architecture

The ACT architecture was a component-based architecture that allowed
greater flexibility to the agent designer. A simple agent could be designed
by using a minimum number of components that would receive percepts (in-
puts) from the environment and react relative to those percepts. This type of
simple agent would be a reactive agent.

A robust agent could be designed using more complex components that
allowed the agent to reason in a deliberative, reflexive, and/or social fashion.
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This robust agent would maintain models of itself, other agents in its envi-
ronment, objects in the environment that pertain to its domain of interest,
and external resources that it might utilize in accomplishing a goal. Figure 4.5
depicts the components for a robust agent. The depicted components gave the
agent a higher degree of intelligence when interacting with its environment.

The ACT agent architecture was capable of several types of behaviors.
Basically, “agent behavior” refers to the manner in which an agent responds
to some sort of stimulus, generated either externally (outside the agent) or
internally (within the agent). We have identified four basic classes of behaviors
that agents can realize. These are:

Social: Social behaviors refer to behaviors shared between/among agents. The
ACT architecture supported two types of social behavior: social behavior
triggered by another agent and social behavior triggered by the agent
itself. In each of these cases, the agent utilized ACL messages to solicit
help or to coordinate the behaviors of other agents.

Proactive: This type of behavior is stimulated in some way by the agent itself.
For our agents, there was one type of proactive behavior that was to
be supported, self motivating. Self-motivating behaviors are triggered by
built-in or intrinsic goals.

Reactive: Reactive behaviors are those that require “no thinking.” These be-
haviors are like built-in reflexive actions that are triggered by events in
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the agent’s environment or by other agents. When detected, the agent
responds immediately with a predetermined action.

Deliberative: This type of behavior is perhaps the most difficult and inter-
esting. At the highest level of abstraction, this type of behavior involves
the establishing of a hierarchy of goals and subgoals, the development of
plans to achieve the subgoals, and the execution of the planned steps to
ultimately accomplish the goal that started the process of deliberation in
the first place.

4.3.2 Architecture Components

Components

A component in the agent architecture is a software module that performs
a defined task. Components when combined with other software components
can constitute a more robust piece of software that is easily maintained and
upgraded. Each component in the architecture can communicate information
to/from all other components as needed through various mechanisms includ-
ing a publish-and-subscribe communication mechanism, message passing, or
a request for immediate data.

Components may be implemented with a degree of intelligence through
the addition of reasoning and learning functions. Each component needs to
implement certain interfaces and contain certain properties. Components must
implement functionality to publish information, subscribe to information, and
accept queries for information from other components or external resources
being used by the component. Components need to keep track of their state
and to know what types of information they contain and what they need from
external components and objects.

The following describes the components in the ACT agent architecture.

Modeler

The modeling component was responsible for maintaining the domain model
of an agent, which included models of the environment, other agents in the
community, and the agent itself. The Modeler received data from the Percep-
tors and agent communication component. These data were used to update
state information in its model. If the data caused a change to a state vari-
able, the Modeler then published this information to other components in the
agent that subscribed to updates to that state variable. The Modeler was also
responsible for reasoning with the models to act proactively and reactively
with the environment and events that affected the model’s state.

The modeler could also handle what-if questions. These questions would
primarily originate from the planning and scheduling component, but could
also come from other agents or from a person who wanted to know what the
agent would do in a given situation or how a change to its environment would
effect the values in its model.
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Reasoner

The Agent Reasoner made decisions and formulated goals for the agent com-
ponent through reasoning with received ACL messages and information in its
local knowledge base, as well as with model and state information from the
Modeler. This component reasoned with state and model data to determine
whether any actions needed to be performed by the agent to affect its environ-
ment, change its state, perform housekeeping tasks, or perform other general
activities. The Reasoner would also interpret and reason with agent-to-agent
messages received by the agent’s communications component. When action
was necessary for the agent, the Reasoner would produce goals for the agent
to achieve.

Planner/Scheduler

The planner/scheduler component was responsible for any agent-level plan-
ning and scheduling. The planning component formulated a plan for the agent
to achieve the desired goals. The planning component was given a goal or set
of goals to fulfill in the form of a plan request. This typically came from the
Reasoner component, but could be generated by any component in the system.

At the time that the plan request was given, the planning and scheduling
component acquired a state of the agent and system, usually the current state,
as well as the set of actions that could be performed by this agent. This infor-
mation would typically be acquired from the modeling and state component.
The planning and scheduling component then generated a plan as a directed
graph of steps. A step is composed of preconditions to check, the action to
perform, and the expected results from the action (post condition). When
each step was created, it was passed to Domain Expert components/objects
for verification of correctness. If a step was deemed incorrect or dangerous,
the Domain Expert could provide an alternative step, solution, or data to be
considered by the planner.

Once the plan was completed, it was passed back to the component that
requested the plan (usually the Reasoner). The requesting component then
either passed it on to the Agenda to be executed or used it for planning/what-
if purposes.

Agenda/Executive

The Execution component managed the execution of steps and determined the
success or failure of each step’s execution. Output produced during a step’s
execution could be passed to an Effector or the Reasoning component. The
Agenda and Executive worked together to execute the plans developed by the
Planner/Scheduler. The agenda typically received a plan from the Reasoner,
though it could receive a plan from another component that was acting in a
reactive mode. The agenda interacted with the Execution component to send
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the plan’s steps in order for execution. The agenda kept track of which steps
were being executed, had finished executing, were idle, or were waiting for
execution. It updated the status of each step appropriately as the step moved
through the execution cycle. The agenda reported the plan’s final completion
status to the Planner and Agent Reasoner when the plan was complete.

The Executive would execute the steps it received from the Agenda. A
step contained preconditions, an action, and possible postconditions. If the
preconditions were met, the action was executed. When executions finished,
the postconditions were evaluated, and a completion status was generated for
that step. The completion status was returned to the agenda, which allowed
for overall plan evaluation.

The execution component interacted with the agenda in the following way.
The agenda sent the first step to the execution component. This woke up the
Executive. The component then began executing that step. The Executive
then checked to see if another step was ready for execution. If not, the com-
ponent would go back to sleep until it received another step from the agenda.

The Modeling component would record state changes caused by a step
execution. When a plan was finished executing, the Agenda component sent
a completion status to the Reasoning component to indicate that the goal
established by the Reasoner had been accomplished. If the Agent Reasoning
component was dealing with data from the environment, it could decide either
to set a goal (for more deliberative planning) or to react quickly in an emer-
gency situation. The Reasoner could also carry on a dialog with another agent
in the community through the Agent Communication Perceptor/Effector.

A watch was also attached to the Executive. It monitored given condi-
tions during execution of a set of steps and the consequence if the condition
occurred. Watches allowed the planner to flag things that had to be particu-
larly looked out for during real-time execution. They could be used to provide
“interrupt” capabilities within the plan. An example of a watch might be to
monitor drift from a guide star during an observation. If the drift exceeds a
threshold, the observation is halted. In such a case, the watch would notify the
Executive, which in turn would notify the Agenda. The Agenda would then
inform the Reasoner that the plan had failed and the goal was not achieved.
The Reasoner would then formulate another goal (e.g., recalibrate the star
tracker).

Agent Communications

The agent communication component was responsible for sending and receiv-
ing messages to/from other agents. The component took an agent data object
that needed to be transmitted to another agent and converted it to a message
format understood by the receiving agent. The message format that was used
was based on Foundations of Intelligent Physical Agents (FIPA) [110]. The
message was then transmitted to the appropriate agent through the use of a
NASA-developed agent messaging protocol/software called Workplace [7].
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The reverse process was performed for an incoming message. The comm-
unications component took the message and converted it to an internal agent
object and sent it out to the other components that had a subscription to
incoming agent messages. The communications component could also have
reactive behavior, where for a limited number of circumstances, it could pro-
duce an immediate response to a message.

Perceptors/Effectors

Percepts received through sensors, communication with external software/sys-
tems, and other environmental entities were received through a Perceptor
component. These percepts were passed from the Perceptor to the Modeling
component, where a model’s state was updated as needed.

The Perceptors were responsible for monitoring parts of the environment
for the agent. An example might be a subsystem of a spacecraft or recurring
input from a user. Other than agent-to-agent messages, any data received by
the agent from the environment entered through Perceptors. An agent might
have zero or more Perceptors, where each Perceptor received information from
specific parts of the agent’s environment. A Perceptor could just receive data
and pass it on to another component in the agent, or it might perform some
simple filtering/conversion before passing it on. A Perceptor might also act
intelligently through the use of reasoning systems. If an agent was not moni-
toring a part of the environment, then it would not have any perceptors (an
example of this would be an agent that only provides expertise to other agents
in a certain area, such as fault resolution).

The Effector was responsible for effecting or sending output to the agent’s
environment. Any agent output data, other than agent-to-agent messages, left
through Effectors. Typically the data coming from the Effectors would be sent
from the executive that had just executed a command to the agent’s environ-
ment. There could be zero or more Effectors, where each Effector sent data
to specific parts of the agent’s environment. An Effector could perform data
conversions when necessary and could even act intelligently and in a proac-
tive manner when necessary through the use of internal reasoning systems.
As with the Perceptors, an agent might not have an Effector if it did not need
the capability of interacting with the environment.

Agent Framework

A software framework, into which the components were “plugged,” provided a
base functionality for the components as well as the inter-component commu-
nication functionality. The framework allowed components to easily be added
and removed from the agent while providing for a standard communications
interface and functionality across all components. This made developing and
adding new components easier and made component addition transparent to
existing components in the agent.
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The communications mechanism for components was based on a publish-
and-subscribe model, with a direct link between components when there was
a large amount of data to be transferred. Components communicated to each
other the types of data that they produced when queried. When one compo-
nent needed to be informed of new or changed data in another component, it
identified the data of interest and subscribed to it in the source component.
Data could be subscribed-to whenever they are changed or on an as-needed
basis. With this mechanism, a component could be added or removed without
having to modify the other components in the agent.

4.3.3 Dataflow Between Components

This section gives an example of how data flowed between components of the
architecture. In this example scenario, a spacecraft’s battery is discharging.
Figure 4.6 shows a timeline and the flow of data between components. The
following is the scenario:

1. The agent detects a low voltage by reading data from the battery via a
Perceptor. The Perceptor then passes the voltage value to the Modeler,
which has subscribed to the Perceptor to receive all percepts.
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Fig. 4.6. Scenario of data flowing between agent components
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2. When the Modeler receives the voltage from the Perceptor, it converts the
voltage to a discrete value and updates this value in the model. In this
case, the updated voltage value puts it below the acceptable threshold
and changes the model’s voltage state to “low.” This change in state
value causes a state change event and the Modeler now publishes the new
state value to all components that have subscribed to changes in this
state variable. Since the Reasoner has subscribed to changes in this state
variable, the low voltage value is sent to the Reasoner.

3. In the Reasoner, the low voltage value fires a rule in the expert sys-
tem. This rule calls a method that sends the Planner/Scheduler a goal
to achieve a battery voltage level that corresponds to fully charged.

4. When the Planner/Scheduler receives the goal from the Reasoner, it
queries the Modeler for the current state of the satellite and a set of
actions that can be performed (this set may change based on the health
of the satellite).

5. After receiving the current state of the satellite and the set of available
actions from the Modeler, the Planner/Scheduler formulates a list of ac-
tions that need to take place to charge the battery. It then sends the plan
back to the Reasoner for validation.

6. The Reasoner examines the set of actions received from the Planner/
Scheduler and decides that it is reasonable. The plans are then sent to the
Agenda.

7. The Agenda then puts the action steps from the plan into a queue for the
Executive.

8. As the Executive is ready to execute a new step, the agenda passes the
plan steps one at a time to the Executive for execution.

9. The Executive executes each action until the plan is finished. At this time,
the Executive notifies the Agenda that it has finished executing the plan.

10. The Agenda marks the plan as finished and notifies the Reasoner (or
whomever sent the plan) that the plan finished successfully.

11. After the plan is executed, the voltage starts to rise and will trigger a state
change in the Modeler when the voltage goes back into the fully charged
state. At this time, the Reasoner is again notified that a change in a state
variable has occurred.

12. The Reasoner then notes that the voltage has been restored to the fully
charged state and marks the goal as accomplished.

4.3.4 ACT Operational Scenario

The operational scenario that was developed to evaluate ACT was loosely
based on certain nanosatellite constellation ideas. Figure 4.7 graphically illus-
trates this scenario. It was based on the idea of a ground-based community
of proxy agents (each representing a spacecraft in the nanosatellite constel-
lation) that provided autonomous operations of the constellation. Another
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scenario corresponded to the migration of this community of proxy agents to
the spacecraft themselves, to support an evaluation of space-based autonomy
concepts.

In this scenario, several nanosatellites are in orbit collecting magneto-
sphere data. The Mission Operations Control Center (MOCC) makes contact
with selected spacecraft according to its planned schedule when the spacecraft
(S/C) come into view.

The agents that would make up the MOCC would be:

• Mission Manager Agent: Coordinates the agent community in the MOCC,
manages mission goals, and coordinates CMAs.

• Contact Manager Agent (CMA): Coordinates ground station activities
(one agent per ground station), communicates with the spacecraft, and
sends and receives data, commands, and telemetry.

• User interface: Interfaces with the user to accept commands for the space-
craft and sends data to be displayed.

• MOCC Planning/Scheduling Agent: Plans and schedules contacts with the
spacecraft via interface with external planner/scheduler.

• Spacecraft Proxy Agents: There is one proxy agent for each spacecraft in
orbit. The agents keep track of spacecraft status, health and safety, etc.
The agents will notify the Mission Manager Agent when there occurs an
anomaly that may need handling.

Each of the above agents registers with the Ground Control Center (GCC)
manager agent. The GCC manager agent notifies the agents when there is an
impending contact for their spacecraft, and when another agent is going to
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be added to the community; it also provides to the agents the address of the
other agents (so agents can pass messages to each other). The following is a
spacecraft contact scenario that illustrates how the agents worked with the
GCC manager agent:

• Agents register with the GCC Manager Agent at system startup.
• The GCC Planner/Scheduler Agent communicates with the spacecraft

Proxy Agents to obtain spacecraft communications-view data. It then cre-
ates a contact schedule for all orbiting spacecraft.

• The GCC Manager Agent receives the schedule from the GCC Planner/
Scheduler Agent.

• The GCC Manager Agent informs the CMA about the next contact (when
and with which spacecraft).

• The CMA receives notification of an acquisition of signal (AOS) from a
spacecraft. The MOCC is now in contact with the spacecraft.

• The CMA executes the contact schedule to download data, delete data, or
save data for a future pass.

• The CMA analyzes the downloaded telemetry data. If the telemetry indi-
cates a problem, the CMA may alter the current contact schedule to deal
with the problem.

• The CMA performs any necessary commanding in parallel with any data
downloads.

• The CMA sends the telemetry to the appropriate spacecraft Proxy Agent
for processing.

• The spacecraft Proxy Agent processes the telemetry data and updates the
state of its model of the spacecraft from the telemetry received.

• If the spacecraft Proxy determines that a problem exists with the space-
craft and an extended or extra contact is needed, a message is sent to the
GCC Planner/Scheduler Agent which will re-plan its contact schedule and
redistribute it to the GCC Manager.

• The spacecraft Proxy Agent sends to the Contact Manager any commands
that need to be uploaded.

• The Mission Manager Agent ends contact when scheduled.

4.3.5 Verification and Correctness

Whereas AFLOAT and LOGOS demonstrated that typical control center ac-
tivities could be emulated by a multiagent system, the major objective of the
ACT project was to demonstrate that ground-based surrogate agents, each
representing a spacecraft in a group of spacecraft, could control the overall
dynamic behaviors of the group of spacecraft in the realization of some global
objective. The ultimate objective of ACT was to help in the understanding of
the idea of progressive autonomy (see Sect. 9.6), which would, as a final goal,
allow the surrogate agents to migrate to their respective spacecraft and then
allow the group of autonomous spacecraft to have control of their dynamic
behaviors independent of relying on ground control.
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ACT properly emulated the correct interaction between surrogate agents
and their respective spacecraft. This “correctness” was determined by com-
parison between what the surrogate did vs. what a human controller on the
ground would have done, in conjunction with what the controllers associated
with the other surrogates would have done, to achieve a global objective. This
analysis was undertaken more at the heuristic level than at a formal level.
The design of the surrogates was realized in a modular fashion in order to
support the concept of incremental placement of the functional capabilities
of the surrogate agent in the respective spacecraft, until the spacecraft itself
was truly agent-based and “autonomous.” This particular aspect of the ACT
project was heuristically realized, but not rigorously (formally) tested out.

The use of formal methods has been identified as a means of dealing with
this complex problem. Formal approaches were previously used in the specifi-
cation and verification of the LOGOS system [56,118,119,124]. A formal spec-
ification in Communicating Sequential Processes (CSP) highlighted a number
of errors and omissions in the system. These, and other, errors were also found
by an automated tool [57–59, 111, 112], which implemented an approach to
requirements-based-programming [52]. For more information on formal veri-
fication of agent-based systems, see [123].
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5

Core Technologies for Developing Autonomous
and Autonomic Systems

This chapter examines the core artificial intelligence technologies that will
make autonomous, autonomic spacecraft missions possible. Figure 5.1 is a
pictorial overview of the technologies that will be discussed. The plan tech-
nologies will be discussed first followed by the act and perceive technologies,
and finally technologies appropriate for testing.

It is difficult to make definitive statements on the functionality, strengths,
and weaknesses of software systems in general, since designers have tremen-
dous latitude on what they do. This chapter explains and discusses the at-
tributes seen in a majority of the systems described. It should be understood
that exceptions may exist.

5.1 Plan Technologies

The planning portion of the autonomy cycle is responsible for examining the
environment and choosing appropriate actions in light of the goals and mission
of the system. Sometimes this choice requires interactions with other systems.
Planners are a central technology in all computerized planning, and many
techniques have been developed to support planning, such as formal collab-
oration languages, evidential reasoning, and learning techniques. The rest of
this section will discuss these techniques and planning in general.

5.1.1 Planner Overview

A defining characteristic of an autonomous system is the ability to indepen-
dently select appropriate actions to achieve desired objectives. Planner sys-
tems are the software component commonly used to achieve this capability.
Work on software planners goes back to 1959 and, over the intervening years,
many types of planners have been developed.

Figure 5.2 shows a high level view of a planner and its context in a system
architecture. All planners begin with a set of initial mission objectives that are
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specified as goals to the planner. These goals are analyzed in the light of the
planner’s view of the environment and a database describing what it is capable
of doing. After analysis, the planner chooses a set of actions to perform and
these actions are sent off for execution. Results from the execution of these
actions are fed back to the planner to update its view of the environment. If the
goals have been achieved, success is reported back to the higher level system.
If some problem has occurred during execution, error recovery is attempted,
a new plan is created, and the cycle repeats. If no other plan can be created,
the failure is reported to the higher level system.
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This description is generic and it leaves many design decisions unanswered.
For example, planners differ in how they describe the goals they are to achieve,
the environment they execute in, and their database of potential actions. Each
of these descriptions is given in a computer-based language. This language is
very important since it defines what the system is capable of doing and how
it will do it. It also defines what the system cannot do. If the language used
is too limited, it may not be able to describe some aspect of the domain,
potentially limiting the planner’s ability to handle some situations.

Planners differ in the speed at which they come to decisions. Some planners
are slow and deliberative, while others are quick and reactive. In general, the
slow deliberative planners make plans that are more globally optimal and
strategic in nature. The reactive planners tend to examine the environment
and choose from a highly constrained set of plans. They are tactical in nature
and work well in rapidly changing environments where the time for slow careful
choice is not available. In many real world systems, either the planner is
designed to handle both deliberation and reactivity, or two separate planners
are integrated together.

All robust planners must deal with the failure of an action during exe-
cution. Some planners have low level strategies on hand and when a failure
occurs, they immediately attempt to repair the plan. Others have a database
of alternative ways to achieve an objective, and when an attempt fails, they
analyze the current environment and choose another plan. In domains where
the environment changes very rapidly relative to the planner decision time or
where action failure is a regular occurrence, the planner may take the possi-
bility of failure into consideration during plan creation. These systems give
preference to robust plans that can help recover from likely failures even if
the robust plan has a higher cost in resources than the alternatives.

Some planners convert higher level tasks into low level actions just before
execution. By using this strategy, they commit fewer resources to any one plan
and can quickly react to changes in the environment. Unfortunately, the plan
that is ultimately executed will often be suboptimal, particularly if two or
more tasks are competing for the same resource. Other planners map the top-
level goals into a complete series of small actions that take place in a time-
sequenced manner. The advantage of this approach is that a more globally
optimal plan can be created. Its disadvantage is that a failure occurring in
one step can cause the rest of the plan to be abandoned and re-planned.
This is computationally expensive and time consuming. Re-planning can also
cause problems if the domain looks forward into the plan and begins the
commitment of resources based on the expected plan. In these domains, the re-
planning step must use repair strategies in an attempt to maintain most of the
original plan.

Planners must be sensitive to an action’s cost in resources. In computer
domains, such as software agents, actions have small costs and plan selection
can usually ignore resource issues. In other domains, like spacecraft, some
actions commit resources that cannot be replenished (such as propellant).
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When resources have a very high cost, a failure during an action can threaten
the whole mission. For planning in this type of domain, the costs and recov-
ery strategies must be carefully chosen before action is taken and resources
committed.

Having reviewed planner technology and a number of design choices facing
a planner, we now will describe several common planner technologies.

5.1.2 Symbolic Planners

Symbolic planners are systems that represent their goals and plans as a series
of symbolic assertions, instead of numbers, fuzzy quantities, or probabilities.
Symbolic planners have been used in many domains.

Figure 5.3 depicts a symbolic planner. The plans of a symbolic planner
are stored in a centralized database. Each plan has a set of preconditions and
a list of operations to perform. The planner uses the preconditions to deter-
mine when it can use a plan. These preconditions can specify environmental
constraints, the availability of resources, and potentially whether other plans
have been executed before this plan. The list of operations in the plan may be
primitive operations to perform, or they can be additional plan components.
These plan components become additional subgoals that need to be examined
by the planner. Often a plan instantiated during the planning cycle is called
a task.

Create Initial
Task List

Tasks

Goals

World
Model

Execute
Plan
And

Return
Results

Update
Model

Iteratively
 Create Plan

Plans
Database

Fig. 5.3. Symbolic planner
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While symbolic planners vary in detail, they generally start the planning
activity by examining the goals in light of the current environment and then
break the goals into a series of tasks. These tasks are themselves examined and
broken into simpler subtasks. This iterative refinement process continues until
a point is reached where the tasks define a series of steps at an appropriate level
of abstraction for plan implementation. The plan is executed and feedback is
generated on the success of the tasks. The higher level system is signaled when
objectives have been met. If a failure occurs in one or more of the tasks, the
planner modifies its plan and the cycle is repeated. If the planner exhausts all
of its options and still the objectives have not been met, the planner signals
to the higher level that it has failed.

Symbolic planners use many different strategies for choosing among the
potential plans. They often spend large amounts of computer resources gen-
erating plans and selecting the best ones. They have difficulties in situations
where the decision cycle time is short, or where actions and failures are not
deterministic.

5.1.3 Reactive Planners

Reactive planners are specifically designed to make rapid choices in time crit-
ical situations. They can be designed around either symbolic or numeric rep-
resentations.

Figure 5.4 shows the structure of a reactive planner. Reactive planners
begin by evaluating the available plans in light of the current context and
then choosing the most appropriate. These plans are simple in nature and are
designed to execute immediately. Once the plan is selected and being executed,
the planner monitors the current situation and only changes the plan if the
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goal is modified or the plan succeeds or fails. A reactive planner can quickly
assess the updated situation and switch to a new plan. The selection process is
kept fast by limiting the number of potential plans that have to be examined.
Sometimes this is accomplished by the higher-level control system, explicitly
listing all plans the reactive planner needs to examine. On other systems,
the set of plans is automatically constrained by indexing the plans on their
applicable context. At each decision step, only the context-appropriate plans
will have to be examined.

Reactive planners spend little time choosing the next plan, and therefore,
are appropriate for time critical situations. They are often used in the low-level
control of robot and robot-like systems, which have hard real-time deadlines.
Because reactive planners only examine a limited number of choices, they will
often make good local decisions and poor global ones. Another component of
the overall system architecture is usually made responsible for optimizing the
global objectives.

5.1.4 Model-Based Planners

Model-based planners use models to analyze the current situation and create
their plans. They represent this information symbolically with goals described
as desired changes in the environment.

Figure 5.5 shows the structure of a model-based planner. These systems
give careful focus to the process of updating their internal models. As part
of world-model update, these planners may create detailed submodels of the
internal status of sensors and actuators, and using their model, can extend
the direct measurements to determine the status of internal, but not directly
measured, subsystems.

Once an accurate model of the platform and world has been created, the
model-based planner examines the goals, and using its models, creates a plan
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Fig. 5.5. Model-based planning
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to achieve the objectives. Model-based systems can be extremely effective at
creating plans in the face of one or more damaged subsystems.

One can argue that many planners are model-based since their database
of potential actions implicitly defines the system and its capabilities. While
there is some merit to this argument, it misses the fact that this implicit
knowledge is usually generated by human programmers and may not be com-
plete. These systems are, therefore, artificially limited in what they can plan.
A model-based planner, using its deep understanding of the system it con-
trols, can come up with novel approaches to achieve the objectives. This is
most important when the system is damaged. Model-based systems can use
their model to work around the damage. In other approaches, the human pro-
gramming must explicitly define the strategy to use when failure occurs, and if
they did not make a plan for the failure, the system will respond suboptimally.

The advantages of model-based approaches are that they only need the
model description of the system being controlled and the rest is automatically
determined. Their disadvantage is that reasoning on models can be very slow
and the necessary models are often hard to construct and possibly incomplete.
Model-based approaches are often used in support of other forms of planners.

5.1.5 Case-Based Planners

Case-based planners are systems that represent their planning knowledge as
a database of previously solved planning cases. Case-based planners exploit
the idea that the best way to solve a new problem is probably very similar
to an old strategy that worked. Their cases can be a mixture of symbolic and
numeric information. Case-based planners are a class of case-based reasoning
(CBR) technology [1, 116,138].

Figure 5.6 shows the structure of a case-based planner. When a case-
based planner is given a new goal, it attempts to find a similar case in its
case database. The cases are indexed on the goals being solved and the envi-
ronmental conditions when they were solved. If similar cases are found, they
are extracted, adapted to the current situation, and analyzed to see whether
they will achieve the goal being pursued. Often the case will be simulated
in the current environment to determine its actual behavior. This simulation
can discover defects in the plan so that repair strategies can be applied to
customize the plan for the current situation. The new case is simulated and
the cycle repeated. Once a plan has met all the necessary requirements, it is
executed. The results of execution are examined, and if it did not achieve the
objective, new cases are retrieved and the cycle is repeated. Cases that are
successful may be placed in the database for future planning activity. In this
way the case-based planner learns and becomes more proficient.

Two difficulties that arise in case-based planners pertain to the methods
used to index the cases and the reasoning component of the system. How cases
are indexed determines whether appropriate cases will be found when they are
needed to solve a problem. If the indexing is too restrictive, an appropriate
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case may not be retrieved for examination and the knowledge it represents
may be lost. The system will have to start the planning with a less optimal
case. If the indexing is too loose, a large number of inappropriate cases will
be supplied and each will have to be examined and eliminated. This makes
the resulting system slower and less responsive. How to index the cases is a
central problem in case-based systems, and in a real sense, can determine its
success.

The second difficulty is the reasoning component of a case-based planner.
This component is responsible for determining whether the plan will work
and repairing it if the plan can be repaired. Ultimately, if no plan is similar
to the current situation, the reasoning component must create a whole new
plan. These are difficult components to construct.

Many case-based planners use a conventional symbolic or a model-based
planner as the reasoning component of the case-based planner. The advantage
to this approach is that the resulting system has all of the capabilities of the
conventional symbolic or a model-based planner with a case-based planner’s
ability to learn new cases. In effect, the case-based database generated is used
to cache the knowledge of the conventional system. This makes the resulting
system more responsive over time.
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5.1.6 Schedulers

Planning systems and scheduling systems work in the same domain, solve very
similar problems, and use the same core technologies. The primary difference is
that scheduling systems are more focused on detailed accounting of resources,
and they tend to generate complete and detailed plans.

5.2 Collaborative Languages

Most forms of collaboration require the collaborating agents to communicate
using a shared language. This language specifies the kinds of information that
can be exchanged between the agents, and in a real way, determines what one
agent can and cannot communicate to another. Well designed languages allow
the agents to say what is necessary to solve the problem. Poor languages limit
communication and support less than optimal solutions.

Computer systems support many kinds of communication. The simplest
communication, from a computer science point of view, is an exchange of mes-
sages whose content is an internal program data structure. The data structure
can be a simple primitive type like a number or string, or the structure can
be complex connections of records. This approach to communication is easy
to implement, and the communicating parties can immediately interpret the
content and meaning of the messages they exchange. However, this method
of communication has a limited expressive capability.

The other approach is to create a general purpose formal language. These
systems construct a computer language that is general in nature and able
to express a wide range of concepts. The first advantage of this approach is
flexibility, since these languages can express and collaborate on richer sets of
problems. Also, being a formal language, it can be documented and used by
different and disjoint teams building collaborative agents. Even though they
share no code or common ancestry, they can collaborate using this common
language. The Defense Advanced Research Projects Agency (DARPA) knowl-
edge sharing effort (KSE) has developed a very capable formal language for
intelligent systems to exchange information. In practice, both types of com-
munication are used in collaborative agents.

5.3 Reasoning with Partial Information

Intelligent behavior can be loosely broken down into problem solving (plan-
ning) and reasoning on evidence. Several technologies are used to reason on
partial information. This section will describe two common techniques: fuzzy
logic and Bayesian reasoning.
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5.3.1 Fuzzy Logic

Fuzzy Logic was developed by Lotfi Zadeh for use in control systems that are
not easily converted into mathematical models. He wrote a paper in the 1960s
called “Fuzzy Logic,” which described this new technology. Acceptance in the
United States was initially slow and may have been hindered by the word
“fuzzy” in its name. Despite its slow start, it is now being used in a wide
range of control systems.

Fuzzy Logic works well in domains that are complex and where knowledge
is contained in engineering experience and rules of thumb, rather than math-
ematical models. Fuzzy Logic allows the creation of set-membership functions
that support reasoning about a particular value’s degree of membership in
that set. Figure 5.7 shows three fuzzy sets that define Cold, Warm, and Hot.
A specific temperature, say 100◦, has different membership in each of these
sets. Combiners are used to connect fuzzy expressions together to generate
compound expressions. Rules can be constructed that reason on these mem-
berships and perform some action. For example, “if EngineTemp is Hot and
the DeltaV is NecessaryDeltaV then Stop Burn” would reason on the current
engine temperature in relationship to the necessary delta V and determine
whether it should terminate burn. Other rules could deal with a hot engine
and an insufficient delta V, or could stop the engine when the delta V is
optimal.

Despite their name, Fuzzy Logic systems are time invariant, determinis-
tic, and nonlinear. They are computationally efficient. Once rules have been
developed, they can be “compiled” to run in limited computational environ-
ments. Unfortunately, how and when to use fuzzy combination rules are not
well understood or systematic.

Engineers might be drawn to this technique because it is easy to get an
initial prototype running and incrementally add features. If the domain is
primarily engineering rules of thumb, the use of this technique is defensi-
ble. If, however, good mathematical or other models of the domain can be
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constructed, even at the cost of more up-front effort, the resulting system
should be more robust. Serious consideration should be given to whether the
initial ease of fuzzy construction outweighs the robustness of more formal
modeling techniques.

5.3.2 Bayesian Reasoning

Bayesian reasoning is a family of techniques based on Bayesian statistics. Its
strength is the firm foundation of statistics on which it rests (hundreds of
years). It has a well-developed methodology for mapping real world problems
into statistical formulations, and if the causal model is accurate and the ev-
idence accurately represented, Bayesian systems give scientifically defensible
results.

In simple terms, Bayes’ rule (or Bayes’ theorem) states that the belief
one accords a hypothesis upon obtaining new evidence can be computed by
multiplying one’s prior belief in the hypothesis and the likelihood that the
evidence would appear if the hypothesis were true. This rule can be used to
construct very powerful inferential systems.

Bayesian systems require causal models of the world. These models can be
developed by engineers using their knowledge of the system, or in some cases,
by analyzing empirical data. These models must be at the appropriate level
of detail for the system to make correct inferences. Multiple implementation
strategies have been developed to reason with Bayesian models once they
have been created. Figure 5.8 shows two methods for representing a Bayesian
model. Bayes nets encode the state information as nodes and causality as
links between the nodes. Figure 5.8a shows a simple example. More recent
work has developed systems that can reason on the probabilistic equations
in a symbolical manner similar to Mathematica. An example data set can be
seen in Fig. 5.8b.

Many implementations of Bayesian systems make a simplifying as-
sumption that the supplied evidence is completely independent from other
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evidence. This makes Bayesian model generation and analysis much simpler.
Unfortunately, the independence rule is often violated in real domains and
distorts the final results. This effect has to be carefully controlled.

5.4 Learning Technologies

Learning techniques allow systems to adapt to changing circumstances such as
new environments or failures in hardware. They also allow systems to respond
more rapidly to situations they have previously explored and to which they
have found good solutions. While many techniques exist, this section will focus
on artificial neural networks and genetic algorithms.

5.4.1 Artificial Neural Networks

Artificial neural networks are a learning technique based loosely on biological
neural networks. Figure 5.9 is a pictorial representation of a neural net. Each
“neuron” is a simple mathematical model that maps its inputs to its outputs.
It is shown in Fig. 5.9 as a circle. The input situation is represented as a
series of numbers called the input vector that is connected to the first layer of
neurons. This layer is usually connected to additional layers finally connecting
to a layer that produces the output vector. The output vector represents the
solution to the problem described by the input vector.

Neural networks are trained using a set of input vectors matched to out-
put vectors. By iterating through this training set, the network is “taught”
how to map this and similar input vectors into appropriate output vectors.
During this training, the network determines what features of the input set
are important and which can be ignored. If the training set is complete and
the network can be trained, the resulting system will be robust.

.3 

.1 

.7 

.1 

.9 

.1 

Input
Vector

Output
Vector 
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Neural networks have been used successfully in many domains. However,
one difficulty with neural networks is that it is not always easy to understand
what they have learned since the learned information is locked up in internal
neuron states. A related difficulty is that there is no way to determine whether
the training set was complete enough to have the network learn the correct
lessons. When faced with a novel situation, the network may choose the wrong
answer. The final difficulty is that controlled adaptation can be good, but too
much learning can cause a previously stable system to fail.

5.4.2 Genetic Algorithms and Programming

Genetic Algorithms are learning techniques based loosely on genetic repro-
duction and survival of the fittest. They use either numeric or symbolic rep-
resentations for the definition of the problem.

Figure 5.10 is a pictorial representation of a genetic algorithm reproduction
cycle. Processing begins by randomly creating the initial pool of genes. Each
gene represents one potential solution and each is evaluated to determine how
well it solves the problem. The best solutions from the current generation are
paired and used to make new genes for the next generation. The bits from
the two parents’ genes are mixed to create two new genes. The new genes
enter the gene pool to be evaluated on the next cycle. Since the best genes
are continually being mixed together, the genes in later generations tend to
be better at solving the problem. This cycle continues until a strong solution
is found.

Genetic programs operate in a manner similar to genetic algorithms with
the modification that each gene is actually a small program. Each reproduction
cycle mixes parts of each parent program.
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5.5 Act Technologies

The action portion of the autonomy cycle is responsible for implementing the
choices made by the plan portion of the cycle. The actions interact directly
with the operating environment and must be customized to the problem do-
main.

The most obvious action technologies are the actuators used by robots
and immobot agents. Actuators are devices that are directly coupled in the
operation environment and are able to make some change when activated.
Examples include opening a valve, moving a drive train, or starting a pump.

Being physically connected to the real world, actuators are subject to the
wear and tear due to age and potential damage caused by the environment.
Wear and tear can cause actuators to have complex failure pathologies, and
robust systems are designed to detect these failures and recover. Since actua-
tors modify the operating environment, designers must ensure that actuator
actions do not have negative side effects for the agent or the environment.

Communication is a different form of action. Agents use it to share world
views, negotiate options, and direct subordinates. Usually, the communication
is transmitted over a network. The messages can be sentences in a formal
language or can be the exchange of computer data structures.

In software agents, all actions are represented as some form of communica-
tion to the subsystems being controlled by the agent. These communications
cause the controlled system to begin some internal process or modify a process
that is underway. Examples of these actions would include sending email to
the owner, beginning a database search, canceling a buy order, or sending a
work request to another agent.

5.6 Perception Technologies

Perception is the activity of sensing and interpreting the operating environ-
ment. Like the action technologies, perception technologies are tightly coupled
to the problem domain.

5.6.1 Sensing

Sensing is the process where some attribute or attributes of the environment
are measured. Many types of sensors exist, from the simplest switch to complex
multi-spectral image detectors, and they use a wide range of technologies to
measure the environment.

In many cases, the sensor will take several steps to convert the sensed
attribute into electronic signals that can be interpreted by computers. For
example, a microphone converts the sound energy moving in the air into tiny
vibrations in a mechanical system. These mechanical vibrations are then con-
verted into electrical energy usually using piezo-electric or electromagnetic
devices.
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In some applications, the sensor is integrated directly into the actuator and
helps the actuator achieve its desired effect. An example is the angle sensor
in a servo system.

Sometimes the sensor and actuator are the same device. Electric motors,
for example, convert electrical energy into mechanical rotation (actuator), but
they can also be used to convert mechanical rotation into electrical energy for
measurement (sensor). Another example is communication. The sending agent
is performing an action and the receiving agent is sensing. When the receiving
agent responds, the roles reverse.

5.6.2 Image and Signal Processing

To utilize the information supplied by the sensor, some sensor-specific com-
putation is necessary. This computation is used to clean up the information
supplied by the sensor and to apply processing algorithms that detect the
attribute being measured.

Some sensors require little processing. A simple mechanical switch is either
on or off and its interpretation should be easily understood by the agent.
However, mechanical switches bounce when their position is changed, and
this bounce causes a rapid series of on/off signals to be generated before the
switch settles into its new position. The computer systems interpreting signals
from switches are fast enough to detect these bounces and take them into
consideration so as not to misinterpret the environment. Therefore, mechanical
switches are de-bounced using a small electrical circuit or software. This is a
simple example of signal processing.

Other sensors require massive amounts of signal processing. Radar and
sonar systems work in environments with a large amount of background noise.
If the signals are not carefully processed, the background noise will be in-
correctly categorized as an item of interest to the system. Complex, sensor-
specific algorithms are used to eliminate the background noise, interpret the
results, and find target items in the signal.

In a similar manner, imaging detectors require large amounts of postpro-
cessing to clean up device specific noise and interpret the data and find target
items of interest to the agent. In many situations, the algorithms are layered,
where lower level algorithms clean up the individual pixels and higher level
algorithms merge multiple pixels together to interpret what is in the image.

Image and signal processing can be computationally very expensive. Some-
times this computational expense will justify the use of special purpose pro-
cessors whose only purpose is to perform the image or signal processing.

5.6.3 Data Fusion

The ultimate goal of perception is to supply the agent with an accurate repre-
sentation of the working environment. In most real world systems, perception
requires the agent to integrate multiple sensor data into a single consistent
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view of the world. This is often done by having each sensor perform its sensor-
specific processing and then merge the sensor output [91,192]. The techniques
used vary between domains and the types of sensors being used.

One advantage of data fusion is that it can supply a more accurate under-
standing of the environment. This is because the data missing from one sensor
can be filled in by another. Also, when multiple potential interpretations are
possible in the data from a single sensor, information supplied from another
sensor can help remove ambiguities.

Data fusion is a complex subject and many design decisions must be made
when designing a system. Some of the important issues are:

• How is the sensed data represented? (pixels, numbers, vectors, symbols,
etc.)

• How are the different sensor representations merged into the common
view?

• How is conflicting information handled? Does one viewpoint win or are all
views represented?

• Can uncertainty be represented with appropriate weightings?
• Can information from one sensor be used to fill in holes in the information

from another?
• What is the level of granularity in the data (pixels, symbols, etc.) and how

will the discrepancies between data granularity and model granularity be
handled?

5.7 Testing Technologies

The development of robust agent systems requires testing. Testing supports
the detection of errors in implementation where the system implementers over-
looked or misunderstood a requirement, or just made a mistake. But another
major purpose of testing is to uncover requirements that are missing in the
original specifications when the system was designed.

A complete testing plan requires testing at each stage of the development
effort and involves numerous strategies. Ultimately, the actual system (hard-
ware and software) should be tested in a realistic environment that is capable
of exercising both the nominal situations and many error cases. While this
level of testing is important, it can be very expensive. As the cost of compu-
tation declined, it became possible to develop very realistic testing environ-
ments that exist solely in a computer without physical test hardware. This
section will limit itself to software testing relative to cooperative autonomy.

5.7.1 Software Simulation Environments

Software simulation environments are based on the idea that it is possible
to use computerized simulations to model accurately not only the system
being tested, but also its operating environment. While they cannot replace



5.7 Testing Technologies 111

conventional testing of real systems, software simulations have many advan-
tages. The two testing paradigms (i.e., real-world testing and testing in simu-
lation) can be mutually complementary, and each can be used to cross-check
the other.

Each of the testing paradigms has strengths and weaknesses that vary in
different domains and problem situations. This set of relationships must be
thoroughly considered and understood relative to the strengths and weak-
nesses of the development team. Only then can a cost-effective decision be
reached as to the degree to which the development team utilizes each testing
paradigm. NASA mission development teams have a long history of the use
of both, and have a high level of corporate knowledge regarding the tradeoffs
between the two paradigms for testing space mission systems. The expectation
of the degree of cost-effectiveness of testing in a given mission development is
strongly related to experience of this kind.

The first advantage, in certain situations, of software simulation environ-
ments is that the testing cycle time is shorter. Building real hardware and
a physical simulation environment is, in some cases, very expensive. In con-
trast, again in some circumstances, once the software environment is set up,
building models of the test system and its environment is relatively easy to
do. This allows experiments in all levels of cooperative autonomy with only
modest expense (depending on the problem domain).

As development proceeds, systems will need to be expanded, changed, or
replaced. This, in many cases, may be very expensive to do when using physical
test hardware. Software simulations, however, may allow these changes to be
made quickly and cheaply. Indeed, in many situations, the costs are so low
that several different solutions can be developed and tested without concern
that the losing solutions will be thrown away.

Software testing environments also allow testing of system components in
isolation. This allows components to be developed and tested without the need
and cost of building a full model of the system. After testing, the promising
components can be further developed and integrated into a complete system
for further testing.

In a similar manner, software testing environments allow testing of differ-
ent levels of fidelity. To perform a quick test of a new idea, it is not usually
necessary to build a complex, high fidelity model of the whole system. A sim-
ple, low fidelity model will usually tell the designer whether the idea merits
further development and testing at a higher fidelity.

Software testing environments usually support superior debugging tools.
Simulated systems can give the developer an ability to examine the state of
the simulated hardware and software at any point in the execution. If an
unexpected event occurs, the simulation can be stopped and examined in
detail until the cause is determined. This reduces the testing time and allows
the developer to have a better understanding of how well the system works.

Finally, software testing environments, in general, are repeatable and
can be designed to systematically test for faults. Real systems must face



112 5 Core Technologies for Developing Autonomous and Autonomic Systems

many environmental challenges and can fail in many different ways. Creat-
ing multiple environmental challenges with real hardware can become very
time consuming and labor intensive. Software simulations can, in many cir-
cumstances, quickly and simply create challenges and test for faults. Also,
depending on how the model is created, the software system may automati-
cally create failure scenarios not imagined or tested by human engineers on
real hardware. Often it is the unexpected faults that cause the most damage.

Crucial in deciding whether to adopt the approach of simulating the hard-
ware and the environment is the question of whether the development team
has the necessary understanding of the hardware and the environment. To de-
sign and implement simulation software that will have sufficient fidelity (i.e.,
that will be true to the real world) is, in many cases, fraught with difficul-
ties. This issue must be considered with dispassionate realism and with the
recognition of the failure of some past development efforts in both government
and private-sector projects, due to an over-simplified view of the hardware,
the environment, and the dynamics of the combination, and due to an overly
optimistic view of the capabilities of the development team.

The most important design issues when creating software testing environ-
ments are:

• The goals of the simulation
• The level of fidelity required
• The types of debugging desired
• Required interactions with other simulations or software/hardware com-

ponents

Though simulation software can exercise the flight software, the test software
must always remain physically separate from the flight software so that it does
not accidently get activated when deployed.

The rest of this section will examine the common techniques used to create
software testing environments.

5.7.2 Simulation Libraries

Simulation libraries consist of a set of program library routines that the test
component calls to emulate an appropriate effect in the test environment. The
library routines emulate the effect of the calls, interact with the environment,
and return appropriate information to the calling component. This type of
environment works well for systems with well-defined control interfaces.

Simulation libraries are the simplest testing environments to build because
they only require the normal software tools and programmer knowledge to
develop. Additionally, any software language and environment can be used
for the simulation development. Simulation libraries tend to have low fidelity,
particularly in the timing of hardware actions. Again, the simulation software
would have to be kept separate from the flight software.

A good example of this technique would be testing a robot control system
on a robot simulation. The control program would make the same calls it
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would on the actual hardware and the simulated calls move the robot in the
environment and return the same sensor results the real system would return.
If the simulation is good enough, the control system can then be placed in the
real robot and run.

5.7.3 Simulation Servers

A more advanced technique is to use a separate simulation server for com-
ponents being simulated and have the component being tested interact with
the simulation server using a local area network. The primary advantage of
this approach is that the simulation and test component run on different
hardware, and therefore, each can have free access to needed resources. The
simulation can be at an arbitrary and appropriate level of fidelity. If a high
fidelity simulation is desired, very fast hardware can be used to simulate it.
The software being tested can be run in an environment very close to the
real system with the network interfaces being the only potential difference. If,
for example, the planned hardware for the control software being tested is an
unusual flight computer, then that exact computer can be used. It does not
affect the simulation server’s hardware.

A simulation server has an additional advantage: it can usually accommo-
date multiple simulated entities in the same simulated environment – a big
advantage when testing cooperative autonomy systems. Though it is some-
what uncommon, software library techniques can be used in simulations ac-
commodating multiple simulated entities.

5.7.4 Networked Simulation Environments

Another software simulation technique uses a network of computers to simu-
late multiple entities in a single shared simulation environment. The focus in
designing these systems is on efficient protocols that allow an accurate simu-
lation in the shared environment. The primary advantage of this approach is
that it allows very large and complex systems to be simulated.

The distributed interactive simulation (DIS) system funded by DARPA
and the military is an example of a networked simulation environment
[6, 40, 48]. This very successful project built a training system that allowed
hundreds of simulated entities (tanks, planes, helicopters, missiles, etc.) to
interact in a realistic battlefield simulation. The thrust of this effort was orig-
inally to have human-controlled simulated hardware engage in interactions.
The continuations of DIS have developed in many areas. Work relative to co-
operative autonomy simulations is intended to bring an understanding of how
real hardware and simulated entities can interact together in the same simu-
lated/real world. Such an understanding would support the development and
testing of real spacecraft or robots interacting with simulated ones in mutual
cooperation.
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Agent-Based Spacecraft Autonomy Design
Concepts

In this chapter, we examine how agent technology might be utilized in flight
software (FSW) to enable increased levels of autonomy in spacecraft missions.
Again, as stated in the Preface, our discussion relates exclusively to uncrewed
assets (robotic spacecraft, instrument platforms on planetary bodies, robotic
rovers, etc.) or assets that must be capable of untended operations (e.g.,
ground stations during “lights-out” operations). The basic operational func-
tionality discussed in Chap. 2 is accounted for and allocated between flight and
ground, and between agent and nonagent FSW. Those technologies required
to enable the FSW design are touched upon briefly, and new autonomous
capabilities supportable by these technologies are described. Next, the advan-
tages of the design from a cost-reduction standpoint are examined, as are the
mission types that might benefit from this design approach.

For each design concept, the appropriate distribution of functionality be-
tween agent and nonagent components and between flight and ground systems
is discussed. For those functions assigned to remote agent processing, enabling
technologies that are required to support the agent implementation are iden-
tified. Further, we determine for which mission types each design concept is
particularly suitable and describe detailed operational scenarios depicting the
remote agent interactions within the context of that design concept.

6.1 High Level Design Features

The general philosophy of this FSW concept is that conventional nonagent
software will encompass all H&S onboard functionality. This FSW segment,
referred to as the “backbone,” will also contain functionality directly support-
ing H&S needs, such as slewing and thruster control, and will be directly ac-
cessible by realtime ground commands in the “normal” manner. The Remote
Agent software will embody mission support functionality, such as planning
and scheduling, as well as science data processing. To achieve its goals, a Re-
mote Agent may access backbone functionality through a managed bus whose
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data volume will be restricted to avoid potential interference with critical
backbone processing. Should any or all Remote Agents “fall off” the bus or
simply cease to operate, the backbone will not be impacted, though science
observations could well be temporarily degraded or terminated.

The FSW backbone processing is time-driven. Each function within the
backbone receives a well-defined “slice” of processing time. All backbone
functionalities are scheduled to begin at a fixed time relative to the start
of a processing cycle and will complete within one or more time cycles. A
list of backbone functions is provided below, with more detailed descriptions
following:

1. Safemode
2. Inertial fixed pointing
3. Ground commanded thruster firing
4. Ground commanded attitude slewing
5. Electrical power management
6. Thermal management
7. H&S communications
8. Basic fault detection and correction (FDC)
9. Diagnostic science instrument (SI) commanding

10. Engineering data storage

6.1.1 Safemode

Safemode is the key enabler of higher-level FSW functions. Safemode guaran-
tees that no matter what may happen during the conduct of the mission, be it
a hardware malfunction (for redundant H/W components) or a FSW abnor-
mality, as a last resort (provided the problem is detected), the spacecraft can
enter a state where no further permanent damage will be done and spacecraft
H&S can be maintained. The allocation of this function to the FSW backbone
is clearly essential.

Return from safemode is contingent on diagnosing the underlying cause
of the problem and implementation of corrective action, either selection of
a “canned” solution or creation of a new solution. Currently, return from
safemode is within the purview of the flight operations team (FOT), but, with
a sufficiently advanced onboard FDC, the capability could be shared. Some
spacecraft are provided with multiple levels of safemode, but nearly all God-
dard Space Flight Center (GSFC) spacecraft have a sun-pointing safemode to
guarantee power and SI safemodes to protect delicate SIs. In the past, most
GSFC spacecraft also had a hardware safemode in case the onboard computer
(OBC) went down.

6.1.2 Inertial Fixed Pointing

Although the safemode function discussed above guarantees maintenance
of spacecraft H&S, recovery from safemode and interception of the science
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schedule can be a lengthy process during which precious observing time will
be lost, potentially irretrievably depending on the mission lifetime and the
nature of the science. So, a lesser response to anomalies than safemode entry
is highly desirable.

An inertial fixed pointing mode serves this purpose. For celestial pointing
spacecraft, being inertially fixed is effectively being in observing mode with-
out a science target and without making use of fine error sensor or SI data.
The pointing accuracy and stability will, therefore, not meet mission require-
ments, but will be adequate to facilitate re-initiation of the science program.
And virtually all spacecraft, independent of mission type, require an inertial
fixed pointing mode to support sensor calibrations, such as gyro scale fac-
tor and alignment. For these reasons, and since ground controllers may need
to command the spacecraft to an inertial mode either during the immediate
postlaunch checkout phase or in response to unusual spacecraft performance
during mission mode, the FSW backbone will require the capability to transi-
tion to and maintain the spacecraft at an inertially fixed pointing. Note that
typically the following associated functions are part of and subsumed under
an inertial hold mode:

1. Gyro data processing and drift bias calibration
2. Attitude control law(s) for fixed pointing
3. Reaction wheel commanding and momentum distribution
4. Actuator commanding for momentum management

6.1.3 Ground Commanded Slewing

Just as ground controllers need access to an inertial fixed pointing mode in
response to an anomalous condition on-orbit, the need may arise to slew the
vehicle attitude to a different orientation. Control of nominal spacecraft slew-
ing activities in support of science execution or sensor/instrument calibration
could be allocated to an appropriate Remote Agent. But some basic slewing
capability must also reside within the FSW backbone to ensure that in the
event of the onset of an anomaly originating from within (or at least affecting)
the agent itself, the backbone retains the capability for slewing the spacecraft
to a needed orientation, such as sun pointing.

6.1.4 Ground Commanded Thruster Firing

Similarly to slewing, control of nominal thruster firing could be allocated to an
appropriate Remote Agent. Nominal use of the propulsion subsystem might
well be highly automated, coupled with autonomous onboard planning and
execution of orbit stationkeeping maneuvers. However, the need will still exist
to provide the ground controller a “back door” into the propulsion subsystem
to enable ground commanding of emergency angular momentum dumps or or-
bit changes. For that matter, the FSW backbone itself may need to command
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the thrusters to damp out unusually high booster separation rates. So, some
access to and control of thruster firing by the backbone is critical.

6.1.5 Electrical Power Management

Even in conventional FSW designs, electrical power management is somewhat
isolated from other FSW functionality to protect against “collateral” damage
in the event of a processor problem or software bug. Some functionality within
the electrical power subsystem may even be hard-wired. Although managing
SI requests for use of electrical power might rightly reside inside a Remote
Agent, management of the most critical spacecraft power resource must reside
within the FSW backbone.

6.1.6 Thermal Management

As with electrical power management, thermal management in conventional
FSW designs is already set apart from other FSW functionality for the same
reasons. Also for the same reasons, it also must reside within the FSW
backbone.

6.1.7 Health and Safety Communications

Although nominal communications should be highly autonomous to support
efficient downlink of the massive quantities of data generated by modern SIs,
in the event of a spacecraft emergency, ground controllers must be guaran-
teed direct access to any information stored onboard to help them understand
and correct any problem. They must also be capable of sending commands to
any hardware element involved in the resolution of the crisis. To support
these fundamental mission requirements, especially during the early post-
launch checkout phase, full ground command uplink capability (probably via
a low volume omni antenna) must be provided both through the FSW back-
bone and through a command and data handling (C&DH) uplink card in the
event the main processor(s) is (are) down. Low rate downlink through an omni
must also be provided to guarantee the ground’s reception of key status data,
as well as (if necessary) more detailed engineering data stored just prior to
the onset of a problem.

6.1.8 Basic Fault Detection and Correction

Just as all processing necessary for maintaining the spacecraft in safemode
must be contained within the FSW backbone, the key functionality associ-
ated with transition into safemode must also reside within the backbone. In
particular, basic FDC limit checking and safemode-transition logic should be
part of the backbone. On the other hand, more elaborate FDC structures
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that adapt to new conditions, create new responses, or employ state-of-art
methodologies such as state modeling, case-based reasoning, or neural nets
should be hosted within an appropriate agent.

6.1.9 Diagnostic Science Instrument Commanding

If a SI experiences an anomaly within its hardware or embedded software, it
will be necessary to downlink diagnostic data to the ground for analysis. In
that event, as the SI or spacecraft platform may even be in safemode at the
time, it is necessary to provide a “bullet-proof” capability for ground control to
retrieve that diagnostic data, or even send troubleshooting commanding to the
SI to generate additional information needed to solve the problem. To provide
ground control a direct route to the SI for these purposes, the associated
diagnostic SI commanding should also reside within the FSW backbone.

6.1.10 Engineering Data Storage

Just as communications with ground control could be fully autonomous and
handled by Remote Agents (both on the spacecraft and in the ground’s lights-
out control center), so too could management of science data collected in the
course of an observation. On the other hand, the main purpose of engineering
housekeeping data is to support fault detection in realtime onboard, as well
as anomaly investigations post facto on the ground. To support these ground
control efforts, which at times are critical to spacecraft H&S, the backbone
should control storage and management of these data.

6.2 Remote Agent Functionality

The Remote Agents have the responsibility for achieving science mission ob-
jectives. They are event-driven, independent modules that operate as back-
ground tasks, which in some flight hardware architectures would be distributed
among multiple processors. These mission-support agents are expected to ne-
gotiate among themselves and cooperate to accomplish higher level goals. For
example, they might strive to achieve optimal science observing efficiency by
coordinating the efforts of individual Remote Agents (potentially distributed
between the flight and ground systems) responsible for data monitoring and
trending, science and engineering calibration, target planning and scheduling,
and science data processing.

To ensure the viability of the spacecraft, the FSW is designed such that
individual Remote Agents can unexpectedly terminate functioning without
impacting the FSW backbone. To isolate the agents from the backbone, an
executive agent controls agent communication with the backbone. The band-
width available for agent-to-backbone “conversations” is limited, so as not
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to impact backbone processing. Bandwidth limitation is also used to control
agent communications with spacecraft hardware through the backbone.

A list of potential Remote Agent functions is provided below, with more
detailed descriptions in the following subsections:

1. Fine attitude determination
2. Orbit determination (and other reference data)
3. Attitude sensor/actuator and SI calibration
4. Attitude control
5. Orbit maneuvering
6. Data monitoring and trending
7. “Smart” fault detection, diagnosis, isolation, and correction
8. Look-ahead modeling
9. Target planning and scheduling

10. SI commanding and configuration
11. SI data storage and communications
12. SI data processing

6.2.1 Fine Attitude Determination

For safemode or inertial-hold purposes, gyros and sun sensors supply adequate
information to guarantee acquisition and maintenance of a power-positive
spacecraft orientation, or to ensure that the spacecraft will not drift far from
its current attitude. So an autonomous onboard capability to determine a
fine-pointing attitude (i.e., pointing knowledge good to a few arcseconds) is
not critical to H&S. It is, however, essential for mission performance for any
precision pointer, be it earth- or sun-pointer.

Given that “Lost-in-Space” startrackers are now available that directly
output attitude quaternions, this function, for some missions, has already been
realized in an independent hardware unit. For other missions with higher ac-
curacy pointing requirements, FSW (which could be developed with an agent
structure) would still be required for interpreting and combining data from the
startracker with those from a fine error sensor or SI. The simplest implemen-
tation of this capability would involve creating a fine-attitude-determination
agent that continuously generated attitude solutions, independent of the need
of any other agent for their use. These solutions could then be stored in a
data “archive” pending a request by other agents. Calibration data and sen-
sor measurements needed by the attitude-determination agent could be stored
in similar archives until requested by the agent. Old data (either input to or
output from the agent) could be maintained onboard until downlinked, or if
not needed on the ground, simply overwritten periodically.

Orbit Determination (and Other Reference Data)

Typically, accurate spacecraft position information is not required to support
safemode processing or emergency communications, so orbit determination is
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not a function that must be resident in the FSW backbone. For spacecraft in
near-earth orbits, global positioning system (GPS) can be used for orbit deter-
mination. GPS also provides a time fix, simplifying onboard clock correlation.
The GPS solution is purely a hardware one, constituting a fully independent,
modular agent.

On the other hand, if future orbit information must be predicted, or if GPS
cannot be used (as, for example with a mission at the L2 Lagrange Point), a
software solution, often requiring input from the ground, must be used instead.
The simplest implementation of this capability would involve creating an orbit
determination agent that continuously generated orbit solutions, independent
of the need of any other agent. These solutions could then be stored in a data
“archive” pending a request by other agents. Similar to attitude data, old
data could be maintained onboard until downlinked, or if not needed on the
ground, simply overwritten periodically.

In addition to the spacecraft ephemeris already discussed, there often is
an onboard need for Solar, Lunar, ground station, and/or tracking and data
relay satellites (TDRS) position information as well. These data are usually
computed onboard via analytical models and would supplement the spacecraft
orbit data already supplied by the orbit agent. In a similar fashion, other
reference information such as geomagnetic field strength and South Atlantic
Anomaly (SAA) entrance/exit times (for a set of SAA contours) could be
supplied by the agent, as required by the mission.

6.2.2 Attitude Sensor/Actuator and Science Instrument
Calibration

Currently, very few calibrations are carried out autonomously onboard. For
nearly all current GSFC missions, gyro drift biases are calibrated at high
cycling rates via a Kalman filter, and for small explorer (SMEX) missions,
onboard magnetometer calibration is standard. Neither of these is required to
be performed (at least immediately) when in safemode or inertial hold, so they
need not be part of the FSW backbone. In the future, however, the dynamic
quality of other spacecraft hardware may require more elaborate onboard
calibrations, both engineering-related and SI-related. In such circumstances,
consolidating all calibration functionality within a single Remote Agent would
facilitate interaction with (for example) a data monitoring-and-trending agent
or a planning-and-scheduling agent, whether those agents are located onboard
or on the ground.

6.2.3 Attitude Control

Other than for responding to ground realtime commands, spacecraft slews are
performed in support of scheduled science observations or calibration activi-
ties. So, the attitude slew function can safely be assigned to a Remote Agent
as long as a basic slewing capability is included in the FSW backbone as well.
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The agent version could be much more sophisticated than the version in the
FSW backbone. For example, it could automatically adjust slew trajectory to
avoid known constraint regions, while the backbone version followed a fixed
eigenvector path. This same agent would have responsibility for high-precision
fixed-pointing in science observation mode, a function also not required by the
backbone.

6.2.4 Orbit Maneuvering

As long as direct thruster control is available to the ground via the FSW
backbone, it is acceptable from a risk management standpoint to assign a
higher level orbit maneuvering capability to a Remote Agent. This application
would be responsible for planning routine stationkeeping maneuvers based on
ground-developed algorithms.

To illustrate how the capability might be utilized inflight in a Remote
Agent context, imagine that an autonomous onboard monitoring-and-trending
agent has determined that a geosynchronous spacecraft will leave its orbital
box in the next 24 h. That agent would notify the planning and scheduling
agent of the need for a stationkeeping maneuver in that timeframe. The plan-
ning and scheduling agent would request that the orbit maneuvering agent
supply it with a package of thruster commands that will restore the orbit to
lie within accepted limits. The orbit maneuvering agent, in part, uses input
data supplied by the trending agent, then constructs two sets of thruster com-
mands, one to initiate a drift back to the center of the box and the second to
stop the drift when the spacecraft reaches this objective. The orbit maneu-
ver agent also specifies time windows within which both command packages
must be executed, and submits its products to planning and scheduling, which
schedules their execution.

6.2.5 Data Monitoring and Trending

Although rule-based limit checks for safemode entry need to be contained
within the FSW backbone, more elaborate data monitoring and trending func-
tionality could safely reside within a separate Remote Agent. This agent could
utilize a statistical package to perform standard data analysis procedures such
as standard deviation, sigma-editing, chi-squared, etc. to evaluate the believ-
ability of new measurements and/or calculated parameters and to extrapolate
predicted values from past data. This agent would also be responsible for pro-
viding data products required by FDC to detect the presence of operational
anomalies that do not threaten spacecraft H&S, but could impact science
data-collection efficiency or success. The output from this agent would also
be of interest to application agents such as the orbit-maneuvering agent, as
previously discussed. Note that the data monitoring-and-trending agent could
also utilize a wide variety of AI products to generate and interpret its results,
including state modeling, case-based reasoning, and neural nets, as well as a
simulation capability.
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6.2.6 “Smart” Fault Detection, Diagnosis, Isolation,
and Correction

Some “primitive” fault detection driven by simple rule-based limit checking
must be present in the FSW backbone to control entry into safemode and
other critical mode transitions and/or hardware reconfigurations. However,
that portion of fault detection solely concerned with threats to performance
of science observations (as opposed to the hardware itself) would be assigned
to a Remote Agent. That same agent could also perform fault diagnosis and
isolation and determine the appropriate course of corrective action, which
could be either a predetermined “canned” solution or an original solution in-
dependently created by the agent. To the extent that fault diagnosis, isolation,
and correction exist within the backbone, they should be viewed as canned
correlations between simple limit checks and canned corrective actions devel-
oped and specified by ground personnel, primarily before launch. This agent
may also utilize a wide variety of AI products to generate and interpret its
results, including state modeling, case-based reasoning, and neural nets.

6.2.7 Look-Ahead Modeling

The FSW backbone is a time-driven software element that looks at data in
realtime and responds in realtime or near-realtime: there is no need for any
look-ahead modeling functions within the backbone. On the other hand, many
Remote Agent applications (such as planning and scheduling, data trending
and monitoring, and orbit determination and maintenance) may require the
support of look-ahead models. Examples include ephemerides, solar intensity,
wheel speed, and SAA entrance/exit. The model outputs could be generated
continuously independent of the need of any other agent for their use. These
solutions could then be stored in a data “archive” pending a request by other
agents.

6.2.8 Target Planning and Scheduling

Traditionally, FSW has been time-driven, and full planning and scheduling
responsibility rested with the ground system. The ground would generate an
absolute-timed target list that the FSW would execute precisely as specified.
If conditions were inappropriate for the science observation to execute (for
example, if no guide stars had been found), the spacecraft would still remain
uselessly at that attitude until the pointer in its C&DH FSW moved to the
time of the slew to the next target. However, as planning and scheduling capa-
bilities are migrated from the ground to the spacecraft, more flexible responses
to anomalies are enabled leading to greater overall operational efficiency at
reduced costs. It is these new capabilities, which are unnecessary to H&S
maintenance within the FSW backbone, that are the purview of the target
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planning-and-scheduling Remote Agent. This agent may also utilize a wide
variety of AI products, including state modeling, case-based reasoning, and
neural nets.

6.2.9 Science Instrument Commanding and Configuration

Other than to support collection of SI diagnostic data and transition into
SI safemode, no SI commanding and configuration functionality needs to re-
side in the FSW backbone. That functionality could be provided by a Re-
mote Agent. The actions of the agent could be driven by receipt of template
structures (generated by the planning and scheduling agent) defining what
SI configuration is needed and/or what operational usage is desired. Separate
agents could be assigned for each SI, or a single Remote Agent could handle
the entire job. The agent(s) would also have responsibility for verifying the
legality of any directives issued to an SI.

6.2.10 Science Instrument Data Storage and Communications

Although management of engineering data storage, as well as management of
transmission of that data and SI diagnostic data, must be the responsibility
of the FSW backbone, storage onboard and transmission to the ground of
primary product SI data collected during a science observation are purely
associated with satisfying science mission objectives and may, therefore, be
entrusted to a Remote Agent. With a lights-out control center, one can easily
conceive of all the duties associated with storing and transmitting SI data
being handled autonomously by Remote Agents, where no general principle
dictates whether these agents belong better in the ground system or the flight
system. Instead, the decision on their location and relative distribution of
responsibilities could, with a generalized flight/ground architecture, be made
on the basis of simple convenience on a mission-by-mission basis.

6.2.11 Science Instrument Data Processing

Other than processing of SI data required to monitor the H&S of the individual
SIs, no SI data processing need be contained within the FSW backbone. The
advantage of assigning this functionality to a Remote Agent is that it enables
cooperative behavior with other agents where the coupling of their functional-
ity can yield a greater whole than the sum of their individual functions acting
in isolation. For example, following collection of wide field data from a CCD
detector in the course of a scan over a region of the celestial sphere, the data
could be processed onboard by this agent, which (using a case-based pattern
recognition algorithm) could identify point sources appropriate for more de-
tailed study. The agent would report its results to the planning-and-scheduling
agent, which would notify the slew agent to execute a return to the specified
target coordinates. At the same time, the SI commanding-and-configuration
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agent, which prepares the SI, as necessary, for the upcoming observation uti-
lizing plans generated by the planning-and-scheduling agent, would command
execution of these plans at the proper time. The data generated would then
be processed by the SI data processing agent for storage and later transmis-
sion to the ground by that agent. By this means, immediate onboard response
removes the need for scheduling revisits at a later date.

6.3 Spacecraft Enabling Technologies

To support the Remote Agent functionality described in the previous subsec-
tions, a series of enabling technologies will be required. Many of these technol-
ogy elements have already been flown on NASA missions, but have not as yet
achieved mainstream status. Others are proposed for use on upcoming NASA
missions, but are not as yet flight-proven. And others are still purely in the
“talking” stage, but could reasonably be expected to be available in the next
decade. The following is the list of technology items:

1. Modern “Lost-in-Space” star trackers
2. Onboard orbit determination
3. Advanced flight processors
4. Cheap onboard mass storage devices
5. Advanced operating system
6. Decoupling of scheduling from communications
7. Onboard data trending and analysis
8. Efficient algorithms for look-ahead modeling

The following subsection discuss these in more detail.

6.3.1 Modern CCD Star Trackers

The Wilkinson Microwave Anisotropy Probe (WMAP) mission (launched in
2000) utilized CCD star trackers containing both calibration and star catalog
information, permitting the star tracker itself to output a direct measure-
ment of its orientation relative to the celestial sphere. A simple multiplication
(within the attitude control subsystem (ACS) FSW) by the device’s alignment
matrix relative to the spacecraft body yields the spacecraft’s attitude quater-
nion. This capability enables fine attitude determination “on the fly” without
a priori initialization, an important autonomy feature supporting calibrations,
target acquisitions, communications, target of opportunity (TOO) response,
and smart FDC.

6.3.2 Onboard Orbit Determination

Onboard orbit measurement via GPS is widely in use on commercial satel-
lites and is planned for use on the Global Precipitation Measurement (GPM)
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mission (scheduled launch date of 2013). So, onboard orbit determination on
the fly without a priori initialization is a capability readily available now for
spacecraft orbiting in the Earth’s immediate vicinity. GPS timing also allows
synchronizing the spacecraft clock with ground time.

The future challenge is to develop hardware and algorithms enabling fully
independent onboard orbit determination far from the earth. Promising work
along these lines is currently in progress, where star tracker measurements of
celestial objects, such as the Moon, earth, and other planets could be used
to derive spacecraft position information. Position information for the planets
and the earth’s moon are available now from self-contained analytical mod-
els requiring very infrequent (if any) input parameter updates. Independent
spacecraft orbit determination is necessary to support other autonomous func-
tionality, such as onboard calibrations, target acquisitions, communications,
TOO response, dynamic scheduling, and smart FDC.

6.3.3 Advanced Flight Processor

Nearly all the functionality projected in this design for implementation within
a Remote Agent framework can be accommodated by flight processors that
have already supported missions. However some capabilities require such
abundant computing power (to support massive data processing and/or intri-
cate logic analysis) that the development of a flight-capable, radiation hard-
ened high performance computer may be required. These items may include
areas such as onboard SI data processing, dynamic scheduling with look-
ahead, and smart fault diagnosis and corrective plan creation.

6.3.4 Cheap Onboard Mass Storage Devices

Trends in this area are bringing costs (both dollar and weight) down so rapidly
that in the future it is unlikely that onboard storage capacity will be a major
limiting factor with regard to flight data processing capabilities. However, as
SI data volume production is increasing rapidly as well, available storage will
continue to play a dominant role in communications trade issues so long as all
SI raw measurements must be downlinked, or lossless compression is utilized.

6.3.5 Advanced Operating System

Although no autonomy function discussed here absolutely requires an operat-
ing system with file manipulation capability comparable to a general purpose
computer, such a capability would (for example) simplify ground handling
of science observation downlink products, as well as the C&DH FSW’s own
manipulation of data onboard.
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6.3.6 Decoupling of Scheduling from Communications

Decoupling of scheduling from communications has been beneficial in sim-
plifying the Rossi X-ray Timing Explorer (RXTE) ground system’s planning
and scheduling process and in reducing TOO response time. A similar decou-
pling could also be expected to make the job of onboard scheduling easier and
enable a more dynamic and autonomous scheduling process onboard.

6.3.7 Onboard Data Trending and Analysis

To support smart fault detection, diagnosis, and isolation, more elaborate
capabilities for onboard data trending and analysis will be required. As dis-
cussed previously, a statistical package is needed to perform standard data
analysis procedures (e.g., standard deviation, sigma-editing, chi-squared, etc.)
in order to evaluate the believability of new measurements and/or calculated
parameters and to extrapolate predicted values from past data. The statistical
package will also be needed to support planning of new calibration activities.

6.3.8 Efficient Algorithms for Look-Ahead Modeling

Conventional FSW typically is time-driven realtime software that tries to de-
termine the best course of action at the moment as opposed to the optimal
decision over a future time interval. This is an appropriate approach for stan-
dard FSW applications such as control law processing and fault-detection
limit checking, but is not likely to yield acceptable results in areas such as
planning and scheduling. For such applications, at least a limited degree of
look-ahead modeling will be required to capture the complete information
critical to efficient decision making.

6.4 AI Enabling Methodologies

To implement the Remote Agent functionality discussed in the previous sec-
tion, more sophisticated modeling tools and logic disciplines will be required
than the simple rule-based systems that have been employed in FSW in the
past. In particular, a smart fault detection, diagnosis, isolation, and correc-
tion agent could also utilize a wide variety of AI products to generate and
interpret its results, including state modeling, case-based reasoning, and neu-
ral nets. “Intelligent” constraint-evaluation algorithms used in planning and
scheduling, as well as the data monitoring-and-trending agent, will also need
these AI enabling methodologies. The following discusses onboard operations
that would be enabled through the use of collaborative Remote Agents.
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6.4.1 Operations Enabled by Remote Agent Design

Although the functionality assigned in the previous section to Remote Agents
potentially could equally well have been implemented onboard in a more con-
ventional fashion, a major asset of the Remote Agent formulation would have
been lost. If onboard implementations of these functions are evaluated as sep-
arate entities on an objective cost-benefit basis, for most GSFC missions, one
would probably find that more than half of those items could be developed
more cost effectively in the ground system and would not significantly reduce
operational costs if migrated onboard.

In particular, the following functions looked at in isolation should probably
remain on the ground:

• Virtually all calibration, both science and engineering
• All data trending (although limit checking should remain onboard)
• Any smart fault detection, diagnosis, isolation, and correction
• Any look-ahead modeling
• All target planning; nearly all scheduling
• All specification of SI commanding and configuration (execution onboard)
• Nearly all communications decision making
• Nearly all SI data processing

The remainder already are largely onboard autonomous functions, or in the
near future, will be likely.

However, an analysis of this kind misses a key aspect of the Remote Agent
formulation, namely the ability of agents to engage in “conversations,” ne-
gotiate, and collaborate. It is that distinctive nature of Remote Agents that
makes their collective functionality more powerful than the simple sum of
their component parts.

In the subsections that follow, examples are provided illustrating how the
cooperative capacity of Remote Agents can yield more sophisticated (and more
profitable) performance than they could achieve working alone. Operational
capabilities enabled by the agents working together include:

1. Dynamic schedule adjustment driven by calibration status
2. TOO scheduling driven by realtime science observations
3. Goal-driven target scheduling
4. Opportunistic science and calibration scheduling
5. Scheduling goals adjustment driven by anomaly response
6. Adaptable scheduling goals
7. SI direction of spacecraft operation
8. Beacon mode communications
9. Resource management
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6.4.2 Dynamic Schedule Adjustment Driven by Calibration Status

For spacecraft with high performance and accuracy requirements but very
stable calibration longevity (both science and engineering), a ground schedul-
ing system will be able to schedule science observations well in advance with
a high degree of reliability. This confidence is due to the knowledge that if
calibration accuracy degrades prior to execution of a key scheduled observa-
tion, the degradation will occur gradually and gracefully, leaving the ground
scheduling system ample time either to insert a re-calibration activity to re-
store nominal spacecraft function or to re-schedule any extremely performance
sensitive observations for a later time.

However, if calibration stability is extremely dynamic, the “half-life” of the
ground scheduling system’s spacecraft state knowledge may be significantly
less than the lead time on execution of many of the scheduled targets, in which
case a prescheduled canned observing sequence will experience many obser-
vation failures and poor overall efficiency. An alternative to this is to couple
realtime calibration status monitoring directly into planning and scheduling
of both science observations and re-calibration activities.

For example, the ground could uplink to the spacecraft a target list having
a label attached to each science target defining the level of telescope calibra-
tion needed to make the science observation worthwhile. The planning and
scheduling agent could then elect to schedule only those list targets (or goal
generated targets, as discussed later) compatible with the spacecraft’s current
state of calibration (as determined by the monitor-and-trending agent). After
all such targets are exhausted, the agent could schedule a re-calibration ac-
tivity (as created by the calibration agent) to bring the spacecraft back up to
specifications, following which the remaining list targets could be observed.
Alternately, utilizing another label supplying priority information, the pres-
ence of any target with a high priority designation could be sufficient to cause
planning and scheduling to order a re-calibration activity immediately.

Although this example primarily illustrates the cooperative behavior
of planning-and-scheduling, data monitoring-and-trending, and calibration
agents, a somewhat lower degree of participation by several other agents
(including attitude/orbit determination, attitude/orbit maneuvering, SI
commanding-and-configuration, and SI data processing) may arise as a
requirement.

6.4.3 Target of Opportunity Scheduling Driven by Realtime
Science Observations

For most TOOs, the ground system, due to its access to data from other space
and ground observatories, will be best positioned to designate appropriate
TOOs for its spacecraft and adjust the observing schedule accordingly. Also,
for those TOOs identified by processing SI measurements from the spacecraft
itself, as long as those TOOs do not have a short lifetime and as long as
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spacecraft revisits are not extremely costly or inefficient, maintaining both SI
data processing and TOO scheduling responsibility within the ground system
is probably a better trade than migrating the capabilities to the spacecraft.
However, if the TOO has a very short time duration (relative to turnaround
times for ground SI data processing and scheduling), if target revisits are
costly, or if the spacecraft is not in regular contact with the ground, advantage
can be gained by installing onboard at least limited functionality in these
areas.

For example, after execution of high level survey measurements of a gen-
eral region of the celestial sphere, an SI Remote Agent could process the data
collected and identify point targets appropriate for the follow-up work. That
agent could then inform the planning-and-scheduling agent of the presence of
interesting targets in the immediate neighborhood, which could then sched-
ule and execute those targets immediately (via SI commanding), avoiding
the operational overhead of a re-visit following processing of the survey data
on the ground. So by coupling the efforts of planning-and-scheduling and SI
data-processing Remote Agents onboard, overall system responsiveness can be
greatly improved and measurements of some classes of science targets can be
performed that would otherwise not be observed. This capability has already
been utilized on the Swift mission.

Although this example primarily illustrates the cooperative behavior of the
planning-and-scheduling agent, the SI commanding-and-configuration agent,
and the SI data-processing agent, additional participation by other agents
(including attitude/orbit determination, attitude/orbit maneuvering, and SI
data storage) could also be required.

6.4.4 Goal-Driven Target Scheduling

Traditionally, the ground system has uplinked to the spacecraft a fixed, time-
sequenced target list that the FSW has executed in an absolute time-driven
fashion precisely as specified by the ground. This is probably the optimal
scheduling approach for missions in which the science targets are easily de-
fined in advance and the spacecraft is in regular contact with the ground.
However, for missions more isolated from ground control or where the sci-
ence targets can only be specified by general characteristics and have limited
contact duration opportunities (e.g., asteroid flybys), a goal-oriented target-
specification technique may be essential.

For the case of an asteroid flyby, the SI data-processing Remote Agent
could not only perform straightforward data reduction of the measurements,
it could also employ sophisticated pattern-match techniques (possibly via case-
based reasoning) to identify regions for closer investigation. In this respect,
the previously discussed TOO scheduling is just a subset of goal-driven target
scheduling. However, goal-driven scheduling might also include the onboard
specification of targets without any a priori ground input whatsoever. For
example, suppose a percentage of a spacecraft’s mission consists of performing
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survey work in selected regions of the celestial sphere. Knowing those portions
of the celestial sphere targeted for survey work, the total percentage of time
allocated to surveying, and guidelines regarding how much time should be
spent on surveys within, say, a week-long interval, the scheduling agent could
identify opportunities to “piggy-back” survey observations following successful
ground-specified targets at approximately the same attitude.

6.4.5 Opportunistic Science and Calibration Scheduling

The previous discussion of goal-driven scheduling cited an example that could
also be considered opportunistic scheduling, i.e., piggybacking a goal-specified
survey observation on top of a specific ground-specified point target. However,
opportunistic scheduling need not be goal-driven.

For example, while the spacecraft is executing attitude slews commanded
for the purpose of acquiring targets and collecting science as specified by the
ground, a calibration Remote Agent could keep a running tally of “miss”
distances derived by comparing star-tracker-computed attitudes with gyro-
measured angular separations. After collecting an adequate amount of data,
the agent could calculate new gyro scale factors and alignments to maintain
slew accuracy within performance requirements. The calibration computa-
tions would be done in the background on a nonimpact, computational time-
as-available basis relative to ongoing science or higher priority engineering
support activities. Should representative slew data of a specific geometric va-
riety be lacking, the calibration agent could request that the scheduling agent
reorder the target list or consult its targeting goals to see whether a target
could be “created” that would enable the collection of necessary engineering
data as well. Failing that, the scheduling agent could simply add a slew of the
required type to complete the calibration activity, if the FDC agent (using
data provided by the monitoring and trending agent) indicated that a re-
calibration needed to be performed in the near future to maintain spacecraft
slewing accuracy requirements.

6.4.6 Scheduling Goals Adjustment Driven by Anomaly Response

This operational capability highlights cooperative behavior between the Re-
mote Agents performing scheduling and fault-correction. Suppose that the
review, by the fault-detection agent, of the fault monitoring-and-trending
agent’s spacecraft-state analysis has generated an error flag, which the fault-
isolation agent has associated with a solar array drive. Suppose further that
the fault-diagnosis agent has determined that continued nominal use of that
drive mechanism will lead eventually to failure of the mechanism, and in re-
sponse, the fault-correction agent rules that the solar array should be slewed
to its safemode orientation and not moved from that position until instructed
by ground command.
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At this point, the fault-detection agent could rule that all targets that
previously were validated as acceptable and that required a solar array ori-
entation other than the safemode position should now be considered invalid,
thereby requiring that the scheduling agent delete those targets and at least
compress the schedule, or possibly even generate a new one reflecting the
currently degraded hardware state.

6.4.7 Adaptable Scheduling Goals and Procedures

A previous subsection discussed the cooperation of onboard Remote Agents to
satisfy a ground-specified goal. In this subsection, we examine how the goals
themselves might be modified/specified by the flight system based on inflight
experience. Also, ground-specified procedures used for achieving those goals
(either science observation or calibration goals) could similarly be modified.
The input data for the goal modification process might be obtained from
either of two sources, described now in the following paragraphs.

First, one could envision an onboard validation process that applies
ground-supplied metrics to the execution of science observations, or for that
matter, engineering support activities. Sticking to the science application for
simplicity, a monitoring and trending agent could calculate an overall ob-
serving efficiency, as well as individual efficiencies associated with the various
different types of science (a function of SI, mode, target type, etc.). The fault
detection agent might then look for relatively poor efficiency outliers, so the
fault diagnosis, isolation, and correction agent could determine which onboard
goals or canned scripts/procedures might require enhancement.

Second, to define what changes might be made to those scripts/goals
deemed inefficient, an onboard simulation function (under the control of the
monitoring and trending agent) could be dedicated to running simulations
on other approaches, either canned options provided by the ground or new
options independently derived by the spacecraft (via ground-supplied algo-
rithms) by running “what if” simulations in the background on a nonimpact
basis.

Although this capability would be primarily useful for missions where the
spacecraft can expect to be out of contact with the ground altogether for entire
phases of the mission (or during nonscience cruise phases where most of the
onboard computing power is idle), it might also prove useful for spacecraft
constellations where several spacecraft themselves are cooperating to achieve
overall constellation goals (see Chap. 9).

6.4.8 Science Instrument Direction of Spacecraft Operation

This section examines how a smart SI can influence the behavior of spacecraft
platform subsystems. It is not unusual to allow SIs to command the ACS
to adjust the attitude of the spacecraft to facilitate a target acquisition, or
to shift the target from one SI aperture to another. For example, HST used
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SI specified “peak-ups” to facilitate realtime target acquisitions inside SIs
having narrow FOVs. However, the formalism of Remote Agents enables more
elaborate interactions.

For example, suppose a spacecraft’s SI complement included an instru-
ment with a movable component (say, for survey scanning). Depending on
the mass/motion of the component and the mission jitter requirements for
fine pointing, the attitude perturbations induced by the component’s motions
could threaten satisfaction of the jitter requirement. To deal with this poten-
tial problem, the agent embodying the SI could inform the attitude control
agent of its intended motions in advance, so that the pointing control law
could compensate for the disturbance in advance, so as to protect a precision-
pointing fixed-boresight SI observation from blurring. If the attitude agent
determined it could not compensate for the effect, the fault correction and
scheduling agents could be brought into the “discussion” to resolve the con-
flict, perhaps by giving priority to the precision pointing SI.

A more interesting solution would be for the more demanding SI to “an-
nounce” to an SI executive agent when it needed a particularly steady plat-
form, and then have the executive agent prohibit motions by the lower priority
scanning instrument during such periods. Similar restrictions would also apply
to other moving structures such as gimbaled antennas.

Another application for SI/agent direction of platform behavior is SI cal-
ibration. At its least elaborate, it would be straightforward to automate the
process of periodically placing an SI in self-test mode (using its internal test
source), comparing the output relative to a nominal signal, and passing on
any discrepancy information to an SI calibration function. This could be a
purely internal SI implementation. A more sophisticated example would in-
volve periodic re-observations of a baseline target for the purpose of checking
whether SI performance has remained nominal (and this example would en-
tail agent collaboration with the attitude-control and scheduling agents). This
example would also include the option for recalibrating the SI or optical tele-
scope assembly (OTA) if a significant degradation has occurred (where the
re-calibration would be the job of the calibration agent).

6.4.9 Beacon Mode Communication

For missions where contact with the ground is expected to be irregular and
where down-link requirements are driven by the spacecraft’s need to inform the
ground only of the results of science observations processed onboard (triggered
by event messages from an onboard processing agent), it would be appropriate
for the spacecraft to control communications. Similarly, if contact is driven
by the spacecraft’s need to confer with the ground regarding some problem
experienced onboard (also triggered by an agent message), it would be most
efficient/least costly for an onboard communications agent to “dial up” the
ground’s agent. In its extreme form, contact responsibility totally migrated
to the spacecraft is referred to popularly as beacon mode, which can include
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periodic status summaries as well as the downlink of science measurement
results and requests for help. Because the nature of beacon mode is to inform
the ground of all onboard “experience” the spacecraft deems to be interesting
to the ground, beacon mode operation can involve the interaction of the com-
munications agent with nearly all the other onboard agents, including SI data
processing, SI data storage (potentially part of communications), data moni-
toring and trending, smart fault detection, diagnosis, isolation, correction, etc.

6.4.10 Resource Management

Spacecraft operations concepts usually are driven by constraints imposed by
limitations in onboard resources, both of the expendable varieties (for exam-
ple, fuel or cryogen) and renewable varieties (such as electrical power, com-
puting power, data storage, and telemetry bandwidth). When these resources
are in demand by more than one distinct spacecraft subsystem or component,
a mechanism must be provided (either ground-based or flight-based) to deal
with the inevitable conflicts that will result. Other potential sources of con-
flict (which may also be thought of somewhat abstractly as resources) are
priorities on use of onboard functionality, such as attitude control or thruster
utilization/orbit adjustment. A Remote Agent formalism provides a partic-
ularly convenient infrastructure for resolving issues arising from overlapping
needs.

In this application, one can envision a resources management agent (pos-
sibly subsumed under the executive agent) responsible for evaluating all re-
source requests in excess of a nominal set of limits associated with the set of
agent users of those resources. The management agent would evaluate those
requests relative to overall resource envelopes to determine whether the re-
quest can be honored, whether it must be rejected, or whether the need is
high enough in priority that other agents must surrender a portion or all of
their individual assets. The management agent would have to perform a simi-
lar function if an onboard anomaly unexpectedly reduced the availability of a
resource. Due to the broad characterization of what constitutes a resource, re-
source management potentially can involve the interaction of that agent with
all the other onboard agents. The management agent would also ensure that
no resource deadlock situations arise.

6.5 Advantages of Remote Agent Design

The Remote Agent design described in the previous sections presents the
opportunity for significant overall mission cost savings arising from its en-
abling of higher operational efficiencies, reduced FSW development costs, and
reduced FSW testing costs. In the following subsections, each of these con-
tributing factors is discussed.
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6.5.1 Efficiency Improvement

Traditionally, onboard schedule execution has been mostly absolute time-
driven. This design choice, while enabling an extremely simple onboard
element in the overall schedule execution process, has necessitated the de-
velopment of a very expensive ground planning and scheduling element run
by a large, expensive operations staff. The resulting product, due to the high
reliance on the ground system’s approximate look-ahead modeling with its
associated worst-case time pads, has also been somewhat inefficient and quite
limited in its capacity to respond to off-nominal or unexpected events. The
following discusses cost savings enabled by an onboard scheduling capability.

Event-Driven Scheduling

Autonomous, event-driven management of onboard activity transitions by Re-
mote Agents has the potential for considerable cost savings. There always has
been considerable use of event-driven transition control of onboard processes.
For example, onboard logic can control mode transitions such as slewing to
inertial hold when body rates and pointing errors have dropped below thresh-
old levels, or the transition from inertial hold to safemode when anomalies
are detected requiring immediate, extreme responses. Onboard logic, either
existing within FSW or hardwired into the flight hardware itself, has also
controlled transitions in sensors/SIs from search activities to tracking activ-
ities when the target objects’ signal profile warranted it. Still, the use of an
event-driven mechanism for managing transitions between scheduled science
observations has often been precluded by the complexity of the spacecraft’s
orbital environment, performance demands imposed by the mission, and the
computational limitations of the flight data system.

An example of an event-driven short-term scheduling system is the Adap-
tive Scheduler originally proposed for use on the James Wells Space Telescope
(JWST). In Adaptive Scheduling’s simplest form (from an onboard perspec-
tive), the ground system would still be responsible for generating an ordered
list of desired science targets, but no absolute-time tags would be attached.
The FSW then would observe the targets in the specified order, but nomi-
nally would trigger the execution of the next observation on the list in response
to a FSW event signaling the successful completion of the previous observa-
tion. This avoids the waste of potential observing time engendered by the old
paradigm’s use of worst-case time pads to space out absolute-timed commands
that might otherwise “collide” with each other.

The Adaptive Scheduler would also have the capability to insert into the
timeline engineering events, as required, when informed by other FSW subsys-
tems that an action needs to be taken. For example, when angular momentum
has built up to the point that a momentum “dump” must be performed, the
ACS would accordingly inform the Adaptive Scheduler, which would then find
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a good point in the timeline to insert the dump, and would order execution
of the dump by the ACS at the appropriate time.

Further, in the event of the detection of onboard anomalies, the Adaptive
Scheduler could take corrective action, which might involve deleting a target
from the list, temporarily skipping a target until it could be observed at a later
date, or even more elaborate reordering of the ground-supplied target list. For
example, if after the ACS had exhausted all its acquisition options the JWST’s
fine guidance sensor had still failed to acquire a guide star, the Adaptive
Scheduler could command a deletion of that target from the observation list
without waste of additional observing time and could order that a slew to the
next target on the list be initiated.

For JWST’s L2 orbital geometry, an event-driven scheduling system would
be simple, efficient, and easily responsive to at least a substantial list of pos-
sible anomalies. A LEO orbit would present much more of a challenge due to
the complexity of the environment and would probably require the support of
an elaborate look-ahead capability.

In one respect, adaptive scheduling is more complex than the absolute-
timed paradigm. Because under the old paradigm, the start and end of on-
board activities were very well-defined, the process for insertion of realtime
commands into the timeline (provided ample uplink opportunities were avail-
able) was well-defined, if at times awkward. However, under the new approach,
ground operations staff will not always be certain when “safe” opportunities
for realtime uplink might present themselves. Therefore, additional “intelli-
gence” would need to be present onboard to enable the FSW to consolidate
information and prioritize commands from a wide variety of realtime and
preplanned/predicted sources, such as uplinked realtime commands, realtime
sensor output, realtime event messages from onboard performance monitoring,
and the ground-supplied target list.

The FSW must still support ground uplinks of time-tagged commands
along with its list of event-driven activities for those situations where an
activity must be performed within a specific time window (for example, a
ground-planned orbit stationkeeping maneuver). This need is addressable via
a short-term look-ahead capability that would support delaying scheduling
any timeline events that would “swamp” the absolute-time window until after
the absolute-timed event has completed, and giving the absolute-timed event
priority over any routine engineering event that needs to be inserted.

It is apparent just from the Adaptive Scheduler example that consider-
able gains in efficiency can be realized just by moving from a fully ground-
programmed, absolute time-driven style of operation to a ground-ordered,
onboard event-driven style. Exploiting the onboard system’s knowledge of re-
altime information enables a flexible response to on-orbit events that could
greatly reduce loss of valuable observation time arising from conservative
time-padding in ground look-ahead models. Nonreplaceable onboard resources
could be utilized more economically by expending them in response to re-
altime measured needs, while renewable resources could be allocated more
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appropriately and with smaller contingency safeguards or margins. Also, a
side benefit to this new paradigm is that wherever expensive ground-system
look-ahead modeling can be replaced by simple onboard realtime response,
cost savings are achieved within the ground system as well.

The example cited in this subsection, the originally proposed JWST Adap-
tive Scheduler, is a rather modest effort at exploiting the potential offered
by an event-driven FSW operation. The Remote Agent FSW formulation de-
scribed in this section would have much more powerful capabilities. More than
just being an event-driven executor of a ground-planned, ground-scheduled
(both long-term and short-term) target list, a Remote Agent design provides
a framework for migrating short-term scheduling responsibility to the onboard
system, greatly increasing the spacecraft’s capacity for managing onboard re-
sources more efficiently, reacting to anomalies without loss of observing time,
and responding to TOOs while the opportunity presents itself.

Short-Term Scheduling

Also, as discussed for the Adaptive Scheduler’s event-driven scheduling,
short-term scheduling by the FSW must be able to accommodate realtime
commanding originating from the ground system. For onboard short-term
scheduling, the complications will be even greater as there is no reason to
expect the ground to be cognizant of ongoing onboard activities when the
ground’s command is sent. To deal with such intermittent interrupts of vary-
ing levels of priority, one can envision an onboard “fuzzy logic” reasoning
module that juggles an array of priority levels and time windows attached
to ordered/unordered target lists, target clusters, ground-originated realtime
commands, ground-originated absolute-timed commands with/without win-
dowing, onboard-originated housekeeping/engineering activities, realtime on-
board sensor measurements, and externally-originated realtime data, and then
deduces which activity (or activities) should be executed next (or in parallel).

Further, one could envision an event-driven Remote Agent engaging in a
dialog with more powerful computer resources (and models) on the ground to
acquire deeper look-ahead information prior to making its activity transition
decisions. The agent could even establish dialogs with other spacecraft to
benefit from their realtime measurements. For example, if two earth-pointing
spacecraft were flying in formation, the one arriving later over the target
could interrogate the earlier one regarding cloud cover and other conditions
and make appropriate SI reconfigurations prior to arrival.

6.5.2 Reduced FSW Development Costs

Conventional FSW is highly integrated code, optimized for timing perfor-
mance and computational efficiency. As a result, long-term FSW mainte-
nance tends to be very expensive (relatively small code updates may require
very wide-spread regression testing) and FSW reuse has been rather limited.
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However, a Remote Agent implementation offers much promise for producing
significant reductions in FSW development and testing costs.

Since each agent can be built as a standalone module (consistent with the
objects associated with object-oriented design), the development schedule for
an agent can be synchronized with the availability of the information needed
to define its requirements. As long as their interfaces with the executive agent
and other agents with which they need to interact with are well-defined, those
agents (for example) associated with hardware components that will only be
procured toward the end of the lifecycle can be developed later than those
agents whose functionality is well-understood from the start.

As agents are developed, they can easily be added to the system, and if
a problem develops with an agent inflight, it can be dropped offline without
H&S impact to platform or payload. As this approach to developing FSW ma-
tures, it will be possible to build up a library of agents from previous missions,
which can be reused economically on future missions once protocols and stan-
dards for agent communication have been established, eventually stimulating
the creation of generalized COTS products, which will greatly facilitate the
reduction of FSW development costs.

Significant reductions in FSW testing costs can also be expected. Since
each applications agent is decoupled from direct communication with the FSW
backbone and since their communication with the backbone is bandwidth lim-
ited by the executive agent, a modification to an applications agent should
not normally require full-scale system-level regression testing. The modified
agent could instead just be tested at a module level and then added back into
the flight system. As an agent can drop offline without impacting the FSW
backbone (and its corresponding H&S functionality), less stringent (and less
costly) testing standards may be applied to the applications agents than to
the backbone and than as currently applied to all conventional FSW. Finally,
the similarity of this software architecture to typical ground system architec-
tures should enable (in some cases) initial agent software development in the
ground system, with the associated cheaper software development and testing
methodologies, with later migration to the flight system following operational
checkout (see Chap. 9 for a detailed example of this, called progressive auton-
omy).

6.6 Mission Types for Remote Agents

In this section, potential advantages of Remote Agents (over a conventional
FSW design) are evaluated at a high level relative to a set of characteristic
mission types, specifically:

1. LEO celestial pointers
2. LEO earth pointers
3. Geosynchronous-earth-orbit (GEO) celestial pointers
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4. GEO earth pointers
5. Survey missions
6. Lagrange point celestial pointers
7. Deep space missions
8. Spacecraft constellations

The following subsections discuss these in more detail.

6.6.1 LEO Celestial Pointers

For LEO celestial pointers, the intermediate- and short-term scheduling prob-
lem is quite complex due to the many time-dependent constraints charac-
teristic of near-earth orbits. The ground system component responsible for
that function must be large and expensive, embodying many complex space-
craft and environmental models. But, since the dominant input to optimizing
scheduling is not realtime measurements, there is little advantage in migrat-
ing short-term planning to the spacecraft, given that communications with
the ground can be expected to be regular, frequent, and of long duration. It is
even unclear that event-based scheduling would win a cost-benefit trade with
conventional ground preprogrammed absolute time-based scheduling, given
the need for look-ahead to maintain high scheduling efficiency. An exception
to this general statement would be realtime support for TOOs, where the spe-
cial onboard processing would not schedule the TOO itself, but instead simply
make platform and payload housekeeping adjustments, as necessary, to sup-
port the change in the plan. So the planning and scheduling area probably
is not a productive application for agent formalism for LEO celestial point-
ers, and similarly, SI commanding and configuration is likely to be limited in
carrying out ground instructions, probably via templates stored onboard to
reduce uplink data volume.

On the other hand, one can easily imagine additional calibration func-
tions being migrated to the flight system for LEO celestial pointers. For ex-
ample, as miss-distance data from slews are collected onboard, the current
state of calibration could be monitored autonomously and a background task
could re-compute the gyro scale factors and alignments (supported by back-
ground fine-attitude and orbit-determination background tasks). Whenever
fault detection determined that the current calibrations no longer were ac-

ceptable, fault correction would direct use of the current “latest-and-greatest”
computed values. Implementation of each of these functional areas in the Re-
mote Agent formalism via the design structure described earlier in this sec-
tion would greatly facilitate the cooperative behavior described above without
adding risk to the maintenance of platform and payload H&S via the FSW
backbone.

Summarizing, implementing the following additional onboard functions
as Remote Agents would be consistent with the lights-out control center
philosophy:
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1. Fine attitude determination (as discussed)
2. Orbit determination (as discussed)
3. Attitude sensor/actuator and SI calibration (as discussed)
4. Attitude control (execute slew requests; fine pointing)
5. Orbit maneuvering (plan and execute orbit stationkeeping)
6. Data monitoring and trending (as discussed)
7. “Smart” fault detection, diagnosis, isolation, and correction (as discussed)
8. Look-ahead modeling (probably not required)
9. Target planning and scheduling (not required)

10. SI commanding and configuration (execute science calibration requests)
11. SI data storage and communications (in cooperation with ground agent)
12. SI data processing (just for target acquisition)

LEO Earth Pointers

The scheduling problem for LEO earth pointers is much simpler than for LEO
celestial pointers. Long duration look-ahead is no longer an issue since the
spacecraft’s orbit cannot be predicted to a high level of accuracy very far in
advance. The planning aspect of the problem, however, is very target depen-
dent, and might vary with time depending on science prerogatives. One can,
therefore, imagine a set of templates (with ground tunable parameters) asso-
ciated with individual targets (or target types) that an onboard scheduling
agent could invoke whenever the onboard orbit-determination agent (a GPS
receiver coupled with a short-duration orbit propagator) in conjunction with a
data monitoring-and-trending agent deemed the target was coming into view.
Because fuel available for stationkeeping maneuvers is directly equivalent to
mission lifetime, it is unlikely that most NASA LEO earth pointers would ex-
pend fuel for large orbit-change maneuvers for the purpose of observing TOOs
(short-duration events like volcanoes, for example), though the requirements
on TOO response for some non-NASA spacecraft (for example, military imag-
ing spacecraft) may be more demanding. Given that GPS receivers now give
the spacecraft itself more immediate access to accurate, current spacecraft
orbit data than does the control center, migrating some portion of the short-
term LEO earth-pointer scheduling responsibility to the spacecraft to improve
observational efficiency could be justified on a cost-benefit basis for some mis-
sions of this type, and migrating routine orbit-stationkeeping maneuvers to
the spacecraft could reduce operations costs as well.

As in the case of the LEO celestial pointer in the previous section, one can
easily imagine additional calibration functions being migrated to the flight
system for LEO earth pointers. There also may be significant advantages in
providing an SI data processing capability/agent onboard for the purpose of
distinguishing between useful data-taking opportunities (for example, for a
Landsat spacecraft, in the no-cloud-cover situation) and unusable conditions
(in this case, a full-cloud-cover situation).
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Summarizing, implementing the following additional onboard functions as
Remote Agents would be consistent with the lights-out control center philos-
ophy for LEO earth pointers:

1. Fine attitude determination (needed for orienting an imaging subsystem)
2. Orbit determination (as discussed)
3. Attitude sensor/actuator and SI calibration (as discussed)
4. Attitude control (needed for orienting an imaging subsystem; fine

pointing)
5. Orbit maneuvering (plan and execute orbit stationkeeping, as discussed)
6. Data monitoring and trending (as discussed)
7. “Smart” fault detection, diagnosis, isolation, and correction (as discussed)
8. Look-ahead modeling (needed in conjunction with orbit-trending)
9. Target planning and scheduling (scheduling as discussed)

10. SI commanding and configuration (templates associated with targets)
11. SI data storage and communications (in cooperation with ground agent)
12. SI data processing (as discussed)

6.6.2 GEO Celestial Pointers

A GEO celestial pointer’s operational constraints are much more straightfor-
ward than those for a comparable LEO mission, so much so that it is possible
to operate the spacecraft in a “joystick mode,” as demonstrated by the In-
ternational Ultraviolet Explorer (IUE), where blocks of time were assigned to
astronomers who could command the spacecraft directly when making their
observations. This is not to say that automation is not critically important for
enabling full utilization of spacecraft capabilities and performance accuracy
at optimal efficiency, but that automation can be implemented on the ground
in support of a human operator rather than migrated onboard to provide au-
tonomous function. Since full contact with the ground station is nominally
possible at all times and time delays in transferring spacecraft supplied data
to the ground station are small, and because FSW development and testing
costs are likely to remain significantly higher than those of ground software of
corresponding size and complexity, this mission type is probably not a good
candidate for an onboard Remote Agent implementation on a cost-benefit ba-
sis. However, Remote Agents may find many useful applications within the
ground system’s lights-out control center.

6.6.3 GEO Earth Pointers

As with the GEO celestial pointer described in the previous section, opera-
tional constraints are much more straightforward than those for a comparable
LEO mission. And as before, full contact with the ground station is nomi-
nally possible at all times and time delays in transferring spacecraft supplied
data to the ground station are small. Since FSW development and testing



142 6 Agent-Based Spacecraft Autonomy Design Concepts

costs are likely to remain significantly higher than those of ground software of
corresponding size and complexity, this mission type is probably not a good
candidate for an onboard Remote Agent implementation on a cost-benefit
basis. Again, Remote Agents may find many useful applications within the
ground system’s lights-out control center.

6.6.4 Survey Missions

The nominal operation of a survey mission is by its very nature very straight-
forward and predictable. Planning and scheduling are well-defined for ex-
tremely long durations. For a properly designed spacecraft, calibrations should
be stable and easily monitored/trended by the ground. SI data need only be
collected and dumped to the ground for processing and archiving; no on-
board processing would be required, unless contact time and downlink band-
width/onboard data storage availability is an issue. Again, in a cost-benefit
trade, the relatively higher cost of FSW software over equivalent ground soft-
ware will always be an argument in favor of a ground implementation decision
(at least initially, with migration as an option). The one exception might be
in the area of fault detection, diagnosis, isolation, and correction (supported
by data monitoring and trending), where given the likelihood of nonfulltime
contact between flight and ground, an autonomous capability to deal with
a wide range of anomalies and still keep the mission going could prove very
useful. Otherwise, it would probably be more cost efficient to maintain most
potential Remote Agent functionality in the ground system.

6.6.5 Lagrange Point Celestial Pointers

Lagrange points are points of stable or unstable equilibrium relative to the
influence of the combined gravitational fields of two celestial objects acting on
a third object in orbit about the two objects. For simplicity of presentation, we
will restrict our discussion to the sun-earth Lagrange points, though Lagrange
points can be defined for any two celestial objects close enough in proximity for
both of their gravitational fields to affect a third orbiting object (for example,
the behavior of the Trojan asteroids relative to the sun-Jupiter system). For
a given celestial system, there will be a total of five Lagrange points, three
(L1, L2, and L3) in-line with the two objects and two (L4 and L5) off-axis, as
illustrated in Fig. 3.2. Objects at the on-axis points (L1, L2, and L3) are in
unstable equilibrium (i.e., objects at these points will drift off in response to
perturbations), while those at the two off-axis points are in stable equilibrium.

The simple orbital geometry and benign environmental conditions (rela-
tive to those of a near-Earth orbit) make Lagrange-point orbits good choices
for spacecraft with sensitive thermal constraints. The absence of occultations
facilitates long duration observations of dim objects. In addition, for spacecraft
in halo orbits about L1 or L2, the distance to the Earth is as low as a million



6.6 Mission Types for Remote Agents 143

miles, so communications-bandwidth needs do not demand excessively large
antennas or transmitter power.

From a planning and scheduling perspective, the space environment is
simple enough (contrary to the conditions at LEO) to enable considerable
onboard scheduling autonomy. The absence of complex time-dependent con-
straints makes event-driven processing a preferred choice (over absolute time-
driven, totally preprogrammed processing) for higher operational efficiency,
and in fact, has been considered for use by the JWST mission. However, the
value of onboard short-term scheduling is highly mission dependent.

Although communications with the ground can be regular, frequent, and
of long duration, there still can be almost equally long periods when the
spacecraft is out of contact. At these times, a smart fault detection, diagnosis,
isolation, and correction capability, in conjunction with onboard data mon-
itoring and trending, would (depending on designed redundancy capacity)
allow the spacecraft to “fly through” a failure and continue its mission while
out of contact with the ground. However, an equally viable approach would
be simply to rely on conventional fault detection with a transition to a ro-
bust safemode to guarantee platform and payload H&S until contact with the
ground is regained. Currently, the answer to the question of which approach
is best is highly mission dependent and can only be determined following
a rigorous cost-benefit trade. In the future, the answer will depend on how
much progress has been made in standardizing onboard smart fault process-
ing and in reducing FSW development costs relative to comparable ground
software costs.

Similar arguments can be made for many of the other functions that might
potentially be assigned to Remote Agents. Onboard SI data processing could
be very helpful to opportunistic identification, scheduling, and acquisition of
science targets (as well as TOO response). It could also enable a reduction in
downlink bandwidth by telemetering only processed science products, not raw
data, to the ground. But for some missions, the science targets are quite pre-
dictable and greater overall scheduling efficiencies may be obtained via a con-
ventional ground scheduling system. And for most missions, the astronomer
customer will insist on receiving the raw data, rather than the downstream
processed product. So again, an evaluation of the desirability requires rigorous
cost-benefit analysis.

Summarizing, implementing the following additional onboard functions
as Remote Agents would be consistent with the lights-out control center
philosophy:

1. Fine attitude determination (needed for target acquisition)
2. Orbit determination (not needed)
3. Attitude sensor/actuator and SI calibration (need is a function of H/W

design)
4. Attitude control (execution of slew requests; fine pointing)
5. Orbit maneuvering (infrequent; planned on ground)
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6. Data monitoring and trending (as discussed)
7. “Smart” fault detection, diagnosis, isolation, and correction (as discussed)
8. Look-ahead modeling (a function of planning and scheduling autonomy)
9. Target planning and scheduling (as discussed)

10. SI commanding and configuration (execution of science and calibration
requests)

11. SI data storage and communications (in cooperation with ground agent)
12. SI data processing (as discussed)

6.6.6 Deep Space Missions

Deep space missions are tailor-made for the flexibility and responsiveness en-
abled by a Remote Agent implementation of an autonomous spacecraft. Being
out of contact with the ground for very long periods and with significant radio-
signal propagation time for communications, the spacecraft needs to have a
greater degree of “self-awareness” not only to maintain H&S, but even to
perform its mission efficiently. This is particularly true of a mission like an
asteroid flyby where mission-critical observing decisions must be made in re-
altime. Although very complex deep space missions have successfully been
performed by Jet Propulsion Laboratory (JPL) in the past, JPL has rather
clearly determined that the key to maintaining their recent downward trend
in mission cost is to promote steadily increasing onboard autonomy through
the use of formalisms such as Remote Agents. In the DS1 mission, the re-
sponsibility of health monitoring was transferred from ground control to the
spacecraft [99, 135, 195]. This marked a paradigm shift for NASA from its
traditional routine telemetry downlink and ground analysis to onboard health
determination.

6.6.7 Spacecraft Constellations

Being recent in development, where deployment for now is largely restricted
to communications networks, spacecraft constellations represent a new oppor-
tunity for flight autonomy applications and are covered in Chap. 9. Whereas
consideration of Remote Agent applications to the previous mission types
concerned interactions of spacecraft subsystems with each other or with the
ground, for constellations, the scale of interaction expands to conversations
potentially between all the various members of the constellation. In a complex
“conversation” of this type, just the job of determining which members of the
constellation should be included in the conversation, when they should enter
the interaction, and when they should drop off can be a thorny problem. More
discussion on this topic will be provided later, but to support constellation in-
teractions, a hierarchy of subsystem subagents controlled by agent spacecraft
will need to be introduced.
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6.6.8 Spacecraft as Agents

While spacecraft share many of the properties of the agents described above,
the unique environment in which they operate makes unusual demands on
their design. Since spacecraft are mobile, self-contained, and externally fo-
cused, they are often viewed as space-based robots, but this is not the com-
plete picture.

While mobile, a spacecraft consumes much less of its time and resources
for navigation than does a comparable robot. Navigation usually happens at
only a few fixed points in the mission and the spacecraft is focused on other
issues the rest of the time. In addition, the external orientation of a spacecraft
is primarily for the use of science sensors whose data are usually shipped to
earth and not used directly by the spacecraft. Most of the other sensors can
be viewed as internally focused, distributed throughout the vehicle, and their
purpose is housekeeping or health management of the craft. They perform
activities to manage power, manage angular momentum, and keep the craft
correctly positioned. This internal focus has led some to argue that spacecraft
should be viewed as immobots. Certainly, some immobot technologies should
be included in future spacecraft designs.

As autonomous spacecraft become more common, they will find themselves
in the role of determining which science goals to pursue based on the current
situation. If, for example, a pursued science goal cannot be met because of
external events or an internal failure, the spacecraft will choose between the
other available goals to maximize the science returned. Analyzing and pri-
oritizing the information returned to humans is a primary area of research
in software agents. In addition, software agents are a principal focus in the
effort to build cooperative capabilities. In the future, it is likely that groups
of spacecraft will work together to achieve larger science goals. These tech-
nologies, first worked out in software agents, need to be included in spacecraft
designs.

While all of these agent technologies represent elements of the whole pic-
ture, NASA has the burden to evaluate them and adapt the technologies for
spacecraft use. There are many ways that space-mission agent technologies
differ from nonspace agent technologies. Most software agents are ephemeral;
their only goal is to acquire, manipulate, and exchange information, and the
only resource they consume is computation. Spacecraft are not ephemeral.
They exist in the real world and their primary resources are sensors and ac-
tuators. Actions consume tangible resources, and many of these resources are
irreplaceable.

Actions in a spacecraft are usually costly, and once an action is taken,
it may not be reversible. This makes it necessary for planning to factor-in
the resources used and future cost carefully if the action cannot be retracted.
These issues are usually ignored in software agents. Even most robots and
immobots are not as deeply concerned about these issues as are spacecraft.
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Therefore, the planning and control systems of other agent technologies must
be carefully studied and possibly modified for insertion in spacecraft systems.

Software agents assume that communication costs are modest and that
communication is rapid. These systems often have gregarious agents that
would rather ask for help than work out a solution for themselves. In space
applications, most communication is expensive and the timeliness of deliv-
ery depends on the distance between the vehicles or between a vehicle and a
ground station. While collaboration is desired and necessary to achieve ob-
jectives, approaches that are more introspective will be necessary to limit
communications and handle speed-of-light delays.

Much of the work on software agents has involved the construction of infor-
mational agents. Their primary purpose has been the acquisition of knowledge
in support of human goals. While spacecraft both collect information and sup-
port human goals, to achieve their objective, they must make many real-world
decisions that require types of autonomy not necessary in the construction of
informational agents.

When a software agent has a programming bug and fails, it is modified
and restarted with little fanfare. This is often true of ground-based robots and
immobots. Certain software failures in spacecraft are dangerous and could
cause the loss of the whole mission.

Most believe that agent cooperation means communicating with humans
or other agents to work toward a common goal. This is not the only mode
of cooperation. Two or more spacecraft flying in formation may not be in
direct communication with one another, but they still cooperate as the data
they collect are merged to form a more complete picture. These simple modes
of cooperation can assist in achieving missions with lower costs and risks.

As will be discussed in the next chapter, the potential for cooperative
autonomy technologies in spacecraft systems is large, but, as this section has
shown, the use of this technology will require considerate and careful design.
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Cooperative Autonomy

The philosophy of “faster, better, cheaper” reflected NASA’s desire to achieve
its goals while realistically addressing the changing environment in which it
operated. One outgrowth of this philosophy is the shift from performing sci-
ence missions using a few complex spacecraft to one where many simple space-
craft are employed. While simple spacecraft are faster and cheaper to build
and operate, they do not always deliver better science. There must be offset-
ting compensation for any loss of power to deliver science value by employing
innovative technologies and new methodologies that exploit the use of less
complex spacecraft. One such technology is cooperative autonomy.

Cooperative autonomy flows from the study of groups of individuals in
terms of how they are organized, how they communicate, and how they oper-
ate together to achieve their mission. The individuals, in the context of space
missions, may be human beings, spacecraft, software agents, or a mission op-
erations center. From modeling and studying the cooperative organization
and the interactions between its members come insights into possible new ef-
ficiencies and new technologies for developing more powerful space missions
by which to do science more cost effectively.

Cooperative autonomy also creates new opportunities. Its technologies
support cross-platform collaboration that allows two or more spacecraft to
act as a single virtual platform, and thus, possess capabilities and charac-
teristics that would not be feasible with a single real platform. For example,
with small telescope apertures on multiple, coordinated small spacecraft, the
resultant aperture of the virtual combined telescope can be much larger than
the telescope aperture on any single spacecraft.

This chapter outlines a model for cooperative autonomy. NASA’s current
mission organization is described and discussed relative to this model. Virtual
platforms are also modeled and these models are used to assess the impact that
virtual platforms may have on the current NASA environment. Optimizations
are suggested that could lower overall operations costs, while improving the
range and/or the quality of the science product. The optimizations could be
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performed in a controlled and staged manner to minimize undesirable impacts
and to test each change before the next is implemented.

The technologies for constructing cooperative autonomy systems will be
discussed. Some of the technologies enable cooperation between humans and
nonhuman entities, while other technologies enable fully autonomous space-
craft. Many computer technologies are necessary, and each is at a different
level of readiness for NASA environments.

7.1 Need for Cooperative Autonomy in Space Missions

As indicated above, cooperative autonomy is the study of how humans and
computer agents can cooperate in groups to achieve common goals. This sec-
tion describes some of the challenges faced by NASA in future missions, and
informally describes how cooperative autonomy technologies can address these
challenges.

7.1.1 Quantities of Science Data

Over the last decade or so, the rate at which science data are collected and
returned by spacecraft has risen by several orders of magnitude. This is due,
in large part, to advances in sensor and computer technologies. Data handling
facilities have been expanded to handle the enormous amounts of incoming
data, but the mechanisms supporting science extraction from the data have
changed very little. In the current milieu of space missions, cross-mission data
analysis is largely ad hoc, with large variations in data formats and media. The
cost-effective ability to maintain scientific yield is in doubt without new ap-
proaches to support scientists in data analysis, reduction, archiving, retrieval,
management, and correlation.

7.1.2 Complexity of Scientific Instruments

The instrumentation available to the scientist has increased, and continues
to increase in complexity, making it difficult to utilize fully the resources
available. The amount of required documentation increases geometrically with
complexity, and so the burden on investigators to become and remain able to
effectively use any given instrument could easily get out of hand and become
untenable for many investigators. Through experience, it has become clear
that tools to map scientist’s goals onto the space resources available to achieve
those goals are essential.

7.1.3 Increased Number of Spacecraft

The number of active spacecraft has multiplied within the last decade. With
the recent focus on small spacecraft, the numbers will soar. To realize the
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potential of the small spacecraft, NASA must utilize them in associated
arrangements, i.e., clusters, formations, or constellations. But to prevent a
large growth in ground systems to accommodate the large number, they
must be organized into virtual platforms that appear as a single entity to
the ground. Virtual platforms, especially those that can be dynamically
constructed, will allow science, formerly requiring huge spacecraft, to be per-
formed with flexibility and effectiveness.

7.2 General Model of Cooperative Autonomy

The field of cooperative autonomy studies how autonomous agents should
work together to achieve common goals. Autonomous agents can be humans,
robots, spacecraft, or even factory shop floors. Cooperation can occur between
any members of a group of agents, and their reasons for cooperation vary with
their domain and mission.

This section will focus on describing a formal model of cooperative auton-
omy. Since autonomous agents play a central role in cooperative autonomy, it
will begin by describing autonomous agents and discussing their properties.
Once this groundwork is laid, cooperation between autonomous agents will be
defined and four separate patterns for cooperative autonomy will be outlined.
These four patterns are used to clarify the different facets of cooperation and
describe individual attributes of cooperating autonomous agents. Most coop-
erative agents will simultaneously use two or more of these patterns.

7.2.1 Autonomous Agents

All autonomous agents share a set of common features independent of their
operating domain and individual skills. These common features are outlined
in Fig. 7.1 (based on Fig. 5.1, Chap. 5) and can be briefly summarized as: the
ability to make plans, to act upon these plans, and to perceive and internalize
the external world.

The most important single feature of an autonomous agent is its ability to
plan. Planning is the process of making independent choices based on internal
goals and the agent’s beliefs about the operating environment (see Chap. 5).
The results of this process are plans of actions to perform. Plans are the
primary mechanism used by an agent to pursue its goals. Without the ability
to plan, an agent would hardly be considered autonomous. To be considered
a rational and intelligent agent, it must also adapt its plans to the changing
situations in the operating environment. The agent’s set of beliefs about the
operating environment is commonly called its world model. Some agents also
model their own internal state (self models).

Agents must act on the plans they make and these actions change the
operating environment. Actions vary greatly from domain to domain and are
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Fig. 7.1. The features of autonomous agents. The common features can be seen in
the diagram on the left and they are the ability to plan, to act, and to perceive the
external world. The feature list on the right describes the unique characteristics of
an autonomous agent that define its purpose and necessary skills

always customized to the problem being solved. They are in some sense the
final manifestation of the agent’s plan, and without them, the agent’s choices
have no meaning.

The ability to perceive the operating environment is another feature com-
mon in all autonomous agents. Its primary purpose is to allow the agent to
determine whether previous actions were successful and to detect changes in
the operating environment. This information is used to update the agent’s
world model as well as its self-model and ultimately to allow the agent to
adapt its plans in the continuing pursuit of its goals. In some agents, the sens-
ing of the operating environment is a goal in itself and this sensed information
is delivered to the agent’s superior without interpretation.

While the abilities to plan, act, and perceive are common to all agents,
there are many features where they may differ. Some of these features are
listed on the right of Fig. 7.1. An agent’s purpose and its domain of expertise
are the defining aspects of an agent. Other key aspects include: what the agent
must do, what knowledge and skills it must have, the actions it must be able
to perform, the kinds of perception required, and how it plans.

The domain and purpose dictate the degree of individual identity the co-
operating agents must have. In some domains, the cooperating agents have
common skills, share control of the resources, and have large overlaps in their
world models. Often the world models are managed externally to the agents.
Agents working in these domains tend to have a low degree of individual
identity and are often interchangeable. They have little or no self-model. An
example would be a large public scheduling task where the agents are all
working together to create a common schedule. The schedule, which forms a



7.2 General Model of Cooperative Autonomy 151

large part of the world model and represents the use and control of resources,
is external to the agents performing the scheduling.

In other domains, the individual agents have direct control of resources and
often they do not share much of their world model with other agents. Such
agents tend to have a high degree of individual identity and when cooperat-
ing, the individual agents must negotiate as peers to achieve their common
objectives. Their self-model is expansive and it represents the status of all
resources and systems under their control. Spacecraft are agents with a high
degree of individual identity since they manage unique resources in unusual
places. For example, multiple spacecraft attempting to perform joint science
would need to coordinate their positions, their orientations, and the times
when they need to perform actions such as data collection.

In some domains, some goals can be achieved with only sporadic coopera-
tion, while others require continuous contact as the execution proceeds. The
previous spacecraft scenario is a good example of sporadic cooperation to col-
lect the necessary science. High precision formation flying is an example of
continuous cooperation since each spacecraft must constantly sense and mod-
ify its position in relationship to its neighbors. Some domains have a specific
hierarchy of responsibility, with the lower agents subservient to the upper.
Human controllers of a spacecraft demonstrate this hierarchical cooperation.
The controllers make the high level decisions, which are communicated to the
spacecraft as the lower level agent for execution. In other domains, agents are
direct peers who work together to come to a common agreement.

Finally, agents differ in how well they learn from experience. Some systems
have fixed, prescribed rules to specify how the agent should operate under all
known situations. Most current spacecraft fit in this category. Other systems
learn as they operate. These systems can adapt to changing environments,
and over time, can become more skilled. Human agents are a good model of
learning agents. With the attributes of autonomous agents described, it is now
possible to examine the behavior of groups of autonomous agents. This is the
topic of the next section.

7.2.2 Agent Cooperation

There are a number of software-related aspects of cooperative autonomy that
are embodied in agent technologies, which is a broad field. Figure 7.2 (see
Chap. 5) shows an overview of agent technologies and the lower level tech-
nologies that are used to construct agents.

Computer-based agent technology is an active area of research and its goal
is to build computerized autonomous agents that fit within the models defined
in Sect. 7.2.1. Agents cooperate with one another in different ways. In the
simple case, agents work alone to achieve their goals. These types of agents
usually assume that no other agent is in the environment, and their plans
can be generated and pursued without concern over interference from others.
Sometimes, multiple agents work cooperatively to achieve a common goal.
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Fig. 7.2. Cooperative autonomy technologies

When designing these agents, issues such as how the domain is divided be-
tween agents, how the agents negotiate among themselves, and the degree to
which they cooperate must be resolved.

Cooperation occurs whenever autonomous agents work together to achieve
common goals. Cooperation can occur in a variety of ways depending on the
domain and goals being pursued. The following sections will describe sev-
eral different patterns of cooperation and show them in relationship to the
Plan, Act, and Perceive cycle described above. These patterns are not mutu-
ally exclusive, and often the agents must simultaneously engage in multiple
cooperation patterns.

Cooperative Planning

Autonomous agents that work in groups as peers use cooperative planning.
They cooperate with one another to reach agreement on the actions each
member should perform to achieve their common goals. Figure 7.3 depicts a
group of autonomous agents that are engaged in cooperative planning. Each
layer of the Plan, Act, and Perceive cycles represents a separate autonomous
agent and the dots represent the points where these layers communicate dur-
ing cooperation. In cooperative planning, the communications are focused on
exchanging local views of the world, local and shared goals, actions that can
be performed, and shared priorities. During cooperation, each member must
reach an agreement on the set of actions that it will perform. In this pat-
tern, the agents exchange information during the planning activity and before
action is taken.

This form of cooperation is peer to peer. No single agent needs to be
in charge, and yet, each agent participates in a global negotiated solution.
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This pattern of cooperation occurs on a daily basis in human activities. The
ubiquitous “weekly status meeting” is an opportunity for a group of peo-
ple to share the results of the previous week’s activities, discuss individual
and group priorities, and to agree on the activities of each member for the
coming week.

Hierarchical Cooperation

Hierarchical cooperation occurs when the agents have specific responsibili-
ties and authority. In hierarchical cooperation, the superior agents decide the
overall strategy and goals that the subordinate agents are responsible for
achieving. The subordinate agents will, in turn, plan and execute based on
their local view of the domain, and will report their successes and failures to
their superiors.

Figure 7.4 shows one example of hierarchical cooperation. In this exam-
ple, the superior agent plans the activity of the group and its Act step is to
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communicate the plan to the subordinates. The subordinate agent receives
the plan as a series of goals. These goals are interpreted from the agent’s
perspective and a plan is generated and executed. The subordinate agent
then senses its local environment to determine how to continue the pursuit of
its goals.

Hierarchical cooperation is not peer to peer. While a subordinate can nego-
tiate with its superior by communicating its goals, resources, and constraints,
it does not make the choice on what will be done. Once the superior has made
these choices, the subordinate must attempt to achieve the goals to the best
of its ability.

Hierarchical cooperation can be found in many business organizations. The
superior agent in Fig. 7.4 could represent a senior management group and the
subordinate agent a department within the company. The senior management
group sets goals and priorities for the department. The department manager,
usually at department status meetings, distributes these goals in the depart-
ment. The department manager also brings back the results of the department
to the senior management group. In this way, the perceptions of the depart-
ment become part of the perceptions of the senior management.

Computerized systems allow the connection between hierarchical layers to
be much tighter than is possible in human cooperation. In these systems, the
two levels are directly connected together with the action of the superior agent
directly converted into plans for the subordinate agent. Figure 7.5 depicts
this scenario. An excellent example of this type of hierarchical cooperation
can be found in many robotic control systems. An upper level agent is a
slow and deliberative planner that determines the overall strategic goals. The
subordinate agent is a high-speed reactive planner. This planner converts the
high level goals into direct robotic actions and responds rapidly to changes in
the environment.

Fig. 7.5. Tightly coupled hierarchical cooperation
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7.2.3 Cooperative Actions

Cooperative actions result when autonomous agents work together to achieve
the desired objective. Tightly coupled actions result in a form of cooperation
depicted in Fig. 7.6.

Cooperative actions are usually coupled with other forms of cooperation.
Satellites flying in formation to collect coordinated imagery are an exam-
ple of cooperative actions. The individual vehicles must cooperate to keep
themselves in the proper position and orientation with respect to each other.
However, to achieve this high level cooperation, there must be another lower
level cooperation that actually keeps the vehicles in formation (possibly some
form of closed loop control).

Cooperative Perception

Autonomous agents use cooperative perception when they need to fuse their
individual perception information into a single common perception. This pro-
cess is commonly called data fusion or multisensor fusion [91, 192]. Many
different techniques have been developed that fuse either similar or dissimilar
kinds of information into a common model of the perceived world. This form
of cooperation is depicted in Fig. 7.7.

A good example of cooperative perception is when imagery is collected on
the same region of the earth in different spectral bands. When these differ-
ent views of the region are merged into a single common view, the resulting
data are more than the sum of the parts. Another example is the advisors an
executive may talk to before a difficult decision. Each advisor has different
perceptions of the situation at hand and the consequences of any particu-
lar action. The executive weighs the individual contributions and makes a
decision.

This completes the discussion of a formal model for cooperative autonomy.
An overview of current spacecraft mission management will now be offered to
provide a foundation for discussing the application of cooperative autonomy
technologies.
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7.3 Spacecraft Mission Management

Spacecraft mission management is a complex process involving the
coordination of experts from diverse disciplines. This section will outline
a spacecraft mission model and describe the attributes of each group in
the process. While it mixes some of the nomenclature from the deep space
and earth science domains, the model provides a generic view of mission
management organizations.

Figure 7.8 is a graphical representation of the management of a typical
spacecraft mission. While the organization for a specific mission may vary,
generally five different activities make up mission management. The process
begins with the Science Planning group, which is responsible for creating
the science plan representing the science goals. Using the science goals and
spacecraft-housekeeping constraints, the Mission Planning group creates the
overall mission plan for the spacecraft. This plan is passed to the Sequence
Planning group, which converts the high level plan into a series of individual
commands that the spacecraft will perform. This command sequence is passed
to the Command Sequencer, which uplinks the commands to the spacecraft
and monitors the results. Finally, the spacecraft delivers science data, which
go to Science Data Processing to be converted into a form useful to scientists.
At various points in the process, telemetry or science data provide feedback
to allow one or more of the planning groups to change direction.

This section now describes each group, including its responsibilities and
products.

7.3.1 Science Planning

Science planning for typical missions involves a large group of scientists, mis-
sion engineers, and instrument engineers with different backgrounds, domains
of expertise, and modes of operation. This makes the science planning activity
an exercise in collaboration and negotiation. A milestone in this process is the
production of the science plan, which details the science goals to be achieved
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Fig. 7.8. Spacecraft mission management

in the order of their importance or priority. There is little automation assisting
the generation of the science plan. The product of this group is typically a
text document that is provided to the science team.

7.3.2 Mission Planning

The Mission Planning group is a team of mission and instrument engineers
that converts the science plan into the mission plan. The mission plan is de-
signed to achieve the science goals while ensuring the health and safety of the
spacecraft. The nonscience activities include maneuvering and housekeeping,
as well as scheduling time on a communications link. Mission planning usually
requires one or more domain experts for each spacecraft activity. After plan-
ning the mission, these experts monitor the spacecraft for safety and health
violations and adapt the mission plan as necessary. This group meets more
frequently than the science planning group, because their collaborations are
focused on producing a very detailed, usually short-term, mission timeline.
The product of this group is either a text document or an electronic schedule
of mission activities.



158 7 Cooperative Autonomy

7.3.3 Sequence Planning

An individual or small group of mission engineers produces a very detailed
command sequence plan using the mission plan as a guide. This plan specifies
all of the commands and communications that take place between the ground
and the spacecraft. For a typical mission today, the sequence plan is a detailed
timeline for every low-level command to be uplinked to the spacecraft.

7.3.4 Command Sequencer

The Command Sequence software uplinks files of commands to the spacecraft,
receives down-linked telemetry and information on spacecraft anomalies, and
verifies that the file of commands was uplinked with no errors. In case of
an uplink or command failure, commands may just be skipped, or sequence
planning may be repeated, or the spacecraft may be put in safemode. If an
anomaly occurs, depending on the severity, replanning may have to be done
after the anomaly is resolved.

7.3.5 Science Data Processing

Science Data Processing converts the raw data down-linked from the platform
into useful science data for dissemination to a wide audience. This processing is
conducted on the ground and often involves massive amounts of processing and
data storage. The Science Planning group, especially the scientists, constantly
monitors the science data produced by the mission. Based on the science data
produced, the Science Planning group will sometimes modify the activities
and priorities for the mission to produce an updated science plan.

7.4 Spacecraft Mission Viewed as Cooperative
Autonomy

In this section, we combine the cooperative autonomy model in Sect. 7.3 with
the spacecraft mission model of Sect. 7.3. Figure 7.9 shows the current mission
organization, now redrawn from Fig. 7.8 in terms of what it might look like
with hierarchical cooperating groups. The hierarchical cooperation pattern is
well suited to describing the spacecraft mission organization. The results of
this combined model are discussed below.

7.4.1 Expanded Spacecraft Mission Model

At each level of the hierarchy in Fig. 7.9, a group is focused on a specific
domain and its purpose is defined by its position in the hierarchy. For example,
the domain of the science planning group is concerned with the science aspects
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Fig. 7.9. Cooperative autonomy view of spacecraft mission control

of the mission. Their purpose is to produce a science plan that maximizes the
science returned by the mission. Each layered autonomous cycle in the science
planning section represents one member of the planning team (there are four
in the figure).

The diagram shows that these members are simultaneously engaging in
each of the possible cooperation patterns. The most important of these is the
planning collaboration between members, which sets the science goals for
the mission. It is also used to evaluate the science returned and to adapt
the science plan to maximize results. The science planning group must also
cooperate during the action phase when the members work closely together
to generate a single science plan that represents their views. This plan is then
communicated to the mission planning group. The relationship between the
science and mission planning groups is hierarchical in nature and represents
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the third cooperation pattern shown. The final cooperation pattern is the data
analysis, in which the group must fuse all the data coming from the spacecraft
to generate a single coherent view of the science being returned. Sometimes
the science being returned will cause the teams to reevaluate their plan and
adapt it to collect additional information.

The cooperation found in the mission planning group is similar to that
of science planning. One difference is that their goals come from the science
planning group, instead of being self-generated. Another difference is that
the mission group augments the science activities with additional activities
that must be performed for a successful mission. The product of this group
is the mission plan. The sequence planning group receives the mission plan,
evaluates the spacecraft telemetry, and adapts its plans accordingly.

The cooperative model merges the sequence planning group and command
sequencer components of Fig. 7.8 into a single autonomy cycle. The planning
element takes the mission plan from the mission planning group and converts
it into a series of commands that can be sent to the spacecraft and executed.
Once the commands are executed, the spacecraft telemetry reports the status
of the craft, and command verification checks to see whether the uplinked
command file functioned properly. If it did not, the science planning, mission
planning, and sequence generation must work to recover from the problem.
If the sequence planning group is made up of multiple members (the figure
only shows one), then they must collaborate in building the plan and in co-
ordinating what will ultimately be sent to the spacecraft.

In the above example, the spacecraft has no internal autonomy. It ex-
ecutes the commands that were uplinked in a file and returns the results.
Many spacecraft have a limited amount of internal autonomy as shown in
Fig. 7.10. This automation is in a hierarchical cooperation relationship with
the sequence planning group, and is responsible for converting commands into
a series of steps, executing them, and monitoring their completion. It also has
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Fig. 7.10. Spacecraft automation
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the important role of making sure the actions commanded by the sequence
planning group do not jeopardize the spacecraft or damage its instruments.
When such a condition occurs, the spacecraft automatically takes control and
places itself into a safe mode. This type of automation is critical to spacecraft
that operate very far from earth: the delay in long-range communications, even
at the speed of light, means receiving status information, sending commands,
and receiving confirmations will take a long time and the spacecraft can be
lost before ground control has a chance to react to an unexpected condition.
Furthermore, the delay means that the changed conditions at the spacecraft
will invalidate the commands based on the earlier conditions, rendering con-
trol by the ground ineffective and potentially counterproductive. In short,
ground control of a very remote space asset (e.g., a rover or a spacecraft)
under dynamic risk conditions is, in general, not an option.

7.4.2 Analysis of Spacecraft Mission Model

The first thing to note in Fig. 7.8 is the limited use of automation technologies.
There are large amounts of human cooperation, communication, and negoti-
ation, but the only fully automated processing occurs at the lowest level of
the hierarchy. This is where commands are sent to the spacecraft and au-
tomatically verified. This lack of automation dictates a large staff of expert
personnel in each of the mission domains. While this helps to ensure the safety
and success of the mission, it also means substantial operational costs.

The large degree of human communication and negotiation also severely
limits the speed at which the organization can perform decision making. The
time required for human decision making has three major impacts:

Planning time: The entire planning hierarchy has developed to accommodate
the slowness of human deliberations. Decisions requiring long deliberations
are accomplished at the top of the hierarchy and are infrequent. The
middle tier of the hierarchy is focused upon near-term decision making and
the lowest level on those of the immediate future. If human deliberations
can be reduced or eliminated at any of the levels, improvements can be
made in the time required for the planning process.

Reaction time: The cornerstone of the planning hierarchy is predictive sched-
uling. This requires all possible activities to be preplanned, with humans
involved in all decision making. In the case of a spacecraft anomaly,
the mission planning group must be called in to examine the anomaly
and re-plan the short-term activities. While this re-planning does not
have a major impact on single platform operations, it can easily lead
to nonproductive time when one instrument of a platform fails. An au-
tomated mission planner could easily redirect the properly functioning
instruments to another activity while the anomalous instrument is being
examined.
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Iteration time: The long lead time required between science planning and
execution on-board the platform restricts the science opportunities of a
platform. An alteration of the science plan is required for the mission
group to refocus on the near-term activities.

A great deal of informal communications and negotiations happens bet-
ween the members of the planning groups. Members use a variety of mecha-
nisms to achieve consensus on the high-level science goals. Frequent meetings,
e-mail messages, and telecommunications are used, as well as a variety of
planning and scheduling tools. Normally the science planning group produces
a document that is passed on to the mission planning group. While this is
acceptable when the group is composed of humans, it severely limits the
possibilities for automation of group activities. The informal nature of group
activities imposes severe limitations on the speed at which the group can
reach consensus.

A careful analysis of mission cooperation shows that in some cases, the
wrong type of human cooperation is being applied to a particular level of the
hierarchy. This is especially clear in the mission planning group. Mission plan-
ning is primarily a traditional scheduling problem, dealing with optimizing a
candidate list of activities, resources, and constraints. Ideally, an automated
scheduling system would perform this task and focus on maximizing the sci-
ence output of the mission. The fact that the planning experts are primarily
responsible for the spacecraft’s safety suggests that optimizing science out-
put will not be their primary focus. Instead, they spend much of their time
focusing on spacecraft safety and health issues. While spacecraft health and
safety are vitally important, the mission plan should always be optimized for
science output while simultaneously guaranteeing that safety and health goals
are met.

While all these features impose limitations and constraints on mission
effectiveness, the current mission organization has performed reliably for many
NASA missions. The cooperative autonomy model does suggest specific areas
where improvements can be made and these will be the focus of the next
section.

7.4.3 Improvements to Spacecraft Mission Execution

To increase mission science output in the current environment, it is necessary
to insert new technologies that decrease the labor needed in building and
managing spacecraft. This section will examine some technologies supporting
this goal.

The science planning group is responsible for setting goals and interpreting
results. It is one area where it is difficult to eliminate the large investment
in human labor. However, some technologies can be inserted that will make
planning efforts easier and more efficient. Groupware technologies could as-
sist in the planning cycle by making team communication and idea-sharing
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more efficient. It would also lower the number of face-to-face meetings re-
quired by the staff and allow them to work on the project at times convenient
to their schedule. In a similar manner, advanced data fusion, analysis, and
visualization packages can assist scientists in interpreting their results. Both
these technologies are currently in use and their use should be expanded.

Spacecraft sequence generation creates the series of commands necessary
to achieve the objective of the high-level mission plan. The process usually en-
gages software tools to support humans. As stated in Sect. 7.4.1, some space-
craft already have a limited amount of automation in performing a similar
function. It would be a reasonably small step to move the sequence genera-
tion directly into the spacecraft. This would allow the spacecraft to control
its activities and would lower the human staffing requirements.

Between science planning and sequence generation is the mission planning
function. This is an area ripe for automation. Mission planning groups al-
ready use planning and scheduling software to deal with the more detailed
and labor-intensive tasks. By augmenting the existing software, it would be
possible to design a system that is completely automated for normal operating
conditions, eventually lowering the need for human labor for mission planning.
The mission planning system would initially be run on ground-based systems
to facilitate monitoring and problem resolution. Figure 7.11 shows this con-
figuration. While not shown in the figure, a human mission manager would
probably monitor the mission planning system and would, if necessary, resolve
problems.
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Eventually, the mission planning function could be installed on the
spacecraft, thereby enabling it to operate fully autonomously. Figure 7.12
shows this final system, where human labor is focused on creating a science
plan and interpreting the results. The spacecraft converts the science plan
into a mission plan and then converts the mission plan into a series of low
level commands. Following execution of the low level commands, the results
are evaluated and the collected data are sent to the science team for analysis
and interpretation. Possibly, the team will modify the plan and redirect the
spacecraft. This model does not eliminate human intervention, since a hu-
man mission manager would monitor the system and ensure all problems are
properly resolved.

7.5 An Example of Cooperative Autonomy:
Virtual Platform

The previous section discussed the cooperative autonomy model in view of
current NASA processes and missions. NASA is also pursuing new ways to
increase the science return of spacecraft while minimizing the cost of devel-
opment and operations. One emerging concept is that of virtual platforms.

Virtual platforms involve the instruments of two or more spacecraft to
collect data for a common science goal. Many configurations of virtual plat-
forms are possible. In the simplest example, known as formation flying, mul-
tiple spacecraft perform their science collection while keeping a fixed position
relative to one another. The fixed relative position can, in some cases, be
maintained without direct communication between the spacecraft, and the
cooperation in such cases is limited to merging the collected data.
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Simple constellations are groups of identical spacecraft that coordinate
their data collection. As in formation flying, merging the data collected by
the constellation enables a more complete view of the science. Advanced con-
stellations are able to collaborate during planning phases of the mission, which
allows them to allocate tasks to the most suitable spacecraft.

Complex constellations are heterogeneous mixes of different spacecraft.
They share the characteristics of simple constellations, but differences in
spacecraft sensors allow collections in either multiple spectra (e.g., infrared
(IR) and ultraviolet (UV)), or different disciplines (e.g., earth radiation and
atmospheric composition). These differences make the resulting data fusion
more difficult but allow richer, augmented sets of science data. Further, in
such a configuration, older preexisting spacecraft may be used in new ways
not planned by the original designers of the spacecraft.

This section will now use the cooperation models previously developed to
highlight issues related to the development of virtual platforms.

7.5.1 Virtual Platforms Under Current Environment

For virtual platforms to be effective, mission control must be able to select
appropriate spacecraft for data collection and then task them. The current
mission management organization, being designed for single platforms, does
not scale well when managing multiple platforms. Figure 7.13 shows the mis-
sion management structure for a two-spacecraft virtual platform using current
management techniques. Since the science planning group sets the goals for
the whole virtual platform, the group is shared among all the vehicles of the
virtual platform. The group also has the responsibility for fusing the data
returning from all spacecraft.

Each vehicle has its own mission planning group. This group is responsible
for converting the science plan into a mission plan appropriate for the specific
vehicle. This is necessary because each spacecraft will have a different role. It
might be possible to share human planners if the cooperating spacecraft were
similar and the planning demands were modest.

The sequence generation and monitoring are very specific to each vehi-
cle, because each vehicle has a specific role to play and sequence generation
is focused upon platform-specific issues like the battery charge or damaged
instruments. It is, therefore, unlikely that the human operators in these roles
could easily be shared.

Given the current mission management structure, virtual platforms would
make serious demands on NASA. Assume, for example, that the platforms
being used have a four member science team and require three mission plan-
ners and one command sequence operator. Managing one spacecraft would,
therefore, need the efforts of eight team members. Figure 7.13 represents a
two-spacecraft virtual platform, which requires twelve team members. The
components of Fig. 7.13 that are shaded are those that must be replicated to
add additional spacecraft to the virtual platform. Therefore, a ten-spacecraft
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Fig. 7.13. The mission management structure for two spacecraft in a virtual plat-
form configuration

virtual platform would require 44 team members. Unless the science is of a
very high priority, it is unlikely that NASA would support a large virtual
platform system. Some of these issues can be addressed using automation and
this will be examined next.

7.5.2 Virtual Platforms with Advanced Automation

Section 7.4.3 discussed how advanced automation could be used to lower the
number of team members necessary to manage a single platform. These same
techniques can be used to create a virtual platform architecture as shown in
Fig. 7.14.
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Fig. 7.14. Cooperative autonomy view of spacecraft mission control

As in the previous example, the science planning team is shared be-
tween all spacecraft that are cooperating as a virtual platform. This is where
the similarity ends. Once the science plan is generated, it is communicated
directly to the spacecraft. The top level planning component of each space-
craft negotiates with its counterparts on the other spacecraft to determine
their individual responsibilities in the global mission. Once the negotiations
are complete, each spacecraft performs its mission and returns results to the
science team. In conjunction with the science team, a small staff will be re-
quired to monitor the overall virtual platform and address any problems that
may occur.

This approach to virtual platforms is very attractive. Using the numbers
from the previous example, this architecture only requires five team members,
no matter how many spacecraft are involved in the virtual platform. This
compares very favorably to the 44 staff members necessary to manage a ten-
spacecraft virtual platform when the current mission architecture is used.

7.6 Examples of Cooperative Autonomy

Cooperative autonomy requires many different technologies to be synthesized
into a functional whole. Aspects of cooperative autonomy can be found in
hundreds of projects. This section will outline several projects that incorpo-
rate one or more technologies that support the development of cooperative
autonomy. The projects were selected to give the reader a cross-section of the
technologies available.
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New Millennium Program (NMP)

The New Millennium Program (NMP) is a NASA/Jet Propulsion Laboratory
(JPL) project that will aggressively demonstrate new technologies for automa-
tion and autonomy. Though the primary thrust is technology, the project has
scientific goals. NMP will fly a series of deep space and earth-orbiting space-
craft, the first of which was launched in 1998. Some of the software technologies
are:

• Model-based reasoning
• Planning and scheduling architectures
• Executive architecture (performs plans)
• Fuzzy logic
• Neural networks

The DS1 spacecraft, launched in 1998, was the first to employ an on-board,
autonomous system, AutoNav, to navigate to celestial bodies. About once
per week throughout the mission, AutoNav was invoked [114]. The system
made navigation decisions about spacecraft trajectory and targeting of celes-
tial bodies with little assistance from ground controllers.

DS1 also used the New Millennium Remote Agent (NMRA) control archi-
tecture (Fig. 7.15) [100]. In two separate experiments, the remote agent was
given control of the DS1 spacecraft. The remote agent involved an on-board
mission manager that used a mission plan comprising high-level goals. A plan-
ning and scheduling engine generated a set of activities based on the goals, the
spacecraft state, and constraints on spacecraft operations. The plan execution
component incorporated a hybrid reactive planner and a model-based iden-
tification and reconfiguration system. The reactive planner decomposed the
activities supplied by the high level planner into primitive activities, which
were then executed. The model-based reasoning component used data from
sensors to determine the current mode from the current spacecraft state. If
a task failed, the model-based component assisted the reactive planner by
using its model to act as a recovery expert and determine possible recovery
strategies.
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Fig. 7.15. Remote agent architecture
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This project is highlighted because it is NASA’s showcase for new tech-
nology, and the software technologies are truly revolutionary. The project
will demonstrate substantial autonomy in space-based missions with the goal
to establish a virtual presence in space. Cooperative autonomy technolo-
gies [22, 39, 43, 108, 194] could augment the DS1 autonomy architecture and
further this goal.

7.6.1 The Mobile Robot Laboratory at Georgia Tech

The Georgia Tech Mobile Robot Laboratory (MRL) has been working on the
fundamental science and current practices of intelligent mobile robot systems.
The MRL has the goal of facilitating the technology transfer of their research
results to real world problems.

Many of the MRL projects should be of interest to those attempting to set
up a cooperative autonomy laboratory. The MRL has studied online adaptive
learning techniques for robotic systems that allow robots to learn while they
are actively involved in their operating environment. This type of learning is
intended to be fast, similarity-based, and reactive. The MRL has also studied
offline learning where the robot system reasons deeply about its experiences
and learns as a result of this analysis. This type of learning is intended to be
slower, case-based and explanation-based, deliberative, and goal-oriented.

Georgia Tech has pursued autonomous vehicle research projects supported
by the Defense Advanced Research Projects Agency (DARPA). One effort
mixed autonomous robot behavior with human controllability. Other research
addressed multiagent systems that achieve tasks in the context of hostile en-
vironments.

Georgia Tech has developed several software packages that allow users
to create robot control architectures for a specific domain and then test the
control architecture in a simulated robot environment. One is written in Java
and is designed to be portable. The simulation environment is compatible with
off-the-shelf robotic hardware and allows the control architecture developed
in the simulator to be run directly on a physical robot.

7.6.2 Cooperative Distributed Problem Solving Research Group
at the University of Maine

The University of Maine’s Cooperative Distributed Problem Solving Research
group is centered on determining and devising the features, characteristics,
and capabilities that are sufficient to bring about collaboration among groups
of autonomous and semiautonomous agents toward the accomplishment of
tasks. Their work has involved underwater robots, which share many of the
same challenges as spacecraft:

• Operations in hostile environments
• Self-contained operations
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• Operations in six degrees of freedom (with neutral buoyancy or weight-
lessness)

• Operations with limited communications bandwidth

The group’s research has focused on intelligent control for autonomous sys-
tems and cooperative task assignments, determining what has to be commu-
nicated during cooperative problem solving, and developing a low-bandwidth
conceptual language for cooperative problem solving. In one project, a col-
lection of underwater autonomous vehicles collect data in the ocean and can
create a 3-D image of the area of interest. Connected through low bandwidth
acoustic modems or radio links, the vehicles coordinate their sampling activ-
ities and results reporting.

7.6.3 Knowledge Sharing Effort

The Advanced Research Projects Agency (ARPA), now named the DARPA,
sponsored the Knowledge Sharing Effort (KSE). KSE developed methodolo-
gies and software for the sharing and reuse of knowledge [106] in support of
communication between autonomous systems. KSE was broken up into three
separate efforts.

• Knowledge Query and Manipulation Language (KQML) is a language for
exchanging information and knowledge between agents [24]. It prescribes
a set of performatives that represent different types of agent communica-
tion actions (like ask or tell). KQML coordinates the exchange of these
performatives between agents.

• Knowledge Interchange Format (KIF) is a formal computer language de-
signed for exchanging complex knowledge between agents [44]. It has
declarative semantics and allows the agents to exchange information and
describe how that information should be interpreted (the definitions of
objects, the meaning of relationships, etc.).

• The final effort is the development of deep knowledge bases for domains of
interest. These knowledge bases will have definitions for objects of interest,
define relationships and concepts, and populate the knowledge bases with
important objects.

KSE is highlighted here because it was a long-term ARPA/DARPA project
to build formal mechanisms for agent communication. In building their lan-
guages and systems, the researchers had to address issues that any group of
collaborating agents would have to address.

7.6.4 DIS and HLA

The military has developed a series of high quality training and simulation
systems, which involve the fighting soldier in a detailed model of the area
of combat. The efforts began in the early 1980s with SimNet [6, 48], which
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evolved into Distributed Interactive Simulation (DIS), and then into High
Level Architecture (HLA) [18].

These systems created a shared virtual environment where the combat
elements (tank, plane, missile, helicopter, etc.) can see themselves and the
other combatants. Each soldier sits at a station that controls an element (e.g.,
a tank position or the cockpit of a fighter) and the soldier’s actions cause an
appropriate change in the simulation of the element in the virtual world. The
soldiers are given a view appropriate to their vehicles and stations and they
are able to see the other combatants and the effects of their actions (a missile
being fired or a tank turret being rotated). The system has been deemed so
good that it has been used to test out new tactics and has been used to assist
in the design of new systems by allowing different designs or tactics to be
simulated and tested under simulated combat conditions.

Hundreds of individual vehicle simulations can be connected together over
a distributed network using specialized protocols running over Internet proto-
cols. These protocols support the efficient exchange of simulation information
and allow all participants to experience an appropriate view of the virtual
world without requiring an overwhelming amount of computation per station
or overloading the network with simulation updates. Work has been directed
toward building simulated forces, linking real physical hardware directly to
simulated hardware, and building a virtual environment that would allow
foot soldiers to engage in simulated combat.

DIS and HLA have been highlighted because they represent the high end
of software testing environments for cooperative autonomy. They can support
large numbers of simulated objects in a physically distributed environment
using Internet protocols. They can also support the integration of real hard-
ware with simulations. If the HLA protocols were modified to meet NASA
requirements, the resulting system could allow detailed testing of proposed
cooperative autonomy systems, or could allow realistic ground support sta-
tions to be integrated into the environment to test new control regimes or to
train ground support personnel.

7.6.5 IBM Aglets

Many different technologies have been proposed to support agent-based pro-
gramming. One system developed by IBM supports the creation of Aglets,
which extends Java-based applets to create mobile software agents [82]. The
Aglet toolkit helps the programmer develop autonomous agents, which can
then be instantiated, cloned, moved to other computation systems, or de-
stroyed. Implemented in Java, the Aglets have an advantage that they can
run on any computation platform that supports Java, and they automatically
have the many security features provided by Java. The Aglet toolkit does not
focus on cooperation between Aglets, but these services could be provided
by other Java classes. IBM has made the Aglet toolkit publicly available to
support experimentation by others.
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Aglets have been discussed as one of the many possible agent architectures.
While they have limited services, they are written in Java, and therefore, are
portable and extensible. It would be possible to augment Aglets with, for ex-
ample, KQML or Foundations of Intelligent Physical Agents (FIPA)-ACL for
inter-agent communication, along with the robotic control system of Georgia
Tech to build cooperating smart agents.
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Autonomic Systems

NASA requires many of its future missions (spacecraft, rovers, constellations/
swarms of spacecraft, etc.) to possess greater capabilities to operate on their
own with minimal human intervention or guidance [180–182]. Autonomy
essentially describes independent activity toward goal achievement, but space-
system autonomy alone is not sufficient to satisfy the requirement. Autonomic-
ity, the quality that enables a system to handle effects upon its own internal
subsystems and their interactions when those effects correspond to risks of
damage or impaired function, is the further ingredient of space assets that
will become more essential in future advanced space-science and exploration
missions. Absent autonomicity, a spacecraft or other asset in a harsh environ-
ment, will be vulnerable to many environmental effects: without autonomic
responses, the spacecraft’s performance will degrade, or the spacecraft will
be unable to recover from faults. Ensuring that exploration spacecraft have
autonomic properties will increase the survivability, and therefore, their likeli-
hood of success. In short, as missions increasingly incorporate autonomy (self-
governing of their own goals), there is a strong case to be made that this needs
to be extended to include autonomicity (mission self-management [160]). This
chapter describes the emerging autonomic paradigm, related research, and
programmatic initiatives, and highlights technology transfer issues.

8.1 Overview of Autonomic Systems

Autonomic Systems, as the name suggests, relates to a metaphor based on
biology. The autonomic nervous system (ANS) within the body is central to
a substantial amount of nonconscious activity. The ANS allows us as indi-
viduals to proceed with higher level activities in our daily lives [63] without
having to concentrate on such things as heartbeat rate, breathing rate, reflex
reactions upon touching a sharp or hot object, and so on [42, 146, 161]. The
aim of using this metaphor is to express the vision of something similar to be
achieved in computing. This vision is for the creation of the self-management
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of a substantial amount of computing functions to relieve users of low level
management activities, allowing them to emphasize on the higher level con-
cerns of the pursuit of happiness, in general, or the activity of the moment,
such as playing in a soccer match, cooking a meal, or engaging in a spirited
scientific debate.

The need and justification for Autonomic Systems arise from the ever
increasing complexity of modern systems. A not uncommon complaint about
the information technology (IT) industry identifies its inordinate emphasis on
improving hardware performance with insufficient attention to the burgeoning
of software features that always seem to require every possible bit of additional
hardware power, neglecting other vital criteria. This has created a trillion
dollar industry with consumers at the mercy of the hardware-software upgrade
cycle. The consequence is a mass of complexity within “systems of systems,”
resulting in an increasing financial burden per computer (often measured as
the TCO: total cost of ownership).

In addition to the TCO implications, complexity poses a hinderance
to achieving dependability [156]. Dependability, a desirable property of all
computer-based systems, includes such attributes as reliability, availability,
safety, security, survivability, and maintainability [8]. Dependability was iden-
tified by both US and UK Computer Science Grand Research Challenges:
“Build systems you can count on,” “Conquer system complexity,” and “De-
pendable systems (build and evolution)” [60]. The autonomic initiatives offer
a means to achieve dependability while coping with complexity [156].

8.1.1 What are Autonomic Systems?

An initial reaction to the Autonomic Initiative was “is there anything new?,”
and to some extent this question can be justified as artificial intelligence (AI)
and fault tolerant computing (FTC), among other research disciplines, have
been researching many of the envisaged issues within the field of autonomic
computing for many years. For instance, the desire for automation and effec-
tive, robust systems is not new. In fact, this may be considered an aspect of
best-practice systems and software engineering. Similarly, the desires for sys-
tems self-awareness, awareness of the external environment, and the ability to
adapt are also not new, being major goals of several fields within AI research.

What is new is AC’s holistic aim of bringing all the relevant areas together
to create a change in the industry’s direction: selfware, instead of the hardware
and software feature-upgrade cycle of the past, which created the complexity
and TCO quagmire. IBM, upon launching the call to the industry, voiced the
state of the industry’s concerns as complexity and TCO. They presented the
solution to be autonomic computing, expressed as comprising the following
eight elements [63]:

• Possess system identity: detailed knowledge of components
• Self configure and re-configure: adaptive algorithms



8.1 Overview of Autonomic Systems 175

• Optimize operations: adaptive algorithms
• Recover: no impact on data or delay on processing
• Self protection
• Aware of environment and adapt
• Function in a heterogeneous world
• Hide complexity

These eight elements can be expressed in terms of properties that a system
should posses in order to constitute autonomicity [156]. These are described
in Sect. 8.1.2 and elaborated upon in Sect. 8.1.3, which discusses the very
constructs that constitute these properties.

8.1.2 Autonomic Properties

System autonomicity corresponds to the presence of the properties depicted in
Fig. 8.1 [156]. The general properties of an autonomic (self-managing) system
can be summarized by four objectives as follows:

• Self-configuring
• Self-healing
• Self-optimizing
• Self-protecting

AUTONOMIC
COMPUTING

MEANS

LEARN (AI & ADAPTIVE LEARNING)

ENGINEER (SYS. & SOFT. ENG.)

ATTRIBUTES
(how)

SELF ADJUSTING

SELF MONITORING
CONTROL

LOOP

ENVIRONMENT AWARE

SELF AWARE

OBJECTIVES
(what)

SELF PROTECTING

SELF OPTIMIZING

SELF HEALING

SELF CONFIGURING

VISION SELF MANAGEMENT

Fig. 8.1. Autonomic computing properties tree
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which are referred to as self-chop, and four attributes as follows:

• Self-awareness
• Environment-awareness
• Self-monitoring
• Self-adjusting

Essentially, the objectives represent broad system requirements, while the
attributes identify basic implementation mechanisms. Since the 2001 launch
of autonomic computing, the self-∗ list of properties has grown substantially
[169], yet this initial set still represents the general goal.

The self-configuring objective represents a system’s ability to readjust it-
self automatically, either in support of changing circumstances or to assist
in self-healing, self-optimization, or self-protection. Self-healing, in reactive
mode, is a mechanism concerned with ensuring effective recovery when a fault
occurs – identifying the fault and, where possible, recovering from it. In proac-
tive mode, it monitors vital signs and attempts to predict and avoid health
problems. Self-optimization means that a system is aware of its ideal per-
formance, can measure its current performance against that ideal, and has
policies for attempting improvements. It may also react to policy changes
within the system as indicated by the users. A self-protecting system will
defend itself from accidental or malicious external attack. This means being
aware of potential threats and having ways of handling those threats [156].

In achieving self-managing objectives, a system must be aware of its inter-
nal state (self-aware) and current external operating conditions (environment-
aware). Changing circumstances are detected through self-monitoring, and
adaptations are made accordingly (self-adjusting) [156]. Thus, a system must
have knowledge of its available resources, its components, their desired perfor-
mance characteristics, their current status, and the status of inter-connections
with other systems, along with rules and policies of how these may be adjusted.
In the broad view, the ability to operate in a heterogeneous environment will
require the use of open standards to enable global understanding and com-
munication with other systems [63].

These mechanisms are not independent entities. For instance, recovery
from a successful attack will include self-healing actions and a mix of self-
configuration and self-optimization: self-healing to ensure dependability and
continued operation of the system, and self-configuration and self-optimization
to increase self-protection against similar future attacks. Finally, these self-
mechanisms should ensure that there are minimal disruptions to the pursuit
of system goals.

There are two main perceived approaches (Fig. 8.1) considered to be the
means for autonomic computing to become a reality [146]:

• Engineer Autonomicity
• Learn Autonomicity
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“Engineer Autonomicity” has an implied Systems and/or Software
Engineering view, under which autonomic function would be engineered
into the individual systems. “Learn Autonomicity” has an implied AI, evo-
lutionary computing, and adaptive learning view, where the approach would
be to utilize algorithms and processes to achieve autonomic behavior. How-
ever, both approaches rely on each other in achieving the objectives set out
in Automatic Computing. Autonomic Computing may prove to require a
greater collaboration between the intelligence-systems research and system-
and software-engineering fields to achieve the envisaged level of adaptation
and self-management within the autonomic computing initiative.

8.1.3 Necessary Constructs

Considering these autonomic properties, the key constructs and principles
that constitute an Autonomic Environment are:

• Selfware; Self-∗
• AE = MC + AM
• Control Loop; Sensors+Effectors
• AE ↔ AE

Selfware; Self-∗: The principle of selfware (self-managing software and firm-
ware) and the need for self-∗ properties were discussed in the previous
sections.

AE=MC+AM: Figure 8.2 represents a view of an architecture for an au-
tonomic element, which consists of the component to be managed and
the autonomic manager [69, 154]. It is assumed that an autonomic man-
ager (AM) is responsible for a managed component (MC) within a self-
contained autonomic element (AE). This AM may be designed as part
of the component or may be provided externally to the component, as
an agent, for instance. Interaction will occur with remote AMs (e.g.,
through an autonomic communications channel) through virtual, peer-
to-peer, client-server [11], or grid [33] configurations.

Control Loop, Sensors+Effectors: At the heart of any autonomic system ar-
chitecture are sensors and effectors [42]. A control loop is created by
monitoring behavior through sensors, comparing this with expectations
(historical and current data, rules, and beliefs), planning what action is
necessary (if any), and then executing that action through effectors [68].
The control loop, a success of manufacturing science for many years, pro-
vides the basic backbone structure for each system component [41].
IBM represents this self-monitor-self-adjuster control loop as the monitor,
analyze, plan, and execute (MAPE) control loop. The monitor and analyze
parts of the structure process information from the sensors to provide both
self-awareness and an awareness of the external environment. The plan
and execute parts decide on the necessary self-management behavior that
will be executed through the effectors. The MAPE components use the
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Fig. 8.2. Autonomic element (AE) consisting of autonomic manager (AM) and
managed component (MC)

correlations, rules, beliefs, expectations, histories, and other information
known to the autonomic element, or available to it through the knowledge
repository within the AM.

AE ↔ AE: The Autonomic Environment requires that autonomic elements,
and in particular, AMs, communicate with one another concerning
self-∗ activities to ensure the robustness of the environment. Figure 8.2
views an AE with the additional concept of a pulse monitor (PBM). This
is an extension of the embedded systems heart-beat monitor (HBM),
which safeguards vital processes through a regular emitting of an “I am
alive” signal to another process, with the capability to encode health
and urgency signals as a pulse [148]. Together with the standard event
messages on the autonomic communications channel, this provides not
only dynamics within autonomic responses, but also multiple loops of
control, such as reflex reactions, among the AMs [159].

8.1.4 Evolution vs. Revolution

In recognition of, first, the need for differing levels of human involvement, and
second, the reality that the overarching vision of autonomic computing will not
be achieved overnight, autonomic computing maturity and sophistication have
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been categorized into five “stages of adoption” [10, 20, 69]: Basic, Managed,
Predictive, Adaptive, and Autonomic.

Assessing where a system resides within these autonomic maturity lev-
els is not necessarily an easy task. Efforts are underway to define the re-
quired characteristics and metrics [88]. The overall AC maturity is established
from a combination of dimensions forming a natural continuum of autonomic
evolution [80], such as increasing functionality (manual, instrument-and-
monitor, analysis, closed-loop, to closed-loop-with-business-priorities) and
increasing scope (subcomponents, single-instances, multiple-instances-same
type, multiple-instances-different types, to business-systems) [80]. Since as-
sessment is becoming even more complex, efforts are currently underway to
automate the assessment process itself [41,130]. These efforts imply that the
autonomic computing initiative is following an evolutionary path.

8.1.5 Further Reading

The best starting point for further reading is IBM’s “call to arms” launch
of the initiative [63], the autonomic “vision” paper [79], and the “dawning”
paper [42], as well as news about the autonomic initiative [107].

Since the launch of AC, IBM has released various white papers. The general
concepts within these have essentially been brought together into a book pub-
lished by IBM Press [98]. This book covers IBM’s view of Autonomicity and
how it strategically fits within their other initiatives (such as On-Demand).

Origins of some of the IBM thinking on autonomic computing can be at-
tributed to the active middleware services (AMS) community, where their
fifth workshop in Seattle in 2003 became the Autonomic Computing Work-
shop [104] and evolved, with IBM’s backing, into the Autonomic Conference
(New York 2004) [72]. The early focus at this stage was very much on its
roots, i.e., middleware, infrastructures, and architectures. Other Autonomic
workshops include the Workshop on AI for Autonomic Computing, Work-
shop on Autonomic Computing Principles and Architectures, Workshop on
the Engineering of Autonomic Systems, Almaden Institute Symposium: Au-
tonomic Computing, Workshop on Autonomic Computing Systems, and the
Autonomic Applications Workshop; and related workshops such as the ACM
Workshop on Self-Healing, Adaptive and self-MANaged Systems (SHAMAN),
and the ACM Workshop on Self-healing Systems (WOSS).

Special issue journals are also beginning to appear [53, 170]. The papers
in [53] generally cover engineering topics such as mirroring and replication
of servers, software hot swapping, and database query optimization. Those
in [170] strongly represent autonomic efforts for the grid, web, and networks.
Appreciating the wider context of autonomic computing, the boiling pot that
influenced AC can be found in other research initiatives such as Recovery
Oriented Computing [19].
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8.2 State of the Art Research

It has been highlighted that meeting the grand challenge of Autonomic
Systems will involve researchers in a diverse array of fields, including sys-
tems management, distributed computing, networking, operations research,
software development, storage, AI, and control theory, as well as others [42].
There is no space here to cover all the excellent research underway, so this
section will discuss a selection of the early reports in the literature of state-
of-the-art efforts in AC [147].

8.2.1 Machine Design

A paper in [70] discusses affect and machine design [101]. Essentially, it
supports those psychologists and AI researchers who hold the view that affect
(and emotion) is essential for intelligent behavior [139,140]. It proposes three
levels for the design of systems:

1. Reaction: The lowest level, where no learning occurs, but where there is
an immediate response from the system to state information coming from
sensory systems.

2. Routine: The middle level, where largely routine evaluation and planning
behaviors take place. The system receives inputs from sensors as well as
from the reaction level and reflection level. At this level of assessment,
there are results in three dimensions of affect and emotion values: positive
affect, negative affect, and (energetic) arousal.

3. Reflection: The top level of the system receives no sensory input and has
no motor output; it receives all inputs from below. Reflection is a meta-
process where the mind deliberates about the system itself. Operations at
this level look at the system’s representations of its experiences, its current
behavior, its current environment, etc.

Essentially, the reaction level sits within the engineering domain,
monitoring the current state of both the machine and its environment,
and produces rapid reaction to changing circumstances. The reflection level
may reside within an AI domain, utilizing its techniques to consider the
behavior of the system and learn new strategies. The routine level may be a
cooperative mixture of both the reactive and reflection levels.

8.2.2 Prediction and Optimization

A method known as Clockwork provides predictive autonomicity by regulat-
ing behavior in anticipation of need. It involves statistical modeling, tracking,
and forecasting methods [127] to predict need and is now being expanded
to include real-time model selection techniques to fulfill the self-configuration
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element of autonomic computing [128]. This work includes probabilistic rea-
soning, and prospectively, should be able to benefit from invoking genetic
algorithms for model selection.

Probabilistic techniques such as Bayesian networks (BNs) discussed in [50]
are also central in research into autonomic algorithm selection, along with
self-training and self-optimizing [50]. Re-optimization of enterprise business
objectives [4] can be encompassed by the breadth and scope of the autonomic
vision through such far-reaching work combined with AI techniques (machine
learning, Tabu search, statistical reasoning, and clustering analysis).

As an example, the application “Smart Doorplates” assists visitors to a
building by locating individuals who are not in their offices. A module in the
architecture utilizes probabilistic reasoning to predict the next location of an
individual, which is reported along with his/her current location [173,174].

8.2.3 Knowledge Capture and Representation

Vital to the success of Autonomic Systems is the ability to transfer expert hu-
man knowledge about system management and configuration to the software
managing the system. Fundamentally, this is a knowledge-acquisition prob-
lem [85]. One current research approach is to capture the expert’s actions
automatically (keystrokes and mouse movements, etc.) when performing on
a live system, and dynamically build a procedure model that can execute
on a new system and repeat the same task [85]. Establishing a collection of
traces over time should allow the approach to develop a generic and adaptive
model.

The Tivoli management environment approaches this problem by captur-
ing in its resource model the key characteristics of a managed resource [77].
This approach is being extended to capture the best practices information into
the common information model (CIM), through descriptive logics at both the
design phase and the deployment phase of the development lifecycle [83]. In
effect, the approach captures system knowledge from the creators, ultimately
to perform automated reasoning when managing the system.

8.2.4 Monitoring and Root-Cause Analysis

Event correlation, rule development, and root-cause analysis are important
functions for an autonomic system [155]. Early versions of tools and autonomic
functionality updates to existing tools and software suites in this area have
recently been released by IBM [41] through their AlphaWorks Autonomic
Zone website. Examples include the Log and Trace Tool, the Tivoli Autonomic
Monitoring Engine, and the ABLE rules engine.

The generic Log and Trace Tool correlates event logs from legacy systems
to identify patterns. These patterns can then be used to facilitate automa-
tion or support debugging efforts [41]. The Tivoli Autonomic Monitoring
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Engine essentially provides server-level correlation of multiple IT systems to
assist with root-cause analysis and automated corrective action [41]. The
ABLE rules engine can be used for more complex analysis. In effect, it is
an agent-building learning environment that includes time series analysis
and Bayes classification among others. It correlates events and invokes the
necessary action policy [41].

It has been noted that correlation, rule discovery, and root-cause analysis
activities can benefit from incorporating Bayesian Networks [153], either in
the rule discovery process or in the actual model learning to assist with self-
healing [150]. Large-scale server management and control has also received
similar treatment. Event logs from a 250-node large-scale server were analyzed
by applying a number of machine-learning algorithms and AI techniques to
establish time-series methods, rule-based classification, and BN algorithms for
a self-management and control system [129].

Another aspect of monitoring and root-cause analysis is the calculation
of costs, in conjunction with the self-healing equation in an autonomic sys-
tem. One approach utilizes naive Bayes for cost-sensitive classification and a
feedback approach based on a Markov decision process for failure remedia-
tion [89]. The argument is easily made that the autonomic system involves
decisions and decisions involve costs [25]. This naturally leads to work with
agents, incentives, costs, and competition for resource allocation and exten-
sions thereof [25,105].

8.2.5 Legacy Systems and Autonomic Environments

Autonomic Systems is arguably widely believed to be a promising approach
to develop new systems. Yet organizations continue to have to deal with the
reality of either legacy systems or building “systems of systems” composed of
new and legacy components that involve disparate technologies from numer-
ous vendors [76]. Work is currently underway to add autonomic capabilities
to legacy systems in areas such as instant messaging, spam detection, load
balancing, and middleware software [76].

Generally, the engineering of autonomic capabilities into legacy systems
involves providing an environment for monitoring the system’s sensors and
providing adjustments through effectors to create a control loop. One such
infrastructure is Kinesthetics eXtreme (KX). It runs a lightweight, decen-
tralized, easily integratable collection of active middleware components tied
together via a publish-subscribe (content-based messaging) event system [76].
Another tool, called Astrolabe, may be used to automate self-configuration
and monitoring and control adaptation [14]. The AutoMate project, in-
corporating ACCORD (an autonomic component framework), utilizes the
distributed interactive object substrate (DIOS) environment to provide mech-
anisms to directly enhance traditional computational objects/components
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with sensors, actuators, rules, a control network, management of distributed
sensors and actuators, interrogation, monitoring, and manipulation of
components at runtime through a distributed rule-engine [3, 90,97].

8.2.6 Space Systems

As discussed earlier, with the increasing constraints on resources and the
greater focus on the cost of operations, NASA and others have started to
utilize adaptive operations and move toward almost total onboard autonomy
in certain classes of mission operations [176, 195]. Autonomy provides self-
governance, giving responsibility to the agents within the system to meet
their defined goals. Autonomicity provides self-management in addition to
self-governance as essential to a system’s ability to meet its own functional
goals. There is also a shared responsibility to ensure the effective manage-
ment (through self-∗ properties) of the system, which may include respon-
sibilities beyond the normal task-oriented goals of an individual agent. For
instance, monitoring another agent’s health signs to ensure self-protection,
self-healing and self-configuration, and/or self-optimization activities take
place as needed. Autonomic computing, then, can be identified as a key tech-
nology [27,66,146,151] for future NASA missions, and research is paving the
way for incorporation of both autonomicity and autonomy [182]. These will
be discussed in more detail later in Part III of this book.

8.2.7 Agents for Autonomic Systems

Agents, as autonomous entities, have the potential to play a large role in Au-
tonomic Systems [49, 63, 102, 105, 168, 169], though, at this stage, there are
no assumptions that agents must necessarily be used in an autonomic archi-
tecture. However, as in complex systems, there are substantial arguments for
designing a system with agents [75]. Agents can help provide inbuilt redun-
dancy and greater robustness [67], as well as help retrofit legacy systems with
autonomic capabilities [76]. With reference to work previously mentioned, a
potential contribution of agents may come from environments that require
either learning, rules, and norms, or agent monitoring systems.

8.2.8 Policy-Based Management

Policy-based management becomes particularly important with the future
vision of autonomic computing, where a manager may simply specify the
business objectives and the system will make it so – in terms of the needed
information and communications technology (ICT) [94]. A policy-based man-
agement tool may reduce the complexity of product and system manage-
ment by providing a uniform cross-product policy definition and management
infrastructure [41].
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8.2.9 Related Initiatives

Other self-managing initiatives include:

• Cisco (adaptive network care) [71]
• HP (adaptive infrastructure) [54]
• Intel (proactive computing) [187]
• Microsoft (dynamic systems initiative) [95]
• Sun (N1) [164]

All of these initiatives are concluding that the only viable long-term solution
is to create computer systems that manage themselves.

The latest related research initiative is autonomic communications [149,
150]. An European Union brainstorming workshop in July 2003 to discuss
novel communication paradigms for 2020 identified “Autonomic Communica-
tions” as an important area for future research and development [142]. This
can be interpreted as further work on self-organizing networks, but is un-
doubtedly a reflection of the growing influence of the autonomic computing
initiative.

Autonomic communications has the same motivators as the autonomic
computing concept, except it has a focus on the communications research
and development community. Research in autonomic communications pur-
sues an understanding of how an autonomic network element’s behaviors are
learned, influenced, or changed, and how this effects other elements, groups,
and networks. The ability to adapt the behavior of the elements was consid-
ered particularly important in relation to drastic changes in the environment,
such as technical developments or new economic models [142]. This initiative
has now evolved into a major European research program, known as “situated
and autonomic communications” (SAC) [141].

8.2.10 Related Paradigms

Related initiatives, as in perceived future computer paradigms, include grid
computing, utility computing, pervasive computing, ubiquitous computing, in-
visible computing, world computing, ambient intelligence, ambient networks,
and so on. The driving force behind these future paradigms of computing is
the increasing convergence between the following technologies:

• Proliferation of devices
• Wireless networking
• Mobile software

Weiser first described what has come to be known as ubiquitous computing
[188] as the move away from the “dramatic” machine (where hardware and
software was to be so exciting that users would not want to be without it)
toward making the machine “invisible” (so embedded in users’ lives that it
would be used without thinking or would be unrecognized as computing).
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Behind these different terms and research areas lie three key properties:

• Nomadic
• Embedded
• Invisible

In effect, this may lead to the creation of a single system with (poten-
tially) billions of networked information devices. All of these next generation
paradigms, in one form or another, will require an autonomic-self-managing-
infrastructure to provide the successful reality of this envisaged level of invis-
ibility and mobility.

Currently, and for the foreseeable future, the majority of users access com-
puting through personal devices. Personal Computing offers unique challenges
for self-management in itself due to its multidevice, multisituation, and mul-
tiuser nature. Personal autonomic computing is much less about achieving
optimum performance or exploiting redundancy (as in AC) and more about
simplifying use of the equipment and the associated services [10,11]. Thus, it
is particularly relevant to deal with the move toward a nomadic, embedded,
and invisible computing future [152,157].

8.3 Research and Technology Transfer Issues

The challenge of autonomic computing requires more than the re-engineering
of today’s systems. Autonomic computing also requires new ideas, new in-
sights, and new approaches.

Some of the key issues that will need to be addressed are:

Trust: Even if the autonomic community manages to “get the technology
right,” the trust of the user will be an issue in terms of the user’s handing
over control to the system. AI and autonomous agent domains have suf-
fered from this problem. For instance, neural networks (due to concerns
over the “black-box” approach) and a number of AI techniques (due to
their inherent uncertainty) are often not adopted. Rule-based systems,
even with all their disadvantages, often win adoption, since the user can
trace and understand (and thus implicitly trust) them [153]. Note that
even within autonomic computing and autonomic communications, the
bulk of the literature assumes rules will be used instead of other, less
brittle and more adaptable stochastic AI approaches.

Economics: New models of reward will need to be designed. Autonomy and
Autonomicity may derive another self-∗ property: selfishness. For instance,
why would an AE perform an operation, e.g., relay information, for an-
other AE that was outside its organization and did not affect or benefit
from it? In particular, if it was operating within a mobile (battery pow-
ered) environment and to do so, incurred personal cost, performing the
operation for the outside unit could shorten its useful life or make it nec-
essary to recharge earlier.
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Standards: The overarching vision of autonomic computing will only be
achievable through standards, particularly for communicating between
AEs. Like the agent community standardizing on a communications pro-
tocol, AEs also need a protocol standard so that they can be added to a
system and be able to communicate immediately. Besides, agile ways to
define these communications are needed, for which a key enabler would
be the self-defining property.

It has been expressed that in AC’s initial deployment take-off, many re-
searchers and developers have zeroed in on self-optimization because it is
perceived as easier to translate into technology transfer [41]. Essentially, this
focus on optimization from the four self-chop attributes may be considered to
be going against the grain of technology trends (toward ever faster machines),
as such fine-grained optimization is not necessarily a major concern [41]. For
autonomic computing to succeed in the longer term, the other self-∗ attributes
must be addressed equally and in an integrated fashion.

As well as addressing complexity, autonomic computing also offers the
promise of a lower TCO and a reduced maintenance burden as systems become
self-managing. Achieving this vision will likely make substantial demands on
legacy maintenance budgets in the short-term as autonomic function and be-
havior are progressively designed into systems.

Achieving the overarching vision of Autonomic Systems will require inno-
vations in systems and software engineering, as well as collaboration involving
many other diverse fields. Early R&D presented in this chapter highlights the
momentum that is developing on a broad front to meet the vision. The NASA
community, with its increasing utilization of autonomy in missions, will only
benefit from the evident paradigm shift within computing that brings Auto-
nomicity into the mainstream.
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Autonomy in Spacecraft Constellations

In this chapter, we discuss the application of the autonomy technologies con-
sidered in previous chapters to spacecraft constellations. The needs of constel-
lations that can be supported by onboard autonomy are described along with
the enhancements attainable by constellation missions through the applica-
tion of onboard autonomy. A list of hypothetical constellation mission types
is also posed and a list of governance concepts is then presented in relation to
the degree of central control being exercised on the constellation. Finally, the
chapter discusses mobile agent concepts to support autonomic constellations.

9.1 Introduction

As described in Chap. 7, spacecraft constellations are organized into virtual
platforms that appear as a single entity to the ground. They are often flown
in formation so that different spacecraft can view science phenomena from
a different perspective, or view contiguous areas at the same time. Simple
constellations are groups of identical spacecraft that coordinate their data
collection and merge the collected data to create a more complete view of the
science. Complex constellations are heterogeneous mixes of unlike spacecraft.
They share the characteristics of simple constellations, but may comprise dif-
ferent types of spacecraft and/or have different instruments. These differences
in spacecraft and instruments make the resulting data fusion more difficult,
but allows richer sets of science data to be collected. This configuration also
allows older, preexisting spacecraft to be used in new ways not thought of by
the original designers of the spacecraft [26].

An example of a NASA constellation is the ST5 mission. The ST5 mission
[171], launched in March 2006, has three identical spacecraft that fly in a
“string of pearls” formation (Fig. 1.1), utilizing a single uplink/downlink to
the ground station.

W. Truszkowski et al., Autonomous and Autonomic Systems, NASA Monographs 189
in Systems and Software Engineering, DOI 10.1007/978-1-84628-233-1 9,
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As in other mission types discussed earlier, the motivations for improved
autonomy in constellations arise from (among other things) resource con-
straints pertaining to onboard processor speeds, memory, spacecraft power,
etc. Even though onboard computing power will increase in the coming years,
the resource constraints associated with space-based processes will continue
to be a major factor that needs to be considered when dealing with, for exam-
ple, agent-based spacecraft autonomy. The realization of “economical intelli-
gence,” i.e., constrained computational intelligence that can reside within a
process under severe resource constraints (time, power, space, etc.), is a major
goal for future missions such as nano-sat constellations, where resources are
even more constrained due to their small size.

Like other missions, satellite constellation missions can have a wide range
of characteristics. Future missions may vary in their data rate and total data
volume. Orbits may range from low earth orbits to very elliptical orbits with
multiday periods. Air-to-ground protocols may vary, and the satellites them-
selves may be low-cost with low autonomy or may be sophisticated with a
high level of onboard self-management. Traditional ground-support systems
designed for single satellite support may not efficiently scale up to handle
large constellations. The interested reader may refer to [15, 64, 143, 166, 190]
for additional information on the challenges of spacecraft constellations.

Table 9.1 summarizes current and future types of constellation, their ap-
plications, some of the critical distinctions between the applicable mission
models, and various relevant issues. To begin to address the implicit chal-
lenges, new approaches to autonomy need to be developed for constellations.
As discussed in Chap. 4 relative to the agent concept testbed (ACT) proto-
type, a possible two-step approach for achieving constellation autonomy is as
follows:

1. Develop a community of surrogate ground-based agents representing the
satellites in the constellation. This will enable the mission to establish, in
a prototype environment, the centralized and distributed agent behaviors
that eventually will be used in space.

2. Migrate the surrogate agents to the space-based satellites on a gradual or
as-needed basis. This step is referred to as progressive autonomy.

This chapter will focus on Step 1, and at the end, present some ideas relat-
ing to Step 2. First we present a brief overview of constellations, reasons for
using constellations, and the associated challenges in developing them. These
challenges will motivate the agent-based technology discussion in relation to
the goal of achieving autonomy in constellations (Fig. 9.1).

9.2 Constellations Overview

Constellations have the potential to provide the data that are needed to
yield greater scientific insight and understanding into the cause-and-effect
processes that occur in a region. As discussed in Chap. 6, constellations can
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Table 9.1. Current and future types of constellation missions and possible issues
Type Application Typical design/ Data acquisition Operations

manufacture

Simple University Very low cost. Not a major Extremely low

(varied sponsored. Minimally issue. Low rate. cost. University
number of Corporate space-rated May operate level

satellites) R&D components at amateur

radio frequencies

Cluster: Coordinated Complex. Not a major Similar to single
Cluster II (4), science. Satellite issue. Typically large satellite.
Magnetospheric Virtual crosslinks. high rate due to Multiple

multiscale (5) telescopes. Extensive science mission, satellites
Stereo testing but number of performing

imaging required. High satellites is a coordinated

redundancy limited or function. Added
within downlink access effort for

satellites can be controlled mission

Coverage- Commercial Satellites Large number May involve

Constellation: phone/paging/ operate of satellites hundreds of
Globalstar (48), Internet independently, using many passes per day.

Orbcomm (36), systems. Earth designed for ground sites Ideal for
TIROS (5), (or planetary) mass production concurrently. automation, as

NASA observation with limited Dedicated there are many

NanoSat (100) (multi-point redundancy, antenna sites nearly identical
data high duty cycle may be needed passes. Space

collection, due to identical comm architecture
broad survey satellites working may be needed to

or coverage) continuously be fully networked

Military/ Inspection, New concepts are Only a few Mostly orbit/
Tactical: imagery for very small, satellites active maneuver and

XSS-10, low-cost, mass- at a time. May data-acquisition
ESCORT, produced spacecraft use portable activity.

Orbital Express with no redundancy data acquisition Data are

and minimal sites. May have for immediate
mission durations a video downlink use only. No

plus minimal long-term
status info. trending, etc.

possess significant, and perhaps obvious, advantages over using just one or two
spacecraft. For example, NASA’s proposed magnetotail constellation (MC)
mission, which will use a fleet of 30+ nanospacecraft, would offer space-physics
scientists the ability to perform 100 concurrent observations over the magne-
tosphere, allowing conditions and events recorded to be correlated spatially
and temporally.

Constructing and launching constellations will introduce many new and
significant challenges. For example, building, launching, and then properly
deploying as many as 100 spacecraft housed on one launch vehicle into their
required orbits will require the development and demonstration of new space-
craft control solutions so that mission operations costs associated with sup-
porting a constellation comprising a large number of spacecraft do not spiral
out of control.
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Fig. 9.1. The agent concept testbed (ACT) consists of a community of cooperating
agents each of which is component-based (from Chap. 4)

There are a number of implementation issues that are unique to spacecraft
constellations. Four examples presented below provide some insight into the
challenges that will undoubtedly confront aerospace hardware and software
engineers in launching, deploying, and then routinely operating constellations:

• Monitoring engineering telemetry data from one spacecraft is a rou-
tine task for mission operations personnel and the ground system com-
puter hardware and software systems. However, responding to time-critical
events and identifying, evaluating, and quickly resolving spacecraft subsys-
tem anomalies can frequently be challenging for humans and computers
alike. Effectively monitoring and reacting to conditions reported by the
telemetry data from 100 identical spacecraft without also incurring a con-
comitant and potentially significant increase in staff and ground equipment
will be a major challenge.

• Spacecraft that compose a constellation still will need to communicate
with the ground system. Commands must be uplinked to the spacecraft,
engineering health and safety telemetry data must be transmitted to the
missions operations center, and payload data must be returned to the
science community for ground-based processing and product distribution.
Available (and limited) ground resources (e.g., spacecraft tracking stations,
communications networks, and computing resources) will need to be sched-
uled and managed so that realistic contact plans can be created to sup-
port forward and return link telemetry processing for constellations with
large numbers of spacecraft. Potentially, advanced space networking tech-
nologies will lead to more efficient networked communications capabilities,
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partially offsetting the need for many direct-to-spacecraft communications
paths from ground antennas.

• Some constellation missions may require that the spacecraft communi-
cate with one another for science or formation purposes. One spacecraft
may need to broadcast information to many other spacecraft in its vicin-
ity. Alternatively, one spacecraft may need to communicate with another
spacecraft in the constellation, for example, to cue it so that the second
spacecraft can record an event that the first could not. But these spacecraft
may be located in orbital planes where they are rarely if ever in direct line
of sight of each other. Multihop networked inter-satellite communications
may be necessary to synchronize operations of the entire constellation, or
just a subset of it.

• Trend analysis is an important element for any spacecraft mission. It helps
the mission operations staff determine whether a failure may be imminent
so that switchover to backup or redundant subsystems can be performed,
or if necessary, to have the spacecraft enter safemode until the problem
can be identified and a corrective course of action implemented. Greater
automation in ground data processing will be required to support this.
Perhaps data mining techniques that are presently implemented for ter-
restrial databases and e-commerce applications may provide solutions for
consideration and adaptation to this new problem.

9.3 Advantages of Constellations

A wide variety of missions could be best implemented with constellations of
satellites working together to meet a single objective. Reasons cited for using
constellations include lower mission costs, the need for coordinated science,
special coverage or survey requirements, and the need for quick-reaction tac-
tical placement of multiple satellites. The following discusses these in more
detail.

9.3.1 Cost Savings

The cost of producing spacecraft for a constellation and getting them to or-
bit may actually be lower than traditional “one of a kind” satellites that
use a dedicated launch vehicle. With a traditional satellite, system reliabil-
ity requirements force a high level of component protections and redundancy,
which leads to higher overall weight and launch costs. Due to their size and/or
weight, a dedicated launch is often required for these missions. With a con-
stellation, system reliability can be met by having spare satellites. The use of
per-satellite redundancy can be significantly reduced. In some cases, it may
be practical to use lower-rated components at a much lower cost combined
with an on-orbit sparing plan. Additional savings could be obtained through
the use of assembly-line production techniques and coordinated test plans,
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so that the satellites could basically be mass-produced. With a reduced size
and weight, new options would be available for launches: lower cost launch
vehicles, multiple satellites of the constellation launched on one launch vehi-
cle, and piggy-back launch slots where launch costs are shared with another
mission.

9.3.2 Coordinated Science

A constellation of as few as two satellites could be used to perform coordinated
science. For example:

• Storms and other phenomena observed from multiple angles could be used
to generate 3-D views

• Satellites with a wide spatial separation could be used for parallax studies
of distant objects

• A cluster of satellites flying in formation and working together could form a
virtual lens (or mirror) hundreds of miles across to achieve unprecedented
resolution for observations of astronomical objects

The currently predominant application of satellite constellations aims to
extend area coverage. Low earth orbiting constellations such as Globalstar
use dozens of satellites to provide continuous global or near-global coverage.
The global positioning system (GPS) uses a constellation to provide global
coverage and spatial diversity of the multiple satellites in view. Earth imaging
missions can use multiple satellites to shorten the time between successive
observations of the same area, and can coordinate observations so that dy-
namic phenomena (hurricanes, earthquakes, volcanic eruptions, etc.) receive
augmented attention by additional members of the constellation.

Military applications for constellations include earth observation, weather,
and equipment resource monitoring. In the future, it may be possible to launch
very small satellites with a very specific purpose and a very short mission
duration. The satellites could be produced by the hundreds and launched
as needed. The “constellation,” at any point in time, would include those
satellites currently performing their intended function.

9.4 Applying Autonomy and Autonomicity
to Constellations

With the above discussion as motivation, the following section describes how
autonomy could be applied in constellation ground control systems and in
constellation spacecraft themselves to overcome the issues mentioned above.
Finally, the goal of achieving autonomicity in constellations is discussed.
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9.4.1 Ground-Based Constellation Autonomy

Figure 4.7 (Sect. 4.3.4, p. 89) shows a high-level representation of a constella-
tion simulation of ground-based autonomy for a constellation of four satellites.
In this simulation, a number of agents are connected to an environment in
which the ground control systems and satellites [177, 183] are simulated. In
the simulation, the satellites are in orbit collecting magnetosphere data. The
simulation environment propagates the orbits based on ideal conditions. Faults
can also be inserted into the telemetry stream to simulate an anomaly.

The group of surrogate spacecraft agents, as a major component of the
ground-based community, maintains an awareness of the actual physical con-
stellation. The surrogates act on behalf of their respective spacecraft in status
monitoring, fault detection and correction, distributed planning and schedul-
ing, and spacecraft cooperative behaviors (as needed).

A next phase in the evolution of the above ACT scenario will be to have
communities of agents, each associated with a particular spacecraft in the con-
stellation. Each of these communities would have specialist subsystem agents
that would monitor the various subsystems of the spacecraft and cooperate
with one another in the handling of anomalous situations. An overall coor-
dinator, or spacecraft agent, would lead the community and represent the
spacecraft to ground controllers. It would also represent the spacecraft to
other spacecraft agents in the constellation community for activities such as
distributed planning and scheduling, and other forms of collaboration.

In the context of spacecraft constellations, the ground-based group of sur-
rogate agents illustrates two major themes in our discussion: (1) surrogate
agents can indeed support the concept of constellation autonomy in a mean-
ingful way, and (2) having a ground-based community of surrogate agents
allows developers and users (controllers) to gain confidence and trust in the
approach.

9.4.2 Space-Based Autonomy for Constellations

Constellation autonomy (as opposed to a single spacecraft autonomy) corre-
sponds to an intrinsic property of the group. Constellation autonomy would
not apply to a fleet of spacecraft where each is operated without reference
to the others (e.g., a tracking and data relay satellites (TDRS) servicing the
communications needs of many user spacecraft). However, if each satellite
manages itself in the common external environment so as to maintain a group
functionality relative to the environment, even when the members of the group
do not communicate directly with one another, and the group accomplishes
the end purpose of the constellation, then the constellation can be considered
as a self-managing one, i.e., autonomous. This is considered justifiable, from
the mission perspective, because the group accomplishes the end result as a
system even though its members do not intentionally interchange information.
We make this distinction because of the question of autonomy and viability.
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As long as the constellation produces, i.e., delivers its end purpose on its own
without any external support, it is viable and autonomous. Some members
of the group may fail, but the remainder will continue to produce, thereby
maintaining the essential nature of the constellation.

The second and final step (progressive autonomy) in the proposed overall
plan to realize space-based autonomy is to migrate the spacecraft surrogate
community of agents to the actual spacecraft. As discussed in previous chap-
ters, this is a nontrivial step. A major step in the direction of actual onboard
spacecraft autonomy is to have the agent community demonstrate its cor-
rectness in actual ground-based spacecraft control centers [178, 184]. This is
discussed in Sect. 9.6.

There are many issues that need to be addressed before this becomes a
reality. Some of the major issues are as follows:

• Adaptation to resource constraints. As an example, a spacecraft subsys-
tem agent must be able to exist and operate within the microprocessor
associated with the subsystem. This is where the concept, which we call
“economical intelligence,” comes into play. Reasoning code and knowledge
and information structures and management need to be “optimized” in
order to function properly in the resource-constrained environment of a
spacecraft subsystem microprocessor.

• Integration with existing subsystem autonomy. As discussed earlier, most
spacecraft subsystems already have a degree of autonomy built into their
operations. This is realized usually through the use of expert systems or
state-based technologies. A subsystem agent should be able to take advan-
tage of the existing capability and build upon it. The existing capability
would become an external resource to the subsystem agent that would be
used to realize a higher level of autonomy for the subsystem. The agent
would need to know about the external resource and how to use it, i.e.,
factor its information into its reasoning process.

• Real-time activity. Most situations experienced by a spacecraft require
real-time attention. If the situation is not readily handled by built-in sub-
system autonomy, the associated subsystem agent will need to respond in
real-time. This will require the agent to have a working reflexive behavior.

9.4.3 Autonomicity in Constellations

A step beyond an autonomous constellation is an autonomic constellation –
a collective of autonomous agents that are self-governing and learn individual
sequences of actions so that the resultant sequence of joint actions achieves a
predetermined global objective. As discussed earlier, this approach is partic-
ularly useful when centralized human control is either impossible or imprac-
tical, such as whenever timely and adequate communication with humans is
impractical. Constellations controlled by in situ “intelligent” spacecraft, in
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comparison with the more common externally controlled constellation, can
have the following advantages:

1. In locations not reachable in a timely manner through human contact:
(a) Initiating and/or changing orders automatically.
(b) Evaluating and summarizing global health status, and therefore,

being able to assess the constellation’s ability to conduct a specific
exercise, and further, being able to engage in self-protection and self-
reconfiguration, among other self-∗ functions to ensure the survival
and viability of the entire constellation.

(c) Providing summary status of the entire constellation.

2. On-the-job training or programming:
(a) Provoking a new mode of behavior on the part of constituent satellites

by observing operators and the environment [185].

The role of autonomicity in constellations depends on the needs of the
satellites individually and collectively, and on the needs of mission control.
For example, how robust an autonomic function on any single satellite must
be would depend on such things as the proximity to standard tracking and
telecommunications facilities, the urgency of data and command access by the
ground, and for survey missions, the area of simultaneous coverage needed
by satellites in the constellation. Availability of communication channels is
another factor, whether it be the timing/accessibility and individual chan-
nel bandwidth capacity or, in close formation flying, frequency separation of
channels. Of course, there are various ways of getting around mutual inter-
ference constraints, such as limiting the individual contact events to a single
communications link at a time when in close formation, or by compressing
the bandwidth requirements, as was mentioned previously; a fully networked
inter-spacecraft communications architecture involving multihop packet rout-
ing also represents an alternative approach for some types of mission. But
providing an autonomic function that can address the constraints of a system
given the current situation in a mission provides a much more flexible and
reusable solution than can be solved by single-point solutions.

The autonomicity of constellation governance influences the spacecraft
inter-connectivity design and ground-connectivity design (i.e., human con-
trol) in much the same ways as does the individual satellite’s subsystem con-
trol structure. However, the geometry, scale, and desired performance of the
constellation as an integral entity come into play adding additional design
complexity. As a basic consideration, the level of interdependency among con-
stellation members is a factor influenced strongly by mission class, e.g., what
type of payload is being carried.

In certain types of mission (for surveillance, analysis, monitoring, etc.), the
requirements for accuracy and speed of data or event notification are becoming
more demanding. In addition, the resolution requirements for imaging systems
require ever larger apertures, and hence, larger instrument sizes.
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Formation flying concepts have been identified as the canonical means for
achieving very large apertures in the space environment. (It should be noted
that, as with other types of constellation mission, formation flying presents an
opportunity to create a synergistic system (e.g., an imaging system) where the
members of the group operate cooperatively to give rise to group capabilities
that no single platform could provide by itself. Further, as with other types
of constellation mission, the mission can be designed, in many cases, so that
the loss of a member leaves the remainder of the group functioning. In the
alternative mission design, based on using a single large spacecraft, the loss
of the spacecraft means losing the entire mission.)

In a representative formation-flying concept for an astronomical observa-
tory, the formation itself creates the effect of a large “instrument” whose
aperture can be changed along with range to target by maneuvering the
formation – which presents several issues in control:

• Timing
• Timing knowledge accuracy and synchronization
• Positioning
• Positioning and timing knowledge confidence

and these, in turn, raise issues of:

• Performing inter-satellite communications
• Relaying data
• Commanding via a master control

Such control issues generally have no possible solution apart from an au-
tonomous mechanism (e.g., laser cross-links between the members of the for-
mation to permit minute, near-instantaneous relative position adjustments on
a scale measured by the diameter of an atomic nucleus), and for similar rea-
sons (inadequate ability of humans to deal with distant or rapidly occurring
phenomena), some level of autonomicity will be required for the system’s sur-
vival and viability when, for example, the system experiences the effects of a
threat that was not predicted.

Autonomic satellite designs will make major contributions to resolving
these issues. Each design should be approached first from the viewpoint of
constellation architecture, considering the control options available.

9.5 Intelligent Agents in Space Constellations

For single-agent systems in domains similar to space, intelligent machine learn-
ing methods (e.g., reinforcement learners) have been successfully used and
could be used for single-spacecraft missions. However, applying such solu-
tions directly to multiagent systems often proves to be problematic. Agents
may work at cross-purposes, or have difficulty in evaluating their contribu-
tion to achievement of the global objective, or both. Constellations based on
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intelligent multiagent systems would have similar challenges. Concepts from
collective intelligence [144] could be applied to the design of the goals for the
agents so that they are “aligned” with the global goals, and are “learnable”
in that agents could see how their behavior affects their utility and could
overcome unforeseen issues.

Satellite intelligence was considered initially by Schetter et al. [133]. They
performed comparisons on several high-level agent organizations, along with
varying degrees of satellite intelligence, to assess analytically their impact
on communication, computation, performance, and reliability. The results
indicate that an autonomous, agent-based design provides increased reliability
and performance over traditional satellite operations for the control of con-
stellations.

The following sections discuss some of the approaches to using intelligent
multiagents for constellation control.

9.5.1 Levels of Intelligence in Spacecraft Agents

Based on the sum of spacecraft functions, four levels of spacecraft intelligence
have been identified [133], where I1 denotes the highest level of intelligence
and I4 the lowest level (Fig. 9.2):

• The spacecraft-level agent I4 represents the most “unintelligent” agent. It
can only receive commands and tasks from other spacecraft-level agents

Fig. 9.2. Identification of spacecraft-level agents based on levels of capable
intelligence2

2Reprinted from Artificial Intelligence, 145(1–2), Thomas Schetter, Mark
Campbell and Derek Surka, Multiple agent-based autonomy for satellite constel-
lations, page 164, Copyright (2003), with permission from Elsevier.
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in the organization, or from the ground, and execute them. An example
includes receiving and executing a control command sequence to move to
a new position within the cluster. This type of intelligence is similar to
that being flown on most spacecraft today.

• The next higher spacecraft-level agent is I3, with local planning function-
alities onboard. “Local” means the spacecraft-level agent is capable of
generating and executing only plans related to its own tasks. An example
would be trajectory planning for orbital maneuvers.

• Agent I2 adds a capability to interact with other spacecraft-level agents in
the organization. This usually requires the agent to have at least partial
knowledge of the full agent-based organization, i.e., of other spacecraft-
level agents. It must, therefore, continuously keep and update (or receive)
an internal representation of the agent-based organization. An example in-
cludes coordinating/negotiating with other spacecraft-level agents in case
of conflicting requirements.

• The spacecraft-level agent I1 represents the most “intelligent” agent. The
primary difference between I1 and the other spacecraft-level agents out-
lined is that it is capable of monitoring all spacecraft-level agents in the
organization and planning for the organization as a whole. This requires
planning capabilities on the cluster level (a cluster being a subset of a con-
stellation), as well as a capability by which an agent has full knowledge of
all other spacecraft-level agents in the constellation. An example includes
calculation of a new cluster configuration and assigning new satellite po-
sitions within the cluster.

Selecting the level of intelligence of a multiagent organization is a complex
design process. The organization must be:

• Adaptive, able to avoid bottlenecks, and able to reconfigure
• Efficient in terms of time, resources, information exchange, and processing
• Distributed in terms of intelligence, capabilities, and resources

A design selection process starts from an initial spacecraft-level intelli-
gence hierarchy. An example used for TechSat21 [133] is shown in Fig. 9.3.
Here, high-level mission tasks were decomposed into lower-level tasks. The
spacecraft functions required to support these tasks are listed down the left
hand column with subfunctions grouped by category. Across the top are high
level spacecraft tasks with subtasks underneath. Tasks are then arranged in
a matrix form to provide a visualization of the agent capabilities associated
with each level of spacecraft intelligence as presented in Fig. 9.2. The boxes
contain the ID’s for function and subfunction categories.

9.5.2 Multiagent-Based Organizations for Satellites

Figure 9.4 shows a summary of options as a function of individual spacecraft-
level agent intelligence. Note that lower level functional agents are implied
in each of the architectures. As can be seen, the number and composition
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Fig. 9.3. Functional breakdown of the task structure specifically for Techsat213

Fig. 9.4. Coordination architectures for coordination of multiple spacecraft-level
agents4

3Reprinted from Artificial Intelligence, 145(1–2), Thomas Schetter, Mark
Campbell and Derek Surka, Multiple agent-based autonomy for satellite constel-
lations, page 154, Copyright (2003), with permission from Elsevier.

4Reprinted from Artificial Intelligence, 145(1–2), Thomas Schetter, Mark
Campbell and Derek Surka, Multiple agent-based autonomy for satellite constel-
lations, page 166, Copyright (2003), with permission from Elsevier.
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of the different spacecraft-level agents I1–I4 determine the organizational ar-
chitecture. The top-down coordination architecture includes only one single
(highly intelligent) I1 spacecraft-level agent, and the other spacecraft are (un-
intelligent) I4 agents. The centralized coordination architecture requires at
least local planning and possibly interaction capabilities between spacecraft,
requiring I3 or I2 agents. The distributed coordination architecture consists
of several parallel hierarchical decision-making structures, each of which is
“commanded” by an I1 intelligent spacecraft-level agent. In the case of a fully
distributed coordination architecture, each spacecraft in the organization rep-
resents an I1 spacecraft-level agent, resulting in a totally “flat organization.”

9.6 Grand View

The next level of space-based autonomy is to develop and verify agents and
agent-communities concepts to the point that they can migrate to actual
ground-based operations and, when fully verified and validated in an op-
erational context, migrate to the spacecraft to provide onboard autonomy.
Figure 9.5 is a view, a grand view (not the only one), of what such a system
might look like [178,179,184], and is one possible representation of progressive
autonomy. It paints a picture in which we can see many threads of agent-based
activity, both ground-based and space-based. The major theme of the figure
is that of agent migration from one level to another. The figure depicts the
various migration paths that could be taken by agents and communities of
agents enroute to a spacecraft. This is the essential theme of our proposed
approach to realizing complete autonomy for constellations as well as other
mission types.

Progressive autonomy refers to the levels of autonomy that can be incre-
mentally achieved by a dynamic community of agents. Achieving a higher
level of autonomy in a community means either increasing an already existing
agent’s capabilities through reprogramming it, introducing a new agent into
the community with the desired capabilities, or allowing an agent to develop
a new or modified capability via learning.

Progressive autonomy is advantageous for at least two reasons:

1. It allows a new capability to appear from a community of agents supporting
an operational mission after that capability has been verified and is trusted
outside the testing environment.

2. A qualified agent can be dispatched to a community in need on a tem-
porary basis. Once the need has been fulfilled, the agent can be removed.
This keeps the operational resource requirements for the community to a
minimum.

Figure 9.5 illustrates some of the concepts that are associated with pro-
gressive autonomy in agent-based communities on the ground and in space.
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Fig. 9.5. Progressive autonomy of a spacecraft

There are three levels represented in the figure:

1. An agent development component
2. A ground-based autonomy component
3. A space-based autonomy component

Agents can migrate from one level to the next depending on their degree of
development and validation. Communication between agents on the different
levels facilitates the development and validation of agents, since the agents
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can receive real data from the other levels. The following subsections discuss
each of these parts in more detail.

9.6.1 Agent Development

The lower part of Fig. 9.5 represents the agent-development level, where de-
velopers write the code, modify existing agents, or use an automated agent-
development system that searches for previously developed agents that per-
form a needed task and updates them based on new requirements input from
the developer.

Domain-specialist agents are available to assist in the development of new
agents by interacting with the agents being developed, giving a new agent
other agents to interact with and then testing for proper functionality. In ad-
dition, data may be received from operational agents in the ground control
system and spacecraft for additional testing purposes. Agents in the opera-
tional mode would know that messages from agents under development are not
operational by virtue of a marking of the messages by the messaging service
that passes messages to the operational agents. As agents are developed, they
are added to the community of domain experts and provide the developers
with additional example agents to modify and test against.

The agent-development level also represents an agent incubator. After an
agent is developed, there is an incubation period during which agents are
tested in a background or shadow mode. When confidence in the agent’s be-
havior is attained, it is moved into an online community doing real work in
its domain. It is at this level that the credentials of the agent come into play.
These credentials attest to the development methodology and the verifica-
tion and validation procedures that would directly ensure the agent’s correct
behaviors.

9.6.2 Ground-Based Autonomy

The middle section of Fig. 9.5 comprises two parts. The right side represents
the ground control system, to which some of the agents may migrate after
development. In this part, the agent can run in a shadow or background mode
where its activities can be observed before it is put into full operation. This
allows the users to gain confidence in the agent’s autonomy before committing
to or deploying it. If a problem is found with the operation of the agent or its
operation is not as envisioned or required by the end user, or if enhancements
are desired, the agent (or copy of the agent) can be migrated back down to
the development area for further modifications or testing. Once modifications
are made, it can then be sent back up to the ground operations level, and the
process is repeated.

The right side of the middle section also contains an area where agents can
be cloned to support parallel processing or fault tolerance: identical agents can
be run on multiple (even geographically distributed) platforms.
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The left side of the middle section represents the agents that are ready to
be sent up to a spacecraft, or are operating in a proxy mode. Those agents
that are waiting to be sent to a spacecraft may be ones waiting to be uploaded
for emergency-resolution purposes (e.g., for anomaly situations), or may carry
functionality updates for other agents and are waiting to be uploaded when
needed or when resources become available. The agents that are operating in
a proxy mode are operating as if they were on the spacecraft, but due (for
example) to resource restrictions are temporarily or permanently operating
within the ground control system. The proxy agents communicate with other
agents and components on the spacecraft as if they were running onboard
(subject, as always, to communications constraints).

In a situation requiring an agent to be uploaded, a managing agent in
mission control would make a request to the agent-development area (or the
repository of validated agents) for an agent with the needed capability, and
would (subject to communications constraints) notify the original agent that
requested the capability as to the availability of the requested agent. The
original requesting agent would then factor this information into its planning,
which would be particularly important if the situation were time-critical and
alternate actions needed to be planned if the new agent could not be put into
service in the constellation within a needed timeframe (e.g., as a result of
communications vagaries).

9.6.3 Space-Based Autonomy

The upper part of Fig. 9.5 depicts other communities that are purely opera-
tional on a spacecraft or other robotic system, the members of which would
be mature agents that would have been approved through an appropriate
process. These agent communities may be based around spacecraft subsys-
tem (e.g., instrument, recorder, spacecraft state and management, etc.) or
represent a functionality (e.g., anomaly detection, health and safety, science
opportunity, etc.).

An agent would be able to migrate from its initial community to other
nodes in “agent space” (for lack of a better name). These communities may
be logically or physically distinct from the agent’s initial community. A single
agent may either migrate to a new community when it is no longer needed,
or clone itself when needed in multiple communities simultaneously.

The idea of realizing constellation autonomy first through ground-based
communities of spacecraft surrogate agents and then migrating the agent com-
munity to the actual spacecraft is a flexible, dynamic approach to providing
ongoing updates to spacecraft functionality. The progressive autonomy that
could be realized through this approach would enable mission control to up-
load only those agents in the community that have been thoroughly verified
and in which there is the appropriate degree of trust.
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Swarms in Space Missions

New NASA mission concepts now being studied involve many small spacecraft
operating collaboratively, analogous to swarms in nature. The swarm concept
offers several advantages over traditional large spacecraft missions: the ability
to send spacecraft to explore regions of space where traditional craft simply
would be impractical, greater redundancy (and, consequently, greater protec-
tion of assets), and reduced costs and risk, among others [176,181]. Examples
are as follows:

• Several unmanned aerial vehicles (UAVs) flying approximately 1 m above
the surface of Mars, which will cover as much of the surface of Mars in
minutes as the now famous Mars rovers did in their entire time on the
planet

• Armies of tetrahedral walkers to explore the Martian and Lunar surface
• Miniaturized pico-class spacecraft to explore the asteroid belt

Under these concepts for future space exploration missions, swarms of
spacecraft and rovers will act much like insects such as ants and bees. Swarms
will operate as a large group of autonomous individuals, each having simple,
cooperative capabilities, and no global knowledge of the group’s objective.
Such systems entail a wide range of potential new capabilities, but pose un-
precedented challenges to system developers. Swarm-based missions, with a
new level and kind of complexity that makes untenable the idea of individ-
ual control by human operators, suggest the need for a new level and kind
of autonomy and autonomicity. Instead of employing human operators to in-
dividually control the members of the swarm, a completely different model
of operations would be required, where the swarm will operate completely
autonomously or with some control at the swarm level.

This chapter will describe swarm-based systems, the possible use of swarms
in future space missions, technologies needed to implement them, and some
of the challenges in developing them. We will outline the motivation for using
swarms in future exploration missions. We will describe one concept mission
in relation to the characteristics that such a mission (and similar systems)
would need to exhibit in order to become a reality.
W. Truszkowski et al., Autonomous and Autonomic Systems, NASA Monographs 207
in Systems and Software Engineering, DOI 10.1007/978-1-84628-233-1 10,
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10.1 Introduction to Swarms

In nature, swarms are large groupings of insects such as bees or locusts where
each insect has a simple role, but where the swarm as a whole produces com-
plex behaviors. Strictly speaking, such emergence of complex behavior is not
limited to swarms, and there are similar complex social structures occurring
with higher order animals and insects that do not swarm per se such as colonies
of ants, flocks of birds, packs of wolves, etc. The idea that swarms can be used
to solve complex problems has been taken up in several areas of computer sci-
ence. The term “swarm” in this book refers to a large grouping of simple
components working together to achieve some goal and produce significant
results [12]. The result of combining simple behaviors (the microscopic be-
havior) is the emergence of complex behavior (the macroscopic behavior) and
the ability to achieve significant results as a “team” [16]. The term should not
be taken to imply that these components fly (or are airborne); they may just
as well operate on the surface of the earth, under the surface, under water, or
in space (including other planets).

Intelligent swarm technology is based on swarm technology where the in-
dividual members of the swarm also exhibit independent intelligence [13], and
thus, act as agents. Intelligent swarms may be heterogeneous or homogeneous.
Even if the swarm starts out as homogeneous, the individual members, with
differing environments, may learn different things and develop different goals,
and in this way, the swarm becomes heterogeneous. Intelligent swarms may
also be made up of heterogeneous elements from the outset, reflecting different
capabilities as well as a possible social structure.

Agent swarms are being used in computer modeling and have been used
as a tool to study complex systems [55]. Examples of simulations that have
been undertaken include swarms of birds [21, 115], problems in business and
economics [93], and ecological systems [131]. In swarm simulations, each of
the agents is given certain parameters that it tries to maximize. In terms of
bird swarms, each bird tries to find another bird to fly with, and then flies
off to one side and slightly higher to reduce its drag, and eventually the birds
form flocks. Other types of swarm simulations have been developed that ex-
hibit unlikely emergent behavior. These emergent behaviors are the sums of
often simple individual behaviors, but, when aggregated, form complex and
often unexpected behaviors. Swarm behavior is also being investigated for use
in such applications as telephone switching, network routing, data categoriza-
tion, command and control systems, and shortest path optimizations.

Swarm intelligence techniques (note the slight difference in terminology
from “intelligent swarms”) are population-based stochastic methods used in
combinatorial optimization problems. In these models, the collective behav-
ior of relatively simple individuals arises from local interactions between each
individual and its environment and between each individual and other mem-
bers of the swarm, which finally results in the emergence of global functional
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actions by the swarm. Swarm intelligence represents a metaheuristic approach
to solving a wide range of problems.

Swarm robotics is the application of swarm intelligence techniques to
robotic devices. These systems are programmed to act much like insect swarms
where each robot senses and reacts to near-by robots as well as the environ-
ment with a given behavior. For example, each robot of an underwater swarm
may be watching and following a neighbor, but is also sensing its environ-
ment. When something of interest is found by one, it will communicate the
information to its neighbors and swim toward it. The others will follow the
new leader until they get to the object of interest and then swarm around and
examine it. It may be that only a portion of the swarm breaks off, forming
a subteam, while the others continue the swarm’s search. When the subteam
is finished examining the object, they rejoin the team, so there is a constant
breaking off and rejoining by members of the swarm.

Swarms may also operate in a tight or loose group and move between
extremes depending on the current state of the mission. The group may be
tight not only physically, but also operationally. For example, during explo-
ration, the swarm may be scattered over a large area and communicate very
little while they each perform their searches. Then, when one finds something
of interest, it may broadcast information to inform the rest of the swarm.
Others may respond regarding something similar that has already been ex-
amined and a group of swarm members may work computationally close to
each other (even if they are physically separated) to determine whether it
should be further investigated. If so, a subteam would be dispatched to the
location and they would work cooperatively to obtain further information
(physically close).

10.2 Swarm Technologies at NASA

The Autonomous Nano Technology Swarm (ANTS) project was a joint NASA
Goddard Space Flight Center (GSFC) and NASA Langley Research Center
(LARC) collaboration whose purpose was to develop revolutionary mission
architectures and exploit artificial intelligence techniques and paradigms in
future space exploration [29, 32]. This project researched mission concepts
that could make use of swarm technologies for both spacecraft and surface-
based rovers.

ANTS consists of a number of mission concepts that include:

SMART : Super Miniaturized Addressable Reconfigurable Technology uses
miniaturized robots based on tetrahedrons to form swarms of configurable
robots.

PAM : Prospecting Asteroid Mission would also launch 1,000 pico-class space-
craft with the aim of exploring the asteroid belt and collecting data on
particular asteroids of interest. PAM is described below in more detail.
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SARA: The Saturn Autonomous Ring Array would use 1,000 pico-class space-
craft, organized as ten subswarms, each with specialized instruments to
perform in situ exploration of Saturn’s rings, so as to understand their
make up and how they were formed. The concept mission would require
self-configuring structures for nuclear propulsion and control. Additionally,
autonomous operation would be necessary for both maneuvering around
Saturn’s rings and collision avoidance between spacecraft.

ANTS : Application Lunar Base Activities would exploit new NASA-
developed technologies in the field of miniaturized robotics, which would
form the basis of remote landers to be launched to the moon from re-
mote sites and would exploit innovative techniques (described below in
Sect. 10.2.1) to allow rovers to move in an amoeboid-like fashion over the
moon’s uneven terrain.

The following sections describe the SMART and PAM mission concepts.
The description of SMART covers similar technologies that would also be
needed for the Lander Amorphous Rover Antenna (LARA) (and other) con-
cept missions. Since SARA and PAM have many attributes in common (as
regards to autonomous operation), we will concentrate on a description of
PAM in the following.

10.2.1 SMART

The ANTS SMART architectures were initiated to develop new kinds of struc-
tures capable of:

• Goal-oriented robotic motion
• Changing form to optimize function (morphological capabilities)
• Adapting to new environmental demands (learning and adaptation

capabilities)
• Repairing-protecting itself (autonomic capabilities)

The basic unit of the structures is a tetrahedron (Fig. 10.1) consisting of
four addressable nodes interconnected with six struts that can be reversibly
deployed or stowed. More complex structures are formed from interconnect-
ing these reconfigurable tetrahedra, making structures that are scalable and
leading to massively parallel systems. These highly-integrated, 3D meshes of
actuators/nodes and structural elements hold the promise of providing a new
approach to robust and effective robotic motion. The current working hy-
pothesis is that the full functionality of such a complex system requires fully
autonomous intelligent operations at each node.

The tetrahedron (tet) “walks” by extending certain struts, changing its
center of mass, and “falling” in the desired direction. As the tetrahedral struc-
ture “grows” by interfacing more and more tets, the falling motion evolves to
a smoother walking capability, i.e., the smoother walking-climbing-avoiding
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Strut Node

Fig. 10.1. Basic unit of tetrahedral structures

Fig. 10.2. Prototype of a tetrahedron rover (image credit: NASA)

capabilities emerge from the orchestration of the capabilities of the tetrahedra
involved in the complex structure. Figure 10.2 shows a picture of a prototype
tetrahedron.

The basic tetrahedron structure was modeled as a communicating and co-
operating/collaborating four-agent system with an agent associated with each
node of the tetrahedron. An agent, in this context, is an intelligent autonomous
process capable of bi-level deliberative and reactive behaviors with an inter-
vening neural interconnection (the structure of the neural basis function [30]).
The node agents also possess social and introspective behaviors. The problem
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Fig. 10.3. A picture of a 12-tet rover (image credit: NASA)

to be solved is to scale this model up to one capable of supporting autonomous
operation for a 12-tet rover, a structure realized by the integration of 12 tets in
a polyhedral structure. The overall objective is to achieve autonomous robotic
motion of this structure. Figure 10.3 shows a drawing of a 12-tet rover.

10.2.2 NASA Prospecting Asteroid Mission

The ANTS PAM concept mission [31, 32, 181] would involve the launch of a
swarm of autonomous pico-class (approximately 1 kg) spacecraft that would
explore the asteroid belt for asteroids with characteristics of scientific inter-
est. Figure 10.4 gives an overview of the PAM mission concept [176]. In this
mission, a transport ship launched from earth would travel to a Lagrangian
point. From this point, 1,000 spacecraft, which would have been assembled en
route from earth, would be launched into the asteroid belt. Each spacecraft
would have a solar sail as the primary means of propulsion (using photon
pressure from the Sun’s light), supplemented with tiny thrusters to maneuver
independently. Each spacecraft would carry just one specialized instrument
for collecting a specific type of data from asteroids in the belt. With onboard
computational resources, each spacecraft would also have artificial intelligence
and heuristics systems for control at the individual and team levels. For com-
munications, spacecraft would use low bandwidth to communicate within the
swarm and high bandwidth for sending data back to earth. It is expected that
60–70% of the spacecraft would be lost during the mission, primarily because
of collisions with each other or with asteroids during exploration operations,
since their ability to maneuver will be severely limited.

As Figs. 10.4 and 10.5 show, teams would consist of members from three
classes of spacecraft within the swarm, with members in each class combining
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Fig. 10.4. NASA’s autonomous nano technology swarm (ANTS) mission overview

Fig. 10.5. ANTS encounter with an asteroid (image credit: NASA)

to form teams that explore particular asteroids. Approximately 80% of the
spacecraft would be workers that carry the specialized instruments to ob-
tain specific types of data. Examples of instruments include magnetometers
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and x-ray, gamma-ray, visible/infrared, or neutral mass spectrometers. Each
worker would gather only its assigned data types. Some of the spacecraft
would be coordinators (called leaders or rulers) that would coordinate the
efforts of the workers. They would apply rules to determine the types of as-
teroids and data of interest to the mission. The third type of spacecraft are
called messengers. Messengers would coordinate communications among the
workers, rulers, and mission control on earth.

Figure 10.5 depicts the flow of activity as teams explore an asteroid, ex-
change data, and return data to earth. A single ANTS spacecraft could also
survey an asteroid in a flyby, sending quick-look data to the ruler, which
would then decide whether the asteroid warranted further investigation using
a team. The ruler would choose team members according to the instruments
they carry.

Many operational scenarios are possible within the overall concept of mis-
sions that act like a natural swarm culture. In one scenario, the swarm would
form subswarms under the control of a ruler, which would contain models
of the types of science that it wants to perform. The ruler would coordinate
workers, each of which would use its individual instrument to collect data on
specific asteroids and feed this information back to the ruler, which would
determine which asteroids are worth examining further. If after consulting
its selection criteria and using heuristic reasoning it determines that the as-
teroid merits further investigation, an imaging spacecraft would be sent to
the asteroid to ascertain its shape and size and to create a rough model to
be used by other spacecraft for maneuvering around the asteroid. The ruler
would also arrange for additional workers to transit to the asteroid with an
expanded repertoire of instruments to gather more complete information. In
effect, the spacecraft would form a team. The leader would be the spacecraft
that contains models of the types of experiments or measurements the team
needs to perform. The leader would relay parts of this model to the team
workers, which then would take measurements of asteroids using whatever
type of instrument they have until something matched the goal the leader
sent. The workers would gather the required information and send it to the
team leader, which would integrate it and return it to the ruler that formed
the team. The ruler might then integrate this new information with informa-
tion from previous asteroid explorations and use a messenger to relay findings
back to earth.

10.2.3 Other Space Swarm-Based Concepts

An autonomous space exploration system studied at Virginia Tech, funded by
the NASA Institute for Advanced Concepts (NIAC), consists of a swarm of
low altitude, buoyancy-driven gliders for terrain exploration and sampling, a
buoyant oscillating wing that absorbs wind energy, and a docking station that
could be used to anchor the energy absorber, charge the gliders, and serve as
a communications relay [96]. The work was built on success with underwater
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gliders used for oceanographic research. The intent was to develop low-cost
planetary exploration systems that could run autonomously for years in harsh
environments, such as in the sulfuric acid atmosphere of Venus or on Titan
(the largest of Saturn’s moons).

A second NASA swarm-related project titled “Extremely Large Swarm
Array of Picosats for Microwave/RF Earth Sensing, Radiometry, and Map-
ping” [73] was also funded by NIAC. The proposed telescope would be
used to do such things as characterize soil moisture content, atmospheric
water content, snow accumulation levels, flooding, emergency management
after hurricanes, weather and climate prediction, geological feature identifi-
cation, and others. To accomplish this would require an antenna size on the
order of 100 km at a GEO orbit. To implement such an large antenna, a
highly sparse spacefed array antenna architecture was proposed that would
consist of 300,000 picosats, each being a self-contained onechip spacecraft
weighing 20 g.

10.3 Other Applications of Swarms

The behavior of swarms of bees has also been studied as part of the BioTrack-
ing project at Georgia Tech [9]. To expedite the understanding of the behavior
of bees, the project videotaped the behavior of bees over a period of time, us-
ing a computer vision system to analyze data on sequential movements that
bees use to encode the location of supplies of food, etc. It is anticipated that
such models of bee behavior can be used to improve the organization of co-
operating teams of simple robots capable of complex operations. A key point
is that the robots need not have a priori knowledge of the environment, and
that direct communication between robots in the teams is not necessary.

Eberhart and Kennedy have developed an optimization technique based
on particle swarms [78] that produces fast optimizations for a wide number
of areas including UAV route planning, movement of containers on container
ships, and detecting drowsiness of drivers. Research at Penn State University
has focused on the use of particle swarms for the development of quantita-
tive structure activity relationships (QSAR) models used in the area of drug
design [23]. The research created models using artificial neural networks and
k-nearest neighbor and kernel regression. Binary and niching particle swarms
were used to solve feature-selection and feature-weighting problems.

Particle swarms have influenced the field of computer animation also.
Rather than scripting the path of each individual bird in a flock, the Boids
project [115] elaborates a particle swarm of simulated birds. The aggregate
motion of the simulated flock is much like that in nature. The result is from the
dense interaction of the relatively simple behaviors of each of the (simulated)
birds, where each bird chooses its own path.

Much success has been reported from the use of ant colony optimization
(ACO), a technique that studies the social behaviors of colonies of ants and
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uses these behavior patterns as models for solving difficult combinational op-
timization problems [35]. The study of ants and their ability to find shortest
paths has lead to ACO solutions to the traveling salesman problem, as well
as network and internet optimizations [34,35].

Work at University of California Berkeley is focusing on the use of networks
of unmanned underwater vehicles (UUVs). Each UUV has the same template
information, containing plans, subplans, etc., and relies upon this and its
own local situation map to make independent decisions, which will result in
cooperation between all of the UUVs in the network. Experiments involving
strategies for group pursuit were also done.

10.4 Autonomicity in Swarm Missions

Swarms are being used in devising solutions to various problems principally
because they present an appropriate model for those problems. Sections 10.2
and 10.3 described several application areas of swarm technology where the
approach seems to be particularly successful.

But swarms (in nature or otherwise) inherently need to exhibit autonomic
properties. To begin with, swarms should be self-directed and self-governed.
Recall that this is achieved through the complex behavior that emerges from
the combination of several simple behaviors and their interaction with the
environment. It can be said that in nature, organisms and groups/colonies
of individuals, with the one fundamental goal of survival, would succumb as
individuals and even as species without autonomicity. A natural conclusion
is that artificial swarms with planned mission objectives must also possess
autonomicity.

The described ANTS PAM concept mission would need to exhibit almost
total autonomy to succeed. The mission would also exhibit many of the prop-
erties required to qualify it as an autonomic system [161,181,182]:

Self-configuring: The ANTS’s resources must be fully configurable to sup-
port concurrent exploration and examination of hundreds of asteroids.
Resources must be configured at both the swarm and team (subswarm)
levels in order to coordinate science operations while simultaneously max-
imizing resource utilization.

Self-optimizing: Rulers self-optimize primarily through learning and improv-
ing their ability to identify asteroids that will be of interest to scientists.
Messengers self-optimize through positioning themselves appropriately for
optimum communications. Workers self-optimize through learning and ex-
perience. Self-optimization at the swarm level propagates up from the
self-optimization of individuals.

Self-healing: ANTS must self-heal to recover from damage due to solar storms
or collisions with an asteroid or between ANTS spacecraft. Loss of a ruler
or messenger may involve a worker being “upgraded” to fulfill that role.
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Additionally, loss of power may require a worker to be listed as dead
(“killed off” via an apoptosis mechanism [145,161]).

Self-protecting: In addition to protecting themselves from collision with as-
teroids and other spacecraft, ANTS teams must protect themselves from
solar storms, where charged particles can degrade sensors and electronic
components and destroy solar sails (the ANTS spacecraft’s sole source of
power and primary means to perform maneuvering). ANTS teams must
re-plan their trajectories or, in worst-case scenarios, must go into “sleep”
mode to protect their sails and instruments and other subsystems.

The concept of autonomicity can be further elaborated beyond the self-
chop properties listed above. Three additional self-properties – self-awareness,
self-monitoring, and self-adjusting – will facilitate the basic self-properties.
Swarm (ANTS) individuals must be aware (have knowledge) of their own
capabilities and limitations, and the workers, messengers, and rulers will
all need to be involved in constant self-monitoring and (if necessary) self-
adjusting, thereby forming a feedback control loop. Finally, the concept of
autonomicity would require environmental awareness. The swarm (ANTS) in-
dividuals will need to be constantly environmentally aware to enable effective
self-adaptation and ensure mission success.

10.5 Software Development of Swarms

Developing the software for the ANTS missions would be monumentally com-
plicated. The total autonomy requirement would mean that the software would
likely be based on a heuristic approach that accommodates the swarm’s so-
cial structure. Artificial-intelligence technologies, such as genetic algorithms,
neural nets, fuzzy logic, and on-board planners are candidate solutions. But
the autonomic properties, which alone make the system extremely complex,
are only part of the challenge. Add intelligence for each of the thousand inter-
acting spacecraft, and it becomes clear that the mission depends on several
breakthroughs in software development.

10.5.1 Programming Techniques and Tools

A primary requirement would be a new level or new class of programming
techniques and tools that either replace or build on object-oriented develop-
ment. The idea is to reduce complexity through novel abstraction paradigms
that would essentially “abstract away” complexity. Developers would use pre-
defined libraries or components that have been solidly tested and verified. The
level of programming languages would need to be high enough that developers
could use constructs that are natural extensions to the software type under
development.
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Another requirement would be tools and techniques that would have built-
in autonomic, intelligent, and interacting constructs to reduce development
time and increase developer productivity. Tools would need to allow rapid
simulation so that developers might identify errors in requirements or code
at the earliest stage possible. For now, ideas about creating standard intelli-
gent, autonomic components are still evolving: there is yet no consensus as to
what constitutes a system of such components. Hopefully, more research and
development in these areas will yield effective and timely results.

10.5.2 Verification

These new approaches to exploration missions simultaneously pose many chal-
lenges. Swarm missions will be highly autonomous and will have autonomic
properties. Many of these missions will be sent to parts of the solar sys-
tem where manned missions are regarded as infeasible, and where, in some
instances, the round-trip delay for communications between earth and the
spacecraft exceeds 40 min., meaning that the decisions on responses to prob-
lems and undesirable situations must be made in situ rather than from ground
control on earth. The degree of autonomy that such missions will require would
mean an extreme burden of testing in order to accomplish system verification.
Furthermore, learning and adaptation toward continual improvements in per-
formance during mission operations will mean that emergent behavior pat-
terns simply cannot be fully predicted through the use of traditional system
development methods. Consequently, formal specification techniques and for-
mal verification will play vital roles in the future development of these types
of missions.

Full testing of software of the complexity of the ANTS mission may be
recognized as a heavy burden and may have questionable feasibility, but ver-
ification of the on-board software, especially the mechanism that endows the
spacecraft with autonomy and the ability to learn, is crucial because the one-
way communications delay makes real-time control by human operators on
earth infeasible. Large communications delays mean human operators could
not, in many scenarios, learn of problems or errors or anomalies in the mis-
sion until the mission had substantially degraded or failed. For example, in a
complex system with many concurrently communicating processes on board
or among the members of the swarm, race conditions are highly likely, but
such conditions rarely come to light during the testing or mission development
phase by inputting sample data and checking results. These types of errors
are time-based, occurring only when processes send or receive data at partic-
ular times or in a particular sequence, or after learning takes place. To find
these errors, testers must execute the software in all the possible combina-
tions of the states of the communicating processes. Because the state space is
extremely large (and probably extremely difficult to project in sufficient detail
for actual testing), these systems become untestable with a relatively small
number of elements in the swarm. Traditionally, to get around the state-space
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explosion problem, testers have artificially reduced the number of states of
these types of systems and approximated the underlying software using mod-
els. This approach, in general, sacrifices fidelity and can result in missed errors.
Consequently, even with relatively few spacecraft, the state space can be too
large to realistically test.

One of the most challenging aspects of using swarm technology is deter-
mining how to verify that emergent system behavior will be proper and that
no undesirable behaviors will occur. Verifying intelligent swarms is even more
difficult because the swarms no longer consist of homogeneous members with
limited intelligence and communications. Verification will be difficult not only
because each individual is tremendously complex, but also because of the
many interacting intelligent elements. To address the verification challenge,
ongoing research is investigating formal methods and techniques for verifica-
tion and validation of swarm-based missions.

Formal methods are proven approaches for ensuring the correct operation
of complex interacting systems. Formal methods are particularly useful in
specifying complex parallel and distributed systems – where a single person
finds it difficult to fully understand the entire system and where there are
typically multiple developers. Testers can use a formal specification to prove
that system properties are correct – for example, that the underlying system
will go from one state to another or not into a specific state. They can also
check for particular types of errors such as race conditions, and use the formal
specification as a basis for model checking.

Most formal methods do not address the problem of verifying emergent
behavior. Clearly in the ANTS PAM concept, the combined behavior of indi-
vidual spacecraft is far more complex than the behavior of each spacecraft in
isolation. The formal approaches to swarm technologies (FAST) project sur-
veyed formal methods techniques to determine whether any would be suitable
for verifying swarm-based systems and their emergent behavior [125, 126].
The project found that there are a number of formal methods that support
the specification of either concurrency or algorithms, but not both. Though
there are a few formal methods that have been used to specify swarm-based
systems, the project found only two formal approaches that were used to
analyze the emergent behavior of swarms.

Weighted synchronous calculus of communicating systems (WSCCS), a
process algebra, was used by Sumpter et al. to analyze the nonlinear as-
pects of social insects [163]. X-Machines have been used to model cell biol-
ogy [61,62], and with modifications, the X-Machines model has the potential
for specifying swarms. Simulation approaches are also being investigated to
determine emergent behavior [55]. However, these approaches do not predict
emergent behavior from the model, but rather model the emergent behavior
after the fact.

The FAST project defined an integrated formal method, which is appro-
priate for the development of swarm-based systems [121]. Future work will
concentrate on the application of the method to demonstrate its usefulness,
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and on the development of appropriate support tools. NASA is pursuing fur-
ther development of formal methods techniques and tools that can be applied
in the development of swarm-based systems to help achieve confidence in their
correctness.

10.6 Future Swarm Concepts

A brief overview of swarm technologies was presented with emphasis on
their relevance for potential future NASA missions. Swarm technologies hold
promise for complex exploration and scientific observational missions that re-
quire capabilities that would be unavailable in missions designed around single
spacecraft.

While swarm autonomy is clearly essential for missions where human con-
trol is not feasible (e.g., when communications delays are too great or commun-
ications data rates are inadequate for effective remote control), autonomicity
is essential for survival of individual spacecraft as well as the entire swarm as
a consequence of hostile space environments.

Although ANTS was a concept mission, the underlying techniques and
technologies that were developed are also motivating other technologies and
applications. ANTS technology has many potential applications in military
and commercial environments, as well as in other space missions. In military
surveillance, smaller craft, perhaps carrying only a basic camera or other
instrument, could coordinate to provide 3D views of a target. The US Navy
has been studying the use of vehicle swarms for several years. In mining and
underwater exploration, autonomous craft could go into areas that are too
dangerous or small for humans. For navigation, ANTS technology could make
GPS cheaper and more accurate because using many smaller satellites for
triangulation would make positioning more accurate.

Finally, in other types of space exploration, a swarm flying over a planetary
surface could yield significant information in a short time. The ANTS tech-
nology could also benefit commercial satellite operations, making them both
cheaper and more reliable. With its autonomic properties, a swarm could
easily replace an individual pico-satellite, preserving operations that are now
often lost when satellites become damaged. Mission control could also increase
functionality simply by having the swarm add members (perhaps from a col-
lection of pico-satellites already in orbit as standby spares) with the needed
functionality, rather than launching a new, large, complex satellite.

The obvious need for advances in miniaturization and nanotechnology
is prompting groundbreaking advances at NASA and elsewhere. The need
for more efficient on-board power generation and storage motivates research
in solar energy and battery technology, and the need for energy-efficient
propulsion motivates research on solar sails and other technologies such as
electric-field propulsion. The ANTS concepts also push the envelope in terms
of software technologies for requirements engineering, nontrivial learning,
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planning, agent technology, self-modifying systems, and verification and val-
idation technologies. The paradigms, techniques, and approaches stimulated
by concept missions like ANTS open the way for new types of future space
exploration missions: namely, large numbers of small, cooperating spacecraft
conducting flexible, reliable, autonomous, and cost-effective science and explo-
ration operations beyond the capabilities of the more familiar large spacecraft.
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Concluding Remarks

In this book, we have examined technologies for system autonomy and auto-
nomicity. We have considered what it means for a system to be autonomous
and autonomic, and have projected how the concepts might be applied to
spacecraft and other aspects of NASA missions. We discussed current space-
craft ground and flight operations, described how autonomy and autonomic
technology is currently applied to NASA missions, and identified the areas
where additional autonomy could be beneficially effective. We also considered
artificial intelligence techniques that could be applied to current and future
missions to provide additional autonomy and autonomicity.

We now proceed to identify factors that drive the use of new technology
and discuss the necessity of software reliability for space missions. We will
discuss certain future missions and their needs for autonomy and autonomic
technology, and finally will consider the NASA strategic plan and the manner
in which autonomy and autonomic systems may be involved in supporting
that plan.

11.1 Factors Driving the Use of Autonomy
and Autonomicity

As discussed in other parts of this book, there are a number of factors that
drive the application of autonomy and autonomicity. New science using space-
based platforms gives rise progressively to new methods and means, and calls
for new and increasingly sophisticated instruments and complex new instru-
ment configurations in space, as will be seen from a number of examples to
be given later. Future explorations in more remote environments bring new
challenges for mission control when real-time information for human opera-
tors becomes impossible due to the fundamental reality of signal delays under
speed-of-light limitations. Reductions of mission costs is a continuing and ev-
idently unavoidable necessity, and as we have seen, has been increasingly re-
alized through reducing human involvement in routine mission operations – a

W. Truszkowski et al., Autonomous and Autonomic Systems, NASA Monographs 223
in Systems and Software Engineering, DOI 10.1007/978-1-84628-233-1 11,
c© Springer-Verlag London Limited 2009



224 11 Concluding Remarks

likely recurring theme in future missions. These are among the principal
factors that make autonomy and autonomicity an increasing necessity in many
future space missions.

New scientific discovery is enabled by observing deeper into space using
instruments that are more sensitive and complex, by making multiple obser-
vations simultaneously with coordinating and cooperating spacecraft, and by
reacting to the environment or science of opportunity more quickly. All of
these capabilities can be realized either through the use of autonomous sys-
tems and autonomic properties or by having a human onboard the spacecraft
or, except in the case of very remote assets, by having a sufficiently large oper-
ations staff at the mission control center. In some missions, a human onboard
the spacecraft would not be able to react fast enough to a phenomenon, or
maintain required separations between spacecraft. In other missions, such as
missions to another planet or the asteroid belt, a crewed spacecraft would be
infeasible, too dangerous, or too costly.

We also saw in Chap. 3 that adding autonomy to missions is not new.
Autonomy or automation has been an increasing aspect of flight and ground
software with the gradually increasing complexity of missions and instruments
and with ongoing budgetary pressures. This trend is continuing into future
NASA missions, more particularly robotic (un-crewed) missions.

11.2 Reliability of Autonomous and Autonomic Systems

In NASA missions, software reliability is extremely important. A software
failure can mean the loss of an entire mission. Ground-based systems can be
tended by humans to correct any errors. In unmanned space systems, with
only a few exceptions (e.g., the Hubble Space Telescope, which was designed
to be serviced on orbit by space-walking humans), any corrections must be
performed strictly via radio signals, with no possibility of human presence.
Therefore, software and hardware for space missions must be developed, veri-
fied, and tested to a high level of assurance, with a corresponding cost in time
and money.

Because of the need for high assurance, one of the challenges in adding
autonomy and autonomicity to spacecraft systems is to implement these con-
cepts so they work reliably and are verifiable. The software must be robust
enough to run on a spacecraft and perhaps as part of a community of space-
craft. Further, the software must be implementable in a reasonable timeframe
and for a reasonable cost (relative to the type and importance of the mission).

Autonomous systems often require flexible communication systems, mo-
bile code, and complex functionality, not all of which is always fully under-
stood at the outset. A particular problem with these types of systems is
that such systems can never really be tested to any degree of sufficiency,
as an intelligent system may adapt its behavior on every execution. New ways
of testing and monitoring this type of software are needed to give mission
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principal investigators the assurance that the software is correct [117]. This
was addressed to some extent in a previous book in this series [119].

In addition to being space-based, many of the proposed missions will op-
erate very remotely and without frequent contact with a ground-based opera-
tions control center or with a large communications lag time. Such conditions
make detecting and correcting software errors before launch even more impor-
tant, because patching the software during the mission’s operational phase will
be difficult, impractical, or impossible.

Autonomous missions are still at a relatively early stage of evolution in
NASA, and the software development community is still learning approaches
to their development. These are highly parallel systems that can have very
complex interactions. Even simple interacting systems can be difficult to de-
velop, as well as debug, test, and validate. In addition to being autonomous
and highly parallel, these missions may also have intelligence built into them,
and they can be distributed and can engage in asynchronous communications.
Consequently, these systems are difficult to verify and validate.

New verification and validation techniques are required [100,113,118,120,
124]. Current techniques, based on large monolithic systems, have worked well
and reliably, but do not translate to these new autonomous systems, which
are highly parallel and nondeterministic.

11.3 Future Missions

Some future missions were discussed in other parts of this book. The following
material from indicated sources describes additional mission concepts that are
undeniably ambitious in nature – the success of which will require autonomous
and autonomic properties (Table 11.1).1

Table 11.1. Some NASA future missions

Mission Launch date Number of spacecraft

Big Bang Observer 2020+ Approx. 12
Black Hole Imager 2025+ Approx. 33
Constellation X 2020+ 1
Stellar Imager After 2020 Approx. 17
LISA 2020 3
MIDEX SIRA 2015+ 12–16
Enceladus 2018 2
Titan 2018 2
JWST 2013+ 1

LISA Laser Interferometer Space Antenna; MIDEX Medium Explorer; SIRA Solar
Imaging Radio Array; JWST James Webb Space Telescope

1The following descriptions are summarized from the NASA future missions web
site.
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The Laser Interferometer Space Antenna (LISA) mission concept specifies
spacecraft that measure passing gravitational waves. LISA will be a constella-
tion of three spacecraft that uses laser interferometry for precise measurement
of distance changes between widely separated freely falling test masses housed
in each spacecraft (Fig. 3.3). The spacecraft are at the corners of an approxi-
mately equilateral triangle about 5 million kilometers on a side in heliocentric
orbit. The science instrument is created via laser links connecting the three
spacecraft. It is formed by measuring to high levels of precision the distances
separating the three spacecraft (i.e., the test masses) via the exchange of the
laser light. From the standpoint of Bus FSW providing spacecraft attitude
and position control, the number of sensors and actuators that must be inter-
rogated and commanded is at least twice the number associated with a more
traditional mission. Similarly, the number of control modes is double that of
a typical astrophysics mission, as are the number of parameters solved-for by
the state estimator.

The Big Bang Observer and the Black Hole Imager are part of the Beyond
Einstein program that will further test Einstein’s general theory of relativity.
The Big Bang Observer will explore the beginning of time and will build on
the LISA mission to directly measure gravitons from the early Universe still
present today. The Black Hole Imager mission will calculate the aspects of
matter that fall into a black hole by conducting a census of hidden black
holes, revealing where, when, and how they form.

The Stellar Imager mission will help increase understanding of solar/
stellar magnetic activity and its impact on the origin and continued existence
of life in the Universe, structure and evolution of stars, and habitability of
planets. It will also study magnetic processes and their roles in the origin and
evolution of structure and the transport of matter throughout the Universe.
The current baseline architecture for the full Stellar Imager mission is a space-
based, UV-Optical Fizeau Interferometer with 20–30 1-m primary mirrors,
mounted on formation-flying “mirrorsats” distributed over a parabolic virtual
surface whose diameter can be varied from 100 m upto as much as 1,000 m,
depending on the angular size of the target to be observed (Fig. 11.1). The
hub and all of the mirrorsats are free-flyers in a tightly-controlled formation
in a Lissajous orbit around the Sun-Earth Lagrange L2 point. The mission
will also use autonomous analysis of wavefronts and will require real-time
correction and control of tight formation flying.

The Solar Imaging Radio Array (SIRA) mission will be a Medium ex-
plorer (MIDEX) mission and will perform interferometric observations of low
frequency solar and magnetospheric radio bursts. The primary science tar-
gets are coronal mass ejections (CMEs), which drive radio-emission-producing
shock waves. A space-based interferometer is required because the frequencies
of observation (<15 MHz) do not penetrate the ionosphere. SIRA will re-
quire 12–16 microsatellites to establish a sufficient number of baselines with
separations on the order of kilometers. The microsat constellation consists
of microsats located quasi-randomly on a spherical shell, initially of radius
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Fig. 11.1. The Stellar Imager mission (image credit: NASA)

5 km. The baseline microsat is 3-axis stabilized with an earth-pointing body-
mounted high gain antenna and an articulated solar array. The microsats
will have limited inter-mirosat communications to help maintain prescribed
distances each to the others.

A mission to Enceladus is one of several options NASA is considering for
an outer planets Flagship mission that would be launched no earlier than
2015. Several types of missions are being studied for Enceladus. One is where
a lander is sent down to collect samples. The lander would use autonomous
hazard avoidance to land safely. The autonomous hazard avoidance would use
a descent camera to identify and avoid rocks and blocks of ice in order to
land at a relatively smooth and flat location. The lander would perform its
observations, collect the samples, and analyze them, while the orbiter contin-
ues to orbit Saturn, beyond communication range. When the orbiter returns
8.22 days later, the lander would uplink its data to the orbiter and conclude
its mission.

The Titan Explorer with Orbiter mission will map Titan with a high-
resolution radar and study the atmosphere, prebiological chemistry, and po-
tential life. The mission will include an orbiter to relay communications from a
module that will land on the surface. The orbiter will also perform aerocapture
to test the atmosphere.

The James Webb Space Telescope (JWST) mission is the replacement for
the Hubble Space Telescope (Fig. 11.2). The JWST flight and ground system
will be developed as an integrated system that will provide seamless operations
from science proposal to data distribution, with a minimum of interfaces.
The spacecraft will incorporate greater onboard autonomy, executing a high
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Fig. 11.2. The James Webb Space Telescope (JWST) (image credit: NASA)

level list of observations rather than a detailed timeline. This will simplify the
ground system scheduling activities and permit the spacecraft to perform over
many days with little or no direction from the ground. JWST will be able to
operate autonomously for periods of several days between these uplinks, and
therefore, continuous staffing of the control center will not be required in the
latter years of operations. The observatory will operate nearly autonomously
throughout its science operations phase. Control of most housekeeping and
science collecting functions will be provided onboard the observatory by an
event-driven command system. During the science operations phase of the
mission, one communications contact per day and one command load per
week or two will be sufficient to support operations. Figure 11.3 shows an
early design of autonomous attitude control transitions for JWST [74].

11.4 Autonomous and Autonomic Systems
in Future NASA Missions

The NASA 2006 Strategic Plan states:

NASA also will develop and test technologies for power and au-
tonomous systems that can enable more affordable and sustainable
space exploration by reducing both consumables launched from earth
and the risks for mission operations. Advanced power systems, includ-
ing solar, fuel cell, and potential nuclear power, will provide abundant
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Fig. 11.3. Early design of autonomous attitude control mode transitions

power to a lunar outpost so that exploration will not be limited by
the available energy. Intelligent robotics will assist the crew in explor-
ing, setting up, operating, and maintaining the outpost. Autonomous
systems will reduce mission risk by alerting the crew to impending fail-
ures, automatically reconfiguring in response to changing conditions,
and performing hazardous and complex operations.

The plan continues:

Therefore, NASA’s long-term Earth science plan is to use sentinel or-
bits (e.g., Lagrange points, geostationary, and medium Earth orbit)
and constellations of smart satellites as parts of an integrated, interac-
tive “sensorweb” observing system that complements satellites in low
Earth orbit, airborne sensors, and surface-based sensors. NASA will
mature active remote sensing technologies (radars and lasers) to take
global measurements of Earth system processes from low and geosta-
tionary Earth orbits.

As new types of Earth observations become available, information
systems, modeling, and partnerships to enable full use of the data for
scientific research and timely decision support will become increas-
ingly important. The sensorweb observing systems of the future will
perform satellite constellation management, automated detection of
environmental phenomena, tasking of other elements of the observing
network, onboard data processing, data transmittal, and data archival
and distribution to users of earth observations. The sensorweb will be
linked to “modelwebs” of prediction systems enabled by NASA and
formed by Agency partners to improve the forecast services they pro-
vide. NASA’s investment in these areas (through such means as the
Advanced Information Systems Technology program) will help the
Nation take full advantage of enhanced information availability. In
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particular, the role of models in converting the satellite-produced in-
formation into useful products for environmental characterization and
prediction will become more crucial.

The above statements in the NASA strategic plan project the increasing
importance of mission autonomy and autonomicity. In the first quote, the
strategic plan notes that autonomous systems are needed to make future mis-
sions possible and make them affordable. It further indicates the need for
adding intelligence to robotics and reducing mission risks through autonomy,
by, for example, alerting the crew to failures, and automatically reconfiguring
(autonomicity) as mission conditions change.

The second quoted passage describes the planned sensor web in terms of
constellations of smart satellites, with the prospect of automatic science of
opportunity, and with heterogenous systems working together to make up
the sensor web. Again, all of these will require autonomous and autonomic
systems.

With the new mission concepts that are taking shape, an excellent op-
portunity now exists to insert autonomy and autonomicity, as well as agent
technologies, into these missions. Since these technologies make many of the
missions feasible, the science community is now looking to the artificial in-
telligence and agent software community to implement these ideas in future
flight software.

This book has attempted to provide background on NASA ground and
space systems and exploration thrusts, and has presented autonomy and au-
tonomicity as a technological means to enhance space mission usefulness, cost
effectiveness, and functionality. The motivation behind this book has been to
help others direct their research and development into this area, as well as to
stimulate future missions to adopt more autonomy and autonomicity, thereby
enhancing new exploration and making scientific discovery more productive.
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Attitude and Orbit Determination and Control

In order to perform its science mission, a spacecraft must, in general, know its
orientation in space and its position relative to the targets it plans to observe.
The term orbit refers to the spacecraft’s position and velocity with respect
to an inertial reference frame. The term attitude refers to the spacecraft’s
orientation with respect to some inertial reference frame (for Earth-orbiting
spacecraft, this ordinarily is the geocentric inertial (GCI) frame).

Traditionally, the determination of a spacecraft’s orbit was exclusively a
ground system function. While in communication with the spacecraft, the
ground system would collect tracking data, and then the Flight Dynamics
computational facility (in the context of NASA/Goddard missions) processed
the data to calculate the definitive (i.e., actual) spacecraft orbit associated
with the time(s) corresponding to the collected tracking data. Flight Dynamics
then would calculate a predicted spacecraft orbit by combining the definitive
orbit data with mathematical models describing the gravitational interactions
and orbital perturbations experienced by the spacecraft. If the spacecraft’s
flight software (FSW) did not include these models, the ground system would
uplink a set of “fit parameters” (or a position/velocity-vector file) tailored
to the FSW’s orbit propagator (or orbit interpolator), which the spacecraft
would then use to compute its position and velocity. If the spacecraft FSW did
include at least a subset (or simplified version) of these models, the ground
system would uplink “seed” vectors that the FSW would utilize as starting
input when integrating the spacecraft equations of motion to calculate its
position and velocity at some arbitrary time. In either case, the FSW output
was a predicted orbital position and velocity as opposed to a measured orbital
position and velocity. More recently, for low earth orbit (LEO) spacecraft,
orbital position can be directly measured to high accuracy using the onboard
global positioning system (GPS), which also can be used to synchronize the
spacecraft clock to GPS time.

By contrast, measuring spacecraft attitude has been a standard on-
board function practically since flight computers were introduced. What has
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evolved over time has been the accuracy and sophistication with which those
measurements have been made. In early spacecraft, onboard storage and CPU
capabilities limited onboard attitude calculations to coarse attitude determi-
nation using sensors such as Sun sensors and magnetometers, or limited fine-
attitude determination to processing star-tracker output using very small on-
board star catalogs, or using reference stars carefully preselected by the ground
system. In the 1990s, more powerful onboard processing capabilities and cheap
onboard storage facilitated the enhancement of this capability. For example,
for the Rossi X-ray Timing Explorer (RXTE) mission, the FSW included a
star catalog and star identification capabilities permitting the FSW to cal-
culate the spacecraft’s own fine attitude without ground support. Later still,
the Wilkinson Microwave Anisotropy Probe (WMAP) mission’s star tracker
contained its own star catalog and star identification algorithms, and so could
output the spacecraft attitude directly (although it did not compensate for
the star tracker’s misalignment relative to the spacecraft), providing a “Lost
in Space” capability.

Knowing the spacecraft position and orientation is only half of the guid-
ance, navigation, and control (GN&C) problem. The other half is controlling
the spacecraft position and attitude such that the desired science can be per-
formed. As with orbit determination, planning orbit maneuvers historically
has been solely a ground function because of the CPU intensive and look-
ahead nature of the problem. According to the traditional paradigm (again
in the NASA/Goddard context), after determining the current spacecraft or-
bit, Flight Dynamics would evaluate whether that orbit satisfied the mission
requirements, and if it did, would calculate when orbit perturbations were
likely to drive the orbit outside those requirements. In collaboration with the
flight operations team (FOT), Flight Dynamics would then plan and sched-
ule (as necessary) a small stationkeeping orbit maneuver designed to restore
the orbit to its operational geometry. The stationkeeping plan created by this
process would include highly detailed instructions (i.e., which thrusters to
fire, how long they should fire, the thruster configuration when firing, etc.),
which would be uplinked to the spacecraft as “Delta-V” (change-of-velocity)
commands, and would be executed open-loop by the FSW, which would have
no way to evaluate the success/failure of the orbit maneuver. Lastly, Flight
Dynamics would evaluate the postburn orbit to determine whether further
corrections were necessary. This same basic procedure also applied to the ma-
jor orbit maneuvers required to acquire mission orbit, except the planning
and scheduling would be more elaborate, typically requiring several burns to
complete. Recently, however, serious consideration has been given to plan-
ning and scheduling routine stationkeeping orbit maneuvers autonomously
onboard. Migrating this function to today’s more capable flight computers
not only would reduce the cost associated with using ground staff to perform
a routine operation, but also would reduce operational risk by eliminating
unnecessary command uplinks.
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Onboard control of attitude, by contrast, has been a necessary part of all
space missions other than a handful of generally low-cost missions utilizing
passive control methods such as gravity gradient stabilization. Using attitude
sensor measurements to determine the current attitude, the FSW compares
that attitude to the commanded (i.e., desired) attitude and determines an at-
titude error. For spacecraft employing gyros (an attitude sensor that measures
the change in spacecraft attitude during a set time period, as opposed to mea-
suring the spacecraft’s absolute orientation with respect to inertial space), a
Kalman filter usually is utilized both to calculate the current attitude and to
calibrate the gyro’s drift bias (which ramps with time) relative to an absolute
attitude sensor, such as a star tracker. The attitude error is estimated and fed
into a control law that calculates on each control cycle what attitude actuator
commands (e.g., reaction-wheel control torques) must be generated in order
to null the error. On the next control cycle, feedback from the attitude sensors
provides the information needed to determine how good a job of reducing at-
titude error the previous cycle’s actuator commands did, as well as how much
new attitude error has been introduced this cycle by external perturbative
torques. Although this description of onboard attitude control has implicitly
addressed maintenance of a constant commanded attitude in the presence of
perturbative torques, it can equally well be applied to the execution of large
desired attitude changes, called slews. Slews can be dealt with two ways. First,
the FSW can calculate the amount of attitude change to be performed during
a given control cycle, and modify the previous commanded attitude to reflect
that change, which would then be used directly as part of that control cycle’s
attitude error. A second approach is simply to make the commanded attitude
the slew target attitude. Although the control law would not be able to null
that very large error (say, 90◦) in one control cycle, by limiting the size of the
commanded control torques in a given control cycle the FSW could gradually
work off the error over a series of control cycles, eventually reaching the slew’s
target attitude.



B

Operational Scenarios and Agent Interactions

To show more fully how the Remote Agent implementation introduced in
Chap. 6 would work in an actual on-orbit situation in the uncrewed science-
mission context, this chapter provides a series of operational scenarios that
illustrate the interaction of agents among themselves onboard, the interac-
tion of flight-based agents with ground-based agents, and the interaction of
members of a spacecraft constellation with each other.

B.1 Onboard Remote Agent Interaction Scenario

To illustrate the behavior of flight system Remote Agents (incorporating the
full FSW subsystems and functionality discussed previously) cooperating to
achieve a mission objective, consider the operational scenario defined by the
following somewhat simplified assumptions:

1. The mission type is a Lagrangian-L2 celestial pointer.
2. The primary mission goal is to observe all ground-specified targets while

minimizing fuel expenditure so as to maximize mission lifetime.
(a) The ground will group observations in clusters
(b) The ground defines the nominal order in which the observations within

a cluster are performed
(c) The FSW defines the cluster order, subject to the following restrictions:

(i) If not prohibited by another restriction, on completion of all ob-
servations within a cluster, transition to the cluster whose first ob-
servation is closest to the final spacecraft attitude on completion
of observations within the current cluster.

(ii) If the new cluster’s observations cannot be completed before an
angular-momentum dump is required, select the nearest cluster
that can be completed, subject to the momentum restriction.
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(iii) If no cluster satisfies restriction (2), perform an angular momentum
dump and slew to the nearest remaining unobserved cluster.

(iv) If an angular-momentum dump is needed while still observing
within a cluster, pause science and execute the dump on current
exposure completion.

3. The secondary mission goal is to survey opportunistically ground-specified
areas of the celestial sphere for new targets. These areas have been subdi-
vided by the ground into small regions of equal size and shape.
(a) The FSW may schedule surveys of a region if no part of the region

is further than a database-specified angle from the current pointing
direction.

(b) No more than 2 h out of any 24-h period may be spent surveying.
(c) If an angular-momentum dump must be performed beforehand to en-

sure that the survey can be performed without interruption, scheduling
the survey is forbidden. If a dump is needed while observing the region,
pause science and execute the dump on current exposure completion.

4. Ground-issued realtime commands with an attached time window will be
scheduled by the FSW within that window, so as, if possible, not to in-
terfere with ongoing activities. On completion of the ongoing activity, the
realtime command is executed. If the ongoing activity will not complete
by the end of the window, the realtime command is executed by the FSW
no later than a database-specified time period prior to the expiration of
the window. If the duration of the window is zero seconds, the realtime
command is executed immediately upon receipt. If a realtime command
needs to be executed prior to the completion of the ongoing activity, the
procedure for interruption of the activity and its subsequent treatment is
specified by the onboard smart fault detection, diagnosis, isolation, and
correction (SFDDIC) Agent.

5. Sun angle constraints may not be violated, either when slewing to a target
or when observing a target. If any target within a cluster is in violation
of this constraint, all targets within the cluster are considered to be in
violation. If any part of a region is in violation of this constraint, the
entire region is considered to be in violation.

6. A constraint on executing science observations is that SI calibrations must
meet observation-specific accuracy requirements prior to initiation of the
observation.

Relative to the previous assumptions, the following is a characteristic ex-
ample of how FSW processing would function in performance of typical daily
activities. Having completed the last science observation in the current cluster,
the scheduling agent requests that the SFDDIC Agent validate the remain-
ing clusters relative to observing constraints. SFDDIC reports back that all
remaining clusters are valid. Scheduling then asks the data monitoring and
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trending agent to identify those clusters that can be observed successfully
given the current state of SI calibration. Monitoring and trending reports
back that current calibration accuracy is insufficient to support successful
observations at the nearest cluster, but is satisfactory at the remaining clus-
ters. Planning and scheduling determines that the ground-specified priority
attached to the nearest cluster is not high enough to justify scheduling an SI
calibration update at this time, and instead directs that the attitude control
agent generate appropriate commanding to produce a slew to the first target
in the next nearest cluster.

To effect a slew to the next target requires reaction wheel commanding,
so the attitude control agent’s commands must pass through an executive
agent that interfaces with the FSW backbone. The backbone accepts the slew
directive from the agent community and interfaces with the reaction wheels to
effect the slew. Following successful completion of the slew (as determined by
the SFDDIC Agent), the ACS software in the backbone facilitates entry into
fine-pointing mode by activating the quaternion star trackers (QSTs) and fine
error sensor (FES). Once the necessary QST and FES data are available, the
fine attitude determination agent begins computing high accuracy attitude
products. The data are simply stored in a file associated with the observation
(managed by the SI data-storage agent) and may be accessed by all users
requiring the information. At the same time, and regularly before arrival at
the target, the orbit determination agent has produced a steady stream (once a
second) of spacecraft, Solar position and velocity vectors, and trends position
and velocity vectors, again in support of applications needing the information.

In particular, the attitude control agent uses both the high accuracy at-
titude and orbit data to generate high precision attitude control commands
that, again, are passed through the executive agent to the FSW backbone,
which in turn interfaces with the reaction wheels (after the backbone quality
assures (QAs) the commands) to produce the desired pointing performance.
Having established a stable platform at the target attitude, the planning and
scheduling agent directs the acquisition of the science target by the SI and
initiation of the science observation specified by the ground. To this end,
it notifies the SI commanding-and-configuration agent to effect the neces-
sary SI adjustments required to perform the desired science activity. The SI
commanding-and-configuration agent generates the associated commanding
and forwards it to the executive agent, which communicates the hardware
changes to the FSW backbone so it can directly command the SI. All data
output from the SI, whether from the target acquisition or execution of the
science observation itself, is stored in the science observation file.

Specialized processing of the first SI data is performed by the SI data pro-
cessing agent to support target acquisition. Once the target has been acquired
successfully, the activity proceeds to the science observation itself, which is
processed onboard to support compact packaging prior to downlink. For exam-
ple, lossless compression will be performed, and possibly processing to reject
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errors caused by cosmic rays. As the observation continues, the SI data-storage
agent will progressively build the observation file so that, by the end of the
activity, a complete, coherent record of the observation will have been com-
piled for downlink as a unified file under the authority of the SI data-storage
and communications agent.

When “data-take” at this target has been completed, the planning and
scheduling agent determines that a survey observation can be performed con-
veniently and schedules the necessary slew to the target. Processing flow then
proceeds as described above for the earlier target, except following comple-
tion of data collection from the survey activity, the SI data processing agent
processes the survey data and identifies several point-targets of interest.

These targets are reported to planning and scheduling, which then adds
them to the target list for immediate revisits, with observations to be per-
formed according to canned, ground-specified scripts. The targets are then
visited in an order defined by the planning and scheduling agent. At the end
of this activity, the SFDDIC (using data from the look-ahead modeling agent)
determines that a momentum dump is required. Planning and scheduling is
notified, which decides that the dump should be performed now, and issues
the necessary directive to the orbit maneuvering agent, which also handles the
thruster commanding for momentum reduction. As with the attitude control
agent, the orbit maneuvering agent must forward its thruster commands to the
executive agent, which in turn relays them to the FSW backbone, which then
performs its QA and communicates directly to the thrusters to cause the
thrusters to fire in the manner specified. Finally, by this time the ground sta-
tion antenna has become visible to the spacecraft (or vice-versa, depending
on one’s point of reference), and an electronic handshake between the ground
station’s and spacecraft’s communications agents is established. The hand-
shake is initiated by the ground station agent, but downlink of the science
data onboard, including the recently built ground-specified and opportunistic
survey files, is managed by the onboard communications agent. The lights-out
ground system autonomously validates each file as it is downlinked. As trans-
mission of a file is deemed to be successful, the ground system notifies the
onboard communications agent and SI data-storage agent that the onboard
addresses associated with that data are free to be overwritten.

This completes the narrative illustrating the mutual communication and
interaction of FSW subsystem agents (along with some interaction with
ground system agents) in nominal performance of inflight activities of a typical
science mission. In reality, the description provided is highly oversimplified:
the communication flow in the example is quite sequential, whereas in real-
ity, there will be many parallel conversations in progress at any given time.
Also, the assumptions specify a model of a far lower level of complexity than
would be characteristic of a real mission. So the example provided should be
viewed as simply a token of what would obtain in an actual application.
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B.2 Space-to-Ground Dialog Scenario

The dialog in this scenario is initiated by the spacecraft and driven by the
following assumptions:

1. The mission type is a 1-AU (i.e., 1 astronomical unit) drift-orbit survey
mission.

2. The mission goal is to map out the entire celestial sphere to chart the
microwave structure of space. Each mapping will take 6 months, so four
mappings will be performed during the 2 year mission lifetime.

3. As the onboard antenna size is quite small and transmitting power is highly
limited, the deep space network (DSN) must be used for data capture. To
reduce transmission costs by reducing downlink volume, the spacecraft
will process all raw science data onboard and only downlink science end-
products. The spacecraft will utilize beacon mode and will burst-transmit
its processed science data on a low priority basis.

4. In the event of major anomalies that the autonomous SFDDIC Agent can-
not handle, the spacecraft will notify the ground, downlinking a diagnostic
file whose contents characterize the problems encountered.

Relative to these assumptions, consider this scenario for space-ground com-
munications. As the survey work continues, the SI data processing agent pro-
cesses SI output and forwards the end-product to the SI data-storage agent.
In addition, raw SI data are stored in buffers (a precaution against the event
of an SI anomaly). When the SFDDIC Agent (in conjunction with the data
monitoring and trending agent) validates a given subset of data and declares
it to be acceptable, and also verifies nominal SI performance during that time
period, the storage locations associated with the raw SI data are designated
as available to be over-written.

When sufficient processed survey data have been accumulated to warrant
scheduling a downlink, the SI data-storage and communications agent for-
wards to the executive agent a request to turn on the transmitter to contact
the DSN and request a downlink opportunity. This request is then relayed
to the FSW backbone, which activates the transmitter, establishing contact
with DSN. The DSN informs the spacecraft of its telemetry window. After
the start of the window, the onboard agent then downlinks all available, val-
idated SI end-products. The lights-out ground system automatically verifies
that all data received from the spacecraft in this pass are intact (i.e., have
not been corrupted in transmission) and notifies the onboard SI data-storage
agent that the memory areas used for storage of the telemetered science data
may now be overwritten.

Sometime later, after this conversation has terminated, the spacecraft loses
(at least temporarily) one of its four reaction wheels. The FSW backbone
responds by transitioning both the platform and payload to safemode. While
in safemode, the SFDDIC (in conjunction with data monitoring and trending,
as well as look-ahead modeling) evaluates the situation, both with respect to
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the failed component and the overall spacecraft state. SFDDIC concludes that
the spacecraft must remain in safemode pending consultation with ground
resources, and establishes an emergency communications link with the ground
via DSN using the procedure already discussed above.

Once a link is established, the SI data-storage and communications agent
dumps all recent data stored onboard to the ground system. The agent also
provides the results of the SFDDIC Agent’s analysis as a starting point for
the ground system’s more definitive trouble shooting, to be conducted by an
integrated team consisting of senior system engineers supported by the ground
system’s intelligent software agents. As the ground system’s work proceeds,
requests for additional data from the spacecraft may be made via more regular
and frequent DSN contacts. As new ideas are developed and need to be exper-
imented with onboard, the onboard agents may well join the ground system
team and participate in a more active fashion until the problem is resolved
and nominal function is restored.

This completes the narrative illustrating space-to-ground dialogs initi-
ated by the flight system in nominal performance of typical inflight activi-
ties. In reality, the description provided is somewhat oversimplified, as the
communication flow in the example is sparse and sequential, whereas in real-
ity, communications will probably be more frequent and there may be parallel
conversations in progress during a single contact. Also, the assumptions spec-
ify a model of far less complexity than that characteristic of a real mission.
So the example provided should be viewed as simply a token of what would
be obtained in an actual application.

B.3 Ground-to-Space Dialog Scenario

The interaction in this scenario is initiated by the ground station. Consider a
ground-space agent dialog driven by the following assumptions:

1. The mission type is LEO Earth-pointer.
2. The spacecraft determines its own orbit via global positioning system

(GPS). Orbit stationkeeping maneuvers are performed autonomously on-
board.

3. The mission goal is to observe all ground-specified targets while minimizing
fuel expenditure so as to maximize mission lifetime.
(a) The spacecraft is provided with Earth coordinates of targets desired to

be observed. Repeated observations are performed every 16 days. The
spacecraft autonomously determines when the targets may be viewed
during a 16-day cycle.

(b) The ground maintains onboard a set of observing scenario templates.
Each target will be observed using one of those templates. The tem-
plates are populated by ground-alterable parameters controlling the
observing process.
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4. Targets are acquired autonomously by the spacecraft.
(a) The spacecraft utilizes “quick-look” realtime image data to verify tar-

get acquisition and to determine whether targets are obscured by cloud
cover such that data collection is useless during this pass.

(b) The spacecraft uses the results of its analysis of quick-look data to
transition SI configuration autonomously to nominal high data rate
mode if target conditions are suitable for the science observation to
commence.

(c) Pattern recognition is performed onboard, as necessary, to support the
observation.

5. The spacecraft autonomously generates H&S commanding where necessary
(e.g., SI re-configuration at SAA entrance/exit).

Each day for each ground station pass, the ground initiates contact with
the spacecraft for the purpose of receiving science and engineering/diagnostic
data. During ground-selected passes, the ground system uplinks to the space-
craft an updated target list, as well as changes to parameters controlling the
science observations.

At each orbit, the planning and scheduling agent uses data supplied by the
orbit determination agent to identify which ground targets can be observed
and when. At a database-specified lead-time prior to encountering the target,
planning and scheduling notifies the SI commanding-and-configuration agent
of the need to configure the SI for use according to the state specified by the
template. SI commanding and configuration then generates the appropriate SI
commanding and forwards its requests to the executive agent, which relays the
package to the FSW backbone, which (following its own command validation)
ships the commands to the SI.

When a target is encountered, the SI data processing agent examines the
initial quick-look data to verify that the observation can be performed. The
agent passes its assessment to SI commanding and configuration and, if the
conditions are suitable, commanding and configuration issues the necessary
directives to initiate generation of high volume data. The directives are then
relayed as before to the backbone so that the required adjustments can be
made. Similarly, if special fine SI adjustments are needed to home-in on a
specific landmark or feature, SI data processing performs the necessary pat-
tern recognition function and informs SI commanding and configuration of
its results. As science data are output from the SI, an observation file is con-
structed by the SI data-storage and communication agent for downlink when
requested by the ground system.

While these observations are performed, parallel onboard processing (con-
trolled by the data-monitoring and trending agent in conjunction with SFD-
DIC) determines when the orbit requires correction and informs the planning
and scheduling agent, which in turn schedules an orbit stationkeeping maneu-
ver (commanding for which is generated by the orbit-maneuvering agent at
the request of planning and scheduling) so as not to conflict with upcoming
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science data takes. The same agents involved in the orbit correction evaluation
also determine when SI reconfigurations need to be performed in response to
SAA events. In both cases, agent-generated thruster and SI commands must
be forwarded to the executive agent and relayed to the backbone, which QAs
the commands and issues the commands directly to the appropriate hardware.

Finally, any windowed realtime commands issued by the ground system
are processed by the planning and scheduling agent and inserted into the
timeline of onboard commands/activities as necessary. Once scheduled, these
realtime commands are treated onboard the same as any commands internally
generated.

This completes the narrative illustrating ground-to-space dialogs initiated
by the ground system in nominal performance of typical inflight activities.
In reality, the description provided is somewhat oversimplified, as the com-
munication flow in the example is sparse and sequential, whereas in reality,
communications will be more frequent and there will be parallel conversations
in progress during a single contact. Also, the assumptions specify a model of
far lower complexity than that characteristic of a real mission. So the exam-
ple provided should be viewed as simply a token of what would obtain in an
actual application.

B.4 Spacecraft Constellation Interactions Scenario

While the scenario discussions above were restricted to cooperative efforts
between Remote Agents on a single spacecraft or with counterpart agents in
the ground system, this subsection examines the far more elaborate topic of
integrating the efforts of multiple teams of agents on several spacecraft (as
well as the ground). This higher level of complexity introduces a whole new
set of issues unique to constellation work, including the following:

1. Is a moderating agent/entity required to facilitate and referee dialogs
among the members of a constellation?

2. Although all members of a constellation need to be aware of the results
from a constellation dialog, how do you decide which members should be
direct participants in a given dialog, and “who” makes that decision?

3. How are dialogs created, i.e., how are the topics for a dialog selected?
For example, does a constellation member with a “problem” simply call
a “town meeting,” does it submit its problem to a moderator for consid-
eration, do problems un-resolvable by a single member get referred to the
ground system to be dealt with, etc.?

4. As a dialog progresses, can constellation members “casually” drop in and
drop out? If so, is an ongoing record maintained as the dialog proceeds so
newly arriving or returning members can quickly get back up to speed? If
so, how is the record maintained and by whom?

5. Are all dialogs short-term things with well-defined starts and endings,
or can a dialog extend over a long time duration, with gaps in activity
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interspersed among periods of very high activity? In other words, is there
the equivalent of regularly scheduled meetings?

6. Must all dialogs be originated from a well-defined issue or concern, or can
some arise from general topics of interest, for example, as a mechanism
for developing and/or sharing knowledge among the various constellation
members? Note the relationship of this question to question #5.

7. How does a new constellation member join the community of agent
groups? A new spacecraft may have improved methodologies or algorithms
useful to the entire constellation. Would an agent dialog be initiated so it
can share its new knowledge with the entire constellation?

8. Since the existing constellation members may “learn” new things in the
course of their day-to-day activities, how do they share this knowledge
with the other members so it becomes generally available? Prior to its
absorption by the rest of the constellation, would other members be re-
sponsible for validating or QAing that new knowledge?

9. Once the knowledge base of the constellation grows beyond its original as-
launched confines, how does this new “school-of-hard-knocks” knowledge
get passed on to new members?

10. How does the constellation resolve differences between the new knowledge
carried by new members vs. the empirical experience gained inflight by
the old members?

11. Could different members of the constellation take on special roles to
achieve general constellation goals? For example, could a subset of constel-
lation members (equipped with higher capacity flight computers) conduct
simulations or long-term studies of interest to the constellation as a whole?

12. For a communications satellite constellation, one can assume all mem-
bers of the constellation will be at least compatible, if not identical. So
interface incompatibility among members should not be a problem. How-
ever, suppose in the future it is desirable to form at least a temporary
constellation of science satellites to engage in an observation campaign to
study a celestial object or phenomenon of great scientific import. By what
means could this goal be enabled or facilitated through the use of Remote
Agents, and what special interface/architecture issues obtain?

The full impact of these issues for constellations is beyond the scope of
this book. Here we will simply consider a high-level (and perhaps overly sim-
plified) scenario for constellation member interactions purely for the purpose
of illustrating how constellation behavior might be supported by the proposed
FSW design. To this end, assume the following is the case:

1. The constellation consists of a set of 16 LEO Sun-synchronous and four
GEO weather satellites (the fourth is a spare).

2. The OBCs of the larger GEOs have oversized processing power to enable
transfer of LEO overflow processing, conduct background long-term studies
and simulations, and manage overall direction of constellation behavior.
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3. The GEOs rarely are replaced. The small LEOs are replaced fairly fre-
quently due to orbit deterioration (to reduce LEO costs, it is assumed that
onboard propulsion capacity is weak and fuel limits lifetime to 2 years).

4. The ground stations only communicate with GEOs. The GEOs commu-
nicate among themselves, the ground stations, and the LEOs. The LEOs
only communicate with GEOs.

5. The LEOs are fairly primitive, and can be viewed somewhat simplistically
as only possessing a FSW backbone. The GEOs possess the full range of
Remote Agent functionality discussed previously. The ground system also
is equipped with autonomous agents for lights-out operation.

6. In support of the higher-level constellation goals, the LEOs’ jobs are to pass
their SI data to the GEOs and accept commanding and changes in mis-
sion objectives from the GEOs. Otherwise, the LEOs operate in a purely
local manner, little different from the behavior of a ground-controlled sin-
gle LEO. They collect their science data, perform necessary housekeeping
functions (largely in response to external directives from the GEOs), and
conduct very simple FDC functions.

7. The GEOs’ job is to collect SI data from their equatorial orbits, communi-
cate with the ground via the ground stations with which they are in perma-
nent contact, and run the constellation. Running the constellation includes
managing the collection of science data (including all LEO commanding),
monitoring and trending all H&S data from the LEOs and GEOs, per-
forming relatively short-term continuing process improvement (CPI) type
analytical studies to increase operational efficiency, and employing SFD-
DIC Agents to deal with some anomalies that cannot be handled optimally
by FDC in the FSW backbones of the LEOs and GEOs.

The ground’s job is to receive and archive all science data generated by
the constellation, perform long-term analytical studies to increase operational
efficiency, and support the GEOs in dealing with major inflight anomalies or
failures.

A typical operational scenario is now presented, where some of the agent
interactions within a single spacecraft are glossed over in favor of a cleaner
description of spacecraft-spacecraft dialogs. At the start of this scenario, the
ground has just generated calibration updates for several of the SIs and up-
dated SI observation templates for the LEO and GEO spacecraft. These data
are uplinked to the GEOs with instructions to implement the updates as soon
as possible without interfering with ongoing observations by the individual
spacecraft, while maintaining consistency (as much as possible) among ob-
servations by those spacecraft. The planning and scheduling agents of the
three GEO spacecraft caucus (by way of a “teleconference” established by
their communications agents) and examine their anticipated processor loading
(in consultation with their monitoring and trending and look-ahead model-
ing agents) over the next few hours. In this case, they determine that none
of the three GEOs on their own can easily accommodate this planning and
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scheduling assignment within the high priority time demands specified by the
ground without impact to their own science responsibilities. Rather than at-
tempting to segment the planning and scheduling work, parceling out pieces
to the individual GEOs, and assigning one of the three GEOs to coordinate
the effort, they decide instead to utilize the idle processing power of the fourth
(spare) GEO and assign the job to GEO-4, leaving to GEO-1 responsibility
for interfacing with GEO-4 when its task is completed.

While GEO-4 is performing the new intermediate-term planning and
scheduling task, the other GEOs concentrate on their immediate routine jobs,
namely receiving science data from LEOs for relaying to the ground and per-
forming their own science assignments (and communicating the results to the
ground) according to their current operating instructions.

For the first duty, the GEOs function in a manner quite similar to the tra-
ditional ground station, which has knowledge of the time and angle at which
to view any given LEO as it comes into view over the horizon, thereby starting
a “view period” during which communications can take place. For the GEOs
to perform their similar communications function with the LEOs, switching
curves (in latitude and longitude) are maintained onboard the GEOs for use
by the planning and scheduling agents in conjunction with the look-ahead
modeling and data-monitoring and trending agents. The switching curves di-
vide the “sky” into three 120◦ slices (where, it may be noted, none of the
GEOs will be able to “see” the LEOs near the north and south poles). The
curves defining the segment boundaries are padded so that when a LEO enters
a padded region, preparations to initiate communications with the new GEO
are begun and completed before the LEO leaves the padded region. To effect
change in control, the GEO currently directing the LEO’s actions instructs
(via its communications agent) the LEO to terminate its current telemetry
link and reorient its main antenna toward the new GEO. The new GEO then
initiates a link with the LEO and requests that flow of completed science
products be renewed. Data received from LEOs are then formatted by the
individual GEOs in observation files by the SI data-storage and communi-
cations agents and are relayed to a designated single GEO (say, GEO-3) for
integration into an overall global picture/assessment. As the GEOs themselves
conduct their own science observations (as discussed in a previous section),
the data from GEO-1 and GEO-2 are relayed to GEO-3 for merger with the
LEO data.

When GEO-3 has completed the integration process, it also performs the
data reduction processing required to convert the raw measurements into sci-
ence end products. These results are then transmitted to the lights-out ground
station for archiving and dissemination. Optionally, the raw measurements
themselves may be transmitted to the ground for archiving. Note that GEO-3
does not integrate and process all the data all the time. Once GEO-3 be-
gins its integration job, another of the three GEOs (say GEO-2) will be the
collection point for new data as it is generated by the constellation. So at any
given time, one GEO will be collecting science data from the constellation,
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one GEO will be integrating and processing data, and a third GEO will be
available for planning and scheduling work, which in this case was assigned to
GEO-4, leaving GEO-1 available to respond to other ground requests as well
as communications from GEO-4.

Once GEO-4 has completed its planning and scheduling work, it commu-
nicates its results to GEO-1. GEO-1 then passes the plan for installing the
new calibrations and procedures to the other GEOs. Each GEO then instructs
those LEOs under its control as to the changes that should be made. The time
at which those changes should be made is also specified to ensure that when
the next mass of data from the whole constellation is integrated, all data in
the mix would have been generated, ideally, using the same calibrations and
procedures. If that ideal condition is not possible, then any data obtained
using old calibrations/procedures will, when contributed to integration, be so
identified in the data/results transmitted to the ground.

B.5 Agent-Based Satellite Constellation Control
Scenario

Consider the scenario when one has many satellites with different viewing ca-
pabilities (IR, visible, or UV) orbiting a planet and one desires a full spectrum
sweep of a certain portion of the planet. Traditionally, science team members
and human controllers would need to identify the satellites with each different
capability that will be making a pass over the section of the planet indicated.
Human controllers would need to form a detailed, possibly quite intricate plan
for the needed observations and to organize a series of requests addressed to
the satellites to perform the sweep, with all relevant details down to the trans-
mission of the data back to earth. This type of activity entails inefficiencies
and represents a questionable or wasteful use of manpower.

Through the use of an agent community that hierarchically and intelli-
gently parses instructions, this could be done much more efficiently. Ideally,
the human operator needs only to transmit a command similar to “Take a full
spectrum picture of the area bounded by given latitude and longitude data and
transmit the picture back in 2 days.” An executive level satellite could receive
this information, decompose it, and then negotiate with the agent community
(where each satellite in orbit is part of the community) to attempt to sched-
ule a plan. From there, each satellite could respond with information such as
“will be passing over the site in 36 h, I can take the picture in IR” or “will not
be passing over the site for another 96 h, I cannot take the picture.” Certain
constraints may come into play also; for example, UV and visible light sensors
are only useful when it is not night time at the given site. Responses of this
nature may be similar to “will be passing over the site in 4 h, but the site is
currently on the dark side of the planet” or “will be passing over in 4 h when
site is on dark side, but will pass over again in 20 h when it is local noon.”
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Of course, there are certain requests that just cannot be fulfilled. It is the
executive’s job to notice these, come up with the “closest fit” to the request
issued from the human controller, and report back with the closest fit to ask
for a go-ahead on that schedule.

When all of the planning has been performed through the negotiation,
the executive satellite could issue the plan to all image gathering satellites.
The satellites will receive their plans, and internally they will schedule their
own control (perhaps via an internal agent network for subsystem control)
for setting up their imaging systems, recording the image, and transmitting
it. The satellite will pass over the section of the planet in due course, record
the images, and transmit them back to the executive satellite. The executive
satellite will assemble the images when the whole spectrum has been covered,
and transmit them back to the human controller at the next appropriate
opportunity.

This scenario is a perfect illustration of a negotiating agent network. Al-
though it is hypothetical, it unifies the concepts of hierarchical parsing net-
works between spacecraft, and within spacecraft.

B.6 Scenario Issues

One aspect of the presented design concepts that could create problems in
flight is the layering of communications engendered by the FSW backbone.
Commands, status messages, and data often must go through several check-
points before they reach their intended hardware destination in order to
guarantee platform and/or payload H&S, no matter what anomaly or fail-
ure conditions may obtain with the Remote Agents. There are two potential
problems arising from this security paradigm. First, some commanding has
associated with it very severe timing requirements. For example, in the case
of HST, in order to satisfy its pointing accuracy and stability requirements,
reaction wheel commands must be executed within 7 ms of receipt of the gyro
data from which the commands are derived. For this case, a data latency prob-
lem engendered from the time delays in relaying commands to the reaction
wheels potentially could jeopardize meeting a fundamental mission require-
ment, unless the OBC and bus infrastructure are adequate to support the
design. Second, the multiplication of messages and commands, especially if
receipt of one always triggers an acknowledgement, could create a blizzard
of traffic on the bus (or busses), leading to loss of information or even pro-
cessing lock-up, again, unless the OBC and bus infrastructure are adequate
to support the design. In other words, the presented design concepts, involv-
ing communications-and-computation-intensive negotiation processes between
multiple agents, imply the need for research into new spacecraft architectures
and the crucial need for certain minimum levels of performance of future on-
board communications and computing resources.
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Acronyms

AC Autonomic computing
ACE Attitude control electronics
ACL Agent communication language
ACS Attitude control subsystem
ACT Agent concepts testbed
AE Autonomic element
AFLOAT An agent-based flight operations associate
AI Artificial intelligence
AIFA Archive interface agent
AM Autonomic manager
AMS Active middleware service
ANS Autonomic nervous system
ANTS Autonomous nano technology swarm
AOS Acquisition of signal
ARPA Advanced Research Projects Agency
ASM All sky monitor
BAT Burst alert telescope
BN Bayesian networks
C&DH Command and data handling
CBR Case based reasoning
CCC Constellation Control Center
CCD Charge-coupled device
CGRO Compton Gamma Ray Observatory
CIM Common information model
CLIPS C-language integrated production system
CMA Contact manager agent
COTS Commercial off the shelf
CPU Central processing unit
CSS Coarse Sun sensor
DARPA Defense Advanced Research Projects Agency
DBIFA Database interface agent
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DIS Distributed interactive simulation
DS Deep Space
DS1 Deep Space 1
DSN Deep Space Network
DSS Digital sun sensor
EO-1 Earth Observing-1
EOS Earth observing system
EP Explorer platform
EUVE Extreme ultraviolet explorer
FAST Formal approaches to swarm technologies
FDC Fault detection and correction
FES Fine error sensor
FGS Fine guidance sensor
FIPA Foundations of Intelligent Physical Agents
FIRE Fault isolation and resolution expert
FOT Flight operations team
FOV Field of view
FSS Fine Sun sensor
FSW Flight software
FTC Fault tolerant computing
GCI Geocentric inertial
GEO Geosynchronous earth orbit
GIFA GenSAA/genie interface agent
GN&C Guidance, navigation, and control
GPM Global precipitation measurement mission
GPS Global positioning system
GRB Gamma ray burst
GSFC Goddard Space Flight Center
GSS Ground station simulator or generalized support software or

ground support system or ground support software
GTDS Goddard trajectory determination system
H/W Hardware
H&S Health and safety
HBM Heart-beat monitor
HEAO High Energy Astronomical Observatory
HGA High gain antenna
HLA High level architecture
HST Hubble Space Telescope
I/O Input/output
IBM International business machines
ICT Information and communications technology
IMU Inertial measurement unit
IR Infrared
IRU Inertial reference unit
ISA Interface services agent
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IT Information technology
IUE International ultraviolet explorer
JPL Jet propulsion lab
JWST James Webb Space Telescope
KIF Knowledge interchange format
KQML Knowledge query and manipulation language
KSE Knowledge sharing effort
KX Kinesthetics eXtreme
LARA Lander amorphous rover antenna
LEO Low earth orbit
LISA Laser interferometer space antenna
LOG Log agent
LOS Loss of signal
MA Multiple access
MAP Microwave anisotropy probe
MAPE Monitor, analyze, plan and execute
MAS Multi-agent system
MC Managed component
MIDEX Medium-class explorer
MIFA MOPSS Interface Agent
MMA Mission manager agent
MMS Magnetospheric multiscale
MOCC Mission Operations Control Center
MOPSS Mission Operations Planning and Scheduling System
MTB Magnetic torquer bar
NASA National Aeronautics and Space Administration
NFI Narrow field instruments
NIR Near-infrared
NSSC NASA Standard Spacecraft Computer
OAO Orbiting Astronomical Observatory
OBC Onboard computer
OPE Observation plan execution
OSO Orbiting Solar Observatory
OTA Optical telescope assembly
PAGER Pager interface agent
PAM Prospecting Asteroid Mission
PBM Pulse-beat monitor
PCA Proportional counter array
PCS Pointing control subsystem
PID Proportional-integral-derivative
PSA Planner/scheduler agent
QA Quality assurance
QST Quaternion star tracker
R&D Research and development
RF Radio frequency
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RSDO Rapid Spacecraft Development Office
RTS Relative time sequence
RXTE Rossi X-ray timing explorer
SA Solar array
SAA South Atlantic Anomaly
SAC Situated and autonomic communications
SAMPEX Solar Anomalous and Magnetospheric Particle Explorer
SARA Saturn autonomous ring array
SC Spacecraft
SDO Solar dynamics observatory
SFDDIC Smart fault detection, diagnosis, isolation, & correction
SI Science instrument
SMEX Small explorer
SMM Solar Maximum Mission
SMP Statistics Monitor Program
SSA S-band single access
SSA System services agent
SSR Solid state recorder
SysMMA System monitoring and management agent
TAM Three axis magnetometer
TBS To be specified
TCO Total cost of ownership
TDRS Tracking and data and relay satellite
TDRSS TDRS system
TMON Telemetry monitor
TOO Target of opportunity
TRMM Tropical Rainfall Measuring Mission
TSM Telemetry and statistics monitor
TWINS Two wide-angle imaging neutral-atom spectrometers
UARS Upper Atmosphere Research Satellite
UI User interface
UIA User interface agent
UIFA User interface agent
UV Ultraviolet
UVOT UV/optical telescopoe
VIFA VisAGE interface agent
WMAP Willsinson microwave anisotropy probe
XRT X-ray telescope



D

Glossary

Angular momentum dump See momentum dump.
Attitude The orientation of the spacecraft in inertial space. Usually, atti-

tude defines the orientation of all three spacecraft axes with respect to an
inertial reference frame, though for spin-stabilized spacecraft, it often is
the case that only the orientation of the spin axis is specified.

Attitude actuator A control hardware component that generates control
torques required to maintain spacecraft stability, null attitude errors, re-
orient the spacecraft to a new orientation with respect to an inertial ref-
erence frame, etc.

Attitude control The mechanism for establishing and maintaining a desired
spacecraft orientation with respect to an inertial reference frame.

Attitude control accuracy A quantitative measurement of the error in
maintaining the spacecraft attitude at its desired orientation with respect
to an inertial reference frame.

Attitude control torque Torques intentionally applied to the spacecraft
to maintain or establish a desired spacecraft orientation with respect to
an inertial reference frame.

Attitude determination The computation of the spacecraft orientation
relative to a specified reference frame. For celestial-pointing spacecraft,
the reference frame is usually either the geocentric inertial (GCI) frame
or the heliocentric inertial frame.

Attitude determination accuracy A quantitative measurement of the
error in the computed spacecraft attitude.

Attitude dynamics The study of a spacecraft’s motion about its center of
mass.

Attitude maneuver A commanded change in the spacecraft’s desired at-
titude, as opposed to a torque applied to null errors in the actual attitude
relative to the desired attitude. A large attitude maneuver is called a slew.

Attitude matrix A specification of the spacecraft orientation in direction
cosine matrix format. The direction cosine matrix is a 3× 3 square matrix.
The nine elements of the matrix are the cosines of the angles between the
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three spacecraft-body unit vectors and the three reference axes relative to
which the spacecraft orientation is defined.

Attitude quaternion A specification of the spacecraft orientation in
quaternion format.

Attitude sensors Spacecraft hardware and electronics providing measure-
ment data that can be used to determine the spacecraft orientation or
changes in the spacecraft orientation.

Autonomic Of or pertaining to the capacity of a system to control its own
internal state and operational condition.

Autonomic communications A research field with the same motivators
as the autonomic computing concept with particular focus on the comm-
unications research and development community (see SAC).

Autonomic computing Overarching initiative to create self-managing
computer-based systems, with a metaphor inspired by the biological
autonomic nervous system.

Autonomic element An autonomic manager and a managed component
considered together.

Autonomic manager A control loop and components to provide auto-
nomic self-* for the managed component.

Autonomic systems Often used synonymously with autonomic comput-
ing; sometimes used as a synonym for autonomicity from a systems per-
spective, and sometimes used in the sense that AutonomicSystems =
AutonomicComputing + AutonomicCommunications.

Autonomicity The quality of having an autonomic capability.
Autonomy A system’s capacity to act according to its own goals, percepts,

internal states, and knowledge, without outside intervention.
Celestial-pointer A spacecraft whose fine-pointing science instruments are

oriented toward “fixed” points on the celestial sphere. For example, a
spacecraft that slews from one attitude to another to observe a series of
X-ray point-sources would be a member of the class of celestial pointers.

Center of mass Average position of a system of objects, weighted in pro-
portion to their masses.

Charge coupled device star tracker A star tracker that detects stars by
digitally scanning an array of photosensitive components (pixels). The
star tracker integrates the electrical charge in the pixels “struck” by (for
example) starlight. The measurement is performed by reading the pixel
output line by line.

Coarse Sun sensor A device that measures photocell output as a function
of Sun angle. Since the amount of energy hitting the photocell varies as
the cosine of the Sun angle (normal incidence for null Sun angle, grazing
incidence for 90◦ Sun angle), CSSs are also referred to as cosine detectors.
Note that this scheme provides an analog representation of the Sun angle.

Command quaternion Desired spacecraft orientation, with respect to an
inertial reference frame, expressed in quaternion format.
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Commanded attitude Desired spacecraft orientation with respect to an
inertial reference frame.

Constellation Two or more spacecraft engaged in coordinated operations
with the objective of meeting a set of mission requirements.

Control loop Closed loop of feedback control.
Control torque Torque generated by spacecraft actuators for the purpose

of controlling the spacecraft’s attitude.
Digital Sun sensor A device that measures output from a series of

photocells to determine Sun angle. If a photocell’s output is greater than
a threshold, it is considered to be “on.” The pattern of “on” photocells is
directly associated with the Sun angle. Note that this scheme provides a
digital representation of the Sun angle.

Distributed satellite systems Multiple networked spacecraft, analogous
to distributed client-server, or networked, computing systems of to-
day, as opposed to the traditional “monolithic” centralized computing
environment of the past.

Distributed science mission Multiple networked space assets, analogous
to distributed client-server, or networked, computing systems of today, as
opposed to the traditional “monolithic” centralized computing environ-
ment of the past. The assets could include rovers, stationary instrument
packages, and spacecraft.

Downlink A point-to-point RF communications channel carrying data from
the spacecraft to the ground.

Earth-pointer A spacecraft whose fine-pointing science instruments are ori-
ented along the nadir vector toward the Earth.

Effector In the context of autonomic management, a defined means to bring
about a change to a part of the managed component.

Environment awareness A capability of a system through which the sys-
tem is continually able to perceive its external operating conditions in
relation to its knowledge of its abilities. From this perspective, environ-
ment awareness may be considered a part of self-awareness – the ability
to know one’s place in the environment. In another view of environment
awareness, the environment is aware of the individuals themselves – for
instance, through their heartbeat or pulse.

Ephemeris In the context of space missions, a table of positions (of either
celestial objects or spacecraft) at a given time (or at given times) in a
given coordinate system. Also, colloquially referred to as an empirical
(as opposed to algorithmic) specification of a spacecraft’s orbital position
(either historical or predicted).

Fine Sun sensor A high precision digital Sun sensor (DSS).
Formation flying A flight concept in which multiple spacecraft perform

their science operations while keeping a fixed position relative to one
another.

Geomagnetic field The magnetic field of the Earth.
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Geostationary orbit An orbit around the Earth that maintains a space-
craft directly above the same point on the Earth’s surface at all times. This
is necessarily an equatorial orbit (with orbit inclination to the equatorial
plane equal to zero degrees) where the orbit altitude is precisely chosen
so that its associated period is 24 h, matching the Earth’s rotational rate.

Geosynchronous orbit An orbit having the same altitude as a geostation-
ary orbit, but not necessarily maintaining the spacecraft above the same
point on the Earth at all times. Geosynchronous orbits may have nonzero
inclinations.

Gimbal A rotatable or pivotable hardware contrivance whereby an attached
element of a spacecraft, for example a dish antenna or solar array, may
be reoriented (in two degrees of freedom) relative to the body of the
spacecraft.

Global positioning system A constellation of low Earth orbiting satel-
lites continually broadcasting radio signals supporting realtime, onboard
determination of position by spacecraft with compatible receivers.

Goddard trajectory determination system The primary ground soft-
ware system at NASA Goddard Space Flight Center for computing defini-
tive and predictive spacecraft ephemerides.

Gyro Originally, a mechanical sensor containing a spinning mass that ex-
ploits conservation of angular momentum to measure changes in atti-
tude. Recently, spacecraft have employed gyros that utilize nonmechanical
structures (for example, hemispheric resonating gyros (HRGs) and laser
ring gyros).

Gyro drift A ramping error (varying with time) in a gyro’s output.
Gyro scale factor and alignment calibration An operational process

consisting of a series of large slews executed to generate gyro data that
the ground system uses to determine the gyro scale factors and gyro
alignments relative to absolute attitude sensors (such as star trackers).

Gyroscope See Gyro.
HBM Heart-beat monitor
Inertial measurement unit See Gyro.
Inertial reference unit See Gyro.
Kalman filter A sequential estimator with a fading memory commonly

used for realtime spacecraft attitude estimation. Implemented in the ACS
flight software of most GSFC spacecraft flying gyros. Enables onboard
estimation of both attitude error and gyro drift bias.

Lagrange point Positions of stable or pseudo-stable gravitational equilib-
rium within a three-body system consisting of two major bodies and one
body of negligible mass relative to the other two. In a gravitational three-
body system, there are, relative to one of the two major bodies, always
exactly five such points, referred to as L1, L2, L3, L4, and L5, all in
the plane of the orbit of the one major body about the other. The three
pseudo-stable points (L1, L2, and L3) lie along an axis between the one
major body and the other. The two stable points (L4 and L5) are off-axis,
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in positions leading and following the one major body on its orbital path
around the other major body. An example of clumping of small natu-
ral objects at off-axis Lagrange points is the Trojan Asteroids (here, the
two large gravitational bodies are the Sun and Jupiter). See Fig. 3.2 for
Lagrange Points illustrations.

Lagrange point orbit The complex, nonplanar motion of a spacecraft
when in orbit, the so-called halo orbit, near one of the unstable Lagrange
Points, L1, L2, or L3. The halo orbit in general cannot be maintained
without station-keeping.

Libration point See Lagrange point.
Limit checking A validation procedure in which a data point value is

checked against a threshold (upper, lower, or both).
Low Earth orbit An orbit whose altitude above the Earth’s surface

is between about 160 km and about 2,000 km. Atmospheric drag in-
creases dramatically at lower altitudes. A popular LEO altitude range is
500–600 km.

Magnetic coil A wire wrapped about a cylinder in a series of loops; a mag-
netic field results when the wire carries an electrical current. When the
cylindrical space contains a ferromagnetic core, the configuration is called
a magnetic torquer bar (MTB).

Magnetic disturbance torque A spacecraft torque generated by the in-
teraction of the spacecraft’s residual magnetic dipole as the spacecraft
moves along its orbital path through the external magnetic field.

Magnetic torque Torque on the spacecraft arising from the interaction be-
tween fields generated by the spacecraft’s magnetic coils and the external
magnetic field. If the torque arises from an interaction between a space-
craft residual dipole moment and the external magnetic field, the torque
is called the magnetic disturbance torque.

Magnetic torquer bar See magnetic coil.
Magnetometer An attitude sensor measuring the strength and direction of

the magnetic field external to the spacecraft. Note that this measurement
will include not only the geomagnetic field (for spacecraft in Earth orbit),
but also contributions from MTBs and spacecraft residual dipole moment.
Processing of the raw magnetometer measurements must remove these
other field sources to obtain accurate geomagnetic field measurements.

Managed component A component that is protected by the autonomic
manager.

MAPE Monitor, analyze, plan and execute components within autonomic
manager.

Measured attitude The current best estimate of the spacecraft attitude.
Molniya orbit An orbit designed to support Russian communications satel-

lites. It freezes the orbit’s perigee over the Southern hemisphere, tilting the
orbit to place the apogee over the Northern latitudes, ensuring maximum
communication opportunities between spacecraft and ground stations.
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Momentum dumping A procedure for spacecraft controlled by reaction
or momentum wheels, whereby angular momentum is removed from the
wheel system to prevent the wheels from saturating (a circumstance where
wheel speeds can be run up to maximum values). Angular momentum
dumping utilizes other attitude actuators to shift or remove angular mo-
mentum from the wheels (e.g., by applying current to magnetic coils,
thereby generating a spacecraft counter-torque by means of coupling to
the geomagnetic field).

Nadir vector In the context of the gravitational field of a massive body,
the nadir at a given point is the direction along the force of gravity at
that point. For Earth-orbiting spacecraft, the vector is directed toward
the geocenter. See Zenith.

Nadir-pointer A spacecraft whose primary science instrument is directed
along the nadir vector.

Nanospacecraft A small spacecraft characterized as having a weight of
about 10 kg or less, a cylindrical diameter about 30 cm or less, and a low
cost.

Networked science mission See distributed science mission.
Occultation A geometric condition when the view of the target of a space-

craft sensor or science instrument is obstructed by a celestial body.
Orbit acquisition Achieving mission orbit.
Orbit decay For Earth-orbiting spacecraft, decrease in altitude due to at-

mospheric drag.
Orbit determination Computation of the orbit of a spacecraft (or celestial

body) in inertial space.
Orbit determination accuracy A quantitative measurement of the valid-

ity of the computed spacecraft orbit.
Orbit dynamics The study of the motion of the spacecraft’s center of mass.
Orbit elements A set of parameters specifying the size, shape, and orienta-

tion of the orbit in inertial space, as well as the location of the spacecraft
at a given time (the epoch time). An example is the osculating Keplerian
elements.

Orbit generator An algorithm-based computational means of predicting
the future position and velocity of body in orbit. Commonly, the algorithm
can also be used to compute orbits into the past from a given set of orbital
elements.

Orbit maneuver A commanded change in the spacecraft’s orbit, accom-
plished by producing a net thrust force on the spacecraft, generally by
firing a thruster. If applied to null errors in the actual orbit relative to the
desired orbit, the maneuver is called a station-keeping maneuver.

Orbit normal A vector perpendicular to the orbital plane. The normal vec-
tor obtained by the right hand rule, with the fingers curled in the direction
of spacecraft orbital motion, is positive orbit normal. The opposite vector
is negative orbit normal.
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Orbit propagation Extrapolation of spacecraft position and velocity
vectors from actual measurements at an earlier time.

Period An orbital period is the time it takes a spacecraft (or celestial object)
to complete an orbit.

Predicted orbit Extrapolated spacecraft position and velocity (as a func-
tion of time) determined by applying mathematical models of physical
processes (e.g., the Earth’s gravitational potential) to actual measure-
ments of the spacecraft orbit at an earlier time.

Propagation For orbits, extrapolation of a spacecraft position and velocity
from a known starting value. For attitudes, use of relative attitude in-
formation (from gyros) to extrapolate spacecraft absolute pointing from a
starting, measured absolute attitude (for example, from star tracker data).

Propellant Thruster fuel.
Pulse-beat monitor Extension of heart-beat monitor with health urgency

tones.
Quaternion A mathematical representational system involving parameter-

ization of the three pieces of information supplied by Euler angles in
terms of a four-dimensional unit vector, which facilitates descriptions of
spacecraft attitudes. The quaternion lacks the singularity issues present
in Euler angle formulations and is more compact than the nine elements
of the direction cosine matrix. Quaternions also are easily manipulated
to determine (or incorporate) changes in attitude, a useful feature when
supporting attitude slews.

Reaction wheel A flywheel rotated with an electric motor, used on a space-
craft to transfer angular momentum to or from the spacecraft body,
thereby effecting a change in the spacecraft’s attitude without firing a
thruster.

Reference data Inertial frame information from a model, catalog, etc. that
can be combined with attitude observations in order to determine the
spacecraft orientation.

Self-* Self-managing properties.
Self-anticipating The ability to predict likely outcomes or to simulate self-*

actions.
Self-awareness The ability to perceive and compute with its own internal

state in relation to its own knowledge and capabilities. Relates to the
concept of “Know thy self.”

Self-chop The initial four (and generic) self properties (configuration, heal-
ing, optimization, and protection).

Self-configuring A system’s ability to configure and re-configure itself to
meet policies/goals.

Self-critical The ability to consider whether policies are being met or goals
are being achieved (see self-reflecting).

Self-defining The ability to reference (and operate in a manner determined
by) internal data and the internal definitions of that data (i.e., metadata).
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Primarily related to definitions of goals and policies (perhaps as derived
from self-reflection).

Self-governing The capability of operating autonomously and being
responsible for achieving goals and performing tasks.

Self-healing In the reactive sense, the capability of self-fixing faults; in the
proactive sense, the capability of predicting and preventing faults.

Self-managing The capability of operating autonomously and being
responsible for wider self-* management.

Self-optimizing A system’s capability of dynamically optimizing its own
operation.

Self-organizing A system’s capability of organizing its own efforts. Often
used relative to networks and communications.

Self-protecting A system’s capability of protecting itself through percep-
tion of potential threats and prediction of outcomes of situations in the
environment, and through self-configuring to minimize potential harm.

Self-reflecting The capability of assessing routine and reflex operations of
self-* operations and determining whether they are as expected. May in-
volve self-simulation to test scenarios.

Self-simulation The capability of generating and testing possible scenarios
without affecting the live system.

Selfware Self-managing software or firmware.
Sensor In the context of autonomic capabilities, a means to measure a part

of the managed component. In an ACS context, a measuring device whose
output can be used to determine the spacecraft’s attitude, either in abso-
lute or relative terms.

Situated and autonomic communications Local, self-managed infor-
mation flows in reacting to environment and context changes. Refers to
the communication and networking vision of being task- and knowledge-
driven and fully scalable.

Slew A large change in orientation, e.g., a large attitude maneuver by a
spacecraft.

South Atlantic Anomaly A region of space near the Earth over the south
Atlantic ocean where the van Allen radiation belt makes its closest ap-
proach to the Earth’s surface, with increased intensity of radiation.

Star tracker A star detecting device used for spacecraft attitude determi-
nation and control. Stars registering an intensity above a commanded
threshold are detected and tracked until a break-track is ordered. While
the star is being tracked, the star tracker measures the location of the star
in the field of view (FOV), as well as the star’s magnitude. For early star
trackers, the output was location and magnitude, but recently quaternion
star trackers have been flown that output an attitude quaternion (relative
to the tracker frame as opposed to the body frame) directly.

Station-keeping maneuver A spacecraft orbital maneuver performed to
null errors in the actual orbit relative to the desired orbit.
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Stellar-pointer A spacecraft that conducts its science by pointing a science
instrument (or instruments) at targets on the celestial sphere, i.e., stars,
galaxies, etc. Stellar-pointers are slewed to a commanded attitude, acquire
their target(s), conduct their science, and then slew to the next target(s).

Sun sensor An attitude sensor that detects the presence of the Sun and,
in the case of analog and digital Sun sensors, also outputs measurements
from which the Sun vector or Sun angle can be computed.

Sun-pointer A spacecraft whose attitude is maintained so as to keep its
science instrument(s) oriented toward the Sun.

Sun-synchronous orbit A spacecraft orbit whose plane rotates at the
same rate as the Earth’s orbital rate about the Sun. The spacecraft orbital
plane motion then matches the apparent motion of the Sun (relative to
the Earth). Sun-synchronous spacecraft imaging the Earth will, therefore,
(for example) always image points on the Earth’s equator at the same
local time.

Swarm A large group of autonomous individuals each having simple ca-
pabilities, cooperative actions, and no global knowledge of the group’s
objective.

Tachometer A device that measures the rotation rate of a reaction wheel
or momentum wheel.

Three-axis attitude A specification of the orientation of a spacecraft’s
body axes with respect to a reference frame, typically expressed as a
transformation from the reference frame to the body frame.

Three-axis magnetometer An attitude sensor that measures the magni-
tude and direction of the magnetic field in which the spacecraft is im-
mersed.

Three-axis stabilized A type of spacecraft the orientations of all of whose
body axes are controlled; distinct from a spin-stabilized spacecraft, which
only controls the orientation of its spin axis.

Thruster Spacecraft hardware that generates thrust by expelling propellant.
Torque The vector rate of change of the angular momentum. A rigid body

experiences a torque if a net force is applied to the body along a line that
does not pass through the body’s center of mass. Such forces introduce
rotations about the object’s center of mass.

Tracking and data relay satellite A communications relay satellite in
NASA’s TDRSS. TDRS satellites are geostationary spacecraft.

Tracking and data relay satellite system The collection of NASA’s
TDRS satellites, their ground stations, and their control systems.

Uplink An RF communications channel for data flow from the ground to
the spacecraft.

Virtual mission A mission that consists of both virtual and real spacecraft
assets to meet a mission objective that would otherwise require one or
more real spacecraft and their instruments to be designed, constructed,
launched, and operated.
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Virtual platform A “virtual spacecraft” whose “payload” is composed of
the instrument(s) or payload(s) aboard two or more “real” spacecraft. By
extension, the virtual payload may also include instruments located at
ground-based observatories.

Zenith In the context of the gravitational field of a massive body, the zenith
at a given point is the direction opposite to the force of gravity at that
point. See Nadir.

Zenith-pointer A spacecraft whose primary science instrument(s) is (are)
directed “up” along the local vertical (i.e., along the zenith vector).
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