

Springer Tracts in Advanced Robotics
Volume 56

Editors: Bruno Siciliano · Oussama Khatib · Frans Groen

Martin Buehler, Karl Iagnemma,
Sanjiv Singh (Eds.)

The DARPA Urban
Challenge
Autonomous Vehicles in City Traffic

ABC

Professor Bruno Siciliano, Dipartimento di Informatica e Sistemistica, Università di Napoli Federico II,
Via Claudio 21, 80125 Napoli, Italy, E-mail: siciliano@unina.it

Professor Oussama Khatib, Artificial Intelligence Laboratory, Department of Computer Science,
Stanford University, Stanford, CA 94305-9010, USA, E-mail: khatib@cs.stanford.edu

Professor Frans Groen, Department of Computer Science, Universiteit van Amsterdam, Kruislaan 403,
1098 SJ Amsterdam, The Netherlands, E-mail: groen@science.uva.nl

Editors

Dr. Martin Buehler
iRobot Corporation
8 Crosby Drive, M/S 8-1
Bedford, MA 01730
USA
E-mail: mbuehler@irobot.com

Dr. Karl Iagnemma
Department of Mechanical Engineering
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139
USA
E-mail: kdi@mit.edu

Prof. Sanjiv Singh
Robotics Institute
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
USA
E-mail: ssingh@ri.cmu.edu

ISBN 978-3-642-03990-4 e-ISBN 978-3-642-03991-1

DOI 10.1007/978-3-642-03991-1

Springer Tracts in Advanced Robotics ISSN 1610-7438

Library of Congress Control Number: 2009934347

c©2009 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable for prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed in acid-free paper

5 4 3 2 1 0

springer.com

Editorial Advisory Board

Oliver Brock, TU Berlin, Germany
Herman Bruyninckx, KU Leuven, Belgium
Raja Chatila, LAAS, France
Henrik Christensen, Georgia Tech, USA
Peter Corke, CSIRO, Australia
Paolo Dario, Scuola S. Anna Pisa, Italy
Rüdiger Dillmann, Univ. Karlsruhe, Germany
Ken Goldberg, UC Berkeley, USA
John Hollerbach, Univ. Utah, USA
Makoto Kaneko, Osaka Univ., Japan
Lydia Kavraki, Rice Univ., USA
Vijay Kumar, Univ. Pennsylvania, USA
Sukhan Lee, Sungkyunkwan Univ., Korea
Frank Park, Seoul National Univ., Korea
Tim Salcudean, Univ. British Columbia, Canada
Roland Siegwart, ETH Zurich, Switzerland
Guarav Sukhatme, Univ. Southern California, USA
Sebastian Thrun, Stanford Univ., USA
Yangsheng Xu, Chinese Univ. Hong Kong, PRC
Shin’ichi Yuta, Tsukuba Univ., Japan

STAR (Springer Tracts in Advanced Robotics) has been promoted un-
der the auspices of EURON (European Robotics Research Network)

ROBOTICS
Research

Network

European

E
U
R
O
N

* *

*
*
*

*
*
*

*

Foreword

By the dawn of the new millennium, robotics has undergone a major transformation
in scope and dimensions. This expansion has been brought about by the maturity of
the field and the advances in its related technologies. From a largely dominant
industrial focus, robotics has been rapidly expanding into the challenges of the
human world. The new generation of robots is expected to safely and dependably
co-habitat with humans in homes, workplaces, and communities, providing support
in services, entertainment, education, healthcare, manufacturing, and assistance.

Beyond its impact on physical robots, the body of knowledge robotics has
produced is revealing a much wider range of applications reaching across diverse
research areas and scientific disciplines, such as: biomechanics, haptics,
neurosciences, virtual simulation, animation, surgery, and sensor networks among
others. In return, the challenges of the new emerging areas are proving an
abundant source of stimulation and insights for the field of robotics. It is indeed at
the intersection of disciplines that the most striking advances happen.

The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to
bring, in a timely fashion, the latest advances and developments in robotics on the
basis of their significance and quality. It is our hope that the wider dissemination
of research developments will stimulate more exchanges and collaborations
among the research community and contribute to further advancement of this
rapidly growing field.

The volume edited by Martin Buehler, Karl Iagnemma and Sanjiv Singh
presents a unique and complete collection of the scientific results by the finalist
teams which took part into the Urban Challenge in November 2007 in the mock
city environment of the George Air Force base in Victorville, California. The
book is the companion of the previous book by the same editors which was
devoted to the Grand Challenge in the Nevada desert of October 2005, the second
in the series sponsored by DARPA.

The Urban Challenge demonstrated how the fast growing progress toward the
development of new perception, control, and motion planning techniques allow
intelligent autonomous vehicles not only to travel significant distances in off-road
terrain, but also to operate in urban scenarios. Beyond the value for future
military applications motivating DARPA to sponsor the race, the expected impact

VIII Foreword

in the commercial sector for automotive manufacturers is equally if not more
important: autonomous sensing and control constitute key technologies to vehicles
of the future that might help save thousands of lives now lost in traffic accidents!

Like in the case of the previous volume, the original papers were earlier
published in three special issues of the Journal of Field Robotics. Our series is
very proud to reprise them and again offer archival publication as a special STAR
volume!

Naples, Italy
July 2009

Bruno Siciliano
STAR Editor

Foreword

It might have been the first robotic demolition derby.
Imagine a large field of vehicles without drivers traversing 60 miles in live

traffic, operating entirely without human guidance. A complex course including
intersections, traffic circles, and parking lots, defined by just kilobytes of data.
Vehicles several meters wide traveling down lanes only slightly wider, using
localization systems with an accuracy of several meters. Humans in vehicles
facing full-size unmanned vehicles at approach speeds up to 60 miles per hour.
Even today, this does not sound like a recipe for success.

The Urban Challenge, conducted in November, 2007, began with the vision of
orderly robotic traffic –busy city streets with a mix of human and robotic drivers.
It is clear that the future use of autonomous vehicles would be severely limited
unless operation were demonstrably safe amidst moving traffic. A conclusive
demonstration would be impossible for many other organizations, but this is
precisely the type of risk that the Defense Advanced Research Projects Agency
(DARPA) was created to tackle.

In the face of such long odds, the Agency’s ace card is its ultra-resourceful
contractor community. It was this community of participants, who deciphered the
rules, husbanded resources, and invented the way to a successful conclusion.
Their technical results are set down in this special edition, but read between the
lines to appreciate the magnitude of the task and the inherent risk undertaken.

The successful program outcome is really a tribute to this entire community,
from the top teams who conducted tutorials in the pit area, to the intrepid groups
of undergraduates who dared to compete on a shoestring. This technical
community is the group that both taught one another and competed with one
another to create the excellence that will be remembered as the Urban Challenge.

In the end, when the last paper is written and the best ideas are carried forward
into subsequent developments, what remains is the inspiration of a group of
researchers who proved to themselves and to the world what was possible with too
little funds, not enough time, in pursuit of a clear and focused goal.

Congratulations to them all.

Norm Whitaker
DARPA Urban Challenge Program Manager

Foreword

The 3rd DARPA Grand Challenge also known as the “Urban Challenge” almost
didn’t happen. The previous challenges ended so successfully that I didn’t see a
point to go onto another one. DARPA’s mission is to show that something can be
done and to transition it on to other agencies and organizations for the development
while we go back to determine what new technology needs to be brought forth.

But there were strong arguments to carry on; the major point was that we didn’t
prove it could be done in traffic when there were both moving robotic vehicles and
moving vehicles driven by people. I agreed and the Urban Challenge was born.

We decided on George Air Force base in Victorville California, which was no
longer in use but still had a housing development with streets, stop signs, etc. We
also decided that the evaluation would not be strictly based on speed getting
through a course but that the vehicles had to obey California driving laws. In fact
we decided to use the California driving test evaluation criteria as a way to
distinguish between vehicles that could go fast and those that also had at least the
intelligence to pass the test.

This meant that we were going to have to have people out on the track writing
traffic tickets which increased greatly the danger of the event.

We had 20+ vehicles make it into the qualifying runs. They had to go through a
difficult test. Not only did they have to be good technically but they also had to
prove that they were safe. The safety concern culled the number of vehicles who
were going to be allowed into the finals down to eleven.

I worried about what would happen the first time robotic vehicles met other
robotic vehicles with no possible human intervention. This was something we
couldn’t test in the qualifying runs and was a major unknown.

The nightmare happened within minutes of the start when four robotics vehicles
came to a 4-way stop at the same time. I held my breath as this event unfolded.

It turned out that there wasn’t a problem. California rules state that the vehicle
which arrives before yours at the stop sign has the right of way. The robotic
vehicles knew the arrival order and therefore knew their turn. The robots
performed perfectly. In fact, we were having trouble with the vehicles driven by
humans who tended to somewhat disobey the California rules.

It was a spectacular finish. We had 6 out of the 11 starters finish and gave away all
the 1st, 2nd, and 3rd prizes. I am sure this book will go into greater depth on the details.

XII Foreword

The response from the US and the world was fantastic. We had done what we
wanted to do and showed that robotic vehicles could perform, even when mixed in
with each other and people driven vehicles, in a very realistic environment.

The Urban Challenge showed that a new important military capability was
possible and convoys, for example, might someday not need people drivers. But as
important, we had impacted the lives of tens of thousands of people who might
never have gotten involved in science and engineering if it had not been for the
Challenge series and learned how much fun it was.

The Challenge series may not have been the most important capability that was
developed during my 8 years as DARPA Director but it was high on the list and is
undoubtedly the most publicly known development since the internet. I am sure
that this book will give you much more insight and details in what happened and I
know you will enjoy reading it even if you were not there in person.

Anthony J. “Tony” Tether
DARPA Director, 2001-2009

Preface

The Defense Advanced Research Projects Agency (DARPA) Urban Challenge
(DUC) was held on November 3, 2007, at the now-closed George Air Force Base
in Victorville, California, in the United States. The DUC was the third in a series
of DARPA-sponsored competitions for autonomous vehicles. Whereas the
previous two “Grand Challenges” (held in 2003 and 2005) were intended to
demonstrate that autonomous ground vehicles could travel significant distances in
off-road terrain, the DUC was designed to foster innovation in autonomous
vehicle operation in busy urban environments. Competitors developed full-scale
(i.e., passenger vehicle–sized) autonomous vehicles to navigate through a mock
city environment, executing simulated military supply missions while merging
into moving traffic, navigating traffic circles, negotiating busy intersections, and
avoiding obstacles. Race rules required that the 96 km (60 mile) course be
completed in less than 6 hours. The rules also required that competitors obey all
traffic regulations while avoiding other competitors and humandriven “traffic
vehicles.”

The winner of the race—and of a $2 million dollar first prize—was a modified
Chevy Tahoe named “Boss” developed by Tartan Racing, a team led by Carnegie
Mellon University. The second-place finisher, and recipient of a $1 million prize,
was Stanford Racing Team’s “Junior,” a Volkswagen Passat. In third place was
team VictorTango from Virginia Tech, winning a $500,000 prize with a Ford
Escape hybrid dubbed “Odin.” Vehicles from MIT, Cornell, and the University of
Pennsylvania/Lehigh also successfully completed the course. It should be noted
that these 6 teams were winnowed down from an initial pool of 89 teams that were
initially accepted for participation in the DUC. Three months before the race, a
panel from DARPA selected 35 teams to participate in the National Qualifying
Event (NQE), which was held one week before the final race. Field trials at the
NQE narrowed the field down to the 11 teams that competed on race day.

It can be argued that the greatest achievement of the Urban Challenge was the
production of important new research in perception, control, and motion planning
for intelligent autonomous vehicles operating in urban scenarios. Another long-
term result of the DUC is the undeniable shift in public perception that robotic
systems are now able to successfully manage the complexities of an urban
environment. Although the race’s mock city environment simplified some of the

 Preface XIV

challenges present in a real urban environment (e.g., there were no pedestrians or
traffic signals), the race left no doubt in the minds of most observers that the
development of vehicles that can “drive themselves” in real-world settings is now
inevitable.

Although DARPA’s direct motivation for sponsoring the race was to foster
technology for future military applications, a nearer term impact may lie in the
commercial sector. Automotive manufacturers view autonomous sensing and
control technologies as keys to vehicles of the future that will save thousands of
lives now lost in traffic accidents. Manufacturers of mining and agricultural
equipment are also interested in creating a next generation of vehicles that will
reduce the need for human control in dirty and dangerous applications. Clearly, if
the technology displayed at the DUC can be made inexpensive and robust enough
for use in the commercial sector, the effect of the Urban Challenge on society will
be substantial and long lasting. For this, the robotics community is beholden to
DARPA for providing both critical resources and a well-designed evaluation
process for the competition.

This book presents 13 papers describing all of the vehicles that competed as
finalists in the DUC. These papers initially appeared in three special issues of the
Journal of Field Robotics, in August, September, and October 2008. They
document the mechanical, algorithmic, and sensory solutions developed by the
various teams. All papers were subjected to the normal Journal of Field Robotics
peer review process. Also included in this volume is a new picture gallery of the
finalist robots, with a description of their individual race results, and forewards by
Norm Whitaker, the DARPA program manager who oversaw the Urban Challenge
contest, and Tony Tether, who served as DARPA’s director from 2001-2009.

The first paper, Tartan Racing’s “Autonomous Driving in Urban Environments:
Boss and the Urban Challenge” by Urmson et al., is a comprehensive description
of Boss. The paper describes Boss’s mechanical and software systems, including
its motion planning, perception, mission planning, and tactical behavior
algorithms. The software infrastructure is also detailed. Testing, performance in
the NQE, and race performance are also documented. Boss averaged 22.5 km/h
during the race and completed the course with a winning time of 4 hours and 10
minutes. A companion paper, “Motion Planning in Urban Environments,” by
Ferguson et al., offers more detail about Boss’ planning system, which combines a
model-predictive trajectory generation algorithm for computing dynamically
feasible actions with two higher-level planners for generating long-range plans in
both on-road and unstructured regions of the environment.

The next paper, “Junior: The Stanford Entry in the Urban Challenge” by
Montemerlo et al., focuses on Stanford’s software and describes how Junior made
its driving decisions through a distributed software pipeline that integrated
perception, planning, and control. The paper illustrates the development of a
robust system for urban in-traffic autonomous navigation, based on the integration
of recent innovations in probabilistic localization, mapping, tracking, global and
local planning, and a finite state machine for making the robot robust to
unexpected situations. Also presented are new developments in obstacle/curb
detection, vehicle tracking, motion planning, and behavioral hierarchies that

 Preface XV

address a broad range of traffic situations. The paper concludes with an analysis of
notable race events. Junior averaged 22.1 km/h during the race and completed the
course with a second-place time of 4 hours and 29 minutes.

Team VictorTango’s entry into the DUC is described in the paper “Odin: Team
VictorTango’s Entry in the DARPA Urban Challenge” by Bacha et al. An
overview of the vehicle platform and system architecture is provided, along with a
description of the perception and planning systems. A description of Odin’s
performance in the NQE and race is also provided, including an analysis of
various issues faced by the vehicle during testing and competition. Odin averaged
just under 21 km/h in the race and completed the course in third place with a time
of 4 hours and 36 minutes.

The paper, “A Perception-Driven Autonomous Urban Vehicle,” from the MIT
team, describes the architecture and implementation of a vehicle designed to
handle the DARPA Urban Challenge requirements of perceiving and navigating a
road network with segments defined by sparse waypoints. The vehicle
implementation includes a large suite of heterogeneous sensors with significant
communications and computation bandwidth to capture and process high-
resolution, high-rate sensor data. The output of the perception system is fed into a
kinodynamic motion planning algorithm that enables driving in lanes, three-point
turns, parking, and maneuvering through obstacle fields. The intention was to
develop a platform for research in autonomous driving in GPS-denied and highly
dynamic environments with poor a priori information. Team MIT’s entry
successfully completed the course, finishing in fourth place.

“Little Ben: The Ben Franklin Racing Team’s Entry in the 2007 DARPA Urban
Challenge” by Bohren et al. details the sensing, planning, navigation, and
actuation systems for “Little Ben,” a modified Toyota Prius hybrid. The paper
describes methods for integrating sensor information into a dynamic map that can
robustly handle GPS dropouts and errors. A planning algorithm is presented that
consists of a high-level mission planner and low-level trajectory planner. A
method for cost-based actuator level control is also described. Little Ben was one
of the six vehicles that successfully completed the Urban Challenge.

The paper “Team Cornell’s Skynet: Robust Perception and Planning in an
Urban Environment” by Miller et al. describes Team Cornell’s entry into the
DUC, detailing the design and software of the autonomous vehicle Skynet. The
article describes Skynet’s custom actuation and power distribution system, tightly
coupled attitude and position estimator, novel obstacle detection and tracking
system, system for augmenting position estimates with vision-based detection
algorithms, path planner based on physical vehicle constraints and a nonlinear
optimization routine, and a state-based reasoning agent for obeying traffic laws.
The successful performance of Skynet at the NQE and final race are also
described.

“A Practical Approach to Robotic Design for the DARPA Urban Challenge” by
Patz et al. describes the journey of TeamUCF and their “Knight Rider” during the
Urban Challenge. Three of the only five core team members had participated in
the 2005 Grand Challenge. This team’s success is all the more impressive when
considering its small size and budget. Sensor data were fused from a Doppler

 Preface XVI

radar and multiple SICK laser scanners. Two of those scanners rotated to provide
3-D image processing with both range and intensity data. This “world view” was
processed by a context-based reasoning control system to yield tactical mission
commands, which were forwarded to traditional PID control loops.

The next paper, “Team AnnieWAY’s Autonomous System for the DARPA
Urban Challenge 2007,” describes Team AnnieWay’s minimalistic approach that
relied primarily on a multibeam Velodyne laser scanner mounted on the rooftop of
their VW Passat, and just one computer. The laser scanner’s range data provided
3D scene geometry information, and the reflectivity data allowed robust lane
marker detection. Mission and maneuver selection was conducted via a
hierarchical state machine. The reactive part of the system used a precomputed set
of motion primitives that vary with the speed of the vehicle and that are described
in the subsequent paper, “Driving with Tentacles: Integral Structures for Sensing
and Motion” by von Hundelshausen et al. Here, motion primitives (tentacles) that
Team AnnieWAY used for both perception and motion execution are described. In
contrast to other methods, the algorithm uses a vehicle-centered occupancy grid to
avoid obstacles. The approach is very efficient, because the relationship between
tentacles and the grid is static. Even though this approach is not based on vehicle
dynamics, the resulting path errors are shown to be bounded to obstacle-free areas.

“Caroline: An Autonomously Driving Vehicle for Urban Environments,”
describes the architecture of a system comprising eight main modules: sensor data
acquisition, sensor data fusion, image processing, digital map, artificial
intelligence, vehicle path planning and low-level control, supervisory watchdog
and online-diagnosis, and telemetry and data storage for offline analysis. Detailed
analysis of the vehicle’s performance provides interesting insights into the
challenges of autonomous urban driving systems. The paper concludes with a
description of the events that led up to the collision with MIT’s Talus, and the
resulting elimination of Caroline.

The paper, “The MIT–Cornell Collision and Why It Happened,” is an in-depth
analysis into the collision between the MIT and the Cornell vehicles partway into
the competition. This collaborative study, conducted jointly by MIT and Cornell,
traces the sequence of events that preceded the collision and examines its root
causes. A summary of robot–robot interactions during the race is presented. The
logs from both vehicles are used to show the gulf between robot and human-driver
behavior at close vehicle proximities. The paper ends with proposed approaches
that could address the issues found to be at fault.

The paper, “A Perspective on Emerging Automotive Safety Applications,
Derived from Lessons Learned through Participation in the DARPA Grand
Challenges,” is a description of the entry led by Ford Motor Company. The article
provides a motivation for robotics research as a means to achieve greater safety
for passenger vehicles, with an analysis that suggests that human drivers are four
to six times as competent as today’s autonomous vehicles. The article examines
the design of the Ford team’s autonomous system and accompanying sensor suite.
It presents a detailed analysis of vehicle performance during trials and the
competition and concludes with lessons learned.

The final paper, “TerraMax: Team Oshkosh Urban Robot,” describes an entry

 Preface XVII

that was distinguished by its use of a 12-ton medium tactical vehicle replacement
(MTVR), which provides the majority of the logistics support for the Marine
Corps. Sensing was primarily done using passive computer vision augmented by
laser scanning. The article provides a description of the system and an analysis of
the performance during the competition, and during a run conducted afterward on
the same course.

We hope that the papers collected here will be of interest to both roboticists and
a wider audience of readers who are interested in learning about the state of the art
in autonomous vehicle technology. The sensors, algorithms, and architectures
described in these issues will no doubt soon be seen on highways, construction
sites, and factory floors. Readers of this book might also be interested in a
companion volume, The 2005 DARPA Grand Challenge: The Great Robot Race
(Springer, 2007), which describes the technological innovation behind robots that
raced in the 2005 DARPA Grand Challenge.

Finally, we would like to express our gratitude to the many individuals who
served as reviewers of these papers, often through several iterations, and
contributed to their high quality.

Martin Buehler
Karl Iagnemma

Sanjiv Singh

Acknowledgements to Reviewers

The editors would like to express their appreciation to the following professionals
who generously contributed their time and expertise to provide reviews for the
manuscripts in the DARPA Urban Challenge Special Issues of the Journal of
Field Robotics:

Barrett, David
BenAmar, Faiz
Berkemeier, Matthew
Broggi, Alberto
Corke, Peter
Cousins, Steve
Crane, Carl
Daily, Robert
Digney, Bruce
Durrant-Whyte, Hugh
Ferguson, Dave
Feron, Eric
Foessel, Alex
Frazzoli, Emilio
Golconda, Suresh
Hall, Ernie
Halme, Aarne
Hamner, Bradley
How, Jonathan
Howard, Andrew
Howard, Thomas
Hundelshausen, Felix
Jones, Randy
Kalik, Steven
Kammel, Soeren
Klarquist, William
Kluge, Karl
Kuwata, Yoshi
Lee, Daniel

Leedy, Brett
Leonard, John
Maimone, Mark
Matthies, Larry
Minor, Mark
Montemerlo, Mike
Nebot, Eduardo
Newman, Paul
Papelis, Yiannis
Pillat, Remo
Pradalier, Cedric
Rasmussen, Christopher
Roberts, Jonathan
Rumpe, Bernhard
Rybski, Paul
Simmons, Reid
Spenko, Matthew
Stroupe, Ashley
Teller, Seth
Trepagnier, Paul
Vandapel, Nicolas
Urmson, Chris
Wang, Chieh-Chih (Bob)
Wooden, David
Yamauchi, Brian
Yoder, JD
Yoshida, Kazuya
Zlot, Robert

Picture Gallery of Finalists

Vehicle Name Team Name Result

Boss Tartan Racing Team Finished first in 250 minutes, 20
seconds.

Source: Tartan Racing Team

XXII Picture Gallery of Finalists

Vehicle Name Team Name Result

Junior Stanford Racing Team Finished second in 269 minutes,
28 seconds.

Source: DARPA

Picture Gallery of Finalists XXIII

Vehicle Name Team Name Result

Odin Victor Tango Finished third in 276 minutes, 38 seconds.

Source: Victor Tango

XXIV Picture Gallery of Finalists

Vehicle Name Team Name Result

Talus MIT Finished fourth.

Source: DARPA

Picture Gallery of Finalists XXV

Vehicle Name Team Name Result

Little Ben Ben Franklin
Racing Team

One of the six vehicles that finished the
course (fifth or sixth place).

Source: DARPA

XXVI Picture Gallery of Finalists

Vehicle Name Team Name Result

Skynet Team Cornell One of the six vehicles that finished the
course (fifth or sixth place).

Source: DARPA

Picture Gallery of Finalists XXVII

Vehicle Name Team Name Result

KnightRider Team UCF Drove for two hours until a GPS data failure
occurred.

Source: DARPA

XXVIII Picture Gallery of Finalists

Vehicle Name Team Name Result

AnnieWay Team
AnnieWay

AnnieWay stopped due to a software
exception that occurred while switching
from road planning to zone navigation.

Source: DARPA

Picture Gallery of Finalists XXIX

Vehicle Name Team Name Result

Caroline CarOLO Caroline drove 16.4 km (10.2 miles) and
was retired shortly after a collision with
MIT’s TALOS.

Source: DARPA

XXX Picture Gallery of Finalists

Vehicle Name Team Name Result

XAV-250 Intelligent
Vehicle Systems

While waiting at a stop sign, a false
positive (sensing a curb where there was
none) together with a large time-out
value caused an excessive wait which
disqualified the vehicle.

Source: IVS

Picture Gallery of Finalists XXXI

Vehicle Name Team Name Result

TerraMax Team Oshkosh TerraMax completed the first four sub-
missions in mission 1 before being
stopped after a failure in the parking lot
due to a software bug.

Source: Oshkosh

Contents

Autonomous Driving in Urban Environments: Boss and
the Urban Challenge
Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker,
Robert Bittner, M.N. Clark, John Dolan, Dave Duggins,
Tugrul Galatali, Chris Geyer, Michele Gittleman, Sam Harbaugh,
Martial Hebert, Thomas M. Howard, Sascha Kolski, Alonzo Kelly,
Maxim Likhachev, Matt McNaughton, Nick Miller, Kevin Peterson,
Brian Pilnick, Raj Rajkumar, Paul Rybski, Bryan Salesky,
Young-Woo Seo, Sanjiv Singh, Jarrod Snider, Anthony Stentz,
William “Red” Whittaker, Ziv Wolkowicki, Jason Ziglar,
Hong Bae, Thomas Brown, Daniel Demitrish, Bakhtiar Litkouhi,
Jim Nickolaou, Varsha Sadekar, Wende Zhang, Joshua Struble,
Michael Taylor, Michael Darms, Dave Ferguson 1

Motion Planning in Urban Environments
Dave Ferguson, Thomas M. Howard, Maxim Likhachevs 61

Junior: The Stanford Entry in the Urban Challenge
Michael Montemerlo, Jan Becker, Suhrid Bhat, Hendrik Dahlkamp,
Dmitri Dolgov, Scott Ettinger, Dirk Haehnel, Tim Hilden,
Gabe Hoffmann, Burkhard Huhnke, Doug Johnston,
Stefan Klumpp, Dirk Langer, Anthony Levandowski, Jesse Levinson,
Julien Marcil, David Orenstein, Johannes Paefgen, Isaac Penny,
Anna Petrovskaya, Mike Pflueger, Ganymed Stanek, David Stavens,
Antone Vogt, Sebastian Thrun . 91

Odin: Team VictorTango’s Entry in the DARPA Urban
Challenge
Charles Reinholtz, Dennis Hong, Al Wicks, Andrew Bacha,
Cheryl Bauman, Ruel Faruque, Michael Fleming, Chris Terwelp,
Thomas Alberi, David Anderson, Stephen Cacciola, Patrick Currier,
Aaron Dalton, Jesse Farmer, Jesse Hurdus, Shawn Kimmel,
Peter King, Andrew Taylor, David Van Covern, Mike Webster 125

XXXIV Contents

A Perception-Driven Autonomous Urban Vehicle
John Leonard, Jonathan How, Seth Teller, Mitch Berger,
Stefan Campbell, Gaston Fiore, Luke Fletcher, Emilio Frazzoli,
Albert Huang, Sertac Karaman, Olivier Koch, Yoshiaki Kuwata,
David Moore, Edwin Olson, Steve Peters, Justin Teo,
Robert Truax, Matthew Walter, David Barrett, Alexander Epstein,
Keoni Maheloni, Katy Moyer, Troy Jones, Ryan Buckley,
Matthew Antone, Robert Galejs, Siddhartha Krishnamurthy,
Jonathan Williams . 163

Little Ben: The Ben Franklin Racing Team’s Entry in the
2007 DARPA Urban Challenge
Jon Bohren, Tully Foote, Jim Keller, Alex Kushleyev, Daniel Lee,
Alex Stewart, Paul Vernaza, Jason Derenick, John Spletzer,
Brian Satterfield . 231

Team Cornell’s Skynet: Robust Perception and Planning
in an Urban Environment
Isaac Miller, Mark Campbell, Dan Huttenlocher, Aaron Nathan,
Frank-Robert Kline, Pete Moran, Noah Zych, Brian Schimpf,
Sergei Lupashin, Ephrahim Garcia, Jason Catlin, Mike Kurdziel,
Hikaru Fujishima . 257

A Practical Approach to Robotic Design for the DARPA
Urban Challenge
Benjamin J. Patz, Yiannis Papelis, Remo Pillat, Gary Stein,
Don Harper . 305

Team AnnieWAY’s Autonomous System for the DARPA
Urban Challenge 2007
Sören Kammel, Julius Ziegler, Benjamin Pitzer, Moritz Werling,
Tobias Gindele, Daniel Jagzent, Joachim Schöder, Michael Thuy,
Matthias Goebl, Felix von Hundelshausen, Oliver Pink,
Christian Frese, Christoph Stiller . 359

Driving with Tentacles - Integral Structures for Sensing
and Motion
Felix v. Hundelshausen, Michael Himmelsbach, Falk Hecker,
Andre Mueller, Hans-Joachim Wuensche . 393

Contents XXXV

Caroline: An Autonomously Driving Vehicle for Urban
Environments
Fred W. Rauskolb, Kai Berger, Christian Lipski, Marcus Magnor,
Karsten Cornelsen, Jan Effertz, Thomas Form, Fabian Graefe,
Sebastian Ohl, Walter Schumacher, Jörn-Marten Wille,
Peter Hecker, Tobias Nothdurft, Michael Doering, Kai Homeier,
Johannes Morgenroth, Lars Wolf, Christian Basarke,
Christian Berger, Tim Gülke, Felix Klose, Bernhard Rumpe 441

The MIT – Cornell Collision and Why It Happened
Luke Fletcher, Seth Teller, Edwin Olson, David Moore,
Yoshiaki Kuwata, Jonathan How, John Leonard, Isaac Miller,
Mark Campbell, Dan Huttenlocher, Aaron Nathan,
Frank-Robert Kline . 509

A Perspective on Emerging Automotive Safety
Applications, Derived from Lessons Learned through
Participation in the DARPA Grand Challenges
J.R. McBride, J.C. Ivan, D.S. Rhode, J.D. Rupp, M.Y. Rupp,
J.D. Higgins, D.D. Turner, R.M. Eustice . 549

TerraMax: Team Oshkosh Urban Robot
Yi-Liang Chen, Venkataraman Sundareswaran, Craig Anderson,
Alberto Broggi, Paolo Grisleri, Pier Paolo Porta, Paolo Zani,
John Beck . 595

Author Index . 623

M. Buehler et al. (Eds.): The DARPA Urban Challenge, STAR 56, pp. 1–59.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Autonomous Driving in Urban Environments:
Boss and the Urban Challenge

Chris Urmson1,*, Joshua Anhalt1, Drew Bagnell1, Christopher Baker1,
Robert Bittner1, M.N. Clark1, John Dolan1, Dave Duggins1, Tugrul Galatali1,
Chris Geyer1, Michele Gittleman1, Sam Harbaugh1, Martial Hebert1,
Thomas M. Howard1, Sascha Kolski1, Alonzo Kelly1, Maxim Likhachev1,
Matt McNaughton1, Nick Miller1, Kevin Peterson1, Brian Pilnick1, Raj Rajkumar1,
Paul Rybski1, Bryan Salesky1, Young-Woo Seo1, Sanjiv Singh1, Jarrod Snider1,
Anthony Stentz1, William “Red” Whittaker1, Ziv Wolkowicki1, Jason Ziglar1,
Hong Bae2, Thomas Brown2, Daniel Demitrish2, Bakhtiar Litkouhi2,
Jim Nickolaou2, Varsha Sadekar2, Wende Zhang2, Joshua Struble3,
Michael Taylor3, Michael Darms4, and Dave Ferguson5

1 Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
curmson@ri.cmu.edu

2 General Motors Research and Development
Warren, Michigan

3 Caterpillar Inc.
Peoria, Illinois 61656

4 Continental AG
Auburn Hills, Michigan 48326

5 Intel Research
Pittsburgh, Pennsylvania 15213

Abstract. Boss is an autonomous vehicle that uses on-board sensors (GPS, lasers, radars,
and cameras) to track other vehicles, detect static obstacles and localize itself relative to a
road model. A three-layer planning system combines mission, behavioral and motion
planning to drive in urban environments. The mission planning layer considers which street
to take to achieve a mission goal. The behavioral layer determines when to change lanes,
precedence at intersections and performs error recovery maneuvers. The motion planning
layer selects actions to avoid obstacles while making progress towards local goals.

The system was developed from the ground up to address the requirements of the
DARPA Urban Challenge using a spiral system development process with a heavy emphasis
on regular, regressive system testing. During the National Qualification Event and the 85km
Urban Challenge Final Event Boss demonstrated some of its capabilities, qualifying first and
winning the challenge.

1 Introduction

In 2003 the Defense Advanced Research Projects Agency (DARPA) announced
the first Grand Challenge. The goal was to develop autonomous vehicles capable

* Corresponding author.

2 C. Urmson et al.

of navigating desert trails and roads at high speeds. The competition was
generated as a response to a congressional mandate that a third of US military
ground vehicles be unmanned by 2015. While there had been a series of ground
vehicle research programs, the consensus was that existing research programs
would be unable to deliver the technology necessary to meet this goal (Committee
on Army Unmanned Ground Vehicle Technology, 2002). DARPA decided to
rally the field to meet this need.

The first Grand Challenge was held in March 2004. Though no vehicle was
able to complete the challenge, a vehicle named Sandstorm went the furthest and
the farthest, setting a new benchmark for autonomous capability and provided a
template on how to win the challenge (Urmson et al., 2004). The next year, 5
vehicles were able to complete a similar challenge, with Stanley (Thrun et al.,
2006) finishing minutes ahead of Sandstorm and H1ghlander (Urmson et al, 2006)
to complete the 244km race in a little under 7 hours.

After the success of the Grand Challenges, DARPA organized a third event: the
Urban Challenge. The challenge, announced in April 2006, called for autonomous
vehicles to drive 97 km through an urban environment interacting with other
moving vehicles and obeying the California Driver Handbook. Interest in the
event was immense, with 89 teams from around the world registering interest in
competing. The teams were a mix of industry and academics, all with enthusiasm
for advancing autonomous vehicle capabilities.

To compete in the challenge, teams had to pass a series of tests. The first was
to provide a credible technical paper describing how they would implement a safe
and capable autonomous vehicle. Based on these papers, fifty-three teams were
given the opportunity to demonstrate firsthand for DARPA their ability to
navigate simple urban driving scenarios including passing stopped cars and

Fig. 1. Boss, the autonomous Chevy Tahoe that won the 2007 DARPA Urban Challenge.

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 3

interacting appropriately at intersections. After these events, the field was further
narrowed to thirty-six teams who were invited to participate in the National
Qualification Event (NQE) in Victorville, California. Of these teams, only eleven
would qualify for the Urban Challenge Final event (UCFE).

1.1 Overview

This article describes the algorithms and mechanism that makeup Boss (see Figure
1), an autonomous vehicle capable of driving safely in traffic at speeds up to 48
kph. Boss is named after Charles “Boss” Kettering, a luminary figure in the
automotive industry, with inventions as wide-ranging as the all-electric starter for
the automobile, the coolant Freon, and the premature-infant incubator. Boss was
developed by the Tartan Racing Team, which was composed of students, staff and
researchers from several organizations including Carnegie Mellon University,
General Motors, Caterpillar, Continental, and Intel. This article begins by
describing the autonomous vehicle and sensors before moving on to a discussion
of the algorithms and approaches that enabled it to drive autonomously.

The motion planning sub-system (described in section 3) consists of two
planners, each capable of avoiding static and dynamic obstacles while achieving a
desired goal. Two broad scenarios are considered: structured driving (road
following) and unstructured driving (maneuvering in parking lots). For structured
driving, a local planner generates trajectories to avoid obstacles while remaining in
its lane. For unstructured driving, such as entering/exiting a parking lot, a planner
with a four-dimensional search space (position, orientation, direction of travel) is
used. Regardless of which planner is currently active, the result is a trajectory that,
when executed by the vehicle controller, will safely drive toward a goal.

The perception sub-system (described in section 4) processes and fuses data
from Boss’s multiple sensors to provide a composite model of the world to the rest
of the system. The model consists of three main parts: a static obstacle map, a list
of the moving vehicles in the world, and the location of Boss relative to the road.

The mission planner (described in section 5) computes the cost of all possible
routes to the next mission checkpoint given knowledge of the road network. The
mission planner reasons about the optimal path to a particular checkpoint much
like a human would plan a route from their current position to a destination, such
as a grocery store or gas station. The mission planner compares routes based on
knowledge of road blockages, the maximum legal speed limit, and the nominal
time required to make one maneuver versus another. For example, a route that
allows a higher overall speed, but incorporates a U-turn, may actually be slower
than a route with a lower overall speed but that does not require a U-turn.

The behavioral system (described in section 6) formulates a problem definition
for the motion planner to solve based on the strategic information provided by the
mission planner. The behavioral sub-system makes tactical decisions to execute
the mission plan and handles error recovery when there are problems. The
behavioral system is roughly divided into three sub-components: Lane Driving,
Intersection Handling, and Goal Selection. The roles of the first two sub-
components are self-explanatory. Goal Selection is responsible for distributing

4 C. Urmson et al.

execution tasks to the other behavioral components or the motion layer, and for
selecting actions to handle error recovery.

The software infrastructure and tools that enable the other sub-systems are
described in section 7. The software infrastructure provides the foundation upon
which the algorithms are implemented. Additionally, the infrastructure provides a
toolbox of components for online data logging, offline data log playback, and
visualization utilities that aid developers in building and troubleshooting the
system. A run-time execution framework is provided that wraps around algorithms
and provides inter-process communication, access to configurable parameters, a
common clock, and a host of other utilities.

Testing and performance in the NQE and UCFE are described in sections 8
and 9. During the development of Boss, the team put a significant emphasis on
evaluating performance and finding weaknesses to ensure the vehicle would be
ready for the Urban Challenge. During the qualifiers and final challenge, Boss
performed well, but made a few mistakes. Despite these mistakes and a very
capable field of competitors, Boss qualified for the final event and won the Urban
Challenge.

2 Boss

Boss is a 2007 Chevrolet Tahoe modified for autonomous driving. Modifications
were driven by the need to provide computer control and also to support safe and
efficient testing of algorithms. Thus, modifications can be classified into two
categories: those for automating the vehicle and those that made testing either
safer or easier. A commercial off-the-shelf drive-by-wire system was integrated
into Boss with electric motors to turn the steering column, depress the brake pedal,
and shift the transmission. The third-row seats and cargo area were replaced with
electronics racks, the steering was modified to remove excess compliance, and the
brakes were replaced to allow faster braking and reduce heating.

Boss maintains normal human driving controls (steering wheel, brake and gas
pedals) so that a safety driver can quickly and easily take control during testing.
Boss has its original seats in addition to a custom center console with power and
network outlets which enable developers to power laptops and other accessories,
supporting longer and more productive testing. A welded tube roll cage was also
installed to protect human occupants in the event of a collision or roll-over during
testing. For unmanned operation a safety radio is used to engage autonomous
driving, pause or disable the vehicle.

Boss has two independent power busses. The stock Tahoe power bus remains
intact with its 12VDC battery and harnesses but with an upgraded high-output
alternator. An auxiliary 24VDC power system provides power for the autonomy
hardware. The auxiliary system consists of a belt-driven alternator which charges
a 24VDC battery pack which is inverted to supply a 120VAC bus. Shore power,
in the form of battery chargers, enables Boss to remain fully powered when in the

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 5

shop with the engine off. Thermal control is maintained using the stock vehicle
air conditioning system.

For computation, Boss uses a CompactPCI chassis with ten 2.16GHz
Core2Duo processors, each with 2GB of memory and a pair of gigabit Ethernet
ports. Each computer boots off of a 4GB flash drive, reducing the likelihood of a
disk failure. Two of the machines also mount 500GB hard drives for data logging.
Each computer is also time-synchronized through a custom pulse-per-second
adaptor board.

Boss uses a combination of sensors to provide the redundancy and coverage
necessary to navigate safely in an urban environment. Active sensing is used
predominantly, as can be seen in Table 1. The decision to emphasize active
sensing was primarily due to the team’s skills and the belief that in the Urban
Challenge direct measurement of range and target velocity was more important
than getting richer, but more difficult to interpret, data from a vision system. The
configuration of sensors on Boss is illustrated in Figure 2. One of the novel
aspects of this sensor configuration is the pair of pointable sensor pods located
above the driver and front passenger doors. Each pod contains an ARS 300 Radar
and ISF 172 LIDAR. By pointing these pods, Boss can adjust its field of regard to
cover crossroads that may not otherwise be observed by a fixed sensor
configuration.

Table 1. A description of the sensors incorporated into Boss.

Sensor Characteristics
Applanix POS-LV 220/420 GPS /
IMU (APLX)

• sub-meter accuracy with Omnistar
VBS corrections

• tightly coupled inertial/GPS bridges
GPS-outages

SICK LMS 291-S05/S14 LIDAR
(LMS)

• 180º / 90º x 0.9º FOV with 1º / 0.5º
angular resolution

• 80m maximum range
Velodyne HDL-64 LIDAR (HDL)

• 360º x 26º FOV with 0.1º angular
resolution

• 70m maximum range
Continental ISF 172 LIDAR (ISF)

• 12º x 3.2º FOV
• 150m maximum range

IBEO Alasca XT LIDAR (XT)

• 240º x 3.2º FOV
• 300m maximum range

Continental ARS 300 Radar
(ARS)

• 60º / 17º x 3.2º FOV
• 60m / 200m maximum range

Point Grey Firefly (PGF) • High dynamic range camera
• 45 º FOV

6 C. Urmson et al.

HDL

XT LM
S

XT
LM

S

A
R

S
A

R
S

P
G

F
P

G
F

LM
S

A
R

S

LM
S

AR
S IS

F

A
R

S
IS

F

LMS

LMS

Fig. 2. The mounting location of sensors on the vehicle, refer to Table 1 for abbreviations
used in this figure.

3 Motion Planning

The motion planning layer is responsible for executing the current motion goal
issued from the behaviors layer. This goal may be a location within a road lane
when performing nominal on-road driving, a location within a zone when
traversing through a zone, or any location in the environment when performing
error recovery. The motion planner constrains itself based on the context of the
goal to abide by the rules of the road.

In all cases, the motion planner creates a path towards the desired goal, then
tracks this path by generating a set of candidate trajectories that follow the path to
varying degrees and selecting from this set the best trajectory according to an
evaluation function. This evaluation function differs depending on the context, but
includes consideration of static and dynamic obstacles, curbs, speed, curvature, and
deviation from the path. The selected trajectory can then be directly executed by
the vehicle. For more details on all aspects of the motion planner, see (Ferguson et
al., 2008)

3.1 Trajectory Generation

A model-predictive trajectory generator originally presented in (Howard and
Kelly, 2007) is responsible for generating dynamically feasible actions from an
initial state (x) to a desired terminal state. In general, this algorithm can be applied
to solve the problem of generating a set of parameterized controls (u(p,x)) that
satisfy state constraints (C(x)) whose dynamics can be expressed in the form of a
set of differential equations (f).

x f x A ,u p,x
` ab c

(1)

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 7

To navigate urban environments, position and heading terminal state constraints
are typically required to properly orient a vehicle along the road. The constraint
equation (xC) is the difference between the target terminal state constraints and the
integral of the model dynamics.

xC xC yC C

B CT

(2)

C x
` a
@ xC @Z

0

t f
xA x,p
` a

dt 0

(3)

The fidelity of the vehicle model directly correlates to the effectiveness of a
model-predictive planning approach. The vehicle model describes the mapping
from control inputs to state response (changes in position, orientation, velocity,
etc...). Selecting an appropriate parameterization of controls is important because
it defines the space over which the optimization is performed to satisfy the
boundary state constraints.

The vehicle model used for Boss combines a curvature limit (the minimum
turning radius), a curvature rate limit (a function of the maximum speed at which
the steering wheel can be turned), maximum acceleration and deceleration, and a
model of the control input latency. This model is then simulated using a fixed
timestep Euler integration to evaluate the constraint equation.

The control inputs are described by two parameterized functions: a time-based
linear velocity function (vcmd) and an arc-length-based curvature function (κcmd):

u p,x
` a

vcmd p,t
b c

cmd p,s
` aD ET

(4)

The linear velocity profile takes the form of a constant profile, linear profile,
linear ramp profile, or a trapezoidal profile (Figure 3). The local motion planner
selects the appropriate parameterization for particular applications (such as
parking and distance keeping).

Fig. 3. Velocity profiles used by the trajectory generator.

The response to the curvature command function by the vehicle model defines
the shape of the trajectory. The profile consists of three dependent parameters (κ0,
κ1, and κ2) and the trajectory length (sf). A second-order spline profile was chosen
because it contains enough degrees of freedom (4) to satisfy the boundary state
constraints (3). The initial spline knot point (κ0) is fixed during the optimization

8 C. Urmson et al.

process to a value that generates a smooth or sharp trajectory and will be
discussed later.

p free 1 2 s f
B CT

(5)

As described, the system retains three parameterized freedoms: two curvature
command spline knot points (κ1 ,κ2) and the trajectory length (s). The duality of
the trajectory length (sf) and time (tf) can be resolved by estimating the time that it
takes to drive the entire distance through the linear velocity profile. Time was
used for the independent variable for the linear velocity command function
because of the simplicity of computing profiles defined by accelerations (linear
ramp and trapezoidal profiles). Arc-length was used for the curvature command
function because the trajectory shape is less dependent to the speed at which they
are executed.

Given the three free parameters and the three constraints in our system, we can
use various optimization techniques to solve for the parameter values that
minimize our constraint equation. An initial estimate of the parameter values is
defined using a pre-computed approximate mapping from state space to parameter
space in a lookup table. The parameter estimates are iteratively modified by
linearizing and inverting the differential equations describing the equations of
motion. A correction factor is generated by taking the product of the inverted
Jacobian and the boundary state constraint error. The Jacobian is model-invariant
because it is determined numerically through central differences of simulated
vehicle actions.

xF p,x
` a Z

0

tf

xA x,p
` a

dt

(6)

C x,p
` a

xC@ xF p,x
` a

(7)

p @
C x,p
` a
p

ffffffffffffffffffffffffffF G@ 1

C x,p
` a

(8)

The control parameters are modified until the residual of the boundary state
constraints is within acceptable bounds or until the optimization diverges. If the
boundary state constraints are infeasible to reach given a particular
parameterization (e.g. inside the minimum turning radius) the optimization is
expected to diverge. The resulting trajectory is returned as the best estimate and is
evaluated by the motion planner.

3.2 On-Road Navigation

During on-road navigation, the motion goal from the behavioral system is a
location within a road lane. The motion planner then attempts to generate a
trajectory that moves the vehicle towards this goal location in the desired lane. To
do this, it first constructs a curve along the centerline of the desired lane. This

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 9

represents the nominal path that the center of the vehicle should follow. This
curve is then transformed into a path in rear-axle coordinates to be tracked by the
motion planner.

To robustly follow the desired lane and to avoid static and dynamic obstacles,
the motion planner generates trajectories to a set of local goals derived from the
centerline path. The local goals are placed at a fixed longitudinal distance down
the centerline path, but vary in lateral offset from the path to provide several
options for the planner. The trajectory generation algorithm is used to compute
dynamically feasible trajectories to these local goals. For each goal, two
trajectories are generated: a smooth trajectory and a sharp trajectory. The smooth
trajectory has the initial curvature parameter fixed to the curvature of the
forwards-predicted vehicle state. The sharp trajectory has the initial curvature
parameter set to an offset value from the forwards-predicted vehicle state to
produce a sharp initial action. The velocity profile used for each of these
trajectories is computed based on several factors, including: the maximum
velocity bound given from the behavioral sub-system, the speed limit of the
current road segment, the maximum velocity feasible given the curvature of the
centerline path, and the desired velocity at the goal (e.g. zero if it is a stop line).

Fig. 4. Smooth and sharp trajectories. The trajectory sets are generated to the same
endpoints but differ in their initial commanded curvature.

Figure 4 provides an example of smooth and sharp trajectories (light and dark),
generated to the same goal poses. The smooth trajectories exhibit continuous
curvature control throughout; the sharp trajectories begin with a discontinuous
jump in curvature control, resulting in a sharp response from the vehicle.

The resulting trajectories are then evaluated against their proximity to static and
dynamic obstacles in the environment, as well as their distance from the centerline
path, their smoothness, and various other metrics. The best trajectory according to
these metrics is selected and executed by the vehicle. Because the trajectory
generator computes the feasibility of each trajectory using an accurate vehicle
model, the selected trajectory can be directly executed by the vehicle controller.

10 C. Urmson et al.

(a) (b) (c)

(d) (e) (f)

Fig. 5. A single timeframe following a road lane from the DARPA Urban Challenge.
Shown is the centerline path extracted from the lane (b), the trajectories generated to track
this path (c), and the evaluation of one of these trajectories against both static and dynamic
obstacles (d &e).

Figure 5 provides an example of the local planner following a road lane. Figure
5 (a) shows the vehicle navigating down a two-lane road (lane boundaries shown
in blue, current curvature of the vehicle shown in pink, minimum turning radius
arcs shown in white) with a vehicle in the oncoming lane. Figure 5 (b) shows the
extracted centerline path from the desired lane (in red). Figure 5 (c) shows a set of
trajectories generated by the vehicle given its current state and the centerline path
and lane boundaries. From this set of trajectories, a single trajectory is selected
for execution, as discussed above. Figure 5 (d) shows the evaluation of one of
these trajectories against both static and dynamic obstacles in the environment,
and Figure 5(f) shows this trajectory being selected for execution by the vehicle.

3.3 Zone Navigation

During zone navigation, the motion goal from behaviors is a pose within a zone
(such as a parking spot). The motion planner attempts to generate a trajectory that
moves the vehicle towards this goal pose. However, driving in unstructured
environments, such as zones, significantly differs from driving on roads. As
mentioned in the previous section, when traveling on roads the desired lane
implicitly provides a preferred path for the vehicle (the centerline of the lane).

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 11

In zones there are no driving lanes and thus the movement of the vehicle is far less
constrained.

To efficiently plan a smooth path to a distant goal pose in a zone, we use a
lattice planner that searches over vehicle position (x, y), orientation (θ), and speed
(v). The set of possible local maneuvers considered for each (x, y, θ, v) state in the
planner's search space is constructed offline using the same vehicle model as used
in trajectory generation, so that it can be accurately executed by the vehicle. This
planner searches in a backwards direction, from the goal pose out into the zone,
and generates a path consisting of a sequence of feasible high-fidelity maneuvers
that are collision-free with respect to the static obstacles observed in the
environment. This path is also biased away from undesirable areas within the
environment, such as curbs and locations in the vicinity of dynamic obstacles.

To efficiently generate complex plans over large, obstacle-laden environments,
the planner relies on an anytime, replanning search algorithm known as Anytime
D* (Likhachev et al., 2005). Anytime D* quickly generates an initial, suboptimal
plan for the vehicle and then improves the quality of this solution while
deliberation time allows. At any point in time, Anytime D* provides a provable
upper bound on the sub-optimality of the plan. When new information concerning
the environment is received (for instance, a new static or dynamic obstacle is
observed), Anytime D* is able to efficiently repair its existing solution to account
for the new information. This repair process is expedited by performing the
search in a backwards direction, because in such a scenario, updated information
in the vicinity of the vehicle affects a smaller portion of the search space so that
less repair is required.

To scale to very large zones (up to 0.5 km by 0.5 km), the planner uses a multi-
resolution search and action space. In the vicinity of the goal and vehicle, where
very complex maneuvering may be required, the search considers states of the
vehicles with 32 uniformly spaced orientations. In the areas that are not in the
vicinity of the goal or a vehicle, the search considers only the states of the vehicle
with 16 uniformly spaced orientations. It also uses a sparse set of actions that
allow the vehicle to transition in between these states. Because coarse- and dense-
resolution variants both share the same dimensionality and, in particular, have 16
orientations in common, they seamlessly interface with each other and the
resulting solution paths overlapping both coarse and dense areas of the space are
smooth and feasible.

To ensure that a path is available for the vehicle as soon as it enters a zone, the
lattice planner begins planning for the first goal pose within the zone while the
vehicle is still approaching the zone. By planning a path from the entry point of
the zone in advance, the vehicle can seamlessly transition into the zone without
needing to stop, even for very large and complex zones. In a similar vein, when
the vehicle is in a zone traveling towards a parking spot, we have a second lattice
planner computing a path from that spot to the next desired location (e.g. the next
parking spot to reach or an exit of the zone). When the vehicle reaches its
intended parking spot, the vehicle then immediately follows the path from this
second planner, again eliminating any time spent waiting for a plan to be
generated.

12 C. Urmson et al.

The resulting plan is then tracked by the local planner in a similar manner to the
paths extracted from road lanes. The motion planner generates a set of trajectories
that attempt to follow the plan while also allowing for local maneuverability.
However, in contrast to when following lane paths, the trajectories generated to
follow the zone path all attempt to terminate on the path. Each trajectory is in fact
a concatenation of two short trajectories, with the first of the two short trajectories
ending at an offset position from the path and the second ending back on the path.
By having all concatenated trajectories return to the path, we significantly reduce
the risk of having the vehicle move itself into a state that is difficult to leave.

(a)

(b)

(c)

(d)

Fig. 6. Replanning when new information is received. As Boss navigates towards its
desired parking spot (lattice path shown in red, trajectories to track path in various colors),
it observes more of one of the adjacent vehicles and replans a path that brings it smoothly
into the spot.

Figure 6 illustrates the tracking of the lattice plan and the replanning capability
of the lattice planner. These images were taken from a parking task performed
during the National Qualification Event (the top-left image shows the zone in
green and the neighboring roads in blue). The top-right image shows the initial
path planned for the vehicle to enter the parking spot indicated by the white
triangle. Several of the other spots were occupied by other vehicles (shown as
rectangles of varying colors), with detected obstacles shown as red areas. The

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 13

trajectories generated to follow the path are shown emanating from our vehicle
(notice how each trajectory consists of two sections, with the first leaving the path
and the second returning to the path). As the vehicle gets closer to its intended
spot, it observes more of the vehicle parked in the right-most parking spot
(bottom-left image). At this point, it realizes its current path is infeasible and
replans a new path that has the vehicle perform a loop and pull in smoothly. This
path was favored in terms of time over stopping and backing up to re-position.

The lattice planner is flexible enough to be used in a large variety of cases that
can occur during on-road and zone navigation. In particular, it is used during error
recovery when navigating congested intersections, to perform difficult U-turns,
and to get the vehicle back on track after emergency defensive driving maneuvers.
In such cases, the behaviors layer issues a goal pose (or set of poses) to the motion
planner and indicates that it is in an error recovery mode. The motion planner
then uses the lattice planner to generate a path to the set of goals, with the lattice
planner determining during its planning which goal is easiest to reach. In these
error recovery scenarios the lattice planner is biased to avoid areas that could
result in unsafe behavior (such as oncoming lanes when on roads).

4 Perception

The perception system is responsible for providing a model of the world to the
behavioral and motion planning sub-systems. The model includes the moving
vehicles (represented as a list of tracked objects), static obstacles (represented in a
regular grid), and localizing the vehicle relative to, and estimating the shape of,
the roads it is driving on.

4.1 Moving Obstacle Detection and Tracking

The moving obstacle detection and tracking subsystem provides a list of object
hypotheses and their characteristics to the behavioral and motion planning sub-
systems. The following design principles guided the implementation:

• No information about driving context is used inside the tracking algorithm.
• No explicit vehicle classification is performed. The tracking system only pro-

vides information about the movement state of object hypotheses.
• Information about the existence of objects is based on sensor information

only. It is possible for some objects to be predicted, but only for short time in-
tervals, as a compensation for known sensor parameters. Detection drop outs
caused by noise, occlusions and other artifacts must be handled elsewhere.

• Object identifiers are not guaranteed to be stable. A new identifier does not
necessarily mean that it is a new object.

• Well-defined and distinct tracking models are used to maximize the use of
information provided by heterogeneous sensors.

• Motion prediction exploits known road geometry when possible.
• Sensor-specific algorithms are encapsulated in sensor-specific modules.

14 C. Urmson et al.

x

T
,,,,, avyxx

T,,,,, yxyxyxx

x
(a) (b)

Fig. 7. The two models used by the tracking system are a reduced bicycle model with a
fixed shape (a) and a Point Model without shape information (b).

Figure 7 shows the two tracking models used to describe object hypotheses.
The box model represents a vehicle by using a simplified bicycle model
(Kaempchen et al., 2004) with a fixed length and width. The point model
provides no estimate of extent of the obstacle and assumes a constant acceleration
model (Darms et al., 2008a) with adaptive noise dependent on the length and
direction of the velocity vector. Providing two potential tracking models enables
the system to represent the best model of tracked objects supported by the data.
The system is able to switch between these models as appropriate.

The system classifies object hypotheses as either Moving or Not Moving and
either Observed Moving or Not Observed Moving, so that each hypothesis can be
in one of four possible states. The Moving flag is set if the object currently has a
velocity which is significantly different from zero. The Observed Moving flag is
set once the object has been moving for a significant amount of time (on the order
of 0.4s) and is not cleared until the vehicle has been stopped for some larger
significant amount of time (on the order of 10s). The four states act as a well-
defined interface to the other software modules, enabling classes of tracked
objects to be ignored in specific contexts (e.g. Not Observed Moving object
hypotheses that are not fully on a road can be ignored for distance-keeping
purposes, as they likely represent vehicles parked at the side of the road or other
static obstacles (Darms et al., 2008b)).

Figure 8 illustrates the architecture of the tracking system. It is divided into two
layers, a Sensor Layer and a Fusion Layer (Darms & Winner, 2005). For each
sensor type (e.g. radar, scanning laser, etc.) a specialized sensor layer is
implemented. For each physical sensor on the robot a corresponding sensor layer
instance runs on the system. The architecture enables new sensor types to be
added to the system with minimal changes to the fusion layer and other sensor
modules, such as new physical sensors, can be added without any modifications to
source code. The following paragraphs describe the path from sensor raw data to a
list of object hypotheses.

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 15

Sensor Layer

Fusion Layer

Measurement

(Obervations, Proposals,

Movement Observation)

Object Hypothesis Set

Local Classification & Proposal Generation

Association

Local Target Validation

Feature Extraction

Object Management

Estimation & Prediction

Model Selection

Global Classification

Validated

Features
Features

Road World Model &

Instantaneous MapGlobal Target Validation

RWM Checking

Sensor Layer

Fusion Layer

Measurement

(Obervations, Proposals,

Movement Observation)

Object Hypothesis Set

Local Classification & Proposal Generation

Association

Local Target Validation

Feature Extraction

Object Management

Estimation & Prediction

Model Selection

Global Classification

Validated

Features
Features

Road World Model &

Instantaneous MapGlobal Target Validation

RWM Checking

Fig. 8. The moving obstacle detection and tracking system architecture

Each time a sensor receives new raw data, its corresponding sensor layer
instance requests a prediction of the current set of object hypotheses from the
fusion layer. Features are extracted out of the measured raw data with the goal of
finding all vehicles around the robot (e.g. edges from laser scanner data
(MacLachlan, 2005)). Artifacts caused by ground detections or vegetation, for
example, are suppressed by validating features in two steps. In the first step
validation is performed with sensor-specific algorithms, e.g. using the velocity
measurements inside a radar module to distinguish a static ground return from a
moving vehicle. The second step is performed via a general validation interface.
The validation performed inside the fusion layer uses only non-sensor-specific
information. It performs checks against the road geometry and against an
instantaneous obstacle map, which holds untracked 3D information about any
obstacles in the near range. The result is a list of validated features which
potentially originate from vehicles.

The validated features are associated with the predicted object hypotheses using
a sensor-type-specific association algorithm. Afterwards, for each extracted
feature (associated or not), multiple possible interpretations as a box or point
model are generated using a sensor-type-specific heuristic, which takes the sensor
characteristics into account (e.g. resolution, field of view, detection probabilities).
The compatibility of each generated interpretation with its associated prediction is
computed. If an interpretation differs significantly, or if the feature could not be
associated, the sensor module initializes a new object hypothesis. In case of an
associated feature, a new hypothesis can replace the current model hypothesis
(box or point model). Note that for each feature, multiple new hypotheses can be
generated. A set of new object hypotheses is called a proposal.

For each associated feature the interpretation which best fits the prediction is
used to generate an observation. An observation holds all of the data necessary to
update the state estimation for the associated object hypothesis in the fusion layer.
If no interpretation is compatible, then no observation is generated and only the

16 C. Urmson et al.

proposal exists. As additional information for each extracted feature becomes
available, the sensor module can also provide a movement observation. The
movement observation tells the fusion layer whether an object is currently moving
or not. This information is only based on sensor raw data (e.g. via an evaluation of
the velocity measurement inside the radar module).

The proposals, observations and movement observations are used inside the
fusion layer to update the object hypotheses list and the estimated object states.
First the best tracking model (box or point) is selected with a voting algorithm.
The decision is based on the number and type of proposals provided from the
different sensors (Darms et al., 2008c). For objects which are located on roads, the
road shape is used to bias the decision.

Once the best model is determined, the state estimate is either updated with the
observation provided by the sensor layer or the model for the object hypothesis is
switched to the best alternative. For unassociated features, the best model out of
the proposal is added to the current list of object hypotheses. With the update
process complete, object hypotheses which have not been observed for a certain
amount of time are removed from the list.

Finally, a classification of the movement state for each object hypothesis is
carried out. It is based on the movement observations from the sensors and a
statistical test based on the estimated state variables. The movement observations
from sensors are prioritized over the statistical test, and movement observations
which classify an object as not moving overrule movement observations which
classify an object as moving (Darms et al., 2008d).

The result is an updated list of object hypotheses which are accompanied by the
classification of the movement state. For objects which are classified as Moving
and Observed Moving, a prediction of the state variables is made. The prediction
is based on logical constraints for objects which are located on the road. At every
point where a driver has a choice to change lanes (e.g. at intersections), multiple
hypotheses are generated. In zones (parking lots, for example) the prediction is
solely based on the estimated states of the hypothesis (see Figure 9).

Fig. 9. The moving obstacle detection system predicts the motion of tracked vehicles. In
parking lots (left) predictions are generated by extrapolating the tracking filter. For roads
(right) vehicles are predicted to move along lanes.

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 17

4.2 Static Obstacle Detection and Mapping

The static obstacle mapping system combines data from the numerous scanning
lasers on the vehicle to generate both instantaneous and temporally filtered
obstacle maps. The instantaneous obstacle map is used in the validation of moving
obstacle hypotheses. The temporally filtered maps are processed to remove
moving obstacles and are filtered to reduce the number of spurious obstacles
appearing in the maps. While there were several algorithms used to generate
obstacle maps, only the curb detection algorithm is presented here.

Curb Detection and Mapping

Geometric features (curbs, berms and bushes) provide one source of information
for determining road shape in urban and off-road environments. Dense lidar data
provides sufficient information to generate accurate, long-range detection of these
relevant geometric features. Algorithms to detect these features must be robust to
the variation in features found across the many variants of curbs, berms, ditches,
embankments, etc. The curb detection algorithm presented here exploits the Haar
wavelet to deal with this variety.

To detect curbs we exploit two principle insights into the LIDAR data to
simplify detection. First, the road surface is assumed to be relatively flat and slow
changing, with road edges defined by observable changes in geometry,
specifically in height. This simplification means the primary feature of a road edge
reduces to changes in the height of the ground surface. Second, each LIDAR scan
is processed independently, as opposed to building a three dimensional point
cloud. This simplifies the algorithm to consider input data along a single
dimension. The curb detection algorithm consists of three main steps:
preprocessing, wavelet-based feature extraction, and post-processing.

The preprocessing stage provides two important features: mitigation of false
positives due to occlusions and sparse data, and formatting the data for feature
extraction. False geometric cues can result from striking both foreground and
background objects, or due to missing data in a scan. Foreground objects are
typically detected as obstacles (e.g. cones, telephone poles) and do not denote road
edges. In order to handle these problems, points are initially clustered by distance
between consecutive points. After clustering, small groups of points are removed
from the scan. A second pass labels the points as dense or sparse based on the
distances between them. The dense points are then linearly resampled in order to
produce an input sequence of 2n heights.

The Wavelet-based feature extraction step analyzes height data through a
discrete wavelet transform using the Haar wavelet (Daubechies, 1992). The Haar
wavelet is defined by the mother wavelet and scaling function:

t
` a 1 if0 t< 1

2
fff,

@ 1 if 1
2
fff<t<1,

0 otherwise

X̂̂̂̂̂
^̂̂\̂
^̂̂̂̂̂̂Z

(9)

18 C. Urmson et al.

2 j t@ i
b c 1 if 0 t< 1

0 otherwise

V
j>0V 0 i 2 j@ 1

(10)

The Haar transform results in a sequence of coefficients representing the scaled
average slopes of the input signal within varying sampling windows (Shih &
Tseng, 2005). Since each sampling window is half the size of the previous
window, these windows successively subdivide the signal into higher resolution
slopes or detail levels.

The feature extraction step (see Figure 10) takes the Haar coefficients, y, and
considers them by window sizes, going from largest to smallest window. The
algorithm classifies points as road points (class 1) or non-road points, and works
as follows:

1. Collect coefficients for the current detail level, i.
2. Label each coefficient with the label of the coefficient at detail level i – 1

which represents the same portion of the signal.
3. Calculate ŷroad using these labels.
4. Re-label coefficients by absolute distance from ŷroad, where the distance

threshold for detail level i is given as di. In other words, points are
labeled by the function:

class y n
@ A
,i

b c 1 if | y n
@ A
@ ŷroad | di

0 otherwise

X\Z

(11)

5. Continue to detail level i + 1.

Post-processing applies a few extra heuristics to eliminate false positives and
detect some additional non-road points. Using the dense/sparse labeling from pre-
processing, non-road labels in sparse sections are moved from the sparse points to
the neighboring dense point closest to the vehicle. Since all LIDARs on the
vehicle look downwards, the closer point corresponds to the higher surface (e.g.
berm, wall) creating the geometric cue. Afterwards, sparse points are removed
from the classification list. The resulting list represents the locations of the likely
road and surrounding geometric cues. Figure 11 illustrates the performance of the
algorithm in a typical on road scene from the Urban Challenge.

4.3 Roadmap Localization

Boss is capable of either estimating road geometry or localizing itself relative to
roads with known geometry. Most urban roads change shape infrequently, and
most urban driving can be thought of as responding to local disturbances within
the constraints of a fixed road network. Given that the shape and location of
paved roads changes infrequently, our approach was to localize relative to paved
roads and estimate the shape of dirt roads, which change geometry more
frequently. This approach has two main advantages:

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 19

• it exploits a priori knowledge to eliminate the necessity of estimating road
shape in most cases;

• it enables the road shape estimation problem to emphasize geometric cues
such as berms and bushes, which are common in environments with dirt
roads, and easier to detect at long range than lane markings.

This approach led to two independent algorithms, one to provide a smooth pose
relative to a road network, and one to estimate the shape of dirt roads. The two
algorithms are never operated simultaneously, thus avoiding complex interactions
between them. Both the localization and road shape estimation algorithms were
heavily tested and proved effective. Despite confidence in the road shape estimation
system, it was not enabled during the Urban Challenge competition. Based on the
waypoint density and aerial imagery of the UCFE course, the team determined that
there was not a need to estimate road shape. A description of the road shape
estimation approach is provided in section 4.4 for completeness since it enables Boss
to drive on general roads and was ready to be used in the event, if necessary.

Localization Inputs

The localization process can be thought of as transforming the pose provided by a
GPS-based pose estimation system into a smooth coordinate frame registered to a

Fig. 10. Single frame of the feature extraction. The top frame contains the original height
signal in blue. The black vertical lines show the sample windows from a single detail level of
the transform. The red vertical lines define the midpoint of each window. The bottom frame
show the wavelet coefficients for each window, labeled as road (green) or non-road (red).

20 C. Urmson et al.

(a) (b)

(c)

Fig. 11. Overhead view of a road section from the Final Event course (a). Red points show
non-road points (b). Overlay of non-road points on imagery (c).

Table 2. Error characteristics of the Applanix POS-LV, as reported by Applannix.

 Error with GPS &
differential corrections

Error after 1km of travel
without GPS

Planar Position (m) 0.3 0.88

Heading (°) 0.05 0.07

road network. To do this it combines data from a commercially available position
estimation system and measurements of road lane markers with an annotated
road map.

The initial global position estimate is received from a device (POS-LV)
developed by the Applanix Corporation. This system fuses GPS, inertial and
wheel encoder data to provide a 100Hz position estimate that is robust to GPS
dropout. Table 2 describes the nominal performance of this system with and
without GPS. The POS-LV is configured to slightly outperform the nominal
performance specifications through the use of a combination of Omnistar Virtual

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 21

Base Station and High Precision services. By incorporating the High Precision
data, nominal performance is improved to a 0.1m planar expected positioning
error. While a positioning accuracy of 0.1m sounds sufficient to blindly localize
within a lane, these correction signals are frequently disrupted by even small
amounts of overhead vegetation. Once disrupted, this signal’s reacquisition takes
approximately a half hour. Thus, relying on these corrections is not viable for
urban driving. Furthermore, lane geometries may not be known to meter
accuracies a priori. It is critically important to be localized correctly relative to
the lane boundaries, since crossing over the lane center could have disastrous
consequences.

To detect lane boundaries, down-looking Sick LMS lasers are used to detect the
painted lane markers on roads. Lane markers are generally brighter than the
surrounding road material and are detected by convolving the intensities across a
line scan with a slope function. Peaks and troughs in the response represent the
edges of potential lane marker boundaries. To reduce false positives, only
appropriately spaced pairs of peaks and troughs are considered lane markers.
Candidate markers are then further filtered based on their brightness relative to
their support region. The result is a set of potential lane marker positions.

The road map used for localization encodes both correct local geometry and
information about the presence or absence of lane markings. While it is possible
of road geometry to be incorrect globally, the local geometry is important to the
estimation scheme, as will be described below. If the road geometry is not well
known, the map must indicate this. When the vehicle traverses parts of the map
with poor geometry, the road shape estimation algorithms operate and the road
map localization algorithms are disabled.

Position Filtering

To transform the measurements provided by the POS-LV to a smooth, road-
network- registered frame, we consider three potential sources of position error:

1. Position Jumps- despite the availability of inertial information, the POS-
LV will occasionally generate position jumps.

2. Position Drift- the correction signals, variation in satellite constellation
and ionospheric disturbances cause slowly varying changes to the position
reported by the POS-LV.

3. Road model errors- our approach to creating road maps is to manually
extract road shapes from aerial imagery. Modern aerial imagery can
provide quarter-meter or better image resolution, but global registration is
generally only good to a meter or worse. Distortion in the imagery
generally has a low spatial frequency, so that the local shape of the road is
accurate, but the apparent global position may be inaccurate.

These three error sources are grouped into two classes; discontinuous errors
(such as jumps) and continuous errors (drift and model errors). With every new
state measurement, the change in position (Δx) is checked for validity based on

22 C. Urmson et al.

measured wheel speed (v), anticipated percentage velocity error (ζ), allowed
position jitter (ε), travel direction (θ), and allowable travel direction error (τ):

 reject | x | > v 1
b c

t W | x| >
b cV x

| x |
fffffffffffffA cos

` a
sin
` a

HJ IK>

hlj
imk

 (12)

In the above equation, the first term ensures that the reported motion of the
vehicle is not significantly greater than the anticipated motion given the vehicle
wheel speed. The second term ensures that for any significant motion, the
reported motion is in approximately the same direction as the vehicle is pointed
(which is expected for the speeds and conditions of the Urban Challenge). If Δx
is rejected, a predicted motion is calculated based on heading and wheel speed.
The residual between the prediction and the measured change in position is
accumulated in a running sum which is subtracted from position estimates
reported by the POS-LV. In practice, values of ζ =0.05, ε =0.02 and τ =cos(30°)
produce good performance.

Correcting for the continuous class of errors is how localization to the road
model is performed. The localization process accumulates lane marker points
(LMP) generated by the laser lane marker detection algorithms. After a short
travel distance, 1m during the Urban Challenge, each LMP is associated with a
lane boundary described in the road model. The distance of the corrected global
position (p) for each LMP from the lane center is calculated and the projection
point onto the lane center is noted (pc). Half of the lane width is subtracted from
this distance, resulting in the magnitude of the local error estimate between the
lane boundary position and the model of the lane boundary position. This process
is repeated for each LMP, resulting in an error estimate:

eLMP
1
nLMP
ffffffffffffffX

1

n LMP | pi@ pci
b c

|@
wli

2
fffffffff g
A
pi@ pci

|pi@ pci |
fffffffffffffffffffffffffffhj ik

(13)

This represents the error in the current filtered/localized position estimate, thus
the eLMP represents how much error there is between the current combination of
the existing error estimate and position. In practice, we further gate the error
estimates, discarding any larger than some predetermined maximum error
threshold (3m during the Urban Challenge). Over time, error estimates are
accumulated through a recursive filter:

ecur eprev eLMP (14)

This approach generates a smooth, road-network-referenced position estimate,
even in situations where GPS quality is insufficient to otherwise localize within a
lane. This solution proved effective. During pre-challenge testing, we performed
several tests with GPS signals denied (through the placement of aluminum caps
over the GPS antennas). In one representative test, the vehicle was able to

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 23

maintain position within a lane, while traveling over 5.7km without GPS. During
this test, the difference error in the POS-LV position reached up to 2.5m, more
than enough to put the vehicle either off the road, or in another lane if not
compensated for.

4.4 Road Shape Estimation

In order to robustly drive on roads where the geometry is not known a priori, the
road shape estimator measures the curvature, position, and heading of roads near
the vehicle. The estimator fuses inputs from a variety of LIDAR sensors, and
cameras to composite a model of the road. The estimator is initialized using
available prior road shape data, and generates a best-guess road location between
designated sparse points where a road may twist and turn. The road shape is
represented as the Taylor expansion of a clothoid with an offset normal to the
direction of travel of the vehicle. This approximation is generated at 10 Hz.

Sensor Inputs

Three primary features were used to determine road location.
Curbs represent the edge of the road and are detected using the Haar wavelet

(see Curb Detection and Mapping section). When curbs are detected, the estimator
attempts to align the edge of the parametric model with the detections.

Obstacles represent areas where the road is unlikely to exist and are detected
using the obstacle detection system. The estimator is less likely to pick a road
location where obstacle density is high.

State Vector

To represent the parameters of a road, the following model is used:

s t
` a

x t
` a
,y t
` a
, t
` a
,C0 t
` a
,C1 t
` a
,W t
` ab c

(15)

where (x(t),y(t),φ(t)) represent the origin and orientation of the base of the curve,
C0(t) is the curvature of the road, C1(t) is the rate of curvature, and W(t) is the road
width. A Taylor series representation of a clothoid is used to generate the actual
curve. This is represented as:

y x
` a

tan t
` ab c

x C0
t
2
fffx 2 C1

t
6
fffx 3

(16)

Particle Filter

The road estimator uses an SIR (sample importance resample) (Duda & Hart,
1972) filter populated by 500 particles. Each particle is an instantiation of the
state vector. During the sampling phase, each particle is propagated forward
according to the following set of equations where ds represents the relative
distance that the robot traveled from one iteration of the algorithm to the next.

24 C. Urmson et al.

y y ds
ds
` a2

2
fffffffffffffffC0

ds
` a3

6
fffffffffffffffC1

(17)

C0 ds
ds
` a2

2
fffffffffffffffC1@ d

(18)

C0 C0 C1 ds (19)

C1 0.99
` a

C1 (20)

The final C1 term represents the assumption that the curvature of a road will
always tend to head towards zero, which helps to straighten out the particle over
time. After the deterministic update, the particle filter adds random Gaussian noise
to each of the dimensions of the particle in an effort to help explore sudden
changes in the upcoming road curvature that are not modeled by the curve
parameters. In addition to Gaussian noise, several more directed searches are
performed, where the width of the road can randomly increase or decrease itself
by a fixed amount. Empirically, this represents the case where a road suddenly
becomes wider because a turn lane or a shoulder has suddenly appeared.

Sensor Data Processing

Because particle filtering requires the evaluation of a huge number of hypotheses
(greater than ten thousand hypotheses per second in this case), it is desirable to be
able to evaluate road likelihoods very quickly. Evaluations are typically
distributed over a large proportion of the area around the vehicle, and occur at a
high rate. Therefore, the likelihood evaluations were designed to have low
computational cost, on average requiring one lookup per sample point along the
road shape.

The likelihood function for the filter is represented as a log-linear cost function:

L 1
Z
fffffe@ C shape,data

b c

(21)

In the above equation, Z is a normalization constant that forces the sum of the
likelihoods over all road shapes to be one and C is a cost function that specifies
the empirical “cost” of a road shape as a function of the available sensor data. The
cost function is the sum of several terms represented by three sub-classes of cost
function: distances, counts, and blockages.

The filter evaluates the number of obstacles, NO, and number of curb points, NC,
encountered inside the road shape; the distance of the edge of the road to the
detected curb points, DC; the distance between the observed lane markers and the
model’s lane markers, DL; and the presence of blockage across the road, B. In
order to scale the cost function, counts and distances are normalized. The resulting
cost function is:

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 25

C X
i 0

N N O
i

O

ffffffffffhj ik2

NC
i

C

ffffffffffhj ik2
DC
C

fffffffffhj ik2
DL
L

fffffffffhj ik2

(22)

Fast Convolutions and Distance Transforms

In order to exactly compute the cost function, we need to convolve each road
shape with the cost map to sum the detection counts and obstacle costs. This
requires tens of thousands of convolutions per second for each count. While fast
methods exist to exactly compute simple shapes (Viola & Jones, 2001), the shapes
we wish to convolve are too complicated for these approaches. Instead, we
approximate the road shape as a set of overlapping discs centered on the road
shape (see Figure 12).

Fig. 12. Example illustrating how road shape is approximated by a series of disks.

The disks have a diameter equal to the width of the road and are spaced at 1.5
meter samplings. While this approach tends to over-count, we have found that it
is adequate for the purposes of tracking the road, and is more than fast enough for
our purposes.

In order to allow the width of the road to vary, we compute convolutions for
different-width discs ranging from 2.2 meters to 15.2 meters sampled at half-meter
spacing. Intermediate widths are interpolated.

Each width requires one convolution with a kernel size that varies linearly with
the width of the road. Computing these convolutions for each frame is not
possible, so the convolutions are computed iteratively. In the case of curb
detections, curb points arrive and are tested against a binary map which indicates
whether a curb point near the new detection has already been considered. If the
location has not been considered, then the point is added to the convolution result
by adding a disc at each radius to the map stack. In the case of an obstacle map,
when a new map arrives, a difference map is computed between the current map
and the previous convolution indicator. New obstacle detections are added into
the convolution result as in the case of the point detection, while obstacles that
have vanished are removed. The result of the convolutions is a set of cost maps
that represent the road configuration space for each potential road width.

To evaluate the distance components of the cost function, we employ a distance
transform (Huttenlocker & Felzenswalb, 2004). The distances from the nearest
curb location or lane marker location to a given sample location is built into a

26 C. Urmson et al.

distance map. The distance map can then be examined at sample points and
evaluated like the cost counts. Summing the overall cost function results in a
minimum located at the true location of the road.

A snapshot of the overall system performance is illustrated in Figure 13. The
example shows on an off-road stretch where some geometric features were visible
in terms of berms and shrubbery as obstacles. The top of the figure shows the
output from two cameras mounted on the top of Boss. The particle filter stretches
forward from the vehicle and the road is represented as 3 lines.

Fig. 13. Example showing the road shape estimate (parallel curves) for an off-road scene.
Obstacles and berms are illustrated by colored pixels.

5 Mission Planning

To generate mission plans, the data provided in the road network definition file
(RNDF) is used to create a graph that encodes the connectivity of the
environment. Each waypoint in the RNDF becomes a node in this graph, and
directional edges (representing lanes) are inserted between waypoints and all other
waypoints they can reach. For instance, a waypoint defining a stop line at an
intersection will have edges connecting it to all waypoints leaving the intersection
that can be legally driven to. These edges are also assigned costs based on a
combination of several factors, including expected time to traverse the edge,
distance of the edge, and complexity of the corresponding area of the
environment. The resultant cost graph is the baseline for travel road and lane
decisions by the behavioral sub-system.

A value function is computed over this graph, providing the path from each
waypoint to the current goal (e.g. the first checkpoint in a mission). In addition to
providing the executive more information to reason about, computing a value

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 27

function is useful because it allows the navigation system to react appropriately if
an execution error occurs (e.g. if the vehicle drives through an intersection rather
than turning, the new best path to take is instantly available).

As the vehicle navigates through the environment, the mission planner updates
its graph to incorporate newly-observed information such as road blockages. Each
time a change is observed, the mission planner re-generates a new policy.
Because the size of the graph is relatively small, this replanning can be performed
quickly, allowing for near-immediate response to detected changes.

To correctly react to these occurrences, the robot must be able to detect when a
road is impassable and plan another route to its goal, no matter where the goal is.
Particularly difficult cases include planning to a goal immediately on the other
side of a newly discovered blockage and behaving reasonably when a one-way
street becomes blocked. Road conditions are fluid and highly variable and road
blockages may not be permanent. Thus, a robot should eventually revisit the site
of a previously encountered blockage to see if it has been cleared away. In fact,
the robot must revisit a blockage if all other paths to a goal have also been found
to be blocked, hoping to discover that a road blockage has been cleared.

5.1 Detecting Blockages

To determine there is a blockage Boss can either directly detect the blockage or
infer it by a failure to navigate a lane. To directly detect a blockage, the road in
front of Boss is checked against a static obstacle map to see if lethal obstacles
completely cross the road. Noise in the obstacle map is suppressed by ignoring
apparent blockages that have been observed for less than a time constant
(nominally five seconds). Blockages are considered to no longer exist if the
obstacle map shows a sufficiently wide corridor through the location where a
blockage previously existed.

The direct detection algorithm generates obstacles using an efficient but
optimistic algorithm; thus, there are configurations of obstacles that effectively
block the road but are not directly detected as a road blockage. In these conditions,
the On-Road navigation algorithm may report the road is blocked, inducing a
Virtual Blockage. Since the behavior generation module works by picking the
lowest cost path to its goal, this is an elegant way for it to stimulate itself to
choose an alternate route. Since virtual blockages induced by the behavior
generation module are not created due to something explicitly observed, they
cannot be removed by observation; thus, they are removed each time the vehicle
achieves a checkpoint. While heuristic, this approach works well in practice, as
these blockages are often constructed due to odd geometries of temporary
obstacles. By waiting until the current checkpoint is complete, this approach
ensures the vehicle will wait until its current mission is complete before revisiting
a location. If the only path to goal is through a virtual blockage that cannot be
detected as cleared, and the situation that caused the blockage to be declared has
been resolved, then forward progress will still occur, since the virtual blockages
decay in the same manner that explicitly observed blockages do.

28 C. Urmson et al.

5.2 Blockages

Once a blockage has been detected, the extent along affected lanes that the
blockage occupies is determined. Locations before and after the blockage are
identified where U-turn maneuvers can be performed. At these locations, road
model elements representing legal places to make a U-turn are added.
Simultaneously, the corresponding traversal costs for the U-turn maneuvers are set
to a low values, the costs for crossing the blockages are increased by a large
amount, and the navigation policy is recomputed. Since Boss follows the policy,
the high costs levied on traversing a blockage cause the robot to choose an
alternate path. If Boss later detects that the blockage is gone, the traversal costs for
elements crossing the blockage are restored to their defaults, and the traversal
costs for the added U-turn elements are effectively removed from the graph.

Revisiting of previously detected blockages is implemented by gradually
reducing the traversal cost applied to road elements crossing a blockage. If the
cost eventually drops below a predefined threshold, the blockage is treated as if it
were observed to be gone. The U-turn traversal costs are not concomitantly
increased; instead, they are changed all at once when the blockage is observed or
assumed to be gone. Decreasing the cross-blockage traversal costs encourages the
robot to return to check whether a blockage is removed, while not increasing the
U-turn traversal costs encourages the robot to continue to plan to traverse the U-
turn if it is beneficial to do so.

The cost (c) increment added by a blockage is decayed exponentially:

c p2@
a
h
ffffff
 (23)

where a is the time since the blockage was last observed, h is a half-life parameter,
and p the starting cost penalty increment for blockages. To illustrate, if the
blockage is new, we have a=0 and c=p. If the blockage was last observed h time
units in the past, we have a=h and c=p/2. The cost continues to decay
exponentially as the blockage ages.

An exponential decay rate mitigates the problem of a single blockage being
interpreted as multiple blockages (due to incomplete perception), causing a cost of
np where n is the number of blockages. Under this condition, a linear decay rate
would cause an unacceptably long delay before revisiting a blockage.

A weakness of this blockage handling approach is that it is possible to waste
time making multiple visits to a blockage that never gets removed. A simple
solution of incrementing h for the blockage after each new visit would make the
traversal costs decay more slowly each time the obstacle is observed.

On one-way roads, U-turn lanes are not created in response to road blockages.
However, traversal costs across the blockage are increased, decreasing the likelihood
of reusing the road. To respond to one-way road blockages, the zone navigation
planner is invoked as an error recovery mode, as discussed in section 6.3.

6 Behavioral Reasoning

The Behavioral architecture is responsible for executing the policy generated by
the Mission Planner; making lane-change, precedence, and safety decisions

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 29

respectively on roads, at intersections, and at yields; and responding to and
recovering from anomalous situations.

The Behavioral architecture is based on the concept of identifying a set of
driving contexts, each of which requires the vehicle to focus on a reduced set of
environmental features. At the highest level of this design, the three contexts are
road, intersection, and zone, and their corresponding behaviors are respectively
Lane Driving, Intersection Handling, and Achieving a Zone Pose. The achieving a
zone pose behavior is meant for unstructured or unconstrained environments,
including parking lots and jammed intersections. In practice this behavior’s
function is performed by the zone planner. Figure 14 shows a diagram of
Behavioral sub-system architecture with the sub-behaviors corresponding to the
high-level behaviors, along with two sub-behaviors making up the auxiliary Goal
Selection behavior, which plays a crucial role not only in standard operation, but
also in error recovery. The function of each of these sub-components is described
in Table 3.

Fig. 14. High-Level Behaviors Architecture.

6.1 Intersections and Yielding

The Precedence Estimator is most directly responsible for the system’s adherence
to the Urban Challenge rules (DARPA 2007) including obeying precedence, not
entering an intersection when another vehicle is in it, and being able to merge into

30 C. Urmson et al.

Table 3. Components of the Behavioral sub-system.

Goal Selection
Components

Drive Down Road Handle Intersection

State Estimator: combines
the vehicle’s position with
the world model to produce
a discrete and semantically
rich representation of the
vehicle’s logical position
with the RNDF.

Goal Selector: uses the
current logical location as
reported by State Estimator
to generate the next series
of local goals for execution
by the Motion Planner,
these will either be lane
goals or zone goals.

Lane Selector: uses the
surrounding traffic
conditions to determine the
optimal lane to be in at any
instant and executes a
merge into that lane if it is
feasible.

Merge Planner: determines
the feasibility of a merge
into a lane proposed by
Lane Selector.

Current Scene Reporter:
The Current Scene Reporter
distills the list of known
vehicles and discrete
obstacles into a few discrete
data elements, most notably
the distance to and velocity
of the nearest vehicle in
front of Boss in the current
lane.

Distance Keeper: uses the
surrounding traffic
conditions to determine the
necessary in-lane vehicle
safety gaps and govern the
vehicle’s speed
accordingly.

VehicleDriver: combines
the outputs of Distance
Keeper and Lane Selector
with its own internal rules
to generate a so-called
“Motion Parameters”
message, which governs
details such as the vehicle’s
speed, acceleration and
desired tracking lane.

Precedence Estimator:
uses the list of known
other vehicles and their
state information to
determine precedence at
an intersection.

Pan-head Planner: aims
the pan-head sensors to
gain the most relevant
information for
intersection precedence
decisions.

Transition Manager:
manages the discrete-goal
interface between the
Behavioral Executive and
the Motion Planner, using
the goals from Goal
Selector and the gating
function from Precedence
Estimator to determine
when to transmit the next
sequence of goals.

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 31

and across moving traffic. To follow the rules, the precedence estimator combines
data from the rest of the system to determine if it is clear to go. This state is used
as a gate condition in the Transition Manager and triggers the issuance of the
motion goal to proceed through the intersection.

The precedence estimator uses a combination of the road model and moving
obstacle information to determine if it is clear to go. The road model provides
static information about an intersection, including the set of lane exit waypoints
that compose the intersection and the geometry of their associated lanes. The
moving obstacle set provides dynamic information about the location, size and
speed of estimated nearby vehicles. Given the problem of spatial uncertainty,
false positives and false negatives must be accounted for in the precedence
estimation system.

The road model provides important data, including:

• The current intersection of interest, which is maintained in the world
model as a group of exit waypoints, some subset of which will also be
stop lines;

• A virtual lane representing the action the system will take at that
intersection;

• A set of yield lanes1 for that virtual lane; and
• Geometry and speed limits for those lanes and any necessary predecessor

lanes.

These data are known in advance of arrival at the intersection, are of high
accuracy, and are completely static. Thus, the Precedence estimator can use them
to preprocess an intersection’s geometry.

The moving obstacle set is received periodically and represents the location,
size and speed of all detected vehicles around the robot. In contrast to the
information gleaned from the road model, these data are highly dynamic,
displaying several properties which must be accounted for in the precedence
estimation system: tracked vehicles can flicker in and out of existence for short
durations of time; sensing and modeling uncertainties can affect the estimated
shape, position and velocity of a vehicle; and, the process of determining moving
obstacles from sensor data may represent a vehicle as a small collection of moving
obstacles. Among other things, this negates the usefulness of attempting to track
specific vehicles through an intersection and requires an intersection-centric (as
opposed to vehicle-centric) precedence estimation algorithm.

Intersection-Centric Precedence Estimation

Within the road model, an intersection is defined as a group of lane exit-
waypoints. That is, an intersection must contain one or more lane exit-waypoints,

1 Yield lanes are lanes of moving traffic for which a vehicle must wait for a clear

opportunity to execute the associated maneuver.

32 C. Urmson et al.

and each lane exit-waypoint will be a part of exactly one intersection. The next
intersection is thus determined as the intersection containing the next lane exit-
waypoint that will be encountered. This excludes exits that Boss will cross but not
stop at (e.g. crossing the top of a tee-intersection that has only one stop sign).

Precedence between any two exit-waypoints is determined first by whether the
exit-waypoints are stop lines. Non-stop exit-waypoints automatically have
precedence over exit-waypoints that have stop lines. Among stop line exit-
waypoints, precedence is determined by arrival times, where earlier arrivals have
precedence over later arrivals.

The robust computation of arrival time is critical to the correct operation of the
precedence estimator. Given the dynamic and noisy nature of the moving obstacle
set, the algorithm uses a purely geometric and instantaneous notion of waypoint
occupancy for computing arrival times. An exit waypoint is considered to be
occupied when any vehicle’s estimated front bumper is inside or intersects a small
polygon around the waypoint, called its Occupancy Polygon. Boss’s front bumper
is added to the pool of estimated front bumpers and is treated no differently for the
purposes of precedence estimation.

Occupancy polygons are constructed for each exit-waypoint and for the whole
intersection. The occupancy polygons for each exit waypoint are used to determine
precedence, where the occupancy polygon constructed for the intersection is used
to determine whether the intersection is clear of other traffic. The size of the
polygon for an exit waypoint determines several factors:

• The point at which a vehicle gains its precedence ordering, which is
actually some length along the lane backward from the stopline;

• The system’s robustness to spatial noise, where larger polygons are
generally more robust than smaller ones at retaining the precedence order;

• The system’s ability to discriminate two cars moving through the
intersection in sequence, where larger polygons are more likely to treat
two discrete cars as one for the purposes of precedence ordering.

Figure 15 shows a typical exit occupancy polygon extending three meters back
along the lane from the stop line and with one meter of padding on all sides. This
is the configuration that was used on race day.

The estimated front bumper of a vehicle must be inside the occupancy polygon
as shown in Figure 15 to be considered to be an occupant of that polygon.

A given occupancy polygon maintains its associated exit waypoint, its
occupancy state and two pieces of temporal data:

1. The time of first occupancy, which is used to determine precedence
ordering; and

2. The time of most recent (last) occupancy, which is used to implement a
temporal hysteresis around when the polygon becomes unoccupied.

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 33

Fig. 15. Typical Exit Occupancy Polygon and examples of vehicles at an exit.

To account for (nearly) simultaneous arrival, arrival times are biased for the
sake of precedence estimation by some small time factor that is a function of their
position relative to Boss’s exit-waypoint. Exit waypoints that are to the right
receive a negative bias, and are thus treated as having arrived slightly earlier than
in actuality, encoding an implicit yield-to-right rule. Similarly, exit waypoints
that are to the left receive a positive bias, seeming to have arrived later and
thus causing the system to take precedence from the left (empirically, 0.5s worked
well for this value). The result is considered to be the exit waypoint’s Modified
Arrival Time.

With these data available, the determination of precedence order becomes a
matter of sorting the occupied polygons in ascending order by their modified
arrival time. The resulting list is a direct representation of the estimated
precedence ordering, and when the front of that list represents Boss’s target exit
waypoint, Boss is considered to have precedence at that intersection.

Yielding

Beyond interacting with stopped traffic, the precedence estimator is also
responsible for merging into or across moving traffic from a stop. To support this,
the system maintains a Next Intersection Goal, which is invariably a Virtual Lane
that connects the target exit waypoint to some other waypoint, nominally in
another lane or in a parking or obstacle zone. That virtual lane has an associated
set of Yield Lanes, which are other lanes that must be considered for moving
traffic in order to take the next intersection action. The yield lanes are defined as
the real lanes which overlap a virtual lane. Overlapped virtual lanes are not
considered since they must already have a clearly established precedence order via
stop lines. Intersections that fail this requirement (e.g. an intersection with four
yield signs) are considered ill-formed and are not guaranteed to be handled
correctly. Thus, yield cases are only considered for merges into or across real
lanes. Figure 16 shows an example tee intersection, highlighting the next
intersection goal and the associated yield lanes.

34 C. Urmson et al.

Fig. 16. Typical Tee-intersection with yield lanes.

First, temporal requirements are derived for the next intersection goal as
follows:

1. Taction is computed as the time to traverse the intersection and get into

the target lane using conservative accelerations from a starting speed of
zero.

2. Taccelarate is computed as the time for accelerating from zero up to

speed in the destination lane using the same conservative acceleration.

3. Tdelay is estimated as the maximum system delay.

4. Tspacing is defined as the minimum required temporal spacing between

vehicles, where one second approximates a vehicle-length per 10mph.

Using these values, a required temporal window, Trequired, is computed for each
yield lane as:

Trequired = Taction + Tdelay + Tspacing (24)

for lanes that are crossed by the next intersection action. In the case of merging
into a lane, the required window is extended to include the acceleration time, if
necessary, as:

Trequired = max(Taction, Taccelerate) + Tdelay + Tspacing (25)

This temporal window is then used to construct a polygon similar to an exit
occupancy polygon backward along the road network for a distance of:

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 35

+ yield polygon vmaxlane T required dsafety (26)

These yield polygons, shown in Figure 16, are used as a first pass for
determining cars that are relevant to the yield window computations.

Any reported vehicle that is inside or overlaps the yield polygon is considered
in the determination of the available yield window. Yield polygons are also
provided to a Panhead Planner, which performs coverage optimization to point
long-range sensors along the yield lanes and thus at oncoming traffic, increasing
the probability of detection for these vehicles at long range.

For each such vehicle in a yield lane, a time of arrival is estimated at the near
edge of the overlap area, called the Crash Point and illustrated in Figure 16 as
follows:

1. Compute a worst-case speed vobstacle along the yield lane by projecting the
reported velocity vector, plus one standard deviation, onto the yield lane.

2. Compute dcrash as the length along the road network from that projected
point to the leading edge of the overlap area.

3. Compute an estimated time of arrival as:

T arrival
dcrash
vobstacle
fffffffffffffffffffff

(27)

4. Retain the minimum Tarrival as Tcurrent over all relevant vehicles per

yield lane.

The yield window for the overall intersection action is considered to be
instantaneously open when Tcurrent>Trequired for all yield lanes. In order to account
for the possibility of tracked vehicles being lost momentarily, as in the exit
waypoint precedence determination, this notion of instantaneous clearance is
protected by a one-second hysteresis. That is, all yield windows must be
continuously open for at least one second before yield clearance is passed to the
rest of the system.

Gridlock Management

With exit precedence and yield clearance in place, the third and final element of
intersection handling is the detection and prevention of gridlock situations.
Gridlock is determined simply as a vehicle (or other obstacle) blocking the path of
travel immediately after the next intersection goal such that the completion of the
next intersection goal is not immediately feasible (i.e., a situation that would cause
Boss to become stopped in an intersection).

Gridlock management comes into effect once the system determines that Boss
has precedence at the current intersection and begins with a 15-second timeout to
give the problematic vehicle an opportunity to clear. If still gridlocked after 15
seconds, the current intersection action is marked as locally high-cost and the
mission planner is allowed to determine if an alternate path to goal exists. If so,
Boss will re-route along that alternate path; otherwise, the system jumps into error
recovery for intersection goals, using the generalized pose planner to find a way

36 C. Urmson et al.

around the presumed-dead vehicle. This is discussed in greater detail in the section
describing error recovery.

6.2 Distance Keeping and Merge Planning

The distance-keeping behavior aims simultaneously to zero the difference between
Boss’ velocity and that of the vehicle in front of Boss, and the difference between
the desired and actual inter-vehicle gaps. The commanded velocity is:

vcmd K gap dactual@ ddesired
b c

(28)

where vtarget is the target-vehicle velocity and Kgap is the gap gain. The desired
gap is:

ddesired max
+vehicle

10
fffffffffffffffffvactual ,dmingap

f g

(29)

where +vehicle term represents the one-vehicle-length-per-ten-mph minimum-
separation requirement, and dmingap is the absolute minimum gap requirement.
When Boss’s velocity exceeds the target vehicle’s, its deceleration is set to a
single configurable default value; when Boss’s velocity is less than the target
vehicle’s, for safety and smoothness, Boss’s commanded acceleration is made
proportional to the difference between the commanded and actual velocities and
capped at maximum and minimum values (amax =4.0 and amin=1.0 m/sec2 on race
day) according to:

acmd amin K acc vvmd amax@ amin
` a

 (30)

Merge Planning

The merge, or lane-change, planner determines the feasibility of changing lanes. It
is relevant not only on a unidirectional multi-lane road, but also on a bidirectional
two-lane road in order to handle passing a stopped vehicle after coming to a stop.
Feasibility is based on the ability to maintain proper spacing with surrounding
vehicles and to reach a checkpoint in the lane to merge into (the “merge-to” lane)
while meeting a velocity constraint at the checkpoint. The two-lane unidirectional
case is depicted in Figure 17. The merge planner performs the following steps:

1. Check whether it is possible to reach the checkpoint in the merge-to lane
from the initial position given velocity and acceleration constraints and
the “merge distance”, i.e., the distance required for Boss to move from its
current lane into an adjacent lane. For simplicity’s sake, the merge
distance was made a constant parameter whose setting based on
experimentation was 12m on race day.

2. Determine the merge-by distance, i.e., the allowable distance in the
current lane in order to complete the merge. The merge-by distance in the
case of a moving obstacle in front of Boss is:

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 37

dobst
v0 dinitial
v0@ v1

fffffffffffffffffffffffff

(31)

where dinitial is the initial distance to the moving obstacle. Note that this
reduces to dinitial if the obstacle is still, i.e. if v1=0.

3. For each of the obstacles in the merge-to lane, determine whether a front-
merge (overtaking the obstacle and merging into its lane in front of it with
proper spacing) is feasible and whether a back-merge (dropping behind
the obstacle and merging behind it with proper spacing) is feasible.

For either a front- or back-merge, first determine whether proper
spacing is already met. For a front merge, this means:

x vehicle@ x1 max
v1 +vehicle

10
fffffffffffffffffffffffff,dmingap

f g
0@+

(32)

For a back merge:

x0 max
v0 +vehicle

10
fffffffffffffffffffffffff,dmingap

f g
x1@+vehicle@

(33)

If proper spacing is met:

Check whether the other vehicle’s velocity can be matched by
acceleration or deceleration after the merge without proper spacing being
violated. If so, the merge is so far feasible; if not, the merge is infeasible.

Otherwise:

Determine the acceleration profile to accelerate or decelerate respectively
to, and remain at, either the maximum or minimum speed until proper
spacing is reached.

4. Check whether it is possible to reach and meet the velocity constraint at
the checkpoint in the merge-to lane starting from the merge point, i.e., the
position and velocity reached in the previous step after proper spacing has
been met. If so, the merge is feasible.

5. Repeat the above steps for all n obstacles in the merge-to lane. There are
n+1 “slots” into which a merge can take place, one each at the front and
rear of the line of obstacles, the rest in between obstacles. The feasibility
of the front and rear slots is associated with a single obstacle and
therefore already determined by the foregoing. A “between” slot is
feasible if the following criteria are met: 1) the slot’s front-obstacle back-
merge and rear-obstacle front-merge are feasible; 2) the gap between
obstacles is large enough for Boss plus proper spacing in front and rear;
3) the front obstacle’s velocity is greater than or equal to the rear
obstacle’s velocity, so the gap is not closing; 4) the merge-between point
will be reached before the checkpoint.

38 C. Urmson et al.

Fig. 17. Two-Lane Merging

Boss determines whether a merge is feasible in all slots in the merge-to lane
(there are three in the example: in front of vehicle 1, between vehicles 1 and 2, and
behind vehicle 2), and targets the appropriate feasible merge slot depending on the
situation. For a multi-lane unidirectional road, this is generally the foremost
feasible slot.

Once feasibility for all slots is determined, appropriate logic is applied to
determine which slot to merge into depending on the situation. For a multi-lane
unidirectional road, Boss seeks the foremost feasible slot in order to make the best
time. For a two-lane bidirectional road, Boss seeks the closest feasible slot in
order to remain in the wrong-direction lane for the shortest time possible.

Determination of the merge-by distance is the smallest of the distance to the: 1)
next motion goal (i.e., checkpoint); 2) end of the current lane; 3) closest road
blockage in the current lane; 4) projected position of the closest moving obstacle
in the current lane.

6.3 Error Recovery

One of the most important aspects of the behavioral reasoning system is its
responsibility to detect and address errors from the motion planner and other
aberrant situations. To be effective, the recovery system should:

• Be able to generate a non-repeating and novel sequence of recovery goals
in the face of repeated failures ad-infinitum.

• Be able to generate different sets of recovery goals to handle different
contexts.

• Be implemented with minimal complexity so as to produce as few unde-
sirable behaviors as possible.

To reduce interface complexity, the goal selection system follows the state
graph shown in Figure 18.

Each edge represents the successful completion (Success) or the failed
termination (Failure) of the current motion goal. Goal failure can be either directly
reported by the motion planner, or triggered internally by progress monitoring that

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 39

Fig. 18. Goal selection state graph.

declares failure if sufficient progress is not made within some time. All edge
transitions trigger the selection of a new goal and modify the Recovery Level:

• Success resets recovery level to zero but caches the previous recovery
level.

• Failure sets the recovery level to one greater than the maximum of the
cached and current recovery level.

The recovery level along with the type and parameters of the original failed
goal are the primary influences on the recovery goal algorithms. The general form
of the recovery goals is that an increasing recovery level results in higher risk
attempts to recover, meaning actions that are generally farther away from the
current position and/or the original goal. This process ensures that Boss tries low-
risk and easy to execute maneuvers initially while still considering more drastic
measures when necessary. If the recovery process chooses an obviously-
infeasible goal, the motion planner will signal failure immediately and the
recovery level will increment. Otherwise, to complement explicit failure reports
from the motion planner, forward progress is monitored such that the robot must
move a minimum distance toward the goal over some span of time. If it does not,
the current goal is treated as a failure, and the recovery level is incremented. The
progress threshold and time span were determined largely by experimentation and
set to 10m and 90s on race day. Generally speaking, these represent the largest
realistic delay the system was expected to encounter during operation.

In general, the successful completion of a recovery goal sets the system back to
normal operation. This eliminates the possibility of complex multi-maneuver
recovery schemes, at the benefit of simplifying the recovery state tracking. In
situations where the vehicle oscillates between recovery and normal operation, the
recovery system maintains sufficient state to increase the complexity of recovery
maneuvers.

40 C. Urmson et al.

On-Road Failures

The most commonly encountered recovery situation occurs when the on-road
planner generates an error while driving down a lane. Any number of stimuli can
trigger this behavior, including.

• Small or transient obstacles, e.g. traffic cones that do not block the entire
lane but are sufficient to prevent the planner from finding a safe path
through them.

• Larger obstacles such as road barrels, K-rails or other cars that are
detected too late for normal distance keeping to bring the system to a
graceful stop,

• Low-hanging canopy, which is generally detected late and often requires
additional caution and careful planning, and

• Lanes whose shape is kinematically infeasible.

The algorithm for lane recovery goal selection, called Shimmy, and illustrated
in Figure 19, selects an initial set of goals forward along the lane with the distance
forward described by:

dshimmy = dinitial + Rdincremental
(34)

Empirically, dinitial=20m and dincremental=10m worked well. The 20m initial
distance was empirically found to give the planner sufficient room to get past
stopped cars in front of the vehicle.

These forward goals (Goals 1,2,3 in Figure 19) are selected out to some
maximum distance, roughly 40m and corresponding to our high-fidelity sensor-
range, after which a goal is selected 10m behind the vehicle (Goal 4) with the
intent of backing up and getting a different perspective on the immediate
impediment.

Fig. 19. Example Shimmy error recovery goal sequence.

After backing up, the sequence of forward goals is allowed to repeat once more
with slight (less than 5m) alterations after which continued failure causes one of
two things to happen:

1. If a lane is available in the opposing direction, mark the segment as lo-
cally blocked and issue a U-turn (Goal 5). This is supplemental to the ex-
ternal treatment of total segment blockages discussed in section 5.2 , and
presumes that a U-turn has not yet been detected and generated.

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 41

2. If there are no lanes available in the opposing direction (i.e., Boss is
stuck on a one-way road), then the goal selection process is allowed to
continue forward infinitely beyond the 40m limit with the additional ef-
fect of removing an implicit stay near the lane constraint that is associ-
ated with all previous recovery goals. Removing this constraint gives the
pose planner complete freedom to wander the world arbitrarily in an at-
tempt to achieve some forward goal.

Intersection Failures

Error cases in intersections are perhaps the most difficult to recover from. These
errors happen when an attempt to traverse an intersection is not possible due to
obstacles and/or kinematic constraints, or else as part of the gridlock resolution
system. A simplified example sequence from this recovery algorithm, called
Jimmy, is show in Figure 20.

Fig. 20. Example Jimmy recovery goal sequence.

The first step in the Jimmy algorithm is to try the original failed goal over again
as a pose goal, instead of a road driving goal (e.g. Goal), giving the motion
planner the whole intersection as its workspace instead of just the smooth path
between the intersection entry and exit. This generally and quickly recovers from
small or spurious failures in intersections as well as compensating for intersections
with turns that are tighter than the vehicle can make in a single motion. Should
that first recovery goal fail, its associated entry waypoint is marked as blocked,
and the system is allowed an opportunity to plan an alternate mission plan to the
goal. If there is an alternate path, that alternate intersection goal (e.g. Goals 2,3) is
selected as the next normal goal and the cycle is allowed to continue. If that
alternate goal fails, it is also marked as blocked, and the system is allowed to re-
plan, and so forth until all alternate routes to goal are exhausted, whereupon the
system will select unconstrained pose goals (i.e. pose goals that can drive outside

42 C. Urmson et al.

of the intersection and roads) incrementally further away from the intersection
along the original failed goal.

Zone Failures

The case where specifics do matter, however, is the third recovery scenario,
failures in zones. The pose planner that executes zone goals is general and
powerful enough to find a path to any specific pose if such a path exists, so a
failure to do so implies one of the following:

1. The path to the goal has been transiently blocked by another vehicle.
While DARPA guaranteed that a parking spot in a zone will be free, they
made no such guarantees about traffic accumulations at zone exits, or
about the number of vehicles between the current position and the target
parking spot. In either case, a retry of the same or a selection of a nearby
similar goal should afford the transient blockage time to pass.

2. Due to some sensor artifact, the system believes there is no viable path to
goal. In this case, selecting nearby goals that offer different perspectives
on the original goal area may relieve the situation.

3. The path to the goal is actually blocked.

The goal selection algorithm for failed zone goals, called Shake, selects goals in
a regular, triangular pattern facing the original goal as shown in Figure 21.

Fig. 21. Example Shake recovery goal sequence.

On successful completion of any one these goals, the original goal is re-
attempted. If the original goal fails again, the Shake pattern picks up where it left
off. If this continues through the entire pattern, the next set of actions is
determined by the original goal. Parking spot goals were guaranteed to be empty,
so the pattern is repeated with a small incremental angular offset ad-infinitum. For
zone exit waypoint goals, the exit is marked as blocked and the system attempts to

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 43

re-route through alternate exits similar to the alternate path selection in the Jimmy
algorithm. In the case of no other exits, or no other path to goal, the system issues
completely unconstrained goals to logical successors of the zone exit waypoint in
a last-ditch effort to escape the zone.

If these goals continue to fail, then farther successors are selected in a semi-
random breadth-first search along the road network in a general last-ditch
recovery algorithm called Bake. Increasing values of recovery level call out farther
paths in the search algorithm. The goals selected in this manner are characterized
by being completely unconstrained, loosely specified goals that are meant to be
invoked when each of the other recovery goal selection schemes have been
exhausted. In addition to Shake goals at a zone exit, these are selected for Shimmy
goals that run off the end of the lane and similarly for Jimmy goals when all other
attempts to get out of an intersection have failed.

Through these four recovery algorithms (Shimmy, Jimmy, Shake and Bake)
many forward paths are explored from any single location, leaving only the
possibility that the system is stuck due to a local sensor artifact or some other
strange local minima that requires a small local adjustment. To address this
possibility, a completely separate recovery mechanism runs in parallel to the rest
of the goal monitoring and recovery system with a very simple rule: if the system
has not moved at least one meter in the last five minutes, override the current goal
with a randomized local goal. When that goal is completed, pretend a completely
fresh wakeup at that location, possibly clearing accumulated state, and try again.

Fig. 22. Example Wiggle recovery goals.

The goals selected by this algorithm, called Wiggle, are illustrated in Figure 22.
The goals are pseudo-random, approximately kinematically feasible and can be
either in front of or behind the vehicle’s current pose. The algorithm is, however,
biased somewhat forward of the robot’s position so there is statistically net-
forward motion if the robot is forced to choose these goals repeatedly over time in
a behavior similar to the “Wander” behavior described by 0.

44 C. Urmson et al.

The composite recovery system provides a necessary line of defense against
failures in the planning and perceptive systems. This robustness was a key
element of winning the Urban Challenge.

7 Software Infrastructure

The software infrastructure is a tool box that provides the basic tools required to
build a robotic platform. The infrastructure takes the form of common libraries
that provide fundamental capability, such as inter-process communication,
common data types, robotic math routines, data log/playback, and much more.
Additionally, the infrastructure reinforces a standard mechanism for processes in
the system to exchange, log, replay, and visualize data across any interface in the
system, thereby reducing the time to develop and test new modules.

The following is a list of the tools provided by the infrastructure:

Communications Library – Abstracts around basic inter-process communication
over UNIX Domain Sockets, TCP/IP, or UDP; supports the Boost::Serialization
library to easily marshal data structures across a communications link, then
unmarshal on the receiving side. A key feature is anonymous publish/subscribe,
which disconnects a consumer of data from having to know who is actually
providing that data, enabling the easy interchange of components during testing
and development.

Interfaces Library – Each interface between two processes in the system is added
to this library. Each interface fits into a plug-in framework so that a task,
depending on its communications configuration, can dynamically load the
interfaces required at run-time. For example, this enables a perception task to
abstract the notion of a LIDAR source and at run-time be configured to use any
LIDAR source, effectively decoupling the algorithmic logic from the nuts-and-
bolts of sensor interfacing. Furthermore, interfaces can be built on top of other
interfaces in order to produce composite information from multiple sources of
data. For example, a pointed LIDAR interface combines a LIDAR interface, and a
pose interface.

Configuration Library – Parses configuration files written in the Ruby scripting
language in order to configure various aspects of the system at run-time. Each
individual task can add parameters specific to its operation, in addition to common
parameters like those that affect the loggers’ verbosity, and the configuration of
communications interfaces. The Ruby scripting language is used in order to
provide a more familiar syntax, ease of detecting errors in syntax or malformed
scripts, and to give the user several options for calculating and deriving
configuration parameters.

Task Library – Abstracts around the system’s main() function, provides an event
loop that is triggered at specified frequencies, and automatically establishes
communication with other tasks in the system.

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 45

Debug Logger – Provides a mechanism for applications to send debug messages
of varying priority to the console, operator control station, log file, etc., depending
on a threshold that varies verbosity according to a priority threshold parameter.

Log/Playback – The data log utility provides a generic way to log any interface in
the system. Every data structure that is transmitted through the inter-process
communication system can inherently be captured using this utility. The logged
data are saved to a Berkeley database file along with a timestamp. The playback
utility can read a Berkeley database file, seek to a particular time within the file,
and transmit the messages stored in the file across the inter-process
communication system. Since the inter-process communication system uses an
anonymous publish/subscribe scheme, the consuming processes will receive the
played-back messages, without realizing that data are not coming from a live
sensor. This feature is useful in order to replay incidents that occurred on the
vehicle for off-line analysis.

Fig. 23. The Tartan Racing Operator Control Station (TROCS) is an extensible GUI that
enables developers to both monitor telemetry from Boss while it is driving and replay data
offline for algorithm analysis.

Tartan Racing Operator Control Station (TROCS) – A graphical interface based
on QT that provides an operator, engineer, or tester a convenient tool for starting
and stopping the software, viewing status/health information, and debugging the
various tasks that are executing. Each developer can develop custom widgets that
plug into TROCS in order to display information for debugging and/or monitoring
purposes.

8 Testing

Testing was a central theme of the research program that developed Boss. Over
the 16 months of development, Boss performed more than 3000km of autonomous

46 C. Urmson et al.

driving. The team used time on two test vehicles, a simulation and data replay
tool, and multiple test sites in three states to debug, test and evaluate the system.

Testing and development were closely intertwined, following the cyclic process
illustrated in Figure 24. Before algorithm development began, the team assembled
requirements that defined the capabilities Boss would need to be able to complete
the challenge. Requirements drove the development of algorithms and selection
of components. Algorithms and approaches were tested offline either in
simulation or by using data replay. Once an algorithm became sufficiently
mature, it would move to on-vehicle testing, where system and environmental
interactions could be fully evaluated. These tests would often uncover algorithmic
problems or implementation bugs that were not obvious during offline testing,
often resulting in numerous cycles of rework and further offline debugging. Once
the developers were satisfied that the algorithm worked, testing of the algorithm
was added to the formal, regularly scheduled system test. Independent testing of
algorithms would often uncover new deficiencies, requiring some rework. In
other cases, testing and post-analysis would cause the team to modify the
requirements driving the development, limiting or extending scope as appropriate.
Eventually, the technology would be deemed accepted, and ready for the Urban
Challenge.

Fig. 24. The requirements and testing process used in the development of Boss.

8.1 System Testing

Regressive system testing was the cornerstone of the development process.
Following the cyclic development process, each researcher was free to implement
and test as independently of the overall system as possible, but to judge overall
capability, and to verify that component changes did not degrade overall system
performance, the team performed regressive system testing.

System testing was performed with a frequency proportionate to system
readiness. Between February and October 2007, the team performed 65 days of
system testing. Formal testing time was adjusted over the course of the program

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 47

to ensure relevance. As an example, during February the team performed less
than 16 kilometers of system testing. In contrast, during the first three weeks of
October, the team performed over 1500 kilometers of autonomous testing.

In general, the team tested once a week, but leading up to major milestones (the
midterm site visit and national qualification event) the team moved to daily
regressive testing. During regressive testing, the team would evaluate Boss’s
performance against a standard set of plays (or scenarios) described in a master
playbook. The playbook captures over 250 different driving events that are
important to evaluate. Figure 25 illustrates what a page from the playbook looks
like. Each play is annotated with priority (ranked 1 to 3), how thoroughly it has
been tested, how it relates to requirements, and a description of how Boss should
behave when encountering this scenario. The 250 plays cover the mundane
(correctly stopping at a stop sign) to the challenging (successfully navigating a
jammed intersection), enabling the team to have confidence that even the most
coupled software changes were not damaging overall system performance.

Scenario:
Pass a slow moving vehicle (< ½ of speed limit)

Success:
Determine correct speed of V1 and
Pass without stopping

G
M

A10/11-8. Pass:
Passing a slow moving vehicle

V1

Priority number

Diagram
Scenario and goal

Requirement number

Testing status
= tested fully

= tested a bit
= not tested

1

Fig. 25. A representative page from the testing playbook.

Feedback from system tests was rapidly passed to the development team
through a Hot Wash after each system test, and a test report was published within
48 hours. Whereas the hot wash was delivered by the test software operator, who
conveyed first-hand experience of code performance, the test report provided a
more black-box understanding of how well the system met its mission
requirements. Software bugs discovered through this and other testing were

48 C. Urmson et al.

electronically tracked, and formal review occurred weekly. The test report
included a Gap Analysis showing the requirements that remained to be verified
under system testing. This gap analysis was an essential measure of the team’s
readiness to compete at the Urban Challenge.

In addition to regressive testing, the team performed periodic endurance tests
designed to confirm that Boss could safely operate for at least 6 hours or 60 miles
(the stated length of the Urban Challenge). This was the acid test of performance,
allowing the team to catch intermittent and subtle software and mechanical defects
by increasing time on the vehicle. One of the most elusive problems discovered
by this testing process was an electrical shorting problem that was the result of a
2mm gash in a signal line on the base vehicle Tahoe bus. The problem caused
Boss to lose all automotive electrical power, killing the vehicle. Had the team not
performed endurance testing it is plausible this defect would have never been
encountered before the UCFE, and would have caused Boss to fail.

9 Performance at the National Qualification Event and Urban
Challenge Final Event

The National Qualification and Urban Challenge Final events were held at the
former George Air Force Base (see Figure 26), which provided a variety of roads,
intersections and parking lots to test the vehicles. The NQE allowed DARPA to
assess the capability and safety of each of the competitors. The teams were
evaluated on three courses. Area A required the autonomous vehicles to merge
into and turn across dense moving traffic. Vehicles had to judge the size of gaps
between moving vehicles, assess safety and then maneuver without excessive
delay. For many of the vehicles, this was the most difficult challenge, as it
involved significant reasoning about moving obstacles. Area B was a relatively
long road course that wound through a neighborhood. Vehicles were challenged
to find their way through the road network while avoiding parked cars,
construction areas and other road obstacles, but did not encounter moving traffic.
Area C was a relatively short course, but required autonomous vehicles to
demonstrate correct behavior with traffic at four-way intersections and to
demonstrate rerouting around an unexpectedly blocked road.

For the final event, the field was reduced to eleven teams (see Figure 27).
Traffic on the course was provided by not only the eleven qualifying vehicles, but
fifty human-driven vehicles operated by DARPA. While primarily on-road, the
course also included a pair of relatively short dirt roads, one of which ramped its
way down a 50m elevation change.

Despite the testing by each of the teams and a rigorous qualification process,
the challenge proved to be just that. Of the eleven teams that entered, six were
able to complete the 85 kilometer course, three of them without human
intervention. Boss finished the challenge approximately nineteen minutes faster
than the second-place vehicle, Junior (from Stanford University) and twenty-six
minutes ahead of the third-place vehicle, Odin (from Virginia Tech). The vehicles
from Cornell, MIT and the University of Pennsylvania rounded out the finishers.

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 49

Area A

Area B

Area C

Fig. 26. The National Qualification Event took place in three areas, each emphasizing
different skills. Area A tested merging with moving traffic, Area B tested navigation, while
Area C tested re-routing and intersection skills.

Fig. 27. Of the eleven vehicles that qualified for the Urban Challenge Final event, three
completed the challenge without human intervention. Three additional teams finished the
course with minor interventions.

Overall, the vehicles that competed in the challenge performed admirably, with
only one vehicle-to-vehicle collision which occurred at very low speeds and
resulted in no damage. While the vehicles drove well, none of them was perfect.
Amongst the foibles: Boss twice incorrectly determined that it needed to make a
U-turn, resulting in its driving an unnecessary two miles; Junior had a minor bug
that caused it to repeatedly loop twice through one section of the course; and Odin
incurred a significant GPS error that caused it to drive partially off the road for
part of the challenge. Despite these glitches, these vehicles represent a new state-
of-the-art for urban driving.

50 C. Urmson et al.

The following sections describe a few incidents during the qualifications and
final event where Boss encountered some difficulties.

9.1 National Qualification Event Analysis

Boss performed well at each component of the National Qualification event,
consistently demonstrating good driving skills and overall system robustness.
Through the NQE testing, Boss demonstrated three significant bugs, none of
which were mission-ending.

Fig. 28. Data replay shows how the incorrectly extrapolated path of a vehicle (dark blue)
and the wall (red pixels) create space that Boss believes is too narrow to drive through
(indicated by the arrow).

The first significant incident occurred in area A, the course that tested a robot’s
ability to merge with traffic. During Boss’s first run on this course, it approached
a corner and stopped for about 20 seconds before continuing, crossing the center
line for some time before settling back into the correct lane and continuing. This
incident had two principal causes: narrow lanes and incorrect lane geometry. In
preparing the course, DARPA arranged large concrete “Jersey” barriers
immediately adjacent to the lane edges to prevent vehicles from leaving the course
and injuring spectators. This left little room for navigational error. When
configuring Boss for the run, the team adjusted the geometry defined in the
RNDF, with the intention of representing the road shape as accurately as possible

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 51

Obstacle generated by
dust Pixels

Fig. 29. The false obstacles generated by dust and the bush behind Boss prevented Boss
from initially completing its U-turn.

given the available overhead imagery. During this process, the team incorrectly
defined the shape of the inner lanes. While this shape was unimportant for Boss’s
localization and navigation, it was used to predict the motion of the other vehicles
on the course. The incorrect geometry caused Boss to predict that the other
vehicles were coming into its lane (see Figure 28). It thus stopped and an error
recovery mode (Shimmy) kicked in. After shimmying down the lane, Boss
reverted to normal driving and completed the test.

The second significant incident occurred during testing in Area C. This course
tested the autonomous vehicle’s ability to handle traffic at intersections and replan
for blocked roads. For most of this course, Boss drove well and cleanly, correctly
making its way through intersections and replanning when it encountered a
blocked road. The second time Boss encountered a blocked road it began to U-
turn, getting two of its wheels up on a curb. As it backed back down off the curb,
it caused a cloud of dust to rise and then stopped and appeared stuck, turning its
wheels backwards and forwards for about a minute. After the minute, Boss started
moving again and completed the course without further incident.

Post-test data analysis revealed that Boss perceived the dust cloud as an
obstacle. In addition, an overhanging tree branch behind Boss caused it to believe
there was insufficient room to back up. Normally, when the dust settled, Boss
would have perceived that there was no longer an obstacle in front of it and
continued driving, but in this case the dust rose very close to Boss, on the
boundary of its blind spot (see Figure 29). The obstacle detection algorithms treat
this area specially and do not clear obstacles within this zone. Eventually Boss
wiggled enough to verify that the cell where it had previously seen the dust was no

52 C. Urmson et al.

longer occupied. Once again, Boss’s consistent attempts to replan paid off, this
time indirectly. After this test, the obstacle detection algorithms were modified to
give no special treatment to obstacles within the blind spot.

The third significant incident during qualifications occurred in area B, the
course designed to test navigation and driving skills. During the test, Boss came
up behind a pair of cars parked along the edge of the road. The cars were not
sufficiently in the road to be considered stopped vehicles by the perception
system, so it fell to the motion planning system to avoid them. Due to pessimistic
parameter settings, the motion planner believed there was insufficient room to
navigate around the obstacles without leaving its lane, invoking the behavioral
error recovery system. Due to a bug in the error handling system, the goal
requested by the behavioral engine was located approximately 30m behind Boss’s
current position, causing it to back up. During the backup maneuver DARPA
paused Boss. This cleared the error recovery stack, and upon restart, Boss
continued along the lane normally until it encountered the same vehicles, at which
point it invoked the recovery system again, but due to the pause clearing state in
the behavioral system, the new recovery goal was in a correct, down-road
location.

Despite these foibles, after completion of the qualification events Boss was
ranked as the top performer and was given pole position for the final event.

9.2 Final Event Analysis

Immediately before Boss was to begin the final event, the team noticed that Boss’s
GPS receivers were not receiving GPS signals. Through equipment tests and
observation of the surroundings, it was determined that the most likely cause of
this problem was jamming from a Jumbotron (a large television commonly used at
major sporting events) newly positioned near the start area. After a quick
conference with the DARPA officials, the Jumbotron was shut down and Boss’s
GPS receivers were restarted and ready to go. Boss smoothly departed the launch
area to commence its first of three missions for the day.

Once launched, Boss contended with ten other autonomous vehicles and
approximately fifty other human driven vehicles. During the event Boss performed
well, but did have a few occurrences of unusual behavior.

The first incident occurred on a relatively bumpy transition from a dirt road to a
paved road. Instead of stopping and then continuing normally, Boss stopped for a
prolonged period of time and then hesitantly turned onto the paved road. Boss’s
hesitation was due to a calibration error in the Velodyne LIDAR, used for static
obstacle detection. In this case, the ground slope combined with this
miscalibration was sufficient for the laser to momentarily detect the ground,
calling it an obstacle (see Figure 30). Boss then entered an error recovery mode,
invoking the zone planner to get to the road. With each movement, the false
obstacles in front of Boss would change position, causing replanning, and thus
hesitant behavior. Once Boss made it off the curb and onto the road, the false
obstacles cleared and Boss was able to continue driving normally.

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 53

False Obstacles

Fig. 30. False obstacles that caused Boss to stutter when leaving a dirt road.

Detected vehicle with
incorrect orientation

Fig. 31. This incorrect estimate of an oncoming vehicles orientation caused Boss to swerve
and almost caused Boss to become irrevocably stuck.

54 C. Urmson et al.

The next incident occurred when Boss swerved abruptly while driving past an
oncoming robot. The oncoming vehicle was partially in Boss’s lane, but not
sufficiently that Boss needed to maneuver to avoid it. The oncoming vehicle
partially occluded its chase vehicle and momentarily caused Boss’s perception
system to estimate the vehicle with an incorrect orientation such that it was
perceived to be entering Boss’s travel lane (see Figure 31). At this point, Boss
swerved and braked to try and avoid the perceived oncoming vehicle, moving it
very close to the Jersey barrier wall. While this was happening, DARPA ordered
a full course pause due to activity elsewhere on the course. This interrupted Boss
mid-motion, causing it to be unable to finish its maneuver. Upon awakening from
the pause, Boss felt it was too close to the wall to maneuver safely. After a minute
or so of near-stationary wheel-turning, its pose estimate shifted laterally by about
2cm, just enough that it believed it had enough room to avoid the near wall. With
a safe path ahead, Boss resumed driving and continued along its route.

Later in the first mission Boss was forced to queue behind a vehicle already
waiting at a stop line. Boss began queuing properly, but when the lead vehicle
pulled forward, Boss did not. After an excessive delay, Boss performed a U-turn
and drove away from the intersection, taking an alternative route to its next
checkpoint.

Analysis revealed a minor bug in the planning system, which did not correctly
update the location of moving vehicles. For efficiency, the zone planner checks
goal locations against the location of obstacles before attempting to generate a
path. This check can be performed efficiently, allowing the planning system to
report that a goal is unreachable in much less time than it takes to perform an
exhaustive search. A defect in this implementation caused the planning system to
not correctly update the list of moving obstacles prior to performing this check.
Thus, after the planner’s first attempt to plan a path forward failed, every future
attempt to plan to the same location failed, since the planner erroneously believed
that a stopped vehicle was in front of it. The behavioral error recovery system
eventually selected a U-turn goal, and Boss backed up and went on its way. This
re-route caused Boss to drive an additional 2.7 km, but it was still able to complete
the mission.

Despite these incidents, Boss was still able to finish the challenge in four hours,
ten minutes and twenty seconds, roughly nineteen minutes faster than the second-
place competitor. Boss averaged 22.5kph during the challenge (while enabled),
and 24.5kph when moving. Through offline simulation we estimated that the
maximum average speed Boss could have obtained over the course was 26.2kph.
Figure 32 shows the distribution of Boss’s moving speeds during the challenge.
The large peak at 9-10mps is due to the course speed limits. This spike implies
that Boss was limited by these speed limits, not its capability.

The roadmap localization system played an important role during the challenge.
For a majority of the challenge, the error estimate in the roadmap localization
system was less than 0.5m, but there were over 16 minutes of time that the error
was greater than 0.5m, with a peak error of 2.5m. Had the road map localization
system not been active, it is likely that Boss would have been either off the road or
in a wrong lane for a significant amount of time.

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 55

0 2 4 6 8 10 12 14
0

100

200

300

400

500

600

700

800

speed (mps)

tim
e

(s
)

Fig. 32. Boss averaged 22.5kph during the challenge, this figure shows a distribution of the
vehicle’s speed while moving.

In general, Boss drove well, completing a large majority of the course with skill
and precision. As demonstrated in this brief analysis, one of Boss’s strengths was
its robustness and ability to recover from unexpected error cases autonomously.

10 Lessons Learned

Through the development of Boss and competition in the Urban Challenge, the
team learned several valuable lessons:

Available off-the-shelf sensors are insufficient for urban driving- There is
currently no single sensor capable of providing environmental data to sufficient
range, and with sufficient coverage to support autonomous urban driving. The
Velodyne sensor used on Boss (and other Urban Challenge vehicles) comes close,
but has insufficient angular resolution at long ranges and is unwieldy for
commercial automotive applications.

Road shape estimation may be replaced by estimating position relative to the
road- In urban environments, the shape of roads changes infrequently. There may
be local anomalies (e.g. a stopped car or construction), but in general, a prior
model of road shape can be used for on-road navigation. Several Urban Challenge
teams took this approach, including our team, and demonstrated that it was
feasible on a small to medium scale. While this may not be a viable approach for
all roads, it has proven a viable method for reducing complexity in common urban
driving scenarios. The next step will be to apply the same approach on a large or
national scale and automate the detection of when the road has changed shape
from the expected.

56 C. Urmson et al.

Human-level urban driving will require a rich representation- The representation
used by Boss consists of lanes and their interconnections, a regular map containing
large obstacles and curbs, a regular map containing occlusions, and a list of
rectangles (vehicles) and their predicted motions. Boss has a very primitive notion
of what is and is not a vehicle: if it is observed to move within some small time
window and it is in a lane or parking lot, then it is a vehicle, otherwise it is not.
Time and location are thus the only elements that Boss uses to classify an object as
a vehicle. This can cause unwanted behavior; for example, Boss will wait equally
long behind a stopped car (appearing reasonable) and a barrel (appearing
unreasonable), while trying to differentiate between them. A richer representation
including more semantic information will enable future autonomous vehicles to
behave more intelligently.

Validation and verification of urban driving systems is an unsolved problem- The
authors are unaware of any formal methods that would allow definitive statements
about the completeness or correctness of a vehicle interacting with a static
environment, much less a dynamic one. While sub-systems that do not interact
directly with the outside world can be proven correct and complete (e.g. the
planning algorithm), verifying a system that interacts with the world (e.g. sensors/
world model building) is as of yet impossible.

Our approach of generating an ad hoc, but large, set of test scenarios performed
relatively well for the Urban Challenge, but as the level of reliability and
robustness approaches that needed for autonomous vehicles to reach the market
place, this testing process will likely be insufficient. The real limitation of these
tests, is that it is too easy to “teach to the test” and develop systems that are able to
reliably complete these tests but are not robust to a varied world. To reduce this
problem, we incorporated free-for-all testing in our test process, which allowed
traffic to engage Boss in a variety of normal, but unscripted, ways. While this can
increase robustness, it can in no way guarantee that the system is correct.

Sliding Autonomy will reduce complexity of autonomous vehicles- In building a
system that was able to recover from a variety of failure cases, we introduced
significant system complexity. In general, Boss was able to recover from many
failure modes, but took considerable time to do so. If, instead of attempting an
autonomous recovery, the vehicle were to request assistance from a human
controller, much of the system complexity would be reduced and the time taken to
recover from faults would decrease dramatically. The critical balance here is to
ensure the vehicle is sufficiently capable that it does not request help so frequently
that the benefits of autonomy are lost. As an example, if Boss was allowed to ask
for help during the four-hour Urban Challenge, there were three occasions where
it might have requested assistance. Human intervention at these times would
likely have reduced Boss’s overall mission time by approximately fifteen minutes.

Driving is a social activity- Human driving is a social activity consisting of many
subtle and some not-so-subtle cues. Drivers will indicate their willingness for
other vehicles to change lanes by varying their speed, and the gap between
themselves and another vehicle, by small amounts. At other times it is necessary
to interpret hand gestures and eye contact in situations when the normal rules of

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 57

the road are violated, or need to be violated for traffic to flow smoothly and
efficiently. For autonomous vehicles to seamlessly integrate into our society, they
would need to be able to interpret these gestures.

Despite this, it may be possible to deploy autonomous vehicles which are
unaware of the subtler social cues. During our testing and from anecdotal reports
during the final event, it became clear that human drivers were able to quickly
adapt and infer (perhaps incorrectly) the reasoning within the autonomy system.
Perhaps it will be sufficient and easier to assume that we humans will adapt to
robotic conventions of driving rather than the other way around.

11 Conclusions

The Urban Challenge was a tremendously exciting program to take part in. The
aggressive technology development timeline, international competition, and
compelling motivations fostered an environment that brought out a tremendous
level of creativity and effort from all those involved. This research effort
generated many innovations:

• a coupled moving obstacle and static obstacle detection and tracking system;
• a road navigation system that combines road localization and road shape

estimation to drive both on roads where there is and is not a priori road
geometry is available;

• a mixed-mode planning system that is able to both efficiently navigate on
roads and safely maneuver through open areas and parking lots;

• a behavioral engine that is capable of both following the rules of the road and
violating them when necessary;

• a development and testing methodology that enables rapid development and
testing of highly capable autonomous vehicles.

While this article outlines the algorithms and technology that made Boss
capable of meeting the challenge, there is much left to do. Urban environments
are considerably more complicated than what the vehicles faced in the Urban
Challenge; pedestrians, traffic lights, varied weather, and dense traffic all
contribute to this complexity.

As the field advances to address these problems, we will be faced with
secondary problems, such as how do we test these systems and how will society
accept them? While defense needs may provide the momentum necessary to drive
these promising technologies, we must work hard to ensure our work is relevant
and beneficial to a broader society. While these challenges loom large, it is clear
that there is a bright and non-too-distant future for autonomous vehicles.

Acknowledgments

This work would not have been possible without the dedicated efforts of the
Tartan Racing team and the generous support of our sponsors, including General

58 C. Urmson et al.

Motors, Caterpillar, and Continental. This work was further supported by
DARPA under contract HR0011-06-C-0142.

References

Brooks, R.: A robust layered control system for a mobile robot. IEEE Journal of Robotics
and Automation 2(1), 14–23 (1986)

Committee on Army Unmanned Ground Vehicle Technology and the National Research
Council. Technology Development for Army Unmanned Ground Vehicles.
Washington, D.C (2002)

Darms, M., Winner, H.: A modular system architecture for sensor data processing of ADAS
applications. In: Proceedings of IEEE Intelligent Vehicles Symposium, Las Vegas,
USA, pp. 729–734 (2005)

Darms, M.: Eine Basis-Systemarchitektur zur Sensordatenfusion von Umfeldsensoren
Fahrerassistenzsysteme, Fortschrittb. VDI: R12, Nr. 653 (2007)

Darms, M., Rybski, P., Urmson, C.: An Adaptive Model Switching Approach for a
Multisensor Tracking System used for Autonomous Driving in an Urban
Environment. Steuerung und Regelung von Fahrzeugen und Motoren – AUTOREG
2008, Baden Baden (February 2008)

Darms, M., Baker, C., Rybksi, P., Urmson, C.: Vehicle Detection and Tracking for the
Urban Challenge- The Approach taken by Tartan Racing. In: Maurer, M., Stiller, C.
(eds.) 5. Workshop Fahrerassistenzsysteme FAS 2008, April 2008, FMRT, Karlsruhe
(2008)

Darms, M., Rybski, P., Urmson, C.: Classification and Tracking of Dynamic Objects with
Multiple Sensors for Autonomous Driving in Urban Environments. In: Proceedings of
the IEEE Intelligent Vehicles Symposium. Eindhoven, NL (June 2008)

DARPA Urban Challenge (2007),
http://www.darpa.mil/grandchallenge/index.asp

Daubechies, I.: Ten lectures on wavelets. Society for Industrial and Applied. Mathematics
(1992)

Duda, R.O., Hart, P.E.: Use of the Hough Transformation to Detect Lines and Curves in
Pictures. Comm. ACM 15, 11–15 (1972)

Ferguson, D., Howard, T., Likhachev, M.: Motion Planning in Urban Environments (2008)
(in preparation)

Howard, T.M., Kelly, A.: Optimal Rough Terrain Trajectory Generation for Wheeled
Mobile Robots. International Journal of Robotics Research 26(2), 141–166 (2007)

Huttenlocker, D., Felzenswalb, P.: Distance Transforms of Sampled Functions, Cornell
Computing and Information Science Technical Report TR2004-1963 (2004)

Kaempchen, N., Weiss, K., Schaefer, M., Dietmayer, K.C.J., et al.: IMM object tracking for
high dynamic driving maneuvers. In: IEEE Intelligent Vehicles Symposium 2004,
Parma, Italy, pp. 825–830 (June 2004)

Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S.: Anytime Dynamic A*: An
Anytime, Replanning Algorithm. In: International Conference on Automated
Planning and Scheduling, ICAPS (2005)

MacLachlan, R.: Tracking Moving Objects From a Moving Vehicle Using a Laser Scanner.
tech. report CMU-RI-TR-05-07, Carnegie Mellon University (June 2005)

Autonomous Driving in Urban Environments: Boss and the Urban Challenge 59

Shih, M.-Y., Tseng, D.-C.: A wavelet-based multi-resolution edge detection and tracking.
Image and Vision Computing 23(4), 441–451 (2005)

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P.,
Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V.,
Stang, P., Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C., Markey, C.,
Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B.,
Ettinger, S., Kaehler, A., Nefian, A., Mahoney, P.: Stanley, the robot that won the
DARPA Grand Challenge. Journal of Field Robotics 23(9), 661–692 (2006)

Urmson, C., Anhalt, J., Clark, M., Galatali, T., Gonzalez, J.P., Gowdy, J., Gutierrez, A.,
Harbaugh, S., Johnson-Roberson, M., Kato, H., Koon, P.L., Peterson, K., Smith,
B.K., Spiker, S., Tryzelaar, E., Whittaker, W.L.: High Speed Navigation of
Unrehearsed Terrain: Red Team Technology for Grand Challenge, Tech. report
CMU-RI-TR-04-37, Robotics Institute, Carnegie Mellon University (2004)

Urmson, C., Anhalt, J., Bartz, D., Clark, M., Galatali, T., Gutierrez, A., Harbaugh, S.,
Johnston, J., Kato, H., Koon, P.L., Messner, W., Miller, N., Mosher, A., Peterson, K.,
Ragusa, C., Ray, D., Smith, B.K., Snider, J.M., Spiker, S., Struble, J.C., Ziglar, J.,
Whittaker, W.L.: A Robust Approach to High-Speed Navigation for Unrehearsed
Desert Terrain. Journal of Field Robotics 23(8), 467–508 (2006)

Viola, P., Jones, M.: Robust real-time object detection. In: The 2nd International Workshop
on Statistical and Computational Theories of Vision-Modeling, Learning, Computing,
and Sampling (2001)

Motion Planning in Urban Environments

Dave Ferguson1, Thomas M. Howard2, and Maxim Likhachev3

1 Intel Research Pittsburgh
Pittsburgh, PA 15213, USA
dave.ferguson@intel.com

2 Carnegie Mellon University
Pittsburgh, PA 15213, USA
thoward@ri.cmu.edu

3 University of Pennsylvania
Philadelphia, PA, USA
maximl@seas.upenn.edu

Abstract. We present the motion planning framework for an autonomous vehicle navigat-
ing through urban environments. Such environments present a number of motion planning
challenges, including ultra-reliability, high-speed operation, complex inter-vehicle interac-
tion, parking in large unstructured lots, and constrained maneuvers. Our approach combines
a model-predictive trajectory generation algorithm for computing dynamically-feasible ac-
tions with two higher-level planners for generating long range plans in both on-road and un-
structured areas of the environment. In the first part of this article, we describe the underlying
trajectory generator and the on-road planning component of this system. We then describe the
unstructured planning component of this system used for navigating through parking lots and
recovering from anomalous on-road scenarios. Throughout, we provide examples and results
from “Boss”, an autonomous SUV that has driven itself over 3000 kilometers and competed
in, and won, the DARPA Urban Challenge.

1 Introduction

Autonomous passenger vehicles present an incredible opportunity for the field of
robotics and society at large. Such technology could drastically improve safety on
roads, provide independence to millions of people unable to drive because of age
or ability, revolutionize the transportation industry, and reduce the danger associ-
ated with military convoy operations. However, developing robotic systems that are
sophisticated enough and reliable enough to operate in everyday driving scenar-
ios is tough. As a result, up until very recently, autonomous vehicle technology
has been limited to either off-road, unstructured environments where complex in-
teraction with other vehicles is non-existent (Stentz and Hebert, 1995; Kelly, 1995;
Singh et al., 2000; JFR, 2006a; JFR, 2006b; Carsten et al., 2007), or very simple on-
road maneuvers such as highway-based lane following (Thorpe et al., 1997).

The DARPA Urban Challenge competition was designed to extend this technol-
ogy as far as possible towards the goal of unrestricted on-road driving. The event
consisted of an autonomous vehicle race through an urban environment containing
single and multi-lane roads, traffic circles and intersections, open areas and unpaved
sections, road blockages, and complex parking tasks. Successful vehicles had to

M. Buehler et al. (Eds.): The DARPA Urban Challenge, STAR 56, pp. 61–89.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

62 D. Ferguson, T.M. Howard, and M. Likhachev

travel roughly 60 miles, all in the presence of other human-driven and autonomous
vehicles, and all while abiding by speed limits and California driving rules.

This challenge required significant advances over the state of the art in au-
tonomous vehicle technology. In this paper, we describe the motion planning system
developed for Carnegie Mellon University’s winning entry into the Urban Chal-
lenge, “Boss”. This system enabled Boss to travel extremely quickly through the
urban environment to complete its missions; interact safely and intelligently with
obstacles and other vehicles on roads, at intersections, and in parking lots; and per-
form sophisticated maneuvers to solve complex parking tasks.

We first introduce very briefly the software architecture used by Boss and the
role of motion planning within that architecture. We then describe the trajectory
generation algorithm used to generate every move of the vehicle. In Section 5, we
discuss the motion planning framework used when navigating on roads.

In Section 6, we discuss the framework used when navigating through unstruc-
tured areas or performing complex maneuvers. We then provide results and discus-
sion from hundreds of hours and thousands of miles of testing, and describe related
work in both on-road and unstructured planning.

2 System Architecture

Boss’ software system is decomposed into four major blocks (see Figure 1) and
is described in detail in (Urmson et al., 2008). The Perception component fuses
and processes data from Boss’ sensors to provide key environmental information,
including:

• Vehicle State, globally-referenced position, attitude and speed for Boss;
• Road World Model, globally-referenced geometric information about the roads,

parking zones, and intersections in the world;
• Moving Obstacle Set, an estimation of other vehicles in the vicinity of Boss;
• Static Obstacle Map, a 2D grid representation of free, dangerous, and lethal

space in the world; and
• Road Blockages, an estimation of clearly impassable road sections.

The Mission Planning component computes the fastest route through the road
network to reach the next checkpoint in the mission, based on knowledge of road
blockages, speed limits, and the nominal time required to make special maneuvers
such as lane changes or u-turns.

The Behavioral Executive combines the strategic global information provided
by Mission Planning with local traffic and obstacle information provided by Percep-
tion and generates a sequence of local tasks for the Motion Planner. It is responsible
for the system’s adherence to various rules of the road, especially those concerning
structured interactions with other traffic and road blockages, and for detection of and
recovery from anomalous situations. The local tasks it feeds to the Motion Planner
take the form of discrete motion goals, such as driving along a road lane to a specific
point or maneuvering to a specific pose or parking spot. The issuance of these goals
is predicated on traffic concerns such as precedence among vehicles stopped at an

Motion Planning in Urban Environments 63

Fig. 1. “Boss”: Carnegie Mellon’s winning entry in the Urban Challenge, along with its soft-
ware system architecture.

intersection. In the case of driving along a road, desired lane and speed commands
are given to the Motion Planner to implement behaviors such as distance keeping,
passing maneuvers, and queueing in stop-and-go traffic.

The Motion Planning component takes the motion goal from the Behavioral Ex-
ecutive and generates and executes a trajectory that will safely drive Boss towards
this goal, as described in the following section. Two broad contexts for motion plan-
ning exist: on-road driving and unstructured driving.

3 Motion Planning

The motion planning layer is responsible for executing the current motion goal is-
sued from the Behavioral Executive. This goal may be a location within a road lane
when performing nominal on-road driving, a location within a parking lot or obsta-
cle field when traversing through one of these areas, or any location in the environ-
ment when performing error recovery. The motion planner constrains itself based
on the context of the goal and the environment to abide by the rules of the road.

Figure 2 provides a basic illustration of the nature of the goals provided by the
Behavioral Executive. During nominal on-road driving, the goal entails a desired
lane and a desired position within that lane (typically a stop-line at the end of the
lane). In such cases, the motion planner invokes a high-speed on-road planner to
generate a path that tracks the desired lane. During unstructured driving, such as
when navigating through parking lots, the goal consists of a desired pose of the
vehicle in the world. In these cases, the motion planner invokes a 4D lattice planner
that generates a global path to the desired pose. These unstructured motion goals
are also used when the vehicle encounters an anomalous situation during on-road
driving and needs to perform a complex maneuver (such as when an intersection is
partially blocked and cannot be traversed in the desired lane).

As well as issuing motion goals, the Behavioral Executive is constantly provid-
ing desired maximum speed and acceleration/deceleration commands to the motion
planner. It is through this interface that the Behavioral Executive is able to control
the vehicle’s forward progress in distance keeping and intersection precedence sce-
narios. When the vehicle is not constrained by such scenarios, the motion planner

64 D. Ferguson, T.M. Howard, and M. Likhachev

Fig. 2. Motion goals provided by the Behavioral Executive to the Motion Planner. Also shown
are the frequently updated speed and desired acceleration commands.

computes desired speeds and accelerations based on the constraints of the environ-
ment itself (e.g. road curvature and speed limits).

Given a motion goal, the motion planner creates a path towards the desired goal
then tracks this path by generating a set of candidate trajectories that follow the path
to varying degrees and selecting from this set the best trajectory according to an
evaluation function. Each of these candidate trajectories is computed using a trajec-
tory generation algorithm described in the next section. As mentioned above, the
nature of the path being followed generated differs based on the context of the mo-
tion goal and the environment. In addition, the evaluation function differs depending
on the context but always includes consideration of static and dynamic obstacles,
curbs, speed, curvature, and deviation from the path. The selected trajectory is then
directly executed by the vehicle. This process is repeated at 10 Hz by the motion
planner.

4 Trajectory Generation

Each candidate trajectory is computed using a model-predictive trajectory generator
from (Howard and Kelly, 2007) that produces dynamically feasible actions between
initial and desired vehicle states. In general, this algorithm can be used to solve the
problem of generating a set of parameterized controls (u(p,x)) that satisfy a set of
state constraints whose dynamics can be expressed by a set of differential equations:

x =
[
x y θ κ v . . .

]T
(1)

ẋ(x,p) = f(x,u(p,x)), (2)

where x is the vehicle state (with position (x, y), heading (θ), curvature (κ), and
velocity (v), as well as other state parameters such as commanded velocity, etc) and
p is the set of parameters for which we are solving. The derivative of vehicle state
ẋ is a function of both the parameterized control input u(p,x) and the vehicle state
x because the vehicle’s response to a particular control input is state dependent. In

Motion Planning in Urban Environments 65

this section, we describe the application of this general algorithm to our domain,
specifically addressing the state constraints, vehicle model, control parameteriza-
tion, initialization function, and trajectory optimization approaches used.

4.1 State Constraints

For navigating both on-road and unstructured areas of urban environments we gener-
ated trajectories that satisfied both target two-dimensional position (x, y) and head-
ing (θ) constraints. We defined the constraint equation formula (C(x,p)) as the
difference between these target boundary state constraints (denoted xC) and the
integral of the model dynamics (the endpoint of the computed vehicle trajectory):

xC =
[
xC yC θC

]T
(3)

xF(p,x) = xI +
∫ tf

0

ẋ(x,p)dt (4)

C(x,p) = xC − xF(p,x) (5)

The constrained trajectory generation algorithm determines the control parame-
ters p that drive Equation 5 to zero. This results in a trajectory from an initial state
xI to a terminal vehicle state xF that is as close as possible to the desired terminal
state xC.

4.2 Vehicle Modeling

The development of a high fidelity vehicle dynamics model is important for the
accurate prediction of vehicle motion and thus for the generation of accurate tra-
jectories using our constraint-based approach. Our vehicle model consists of a set
of parameterized functions that were fit to data extracted from human-driven per-
formance runs in the vehicle. The key parameters in our model are the controller
delay, the curvature limit (the minimum turning radius), the curvature rate limit (a
function of the maximum speed at which the steering wheel can be turned), and the
maximum acceleration and deceleration of the vehicle. The controller delay accu-
rately predicts the difference in time between a command from software and the cor-
responding initial response from hardware and is an important consideration when
navigating at high speeds. The curvature, rate of curvature, acceleration and deceler-
ation limits were essential for accurately predicting the response of the vehicle over
entire trajectories. This model is then simulated using a fixed-timestep Euler integra-
tion to predict the vehicle’s motion. Appendix A provides details of the model used
for Boss.

4.3 Controls Parameterization

For Ackermann steered vehicles, it is advantageous to parameterize the curvature
function in terms of arclength (κ(p, s)). This is because, for similar trajectories, the

66 D. Ferguson, T.M. Howard, and M. Likhachev

(a) (b)

Fig. 3. Velocity and curvature profiles. (a) Several different linear velocity profiles were ap-
plied in this system, each with their own parameterization and application. Each parameteri-
zation contains some subset of velocity and acceleration knot points (v0, vt, vf , a0, and af)
and the length of the path, measured in time (t0, tf). (b) The curvature profile includes four
possible degrees of freedom: the three spline knot points (κ0, κ1, and κ2) and the length of
the path (sf).

solution values for the curvature profile parameters are less dependent on the speed
at which the trajectory is executed. For Boss, we parameterize the vehicle controls
with a time-based linear velocity function (v(p, t)) and an arclength-based curvature
function (κ(p, s)):

u(p,x) =
[
v(p, t) κ(p, s)

]T
(6)

We allow the linear velocity profile to take the form of a constant profile, linear
profile, linear ramp profile, or a trapezoidal profile (see Figure 3(a)). The motion
planner selects the appropriate profile based on the driving mode and context (e.g.
maintaining a constant velocity for distance keeping or slowing down for an upcom-
ing intersection). Each of these profiles consists of a set of dependent parameters
(v0, vt, vf , a0, and af) and the time to complete the profile (t0, tf), all of which be-
come members of the parameter set p. Since all of the dependent profile parameters
are typically known, no optimization is done on the shape of each of these profiles.

The curvature profile defines the shape of the trajectory and is the primary profile
over which optimization is performed. Our profile consists of three independent
curvature knot point parameters (κ0, κ1, and κ2) and the trajectory length (sf) (see
Figure 3(b)). In general, it is important to limit the degrees of freedom in the system
to minimize the presence of local optima and to improve the runtime performance
of the algorithm (which is approximately linear with the number of free parameters
in the system) but maintain enough flexibility to satisfy all of the boundary state
constraints. We chose a second order spline profile because it contains 4 degrees
of freedom, enough to satisfy the 3 boundary state constraints. We further fix the
initial command knot point κ0 during the optimization process to the curvature at
the initial state xI to provide smooth controls1.

With the linear velocity profile’s dependent parameters being fully defined and
the initial spline parameter of the curvature profile fixed, we are left with a system
with three parameterized freedoms: the latter two curvature spline knot points and
the trajectory length:

pfree =
[
κ1 κ2 sf

]T
(7)

1 However, this can also be fixed to a different value to produce sharp trajectories, as de-
scribed in Section 5.2.

Motion Planning in Urban Environments 67

(a) (b) (c)

Fig. 4. Offline lookup table generation. (a) Some sampled trajectories (in red) and some table
endpoints (red arrows) that we wish to generate trajectories to for storage in the lookup table.
(b) The closest sampled trajectories to the desired table endpoints are selected and then op-
timized to reach the desired endpoints. The parameter sets corresponding to these optimized
trajectories are then stored in the lookup table. (c) The set of all sampled trajectories (red) and
table endpoints (blue) for a single initial vehicle state. In this case the initial vehicle curvature
is not zero so the set of trajectories is not symmetric about the vehicle.

The duality of the trajectory length (sf) and time (tf) can be resolved by esti-
mating the time that it takes to drive the entire distance through the linear velocity
profile. Arclength was used for the independent parameter for the curvature profiles
because the shape of these profiles is somewhat independent of the speed at which
they are traveled. This allows solutions with similar parameters for varying linear
velocity profiles.

4.4 Initialization Function

Given the three free parameters and the three constraints in our system, we can use
various optimization or root finding techniques to solve for the parameter values that
minimize our constraint equation. However, for efficiency it is beneficial to precom-
pute offline an approximate mapping from relative state constraint space to param-
eter space to seed the constraint optimization process. This mapping can drastically
speed up the algorithm by placing the initial guess of the control parameters close
to the desired solution, reducing the number of online optimization steps required
to reach the solution (within a desired precision). Given the high number of state
variables and the fact that the system dynamics cannot be integrated in closed form,
it is infeasible to precompute the entire mapping of state space to input space for
any nontrivial system, such as the Boss vehicle model. We instead generate an ap-
proximation of this mapping through a five-dimensional lookup table with varying
relative initial and terminal position (�x,�y), relative heading (�θ), initial curva-
ture (κi), and constant velocities (v). Because this is only an approximation some
optimization is usually required, however the initial seed from the lookup table sig-
nificantly reduces the number of optimization iterations required from an arbitrary
set of parameters.

Figure 4 provides an illustration of the lookup table generation process. First, the
five dimensions of interest are discretized into a 5D table. Next, uniform sampling is
used to sample from the set of all possible parameter values and the table positions
each of these sample trajectories terminate in are recorded. The 5D table is then

68 D. Ferguson, T.M. Howard, and M. Likhachev

(a) (b) (c) (d) (e)

κ1(rad)
κ2(rad)

sf (m)

x(m) y(m) x(m) y(m)
x(m) y(m)

Fig. 5. Online Trajectory Generation. (a) Given an initial state and desired terminal state
(relative terminal state shown in green), we find the closest elements of the lookup table (in
red) and interpolate between the control parameters associated with these elements (interpo-
lation of the free parameters is shown in graphs (c) through (e)) to come up with an initial
approximation of the free parameters (resulting corresponding trajectory shown in blue). (b)
This approximate trajectory is then optimized by modifying the free parameters based on the
endpoint error, resulting in a sequence of trajectories that get closer to the desired terminal
state. When the endpoint error is within an acceptable bound, the most recent parameter set is
returned (trajectory shown in green). The interpolation over the free parameters κ1, κ2, and
sf is shown by the three graphs (c) through (e) (interpolated solutions shown in blue, final
optimized solutions shown in green).

stepped through and for each position in the table the sample parameter values that
came closest to this position are found. This parameter set is then optimized (using
the optimization technique presented in the next section) to accurately match the
table position, and then the resulting parameter set is stored in the corresponding
index of the 5D table.

4.5 Trajectory Optimization

Given a set of parameters p that provide an approximate solution, it is then necessary
to optimize these parameters to reduce the endpoint error and ‘snap’ the correspond-
ing trajectory to the desired terminal state2. To do this, we linearize and invert our
system of equations to produce a correction factor for the free control parameters
based on the product of the inverted Jacobian and the current boundary state error.
The Jacobian is model-invariant since it is determined numerically through central
differences of simulated vehicle actions.

Δp = −
[
δC(x,p)

δp

]−1

C(x,p) (8)

The control parameters are modified until the residual of the boundary state con-
straints is within an acceptable bound or until the optimization process diverges.
In situations where boundary states are unachievable due to vehicle limitations, the
optimization process predictably diverges as the partial derivatives in the Jacobian
approach zero. The optimization history is then searched for the best candidate ac-
tion (the most agressive action that gets closest to the state constraints) and this
candidate is accepted or rejected basde on the magnitude of its error.

2 Depending on the desired terminal state accuracy, it is sometimes possible to use the ap-
proximate parameters from the lookup table without any further optimization.

Motion Planning in Urban Environments 69

Figure 5 illustrates the online trajectory generation approach in action. Given
a desired terminal state, we first look up from our table the closest terminal and
initial states and their associated free parameter sets. We then interpolate between
these closest parameter sets in 5D to produce our initial approximation of the pa-
rameter set to reach our desired terminal state. Figure 5(a) shows the lookup and
interpolation steps, with the resulting parameter set values and corresponding tra-
jectory. Figure 5(c) through (e) show the interpolation process for the free parame-
ters3. Next, we evaluate the endpoint error of the resulting trajectory and we use this
error to modify our parameter values to get closer to our desired terminal state, us-
ing the optimization approach just described. We repeat this optimization step until
our endpoint error is within an allowed bound of the desired state (see Figure 5(b),
and the resulting parameters and trajectory are stored and evaluated by the motion
planner.

5 On-Road Planning

5.1 Path Extraction

During on-road navigation, the motion goal from the Behavioral Executive is a lo-
cation within a road lane. The motion planner then attempts to generate a trajectory
that moves the vehicle towards this goal location in the desired lane. To do this,
it first constructs a curve along the centerline of the desired lane, representing the
nominal path that the center of the vehicle should follow. This curve is then trans-
formed into a path in rear-axle coordinates to be tracked by the motion planner.

5.2 Trajectory Generation

To robustly follow the desired lane and to avoid static and dynamic obstacles, the
motion planner generates trajectories to a set of local goals derived from the cen-
terline path. Each of these trajectories originates from the predicted state that the
vehicle will reach by the time the trajectories will be executed. To calculate this
state, forwards-prediction using an accurate vehicle model (the same model used in
the trajectory generation phase) is performed using the trajectories selected for ex-
ecution in previous planning episodes. This forwards-prediction accounts for both
the high-level delays (the time required to plan) and the low-level delays (the time
required to execute a command).

The goals are placed at a fixed longitudinal distance down the centerline path
(based on the speed of the vehicle) but vary in lateral offset from the path to provide
several options for the planner. The trajectory generation algorithm described above
is used to compute dynamically feasible trajectories to these local goals. For each
goal, two trajectories are generated: a smooth trajectory and a sharp trajectory. The

3 Note that, for illustration purposes, only a subset of the parameter sets used for interpola-
tion are shown in these figures (the full interpolation is in 5D not 2D) and this is why the
interpolated result does not lie within the convex hull of the four sample points shown.

70 D. Ferguson, T.M. Howard, and M. Likhachev

Fig. 6. Smooth and sharp trajectories

smooth trajectory has the initial curvature parameter κ0 fixed to the curvature of the
forwards-predicted vehicle state. The sharp trajectory has this parameter set to an
offset value from the forwards-predicted vehicle state curvature to produce a sharp
initial action. These sharp trajectories are useful for providing quick responses to
suddenly appearing obstacles or dangerous actions of other vehicles.

Figure 6 provides an example of smooth and sharp trajectories. The left-most
image shows two trajectories (cyan and purple) generated to the same goal pose.
The purple (smooth) trajectory exhibits continuous curvature control throughout; the
cyan (sharp) trajectory begins with a discontinuous jump in commanded curvature,
resulting in a sharp response from the vehicle. In these images, the initial curvature
of the vehicle is shown by the short pink arc. The four center images show the
individual sharp and smooth trajectories, along with the convolution of the vehicle
along these trajectories. The right-most image illustrates how these trajectories are
generated in practice for following a road lane.

5.3 Trajectory Velocity Profiles

The velocity profile used for each of the generated trajectories is selected from
the set introduced in Section 4.3 based on several factors, including: the maximum
speed given from the Behavioral Executive based on safe following distance to the
lead vehicle, the speed limit of the current road segment, the maximum velocity fea-
sible given the curvature of the centerline path, and the desired velocity at the local
goal (e.g. if it is a stopline).

In general, profiles are chosen that maximize the speed of the vehicle at all times.
Thus, typically a linear ramp profile is used, with a ramp velocity equal to the max-
imum speed possible and a linear component corresponding to the maximum accel-
eration possible. If the vehicle is slowly approaching a stop-line (or stopped short
of the stop-line), a trapezoidal profile is employed so that the vehicle can both reach
the stop-line quickly and come smoothly to a stop.

Multiple velocity profiles are considered for a particular trajectory when the ini-
tial profile results in a large endpoint error. This can occur when the rate of curvature
required to reach the desired endpoint is not possible given the velocity imposed by
the initial profile. In such cases, additional profiles with less aggressive speeds and
accelerations are generated until either a valid trajectory is found or a maximum
number have been evaluated (in our case, three per initial trajectory).

Motion Planning in Urban Environments 71

(a) (b) (c) (d)

Fig. 7. Following a road lane. These images show a single timeframe from the Urban
Challenge.

5.4 Trajectory Evaluation

The resulting set of trajectories are then evaluated against their proximity to static
and dynamic obstacles in the environment, as well as their distance from the center-
line path, their smoothness, their endpoint error, and their speed. The best trajectory
according to these metrics is selected and executed by the vehicle. Because the tra-
jectory generator computes the feasibility of each trajectory using an accurate vehi-
cle model, the selected trajectory can be directly executed by a vehicle controller.

One of the challenges of navigating in urban environments is avoiding other
moving vehicles. To do this robustly and efficiently, we predict the future behavior
of these vehicles and collision-check our candidate trajectories in state-time space
against these predictions. We do this collision checking efficiently by using a hi-
erarchical algorithm that performs a series of intersection tests between bounding
regions for our vehicle and each other vehicle, with each test successively more ac-
curate (and more computationally expensive). See (Ferguson et al., 2008) for more
details on the algorithms used for prediction and efficient collision checking.

Figure 7 provides an example of the local planner following a road lane. Figure
7(b) shows the vehicle navigating down a two-lane road (detected obstacles and
curbs shown as red and blue pixels, lane boundaries shown in blue, centerline of
lane in red, current curvature of the vehicle shown in pink, minimum turning radius
arcs shown in white) with a vehicle in the oncoming lane (in green). Figure 7(c)
shows a set of trajectories generated by the vehicle given its current state and the
centerline path and lane boundaries. From this set of trajectories, a single trajectory
is selected for execution, as discussed above. Figure 7(d) shows the evaluation of one
of these trajectories against both static and dynamic obstacles in the environment.

5.5 Lane Changing

As well as driving down the current lane, it is often necessary or desired in urban
environments to perform lane changes. This may be to pass a slow or stalled vehicle
in the current lane or move into an adjacent lane to prepare for an upcoming turn.

In our system, lane changes are commanded by the Behavioral Executive and
implemented by the motion planner in a similar way to normal lane driving: a set
of trajectories are generated along the centerline of the desired lane. However, be-
cause it is not always possible to perform the lane change immediately, an additional

72 D. Ferguson, T.M. Howard, and M. Likhachev

Fig. 8. Performing a lane change reliably and safely. Here, Boss changed lanes because an-
other robot’s chase vehicle was traveling too slowly in its original lane.

(a) (b) (c) (d)

Fig. 9. Performing a U-turn when encountering a road blockage. In this case the road was too
narrow to perform a single forwards action to turn around and a three-point turn was required.
(a) Initial plan generated to reverse the direction of the vehicle. (b, c) Tracking the plan. (d)
Reverting back to lane driving after the vehicle has completely turned around and is in the
correct lane.

trajectory is generated along the current lane in case none of the desired lane tra-
jectories are feasible. Also, to ensure smooth lane changes, no sharp trajectories are
generated in the direction of the current lane. Figure 8 provides an example lane
change performed during the Urban Challenge to pass a chase vehicle.

5.6 U-Turns

If the current road segment is blocked the vehicle must be able to turn around and
find another route to its destination. In this scenario, Boss uses information about
the dimensions of the road to generate a smooth path that turns the vehicle around.
Depending on how constrained the road is, this path may consist of a single forwards
segment (e.g. a traditional U-turn) or a three-point turn4. This path is then tracked
in a similar fashion to the lane centerline paths, using a series of trajectories with
varying offsets. Figure 9 provides an example three-point turn performed during one
of the qualification events at the Urban Challenge.

5.7 Defensive Driving

One of the advanced requirements of the Urban Challenge was the ability to react
safely to aberrant behavior of other vehicles. In particular, if another vehicle was

4 If the road is extremely narrow then even a three-point turn may not be possible. In such
cases, a more powerful lattice planner is invoked, as described in Section 7.2.

Motion Planning in Urban Environments 73

(a) (b) (c)

Fig. 10. Defensive Driving on roads. (a) Boss initially plans down its lane while the oncoming
vehicle is far away. (b) When the oncoming vehicle is detected as dangerous, Boss generates
a set of trajectories off the right side of the road. (c) After the oncoming vehicle has passed,
Boss plans back onto the road and continues.

detected traveling the wrong direction in Boss’ lane, it was the responsibility of
Boss to pull off the road in a defensive driving maneuver to avoid a collision with
the vehicle. To implement this behavior, the Behavioral Executive closely monitors
other vehicles and if one is detected traveling towards Boss in its lane, the motion
planner is instructed to move Boss off the right side of the road and come to a stop.
This is performed in a similar fashion to a lane change to a hallucinated lane off
the road but with a heavily reduced velocity so that Boss does not leave the road
traveling too quickly and then comes to a stop once it is completely off the road.
After the vehicle has passed, Boss then plans back onto the road and continues (see
Figure 10).

5.8 Error Detection and Recovery

A central focus of our system-level approach was the detection of and recovery
from anomalous situations. In lane driving contexts, such situations usually pre-
sented themselves through the motion planner being unable to generate any feasible
trajectories to track the desired lane (for instance, if the desired lane is partially
blocked and the on-road motion planner cannot plan a path through the blockage).
In such cases, the Behavioral Executive issues a motion goal that invokes the more
powerful, yet more computationally expensive, 4D lattice motion planner. If this
goal is achieved, the system resumes with lane driving. If the motion planner is un-
able to reach this goal, the Behavioral Executive continues to generate new goals for

74 D. Ferguson, T.M. Howard, and M. Likhachev

the lattice planner until one is satisfied. We provide more details on how the lattice
planner interacts with these goals in the latter part of this article, and more details
on the error detection and recovery process can be found in (Baker et al., 2008).

6 Unstructured Planning

During unstructured navigation, the motion goal from the Behavioral Executive is a
pose (or set of poses) in the environment. The motion planner attempts to generate
a trajectory that moves the vehicle towards this goal pose. However, driving in un-
structured environments significantly differs from driving on roads. As mentioned in
Section 5.1, when traveling on roads the desired lane implicitly provides a preferred
path for the vehicle (the centerline of the lane). In unstructured environments there
are no driving lanes and thus the movement of the vehicle is far less constrained.

To efficiently plan a smooth path to a distant goal pose, we use a lattice planner
that searches over vehicle position (x, y), orientation (θ), and velocity (v). The set of
possible local maneuvers considered for each (x, y, θ, v) state in the planner’s search
space are constructed offline using the same vehicle model as used in trajectory gen-
eration, so that they can be accurately executed by the vehicle. This planner searches
in a backwards direction out from the goal pose(s) and generates a path consisting
of a sequence of feasible high-fidelity maneuvers that are collision-free with respect
to the static obstacles observed in the environment. This path is also biased away
from undesirable areas within the environment such as curbs and locations in the
vicinity of dynamic obstacles.

This global high-fidelity path is then tracked by a local planner that operates sim-
ilarly to the on-road lane tracker, by generating a set of candidate trajectories that
follow the path while allowing for some flexibility in local maneuvering. However,
the nature of the trajectories generated in unstructured environments is slightly dif-
ferent. In the following sections, we describe in more detail the elements of our
approach and how it exploits the context of its instantiation to adapt its behavior
based on the situation (e.g. parking lot driving vs off-road error recovery).

Fig. 11. Replanning when new information is received.

Motion Planning in Urban Environments 75

6.1 Planning Complex Maneuvers

To efficiently generate complex plans over large, obstacle-laden environments, the
planner relies on an anytime, replanning search algorithm known as Anytime Dy-
namic A* (Anytime D*), developed by Likhachev et al. (Likhachev et al., 2005).
Anytime D* quickly generates an initial, suboptimal plan for the vehicle and then
improves the quality of this solution while deliberation time allows. The algorithm
is also able to provide control over the suboptimality bound of the solution at all
times during planning. Figure 19 shows an initial, suboptimal path converging over
time to the optimal solution.

When new information concerning the environment is received (for instance, a
new static or dynamic obstacle is observed), Anytime D* is able to efficiently re-
pair its existing solution to account for the new information. This repair process is
expedited by performing the search in a backwards direction, as in such a scenario
updated information in the vicinity of the vehicle affects a smaller portion of the
search space and so Anytime D* is able to reuse a large portion of its previously-
constructed search tree in re-computing a new path. Figure 11 illustrates this replan-
ning capability. These images were taken from a parking task performed during the
National Qualification Event (the bottom-left image shows the parking lot in green
and the neighboring roads in blue). The top-left image shows the initial path planned
for the vehicle to enter the parking spot indicated by the white triangle. Several of
the other spots were occupied by other vehicles (shown as rectangles of varying
colors), with detected obstacles shown as red areas. The trajectories generated to
follow the path are shown emanating from our vehicle (discussed later). As the ve-
hicle gets closer to its intended spot, it observes a little more of the vehicle parked in
the right-most parking spot (top, second-from-left image). At this point, it realizes
its current path is infeasible and replans a new path that has the vehicle perform a
loop and pull in smoothly. This path was favored in terms of time over stopping and
backing up to re-position.

To further improve efficiency, the lattice planner uses a multi-resolution state and
action space. In the vicinity of the goal and vehicle, where very complex maneu-
vering may be required, a dense set of actions and a fine-grained discretization of
orientation are used during the search. In other areas, a coarser set of actions and
discretization of orientation are employed. However, these coarse and dense reso-
lution areas both share the same dimensionality and seamlessly interface with each
other, so that resulting solution paths overlapping both coarse and dense areas of the
space are smooth and feasible. Figure 12 illustrates how the dense and coarse action
and state spaces differ.

The effectiveness of the Anytime D* algorithm is highly dependent on its use of
an informed heuristic to focus its search. An accurate heuristic can reduce the time
and memory required to generate a solution by orders of magnitude, while a poor
heuristic can diminish the benefits of the algorithm. It is thus important to devote
careful consideration to the heuristic used for a given search space.

Since in our setup Anytime D* searches backwards, the heuristic value of a
state estimates the cost of a path from the robot pose to that state. Anytime D*
requires these values to be admissible (not to overestimate the actual path cost) and

76 D. Ferguson, T.M. Howard, and M. Likhachev

Fig. 12. Dense and coarse resolution action spaces. The coarse action space contains many
fewer actions (24 versus 36 in the dense action space) with transitions only to states with
a coarse-resolution heading discretization (in our case, 16 headings versus 32 in the dense-
resolution discretization). In both cases the discretization in position is 0.25 meters and the
axes in both diagrams are in meters.

consistent (Pearl, 1984). For any state (x, y, θ, v), the heuristic we use is the max-
imum of two values. The first value is the cost of an optimal path from the robot
pose to (x, y, θ, v) assuming a completely empty environment. These values are pre-
computed offline and stored in a heuristic lookup table (Knepper and Kelly, 2006).
This is a very well informed heuristic function when operating in sparse environ-
ments and is guaranteed to be admissible. The second value is the cost of a 2D
path from the robot (xr, yr) coordinates to (x, y) given the actual environment.
These values are computed online by a 2D grid-based Dijkstra’s search. This sec-
ond heuristic function is very useful when operating in obstacle-laden environments.
By taking the maximum of these two heuristic values we are able to incorporate
both the constraints of the vehicle and the constraints imposed by the obstacles
in the environment. The result is a very well-informed heuristic function that can
speed up the search by an order of magnitude relative to either of the component
heuristics alone. For more details concerning the benefit of this combined heuristic
function and other optimizations implemented in our lattice planner, including its
multi-resolution search space and how it efficiently performs convolutions and re-
planning, see (Likhachev and Ferguson, 2008) and (Ferguson and Likhachev, 2008).

6.1.1 Incorporating Environmental Constraints
In addition to the geometric obstacle information provided by perception, we in-
corporate context-specific constraints on the movement of the vehicle by creating
an additional cost map known as a constrained map. This 2D grid-based cost map
encodes the relative desirability of different areas of the environment based on the
road structure in the vicinity and, if available, prior terrain information. This con-
strained cost map is then combined with the static map from perception to create
the final combined cost map to be used by the lattice planner. Specifically, for each
cell (i, j) in the combined cost map C, the value of C(i, j) is computed as the max-
imum of EPC(i, j) and CO(i, j), where EPC(i, j) is the static map value at (i, j)
and CO(i, j) is the constrained cost map value at (i, j).

Motion Planning in Urban Environments 77

(a) (b) (c) (d)

Fig. 13. A snapshot from a qualification run during the Urban Challenge, showing (b) the
obstacle map from perception (obstacles in white), (c) the constrained cost map based on the
road structure (lighter areas are more costly), and (c) the resulting combined cost map used
by the planner.

For instance, when invoking the lattice planner to plan a maneuver around a
parked car or jammed intersection, the constrained cost map is used to specify that
staying within the desired road lane is preferable to traveling in an oncoming lane,
and similarly that driving off-road to navigate through a cluttered intersection is
dangerous. To do this, undesirable areas of the environment based on the road struc-
ture are assigned high costs in the constrained cost map. These can be both soft
constraints (undesirable but allowed areas), which correspond to high costs, and
hard constraints (forbidden areas), which correspond to infinite costs. Figure 13
shows the constrained cost map generated for an on-road maneuver, along with the
expanded perception cost map and the resulting combined cost map used by the
planner.

6.1.2 Incorporating Dynamic Obstacles
The combined cost map of the planner is also used to represent dynamic obstacles
in the environment so that these can be avoided by the planner. The perception
system of Boss represents static and dynamic obstacles independently, which allows
the motion planner to treat each type of obstacle differently. The lattice planner
adapts the dynamic obstacle avoidance behavior of the vehicle based on its current
proximity to each dynamic obstacle. If the vehicle is close to a particular dynamic
obstacle, that obstacle and a short-term prediction of its future trajectory is encoded
into the combined cost map as a hard constraint so that it is strictly avoided. For
every dynamic obstacle, both near and far, the planner encodes a varying high-cost
region around the obstacle to provide a safe clearance. Although these high-cost
regions are not hard constraints, they result in the vehicle avoiding the vicinity of the
dynamic obstacles if at all possible. Further, the generality of this approach allows
us to influence the behavior of our vehicle based on the specific behavior of the
dynamic obstacles. For instance, we offset the high-cost region based on the relative
position of the dynamic obstacle and our vehicle so that we will favor moving to
the right, resulting in yielding behavior in unstructured environments quite similar
to how humans react in these scenarios. Figure 14 provides an example scenario
involving a dynamic obstacle along with the corresponding cost map generated.

78 D. Ferguson, T.M. Howard, and M. Likhachev

Fig. 14. Biasing the cost map for the lattice planner so that the vehicle keeps away from
dynamic obstacles. Notice that the high-cost region around the dynamic obstacle is offset to
the left so that Boss will prefer moving to the right of the vehicle.

7 Tracking Complex Paths

The resulting lattice plan is then tracked in a similar manner to the paths extracted
from road lanes: the motion planner generates a set of trajectories that attempt to
follow the plan while also allowing for local maneuverability. However, in contrast
to when following lane paths, the trajectories generated to follow the lattice path
all attempt to terminate on the path. Each trajectory is in fact a concatenation of
two short trajectories, with the first of the two short trajectories ending at an offset
position from the path and the second ending back on the path. By having all con-
catenated trajectories return to the path we significantly reduce the risk of having
the vehicle move itself into a state that is difficult to leave.

As mentioned earlier, the motion planner generates trajectories at a fixed 10Hz
during operation. The lattice planner also nominally runs at 10Hz. However, in very

(a) (b) (c) (d) (e)

Fig. 15. Following a lattice plan to a parking spot. Here, one lattice planner is updating the
path to the spot while another is simultaneously pre-planning a path out of the spot. The goals
are represented by the white (current goal) and grey (next goal) triangles.

Motion Planning in Urban Environments 79

Fig. 16. Reversing during path tracking. The goal is represented by the green star inside the
white parking spot.

difficult planning scenarios the lattice planner may take longer (up to a couple sec-
onds) to generate its initial solution and it is for this reason that preplanning is per-
formed whenever possible (as will be discussed later). The motion planner continues
to track the current lattice path until it is updated by the lattice planner.

Figure 15 provides an example of the local planner following a lattice plan to a
specified parking spot. Figure 15(a) shows the lattice plan generated for the vehicle
(in red) towards the desired parking spot (desired pose of the vehicle shown as the
white triangle). Figure 15(b) shows the set of trajectories generated by the vehicle
to track this plan, and Figure 15(c) shows the best trajectory selected by the vehicle
to follow the path.

Both forwards and reverse trajectories are generated as appropriate based on the
velocity of the lattice path being tracked. When the path contains an upcoming ve-
locity switching point, or cusp point, the local planner generates trajectories that
bring the vehicle to a stop at the cusp point. Figure 16 shows reverse trajectories
generated to a cusp point in the lattice path.

As mentioned above, one of the desired capabilities of our vehicle was to be able
to exhibit human-like yielding behavior in parking lots, to allow for safe, natural
interaction with other vehicles. Through our biased cost function, the lattice planner
typically generates paths through parking lots that keep to the right of other vehicles.
However, it is possible that another vehicle may be quickly heading directly towards
Boss, requiring evasive action similar to the on-road defensive driving maneuvers
discussed in Section 5.7. In such a case, Boss’ local planner detects that it is unable
to continue along its current course without colliding with the other vehicle and
it then generates a set of trajectories that are offset to the right of the path. The
intended behavior here is for each vehicle to move to the right to avoid a collision.
Figure 17 provides an example of this behavior in a large parking lot.

In addition to the general optimizations always employed by the lattice planner,
there are several context-specific reasoning steps performed in different urban driv-
ing scenarios for which the lattice planner is invoked. In the following two sections
we describe different methods used to provide optimized, intelligent behavior in
parking lots and on-road error recovery scenarios.

80 D. Ferguson, T.M. Howard, and M. Likhachev

7.1 Planning in Parking Lots

Because the location of parking lots is known a priori, this information can be ex-
ploited by the motion planning system to improve the efficiency and behavior of the
lattice planner within these areas. First, we can use the extents of the parking lot
to constrain the vehicle through the constrained cost map. To do this, we use the a
priori specified extents of the parking lot to set all cells outside the lot (and not part
of entry or exit lanes) in the constrained cost map to be hard constraints. This con-
strains the vehicle to operate only inside the lot. We also include a high cost buffer
around the perimeter of the parking lot to bias the vehicle away from the boundaries
of the lot.

When prior terrain information exists such as overhead imagery, this informa-
tion can also be incorporated into the constrained cost map to help provide global
guidance for the vehicle. For instance, this information can be used to detect fea-
tures such as curbs or trees in parking lots that should be avoided, so that these
features can be used in planning before they are detected by onboard perception.
Figure 18(a,b) shows overhead imagery of a parking lot area used to encode curb
islands into a constrained cost map for the parking lot, and Figure 18(c) shows the
corresponding constrained cost map. This constrained cost map is then stored offline
and loaded by the planner online when it begins planning paths through the parking
lot. By storing the constrained cost maps for parking lots offline we significantly re-
duce online processing as generating the constrained cost maps for large, complex
parking lots can take several seconds.

Further, because the parking lot goals are also known in advance of entering the
parking lot (e.g. the vehicle knows which parking spot it is intending on reaching),
the lattice planner can pre-plan to the first goal pose within the parking lot while
the vehicle is still approaching the lot. By planning a path from the entry point of
the parking lot in advance, the vehicle can seamlessly transition into the lot without
needing to stop, even for very large and complex lots.

(a) (b)

Fig. 17. Defensive driving when in unstructured environments. (a) Trajectories thrown to right
of path (other vehicle should likewise go to right). (b) New path planned from new position.

Motion Planning in Urban Environments 81

(a) (b) (c)

Fig. 18. Generating constrained cost maps offline for Castle Commerce Center, CA. (a) Over-
head imagery showing testing area with road network overlaid. (b) Parking lot area (boundary
in blue) with overhead imagery showing curb islands. (c) Resulting constrained cost map in-
corporating boundaries, entry and exit lanes, and curb islands (the lighter the color, the higher
the cost).

Figure 19 illustrates the pre-planning used by the lattice planner. The left-most
image shows our vehicle approaching a parking lot (boundary shown in green), with
its intended parking spot indicated by the white triangle (and multi-colored set of
goal poses). While the vehicle is still outside the lot, it begins planning a path from
one of the entries to the desired spot, and the path converges to the optimal solution
well before the vehicle enters the lot.

In a similar vein, when the vehicle is in a lot traveling towards a parking spot,
we use a second lattice planner to simultaneously plan a path from that spot to the
next desired location (e.g. the next parking spot to reach or an exit of the lot). When
the vehicle reaches its intended parking spot, it then immediately follows the path
from this second planner, again eliminating any time spent waiting for a plan to be
generated.

Figure 15 provides an example of the use of multiple concurrent lattice planners.
Figure 15(a) shows the lattice plan generated towards the desired parking spot. Figure
15(d) shows the path simultaneously being planned out of this spot to the exit of the
parking lot, and Figure 15(e) shows the paths from both planners at the same time.

7.2 Planning in Error Recovery Scenarios

The lattice planner is flexible enough to be used in a large variety of cases that can
occur during on-road and unstructured navigation. In particular, it is used during
error recovery when navigating congested lanes or intersections and to perform dif-
ficult U-turns. In such cases, the nominal on-road motion planner determines that it
is unable to generate any feasible trajectory and reports its failure to the Behavioral
Executive, which in turn issues an unstructured goal pose (or set of poses) to the
motion planner and indicates that it is in an error recovery mode. The motion plan-
ner then uses the lattice planner to generate a path to the set of goals, with the lattice
planner determining during its planning which goal is easiest to reach. In these er-
ror recovery scenarios the lattice planner is biased to avoid areas that could result

82 D. Ferguson, T.M. Howard, and M. Likhachev

Fig. 19. Pre-planning a path into a parking spot and improving this path in an anytime fash-
ion. A set of goal poses are generated that satisfy the parking spot and an initial path is
planned while the vehicle is still outside the parking lot. This path is improved as the vehicle
approaches, converging to the optimal solution shown in the right image.

(a) (b) (c)

Fig. 20. Error Recovery examples. (a) Planning around a stalled vehicle in the road (obstacles
in white, set of pose goals given to planner shown as various colored rectangles, and resulting
path shown in red). Corresponds to scenario from Figure 13. (b) Planning through a partially
blocked intersection. (c) Performing a complex U-turn in a cluttered area (Boss’ 3D model
has been removed to see the lattice plan underneath the vehicle).

in unsafe behavior (such as oncoming lanes when on roads) through increasing the
cost of undesirable areas in the constrained cost map (see Figure 13).

The ability to cope with anomalous situations was a key focus of Boss’ software
system and the lattice planner was used as a powerful tool to maneuver the vehicle
to arbitrary locations in the environment. Figure 20 provides several error recovery
examples involving the lattice planner.

The lattice planner is also invoked when the road cannot be detected with cer-
tainty due to the absence of markers (e.g. an unpaved road with berms). In this case,
the lattice planner is used to bias the movement of the vehicle to stay within any
detected geometric extents of the road.

8 Results and Discussion

Our motion planning system was developed over the course of more than a year
and tested over thousands of kilometers of autonomous operation in three different
extensive testing sites, as well as the Urban Challenge event itself. Through this ex-
tensive testing, all components were hardened and the planners were incrementally
improved upon.

Motion Planning in Urban Environments 83

A key factor in our system-level design was that Boss should never give up. As
such, the lattice planner was designed to be general enough and powerful enough
to plan in extremely difficult scenarios. In addition, the Behavioral Executive was
designed to issue an infinite sequence of pose goals to the motion planner should
it continue to fail to generate plans (see (Baker et al., 2008) for details of this error
recovery framework). And in the final Urban Challenge event, as anticipated, this
error recovery played a large part in Boss’ successful completion of the course.
Over the course of the three final event missions, there were 17 different instances
where the lattice planner was invoked due to an encountered anomalous situation
(some of these included getting cut off at intersections, coming across other vehicles
blocking the lane, and perception occasionally observing heavy dust clouds as static
obstacles).

Incorporation of an accurate vehicle model was also an important design choice
for Boss’ motion planning system. This allowed Boss to push the limits of accelera-
tion and speed and travel as fast as possible along the road network, confident in its
execution. Combining this model with an efficient on-road planner that could safely
handle the high-speeds involved was also central to Boss’ on-road performance.

In addition, the efficiency and path quality of the lattice planner enabled Boss
to also travel smoothly and quickly through parking lot areas, without ever needing
to pause to generate a plan. As well as generating smooth paths in (x, y, θ), by also
considering the velocity dimension v the lattice planner was able to explicitly reason
about the time required to change direction of travel and was thus able to generate
very fast paths even when complex maneuvers were required. Overall, the focus on
execution speed and smoothness strongly contributed to Boss finishing the four-hour
race 19 minutes and 8 seconds faster than its nearest competitor (DARPA, 2008).

One of the important lessons learned during the development of this system was
that it is often extremely beneficial to exploit prior, offline processing to provide
efficient online planning performance. We used this idea in several places, from the
generation of lookup tables for the trajectory generator and lattice planner heuris-
tic function to the precomputing of constrained cost maps for parking lots. This
prior processing saved us considerably at run-time. Further, even when faced with
calculations that cannot be precomputed offline, such as planning paths through
novel environments, it can often pay to begin planning before a plan is required.
This concept was the basis for our preplanning on approach to parking lots and our
concurrent planning to both current and future goals, and it enabled us to produce
high-quality solutions without needing to wait for these solutions to be generated.

Finally, although simplicity was central to our high-level system development
and significant effort was put into making the interfacing between processes as
lightweight as possible, we found that in regards to motion planning, although sim-
ple, approximate planning algorithms can work well in most cases, generality and
completeness when needed are priceless. Using a high-fidelity, high-dimensional
lattice planner for unstructured planning problems proved time and time again to be
the right choice for our system.

84 D. Ferguson, T.M. Howard, and M. Likhachev

9 Prior Work

Existing research on motion planning for autonomous outdoor vehicles can be
roughly broken into two classes: motion planning for autonomous vehicles follow-
ing roads and motion planning for autonomous vehicles navigating unstructured
environments including off-road areas and parking lots. A key difference between
road following and navigating unstructured environments is that in the former case
a global plan is already encoded by the road (lane) itself, and therefore the planner
only needs to generate short-term motion trajectories that follow the road, while in
the latter case no such global plan is provided.

9.1 On-Road Planning

A vast amount of research has been conducted in the area of road following.
Some of the best known and fully-operational systems include the CMU NavLab
project (Thorpe et al., 1988), the INRIA autonomous car project (Baber et al., 2005)
in France, the VaMoRs (Dickmanns et al., 1993) and VITA projects (Ulmer, 1992)
in Germany, and the Personal Vehicle System (PVS) project (Hattori et al., 1992)
in Japan. Approaches to road following in these and other systems varies drasti-
cally. For example, one of the road following algorithms used by NavLab vehicles
is ALVINN (Pomerleau, 1991) which learns the mapping from road images onto
control commands using Neural Network by observing how the car is driven man-
ually for several minutes. In the VITA project, on the other hand, the planner was
used to track the lane while regulating the velocity of the vehicle in response to
the curvature of the road and the distance to nearby vehicles and obstacles. Stan-
ford University’s entry in the second DARPA Grand Challenge also exhibited lane
following behavior through evaluating a set of candidate trajectories that tracked
the desired path (Thrun et al., 2006). Our lane planning approach is closely related
to theirs, however to generate their candidate trajectories they sample the control
space around a base trajectory (e.g. the trajectory leading down the center of the
lane), while we sample the state space along the road lane. Some significant advan-
tages of using a state space approach include the ability to finely control position
and heading at the terminal state of each trajectory (which we can align with the
road shape), the ability to impose the requirement that each trajectory terminates at
exactly the same distance along the path, allowing for fairer evaluation of candidate
actions, and the simplification of generating complex maneuvers such as U-turns
and lane changes.

However, several of these existing approaches have been shown to be very effec-
tive in road following in normal conditions. A major strength of our approach, on
the other hand, is that it can handle difficult scenarios, such as when a road is par-
tially blocked (e.g., by an obstacle, a stalled car, a slow-moving car or a car driving
in an opposite direction but moving out of the bounds of its own lane). Our system
can handle these scenarios robustly and at high speeds.

Motion Planning in Urban Environments 85

9.2 Unstructured Planning

Roboticists have concentrated on the problem of mobile robot navigation in
unstructured environments for several decades. Early approaches concentrated on
performing local planning, where very short term reasoning is performed to gener-
ate the next action for the vehicle (Khatib, 1986; Simmons, 1996; Fox et al., 1997).
A major limitation of these purely local approaches was their capacity to get the
vehicle stuck in local minima en route to the goal (for instance, cul-de-sacs). To
improve upon this limitation, algorithms were developed that incorporated global as
well as local information (Thrun et al., 1998; Brock and Khatib, 1999; Kelly, 1995;
Philippsen and Siegwart, 2003). Subsequent approaches have focused on improving
the local planning component of these approaches by using more sophisticated
local action sets that better follow the global value function (Thrun et al., 2006;
Howard and Kelly, 2007), and by generating sequences of actions to perform
more complex local maneuvers (Stachniss and Burgard, 2002; Urmson et al., 2006;
Braid et al., 2006). In parallel, researchers have concentrated on improving the
quality of global planning, so that a global path can be easily tracked by the ve-
hicle (LaValle and Kuffner, 2001; Song and Amato, 2001; Likhachev et al., 2003;
Likhachev et al., 2005; Pivtoraiko and Kelly, 2005; Knepper and Kelly, 2006).
However, the computational expense of generating complex global plans over large
distances has remained very challenging, and the approaches to date have been
restricted to either small distances, fairly simple environments, or highly suboptimal
solutions. Our lattice-based global planner is able to efficiently generate feasible
global paths over much larger distances than previously possible, while providing
suboptimality bounds on the quality of the solutions and anytime improvement of
the solutions generated.

10 Conclusions

We have presented the motion planning framework for an autonomous vehicle nav-
igating through urban environments. Our approach combines a high-fidelity tra-
jectory generation algorithm for computing dynamically-feasible actions with an
efficient lane-based planner, for on-road planning, and a 4D lattice planner, for un-
structured planning. It has been implemented on an autonomous vehicle that has
traveled over 3000 autonomous kilometers and we have presented sample illustra-
tions and results from the Urban Challenge, which it won in November 2007.

Acknowledgements

This work would not have been possible without the dedicated efforts of the Tartan
Racing team and the generous support of our sponsors including General Motors,
Caterpillar, and Continental. This work was further supported by DARPA under
contract HR0011-06-C-0142.

86 D. Ferguson, T.M. Howard, and M. Likhachev

References

Special Issue on the DARPA Grand Challenge, Part 1. Journal of Field Robotics 23(8) (2006a)
Special Issue on the DARPA Grand Challenge, Part 2. Journal of Field Robotics 23(9)

(2006b)
Baber, J., Kolodko, J., Noel, T., Parent, M., Vlacic, L.: Cooperative autonomous driving:

intelligent vehicles sharing city roads. IEEE Robotics and Automation Magazine 12(1),
44–49 (2005)

Baker, C., Ferguson, D., Dolan, J.: Robust mission execution for autonomous urban driving.
In: Proceedings of the International Conference on Intelligent Autonomous Systems,
IAS (2008)

Braid, D., Broggi, A., Schmiedel, G.: The TerraMax autonomous vehicle. Journal of Field
Robotics 23(9), 693–708 (2006)

Brock, O., Khatib, O.: High-speed navigation using the global dynamic window approach. In:
Proceedings of the IEEE International Conference on Robotics and Automation, ICRA
(1999)

Carsten, J., Rankin, A., Ferguson, D., Stentz, A.: Global path planning on-board the Mars
Exploration Rovers. In: Proceedings of the IEEE Aerospace Conference (2007)

DARPA Urban Challenge Official Results (2008),
http://www.darpa.mil/GRANDCHALLENGE/mediafaq.asp

Dickmanns, E.D., Behringer, R., Brudigam, C., Dickmanns, D., Thomanek, F., Holt, V.: All-
transputer visual autobahn-autopilot/copilot. In: Proceedings of the 4th Int. Conference
on Computer Vision ICCV, pp. 608–615 (1993)

Ferguson, D., Darms, M., Urmson, C., Kolski, S.: Detection, Prediction, and Avoidance of
Dynamic Obstacles in Urban Environments. In: Proceedings of the IEEE Intelligent
Vehicles Symposium, IV (2008)

Ferguson, D., Likhachev, M.: Efficiently using cost maps for planning complex maneuvers.
In: Proceedings of the Workshop on Planning with Cost Maps, IEEE International Con-
ference on Robotics and Automation (2008)

Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE
Robotics and Automation 4(1) (1997)

Hattori, A., Hosaka, A., Taniguchi, M., Nakano, E.: Driving control system for an au-
tonomous vehicle using multiple observed point information. In: Proceedings of In-
telligent Vehicle Symposium (1992)

Howard, T., Kelly, A.: Optimal rough terrain trajectory generation for wheeled mobile robots.
International Journal of Robotics Research 26(2), 141–166 (2007)

Kelly, A.: An Intelligent Predictive Control Approach to the High Speed Cross Country Au-
tonomous Navigation Problem. PhD thesis, Carnegie Mellon University (1995)

Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. International
Journal of Robotics Research 5(1), 90–98 (1986)

Knepper, R., Kelly, A.: High performance state lattice planning using heuristic look-up ta-
bles. In: Proceedings of the IEEE International Conference on Intelligent Robots and
Systems, IROS (2006)

LaValle, S., Kuffner, J.: Rapidly-exploring Random Trees: Progress and prospects. Algorith-
mic and Computational Robotics: New Directions, pp. 293–308 (2001)

Likhachev, M., Ferguson, D.: Planning Dynamically Feasible Long Range Maneuvers for
Autonomous Vehicles. In: Proceedings of Robotics: Science and Systems, RSS (2008)

Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S.: Anytime Dynamic A*: An
Anytime, Replanning Algorithm. In: Proceedings of the International Conference on
Automated Planning and Scheduling, ICAPS (2005)

Motion Planning in Urban Environments 87

Likhachev, M., Gordon, G., Thrun, S.: ARA*: Anytime A* with provable bounds on sub-
optimality. In: Advances in Neural Information Processing Systems. MIT Press, Cam-
bridge (2003)

Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley, Reading (1984)

Philippsen, R., Siegwart, R.: Smooth and efficient obstacle avoidance for a tour guide robot.
In: Proceedings of the IEEE International Conference on Robotics and Automation,
ICRA (2003)

Pivtoraiko, M., Kelly, A.: Constrained motion planning in discrete state spaces. In: Proceed-
ings of the International Conference on Advanced Robotics, FSR (2005)

Pomerleau, D.: Efficient training of artificial neural networks for autonomous navigation.
Neural Computation 3(1), 88–97 (1991)

Simmons, R.: The curvature velocity method for local obstacle avoidance. In: Proceedings of
the IEEE International Conference on Robotics and Automation, ICRA (1996)

Singh, S., Simmons, R., Smith, T., Stentz, A., Verma, V., Yahja, A., Schwehr, K.: Recent
progress in local and global traversability for planetary rovers. In: Proceedings of the
IEEE International Conference on Robotics and Automation, ICRA (2000)

Song, G., Amato, N.: Randomized motion planning for car-like robots with C-PRM. In: Pro-
ceedings of the IEEE International Conference on Intelligent Robots and Systems, IROS
(2001)

Stachniss, C., Burgard, W.: An integrated approach to goal-directed obstacle avoidance under
dynamic constraints for dynamic environments. In: Proceedings of the IEEE Interna-
tional Conference on Intelligent Robots and Systems, IROS (2002)

Stentz, A., Hebert, M.: A complete navigation system for goal acquisition in unknown envi-
ronments. Autonomous Robots 2(2), 127–145 (1995)

Thorpe, C., Hebert, M., Kanade, T., Shafer, S.: Vision and navigation for the Carnegie-Mellon
Navlab. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(3), 362–
373 (1988)

Thorpe, C., Jochem, T., Pomerleau, D.: The 1997 automated highway demonstration. In:
Proceedings of the International Symposium on Robotics Research, ISRR (1997)

Thrun, S., et al.: Map learning and high-speed navigation in RHINO. In: Kortenkamp, D.,
Bonasso, R.P., Murphy, R. (eds.) AI-based Mobile Robots: Case Studies of Successful
Robot Systems, MIT Press, Cambridge (1998)

Thrun, S., et al.: Stanley: The robot that won the DARPA Grand Challenge. Journal of Field
Robotics 23(9), 661–692 (2006)

Ulmer, B.: VITA - an autonomous road vehicle (arv) for collision avoidance in traffic. In:
Proceedings of Intelligent Vehicle Symposium, pp. 36–41 (1992)

Urmson, C., et al.: A robust approach to high-speed navigation for unrehearsed desert terrain.
Journal of Field Robotics 23(8), 467–508 (2006)

Urmson, C., et al.: Autonomous driving in urban environments: Boss and the Urban Chal-
lenge. Journal of Field Robotics 25(8), 425–466 (2008)

88 D. Ferguson, T.M. Howard, and M. Likhachev

A Vehicle Model

Boss’ vehicle model predicts the resulting vehicle state xt+Δt after applying a pa-
rameterized set of controls u(p,x) to an initial vehicle state xt. It does this by
forwards-simulating the movement of the vehicle given the commanded controls.
However, it also constrains these controls based on the physical constraints of the
vehicle and safety bounds. Algorithms 1 through 3 provide pseudocode of this pro-
cess (the main vehicle model function is MotionModel in Algorithm 3). Values for
the parameters used in each function are defined in Table 1.

Algorithm 1. SpeedControlLogic(xt+Δt)
Input: xt+Δt

Output: xt+Δt

|v|cmd ← | [vt+Δt]cmd | ; // calculate speed1

[|v|cmd]max ← max
[
|v|scl,

[
κt+Δt−a

b

]]
; // compute safe speed2

[κ]max,scl ← min
[
[κ]max , a + b |v|cmd

]
; // compute safe curvature3

if
[
|κt+Δt| ≥ [κ]max,scl

]
then4

|v|cmd ← |safetyfactor · [|v|cmd]max |; // check for safe speed5

[vt+Δt]cmd ← |v|cmd
[vt]cmd
|[vt]cmd| ; // update velocity command6

return xt+Δt ;7

Algorithm 2. DynamicsResponse(xt,xt+Δt, Δt)
Input: xt,xt+Δt, Δt
Output: xt+Δt
[

dκ
dt

]
cmd
← [κt+Δt]cmd

−κt

dt
; // compute curvature rate command1 [

dκ
dt

]
cmd
← min

[
dκ
dt

,
[

dκ
dt

]
max

]
; // upper bound curvature rate2 [

dκ
dt

]
cmd
← max

[
dκ
dt

,
[

dκ
dt

]
min

]
; // lower bound curvature rate3

xt+Δt← SpeedControlLogic [xt+Δt] ; // speed control logic4

κt+Δt ← κt +
[

dκ
dt

]
cmd

Δt ; // compute curvature at time t + Δt5

κt+Δt ← min [κt+Δt, κmax] ; // upper bound curvature6

κt+Δt ← max [κt+Δt, κmin] ; // lower bound curvature7
[

dv
dt

]
cmd
← [vt+Δt]cmd

−vt

dt
; // compute acceleration command8 [

dv
dt

]
cmd
← min

[[
dv
dt

]
cmd

,
[

dv
dt

]
max

]
; // upper bound acceleration9 [

dv
dt

]
cmd
← max

[[
dv
dt

]
cmd

,
[

dv
dt

]
min

]
; // lower bound acceleration10

vt+Δt ← vt +
[

dv
dt

]
cmd

Δt ; // compute velocity at time t + Δt11

return xt+Δt ;12

Motion Planning in Urban Environments 89

Algorithm 3. MotionModel(xt, u(p,x), Δt)
Input: xt, u(p,x), Δt
Output: xt+Δt

xt+Δt ← xt + vt cos [θt] Δt ; // compute change in 2D x-position1

yt+Δt ← yy + vt sin [θt] Δt ; // compute change in 2D y-position2

θt+Δt ← θt + vtκtΔt ; // compute change in 2D orientation3

[κt+Δt]cmd ← u [p, s] ; // get curvature command4

[vt+Δt]cmd ← u [p, t− tdelay] ; // get velocity command5

[at+Δt]cmd ← u [p, t− tdelay] ; // get acceleration command6

xt+Δt← DynamicsResponse(xt ,xt+Δt, Δt) ; // estimate response7

return xt+Δt ;8

Table 1. Parameters used in vehicle model

Description Parameter Raceday Values
maximum curvature [κ]max 0.1900rad

minimum curvature [κ]min −0.1900rad

maximum rate of curvature
[

dκ
dt

]
max

0.1021 rad
sec

minimum rate of curvature
[

dκ
dt

]
min

−0.1021 rad
sec

maximum acceleration
[

dv
dt

]
max

2.000 m
sec

maximum deceleration
[

dv
dt

]
min

−6.000 m
sec

control latency tdelay 0.0800sec

speed control logic “a” coefficient ascl 0.1681

speed control logic “b” coefficient bscl −0.0049

speed control logic threshold |v|scl 4.000 m
sec

max curvature for speed [κv]max 0.1485rad

speed control logic safety factor safetyfactor 1.000

Junior: The Stanford Entry in the Urban Challenge

Michael Montemerlo1, Jan Becker4, Suhrid Bhat2, Hendrik Dahlkamp1,
Dmitri Dolgov1, Scott Ettinger3, Dirk Haehnel1, Tim Hilden2, Gabe Hoffmann1,
Burkhard Huhnke2, Doug Johnston1, Stefan Klumpp2, Dirk Langer2,
Anthony Levandowski1, Jesse Levinson1, Julien Marcil2, David Orenstein1,
Johannes Paefgen1, Isaac Penny1, Anna Petrovskaya1, Mike Pflueger2,
Ganymed Stanek2, David Stavens1, Antone Vogt1, and Sebastian Thrun1

1 Stanford Artificial Intelligence Lab, Stanford University, Stanford CS 94305
2 Electronics Research Lab, Volkswagen of America, 4009 Miranda Avenue,

Palo Alto, CA 94304
3 Intel Research, 2200 Mission College Blvd., Santa Clara, CA 95052
4 Robert Bosch LLC, Research and Technology Center, 4009 Miranda Avenue,

Palo Alto, CA 94304

Abstract. This article presents the architecture of Junior, a robotic vehicle capable of nav-
igating urban environments autonomously. In doing so, the vehicle is able to select its own
routes, perceive and interact with other traffic, and execute various urban driving skills includ-
ing lane changes, U-turns, parking, and merging into moving traffic. The vehicle successfully
finished and won second place in the DARPA Urban Challenge, a robot competition orga-
nized by the U.S. Government.

1 Introduction

The vision of self-driving cars promises to bring fundamental change to one
of the most essential aspects of our daily lives. In the U.S. alone, traf-
fic accidents cause the loss of over 40,000 people annually, and a substan-
tial fraction of the world’s energy is used for personal car-based transportation
[U.S. Department of Transportation, 2005]. A safe, self-driving car would funda-
mentally improve the safety and comfort of the driving population, while reducing
the environmental impact of the automobile.

In 2003, the Defense Advanced Research Projects Agency (DARPA) initiated a
series of competitions aimed at the rapid technological advancement of autonomous
vehicle control. The first such event, the “DARPA Grand Challenge,” led to the
development of vehicles that could confidently follow a desert trail at average ve-
locities nearing 20mph [Buehler et al., 2006]. In October 2005, Stanford’s robot
“Stanley” won this challenge and became the first robot to finish the 131-mile
long course [Montemerlo et al., 2006]. The “DARPA Urban Challenge,” which took
place on November 3, 2007, brought about vehicles that could navigate in traffic in
a mock urban environment.

The rules of the DARPA Urban Challenge were complex [DARPA, 2007]. Ve-
hicles were provided with a digital street map of the environment, in the form
of a Road Network Description File, or RNDF. The RNDF contained geometric

M. Buehler et al. (Eds.): The DARPA Urban Challenge, STAR 56, pp. 91–123.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

92 M. Montemerlo et al.

IBEO laser

DMIBOSCH Radar

SICK LDLRS laser

Velodyne laser

Riegl laser SICK LMS laser

Applanix INS

Fig. 1. Junior, our entry in the DARPA Urban Challenge. Junior is equipped with five different
laser measurement systems, a multi-radar assembly, and a multi-signal inertial navigation
system, as shown in this figure.

information on lanes, lane markings, stop signs, parking lots, and special check-
points. Teams were also provided with a high-resolution aerial image of the area,
enabling them to manually enhance the RNDF before the event. During the Urban
Challenge event, vehicles were given multiple missions, defined as sequences of
checkpoints. Multiple robotic vehicles carried out missions in the same environ-
ment at the same time, possibly with different speed limits. When encountering an-
other vehicle, each robot had to obey traffic rules. Maneuvers that were specifically
required for the Urban Challenge included: passing parked or slow-moving vehi-
cles, precedence handling at intersections with multiple stop signs, merging into
fast-moving traffic, left turns across oncoming traffic, parking in a parking lot, and
the execution of U-turns in situations where a road is completely blocked. Vehicle
speeds were generally limited to 30mph, with lower speed limits in many places.
DARPA admitted eleven vehicles to the final event, of which the present vehicle
was one.

“Junior,” the robot shown in Figure 1, is a modified 2006 Volkswagen Passat
Wagon, equipped with five laser rangefinders (manufactured by IBEO, Riegl, SICK,
and Velodyne), an Applanix GPS-aided inertial navigation system, five BOSCH
radars, two Intel quad core computer systems, and a custom drive-by-wire interface
developed by Volkswagen’s Electronic Research Lab. The vehicle has an obstacle
detection range of up to 120 meters, and reaches a maximum velocity of 30mph,
the maximum speed limit according to the Urban Challenge rules. Junior made its

Junior: The Stanford Entry in the Urban Challenge 93

Fig. 2. All computing and power equipment is placed in the trunk of the vehicle. Two Intel
quad core computers (bottom right) run the bulk of all vehicle software. Other modules in the
trunk rack include a power server for selectively powering individual vehicle components,
and various modules concerned with drive-by-wire and GPS navigation. A 6 DOF inertial
measurement unit is also mounted in the trunk of the vehicle, near the rear axle.

driving decisions through a distributed software pipeline that integrates perception,
planning, and control. This software is the focus of the present article.

Junior was developed by a team of researchers from Stanford University, Volk-
swagen, and its affiliated corporate sponsors: Applanix, Google, Intel, Mohr Davi-
dow Ventures, NXP, and Red Bull. This team was mostly comprised of the original
Stanford Racing Team, which developed the winning entry “Stanley” in the 2005
DARPA Grand Challenge [Montemerlo et al., 2006]. In the Urban Challenge, Ju-
nior placed second, behind a vehicle from Carnegie Mellon University, and ahead
of the third-place winner from Virginia Tech.

2 Vehicle

Junior is a modified 2006 Passat wagon, equipped with a 4-cylinder turbo diesel
injection engine. The 140 hp vehicle is equipped with a limited-torque steering mo-
tor, an electronic brake booster, electronic throttle, gear shifter, parking brake, and
turn signals. A custom interface board provides computer control over each of these
vehicle elements. The engine provides electric power to Junior’s computing system
through a high-current prototype alternator, supported by a battery-backed electron-
ically controlled power system. For development purposes, the cabin is equipped
with switches that enable a human driver to engage various electronic interface
components at will. For example, a human developer may choose the computer to
control the steering wheel and turn signals, while retaining manual control over the
throttle and the vehicle brakes. These controls were primarily for testing purposes;
during the actual competition, no humans were allowed inside the vehicles.

For inertial navigation, an Applanix POS LV 420 system provides real-time in-
tegration of multiple dual-frequency GPS receivers which includes a GPS Azimuth

94 M. Montemerlo et al.

Heading measurement subsystem, a high-performance inertial measurement unit,
wheel odometry via a distance measurement unit (DMI), and the Omnistar satellite-
based Virtual Base Station service. The real-time position and orientation errors of
this system were typically below 100 cm and 0.1 degrees, respectively.

Two side-facing SICK LMS 291-S14 sensors and a forward-pointed RIEGL
LMS-Q120 laser sensor provide measurements of the adjacent 3-D road structure
and infrared reflectivity measurements of the road surface for lane marking detec-
tion and precision vehicle localization.

For obstacle and moving vehicle detection, a Velodyne HDL-64E is mounted
on the roof of the vehicle. The Velodyne, which incorporates 64 laser diodes and
spins at up to 15 Hz, generates dense range data covering a 360 horizontal field-
of-view and a 30 degree vertical field-of-view. The Velodyne is supplemented by
two SICK LDLRS sensors mounted at the rear of the vehicle, and two IBEO
ALASCA XT lidars mounted in the front bumper. Five BOSCH Long Range Radars
(LRR2) mounted around the front grill provide additional information about moving
vehicles.

Junior’s computer system consists of two Intel quad core servers. Both computers
run Linux, and they communicate over a gigabit ethernet link.

3 Software Architecture

Junior’s software architecture is designed as a data driven pipeline in which in-
dividual modules process information asynchronously. This same software archi-
tecture was employed successfully by Junior’s predecessor Stanley in the 2005
challenge [Montemerlo et al., 2006]. Each module communicates with other mod-
ules via an anonymous publish/subscribe message passing protocol, based on the
Inter Process Communication Toolkit (IPC) [Simmons and Apfelbaum, 1998].

Modules subscribe to message streams from other modules, which are then sent
asynchronously. The result of the computation of a module may then be published
to other modules. In this way, each module is processing data at all times, acting
as a pipeline. The time delay between entry of sensor data into the pipeline to the
effect on the vehicle’s actuators is approximately 300ms. The software is roughly
organized into five groups of modules.

• sensor interfaces – The sensor interfaces manage communication with the ve-
hicle and individual sensors, and make resulting sensor data available to the rest
of the software modules.

• perception modules – The perception modules segment the environment data
into moving vehicles and static obstacles. They also provide precision localiza-
tion of the vehicle relative to the digital map of the environment.

• navigation modules – The navigation modules determine the behavior of the
vehicle. The navigation group consists of a number of motion planners, plus
a hierarchical finite state machine for invoking different robot behaviors and
preventing deadlocks.

Junior: The Stanford Entry in the Urban Challenge 95

Table 1. Table of processes running during the Urban Challenge.

Process name Computer Description
PROCESS-CONTROL 1 starts and restarts processes, adds process control via IPC
APPLANIX 1 Applanix interface (via IPC).
LDLRS1 & LDLRS2 1 SICK LDLRS laser interface (via IPC).
IBEO 1 IBEO laser interface (via IPC).
SICK1 & SICK2 1 SICK LMS laser interfaces (via IPC).
RIEGL 1 Riegl laser interface (via IPC).
VELODYNE 1 Velodyne laser interface (via IPC and shared memory). This module also

projects the 3d points using Applanix pose information.
CAN 1 CAN bus interface
RADAR1 - RADAR5 1 Radar interfaces (via IPC).
PERCEPTION 1 IPC/Shared Memory interface of Velodyne data, obstacle detection, dynamic

tracking and scan differencing
RNDF LOCALIZE 1 1D localization using RNDF
HEALTHMON 1 logs computer health information (temperature, processes, CPU and memory

usage)
PROCESS-CONTROL 2 start/restarts processes and adds process control over IPC
CENTRAL 2 IPC-server
PARAM SERVER 2 central server for all parameters
ESTOP 2 IPC/serial interface to DARPA E-stop
HEALTHMON 2 monitors the health of all modules
POWER 2 IPC/serial interface to power-server (relay card)
PASSAT 2 IPC/serial interface to vehicle interface board
CONTROLLER 2 vehicle motion controller
PLANNER 2 path planner and hybrid A* planner

• drive-by-wire interface – Controls are passed back to the vehicle through the
drive-by-wire interface. This module enables software control of the throttle,
brake, steering, gear shifting, turn signals, and emergency brake.

• global services – A number of system level modules provide logging, time
stamping, message passing support, and watchdog functions to keep the soft-
ware running reliably.

Table 1 lists the actual processes running on the robot’s computers during the
race event, and Figure 3 shows a overview of the data flow between modules.

4 Environment Perception

Junior’s perceptual routines address a wide variety of obstacle detection and tracking
problems. Figure 4a shows a scan from the primary obstacle detection sensor, the
Velodyne. Scans from the IBEO lasers, shown in Figure 4b, and LDLRS lasers are
used to supplement the Velodyne data in blind spots. A radar system complements
the laser system as an early warning system for moving objects in intersections.

4.1 Laser Obstacle Detection

In urban environments, the vehicle encounters a wide variety of static and moving
obstacles. Obstacles as small as a curb may trip a fast-moving vehicle, so detect-
ing small objects is of great importance. Overhangs and trees may look like large

96 M. Montemerlo et al.

Fig. 3. Flow diagram of the Junior Software.

obstacles at a distance, but traveling underneath is often possible. Thus, obstacle
detection must consider the 3-D geometry of the world. Figure 5 depicts a typical
output of the obstacle detection routine in an urban environment. Each red object
corresponds to an obstacle. Towards the bottom right, a camera image is shown for
reference.

(a) (b)

Fig. 4. (a) The Velodyne contains 64 laser sensors and rotates at 10 Hz. It is able to see objects
and terrain out to 60 meters in every direction. (b) The IBEO sensor possesses four scan lines
which are primarily parallel to the ground. The IBEO is capable of detecting large vertical
obstacles, such as cars and signposts.

Junior: The Stanford Entry in the Urban Challenge 97

(a) (b)

Fig. 5. Obstacles detected by the vehicle are overlayed over aerial imagery (left) and Velodyne
data (right). In the example on the right, the curbs along both sides of the road are detected.

The robot’s primary sensor for obstacle detection is the Velodyne laser. A sim-
ple algorithm for detecting obstacles in Velodyne scans would be to find points
with similar x-y coordinates whose vertical displacement exceeds a given thresh-
old. Indeed, this algorithm can be used to detect large obstacles such as pedestrians,
signposts, and cars. However, range and calibration error are high enough with this
sensor that the displacement threshold cannot be set low enough in practice to detect
curb-sized objects without substantial numbers of false positives.

An alternative to comparing vertical displacements is to compare the range re-
turned by two adjacent beams, where “adjacency” is measured in terms of the point-
ing angle of the beams. Each of the 64 lasers has a fixed pitch angle relative to the
vehicle frame, and thus would sweep out a circle of a fixed radius on a flat ground
plane as the sensor rotates. Sloped terrain locally compresses these rings, causing
the distance between adjacent rings to be smaller than the inter-ring distance on
flat terrain. In the extreme case, a vertical obstacle causes adjacent beams to return
nearly equal ranges. Because the individual beams strike the ground at such shallow
angles, the distance between rings is a much more sensitive measurement of terrain
slope than vertical displacement. By finding points that generate inter-ring distances
that differ from the expected distance by more than a given threshold, even obstacles
that are not apparent to the vertical thresholding algorithm can be reliably detected.

In addition to terrain slope, rolling and pitching of the vehicle will cause the rings
traced out by the individual lasers to compress and expand. If this is not taken into
account, rolling to the left can cause otherwise flat terrain to the left of the vehicle to
be detected incorrectly as an obstacle. This problem can be remedied by making the
expected distance to the next ring a function of range, rather than the index of the
particular laser. Thus as the vehicle rolls to the left, the expected range difference
for a specific beam decreases as the ring moves closer to the vehicle. Implemented
in this way, small obstacles can be reliably detected even as the sensor rolls and
pitches.

Two more issues must be addressed when performing obstacle detection in urban
terrain. First, trees and other objects frequently overhang safe driving surfaces and

98 M. Montemerlo et al.

Fig. 6. A map of a parking lot. Obstacles colored in yellow are tall obstacles, brown obstacles
are curbs, and green obstacles are overhanging objects (e.g. tree branches) that are of no
relevance to ground navigation.

should not be detected as obstacles. Overhanging objects are filtered out by com-
paring their height with a simple ground model. Points that fall in a particular x-y
grid cell that exceed the height of the lowest detected point in the same cell by more
than a given threshold (the height of the vehicle plus a safety buffer), are ignored as
overhanging obstacles.

Second, the Velodyne sensor possesses a “blind spot” behind the vehicle. This
is the result of the sensor’s geometry and mounting location. Further, it also cannot
detect small obstacles such as curbs in the immediate vicinity of the robot due to
self-occlusion. Here the IBEO and SICK LDLRS sensors are used to supplement the
Velodyne data. Because both of these sensors are essentially 2-D, ground readings
cannot be distinguished from vertical obstacles, and hence obstacles can only be
found at very short range (where ground measurements are unlikely). Whenever
either of these sensors detects an object within a close range (15 meters for the
LDLRS and 5 meters for the IBEO), the measurement is flagged as an obstacle. This
combination between short-range sensing in 2-D and longer range sensing using the
3-D sensor provides high reliability. We note that a 5 meter cut-off for the IBEO
sensor may seem overly pessimistic, as this laser is designed for long range detection

Junior: The Stanford Entry in the Urban Challenge 99

(a) (b)

Fig. 7. Examples of free space analysis for Velodyne scans. The green lines represent the
area surrounding the robot that is observed to be empty. This evidence is incorporated into
the static map, shown in black and blue.

(100 meters and more). However, the sensor presents a large number of false positive
detections on non-flat terrain, such as dirt roads.

Our obstacle detection method worked exceptionally well. In the Urban Chal-
lenge, we know of no instance in which our robot Junior collided with an obstacle.
In particular, Junior never ran over a curb. We also found that the number of false
positives was remarkably small, and false positives did not measurably impact the
vehicle performance. In this sense, static obstacle detection worked flawlessly.

4.2 Static Mapping

In many situations, multiple measurements have to be integrated over time even for
static environment mapping. Such is the case, for example, in parking lots, where
occlusion or range limitations may make it impossible to see all relevant obstacles at
all times. Integrating multiple measurements is also necessary to cope with certain
blind spots in the near range of the vehicle. In particular, curbs are only detectable
beyond a certain minimum range with a Velodyne laser. To alleviate these prob-
lems, Junior caches sensor measurement into local maps. Figure 6 shows such a
local map, constructed from many sensor measurements over time. Different colors
indicate different obstacle types on a parking lot. The exact map update rule relies
on the standard Bayesian framework for evidence accumulation [Moravec, 1988].
This safeguards the robot against spurious obstacles that only show up in a small
number of measurements.

A key downside of accumulating static data over time into a map arises from
objects that move. For example, a passage may be blocked for a while, and then
become drivable again. To accommodate such situations, the software performs a
local visibility calculation. In each polar direction away from the robot, the grid

100 M. Montemerlo et al.

(a)

(b)

(c)

(d)

Fig. 8. (a) Synthetic 2-D scan derived from Velodyne data. (b) Scan differencing provides ar-
eas in which change has occurred, colored here in green and red. (c) Tracks of other vehicles.
(d) The corresponding camera image.

Junior: The Stanford Entry in the Urban Challenge 101

cells between the robot and the nearest detected object are observed to be free.
Beyond the first detected obstacle, of course, it is impossible to say whether the
absence of further obstacles is due to occlusion. Hence, no map updating takes place
beyond this range. This mechanism may still lead to an overly conservative map, but
empirically works well for navigating cluttered spaces such as parking lots. Figure 7
illustrates the region in which free space is detected in a Velodyne sensor scan.

4.3 Dynamic Object Detection and Tracking

A key challenge in successful urban driving pertains to other moving traffic. The
present software provides a reliable method for moving object detection and predic-
tion based on particle filters.

Moving object detection is performed on a synthetic 2-D scan of the environment.
This scan is synthesized from the various laser sensors by extracting the range to the
nearest detected obstacle along an evenly spaced array of synthetic range sensors.
The use of such a synthetic scan comes with several advantages over the raw sensor
data. First, its compactness allows for efficient computation. Second, the method
is applicable to any of the three obstacle-detecting range sensors (Velodyne, IBEO,
and SICK LDLRS), and any combination thereof. The latter property stems from the
fact that any of those laser measurements can be mapped easily into a synthetic 2-
D range scan, rendering the scan representation relatively sensor-independent. This
synergy thus provides our robot with a unified method for finding, tracking, and
predicting moving objects. Figure 8a shows such a synthetic scan.

The moving object tracker then proceeds in two stages. First, it identifies areas of
change. For that, it compares two synthetic scans acquired over a brief time interval.
If an obstacle in one of the scans falls into the free space of the respective other scan,
this obstacle is a witness of motion. Figure 8b shows such a situation. The red color
of a scan corresponds to an obstacle that is new, and the green color marks the
absence of a previously seen obstacle.

When such witnesses are found, the tracker initializes a set of particles as pos-
sible object hypotheses. These particles implement rectangular objects of different
dimensions, and at slightly different velocities and locations. A particle filter algo-
rithm is then used to track such moving objects over time. Typically, within three
sightings of a moving object, the filter latches on and reliably tracks the moving
object.

Figure 8c depicts the resulting tracks; a camera image of the same scene is shown
in Figure 8d. The tracker estimates the location, the yaw, the velocity, and the size
of the object.

5 Precision Localization

One of the key perceptual routines in Junior’s software pertains to localization. As
noted, the robot is given a digital map of the road network in form of an RNDF.
While the RNDF is specified in GPS coordinates, the GPS-based inertial position
computed by the Applanix system is generally not able to recover the coordinates of

102 M. Montemerlo et al.

Fig. 9. The side lasers provide intensity information that is matched probabilistically with the
RNDF for precision localization.

the vehicle with sufficient accuracy to perform reliable lane keeping without sensor
feedback. Further, the RNDF is itself inaccurate, adding further errors if the vehicle
were to blindly follow the road using the RNDF and Applanix pose estimates. Junior
therefore estimates a local alignment between the RNDF and its present position
using local sensor measurements. In other words, Junior continuously localizes itself
relative to the RNDF.

This fine-grained localization uses two types of information: road reflectivity and
curb-like obstacles. The reflectivity is sensed using the RIEGL LMS-Q120 and the
SICK LMS sensors, both of which are pointed towards the ground. Fig. 9 shows the
reflectivity information obtained through the sideways mounted SICK sensors, and
integrated over time. This diagram illustrates the varying infrared reflectivity of the
lane markings.

The filter for localization is a 1-D histogram filter which estimates the vehicle’s
lateral offset relative to the RNDF. This filter estimates the posterior distribution of
any lateral offset based on the reflectivity and the sighted curbs along the road. It
“rewards,” in a probabilistic fashion, offsets for which lane-marker-like reflectivity
patterns align with the lane markers or the road side in the RNDF. The filter “penal-
izes” offsets for which an observed curb would reach into the driving corridor of the
RNDF. As a result, at any point in time the vehicle estimates a fine-grained offset to
the measured location by the GPS-based INS system.

Figure 10 illustrates localization relative to the RNDF in a test run. Here the green
curves depicts the likely locations of lane markers in both lasers, and the yellow
curve depicts the posterior distribution in the lateral direction. This specific posterior
deviates from the Applanix estimate by about 80 cm, which, if not accounted for,
would make Junior’s wheels drive on the center line. In the Urban Challenge Event,
localization offsets of 1 meter or more were common. Without this localization step,
Junior would have frequently crossed the center line unintentionally, or possibly hit
a curb.

Junior: The Stanford Entry in the Urban Challenge 103

Fig. 10. Typical localization result: The red bar illustrates the Applanix localization, whereas
the yellow curve measures the posterior over the lateral position of the vehicle. The green
line depicts the response from the lane line detector. In this case, the error is approximately
80 cm.

Finally, Figure 11 shows a distribution of lateral offset corrections that were ap-
plied during the Urban Challenge.

5.1 Smooth Coordinates

When integrating multiple sensor measurements over time, it may be tempting to
use the INS pose estimates (the output of the Applanix) to calculate the relative
offset between different measurements. However, in any precision INS system, the
estimated position frequently “jumps” in response to GPS measurements. This is
because INS systems provide the most likely position at the present time. As new
GPS information arrives, it is possible that the most likely position changes by an
amount inconsistent with the vehicle motion. The problem, then, is that when such
a revision occurs, past INS measurements have to be corrected as well, to yield a
consistent map. Such a problem is known in the estimation literature as (backwards)
smoothing [Jazwinsky, 1970].

To alleviate this problem, Junior maintains an internal smooth coordinate system
that is robust to such jumps. In the smooth coordinate system, the robot position is
defined as the sum of all incremental velocity updates:

x̄ = x0 +
∑

t

Δt · ẋt

104 M. Montemerlo et al.

Fig. 11. Histogram of average localization corrections during the race. At times the lateral
correction exceeds one meter.

where x0 is the first INS coordinate, and ẋt are the velocity estimates of the INS.
In this internal coordinate system, sudden INS position jumps have no effect, and
the sensor data are always locally consistent. Vehicle velocity estimates from the
pose estimation system tend to be much more stable than the position estimates,
even when GPS is intermittent or unavailable. X and Y velocities are particularly
resistant to jumps because they are partially observed by wheel odometry.

This “trick” of smooth coordinates makes it possible to maintain locally consis-
tent maps even when GPS shifts occur. We note, however, that the smooth coor-
dinate system may cause inconsistencies in mapping data over long time periods,
hence can only be applied to local mapping problems. This is not a problem for the
present application, as the robot only maintains local maps for navigation.

In the software implementation, the mapping between raw (global) and smooth
(local) coordinates only requires that one maintain the sum of all estimation shifts,
which is initialized by zero. This correction term is then recursively updated by
adding mismatches between actual INS coordinates and the velocity-based value.

6 Navigation

6.1 Global Path Planning

The first step of navigation pertains to global path planning. The global path planner
is activated for each new checkpoint; it also is activated when a permanent road
blockage leads to a change of the topology of the road network. However, instead
of planning one specific path to the next checkpoint, the global path planner plans
paths from every location in the map to the next checkpoint. As a result, the vehicle
may depart from the optimal path and select a different one without losing direction
as to where to move.

Junior: The Stanford Entry in the Urban Challenge 105

Fig. 12. Global planning: Dynamic programming propagates values through a crude discrete
version of the environment map. The color of the RNDF is representative of the cost to move
to the goal from each position in the graph. Low costs are green and high costs are red.

Junior’s global path planner is an instance of dynamic programming, or
DP [Howard, 1960]. The DP algorithm recursively computes for each cell in a dis-
crete version of the RNDF the cumulative costs of moving from each such location
to the goal point. The recursive update equation for the cost is standard in the DP lit-
erature. Let V (x) be the cost of a discrete location in the RNDF, with V (goal) = 0.
Then the following recursive equation defines the backup and, implicitly, the cumu-
lative cost function V :

V (x) ←− min
u

c(x, u) +
∑

y

p(y | x, u) V (y)

Here u is an action, e.g., drive along a specific road segment. In most cases, there is
only one admissible action. At intersections, however, there are choices (go straight,
turn left, . . .). Multi-lane roads offer the choice of lane changes. For these cases
the maximization over the control choice u in the expression above will provide
multiple terms, the minimization of which leads to the fastest expected path.

In practice, not all action choices are always successful. For example, a shift
from a left to a right lane only “succeeds” if there is no vehicle in the right lane;
otherwise the vehicle cannot shift lanes. This is accommodated in the use of the
transition probability p(y | x, u). Junior, for example, might assess the success

106 M. Montemerlo et al.

(a)

(b)

Fig. 13. Planner roll-outs in an urban setting with multiple discrete choices. (a) For each prin-
ciple path, the planner rolls out trajectories that undergo lateral shifts. (b) A driving situation
with two discrete plan choices, turn right or drive straight through the intersetion. The paths
are colored according to the DP value function, with red being high cost and green being low
cost.

Junior: The Stanford Entry in the Urban Challenge 107

probability of a lane shift at any given discrete location as low as 10%. The benefit
of this probabilistic view of decision making is that it penalizes plans that delay lane
changes to the very last moment. In fact, Junior tends to execute lane shifts at the
earliest possibility, and it trades off speed gains with the probability (and the cost)
of failure when passing a slow moving vehicle at locations where a subsequent right
turn is required (which may only be admissible when in the right lane).

A key ingredient in the recursive equation above is the cost c(x, u). In most cases,
the cost is simply the time it takes to move between adjacent cells in the discrete
version of the RNDF. In this way, the speed limits are factored into the optimal path
calculation, and the vehicle selects the path that in expectation minimizes arrival
time. Certain maneuvers, such as left turns across traffic, are “penalized” by an
additional time penalty to account for the risk that the robot takes when making
such a choice. In this way, the cost function c implements a careful balance between
navigation time and risk. So in some cases, Junior engages on a slight detour so as to
avoid a risky left turn, or a risky merge. The additional costs of maneuvers can either
be set by hand (as they were for the Urban Challenge) or learned from simulation
data in representative environments.

Figure 12 shows a propagated cumulative cost function. Here the cumulative cost
is indicated by the color of the path. This global function is brought to bear to assess
the “goodness” of each location beyond the immediate sensor reach of the vehicle.

6.2 RNDF Road Navigation

The actual vehicle navigation is handled differently for common road navigation
and the free-style navigation necessary for parking lots.

Figure 13 visualizes a typical situation. For each principal path, the planner rolls
out a trajectory that is parallel to the smoothed center of the lane. This smoothed
lane center is directly computed from the RNDF. However, the planner also rolls
out trajectories that undergo lateral shifts. Each of those trajectories is the result
of an internal vehicle simulation with different steering parameters. The score of a
trajectory considers the time it will take to follow this path (which may be infinite if
a path is blocked by an obstacle), plus the cumulative cost computed by the global
path planner, for the final point along the trajectory. The planner then selects the
trajectory which minimizes this total cost value. In doing so, the robot combines
optimal route selection with dynamic nudging around local obstacles.

Figure 14 illustrates this decision process in a situation where a slow-moving
vehicle blocks the right lane. Even though lane changes come with a small penalty
cost, the time savings due to faster travel on the left lane result in a lane change. The
planner then steers the robot back into the right lane when the passing maneuver is
complete.

We find that this path planner works well in well-defined traffic situations. It
results in smooth motion along unobstructed roads, and in smooth and well-defined
passing maneuvers. The planner also enables Junior to avoid small obstacles that
might extend into a lane, such as parked cars on the side. However, it is unable to
handle blocked roads or intersections, and it also is unable to navigate parking lots.

108 M. Montemerlo et al.

Fig. 14. A passing maneuver. The additional cost of being in a slightly sub-optimal lane is
overwhelmed by the cost of driving behind a slow driver, causing Junior to change lanes and
pass.

Fig. 15. Graphical comparison of search algorithms. Left: A* associates costs with cen-
ters of cells and only visits states that correspond to grid-cell centers. Center: Field
D* [Ferguson and Stentz, 2005] associates costs with cell corners and allows arbitrary lin-
ear paths from cell to cell. Right: Hybrid A* associates a continuous state with each cell and
the score of the cell is the cost of its associated continuous state.

6.3 Free-Form Navigation

For free-form navigation in parking lots, the robot utilizes a second planner, which
can generate arbitrary trajectories irrespective of a specific road structure. This plan-
ner requires a goal coordinate and a map. It identifies a near-cost optimal path to the
goal should such a path exist.

Junior: The Stanford Entry in the Urban Challenge 109

Fig. 16. Hybrid-state A* heuristics. (a) Euclidean distance in 2-D expands 21,515 nodes. (b)
The non-holonomic-without-obstacles heuristic is a significant improvement, as it expands
1, 465 nodes, but as shown in (c), it can lead to wasteful exploration of dead-ends in more
complex settings (68,730 nodes). (d) This is rectified by using the latter in conjunction with
the holonomic-with-obstacles heuristic (10,588 nodes).

This free-form planner is a modified version of A*, which we call hybrid A*. In
the present application, hybrid A* represents the vehicle state in a 4-D discrete grid.
Two of those dimensions represent the x-y-location of the vehicle center in smooth
map coordinates; a third the vehicle heading direction θ, and a forth dimension
pertains the direction of motion, either forward or reverse.

Fig. 17. Path smoothing with Conjugate Gradient. This smoother uses a vehicle model to
guarantee that the resulting paths are attainable. The Hybrid A* path is shown in black. The
smoothed path is shown in blue (front axle) and cyan (rear axle). The optimized path is much
smoother than the Hybrid A* path, and can thus be driven faster.

110 M. Montemerlo et al.

(a) (b)

(c) (d)

Fig. 18. Examples of trajectories generated by Junior’s hybrid A* planner. Trajectories in (a)–
(c) were driven by Junior in the DARPA Urban challenge: (a),(b) show U-turns on blocked
roads, (c) shows a parking task. The path in (d) was generated in simulation for a more
complex maze-like environment. Note that in all cases the robot had to replan in response to
obstacles being detected by its sensors. In particular, this explains the sub-optimality of the
trajectory in (d).

One problem with regular (non-hybrid) A* is that the resulting discrete plan can-
not be executed by a vehicle, simply because the world is continuous, whereas A*
states are discrete. To remedy this problem, hybrid A* assigns to each discrete cell
in A* a continuous vehicle coordinate. This continuous coordinate is such that it can
be realized by the actual robot.

To see how this works, let 〈x, y, θ〉 be the present coordinates of the robot, and
suppose those coordinates lie in cell ci in the discrete A* state representation. Then,
by definition, the continuous coordinates associated with cell ci are xi = x, yi = y,
and θi = θ. Now predict the (continuous) vehicle state after applying a control u
for a given amount of time. Suppose the prediction is 〈x′, y′, θ′〉, and assume this
prediction falls into a different cell, denoted cj . Then, if this is the first time cj
has been expanded, this cell will be assigned the associated continuous coordinates
xj = x′, yj = y′, and θj = θ′. The result of this assignment is that there exists

Junior: The Stanford Entry in the Urban Challenge 111

an actual control u in which the continuous coordinates associated with cell cj can
actually be attained—a guarantee which is not available for conventional A*. The
hybrid A* algorithm then applies the same logic for future cell expansions, using
〈xj , yj, θj〉 whenever making a prediction that starts in cell cj . We note that hybrid
A* is guaranteed to yield realizable paths, but it is not complete. That is, it may fail
to find a path. The coarser the discretization, the more often hybrid A* will fail to
find a path.

Figure 15 compares hybrid A* to regular A* and Field D*
[Ferguson and Stentz, 2005], an alternative algorithm that also considers the
continuous nature of the underlying state space. A path found by plain A* cannot
easily be executed; and even the much smoother Field D* path possesses kinks that
a vehicle cannot execute. By virtue of associating continuous coordinates with each
grid cell in Hybrid A*, our approach results in a path that is executable.

The cost function in A* follows the idea of execution time. Our implementation
assigns a slightly higher cost to reverse driving to encourage the vehicle to drive
“normally.” Further, a change of direction induces an additional cost to account for
the time it takes to execute such a maneuver. Finally, we add a pseudo-cost that
relates to the distance to nearby obstacles so as to encourage the vehicle to stay
clear of obstacles.

Our search algorithm is guided by two heuristics, called the non-holonomic-
without-obstacles heuristic and the holonomic-with-obstacles heuristic. As the
name suggests, the first heuristic ignores obstacles but takes into account the
non-holonomic nature of the car. This heuristic, which can be completely pre-
computed for the entire 4D space (vehicle location, and orientation, and direction of
motion), helps in the end-game by approaching the goal with the desired heading.
The second heuristic is a dual of the first in that it ignores the non-holonomic nature
of the car, but computes the shortest distance to the goal. It is calculated online by
performing dynamic programming in 2-D (ignoring vehicle orientation and motion
direction). Both heuristics are admissible, so the maximum of the two can be used.

Figure 16a illustrates A* planning using the commonly used Euclidean distance
heuristic. As shown in Figure 16b, the non-holonomic-without-obstacles heuristic is
significantly more efficient than Euclidean distance, since it takes into account ve-
hicle orientation. However, as shown in Figure 16c, this heuristic alone fails in situ-
ations with U-shaped dead ends. By adding the holonomic-with-obstacles heuristic,
the resulting planner is highly efficient, as illustrated in Figure 16d.

While hybrid A* paths are realizable by the vehicle, the small number of dis-
crete actions available to the planner often lead to trajectories with rapid changes
in steering angles, which may still lead to trajectories that require excessive steer-
ing. In a final post-processing stage, the path is further smoothed by a Conjugate
Gradient smoother that optimizes similar criteria as hybrid A*. This smoother mod-
ifies controls and moves waypoints locally. In the optimization, we also optimize for
minimal steering wheel motion and minimum curvature. Figure 17 shows the result
of smoothing.

The hybrid A* planner is used for parking lots and also for certain traffic maneu-
vers, such as U-turns. Figure 18 shows examples from the Urban Challenge and the

112 M. Montemerlo et al.

(a) (b)

Fig. 19. Critical zones: (a) At this four-way stop sign, busy critical zones are colored in red,
whereas critical zones without vehicles are shown in green. In this image, a vehicle can be
seen driving through the intersection from the right. (b) Critical zones for merging into an
intersection.

associated National Qualification Event. Shown there are two successful U-turns
and one parking maneuver. The example in Figure 18d is based on a simulation
of a more complex parking lot. The apparent suboptimality of the path is the re-
sult of the fact that the robot “discovers” the map as it explores the environment,
forcing it into multiple backups as a previously believed free path is found to be oc-
cupied. All of those runs involve repetitive executions of the hybrid A* algorithm,
which take place while the vehicle is in motion. When executed on a single core of
Junior’s computers, planning from scratch requires up to 100 milliseconds; in the
Urban Challenge, planning was substantially faster because of the lack of obstacles
in parking lots.

6.4 Intersections and Merges

Intersections are places that require discrete choices not covered by the basic nav-
igation modules. For example, at multi-way intersections with stop signs, vehicles
may only proceed through the intersection in the order of their arrival.

Junior keeps track of specific “critical zones” at intersections. For multi-way in-
tersections with stop signs, such critical zones correspond to regions near each stop
sign. If such a zone is occupied by a vehicle at the time the robot arrives, Junior
waits until this zone has cleared (or a timeout has occurred). Intersection critical
zones are shown in Figure 19. In merging, the critical zones correspond to segments
of roads where Junior may have to give precedence to moving traffic. If an object
is found in such a zone, Junior uses its radars and its vehicle tracker to determine
the velocity of moving objects. Based on the velocity and proximity, a threshold
test then marks the zone in question as busy, which then results in Junior waiting
at a merge point. The calculation of critical zones is somewhat involved. However,
all computations are performed automatically based on the RNDF, and ahead of the
actual vehicle operation.

Junior: The Stanford Entry in the Urban Challenge 113

(a)

(b)

(c)

Fig. 20. Merging into dense traffic during the qualification events at the Urban Challenge. (a)
Photo of merging test; (b)-(c) The merging process.

Figure 20 visualizes a merging process during the qualification event to the Urban
Challenge. This test involves merging into a busy lane with 4 human-driven vehicles,
and across another lane with 7 human-driven cars. The robot waits until none of the
critical zones are busy, and then pulls into the moving traffic. In this example, the
vehicle was able to pull safely into 8 second gaps in two-way traffic.

114 M. Montemerlo et al.

LOCATE_VEHICLE

FORWARD_DRIVE

PARKING_NAVIGATE

STOP_SIGN_WAIT

CROSS_INTERSECTIONUTURN_DRIVE

UTURN_STOP CROSS_DIVIDER

MISSION_COMPLETE

STOP_FOR_CHEATERS

BAD_RNDF

Fig. 21. Finite State Machine that governs the robot’s behavior.

(a) Blocked intersection (b) Hybrid A* (c) Successful traversal

Fig. 22. Navigating a simulated traffic jam: After a timeout period, the robot resorts to hybrid
A* to find a feasible path across the intersection.

6.5 Behavior Hierarchy

An essential aspect of the control software is logic that prevents the robot from
getting stuck. Junior’s stuckness detector is triggered in two ways: through time-
outs when the vehicle is waiting for an impasse to clear, and through the repeated
traversal of a location in the map—which may indicate that the vehicle is looping
indefinitely.

Figure 21 shows the finite state machine (FSM) that is used to switch between
different driving states, and that invokes exceptions to overcome stuckness. This
FSM possesses 13 states (of which 11 are shown; 2 are omitted for clarity). The
individual states in this FSM correspond to the following conditions:

Junior: The Stanford Entry in the Urban Challenge 115

• LOCATE VEHICLE: This is the initial state of the vehicle. Before it can start
driving, the robot estimates its initial position on the RNDF, and starts road
driving or parking lot navigation, whichever is appropriate.

• FORWARD DRIVE: This state corresponds to forward driving, lane keeping
and obstacle avoidance. When not in a parking lot, this is the preferred naviga-
tion state.

• STOP SIGN WAIT: This state is invoked when the robot waits at at a stop sign
to handle intersection precedence.

• CROSS INTERSECTION: Here the robot waits if it is safe to cross an intersec-
tion (e.g., during merging), or until the intersection is clear (if it is an all-way
stop intersection). The state also handles driving until Junior has exited the in-
tersection.

• STOP FOR CHEATERS: This state enables Junior to wait for another car mov-
ing out of turn at a four way intersection.

• UTURN DRIVE: This state is invoked for a U-turn.
• UTURN STOP: Same as UTURN DRIVE, but here the robot is stopping in

preparation for a U-turn.
• CROSS DIVIDER: This state enables Junior to cross the yellow line (after stop-

ping and waiting for oncoming traffic) in order to avoid a partial road blockage.
• PARKING NAVIGATE: Normal parking lot driving.
• TRAFFIC JAM: In this sate, the robot uses the general-purpose hybrid A* plan-

ner to get around a road blockage. The planner aims to achieve any road point 20
meters away on the current robot trajectory. Use of the general-purpose planner
allows the robot to engage in unrestricted motion and disregard certain traffic
rules.

• ESCAPE: This state is the same as TRAFFIC JAM, only more extreme. Here the
robot aims for any waypoint on any base trajectory more than 20 meters away.
This state enables the robot to choose a suboptimal route at an intersection in
order to extract itself out of a jam.

• BAD RNDF: In this state, the robot uses the hybrid A* planner to navigate a
road that does not match the RNDF. It triggers on one lane, one way roads if
CROSS DIVIDER fails.

• MISSION COMPLETE: This state is set when race is over.

For simplicity, Figure 21 omits ESCAPE and TRAFFIC JAM. Nearly all states have
transitions to ESCAPE and TRAFFIC JAM.

At the top level, the FSM transitions between the normal driving states, such as
lane keeping and parking lot navigation. Transitions to lower driving levels (excep-
tions) are initiated by the stuckness detectors. Most of those transition invoke a “wait
period” before the corresponding exception behavior is invoked. The FSM returns
to normal behavior after the successful execution of a robotic behavior.

The FSM makes the robot robust to a number of contingencies. For example:

• For a blocked lane, the vehicle considers crossing into the opposite lane. If the
opposite lane is also blocked, a U-turn is initiated, the internal RNDF is modified

116 M. Montemerlo et al.

Fig. 23. RNDF editor tool.

(a) Before editing (b) Some new constraints (c) More constraints

Fig. 24. Example: Effect of adding and moving waypoints in the RNDF. Here the corridor is
slightly altered to better match the aerial image. The RNDF editor permits for such alterations
in an interactive manner, and displays the results on the base trajectory without any delay.

accordingly, and dynamic programming is run to regenerate the RNDF value
function.

• Failure to traverse a blocked intersection is resolved by invoking the hybrid A*
algorithm, to find a path to the nearest reachable exit of the intersection; see
Figure 22 for an example.

• Failure to navigate a blocked one-way road results in using hybrid A* to the next
GPS waypoint. This feature enables vehicles to navigate RNDFs with sparse
GPS waypoints.

Junior: The Stanford Entry in the Urban Challenge 117

Fig. 25. The SRNDF creator produces a smooth base trajectory automatically by minimizing
a set of nonlinear quadratic constraints. The original RNDF is shown in blue. The smooth
SRNDF is shown in green.

• Repeated looping while attempting to reach a checkpoint results in the check-
point being skipped, so as to not jeopardize the overall mission. This behavior
avoids infinite looping if a checkpoint is unreachable.

• Failure to find a path in a parking lot with hybrid A* makes the robot temporarily
erase its map. Such failures may be the result of treating as static objects that
since moved away – which cannot be excluded.

• In nearly all situations, failure to make progress for extended periods of time
ultimately leads to the use of hybrid A* to find a path to a nearby GPS waypoint.
When this rare behavior is invoked, the robot does not obey traffic rules any
longer.

In the Urban Challenge event, the robot almost never entered any of the exception
states. This is largely because the race organizers repeatedly paused the robot when
it was facing traffic jams. However, extensive experiments prior to the Urban Chal-
lenge showed that it was quite difficult to make the robot fail to achieve its mission,
provided that the mission remained achievable.

6.6 Manual RNDF Adjustment

Ahead of the Urban Challenge event, DARPA provided teams not just with an
RNDF, but also with a high-resolution aerial image of the site. While the RNDF

118 M. Montemerlo et al.

was produced by careful ground-based GPS measurements along the course, the
aerial image was purchased from a commercial vendor and acquired by aircraft.

To maximize the accuracy of the RNDF, the team manually adjusted and aug-
mented the DARPA-provided RNDF. Figure 23 shows a screen shot of the editor.
This tool enables an editor to move, add, and delete waypoints. The RNDF editor
program is fast enough to incorporate new waypoints in real time (10Hz).

The editing required three hours of a person’s time. In an initial phase, waypoints
were shifted manually, and roughly 400 new way points were added manually to the
629 lane waypoints in the RNDF. Those additions increased the spatial coherence of
the RNDF and the aerial image. Figure 24 shows a situation in which the addition
of such additional waypoint constraints leads to substantial improvements of the
RNDF.

To avoid sharp turns at the transition of linear road segments, the tool provides
an automated RNDF smoothing algorithm. This algorithm upsamples the RNDF at
one meter intervals, and sets those as to maximize the smoothness of the resulting
path. The optimization of these additional points combines a least squares distance
measure with a smoothness measure. The resulting “smooth RNDF,” or SRNDF, is
then used instead of the original RNDF for localization and navigation. Figure 25
compares the RNDF and the SRNDF for a small fraction of the course.

7 The Urban Challenge

7.1 Results

The Urban Challenge took place Nov. 3, 2007, in Victorville, CA. Figure 26 shows
images of the start and the finish of the Urban Challenge. Our robot Junior never hit
an obstacle, and according to DARPA, it broke no traffic rule. A careful analysis of
the race logs and official DARPA documentation revealed two situations (described
below) in which Junior behaved suboptimally. However, all of those events were
deemed rule conforming by the race organizers. Overall, Junior’s localization and

Fig. 26. The start and the finish of the Urban Challenge. Junior arrives at the finish line.

Junior: The Stanford Entry in the Urban Challenge 119

UMCTIMTSVIhceTainigriV

Fig. 27. Scans of other robots encountered in the race.

road following behaviors were essentially flawless. The robot never came close to
hitting a curb or crossing into opposing traffic.

The event was organized in three missions, which differed in length and complex-
ity. Our robot accomplished all three missions in 4 hours 5 minutes, and 6 seconds of
run time. During this time, the robot traveled a total of 55.96 miles, or 90.068 km. Its
average speed while in run mode was thus 13.7 mph. This is slower than the average
speed in the 2005 Grand Challenge [Montemerlo et al., 2006, Urmson et al., 2004],
but most of the slowdown was caused by speed limits, traffic regulations (e.g., stop
signs), and other traffic. The total time from the start to the final arrival was 5 hours,
23 minutes, and 2 seconds, which includes all pause times. Thus, Junior was paused
for a total of 1 hour, 17 minutes and 56 seconds. None of those pauses were caused
by Junior, or requested by our team. An estimated 26 minutes and 27 seconds were
“local” pauses, in which Junior was paused by the organizers because other vehi-
cles were stuck. Our robot was paused six times because other robots encountered
problems on the off-road section, or were involved in an accident. The longest lo-
cal pause (10 min, 15 sec) occurred when Junior had to wait behind a two-robot
accident. Because of DARPA’s decision to pause robots, Junior could not exercise
its hybrid A* planner in these situations. DARPA determined Junior’s adjusted total
time to be 4 hours, 29 minutes, and 28 seconds. Junior was judged to be the second
fastest finishing robot in this event.

7.2 Notable Race Events

Figure 27 shows scans of other robots encountered in the race. Overall, DARPA
officials estimate that Junior faced approximately 200 other vehicles during the
race. The large number of robot-robot encounters was a unique feature of the Urban
Challenge.

There were several notable encounters during the race in which Junior exhibited
particularly intelligent driving behavior, as well as two incidents where Junior made
clearly suboptimal decisions (neither of which violated any traffic rules).

Hybrid A* on the Dirt Road
While the majority of the course was paved, urban terrain, the robots were required
to traverse a short off-road section connecting the urban road network to a 30mph
highway section. The off-road terrain was graded dirt path with a non-trivial eleva-
tion change, reminiscent of the 2005 DARPA Grand Challenge course. This section
caused problems for several of the robots in the competition. Junior traveled down

120 M. Montemerlo et al.

Fig. 28. Junior mission times during the Urban Challenge. Times marked green correspond
to local pauses, and times in red to all-pauses, in which all vehicles were paused.

the dirt road during the first mission, immediately behind another robot and its chase
car. While Junior had no difficulty following the dirt road, the robot in front of Ju-
nior stopped three times for extended periods of time. In response to the first stop,
Junior also stopped and waited behind the robot and its chase car. After seeing no
movement for a period of time, Junior activated several of its recovery behaviors.
First, Junior considered CROSS DIVIDER, a preset passing maneuver to the left of
the two stopped cars. There was not sufficient space to fit between the cars and the
berm on the side of the road, so Junior then switched to the BAD RNDF behavior,
in which the Hybrid A* planner is used to plan an arbitrary path to the next DARPA
waypoint. Unfortunately, there was not enough space to get around the cars even
with the general path planner. Junior repeatedly repositioned himself on the road
in an attempt to find a free path to the next waypoint, until the cars started mov-
ing again. Junior repeated this behavior when the preceding robot stopped a second
time, but was paused by DARPA until the first robot recovered. Figure 29a shows
data and a CROSS DIVIDER path around the preceding vehicle on the dirt road.

Passing Disabled Robot
The course included several free-form navigation zones where the robots were re-
quired to navigate around arbitrary obstacles and park in parking spots. As Junior
approached one of these zones during the first mission, it encountered another robot
which had become disabled at the entrance to the zone. Junior queued up behind
the robot, waiting for it to enter the zone. After the robot did not move for a given
amount of time, Junior passed it slowly on the left using the CROSS DIVIDER be-
havior. Once Junior had cleared the disabled vehicle, the Hybrid A* planner was

Junior: The Stanford Entry in the Urban Challenge 121

(a) Navigating a blocked dirt road (b) Passing a disabled robot at parking lot entrance

(c) Nudge to avoid an oncoming robot (d) Slowing down after being cut off by other robot

(e) An overly aggressive merge into moving traffic (f) Pulling alongside a car at a stop sign

Fig. 29. Key moments in the Urban Challenge race.

enabled to navigate successfully through the zone. Figure 29b shows this passing
maneuver.

Avoiding Opposing Traffic
During the first mission, Junior was traveling down a two-way road and encountered
another robot in the opposing lane of traffic. The other robot was driving such that
its left wheels were approximately one foot over the yellow line, protruding into
oncoming traffic. Junior sensed the oncoming vehicle and quickly nudged the right
side of its lane, where it then passed at full speed without incident. This situation is
depicted in Figure 29c.

122 M. Montemerlo et al.

Reacting to an Aggressive Merge
During the third mission, Junior was traveling around a large traffic circle which
featured prominently in the competition. Another robot was stopped at a stop sign
waiting to enter the traffic circle. The other robot pulled out aggressively in front of
Junior, who was traveling approximately 15mph at the time. Junior braked hard to
slow down for the other robot, and continued with its mission. Figure 29d depicts
the situation during this merge.

Junior Merges Aggressively
Junior merged into moving traffic successfully on numerous occasions during the
race. On one occasion during the first mission, however, Junior turned left from a
stop sign in front of a robot that was moving at 20mph with an uncomfortably small
gap. Data from this merge is shown in Figure 29e. The merge was aggressive enough
that the chase car drivers paused the other vehicle. Later analysis revealed that Junior
saw the oncoming vehicle, yet believed there was a sufficient distance to merge
safely. Our team had previously lowered merging distance thresholds to compensate
for overly conservative behavior during the qualification event. In retrospect, these
thresholds were set too low for higher speed merging situations. While this merge
was definitely suboptimal behavior, it was later judged not be a violation of the rules
by DARPA.

Pulling Alongside a Waiting Car
During the second mission, Junior pulled up behind a robot waiting at a stop sign.
The lane was quite wide, and the other robot was offset towards the right side of
the lane. Junior, on the other hand, was traveling down the left side of the lane.
When pulling forward, Junior did not register the other car as being inside the lane
of travel, and thus began to pull alongside of the car waiting at the stop sign. As
Junior tried to pass, the other car pulled forward from the stop sign and left the area.
This incident highlights how difficult it can be for a robot to distinguish between a
car stopped at a stop sign and a car parked on the side of the road. See Figure 29f.

8 Discussion

This paper described a robot designed for urban driving. Stanford’s robot Junior
integrates a number of recent innovations in mobile robotics, such as probabilistic
localization, mapping, tracking, global and local planning, and an FSM for making
the robot robust to unexpected situations. The results of the Urban Challenge, along
with prior experiments carried out by the research team, suggest that the robot is
capable of navigating in other robotic and human traffic. The robot successfully
demonstrated merging, intersection handling, parking lot navigation, lane changes,
and autonomous U-turns.

The approach presented here features a number of innovations, which are well-
grounded in past research on autonomous driving and mobile robotics. These inno-
vations include the obstacle/curb detection method, the vehicle tracker, the various
motion planners, and the behavioral hierarchy that addresses a broad range of traffic

Junior: The Stanford Entry in the Urban Challenge 123

situations. Together, these methods provide for a robust system for urban in-traffic
autonomous navigation.

Still, a number of advances are required for truly autonomous urban driving. The
present robot is unable to handle traffic lights. No experiments have been performed
with a more diverse set of traffic participants, such as bicycles and pedestrians. Fi-
nally, DARPA frequently paused robots in the Urban Challenge to clear up traffic
jams. In real urban traffic, such interventions are not realistic. It is unclear if the
present robot (or other robots in this event!) would have acted sensibly in lasting
traffic congestion.

References

Buehler et al., 2006. Buehler, M., Iagnemma, K., Singh, S. (eds.): The 2005 DARPA Grand
Challenge: The Great Robot Race. Springer, Berlin (2006)

DARPA, 2007. DARPA, Urban challenge rules (2007),
http://www.darpa.mil/grandchallenge/rules.asp (revision october 27,
2007)

Ferguson and Stentz, 2005. Ferguson, D., Stentz, A.: Field D*: An interpolation-based path
planner and replanner. In: Proceedings of the 12th International Symposium of Robotics
Research (ISRR 2005), San Francisco, CA. Springer, Heidelberg (2005)

Howard, 1960. Howard, R.A.: Dynamic Programming and Markov Processes. MIT Press
and Wiley (1960)

Jazwinsky, 1970. Jazwinsky, A.: Stochastic Processes and Filtering Theory. Academic, New
York (1970)

Montemerlo et al., 2006. Montemerlo, M., Thrun, S., Dahlkamp, H., Stavens, D., Strohband,
S.: Winning the DARPA Grand Challenge with an AI robot. In: Proceedings of the AAAI
National Conference on Artificial Intelligence, Boston, MA. AAAI, Menlo Park (2006)

Moravec, 1988. Moravec, H.P.: Sensor fusion in certainty grids for mobile robots. AI Maga-
zine 9(2), 61–74 (1988)

Simmons and Apfelbaum, 1998. Simmons, R., Apfelbaum, D.: A task description language
for robot control. In: Proceedings of the Conference on Intelligent Robots and Systems
(IROS), Victoria, CA (1998)

Urmson et al., 2004. Urmson, C., Anhalt, J., Clark, M., Galatali, T., Gonzalez, J., Gowdy,
J., Gutierrez, A., Harbaugh, S., Johnson-Roberson, M., Kato, H., Koon, P., Peterson, K.,
Smith, B., Spiker, S., Tryzelaar, E., Whittaker, W.: High speed navigation of unrehearsed
terrain: Red Team technology for the Grand Challenge, Technical Report CMU-RI-TR-04-
37, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2004)

U.S. Department of Transportation, 2005. U.S. Department of Transportation, B. o. T. S.
(2005); Transportation statistics annual report

M. Buehler et al. (Eds.): The DARPA Urban Challenge, STAR 56, pp. 125–162.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Odin: Team VictorTango’s Entry in the
DARPA Urban Challenge

Charles Reinholtz, Dennis Hong2, Al Wicks2,
Andrew Bacha3, Cheryl Bauman3, Ruel Faruque3, Michael Fleming3,
Chris Terwelp3, Thomas Alberi4, David Anderson4, Stephen Cacciola4,
Patrick Currier4, Aaron Dalton4, Jesse Farmer4, Jesse Hurdus4, Shawn Kimmel4,
Peter King4, Andrew Taylor4, David Van Covern4, and Mike Webster4

1 Department of Mechanical Engineering
Embry-Riddle Aeronautical University
Daytona Beach, FL 32114
charles.reinholtz@erau.edu

2 Department of Mechanical Engineering
Virginia Tech
Blacksburg, VA 24060

3 TORC Technologies, LLC
Blacksburg, VA 24060

4 Unmanned Systems Group
Virginia Tech
Blacksburg, VA 24060

Abstract. The DARPA Urban Challenge required robotic vehicles to travel over 90km
through an urban environment without human intervention and included situations such as
stop intersections, traffic merges, parking, and road blocks. Team VictorTango separated
the problem into three parts: base vehicle, perception, and planning. A Ford Escape
outfitted with a custom drive-by-wire system and computers formed the basis for Odin.
Perception used laser scanners, GPS, and a priori knowledge to identify obstacles, cars, and
roads. Planning relied on a hybrid deliberative/reactive architecture to analyze the situation,
select the appropriate behavior, and plan a safe path. All vehicle modules communicated
using the JAUS standard. The performance of these components in the Urban Challenge is
discussed and successes noted. The result of VictorTango’s work was successful
completion of the Urban Challenge and a third place finish.

1 Introduction

On November 3rd, 2007, DARPA hosted the Urban Challenge, an autonomous
ground vehicle competition in an urban environment. To meet this challenge,
Virginia Tech and TORC Technologies formed team VictorTango, a collaborative
effort between academia and industry. The team includes 46 undergraduate
students, 8 graduate students, 4 faculty members, 5 full time TORC employees
and industry partners, including Ford Motor Co. and Caterpillar, Inc. Together

126 C. Reinholtz et al.

team VictorTango and its partners developed Odin, a 2005 Ford Hybrid Escape
modified for autonomous operation.

In the weeks prior to competition, 35 teams prepared for the National
Qualifying Event (NQE). Vehicles had to navigate various courses, merge with
traffic, navigate cluttered roads and zones, park in full parking lots, and detect
road blocks. After a rigorous qualifying event, only 11 teams were deemed ready
by DARPA to line up in the start chutes of the final Urban Challenge Event
(UCE). The vehicles had to navigate similar situations to those they encountered
during the NQE. However, each vehicle also had to share the road with the other
10 autonomous vehicles, 10 chase vehicles, and 50 human-driven traffic vehicles.
Six of the eleven vehicles finished the race. This paper provides a summary of the
approach, final configurations, successes, and incidents of the third place team,
VictorTango.

1.1 VictorTango Overview

Team VictorTango divided the problem posed by the Urban Challenge into three
major parts: base vehicle platform, perception, and planning. Each of these
sections was then subdivided into distinct components for parallel development.
Team members were able to split up the required tasks, execute and debug them
individually, and provide finished components for full system testing. This
modular approach provided the rapid development time needed to complete a
project of such magnitude in only 14 months. This section provides a description
of the components that constitute the team’s approach.

1.2 Base Vehicle Platform

Team VictorTango’s entry in the Urban Challenge is a modified 2005 Hybrid Ford
Escape named Odin, shown in Figure 1. This base vehicle platform meets the
DARPA requirement of a midsize commercial automobile with a proven safety
record. The use of the hybrid-electric Ford Escape provides numerous advantages
in the areas of on-board power generation, reliability, safety and autonomous
operation. As required by DARPA, the drive-by-wire conversion does not bypass
any of the OEM safety systems. Since the stock steering, shifting and throttle
systems on the Hybrid Escape are already drive-by-wire, these systems can be
controlled electronically by emulating the command signals, eliminating the
complexity and failure potential associated with the addition of external actuators.
The stock hybrid power system is able to provide sufficient power for sensors and
computers without the need for a separate generator.

Odin’s main computing is supplied by a pair of Hewlett-Packard servers each
of which are equipped with two quad-core processors. One of the servers runs
Microsoft Windows XP and is dedicated to sensor processing. Windows was
selected since some of the sensor processing software uses National Instruments’
LabVIEW Vision development module, requiring Windows. The other server runs
Linux and is further subdivided into four virtual machines for process load
balancing and isolation. The Linux system, selected for its configurability and

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 127

Fig. 1. External view of Odin with sensors labeled

stability, runs all of the decision making and planning modules. The vehicle
hardware is controlled by a National Instruments CompactRIO unit, which
contains a real-time capable OS and an FPGA. The primary communications
backbone is provided by a gigabit Ethernet network.

1.3 Perception

To fulfill the behavioral requirements of the Urban Challenge, Odin must first be
able to adequately localize its position and perceive the surrounding environment.
Since there may be sparse waypoints in an RNDF and areas of poor GPS
coverage, the surrounding road coverage and legal lanes of travel must also be
sensed. Finally, Odin must be able to perceive all obstacles in its path and
appropriately classify obstacles as vehicles.

For each perception requirement, multiple sensors are desirable to achieve the
highest levels of fidelity and reliability. To allow for maximum flexibility in
sensor fusion, the planning software does not use any raw sensor data; rather it
uses a set of sensor-independent perception messages. The perception components
and the resulting messages are shown in Figure 2. The Localization component
determines the vehicle position and orientation in the world. The Road Detection
component determines a road coverage map as well as the position of each lane in
nearby segments. The Object Classification component detects obstacles and
classifies them as either static or dynamic. A dynamic obstacle is any obstacle that
is capable of movement, so a stopped vehicle would be classified as a dynamic
obstacle with zero forward velocity.

128 C. Reinholtz et al.

Fig. 2. Perception structure overview

1.4 Planning

The planning software on Odin uses a Hybrid Deliberative-Reactive model
dividing upper level decisions and lower level reactions into separate components.
These components run concurrently at independent rates, allowing the vehicle to
react to emergency situations without needing to re-plan an entire route. Splitting
the decision making into separate components also allows each system to be tested
independently and fosters parallel development, which is especially attractive
given the short development timeline of the DARPA Urban Challenge.

Fig. 3. Planning structure overview

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 129

The Route Planner component is the coarsest level of planning and is
responsible for determining which road segments and zones the vehicle should use
to travel to all checkpoints. The Driving Behaviors component is responsible for
obeying the rules of the road and guiding the vehicle along the planned route. The
lowest level of the planning process is the Motion Planning component, which
determines the path and speed of Odin. Motion commands are then passed to the
Vehicle Interface to be translated into actuator control signals. An overview of the
planning process is shown in Figure 3.

2 Technical Approach

This section presents an overview of the major design choices made in the
development of Odin, focusing on perception and planning systems. In each of
these sections, an overview of the system function is given as well as the design of
key elements.

2.1 System Architecture and Communications

While previous Grand Challenges could be solved using a purely reactive software
architecture, the complex nature of the Urban Challenge necessitates a hybrid
solution. In addition to the simpler goal-seeking behavior required in the previous
challenges, Urban Challenge vehicles must maintain knowledge of intent,
precedence, and timing. With many concurrent perception and planning tasks of
varying complexity, priority, and computation time, parallelism is preferred to a
single monolithic Sense-Plan-Act structure (Murphy, 2000). In addition, the
complexity of the Urban Challenge problem necessitates a well-defined software
architecture that is modular, clearly segmented, robust, safe, and simple.

VictorTango’s software structure employs a novel Hybrid Deliberative-
Reactive paradigm. Odin’s perception, planning, and acting occur at several levels
and in parallel tasks, acting on the most recent information received from other
modules. With traditional Hybrid architectures, deliberative components are
usually kept at a high level, while the more reactive, behavior-based, components
are used at a low-level for direct actuator control (Konolige, 1998 and Rosenblatt,
1995). With the rapid growth of computing technology, however, there has been a
re-emergence of deliberative methods for low-level motion planning (Urmson,
2006, and Thrun, 2006). Search-based approaches provide the important traits
of predictability and optimality, which are useful from an engineering point of
view (Russel, 2003). VictorTango’s system architecture therefore exhibits a
deliberative-reactive-deliberative progression. As a result, the scope of a
behavioral control component can be moved from low-level reflexes to higher-
level decision making for solving complex, temporal problems. An overview of
the hybrid mixture of deliberative planning, reactive navigation, and concurrent
sensor processing is shown in Figure 4. Each of the modules is further detailed in
the following sections.

130 C. Reinholtz et al.

SAE AS-4 JAUS (Joint Architecture for Unmanned Systems) was implemented
for communications, enabling automated dynamic configuration and enhancing the
future reusability and commercialization potential of DUC software. Each software
module is implemented as a JAUS component with all interactions to and from
other modules occurring via JAUS messages. As such, each software module
operates as a standalone component that can be run on any one of the computing
nodes. Since dynamic configuration and data subscription is handled via JAUS, the
system is highly reconfigurable, modular, expandable, and reusable beyond the
Urban Challenge. An additional benefit of employing a communications standard
toolkit was the easy integration of logging and simulation (both discussed further in
section 6).

Fig. 4. System Architecture for Odin, omitting Health Monitor connections for clarity

2.2 Perception

Perception is defined to include all aspects of the design necessary to sense the
environment and the vehicle’s position in it. Each perception module transforms
raw data collected from multiple sensors into information useful to the decision
making software.

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 131

2.2.1 Sensor Layout
The sensor coverage for Odin is shown in Figure 5. The largest portion of Odin’s
detection coverage is provided by a coordinated pair of IBEO Alasca XT Fusion
laser rangefinders. This system comprises two 4-plane, multi-return rangefinders
and a single external control unit (ECU) that covers a 260 degree field of view as
shown in Figure 5. The system has an advertised range of almost 200 meters,
although the effective range to reliably identify most objects has been shown in
testing to be closer to 70 meters. A single IBEO Alasca A0 unit with a field of
view of 150-degrees is used to detect approaching vehicles behind Odin and
navigate in reverse. The Alasca A0 is an earlier generation Alasca sensor than the
XT, and testing has shown a lower range of approximately 50 meters for reliable
object classification.

Fig. 5. Odin’s sensor coverage. The colored areas indicate the maximum range of the
sensor or the point at which the sensors scanning plane intersects the ground. Odin is facing
to the right in this figure.

For short range road detection and obstacle detection, two additional SICK
LMS 291 laser rangefinders are angled downward on the front corners of the roof
rack. These sensors are able to detect negative obstacles and smaller obstacles that
may be underneath the IBEO XT vertical field of view. Two side-mounted SICK
LMS 291 single plane rangefinders are used to cover the side blind spots of the
vehicle and ensure 360-degree coverage. The side mounted SICK LMS sensors
are primarily utilized during passing maneuvers.

Two IEEE 1394 color cameras were intended to supplement the IBEO obstacle
classification software and perform road detection, but were not used in the final
competition configuration. In combination, the cameras cover a 90-degree
horizontal field of view in front of Odin, and each transmit raw 1024 by 768
images at 15 frames per second.

132 C. Reinholtz et al.

2.2.2 Road Detection
The Road Detection software component provides information about nearby roads
and zones in the form of lanes (Report Lane Position) and overall drivable area
(Drivable Area Coverage). Report Lane Position describes the available lanes of
travel, and is used for decision making, vehicle navigation, and dynamic obstacle
predictions. Drivable Area Coverage defines all areas available for Odin to drive,
which is applied as a road filter for detected objects, and is used to assist with
zone navigation. These two outputs are generated from three different sources: the
RNDF, vision data, and SICK LIDAR data. The RNDF is used to define all lanes
and drivable areas within a certain range of the vehicle. The sensor data is then
used to better define roads when the waypoints are sparse or GPS coverage is
poor. Both SICK LIDAR and vision processing can be manually enabled or
disabled if not needed due to the configuration of the current course.

RNDF Processing
The basis for the Road Detection module is the Route Network Definition File
(RNDF) supplied by DARPA. The specified lanes and exit-entrance pairs in the
file are preprocessed to automatically to create continuous paths for Odin. Cubic
spline interpolations produce a piecewise continuous curve that passes through all
waypoints in each lane. This interpolation uses a cubic function, the waypoint
positions, and a desired heading to ensure a smooth transition between adjoining
pieces of the lane (Eren, 1999). The cubic function used to define the spline
interpolation is:

()
() yyyy

xxxx

ducubuauy

ducubuaux

+++=

+++=
23

23

where x(u) and y(u) are the point position at u which is incremented from zero to
one to generate the spline interpolation between two points. The eight unknowns
of these two equations (ax, bx, cx, dx, ay, by, cy, dy) can be determined using the
eight boundary conditions set by the waypoint positions and desired headings:

()
()
() ()
() ()kk

kk

k

k

ppcp

ppcp

pp

pp

−=′
−=′

=
=

+

−+

+

22
1

112
1

1

1

0

1

0

where pk-1, pk, pk+1, and pk+2 represent the waypoint positions (x and y), and c is the
desired curvature control. In matrix form, this set of equations for a spline
interpolation between two points is as follows:

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 133

()
()
()
() ⎥

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

−+

−+

+

+

kk

kk

kk

kk

k

k

k

k

y

y

y

y

x

x

x

x

yyc

xxc

yyc

xxc

y

x

y

x

d

c

b

a

d

c

b

a

22
1

22
1

112
1

112
1

1

1

01230000

00000123

01000000

00000100

11110000

00001111

10000000

00001000

After solving for the unknowns, u is incremented at the desired resolution, or
number of points, to create the interpolation between the two waypoints. The
curvature control variable can be adjusted to increase or decrease the curvature
between the points. This splining is also used to generate the desired path (termed
a “lane branch”) through intersections for every exit-entrance pair. Branches
extend a lane from an exit point to the entrance point of a connecting lane,
allowing lane maintenance to guide a vehicle through an intersection. Figure 6
shows an example spline interpolation for a 90o right turn (e.g. a typical right turn
at a four-way intersection). The plot on the left shows an ideal spline for this
intersection while the plot on the right shows the effect of a lower curvature
control value. Four waypoints, shown as round points, are required for a cubic
spline interpolation. The linear connection between these points is shown as the
dashed line for visual reference. The cubic spline interpolation with a resolution of
five points is the solid line with square points.

Fig. 6. Example cubic spline interpolation for a 90o right turn with an ideal spline (left).
The effect of a lower curvature control value is also plotted (right). Waypoints are the
round points. Spline interpolation is the solid line with square points. For visual reference,
linear connections are shown by the dashed line.

134 C. Reinholtz et al.

All splining for the RNDF is preprocessed when an RNDF is loaded. As Odin
drives the RNDF, nearby lanes and intersections are extracted and assembled into
the Report Lane Position output. This output creates the possible paths for Odin
and other sensed vehicles. The Report Lane Position software was developed to
automatically generate these cubic spline interpolations for an entire RNDF. This
is achieved in two steps using the geometry between waypoints. First, it is
determined whether or not spline interpolation is necessary. In other words, a
series of straight waypoints or a straight through intersection does not require
cubic splining, but traveling around a traffic circle would. Next, the curvature
control is selected for the locations that required splining using the distance
between waypoints, the previous and future desired headings, and knowledge
gained from cubic spline data analysis. The automatic spline generator was
originally designed to guide Odin through intersections as a human driver would,
and therefore performed close to flawlessly in these more open navigation
situations. Lane splines, on the other hand, required much more precision to
follow the course of the road. The splining process always provided smooth paths
for the vehicle, but lacked the realization of the actual geometry of the roads and
intersections.

A solution to this problem was to compare the cubic spline output to geo-
referenced aerial imagery, which was guaranteed to be supplied by DARPA for
the competition. Using this information, the spline curvatures could be manually
adjusted to help ensure the splined lane positions match the physical lanes in the
road network. Therefore, the RNDF processing software was modified to accept
manual overrides to the generated splines, and save a configuration file if changes
were required. Figure 7 shows an example of comparing the splined Report Lane
Position output (bright overlays) to the actual road (outlined by the beige curbs) in
the geo-referenced aerial imagery of Victorville.

Fig. 7. Example of the splined lane positions (bright overlays) output matching the actual
roads in the aerial imagery. The road displayed is segment 11 of the UCE RNDF.

RNDF based Drivable Area Coverage uses a combination of the splined Report
Lane Position output and the zones from the RNDF. This is also preprocessed to
create the Drivable Area Coverage for the entire course. During operation, the
drivable area within range of Odin is extracted and output as a drivable area map.
This drivable area map is a binary image that marks all nearby areas in which
Odin or another vehicle can be expected to operate.

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 135

Sensor Data
Odin also uses LIDAR data to supplement the RNDF generated lane and road
positions. The two forward-looking SICK LIDAR identify the road by looking for
rapid changes in range that result from discontinuities in a flat road surface, such
as those caused by curbs, potholes, and obstacles. The SICK LIDAR are
positioned at different vertical angles to allow the algorithm to analyze multiple
returns on the same features.

Lane positions can be predicted by fitting probable road boundary locations
through a second-order least squares regression analysis. Given the locations
classified as potential curb sites by the LIDAR, the curb points are defined as the
points that follow the previous estimate inside an allowable scatter. This scatter is
determined by the standard deviation of the previous estimate and is weighted to
allow more points closer to Odin and to select the closest curb boundary detected.
Figure 8a shows logged data indicating all potential curb points, the subset used in
the regression, and resulting boundary curves. Lane position can then be
determined by referencing the expected number of lanes in the RNDF. The
RNDF-based Report Lane Position output can be augmented with these sensed
lanes. Figure 8b shows an aggregation of the curb points previously used in the
regression traveling down a two lane road. The curb points follow the shape of the
of the road, but as shown in Figure 8a, detection only reaches 10-15 meters in
front of the vehicle, requiring software to slow the speed of the vehicle to maintain
safe operation.

In addition to LIDAR, computer vision approaches were also attempted for
detecting lanes as well as improving the drivable area coverage map. The visual
lane detection software uses image intensity to distinguish bright lane boundaries

(a) (b)

Fig. 8. LIDAR based road detection results: (a) A single frame of potential curb points in
world frame with points used in the regression darkened. The regression output curve is the
dashed line. Grid spacing is 5 meters, and Odin is represented by the rectangle. (b) An
aggregation of all curb points previously used in the lane boundary regression along a
single road, plotted in UTM coordinates.

136 C. Reinholtz et al.

from the darker surrounding areas of the road surface. Edge detection is applied to
the results of the intensity operation, separating out the lines and edges of the road.
The position of each lane is found by fitting the strongest lines on the road to a
curve through a Hough transform (Duda, 1972). Vision was also used to improve
the drivable area coverage map in zones by finding low-profile islands usually
found in parking lots. These islands are often a different color than the
surrounding area, and therefore vision processing is ideal for detecting them. The
algorithm thresholds the entire image according to the absolute color of an area
directly in front of Odin, which is assumed to be drivable. Significant color
changes in this control area are ignored for a short period of time to improve this
assumption. The detected features are then subtracted from the Drivable Area
Coverage map generated from the RNDF. Both of these vision algorithms were
not used in the final competition due to a lack of sufficient testing and
development as further discussed in section 3.

2.2.3 Object Classification
The accurate identification and classification of objects is one of the most
fundamental and difficult requirements of the Urban Challenge. The vision system
and the laser rangefinders each have advantages and disadvantages for
classification. The IBEO rangefinders can determine the location of an object to
sub-meter accuracy, but they have poor classification capabilities. Vision-based
methods can result in accurate classification, but they are computationally
intensive and have a limited horizontal field of view and range.

The classification module splits all objects into one of two categories: static
objects that will not be in motion, and dynamic objects that are in motion or could
be in motion. Dynamic objects on the course are expected to be either manned or
unmanned vehicles. The core of the classification module, shown in Figure 9, is
the IBEO laser rangefinders. While visual methods of detection were examined,
they were determined to be too computationally intensive to return accurate
information about nearby objects, especially at higher vehicle speeds. This
problem is intensified due to the fact that multiple cameras are needed to cover a
full 360-degree sweep around Odin. The A0 and XT Fusion rangefinders cover
almost the entire area around Odin, and objects can be detected and segmented
using software available on the IBEO ECUs (Fuerstenberg, Dietmayer, Lages,
2003), (Fuerstenberg, Linzmeier, Dietmayer, 2003). These ECU objects serve as
the basis for the module. However small deviations in the laser pulse’s reflection
point and time of flight often causes variations in the results of the built-in
segmentation routines. To account for these variations a filter is applied that
requires each object to have been detected and tracked for a short but continuous
period of time before the object is considered valid. The positions of these valid
objects are then checked against the Drivable Area Coverage map; anything not on
or close to drivable area is considered inconsequential and is not examined.

Once these detected objects are sufficiently filtered through their position
and time of detection, their characteristics are passed to a classification center
for verification. Through testing, the IBEOs have proven to be accurate in

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 137

Fig. 9. The Object Classification module localizes and classifies all perceived objects

determining a moving object’s velocity, and it is assumed that all large moving
objects are vehicles. It is also important for the system to detect stationary vehicles
in front of Odin for situations such as intersection queuing and precedence. The
initial software design included verification of object classification using
monocular image processing. The real-world locations of objects obtained from
the IBEOs are transformed into regions of interest within the image, which are
searched for features common to cars such as tail lights and tires (Cacciola, 2007).
By restricting processing to these regions, high resolution imagery could be used
without the usual processing penalty. This feature was effective at correcting
groups of static obstacles being incorrectly classified as a dynamic obstacle.
However there was an inadequate amount of test time logged to verify that certain
critical failure modes, such as the vision system incorrectly identifying a dynamic
object as static or the correct handling of complete vision outages due to poor
lighting conditions, would not occur. Therefore, the vision portion of the
classification module was not used in the final competition.

2.2.4 SICK LIDAR Based Detection
The four SICK LMS-291 units on Odin were used for close-range object
detection. The two side-mounted SICK LIDAR are devoted to blind spot
checking. Figure 10 shows a history of LIDAR objects after being transformed
into vehicle frame. If the areas adjacent to the vehicle sides have a return that is
above a height threshold, then the blind spot is reported as not clear.

The two front-mounted SICK LIDAR are used to detect objects that are within
close range of the vehicle but outside the IBEO’s vertical field of view. The
returns of these downward pointed laser rangefinders are segmented based on
range discontinuities and classified as road or an obstacle based on a height
threshold. This information is compared over multiple scans to capture the overall

138 C. Reinholtz et al.

Fig. 10. SICK LMS scan data transformed into vehicle frame. A (the outline of a car) has
been classified as an obstacle, B has been classified as drivable road, the circles are
potential curb sites. Grid spacing is 5 meters, and Odin is represented by the rectangle.

behavior of an object through time, and is used to reclassify the object if
necessary. Figure 10 shows an example of classifications derived from a SICK
scan cycle. This illustration also shows the potential curbs marked as circles.
These points are determined after the drivable area is distinguished, and defined as
points where the drivable area ends or had a sharp step in the profile.

2.2.5 Dynamic Obstacle Predictor
Once an object has been classified as a vehicle, it is monitored by the Dynamic
Obstacle Predictor, which predicts likely paths for each vehicle based on road data
and the motion history of the object. If there is no available lane data, such as in
zones or if a dynamic obstacle doesn’t appear to be following a lane, the Dynamic
Obstacle Predictor simply continues the current motion into the future. These
predictions are used by Driving Behaviors for traffic interaction at intersections
(such as merges) and Motion Planning for obstacle avoidance.

2.2.6 Localization
Odin has been equipped with a Novatel Propak LB+ system that provides a
filtered GPS/INS solution. In addition, wheel speed and steering angle
measurements are available from the vehicle interface. An Extended Kalman
Filter (EKF) has been developed using standard methodology (Kelly, 1994) that
combines these measurements with the goal of improving the Novatel solution
during GPS outages. In addition, this filter provides a means for incorporating
other absolute position measurements. The best case accuracy of the position
provided by this localization solution is 10 cm CEP.

A separate local position solution is also tracked in Odin’s localization
software. This solution provides a smooth and continuous position estimate that
places Odin in an arbitrary local frame. The goal of this position solution is to
provide perception modules with a position frame to place obstacles that is free of

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 139

discontinuities caused by GPS position jumps. This is accomplished by calculating
the local position using only odometry. This position typically drifts by 2.6% of
the total distance traveled by the vehicle; however, this error accumulation is
small enough that it does not cause significant position error within the range of
the vehicle’s perception sensors.

2.3 Planning

Decision making for Odin is handled by a suite of modules cooperating in a hybrid
deliberative-reactive-deliberative fashion. Each of the major components is
presented in sequence, from the top down.

2.3.1 Route Planning
The Route Planner component is the coarsest level of decision planning on Odin
as it only determines which road segments should be traveled to complete a
mission. It uses a-priori information such as the road network and speed limits
specified by the RNDF and MDF respectively, as well as blockage information
gathered during mission runs. After processing, the Route Planner outputs a series
of waypoint exits to achieve each checkpoint in the mission.

By only considering exit waypoints, it is easy to formulate the Route Planner as
a graph search problem. The Route Planner on Odin implements the A* graph
search method (Hart, 1968) using a time-based heuristic to plan the roads traveled.
While the A* search algorithm guarantees an optimal solution, it depends on the
validity of the data used in the search. The time estimate used during the search
assumes that the vehicle is able to travel at the specified segment speed limits, and
it uses predefined estimates of the time for typical events, such as the time taken
when traversing a stop line intersection, performing a U-turn, or entering a zone.

2.3.2 Driving Behaviors
Driving Behaviors is responsible for producing three outputs. First, Driving
Behaviors must produce a behavior profile command which defines short term
goals for Motion Planning in both roads and zones. Second, in the event of a road-
block, a new set of directions must be requested from the Route Planner. Finally
the turn signals and horn must be controlled to appropriately signal the intent of
the vehicle.

The behavior profile sent to Motion Planning comprises six target points, a
desired maximum speed, travel lane, and direction (Forward, Reverse, and Don’t
Care). Each target point contains a waypoint location in UTM coordinates, the
lane, and lane branch (for intersections). Target points can also contain optional
fields such as a stop flag and a desired heading. Lastly, the behavior profile also
contains zone and safety area flags to enable different behaviors in Motion
Planning.

Action-Selection Mechanism
Driving Behaviors must coordinate the completion of sophisticated tasks in a
dynamic, partially observable and unpredictable environment. The higher level

140 C. Reinholtz et al.

decision making being performed in Driving Behaviors must be able to handle
multiple goals of continually changing importance, noisy and incomplete
perception data, and non-instantaneous control. To do this, a Behavior-Based
Paradigm was implemented. The unpredictable nature of an urban environment
calls for a robust, vertical decomposition of behaviors. Other advantages of using a
Behavior-Based Paradigm include modularity, the ability to test incrementally, and
graceful degradation (Murphy, 2000). For instance, if a behavior responsible for
handling complex traffic situations malfunctions, simpler behaviors should still be
operable, allowing Odin to continue on missions with slightly less functionality.

As with any Behavior-Based architecture, implementation details are extremely
important and can lead to drastically different emergent behaviors. Coordination
becomes paramount since no centralized planning modules are used and control is
shared amongst a variety of perception-action units, or behaviors. In the Urban
Challenge environment, the problem of action selection in the case for conflicting
desires is of particular interest. For example the desire to drive in the right lane
due to an upcoming right turn must supersede the desire to drive in the left lane
due to a slow moving vehicle. Furthermore, due to the strict rules of urban
driving, certain maneuvers must be explicitly guaranteed by the programmer. To
address this problem, a method of behavior-selection is needed such that Driving
Behaviors will actively determine and run the most appropriate behaviors given
the current situation.

An arbitration method of action selection (Pirjanian, 1999) is used for the
Driving Behaviors module. In the above example of choosing the appropriate lane
to drive in, driving with two wheels in each lane is not an acceptable solution.
Therefore, a modified Winner-Takes-All (Maes, 1989) mechanism was chosen.
To address the situational awareness problem, a system of hierarchical finite state
machines is used. Such a system allows Driving Behaviors to distinguish between
intersection, parking lot, and normal road scenarios (Hurdus, 2008). The
implementation of finite state machines also provides resilience to perception
noise and by using a hierarchical system, concurrency is easily produced. The
overall architecture of Driving Behaviors is shown in Figure 11. A finite state
machine is used to classify the situation, and each individual behavior can be
viewed as a lower-level, nested state machine. The chosen Action Selection
Mechanism operates within the Behavior Integrator. This approach is considered
a modified Winner-Takes-All approach because all behavior outputs are broken
down into one of several categories, including, but not limited to, Target Point
Drivers, Speed Drivers, and Lane Drivers.

Passing and Blocked Roads
When driving down a normal section of road, (i.e. not in a safety zone
approaching an intersection, not in an intersection polygon, and not in a zone)

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 141

Fig. 11. Flow diagram of the Behavior-Based, Winner-Takes-All Driving Behaviors
implementation. Behavior Integrator ensures there is one winner from each driver category.

Odin runs three behaviors, the Route Driver, the Passing Driver, and the Blockage
Driver. The Route Driver is responsible for driving the route as close as possible
to the route originally provided by the Route Planner. If no obstacles or traffic are
ever encountered, then the Route Driver will maintain control of the vehicle
throughout all segments of the RNDF. When entering a new segment, for
example, the Route Driver will immediately attempt to move Odin to the correct
lane for the next exit.

The Passing Driver is concerned with getting around slow moving or disabled
vehicles. It is therefore responsible for monitoring other vehicles in the near
vicinity, deciding if a pass is necessary, and executing this pass in a safe and legal
manner. Awareness of the roads is necessary as the Passing Driver must
distinguish between passing in an oncoming lane and passing in a forward lane,
and subsequently check the appropriate areas for traffic. The Passing Driver does
not maintain knowledge of the overall route, so it is the responsibility of the Route
Driver to overrule the Passing Driver if a pass is initiated too close to an exit or
intersection.

Finally, the Blockage Driver maintains a current list of available lanes. If static
obstacles in the road or a disabled vehicle cause a lane to be blocked, the Blockage
Driver removes this lane from the available list. If all RNDF defined lanes are
removed from the list and at least one of these lanes is an oncoming lane, then the
Blockage Driver commands a dynamic replan. When this is necessary, the Route
Planner is first updated with the appropriate blockage information and all
behaviors are reset while a new route is generated.

The interaction of these three drivers was sufficient for giving Odin the ability
to pass disabled and slow-moving vehicles in the presence of oncoming and
forward traffic, pass static obstacles blocking a lane, pass over all checkpoints, be
in the correct lane for any exit, and initiate dynamic replans when necessary.

142 C. Reinholtz et al.

Intersections
To handle intersections, Odin uses three drivers (Precedence, Merge, and Left
Turn) in the Approaching Stop, Stop, Approaching Exit, and Exit situations. Of
special note is that all three drivers operate by monitoring areas where vehicles (or
their predictions) may be, rather than tracking vehicles by ID. While this decision
was initially made to deal with object tracking issues in early iterations of the
perception software, it turned out to greatly enhance the overall robustness of the
intersection behavior.

The Precedence Driver activates when Odin stops at junctions with more than
one stop sign. This driver overrides the Route Driver by maintaining the current
stop target point with a high urgency until it is Odin’s turn or a traffic jam has
been detected and handled. The Merge Driver activates at intersections where
Odin must enter or cross lanes of moving traffic, controlling the speed by
monitoring areas of the merge lane or cross lanes for vehicles or vehicle
predictions. To handle intersections with both moving traffic and other stop signs,
the Merge Driver cannot adjust the speed until the Precedence Driver has
indicated it is Odin’s turn or a traffic jam has been detected.

For turns off a main road (a case where the RNDF does not explicitly state right
of way via stop points), the Left Turn Driver activates when Odin’s desired lane
branch at an upcoming exit waypoint crosses over oncoming traffic lanes. In this
case, the Left Turn Driver overrides the Route Driver by setting the stop flag for
the exit target point. Once the exit waypoint has been achieved, the driver controls
the desired speed in the behavior profile while monitoring the cross-lanes for a
sufficient gap to safely achieve the left turn.

Parking Lot Navigation
In zones, the role of Driving Behaviors is to provide general zone traversal
guidance by controlling the behavior profile target points. Initially, VictorTango
planned to fully automate the first stage of this process – determining the accepted
travel patterns through a parking lot (along the parking rows). However, zones
containing only a subset of the actual parking spots (i.e. one spot per row) make it
difficult to automatically identify parking rows based on the RNDF alone. Since
this could very well be the case in the final event, a tool was designed to manually
place “control points” in the zone, in the form of a directionally-connected graph.

In the route building stage of Driving Behaviors, Odin performs a guided
Dijkstra search to select control points for navigating toward the parking spot and
reversing out of the spot. The Route Driver then guides Odin along this pre-
planned path. If the path is blocked, the Zone Driver can disconnect a segment of
the graph and choose a different set of control points. The parking maneuver is
signaled to Motion Planning by enabling the stop flag and providing a desired
heading on the parking checkpoint. To reverse out of the spot, the direction is
constrained to be only in reverse, and a target point is placed in order to position
Odin for the next parking spot or zone exit.

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 143

Driving Behaviors is not responsible for any object avoidance or traffic
behavior in zones. Motion Planning handles tasks such as steering to the right for
oncoming dynamic objects, performing the parking maneuver, and checking for
safe space to reverse out of the spot. This was primarily due to the largely
unknown environment in a zone, and the desire to keep Driving Behaviors
independent of the exact size and mobility constraints of the vehicle.

2.3.3 Motion Planning
Motion Planning is responsible for planning the speed and path of the vehicle.
Motion Planning receives behavior profiles, defined in section 2.3.2, from Driving
Behaviors and plans a series of motion commands called a motion profile. The
motion profile is a platform independent series of commands that include a desired
curvature, curvature rate of change, desired velocity, maximum acceleration and
time duration of each command. The motion profile consists of the entire path
planned by motion planning and typically contains 2-3 seconds of commands. A
platform independent motion profile message allows re-use of communication
messages across base platforms, and allows vehicle specific control loops to take
place in the Vehicle Interface. However, Motion Planning still requires a basic
model of the specific operating platform. In addition to commanding the Vehicle
Interface, Motion Planning can also provide feedback to Driving Behaviors about
whether the currently commanded behavior profile is achievable. This feedback is
critical when detecting a blocked lane or even an entirely blocked roadway.

Motion Planning is structured into two main components consisting of a Speed
Limiter and a Trajectory Search as shown in Figure 12. The Speed Limiter
commands a maximum speed based on traffic in the future path of Odin and
upcoming stop commands. Dynamic Obstacle predictions are analyzed to follow
slower moving traffic or to stop behind a disabled vehicle leaving enough room to
pass. The Speed Limiter sends Trajectory Search this maximum speed and an
obstacle ID if the speed is limited by a dynamic obstacle. The speed limiter is
disabled when traveling through zones, leaving Trajectory Search to handle all
dynamic obstacles.

The core of Motion Planning is the Trajectory Search module that simulates
future motion to determine a safe and fast path through the sensed environment.
Three main steps happen in Trajectory Search: (1) a cost map is created using lane
and obstacle data, (2) a series of actions is chosen to reach a goal state, and (3) the
series of actions is processed into a feasible motion profile. The Trajectory Search
plans with the assumption of an 80ms processing time. If run time exceeds 450ms
or all possible actions are exhausted, the goal criteria are declared unachievable.
Driving Behaviors is notified about the unachievable goal and a stop is
commanded, with urgency depending on the proximity of obstacles.

Trajectory Search uses a fixed grid size cost map to represent the environment
when solving for a motion path. The range and resolution of the cost map is
configurable, and the final configuration used a resolution of 20cm2 per cell,
extending 30m in front of the vehicle, and 15m behind and to the sides of the
vehicle. It is important to note that Driving Behaviors and the Speed Limiter

144 C. Reinholtz et al.

Fig. 12. Software flow diagram of the Motion Planning component

software did not use this cost map, allowing these modules to incorporate dynamic
obstacles beyond this range. The cost map stores costs as 8-bit values allowing
obstacles to be stored as highest cost at the obstacle and reduced cost around the
obstacle. Figure 13a shows an example cost map with costs added from obstacles
and lane boundaries. Dynamic obstacles are expanded to account for future
motion. However, this treatment of dynamic obstacles is very limiting, and
responding to dynamic obstacles is mainly the job of the Speed Limiter. If the
Speed Limiter is reacting to a dynamic obstacle, the ID is passed to Trajectory
Search and the obstacle is omitted from the cost map. Omitting these dynamic
obstacles prevents Trajectory Search from deciding a slower moving vehicle is
blocking a lane.

(a) (b)

Fig. 13. (a) Trajectory Search cost map with labeled features. (b) Trajectory Search cost
map with planned solution representing each action in a different color.

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 145

Once a cost map is created, Trajectory Search then produces a set of goal
criteria using data from the behavior profile such as: desired lane, zone, desired
gear and heading criteria. Goal criteria may be as simple as driving a set distance
down a lane or more specific such as achieving a desired position with a desired
heading. The search process starts with the current vehicle state and uses an A*
search to evaluate sequences of possible future actions. Each action consists of a
forward velocity and steering rate over a period of time. These actions are
evaluated by checking the predicted path of the vehicle due to the action against
the cost map as well as other costs such as distance from the lane center and time.
The search speed is improved by only using a finite set of possible actions that
have pre-computed motion simulation results (Lacaze, 1998). Figure 13b shows a
planned path with each action having a different color.

Odin uses a pre-computed results set with an initial steering angle varied at
0.25 degree increments, commanded steering rates varied from 0 to 18 degrees/sec
at 6 degree/second increments and commanded velocities ranging from 2 to 12.5
m/s at 3.5 m/s increments. The pre-computed results contained information
including which grid cells will be occupied as well as final state information. A
separate set of coarser results is used in situations where the vehicle is allowed to
travel in reverse. When creating a sequence of actions, the pre-computed
occupancy data is translated and rotated based on the previous ending state
conditions. When the search algorithm runs, actions that are dynamically unsafe or
have a commanded velocity too far from the previous velocity are filtered out.
After the search is complete, the list of actions is converted to a drivable series of
motion commands. This last step selects accelerations, and accounts for
decelerating in advance for future slower speeds. Steering rates are also scaled to
match the planned path if the vehicle is travelling at a different speed than
originally planned. The Trajectory Search solves the goal using the fastest possible
paths (usually resulting in smoother paths), and these speeds are often reduced due
to MDF speed limits or due to the Speed Limiter.

While traveling in segments, Trajectory Search chooses goals that travel down
a lane. In contrast, zone traversal is guided by target points along with goal criteria
and search heuristics to produce different behaviors. The behaviors include
forming artificial lanes to connect the points, a recovery behavior allowing the
vehicle to reverse and seek the center of the fake lane, and a wandering behavior
that uses no lane structure at all. These behaviors are activated by a simple state
machine that chooses the next behavior if the current behavior was resulting in
unachievable goals. Development time was reduced and reliability was improved
by using the same Trajectory Search algorithm in zones as well as segments.
While the overall behavior of the vehicle could be adjusted by changing the goals
and heuristics, the core functionality of planning fast collision-free motion
remained constant.

2.3.4 Vehicle Interface
The main role of the Vehicle Interface component is to interpret the generic
motion profile messages from Motion Planning, defined in section 2.3.3, and
output vehicle-specific throttle, brake, steering, and shifting signals. By accepting

146 C. Reinholtz et al.

platform independent motion commands and handling speed control and steering
control at a low level, any updates to the vehicle-specific hardware or software can
be made transparent to the higher level decision making components.
Additionally, the Vehicle Interface can actuate other vehicle systems such as
lights, turn signals, and the horn.

Closed loop speed control is provided by a map-linearized PID controller. The
controller, as shown in Figure 14, takes the output of the PID, band limits it to
control the maximum acceleration, and inputs it to a map lookup function to
produce a throttle or brake command. Terrain compensation is provided by a
proportional controller that estimates the longitudinal acceleration on the vehicle
and additively enhances the map input (Currier, 2008).

Fig. 14. Block diagram of speed controller showing PID controller, acceleration controller
and map lookup linearization function.

Steering control relies on a standard bicycle model to estimate the curvature
response of the vehicle (Milliken, 1995). This model can be shown to produce
estimates accurate enough for autonomous driving in the operational conditions
found in the Urban Challenge (Currier, 2008). The steering angle and rate
calculated by the bicycle model is tracked by a rate controlled PID loop to produce
the desired vehicle path.

3 Final Software Configuration

As the Urban Challenge approached, decisions had to be made for the final
software configuration to be used in the event to ensure adequate testing time.
These choices ranged from setting maximum/minimum parameters to disabling
software components. This section explains test procedures and rationale for the
final adjustments made to Odin’s software configuration.

3.1 Motion Planning Parameters

For all NQE runs as well as the final UCE, the maximum speed that Odin would
drive was limited to 10 m/s (22 mph). This allowed Odin to drive at the maximum
speed specified for all segments during NQE, and the maximum speed for all but

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 147

two segments on the UCE. The limiting factor in determining a safe maximum
speed was the distance that obstacles could be reliably detected. During testing,
the vehicle could smoothly drive roads at speeds of 13 m/s (29 mph), but would
occasionally stop very close to obstacles such as a disabled vehicle or roadblock.
This was due to hills or varying terrain causing obstacles to be out of the vertical
sensor field of view until Odin was closer to the obstacle.

3.2 Sparse Road Detection

Prior to competition, members of the team tested the road detection suite in a wide
variety of sparse waypoint scenarios. Odin was tested on various road
compositions including dirt, gravel, and asphalt roads. Lane definitions were also
varied. These tests were on well lined and poorly lined roads, as well roads with
curbs, drop offs, and ditches. Laser rangefinder based methods of lane detection
yielded reasonably robust results, but due to the possible variety of road surfaces
and markings, vision based methods were much less robust. The primary
challenge for lane detection was defining assumptions. The algorithm did not have
enough engineering time to handle all possible roads. Further, the sparse waypoint
example in the sample RNDF indicated that Odin would be required to negotiate
intersections in sparse scenarios, which through analysis became very demanding
on the algorithms.

As a result, the team felt comfortable that if sparse waypoints would be
required, this software could be turned on; but it was deemed that splining
waypoints would be the method of choice if the final event RNDF permitted.
Hence, before arriving in California, all code associated with vision based lane
detection was disabled, and an implementation of the software that allowed the
team to selectively disable/enable the laser rangefinder based lane detection was
put in place. This allowed the team to turn on laser rangefinder based lane
detection where certain conditions are met. Upon receipt of each RNDF, the team
would examine all points in the simulator visualization to determine if the
segments required the sparse waypoint algorithm to be enabled for that RNDF.
Due to the relative density of the waypoints in all events there was never a
requirement for this algorithm to be enabled.

3.3 Vision Drivable Area Coverage

As previously defined in section 2.2.2, the RNDF defines the drivable areas while
sensor data is used to verify the RNDF information and subtract out areas that
contained obstacles, such as landscaped islands in parking lots. After extensive
testing in various environments and lighting conditions, the vision Drivable Area
Coverage was not reliable enough to be trusted. It would occasionally produce
false positives that eliminated drivable areas directly in front of the vehicle when
no obstacles were present. Also, there were no un-drivable areas in zones present
during the NQE or UCE courses. The team decided that the laser rangefinders and
Object Classification were able to detect most static obstacles that would get in the
way of Odin. Therefore, vision Drivable Area Coverage was disabled to prevent

148 C. Reinholtz et al.

the vehicle from stopping and getting stuck in the event of a false positive
produced by the vision processing.

4 National Qualifying Event

The team spent many long days and nights testing and preparing for the Urban
Challenge NQE and UCE. This section presents and analyzes Odin’s performance
in the National Qualifying Event.

4.1 NQE A – Traffic

This NQE course challenged a vehicle’s ability to drive in heavy traffic while
balancing safety and aggressiveness. The first vehicle to perform at NQE course
A, Odin performed well, executing merges and left turns with only a few minor
errors. Odin also had no trouble with the k-rails surrounding the course that caused
many other teams problems when merging into traffic. The mistakes Odin made
were subsequently fixed and could be attributed to the following: needing to adjust
intersection commitment threshold, an IBEO region of interest bug, and false
object classifications.

To prevent Odin from slamming on the brakes and blocking an intersection,
Odin will commit to traversing an intersection once it has passed a calculated
threshold. This threshold is based on being able to stop without protruding into
traffic lanes. However, several times in Odin’s first run on NQE Area A, Odin
commanded a merge in the situation show in Figure 15. About 350 milliseconds
later, the previously occluded vehicle (4) suddenly appeared to sensors at a range
that would normally prevent Odin from commanding a merge. However, since the
stop line was very close to the cross-lane, Odin had already passed the commit
point and disabled the cancellation mechanism. For the second NQE run, the team
adjusted the commit point, allowing merges to be cancelled closer to the road. On
the second course A run, Odin performed satisfactorily with the occluded cars by
properly canceling the merge when the occluded vehicle was in view.

Fig. 15. A merge in NQE course A with an occluded vehicle (vehicle 4)

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 149

A bug in the IBEO factory software also resulted in Odin cutting off traffic
vehicles. The IBEO sensors allow a region of interest to be defined to reduce the
number of output objects, which is important given that the IBEO software has an
internal limit of 64 objects. This region is in the shape of a trapezoid defined by
its upper-left and lower-right corners. Objects filtered out by the region of interest
can still count towards the limit of 64, which could cause objects far away from
the vehicle to prevent closer objects from being returned. This behavior can be
prevented by enabling an option to only process scan returns into objects within
the region. However, if this option is enabled, the region is incorrectly defined as
the thin rectangle within the trapezoid, causing all of the pre-calculated regions to
be smaller than intended. Enabling this option was a configuration change enabled
shortly before the challenge, and the issue wasn’t discovered until after the second
NQE course run. Afterwards, the pre-calculated regions were redefined to ensure
that vehicles were always seen in time for the behavior software to correctly
interact with them.

The most serious incident on NQE course A occurred during the first attempt
when Odin completed a couple of laps, then came to a stop when making the left
turn off the main loop. Odin unfortunately remained stopped and did not proceed
through large gaps in the traffic. The judges let the team reposition Odin, and Odin
was able to continue completing laps without getting stuck again. After examining
logs, it was found that the retro-reflective lane markings were appearing as
obstacles to the IBEO LIDAR. These sections were about the same length as a
typical car and were classified as a stopped dynamic obstacle. The false objects
would intermittently appear, only causing Odin to be stuck once. The software
already had safeguards against waiting for stationary vehicles, but these were
ineffective due to the object flickering in and out, resetting timers used to track
stationary vheicles. To ensure this would not occur in the final race, the planning
software was made more robust against flickering objects. These changes
prevented Odin from being stuck on multiple occasions on the second NQE course
A run, but did cause unnecessary delay when making a left turn. This problem was
mainly a result of only depending on a single sensor modality, LIDAR, for
obstacle detection and classification. Additional sensing methods, such as vision
or radar, could help reduce the number of these false positives by providing
unique information about surrounding objects detected through LIDAR.

4.2 NQE B – Navigation and Parking

NQE course B was used to test road and zone navigation, parking, and obstacle
avoidance. The vehicles were given missions that took them around the large
course, through parking areas, and down streets with parked cars and other
blockages. Odin accepted the challenge at top speed and set himself up to
complete with a competitive time. However, during the first run, Odin had minor
parking confusion and got stuck in the gauntlet area resulting in insufficient time
to complete the mission. Odin experienced a significant GPS pop on the second
run of NQE course B that causing the vehicle to jump a curb. After restarting back
on the road, Odin finished the course without any problems.

150 C. Reinholtz et al.

During the first run of NQE B, Odin approached the desired space in the row of
parking spots, shown in Figure 16, and stopped for a moment. Instead of pulling
into the spot, Odin reversed, drove forward in a loop around the entire row of cars,
and then pulled right into the spot at a crooked angle. This surprising maneuver
was caused by an incorrect assumption regarding the amount of space that would
be available in front of the vehicle after a parking maneuver. Motion Planning
could not find a clear path due to the car parked in front of the spot. After Odin
tried to reposition itself without any progress, another behavior took control that
tries to navigate around obstructions, causing Odin to circle the lot. When Odin
returned to the parking spot, the software was able to find a parking solution with
a clear path by parking at an angle. The parking software was improved between
runs to more accurately check for a clear path that did not extend past the parking
space. It is interesting to note that with a lower level software failure, Odin was
still able to park, but with reduced performance.

Fig. 16. During NQE B, Odin did not pull into the parking spot by the direct path (solid
line). Instead, Odin pulled to the left (dashed line), circling the parked cars and eventually
entered the space.

During the first run of NQE course B, Odin became stuck in the area known as
the ‘Gauntlet’, characterized by vehicles parked along both sides of the road. This
length of road was further complicated with cones and traffic barrels marking
construction hazards along the centerline of the road. A simulator screenshot of
what was seen in the Gauntlet is shown in Figure 17a. Odin tried to change lanes
to pass the disabled vehicle, but was unable to execute this command because the
blind spot was reported as not clear. Reviewing the logged data also revealed that
Odin had difficulty traveling where both lanes of travel were significantly
blocked. As seen in Figure 17a, both lanes are mostly blocked, but there is a large
space in between the lanes. To solve the first problem, the lane change driver was
changed to be less cautious about obstacles in a blind spot when lanes had
opposite traffic directions. To allow Odin to use the entire road more effectively,
motion planning would still have a strong desire to stay in the commanded lane
during a lane change, but was changed to not be constrained to remain entirely in
the commanded lane.

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 151

(a) (b)

Fig. 17. Gauntlet scenario from NQE area B seen in (a) simulation replay and (b) logged
video

Odin experienced localization failures on the second attempt at NQE course B.
As Odin exited the traffic circle onto Sabre St, the position solution provided by
the Novatel system suddenly jumped almost 10 meters to the southeast. Since the
road estimate was derived completely from GPS, this new vehicle position caused
Odin to think it had left the lane. Motion Planning attempted to move Odin back
into the desired lane of travel, but could not due to a virtual boundary placed
around the lane. As a result, Odin drove to the end of Sabre Rd, thinking that it
was driving off of the road. At the end of Sabre Rd, Odin reached a virtual
boundary caused by the intersection of two segments. Having nowhere else to go,
Odin turned right and drove onto the dirt on the side of the road and was paused.
Within milliseconds of the pause, the localization solution reported by the Novatel
system corrected itself. Such a large jump in position was never encountered in
testing, and was not repeated in any NQE course or the final event.

4.3 NQE C – Intersections and Road Blocks

The final NQE course was used to test intersection precedence and dynamic
replanning due to road blocks. Odin performed perfectly at all intersections
yielding to those who had right-of-way and taking the appropriate turn, shown in
Figure 18a. Replanning due to a road blockage was also a success. An interesting
challenge presented in NQE C was a road blockage that was repeatedly
approached by the vehicles during a mission. When Odin detected a blockage
requiring a route replan, the Route Planner would add the blockage and a pair of
u-turn connections to the waypoint on both sides of the blockage to its internal
road map. Allowing a U-turn on the opposite side of a blockage provided an
adequate solution for NQE C; however, it can introduce a problem in a dynamic
environment where a blockage may not be permanent, allowing a vehicle to plan a
U-turn in the middle of a clear road.

Odin did have trouble detecting the stop sign blockage shown in Figure 18b.
The perception module had never been presented with an obstacle that was not
attached to the ground within the road area. The laser rangefinder sensor suite on

152 C. Reinholtz et al.

(a) (b)

Fig. 18. NQE course C contained (a) stop sign intersections and (b) road blockages

Odin had a narrow vertical field of view which caused difficulty perceiving this
blockage. The IBEO sensors were barely able to detect the bottom of the stop
signs attached to the gate while the vehicle was in motion. Once the signs were
detected and the vehicle brakes were applied, the downward pitch of the vehicle
caused the IBEOs to lose sight of the gate. The vehicle was then commanded to
accelerate back up to speed, at which point the gate was seen again and the cycle
repeated. The resulting behavior was that Odin crept forward towards the gate
until the signs were detected by the close-range downward looking SICK
rangefinders. At times the SICKs were barely detecting the stop signs, resulting in
the processed stop sign object flickering in and out of existence. Because of this, it
took the behavior module a significant amount of time to initiate a re-plan around
the blockage. To resolve this issue the behavior software was modified to re-plan
not only after constantly seeing a blockage for a constant period of time, but also
after a blockage is seen in an area for a cumulative period of time.

4.4 Practice and Preparation

This section explains the VictorTango practice and preparation routine during the
Urban Challenge events that helped make Odin successful.

4.4.1 Practice Areas
Team VictorTango always tried to maximize use of each practice timeslot. The
team developed a number of RNDFs that replicated sections of the NQE RNDF
for each of the practice areas. A detailed test plan was created for each practice. If
problems arose, the goal was not to debug software, but to gather as much test
data as possible for further analysis. This proved to be an extremely effective way
to test given the short amount of time allowed for each practice block.

During the practice sessions a fair amount of dust collected on the lenses of the
IBEO laser rangefinders. Although the team was allowed to clean sensors between
missions, Odin’s performance could have suffered until the vehicle returned due to
this layer of dust. The IBEO sensors are capable of reading up to four returns per
laser pulse in order to handle cases where small particles such as dust or
precipitation cause the light reflection. After looking at the scan profiles for the

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 153

sensors while covered in dust, it was confirmed that a majority of the primary scan
returns were contacting the dust resting on the lens. Even with the primary returns
blocked, the sensors were still able to perceive all objects due to the multi-return
feature. While running with dust on the lens is not ideal, Odin is able to continue
without any reduction in perception capability until the lens can be cleaned.

4.4.2 Simulation
Simulation was a tool heavily used by team VictorTango during NQE and UCE
preparation (the role of simulation in the entire software development process is
discussed in section 6.2.2). In preparation for NQE and UCE, team VictorTango
used an interactive simulator to load NQE & UCE RNDFs and dynamically add
traffic vehicles or static obstacles. The team validated that Odin would be able to
drive all areas of the RNDF before ever running Odin on the course and possibly
wasting NQE run. For example, the planning software had trouble with the short
road segments (less than 2 meters long) connecting the parking zones to the
surrounding road segment. Software modifications to handle this previously
untested RNDF style were validated in simulation.

If a failure occurred during an NQE run, a simulation scene could be created to
match the environment in which the failure occurred. As software developers
fixed problems, the test team had the manpower to run simulations in 5 parallel
groups on laptop computers. This gave the software developers the luxury of
concentrating on remaining software bugs while the test team exhaustively
checked new software in a full range of tests ensuring there were no unintended
side effects.

5 Urban Challenge Event

The most obvious accomplishment of the VictorTango team is that Odin finished
the Urban Challenge competitively. This section highlights the successes and
analyzes the incidents of Odin’s performance in the Urban Challenge race.

5.1 Performance Overview

First out of the gate, Odin left the start zone and drove away at top speed to
complete his first mission. Not knowing what to expect, the team eagerly looked
on with people stationed at each of the viewing locations of the UCE course. Odin
performed superbly, finishing in third place with no accidents or major errors.
Odin’s chase vehicle driver informed the team that Odin was a predictable and
safe driver throughout the challenge. As the team watched the in car video, they
saw that Odin navigated the roads and zones smoothly, made smart choices at
intersections, and obeyed the rules of the road. The UCE did not demand as much
obstacle avoidance and intersection navigation as the NQE. However, the
endurance element and unpredictable nature of robot-on-robot interactions made it
just as challenging.

154 C. Reinholtz et al.

5.2 Perception

This section presents the perception issues Odin faced during the Urban
Challenge. Perception is defined to include all aspects of the design necessary to
sense the environment and transform the raw data into information useful to the
decision making software.

5.2.1 Localization Pops
During the UCE, Odin experienced a localization failure much like the one
encountered during the NQE area B second attempt. Unlike the localization error
during NQE, the position this time jumped to the north, causing Odin to
compensate by driving onto the curb to the south. Fortunately, the position jump
was not as severe. After a brief pause the localization solution returned to the
correct position and Odin returned to the road and continued through the course.

Just as in the NQE, the data needed to diagnose the true cause of this error was
not being logged. Although code changes could have been made to add this data to
the localization logs, the team decided that this was an unnecessary code change
and that there was not sufficient time to test for unexpected errors before the final
competition.

5.2.2 IBEO Reset
A known problem with the IBEO sensors was that occasionally the internal ECU
factory software would freeze, resulting in no scan or object data being
transmitted to the classification software module. No specific cause could be
identified for this problem; however it often occurred after the ECU software had
been running for over four hours. To remedy this situation, a health monitoring
routine had been built into the sensor interface code. When the interface fails to
receive sensor data for a full second, it can stop Odin by reporting an error to the
Health Monitoring module. If the connection is not restored within five seconds
the power is cycled to the IBEO ECUs to reset the software. This reset takes
approximately 90 seconds, and the vehicle will remain in a paused software state
until sensor data is restored. During the 3rd mission of the UCE, this ECU software
freeze occurred as Odin approached one of the four-way intersections. The
software correctly identified this failure and cycled power to the sensors. After the
reset time elapsed, Odin was able successfully proceed through the course without
any human intervention.

5.2.3 Phantom Object
Early in the race, Odin travelled down the dirt road on the south east section of the
RNDF. Without incident, Odin traversed the road up until the road began bending
left before entering Phantom East. Odin slowed to a stop prior to making this last
turn and waited for close to a minute. The forward spacing enforcer was keeping
Odin from going further because Object Detection was reporting a dynamic
obstacle ahead in the lane. Due to the method in which dynamic obstacles are
calculated, the berm to Odin’s left had a shape and height that appeared to be a
vehicle. Had sparse lane detection been enabled for the race, Odin would have
corrected the actual location of the road and Object Classification’s road filter

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 155

would have surely eliminated the berm as a possible vehicle. However, since this
was not in place, Odin was doomed to wait indefinitely. The vehicle was never
classified as disabled, because the RNDF prohibited passing in a one-way road.
Otherwise, Motion Planning would have easily navigated Odin beyond the
phantom object. Fortunately, due to a small amount of GPS drift to the south the
forward spacing enforcer allowed Odin to pass due to an acceptable clearance
between Odin, the berm to the right, and the phantom object still in view. The
conditions that allowed Odin to pass were similar to conditions experienced in the
gauntlet with cars parked on the side of the road. In the end, had localization data
been more accurate, Odin may have waited forever.

5.2.4 Road Detection
The cubic spline interpolation of the RNDF provided Odin with smooth paths to
drive that followed the curvature of the roads exceptionally well. Driving directly
to waypoints was not sufficient for navigating the Victorville RNDFs. There were
only two instances during the Urban Challenge events where Odin drove over the
curbs due to splining issues rather than localization errors. One example is in lane
8.1 which was the entry lane to the parking zones in the UCE RNDF. Figure 19
displays the Report Lane Position output (overlaid on upper lane). Based on the
image, the spline follows the roads. However, the curb in the right turn of this s-
curve was clipped every time Odin drove down this lane. This issue was due to
tight geometry of the lane, the curvature control limitations of the chosen
implementation of cubic splines, and human error in checking the RNDF
preprocessing.

Fig. 19. Report Lane Position overlay for lane 8.1 of the UCE RNDF where Odin clipped
a curb

5.3 Driving Behaviors

During the UCE, Driving Behaviors performed well, with no major issues. Below
are detailed some of the interesting situations Odin encountered in the UCE.

5.3.1 Intersections
Odin handled intersections well in the UCE, according to logs, team observation,
and the driver of Odin’s chase vehicle. During several merge scenarios, Odin
encountered traffic cars or other robots; however in less than 5% of 4-way stop
scenarios did Odin have to respect precedence for cars arriving before him. It is

156 C. Reinholtz et al.

interesting to note that on several occasions, Odin observed traffic vehicles and
chase cars roll through stop signs without ever stopping. On one occasion, after
properly yielding precedence to Little Ben from U-Penn, Odin safely yielded to
Little Ben’s chase car, which proceeded out of turn at a stop sign despite arriving
at the intersection after Odin.

5.3.2 Passing and Blocked Roads
At no time during the UCE did Odin encounter a disabled vehicle outside of a
safety area or blocked road requiring a replan.

5.3.3 Parking Lot Navigation
Odin performed extremely well in the zone navigation/parking portions of the
UCE; however the missions were very easy in comparison to pre-challenge testing
performed by the team. While each of the three UCE missions contained only one
parking spot (and the same one each time), Odin was prepared for much more
complicated parking lot navigation. The team had anticipated missions with
multiple consecutive parking checkpoints in the same zone but in different rows,
requiring intelligent navigation from spot to spot, travelling down the accepted
patterns (parking rows). A special strategy was even implemented to navigate
parking lots with diagonally oriented spots, travelling down the rows in the correct
direction.

While Odin was over-prepared for more complex parking lots, dynamic
obstacle avoidance in zones was weak however, having seen far less testing. For
this reason, the Route Planner gave zones a higher time penalty.

5.4 Motion Planning

One of Odin’s key strengths in performance was smooth motion planning that
maintained the maximum speed of a segment or a set global maximum of 10 m/s.
The motion planning used on Odin was flexible enough to be used for all
situations of the challenge such as road driving, parking and obstacle avoidance.
By handing the problem of motion planning in a general sense, goals and
weightings could be adjusted for new situations, but the core motion planning
would ensure that no obstacles would be hit.

Reviewing race logs, there was one situation where more robust motion
planning would have been required during the UCE. This occurred when Odin
was traveling east on Montana and was cut-off by Stanford’s Junior taking a left
off of Virginia. Since Odin had the right-of-way, the motion planning algorithm
would not slow down until Junior had mostly entered and been classified in
Odin’s lane. This situation was tested prior to competition, and Odin would have
likely stopped without hitting Junior, but it would have been an abrupt braking
maneuver. However, before the speed limiter of Motion Planning engaged, the
safety driver paused Odin to prevent what was perceived as an imminent collision.
More reliable classification of vehicle orientation and speed would allow motion
planning to consider a wider range of traffic obstacles and apply brakes earlier in a
similar situation.

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 157

6 Overall Successes

All of the teams in the Urban Challenge produced amazing results considering the
scope of the project and short timeline. This section provides examples of the
characteristics and tools of team VictorTango that increased productivity to
accomplish the required tasks to successfully complete the Urban Challenge.

6.1 Base Vehicle Design

The Ford Escape hybrid platform used for Odin proved to be an excellent
selection. The vehicle was large enough to accommodate all of the required
equipment, but was not so large that tight courses posed maneuvering difficulties.
The seamless integration of the drive-by-wire system proved highly reliable and
was capable of responding quickly to motion planning commands. The power
available from the hybrid system enabled the vehicle to easily power all systems
and to run for more than 18 hours continuously. Good design combined with
attention to detail in execution produced an autonomous vehicle that offered great
performance and suffered very few hardware failures, enabling the team to focus
testing time on software development.

6.2 Software Development

This section provides the features and tools used by the team for rapid software
development, testing and debugging, and error handling. These attributes helped
Odin emerge as a successful competitor in the Urban Challenge.

6.2.1 Software Architecture
During the initial planning and design phases of the project, team VictorTango
spent a significant amount of time breaking down the Urban Challenge problem
into specific areas. The resulting subset of problems then became the guiding
force in the overall software architecture design. This yielded an extremely
modular architecture and also ensured that a clear approach to all the main
problems was addressed early on. Evidence of this foresight is the fact that the
software architecture is almost exactly the same as it was originally conceived in
early January of 2007. Slight modifications were made to some of the messages
between software components, but in general, the original approach proved to be
very successful.

Another benefit to the modular architecture was that it suited team
VictorTango’s structure very well. The size and scope of each software
component could be developed by one or two principal software developers.
Along with open communication channels and strong documentation, the team
was able to tackle all of the Urban Challenge sub-problems in a methodical,
efficient manner. Furthermore, by avoiding any sort of large, global solver, or all-
encompassing artificial intelligence, team VictorTango’s approach provided more
flexibilty. The team was not pigeon-holed into any one approach and could find
the best solution for a variety of problems. Finally, the modular architecture

158 C. Reinholtz et al.

prevented setbacks and unforeseen challenges from having debilitating effects as
they might with less diverse systems.

Finally, the decision to implement the Joint Architecture for Unmanned
Systems (JAUS) for inter-process communications in Odin offered several key
advantages. Primarily, JAUS provided a structure for laying out software modules
in a peer-to-peer, modular, automatically reconfigurable, and reusable fashion. It
provided a framework for inter-process communication inside and across
computing nodes, and a set of messages and rules for dynamic configuration,
message routing, and data serving. Finally, the implementation of JAUS ensured
that software developed under the Urban Challenge is reusable in future robotics
projects, a critical step in accelerating the progress of unmanned systems.

6.2.2 Simulation
A key element of the software development was a custom developed simulation
environment, shown in Figure 20 presenting Odin with a simulated road blockage.
The simulator was used in all phases of software development, including: initial
development, software validation, hardware-in-the-loop simulation, and even as a
data visualization tool during vehicle runs. An easy to use simulator allowed
software developers to obtain instant feedback on any software changes made as
well as allowing other members of the team to stress test new software before
deploying it to the vehicle.

Testing also involved more stringent validation milestones. Typically the first
milestone for a new behavior involved a software validation. Software validations
consisted of running software components on the final computer hardware with all
perception messages being supplied by the simulator and all motion commands
being sent to the simulator. These validations were run by the test team which
would provide a set of different scenarios saved as separate scene files. After a
successful software validation, some behaviors required hardware-in-the-loop
simulation. In these simulations, the software was running on Odin in a test course
and the software was configured to send motion commands to Odin as well as the
simulator. The simulator would produce obstacle messages, allowing Odin to be
tested against virtual obstacles and traffic eliminating any chance of a real
collision during early testing. Lastly, in final validation, the simulator was used as
a visualization tool during real-world testing.

6.2.3 Data Log Replay
Instrumental in diagnosing and addressing failures was a data logging and replay
system integrated at the communications level. Called Déjà Vu, the system
amounted to logging all input JAUS messages between modules for later playback
in near real-time. During diagnostics, the component under analysis operated just
as it did on the vehicle, only with the messages replayed from the Déjà Vu files.
Additional features allowed logged data and Odin’s position to be visualized in the
simulator’s 3D view as well.

Déjà Vu was critical in solving the problems encountered during NQE. In a
typical scenario, the logged messages were played into the software as it ran in

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 159

Fig. 20. Screenshot of simulated Odin encountering a roadblock

source code form, allowing diagnostic breakpoints and probes to be used during
playback. Once the problem had been diagnosed and a solution implemented, the
new software was verified against the same logged data to verify the software
made the intended decision.

Finally, by integrating Déjà Vu logging directly into the TORC JAUS Toolkit,
it remained independent of the primary software module’s functionality. As such,
Déjà Vu is immediately reusable tool for future use in other projects.

7 Conclusions

Team VictorTango successfully completed the DARPA Urban Challenge final
event, finishing 3rd, shown in Figure 21. During the competition, Odin was able to
drive several hours without human intervention, negotiating stop sign intersections,
merging into and across traffic, parking, and maintaining road speeds. Heightening
the challenge was a very aggressive development timeline and a loosely defined
problem allowing for many unknown situations. These factors made development
efficiency as well as testing key components for success.

The aspect of the challenge that gave team VictorTango the most difficulty was
environmental sensing. Unreliable sensing at longer distances was a major factor
in limiting the vehicle maximum speed to 10 m/s. This speed limit and especially
delays due to falsely perceived obstacles added significant time during the final
event. The vertical field of view of sensors on the market today is a major limiting
factor, especially in laser rangefinders. New technology such as the IBEO Alasca
XT sensors and the Velodyne laser rangefinder are beginning to address these
issues, but are relatively new products that are still undergoing significant design
modifications. The use of prototype products in a timeline as short as the Urban
Challenge introduces risk, as functions may be unreliable or settings may change.

160 C. Reinholtz et al.

Fig. 21. Odin crosses the finish line.

When evaluating the performance and design of vehicles participating in the
DARPA Urban Challenge, it is important to consider the short development
timeline of 18 months. Due to funding and organization, team VictorTango had
closer to 14 months of actual development time. For example, road detection
algorithms using vision were developed, and good results were achieved in certain
conditions, but the team felt the software was not mature enough to handle all the
possible cases within the scope of the urban challenge rules. A LIDAR road
detection algorithm gave more consistent results over a wider variety of terrain,
but had limited range requiring a reduction in travel speed. These results are more
of a product of the development time and number of team members available to
work on road sensing, rather than the limitations of the technology itself. With the
short timeline, the team chose to use roads defined entirely defined by GPS,
causing failures on at least 3 occasions during the race and NQE.

The Urban Challenge event demonstrated to the world that robot vehicles could
interact with other robots and even humans in a complex environment. Team
VictorTango has already received feedback from industry as well as military
groups wanting to apply the technology developed in the Urban Challenge to their
fields immediately.

Acknowledgements

This work was supported and made possible by DARPA track A funding and by
the generous support of Caterpillar, Inc and Ford Motor Co. We would also like to
thank National Instruments, NovaAtel, Omnistar, Black Box Corporation, Tripp
Lite, Ibeo, Kairos Autonomi and Ultramotion for sponsorship or other support.

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 161

References

Avila-Garcıa, O., Hafner, E., Canamero, L.: Relating Behavior Selection Architectures to
Environmental Complexity. In: Proc. Seventh Intl. Conf. on Simulation of Adaptive
Behavior, MIT Press, Cambridge (2002)

Cacciola, S.J.: Fusion of Laser Range-Finding and Computer Vision Data for Traffic
Detection by Autonomous Vehicles. Master’s Thesis. Virginia Tech., Blacksburg, VA
(2007)

Currier, P.N.: Development of an Automotive Ground Vehicle Platform for Autonomous
Urban Operations. Master’s Thesis. Virginia Tech, Blacksburg, VA (2008)

Duda, R.O., Hart, P.E.: Use of the Hough Transform to Detect Lines and Curves in
Pictures. Commun. ACM 15(1), 11–15 (1972)

Eren, H., Fung, C.C., Evans, J.: Implementation of the Spline Method for Mobile Robot
Path Control. In: Piuri, V., Savino, M. (eds.) Proceedings of the 16th IEEE
Instrumentation and Measurement Technology Conference, vol. 2, pp. 739–744. IEEE,
Venice (1999)

Fuerstenberg, K.C., Dietmayer, K.C.J., Lages, U.: Laserscanner Innovations for Detection
of Obstacles and Road. In: Proceedings of 7th International Conference on Advanced
Microsystems for Automotive Applications, Berlin, Germany (2003)

Fuerstenberg, K.C., Linzmeier, D.T., Dietmayer, K.C.J.: Pedestrian Recognition and
Tracking of Vehicles using a Vehicle Based Multilater Laserscanner. In: Proceedings of
10th World Congress on Intelligent Transport Systems, Madrid, Spain (2003)

Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determination of
Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics SSC
4(2), 100–107 (1968)

Hurdus, J.G.: A Portable Approach to High-Level Behavioral Programming for Complex
Autonomous Robot Applications. Master’s Thesis. Virginia Tech, Blacksburg, VA
(2008)

Kelly, A.J.: A 3D State Space Formulation of a Navigation Kalman Filter for Autonomous
Vehicles. CMU Robotics Institute Technical Report CMU-RI-TR-94-19 (1994)

Konolige, K., Myers, K.: The Saphira Architecture for Autonomous Mobile Robots. In:
Kortenkamp, D., Bonasson, R., Murphy, R. (eds.) Artificial Intelligence and Mobile
Robots. MIT Press, Cambridge (1998)

Lacaze, A., Moscovitz, Y., DeClaris, N., Murphy, K. (1998). Path Planning for
Autonomous Vehicles Driving Over Rough Terrain. In: Proceedings of the
ISIC/CIRA/ISAS Conference. Gaithersburg, MD, September 14-17 (1998)

Maes, P.: How To Do the Right Thing.Technical Report NE 43–836, AI Laboratory. MIT,
Cambridge (1989)

Milliken, W.F., Milliken, D.L.: Race Car Vehicle Dynamics. SAE International,
Warrendale, PA (1995)

Murphy, R.R.: Introduction to AI Robotics. MIT Press, Cambridge (2000)
Pirjanian, P.: Multiple Objective Behavior-Based Control. Robotics and Autonomous

Systems 31(1), 53–60 (2000)
Pirjanian, P.: Behavior Coordination Mechanisms – State-of-the-Art. Tech Report IRIS-99-

375, Institute for Robotics and Intelligent Systems, University of Southern California,
Los Angeles, California (1999)

162 C. Reinholtz et al.

Rosenblatt, J.: DAMN: A Distributed Architecture for Mobile Navigation. In: AAAI Spring
Symposium on Lessons Learned from Implemented Software Architectures for Physical
Agents, Stanford, CA. AAAI Press, Menlo Park (1995)

Russel, S., Norvig, P.: Artificial Intelligence – A Modern Approach. Pearson Education,
Inc., Upper Saddle River (2003)

Thrun, S., Montemerlo, M., et al.: Stanley: The robot that won the DARPA Grand
Challenge: Research Articles. Journal of Field Robotics 23(9), 661–692 (2006)

Urmson, C., et al.: A Robust Approach to High-Speed Navigation for Unrehearsed Desert
Terrain. Journal of Field Robotics 23(8), 467 (2006)

A Perception-Driven Autonomous Urban Vehicle

John Leonard1, Jonathan How1, Seth Teller1, Mitch Berger1, Stefan Campbell1,
Gaston Fiore1, Luke Fletcher1, Emilio Frazzoli1, Albert Huang1, Sertac Karaman1,
Olivier Koch1, Yoshiaki Kuwata1, David Moore1, Edwin Olson1, Steve Peters1,
Justin Teo1, Robert Truax1, Matthew Walter1, David Barrett2, Alexander Epstein2,
Keoni Maheloni2, Katy Moyer2, Troy Jones3, Ryan Buckley3, Matthew Antone4,
Robert Galejs5, Siddhartha Krishnamurthy5, and Jonathan Williams5

1 MIT, Cambridge, MA 02139
jleonard@mit.edu

2 Franklin W. Olin College
Needham, MA 02492
david.barrett@olin.edu

3 Draper Laboratory
Cambridge, MA 02139
tbjones@draper.com

4 BAE Systems Advanced Information Technologies
Burlington, MA 01803
matthew.antone@baesystems.com

5 MIT Lincoln Laboratory
Lexington, MA 02420
galejs@ll.mit.edu

Abstract. This paper describes the architecture and implementation of an autonomous
passenger vehicle designed to navigate using locally perceived information in preference to
potentially inaccurate or incomplete map data. The vehicle architecture was designed to han-
dle the original DARPA Urban Challenge requirements of perceiving and navigating a road
network with segments defined by sparse waypoints. The vehicle implementation includes
many heterogeneous sensors with significant communications and computation bandwidth to
capture and process high-resolution, high-rate sensor data. The output of the comprehensive
environmental sensing subsystem is fed into a kino-dynamic motion planning algorithm to
generate all vehicle motion. The requirements of driving in lanes, three-point turns, parking,
and maneuvering through obstacle fields are all generated with a unified planner. A key aspect
of the planner is its use of closed-loop simulation in a Rapidly-exploring Randomized Trees
(RRT) algorithm, which can randomly explore the space while efficiently generating smooth
trajectories in a dynamic and uncertain environment. The overall system was realized through
the creation of a powerful new suite of software tools for message-passing, logging, and vi-
sualization. These innovations provide a strong platform for future research in autonomous
driving in GPS-denied and highly dynamic environments with poor a priori information.

1 Introduction

In November 2007 the Defense Advanced Research Projects Agency (DARPA) con-
ducted the DARPA Urban Challenge Event (UCE), which was the third in a se-
ries of competitions designed to accelerate research and development of full-sized

M. Buehler et al. (Eds.): The DARPA Urban Challenge, STAR 56, pp. 163–230.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

164 J. Leonard et al.

Fig. 1. Talos in action at the National Qualifying Event.

autonomous road vehicles for the Defense forces. The competitive approach has
been very successful in porting a substantial amount of research (and researchers)
from the mobile robotics and related disciplines into autonomous road vehicle re-
search (DARPA, 2007). The UCE introduced an urban scenario and traffic inter-
actions into the competition. The short aim of the competition was to develop an
autonomous vehicle capable of passing the California driver’s test (DARPA, 2007).
The 2007 challenge was the first in which automated vehicles were required to obey
traffic laws including lane keeping, intersection precedence, passing, merging and
maneuvering with other traffic.

The contest was held on a closed course within the decommissioned George Air
force base. The course was predominantly the street network of the residential zone
of the former Air force base with several graded dirt roads added for the contest.
Although all autonomous vehicles were on the course at the same time, giving the
competition the appearance of a conventional race, each vehicles was assigned in-
dividual missions. These missions were designed by DARPA to require each team
to complete 60 miles within 6 hours to finish the race. In this race against time,
penalties for erroneous or dangerous behavior were converted into time penalties.
DARPA provided all teams with a single Route Network Definition File (RNDF)
24 hours before the race. The RNDF was very similar to a digital street map used
by an in-car GPS navigation system. The file defined the road positions, number of
lanes, intersections, and even parking space locations in GPS coordinates. On the
day of the race each team was provided with a second unique file called a Mis-
sion Definition File (MDF). This file consisted solely of a list of checkpoints (or
locations) within the RNDF which the vehicle was required to cross. Each vehicle
competing in the UCE was required to complete three missions, defined by three
separate MDFs.

Team MIT developed an urban vehicle architecture for the UCE. The vehicle
(shown in action in Figure 1) was designed to use locally perceived information

A Perception-Driven Autonomous Urban Vehicle 165

in preference to potentially inaccurate map data to navigate a road network while
obeying the road rules. Three of the key novel features of our system are: (1) a
perception-based navigation strategy; (2) a unified planning and control architec-
ture, and (3) a powerful new software infrastructure. Our system was designed
to handle the original race description of perceiving and navigating a road net-
work with a sparse description, enabling us to complete national qualifying event
(NQE) Area B without augmenting the RNDF. Our vehicle utilized a powerful and
general-purpose Rapidly-exploring Randomized Tree (RRT)-based planning algo-
rithm, achieving the requirements of driving in lanes, executing three-point turns,
parking, and maneuvering through obstacle fields with a single, unified approach.
The system was realized through the creation of a powerful new suite of software
tools for autonomous vehicle research, which our team has made available to the re-
search community. These innovations provide a strong platform for future research
in autonomous driving in GPS-denied and highly dynamic environments with poor
a priori information. Team MIT was one of thirty-five teams that participated in the
DARPA Urban Challenge NQE, and was one of eleven teams to qualify for the UCE
based on our performance in the NQE. The vehicle was one of six to complete the
race, finishing in fourth place.

This paper reviews the design and performance of Talos, the MIT autonomous
vehicle. Section 2 summarizes the system architecture. Section 3 describes the de-
sign of the race vehicle and software infrastructure. Sections 4 and 5 explain the set
of key algorithms developed for environmental perception and motion planning for
the Challenge. Section 6 describes the performance of the integrated system in the
qualifier and race events. Section 7 reflects on how the perception-driven approach
fared by highlighting some successes and lessons learned. Section 8 provides de-
tails on the public release of our team’s data logs, interprocess communications and
image acquisition libraries, and visualization software. Finally, Section 9 concludes
the paper.

2 Architecture

Our overall system architecture (Figure 2) includes the following subsystems:

• The Road Paint Detector uses two different image-processing techniques to fit
splines to lane markings from the camera data.

• The Lane Tracker reconciles digital map (RNDF) data with lanes detected by
vision and lidar to localize the vehicle in the road network.

• The Obstacle Detector uses Sick and Velodyne lidar to identify stationary and
moving obstacles.

• The low-lying Hazard Detector uses downward looking lidar data to assess the
drivability of the road ahead and to detect curb cuts.

• The Fast Vehicle detector uses millimeter wave radar to detect fast approaching
vehicles in the medium to long range.

• The Positioning module estimates the vehicle position in two reference frames.
The local frame is an integration of odometry and Inertial Measurement Unit

166 J. Leonard et al.

Fig. 2. System Architecture.

(IMU) measurements to estimate the vehicle’s egomotion through the local en-
vironment. The global coordinate transformation estimates the correspondence
between the local frame and the GPS coordinate frame. GPS outages and odom-
etry drift will vary this transformation. Almost every module listens to the Posi-
tioning module for egomotion correction or path planning.

• The Navigator tracks the mission state and develops a high-level plan to ac-
complish the mission based on the RNDF and MDF. The output of the robust
minimum-time optimization is a short-term goal location provided to the Motion
Planner. As progress is made the short-term goal is moved, like a carrot in front
of a donkey, to the achieve the mission.

• The Drivability Map provides an efficient interface to perceptual data, answer-
ing queries from the Motion Planner about the validity of potential motion paths.
The Drivability Map is constructed using perceptual data filtered by the current
constraints specified by the Navigator.

• The Motion Planner identifies, then optimizes, a kino-dynamically feasible ve-
hicle trajectory that moves towards the goal point selected by the Navigator
using the constraints given by the situational awareness embedded in the Driv-
ability Map. Uncertainty in local situational awareness is handled through rapid
replanning and constraint tightening. The Motion Planner also explicitly ac-
counts for vehicle safety, even with moving obstacles. The output is a desired
vehicle trajectory, specified as an ordered list of waypoints (position, velocity,
headings) that are provided to the low-level motion Controller.

A Perception-Driven Autonomous Urban Vehicle 167

• The Controller executes the low-level motion control necessary to track the
desired paths and velocity profiles issued by the Motion Planner.

These modules are supported by a powerful and flexible software architecture
based on a new lightweight UDP message passing system (described in Section 3.3).
This new architecture facilitates efficient communication between a suite of asyn-
chronous software modules operating on the vehicle’s distributed computer system.
The system has enabled the rapid creation of a substantial code base, currently ap-
proximately 140,000 source lines of code, that incorporates sophisticated capabili-
ties, such as data logging, replay, and 3-D visualization of experimental data.

3 Infrastructure Design

Achieving an autonomous urban driving capability is a difficult multi-dimensional
problem. A key element of the difficulty is that significant uncertainty occurs at
multiple levels: in the environment, in sensing, and in actuation. Any successful
strategy for meeting this challenge must address all of these sources of uncertainty.
Moreover, it must do so in a way that is scalable to spatially extended environments,
and efficient enough for real-time implementation on a rapidly moving vehicle.

The difficulty in developing a solution that can rise to these intellectual chal-
lenges is compounded by the many unknowns in the system design process. Despite
DARPA’s best efforts to define the rules for the UCE in detail well in advance of
the race, there was huge potential variation in the difficulty of the final event. It was
difficult at the start of the project to conduct a single analysis of the system that
could be translated to one static set of system requirements (for example, to pre-
dict how different sensor suites would perform in actual race conditions). For this
reason, Team MIT chose to follow a spiral design strategy, developing a flexible ve-
hicle design and creating a system architecture that could respond to an evolution of
the system requirements over time, with frequent testing and incremental addition
of new capabilities as they become available.

Testing “early and often” was a strong recommendation of successful par-
ticipants in the 2005 Grand Challenge (Thrun et al., 2006; Urmson et al., 2006;
Trepagnier et al., 2006). As newcomers to the Grand Challenge, it was imperative
for our team to obtain an autonomous vehicle as quickly as possible. Hence, we
chose to build a prototype vehicle very early in the program, while concurrently un-
dertaking the more detailed design of our final race vehicle. As we gained experience
from continuous testing with the prototype, the lessons learned were incorporated
into the overall architecture and our final race vehicle.

The spiral design strategy has manifested itself in many ways – most dramatically
in our decision to build two (different) autonomous vehicles. We acquired our proto-
type vehicle, a Ford Escape, at the outset of the project, to permit early autonomous
testing with a minimal sensor suite. Over time we increased the frequency of tests,
added more sensors, and brought more software capabilities online to meet a larger
set of requirements. In parallel with this, we procured and fabricated our race vehi-
cle Talos, a Land Rover LR3. Our modular and flexible software architecture was

168 J. Leonard et al.

designed to enable a rapid transition from one vehicle to the other. Once the final
race vehicle became available, all work on the prototype vehicle was discontinued,
as we followed the adage to “build one system to throw it away”.

3.1 Design Considerations

We employed several key principles in designing our system.

Use of many sensors. We chose to use a large number of low-cost, unactuated
sensors, rather than to rely exclusively on a small number of more expensive, high-
performance sensors. This choice produced the following benefits:

• By avoiding any single point of sensor failure, the system is more robust. It
can tolerate loss of a small number of sensors through physical damage, op-
tical obscuration, or software failure. Eschewing actuation also simplified the
mechanical, electrical and software systems.

• Since each of our many sensors can be positioned at an extreme point on the
car, more of the car’s field of view (FOV) can be observed. A single sensor, by
contrast, would have a more limited FOV due to unavoidable occlusion by the
vehicle itself. Deploying many single sensors also gave us increased flexibility
as designers. Most points in the car’s surroundings are observed by at least one
of each of the three exteroceptive sensor types. Finally, our multi-sensor strat-
egy also permits more effective distribution of I/O and CPU bandwidth across
multiple processors.

Minimal reliance on GPS. We observed from our own prior research, and other
teams’ prior Grand Challenge efforts, that GPS cannot be relied upon for high-
accuracy localization at all times. That fact, along with the observation that humans
do not need GPS to drive well, led us to develop a navigation and perception strategy
that uses GPS only when absolutely necessary, i.e., to determine the general direc-
tion to the next waypoint, and to make forward progress in the (rare) case when road
markings and boundaries are undetectable. One key outcome of this design choice
is our “local frame” situational awareness, described more fully in Section 4.1.

Fine-grained, high-bandwidth CPU, I/O and network resources. Given the short
time (18 months, from May 2006 to November 2007) available for system develop-
ment, our main goal was simply to get a first pass at every required module working,
and working solidly, in time to qualify. Thus we knew at the outset that we could not
afford to invest effort in premature optimization, i.e., performance profiling, mem-
ory tuning, etc. This led us to the conclusion that we should have many CPUs, and
that we should lightly load each machine’s CPU and physical memory (say, at half
capacity) to avoid non-linear systems effects such as process or memory thrashing.
A similar consideration led us to use a fast network interconnect, to avoid operating
regimes in which network contention became non-negligible. The downside of our
choice of many machines was a high power budget, which required an external gen-
erator on the car. This added mechanical and electrical complexity to the system,
but the computational flexibility that was gained justified this effort.

A Perception-Driven Autonomous Urban Vehicle 169

Asynchronous sensor publish and update; minimal sensor fusion. Our vehicle
has sensors of six different types (odometry, inertial, GPS, lidar, radar, vision), each
type generating data at a different rate. Our architecture dedicates a software driver
to each individual sensor. Each driver performs minimal processing, then publishes
the sensor data on a shared network. A “drivability map” API (described more fully
below) performs minimal sensor fusion, simply by depositing interpreted sensor
returns into the map on an “as-sensed” (just in time) basis.

“Bullet proof” low-level control. To ensure that the vehicle was always able to
make progress, we designed the low-level control using very simple, well proven
algorithms that involved no adaptation or mode switching. These control add-ons
might give better performance, but they are difficult to verify and validate. The dif-
ficulty being that a failure in this low-level control system would be critical and
it is important that the motion planner always be able to predict the state of the
controller/vehicle with a high degree of confidence.

Strong reliance on simulation. While field testing is paramount, it is time consum-
ing and not always possible. Thus we developed multiple simulations that interfaced
directly with the vehicle code that could be used to perform extensive testing of the
software and algorithms prior to testing them on-site.

3.2 Race Vehicle Configuration

The decision to use two different types of cars (the Ford Escape and Land Rover
LR3) entailed some risk, but given the time and budgetary constraints, this ap-
proach had significant benefits. The spiral design approach enabled our team to
move quickly up the learning curve and accomplish many of our “milestone 2” site
visit requirements before mechanical fabrication of the race vehicle was complete.

Size, power and computation were key elements in the design of the vehicle. For
tasks such as parking and the execution of U-turns, a small vehicle with a tight turn-
ing radius was ideal. Given the difficulty of the urban driving task, and our desire
to use many inexpensive sensors, Team MIT chose a large and powerful computer

(a) (b)

Fig. 3. Developed vehicles. (a) Ford Escape rapid prototype. (b) Talos, our Land Rover LR3
race vehicle featuring five cameras, 15 radars 12 Sick lidars and a Velodyne lidar.

170 J. Leonard et al.

system. As mentioned above, this led our power requirements to exceed the capa-
bilities of aftermarket alternator solutions for our class of vehicles, necessitating the
use of a generator.

Our initial design aim to use many inexpensive sensors was modified substan-
tially midway through the project when resources became available to purchase a
Velodyne HDL-64 3D lidar. The Velodyne played a central role for the tasks of
vehicle and hazard detection in our final configuration.

The Land Rover LR3 provided a maneuverable and robust platform for our race
vehicle. We chose this vehicle for its excellent maneuverability and small turning
radius and large payload capacity. Custom front and roof fixtures were fitted, per-
mitting sensor positions to be tuned during system development. Wherever possible
the fixtures were engineered to protect the sensors from collisions.

The stock vehicle was integrated with the following additional components:

• Electronic Mobility Controls (EMC) drive-by-wire system (AEVIT)
• Honda EVD6010 internal power generator
• 2 Acumentrics uninterruptible power supplies
• Quanta blade server computer system (the unbranded equivalent of Fujitsu

Primergy BX600)
• Applanix POS-LV 220 GPS/INS
• Velodyne HDL-64 lidar
• 12 Sick lidars
• 5 Point Grey Firefly MV Cameras
• 15 Delphi Radars

The first step in building the LR3 race vehicle was adapting it for computer-driven
control. This task was outsourced to Electronic Mobility Controls in Baton Rouge,
Louisiana. They installed computer-controlled servos on the gear shift, steering col-
umn, and a single servo for throttle and brake actuation. Their system was designed
for physically disabled drivers, but was adaptable for our needs. It also provided
a proven and safe method for switching from normal human-driven control to au-
tonomous control.

Safety of the human passengers was a primary design consideration in integrat-
ing the equipment into the LR3. The third row of seats in the LR3 was removed,
and the entire back end was sectioned off from the main passenger cabin by an
aluminum and Plexiglas wall. This created a rear “equipment bay” which held the
computer system, the power generator, and all of the power supplies, interconnects,
and network hardware for the car. The LR3 was also outfitted with equipment and
generator bay temperature readouts, a smoke detector, and a passenger cabin carbon
monoxide detector.

The chief consumer of electrical power was the Quanta blade server. The server
required 240V as opposed to the standard 120V and could consume up to 4000Watts,
dictating many of the power and cooling design decisions. Primary power for the
system came from an internally mounted Honda 6000 Watt R/V generator. It draws
fuel directly from the LR3 tank and produces 120 and 240VAC at 60 Hz. The genera-
tor was installed in a sealed aluminum enclosure inside the equipment bay; cooling

A Perception-Driven Autonomous Urban Vehicle 171

air is drawn from outside, and exhaust gases leave through an additional muffler
under the rear of the LR3.

The 240VAC power is fed to twin Acumentrics rugged UPS 2500 units which
provide backup power to the computer and sensor systems. The remaining gener-
ator power is allocated to the equipment bay air conditioning (provided by a roof-
mounted R/V air conditioner) and non-critical items such as back-seat power outlets
for passenger laptops.

3.2.1 Sensor Configuration
As mentioned, our architecture is based on the use of many different sensors, based
on multiple sensing modalities. We positioned and oriented the sensors so that most
points in the vehicle’s surroundings would be observed by at least one sensor of
each type: lidar, radar, and vision. This redundant coverage gave robustness against
both type-specific sensor failure (e.g., difficulty with vision due to low sun angle) or
individual sensor failure (e.g., due to wiring damage).

We selected the sensors with several specific tasks in mind. A combination of
“skirt” (horizontal Sick) 2-D lidars mounted at a variety of heights, combined with
the output from a Velodyne 3-D lidar, performs close-range obstacle detection.
“Pushbroom” (downward-canted Sick) lidars and the Velodyne data detect drivable
surfaces. Out past the lidar range, millimeter wave radar detects fast approaching
vehicles. High-rate forward video, with an additional rear video channel for higher-
confidence lane detection, performs lane detection.

Ethernet interfaces were used to deliver sensor data to the computers for most
devices. Where possible, sensors were connected as ethernet devices. In contrast
to many commonly used standards such as RS-232, RS-422, serial, CAN, USB or
Firewire, ethernet offers, in one standard: electrical isolation, RF noise immunity,
reasonable physical connector quality, variable data rates, data multiplexing, scala-
bility, low latencies and large data volumes.

The principal sensor for obstacle detection is the Velodyne HDL-64, which was
mounted on a raised platform on the roof. High sensor placement was necessary
to raise the field of view above the Sick lidar units and the air conditioner. The
velodyne is a 3D laser scanner comprised of 64 lasers mounted on a spinning head.
It produces approximately a million range samples per second, performing a full
360 degree sweep at 15Hz.

The Sick lidar units (all model LMS 291-S05) served as the near-field detection
system for obstacles and the road surface. On the roof rack there are five units an-
gled down viewing the ground ahead of the vehicle, while the remaining seven are
mounted lower around the sides of the vehicle and project outwards parallel to the
ground plane.

Each Sick sensor generates an interlaced scan of 180 planar points at a rate of
75Hz. Each of the Sick lidar units has a serial data connection which is read by a
MOXA NPort-6650 serial device server. This unit, mounted in the equipment rack
above the computers, takes up to 16 serial data inputs and outputs TCP/IP link.

172 J. Leonard et al.

The Applanix POS-LV navigation solution was used to for world-relative posi-
tion and orientation estimation of the vehicle. The Applanix system combines dif-
ferential GPS, a one degree of drift per hour rated IMU and a wheel encoder to
estimate the vehicle’s position, orientation, velocity and rotation rates. The posi-
tion information was used to determine the relative position of RNDF GPS way-
points to the vehicle. The orientation and rate information were used to estimate
the vehicle’s local motion over time. The Applanix device is interfaced via a
TCP/IP link.

Delphi’s millimeter wave OEM automotive Adaptive Cruise Control radars were
used for long-range vehicle tracking. The narrow field of view of these radars (around
18◦) required a tiling of 15 radars to achieve the desired 240◦ field of view. The
radars require a dedicated CAN bus interface each. To support 15 CAN bus net-
works we used 8 internally developed CAN to ethernet adaptors (EthCANs). Each
adaptor could support two CAN buses.

Five Point Grey Firefly MV color cameras were used on the vehicle, providing
close to a 360◦ field of view. Each camera was operated at 22.8 Hz and produced
Bayer-tiled images at a resolution of 752x480. This amounted to 39 MB/s of im-
age data, or 2.4 GB/min. To support multiple parallel image processing algorithms,
camera data was JPEG-compressed and then re-transmitted over UDP multicast to
other computers (see Section 3.3.1). This allowed multiple image processing and
logging algorithms to operate on the camera data in parallel with minimal latency.

The primary purpose of the cameras was to detect road paint, which was then
used to estimate and track lanes of travel. While it is not immediately obvious that
rearward-facing cameras are useful for this goal, the low curvature of typical ur-
ban roads means that observing lanes behind the vehicle greatly improves forward
estimates.

The vehicle state was monitored by listening to the vehicle CAN bus. Wheel
speeds, engine RPM, steering wheel position and gear selection were monitored
using a CAN to Ethernet adaptor (EthCAN).

3.2.2 Autonomous Driving Unit
The final link between the computers and the vehicle was the Autonomous Driving
Unit (ADU). In principle, it was an interface to the drive-by-wire system that we
purchased from EMC. In practice, it also served a critical safety role.

The ADU was a very simple piece of hardware running a real-time operating
system, executing the control commands passed to it by the non-real-time computer
cluster. The ADU incorporated a watchdog timer that would cause the vehicle to
automatically enter PAUSE state if the computer generated either invalid commands
or if the computer stopped sending commands entirely.

The ADU also implemented the interface to the buttons and displays in the cabin,
and the DARPA-provide E-Stop system. The various states of the vehicle (PAUSE,
RUN, STANDBY, E-STOP) were managed in a state-machine within the ADU.

A Perception-Driven Autonomous Urban Vehicle 173

3.3 Software Infrastructure

We developed a powerful and flexible software architecture based on a new
lightweight UDP message passing system. Our system facilitates efficient communi-
cation between a suite of asynchronous software modules operating on the vehicle’s
distributed computer system. This architecture has enabled the rapid creation of a
substantial code base that incorporates data logging, replay, and 3-D visualization
of all experimental data, coupled with a powerful simulation environment.

3.3.1 Lightweight Communications and Marshalling
Given our emphasis on perception, existing interprocess communications infrastruc-
tures such as CARMEN (Thrun et al., 2006) or MOOS (Newman, 2003) were not
sufficient for our needs. We required a low-latency,high-throughputcommunications
framework that scales to many senders and receivers. After our initial assessment of
existing technologies, we designed and implemented an interprocess communica-
tions system that we call Lightweight Communications and Marshaling (LCM).

LCM is a minimalist system for message passing and data marshaling, targeted at
real-time systems where latency is critical. It provides a publish/subscribe message
passing model and an XDR-style message specification language with bindings for
applications in C, Java, and Python. Messages are passed via UDP multicast on a
switched local area network. Using UDP multicast has the benefit that it is highly
scalable; transmitting a message to a thousand subscribers uses no more network
bandwidth than does transmitting it to one subscriber.

We maintained two physically separate networks for different types of traffic. The
majority of our software modules communicated via LCM on our primary network,
which sustained approximately 8 MB/s of data throughout the final race. The sec-
ondary network carried our full resolution camera data, and sustained approximately
20 MB/s of data throughout the final race.

While there certainly was some risk in creating an entirely new interprocess
communications infrastructure, the decision was consistent with our team’s over-
all philosophy to treat the DARPA Urban Challenge first and foremost as a research
project. The decision to develop LCM helped to create a strong sense of ownership
amongst the key software developers on the team. The investment in time required
to write, test, and verify the correct operation of the LCM system paid off for itself
many times over, by enabling a much faster development cycle than could have been
achieved with existing interprocess communication systems. LCM is now freely
available as a tool for widespread use by the robotics community.

The design of LCM, makes it very easy to create logfiles of all messages trans-
mitted during a specific window of time. The logging application simply subscribes
to every available message channel. As messages are received, they are timestamped
and written to disk.

To support rapid data analysis and algorithmic development, we developed a log
playback tool that reads a logfile and retransmits the messages in the logfile back
over the network. Data can be played back at various speeds, for skimming or careful
analysis. Our development cycle frequently involved collecting extended datasets

174 J. Leonard et al.

with our vehicle and then returning to our offices to analyze data and develop al-
gorithms. To streamline the process of analyzing logfiles, we implemented a user
interface in our log playback tool that supported a number of features, such as ran-
domly seeking to user-specified points in the logfile, selecting sections of the logfile
to repeatedly playback, extracting portions of a logfile to a separate smaller logfile
and the selected playback of message channels.

3.3.2 Visualization
The importance of visualizing sensory data as well as the intermediate and final
stages of computation for any algorithm cannot be overstated. While a human ob-
server does not always know exactly what to expect from sensors or our algorithms,
it is often easy for a human observer to spot when something is wrong. We adopted
a mantra of “Visualize Everything” and developed a visualization tool called the
viewer. Virtually every software module transmitted data that could be visualized in
our viewer, from GPS pose and wheel angles to candidate motion plans and tracked
vehicles. The viewer quickly became our primary means of interpreting and under-
standing the state of the vehicle and the software systems.

Debugging a system is much easier if data can be readily visualized. The LCGL
library was a simple set of routines that allowed any section of code in any process
on any machine to include in-place OpenGL operations; instead of being rendered,
these operations were recorded and sent across the LCM network (hence LCGL),
where they could be rendered by the viewer.

LCGL reduced the amount of effort to create a visualization to nearly zero, with
the consequence that nearly all of our modules have useful debugging visualizations
that can be toggled on and off from the viewer.

3.3.3 Process Manager and Mission Manager
The distributed nature of our computing architecture necessitated the design and
implementation of a process management system, which we called procman. This
provided basic failure recovery mechanisms such as restarting failed or crashed pro-
cesses, restarting processes that have consumed too much system memory, and mon-
itoring the processor load on each of our servers.

To accomplish this task, each server ran an instance of a procman deputy, and
the operating console ran the only instance of a procman sheriff. As their names
suggest, the user issues process management commands via the sheriff, which then
relays commands to the deputies. Each deputy is then responsible for managing
the processes on its server independent of the sheriff and other deputies. Thus, if
the sheriff dies or otherwise loses communication with its deputies, the deputies
continue enforcing their last received orders.

Messages passed between sheriffs and deputies are stateless, and thus it is possi-
ble to restart the sheriff or migrate it across servers without interrupting the deputies.

The mission manager interface provided a minimalist user interface for loading,
launching, and aborting missions. This user interface was designed to minimize the
potential for human error during the high-stress scenarios typical on qualifying runs

A Perception-Driven Autonomous Urban Vehicle 175

and race day. It did so by running various “sanity checks” on the human-specified
input, displaying only information of mission-level relevance, and providing a mini-
mal set of intuitive and obvious controls. Using this interface, we routinely averaged
well under one minute from the time we received the MDF from DARPA officials
to having our vehicle in pause mode and ready to run.

4 Perception Algorithms

Team MIT implemented a sensor rich design for the Talos vehicle. This section de-
scribes the algorithms used to process the sensor data. Specifically the Local Frame,
Obstacle Detector, Hazard Detector and Lane Tracking modules.

4.1 The Local Frame

The Local Frame is a smoothly varying coordinate frame into which sensor infor-
mation is projected. We do not rely directly on the GPS position output from the
Applanix because it is subject to sudden position discontinuities upon entering or
leaving areas with poor GPS coverage. We integrate the velocity estimates from the
Applanix to get position in the local frame.

The local frame is a Euclidean coordinate system with arbitrary origin. It has
the desirable property that the vehicle always moves smoothly through this coor-
dinate system—in other words, it is very accurate over short time scales but may
drift relative to itself over longer time scales. This property makes it ideal for regis-
tering the sensor data for the vehicle’s immediate environment. An estimate of the
coordinate transformation between the local frame and the GPS reference frame is
updated continuously. This transformation is only needed when projecting a GPS
feature, such as an RNDF waypoint, into the local frame. All other navigation and
perceptual reasoning is performed directly in the local frame.

A single process is responsible for maintaining and broadcasting the vehicle’s
pose in the local frame (position, velocity, acceleration, orientation, and turning
rates) as well as the most recent local-to-GPS transformation. These messages are
transmitted at 100Hz.

4.2 Obstacle Detector

The system’s large number of sensors provided a comprehensive field-of-view and
provided redundancy both within and across sensor modalities. Lidars provided
near-field obstacle detection (Section 4.2.1), while radars provided awareness of
moving vehicles in the far field (Section 4.2.7).

Much previous work in automotive vehicle tracking has used computer vision
for detecting other cars and other moving objects, such as pedestrians. Of the work
in the vision literature devoted to tracking vehicles, the techniques developed by
Stein and collaborators (Stein et al., 2000; Stein et al., 2003) are notable because
this work provided the basis for the development of a commercial product – the

176 J. Leonard et al.

Mobileye automotive visual tracking system. We evaluated the Mobileye system; it
performed well for tracking vehicles at front and rear aspects during highway driv-
ing, but did not provide a solution that was general enough for the high-curvature
roads, myriad aspect angles and cluttered situations encountered in the Urban Chal-
lenge. An earlier effort at vision-based obstacle detection (but not velocity estima-
tion) employed custom hardware (Bertozzi, 1998).

A notable detection and tracking system for urban traffic from lidar data was de-
veloped by Wang et al., who incorporated dynamic object tracking in a 3D SLAM
system (Wang, 2004). Data association and tracking of moving objects was a pre-
filter for SLAM processing, thereby reducing the effects of moving objects in cor-
rupting the map that was being built. Object tracking algorithms used the interacting
multiple model (IMM) (Blom and Bar-Shalom, 1988) for probabilistic data associ-
ation. A related project addressed the tracking of pedestrians and other moving ob-
jects to develop a collision warning system for city bus drivers (Thorpe et al., 2005).

Each UCE team required a method for detecting and tracking other vehicles. The
techniques of the Stanford Racing Team (Stanford Racing Team, 2007) and the Tar-
tan Racing Team (Tartan Racing Team, 2007) provide alternative examples of suc-
cessful approaches. Tartan Racing’s vehicle tracker built on the algorithm of Mertz et
al. (Mertz et al., 2005), which fits lines to lidar returns and estimates convex corners
from the laser data to detect vehicles. The Stanford team’s object tracker has similar-
ities to the Team MIT approach. It is based first on filtering out vertical obstacles and
ground plane measurements, as well as returns from areas outside of the Route Net-
work Definition File. The remaining returns are fit to 2-D rectangles using particle fil-
ters, and velocities are estimated for moving objects (Stanford Racing Team, 2007).
Unique aspects of our approach are the concurrent processing of lidar and radar data
and a novel multi-sensor calibration technique.

(a) (b)

Fig. 4. Sensor fields of view (20m grid size). (a) Our vehicle used seven horizontally-mounted
180◦ planar lidars with overlapping fields of view. The 3 lidars at the front and the 4 lidars at
the back are drawn separately so that the overlap can be more easily seen. The ground plane
and false positives are rejected using consensus between lidars. (b) Fifteen 18◦ radars yield a
wide field of view.

A Perception-Driven Autonomous Urban Vehicle 177

Our obstacle detection system combines data from 7 planar lidars oriented in a
horizontal configuration, a roof-mounted 3D lidar unit, and 15 automotive radars.
The planar lidars were Sick units returning 180 points at one degree spacing, with
scans produced at 75Hz. We used Sick’s “interlaced” mode, in which every scan
is offset 0.25 degree from the previous scan; this increased the sensitivity of the
system to small obstacles. For its larger field-of-view and longer range, we used the
Velodyne “High-Definition” lidar, which contains 64 lasers arranged vertically. The
whole unit spins, yielding a 360-degree scan at 15Hz.

Our Delphi ACC3 radar units are unique among our sensors in that they are al-
ready deployed on mass-market automobiles to support so-called “adaptive cruise
control” at highway speeds. Since each radar has a narrow 18◦ field of view, we
arranged fifteen of them in an overlapping, tiled configuration in order to achieve a
256◦ field-of-view.

The planar lidar and radar fields of view are shown in Figure 4. The 360◦ field
of view of the Velodyne is a ring around the vehicle stretching from 5 to 60m.
A wide field of view may be achieved either through the use of many sensors (as
we did) or by physically actuating a smaller number of sensors. Actuated sensors
add complexity (namely, the actuators, their control circuitry, and their feedback
sensors), create an additional control problem (which way should the sensors be
pointed?), and ultimately produce less data for a given expenditure of engineering
effort. For these reasons, we chose to use many fixed sensors rather than fewer
mechanically actuated sensors.

The obstacle tracking system was decoupled into two largely independent sub-
systems: one using lidar data, the other using radar. Each subsystem was tuned in-
dividually for a low false-positive rate; the output of the high-level system was the
union of the subsystems’ output. Our simple data fusion scheme allowed each sub-
system to be developed in a decoupled and parallel fashion, and made it easy to
add or remove a subsystem with a predictable performance impact. From a reliabil-
ity perspective, this strategy could prevent a fault in one subsystem from affecting
another.

4.2.1 Lidar-Based Obstacle Detection
Our lidar obstacle tracking system combined data from 12 planar lidars (Figure 5)
and the Velodyne lidar. The Velodyne point cloud was dramatically more dense
than all of the planar lidar data combined (Figure 6), but including planar lidars
brought three significant advantages. First, it was impossible to mount the Velodyne
device so that it had no blind spots (note the large empty area immediately around
the vehicle): the planar lidars fill in these blind spots. Second, the planar lidars
provided a measure of fault tolerance, allowing our system to continue to operate
if the Velodyne failed. Since the Velodyne was a new and experimental sensor with
which we had little experience, this was a serious concern. The faster update rate of
the planar lidars (75Hz versus the Velodyne’s 15Hz) also makes data association of
fast-moving obstacles easier.

178 J. Leonard et al.

Fig. 5. Lidar subsystem block diagram. Lidar returns are first classified as “obstacle”,
“ground”, or “outlier”. Obstacle returns are clustered and tracked.

Each lidar produces a stream of range and angle tuples; this data is projected
into the local coordinate system using the vehicle’s position in the local coordinate
system (continuously updated as the vehicle moves) and the sensor’s position in the
vehicle’s coordinate system (determined off-line).The result is a stream of 3D points
in the local coordinate frame, where all subsequent sensor fusion takes place.

The lidar returns often contain observations of the ground and of obstacles. (We
define the ground to be any surface that is locally traversable by our vehicle.) The
first phase of our data processing is to classify each return as either “ground”, “ob-
stacle”, or “outlier”. This processing is performed by a “front-end” module. The
planar lidars all share a single front-end module whereas the Velodyne has its own

Fig. 6. Raw data. Left: camera view of an urban scene with oncoming traffic. Middle: cor-
responding horizontal planar lidar data (“pushbroom” lidars not shown for clarity). Right:
Velodyne data.

A Perception-Driven Autonomous Urban Vehicle 179

specialized front-end module. In either case, their task is the same: to output a stream
of points thought to correspond only to obstacles (removing ground and outliers).

4.2.2 Planar Lidar Front-End
A single planar lidar cannot reliably differentiate between obstacles and non-flat
terrain (see Figure 7). However, with more than one planar lidar, an appreciable
change in z (a reliable signature of an obstacle) can be measured.

This strategy requires that any potential obstacle be observable by multiple planar
lidars, and that the lidars observe the object at different heights. Our vehicle has
many planar lidars, with overlapping fields of view but different mounting heights,
to ensure that we can observe nearby objects more than once (see Figure 4). This
redundancy conveys an additional advantage: many real-world surfaces are highly
reflective and cannot be reliably seen by Sick sensors. Even at a distance of under
2m, a dark-colored shiny surface (like the wheel well of a car) can scatter enough
incident laser energy to prevent the lidar from producing a valid range estimate.
With multiple lasers, at different heights, we increase the likelihood that the sensor
will return at least some valid range samples from any given object. This approach
also increases the system’s fault tolerance.

Before classifying returns, we de-glitch the raw range returns. Any returns that
are farther than 1m away from any other return are discarded; this is effective at
removing single-point outliers.

The front-end algorithm detects returns that are near each other (in the vehicle’s
XY plane). If two nearby returns arise from different sensors, we know that there
is an obstacle at the corresponding (x,y) location. To implement this algorithm, we
allocate a two-dimensional grid at 25cm resolution representing an area of 200×
200m centered around the vehicle. Each grid cell has a linked list of all lidar returns
that have recently landed in that cell, along with the sensor ID and timestamp of
each return. Whenever a new return is added to a cell, the list is searched: if one of
the previous returns is close enough and was generated by a different sensor, then

Fig. 7. Obstacle or hill? With a single planar lidar, obstacles cannot be reliably discriminated
from traversable (but hilly) terrain. Multiple planar lidars allow appreciable changes in z to
be measured, resolving the ambiguity.

180 J. Leonard et al.

both returns are passed to the obstacle tracker. As this search proceeds, returns older
than 33ms are discarded.

One difficulty we encountered in developing the planar lidar subsystem is that
it is impossible to mount two lidars so that they are exactly parallel. Even small
alignment errors are quickly magnified at long ranges, with the result that the actual
change in z is not equal to the difference in sensor mounting height. Convergent
sensors pose the greatest problem: they can potentially sense the same object at
the same height, causing a false positive. Even if the degree of convergence can be
precisely measured (so that false positives are eliminated), the result is a blind spot.
Our solution was to mount the sensors in slightly divergent sets: this reduces our
sensitivity to small obstacles at long ranges (since we can detect only larger-than-
desired changes in z), but eliminates false positives and blind spots.

4.2.3 Velodyne Front-End
As with the planar lidar data, we needed to label each Velodyne range sample as
belonging to either the ground or an obstacle. The high density of Velodyne data
enabled us to implement a more sophisticated obstacle-ground classifier than for the
planar lidars. Our strategy was to identify points in the point cloud that are likely
to be on the ground, then fit a non-parametric ground model through those ground
points. Other points in the cloud that are far enough above the ground model (and
satisfy other criteria designed to reject outliers) are output as obstacle detections.

Although outlier returns with the planar lidars are relatively rare, Velodyne data
contains a significant number of outlier returns, making outlier rejection a more sub-
stantial challenge. These outliers include ranges that are both too short and too long,
and are often influenced by the environment. Retro-reflectors wreak havoc with the
Velodyne, creating a cloud of erroneous returns all around the reflector. The sen-
sor also exhibits systematic errors: observing high-intensity surfaces (such as road
paint) causes the range measurements to be consistently too short. The result is that
brightly painted areas can appear as curb-height surfaces. The Velodyne contains
64 individual lasers, each of which varies from the others in sensitivity and range
offset; this variation introduces additional noise.

Fig. 8. Ground candidates and interpolation. Velodyne returns are recorded in a polar grid
(left: single cell is shown). The lowest 20% (in z height) are rejected as possible outliers;
the next lowest return is a ground candidate. A ground model is linearly interpolated through
ground candidates (right), subject to a maximum slope constraint.

A Perception-Driven Autonomous Urban Vehicle 181

Our ground estimation algorithm estimates the terrain profile from a sequence
of “candidate” points that locally appear to form the ground. The system generates
ground candidate points by dividing the area around the vehicle into a polar grid.
Each cell of the grid collects all Velodyne hits landing within that cell during four
degrees of sensor rotation and three meters of range. If a particular cell has more
than a threshold number of returns (nominally 30), then that cell will produce a
candidate ground point. Due to the noise in the Velodyne, the candidate point is not
the lowest point; instead, the lowest 20% of points (as measured by z) are discarded
before the next lowest point is accepted as a candidate point.

While candidate points often represent the true ground, it is possible for elevated
surfaces (such as car roofs) to generate candidates. Thus the system filters candi-
date points further by subjecting them to a maximum ground-slope constraint. We
assume that navigable terrain never exceeds a slope of 0.2 (roughly 11 degrees).
Beginning at our own vehicle’s wheels (which, we hope, are on the ground) we
process candidate points in order of increasing distance from the vehicle, rejecting
those points that would imply a ground slope in excess of the threshold (Figure 8).
The resulting ground model is a polyline (between accepted ground points) for each
radial sector (Figure 9).

Explicit ground tracking serves not only as a means of identifying obstacle points,
but improves the performance of the system over a naive z = 0 ground plane model
in two complementary ways. First, knowing where the ground is allows the height of
a particular obstacle to be estimated more precisely; this in turn allows the obstacle
height threshold to be set more aggressively, detecting more actual obstacles with
fewer false positives. Second, a ground estimate allows the height above the ground
of each return to be computed: obstacles under which the vehicle will safely pass
(such as overpasses and tree canopies) can thus be rejected.

Fig. 9. Ground model example. On hilly terrain, the terrain deviates significantly from a
plane, but is tracked fairly well by the ground model.

182 J. Leonard et al.

Given a ground estimate, one could naively classify lidar returns as “obstacles” if
they are a threshold above the ground. However, this strategy is not sufficiently ro-
bust to outliers. Individual lasers tend to generate consecutive sequences of outliers:
for robustness, it was necessary to require multiple lasers to agree on the presence
of an obstacle.

The laser-to-laser calibration noise floor tends to lie just under 15cm: constantly
changing intrinsic variations across lasers makes it impossible to reliably measure,
across lasers, height changes smaller than this. Thus the overlying algorithm cannot
reliably detect obstacles shorter than about 15cm.

For each polar cell, we tally the number of returns generated by each laser that is
above the ground by an “evidence” threshold (nominally 15cm). Then, we consider
each return again: those returns that are above the ground plane by a slightly larger
threshold (25cm) and are supported by enough evidence are labelled as obstacles.
The evidence criteria can be satisfied in two ways: by three lasers each with at least
three returns, or by five lasers with one hit. This mix increases sensitivity over any
single criterion, while still providing robustness to erroneous data from any single
laser.

The difference between the “evidence” threshold (15cm) and “obstacle” thresh-
old (25cm) is designed to increase the sensitivity of the obstacle detector to low-
lying obstacles. If we used the evidence threshold alone (15cm), we would have
too many false positives since that threshold is near the noise floor. Conversely, us-
ing the 25cm threshold alone would require obstacles to be significantly taller than
25cm, since we must require multiple lasers to agree and each laser has a differ-
ent pitch angle. Combining these two thresholds increases the sensitivity without
significantly affecting the false positive rate.

All of the algorithms used on the Velodyne operate on a single sector of data,
rather than waiting for a whole scan. If whole scans were used, the motion of the
vehicle would inevitably create a seam or gap in the scan. Sector-wise processing
also reduces the latency of the system: obstacle detections can be passed to the
obstacle tracker every 3ms (the delay between the first and last laser to scan at a
particular bearing), rather than every 66ms (the rotational period of the sensor).
During the saved 63ms, a car travelling at 15m/s would travel almost a meter. Every
bit of latency that can be saved increases the safety of the system by providing earlier
warning of danger.

4.2.4 Clustering
The Velodyne alone produces up to a million hits per second; tracking individual
hits over time is computationally prohibitive and unnecessary. Our first step was
in data reduction: reducing the large number of hits to a much smaller number of
“chunks.” A chunk is simply a record of multiple, spatially close range samples. The
chunks also serve as the mechanism for fusion of planar lidar and Velodyne data:
obstacle detections from both front ends are used to create and update chunks.

A Perception-Driven Autonomous Urban Vehicle 183

Fig. 10. Lidar obstacle detections. Our vehicle is in the center; nearby (irregular) walls are
shown, clustered according to physical proximity to each other. Two other cars are visible:
an oncoming car ahead and to the left, and another vehicle following us (a chase car). The
red boxes and lines indicated estimated velocities. The long lines with arrows indicated the
nominal travel lanes – they are included to aid interpretation, but were not used by the tracker.

One obvious implementation of chunking could be through a grid map, by tal-
lying hits within each cell. However, such a representation is subject to significant
quantization effects when objects lie near cell boundaries. This is especially prob-
lematic when using a coarse spatial resolution.

Instead, we used a representation in which individual chunks of bounded size
could be centered arbitrarily. This permitted us to use a coarse spatial decimation
(reducing our memory and computational requirements) while avoiding the quan-
tization effects of a grid-based representation. In addition, we recorded the actual
extent of the chunk: the chunks have a maximum size, but not a minimum size. This
allows us to approximate the shape and extent of obstacles much more accurately
than would a grid-map method. This floating “chunk” representation yields a better
approximation of an obstacle’s boundary without the costs associated with a fine-
resolution gridmap.

Chunks are indexed using a two-dimensional look-up table with about 1m resolu-
tion. Finding the chunk nearest a point p involves searching through all the grid cells
that could contain a chunk that contains p. But since the size of a chunk is bounded,
the number of grid cells and chunks is also bounded. Consequently, lookups remain
an O(1) operation.

For every obstacle detection produced by a front-end, the closest chunk is found
by searching the two-dimensional lookup table. If the point lies within the closest
chunk, or the chunk can be enlarged to contain the point without exceeding the
maximum chunk dimension (35cm), the chunk is appropriately enlarged and our
work is done. Otherwise, a new chunk is created; initially it will contain only the
new point and will thus have zero size.

Periodically, every chunk is re-examined. If a new point has not been assigned to
the chunk within the last 250ms, the chunk expires and is removed from the system.

184 J. Leonard et al.

Clustering Chunks Into Groups

A physical object is typically represented by more than one chunk. In order to com-
pute the velocity of obstacles, we must know which chunks correspond to the same
physical objects. To do this, we clustered chunks into groups; any two chunks within
25cm of one another were grouped together as the same physical object. This clus-
tering operation is outlined in Algorithm 1.

Algorithm 1. Chunk Clustering
1: Create a graph G with a vertex for each chunk and no edges
2: for all c ∈ chunks do
3: for all chunks d within ε of c do
4: Add an edge between c and d
5: end for
6: end for
7: Output connected components of G.

This algorithm requires a relatively small amount of CPU time. The time re-
quired to search within a fixed radius of a particular chunk is in fact O(1), since
there is a constant bound on the number of chunks that can simultaneously ex-
ist within that radius, and these chunks can be found in O(1) time by iterating
over the two-dimensional lookup table that stores all chunks. The cost of merging
subgraphs, implemented by the Union-Find algorithm (Rivest and Leiserson, 1990),
has a complexity of less than O(log N). In aggregate, the total complexity is less than
O(Nlog N).

4.2.5 Tracking
The goal of clustering chunks into groups is to identify connected components so
that we can track them over time. The clustering operation described above is re-
peated at a rate of 15Hz. Note that chunks are persistent: a given chunk will be
assigned to multiple groups, one at each time step.

At each time step, the new groups are associated with a group from the previous
time step. This is done via a voting scheme; the new group that overlaps (in terms of
the number of chunks) the most with an old group is associated with the old group.
This algorithm yields a fluid estimate of which objects are connected to each other:
it is not necessary to explicitly handle groups that appear to merge or split.

The bounding boxes for two associated groups (separated in time) are compared,
yielding a velocity estimate. These instantaneous velocity estimates tend to be noisy:
our view of obstacles tends to change over time due to occlusion and scene geome-
try, with corresponding changes in the apparent size of obstacles.

Obstacle velocities are filtered over time in the chunks. Suppose that two sets
of chunks are associated with each other, yielding a velocity estimate. That veloc-
ity estimate is then used to update the constituent chunks’ velocity estimates. Each

A Perception-Driven Autonomous Urban Vehicle 185

chunk’s velocity estimate is maintained with a trivial Kalman filter, with each ob-
servation having equal weight.

Storing velocities in the chunks conveys a significant advantage over maintain-
ing separate “tracks”: if the segmentation of a scene changes, resulting in more
or fewer tracks, the new groups will inherit reasonable velocities due to their con-
stituent chunks. Since the segmentation is fairly volatile due to occlusion and chang-
ing scene geometry, maintaining velocities in the chunks provides greater continuity
than would result from frequently creating new tracks.

Finally, we output obstacle detections using the current group segmentation, with
each group reported as having a velocity equal to the weighted average of its con-
stituent chunks. (The weights are simply the confidence of each individual chunk’s
velocity estimate.)

A core strength of our system is its ability to produce velocity estimates for
rapidly moving objects with very low latency. This was a design goal, since fast
moving objects represent the most acute safety hazard.

The corresponding weakness of our system is in estimating the velocity of slow-
moving obstacles. Accurately measuring small velocities requires careful tracking
of an object over relatively long periods of time. Our system averages instantaneous
velocity measurements, but these instantaneous velocity measurements are contam-
inated by noise that can easily swamp small velocities. In practice, we found that
the system could reliably track objects moving faster than 3m/s. The motion plan-
ner avoids “close calls” with all obstacles, keeping the vehicle away from them.
Improving tracking of slow-moving obstacles remains a goal for future work.

Another challenge is the “aperture” problem, in which a portion of a static ob-
stacle is sensed through a small gap. The motion of our own vehicle can make it
appear that an obstacle is moving on the other side of the aperture. While aper-
tures could be detected and explicitly filtered, the resulting phantom obstacles tend
to have velocities parallel to our own vehicle and thus do not significantly affect
motion planning.

Use of a Prior

Our system operates without a prior on the location of the road. Prior information
on the road could be profitably used to eliminate false positives (by assuming that
moving cars must be on the road, for example), but we chose not to use a prior
for two reasons. Critically, we wanted our system to be robust to moving objects
anywhere, including those that might be pulling out of a driveway, or jaywalking
pedestrians. Second, we wanted to be able to test our detector in a wide variety of
environments without having to first generate the corresponding metadata.

4.2.6 Lidar Tracking Results
The algorithm performed with high reliability, correctly detecting obstacles includ-
ing a thin metallic gate that errantly closed across our path.

In addition to filling in blind spots (to the Velodyne) immediately around the
vehicle, the Sick lidars reinforced the obstacle tracking performance. In order to
quantitatively measure the effectiveness of the planar lidars (as a set) versus the

186 J. Leonard et al.

Fig. 11. Detection range by sensor. For each of 40,000 chunks, the earliest detection of the
chunk was collected for each modality (Velodyne and Sick). The Velodyne’s performance
was substantially better than that of the Sick’s, which observed fewer objects.

Velodyne, we tabulated the maximum range at which each subsystem first observed
an obstacle (specifically, a chunk). We consider only chunks that were, at one point
in time, the closest to the vehicle along a particular bearing; the Velodyne senses
many obstacles farther away, but in general, it is the closest obstacle that is most
important. Statistics gathered over the lifetimes of 40,000 chunks (see Figure 11)
indicate that:

• The Velodyne tracked 95.6% of all the obstacles that appeared in the system; the
Sicks alone tracked 61.0% of obstacles.

• The union of the two subsystems yielded a minor, but measurable, improvement
with 96.7% of all obstacles tracked.

• Of those objects tracked by both the Velodyne and the Sick, the Velodyne de-
tected the object at a longer range: 1.2m on average.

In complex environments, like the one used in this data set, the ground is often
non-flat. As a result, planar lidars often find themselves observing sky or dirt. While
we can reject the dirt as an obstacle (due to our use of multiple lidars), we cannot
see the obstacles that might exist nearby. The Velodyne, with its large vertical field
of view, is largely immune to this problem: we attribute the Velodyne subsystem’s
superior performance to this difference. The Velodyne could also see over and some-
times through other obstacles (i.e., foliage), which would allow it to detect obstacles
earlier.

One advantage of the Sicks was that their higher rotational rate (75Hz versus the
Velodyne’s 15Hz) which makes data association easier for fast-moving obstacles.
If another vehicle is moving at 15m/s, the velodyne will observe a 1m displace-
ment between scans, while the Sicks will observe only a 0.2m displacement between
scans.

A Perception-Driven Autonomous Urban Vehicle 187

4.2.7 Radar-Based Fast-Vehicle Detection
The radar subsystem complements the lidar subsystem by detecting moving ob-
jects at ranges beyond the reliable detection range of the lidars. In addition to range
and bearing, the radars directly measure the closing rate of moving objects using
Doppler, greatly simplifying data association. Each radar has a field of view of 18
degrees. In order to achieve a wide field of view, we tiled 15 radars (see Figure 4).

The radar subsystem maintains a set of active tracks. We propagate these tracks
forward in time whenever the radar produces new data, so that we can compare the
predicted position and velocity to the data returned by the radar.

The first step in tracking is to associate radar detections to any active tracks. The
radar produces Doppler closing rates that are consistently within a few meters per
second of the truth: if the predicted closing rate and the measured closing rate differ
by more than 2m/s, we disallow a match. Otherwise, the closest track (in the XY
plane) is chosen for each measurement. If the closest track is more than 6.0m from
the radar detection, a new track is created instead.

Each track records all radar measurements that have been matched to it over the
last second. We update each track’s position and velocity model by computing a
least-squares fit of a constant velocity model to the (x,y,time) data from the radars.
We weight recent observations more strongly than older observations since the tar-
get may be accelerating. For simplicity, we fit the constant velocity model using just
the (x,y) points; while the Doppler data could probably be profitably used, this sim-
pler approach produced excellent results. Figure 12 shows a typical output from the
radar data association and tracking module. Although no lane data was used in the
radar tracking module the vehicle track directions match well. The module is able
to facilitate the overall objective of detecting when to avoid entering an intersection
due to fast approaching vehicles.

Unfortunately, the radars cannot easily distinguish between small, innocuous ob-
jects (like a bolt lying on the ground, or a sewer grate) and large objects (like cars).
In order to avoid false positives, we used the radars only to detect moving objects.

(a) (b)

Fig. 12. Radar tracking 3 vehicles. (a) Front right camera showing 3 traffic vehicles, one on
coming. (b) Points: Raw radar detections with tails representing the doppler velocity. Red
rectangles: Resultant vehicle tracks with speed in meters/second (rectangle size is simply for
visualization).

188 J. Leonard et al.

4.3 Hazard Detector

We define hazards as object that we shouldn’t drive over, even if the vehicle prob-
ably could. Hazards include pot-holes, curbs, and other small objects. The hazard
detector is not intended to detect cars and other large (potentially moving objects):
instead, the goal of the module is to estimate the condition of the road itself.

In addition to the Velodyne, Talos used five downwards-canted planar lidars posi-
tioned on the roof: these were primarily responsible for observing the road surface.
The basic principle of the hazard detector is to look for z-height discontinuities in the
laser scans. Over a small batch of consecutive laser returns, the z slope is computed
by dividing the change in z by the distance between the individual returns. This
slope is accumulated in a gridmap that records the largest slope observed in every
cell. This gridmap is slowly built up over time as the sensors pass over new ground
and extended for about 40m in every direction. Data that “fell off” the gridmap (by
being over 40m away) was forgotten.

The Velodyne sensor, with its 64 lasers, could observe a large area around the ve-
hicle. However, hazards can only be detected where lasers actually strike the ground:
the Velodyne’s lasers strike the ground in 64 concentric circles around the vehicle
with significant gaps between the circles. However, these gaps are filled in as the
vehicle moves. Before we obtained the Velodyne, our system relied on only the five
planar Sick lidars with even larger gaps between the lasers.

The laser-to-laser calibration of the Velodyne was not sufficiently reliable or con-
sistent to allow vertical discontinuities to be detected by comparing the z height
measured by different physical lasers. Consequently, we treated each Velodyne laser
independently as a line scanner.

Unlike the obstacle detector, which assumes that obstacles will be constantly
re-observed over time, the hazard detector is significantly more stateful since the
largest slope ever observed is remembered for each (x,y) grid cell. This “running
maximum” strategy was necessary because any particular line scan across a hazard
only samples the change in height along one direction. A vertical discontinuity along
any direction, however, is potentially hazardous. A good example of this anisotropic
sensitivity is a curb: when a line scanner samples parallel to the curb, no discontinu-
ity is detected. Only when the curb is scanned perpendicularly does a hazard result.
We mounted our Sick sensors so that they would likely sample the curb at a roughly
perpendicular angle (assuming we are driving parallel to the curb), but ultimately, a
diversity of sampling angles was critical to reliably sensing hazards.

4.3.1 Removal of Moving Objects
The gridmap described above, which records the worst z slope seen at each (x,y) lo-
cation, would tend to detect moving cars as large hazards smeared across the moving
car’s trajectory. This is undesirable, since we wish to determine the condition of the
road beneath the car.

Our solution was to run an additional “smooth” detector in parallel with the haz-
ard detector. The maximum and minimum z heights occurring during 100ms inte-
gration periods are stored in the gridmap. Next, 3x3 neighborhoods of the gridmap

A Perception-Driven Autonomous Urban Vehicle 189

are examined: if all nine areas have received a sufficient number of measurements
and the maximum difference in z is small, the grid-cell is labeled as “smooth”. This
classification overrides any hazard detection. If a car drives through our field of
view, it may result in temporary hazards, but as soon as the ground beneath the car
is visible, the ground will be marked as smooth instead.

The output of the hazard and smooth detector is shown in Figure 26(a). Red is
used to encode hazards of various intensities while green represents ground labelled
as smooth.

4.3.2 Hazards as High-Cost Regions
The hazard map was incorporated by the Drivability Map as high-cost regions.
Motion plans that passed over hazardous terrain were penalized, but not ruled-out
entirely. This is because the hazard detector was prone to false positives for two
reasons. First, it was tuned to be highly sensitive so that even short curbs would be
detected. Second, since the cost map was a function of the worst-ever seen z slope, a
false-positive could cause a phantom hazard that would last forever. In practice, as-
sociating a cost with curbs and other hazards was sufficient to keep the vehicle from
running over them; at the same time, the only consequence of a false positive was
that we might veer around a phantom. A false positive could not cause the vehicle
to get stuck.

4.3.3 Road-Edge Detector
Hazards often occur at the road edge, and our detector readily detects them. Berms,
curbs, and tall grass all produce hazards that are readily differentiated from the road
surface itself.

We detect the road-edge by casting rays from the vehicle’s current position and
recording the first high-hazard cell in the gridmap (see Figure 13(a)). This results in
a number of road-edge point detections; these are segmented into chains based on

(a) (b)

Fig. 13. Hazard Map: Red is hazardous, cyan is safe. (a) Rays radiating from vehicle used to
detect the road-edge. (b) Poly-lines fitted to road-edge.

190 J. Leonard et al.

their physical proximity to each other. A non-parametric curve is then fitted through
each chain (shown in Figure 13(b)). Chains that are either very short or have exces-
sive curvature are discarded; the rest are output to other parts of the system.

4.4 Lane Finding

Our approach to lane finding involves three stages. In the first, the system detects
and localizes painted road markings in each video frame, using lidar data to re-
duce the false-positive detection rate. A second stage processes the road-paint detec-
tions along with lidar-detected curbs (see Section 4.3) to estimate the centerlines of
nearby travel lanes. Finally, the detected centerlines output by the second stage are
filtered, tracked, and fused with a weak prior to produce one or more non-parametric
lane outputs.

4.4.1 Absolute Camera Calibration
Our road-paint detection algorithms assume that GPS and IMU navigation data are
available of sufficient quality to correct for short-term variations in vehicle heading,
pitch, and roll during image processing. In addition, the intrinsic (focal length, cen-
ter, and distortion) and extrinsic (vehicle-relative pose) parameters of the cameras
have been calibrated ahead of time. This “absolute calibration” allows preprocessing
of the images in several ways (Figure 14):

• The horizon line is projected into each image frame. Only pixel rows below this
line are considered for further processing.

• Our lidar-based obstacle detector supplies real-time information about the loca-
tion of obstructions in the vicinity of the vehicle. These obstacles are projected
into the image and their extent masked out during the paint-detection algorithms,
an important step in reducing false positives.

• The inertial data allows us to project the expected location of the ground plane
into the image, providing a useful prior for the paint-detection algorithms.

Fig. 14. Use of absolute camera calibration to project real-world quantities into the image.

A Perception-Driven Autonomous Urban Vehicle 191

• False paint detections caused by lens flare can be detected and rejected. Know-
ing the time of day and our vehicle pose relative to the Earth, we can compute
the ephemeris of the sun. Line estimates that point toward the sun in image co-
ordinates are removed.

4.4.2 Road-Paint Detection
We employ two algorithms for detecting patterns of road paint that constitute lane
boundaries. Both algorithms accept raw frames as input and produce sets of con-
nected line segments, expressed in the local coordinate frame, as output. The al-
gorithms are stateless; each frame from each camera is considered independently,
deferring spatial-temporal boundary fusion and tracking to higher-level downstream
stages.

The first algorithm applies one-dimensional horizontal and vertical matched fil-
ters (for lines along and transverse to the line of sight, respectively) whose support
corresponds to the expected width of a painted line marking projected onto each im-
age row. As shown in Figure 15, the filters successfully discard most scene clutter
while producing strong responses along line-like features. We identify local maxima
of the filter responses, and for each maximum compute the principal line direction
as the dominant eigenvector of the Hessian in a local window centered at that max-
imum. The algorithm finally connects nearby maxima into splines that represent
continuous line markings; connections are established by growing spline candidates
from a set of random seeds, guided by a distance transform function generated from
the entire list of maxima.

The second algorithm for road-paint detection identifies potential paint boundary
pairs that are proximal and roughly parallel in real-world space, and whose local
gradients point toward each other (Figure 16). We compute the direction and magni-
tude of the image’s spatial gradients, which undergo thresholding and non-maximal
suppression to produce a sparse feature mask. Next, a connected components algo-
rithm walks the mask to generate smooth contours of ordered points, broken at dis-
continuities in location and gradient direction. A second iterative walk then grows
centerline curves between contours with opposite-pointing gradients. We enforce
global smoothness and curvature constraints by fitting parabolas to the resulting
curves and recursively breaking them at points of high deviation or spatial gaps. We
finally remove all curves shorter than a given threshold length to produce the final
road paint-line outputs.

4.4.3 Lane Centerline Estimation
The second stage of lane finding estimates the geometry of nearby lanes using a
weighted set of recent road paint and curb detections, both of which are represented
as piecewise linear curves. Lane centerlines are represented as locally parabolic
segments, and are estimated in two steps. First, a centerline evidence image D is
constructed, where the value of each pixel D(p) of the image corresponds to the
evidence that a point p = [px, py] in the local coordinate frame lies on the center of

192 J. Leonard et al.

Fig. 15. The matched filter based detector from start to finish. The original image is con-
volved with a matched filter at each row (horizontal filter shown here). Local maxima in the
filter response are enumerated and their dominant orientations computed. The figure depicts
orientation by drawing the perpendiculars to each maximum. Finally, nearby maxima are
connected into cubic hermite splines.

a lane. Second, parabolic segments are fit to the ridges in D and evaluated as lane
centerline candidates.

To construct D, road paint and curb detections are used to increase or decrease
the values of pixels in the image, and are weighted according to their age (older
detections are given less weight). The value of D at a pixel corresponding to the
point p is computed as the weighted sum of the influences of each road paint and
curb detection di at the point p:

D(p) = ∑
i

e−a(di)λ g(di,p)

where a(di) denotes how much time has passed since di was received, λ is a decay
constant, and g(di,p) is the influence of di at p. We chose λ = 0.7.

Before describing how the influence is determined, we make three
observations. First, a lane is more likely to be centered 1

2 lane
width from a strip of road paint or a curb. Second, 88% of feder-
ally managed lanes in the U.S. are between 3.05 m and 3.66 m wide

A Perception-Driven Autonomous Urban Vehicle 193

Fig. 16. Progression from original image through smoothed gradients, border contours, and
symmetric contour pairs to form centerline candidate.

(USDOT Federal Highway Administration, Office of Information Management, 2005).
Third, a curb gives us different information about the presence of a lane than does
road paint. From these observations and the characteristics of our road paint and
curb detectors, we define two functions frp(x) and fcb(x), where x is the Euclidean
distance from di to p:

frp(x) = −e−
x2

0.42 + e−
(x−1.83)2

0.14 (1)

fcb(x) = −e−
x2

0.42 . (2)

The functions frp and fcb are intermediate functions used to compute the influ-
ence of road paint and curb detections, respectively, on D. frp is chosen to have a
minimum at x = 0, and a maximum at one half lane width (1.83 m). fcb is always
negative, indicating that curb detections are used only to decrease the evidence for a
lane centerline. This addressed our curb detector’s occasional detection of curb-like
features where no curbs were present. Let c indicate the closest point on di to p. The
actual influence of a detection is computed as:

g(di,p) =

⎧
⎨

⎩

0 if c is an endpoint of di

frp(||p− c||) if di is road paint
fcb(||p− c||) if di is a curb

This last condition is introduced because road paint and curbs are only observed in
small sections. The effect is that a detection influences only those centerline evi-
dence values immediately next to the detection, and not in front of or behind it.

In practice, D can be initialized once and incrementally updated by adding the
influences of newly received detections and applying an exponential time decay
at each update. Once D has been constructed, the set R of ridge points is identified by

194 J. Leonard et al.

Fig. 17. Our system constructs a centerline evidence image using road edge and road paint
detections. Lane centerline candidates (blue) are identified by fitting parabolic segments to
the ridges of the image. Front-center camera is shown in top left for context.

scanning D for points that are local maxima along either a row or a column, and
also above a minimum threshold. Next, a random sample consensus (RANSAC)
algorithm (Fischler and Bolles, 1981) is used to fit parabolic segments to the ridge
points. At each RANSAC iteration, three ridge points are randomly selected for
a three-point parabola fit. The directrix of the parabola is chosen to be the first
principle component of the three points.

To determine the set of inliers for a parabola, we first compute its conic coefficient
matrix C (Hartley and Zisserman, 2001), and define the set of candidate inliers L to
contain the ridge points within some algebraic distance α of C.

L = {p ∈ R : pT Cp < α}

For our experiments, we chose α = 1. The parabola is then re-fit once to L using a
linear least-squares method, and a new set of candidate inliers is computed. Next, the
candidate inliers are partitioned into connected components, where a ridge point is
connected to all neighboring ridge points within a 1m radius. The set of ridge points
in the largest component is chosen as the set of actual inliers for the parabola. The
purpose of this partitioning step is to ensure that a parabola cannot be fitted across
multiple ridges, and requires that an entire identified ridge be connected. Finally, a
score for the entire parabola is computed.

score = ∑
p∈L

1
1 + pT Cp

The contribution of an inlier to the total parabola score is inversely related to
the inlier’s algebraic distance, with each inlier contributing a minimum amount to
the score. The overall result is that parabolas with many very good inliers have
the greatest score. If the score of a parabola is below some threshold, then it is
discarded.

After a number of RANSAC iterations (we found 200 to be sufficient), the
parabola with greatest score is selected as a candidate lane centerline. Its inliers

A Perception-Driven Autonomous Urban Vehicle 195

are removed from the set of ridge points, and all remaining parabolas are re-fit and
re-scored using this reduced set of ridge points. The next best-scoring parabola is
chosen, and this process is repeated to produce at most 5 candidate lane centerlines
(Figure 17).

4.4.4 Lane Tracking
The primary purpose of the lane tracker is to maintain a stateful, smoothly time-
varying estimate of the nearby lanes of travel. To do so, it uses both the candidate
lane centerlines produced by the centerline estimator and an a-priori estimate de-
rived from the RNDF. For the purposes of our system, the RNDF was treated as a
strong prior on the number and type of lanes, and a weak prior on their position and
geometry.

As the vehicle travels, it constructs and maintains representations of all portions
of all lanes within a fixed radius of 75m. The centerline of each lane is modeled as
a piecewise linear curve, with control points spaced approximately every 2m. Each
control point is given a scalar confidence value indicating the certainty of the lane
tracker’s estimate at that point. The lane tracker decays the confidence of a control
point as the vehicle travels, and increases it either by detecting proximity to an
RNDF waypoint or by updating control points with centerline estimates produced
from the second stage.

As centerline candidates are generated, the lane tracker attempts to match each
candidate with a tracked lane. If a matching is successful, then the candidate is used
to update the lane estimate. To determine if a candidate c is a good match for a
tracked lane l, the longest segment sc of the candidate is identified such that every
point on sc is within some maximum distance τ to l. We then define the match score
m(c, l) as:

m(c, l) =
∫

sc

1 +
τ−d(sc(x), l)

τ
dx

where d(p, l) is the distance from a point p to the lane l. Intuitively, if sc is suffi-
ciently long and close to this estimate, then it is considered a good match. We choose
the matching function to rely only on the closest segment of the candidate, and not
on the entire candidate, based on the premise that as the vehicle travels, the por-
tions of a lane that it observes vary smoothly over time, and previously unobserved
portions should not adversely affect the matching as long as sufficient overlap is
observed elsewhere.

Once a centerline candidate has been matched to a tracked lane, it is used to up-
date the lane estimates by mapping control points on the tracked lane to the center-
line candidate, with an exponential moving average applied for temporal smoothing.
At each update, the confidence values of control points updated from a matching are
increased, and others are decreased. If the confidence value of a control point de-
creases below some threshold, then its position is discarded and recomputed as a
linear interpolation of its closest surrounding confident control points.

196 J. Leonard et al.

5 Planning and Control Algorithms

This section explains the planning and control algorithms developed for the Talos
vehicle. The Navigator dictates the mission-level behavior of the vehicle. The Mo-
tion Planner, Drivability Map and Controller operate in a tight coupling to achieve
the required motion control objective set by the Navigator though the often complex
and unpredictable driving environment.

5.1 Navigator

The Navigator is responsible for planning the high-level behavior of the vehicle
including:

• Shortest route to the next MDF checkpoint
• Intersection precedence, crossing, and merging
• Passing
• Blockage replanning
• Generation of the goal for the Motion Planner
• Generation of the failsafe timers
• Turn signaling

The key innovation of the Navigator is that high-level planning tasks (as in the list
above) are cleanly separated from low-level motion planning by a compact message
exchange. The Navigator directs the action of the Motion Planner (described below
in Section5.3) by manipulating the position of the goal, a point in the local frame
where the Navigator intends the vehicle to travel next over a 40–50 meter horizon. It
then becomes the Motion Planner’s responsibility to avoid obstacles, vehicles, and
obey lane constraints while attempting to reach this goal.

The primary inputs to the Navigator are the lane information, MDF, and the vehi-
cle pose. Twice per second the Navigator recomputes the closest lane to the vehicle
and uses that as the starting point for the search to the next MDF checkpoint. This
search of the road network uses the A� algorithm (Hart and Raphael, 1968) to find
the lowest cost path (smallest time) to the next checkpoint. The speed limit of each
road segment is used for this cost estimate with additional time penalties for each
lane change and intersection traversal. Since this search is run continuously at 2Hz,
dynamic replanning comes “for free” as conditions change since the costs of the
search are updated.

The primary output of the Navigator is the goal point which is sent to the Motion
Planner. The goal is generally located at RNDF waypoints since these locations are
guaranteed to be on the road. As the vehicle gets close to a goal, the goal is moved
ahead to the next waypoint before the vehicle is so close that it would need to slow
down to avoid overshooting. In this way, the goal acts as a “carrot” to motivate the
Motion Planner. If the Navigator wishes the car to stop at an intersection, it keeps
the goal fixed on the stop line. The Motion Planner will then bring the vehicle to a
controlled stop. Once the intersection is clear, the goal is switched to the waypoint
at the exit of the intersection. Parking is executed in a similar fashion.

A Perception-Driven Autonomous Urban Vehicle 197

Fig. 18. The Navigator’s view of intersection precedence. PX means there is a car with prece-
dence at that entrance, and PC means there is no car, or the car at the stop line does not have
precedence. IX means there is a moving object in the intersection. Talos is clear to proceed
when all PX states have transitioned to PC and IX has transitioned to IC.

5.1.1 Intersection Precedence
The logic for intersection precedence, crossing, and merging with moving traffic
lies entirely within the Navigator. As previously described, moving the goal is the
mechanism by which the Navigator influences the Motion Planner in such situations.
This separation has the extra benefit of significantly reducing the complexity of the
Motion Planner.

When our vehicle arrives at an intersection, the other intersection entrances are
inspected for large obstacles. If a large obstacle is present, then it is considered to
be another vehicle and given precedence. Then, as the vehicle waits, if any of the
following three conditions become true, the other vehicle no longer has precedence:
1) that vehicle begins moving into the intersection, 2) that obstacle disappears for
more than four seconds, or 3) the traffic jam timer expires. Talos also waits whenever
there is a moving obstacle present in the intersection whose trajectory will not take
it outside the intersection within one second. Figure 18 shows a snapshot of an
intersection with these tests in progress.

Crossing and merging is implemented using time-to-collision (TTC) logic. Upon
arrival at an intersection, Talos comes to a stop if forward progress would cross or
merge with any lane of traffic that does not have a stop sign. For each of these lanes,
Talos finds the point where its path intersects the other lane’s path and measures
the TTC for any incoming traffic from that lane. If the TTC is less than 9 seconds,
Talos yields to the moving traffic. Talos came to a full stop whenever the vehicle
is on an RNDF “exit” that crosses another RNDF exit and both do not have stop
signs. This addresses the fact that the RNDF format does not differentiate between
exits in which Talos can proceed without stopping and exits in which a full stop
is required.

198 J. Leonard et al.

5.1.2 Passing
The Navigator can control passing behavior using an additional state that it sends
to the Motion Planner. Besides the goal, the Navigator continuously informs the
Motion Planner whether only the current lane is acceptable for travel, or both the
current and opposing lanes are acceptable. When Talos comes to a stop behind a
stopped vehicle, the Navigator first ascertains whether passing is allowed (i.e. on a
two-lane road and not in a safety area). If allowed, the Navigator checks that the
opposing lane is clear and if so, signals to the Motion Planner that travel is allowed
in the opposing lane. The goal position is not changed. If the motion planner is able
to find a path around the stopped vehicle, it will then begin moving again.

5.1.3 Blockages and Failsafe Modes
In order to handle unexpected or unpredictable events that could occur in an ur-
ban environment, we use failsafe and blockage timers. The failsafe timer ticks up-
ward from zero whenever the vehicle is not making forward progress. Upon making
progress, the timer resets to zero. Upon reaching 80 seconds, we increment the fail-
safe mode and reset the timer back to zero. Thus, normal operation is failsafe mode
0. Once Talos is in failsafe mode 1, the vehicle has to traverse a pre-determined
distance in the RNDF before the mode is decremented back to zero. This combina-
tion of timer and mode ensures that the failsafe behaviors are phased out slowly
once Talos starts making progress rather than immediately reverting as soon as
the vehicle starts moving. Other modules in the system can change their behav-
ior based on the value of the failsafe mode and timer to encourage the vehicle to
get “un-stuck”.

The following summarizes the multiple layers of failsafe logic implemented in
various modules:

• Failsafe mode 0:
10 sec: Relax the center line constraint of the road to allow passing
10 sec: Shrink the margin retained around obstacles from 30 cm to 15 cm
15 sec: Enable reverse gear motion plans
20 sec: Shrink the margin retained around obstacles from 15 cm to 0 cm
30 sec: Make curbs drivable with a high penalty instead of impassable
35 sec: Unrestrict the area around the goal
80 sec: Go to Failsafe mode 1

• Failsafe mode 1:
0 sec: Do not observe standoff distances from stationary obstacles
0 sec: Allow crossing of zone boundaries anywhere
80 sec: Go to Failsafe mode 2

• Failsafe mode 2:
0 sec: Do not observe standoff distances from moving obstacles
0 sec: Drop lane constraints completely and navigate as if the area were an

obstacle field

A Perception-Driven Autonomous Urban Vehicle 199

0 sec: Shrink the vehicle footprint used for the feasibility check; when the
vehicle moves forward, neglect the part of it behind the rear axle; when in
reverse, neglect the part of it in front of the front axle

70 sec: Skip the next MDF checkpoint
80 sec: Go to Failsafe mode 3

• Failsafe mode 3:
0 sec: Restart all the processes except the logger, ADU, and process manager.

Since the Navigator is restarted Talos will be in Failsafe mode 0 after the
restart.

In addition, detection parameters for the underlying obstacle detectors are relaxed
in higher failsafe modes, although never to the point that Talos would drive into a
clearly visible obstacle.

The blockage timer behaves similarly to the failsafe timer but only ticks upward
if Talos is on a two-way road where a U-turn is possible. If the timer reaches 50
seconds of no progress, Talos begins a U-turn by moving the goal to a point behind
the vehicle in the opposite lane.

When maneuvers such as U-turns and passing are in highly confined spaces, they
can take appreciable time without making much forward progress. In order to ensure
that the maneuver being executed is not interrupted, the failsafe and blockage timers
increment more slowly when the Motion Planner has found a solution to execute.

5.2 Drivability Map

To enable the path planning algorithm to interface with the perceived environment,
the perception data is rendered into a Drivability Map, shown in Figure 19. The
Drivability Map consists of: (a) infeasible regions which are no-go areas due to
proximity to obstacles or undesirable locations; (b) high-cost regions which should
be avoided if possible by the motion plan, and (c) restricted regions that may only
be entered if the vehicle can stop in an unrestricted area further ahead. Restricted re-
gions are used to permit minor violations of the lane boundaries if it makes progress
down the road. Restricted regions are also used behind vehicles to enforce the req-
uisite number of car lengths’ stand-off distance behind a traffic vehicle. If there is
enough room to pass a vehicle without crossing the lane boundary (for instance if
the vehicle is parked on the side of a wide road), Talos will traverse the restricted
region and pass the vehicle and continue in the unrestricted region in front. If the
traffic vehicle blocks the lane, Talos will not enter the restricted region because there
is no unrestricted place to go. The vehicle will stop behind the restricted region in
a vehicle-queuing behavior until the traffic vehicle moves or a passing maneuver
begins.

As discussed previously, the Navigator contains a cascade of events triggered by
a prolonged lack of progress. For example, after 10 seconds of no progress queuing
behind a stationary vehicle the Navigator will enter the passing mode. This mode
amounts to a relaxation of the lane center-line constraint. The Drivability Map will

200 J. Leonard et al.

Fig. 19. Drivability Map visualization. [White on Green] Short-term goal location. [Red]
Infeasable regions are off-limits to the vehicle. [Blue] Restricted regions may only be entered
if the vehicle can stop in an unrestricted region further ahead. [White or Gray] High-cost
regions indicate regions accessible to the vehicle.

then carve out the current and oncoming lanes as drivable. Given no obstacles, Ta-
los will then plan a passing trajectory around the stopped vehicle. Static obstacles
are rendered in the drivability map as infeasible regions expanded by an additional
30cm to permit a hard margin of safety. If the vehicle makes no progress for a
prolonged period of time this margin reduces down to 0 to enable the vehicle to
squeeze through a tight fit. The vehicle still should not hit an observed obstacle.
As mentioned previously, no explicit vehicle detection is done; instead, moving ob-
stacles are rendered in the Drivability Map with an infeasible region projected in
front of the vehicle in proportion to the instantaneous vehicle velocity. As shown in
Figure 20(a), if the moving obstacle is in a lane, the infeasible region is projected
down the lane direction. If the moving obstacle is in a zone, there is no obvious
intended direction so the region is projected in the velocity direction only. In an in-
tersection the obstacle velocity direction is compared with the intersection exits. If
a good exit candidate is found, a second region is projected from the obstacle to the
exit waypoint (Shown in Figure 20(b)).

Originally only the length of the path that did not collide with an obstacle or lane
was used to find optimal trajectories. This could select paths very close to obstacles.
A significant refinement of this approach was the inclusion of the notion of risk. In
the refined approach, when evaluating the feasibility of a trajectory, the Drivability
Map also returns a penalty value, which represents how close the trajectory is to
constraints such as obstacles and lane boundaries. The Motion Planner uses the sum
of this penalty and the time required to reach the goal point as the cost of each
trajectory. Using this combined metric, the best trajectories tend to stay away from
obstacles and lane boundaries, while allowing the car to get close to constraints on
a narrow road.

A Perception-Driven Autonomous Urban Vehicle 201

(a)

(b)

Fig. 20. (a) An infeasible region is projected down the lane excluding maneuvers into on-
coming vehicles. (b) Within an intersection an infeasible region is created between a moving
obstacle and the exit matching the velocity direction.

Object tracks where the intended path was not known, such as in intersections or
zones, were propagated by three seconds using a constant velocity model.

5.2.1 Lane Boundary Adjustment
When the vision system is used as the primary source of lane estimates, the differ-
ence between the RNDF-inferred lanes and the vision-based lanes can be significant.
When the vision system suddenly loses a tracked lane or acquires a new lane, the
lane estimate can jump by more than a meter, rendering the current pose of the
car in an “infeasible” region (outside of the estimated lane). To provide the Motion
Planner with a smooth transition of lane boundary constraints, the lane boundaries
are adjusted using the current vehicle configuration. Figure 21 shows a case where
the vehicle is not inside the latest estimate of the lane boundaries. By marking the
region from the current configuration to some point in front on the lane as drivable,
the adjustment resolves the initial infeasibility issue. This is also useful when the car
happens to drive across a lane boundary, because the Motion Planner will no longer
apply hard braking simply because the car has violated a lane boundary constraint.

A similar adjustment is also made when the vision system does not detect any
signs of a lane, but curbs are detected by the lidars. In such a case, the RNDF-
inferred lanes are adjusted to match the curbs, to avoid having conflicting constraints
for the curbs and RNDF-inferred lanes.

202 J. Leonard et al.

Fig. 21. “Stretchy” lane adjustment. When the vehicle is off the lane, the lane is adjusted so
that the vehicle does not brake as a result of crossing the lane boundary.

Each iteration of the Motion Planner performs many checks of potential trajec-
tories against the Drivability Map, so for computational efficiency the Drivability
Map runs in a separate thread inside the Motion Planner module.

5.3 Motion Planner

The Motion Planner receives an RNDF point from the Navigator as a goal. The
output is a path and a speed command that the low-level controller is going to use.
The plan to the controller is sent at 10 Hz. The approach is based on the Rapidly-
exploring Random Tree (RRT) (LaValle and Kuffner, 2001), where the tree of kino-
dynamically feasible trajectories is grown by sampling numerous points randomly.
The algorithm is shown in Algorithm 2. The basic idea is to generate a sample and
run the forward simulation of the vehicle-controller system. The simulated trajectory
is checked with the Drivability Map, and the sample is discarded or added to the tree
based on the feasibility. In order to efficiently generate the path in the dynamic and
uncertain environment, several extensions have been made (Frazzoli, 2001) to the
standard RRT, as discussed in the subsections below.

5.3.1 Planning over Closed-Loop Dynamics
The first extension is to sample the input to the controller and run closed-loop
simulation. RRT approaches typically sample the input to the vehicle. However, if
the vehicle is unstable, it is difficult for random sampling to construct stable trajec-
tories. Furthermore, the input to the vehicle must change at a high rate to achieve
smooth overall behavior, requiring either samples be taken at a very high rate or an
arbitrary smoothing process be used. By first closing the loop on the vehicle with a

A Perception-Driven Autonomous Urban Vehicle 203

Algorithm 2. RRT-based planning algorithm
1: repeat
2: Receive the current vehicle states and environment.
3: Propagate the states by the computation time limit.
4: repeat
5: Take a sample for the input to the controller
6: Select a node in the tree using heuristics
7: Propagate from the selected node to the sample
8: if The propagated path is feasible with the drivability map then
9: Add branch nodes on the path.

10: Add the sample and the branch nodes to the tree.
11: for Each newly added node v do
12: Propagate to the target
13: if The propagated path is feasible with the Drivability Map then
14: Add the path to the tree
15: Set the cost of the propagated path as the upper bound of cost-to-go at v
16: end if
17: end for
18: end if
19: until Time limit is reached
20: Choose the best trajectory in the tree, and check the feasibility with the latest Driv-

ability Map
21: if The best trajectory is infeasible then
22: Remove the infeasible portion from the tree and Go to line 20
23: end if
24: Send the best trajectory to the controller
25: until Vehicle reaches the target.

stabilizing controller and then sampling the input to the vehicle-controller system,
our approach easily handles vehicles with unstable dynamics.

The behavior of the car is then predicted using forward simulation. The simula-
tion involves a model of the vehicle and the exact same implementation of the ex-
ecution controller that is discussed in Subsection 5.4. Because the controller tracks
the reference, the prediction error of this closed-loop approach is much smaller than
the open-loop prediction that uses only the vehicle dynamics in a forward simula-
tion. As shown in Figure 22, the tree consists of the input to the controller (shown
in blue) and the predicted trajectory (shown in green and red).

This closed-loop RRT has several further advantages. First, the forward simula-
tion can easily incorporate any nonlinear controller or nonlinear dynamics of the
vehicle. Second, the output of the closed-loop simulation is dynamically feasible by
construction. Third, since the controller handles the low-level tracking, the RRT can
focus on macro behaviors by giving the controller a straight-line path to the target
or a path that follows the lane center. This significantly simplifies the tree expansion
and is suitable for real-time planning.

204 J. Leonard et al.

Fig. 22. Illustration of RRT Motion planning. Each leaf of the tree represents a stopping lo-
cation. The motion control points (in blue) are translated into a predicted path. The predicted
paths are checked for drivability (shown in green and red).

5.3.2 Maintaining Safety as an Invariant Set
Ensuring the safety of the vehicle in a dynamic and uncertain environment is the
key feature of our planning system. Under normal driving conditions, once a car
comes to a stop, it can stay there for indefinite period of time and remain safe
(Schouwenaars et al., 2004). Using this stopped state as a safe invariant state, our
RRT requires that all the branches in the tree end with a stopped state. The large
circles in Figure 22 show the stopping nodes in the tree, and each forward simula-
tion terminates when the car comes to a stop. The existence of the stopping nodes
guarantees that there is always a feasible way to come to a safe stop when the car is
moving. Unless there is a safe stopping node at the end of the path, Talos does not
start executing it.

5.3.3 Biased Sampling
Another extension to the RRT algorithm is that it uses the physical and logical
structure of the environment to bias the sampling. The samples are taken in 2D
and they are used to form the input to the steering controller. To take a sample
(xsample,ysample), the following equation is used

A Perception-Driven Autonomous Urban Vehicle 205

[
xsample

ysample

]
=
[

x0

y0

]
+ r

[
cosθ
sinθ

]

r = σr|nr|+ r0

θ = σθ nθ + θ0

where nr and nθ are random variables that have Gaussian distributions, σr and σθ
give the 1-σ values of the radial and circumferential direction, r0 and θ0 are the
offsets, and (x0, y0) is the center of the Gaussian cloud. Figure 23(a) shows 100
samples and the 1-σ lines, with the following parameter values: σr = 10, σθ = π/4,
r0 = 5, θ0 = π/3, and (x0, y0) = (0, 0). Different bias values are used based on the
vehicle location, such as a lane, an intersection, or a parking lot. The situational
information from the Navigator such as speed limits, passing allowed, and U-turn
allowed, was also used to generate different sampling biases.

Figure 23(b) shows the samples generated while designing a U-turn maneuver. To
perform general N-point turns in cluttered environments, the sampling includes both
the forward and reverse traveling directions. A cone of forward samples is generated
to the left front of the vehicle to initiate the turn (it appears at the top left of the road
shown). A set of reverse samples is also generated, which appears to the right of
the road shown. These samples will be used after executing the first forward leg of
the turn. Then, another set of forward samples is generated to the left of the current
vehicle location (it appears at the bottom left of the road shown), for use when
completing the turn. For example, the parameter values used for each of these three
sets determining a U-turn maneuver are, respectively, σr1 = 8, σθ1 = π/10, r01 = 3,
θ01 = 4π/9; σr2 = 10, σθ2 = π/10, r02 = 5, θ02 = −π/4; σr3 = 12, σθ3 = π/10,
r03 = 7, θ03 = π . The first Gaussian cloud is centered on the location of the vehicle
before initiating the U-turn maneuver, whether the two other clouds are centered on
the location of the previous sample.

0 5 10 15 20

10

0

5

10

15

20

Samples
σ line

(a) (b)

Fig. 23. (a) Biased Gaussian samplings. The x, y axes are in [m]. (b) Biased sampling for
three-point turns – Talos shown in position after the first forward leg of the turn.

206 J. Leonard et al.

The use of situational/environmental structure for biasing significantly increases
the probability of generating feasible trajectories, making the RRT suitable for the
real-time applications. Team MIT used a single planner for the entire race, which
shows the flexibility and the extensibility of this planning algorithm.

5.3.4 Lazy Re-evaluation
In a dynamic and uncertain environment, the situational awareness is constantly
changing, but checking the feasibility of the entire tree against the latest Drivability
Map is time consuming. The system checks the feasibility of the path when it is gen-
erated (Algorithm 2, line 8), but not re-evaluate its feasibility until it is selected as
the best path to be executed (Algorithm 2, line 21). This “lazy check” approach sig-
nificantly reduced the time spent checking the feasibility using the Drivability Map,
but still ensured that the path that was sent to the Controller was always feasible
with respect to the latest perceived environment.

5.4 Controller

The Controller takes the motion plan and generates gas, brake, steering and gear
shift commands (collectively referred to as the control signals) that track the desired
motion plan. The motion plan contains the same information as the controller in-
put used in the planner prediction, and consists of a list of (x, y) points that define
the piece-wise linear reference path for the steering controller and the associated
reference speed. The Controller has two components: a pure-pursuit steering con-
troller and the proportional-integral (PI) speed controller. A pure-pursuit algorithm
is used for steering control because it has demonstrated excellent tracking perfor-
mance for both ground and aerial vehicles over many years (Kelly and Stentz, 1997;
Park et al., 2007). A simple PI controller is implemented to track the commanded
speed. These two core modules are embedded in the execution controller, but also
within the motion planner for trajectory prediction, as discussed in Subsection 5.3.
The generated control signals are sent to ADU for actuation, and the Controller loop
runs at 25 Hz.

5.4.1 Steering Controller
The low-level steering control uses a modified version of the pure pursuit control
law (Kelly and Stentz, 1997; Park et al., 2007) to steer the vehicle along the desired
path. The steering control law is given by

δ =− tan−1

(
Lsin η

L1
2 + la cosη

)

where L is the constant vehicle wheelbase, la is the constant distance between
the pure pursuit anchor point and the rear axle, η is the angle between the vehi-
cle heading and reference path direction, and L1 is the look-ahead distance that
determines how far ahead on the reference path the controller should be aiming.

A Perception-Driven Autonomous Urban Vehicle 207

0 2 4 6 8 10
0

2

4

6

8

10

12

speed command (m/s)

L1
 d

is
ta

nc
e

(m
)

Fig. 24. L1 distance as a function of the commanded speed.

A smaller L1 produces a high-gain controller with better tracking performance.
However, to ensure stability against the system delay, L1 must be enlarged with
speed (Park et al., 2007). Figure 24 plots the relation between the L1 and the com-
manded speed. The L1 has a minimum value to ensure that the controller is stable
at low speed. The L1 is also capped from above, to ensure that the look-ahead point
stays on a path within a reliable sensing range.

To improve trajectory tracking performance, the controller scales L1 as a function
of the commanded speed. Up to the time of site visit in June 2007, L1 was deter-
mined as a function of the measured vehicle speed. The result was that any error
in the speed prediction would translate into a different L1 being used by the Mo-
tion Planner prediction and the Controller execution, which effectively changes the
gain of the steering controller. In the final approach, the RRT planner determines the
commanded speed profile, with the result that the speed and steering controllers are
decoupled.

5.4.2 Speed Controller
The speed controller is a low-bandwidth controller with the following gains

u = Kp(v− vref)+ Ki

∫
(v− vref)dt

Kp = 0.2

Ki = 0.04.

The output of the speed controller u is a normalized value between −1 and +1.
Using a piecewise linear mapping shown in Figure 25, u is converted to the voltage
command to ADU. Note that the initial testing revealed that the EMC vehicle inter-
face has a deadband between 1850 mV and 3200 mV. To achieve a smooth coasting
behavior, when the normalized controller output is small, (i.e. |u| ≤ 0.05), no gas or
brake is applied. To skip the deadband and quickly respond to the controller com-
mand, the small positive output (u = 0.05) corresponds to the upper limit of the

208 J. Leonard et al.

0 0.5 1

500

1000

1500

2000

2500

3000

3500

4000

4500

normalized controller output

vo
lta

ge
 c

om
m

an
d

(m
V

)

Fig. 25. Conversion from the speed controller output to the ADU command voltage.

deadband 3200 mV, and the small negative output (u = −0.05) corresponds to the
lower limit of the deadband 1850 mV.

To help reduce the prediction error, the commanded speed is tied to the predicted
vehicle location, rather than time. The time-based reference leads to a coupling be-
tween the steering and speed controllers, even when L1 is scheduled as a function of
the commanded speed. For example, if the actual vehicle speeds up slower than the
prediction with a ramp-up speed command, the time-based speed command would
make L1 larger than the predicted L1 when reaching the same position. This differ-
ence in L1 can lead to significant steering error. The space-based reference makes
the steering performance relatively insensitive to these types of speed prediction
errors.

6 Challenge Results

To complete the DARPA Urban Challenge, Talos successfully negotiated first the
National Qualifying Event (NQE) and then race itself. This section reviews the ve-
hicle’s performance in these events.

6.1 National Qualifying Event (NQE) Performance

The NQE trials consisted of three test areas. Area A tested merging into traffic
and turning across traffic. Area B tested navigation in suburban crescents, parking
and passing of stopped vehicles. Area C tested intersection precedence and route
blockage replanning. The NQE was also the first chance to test Talos in a DARPA-
designed course and RNDF. On day one we were testing not only our ability to
complete the mission, but also the compatibility of coordinate systems and RNDF
conventions. Team MIT completed one mission a day for the first three days of the
qualifier, with a five-mission endurance test on the fourth day, as shown in Table 1.

Successful negotiation of the NQE trials, and later, the race, required macro-level
behavior tuning to manage trade-offs in uncertain scenarios:

A Perception-Driven Autonomous Urban Vehicle 209

Table 1. Results for all of Talos’ NQE tests

Day Date NQE Schedule Outcome
1 Sat. 27th Oct Area B 1st trial Completed.
2 Sun. 28th Oct Area C 1st trial Completed, but went around the roadblock.
3 Mon. 29th Oct Area A 1st trial Completed – Safe, but slow (7 laps in 24 minutes)
4 Tue. 30th Oct Area B 2nd trial Still progressing, but ran out of time.

Area C 2nd trial Went off-road after 2nd K-turn at blockage.
Area A 2nd trial Completed – Safe and faster (10 laps in 12 minutes)
Area B 3rd trial Completed.
Area C 3rd trial Completed after recovery from K-turn at first blockage.

5 Wed. 31st Oct —

• No progress due to a road blockage versus a perception failure (such as a mis-
detected curb cut).

• No progress due to a vehicle to queue behind & pass versus a perception failure
(like a lane positioning error).

• Safe versus overly cautious behavior.

After leaving the start chute, Talos was reluctant to leave the Start Zone. The
boundary from the raised Start Zone into Challenge Lane was in fact a six-inch drop
smoothed by a green ramp. This drop-off was detected by our vehicle as a ditch.
Figure 26(a) shows how the drop-off appeared to our vehicle. Reluctant to drive
down such a drop-off, the vehicle looked for an alternate route. Unable to make
progress, the failsafe logic eventually relaxed the constraint that had been avoiding
the ditch. The vehicle then drove down Challenge Lane.

Figure 26(b) shows how our system relies on local perception to localize the RNDF
map data. The lane ahead of the vehicle is dilated, representing the potential ambi-
guity in where the lane may actually be. The dilation contracts to the lane position
at certain control points either because of a close GPS waypoint or lane tracking.

During Talos’ first parking attempt, we struck the first difference in the way Team
MIT and DARPA interpreted the RNDF. Figure 26(c) shows that the goal point
our vehicle is trying to drive to is under the parked vehicle in front. For parking
spots and other checkpoints, we attempted to get the vehicle center to cross the
checkpoint. To achieve this, we placed the goal location ahead of the checkpoint to
make the vehicle pass over the checkpoint. The positioning of the vehicles and the
parking spots indicates that DARPA simply required the vehicle to drive up to the
checkpoint in this test. The sampling strategy of the RRT planner assumed that the
parking spot was empty. The blocked parking spot caused many of the samples to be
discarded because the last portion of the trajectory was infeasible. This is why Talos
spent more than a minute in the parking zone. For the final race, a new sampling
strategy was developed that caused Talos to come as close to the checkpoint in the
parking spot as possible, which can be performed much more quickly. This figure
also shows some transient phantom obstacle detections caused by dust in the gravel
parking zone to the left of Talos.

210 J. Leonard et al.

(a) (b)

(c) (d)

Fig. 26. Area B 1st trial highlights. (a) Road-hazard map showing red line along end of zone.
The drop-off onto Challenge Lane was detected as a ditch. (b) Lane position uncertainty
between control points reflected by lane dilation. The road past where Talos can perceive it is
dilated reflecting the potential ambiguity in lane position. (c) Parking goal position under car
in front. (d) a virtual blockage used to enforce passing behavior causing undesired results.

To ensure that Talos would queue behind a slow-moving vehicle yet still pass
a stationary vehicle or obstacle, the system was designed to artificially choke off
the road beside an obstacle in the lane. Since Talos could then not make progress, it
would wait 10 seconds to determine if the obstacle was a vehicle moving slowly or a
stationary object. If the object remained still, Talos would begin a passing maneuver.
In the Gauntlet, this choke-off behavior misfired. Figure 26(d) shows our vehicle
waiting to go into passing mode beside a parked car. The road curvature causes the
obstacle to appear more directly in our lane than was actually the case. Stuck for a
time between the impassable regions generated from the vehicle on the right and a
Drivability Map rendering artifact on the left, Talos entered into the failsafe mode
with relaxed lane boundary constraints. Talos then sailed through the rest of the
Gauntlet and completed the mission. Note that the parked cars and obstacles still
appear as red infeasible regions off-limits to the vehicle.

Area C tested intersection precedence and blockage replanning. The vehicle did
very well at intersection precedence handling in many different scenarios. Fig-
ure 27(a) shows Talos correctly giving precedence to three traffic vehicles before go-
ing ahead of the second oncoming traffic vehicle. Figure 27(b) shows Talos queueing
behind a traffic vehicle before giving precedence at the intersection.

A Perception-Driven Autonomous Urban Vehicle 211

(a) (b)

(c) (d)

Fig. 27. Area C 1st trial highlights. (a) Intersection precedence with four traffic vehicles. (b)
Queuing before an intersection. (c) Attempting to go around a blockage. (d) “Failsafe mode
1” permits the vehicle to go around the blockage.

Blockage replanning was more challenging. Talos correctly detected and stopped
at the line of traffic barrels (see Figure 27(c)), and then its programming caused it
to try a passing attempt to drive around the blockage. After a predetermined period
where no progress was made, the system relaxed some of the perception constraints
(to account for the possibility that the road position had been poorly estimated, for
example) or declare a blockage and turn around. At the time of this test, the logic
was set up to relax the lane constraints prior to declaring a blockage, assuming that
a blockage would be truly impassable. Section 5.1.3 contains the logic. Figure 27(d)
shows the perceived world once in “Failsafe mode”. Once the lane constraints were
dropped, the route around the blockage was high cost, but passable, so Talos drove
around the blockage and finished the mission.

The Area A trial was a merging test with human-driven traffic vehicles. Leading
up to the trial, much emphasis was placed on safety, so on the evening before the
trial Team MIT reexamined and tested the logic used to determine when it was safe
to merge. Increased caution and an unexpected consequence of a bug fix prompted
the increase of Talos’ safety margin for merging from an 8-second window to a 13-
second window. As a result, during the Area A trial, Talos performed safely, but
very cautiously, as it was waiting for a 13-second window in the traffic, and such a
window rarely appeared. In the 24-minute trial, Talos completed only 7 laps.

212 J. Leonard et al.

(a) (b)

Fig. 28. Area A 1st trial highlights. (a) Vehicle approaching on the right is tracked despite
being occluded by a closer vehicle. (b) High traffic density makes for a long wait.

Figure 28(a) shows the vehicle track on the right approaching at 3.5m/s despite
being occluded by a vehicle in the closer lane tracked by the radar and lidar as
traveling at 3.9m/s and 4.3m/s, respectively.

Although the failsafe mode permitted Talos to complete the first Area B trial, the
team decided to fix the bugs that led to Talos ending up in this mode and only use
it as a last resort. On the second trial at Area B, many of the bugs seen during the
first trial were fixed, including: the dip leading out of the Start Zone, the rendering
artifact bug, and the parking spot location ahead of the checkpoint. However, a few
new issues arose.

On its route through the Gauntlet, Talos became stuck due to a combination of
a poor lane estimate, the virtual object used to force a passing behavior, and a bug
that would not permit Talos to go into passing mode if it was not fully within the
estimated lane, as shown in Figure 29(e). Eventually Talos made no progress for
long enough that a blockage was assumed. Talos then planned to turn around and
approach the checkpoint from the opposite direction. Figures 29(a) and (b) show the
originally planned route and the alternate route through the Gauntlet from the oppo-
site direction, respectively. Talos completed the Gauntlet in the opposite direction
and then needed to turn around again to hit the original checkpoint. Figure 29(c)
shows the intended route since the blockage now seems to have been removed. En-
route, Talos came across a legitimate road blockage shown in Figure 29(f). Talos
completed a K-turn and executed the revised plan shown in Figure 29(d). Talos con-
tinued to make progress, but given the extra distance traveled, it ran out of time
before completing the course.

During the second trial of Area C, the macro-behavior tuning had improved such
that Talos correctly inserted a blockage and made a K-turn instead of simply driving
around the blockage. However, during the second K-turn on the far side of the block-
age, a poor lane estimate and a restricted region generated by obstacles perceived to
be in the lane conspired to stall progress (shown in Figure 30(a)). Eventually, Talos
entered failsafe mode and proceeded with relaxed lane constraints and a reduced
restricted region. Unfortunately, as Talos was driving out of a successful K-turn
the no-progress timer triggered and Talos reconsidered its blockage choice. Talos
elected to block the current path and try the original route. In the recovery mode

A Perception-Driven Autonomous Urban Vehicle 213

(a) (b) (c) (d)

(e) (f)

Fig. 29. Area B 2nd trial highlights. (a), (b), (c), & (d) show a sequence of navigator plans.
After a blockage is declared in the Gauntlet, Talos attempts to reach the checkpoint from the
opposite direction. (e) Talos gets stuck and cannot go into passing mode due to a poor lane
estimate resulting in the appearance that it was not entirely in its lane. (f) This blockage was
real. Talos detects the blockage and completes a K-turn.

Talos was enabled to drive across curbs, behind the DARPA observation tent and
around the blockage to complete the mission (shown in Figure 30(b)). The DARPA
officials intervened.

For the second trial of Area A, the safety margin for merging (which, at 13 sec-
onds, had caused a significant amount of waiting in the first trial) was reduced to 9
seconds. The planning sequence was also modified so that the RRT planner could
prepare paths for Talos to follow while the Navigator waited for the crossing traffic
to clear the intersection. This improved the response time of the vehicle, and the
overall results were much better, with 10 laps in just 12 minutes. Figure 31 shows a
photo of Talos and a screenshot of the viewer output for this mission.

Figure 32 illustrates Talos’ performance in its Area B 3rd trial. In the Gauntlet,
the artificial choke on the road was removed, and passing was successful. Talos got
stuck on curbs a few times, probably due to inaccurate lane estimates, but otherwise
executed the mission well.

A consequence of our decision to treat environmental perception as a higher au-
thority than map data was that, at times, the lane estimate would snap to a new
confident estimate. Some basic transitioning was implemented in the drivablility
map to attempt to smooth the transition. In the best case the Motion Planner would
discover a new trajectory to the goal within the next planning iteration. If no forward

214 J. Leonard et al.

(a) (b)

Fig. 30. Area C 2nd trial highlights. (a) Progress is stalled during the second K-turn by a poor
lane estimate and a restricted region. (b) Failsafe mode is entered and would have permitted
a successful K-turn, except that the goal location now reverts to the far side of the blockage.

(a) (b)

Fig. 31. Area A 2nd trial highlights. (a) Talos is looking for smaller gaps than in the 1st trial.
(b) The RRT planner is working while waiting for oncoming traffic to clear.

plan could be found, the vehicle would begin an emergency brake. Occasionally the
vehicle would be placed too close to detected curbs. Although the vehicle footprint
is cleared of infeasible curbs, the areas around the vehicle were not edited in this
way. If curbs impeded progress, the vehicle would become “ship wrecked”. After
the no-progress timer got sufficiently high, the curbs were rendered as high cost in-
stead of infeasible and the vehicle would proceed. Figures 32(a) and (b) show how
the lane estimate can shift based on new data. The problem is a consequence of
limited development time. The intention was to use the detected curbs in the lane
estimation process for the race. As described in Section 4.4, the capability in the
software was present, but unfortunately the integration was a little too immature to
use in the race so the simpler “curbs as obstacles” approach was used.

A Perception-Driven Autonomous Urban Vehicle 215

(a) (b)

(c) (d)

Fig. 32. Area B 3rd trial highlights. (a) Without visual lane tracking, a curb-free space algo-
rithm localizes the lane. (b) Visual lane tracking often recovers, providing an improved road
estimate. (c) Without a virtual obstacle, passing will still occur as long as the object occupies
enough of the lane. Here the parked car still induces a passing behavior. (d) Once in passing
mode, parked cars are easily maneuvered around.

Figure 33 illustrates Talos’ performance in its Area C 3rd trial. After correctly
detecting the blockage, during the first K-turn, the vehicle drove off the road and the
pit crew was called to reposition the vehicle; after this intervention, Talos completed
the mission successfully.

6.2 UCE Performance

Overall, the team was very pleased with the performance of the vehicle during the
race. Figure 34 shows some general highlights of Talos’ performance during the
UCE. Figure 34(b) shows Talos driving down Phantom East. The vehicle speed
was capped at 25mph as this was the highest speed for which we had validated
our vehicle model. The radar in the picture reads 24mph. Figure 34(d) shows Talos
queuing patiently behind a metal pipe gate that had blown across an intersection
safety region. The gate was later forcefully removed by the DARPA officials. After
initially passing the Cornell chase vehicle, Figure 34(c) shows Talos slowing to

216 J. Leonard et al.

(a) (b)

Fig. 33. Area C 3rd trial highlights. After correctly detecting the blockage, Talos begins a
K-turn. The navigator’s plan changes. Talos enters failsafe mode, drives off-road, and is re-
covered by the pit crew. (b) After the intervention, Talos resumes, and its second K-turn goes
well.

merge safely behind the Cornell chase vehicle as the two lane road merges back
to one at the end of George Boulevard. Figure 34(e) shows an incident found while
reviewing the logs. Talos correctly yields to a traffic vehicle traveling at over 35mph.
The early detection by Talos’ radar suite on the crescent road potentially saved the
vehicle from a race-ending collision. Finally, Figure 34(f) shows Talos crossing the
finish line after completing the final mission.

The race consisted of three missions. Figure 35 shows periods of no progress
during the missions. An analysis of the peaks in these plots permits us to examine
the principal failure modes during the race. During the first mission, Failsafe Mode
1 was entered twice, once at 750 sec due to being stuck on the wrong side of an
artificial zone perimeter fence. Figure 36 shows how the lane next to parking zone
is narrow in the RNDF (12ft) – the actual lane is over 30ft and extends into the zone.
The lane perception snaps to real lane-edge, trapping the vehicle against the zone
boundary virtual fence. The second failsafe mode change came at 7200 sec due to a
bad lane estimate on gravel road, which is discussed in Section 6.2.1. Several other
times during this first mission Talos was “ship wrecked” and made no progress for
30 sec until the curb constraints were relaxed. In Mission 2 the zone perimeter fence
bug occurred at 4000 sec. The third mission required three traversals of the gravel
road, which caused a large number of 30 sec intervals of no progress until curb
constraints were relaxed. Once at 7200 sec a bad lane estimate on the gravel road
caused Talos to enter Failsafe Mode 1.

Outback Road was the Achilles heel of Talos’ UCE performance. We now exam-
ine the cause.

6.2.1 Outback Road
As noted above, Talos’ third mission during the UCE required three traversals of the
steep gravel road known as Outback Road. Figure 37 illustrates why three traversals

A Perception-Driven Autonomous Urban Vehicle 217

(a) (b)

(c)

(d)

(e) (f)

Fig. 34. UCE highlights. (a) Talos overtaken by traffic vehicle. (b) Talos reaches its target
speed of 25mph (24 shown on the sign) traveling up Phantom East. (c) Talos slows to merge
safely behind the Cornell chase vehicle. (d) Talos waits patiently behind a gate that was blown
across an intersection safety zone. (e) A fast traffic vehicle is detected early by radars, and
correct intersection precedence keeps Talos in the race. (f) Mission accomplished.

218 J. Leonard et al.

0 2000 4000 6000 8000 10000 12000
Time (sec)

0

10

20

30

40

50

60

70

80

90
F

ai
ls

af
e

tim
er

(a) Mission 1

0 1000 2000 3000 4000 5000 6000
Time (sec)

0

10

20

30

40

50

60

70

80

90

F
ai

ls
af

e
tim

er

Timer
Pass, 15cm Margin
Reverse
0cm Margin
Curbs drivable
Un-Restrict goal
No Zone boundaries, No Standoffs

(b) Mission 2

0 2000 4000 6000 8000 10000 12000
Time (sec)

0

10

20

30

40

50

60

70

80

90

F
ai

ls
af

e
tim

er

Timer
Pass, 15cm Margin
Reverse
0cm Margin
Curbs drivable
Un-Restrict goal
No Zone boundaries, No Standoffs

(c) Mission 3

Fig. 35. No progress timer during the race. The timer is stalled during DARPA Pauses. The X
axis is the wall clock time. (a) During the first mission, failsafe mode (80 sec of no progress)
is entered twice. 750 sec: Zone perimeter fence bug. 7200 sec: Bad lane estimate on gravel
road. Other times Talos was “ship wrecked” and made no progress for 30 seconds until curb
constraints were relaxed. (b) Mission 2: 4000 sec: Zone perimeter fence bug. (c) Mission
3: 7200 sec: Bad lane estimate on gravel road. Many times during the three traversals of
the gravel road section no progress was made for 30 seconds until the curb constraints were
relaxed.

A Perception-Driven Autonomous Urban Vehicle 219

Fig. 36. Lane perception snaps the narrow (12 ft) RNDF lane to the (30 ft) actual lane bound-
ary to the left (gray circles: lane centerline, white lines: lane boundary detections). The road
would be drivable except that the zone virtual boundary (red line) extends into the physical
lane blocking the road.

Fig. 37. To complete the third mission, three traversals of the Outback Road were required.

were required to hit the checkpoints. Of the 35 checkpoints in the mission, check-
points 4, 32, and 34 all required Talos to complete the one-way Outback, Phantom
East circuit to hit the checkpoint and complete the mission. As far as we know other
teams were not required to complete this circuit more than once.

Figure 38 provides snapshots of Talos’ performance while driving down the dirt
road; clearly, the system encountered difficulties on this part of the course. The
drop-off in the road profile was detected as a phantom curb or ditch. When a steep
section of road was directly ahead of Talos, the road-edge detector would occasion-
ally detect the hill as a road edge. (As described below in Section 4.3, the road-edge
detector was intended to detect berms as well as curbs.) The road-edge system in-
corporated a work-around designed to combat this problem: road edges that were
strongly perpendicular to the direction of the road (as indicated by the RNDF) were

220 J. Leonard et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 38. Steep gravel road. (a) & (b) Talos had no problem with gravel roads of gentle slope.
(c) Roll-off of the gravel road appears hazardous in the curb hazard map. (d) A phantom
curb is detected at the road crest. (e) & (f) Phantom curb detections contort the road corridor,
choking the drivable region.

culled. We expected this feature to solve this problem, but it did not. A flat road that
only curved in the direction of travel would be detected as a road edge perpendicular
to the road. However, the dirt road was crowned (had a side-to-side curvature) that
caused the maximum curvature to appear not to be directly across the travel lane,
and instead caused it to appear as two diagonal lines converging further down the
road. The slope of these lines was sufficiently parallel to the direction of travel that
they were not culled. Consequently, Talos would get stuck on the dirt road until a
timeout elapsed (at which point the road edges were no longer treated as obstacles).

A Perception-Driven Autonomous Urban Vehicle 221

(a)

(b)

(c)

(d)

Fig. 39. 1st Team CarOLO’s Caroline – Talos near-miss. (a) Talos stops upon entering inter-
section. (b) Talos detects the moving object across its path and begins to plan a path around
it. (c) Talos begins an emergency stop. (d) Talos comes to a stop. Caroline no longer appears
to be moving, and instead is viewed as a static object.

222 J. Leonard et al.

(a)

(b)

(c)

(d)

Fig. 40. Second Caroline-Talos incident. (a) Talos drives around the Caroline chase vehicle.
(b) Talos drives around Caroline, which is moving sufficiently slowly to appear as a static
object. (c) Talos continues to replan around Caroline, which was perceived as an static object
in a different location. (d) Talos continues to drive around Caroline, and then initiates an
emergency stop, but cannot stop in the space left and collides with Caroline.

A Perception-Driven Autonomous Urban Vehicle 223

Again, as described earlier, the intended approach of using the curb data in
the lane estimate, if mature, would have gone a long way towards addressing this
problem.

(a)

(b)

(c)

Fig. 41. Lead-up to Skynet – Talos incident. (a) Talos initially queues behind the Skynet chase
vehicle. (b) Lane position is low, so Talos finds a route around the chase vehicle. (c) Talos
yields at the intersection. There are no moving vehicles so it proceeds through.

6.2.2 Collisions
Our vehicle had two incidents with Team CarOLO’s vehicle “Caroline” during the
UCE. In the first encounter with Caroline, Talos paused as it entered the intersection,
following the process described in Section 5.1.1, and after resuming its forward mo-
tion, Caroline attempted to make a left turn directly across Talos’ path. The system
initiated a “planner e-stop” just before DARPA issued a Pause command to both
vehicles. These events are illustrated in Figure 39.

224 J. Leonard et al.

(a)

(b)

(c)

Fig. 42. Skynet - Talos incident. (a) Talos plans a route around Skynet, which appears as
a static object. (b) While Talos is passing, Skynet begins to accelerate. (c) While applying
emergency braking, Talos turns into the accelerating Skynet.

In a second incident with Team CarOLO’s vehicle, Talos was attempting to drive
toward the zone exit, between what appeared to be a fence on the left and some static
objects to the right. Caroline drove toward Talos, which applied hard braking, but
did not come to a stop in time to avoid the collision. We do not know why Caroline
did not choose a path through the free space to Talos’ right, or why it continued to
advance when Talos was directly ahead of it. We had made a software architectural
decision not to attempt to explicitly detect vehicles for the Challenge. Instead, Talos
simply treated slow or stationary obstacles as static and faster moving obstacles
as vehicles. Unfortunately Caroline’s speed, acceleration, stopping and starting fell
into a difficult region for our software. Talos treated Caroline as a static obstacle and
was constantly replanning a path around it (to Talos’ left and Caroline’s right). Just

A Perception-Driven Autonomous Urban Vehicle 225

before the collision, the system executed “planner emergency stop” when Caroline
got sufficiently close. Unfortunately, due to Caroline’s speed and trajectory, this
could not prevent physical contact. These events are illustrated in Figure 40.

Talos’ collision with Cornell’s vehicle, Skynet, was another notable incident dur-
ing the UCE, and is illustrated in Figures 41 and 42. As described earlier in this
report, Talos used a perception-dominated system. It was designed to use the way-
points in the RNDF with limited confidence. Upon approaching the intersection,
Talos interpreted Skynet’s DARPA chase vehicle as being close enough to the road
shoulder to be a static feature (such as a tree or barrier on the side of the road).
Therefore, the road entry point was oriented to the left of the chase car. Talos drove
up, gave way at the intersection, and then continued to the left. Because Skynet
and the chase car were stopped, Talos again interpreted them to be stationary ob-
stacles (such as K-rails). Talos drove through the intersection and was attempting
to get back into the exit lane when Skynet started to move. Again its speed was be-
low Talos’ tolerance for treating it as a moving vehicle, and again Talos would have
avoided Skynet if it had remained stationary. As in the collision with Caroline, Talos
was applying emergency braking when it collided with Skynet. The root cause was
a failure to anticipate unexpected behavior from a stopped or slow-moving robot in
a zone or intersection.

7 Discussion

Overall, we were pleased with the performance of our vehicle through the NQE
and UCE competitions. By creating a general-purpose autonomous driving system,
rather than a system tuned to the specific test cases posed by DARPA, our team
made substantial progress towards solving some of the underlying problems in au-
tonomous urban driving. For example, in the NQE and UCE, there were a lot of
traffic and intersection scenarios we had never previously tested, but the software
was able to handle these situations with little or no tweaking.

Our investment in creating a powerful new software architecture for this project
paid off in innumerable ways. The software developers devoted a significant amount
of time to implementing a generic, robust software infrastructure for logging, play-
back, single-vehicle simulation, and visualization. Such an investment of energy
would be hard to justify to achieve a single product such as the development of a
lane tracker or an obstacle detector. However, the development and roll-out of these
innovations to support the whole team produced a more stable code base, and en-
abled shared support of modules between developers as well as quick and effective
debugging.

7.1 Perception-Driven Approach

For the final race, we added approximately 100 waypoints such that our interpo-
lation of the RNDF waypoints more closely matched the aerial imagery provided
by DARPA. Our system was designed to handle the original race description of

226 J. Leonard et al.

perceiving and navigating a road network with a sparse description, and Talos demon-
strated its ability to do this by completing the NQE without a densified RNDF. When
it became apparent that this capability was not going to be tested in the UCE, we
added waypoints to improve our competitive chances. Nonetheless, during the UCE,
Talos still gave precedence to perception-based lane estimates over GPS and RNDF-
derived lanes, in accordance with our overall design strategy.

7.2 Slow-Moving Vehicles

Another key lesson learned was the difficulty of dealing with slow-moving objects.
We attempted to avoid the error-prone process of explicitly classifying obstacles as
vehicles. Instead, our software handled the general classes of static obstacles and
moving obstacles. While this strategy worked well during the NQE, in the race, the
collisions or near-misses involving Talos often came about due to the difficulty in
handling changing traffic vehicle behavior, or slow-moving traffic vehicles. Better
handling of slow-moving vehicles, for example through fusion of vision and lidar
cues to explicitly recognize vehicles versus other types of obstacles, are avenues for
future research.

7.3 Improved Simulation

Further investment in simulation tools for complex multi-robot interactions is war-
ranted. For this project, we developed a useful simulation for a single robotic vehicle
in a complex environment (including traffic vehicles following pre-defined trajec-
tories). We discussed the possibility of developing a more complex simulation that
would enable us to test robot-against-robot (i.e. running our system “against itself”),
but decided against this endeavor due to time constraints. In hindsight, this capabil-
ity would have been quite useful.

While the vehicle generally operated in the vicinity of human-driven traffic with-
out incident, problems were encountered when interacting with other autonomous
vehicles at slow speed. The nature of these interactions likely arose due to some
implicit assumptions of our algorithms that were put in place to address the DARPA
rules. These situations might have been detected from simulation of multiple au-
tonomous vehicles running missions against each other on the same course.

7.4 Verification of Failsafe Approaches

A key capability for long-term autonomous operation was the creation of compre-
hensive failsafe modes. The judicious use of failsafe timers enabled the system to
drop constraints and to free itself in difficult situations, such as when perceptual es-
timates of the lane boundaries did not match reality. In any complex system of this
type, the assumptions of the designers will always be violated by unpredictable situ-
ations. The development and verification of more principled and robust approaches
to recovering from mistakes is an important issue for robotics research.

A Perception-Driven Autonomous Urban Vehicle 227

8 Release of Logs, Visualization and Software

In the interests of building collaboration and a stronger research base in the field,
Team MIT has made its work available to the research community. The complete
Talos UCE race logs, the viewer software and video highlights from the race (made
from the logs) are publicly available at:

http://grandchallenge.mit.edu/public/

In addition, several core components developed for the Urban Challenge have
been released as open source software projects. The Lightweight Communications
and Marshalling (LCM) software library and the libcam image processing toolchain
have been released as open source projects:

http://lcm.googlecode.com/
http://libcam.googlecode.com/

These software components were described in Section 3.3.

9 Conclusion

This paper describes the developed software architecture for a perception-driven
autonomous urban vehicle designed to compete in the 2007 DARPA Urban Chal-
lenge. The system used a comprehensive perception system feeding into a powerful
kino-dynamic motion planning algorithm to complete all autonomous maneuvers.
This unified approach has been “race proven”, completing the Urban Challenge mis-
sion and driving autonomously for approximately 55 miles in under 6 hours. A key
novel aspect of our system, in comparison to many other teams, is that autonomous
decisions were made based on locally sensed perceptual data in preference to
pre-specified map data wherever possible. Our system was designed to handle the
original race description of perceiving and navigating a road network with a sparse
description. Another innovative aspect of our approach is the use of a powerful
and general-purpose RRT-based planning and control algorithm, achieving the re-
quirements of driving in lanes, three-point turns, parking, and maneuvering through
obstacle fields with a single, unified approach. Our system was realized through the
creation of a powerful new suite of software tools for autonomous vehicle research,
tools which have been made available to the research community. Team MIT’s in-
novations provide a strong platform for future research in autonomous driving in
GPS-denied and highly dynamic environments with poor a priori information.

Acknowledgments

Sponsored by Defense Advanced Research Projects Agency, Program: Urban Chal-
lenge, ARPA Order No. W369/00, Program Code: DIRO. Issued by DARPA/CMO
under Contract No. HR0011-06-C-0149.

Our team also gratefully acknowledges the sponsorship of: MIT School of En-
gineering, MIT Computer Science and Artificial Intelligence Laboratory (CSAIL),

228 J. Leonard et al.

MIT Department of Aeronautics and Astronautics, MIT Department of Electrical
Engineering and Computer Science, MIT Department of Mechanical Engineering,
The C. S. Draper Laboratory, Franklin W. Olin College of Engineering, The Ford-
MIT Alliance, Land Rover, Quanta Computer Inc., BAE Systems, MIT Lincoln
Laboratory, MIT Information Services and Technology, South Shore Tri-Town De-
velopment Corporation and Australia National University. Additional support has
been provided in the form of in-kind donations and substantial discounts on equip-
ment purchases from a variety of companies, including Nokia, Mobileye, Delphi,
Applanix, Drew Technologies, and Advanced Circuits.

References

Atreya et al., 2006. Atreya, A.R., Cattle, B.C., Collins, B.M., Essenburg, B., Franken, G.H.,
Saxe, A.M., Schiffres, S.N., Kornhauser, A.L.: Prospect Eleven: Princeton university’s en-
try in the 2005 DARPA Grand Challenge. J. Robot. Syst. 23(9), 745–753 (2006)

Bertozzi, 1998. Bertozzi, M., Broggi, A.: Gold: a parallel real-time stereo vision system for
generic obstacle and lane detection. IEEE Transactions on Image Processing 7(1), 62–81
(1998)

Blom and Bar-Shalom, 1988. Blom, H., Bar-Shalom, Y.: The interacting multiple model al-
gorithm for systems with Markovian switching coefficients. IEEE Transactions on Auto-
matic Control 33(8), 780–783 (1988)

Braid et al, 2006. Braid, D., Broggi, A., Schmiedel, G.: The TerraMax autonomous vehicle.
J. Robot. Syst. 23(9), 693–708 (2006)

Chen 2006. Chen, Q., Ozguner, U.: Intelligent off-road navigation algorithms and strategies
of team desert buckeyes in the DARPA Grand Challenge 2005. J. Robot. Syst. 23(9), 729–
743 (2006)

Cremean etal., 2006. Cremean, L.B., Foote, T.B., Gillula, J.H., Hines, G.H., Kogan, D.,
Kriechbaum, K.L., Lamb, J.C., Leibs, J., Lindzey, L., Rasmussen, C.E., Stewart, A.D., Bur-
dick, J.W., Murray, R.M.: Alice: An information-rich autonomous vehicle for high-speed
desert navigation. J. Robot. Syst. 23(9), 777–810 (2006)

DARPA, 2007. DARPA, Darpa urban challenge rules (2007),
http://www.darpa.mil/GRANDCHALLENGE/rules.asp

Fischler and Bolles, 1981. Fischler, M.A., Bolles, R.C.: Random sample consensus: A
paradigm for model fitting with applications to image analysis and automated cartography.
Communications of the ACM 24(6), 381–395 (1981)

Frazzoli, 2001. Frazzoli: Robust Hybrid Control for Autonomous Vehicle Motion Planning.
PhD thesis, MIT (2001)

Grabowski et al., 2006. Grabowski, R., Weatherly, R., Bolling, R., Seidel, D., Shadid, M.,
Jones, A.: MITRE meteor: An off-road autonomous vehicle for DARPA’s grand challenge.
J. Robot. Syst. 23(9), 811–835 (2006)

Hart and Raphael, 1968. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuris-
tic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107
(1968)

Hartley and Zisserman, 2001. Hartley, R.I., Zisserman, A.: Multiple View Geometry in
Computer Vision. Cambridge University Press, Cambridge (2001)

Iagnemma:JFR:2006. Iagnemma, K., Buehler, M.: Special issue on the DARPA Grand Chal-
lenge: Editorial. Journal of Field Robotics 23(9), 655–656 (2006)

A Perception-Driven Autonomous Urban Vehicle 229

Kelly and Stentz, 1997. Kelly, A., Stentz, A.: An approach to rough terrain autonomous mo-
bility. In: International Conference on Mobile Planetary Robots (1997)

LaValle and Kuffner, 2001. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic plan-
ning. International Journal of Robotics Research 20(5), 378–400 (2001)

Leedy etal., 2006. Leedy, B.M., Putney, J.S., Bauman, C., Cacciola, S., Webster, J.M., Rein-
holtz, C.F.: Virginia Tech’s twin contenders: A comparative study of reactive and delibera-
tive navigation. J. Robot. Syst. 23(9), 709–727 (2006)

Mason etal., 2006. Mason, R., Radford, J., Kumar, D., Walters, R., Fulkerson, B., Jones,
E., Caldwell, D., Meltzer, J., Alon, Y., Shashua, A., Hattori, H., Takeda, N., Frazzoli, E.,
Soatto, S.: The Golem Group / UCLA autonomous ground vehicle in the DARPA Grand
Challenge. Journal of Field Robotics 23(8), 527–553 (2006)

Mertz et al., 2005. Mertz, C., Duggins, D., Gowdy, J., Kozar, J., MacLachlan, R., Steinfeld,
A., Suppe, A., Thorpe, C., Wang, C.: Collision Warning and Sensor Data Processing in
Urban Areas. In: Proc. 5th international conference on ITS telecommunications, pp. 73–78
(2005)

Newman, 2003. Newman, P.M.: MOOS - A Mission Oriented Operating Suite. Technical
Report OE2003- 07, MIT Department of Ocean Engineering (2003)

Park et al., 2007. Park, S., Deyst, J., How, J.P.: Performance and Lyapunov stability of a non-
linear path following guidance method. Journal of Guidance, Control, and Dynamics (6),
1718–1728 (2007)

Rivest and Leiserson, 1990. Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms.
McGraw-Hill, Inc., New York (1990)

Schouwenaars et al., 2004. Schouwenaars, T., How, J., Feron, E.: Receding Horizon Path
Planning with Implicit Safety Guarantees. In: Proceedings of the IEEE American Control
Conference. IEEE, Los Alamitos (2004)

Stanford Racing Team, 2007. Stanford Racing Team: Stanford’s robotic vehicle Ju-
nior: Interim report (2007), http://www.darpa.mil/GRANDCHALLENGE/TechPapers/
Stanford.pdf

Stein et al., 2000. Stein, G., Mano, O., Shashua, A.: A robust method for computing vehicle
ego-motion. In: Proc. IEEE Intelligent Vehicles Symposium, pp. 362–368 (2000)

Stein et al., 2003. Stein, G., Mano, O., Shashua, A., Ltd, M., Jerusalem, I.: Vision-based
ACC with a single camera: bounds on range and range rate accuracy. In: Proc. IEEE Intel-
ligent Vehicles Symposium, pp. 120–125 (2003)

Tartan Racing Team, 2007. Tartan Racing, Tartan racing: A multi-modal approach to
the DARPA urban challenge (2007), http://www.darpa.mil/GRANDCHALLENGE/

TechPapers/TartanRacing.pdf

Thorpe et al., 2005. Thorpe, C., Carlson, J., Duggins, D., Gowdy, J., MacLachlan, R., Mertz,
C., Suppe, A., Wang, B., Pittsburgh, P.: Safe Robot Driving in Cluttered Environments. In:
Robotics Research: The Eleventh International Symposium (2005)

Thrun et al., 2006. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel,
J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M.,
Pratt, V., Stang, P., Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C., Markey, C.,
Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B., Ettinger,
S., Kaehler, A., Nefian, A., Mahoney, P.: Stanley: The robot that won the DARPA Grand
Challenge. J. Robot. Syst. 23(9) (2006)

Trepagnier et al., 2006. Trepagnier, P., Nagel, J., Kinney, P., Koutsourgeras, C., Dooner, M.:
KAT-5: Robust systems for autonomous vehicle navigation in challenging and unknown
terrain. Journal of Field Robotics: Special Issue on the DARPA Grand Challenge 23, 467–
508 (2006)

230 J. Leonard et al.

Urmson et al., 2006. Urmson, C., Anhalt, J., Bartz, D., Clark, M., Galatali, T., Gutierrez,
A., Harbaugh, S., Johnston, J., Kato, H., Koon, P., Messner, W., Miller, N., Mosher, A.,
Peterson, K., Ragusa, C., Ray, D., Smith, B., Snider, J., Spiker, S., Struble, J., Ziglar, J.,
Whittaker, W.: A robust approach to high-speed navigation for unrehearsed desert terrain.
Journal of Field Robotics: Special Issue on the DARPA Grand Challenge 23, 467–508
(2006)

USDOT Federal Highway Administration, Office of Information Management, 2005.
USDOT Federal Highway Administration, Office of Information Management, Highway
Statistics 2005. U.S. Government Printing Office, Washington, D. C (2005)

Wang, 2004. Wang, C.-C.: Simultaneous Localization, Mapping and Moving Object Track-
ing. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2004)

Little Ben: The Ben Franklin Racing Team’s
Entry in the 2007 DARPA Urban Challenge

Jon Bohren1, Tully Foote1, Jim Keller1, Alex Kushleyev1,
Daniel Lee1,�, Alex Stewart1, Paul Vernaza1, Jason Derenick2,
John Spletzer2, and Brian Satterfield3

1 University of Pennsylvania
Philadelphia, PA 19104
ddlee@seas.upenn.edu

2 Computer Science and Engineering
Lehigh University
Bethlehem, PA 18015

3 Lockheed Martin Advanced Technology Laboratories
3 Executive Campus, suite 600
Cherry Hill, NJ 08002

Abstract. This paper describes “Little Ben,” an autonomous ground vehicle con-
structed by the Ben Franklin Racing Team for the 2007 DARPA Urban Challenge
in under a year and for less than $250,000. The sensing, planning, navigation, and
actuation systems for Little Ben were carefully designed to meet the performance
demands required of an autonomous vehicle traveling in an uncertain urban en-
vironment. We incorporated an array of GPS/INS, LIDAR’s, and stereo cameras
to provide timely information about the surrounding environment at the appropri-
ate ranges. This sensor information was integrated into a dynamic map that could
robustly handle GPS dropouts and errors. Our planning algorithms consisted of
a high-level mission planner that used information from the provided RNDF and
MDF to select routes, while the lower level planner used the latest dynamic map
information to optimize a feasible trajectory to the next waypoint. The vehicle was
actuated by a cost-based controller that efficiently handled steering, throttle, and
braking maneuvers in both forward and reverse directions. Our software modules
were integrated within a hierarchical architecture that allowed rapid development
and testing of the system performance. The resulting vehicle was one of six to
successfully finish the Urban Challenge.

1 Introduction

The goal of the 2007 DARPA Urban Challenge was to build an autonomous
ground vehicle that could execute a simulated military supply mission safely
and effectively in a mock urban area. Compared with previous DARPA Grand
Challenges, this particular challenge necessitated that robot vehicles perform
autonomous maneuvers safely in traffic (DARPA, 2007). To address this chal-
lenge, the Ben Franklin Racing Team was formed by students and faculty at
� Corresponding author.

M. Buehler et al. (Eds.): The DARPA Urban Challenge, STAR 56, pp. 231–255.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

232 J. Bohren et al.

Fig. 1. Little Ben is a Toyota Prius hybrid vehicle modified for drive-by-wire
operation with an onboard array of sensors and computers.

the University of Pennsylvania, Lehigh University, and engineers at Lockheed
Martin Advanced Technology Laboratory. In under a year and with a limited
budget, the Ben Franklin Racing Team was able to construct “Little Ben,” a
drive-by-wire Toyota Prius with an array of onboard sensors and computers
shown in Figure 1. The following sections detail our team’s approach in de-
signing and constructing hardware and software algorithms for our entry in
the Urban Challenge.

1.1 Design Considerations

The Urban Challenge presented unique challenges to autonomous sensing,
navigation, and control. Some of the scenarios that our vehicle needed to be
able to handle included the following:

• Maintain appropriate safety margins at all times.
• Accurately follow a lane within prescribed lane boundaries.
• Detect and avoid moving traffic.
• Stop and drive into a new lane in the presence of other vehicles.
• Park in constrained spaces in dynamic environments.

These situations required that obstacles and lane markings were detected
at a distance, and that the vehicle reacted quickly and appropriately while
following the local traffic laws and conventions. An overarching requirement
was that a successful system adhere to a stringent set of real-time processing
constraints in its detection and reaction to its environment. This was mainly
reflected in the system reaction time, as governed by the processing sample
rate. Low sample rates increase the distance at which obstacles and other
traffic vehicles must be detected for safe operation. Conversely, high sample

Little Ben: The Ben Franklin Racing Team’s Entry 233

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50

Relative speed (m/s)

D
et

ec
tio

n
di

st
an

ce
 (

m
)

Fig. 2. Required detection distance at various speeds taking into account worst-
case latencies in system processing time.

rates are attainable only by using overly simplified sensing and control
algorithms.

The design of our vehicle’s hardware and software systems was predicated
on achieving a reaction time that ensured safe operation of driving maneuvers
at the mandated upper speed limit of 30 mph (13.4 m/s). As an example of
our design methodology, Figure 2 shows our calculation of the required detec-
tion distance of another vehicle in order for our vehicle to properly react and
stop at various relative speeds up to 60 mph (26.8 m/s). In our calculations,
we required that at least one vehicle length of separation was maintained at
the end of the maneuver. We have also identified the maximum braking ac-
celeration that can be introduced in this speed range without triggering the
anti-lock brake system (ABS). Therefore, the ABS reaction dynamics were
reserved as an additional safety margin when dry pavement conditions were
not present.

We evaluated a range of possible system sample rates, and selected 10 Hz
as the desired system processing rate. Our calculations in Figure 2 took into
account a two sample period delay (200 ms) as the worst case scenario for
detection and reaction; the first sample period could elapse just before an
obstacle crossed the sensor detection threshold, and the second sample period
was assumed to be used for the necessary computational processing.

The hardware and software systems were selected to meet the desired de-
tection distance and processing time objectives. Sensors and their respective
mounting positions were chosen to maximize their long range detection char-
acteristics. Drive-by-wire actuation and computer hardware systems were se-
lected to minimize processing latencies. Similarly, our software modules were
also optimized to maximize detection distance and minimize processing de-
lays. This combination of hardware sensing systems with efficient, reactive

234 J. Bohren et al.

software modules allowed Little Ben to achieve the requisite safety margins
for driving in urban traffic situations.

2 Vehicle Platform

Little Ben was built from a 2006 Toyota Prius hybrid vehicle with modified
controls to allow drive-by-wire as well as manual operation. Since the Urban
Challenge took place in a mostly urban setting, there was no need for a large
off-road vehicle. The Prius’ compact size made many driving maneuvers easier
to accomplish compared to other larger vehicles, and also proved to be very
stable, reliable, and easy to work with.

Unlike most standard automobiles, Little Ben did not have an alternator.
Instead it used power provided by the built-in 200 V hybrid battery via a
DC-DC converter to power all standard 12 V vehicle components as well as
the additional hardware that we installed. As shown in Figure 3, the total
peak power consumption of the additional hardware systems was less than
700 W peak - well below the maximum 1 kW power output of the stock DC-
DC converter. Thus, Little Ben did not require any specialized alternators
or additional generators or cooling hardware. This overall power and fuel
efficiency enabled Little Ben to finish the 57 miles of the Urban Challenge
using only about one gallon of gasoline.

2.1 Drive-by-Wire Actuation

As depicted in Figure 4, the drive-by-wire vehicle actuation was performed
by Electronic Mobility Controls (EMC) of Baton Rouge, Louisiana. This con-
version included DC servomotors to actuate the steering wheel and gas/brake

Fig. 3. Power consumption of sensors, computers, and vehicle actuation on Little
Ben.

Little Ben: The Ben Franklin Racing Team’s Entry 235

Fig. 4. Components that interface to the drive-by-wire system.

pedals, along with triple redundant motor controllers to ensure safe operation.
Two analog DC voltage inputs were provided by EMC to control the steering
wheel and gas/brake pedal position. In order to transmit the digital control
signal from the computers to the drive-by-wire system, we implemented a
very simple digital-to-analog converter using a cheap digital PIC microcon-
troller with a RC-filtered PWM output. Given that the drive-by-wire analog
signals were sampled at 100 Hz, the RC time constant of the filter was chosen
to be approximately 10 ms. This ensured that the full actuation bandwidth
was preserved while smoothing any electrical noise interference in the ve-
hicle. The PWM frequency of the microcontroller was set to 20 kHz with
8-bit resolution, which was sufficient for smooth and accurate control of the
actuators.

Other vehicle controls such as transmission shifting, turn signals, and park-
ing brake were interfaced via a single RS-232 connection to EMC’s secondary
controller unit. Additionally, we installed a CAN bus interface to the Toy-
ota on board diagnostic (OBD) connector in order to verify vehicle state
information directly from the car’s electronic control unit (ECU). The CAN

236 J. Bohren et al.

interface provided accurate brake pedal position at 100 Hz, steering encoder
feedback at 70 Hz, and other vehicle state information such as transmission
shift setting at slightly lower rates.

2.2 Emergency Stop

Since safety is a top priority with autonomous vehicles, we took major steps
toward minimizing the risk of injury or damage due to undesired behavior
of the vehicle. The emergency stop system was designed to make human
intervention safe, quick, and reliable. In order to achieve fail-safe operation,
redundancy was incorporated on multiple levels using watchdog timers and
heartbeat monitors as shown in Figure 5.

Fig. 5. Block diagram depicting the emergency stop and safety systems incorpo-
rated into the vehicle.

When the “pause” mode was activated, either by a human operator or
when the radio-controlled transmitter was out of range, the throttle com-
mands from the computers were automatically overridden and the brake was
applied at near maximimum braking acceleration to ensure smooth stopping
within the allowed distance. In this mode, the computers were unable to drive
the vehicle unless the “run” command was explicitly given. After the “run”
command was given, the audible and visual strobe warning devices were ac-
tivated, and control was returned to the computer systems after a five second
delay.

Our “disable” mode was an extension of the “pause” mode. In addition to
braking the vehicle and disabling computer control of the throttle, the E-stop
processor verified the vehicle speed was zero on the Toyota CAN bus, and set
the transmission to park. All the Toyota Prius systems were then powered
down. In this state, the vehicle would need to be manually restarted in order
to reactivate autonomous control. The vehicle could easily be disabled via

Little Ben: The Ben Franklin Racing Team’s Entry 237

the dedicated remote control or the manual E-stop buttons located on either
side of the car.

To achieve high reliability, the most crucial components of the safety sys-
tem were implemented using simple PIC microcontrollers and fail-safe me-
chanical relays. These were powered using the backup battery system of the
EMC drive-by-wire system, so even without vehicle power or computers, the
car was guaranteed to respond properly to “pause” and “disable” commands.

2.3 Roof Rack

Due to constraints on our local storage facilities, our primary sensor rack was
designed such that it could be quickly mounted and unmounted as a single
structure without having to re-calibrate the sensors. The stock beams from
a Yakima roof rack were replaced with aluminum pipes onto which an 80/20
aluminum structure was rigidly fixed. Once locked into place, the sensor rack
was connected to the vehicle power and computing systems through a single
umbilical connector.

In order to maximize the detection range of our sensors, the rack shown in
Figure 6 was custom designed to allow optimal viewing angles for as many of
these sensors as possible. In particular, we designed the rack to accomodate
a Velodyne HD LIDAR to give the omnidirectional sensor a fully unoccluded
360 degree azimuthal view. By mounting the Velodyne 8” above the rest of
the sensor rack, we took advantage of the full complement of elevation angles
in the sensor to provide a sensing range from 4 to 60 meters around the
vehicle. Its lateral left-of-center position was also optimized for navigating
around obstacles on American roads.

The rack also integrated a set of forward and rear facing SICK LMS-
291 S14 LIDAR sensors. These 90 degree field of view sensors were tilted
downward in order to intersect the ground at approximately 6–7 meters ahead
and behind the vehicle. In these positions, the SICK LIDAR’s were well within
their range limitations, and could provide for both ground plane, obstacle and
lane marking detection. These sensors were also arranged so that they did not

(a) (b)

Fig. 6. Roof sensor rack designed to provide optimal viewing angles.

238 J. Bohren et al.

occlude the Velodyne’s field of view, and provided a complementary stream
of range data.

The rack also contained the warning siren, strobe lights, and mounting
points for the GPS antennas. Additionally, it provided space for a weath-
erproof electronics enclosure. This contained and protected the power dis-
tribution block and connectors for sensors mounted on other parts of the
vehicle.

2.4 Hood Sensors

Little Ben also integrated several sensors that were mounted on its hood. At
the front center of the hood was a vertical scanning SICK LMS-291 LIDAR,
as well as a high-resolution Point Grey Bumblebee stereo camera as shown in
Figure 7. The 1024×768 resolution color camera had a horizontal 50 degree
field of view, with a framerate of 15 Hz. To minimize the potential for image
blooming caused by sunlight, the camera was pitched down 15◦ to minimize
the field of view over the horizon. A visor was also integrated as a further
level of protection.

Fig. 7. Sensors mounted on the hood of Little Ben.

In addition, two SICK LD-LRS LIDAR scanners were mounted parallel to
the road surface at the front left and front right corners of the hood. These
scanners provided overlapping 270 degree fields of coverage, and were used to
detect obstacles and track moving vehicles in front and at the sides of Little
Ben. The LD-LRS sensors employed a scanning frequency of 10 Hz, reporting
laser returns at 0.5 degree increments. Due to their vulnerable position and
possible misalignment in the event of a crash, a simple cardboard fiducial
marker was attached to the hood and used to automatically verify correct
operation of these sensors.

Little Ben: The Ben Franklin Racing Team’s Entry 239

Fig. 8. Additional Hokuyo scanners used to eliminate blind spots at short range.

2.5 Other Sensors

Three compact Hokuyo URG-04LX LIDAR scanners were also used to cover
blind spots in sensor coverage at short range around the vehicle as shown
in Figure 8. Although these sensors were only rated for indoor use, through
experimentation we found that they could be used in outdoor conditions
as long as they were properly shielded from water and from light in the
back. Two Hokuyo scanners were mounted underneath the side mirrors for
detecting obstacles such as curbs at the sides of the front wheels, as well as
nearby lane markings on the ground. The third sensor was mounted slightly
above the rear bumper, and allowed for accurate maneuvering between tightly
spaced obstacles while in reverse.

3 Software Architecture

As depicted in Figure 9, the software architecture was divided hierarchically
into a series of modules, connected via interprocess communication messages.
At the lowest level was the driving module which was responsible for interfac-
ing to the vehicle controller hardware and verifying correct operation of the
steering, throttle, braking, and transmission. Also present at this low level
was the pose software module which integrated readings from the GPS and
inertial navigation system to provide the latest pose information at 100 Hz.
These two hardware interface modules could be readily replaced by a simula-
tion module which allowed us to rapidly test the software without requiring
the processes to be physically connected to the vehicle systems.

At the highest level, the Mission planning module read the appropriate
RNDF and MDF files to determine the optimal sequencing of waypoints
needed to complete the mission objectives. Next were the sensor modules

240 J. Bohren et al.

Fig. 9. Software architecture showing system modules and corresponding interpro-
cess communication messages.

which gathered data from all the LIDARs and the stereo camera to provide
probabilistic real-time estimates of the terrain, road markings, and static
and dynamic obstacles. These modules consolidated the large amount of sen-
sor data into a compact representation in the vehicle’s local reference frame
before sending this information onto the MapPlan process.

The MapPlan process was then responsible for integrating all the sensor
information into a probabilistic dynamic map, and then computing the appro-
priate vehicle path to reach the next desired waypoint as determined by the
high-level Mission planner. It also checked to ensure that this path avoided all
known obstacles, while obeying vehicle dynamic constraints as well as local
traffic rules. The PathFollow module took the desired vehicle path from the
MapPlan process and generated the optimal steering, throttle, and braking
commands needed by the low-level driving module.

All the processes communicated with each other via well-defined message
formats sent through the Spread messaging toolkit (Amir et al., 2004). This
open-source messaging system provided message reliability in the presence of
machine failures and process crashes, while maintaining low latencies across
the network. It also enabled convenient logging of these messages with ap-
propriate timestamps. These logs allowed us to rapidly identify and debug
bad processes, as well as replay logged messages for diagnostic purposes.

These modules were written mainly in Matlab with some ancillary C++
routines. The use of high-level Matlab enabled the software system to be
written in less than 5000 lines of code. We also implemented a development

Little Ben: The Ben Franklin Racing Team’s Entry 241

environment that incorporated Subversion for source code tracking, Bugzilla
for assigning tasks, and a Wiki for writing documentation. All the docu-
mentation was readily accessible to the whole team with convenient search
functionality to allow easy collaboration. During field testing, local copies
of the Bugzilla and source code repository were stored within the vehicle to
allow us to make offline changes that were merged with our central servers
after testing. With these tools, rapid prototyping and development was ac-
complished by the team both in the laboratory and in the field.

3.1 Computing System

All the software processes were run on a small computer cluster, consisting
of seven Mac Minis with Core 2 Duo processors running Ubuntu Linux. The
computers were interconnected through a gigabit ethernet network in the
vehicle trunk as shown in Figure 10. Serial connections to the vehicle’s low-
level hardware and sensors were also provided over the ethernet network via
Comtrol serial device servers. In the event of a computer failure, our system
automatically switched the affected processes over to a redundant comput-
ing node without having to manually reconfigure any connections. Special
monitoring software (monit) was used to constantly check the status of all
the computers and processes to detect software crashes and other possible
failures.

Fig. 10. Computing and networking systems on board Little Ben.

242 J. Bohren et al.

To prevent the various data streams from interfering with one another, Lit-
tle Ben contained three separate subnetworks isolated using hardware routers
and switches. The first subnet was used for normal interprocess communica-
tions between the Mac Mini’s. The second subnet was used to isolate the
various LIDAR sensors–it was found that some of the SICK sensors con-
tained buggy network protocol implementations and would lock up in the
presence of extraneous ethernet traffic. Finally, the third subnetwork was
used to isolate the large amounts of data broadcast by the Velodyne LIDAR
sensor (approximately 3 MB per second); only those computers processing
this data stream would subscribe to this subnet.

4 Perception

Little Ben’s perception system was responsible for providing information
about the locations of static obstacles, traversable ground, moving vehicles,
and lane markings on the road. This processing was performed in a highly
redundant manner by the various sensors on the vehicle: Velodyne LIDAR,
SICK LIDAR’s, Hokuyo LIDAR’s, and Bumblebee stereo camera.

4.1 Velodyne Processing

The Velodyne HDL-64E LIDAR was Little Ben’s primary medium to long-
range sensor. It was used for geometric obstacle/ground classification, road
marking extraction, as well as dynamic obstacle velocity tracking. The Velo-
dyne houses sixty-four 905 nm lasers and can spin between 5 and 15 Hz,
yielding a field of view of 360◦ azimuth, and -24◦ to +2◦ zenith. We con-
figured the sensor to spin at 10 Hz in order to acquire a high point density
and capture frames at the same rate as our control system. A sample scan is
shown in Figure 11.

Although we were supplied with the factory horizontal and vertical cor-
rection factors, we found that the individual lasers required an additional
distance offset that we calibrated using comparisons to the readings from the
SICK LMS-291 sensors. Even with this extra calibration, we found that our
particular Velodyne sensor would sometimes report laser ranges with uncer-
tainties on the order of 30 cm, much larger than the stated 5 cm accuracy.
Because of this large uncertainty, it was necessary to process the Velodyne
data as 64 independent scans, rather than aggregating returns between dif-
ferent lasers.

Some of the individual lasers would also sporadically return large noisy
outliers. Because of this, the range and reflectivity values from each laser
were carefully monitored online and rejected if any inconsistent outliers were
detected. Classifications of ground versus obstacle were also never based upon
a single return, but were based upon the statistics of a consecutive set of 4–5
points.

Little Ben: The Ben Franklin Racing Team’s Entry 243

Fig. 11. 3D point cloud from a single Velodyne scan classified as ground and
obstacle.

In this manner, we were able to classify reflective obstacles such as other
vehicles out to 60 meters, and detect ground points out to 30 meters under
good conditions, depending upon the reflectivity of the ground. The reflectiv-
ity data were also used to detect lane markings during the Urban Challenge
within a range of 15 meters.

4.2 LIDAR Ground/Obstacle Detection

The range scans from the downward angled LIDAR’s, SICK LMS-291’s and
side mounted Hokuyo’s, were processed in the following manner. In the first
phase of the algorithm, a ground plane was fit in a robust fashion to the
observed points. The range values from a scan were first passed through a
median filter to remove spurious returns due to airborne dust particles, rain,
etc. Then given the observed Cartesian points from the filtered LIDAR scan:
(xi, zi), we minimized the following objective:

min
m,b

∑

i

f(zi −mxi − b) (1)

where f was an error measure that was quadratic near zero, but decreased
much more slowly for larger values. This minimization was performed in an
incremental fashion using interative least squares (Guitton, 2000).

To improve the robustness of the ground plane fit, we also employed regu-
larization of the ground plane parameters based upon the relative geometry of

244 J. Bohren et al.

Fig. 12. Robust ground plane extraction and ground/obstacle classification from
the front and rear facing SICK LMS-291 sensors.

the vehicle and sensor calibration. This enabled our algorithm to accurately
track the ground as shown in Figure 12, even in the presence of significant
pitch changes as well as highly linear obstacle features.

Once an accurate ground plane had been determined, it was relatively easy
to classify the various observed scan points as obstacle or ground based upon
their deviation to the ground plane. Another example of this classification is
shown in detecting a nearby curb from a side-mounted Hokuyo scanner as
shown in Figure 13.

4.3 LIDAR Lane Marking Detection

In addition to streaming range information, the Velodyne, SICK LMS-291-
S14, and Hokuyo LIDAR’s also returned corresponding reflectivity values.
This information was used for detecting and identifying lane markers in order
to compensate for any positional shifts in our pose system.

To detect lane markings from the LIDAR returns, the reflectivity readings
of identified ground points were first analyzed. Sections of ground whose

Fig. 13. Curb/ground detection from side facing Hokuyo LIDAR.

Little Ben: The Ben Franklin Racing Team’s Entry 245

Fig. 14. Lane marking detection and identification from front SICK LMS-291.

reflectivity values were significantly higher than the surrounding road surface
were then identified as potential markings. These sections were then checked
to see if they corresponded to line widths between 10–15 cm wide. Figure 14
shows an example of lane marking detection and identification from the front
facing SICK LMS-291 sensor. The two peaks correspond to the left and right
lane markings present in the lane.

4.4 Dynamic Obstacle Tracking

To successfully navigate through dynamic obstacles, obstacle velocities as
well as positions needed to be accurately estimated. Budgetary and time
constraints precluded us from incorporating any type of RADAR sensors, so
Little Ben tracked dynamic obstacles using consecutive LIDAR returns from
the Velodyne sensor as well as consecutive returns from the hood-mounted
SICK LD-LRS scanners.

First, classified obstacle range returns were grouped into local line features.
The line features were then tracked across consecutive scans using a multiple
hypothesis Kalman filter. This filter rejected spurious detections based upon
prior constraints on the size and velocities of known obstacles.

Figure 15 shows the output of the algorithm tracking two vehicles based
upon consecutive range readings from one of the hood-mounted SICK LD-
LRS scanner. In this manner, moving obstacles within a range of approxi-
mately 60 m could be tracked with an accuracy of about 1 m/s.

4.5 Vision

The Bumblebee stereo vision system was also used to recover road markings
at ranges from 4–15 m ahead of the vehicle. Constraining our interest to
this region yielded more robust feature segmentation, more reliable stereo

246 J. Bohren et al.

Fig. 15. Vehicle heading and velocity tracking from SICK LD-LRS sensor; Little
Ben is located at the origin of the figure

disparity estimates, and allowed a linear model to be used in reconstructing
the lane markings.

Images were processed at 512×384 resolution at a frame rate of 15 fps,
using approximately 50% of a single core of one of the Mac Mini processors.
Figure 16 shows an example of the output of our vision system in detecting
and locating lane markings relative to the vehicle.

Images from the stereo camera were first enhanced, and then subtracted
from corresponding pixel-shifted locations in the left and right images. The
appropriate pixel shifts were determined by calibrating the camera relative
to the ground plane. This could also be done adaptively using the observed
stereo disparity values. Valid lane markings were then detected using a variety

Fig. 16. (Left) Camera image with segmented lanes; (Center) Corresponding dis-
parity image; (Right) Reconstructed lane relative to vehicle.

Little Ben: The Ben Franklin Racing Team’s Entry 247

of filters that test image region candidates based upon width, length, and area
constraints. Candidate lines were then projected onto the road surface, and
placed into the map relative to the current vehicle location.

5 Mapping

Our previous experience with autonomous outdoor navigation has under-
scored the need for robust mapping that is consistent with perceptual data
as well as prior information about the environment (Vernaza and Lee, 2006).
As the vehicle traversed its environment, perceptual data were distilled into
local occupancy grid maps (Elfes, 1989). These maps were referenced to the
local coordinate system of the vehicle and reflected the state of the world as
observed at a specific instant in time.

As information about static obstacles, dynamic obstacles, and lane mark-
ings were sent by the perceptual modules, the MapPlan module updated the
various ground/obstacle and lane marking likelihoods in a 300×300 m map,
roughly centered at the current vehicle location. The current vehicle pose was
obtained from an Oxford Technical Solutions RT-3050 unit. The RT-3050 is
a self-contained unit which uses a Kalman filter based algorithm to combine
inertial sensors, Global Positioning System (GPS) updates with differential

Fig. 17. Probabilitic map with obstacle/road (red/blue) likelihoods along with
lane markings (white) generated near the beginning of Urban Challenge course.

248 J. Bohren et al.

corrections from the OmniStar VBS service and vehicle odometry informa-
tion from the native embedded vehicle systems (Kalman and Bucy, 1961).
The RT-3050 was able to provide pose estimates at a high update rate of
100 Hz with a stated accuracy of 0.5 meter. The unit was specifically de-
signed for ground vehicle testing applications, and was capable of providing
pose estimates during periods of sustained GPS outages or poor GPS perfor-
mance due to environmental effects such as multipath reflections.

Given the vehicle pose estimates, the various perceptual measurements
were fused into the current map. Figure 17 shows a snapshot of the map
shortly after the beginning of the Urban Challenge, when Little Ben entered
the two-lane loop. The walls, road surface, as well as road markings can be
clearly seen in this map.

6 Planning and Control

6.1 Mission and Path Planning

In our hierarchical software architecture, planning was performed in two
stages. At the highest level, the mission planner estimated travel times be-
tween waypoints and then computed the optimal sequence of waypoints to
traverse in order to minimize the overall mission time. When a particular lane
or intersection was blocked, the mission planner recomputed an alternative
sequence of waypoints using Dijkstra’s algorithm to adaptively respond to
traffic conditions (Dijkstra, 1959). Figure 18 illustrates the display from the
mission planner as it monitors the progress of the vehicle through a route
network.

Fig. 18. Mission planner uses information from the RNDF and MDF to plan
optimal routes through the traffic network.

Little Ben: The Ben Franklin Racing Team’s Entry 249

The next stage of planning incorporated information from the dynamic
map by computing a detailed path to the next waypoint. Depending upon
the current sequence and next waypoint type in the RNDF, a specialized
local planner that dealt with lane following, U-turns, intersections, and zones
separately was selected. The lane following planner optimized a continuous
set of lateral offsets from the path given by the RNDF. The U-turn planner
monitored the road edges and obstacles while transitioning between forward
and reverse driving modes. On the other hand, the intersection planner first
monitored the waiting time and other vehicle positions while computing the
optimal path through the intersection box. Finally, the zone parking planner
used a fast non-holonomic path planner to find an optimal path to the next
waypoint in the zone. Each of these planners computed the desired geometric
path using the current map costs and a maximum safe driving speed by
computed time to possible collisions from the tracked dynamic obstacles.

6.2 Path Following

The path follower module was responsible for calculating the vehicle steering
and throttle-brake actuation commands required to follow the desired trajec-
tory as accurately as possible. The trajectory specified the desired route as a
set of points for which the spatial position and the first and second derivatives
were defined.

Previous approaches to steering control for autonomous car-like vehicles
have used PID control based methods with error terms that combine both
the lateral and heading offsets from the desired trajectory (Coulter, 1992;
Thrun et al., 2006; Rasmussen et al., 2006). A weakness of these controllers
in this application is that they do not explicitly consider the kinematic
constraints of the vehicle when calculating the steering command. These
controllers also typically require significant reparameterization in order to
operate the vehicle in reverse.

In order to avoid these shortcomings, we developed an alternative ap-
proach for steering control which integrated the dynamics of a vehicle model

Fig. 19. “Bicycle” model of the car dynamics used for control.

250 J. Bohren et al.

Fig. 20. Estimated future vehicle poses for a set of possible steering commands in
a simulated environment.

Fig. 21. Graphical representation of the terms included in the controller cost
function.

(Figure 19) to predict the resulting change in pose after a short period
of time under a set of possible steering commands as shown in Figure 20
(Gillespie, 1992). A cost function is then evaluated for each of the predicted
poses and the steering command which minimized this cost function was
chosen.

As illustrated in Figure 21, the particular form of the cost function used
in our controller was as follows:

C(φi) = E2
lateral +

[
Rθ sin(

Eθi

2
)
]2

(2)

where Elateral and Eθi are the lateral and heading offsets of the vehicle
relative to the target point on the trajectory. Note that there is a length

Little Ben: The Ben Franklin Racing Team’s Entry 251

parameter Rθ in the cost function which was used to scale the heading er-
ror relative to the position error. This parameter was adaptively tuned to
maximize performance in the different Urban Challenge scenarios.

The advantage of this value-based controller was that it was quite robust to
vehicle dynamics, and could be used just as effectively when the vehicle was
operated in either reverse or forward. This allowed us to accurately control
the vehicle in situations requiring tight navigation such as in lane changing
or parking.

The speed of the vehicle was controlled by a proportional-integral (PI)
controller after linearization of the throttle and brake dynamics. The con-
troller’s error term was the difference between the desired speed set by the
path planner, and the current speed as measured by the pose system.

6.3 Overhead Imagery Registration

We used the DARPA-provided overhead imagery to aid in preprocessing the
RNDF to yield a more precise description of the roadways. In particular, our
primary goal in processing the RNDF was to add a heading to each lane
point corresponding to the tangent vector to the road at that point. These
tangents were then used to better plan smooth trajectories connecting pairs
of waypoints. We did not artifically add extra waypoints to “densify” the
given RNDF.

Before this could be accomplished, we needed a good estimate of the map-
ping from UTM coordinates to image coordinates in the overhead imagery.
We found this transformation by fitting an affine model mapping the UTM
coordinates of the known corner points to their known pixel locations. To re-
fine this fit, we found additional fiducial points to include in the regression, in
the form of the four surveyed points in the team pits whose GPS coordinates
were given by DARPA. We deduced the image coordinates of these points by
measuring their real-world distances from visible fiducials in the image.

7 NQE Performance

Prior to the NQE, a “Red Team” was formed by engineers from Lockheed
Martin Advanced Technology Laboratory who were not involved in the de-
sign and development of Little Ben. This team came up with a series of eight
weekly tests at three different location sites in the two months before the
NQE. These tests stressed various aspects of autonomous driving as spec-
ified in the DARPA guidelines. This independent validation gave the team
confidence in Little Ben’s abilities in unknown environments during the NQE.

On the basis of its performance during the qualifying rounds, Little Ben
was chosen as a finalist for the Urban Challenge Final Event (UFE). However,
several significant refinements were made to both the vehicle hardware and
software prior to the UFE in order to account for deficiencies identified during
the NQE test phase.

252 J. Bohren et al.

For example, prior to the NQE the dynamic vehicle tracking described in
Section 4.4 was performed entirely by the Velodyne system. However, the
merge operation required in NQE Course A exposed significant blind spots
of the Velodyne due to occlusions from road signage, as well as the large LED
speed monitor used by DARPA test vehicles for speed management. This mo-
tivated the additional integration of the SICK LD-LRS hood-mounted units
for vehicle tracking. As the Velodyne was already processed as 64 indepen-
dent LIDAR instances, integrating data from the two additional LD-LRS
units was relatively straightforward.

A second potential blind spot was identified during the parking operation
required in NQE Course B. As part of this test, the vehicle was required to
pull straight into an open parking spot with parked cars on both the left
and right sides. Since the front of the parking spot was also blocked by a
third car, exiting would require Little Ben to reverse out. However, reversing
was aggravated by the placement of a large obstacle parallel to the row of
cars. While during the NQE there was sufficient clearance for Little Ben to
exit without incident, a more severe test during the UFE might result in
losing sight of a low height obstacle. It was this requirement that motivated
the integration of the rear-bumper mounted Hokuyo LIDAR described in
Section 2.5. In fact, this sensor was integrated the evening before the UFE!
While the parking test during the UFE was in fact far simpler than the NQE
requirement, the ability to seamlessly integrate another sensor only hours
before the final event – and with very limited testing – is itself a testament
to the flexibility and modularity of our software architecture.

One final observation from the NQE was regarding our approach to pro-
cessing the LIDAR data. Since Little Ben relied almost entirely on LIDAR
for exteroceptive sensing (no RADARs), we placed significant emphasis upon
robust estimation and outlier rejection. We observed other vehicles misclas-
sify dust clouds thrown up by their tires as phantom obstacles, and stop until
these clouds dissipated. However, the temporal filtering and spatial smooth-
ness constraints used with the SICK and Velodyne systems, respectively,
made Little Ben robust to such false positives.

8 UFE Performance

On the basis of its performance during the NQE, Little Ben was seeded fourth
entering the UFE competition. Overall, Ben’s performance during the final
event was quite good. The most significant shortcoming during the 57 mile
race occurred during the first mission of the UFE. This involved the off-road
portion of the course known as “the Outback” that connected Montana Street
with Phantom Road East. During development, we had operated exclusively
on paved roads and approximately planar off-road surfaces. In contrast, the
Outback was a steep grade with dramatic pitch changes over short distances.

Little Ben: The Ben Franklin Racing Team’s Entry 253

Fig. 22. Little Ben temporarily stalled on the transition from the Outback to
Phantom Road East. The steep pitch of the transition resulted in the road surface
being falsely classified as an obstacle.

As a result, Little Ben stalled at the bottom of the Outback as it transitioned
to Phantom Road East. Due to the extreme pitch of the dirt road at the
requisite stop line and low suspension and bumper clearance of Little Ben,
the paved road surface was nearly touching the front bumper at this point in
the course. This is shown in Figure 22. From this pose, the perceptual system
interpreted the road surface as an obstacle immediately in front of the vehicle
and refused to proceed through the intersection. By repositioning Little Ben
a few meters ahead, he was able to continue through the remainder of the
course.

Mission 1 also saw Little Ben execute what was arguably the most in-
telligent maneuver of the UFE. This occurred at a 4-way intersection, and
required Little Ben to interact with 3 other robot vehicles and an even larger
number of human operated traffic vehicles, as shown in Figure 23. Little Ben
(in dashed box) arrived at the intersection with the UCF entry temporarily
stalled to the right, and the MIT vehicle stopped to the left (upper left).
Little Ben obeyed intersection precedence, and waited for MIT and UCF to
proceed. The MIT vehicle made a right turn, but then became stopped tem-
porarily against a curb. Upon determining the UCF vehicle was stalled, Little
Ben began his planned right turn (upper right). Immediately, this brought
Little Ben face-to-face with the Cornell vehicle, which had stopped temporar-
ily in the wrong lane while attempting to pass other traffic (lower right). After
several seconds, Little Ben executed a pass to maneuver around the Cornell
vehicle, and then returned to his own lane (lower left). While the correctness
of this behavior may seem obvious, what is significant is that of the 4 robots
that appeared at this intersection, only Little Ben appeared to proceed as a
human operator would have done.

Little Ben finished the 57 mile course in approximately 305 minutes, not
including any penalty time that may have been assessed by DARPA. Remark-
ably, he was the only Track B entry that was able to complete the challenge.

254 J. Bohren et al.

Fig. 23. (Clockwise from upper left) Little Ben performs a right turn while passing
a robot vehicle stopped in the wrong lane.

9 Summary

This paper has presented some of the technical details of Little Ben, the au-
tonomous ground vehicle built by the Ben Franklin Racing Team for the 2007
DARPA Urban Challenge. After quantifying the sensing and reaction time
performance requirements needed for the upcoming challenge, the hardware
and software systems for Ben were designed to meet these stringent criteria.
An array of GPS/INS, LIDAR’s and vision sensors were chosen to provide
both omnidirectional and long range sensing information. The software mod-
ules were written to robustly integrate information from the sensors, build
an accurate map of the surrounding environment, and plan an optimal tra-
jectory through the traffic network. This allowed the vehicle to successfully
complete the 2007 DARPA Urban Challenge, even though we were severely
constrained by time and budget constraints.

Acknowledgments

The team would like to express our gratitude to the following individuals who
contributed to the success of this project: Allen Biddinger, Brett Breslow, Gi-
lad Buchman, Heeten Choxi, Kostas Daniilidis, the Footes, Rich Fritz, Daniel
Garofalo, Chao Gao, Erika Gross, Drew Houston, Ani Hsieh, Steve Jamison,
Michael Kozak, Vijay Kumar, Samantha Kupersmith, Bob Lightner, Gerry

Little Ben: The Ben Franklin Racing Team’s Entry 255

Mayer, Tom Miller, George Pappas, Ray Quinn, Ellen Solvibile, CJ Taylor,
Chris Wojciechowsk and many others we have forgotten. We would also like
to thank Mitch Herbets and Thales Communications for sponsoring our en-
try. Lastly, thanks to Global360 for allowing the use of video images in this
report.

References

Amir, Y., Danilov, C., Miskin-Amir, M., Schultz, J., Stanton, J.: The Spread toolkit:
Architecture and performance. Technical Report CNDS-2004-1, Johns Hopkins
University, Baltimore, MD (2004)

Coulter, R.: Implementation of the pure pursuit path tracking algorithm. Technical
Report CMU-RI-TR-92-01, Carnegie Mellon University, Pittsburgh, PA (1992)

DARPA (2007),
http://www.darpa.mil/grandchallenge/rules.asp (retrieved July 24, 2008)

Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

Elfes, A.: Using occupancy grids for mobile robot perception and navigation. IEEE
Computer Magazine 22 (1989)

Gillespie, T.D.: Fundamentals of vehicle dynamics. In: Society of Automotive En-
gineers, Warrendale, PA (1992)

Guitton, A.: The iteratively reweighted least squares method. Stanford University
Lecture Notes (2000)

Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory.
Transactions of the ASME 83, 95–107 (1961)

Rasmussen, C., Stewart, A., Burdick, J., Murray, R.M.: Alice: An information-
rich autonomous vehicle for high-speed desert navigation. Journal of Field
Robotics 23(9), 777–810 (2006)

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., James Diebel,
P.F., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M.,
Pratt, V., Stang, P., Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C.,
Markey, C., Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski,
G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., Mahoney, P.: Stanley: The
robot that won the darpa grand challenge. Journal of Field Robotics 23(9),
661–692 (2006)

Vernaza, P., Lee, D.D.: Robust GPS/INS-aided localization and mapping via GPS
bias estimation. In: Proceedings of the 10th International Symposium on Ex-
perimental Robotics, Rio de Janeiro, Brazil (2006)

Team Cornell’s Skynet:
Robust Perception and Planning

in an Urban Environment

Isaac Miller�,��, Mark Campbell��,��� Dan Huttenlocher†,‡, Aaron Nathan§,
Frank-Robert Kline‡, Pete Moran��, Noah Zych��, Brian Schimpf¶,
Sergei Lupashin§, Ephrahim Garcia��, Jason Catlin§, Mike Kurdziel��,
and Hikaru Fujishima��

Cornell University, Ithaca NY 14853
itm2@cornell.edu, mc288@cornell.edu, dph@cs.cornell.edu,
amn32@cornell.edu, fk36@cornell.edu, pfm24@cornell.edu, ncz2@cornell.edu,
bws22@cornell.edu, svl5@cornell.edu, eg84@cornell.edu,
jac267@cornell.edu, msk244@cornell.edu, hf86@cornell.edu

Abstract. Team Cornell’s ‘Skynet’ is an autonomous Chevrolet Tahoe built to
compete in the 2007 DARPA Urban Challenge. Skynet consists of many unique
subsystems, including actuation and power distribution designed in-house, a tightly-
coupled attitude and position estimator, a novel obstacle detection and tracking
system, a system for augmenting position estimates with vision-based detection
algorithms, a path planner based on physical vehicle constraints and a nonlinear
optimization routine, and a state-based reasoning agent for obeying traffic laws.
This paper describes these subsystems in detail, before discussing the system’s
overall performance in the National Qualifying Event and the Urban Challenge.
Logged data recorded at the National Qualifying Event and the Urban Challenge
are presented and used to analyze the system’s performance.

1 Introduction

Team Cornell’s ‘Skynet,’ shown in Figure 1, is an autonomous Chevrolet Tahoe
built to compete in the 2007 DARPA Urban Challenge. Skynet was built and
developed at Cornell by a team composed primarily of members returning with
experience from the 2005 DARPA Grand Challenge. The team remained small,
with 12 core members supported by 9 part-time contributors. Experience lev-
els included professors, doctoral and master’s candidates, undergraduates, and
� Graduate Research Fellow.

�� Sibley School of Mechanical and Aerospace Engineering.
��� Associate Professor.

† Dan Huttenlocher is the John P. and Rilla Neafsey Professor of Computing,
Information Science and Business and Stephen H. Weiss Fellow.

‡ Computer Science Department.
§ School of Electrical and Computer Engineering.
¶ School of Operations Research and Information Engineering.

M. Buehler et al. (Eds.): The DARPA Urban Challenge, STAR 56, pp. 257–304.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

258 I. Miller et al.

Basler camerasVelodyne HD LIDAR (64 lasers)

SICK 1D
LIDAR
(mounted
inside)

Ibeo LIDAR scanners (4 lasers)

SICK 1D
LIDAR

Unibrain camera

DELPHI
millimeter
wave
RADAR

DELPHI millimeter wave RADAR

Fig. 1. Team Cornell’s ‘Skynet.’

Cornell alumni. The team was selected from a grant proposal as one of 11
research-oriented teams to receive funding from DARPA to compete in the
Urban Challenge. Additional support was gained through corporate sponsors,
including Singapore Technologies Kinetics, Moog, Septentrio, Trimble, Ibeo,
SICK, MobilEye, The Mathworks, Delphi, and Alpha Wire.

Team Cornell’s development cycle proceeded as a carefully-monitored re-
search and engineering endeavor. The team ethos is one of maintaining
knowledge across generations of researchers, and the system has largely been
developed and tested amidst lessons learned from the team’s participation
in the 2005 DARPA Grand Challenge (Miller et al., 2006). The entire team
designed and reviewed the system in weekly research meetings. As the sys-
tem matured to testing, the entire team relocated to the Seneca Army Depot
in Romulus, NY, where Team Cornell built and maintained a private road
network for autonomous vehicle testing. Autonomous testing was conducted
formally at the Seneca Army Depot, with a safety rider selected to monitor
Skynet’s decisions from the driver’s seat for each test. Tests were coordi-
nated between the safety driver, traffic drivers, and developers through the
use of two-way radios. A remote emergency disabling switch was also actively
maintained from a support vehicle during each test. In general, the system
was brought online cautiously: development began in simulation, progressed
to evaluation with sensor data logs, then to unit testing with actuators dis-
abled, and finally to full closed-loop autonomous driving.

The remainder of the paper describes the system architecture, compo-
nents, and performance in the Urban Challenge, all in the context of lessons
learned from the Grand Challenge. Section 2 begins with a description of the
Skynet’s system architecture and timing and interface protocols. Section 3
continues with a detailed algorithmic description of each major subsystem
in Skynet. Section 4 presents results for individual systems tested at the
Urban Challenge National Qualifying Event. Section 5 presents general re-
sults and performance in the Urban Challenge Final Event, with several case
studies used to highlight unique scenarios. Section 6 concludes with a review

Team Cornell’s Skynet: Robust Perception and Planning 259

of lessons learned in the 2005 Grand Challenge, as well as new lessons and
research questions posed by the results of the Urban Challenge.

2 System Architecture and Data Flow

The general system architecture for Team Cornell’s Skynet is shown in Figure
2 in the form of key system blocks and data flow. These blocks form the multi-
layer perception and planning / control solution chosen by Team Cornell to
successfully drive in an urban environment. Details of each of these blocks
are given in section 3.

The world is perceived using two groups of sensors. Skynet itself is sensed
using a combination of Global Positioning System (GPS) receivers, an Inertial
Measurement Unit (IMU), and vehicle odometry. These raw measurements
are then fused in real time in the ‘pose estimator,’ producing tightly-coupled
position, velocity, and attitude estimates in an Earth-fixed coordinate frame.
Skynet’s environment, defined in the Urban Challenge as parked and moving

The World

Local Map
-LIDAR segmentation

-data association
-target tracking

Scene Estimator
-vehicle state wrt lane

-lane occupancy
-target metadata, IDs

-occlusion status

Pose Estimator

LIDAR
-1D Sick

-1.5D Ibeo
-2D Velodyne

RADAR
-Delphi mm wave

GPS

IMU

Odometry

MDF

Vehicle

Behavioral Layer
-navigation (graph planning)

-situational awareness
-behavior selection

Tactical Planner
-reasoning, vehicle monitors

-maneuver planning and evaluation
-road, intersection, zone, blockages

Vision
-Mobileye
-In-house lane

-health
monitors

-synchro-
nization

-attitude
-rates

-position
-velocity

Operational Layer
-path generation
-steering, speed,

transmission control
-obstacle avoidance

-stay in lane

RNDF

-In-house stop line

Fig. 2. System architecture of Team Cornell’s Skynet.

260 I. Miller et al.

cars, small and large static obstacles, and attributes of the road itself, is
sensed using a combination of laser rangefinders, radar, and vision.

Two levels of probabilistic perception are used in Team Cornell’s solution.
The ‘local map’ fuses laser, radar, and vision data, along with vehicle rotation
rate and ground velocity measurements, to initialize, locate, and track static
and dynamic obstacles over time. The local map tracks obstacles relative to
Skynet, making no distinction between small / large or stationary / moving
obstacles. The ‘scene estimator’ then uses the raw object tracking estimates,
pose estimates, and road cues from processed vision measurements in order to
develop key statistics about Skynet and obstacles for the intelligent planner.
Two sets of statistics are generated: those concerning Team Cornell’s vehicle,
such as its location with respect to the road and which lane it occupies, and
those concerning other obstacles, including position / velocity, an identifi-
cation number, lane occupancy, car likeness, and occlusion status based on
other obstacles.

Planning and control for Skynet begins with road map and mission files: the
Route Network Definition File (RNDF) and the Mission Data File (MDF),
respectively. These files are supplied by DARPA and required at the start
of each mission. The RNDF lists all legally traversable lanes as ordered se-
quences of GPS waypoints; it also marks certain waypoints as ‘checkpoints,’
stop lines, and exit or entry points connecting multiple lanes. The MDF
specifies an ordered series of checkpoints Skynet must achieve to complete its
mission, as well as maximum speed limits Skynet may travel in each part of
the RNDF.

Planning over the RNDF and MDF occurs at three layers of intelligent
planning. The topmost ‘behavioral layer’ uses the RNDF and MDF, along
with obstacle information from the scene estimator and inertial estimates
from the pose estimator, to interpret the environment and plan routes to
achieve mission progress. The behavioral layer also decides which of four
behavior states should be executed: road, intersection, zone, and blockage.
Each of these four behaviors is then executed in the ‘tactical layer,’ where
more finely detailed reasoning and planning occurs. The ‘operational layer,’
the lowest level of planning, produces a target path by smoothing an ini-
tial coarse grid-based path into one physically achievable by Skynet without
violating constraints imposed by speed limits, road boundaries, and vehi-
cle capabilities. The operational layer also has the responsibility of avoiding
nearby obstacles, and it is therefore referenced only to Skynet itself. It uses
no Earth-fixed information such as GPS positioning, similar to the local map.
The interface between the tactical and operational layers can be iterative and
is complex; this interface is described in more detail in section 3.5.

The operational layer combines the target path defined by desired curva-
ture and speed with models of Skynet to produce steering control (desired
wheel angle), speed control (desired throttle and brake position), and trans-
mission commands for Skynet. The commands are implemented by individual
automation actuators (steering wheel, throttle, brake, transmission, and turn

Team Cornell’s Skynet: Robust Perception and Planning 261

signals) on a stock SUV chassis. Standard aerospace motors are used for the
wheel, brake, and transmission actuation, while the throttle is drive-by-wire
through the stock General Motors CAN network.

2.1 Real-Time Data Distribution Network

Learning from system integration difficulties experienced in the 2005 Grand
Challenge, Team Cornell addressed communication, synchronization, and
data flow in its Urban Challenge entry before the constituent systems were
designed. With the complex system architecture shown in Figure 2, three
problems impact the design the most. First, there are simply massive amounts
of data to be distributed between software and hardware modules around the
car; approximately 76 Mb of data is transported across the car’s networks
each second. Second, the different software modules on the car each have
varying requirements on the level of synchronization and timing of the data
necessary to satisfy their design requirements. Third, the many different types
of sensors, actuators and software modules each require a custom interface
design.

In order to overcome these challenges, Team Cornell developed and used
a Real-time Data Distribution Network (RDDN). The RDDN uses dedicated
real-time microprocessors to interpret, timestamp, and broadcast sensor data
using the User Datagram Protocol (UDP) over a standardized Ethernet net-
work. This RDDN allows sensor data to receive accurate time stamps through
synchronization with a master microcontroller, a benefit critical to higher
level sensor fusion. The common Ethernet interface also allows any computer
to listen to any sensor without specialized hardware, and it allows real-time
data to be simulated in playback over the network.

Specifically, the RDDN is composed of a 100-BaseT network of Motorola
9S12NE64 microcontrollers, each with embedded Ethernet MAC and PHY.
Custom built Ethernet-ready microcontrollers are interfaced to all sensors
and actuators, including cameras, laser rangefinders, radars, the IMU, GPS
receivers, the GM CAN network, and actuation controllers. The microcon-
trollers are synchronized with a single, master microcontroller with 0.1 ms
accuracy using the IMU time stamp as a reference. Software modules are
distributed on separate servers, each linked with switches. The modular mi-
crocontroller / server / switch system used a UDP multicast distribution of
all sensor data, which enables universal availability of all data sources with
accurate time stamping.

3 Component Descriptions

This section provides algorithmic descriptions of the independent subsystems
implemented in Team Cornell’s Skynet. Discussion begins with a description
of the vehicle actuation and power distribution system in section 3.1. Section
3.2 continues with a description of Team Cornell’s tightly-coupled attitude

262 I. Miller et al.

Fig. 3. Real time data distribution system, with servers and switches (left) and
microcontrollers (right).

and position estimator. Section 3.3 describes Skynet’s obstacle detection and
tracking system. Section 3.4 describes Skynet’s algorithms for applying con-
textual information from the urban environment. Section 3.5 completes the
discussion of Skynet’s subsystems with a description of its intelligent planner.

3.1 Vehicle Hardware

Team Cornell’s Skynet is built on a 2007 Chevrolet Tahoe converted for au-
tonomous operation. Selection of the Tahoe and its subsequent modifications
were driven by two primary design requirements: responsiveness and relia-
bility. Both design requirements are motivated directly by the environment
of the Urban Challenge. An autonomous agent capable of fast response can
adapt to potentially erratic behavior displayed by other robotic agents that
might not be characteristic of a human-populated urban environment. The
short development cycle of Urban Challenge vehicles also makes reliability a
key requirement, since a vehicle that can be repaired quickly without special-
ized parts can get back to autonomous testing without much downtime. Team
Cornell addresses these primary design requirements in four aspects of hard-
ware selection: the vehicle chassis, the power subsystem, the drive-by-wire
actuation, and the hardware packaging, each described below.

3.1.1 Chassis
Team Cornell’s selection of the 2007 Chevrolet Tahoe as its vehicle chassis is
based on design decisions intended to bolster responsiveness and reliability.
One factor relevant to the decision is the fact that the Tahoe, as a full-size
SUV, has sufficient room for a large number of computers, actuators, and
human safety riders. Additionally, as an SUV it is larger and heavier than a

Team Cornell’s Skynet: Robust Perception and Planning 263

typical sedan, making it more likely to survive low-speed collisions without
serious damage. Also, the stock Tahoe has a large engine bay with provisions
for auxiliary power generation, as Tahoes are prepared for conversion to emer-
gency vehicles. Finally, the 2007 Tahoe comes equipped with a large set of
easily-accessible sensors, including stock throttle, odometry, and health mon-
itoring sensors, which are all used without modifying the Tahoe’s electronics
and throttle.

The commercially-available Tahoe also addresses many reliability is-
sues that affected Team Cornell’s 2005 DARPA Grand Challenge entry
(Miller et al., 2006). First, the manufacturer’s warranty and stock parts en-
sure reliable operation, short lead time in acquiring replacement parts, and
fast repair times. Second, the stock chassis has many rigid mounting points far
inside the frame, allowing a computer rack to be mounted out of harm’s way.
Third, the 1776 lb. payload capacity ensures that the vehicle’s performance
is unaffected by large numbers of computers, batteries, and sensors. Finally,
the common use of the Tahoe as an emergency vehicle makes a wide variety
of commercially-available after-market bumper, roll cage, and alternator kits
available for additional reliability.

3.1.2 Power Subsystem
The design of Team Cornell’s power subsystem was largely driven by lessons
learned from the 2005 Grand Challenge. From that experience and a study
of current computational hardware, initial power requirements were set at
2400 W, with an additional 1500 W budgeted for actuators at peak load. In
addition, Team Cornell’s power subsystem was designed to tolerate short pe-
riods with no power generation due to inevitable minor power and equipment
failures. Finally, the system was designed to switch readily between onboard
power generation and wall power in the laboratory to permit extended algo-
rithm testing without starting Skynet or using a generator.

Team Cornell used a separate power generator in the 2005 Grand Challenge,
resulting in significant heat, noise, and reliability issues (Miller et al., 2006).
In the Urban Challenge, the team opted instead to generate additional power
with a secondary alternator, manufactured by Leece-Neville, mounted in the
engine bay. The secondary alternator provides 200 amps peak output current
at 24 volts to drive a pair of Outback Power Systems inverters, mounted be-
hind the front seats. Each inverter is capable of sourcing up to 3500 W at peak.
Both the alternator and the inverters exceed design requirements with a mar-
gin of safety. As a secondary system they also function independently from
the stock electrical system on the Tahoe, so critical vehicle electronics do not
compete with the computers and actuators for power. In addition, the design is
redundant and can operate if one inverter fails. Finally, the inverters generate
clean enough power that sensitive electronics operate seamlessly, even during
the transition from Skynet to wall power.

While the inverters provide the primary source of power to Skynet, they
also charge four Optima deep-cycle automotive batteries mounted behind the

264 I. Miller et al.

inverters. These batteries are charged while the throttle is actively applied,
and they are able to provide peak power even when the vehicle idles. The
batteries also provide temporary power if the engine stops or Skynet needs
to be restarted. The batteries act much like an uninterruptible power supply,
but with an extended duration of approximately 6 hours of reserve power.

3.1.3 Automation
The most significant decision affecting Team Cornell’s development cycle was
the choice to design and build the actuation scheme in-house for converting
Skynet to drive-by-wire operation. This decision was only made after an
extensive review of performance specifications, costs, and features of three
commercially available alternatives: EMC, AB Dynamics, and Stahle. Three
factors were considered critical in the decision. Scheduling was the first design
constraint, and only the EMC conversion and in-house actuation were fea-
sible within the Urban Challenge development cycle. The second factor was
the ability to repair or modify the actuation quickly, which is necessary to
resume testing rapidly in the event of a failure. This factor was perhaps most
critical in the decision, as a failure in any commercial solution would require
significant time spent transporting the vehicle to a factory for repairs. The
final factor was cost, measured both in time and in money. Team Cornell’s
relationship with Moog Aerospace allowed the team to obtain actuators at no
cost, and the knowledge and feasibility of repairing or upgrading an in-house
system far outweighed the time spent designing it.

Once Team Cornell decided to develop the vehicle actuation in-house, de-
sign specifications were created based on the most demanding maneuvers
Skynet might need to perform during the Urban Challenge. In particular, a
maximum steering angle performance requirement was defined as the ability
to achieve a 700◦ change in steering wheel angle in 1 second. This require-
ment is taken from a standard NHTSA fishhook maneuver, which is used to
test commercial SUV rollover at 35 mph. Similarly, a braking force require-
ment was defined as the ability to achieve 100 lbs. force of pedal pressure
in 0.1 sec., a maneuver defined as a Class A stop in the Consumer Braking
Information Initiative. Vehicle modifications were also designed without com-
promising Skynet’s human interface and safety systems. As a result of these
design specification the actuation scheme places no additional restrictions on
Skynet’s maneuverability: limiting factors are equal to or better than those
available to a human.

3.1.4 Packaging
Packaging hardware into Skynet was performed considering requirements of
easy access, reliability, and impact survival. The front driver and passenger
seats in Skynet remain unmodified to hold two passengers, one as a safety
driver and one as a developer. The actuation scheme is also packaged into
the front seats: the steering actuator is mounted in parallel with the steering

Team Cornell’s Skynet: Robust Perception and Planning 265

Fig. 4. (top): Team Cornell’s custom actuation. (bottom): Team Cornell’s power
generation and backup solution.

column without affecting driver legroom, the brake actuator is mounted in the
passenger leg area with a pull cable attached to the brake pedal, the throttle
actuator is entirely electronic and built into a computer console between the
front seats, and the transmission actuator is mounted behind the driver’s seat
with a push / pull cable attached to the transmission. The middle seats of
Skynet are removed entirely and are replaced with the inverters and batteries
for power generation and storage. A protective steel case covers both the
batteries and inverters and allows easy access to the trunk. The third row of
seats is also entirely removed, and is replaced by Team Cornell’s computer
rack. The computer rack assembly mounts rigidly to Skynet’s frame, but is
isolated from shock and vibration by four flexible mounting brackets provided
by Barry Controls, Inc.

The rack itself is a steel frame custom built in-house to hold 17 single
rack unit (1U) form factor computers, identical for rapid replacement. The
rack is deliberately designed to house as many computers as possible, as
its design was based on pessimistic overestimates of Skynet’s computing re-
quirements. In fact, Skynet fully utilizes only 7 of its 17 computers: one for
position estimation, one for obstacle tracking, one for scene estimation, one
for lane-finding, two for constrained path planning, and one for high level
rule-based path planning. The remainder of the computers run compara-
tively lightweight sensor processing algorithms. No attempt has been made
to package these algorithms more efficiently, as Skynet has been designed
as an expandable research platform. Each of Skynet’s computers houses a
dual-core Pentium Mobile laptop processor, with clock speeds ranging from

266 I. Miller et al.

1.66 GHz to 2.13 GHz and 2 Gb RAM. Laptop processors are used for heat
and power savings, permitting the computers to be run safely in midday heat
using Skynet’s stock air conditioning system. All computers run Windows
Server 2003, selected due to the team’s extensive experience with program-
ming in the Windows environment. Potential Windows timing and thread
scheduling problems have been avoided through the use of accurate micro-
controller time stamping. Skynet’s time stamped Ethernet RDDN, discussed
in section 2.1, allows each process to maintain correct temporal ordering of
data while tolerating common deviations in thread scheduling and execution
times.

Cable control around Skynet was also considered in packaging the hard-
ware during Skynet’s autonomous conversion. All roof cables were routed
together through a single waterproof (IP67) roof breach. Power cables are
run on the floor of the car upward to power computers and microcontrollers
in the rack, and Ethernet data cables flow down from the interior ceiling.

To improve survivability in the case of a collision, most sensors were
mounted inside Skynet. Forward and rear-facing Ibeo and SICK laser
rangefinders were all embedded into the front and back bumpers. All for-
ward, side, and rear-facing radars were also placed behind the bumper plas-
tic, which did not affect their performance. Forward and rear looking cameras
were mounted on the roof and behind Skynet’s front grille. Side mounted
SICK laser rangefinders were also mounted inside Skynet, and the back door
windows were replaced with infrared transparent plastic to allow detection
and scanning from a safe vantage point.

3.2 Position, Velocity, and Attitude Estimation

Team Cornell’s pose estimator fuses external satellite navigation signals with
onboard sensing to supply the real-time position, velocity, and attitude (pose)
solution used for absolute positioning. Team Cornell’s pose estimator was
designed and built with several objectives in mind. First, as the sole source
of external absolute position information, the pose estimator must by itself
meet the absolute positioning requirements of the Urban Challenge: driv-
ing within potentially unmarked lanes, stopping within one meter of desig-
nated stop lines, and parking in potentially unmarked parking spaces. Each
of these requirements mandates at least sub-meter positioning accuracy in
the solution produced by the pose estimator. Second, the pose estimator
must supply estimates of Skynet’s differential motion to permit transforma-
tion of a vehicle-fixed coordinate frame over time. This requirement stems
largely from deliberate design decisions made to reference all obstacles and
path constraints in a vehicle-fixed coordinate frame, which is not affected
by discontinuous changes in the absolute position solution as the quality of
the GPS signal evolves over time. Finally, and most importantly, the pose
estimator must produce a smooth and robust solution in the changing ur-
ban environment. It must be designed to cope with rapidly changing GPS

Team Cornell’s Skynet: Robust Perception and Planning 267

satellite visibility, multipath and other signal distortion, and potential short-
term GPS blackouts due to the presence of trees and buildings. In essence,
biased, overconfident, and brittle pose estimates are all particularly fatal as
the pose solution is ultimately used to determine which rules of the road
apply at each vehicle planning cycle.

Although off-the-shelf pose estimators are sufficient to satisfy the design
requirements, a cost analysis drove Team Cornell to develop a custom pose
estimator in-house. In particular, Team Cornell already possessed all the
necessary hardware and expertise from the 2005 DARPA Grand Challenge
to implement the pose estimator in-house, so the tradeoff fell between time
spent developing the custom solution and the up-front price paid to purchase
a top quality off-the-shelf equivalent. In the end, better understanding of GPS
signal behavior for debugging, the freedom to design a custom interface, and
the ability to make filtering considerations specific to the Urban Challenge
tipped the scales against off-the-shelf equivalents.

The pose estimator that evolved from these design considerations fuses
information from four sensors: a Litton LN-200 inertial measurement unit
(IMU), Skynet’s ABS wheel encoders, a Septentrio PolaRx2e@ GPS receiver,
and a Trimble Ag252 GPS receiver. The LN-200 IMU is a combined three-
axis fiber optic rate gyroscope and a three-axis silicon accelerometer, rigidly
mounted on the floor of Skynet, along its centerline, just above the rear axle.
The LN-200 integrates its rate gyros and accelerometers to report vector mea-
surements of changes in orientation and velocity of its internal IMU-fixed co-
ordinate frame as a digital signal at 400 Hz. These measurements may then be
integrated to determine the position and orientation of the IMU relative to an
initial configuration. Skynet’s stock ABS sensors, optical encoders mounted
at each wheel, are also used to aid in this dead-reckoning integration scheme.
Information from these encoders is retrieved over Skynet’s stock GM CAN
network at 30 Hz and is used to provide a measurement of vehicle speed to
help slow IMU integration errors’ rate of growth. The two GPS receivers,
the Septentrio and the Trimble, are both used to keep the integration errors
in the dead-reckoning scheme bounded when GPS signals are available. The
Septentrio, a three-antenna, single-clock, 48 channel GPS receiver, provides
raw pseudorange, Doppler shift, and carrier phase measurements of all vis-
ible GPS satellites on all its antennas at 5 Hz synchronized measurement
intervals. Its antennas are mounted in an ‘L’ pattern on Skynet’s roof, as far
apart as possible to promote greater observability in the differential signal
between the antennas. The Septentrio also decodes the WAAS signal at the
same rate to provide higher fidelity GPS error models. Finally, the Trimble,
an agricultural grade single-antenna GPS receiver, is used solely to decode
high precision (HP) OmniSTAR differential corrections. These corrections
are supplied at 10 Hz with an advertised accuracy of 10 cm (Trimble, 2004).
This HP signal, when statistically validated, is the primary source of sub-
meter positioning information for satisfying the first pose estimator design
requirement.

268 I. Miller et al.

Team Cornell’s pose estimator blends its four sensors in a tightly-coupled
estimator that utilizes the strengths of each sensor while compensating for
their weaknesses with sensor diversity. The LN-200 provides the fast and ac-
curate update rates necessary to produce a smooth and statistically robust
solution, but it must be integrated and therefore suffers from integration er-
rors. The wheel encoders slow down the rate of growth of IMU integration
errors, but are subject to errors due to wheel slip. The Septentrio, although
providing data at a much slower rate, corrects integration errors with ab-
solute positioning information obtained from GPS and WAAS. These three
sensors can’t consistently achieve sub-meter accuracy even when fused, but
they can when supplemented with occasional updates from the HP signal
received by the Trimble. The HP signal tends to be brittle, occasionally bi-
ased, and difficult to track for long periods of time, but statistical hypothesis
tests using information fused over time from the other sensors is sufficient
to determine when the HP signal is usable and when it is not. The resulting
pose estimator, described below, uses these sensor strengths and diversity to
satisfy the system’s design requirements.

Team Cornell’s pose estimator builds upon techniques and lessons learned
from the pose estimator built for Cornell’s 2005 Grand Challenge entry
(Miller et al., 2006). Like the 2005 pose estimator, it collects and fuses infor-
mation from its constituent sensors via an extended square root information
filter (SRIF). The SRIF is a numerically robust implementation equivalent to
the traditional Kalman Filter (KF), but it achieves twice the numerical stabil-
ity and precision by maintaining and propagating a square root of the state’s
information matrix instead of a state covariance matrix (Bierman, 1977). The
SRIF also has the advantage of being able to correctly initialize state esti-
mates with infinite covariance, which are simply represented in the SRIF as
estimates with zero information. Beyond these two convenient features, the
extended SRIF is functionally identical to a traditional extended Kalman
Filter (EKF). The SRIF is divided into familiar prediction and update steps,
which, for this application, correspond to a dead-reckoning numerical inte-
gration step and a GPS, HP, or encoder measurement correction step.

Similarities with Cornell’s 2005 pose estimator end with the SRIF. Numer-
ical integration for dead-reckoning and prediction is performed as a series of
discrete Euler steps, each corresponding to a single change in orientation
and velocity reported by the LN-200. Corrections for the Earth’s rotation
rate and coriolis and centripetal accelerations measured by the LN-200 are
also made using Euler approximations in a method similar to that of Sav-
age (Savage, 1998a), (Savage, 1998b). Velocity changes due to gravity are
also subtracted from the integration using an Euler approximation, with the
gravity vector calculated using a numerically stable Legendre polynomial con-
struction algorithm and the full 360x360 EGM-96 gravity potential model
(Lundberg and Schutz, 1988), (Lemoine et al., 1998). Time correlated GPS
satellite range bias estimates, Septentrio receiver clock offset and drift rates,
constant double-differenced carrier phase ambiguities, and constant rate gyro

Team Cornell’s Skynet: Robust Perception and Planning 269

and accelerometer biases are also filtered as part of the pose estimator, using
the autocorrelated and random walk dynamic process models described by
Bar-Shalom et al. (Bar-Shalom et al., 2001).

Asynchronous updates are performed within the pose SRIF as measure-
ments become available from the wheel encoders, Septentrio, and Trimble.
For wheel encoder measurements, a filter update is calculated from the mea-
sured speed of Skynet. For Trimble measurements, a filter update is calcu-
lated from the location of the Trimble, measured using the HP signal. For
Septentrio measurements, the measured pseudoranges, Doppler shifts, and
double differenced carrier phases are all used to update the pose estimate
in the SRIF on a satellite by satellite, antenna by antenna basis. This up-
dating technique ‘tightly couples’ the Septentrio to the IMU in the pose
estimator by estimating vehicle pose, IMU biases, receiver clock errors, and
satellite errors all within a single centralized SRIF. It has the advantage that
information is processed from each GPS satellite individually, allowing the
filter to gain information even when fewer than four satellites are visible
(Artes and Nastro, 2005). More importantly, it allows satellite signals to be
modeled individually, so that each satellite can be statistically tested for sig-
nificant errors and weighted in the SRIF according to its signal quality. Team
Cornell’s pose estimator takes advantage of this opportunity by expanding
the broadcasted GPS satellite signal model to include weather-based tropo-
spheric corrections, time correlated multipath models, and receiver thermal
noise (Saastamoinen, 1972), (Davis et al., 1985), (Bar-Shalom et al., 2001),
(Sleewaegen et al., 2004), (Psiaki and Mohiudden, 2007). This expanded sig-
nal error model is then combined with previously fused pose estimates to per-
form a χ2 hypothesis test on the entire set of GPS measurements to evaluate
measurement validity (Bar-Shalom et al., 2001). If the set of measurements
fails the hypothesis test, individual satellites are tested in an attempt to find
a set of satellites with lower signal distortion. If no such set is found, the en-
tire measurement is abandoned. Similar filter integrity monitoring hypothesis
tests are performed on each wheel encoder measurement and each HP mea-
surement to prevent measurements with significant errors from corrupting
the filtered pose solution and disturbing vehicle behavior.

Team Cornell’s pose estimator is implemented in C++ and runs dead-
reckoning integrations at 400 Hz on a 64-bit dual-core Pentium-Mobile pro-
cessor running Windows Server 2003. Full predictions of the square root in-
formation matrix are performed at 200 Hz due to the computational expense
of a large QR-factorization mandated by the SRIF. The full pose solution is
reported at 100 Hz to all other systems in Skynet.

3.3 Obstacle Detection and Tracking

Team Cornell’s obstacle detection and tracking system, called the local map,
fuses the output of all obstacle detection sensor measurements over time
into one vehicle-centric map of the local environment surrounding Skynet.

270 I. Miller et al.

The local map is built to satisfy four design requirements. First, diversity in
both output information and placement of obstacle detection sensors around
the car at a minimum requires a centralized algorithm to collect and fuse
information to distinguish between traversable and occupied regions of the
car’s surroundings. Second, the local map needs to resolve conflicts between
sensors. In this respect mapping the sensors to a single coordinate frame is
not enough; the sensors must be actively fused to a single interpretation of
the environment for the planner to act upon. Third, the system must predict
and track the motion of dynamic obstacles, to allow the planner to respond
differently to moving traffic vehicles and static obstructions. Finally, the lo-
cal map must be stable and robust over time, despite the rapidly changing
urban environment. In particular, the local map must remain stable as other
intelligent maneuvering agents pass in and out of view of various sensors in
Skynet. Such stability is required to perceive complex intersection, merging,
and traffic scenarios correctly as well, making it a critical requirement for
success in the Urban Challenge.

The local map fuses information from three sensing modalities: laser
rangefinders, radars, and optical cameras. Team Cornell’s Skynet is equipped
with 7 laser rangefinders: 3 Ibeo ALASCA XT rangefinders, 2 SICK LMS
291 rangefinders, 1 SICK LMS 220 rangefinder, and one Velodyne HDL-64E
rangefinder. The 3 Ibeos, mounted in Skynet’s front bumper, each return
range and bearing pairs taken from four separate laser beams at 12.5 Hz
over a 150◦ field of view with angular resolution of approximately 1◦. The
2 SICK 291s, mounted with vertical scan planes inside Skynet’s rear doors,
each return range and bearing pairs over a 90◦ field of view with angular res-
olution of approximately 0.5◦ at 75 Hz. The SICK 220, mounted in Skynet’s
rear bumper with a single horizontal scan plane, returns range and bearing
pairs over a 180◦ field of view with angular resolution of approximately 1◦

at 37.5 Hz. The Velodyne, mounted on the centerline of Skynet’s roof above
the front seats, returns range and bearing pairs from 64 separate laser beams
over a 360◦ field of view at 15 Hz. Skynet is also equipped with 8 Delphi
FLR radars, each of which returns data for up to 20 tracked objects at 10
Hz. The Delphis are mounted 5 in the front bumper for forward and side-
facing detection, and 3 in the rear for backward detection. Finally, Skynet
is equipped with one backward-facing Unibrain Fire-i 520b optical camera,
mounted just above the trunk. This camera runs MobilEye SeeQ software
that reports tracked obstacles at approximately 15 Hz. Table 1 summarizes
Skynet’s obstacle detection sensors, and Figure 5 gives a top-down view of
Skynet’s laser rangefinder and radar coverage.

Like the pose estimator, the local map relies on sensor diversity to circum-
vent the shortcomings of each individual sensor. At the highest level, the laser
rangefinders are most effective at determining obstacle position, but they do
not measure obstacle speed. When combined with Delphi radars, which mea-
sure accurate speed (range rate) but poor range and bearing, the overall set of
sensors yields accurate position and speed measurements of all obstacles near

Team Cornell’s Skynet: Robust Perception and Planning 271

Table 1. Skynet’s obstacle detection sensors

Sensor Location Type Rate FoV Resolution

Ibeo ALASCA XT front bumper left laser 12.5 Hz 150◦ 1◦

front bumper center laser 12.5 Hz 150◦ 1◦

front bumper right laser 12.5 Hz 150◦ 1◦

SICK LMS 291 left back door laser 75 Hz 90◦ 0.5◦

right back door laser 75 Hz 90◦ 0.5◦

SICK LMS 220 back bumper center laser 37.5 Hz 180◦ 1◦

Velodyne HDL-64E roof center laser 15 Hz 360◦ 0.7◦

Delphi FLR front bumper left (2x) radar 10 Hz 15◦ 20 tracks

front bumper center radar 10 Hz 15◦ 20 tracks

front bumper right (2x) radar 10 Hz 15◦ 20 tracks

back bumper left radar 10 Hz 15◦ 20 tracks

back bumper center radar 10 Hz 15◦ 20 tracks

back bumper right radar 10 Hz 15◦ 20 tracks

Unibrain Fire-i 520b back roof center optical 15 Hz 20◦ − 30◦ N / A

Skynet. This set of measurements are used within the local map to generate
a central fused estimate of Skynet’s surroundings, distinguishing traversable
areas from those laden with obstacles, and identifying other moving agents.

To keep sensor interfaces with the local map simple, all sensor measure-
ments are fused at the object level. That is, each sensor measurement is
treated as a measurement of a single object, whether another intelligent
agent or a typical static obstacle. Both the Delphi radars and the Mobil-
Eye SeeQ software fit easily into this framework, as their proprietary algo-
rithms automatically transmit lists of tracked obstacles. The laser rangefind-
ers, which all return lists of range and bearing pairs, are post-processed to
fit into this object level framework. First, laser returns corresponding to the
ground and any other objects too low to the ground to be vehicles are re-
moved from the set of rangefinder points under consideration. This is accom-
plished through the use of a ground model constructed by rasterizing returns
from each Velodyne frame into a time-filtered gridded ground map with tech-
niques similar to those used in the 2005 Grand Challenge (Miller et al., 2006),
(Miller and Campbell, 2006). The primary difference between this method of
ground modeling and the 2005 approach is that it represents the ground in
a vehicle-fixed coordinate frame, using differential vehicle motion estimates
from the pose estimator to keep the terrain grid fixed to Skynet as it moves.

Once ground and low obstacle laser returns are removed from considera-
tion, a clustering step is performed to group laser returns into distinct objects
for measurement. The clustering algorithm uses Euclidean distance thresh-
olds to assign cluster membership, and it is run separately with thresholds
of 0.5m and 1m to generate clusters. Only clusters that are identical across
both thresholds are considered distinct enough to be treated as measurable

272 I. Miller et al.

Fig. 5. (left): Laser rangefinder azimuthal coverage diagram for Team Cornell’s
Skynet. (right): Radar azimuthal coverage diagram. Skynet faces right in both
coverage diagrams. A rear-facing optical camera is not shown, nor are two laser
rangefinders with vertical scan planes that detect obstacles immediately to the left
and right of Skynet.

obstacles. The number of clusters is also further reduced by analyzing oc-
clusion boundaries in the ranges of nearby points; only clusters that are
completely visible are considered distinct enough to generate measurements.
From there, each distinct obstacle cluster is used to generate measurements
which are then passed to the local map to be fused at the object level.

The local map fuses object measurements from its constituent sen-
sors by treating the obstacle detection and tracking problem as the joint
estimation problem of simultaneously tracking multiple obstacles and
determining which sensor measurements correspond to those obstacles
(Miller and Campbell, 2007). In the language of classical Bayesian estimation
the problem is formulated as estimating the joint posterior:

p (N (1 : k) , X (1 : k) |Z (1 : k)) (1)

where N (1 : k) is a set of discrete random variables indicating which sen-
sor measurements correspond to which tracked obstacles at time indices 1
through k, X (1 : k) is a set of continuous random variables representing the
states of the obstacles being tracked at time indices 1 through k, and Z (1 : k)
are the full set of measurements from the first measurement frame to the cur-
rent time index k. Note the number of obstacles is also represented implicitly
as a random variable in the cardinality of N (k) and X (k) at any particular
time index, and must also be determined in the local map’s framework. In the
Urban Challenge environment the joint estimation problem posed in equa-
tion 1 is generally too large to be solved by a direct brute force estimator,
such as a particle filter, evaluating hypotheses over the full multivariate state
space. Instead, Team Cornell factorizes the posterior to yield two manageable
components:

Team Cornell’s Skynet: Robust Perception and Planning 273

p (N (1 : k) |Z (1 : k)) · p (X (1 : k) |N (1 : k) , Z (1 : k)) (2)

where, intuitively, p (N (1 : k) |Z (1 : k)) describes the task of determining the
number of obstacles to track and assigning measurements to those obstacles,
and p (X (1 : k) |N (1 : k) , Z (1 : k)) describes the task of tracking a known
set of obstacles with known measurement correspondences. In the local map,
these two densities are estimated separately using a particle filter to draw hy-
potheses about measurement correspondences and banks of extended Kalman
Filters (EKFs) to track obstacles using each particle’s hypothesis about mea-
surement assignments (Miller and Campbell, 2007). This approach solves the
joint estimation problem without wasting computational resources assigning
particles over continuous obstacle states, which can be estimated effectively
and inexpensively with standard EKFs.

Each EKF within a local map particle tracks one potentially moving obsta-
cle under the measurement correspondence hypothesis of that particle. Each
obstacle is modeled as a set of cluster points storing the geometric informa-
tion known about that obstacle, and all those cluster points are referenced
to an obstacle-fixed coordinate frame. The EKF then estimates the following
states for each obstacle at time index k: the (x, y) location of the origin of
that obstacle’s coordinate frame, the angle φ orienting the obstacle’s coordi-
nate axes with respect to Skynet, the angle θ denoting the obstacle’s heading
relative to Skynet, and the obstacle’s ground speed s. Obstacle maneuvers,
i.e. changes in speed and heading, are modeled as random walks, with noise
parameters set to encompass feasible accelerations and turning rates at Ur-
ban Challenge speeds. In the prediction step of an obstacle’s EKF, these
5 state variables are numerically integrated with a 4th order Runge-Kutta
algorithm. This EKF prediction uses Skynet’s differential motion estimates
from the pose estimator to keep all tracked obstacles in a Skynet-centric co-
ordinate frame. Although such a moving coordinate frame couples obstacle
tracking errors to errors in Skynet’s differential motion estimates, the quality
of Skynet’s IMU prevents this coupling from having any substantial impact
on obstacle tracking. More importantly, the Skynet-centric coordinate frame
ensures that absolute positioning errors, which depend heavily on the quality
of the GPS environment, do not affect obstacle tracking at all.

The update step of each obstacle’s EKF changes depending on the type
of sensor providing the information. Both MobilEye and radar updates are
performed as traditional EKF update steps with measurements consisting
of a range, bearing, and range rate toward or away from the appropriate
sensor. Updates from the side SICK 291s are scalar measurements con-
sisting of distance from the side of Skynet to the obstacle. For the Ibeos
and the rear SICK 220, 3 measurements are extracted from each clustered
set of rangefinder points: bearings of the most clockwise and most coun-
terclockwise points in the cluster, and range to the closest point in the
cluster. This set of measurements is chosen specifically for its favorable
and stable behavior under linearization, though the linearization is never
computed explicitly (Miller and Campbell, 2007). Instead, the update step

274 I. Miller et al.

utilizes the unscented transform from the Sigma Point Filter (SPF) to com-
pute an approximate linearization of the measurement about the current
obstacle state estimate and the current cluster of points representing that
obstacle (Julier and Uhlmann, 1997). In all update types, measurement noise
is assumed to be additive and Gaussian. This allows measurement covariance
matrices to be set according to the characteristics of each sensor or obsta-
cle detection algorithm, while still ensuring proper updates to obstacle state
covariance matrices through the use of EKF and SPF linearizations.

Each particle of the local map represents one complete hypothesis about
the set of obstacles in Skynet’s environment and which sensor measurements
correspond to those obstacles. At each sensor frame, the local map’s particles
choose non-deterministically whether each sensor measurement corresponds
to a new obstacle, should be assigned to the EKF of a specific existing ob-
stacle, or should be ignored as clutter. These choices are made according to
the likelihood that the measurement corresponds to a model of where new
obstacles are likely to be seen, to existing obstacles, or to the class of false
measurements commonly made by each sensor. The local map is resampled
at the end of any sensor frame in which the effective number of particles is
less than half the true number of particles (Arulampalam et al., 2002). The
most likely particle and all its tracked obstacles are then broadcasted at 10
Hz on Skynet’s data network.

Like the pose estimator, the local map ensures that sensor measurements
are processed in correct temporal order by keeping a queue of recent sensor
measurements, sorted by age. The oldest measurements in the queue are
used to update the local map once every sensor has either contributed a
newer piece of data or timed out. This queuing structure, along with the
rest of the local map, occupies a single core of a dual core Pentium-Mobile
processor running Windows Server 2003. It reports the current most likely
list of obstacles at 10 Hz to Skynet’s data network. It also maintains a set
of laser rangefinder points confirmed to be obstacles but not tracked, either
because they were deemed unstable during clustering or because they were
too small to be moving vehicles. This list is also reported on Skynet’s data
network to ensure the planner avoids all moving and static obstacles.

3.4 Environment Structure Estimation

Team Cornell’s local map, described in section 3.3 broadcasts a list of tracked
and untracked obstacles at 10 Hz to Skynet’s internal data network for col-
lision avoidance. These obstacles are maintained in a vehicle-centric coor-
dinate frame, and are never referenced to absolute coordinates in the local
map tracking scheme. This approach keeps absolute positioning errors from
affecting obstacle avoidance, which only depends on the relative positioning
of obstacles with respect to Skynet. This approach also avoids the potentially
incorrect assumption that other moving agents obey the rules of the road, as

Team Cornell’s Skynet: Robust Perception and Planning 275

those agents face exactly the same pose, perception, and planning difficulties
Skynet does.

Still, the Urban Challenge is more than basic obstacle avoidance. In or-
der to obey the rules of the road, the vehicle must at some point modify
its behaviors according to its and others’ absolute locations, for queuing at
intersections, maintaining safe following distances, and appropriately ignor-
ing cars in oncoming lanes. When the environment is structured, the road
constraints provide strong cues to improve Skynet’s localization and percep-
tion of its surroundings. Team Cornell’s scene estimator, described below,
identifies and takes advantage of these environment cues.

3.4.1 Posterior Pose
The scene estimator consists of two algorithms, called ‘posterior pose’ and
‘track generator,’ that act as a data pipeline from the localization and per-
ception systems to the planner. The first, posterior pose, is built to take
advantage of the position cues hidden in the DARPA road network and the
constraints of the Urban Challenge. In particular, it takes advantage of the
DARPA-stated assurance that all waypoints are surveyed accurately, all lanes
are marked as indicated in the route network definition file (RNDF), and all
stop lines are painted correctly. Under these assumptions, posterior pose uses
vision-based lane line and stop line detection algorithms to improve the pose
estimator’s estimate of Skynet’s absolute position. The algorithm, based on
GPS map aiding techniques, sets out to determine a simplified a posteriori
joint density of Skynet’s pose given road cues:

p (E (1 : k) , N (1 : k) , Θ (1 : k) |M,Z (1 : k)) (3)

where (E (1 : k) , N (1 : k)) is Skynet’s East-North planar position in the
RNDF at time indices 1 through k, Θ (1 : k) is Skynet’s heading measured
counterclockwise from East at time indices 1 through k, M is the information
obtained from the (static) DARPA RNDF, and Z (1 : k) are the available sen-
sor measurements, including output from the pose estimator, two lane-finding
algorithms, and a stop line detection algorithm (Miller and Campbell, 2008).
In this simplified formulation of the pose estimation problem, Skynet has been
constrained from free movement in a three-dimensional environment to pla-
nar motion. Note, however, that it still does not assume Skynet always stays
on the road. This design choice simplifies the estimation problem consider-
ably by reducing the size of the pose state vector to 3, compared to 40− 50
states in the pose estimator.

The substantial reduction in the size of the pose state vector allows the
posterior pose estimation problem to be solved feasibly by a particle filter
(Miller and Campbell, 2008). This type of filter has been chosen because it
is more appropriate for the constrained pose estimation problem than a tra-
ditional EKF, as the posterior density in equation 3 is often strongly multi-
modal. In particular, vision-based road cue detection algorithms often commit

276 I. Miller et al.

errors with strong modalities: detecting the wrong lane, detecting two lanes
as one, or detecting a shadow as a stop line. The particle filter handles these
errors appropriately by maintaining large numbers of hypotheses about vehi-
cle pose, one per particle. Ambiguity about which lane Skynet occupies can
then be represented accurately in the distribution of the particles across the
road.

Each particle in the posterior pose filter contains one hypothesis of Skynet’s
three position states: East, North, and heading [e (k) , n (k) , θ (k)] within the
RNDF. The particle filter is initialized by drawing an initial set of particles
according to the approximate posterior Gaussian density implied by the mean
and covariance matrix of a single pose estimator packet. From there, parti-
cles are predicted forward using differential vehicle motion estimates from
the pose estimator. Updates are performed by adjusting the weight on each
particle according to how likely its hypothesis about Skynet’s pose is correct,
as in a traditional bootstrap particle filter (Arulampalam et al., 2002).

The posterior pose particle filter performs one of three types of updates
to its particles, depending on which of three sensing subsystems produces a
measurement. The first update is an update from the pose estimator, where
the particle filter simply adjusts the weights of its particles based on how
closely they agree with the most recent information from the pose estimator.
The remaining two updates, lane updates and stop line updates, compare
expected road data extracted from the RNDF with local road data measured
by three vision algorithms: two lane detection algorithms, and a stop line
detection algorithm.

Team Cornell utilizes two vision-based lane-finding algorithms to generate
measurements of Skynet’s distance from the centerline of a lane and head-
ing with respect to the lane. Both of these lane-finding algorithms operate
on black and white images taken from a Basler A622F mounted on the cen-
terline of Skynet just above the front windshield. One, the MobilEye SeeQ
lane-finding software, is available commercially as a lane departure warning
system. This system reports position and heading offsets of the lane Skynet
currently occupies at approximately 15 Hz. The SeeQ system reliably detects
painted lane lines, though it requires several seconds of uninterrupted track-
ing to become confident in its detections. The other lane-finding algorithm,
designed in-house to act as the MobilEye’s complement, uses slower but more
accurate texture segmentation to find lanes even when roads are not painted
(Felzenszwalb and Huttenlocher, 2004). This secondary algorithm produces
the same type of lane offset and heading measurements as the MobilEye,
though it runs at 2 Hz and starts from scratch at each image frame to avoid
creating explicit temporal correlation in its lane estimates. When a mea-
surement from either of these lane-finding algorithms is used to update the
posterior pose particle filter, the filter uses the RNDF to compute what each
particle expects its position and heading offset to be from the closest lane
in the RNDF. Each of these lane hypotheses is then compared with the lane
measurement generated by the vision algorithm, and the likelihood of the

Team Cornell’s Skynet: Robust Perception and Planning 277

measurement is used to update particle weights as in the traditional filter
update.

Team Cornell also uses a vision-based stop line detection algorithm to
generate measurements of Skynet’s distance to a stop line. This detection
algorithm operates on color images taken from a Basler A311F optical camera
mounted in the front grille of Skynet and pointed toward the ground. The
algorithm utilizes traditional Canny edge detection to search each image for
properly-oriented pairs of edges, one a transition from dark road to white
stop line paint, and its pair a transition from white paint back to road.
Distances from the camera are computed for any matches found in this step.
These distances are sent to update the posterior pose filter at a rate of 17.5
Hz. When one of these measurements arrives at the posterior pose filter, the
filter uses the RNDF to compute the distance between each particle and its
closest stop line. These expected distances are then compared with the output
of the stop line algorithm, and the corresponding measurement likelihoods
are used to update particle weights.

The posterior pose particle filter uses 2000 particles and runs on a single
core of a dual core Pentium-Mobile system running Windows Server 2003.
It processes all measurements from the pose estimator, the lane detection
algorithms, and the stop line detection algorithm asynchronously, using a
queuing structure similar to the local map to ensure that measurements are
applied in order of their time stamps. The algorithm runs at 100 Hz, the rate
at which the pose estimator broadcasts differential vehicle motion estimates.
It reports a minimum mean square error (MMSE) posterior pose estimate at
10 Hz to Skynet’s data network, along with other metadata, such as a mean
square error (MSE) matrix and lane occupancy probabilities. This fused GPS
/ INS / vision posterior pose estimate is used as the sole position feedback
signal in Skynet’s path planner.

3.4.2 Track Generator
The second scene estimator algorithm, the track generator, combines Skynet’s
best position estimates from posterior pose with all the tracked obstacles
from the local map to generate high level obstacle metadata required by
the planner. Its primary purpose is to provide a track identification number
for each tracked obstacle, one that remains constant over time and allows
the planner a means to recognize different intelligent agents over time. This
piece of data is one thing the local map particle filtered problem framework
cannot provide outright, as it only reports the most likely map of tracked
obstacles at any point in time: no effort is made within the local map to
draw correspondences between similar tracked obstacles residing in separate
local map particles.

The track generator poses this track identification problem as an estima-
tion problem, driven by the output of the local map. Since the local map
provides a list of all obstacles around Skynet at any point in time, the track
generator simply has to match each of those obstacles with its current list

278 I. Miller et al.

of obstacle tracks. Any obstacles that do not match the current list are used
to create new tracks. The track generator performs this task using a global
maximum likelihood estimator (MLE), implemented in a dynamic program-
ming framework (Cormen et al., 2003). First, the likelihood λij (k) that the
ith local map obstacle at time k corresponds to the jth previously identified
track is computed for each obstacle / track pair. Three pieces of data are used
to compute the correspondence likelihood: bearings of the most clockwise and
most counterclockwise points in the obstacle, and range to the closest point
in the obstacle. The unscented transform is used here as in section 3.3 to
calculate a statistical mean μoi (k) and covariance P oi (k) for the two bearings
and the range of the ith obstacle, as well as a mean μtj (k) and covariance
P tj (k) for the jth track (Julier and Uhlmann, 1997). From there, the obstacle
and track means and covariances are used to compute the likelihood of obsta-
cle / track correspondence as if each were an independent Gaussian random
variable:

λij ∼ N
(
μoi (k)− μtj (k) , P oi (k) + P tj (k)

)
(4)

The track generator’s dynamic programming scheme then searches the sets
of correspondences matching each previously existing track to exactly one
local map obstacle. The correspondence chosen is the one that maximizes
the global likelihood Λ (k):

max
j1,...,jn

Λ (k) = max
j1,...,jn

n∏

i=1

λiji (k) (5)

over the correspondences {j1, . . . , jn} under the constraint that no two corre-
spondences are the same, i.e. j1 �= j2 �= . . . �= jn. Any old tracks not matched
by this scheme are immediately deleted, and any new local map obstacles not
matched are assigned fresh track identifications. Each identification number
assigned in this manner is unique over the track’s lifetime, allowing the plan-
ner to reason about an agent by its corresponding identification number.

In addition to the identification number, the track generator also esti-
mates four pieces of track metadata that it supplies to the path planner
along with the track’s state obtained from the local map. The first piece
of metadata is lane occupancy: the probability that the track occupies any
lanes near it in the RNDF. This probability is calculated via Monte Carlo
quadrature. First, all sources of error modeled in estimating the track’s loca-
tion in the RNDF are transformed into a single East-North covariance matrix
using a linearized covariance matrix transform similar to that used by the
EKF (Bar-Shalom et al., 2001). The East-North covariance matrix is Monte
Carlo sampled as a Gaussian random variable, and all sampled particles vote
on which lane they occupy to generate lane occupancy probabilities for the
track. The second piece of metadata generated for each track is an estimate
of whether the track is stopped or not. This estimate is filtered using a Hid-
den Markov Model (HMM) over states ‘is stopped’ and ‘is not stopped’ using
local map speeds as a measurement update (Russell and Norvig, 2003). The

Team Cornell’s Skynet: Robust Perception and Planning 279

third piece of metadata is an estimate of whether the obstacle’s size indicates
that it is carlike. This estimate is also implemented as an HMM, but uses the
physical size of the track’s cluster to provide evidence of whether it is too
big or too small to be a car. The final piece of metadata is a track’s visibil-
ity: whether it is occluded or not. Track visibility is computed by using the
track’s cluster points to mask out regions of sensor space under the assump-
tion that the sensors can’t see through any tracks. Any track that is detected
as being blocked by another is marked as occluded, and any occluded tracks
are allowed to persist in the track generator for up to 1 minute without any
supporting evidence from the local map. This occlusion reasoning allows the
track generator to remember other agents waiting at an intersection that are
otherwise blocked from view by a car passing through. It also helps in dense
traffic, where other agents may pass in and out of view rapidly.

The track generator reports its list of tracked obstacles and their metadata
at 10 Hz on Skynet’s data network. It runs on a single core of a dual core
Pentium-Mobile processor, sharing the same process as posterior pose.

3.5 Intelligent Planning

Team Cornell’s intelligent planning system uses the scene estimator’s proba-
bilistic perception of the environment to plan mission paths within the con-
text of the rule-based road network. The system has been designed with three
main objectives. First, the planner has been designed to be expandable such
that additional behaviors could easily be added as the system was developed.
Team Cornell used this design requirement to bring portions of the intelli-
gent planner online independently, thus dividing mission planning into more
manageable bits of development and testing. Second, the planner has been
designed to operate asynchronously, so that low-level actuator control loops,
middle level path following, and high level behavioral planning could all be
run at separate rates as computational resources would allow. This design
requirement also permitted multiple layers of the planner to be developed in
parallel to cope with the aggressive schedule of the Urban Challenge. The fi-
nal design requirement is stability and robustness: the system should remain
stable over time despite unpredictable actions of other intelligent agents.

The intelligent planner developed against these design requirements is split
into three primary layers. The top-level behavioral layer combines offline mis-
sion information with sensed vehicle and environment information to decide
which high level behavioral state should be executed given Skynet’s current
context. The middle level tactical layer then plans a contextually-appropriate
set of actions to perform given Skynet’s current pose and the states of other
nearby agents. The low-level operational layer then translates these abstract
actions into actuator commands, taking into account road constraints and
nearby obstacles. The operational layer also acts as a feedback sensor, veri-
fying whether Skynet achieves the desired behaviors and reporting that com-
pletion status to the higher levels of the planner. The planner also consists

280 I. Miller et al.

of several other smaller components, such as the messaging service and com-
munications layer, which facilitate data transfer between the three primary
layers of the planner. The following sections describe each of the three pri-
mary layers of the planner.

3.5.1 Behavioral Layer
The behavioral layer is the most abstract layer of Team Cornell’s planner. Its
goal is to decide the fastest route to the next mission checkpoint, and then
to determine which of four high level behavior states to use to make progress
along that route in the current vehicle state. The first part of that task, route
planning, is solved using a modified version of the A* graph search algorithm
(Russell and Norvig, 2003), (Ferguson et al., 2004). First, the DARPA road
network is converted from the RNDF format to a graphical hierarchy of
segments defining large contiguous portions of the road, ways defining direc-
tions of travel, lanes dividing a direction of travel according to the number
of side-by-side vehicles that may be accommodated, and partitions that de-
fine a portion of a lane between two GPS waypoints (Willemsen et al., 2003).
Zones and intersections are also represented in this graphical framework, but
as general polygons rather than hierarchical lists of waypoints. The graph
search algorithm then determines the shortest-time path to the next mission
checkpoint using dynamically calculated traversal times as costs for road par-
titions, lane changes, turns, and other required maneuvers. Initial traversal
time costs are generated from static information processed from the RNDF
and the mission itself, including speed limits, lengths of partitions, lane right-
of-way, and the configuration of stop lines at intersections. Dynamic traversal
costs, such as road blocks, are also incorporated as large and slowly decaying
time penalties on all road partitions adjacent to the location of each blockage
as it is discovered.

Once a shortest-time path is planned to the next checkpoint, the behav-
ioral layer repeatedly selects at each planning cycle one of an expandable list
of high level behavior states as most appropriate for making progress along
the desired path. The list of behavioral states used for the Urban Challenge,
road, intersection, zone, and blockage, are deliberately defined as broadly as
possible to promote stable vehicle behavior through infrequent state changes.
Each of these high level behaviors executes a corresponding tactical compo-
nent that drives Skynet until the next state change.

3.5.2 Tactical Layer
Each of the four components of the tactical layer is executed when Skynet
transitions to its corresponding high level behavior, as described in section
3.5.1. All components are similar in that they divide the area surrounding
Skynet into mutually exclusive and jointly exhaustive regions. All compo-
nents also access a common list of intelligent agents currently monitored by
the planner, each assigned a region based on the location of its point closest

Team Cornell’s Skynet: Robust Perception and Planning 281

to Skynet. These agents are tracked as a list of independent entities accord-
ing to their track identification numbers, using state information from the
track generator to monitor the agent’s speed and shape, what partition the
agent occupies, and whether the agent is disabled. A Hidden Markov Model
(HMM) is also run over each agent’s partition occupancy probabilities to
determine which partitions it most likely occupies in the face of track gener-
ator uncertainty (Russell and Norvig, 2003). Differences between the tactical
components lie in the types of region monitors they use and in the actions
they take in response to events that occur. Each of these are set on a case-
by-case basis for each tactical component.

The first tactical component is the road tactical, which controls Skynet
when it drives down an unblocked road. This component is responsible for
maneuvering into the proper lane to follow the shortest-time path, monitor-
ing other agents in that lane for possible passing maneuvers, and ignoring
agents in other lanes when it is safe to do so. Aside from basic lane keeping,
these actions are largely performed in response to other agents. The road
tactical monitors the agents by dividing the area surrounding Skynet into
octants. At each planning cycle, octant monitors check the list of agents to
determine how best to proceed along the road. In particular, separate checks
are performed in front of Skynet for speed adjustment, adjacent to Skynet
for possible lane changes, and behind Skynet for possible closing vehicles and
possible reverse maneuvers (Sukthankar, 1997). The octant monitors are also
used as inputs to a decision tree that evaluates the feasibility of a passing
maneuver, the only optional maneuver in Skynet’s repertoir. The decision
tree was developed largely in simulation; it uses heuristic rules based on the
distance to Skynet’s next mission checkpoint and Skynet’s closing speed to
slower agents to determine whether Skynet can complete a passing maneuver
in the space available. From the decision tree and the octant monitors, the
road tactical selects a desired speed and lane for Skynet to follow. This target
speed and the lane’s local geometry near Skynet are then passed along to the
operational layer as a path to track.

The second tactical component is the intersection tactical, which controls
Skynet after it achieves an exit or a stop line waypoint. This component
is responsible for achieving proper intersection queuing behavior and safe
merging. When executed at an all-stop intersection, the intersection tactical
creates monitors for each intersection entry that record agent arrival times
by identification number for proper queuing order. The same monitors are set
up in merging situations, except that lanes with right-of-way are constantly
checked for oncoming vehicles and automatically given priority before Skynet
is allowed to merge. When the intersection monitors determine that Skynet
is first in the intersection queue, a target speed, goal point, and a polygon
defining the intersection are passed along to the operational layer as a path
to track.

The third tactical component is the zone tactical, which controls Skynet
after it achieves an entry waypoint into a zone. This component is responsible

282 I. Miller et al.

Fig. 6. (left): A portion of a parking lot zone from the DARPA Urban Challenge
RNDF. (right): The same zone, but with Team Cornell’s human-drawn lane struc-
ture applied during map preprocessing. Skynet uses the lane structure to treat zones
like roads, much like a human does when assigning implied directions of travel in a
parking lot.

for basic navigation in unconstrained zones, including basic obstacle avoid-
ance and initial alignment for parking maneuvers. The zone tactical operates
by planning over a human-annotated graph drawn on the zone during RNDF
preprocessing. The graph imposes wide artificial lanes and directions of travel
onto portions of the zone, allowing Skynet to treat zones as if they were roads.
In this way the zone tactical operates much like the road tactical, by travel-
ing along lanes selected by the A* algorithm in the behavioral layer. Figure 6
shows an example lane structure applied to a zone during map preprocessing.
Such a lane structure was originally intended to be generated automatically,
but time constraints mandated a hand-annotated solution instead.

In parking situations, the zone tactical is simply responsible for navigating
into a polygon near the desired parking spot. The obstacle-free polygon,
constructed as a workspace for Skynet to use to achieve a desired orientation,
is built from sensor data as Skynet approaches the desired parking spot. After
Skynet enters the workspace polygon, a cost-based heuristic search method
is used to find a series of adjacent arcs to align Skynet to the parking spot.
The same algorithm is then used in reverse to pull Skynet out of the parking
spot, at which point the zone tactical resumes navigating the imposed lane
structure. With the exception of parking, the zone tactical generates the same
type of local lane geometry information as the road tactical to send to the
operational layer as a path to track.

The final tactical component is the blockage tactical, which controls Skynet
when forward progress on the current route is impossible due to obstacle po-
sitioning. This component is responsible for detecting road blocks, deciding
whether they are temporary traffic jams, and acting accordingly. Team Cor-
nell’s blockage detection and recovery relies heavily on the operational layer’s

Team Cornell’s Skynet: Robust Perception and Planning 283

constrained nonlinear optimization strategy, described in section 3.5.3. In par-
ticular, the operational layer informs the blockage tactical as to whether there
is a forward path through the blockage, what the distance is to the block-
age, and whether a reversing or repositioning maneuver is recommended. The
operational layer and the blockage tactical then proceed with an escalation
scheme to recover from the blockage. First, the blockage is confirmed over
multiple planning cycles to ensure that it is not a short-lived tracking mis-
take. Second, a reversing or rerouting maneuver is executed to find an alter-
nate route on the RNDF, if one is available. If an alternate route is available,
the blocked route is given a large time penalty to encourage exploration of
alternate routes. The magnitude of the penalty is finite and decays slowly in
time, however, to allow Skynet to reexplore the original route if other routes
are later discovered to be blocked as well. If no alternate route is available,
Skynet’s blockage recovery system escalates once more and resets the local
map and scene estimator in an attempt to remove any catastrophic mistakes
in obstacle detection. If this step fails, planning constraints are relaxed: first
the admissible lane boundaries are widened, then obstacles are progressively
ignored in order of increasing size. This process occurs over the course of sev-
eral minutes without any vehicle progress. This tactical reasoning is unique
among the four tactical components, as it relies solely on obstacle avoidance
in the operational layer to recover to normal driving.

3.5.3 Operational Layer
The operational layer converts local driving boundaries and a reference speed
supplied by the active tactical component into steering, throttle, and brake
commands that are used to drive Skynet from one point to the next. The op-
erational layer ultimately has the primary responsibility of avoiding all obsta-
cles when choosing its path, as well as detecting blockages and infeasible paths
from the set of obstacles in the commanded driving area. To accomplish this
task, the operational layer first processes obstacle estimates from the track
generator to prepare them for the trajectory optimizing planner. An obstacle
processing loop first transforms obstacle point clouds into polygonal obstacles
using a convex hull algorithm (Cormen et al., 2003). Both tracked obstacles
and untracked obstacle points undergo this transformation, and metadata is
attached to each resulting convex hull to retain all obstacle information sent
from the track generator. Required and desired spacing constraints to safely
avoid the obstacle are also generated based on the type of object being con-
sidered. All obstacle polygons are considered in a vehicle-centric coordinate
frame, so they are not affected by GPS error.

Once obstacles are converted to polygons, they are combined with the
desired region and speed of travel received to generate a path to follow. First,
an initial unsmoothed path is planned through a discretized representation of
the obstacles, formed by using nearby obstacle polygons to generate a vehicle-
fixed occupancy grid (Martin and Moravec, 1996). The A* search algorithm
is then run on the unoccupied portion of this occupancy grid to generate a

284 I. Miller et al.

shortest path through the nearby obstacle field (Russell and Norvig, 2003).
The resulting path is never explicitly driven; instead, it is used to determine
which obstacles should be avoided on the right of Skynet, and which on the
left. The initial path is then used to seed a nonlinear trajectory optimization
algorithm for smoothing.

The nonlinear trajectory optimization algorithm attempts to smooth the
initial base path into a physically drivable path subject to actuator con-
straints and obstacle avoidance. The algorithm first discretizes the base path
into a set of n equally-spaced base points pi, i ∈ {1, n}. This discretized base
path is formulated such that the path originates from Skynet’s current loca-
tion, and the first base point lies in front of Skynet. A set of n unit-length
‘search vectors’ ui, i ∈ {1, n} perpendicular to the base path are also created,
one for each base point. The trajectory optimizer then attempts to find a set
of achievable smoothed path points zi = pi + wi · ui, i ∈ {1, n} by adjusting
search weights wi, i ∈ {1, n}. Target velocities vi, i ∈ {1, n} are also consid-
ered for each point, as well as a set of variables qli and qri , i ∈ {1, n} indicating
the distance by which each smoothed path point zi violates desired spacings
on the left and right of Skynet created by the list of polygonal obstacles.

Search weights, velocities, and final obstacle spacings are chosen to mini-
mize the cost function J :

J
(
wi, vi, q

l
i, q

r
i

)
= αc

n−1∑

i=2

c2i + αd

n−2∑

i=2

(ci+1 − ci)2

+ αw

n∑

i=1

(
wi − wti

)2 + αq

n∑

i=1

(
qli + qri

)
(6)

+ αa

n−1∑

i=1

a2
i − αv

n∑

i=1

vi

where αc, αd, αw, αq, αa, and αv are tuning weights, ci is the approximated
curvature at the ith path point, wti is the target search weight at the ith path
point, and ai is the approximated forward vehicle acceleration at the ith path
point. Note the true curvature ki at each discretized path point is:

ki =
2 (zi−1 − zi)× (zi+1 − zi)

‖zi−1 − zi‖ · ‖zi+1 − zi‖ · ‖zi+1 − zi−1‖ (7)

To simplify differentiation, the following approximate curvature is used in-
stead:

ci = (zi−1 − zi)× (zi+1 − zi) (8)

This approximation is made noting that the initial path points pi are equally
spaced, and the search weights wi are constrained to be small, so the de-
nominator of equation 7 is approximately equal for all path points. The ap-
proximate forward vehicle acceleration ai is also calculated under a similar
approximation:

Team Cornell’s Skynet: Robust Perception and Planning 285

ai =
v2
i+1 − v2

i

2 · ‖pi+1 − pi‖ (9)

The optimized cost function in equation 6 has 6 terms, each corresponding
to a particular undesirable driving behavior. The first term penalizes large
curvatures, which correspond to undesirably sharp turns. The second term
penalizes rapid changes in curvature, which correspond to unstable swerv-
ing. The third term penalizes large deviations from the target path offset
wti , which force Skynet to move closer to the boundary of its allowed driv-
ing region. The fourth term penalizes violations of desired obstacle spacing.
The fifth term penalizes sharp accelerations and braking. The sixth term
penalizes slow velocities, encouraging faster plan completion time. Heuristic
adjustments made to the relative weighting of these penalty terms deter-
mines Skynet’s driving behavior: whether it prefers aggressive maneuvers or
smoother driving.

The cost function J
(
wi, vi, q

l
i, q

r
i

)
presented in equation 6 is optimized

subject to a set of 6 rigid path constraints:

1. The path must begin at Skynet’s current location and heading.
2. Each search weight wi cannot push the smoothed path outside the bound-

ary polygon supplied by the tactical layer.
3. Each obstacle spacing variable qli and qri cannot exceed any obstacle’s

minimum spacing requirement.
4. Each true curvature ki cannot exceed Skynet’s maximum turning curva-

ture.
5. Total forward and lateral vehicle acceleration at each path point cannot

exceed maximum limits defined by the acceleration ellipse:

(
ai

aF,max

)2

+
(
ki · v2

i

aL,max

)2

≤ 1 (10)

where aF,max is the maximum allowed forward acceleration and aL,max
is the maximum allowed lateral acceleration.

6. Each search weight wi and set of slack variables qli and qri must never
bring Skynet closer to any obstacle than its minimum allowed spacing.

7. The difference between consecutive path weights wi and wi+1 must not
exceed a minimum and maximum.

Additional constraints on initial and final path heading are also occasionally
included to restrict the smoothed path to a particular end orientation, such
as remaining parallel to a lane or a parking spot.

The constrained optimization problem is solved using LOQO, an off-the-
shelf nonlinear non-convex optimization library. Two optimization passes are
made through each base path to reach a final smoothed path. The first step
of the smoothed path is then handed to two independent low-level tracking
controllers, one for desired speed and one for desired curvature. The speed

286 I. Miller et al.

controller is a proportional-integral (PI) controller with feedback lineariza-
tion to account for engine and transmission inertia, rolling inertia, wind resis-
tance, and power loss in the torque converter (Centa, 1997), (Gillespie, 1992),
(Wong, 2001). The curvature controller uses an Ackermann steering model
with cornering stiffness to convert desired curvature into desired steering
wheel angle, which is then passed as a reference signal to a proportional-
integral-derivative (PID) steering wheel angle controller (Gillespie, 1992),
(Wong, 2001). This controller only feeds back on path curvature: lateral offset
is not used as a feedback signal because all paths are planned from Skynet’s
current location and tracked in a Skynet-centric coordinate frame. The op-
timization is restarted from scratch at each planning cycle, and is run at 10
Hz on a dual core Pentium-Mobile processor running Windows Server 2003.

4 Performance at the National Qualifying Event

The National Qualifying Event (NQE) was held in Victorville, California,
USA from October 25, 2007 to October 31, 2007 at the Southern California
Logistics Airport. At the NQE, the 35 Urban Challenge vehicles invited to
participate were tested on 3 courses, called ‘Area A,’ ‘Area B,’ and ‘Area C.’
Each area, described below in turn, tested one or more specific aspects of
autonomous urban driving with focused and carefully-monitored scenarios.
Only one robot was tested at a time, and any necessary traffic was provided
by human-driven vehicles in preset patterns. Safe and sensible driving were
paramount in the NQE, with stability and repeatability emphasized in the
structure of the event.

4.1 Area A

In Area A, autonomous agents were required to merge into bidirectional traffic
flowing at 10 mph in small concentric loops, extending approximately 100 m
in the East / West direction and 50 m in the North / South. Vehicles were
required to merge into and out of an unoccupied one-way North / South cross
street that bisected the two loops of traffic. Successful merges entered and
exited the cross street by completing left-hand turns across oncoming traffic.
Traffic was dense, and vehicles were typically given windows of approximately
8 to 10 seconds to complete a merge. The lane geometry in Area A was
restrictive, with nominal lane widths set at 12 ft for the inside lane and
10 ft for the outside lane. Concrete barriers were also placed flush with the
boundary of the outside lane, so vehicles could not turn wide while merging.
Vehicles were to complete as many of these merges safely as possible in an
allotted time of approximately 30 minutes.

Team Cornell’s vehicle ran in Area A twice, completing 5 successful laps
(merges into and out of traffic) in the first attempt at Area A and 10 in the
second attempt. In the first attempt, Skynet made 2 significant mistakes.

Team Cornell’s Skynet: Robust Perception and Planning 287

First, incorrect occlusion reasoning after the second lap led Skynet to con-
clude that there was an occluded obstacle permanently blocking its turn.
The root cause of this was a measurement assignment mistake: a passing
vehicle was mistakenly identified as part of a nearby concrete barrier. Team
Cornell’s vehicle waited for this phantom obstacle for several minutes before
being paused and manually reset. This error prompted the team to restrict
the lifetime of occluded obstacles to 1 minute if it is not supported by sensor
data, as indicated in section 3.4.2.

A different problem occurred on Skynet’s fifth lap, where the tactical layer
pulled too far to the right of Skynet’s lane in response to a nearby oncoming
vehicle. During this maneuver, Skynet drove close enough to nearby concrete
barriers to violate the operational layer’s obstacle spacing constraints. The
operational layer reported the path infeasible, and Skynet came to an abrupt
stop before being paused by DARPA. When allowed to continue, the tac-
tical layer issued a reverse command to Skynet, and the operational layer
performed a reverse maneuver to align Skynet in the lane before resuming
the mission. No human intervention was required to resolve the error, though
the incident drew focus to the fact that the tactical layer could command
Skynet to drive to the right of the lane’s center without evaluating whether
such a command would violate obstacle spacing constraints. This oversight
was corrected after the first attempt at Area A, and remained in effect for the
rest of the Urban Challenge. Minimum and desired obstacle spacings were
also permanently adjusted to discourage large evasive maneuvers.

7500 7600 7700 7800 7900 8000 8100 8200 8300 8400
0

2

4

6

8

10

12

14

16

18

20 1 2 3 4 5 6 7 8 9 10

Mission Time (sec.)

T
im

e
T

o
C

ol
lis

io
n

(s
ec

.)

Merge Number

Outside Lane
Inside Lane
Merge Time
False Start

Fig. 7. Perceived times to collision with oncoming vehicles in the outside and inside
lanes of traffic in Team Cornell’s second run of NQE Area A. Solid vertical lines
indicate decisions to merge. Dashed vertical lines indicate false starts: times when
the planner thinks it is safe to merge and then changes its mind.

288 I. Miller et al.

Adjustments resulting from the first attempt at Area A made the sec-
ond attempt more successful. Figure 7 plots the perceived times to collision
from oncoming traffic in both lanes in Team Cornell’s second run of Area
A. Skynet’s 10 selected merge times are plotted as solid vertical lines, and
times at which Skynet changed its mind after deciding to merge are plotted
as dashed vertical lines. Note that although the local map and track gener-
ator often track several cars deep in a line of vehicles, only collision times
to the closest vehicles in each lane are plotted. These closest vehicles are
those used by the planner to make merge decisions; other tracked vehicles
are ignored. Only times at which Skynet is waiting to merge at the stop line
are plotted. Times at which the intersection and the 30 m ‘safety zone’ sur-
rounding it are physically occupied by an obstacle are plotted as zero time to
collision. Skynet will not attempt a merge when these areas are occupied, un-
less tracked obstacles in these areas are reliably determined to be stationary.
Data is plotted at approximately 10 Hz, once per planning cycle.

Phantom obstacles did not impede vehicle progress in Team Cornell’s sec-
ond attempt at Area A as they did in the first attempt: there are no large
periods of time in which the intersection is occupied. Notice in four of these
laps Skynet made false starts, deciding it was safe to merge and then changing
its mind. In two of these cases, merges 2 and 6, the tactical layer decided the
oncoming vehicles were threatening enough to postpone the merge. These two
cases were subsequently resolved correctly, resulting in successful merges. In
the other two, merges 4 and 9, Skynet pulled into the intersection before de-
ciding the oncoming vehicles posed a threat. As it pulled into the intersection,
it received more information: improved obstacle speed estimates, and there-
fore more accurate times to collision. In these cases the operational layer could
not complete the merge fast enough, and the tactical layer stopped Skynet
when it detected approaching obstacles. Neither failed merge was dangerous,
though both were undesirable: oncoming traffic stopped, and Skynet contin-
ued when it sensed no obstacles approaching. An improved turn reasoning
test was added after this test to check whether Skynet had reached a point
of no return at the intersection, where it would be more dangerous to stop
than to keep going, based on time to collision.

Figure 8 shows a magnified view of collision times in the first merge of
Team Cornell’s second run in Area A. Each obstacle tracked through the in-
tersection has a smoothly decreasing or increasing time to collision, indicating
accurate obstacle speed estimates provided by the local map and track gen-
erator. Occasional increasing collision times reflect uncertainty as to which
lane the tracked vehicles occupy. In cases of high uncertainty, the tactical
layer conservatively places uncertain vehicles in oncoming lanes and calcu-
lates collision times as if they were approaching. These uncertain vehicles are
combined with the pool of vehicles with certain lane estimates, and the clos-
est vehicle in each lane is used to evaluate the feasibility of a merge. In the
case of Figure 8, the tactical layer attempted a merge when the intersection
was free for 10 seconds, which occurred near time stamp 7482.

Team Cornell’s Skynet: Robust Perception and Planning 289

7460 7465 7470 7475 7480 7485
0

2

4

6

8

10

12

14

16

18

20
1

Mission Time (sec.)

T
im

e
T

o
C

ol
lis

io
n

(s
ec

.)

Merge Number

Outside Lane
Inside Lane
Merge Time

car moving towards
Skynet

car moving away
from Skynet

lane blocked

Fig. 8. Perceived times to collision in the first merge of Team Cornell’s second run
of NQE Area A. Here Skynet merges when the nearest obstacle is 10 sec. away.

4.2 Area B

In Area B, autonomous agents were required to navigate a lengthy route
through the urban environment, leaving from a start chute near the grand
stands and returning to the mission finish after navigating the course. The
environment was devoid of moving traffic, but contained a zone with spaces
to test parking. A portion of the street was also filled with orange barrels
in the center of the street and cars parked at the side of each lane to test
obstacle avoidance capabilities. Vehicles also encountered a number of empty
intersections, and were required to remain in the appropriate lane at all times.

Team Cornell’s vehicle ran in Area B twice, failing at the first attempt
and succeeding at the second. Skynet failed the first attempt at Area B while
trying to park. It successfully aligned itself to the parking space, but refused
to pull into the space: other unoccupied cars parked nearby violated admis-
sible obstacle spacing constraints in the operational layer. After sitting for
several minutes, Skynet was manually stopped, positioned inside the parking
space, and allowed to continue. Skynet proceeded as normal, entering the
portion of the course testing obstacle avoidance. There Skynet passed several
parked cars and orange barrels, until coming upon a section of road with a
parked car in either lane. Believing both lanes to be blocked, Skynet began a
U-turn maneuver, but ran out of time before completing the course. All be-
havior until the parking difficulty was normal, and Skynet navigated without
incident.

Behavior in the first attempt at Area B prompted the team to make
adjustments to spacing constraints in the optimization problem presented
in section 3.5.3 and to the tactical layer. In particular, minimum spacing

290 I. Miller et al.

constraints in the tactical layer were reduced from 0.9 m to 0.3 m for stopped
obstacles, and from 1.4 m to 0.9 m for moving obstacles. These adjustments
allowed Skynet to park in parking spaces closely surrounded by obstacles.
They also made Skynet less sensitive to concrete barriers and other station-
ary obstacles at the sides of the lanes. Figure 9 (top) plots the sensed spacing
between Skynet and other obstacles in a portion of the Area B course lined
with parked cars: 10 in Skynet’s lane, 4 in the opposing lane, and 1 group of
4 orange barrels clustered in the center of the road. The lane width in this
portion of the course was marked in the RNDF as 12 ft (3.6576 m). Changes
to spacing constraints after the first attempt at Area B allowed Skynet to
navigate this portion of the course without stopping, as shown in Figure 9
(bottom). Notice that to achieve these spacings, however, Skynet at times
crossed the center line of the road by up to 1 m. Such behavior is heav-
ily penalized at the operational layer, and only occurred when the obstacle
constraints mandated it.

Navigation in the remainder of Area B proceeded without incident.
Skynet did, however, receive several spurious disabling commands over the
DARPA-provided emergency stop wireless interface. The source of these com-
mands is still unknown, though DARPA technical staff concluded that they
came from an external source. Skynet was allowed to be restarted after the
first of these spurious signals, though it was eventually removed from the
course as more emergency stop signals were received. When removed, Skynet
was approximately 60 m from the final checkpoint of the mission.

4.3 Area C

In Area C, autonomous agents were required to navigate a short loop with two
four-way intersections. The intersections were populated with an increasing
number of traffic vehicles to test various configurations of intersection queu-
ing. If a vehicle successfully negotiated all intersection scenarios correctly,
road blocks were placed across the road to force the vehicle to plan a new
route to complete its mission. These road blocks were left in place for the
remainder of the mission to ensure that vehicles remembered previously en-
countered road blocks when planning new routes.

Team Cornell’s vehicle ran in Area C only once, completing the entire
course without incident. Figure 10 shows output of the posterior pose and
track generator algorithms at one of the most difficult intersection scenarios.
In this scenario, human-driven vehicles populated each entrance to the inter-
section. Each of these vehicles had precedence over Skynet, and, when turn-
ing, passed in front of Skynet to block the remaining vehicles from view. This
scenario exercised Skynet’s occlusion reasoning, which was invoked each time
one vehicle passed in front of the others. One example is given in Figure 10,
which shows Skynet waiting at the northern entrance to the intersection. A
second vehicle, which has precedence over Skynet, entered the intersection
from the West. As it passed in front of the vehicle sitting at the southern

Team Cornell’s Skynet: Robust Perception and Planning 291

9560 9570 9580 9590 9600 9610 9620
−1

0

1

2

3

4

5

Mission Time (sec.)

D
is

ta
nc

e
(m

)

Center Line
Obstacle On Right
Obstacle On Left

Orange Barrels
Cars in Opposing Lane

Cars in Skynet’s Lane

9560 9570 9580 9590 9600 9610 9620
0

1

2

3

4

5

6

7

8

9

10

Mission Time (sec.)

S
pe

ed
 (

m
/s

)

Fig. 9. (top): Spacing between Team Cornell’s vehicle and stationary obstacles
during a portion of the second run of NQE Area B. (bottom): Vehicle speed through
the same portion of Area B.

entrance, occlusion reasoning marked that vehicle as occluded. The planner
held the occluded vehicle’s place in the intersection queue, and the vehicle
was tracked correctly through the entire intersection scenario. The vehicle
waiting at the eastern entrance was similarly marked as occluded when it
was blocked from view, and successfully tracked through the scenario as well.

In completing Area C, Team Cornell’s vehicle correctly solved 7 intersec-
tions: one empty, one with 1 other vehicle, three with 2 other vehicles, one
with 3 other vehicles, and one with 4 other vehicles. Of these scenarios, 3 re-
sulted in occlusions; each occlusion was correctly handled by obstacle tracking
and occlusion reasoning in the local map and track generator, respectively.

After the intersection scenarios, Skynet was forced to plan around road
blocks. Figure 11 shows the different steps in Skynet’s reasoning while

292 I. Miller et al.

Fig. 10. Occlusion reasoning at a sample intersection configuration in NQE Area
C allows Skynet to remember vehicles at the intersection even when blocked from
view. Here Skynet waits at the North entrance to the intersection, the topmost in
the screen.

handling these road blocks. First, Figure 11 (top) shows Skynet traveling
along its initial path, the shortest path to the next mission checkpoint. This
path took Skynet down the southern route of Area C, where it encountered
the first road block (8 orange barrels blocking both lanes), shown in Fig-
ure 11 (middle left). Figure 11 (middle right) shows Skynet’s path around
the blockage, which took it through the central route of Area C. Halfway
down that new path, Skynet discovered a second road block (a horizontal
metal bar with 6 stop signs blocking both lanes), shown in Figure 11 (lower
left). Figure 11 (lower right) shows the path planned around the second road
block, which took Skynet around the northern path of Area C. In planning
this third path, Skynet remembered the locations of both the road blocks
it had previously encountered. These blockages heavily penalized the central
and southern routes of Area C, as described in section 3.5.1. This made the
northernmost path least expensive, even though it was longest in length.

5 Performance at the Urban Challenge Event

The Urban Challenge Event (UCE) was held in Victorville, California, USA
on November 3, 2007. Of the 35 teams originally invited to participate in
the NQE, only 11 were invited to continue on to the UCE. The UCE course,
shown in Figure 12, subsumed NQE Areas A and B and roads connecting
them. Most roads were paved with a single lane in each direction, as they
belonged to a former residential development. Several roads admitted two
lanes of traffic in each direction. One road, in the southeastern corner of the
network, was a dirt road that descended a steep gradient.

Team Cornell’s Skynet: Robust Perception and Planning 293

Fig. 11. Blockage recovery behaviors in NQE Area C. (top): The initial planned
path. (middle left): A road block forces Skynet to plan a new path. (middle right):
Skynet follows its new plan. (lower left): Skynet encounters a second blockage.
(lower right): Skynet plans a third path, remembering the positions of both block-
ages.

Each vehicle competing in the UCE was required to complete 3 missions,
defined by separate mission definition files. Each mission began among an
array of start chutes in the western end of the road network. The first 2
missions given to Team Cornell were each subdivided into 6 ‘sub-missions,’
which required Skynet to achieve a series of checkpoints before returning to
perform a loop in the traffic circle at the western end of the road network. The

294 I. Miller et al.

−600 −400 −200 0 200 400 600 800 1000 1200

−400

−200

0

200

400

600

East (m)

N
or

th
 (

m
)

parking area

four lane highway

dirt road, steep descent

start chutes

traffic circle

Fig. 12. The Urban Challenge road network. Waypoints are represented by small
dark solid dots, with traversable lanes and zone boundaries represented as lines
connecting them. Stop lines are represented by large circles.

final mission for Team Cornell was subdivided into 7 such sub-missions. Each
mission ended with Skynet returning to a finishing area near the start chutes,
where the team could recover Skynet and reposition it for the next mission.
The missions given to Team Cornell totaled approximately 55 miles of driving
on the shortest path. All 11 qualifying robots were allowed to interact in the
UCE course simultaneously, with additional traffic supplied by human-driven
Ford Tauruses. As in the NQE, safety and sensible behavior were paramount,
though no official judging criteria or scores were made public for the UCE.

Team Cornell’s performance in the UCE is presented in 3 sections. Section
5.1 gives Skynet’s general behavior and performance in the UCE. Section
5.2 presents a small case study of another unique event, where Skynet en-
countered a human-driven Ford Taurus driving the wrong way on a one way
road. A second event, where Skynet correctly tracked two slow-moving vehi-
cles and passed them, is presented in section 5.3. Section 5.4 presents a small
case study of a third unique event occurring near the corner of Washington
St. and Utah St., where Team Cornell’s Skynet waited for approximately 12
minutes on the wrong side of the road. A fourth event, a minor collision with
the MIT robot, is left as the topic of a companion paper.

5.1 Overall UCE Performance

Team Cornell’s Skynet was one of only 6 vehicles to complete the Urban
Challenge; the other 5 vehicles were disqualified at various points in their

Team Cornell’s Skynet: Robust Perception and Planning 295

respective first missions. Skynet completed the Urban Challenge in 5h55m31s,
with a total of approximately 55 miles of autonomous driving.

Although Skynet’s overall performance in the UCE was successful, several
poor behaviors were displayed repeatedly. First, a low-level electrical ground-
ing problem in the throttle actuation system developed over the course of the
UCE, forcing Skynet to travel much slower in the final mission of the UCE
than in the first two. Figure 13 (left) shows evidence of the problem in the
final mission of the UCE. In the final mission, 33.9% of all commands re-
ceived at Skynet’s engine control unit (ECU) exactly matched those issued
by the operational layer. In contrast, 64.4% of the commands issued were
larger than those received at the ECU, and only 1.7% were smaller. Figure
13 (right) shows the same plot for the first mission of the UCE: only 24.5%
of the commands were larger than those received, 36.42% were smaller, and
39% were equal. The obvious disparity in commanded and received throttle
positions in the last mission prevented Skynet from achieving its commanded
speed most of the time, resulting in significantly slower progress in the final
mission of the UCE. The problem is most apparent in mission completion
times: Team Cornell spent 1h51m39s on the first mission, 1h18m40s on the
second, and 2h45m12s on the third. In simulations without any traffic, Skynet
finished the missions in 1h15m, 1h17m, and 1h40m, respectively. Note the
timing in the second mission: Skynet completed the mission only 2 minutes
slower than it could in simulation. The disparity in the completion times
of the first mission, due to the Washington and Utah event, is explained in
section 5.4.

Ultimately, Skynet’s low-level grounding problem owes to an oversight in
circuit design at the actuation level. Had Team Cornell opted for a commer-
cial actuation package, the problem might have been avoided. However, it is
unfair to conclude that a commercial package is superior based on this one
issue, as commercial options would have undoubtedly presented their own un-
forseeable growing pains and implementation drawbacks. With an in-house
implementation, the team was at least able to modify the actuation scheme as
the rest of the system matured. And, all considerations of the Urban Chal-
lenge aside, the in-house scheme gave team members a beneficial learning
opportunity.

In addition to low-level speed problems, Skynet also occasionally com-
manded fast stops as a result of perception and tracking errors. Such fast
stops, defined as emergency zero-speed commands issued from the tactical
layer, occurred 53 times during the UCE. Of these, 24 occurred in the first
mission, 17 in the second, and 12 in the third. Because not all of these fast
stops are perception errors, it is instructive to look at the location of Skynet
at the times of these emergency commands. These locations are represented
as black squares in Figure 14 (left). Most of the emergency commands issued
by the tactical layer occurred in the southwestern portion of the UCE road
network, in areas where concrete barriers lined the wall of the course. These
concrete barriers presented significant challenges to the clustering, tracking,

296 I. Miller et al.

−30 −20 −10 0 10 20 30
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Commanded − Actual Throttle (% Throttle)

N
um

be
r

of
 T

hr
ot

tle
 C

om
m

an
ds

−30 −20 −10 0 10 20 30
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Commanded − Actual Throttle (% Throttle)

N
um

be
r

of
 T

hr
ot

tle
 C

om
m

an
ds

Fig. 13. (left) Histogram of the difference between commanded and received throt-
tle positions in the final mission of the Urban Challenge. A low-level electrical
grounding problem resulted in Skynet achieving significantly slower speeds in the
final mission of the Urban Challenge. (right) A similar histogram, from the first
mission of the Urban Challenge, shows no evidence of the problem.

and path planning algorithms. The full extent of the barriers were often not
visible, so the clustering algorithm occasionally clustered the concrete barri-
ers with other obstacles in the lane. Furthermore, measurement assignment
mistakes occasionally caused measurements of concrete barriers to be pulled
into the lane and applied to other vehicles, causing phantom obstacles to ap-
pear in the local map. Finally, the concrete barriers were occasionally close
enough to the lane boundary that the operational layer would report a path
infeasible. This latter problem was most catastrophic, as it caused Skynet to
think the road was blocked.

Figure 14 (right) plots the location of Skynet at each of the 10 times the
blockage recovery tactical component was executed: once in the first mission,

−600 −400 −200 0 200 400 600 800 1000 1200

−400

−200

0

200

400

600

East (m)

N
or

th
 (

m
)

−600 −400 −200 0 200 400 600 800 1000 1200

−400

−200

0

200

400

600

East (m)

N
or

th
 (

m
)

Fig. 14. (left): Location of Skynet (black square) during the 53 emergency brake
slams it performed during the Urban Challenge. (right): Location of Skynet (black
square) during the 10 times it went into blockage recovery during the Urban Chal-
lenge.

Team Cornell’s Skynet: Robust Perception and Planning 297

6 times in the second, and 3 times in the third. These were the worst behaviors
displayed by Skynet, resulting in reverse maneuvers or basic unconstrained
obstacle avoidance. Those in the western part of the course were caused by
the position of the concrete barriers relative to the DARPA-supplied RNDF
waypoints. The remainder were generally caused by perception mistakes: ei-
ther incorrect clustering or incorrect tracking.

Despite the throttle problem and the emergency commands, Skynet’s over-
all performance was still safe and reliable enough to finish the UCE. The local
map and track generator tracked a total of 175252 distinct obstacles during
the course of the UCE, with only 53 causing mistakes in Skynet’s behav-
ior. The average tracking lifetime of the obstacles was 6.8 seconds. Of these,
26.5% were estimated as being on the RNDF at some point in their life-
time; these obstacles had an average tracking lifetime of 10.7 seconds. Track
identification numbers were also very stable during the race, with 13609 tracks
lasting for more than 15 seconds. On average, the local map and track gen-
erator maintained 48.5 tracked obstacles at each iteration, with a maximum
of 209 obstacles tracked in one iteration of the algorithms. The intelligent
planner was also similarly stable, despite the 10 mistaken blockage recovery
actions. The system operated in the road tactical component 76.1% of the
time, in the intersection tactical component 20.8% of the time, in the zone
tactical component 2.7% of the time, and in the blockage tactical component
0.5% of the time.

5.2 The Wrong Way Vehicle

One unique event that happened to Skynet over the course of the UCE oc-
curred early in the first mission, where Skynet encountered and properly dealt
with a moving vehicle traveling the wrong way on a one-way road. Skynet
encountered this vehicle, a human-driven Ford Taurus, on the dirt road at
approximately (1202E,−446N) in the coordinate frame of Figure 12. Figure
15 (top) shows the oncoming Taurus from the point of view of the optical
cameras and the operational layer. Note the Taurus pulled to the left of the
lane as far as possible to minimize the chance of collision.

As the wrong way vehicle moved closer to Skynet, the road tactical com-
ponent largely ignored it due to assumptions made in the road tactical com-
ponent. The road tactical component’s forward vehicle monitor assumes all
vehicles move in their lanes in the proper direction; therefore, only the closest
vehicle in front of Skynet is monitored. As a result, the wrong way vehicle
was entirely ignored until it was the closest obstacle to Skynet. At that point
the road tactical component began to monitor the vehicle, and it would have
commanded a fast stop if the vehicle continued to move. Instead, the wrong
way vehicle stopped moving. The clustering algorithm subsequently grouped
it with nearby bushes and the dirt berm. As a result, the operational layer
avoided the wrong way car as a static obstacle, as shown in Figure 15 (bot-
tom). After successfully avoiding the car, Skynet continued with its mission.

298 I. Miller et al.

Fig. 15. (top): Team Cornell encounters a human-driven vehicle traveling the
wrong way on a one way dirt road. (bottom): The wrong way vehicle is avoided by
the operational layer, which adjusts path constraints as if the vehicle were a static
obstacle.

This unique incident is one that highlights the capabilities of the local map
and constraint-based planner to handle unforseen circumstances: had these
systems made more brittle assumptions about what they were tracking or
avoiding, this situation could have easily resulted in a collision.

5.3 The Pass

A second unique event that Skynet encountered in the UCE was a successful
high-speed pass of a slower moving robot and a human-driven Ford Tau-
rus following it. This event occurred in the first mission, at approximately
(947E,−40N) in the coordinate frame of Figure 12, shortly after Skynet
encountered the wrong way vehicle. As Skynet traveled along in its lane, it
encountered the slow-moving vehicle and trailing human-driven Ford Taurus.
Figure 16 shows the encounter.

Vehicles in the desired lane of travel must satisfy two conditions for the
road tactical component to execute a passing maneuver. First, the vehicle
must be classified as slow-moving by the forward vehicle monitor of the road
tactical component. This is defined by satisfying three criteria: the vehicle
must be tracked consistently for at least 3 seconds, the vehicle must not
be in an intersection safety zone, the vehicle must be traveling slower than
Skynet, and the vehicle must be traveling at less than 70% of the maximum
speed allowed on that particular road. Second, the road tactical component
must determine that there is enough time to pass the vehicle, a calculation

Team Cornell’s Skynet: Robust Perception and Planning 299

Fig. 16. (top): Team Cornell approaches two slow-moving vehicles. (top right): The
tracked vehicles are determined to be slow-moving, and Skynet decides a passing
maneuver is feasible. (bottom left): Skynet passes both vehicles at 30 mph. (bottom
right): Skynet tracks both vehicles as it passes them.

based on the distance remaining before the next mission checkpoint and the
difference in speed between the tracked vehicle and Skynet. In this situation,
both these conditions were met. Skynet correctly tracked the trailing vehicle
at 118 m, determining its speed to be 7.1 m/s compared to Skynet’s 13.7 m/s.
The vehicle was considered slow-moving at a time when the next checkpoint
was 1070 m away, which was sufficient time to complete a passing maneuver.
Figure 16 (top left) shows the vehicles’ configuration when Skynet decided
to pass. Figure 16 (top left) shows the track generator tracking the trailing
vehicle just prior to beginning the pass.

After checking for other fast-moving vehicles approaching from the rear
and other slow-moving vehicles in the adjacent lane, Skynet deemed the pass-
ing maneuver safe. As Skynet moved to the adjacent lane, the forward vehicle
dropped from Skynet’s front radar detection cone. This caused a measurement
assignment mistake, and a second duplicate track was created near the origi-
nal vehicle. This duplicate appeared near the lane boundary, so Skynet slowed
down to match its speed. The local map and track generator resolved the mis-
take after several seconds, allowing Skynet to speed up to pass.

300 I. Miller et al.

Fig. 17. (top left): Skynet approaches the traffic jam at the corner of Washington
and Utah. (top right): Skynet begins to pass a stopped vehicle deemed disabled.
(middle left): Skynet continues its pass, but gets trapped in the wrong lane as its
gap closes. (middle right): Other vehicles pass Skynet as it waits for the intersection
to clear. (bottom left): The traffic jam clears. (bottom right): Skynet pulls to the
stop line to continue the mission.

As Skynet passed the first slow-moving vehicle, shown in Figure 16 (bottom
left), it also tracked the slow moving robot in front. Figure 16 (bottom right)
shows the output of the track generator at one iteration, with tracks assigned
to both the slow-moving robot being passed by Skynet and to the slow-moving
Taurus that was just passed. Unable to change back into the right lane while
the slow-moving robot occupied it, Skynet continued to drive in the passing
lane. Once clear of both slow-moving vehicles, Skynet sensed no obstructions

Team Cornell’s Skynet: Robust Perception and Planning 301

in the right lane, either in front or to its side. Skynet therefore pulled back
into the right lane, to complete the passing maneuver and continue with its
mission.

The passing maneuver executed by Skynet illustrates the complex de-
pendencies among all its constituent subsystems. The actuation provided
real-time feedback necessary to complete the maneuver smoothly. The pose
estimator and posterior pose produced a smooth and reliable solution that
allowed precision path tracking. The local map and track generator tracked
all the slow-moving vehicles with consistent speed estimates, even as the ve-
hicles passed from one sensor to another. The road tactical utilized all infor-
mation from the sensing to reason about whether a pass could be completed
successfully, and the operational layer executed the desired maneuver. The
passing event was one significant instance among many where all components
of Skynet functioned together correctly, and is an accurate representation of
Skynet’s performance in the UCE.

5.4 The Traffic Jam at Washington and Utah

A final unique event for Team Cornell occurred during a traffic jam near the
corner of Washington St. and Utah St., at approximately (−41E,−208N) in
the coordinate frame of Figure 12. As Skynet approached the intersection,
it encountered a traffic jam: a robot was disabled at the stop line. In line
behind the vehicle were two human-driven Ford Tauruses, one following the
robot, the other acting as traffic. Skynet pulled to a stop behind the last of
these three vehicles, as shown in Figure 17 (top left).

The last of the vehicles, a human-driven Taurus, left a large space between
it and the other two vehicles. Unfortunately, this large space was farther than
the 30 m DARPA-specified safety zone that surrounds each intersection. Be-
cause the vehicle was outside the safety zone, Skynet was allowed to consider
it disabled and pass. After waiting 10 seconds, Skynet did exactly that: con-
cluded the Taurus was disabled, and began to pass it.

Shortly after Skynet began to pass, it observed another robot turning into
the oncoming lane, as shown in Figure 17 (top right). The planner imme-
diately executed an emergency brake command, one of the 53 mentioned in
section 5.1. The planner prevented Skynet from moving while the oncoming
vehicle passed, and a collision was avoided. A human-driven Taurus following
the oncoming robot also turned into Skynet’s lane, but immediately drove
onto the sidewalk in order to avoid potential collisions. With the lane clear,
Skynet continued its passing maneuver of the original Taurus, which still had
not moved. As Skynet pulled fully into the opposing lane, however, the Tau-
rus closed the gap, preventing Skynet from returning to the proper lane to
complete the pass.

With nowhere left to go, Skynet concluded that its desired lane was full and
began to wait, as shown in Figure 17 (middle left). While waiting, Skynet
invoked the blockage recovery tactical component, one of the 10 instances

302 I. Miller et al.

mentioned in section 5.1. Although the recovery process escalated several
levels, including resetting all layers of the planner, Skynet retained the cor-
rect view of the situation. During this period a number of other vehicles also
passed by without incident, as shown in Figure 17 (middle right). Although
Skynet had ample opportunity to navigate the intersection as an unstruc-
tured zone, conservative design choices deliberately prevented Skynet from
adopting a pure obstacle avoidance strategy so close to an intersection for
safety reasons.

Approximately 12 minutes later, the disabled robot resumed its mission, as
shown in Figure 17 (bottom left). As soon as the intersection cleared, Skynet
pulled into the proper lane, stopped at the stop line, and continued with
its mission, as shown in Figure 17 (bottom right). The event at Washington
and Utah is unique in the Urban Challenge because no rules were broken:
robots were allowed to pass other disabled robots after waiting for 10 seconds,
provided they were outside intersection safety zones. Despite following the
rules, Skynet still performed undesirably. Such a situation emphasizes the
importance of higher level reasoning about other vehicles’ behavior that was
not incorporated into the Urban Challenge: had Skynet understood the root
cause of the traffic jam, it would never have tried to pass in the first place.

6 Conclusions

This paper has presented a high level system-by-system view of Team Cor-
nell’s Skynet, one of 6 vehicles to successfully complete the 2007 DARPA Ur-
ban Challenge. Skynet consists of several sophisticated subsystems, including
in-house actuation, power, and networking design, a tightly-coupled attitude
and pose estimator, a multitarget obstacle detection and tracking system fus-
ing multiple sensing modalities, a system to augment the pose solution with
computer vision algorithms, an optimization-based local path planner, and a
state-based urban reasoning agent. The vehicle built from these components
can solve complex merging and intersection scenarios, navigate unstructured
obstacle fields, park in designated spaces, and obey basic traffic laws.

The success of Team Cornell’s Skynet was largely based on lessons learned
in the 2005 Grand Challenge (Miller et al., 2006). In particular, the team
opted for standard automotive components, while still designing the actua-
tion and power distribution systems in-house. In addition, the team learned
to be wary of GPS, designing a more robust tightly-coupled pose estimator
than the loosely-coupled version used in the Grand Challenge. Mistrust of
GPS signals also caused the team to build both an obstacle tracking system
and an obstacle avoidance system that operated in a vehicle-fixed coordi-
nate frame, completely independent of GPS. The instability of greedy search
spline-based planners motivated Team Cornell to adopt a local path planner
that selected paths based on physical constraints in the real world, includ-
ing actuator constraints, obstacle avoidance constraints, and preferences for

Team Cornell’s Skynet: Robust Perception and Planning 303

smoother, straighter paths. These lessons led to Team Cornell’s success in
the Urban Challenge.

Though successful, Team Cornell exposed several critical areas for contin-
ued investigation. In particular, modeling and estimation of other vehicles’ be-
havior would have vastly improved Skynet’s performance in the Washington
and Utah traffic jam, and would have allowed more sophisticated reasoning
to take place elsewhere. Further modeling of the environment itself, including
a GPS-independent local road model, would also aid in Skynet’s situational
awareness in cases where the road is poorly-surveyed. Finally, the Urban Chal-
lenge has exposed the need for a better understanding of the interplay between
probabilistic sensor information and robust planning. The state-based plan-
ner used on Skynet was stable, but only after many months of careful tuning.
Each of these research areas remains largely unexplored, though progress will
be necessary to permit improvements in autonomous driving.

Acknowledgments

The authors would like to acknowledge additional members of the Cornell
DARPA Urban Challenge Team: Filip Chelarescu, Daniel Pollack, Dr. Mark
Psiaki, Max Rietmann, Dr. Bart Selman, Adam Shapiro, Philipp Unterbrun-
ner, and Jason Wong.

This work is supported by the DARPA Urban Challenge program (contract
no. HR0011-06-C-0147), with Dr. Norman Whitaker as Program Manager.

References

Artes, F., Nastro, L.: Applanix POS LV 200: Generating continuous position accu-
racy in the absence of GPS reception. Technical report, Applanix (2005)

Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters
for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on
Signal Processing 50(2), 174–188 (2002)

Bar-Shalom, Y., Rong Li, X., Kirubarajan, T.: Estimation with Applications to
Tracking and Navigation: Theory, Algorithms and Software. John Wiley &
Sons, Inc., New York (2001)

Bierman, G.: Factorization Methods for Discrete Sequential Estimation. Academic
Press, New York (1977)

Centa, G.: Motor Vehicle Dynamics: Modeling and Simulation. World Scientific,
Singapore (1997)

Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd
edn. The MIT Press, Cambridge (2003)

Davis, J., Herring, T., Shapiro, I., Rogers, A., Elgered, G.: Geodesy by radio in-
terferometry: Effects of atmospheric modeling errors on estimates of baseline
length. Radio Science 20(6), 1593–1607 (1985)

Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. In-
ternational Journal of Computer Vision 59(2), 167–181 (2004)

Ferguson, D., Stentz, A., Thrun, S.: Pao* for planning with hidden state. In: Pro-
ceedings of the 2004 International Conference on Robotics and Automation,
vol. 3, pp. 2840–2847 (2004)

304 I. Miller et al.

Gillespie, T.: Fundamentals of Vehicle Dynamics. Society of Automotive Engineers,
Inc., Warrendale, Pennsylvania (1992)

Julier, S., Uhlmann, J.: A new extension of the Kalman filter to nonlinear systems.
In: Proceedings of the SPIE: Signal Processing, Sensor Fusion, and Target
Recognition VI, vol. 3068, pp. 182–193 (1997)

Lemoine, F., Kenyon, S., Factor, J., Trimmer, R., Pavlis, N., Chinn, D., Cox, C.,
Klosko, S., Luthcke, S., Torrence, M., Wang, Y., Williamson, R., Pavlis, E.,
Rapp, R., Olson, T.: The development of the joint NASA GSFC and NIMA
geopotential model EGM96. Technical Report NASA/TP-1998-206861, NASA
Goddard Space Flight Center (1998)

Lundberg, J., Schutz, B.: Recursion formulas of legendre functions for use with
nonsingular geopotential models. Journal of Guidance, Control, and Dynam-
ics 11(21), 31–38 (1988)

Martin, M., Moravec, H.: Robot evidence grids. Technical Report CMU-RI-TR-
96-06, The Robotics Institute, Carnegie Mellon University, Pittsburgh (1996)

Miller, I., Campbell, M.: A mixture-model based algorithm for real-time terrain
estimation. Journal of Field Robotics 23(9), 755–775 (2006)

Miller, I., Campbell, M.: Rao-blackwellized particle filtering for mapping dy-
namic environments. In: Proceedings of the 2007 International Conference on
Robotics and Automation, pp. 3862–3869 (2007)

Miller, I., Campbell, M.: Particle filtering for map-aided localization in sparse
gps environments. In: Proceedings of the 2008 International Conference on
Robotics and Automation (2008)

Miller, I., Lupashin, S., Zych, N., Moran, P., Schimpf, B., Nathan, A., Garcia, E.:
Cornell University’s 2005 DARPA Grand Challenge Entry. Journal of Field
Robotics 23(8), 625–652 (2006)

Psiaki, M., Mohiudden, S.: Modeling, analysis and simulation of GPS carrier phase
for spacecraft relative navigation. Journal of Guidance, Control, and Dynam-
ics 30(6), 1628–1639 (2007)

Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Pren-
tice Hall, Pearson Education, Inc, Upper Saddle River (2003)

Saastamoinen, J.: Atmospheric correction for the troposphere and stratosphere in
radio ranging of satellites. In: Henriksen, S., Mancini, A., Chovitz, B. (eds.)
Geophysical Monograph Series, vol. 15, pp. 247–251 (1972)

Savage, P.: Strapdown inertial navigation integration algorithm design part 1: At-
titude algorithms. Journal of Guidance, Control, and Dynamics 21(1), 19–28
(1998a)

Savage, P.: Strapdown inertial navigation integration algorithm design part 2: Ve-
locity and position algorithms. Journal of Guidance, Control, and Dynam-
ics 21(2), 208–221 (1998b)

Sleewaegen, J.-M., De Wilde, W., Hollreiser, M. (2004). Galileo Alt-BOC receiver.
In: Proceedings of GNSS 2004 (2004)

Sukthankar, R.: Situational Awareness for Tactical Driving. PhD thesis, The
Robotics Institute, Carnegie Mellon University (1997)

Trimble, AgGPS 252 Receiver User Guide Version 1.00, Revision A (2004)
Willemsen, P., Kearney, J.K., Wang, H.: Ribbon networks for modeling navigable

paths of autonomous agents in virtual urban environments. In: Proceedings of
IEEE Virtual Reality 2003, pp. 22–26 (2003)

Wong, J.: Theory of Ground Vehicles, 3rd edn. John Wiley & Sons, Inc., New York
(2001)

M. Buehler et al. (Eds.): The DARPA Urban Challenge, STAR 56, pp. 305–358.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

A Practical Approach to Robotic Design for the
DARPA Urban Challenge

Benjamin J. Patz1, Yiannis Papelis2, Remo Pillat3,
Gary Stein3, and Don Harper3

1 Coleman Technologies, Inc.
Orlando, FL 32801
bpatz@ctiusa.com

2 Virginia Modeling Analysis & Simulation Center
Old Dominion University
ypapelis@odu.edu

3 College of Engineering and Computer Science
University of Central Florida
Orlando, FL 32816
rpillat@cs.ucf.edu,gstein@mail.ucf.edu,harper@cs.ucf.edu

Abstract. This article presents a practical approach to engineering a robot to effectively
navigate in an urban environment. Inherent in this approach is the use of relatively simple
sensors, actuators, and processors to generate robot vision, intelligence and planning.
Sensor data is fused from multiple low cost 2-D laser scanners with an innovative rotational
mount to provide 3-D coverage with image processing using both range and intensity data.
Information is combined with Doppler radar returns to yield a world view processed by a
Context-Based Reasoning control system to yield tactical mission commands forwarded to
traditional PID control loops. As an example of simplicity and robustness, steering control
successfully utilized a relatively simple follow-the-carrot guidance approach that has been
successfully demonstrated at speeds of 60 mph. The approach yielded a robot that reached
the finals of the Urban Challenge and completed approximately two hours of the event
before being forced to withdraw as a result of a GPS data failure.

1 Introduction

The Urban Challenge is the third in a series of competitions launched by the
Defense Advanced Research Projects Agency (DARPA) with the goal of
developing technology to keep warfighters off the battlefield and out of harm’s
way. The specific objective of the Urban Challenge was to develop a robot capable
of autonomously navigating a typical urban environment at speeds up to 30 mph.
Urban scenarios involved other manned vehicles as well as robots traversing the
same course at the same time and resulted in robot-on-robot autonomous decision
making challenges. The final event of the competition took place in Victorville, CA
on November 3, 2007, but this event was a culmination of 18 months of work and
numerous other formal qualification procedures. TeamUCF and the Knight Rider
robot successfully passed these qualification procedures to make it to the finals of
the Urban Challenge.

306 B.J. Patz et al.

Fig. 1. NQE Site in Victorville Consisted of Several Test Areas

1.1 Urban Challenge Overview

The Urban Challenge program was announced in May of 2006 and proposals from
interested teams were solicited shortly thereafter. Successful proposals were
divided into two categories: 11 Track A teams received $1M in supporting
funding from DARPA while 78 Track B teams were on their own. TeamUCF was
a Track B team. Track A teams had to meet several programmatic milestones, but
any team advancing in the competition had to submit a comprehensive technical
report and pass an on-site visit by DARPA. Site visits were conducted in June and
July of 2007 and 35 semi-finalists were selected in August. Semi-finalists were
eligible to participate in the National Qualifying Event (NQE) in Victorville, CA
(Figure 1) during the last two weeks of October 2007. The NQE consisted of a
series of rigorous vehicle tests from which 11 finalist teams were selected. These
finalists participated in the final event on November 3, 2007, with the winner of
the competition announced the following day.

The overall urban driving objective as defined by DARPA was to demonstrate
an autonomous robot’s ability to complete a series of driving missions in traffic,
over the course of 6 hours, while obeying California driving rules, utilizing a
moderate level of a-priori information associated with the road network, but being
expected to deduce any missing information. Some key observations can be made
with respect to this definition; some of which were clearly specified in DARPA
provided rules, while others simply became apparent over the stages leading up to
the final event:

A Practical Approach to Robotic Design for the DARPA Urban Challenge 307

• Robots were limited to street legal motor vehicles, modified for
autonomous operation.

• Autonomous operation meant no real-time interaction with the robot
except for a remote control safety (E-Stop) system which could pause or
completely disable the robot.

• Urban environment consisted of typical US streets with one-way and
two-way single lane roads, multi-lane roads, traffic circles, intersections
with zero or more stop signs, and parking lots (zones). No stop lights
were encountered. Surprisingly a modest amount of off road driving was
required in the final event.

• Traffic vehicles meant that following, passing, avoidance, and stop sign
precedence behavior was required.

• A-priori information consisted of a Route Network Definition File
(RNDF) which defined road segments/lanes, provided by a sparse, but
accurate, collection of latitude/longitude “waypoints” and a waypoint to
waypoint connectivity graph (although connectivity was not guaranteed
since roads could be blocked by design or by accident). The RNDF also
provided stop sign locations. Nominally, the RNDF was provided a day
or more before any test.

• The driving mission was to traverse a certain set of waypoints (i.e,
checkpoints) in a given order as defined in a Mission Definition File
(MDF). Nominally, the MDF was provided minutes before a test.

1.2 TeamUCF

TeamUCF’s Knight Rider robot was initially conceived over three years ago at the
beginning of the 2005 DARPA Grand Challenge event. With the inception of the
DARPA Urban Challenge, TeamUCF built on the existing capabilities of the
Knight Rider robot (Harper et. al., 2005), augmented as necessary to meet the
specific mission objectives of DARPA. The three member team that participated
in the 2005 event was expanded only slightly for the 2007 Urban Challenge
(5 core team members) with the inclusion of an industry partner, Coleman
Technologies, Inc. (CTI). CTI is a system engineering firm specializing in real-
time guidance, navigation, and control as well as products associated with GPS
measurements in urban environments and CTI provided funding, technical
support, and overall team leadership for TeamUCF. TeamUCF was kept small,
partly by design, but mainly as a natural result of the team’s goal to reuse much of
the 2005 robot hardware and a clearly stated objective to implement only those
systems necessary to meet stated DARPA Urban Challenge objectives.

1.3 Overall Project Approach

TeamUCF’s overall approach to this challenge was to maximize its limited
resources. The basic robot control hardware was re-used from the 2005 robot. The
sensor suite was an enhanced version of the 2005 robot’s sensor suite which

308 B.J. Patz et al.

had proved very robust, and which also turned out to be a sensor suite used by
many of the participating teams. Three major weaknesses with the 2005 robot
were specifically addressed:

• A relatively poor GPS system was replaced with a highly capable
RT3000 GPS/INS from Oxford Technical Solutions. This decision was a
key to TeamUCF’s initial success but confidence in the GPS/INS
ultimately led to an unrecoverable failure in the final event.

• A relatively poor simulation model was replaced with a real-time
simulator running actual robot software and could operate with full
hardware-in-the-loop capability to allow any system element to be real or
simulated.

• A more focused pre-event testing strategy was employed which allowed
the team to have a clear understanding of the capabilities and limitations
of the robot prior to participation in the NQE. This level of knowledge
allowed the team to make software changes between tests at the NQE and
was perhaps the single most important factor in the team’s success.

Resource constraints limited the team’s ability to invest in sophisticated 3-D laser
scanners, so the team opted for an investment in an innovative rotating laser
scanner system designed by one of the authors (Pillat). The limited reliance on
sophisticated third-party systems, with capable but inherently un-modifiable
software, proved to be a fundamental advantage for TeamUCF.

Simulation modeling allowed all major software elements to be tested prior to
robot integration, but there was no substitute for actual robot testing and the team
spent as many hours as possible testing the robot hardware. Unfortunately testing
a full autonomous automobile-sized robot at speed poses numerous safety issues
and TeamUCF was forced to settle on relatively small test areas whose access
could be controlled.

The system design approach could be considered a cross between
“requirements based” and “capabilities based” in that overall Urban Challenge
objectives flowed down to scenarios (Figure 2) and subsequently to overall system
level capabilities, but detailed subsystem performance requirements were not
derived from these. Rather, since subsystems were effectively selected at the start
of the project, the challenge for TeamUCF became one of determining “how” to
meet a specific objective with a given system, rather than what system would be
best for meeting a particular objective.

In approaching the software functional design, the team followed the following
basic principles:

• Safety was of primary importance. The goal was to provide a system that
would protect the Knight Rider from collisions and kinematic limits;
protect other robots from collision or perceived collision; and protect
obstacles.

• Mission completion was of secondary importance. The goal was to
complete as much of the provided mission as possible, potentially
skipping checkpoints if the robot determined that they were not
achievable.

A Practical Approach to Robotic Design for the DARPA Urban Challenge 309

Fig. 2. Basic driving scenarios (not all cases shown)

• Legality was of tertiary importance meaning that the system’s software

was allowed to violate rules if there was no other way to meet an
objective.

• Speed was of least importance. Despite its relative lack of importance,
it turned out that the Knight Rider was one of the quickest robots at
the NQE.

2 Robot Vehicle

The Knight Rider robot is a 1996 Subaru Outback Legacy (Figure 3) with minimal
modifications. Key performance parameters for this robot are provided here:

• 4.8m overall length w/ mounting brackets
• 2.0m overall width w/ mounting brackets
• 2.6m wheelbase
• 5.5m turning radius
• Speed: -2.2 to 13.5 m/s (-5 mph to 30 mph, DARPA restricted)
• Axial Acceleration: ~3.5 m/s2 (practical limits for comfortable driving)
• Lateral Acceleration: ~2 m/s2 (practical limits for comfortable driving)

310 B.J. Patz et al.

2-D laser

actuated

Doppler

3-D (rotating)

Fig. 3. Knight Rider robot before an early morning test

Adopting this vintage vehicle prevented the use of drive-by-wire or other

sophisticated integration into an automobile control system. This limitation turned
out to be of no impact to robot performance. Actuators were designed to control
existing robot hardware in a manner analogous to a human operator. For example,
the steering servo, mounted along the robot centerline, controlled the steering
wheel with a belt system similar to the way a driver would control that system.
This system easily allowed both robotic operation as well as driver operation.
Because of safety concerns, most testing prior to the NQE, was conducted with a
driver in the vehicle. Servo torques and belt slippage were adjusted to allow driver
override even in the event of full system failure. Throttle and brake actuators were
mounted under the passenger seat and similarly provide failsafe operation. In
particular, the brake actuator causes the vehicle brake to be depressed and was in
the “always on” position via a spring mechanism. The brake was “released” via a
pneumatic actuator that, should it fail, would cause the brake to return to the
depressed position. Turn signal integration was accomplished via the vehicle’s
existing wiring infrastructure.

Own-state estimation (position, speed, heading as well as full robot attitude) was
provided by a differentially corrected RT3000 GPS/INS from Oxford Technical
Solutions. Previous experience indicated that this was an area where commercial
systems outperformed developed software. The integrated Inertial Navigation
System provides high quality measurements, including obscured-sky speed
measurement, in environments where the GPS alone struggles; lateral acceleration
in a horizontal direction without the need to zero the accelerometer; and

A Practical Approach to Robotic Design for the DARPA Urban Challenge 311

roll/pitch/yaw measurements which are accurate during continuous turns. GPS/INS
data was available to other systems at a 100Hz data rate, although low level control
systems only operated at 20Hz and the highest sensor data rate was 35Hz.

SICK LMS291 laser scanners mounted on a forward and rear mounting
bracket, and rotating laser scanners mounted to the top rack, provide range, angle,
and intensity information to obstacles as small as traffic cones. The sensors
provide information only for the leading edge of obstacles, but after multiple looks
from varying angles obstacle geometry is refined. Scanner pointing direction and
type were selected to optimize forward sector coverage. This approach also
provided 100% overlap in coverage directly in front of the robot which proved
particularly valuable in the case where a single scanner would lose data principally
because of looking directly into the sun. TeamUCF saw no benefit to mounting
scanners in the “upside down” position that some teams employed in an attempt to
reduce the effect of solar glare.

An actuated Doppler radar (Stalker Speed Sensor) mounted at the front of the
robot augmented laser scanner data specifically in long range moving obstacle
detection scenarios. This particular sensor employed by TeamUCF provided no
effective range or angle information, but rather was limited to return intensity and
(signed) speed information. This relatively primitive information, however,
proved to be a significant advantage in developing the overall system design since
it greatly simplified the decision making logic. Effectively any large object
moving sufficiently quickly toward the robot was an obstacle to be avoided.

A Sony HDR-HC3 digital camcorder was mounted on top of the robot and
provided a reasonable sensor for lane detection in certain scenarios. Unfortunately
early testing at the NQE showed that solar glare caused by early morning and late
evening operation, coupled with DARPA’s decision to use large concrete k-rail
barriers as lane markers in many cases made this video system redundant. For
the NQE, the vision system’s principal duty was providing a video record of
robot performance.

Processing was provided by 3 core-duo computers (mixed Linux and Windows
XP) located in a shock mounted frame in the passenger’s seat. Intelligence functions
were performed on one computer, vision functions on a second, and the third
computer provided real-time system control including autopilot and navigation
functions. Computers communicated over a local Ethernet network, and various
processes establish connection with one another, in a broadcast/subscribe manner,
independent of their actual physical processor location. Communication utilized the
Internet Communications Engine (ICE) framework which is a simplified derivative
of the CORBA architecture.

One principle benefit of the relatively simple system architecture and small
number of computers was the relatively low power consumption of the robot.
Power consumption was ~600W which included all sensors and processors. No
special alternator was used and by choice of mounting location, cooling could be
provided directly by the robot’s A/C system. Computer and sensor power was
provided by four deep cycle marine batteries which were trickle charged by the
alternator. DC-DC converters provided appropriate power levels to various sensors.

312 B.J. Patz et al.

This system provided stable and clean power and repeatedly demonstrated
operation of over 8 hours. Although never required, it was fairly clear that by
simply upgrading the alternator, even longer durations could be obtained.

Decomposition of the core software elements is illustrated in Figure 4. For
clarity, the detailed interfaces associated with health and status monitoring
elements and E-Stop are not shown. Clearly visible are overall mission inputs
provided by the RNDF (providing an initial seed of the system’s environmental
model), and the MDF (defining the overall mission objectives in terms of
checkpoints and speed constraints). Viewed as a control system, the elements can
be considered as follows: 1) intelligence develops a mission as a set of tactical
goals to be achieved, 2) path planning efficiently plans a legal and drivable path to
meet those tactical goals, 3) the autopilot maintains the robot on path and within
performance limits, and 4) PID controllers command various actuators to meet
autopilot commands. Although difficult to see in the diagram, feedback effectively
consists of four nested loops. The innermost loop consists of PID controller
feedback (actuator position, etc.). The next loop consists of navigation information
(position, speed, heading, etc.) used by the autopilot to develop control commands
to maintain the robot on course. Beyond this is a path planning loop which
effectively manages the tactical path based on tactical goals, bounds, and
obstacles. At the outermost level is the overall intelligence loop that monitors
whether or not the robot has met its tactical and strategic objectives. This outer
loop is closed through vision as well as navigation.

Fig. 4. Overall System Block Diagram

A Practical Approach to Robotic Design for the DARPA Urban Challenge 313

System operation is straightforward. After the robot boots-up and runs an
internal self-test, it sits in a wait state ready to accept an RNDF and corresponding
MDF. Once files are loaded and successfully processed, the robot remains waiting
until released to execute the mission. The detailed mission plan is generated
dynamically as the operational environment is discovered. Data logging is
performed allowing mission playback for analysis. Upon mission completion, the
robot stops.

2.1 Actuators

The robot’s actuator system was comprised of four modules, each controlling an
existing automotive system. The design of the actuator systems was driven by two
overarching principles: to allow for human intervention in any situation and
failsafe operation when no safety driver was present. The ability for a human
operator to take full control of the robot at any point is indispensable in extensive
testing and during most testing prior to the NQE, a safety driver was present in the
vehicle. To ease the process of relocating and positioning the robot the actuators
were mounted to not interfere with the robot’s existing hardware when powered
off, allowing a human driver to drive the robot like a normal car. In case the robot
is operating fully autonomous with no safety driver, the actuators are constructed
to bring the car to a complete stop in the event of a power failure.

The steering controller consisted of a three-phase brushless motor driving a
large pulley attached to the existing steering wheel. A six-splined v-belt
transferred the torque from the servo motor through a 12:1 mechanical advantage.
This small ratio, coupled with the possibility of slip provided by the v-belt allowed
a human safety driver to easily overcome the motor during an emergency
situation. The belt design also allowed some compliance to help absorb wheel
shock due to potholes and other sudden lateral forces imposed on the front tires.
The brushless motor was driven by a 12A control line from an Elmo 12/60
Harmonica digital servo controller.

Although our design of the steering system allows the belt around the steering
wheel to slip, we never encountered any appreciable slip in testing or operation.
This was first and foremost a safety feature, by allowing a human driver to either
overpower a servo motor or slip the belt. Small slippages are compensated by the
PID steering controller. For these reasons we did not mount an encoder on the
steering column to keep track of the actual steering angle.

The throttle controller consisted of a Bowden cable attached at one end to the
original cruise control throttle body linkage. The other end was driven by a
magnetic linear motor by Linmot. This type of linear motor was chosen because of
its natural ability to release when the DC power was removed. This important
safety feature allows the existing throttle return spring to force the throttle closed
in the event of an emergency stop or other type of power loss.

The brake controller was a two part redundant system that allowed control
using a linear motor for normal actuation and a separate pneumatic/spring
arrangement for emergency stop situations. The linear motor was a larger version
of the throttle motor also by Linmot. The force was transmitted to the brake pedal
from behind the firewall using a Bowden cable routed to the actuator located

314 B.J. Patz et al.

under the passenger seat. The second half of the braking system was only used in
emergency situations when there was either a power loss or a disable E-Stop had
occurred. It consisted of a large spring that, in its natural position, constantly
applies force to the brake pedal. During normal operation, a pneumatic cylinder
provides a countering force that overcomes this spring and allows the brake to be
completely controlled by the linear motor. In the event of an emergency, an
electric valve opens to release the pneumatic cylinder, forcing the pedal to be
depressed by the spring. An air-release valve controls the rate at which the
pneumatic cylinder releases which in turn controls the stopping distance.

The emergency braking system was specifically designed for the case of a
power loss. The electric valve is a three-way solenoid valve that controls the CO2
flow to and from the pneumatic cylinder that provides a countering force for the
mechanical spring. If power is applied to the valve, CO2 from a reservoir enters
the pneumatic cylinder and overcomes this spring so the brake can be completely
controlled by a linear motor. In case of a power failure, the solenoid valve releases
the CO2 from the pneumatic cylinder through its third port, allowing the brake
pedal to be depressed by the spring.

The gear shift mechanism utilized yet another linear actuator to provide control
over the shifter position. All of the standard gears (P,N,R,1,2,D) could be reached,
although normal operation only involved P, R, and D. The existing shift safety
interlock was circumvented in this application.

A separate single board computer running the real-time QNX operating system
managed each actuator through either 0-10V control voltages or in the case of the
steering controller, through a serial port.

2.2 Sensors

Sensor system design was driven by available hardware and proven capabilities,
especially from experience gained in the 2005 Grand Challenge. The key
requirement of navigation in the Urban Challenge was a safe course traversal in
diverse traffic situations. Most scenarios required detection of static or near-static
obstacles while the robot was either static or moving slowly (i.e., stop sign
scenarios, parking, etc.), but the sensors needed to able to detect and distinguish
obstacles at different height levels as well as negative obstacles (potholes). The
types of obstacles ranged in size from traffic cones and low curbs to cars, trucks
and major road blockages. As demonstrated by DARPA at the NQE, obstacles
were not required to have ground contact with driving lanes. These reflections led
TeamUCF to employ laser scanners as the main means of acquiring sensory
information. These sensors work very well at moderate range (<50m) and for the
classes of obstacles encountered in an urban environment.

Perhaps the most challenging scenario in the Urban Challenge was the
requirement to merge into high speed (13.5 m/s, ~30 mph) traffic. Considering car
axial acceleration capabilities, safe following considerations, and decision
timelines this required detection ranges of almost 100m (135m if a true 10 sec gap
is to be detected). Range constraints of the laser scanners available to TeamUCF

A Practical Approach to Robotic Design for the DARPA Urban Challenge 315

forced the use of a longer range alternative and TeamUCF employed a Doppler
radar to provide the extended range since long range scenarios only involved high
speed obstacles.

2.2.1 2-D Laser Scanners
A laser scanner employs emitted laser light and the time-of-flight principle to
deduce distances very accurately. 2-D laser scanners (LADARs) that use a rotating
mirror to provide angular distance measurements in a plane are relatively
inexpensive and widely available, especially through the German manufacturer
SICK. The biggest disadvantage of those 2-D laser scanners is that they only
provide distance information in one scanning plane and hence only output sparse
information about the environment. The usable range of distance measurements is
0.5m – 50m with measurement accuracy in the cm range.

The disadvantage of just one scanning plane can be partially relieved by
mounting several 2-D laser scanners in different orientations. This approach has
been successfully employed by Stanford’s winning robot in the Grand Challenge
2005 (Thrun et. al., 2006). TeamUCF decided to place four SICK LMS291-S05
scanners tactically around the car to allow for a near 360° field-of-view (Figure 5).
This enabled the detection of static and dynamic obstacles in many possible
locations relative to the car. Individually these scanners provide a 180° scanning
range. They provide complete scans at 70 Hz with 1° angular resolution and scans
at 35 Hz with 0.5° angular resolution (both frame rates were used at various times,
although NQE testing utilized 35Hz frame rates).

Fig. 5. The mounting points of the 2-D laser scanners, plan view.

316 B.J. Patz et al.

Fig. 6. The placement of the laser scanners around the car and on top of the roof.

For most scenarios the laser scanners in the front of the car provide sufficient
sensory information to navigate an urban course. The side scanners in the front are
mounted on different height levels than the central front scanner. Additionally,
they are attached in a slightly rolled position, so that the scanning planes of the
three frontal laser scanners overlap in front of the car. These crossing planes focus
the attention of the sensors in the area right in front of the car.

Additionally, one scanner is mounted centrally on the roof. With a slight tilt
downward, this scanner detects curbs and lane markings approximately 10 meters
in front of the car (Figure 6).

2.2.2 3-D Laser Scanners
Despite the design considerations presented, the ability to detect a robust set of
obstacles necessitates the use of scanners that perform significantly outside of a
single plane (i.e., 3-D laser scanners). Commercial 3-D laser scanner systems are
very expensive. TeamUCF chose to emulate 3-D scanning by combining a 2-D
laser scanner with a servo motor, such that the scanning plane can be rotated along
a chosen rotation axis (e.g. in (Surmann 2003) and (Wulf 2003)). In collaboration
with the Mechanical Engineering department of the University of Central Florida,
we developed an actuated mount that rotates a 2-D scanner to generate 3-D
samples, using a single rotational axis and relatively low rotation rate (Figure 7).

A Practical Approach to Robotic Design for the DARPA Urban Challenge 317

Fig. 7. CAD drawing of the actuated laser scanner mount.

In the design of the actuated mount TeamUCF was guided by three main design

paradigms:

• Adjustability: A slotted design allows rapid adjustment of most angles.
• Robustness: Anodized aluminum mount with stainless steel fasteners for

continuous outdoor application. Sealed radial ball bearings resist
encroachment of debris and retain lubricant. Teflon plain bearings serve
as thrust bearings on either of the front bearing carriers. Rubber bump
stops are incorporated to minimize impulse to components should any
failure lead to over travel of the sensor. The cable harness is routed to
minimize strain from the repetitive motion and ruggedized with braided
sleeving and plastic conduit. All electrical components meet IP65
specification.

• Maintainability: All fasteners, bearings and electrical parts are off-the-
shelf products that are widely available.

TeamUCF considered different motion patters. The advantage of a continuous 360
degree motion is that the scanners are moved with a constant velocity and hence
the interpolation of roll positions is simplified. Unfortunately, there are challenges
involved when the electrical and data connections have to made through that
rotating assembly (e.g. with slip rings). In our testing we achieved a sufficient
coverage (e.g. see figure 8) with a cyclic movement of +/- 20 degrees. There is no
special connection for the power or data necessary and the roll movement of the
shaft is closely tracked by an optical encoder. The main reason we chose a cyclic
over a continuous movement was the ease of mechanical implementation coupled
with a sufficient scanning coverage. Based on simulations of several
configurations and movement patterns, we used two rotating laser scanners that
have a yaw angle of ±22° and a pitch angle of -11° relative to the sensor roll axis.
This configuration yields a high scanning point density in front of the robot, where
most on-road obstacles are expected.

318 B.J. Patz et al.

Fig. 8. Point density achieved after a 2 second scan.

Each scanner is continuously rotating around the y-axis (roll) with a motion

radius of ±20°. The most current roll position is determined by an absolute 16-bit
optical encoder that is directly attached to the rotating shaft. Since each mount
has a separate encoder, no roll movement synchronization between the two
mounts is necessary.

The point density that is achieved on the ground plane after a 2 second scan is
shown in Figure 8. Clearly, the highest point density is achieved in front of the
robot. Moderate point densities towards the far frontal left and the far frontal right
of the robot favor the detection of robots in intersection and merging scenarios.
Notice that the blind spot of one sensor is covered by scan lines of the other laser
scanner. Although the point density is low in these areas, both scanners
complement each other in achieving a complete coverage.

2.2.3 Cameras
During early development, TeamUCF used video cameras for lane detection and
long-range obstacle recognition. These systems proved problematic in testing
being particularly susceptible to variable lighting conditions, ubiquitous shadows
and non-uniform street texture. The basic failure mode in the presence of these

A Practical Approach to Robotic Design for the DARPA Urban Challenge 319

conditions was a temporary loss of valid lane data. Promising results in road
marking detection and long-range recognition of oncoming vehicles could not be
extended to a robust framework that worked in diverse situation. Further, the
performance of the top 2-D laser scanner in detecting lane markings had proved to
be at least as robust as vision approaches, and could be substantially better in
some scenarios. The problems with vision were exacerbated when TeamUCF
arrived at the NQE and observed the lighting conditions during expected test
windows, the actual quality of road markings, and the extent to which non-
traditional road markers (specifically concrete k-rails) were used to designate
lane boundaries. TeamUCF made a real-time decision at the NQE and abandoned
the idea of using cameras and relied on the laser scanners as main source of
sensor information.

2.2.4 Doppler Radar
The laser scanners employed by TeamUCF were unable to detect obstacles
beyond 50 m, but high speed merge scenarios dictated longer range. To overcome
this range limitation, an actuated Doppler radar sensor was mounted in the front of
the robot. The “Stalker Radar Speed Sensor” returns the speed of the strongest
moving object in its measuring cone (3 dB beamwidth of 12°) and has an
advertised range of 3km (ideal for speed traps). In practice, it proved to be a
disadvantage to have that extensive range, because the Urban Challenge scenarios
effectively limit required range to 100m. Since the sensor only outputs the speed
of the strongest moving target and its direction of movement (incoming or
outgoing) but not its distance, a distance-based filtering is not possible. This
problem is resolved by simply pitching the radar, so the maximum detection range
is determined by the 3dB beamwidth (Figure 9). Given the known values of
height h , 3dB beamwidth β and the desired range d , we can calculate the pitch

angle α by

1tan (/) / 2h dα β−= − −

Fig. 9. The Doppler radar is pitched to achieve a desired detection range.

320 B.J. Patz et al.

Fig. 10. The front rack of Knight Rider with 3 laser scanners + actuated Doppler radar.

To account for a diverse range of intersection geometries, the radar was

mounted on an outdoor pan-tilt unit PTU-D47 manufactured by Directed
Perception (Figure 10). With a maximum yaw speed of 300°/s and a maximum
pitch speed of 60°/s, the radar could view all pockets of the intersection
sequentially within a couple of seconds.

2.3 GPS/INS

Knight Rider navigation fuses a number of sensors to provide an accurate
determination of the current robot state which includes position, heading, speed,
and attitude. Attitude information is used specifically by sensor subsystems to
transform sensor relative geometry measurements into a world frame for inclusion
in the environmental model. The vehicle’s existing ABS sensors could be used to
provide the current speed of all four wheels and this information augments states
maintained in the Oxford GPS/INS. Differential corrections are provided to the
GPS/INS. UCF had investigated dual antenna performance to augment attitude
information, but performance was insufficiently different from the single antenna
system now employed to warrant the complexity and idiosyncrasies of such a
system. Position accuracy of the operational system was <<10cm while angular
accuracy was approximately 0.3°. GPS/INS data was made available to all
processes at a 100Hz data rate.

A Practical Approach to Robotic Design for the DARPA Urban Challenge 321

3 Software Architecture

Because of the relatively small development team, there was little to be gained by
extensive software partitioning. Software was effectively divided into six areas:
laser data processing, vision data processing, sensor fusion, intelligence, planning,
and control. Each area was owned by one team member (one member owned two
areas) who had overall software responsibility, but all team members contributed
to all areas of the architecture. A common interface specification allowed seamless
data exchange.

3.1 Laser Data Processing and Sensor Fusion

The data from the laser scanners is transmitted over a serial data line with a
nonstandard baud rate of 500 kBaud. This serial data is read by a Moxa UC-7110
embedded computer that was modified to support the unusual baud rate. Each
embedded computer is capable of receiving data from two laser scanners
simultaneously, assigning a timestamp to each scan and publishing it over a UDP
unicast to a central receiver module. Through the middleware infrastructure, the
sensor data is made available to the robot’s computer network. Several subscriber
software modules receive the published data and extract road features and
obstacles. Effectively sensor processing algorithms have access to time-stamped
range and intensity data as a function of scan angle, which can be transformed into
world coordinates through an appropriate transformation involving sensor
mounting angles and real-time measurements from the GPS/INS.

3.1.1 Lane and Curb Detection
DARPA provided a moderately dense collection of waypoints (<100m spacing),
but not quite sufficiently dense to rely on waypoint definitions alone to accurately
describe road geometry. Segments with sparse waypoints were part of the tested
road network and sensory road following techniques were essential for a safe
traversal. Furthermore, even with INS aided GPS, an intermittent GPS outage and
the resulting deteriorating position estimate could have led to inaccuracies in
navigation (although TeamUCF never observed this type of GPS failure).

The reflectance of painted road markings is in most cases enhanced by
additives like reflective glass beads. This property facilitates the detection of those
markings by a laser scanner. In addition to the range measurement, the SICK laser
scanners employed by TeamUCF outputs the intensity of the reflected beam.
Range and intensity variations (Figure 11) can be used to define road boundaries.

The road detection strategy employed by TeamUCF was twofold. First detect
the curb discontinuity in the laser range scan (using the top scanner), and then
detect the lane marking discontinuity in the intensity scan. Both detections were
accomplished in the native polar space of the laser scanner output. By calculating
a simplistic range-normalized operator:

1 1

1 1

i i
dot

i i

r r
r

r r
+ −

+ −

−=
+

322 B.J. Patz et al.

ri-1

ri

ri+1

Lane
MarkingCurb

Fig. 11. Left - Notional laser scan line. Right - Range (lower) and Intensity (upper)
observed on actual road data.

and thresholding the results, the discontinuities can be easily identified. Data
association was relatively simplistic, but adequate for the challenges presented. On
each measurement, all rightmost curb boundaries within ½ lane width were
associated with the right curb, while all leftmost curb boundaries within ½ lane
width were associated with the left curb.

The detected road/lane boundaries are then tracked by a second-order Kalman
filter, which ensures that broken curbs or broken lane markings do not seriously
impact the estimated boundary points. Since RNDF input format guarantees that
waypoints, when present, are accurate and that lane widths, when present,
reasonably represent the lane, the only point of interest for the environmental
model is the world coordinate of the center point for the current lane of travel.
This point is used by the environmental model if the spacing between known
points is larger than a threshold and essentially became an additional, lower
confidence, waypoint (TeamUCF sought a waypoint spacing of 10m).

3.1.2 Obstacle Detection with 2-D Laser Scanners
In order to detect and extract obstacles, laser scanner points were transformed into
world coordinates and fed into a probabilistic occupancy grid originally developed
by (Moravec, 1988) and excellently treated in (Thrun et al., 2005). The occupancy
grid is probabilistic in the sense that it represents the map as a field of random
variables, arranged in an evenly spaced grid. Each grid cell is either occupied or
not, hence the random variable is binary. An occupancy grid mapping algorithm
implements an approximate posterior estimation of those random variables.
TeamUCF utilized a grid cell size of 0.5m x 0.5m. If a scan point is within the grid
cell, the cells counter is incremented and compared to an occupancy threshold.
The line between the laser’s origin and the scan point is traced and the counter of
traversed grid cells is decremented.

TeamUCF modified the standard concept of an occupancy grid to specifically
suit mapping of an urban driving environment. In particular

A Practical Approach to Robotic Design for the DARPA Urban Challenge 323

• TeamUCF utilized a 2-D occupancy grid. It is not important to know at
which particular height an object resides, but that it exists in a height
bracket above (or below) the road level that poses a danger for the robot.
Points outside this band (either too high or too low) are discounted from
consideration in the grid.

• TeamUCF used a dynamic moving map in order to minimize memory
and computation expense. Intelligence and planning systems are
concerned about detailed obstacles only within the vicinity of the robot
(obstacles outside this range are likely to change). TeamUCF used a
robot-centered 120 m x 120 m occupancy grid which was moved
whenever the robot moved 10 m. This ensured that all obstacles in at
least a radius of 50 m around the car are mapped (effectively the
maximum range of the laser scanners).

• TeamUCF required data for each grid cell to be refreshed repeatedly or
lost over time. This reduced the impact of potentially outdated data from
cells not effectively re-sampled by the laser scanner within 2 seconds(due
to robot motion or more likely orientation). This “fading” of occupied
cells was implemented with timestamps.

• TeamUCF used a dynamically generated lane mask to further eliminate
obstacles outside the road network. The lane mask was maintained by the
environmental model and reflected the best estimate of the road network.
Cells sufficiently far from the road network were simply ignored. The
mask was communicated as a collection of potentially overlapping
polygons. The vehicle relies on accurate GPS data and masks were
selected based on nominal GPS drift of < 1m. Masks were only “re-
aligned” to the extent that roadway control points (initially RNDF points)
were updated as the vehicle traversed the path. In fact this roadway
update was a far more significant source of path changes than GPS drift,
often adjusting the roadway by many meters.

The point transformation and occupancy grid mapping was executed separately for
each of the four statically mounted laser scanners at a rate of 20 Hz. At the end of
each iteration the resulting occupied cells of all 4 grids were published to the
sensor fusion module.

3.1.3 Obstacle Detection with Rotating 3-D Laser Scanners
An important observation from the process of curb detection is the apparent
smoothness of the road surface. In fact, all obstacles that have to be avoided by the
robot distinguish themselves as a discontinuity in respect to their spatial
surroundings. The simplified operator used in the curb detection process is
insufficient in cases where the laser beam hits the scanned surface at an extremely
acute angle, because larger changes in the measured ranges can be expected even
if the observed surface is smooth.

One key advantage of using a rotating 2-D laser scanner to emulate a 3-D
scanner is the preservation of spatially continuous scan lines. That is, each pair of
adjacent scan points in a given scan line is in most cases spatially close in the

324 B.J. Patz et al.

observed environment, so that an evaluation of surface smoothness along the scan
line is possible. Ideally, an operator on the scanning data returns gradient changes
independently of incidence angle of the laser beam and scanning location relative
to the environmental feature.

As elaborated in (Adams, 2001), the change in gradient from two scan points
A , B to the new scan point C can be described by:

1 1 2 2
2

1 1 1 2 2

(2 cos)sin

cos cos cos(2)
s

s i i i i i i

s i i i i i i ix B

dy d d d d d d

dx d d d d d d d

α α
α α α

+ + + +

+ + + + +=

+ −Δ =
− − +

where α denotes the angular resolution of the laser scanner and

1 2, , and i i id d d+ + the observed range measurements to points , , and A B C

respectively. The key here is the definition of a local coordinate system (,)s sx y

in the sensor space once the first two points are scanned, where the sx axis is

joining the two points A and B as illustrated in Figure 12. The computed
gradient is then the gradient in any chosen coordinate system, no matter from
which side the environmental feature is scanned.

Thresholding the resulting gradient changes in a given scan line yields the
points that describe the sought for spatial discontinuities in the environment.
Appropriately choosing the threshold allows detection of as diverse objects as
road curbs and cars. The resulting points are transformed into world coordinates
similar to the transformation for the static laser scanners, with the added degree of
freedom for the roll motion. An interpolation of the roll angles for each point of a
scan line accounts for the continuous movement of the scanners. An example

Xs

Ys

A B

C

α α

di
di+1

di+2

Fig. 12. Three sequential scan points A, B, and C

A Practical Approach to Robotic Design for the DARPA Urban Challenge 325

Fig. 13. Top- Typical 3-D point cloud. Bottom - Processed points prior to occupancy
extraction.

point cloud before and after the described processing is shown in Figure 13. All
the remaining 3-D scan points were inserted into a separate occupancy grid as was
described for the 2-D scanners.

326 B.J. Patz et al.

The scan line gradient processing, transformation of the remaining points to
world coordinates, and occupancy grid mapping is performed data-driven at the
full laser scan rate of approximately 35 Hz.

3.2 Sensor Fusion

The sensor fusion module receives five occupancy grids from the laser processing
modules, four from the static 2-D scanners and one from the 3-D laser scanners.
Each of these grids represents a probabilistic “best guess” about obstacle locations
from the particular sensor’s point of view, suggesting to merge the grids
disjunctively. The resulting disjunctive occupancy grid contains all known
obstacle cells in a perimeter around the robot (Figure 14).

From experiments it became clear that the occupancy grids from the 2-D
scanners were more likely to contain false positives due to unusual road geometry
or rapid elevation changes in the environment. In contrast, obstacle cells extracted
by the 3-D laser scanners proved to be more reliable indicators of real obstacles.
To avoid deadlocks due to false positive obstacles, obstacle cells from the 2-D
laser scanners that are non-existent in the grid of the 3-D scanners were deleted
after a predefined deadlock time. This mechanism is essential and formed the
basis of our approach to driving on hilly terrain.

Separate obstacles were extracted by a connected component analysis and
subsequently their polygonal outline and centroid were determined. The grid-
based representation of the world allows for a natural quantization of the
coordinates of polygon vertices. Based on position and velocity from the previous
sensor fusion iteration, expected obstacle locations were extrapolated and current
obstacles were assigned consistent IDs based on minimum Euclidean distance to
the expected locations. If no correspondences for previous objects could be found
in a certain radius, their ID was deleted. Conversely, if new objects appear that
could not be matched, a novel unique ID was assigned to them.

Accurate tracking of obstacle velocity cannot be achieved on the grid level due
to the coarseness of the occupancy grid. Fortunately, there is a good chance that
the object is directly visible in at least one of the laser scanners, whose distance
measurements are accurate to within 4 cm. By transforming the obstacle centroid
from world coordinates to laser coordinates, it is determined if it is within line-of-
sight of any of the scanners. If a corresponding scan point can be found at the
expected obstacle range, its transformed world coordinates can be used to track
velocity through sensor fusion iterations. The resulting velocity assigned to a
specific object ID is stabilized by an exponential moving average filter. If an
obstacle’s velocity is below 1 m/s it is assigned a static flag and an associated time
it has been observed not to be moving.

Another task for the sensor fusion module was to estimate the geometry of the
travel lane by storing and extrapolating the lane center points extracted by the
curb/lane detection. The center points received within the last 20 meters of travel
were approximated by a second-order least squares fit parameterized to work
directly on UTM world coordinates. Specified points in front of the car at 5, 10, 15,
and 20 meters distance along the second-order curve were extracted.

A Practical Approach to Robotic Design for the DARPA Urban Challenge 327

Fig. 14. Snapshot of an occupancy grid fragment, 2-D (darker) and 3-D (lighter) cells.

All the sensor fusion processing is performed at a rate of 5 Hz. A full list of

known obstacles with ID, velocity, static flag, and static time as well as a list of
lane center points in front of the car is published to the AI.

The calibration of the positions and static angles of the laser scanners with
respect to the car coordinate frame was performed in testing prior to arrival at the
NQE. The calibration approach was practical. We scanned previously known
features (like a corner of building) that showed up in multiple laser scanners and
found yaw/pitch/roll and translation with respect to the car with a 3D Iterative
Closest Point (ICP) algorithm. The changing roll angle of the rotating scanners
was very closely tracked by the optical encoders mounted on the moving shaft.
Time stamping the car state information, received laser data and encoder data,
allowed interpolation of car state and laser state for each scanning point. This
approach worked very reliably, although it relies heavily on the accuracy of the
GPS/INS system.

3.3 AI - Intelligence

The AI module was responsible for the high level planning and tactical level
decision making for Knight Rider. In designing the AI module, heavy emphasis
was placed on existing research in driver modeling approaches. Development of
driver models is integral to the quest of better understanding how humans drive
which in turn supports effective in-vehicle interfaces, better collision warning and

328 B.J. Patz et al.

avoidance technologies, and improved driver-related human factors. Driver
models used for simulating traffic in immersive driving simulators are particularly
appealing because of the requirement of realistic looking behaviors that extend all
the way to faithfully reproducing motion trajectories. The AI module used in
Knight Rider was based on a driver model derived from prior work in driving
simulation (Cremer, 1995 and Papelis, 2001), but with several extensions and
enhancements to address incomplete awareness of the driving environment and
rules and requirements of the competition.

Competition specific issues aside, the driver model was structured according to
Michon’s three level hierarchy (Michon, 1985) that breaks the driving task into
strategic, tactical, and operational levels. The strategic level is concerned with
high level goals such as navigation. The strategic level mapped these goals into a
series of sub-goals, which remain unchanged unless affected from external factors.
The tactical level was responsible for generating sequential tasks to implement a
given sub-goal. The operational level was responsible for low level guidance of
the robot. The three level hierarchy provided an effective cognitive model and is
consistent with the view that driving is a compromise between achieving goals and
addressing ongoing constraints (Boer, 1998). Through a temporal process of
selection of alternatives, the driver model pursues goals in a top-down fashion,
starting at the strategic and ending at the operational. Constraints flow the
opposite way, starting either at a tactical or the operational level and reaching the
strategic level, which in turn adapts accordingly.

3.3.1 AI Architecture
Figure 15 depicts the decomposition of the driver model in the three behavioral
levels and associated flow of tasks, from top to bottom, and constraints, from
bottom to top. The road network information was read from the RNDF and
converted into an indexed data structure that better supports robot navigation. This
step also created several needed associations that are not explicitly provided in the
RNDF, for example lane adjacency and direction information. The MDF was read
and used to plan a mission which in turn was used by the mission planning logic to
create a list of tasks. These tasks were implemented within the core AI module,
which used sensor data and a-priori knowledge to execute the specific tasks. Low
level motion requirements in the form of a series of geometrical points to drive
along was passed to the path planner which interacted with the low level control
mechanism to ensure proper robot motion.

3.3.2 Strategic Level
For the strategic level, establishment of the goals and the associated optimization
functions was done by interpreting the competition rules. Materials provided before
the competition provided specific operational boundaries, but no quantitative
scoring information was given. As a result, the strategic level is focused almost
exclusively on route/mission planning, and dynamic re-planning upon discovery of
road blockages. The output of mission planning was a list of tasks, each of which
corresponds to a tactical operation, such as driving, parking etc.

A Practical Approach to Robotic Design for the DARPA Urban Challenge 329

Core AI

MissionMission

Sensors
Discovery

Infeasible Trajectory

Tactical

Road NetRoad Net Mission
Planning
Mission
Planning

Path PlannerPath Planner

Strategic

Operational

Infeasible PlanTask List

Fig. 15. Behavioral Model Block Diagram

Early performance testing using the hardware employed in the robot indicated

that a straightforward implementation of Dijkstra’s algorithm performed almost
instantaneously on graphs with hundreds of nodes. At that point, work was
underway on generating a graph from an RNDF, but even under the worst case
assumptions, Dijkstra’s O(N2) algorithm performed adequately, so the decision
was made to utilize this approach for determining the route from one check point
to the next. A simple algorithm was designed that starts by finding the best route
from the current position of the robot to the 1st checkpoint, then augmenting that
route by the best route from the 1st checkpoint to the 2nd, and continuing until all
checkpoints have been exhausted. In order to successfully utilize this approach,
two specific issues had to be addressed: first, development of an algorithm that
would convert an RNDF into a graph amenable to min-path search, and second,
developing a mapping between a route and a series of tasks that could be delivered
to the tactical level for execution.

3.3.3 Graph Generation and Task Mapping
The traditional min-path algorithm finds an optimal route between two nodes on a
graph. Optimality is defined in terms of the route cost, which is the cumulative
sum of the cost of traversing each node and edge of a given route. In generating a
graph from an RNDF, it is important to capture all navigation possibilities

330 B.J. Patz et al.

inherent in the topology as well as capture a rational cost function that can be used
to compute node traversal cost. The graph generation algorithm developed to
address these issues involves two phases. The first phase was responsible for
creating the graph nodes and the second phase was responsible for generating
appropriate edges. The algorithm built a graph at the beginning of the mission and
re-built the graph as needed during the mission.

To generate nodes, the algorithm considered all waypoints and included as
unique nodes any waypoints that were:

• An exit originating on a lane
• An exit originating on a zone
• An exit target, either on a lane or a zone
• The 1st or last waypoint of a lane
• A parking spot that was a checkpoint of the current mission

Edges were generated from each node under the following conditions:

• If the node represented an exit from a segment or from a zone, edges
were created to all destination nodes

• If the node was not an exit on a segment, a single edge was created to the
nearest node located downstream on the same lane

• If the node represented an entry zone waypoint, edges were created to all
parking spot nodes in the same zone and to all exits in the zone.

• If the node represented a parking spot, edges were created to all nodes
representing zone exits

• To represent lane changes, edges were added between nodes on the same
road that were on different lanes and downstream from each other. Such
edges were added only when the RNDF topology allowed a lane change,
i.e., when a dashed white lane separates the lanes

• For roads with two lanes of opposite direction, and for which a corridor
allowing a U-Turn did not exit, an edge was added between the last node
of a lane and the first node on the adjacent lane. This edge allowed the
routing algorithm to schedule UTurns at the dead-end of two lane roads.

Figure 16 illustrates an example of the graph generation process.
Once edge generation was completed, a classifier was used to assign each edge

to a tactical-level behavior that could handle the narrow problem of navigating
the robot so it traversed from one node of the graph to the next. Associated with
each tactical-level behavior was a cost function that produced an estimate of the
cost associated with navigating this edge. Once costs were associated with the
edges, the min-path algorithm was applied to generate a linked list of edges. The
list defined the anticipated series of tactical-level behaviors that were invoked
during the mission. A final step allowed reaching checkpoints by performing
mid-road U-turns. During this step, the min-path search was performed four
times, once with no U-turns, once with a U-turn from the current location and

A Practical Approach to Robotic Design for the DARPA Urban Challenge 331

Left
Park

Right
Park

North
U-turn

Zone
In/out

Zone
In/out

South
U-turn

Fig. 16. Example of Route Generation.

straight arrival to the checkpoint, once with a straight departure but arrival to the
checkpoint after a U-turn, and once starting and ending with a U-turn. The
minimum cost path was selected.

It is important to note that consideration of mid-road U-Turns was incorporated
in the algorithm even though such U-Turns were considered illegal. The rational
for this decision was simple. Without knowing the relative cost of time
performance versus illegal moves, it was unclear if the penalty of the illegal U-
Turn would by offset by the time gain. Incorporating the mid-road U-Turns in the
algorithm provided more options than not having this capability at all.

Modifications to the weight function can be used to bias the behavior of the
robot. For example, the cost of U-turns affects the choice between driving down a
dead-end road and performing a U-turn versus driving around a larger loop that
involves no U-turn. During testing and during the competition, experience and
improved rule understanding yielded several calibrations of the weight functions
which proved critical in the success of TeamUCF during NQE.

One example of such a calibration was elimination of mid-road U-Turns.
During the NQE, it became clear that the time it took to complete any one of
the courses had little weight when compared to safely finishing the course.
The decision was made to eliminate mid-road U-Turns, which was achieved
by modifying the weight function so it assigned a very large cost to such
a maneuver.

332 B.J. Patz et al.

3.3.4 Tactical Level
The tactical level was focused on implementing the list of tasks produced by the
strategic level. The tactical level was also responsible for road discovery. Road
discovery is the process by which existing lanes are augmented with sensor data
that provides a fuller centerline description than what was originally available. To
support road discovery, a confidence value was associated with each waypoint.
Initially, all known waypoints receive a confidence of 0.9, to indicate full
knowledge of the (x,y) coordinate but incomplete knowledge of the heading. As
the robot travels over a waypoint, the heading was updated and the confidence
reached the maximum value of 1.0. At the same time, when waypoints density was
below a threshold, guidance was provided by tracking the lane centerline ahead.
This information was used to add waypoints into a lane, but with a lower
confidence than the points specified in the RNDF, which were considered ground
truth. The confidence of new points was passed from the sensor module. This
process allowed the incremental increase in the confidence of newly inserted
waypoints when repeated traversals over the same road segment occurred.

The tactical level implementation framework was a hybrid model that borrowed
elements of context based reasoning and state machines. Context based reasoning
allows a functional decomposition of the problem space into subspaces that are
easier to handle. Each context is responsible for observing the current situation and
“offering” to solve the problem at hand. Even though the context based formulation
does not directly address concurrency, it does allow non-orthogonal activities to
exist in multiple contexts, and in practice this is simply implemented by cleverly
designing re-usable behavior objects. A fixed priority assignment was used to pick
the context that takes control, if more than one context was willing to do so.

Even though the context-based approach has several advantages, it also
presents some disadvantages. In particular, it does not lend itself to implementing
procedural, step-by-step actions that are typically encountered in driving. A state
machine approach is much better suited to this type of behavior. To facilitate
modularity, a Hierarchical State Machine (HSM) model was used within each
context to implement the appropriate behavior.

Figure 17 depicts the hybrid model of a context. The enable function is used to
indicate if the context is willing to handle the situation. If the result is affirmative,
the entry function executes to provide consistent initialization activities. The HSM
then takes over while the context is active, and upon exit, a termination function
provides a consistent point that performs context specific cleanup activities.

Entry Exit

Hierarchical
State

Machine

Enable
N

Y
Entry Exit

Hierarchical
State

Machine

Enable
N

Y

Fig. 17. Internal structure of a Context

A Practical Approach to Robotic Design for the DARPA Urban Challenge 333

The full execution semantics are illustrated in Figure 18. At start, the enable

function of each context was executed and the first one that returned true activated
the context and the associated entry function. The HSM code then executed
periodically. If a higher priority context took over, the exit function was called and
the selection process repeated.

A common problem associated with context-based behavioral modeling is
maintaining continuity of behaviors during context changes. The localization
achieved by using contexts is inherently incompatible with the need to maintain
smooth transitions during context changes. For example, consider a context
responsible for driving along a lane on a road with the speed limit set to 30 mph.
Let us further assume that the road leads into a stop sign which is handled by a
different context. The context responsible for driving is not aware of which context
follows; that would violate the locality inherent in the framework. As a result, the
driving context maintains the maximum speed and depending on where the
transition occurs, the context dealing with the stop sign can receive control so near
the threshold that stopping is not physically possible. To address this problem, each
context was structured so that it composed the control inputs passed to the lower

Entry Exit

Hierarchical
State

Machine

Enable
N

Y

Entry Exit

Hierarchical
State

Machine

Enable

Y

N

Entry Exit

Hierarchical
State

Machine

Enable

Y

N

Entry Exit

Hierarchical
State

Machine

Enable
N

Y

Entry Exit

Hierarchical
State

Machine

Enable

Y

N

Entry Exit

Hierarchical
State

Machine

Enable

Y

N

Fig. 18. Context Execution.

334 B.J. Patz et al.

levels through an overloaded method that accumulated trajectory waypoints using
the best available information at any time. It was thus possible for a context to
recursively call the trajectory augmentation routine of subsequent contexts without
explicit knowledge of which context followed. By maintaining a minimum length
of trajectory specification, the path planner could anticipate speed as well as
direction changes and plan accordingly. Using an overloaded method maintained
the context independence while satisfying the need to plan ahead.

Backup

Stop Sign

Other Intersection

UTurn

Zone

Road

Lane Change

Stop at Waypt

Default

Low
er P

riority

Fig. 19. Context Design.

This loop executed in periodic fashion in soft real-time mode. The tactical level

thread was the primary thread within the AI process, with the strategic and
operational levels implemented as separate threads that executed when triggered
by the tactical level. In the actual robot, the execution rate was set to 10Hz,
leaving 100ms per iteration. Use of asynchronous threads facilitated development
and de-coupled the tactical control of the robot from the variable execution
performance associated with the other threads.

Figure 19 illustrates the specific context design used in the Knight Rider. The
prioritization order was designed to arbitrate between overlapping domains.

A Practical Approach to Robotic Design for the DARPA Urban Challenge 335

For example, handling an intersection with stop signs was higher precedence than
a regular intersection. The lowest priority context (Default) served several
purposes. During development, it acted as a self check mechanism that pointed out
gaps in the system. During autonomous navigation, it served as the central place in
which a last effort could be pursued to handle an unexpected situation.

Backup

The intention of this context was to drive the robot in reverse when doing so
would allow meeting a checkpoint located behind the robot. This context did not
directly map to an activity produced by the route planner, but as the highest
priority context had the opportunity of checking for this situation. The context
consisted of a single state that attempted to backup only when the next checkpoint
was located within 3 robot lengths and there were no obstacles in the way.

Stop Sign

This context was activated when the robot must cross an intersection from a lane
that was controlled by a stop sign. The structure of this context is straightforward,
as illustrated in Figure 20. Note that sub-states used to implement timeouts are
not shown.

Approach Stopped

Yield

Reach
Threshold

Moving Done

Next in
line

clear obstruction

Out of
intersection

Fig. 20. HSM for Stop Sign.

Upon activation, the robot approached the threshold and came to a stop.

Information about the intersection geometry was utilized to create a set of pockets,
each representing other lanes into the same intersection. Pockets were classified as
peer or high priority. Peer pockets were ones controlled by a stop sign, whereas
high pockets had no signage. The operation of the Stopped state differs between
the cases when all other pockets are peer versus having at least one high priority
pocket, but in both cases, the robot remained in the threshold as long as an object
was inside the intersection. Figure 21 illustrates an example intersection. The
robot is approaching from the south. In this case, pocket P1 is peer and pockets P2
and P3 are high priority.

336 B.J. Patz et al.

4

3

2

P1

P2

P3

Fig. 21. Illustration of Pockets.

When all pockets are peer, the presence and velocity of objects in the pockets

was used to determine right of way. Empty pockets or pockets with moving
objects were ignored; pockets with a stopped object were assigned right of way.
Once an object in a right-of-way pocket moved, the pocket was eliminated. This
ensured that the robot only waited for the lead object when multiple objects were
queued on a peer pocket. This logic brings up an important observation. The
Knight Rider robot assumed other vehicles (robots or cars) would behave
according to the rules of the road and only as a final resort (object all the way in
the intersection) did the Knight Rider stop. During testing it became apparent just
how many subtle cues human operators obtain from other driver’s behavior and
from the drivers themselves; cues that were not available to the Knight Rider.

When high priority pockets were present, the Stopped state did not transition as
long as other objects in these pockets were in conflict. The velocity of the
oncoming traffic was used along with their distance from the respective thresholds
to determine if a conflict existed. When conflicts and right of way rules had been
resolved, the robot transitioned into the Moving state which lasted while inside the
intersection. Traffic entering the intersection forced a transition to the yield
state, during which the robot stopped. Upon clearing or after a timeout period, the
robot proceeded.

Timeouts were used in all waiting states to prevent live lock, which could be
caused by other robots that intentionally or unintentionally violated the rules, or
could be caused by phantom objects caused by sensor artifacts. Such timeouts
were set at such a high value that they would never interfere with typical
interactions. Further, TeamUCF made a calculated decision to prevent initiation of

A Practical Approach to Robotic Design for the DARPA Urban Challenge 337

a passing maneuver when near an intersection, but once a pass maneuver was
initiated it would be completed, even if that meant passing while approaching
a STOP sign.

Intersection

This context was responsible for controlling the robot through intersections for
which there was no stop sign. The most obvious situation is a left turn that crosses
opposite lane traffic. Because California driving rules dictate a full stop before
crossing a yellow line, the design was similar to the Stop context, but with two
key differences. Because there was no intersection area, once a go decision was
made the robot proceeded without monitoring for side obstacles (it was assumed
those moving obstacles would stop). In addition, there was no consideration for
incident lanes controlled by Stop signs as they had lower priority.

Approach Stopped

Reach turn
point

Moving Done

Clear Past lane

Fig. 22. HSM for Intersection Context.

UTurn

This context was responsible for implementing U-turns. The context activated in
two situations. The first case was planned when the next activity in the route list
explicitly called for a U-Turn. The second case was when a blocked road was
encountered. The only difference between these two cases was that the latter case
also triggered a re-routing operation at the strategic level, which generated a route
starting at the lane that was the destination of the U-turn. In both cases, the context
terminated upon completion of the maneuver.

To ensure that the re-route operation would not create a route that traverses the
same blocked road, the edge representing the blocked road was tagged with a
marker indicating the location of the block. According to competition rules,
blockages were not persistent and the block marker was removed after the robot
crossed a corridor, in effect forgetting the blockage.

Despite the relatively complex sequence of operations necessary to implement a
U-turn, the behavioral complexity of this context is trivial, as shown in Figure 23.

The first state commanded the maneuver and monitored progress. Once the
maneuver was completed, the state transitioned into the end state. In case of a
collision threat, the Stop state waited for the obstacles to clear. Under certain
conditions, for example when an obstacle was detected during the last backup
maneuver, it was possible to transition directly to the end state (i.e., the U-turn had
completed sufficiently to resume operation).

338 B.J. Patz et al.

Stop

Moving Done

clear
obstruction escape

Fig. 23. HSM for U-Turn.

Enter Exit

Approach

Pause

Stop

Park Backup Done

Park

Approach

Pause

Stop

Park Backup Done

Park

Move

Stop Back-off

Done

Drive

Move

Stop Back-off

Done

Drive

Fig. 24. HSM for the Zone Context.

Zone

The Zone context was responsible for guiding the robot during entry into, exit out
of and driving while within zones. The controlling HSM is shown in Figure 24,
with hierarchical states shown inside each other. The Entry state took over
immediately upon reaching the waypoint that led into the zone. The Drive state
was designed to move the robot from the current location to any point in the zone,
while avoiding other stationary and moving obstacles. When a parking task was
necessary, the Drive state moved the robot to a pre-parking spot, located adjacent
or on the extended centerline of parking slot, then transitioned to the Park state.
When a parking task was not necessary, the Drive state moved the robot to the
zone exit and transitioned to the Exit state.

A Practical Approach to Robotic Design for the DARPA Urban Challenge 339

30 deg

Start

End
End

Back-up Pt

Stop Pt

Back-up Pt

Fig. 25. Example of Back-off Operation.

While inside a zone the maximum speed was set to 5 mph, independent of the

guidance provided in the MDF. All objects were set to avoid and all parking spots,
except the target of the parking maneuver, were treated as obstacles thus ensuring
the robot would not drive over them in accordance with California driving rules
and DARPA instructions.

Even though the path planner could resolve the vast majority of situations it
encountered, there are pathological cases during which the robot could “paint
itself in a corner” (although this situation was never encountered at the NQE). The
purpose of the Back-off state was to perform a backup maneuver that allowed the
robot to get out of that situation. In order to compute the appropriate backup
maneuver several geometrical approaches were tested in simulation. The most
straightforward yet effective approach was to develop a set of deterministic
backup maneuvers and pick the one to use at random. If the new position did not
allow progress, the system cycled through the Stop and Back-off states and a
different maneuver was attempted. An illustration of the approach is shown in
Figure 25. In this example, the maneuver is to back up 1½ robot-lengths and turn
30° to the left of the centerline.

When a parking maneuver was necessary, the Drive state moved the robot to
the pre-park position and the system transitions into the Park state. A
straightforward sequence of state changes within the Park guided the robot in and
out of the parking spot.

This design was tested extensively on various parking lots in the UCF campus
and TeamUCF was pleasantly surprised at the robot’s ability to navigate and park
in very constrained parking lots that were filled with islands, obstacles and parked
vehicles, significantly more complex than even the challenging scenarios
presented in the NQE.

Road

This context was responsible for guiding the robot from one waypoint on a lane to
a subsequent waypoint on the same lane. Because the mechanics of generating and
tracking the trajectory were handled elsewhere, this context was behaviorally

340 B.J. Patz et al.

Stopped

Drive Done

Blocked

Fig. 26. HSM for the Road Context.

No
Objects

At least one object
is Avoid-Commit

No object is
Avoid-Commit

New object appears

All objects are
Ignore

Object behind vehicle

Object moves

Stopped for 5 sec Nearly pass Behind us

FollowFollow Avoid-AbortAvoid-Abort Avoid-CommitAvoid-Commit IgnoreIgnore

Avoid-CommitAvoid-Commit IgnoreIgnore

New object appears

Fig. 27. Handling Object Disposition.

simple. The upper level of the associated HSM is shown in Figure 26. Lacking any
significant interaction with other objects, the Drive state moves the robot along. If
needed, road discovery was handled within the Drive state.

Given an object, the robot must decide if the object is something to follow or
something to avoid. The approach utilized in Knight Rider was heavily biased by
the characteristics of the data provided by the sensors. The approach utilized,
illustrated in Figure 27, performed adequately given the competition rules. The top
level states represent object classification states and are not directly related to the
behavioral states of the HSM. The states in the bottom reflect object disposition.

The initial condition is driving with no objects in sight, and is shown by the left
most state. Once a new object appears it is classified as Follow. An object which
interrupts the baseline trajectory of the robot and is classified as Follow will cause
the robot to stop at a safe distance behind the lead object. If the robot stops for a
certain period, the disposition of the lead object changes to Avoid-Abort causing
the path planner to plan around the object. As the robot goes around the object,
one of two things can happen. The object can move, in which case its disposition
reverts to Follow, or the robot will travel past the object (Knight Rider used

A Practical Approach to Robotic Design for the DARPA Urban Challenge 341

FF

A-AA-A

A-CA-C

A-C A-CA-C A-C

Fig. 28. Example Object Disposition Sequence.

committed once the front of the robot reached the rear of the object) in which case
the object’s disposition is set to Avoid-Commit. Once an object becomes Avoid-
Commit it cannot revert back to Follow. Once behind the robot, its disposition is
set to Ignore, which eliminates it from consideration. After at least one object has
been classified Avoid-Commit, any new object is automatically classified as
Avoid-Commit (i.e., once the Knight Rider started passing it continued to pass
until it returned to the lane of travel). As objects are passed, they were labeled
Ignore, and once all objects were labeled Ignore, the system reverted back to the
start state with no objects. Figure 28 illustrates an example as a series of four
snapshots showing operation of this approach.

The first snapshot, located on the upper left depicts the situation in which the
object is set to Follow causing the robot to stop. After a brief pause, the object is
set to Avoid-Abort causing the passing maneuver. In the third snapshot, on the
upper right, the object switches to Avoid-Commit. The final snapshot illustrates
how a new object appearing at that point is automatically set to Avoid-Commit
providing a continuous passing maneuver.

Lane Change

The lane change context was responsible for guiding the robot while performing a
lane change. Lane changes are planned during route generation, and were defined
with an approximate start and end location. Because of the a-priori planning,
lane changes were behaviorally rather simple, blending seamlessly between two
Drive contexts.

3.4 Path Planning

The Path Planner (PP) acted as the bridge between the tactical missions defined by
AI and commands that could be executed by the autopilot. It performed this
operation by effectively acting as a function call for the AI that would generate a
dense list of waypoints from a sparse set of waypoints provided by AI. It insured
that the path generated by that dense list of points (0.5m spacing) was

342 B.J. Patz et al.

kinematically feasible, met the explicit driving rules imposed by DARPA, and did
not violate any constraints imposed by AI (such as speed limits or roadway
boundaries). In addition to providing a dense path, the path planner provided path
length, estimated time to complete path, and avoidance information associated
with every obstacle encountered on the path. By effectively acting as a function
call, AI could explore different scenarios with the path planner and select one to
be forwarded to AI. Execution times were short enough that several scenarios
could be explored in 100 ms.

The nominal problem for the path planner was to create an inbounds,
kinematically feasible path from point P0 to Pn, passing through intermediate
points Pi, (Figure 29). Feasibility includes speed and acceleration limits as well as
boundary constraints. Initial work followed a unique analytical approach (Qu,
2004 and Yang, 2005) but was modified significantly as it was realized that
assuming flexible objectives yielded substantially better performance in many
scenarios. Specifically, the path planner could explicitly violate objectives in the
following manner:

• Any speed could be changed as long as the overall speed limits on
segments were not violated and kinematic limits of the robot were not
violated.

• Heading at a waypoint, if provided, was a suggestion and could be
violated if required to keep a path in bounds. Direction of travel (forward
or reverse) at a waypoint could not.

• Obstacles were classified as to be followed or to be avoided. If the
desired path crossed a to be followed obstacle, the path was shortened
based on the obstacle speed and type of area the obstacle was in (zone,
road, near a stop sign, etc.). Basically if a stopped obstacle was likely in a
certain scenario the robot could get closer to the obstacle than if it was
unexpected.

• Intermediate waypoints could be moved perpendicular to the direction of
travel if required to do so to avoid an obstacle.

• The final waypoint could be moved along the direction of travel, if
required to do so because of an obstacle.

• Obstacles to be avoided, are to be avoided by at least 1 m if possible, but
if not possible a path as close as 0.25 m is acceptable.

The approach taken was one of iteratively generating piecewise, continuous first
derivative, cubic splines with updated control points as necessary to avoid
obstacles and keep paths within bounds. Constraints were gradually relaxed if no
solution was found. The use of splines generated smooth curves (although not
necessarily optimum time of traversal paths) which could easily be evaluated for
axial and lateral acceleration constraints.

Path planner operation when driving on a road or navigating a zone was
fundamentally the same. Dense path information provided the path to follow until
such time as goals, constraints, or obstacles changed. It also provided a convenient
way for multiple systems to know where the robot was with respect to meeting its

A Practical Approach to Robotic Design for the DARPA Urban Challenge 343

Fig. 29. Dense path generation from sparse goals

tactical objectives (namely, by associating the robot with the closest dense path
point). While the path planner generated paths that could be driven by the vehicle, it
was the autopilot’s responsibility to follow the path generated by the path planner.

3.5 Control Systems

The purpose of the low level control system / autopilot (AP) was to physically
actuate the plan put forth by the path planner. The overall operational inputs to the
system were a list of dense waypoints with 0.5m spacing and the current
navigation status. Each of these waypoints had an associated position, heading,
and velocity, each of which should be physically realizable based on the robot
dynamics. The overall requirements on the AP control systems were not near the
vehicle or actuator limits, nor were their specific scoring parameters based on how
precisely speed or steering was followed. Because of this, no optimal control

344 B.J. Patz et al.

system design was performed and only rudimentary modeling of actual
subsystems (i.e., second order response characteristics, rate and magnitude limits,
etc.) was performed. Control system parameters were selected to mimic human
drivers operating in similar circumstances. While no formal comparison to
multiple human drivers was performed, there is clearly significant diversity in
driver performance. The team selected control system parameters based on one
particular driver that we collectively judged to operate the vehicle in the most
reasonable manner.

All control systems ran on a single processor QNX using the real-time
scheduling and interprocess communication systems of the operating system
in order to minimize data latency and maximize predictability associated
with operation.

3.5.1 Steering Control
Steering control was provided by a follow-the-carrot controller (Barton, 2001)
coupled with a state machine to handle three specific driving modes (normal,
stopped, and three-point turn). In the later case, tighter control of vehicle steering
is essential to meet turn requirements. By passing a multi-point dense path
between the PP and AP, the two systems did not need to maintain tight timing
coupling and in fact the PP could operate significantly slower (e.g. 1Hz
demonstrated in testing) than the AP (20 Hz) during periods where the
environment or obstacle mix was not rapidly changing.

At a 20Hz update rate, the steering controller would 1) compute the closest
dense path point to the current vehicle location, 2) look ahead on the path a fixed
look ahead “time” of 1.5 seconds, and 3) determine the effective carrot point.
Using the carrot point, a heading was calculated between the current position of
the robot and the position of the carrot point. This heading is then compared to the
physical heading of the robot. The difference in these heading becomes the error
for a PI controller which feeds the steering wheel actuator. Steering command
limits, steering rate limits, and integrator limits were included. In addition,
integration was only performed during periods of the path where the path
curvature was below a threshold. Special end of path logic (effectively linearly
extending the path based on the last heading) avoided any steering discontinuities
should path lengths become small or the vehicle commanded to a stop. The
objective here clearly is to keep the robot generally on the path without undue
precision (10 cm error is tolerable).

The steering angle calculated through the follow-the-carrot method was passed
to the Elmo motor controller. Through the actuation system, the desired steering
angle is converted to an absolute encoder position and the Elmo's internal PID
controller physically maintained steering for any quick impulses or external
stimulus feed back through the steering wheel from the environment. Stop to stop
performance of the steering wheel was approximately 1.5 seconds.

Other path following schemes like Pure Pursuit (Coulter, 1992) and the hybrid
controller employed by Stanford in 2005 (Thrun et al., 2006) were explored, but
the simplicity of follow-the-carrot coupled with its robustness and accuracy led to
its selection.

A Practical Approach to Robotic Design for the DARPA Urban Challenge 345

Fig. 30. Typical steering controller performance

3.5.2 Speed Control
While the steering controller looked forward into the planned path to obtain a
steering command, the speed controller used a linearly interpolated value of the
current desired speed as an effective cruise control set point. Again special end of
path logic forced commanded speed to be zero at the end of a path and further
forced a speed ramp down if the robot ever got so close to the end of a path it
could not stop without violating acceleration constraints. Of course, PP logic
should prevent this, but this strategy of hierarchical checking for basic system
performance constraints proved critical during vehicle testing.

The subtle challenge associated with cruise control set points is determining
when to brake and when to coast. TeamUCF utilized dual PI controllers, one for
throttle and one for the brake, with a hysteresis crossover. The PI controller would
have two internal states: throttle and brake. If the controller was in the throttle
state, a positive value from the controller would be interpreted as a voltage to feed
the throttle actuator. A negative value from the controller would represent
cruising, which means that no throttle and no brake would be applied. A large
enough negative value caused the system to transition to the brake state. In the
brake state, a separate PI controller controlled the brake actuator. In this way the
vehicle effectively operated in four states: 1) accelerating, 2) coasting throttle, 3)
braking, and 4) coasting brake.

The performance and repeatability of the speed controller for subsequent runs
over the same course can be seen in Figure 31. All elements of the system from
the AI to the PP to the speed controllers were incredibly repeatable. This ability
led to predictable behavior and simplified tasks for other systems. In the figure,
the commanded volts curve illustrates throttle being applied (+ volts), brake
applied (- volts), coasting (0 volts). The performance here is typical showing the
vehicle operating within ~60% of its capability (10 volt peak).

346 B.J. Patz et al.

Fig. 31. Speed repeatability over 2 laps of NQE test area A

3.5.3 Drive State Control
Since the underlying robot vehicle was an automatic, no shifting was required,
however, the system still needed to be brought into the proper gear (park, forward,
and reverse). The main function of the shift controller was to ensure there was
enough time between shifting and further timing operation for the robot to be safe.
For example, if the robot was currently moving 1 m/s and in the forward gear and
was just commanded a -1 m/s speed, the state would switch from forward to pre-
reverse. Pre-reverse would smoothly stop the robot and wait until the speed was 0
m/s for a second. The brake would then be fully applied, and the state would
switch to shift-reverse. In shift-reverse, the controller would send the voltage to
physically actuate the robot to reverse and wait for another second to ensure the
shift finished. At the end of that time, the system would then switch to the reverse
state and reset the dual PI integrator error.

3.5.4 E-Stop Pause
The pause system also consisted of a series of state changes. The digital output
line of the DARPA E-Stop device was read on an I/O pin and debounced to ensure
that a false reading was unlikely. Upon receiving a pause command, the vehicle
would be brought to stop and the appropriate combination of sirens and lights
activated. Further, once in pause, a run command would cause the robot to wait 5
seconds before actually beginning operation.

3.6 ICE

The main communication system used throughout the robot was provided by the
Internet Communication Engine (ICE) by ZeroC. This highly efficient middleware
package allowed the robot’s software to be distributed over a heterogeneous
network of machines. Data types were handled though ICE's mechanisms which
allowed data to be shared to multiple destinations regardless of Operating System

A Practical Approach to Robotic Design for the DARPA Urban Challenge 347

(OS) or programming language. TeamUCF utilized the publish and subscribe
model in which multiple programs would be able to either request the most recent
information by name or execute when new information was available. This
framework worked well for the distributed architecture used and ICE overhead
was never a factor even when publishing large sensor data structures.

Perhaps most importantly, the module independence provided by ICE provided
the ability to test the robot off-line through simulation. Simulated modules that
would take the same robot actuation signals over ICE and implement them on the
actual robot were gathered and run through a dynamic physics simulation.
Intelligence, planning, control system algorithms, and sensor processing
algorithms could receive simulated or real data while still providing outputs in real
time. In this way there was only one version of production and test code.

4 Project Process

TeamUCF participated in the original proposal submission, but failed to gain
Track A status. Undeterred, the team executed on a capabilities driven
implementation approach. At each stage of this approach, the key capabilities to
be demonstrated next were determined. These capabilities were occasionally
defined by DARPA (as in the case of a site visit) but were more likely to be
defined by TeamUCF leadership. All systems were developed in parallel and to
the level necessary to demonstrate the capability. In this way, incremental testing
of the robot was performed for many months prior to the NQE. The downside of
the approach is of course that full operational capability was invariably ready only
just prior to the NQE.

4.1 Simulation and Modeling

Simulation was critical to the overall success of the project. The ability to test the
robot in a multitude of scenarios, virtually, allowed different team members to test
changes quickly on their own computer or over a network of computers. Further
with a small team effectively responsible for both software development and robot
testing and a limited window for testing, there were simply not enough hours in
the day to conduct all the desired tests without simulation.

Coupling the simulation environment with a source management tool, in this
case SVN, allowed problems that were detected on the real robot to be checked in
as data files, sent to distributed team members, replicated in simulation, and
resolved. That error could then be corrected in simulation, the source code checked
in, and operation corrected on the robot, typically the same day. TeamUCF
maintained no software lab or significant facility for any development activity.

The key to this ability was a product of the ICE middleware distribution and the
modular nature of the software design. The ICE architecture allowed the real robot
code to be used with virtual sensors. This software-in-the-loop scheme of sensor
replacement was implemented by creating a threaded package each tasked with
publishing realistic data. Each of these threads then published to the middleware
level for use by the other modules.

348 B.J. Patz et al.

The synthetic sensor fusion module had the ability to inject moving obstacles
with complex obstacle behaviors into the virtual world in the same fashion as the
post-processed data that the actual sensor fusion would develop from the laser
scans and Doppler data. All synthetic data generation had the ability to be perfect
ground truth, contain random fluctuations consistent with the noise levels
measured in sensor systems, or perhaps most importantly to play back an actual
vehicle log of the same data.

The synthetic E-Stop module reflected the DARPA E-Stop unit that could send
the different pause and disable commands. Based on experiences in 2005,
TeamUCF felt it was essential to test the operational effects of these commands to
the rest of the system. The pauses were known to be a factor in the Urban Challenge
due to the number of robots on the course and TeamUCF spent significant time
pausing and restarting the robot in as many different scenarios as possible.

Synthetic kinematics was generated from a robot dynamics model using
Ackermann steering with 2nd order response functions with rate and position
limiters for all actuators. Synthetic navigation was generated from this ground truth
by adding appropriate filtered white noise which closely matched the performance
of the actual sensor systems. Most importantly, these navigation and control
processes contained appropriate process delays, modeled via FIFOs, to account for
transport and process delay observed in the system. An early software error caused
an asynchronous clock skew that was debugged using this technique and resolved
with a combination of error correction and more fault tolerant algorithms.

All of the data produced by these systems was published to ICE. A graphical
visualizer, Vevis, was developed in OpenGL to display the robot and environment
in real-time. The software developer could then view the entire process unfold and
observe the actions of the robot from movement to turn signals to direction of the
radar. This overview could then display the route planned by the AI, the dense
points created by the PP, and the movements produced by the AP. Vevis allowed
the team to zoom on specific regions, load RNDF and MDF file for simulations of
entire runs, or load the maps files on available textures to verify operation of the
calculated road network. Because Vevis requested all usable information from
ICE, this system was also used in real-time on the actual robot.

4.2 Testing Methodology

While simulation was key to TeamUCF’s success, the team spent an equal amount
of time on the actual robot. TeamUCF’s test site was unfortunately only available
after hours and therefore the majority of tests were conducted in the evening,
which of course has added benefits when testing in the summer in Florida.

The test philosophy dictated that the team would run numerous shorter duration
tests that could be quickly validated via simulation. A typical testing evening
consisted of six hours of tests, consistent with amount of time expected at the final
event, but the vehicle was never tested in a single six hour mission. While the
majority of test runs were performed at night (for safety and facility access
reasons) extensive test runs also occurred during the day. This included the
DARPA site visit. From daytime test runs and through our experience from

A Practical Approach to Robotic Design for the DARPA Urban Challenge 349

the DARPA Grand Challenge 2005, we concluded that laser performance (from
dazzle) was impacted but didn’t significantly degrade the obstacle detection
capabilities of the algorithms employed.

5 NQE and Race Results

The NQE and final event were held at George AFB in Victorville, CA. DARPA
spent considerable time and energy preparing the facility to act as a safe, but
challenging test environment for the robots. 35 semi-finalists were invited to
participate in the NQE, including teams from all over the United States and
several teams with a large international contingency. TeamUCF had arguably
spent the least amount of money and had the smallest team to make it to the finals
and was possibly the smallest team in the semi-finals as well.

NQE

The details of the testing to be performed at the NQE were unknown to the
participants until they arrived at the event. Shortly after arriving, teams learned
that the qualifying event would consist of a series of missions in 3 test areas,
creatively named A, B and C, which stressed different aspects of the robot. Each
team would have 2 chances to perform each test. Test area A was visible to all
team members, but the details of test areas B and C were not. Teams were not
permitted to drive on any of the test areas or for that matter much of the AFB.
TeamUCF was assigned the test areas in order B, C, A.

Figure 32 illustrates the layout of test area B and also illustrates the simulation
and visualization software utilized by TeamUCF. This is a screen display from
either inside the vehicle or the simulation, they are identical. The baseball
diamond near the center of the figure gives some sense of scale. A series of k-rail
launch chutes at the upper left of the figure defined the launch location. The
vehicle immediately enters a zone driving area with no specific waypoint
information other than an exit goal at the bottom left of the zone. Upon leaving the
zone the vehicle must traverse a narrow pathway bounded by k-rails and proceed
around a round-about and eventually out into a double cloverleaf road network. At
the center of each cloverleaf is another zone area, with the bottom zone modeling
a parking lot and requiring a parking maneuver. In the center of each zone, and not
shown, were two large circular barricades that were to be detected and avoided.
There were numerous other static obstacles on the course to be avoided. There
were no moving obstacles. The mission wound through much of the course with
the robot required to return back to the starting location completing a course of
about 6.5km in 30 min.

The challenges presented by test area B were effectively:

• Navigating a zone with no waypoint information.
• Navigating over a relatively long distance and relatively long time.
• Navigating in the presence of sparse waypoints (note upper right portion

of the figure).

350 B.J. Patz et al.

• Navigating through a complex field of static obstacles.
• Navigating narrow roads with barriers on either side of the road.
• Navigating stop signs.
• Parking with nearby parking spots occupied by vehicles.

TeamUCF’s first attempt at test area B resulted in the robot making it through the
majority of the course (~ 5km) in approximately 20 min after successfully
navigating the parking maneuver and a “gauntlet” of parked cars. At about this
time the sensor fusion algorithm failed due to a software bug in a polygon clipping
module. The vehicle effectively lost all forward looking sensors and crashed into
one of the barricades resulting in minor damage to a cable. TeamUCF was allowed
to restart the vehicle from here but we did not complete the course. Our second
attempt at test area B was completed successfully in just under 19 minutes, one of
the fastest qualifying times.

Test area B was an amazing awakening event for TeamUCF as we watched the
robot leave our sight to enter into the heart of area B. We realized only then that this
was the first time, in all of our testing, we had ever let the robot out of our sight.

Fig. 32. Test Area B, driving, parking and obstacle avoidance

A Practical Approach to Robotic Design for the DARPA Urban Challenge 351

Fig. 33. Test area C - Stop sign and rerouting

Test area C (Figure 33) was designed to test stop sign and rerouting behavior.

The mission definition file for the robot required a path be taken around the outer
loop of the “belt buckle”. Each time the robot reached a crossing 4-way stop, a
different configuration of cars was presented. The robots objective was to
correctly determine precedence and continue the mission in the correct order.
After completing a series of loops, the course was adjusted, and a blockage
inserted on the bottom loop of the buckle. The robot needed to reroute and
determine a path to a checkpoint on the other side of the blockage. This proved
problematic for many robots, including initially for TeamUCF. A strict
interpretation of rules would imply that such a point is unreachable in normal
driving since in would require a u-turn on the far side of the barricade, but a u-turn
is only legal on a blocked road, so the robot would have to assume the blockage
remained in place. DARPA rules (and in fact actions on this course) indicated
that blockages could not be assumed to be static. Upon understanding these
new constraints, TeamUCF was able to redefine the routing behavior to make
this checkpoint.

One of the more interesting things in this figure is the mis-registration between
the ground truth waypoint data and the imagery data provided by DARPA to all

352 B.J. Patz et al.

participants. While useful for determining conceptually what a course looked like,
this imagery data was of poor enough quality to not be usable for any type of pre-
mission planning or environmental modeling. As a note, data from several popular
web-based mapping tools is similarly inaccurate.

Test Area A (Figure 34) proved to be the most interesting area, perhaps because
it was fully visible to spectators and perhaps because it was specifically designed
to promote robot – manned vehicle interaction. The fundamental objective was to
have the robot complete as many loops of the right hand side of the course as
possible in 30 minutes. Traffic crossed in front of the robot at the top of the course
and the vehicle was required to merge into traffic from the stop sign at the bottom
center of the course. Traffic speed was relatively modest at ~ 10mph, but traffic
configurations were continually altered by the drivers and unless the robot was
relatively aggressive none of the maneuvers could be performed without some
close calls with the manned vehicles (Figure 35). TeamUCF completed 17 transits
of the course in under 30 minutes, and terminated the run early in order to avoid
pushing “our luck”. This was among the most laps performed.

Fig. 34. Test area A - Merging and crossing traffic

A Practical Approach to Robotic Design for the DARPA Urban Challenge 353

Fig. 35. Illustration of crossing traffic

5.1 Finals

By successfully completing all three test areas, TeamUCF earned a place in the
finals of the Urban Challenge along with 10 other competitors. DARPA narrowed
the field of finalists from the initially stated goal of 20 to only 11 competitors.

The Final Event took place on November 3rd, 2007 and was comprised of a
series of 3 missions covering a distance of 60 miles through a complex urban
environment and driving time-limited to a total of 6 hours. Test tracks A and B of
the NQE were incorporated as subsets into the final road network, but the network
extended to other new areas with significantly more elevation change than the
relatively flat NQE test areas. The 3 missions were designed to demonstrate all of
the scenarios previously tested, although in a somewhat less stressing manner,
plus some novelties. In addition to some 50 human-driven traffic vehicles, all
finalist robots were on the track at the same time, creating for TeamUCF the never
tested scenario of encountering live robot traffic. To add a level of complexity,
DARPA announced a day before the final event that one section of the urban
course will be a steep unpaved road negotiating an elevation difference of 50
meters. TeamUCF was surprised to find off-road performance tested in a contest
labeled as “Urban”.

During the first 30 minutes of the race Knight Rider behaved as expected,
mastering encounters with other robots without any problems (Figure 36) and
driving road segments reliably and repeatably. At 9:11 a.m. the robot got stuck at
a stop sign, not entering the intersection even when all other pockets were empty.
Most likely a misreading by the sensors produced a phantom obstacle in the

354 B.J. Patz et al.

intersection essentially deadlocking Knight Rider. The situation resolved itself
after a few minutes when another vehicle entered the pocket and cleared the
obstacle. At 9:42 a.m. “Little Ben” from the University of Pennsylvania came
within a few inches of Knight Rider when switching lanes after passing
TeamUCF’s chase vehicle.

After 19.8km (~ 12.3 miles) and a running time of 2 hours, 7 minutes and 20
seconds, the Knight Rider GPS/INS returned a NaN (Not a Number) for the
latitude and longitude of the robot. The manufacturer-provided communication
library used to read the UDP packages from the GPS reported a non-suspecting
“Data Valid” for these values. In the IEEE floating-point standard, any arithmetic
operation involving NaN always results in NaN, and any numerical comparison
with it fails. This invalid data cascaded through the system, but had the most
detrimental impact on the steering controller. In the steering controller, the robot’s
position is used to calculate the angle to the carrot point as a set point for the PI
controller. The integral part of this controller preserved the value for subsequent
iterations essentially locking the value into the system. Confronted with this the
digital servo drive locked the steering wheel in the center position, leading the
robot to deviate from the road, jumping a curb, and driving towards an abandoned
house, eventually stopping in front of a wall where it stayed paused for the next 6
hours (Figure 37) before the team was allowed to recover it. TeamUCF was
officially retired from the DARPA Urban Challenge at 10:38 a.m.

Fig. 36. Knight Rider encountering MIT in the traffic circle.

A Practical Approach to Robotic Design for the DARPA Urban Challenge 355

Fig. 37. Knight Rider paused at his final resting place right in front of a house.

6 Discussion

The experience gained during the Urban Challenge competition has been
invaluable to advancing TeamUCF’s capabilities with autonomous robotic
vehicles operating in an urban environment. The performance of a number of
teams clearly indicates that commercial autonomous vehicle operation is closer to
reality than many expect.

While TeamUCF encountered a series of mechanical issues during the NQE,
none of these issues severally hampered performance. The overall competition
was not particularly stressful on the robots from a mechanical point of view.
Furthermore, all sensors operated within expected performance bounds throughout
the competition. This was partially because adverse environmental conditions that
could have impacted sensor performance were reduced by the choice of venue and
the time of year of testing. The use of relatively simple algorithms, robust
simulation tools, and partitioning of the control system in the manner used
contributed to the ability to make the few minor modifications that were necessary
during the NQE. In hindsight, the choice of the platform for the robot, the choice
of sensor systems, and the overall control approach was a good one and one the
team would use again.

In many ways the final event was easier than the tests required to be passed to
qualify for the finals. The final event focused on a robot’s ability to repeatedly
perform a series of moderately challenging missions over the course of
hours. Teams that had significant experience with long duration tests faired better
than those that did not. The criticality of long duration testing can not be

356 B.J. Patz et al.

underestimated, but the implication on pre-event test area configuration should be
understood. A test area with the ability to drive the vehicle over 10km and with
the ability to drive the vehicle for hours without fear of unintended interaction
with other vehicles was a deciding factor in determining the outcome of this event.
A small test area offered the ability to investigate “scenarios” or demonstrate the
robot’s ability to meet virtually every individual objective. Testing at a nearby
parking lot during evenings while at the NQE allowed specific algorithms
associated with Test Area A to be validated and refined. Testing at an off-road site
verified the off-road capability of the robot prior to participating in the final event.
Several teams took advantage of this scenario testing. Nevertheless, scenario
testing was woefully inadequate in verifying the robot’s long term performance. In
hindsight, TeamUCF might have faired better in the final event by verifying the
robot could drive around a circular course for 8 hours straight rather than verifying
off road performance.

The criticality of GPS or GPS/INS systems can not be underestimated. On the
day prior to the final event, finalists were asked to launch their robots from the
starting chutes and make a relatively simple loop course ostensibly to verify
starting procedures and timing. A robot that had performed virtually flawlessly in
previous tests nearly collided with two other robots that were stopped behind the
start line. The team with the malfunctioning robot claimed the issue was traceable
to a malfunctioning GPS. On the day of the final event, the pole setting team
failed to launch on time again due to a stated GPS malfunction attributed to
interference from a large TV screen near the vehicle. TeamUCF’s failure to
complete the final event is directly attributable to a GPS failure. A significant GPS
outage for any team would likely have crippled that team.

Several other items are noteworthy:

• SICK laser scanners are highly reliable and robust measurement devices,
but with relatively limited operational range. Certain lighting conditions
or obstacles types bring those ranges well below 50m, making these
sensors questionable for vehicle speeds much above those demonstrated
in this challenge.

• The Oxford RT3000 GPS/INS is highly capable and accurate, however,
external data validity checking, separate from the software tools provided
by the vendor, must be performed to insure that the rare data error does
not have catastrophic consequences.

• TeamUCF struggled with camera-based vision systems primarily because
of lighting conditions and obstacles diversity, but other systems made up
for these deficiencies.

• ICE worked well for inter-process communications and effectively
supported hardware-in-the-loop capability. Coupled with SVN, these
open source tools provide an incredible software development
environment for robotic systems.

• A large scale test site with essentially unlimited access is essential for
adequate testing. Long duration performance can only be adequately
tested at such a facility. TeamUCF conducted the majority of its testing
on a large open parking deck, at night.

A Practical Approach to Robotic Design for the DARPA Urban Challenge 357

• TeamUCF and many other teams pursued this effort as a competition,
with the goal of meeting the specific objectives of the competition. As
such, many systems and approaches were tailored to specifically follow
the rules as defined by DARPA.

• Money matters, but only if you use it to allow robust vehicle testing.
• NaN fails every test.

Acknowledgements

TeamUCF would like to thank the generous sponsorship of the University of
Central Florida College of Engineering and Computer Science, Coleman
Technologies, Inc., and for the flexibility of Old Dominion University in
providing the time for Dr. Papelis to complete a project he started while at UCF.
Furthermore, TeamUCF thanks Richard “Ed” Johnson from the University of
Central Florida for his contributions in designing the 3-D laser scanner assemblies.

References

Adams, M.: On-line gradient based surface discontinuity detection for outdoor scanning
range sensors. In: Proceedings of 2001 IEEE/RSJ International Conference on
Intelligent Robots and Systems, vol. 3, pp. 1726–1731 (2001)

Barton, M.: Controller development and implementation for path planning and following in
an autonomous urban vehicle. Undergraduate thesis, University of Sydney (2001)

Boer, E., Hoedemaeker, M.: Modeling driver behavior with different degrees of
automation: A hierarchical decision framework for interactive mental models. In:
Proceedings of the 17th European Annual Conference on Human Decision making and
Manual Control, Valenciennes, France (1998)

Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical Report
CMU-RI-TR-92-01, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
(1992)

Cremer, J., Kearney, J., Papelis, Y.: HCSM: A framework for behavior and scenario control
in virtual environments. ACM Transactions on Modeling and Computer
Simulation 5(3), 242–267 (1995)

Harper, D., Hua, D.K., Foroosh, D.H., Leonessa, D.A., Qu, D.Z., Pillat, R., Norvell, D.,
Santiago, S., Collins, T., Stein, G., Stickler, S., Decker, G., Andres, R., Shen, Y., Chen,
H., Xie, F.: Technical Paper - DARPA Grand Challenge, Technical report, University of
Central Florida (2005)

Michon, J.: A critical view of driver behaviour models: What do we know, what should we
do. In: Evans, L., Schwing, R. (eds.) Human behaviour and traffic safety. Plenum Press,
New York (1985)

Moravec, H.: Sensor fusion in certainty grids for mobile robots. AI Magazine 9(2), 61–74
(1988)

Papelis, Y., Ahmad, O.: A comprehensive Microscopic Autonomous Driver Model for Use
in High-Fidelity Driving Simulation Environments. In: Proceedings of the
Transportation Research Board Meeting, Washington, DC (2001)

358 B.J. Patz et al.

Qu, Z., Wang, J., Plaisted, C.E.: A new analytical solution to mobile robot trajectory
generation in the presence of moving obstacles. IEEE Transactions on Robotics 20,
978–993 (2004)

Surmann, H., Nuechter, A., Hertzberg, J.: An autonomous mobile robot with a 3d laser
range finder for 3d exploration and digitalization of indoor environments. Robotics and
Autonomous Systems 45, 181–198 (2003)

Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. In: Intelligent Robotics and
Autonomous Agents. MIT Press, Cambridge (2005)

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P.,
Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V.,
Stand, P., Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C., Markey, C.,
Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B.,
Ettinger, S., Kaehler, A., Nefian, A., Mahoney, P.: Stanley: The robot that won the
DARPA Grand Challenge. Journal of Field Robotics: Special Issue on the DARPA
Grand Challenge, Part 2 23(9), 661–692 (2006)

Wulf, O., Wagner, B.: Fast 3d-scanning methods for laser measurement systems. In:
International Conference on Control Systems and Computer Science (2003)

Yang, J., Daoui, A., Qu, Z., Wang, J., Hull, R.: An optimal and real-time solution to
parameterized mobile robot trajectories in the presence of moving obstacles. In: IEEE
International Conference on Robotics and Automation, Barcelona, Spain, April 18-22,
2005, pp. 4423–4428 (2005)

Team AnnieWAY’s Autonomous System for
the DARPA Urban Challenge 2007

Sören Kammel1, Julius Ziegler1, Benjamin Pitzer1, Moritz Werling2,
Tobias Gindele3, Daniel Jagzent3, Joachim Schöder3, Michael Thuy4,
Matthias Goebl5, Felix von Hundelshausen6, Oliver Pink1, Christian Frese3,
and Christoph Stiller1

1 Institute for Measurement and Control
University of Karlsruhe
76131 Karlsruhe, Germany

2 Institute for Applied Computer Science/Automation
University of Karlsruhe
76128 Karlsruhe, Germany

3 Industrial Applications of Informatics and Microsystems
University of Karlsruhe
76131 Karlsruhe, Germany

4 Institute for Distributed Measurement Systems
Technical University of Munich
80290 Munich, Germany

5 Institute for Institute for Real-Time Computer Systems
Technical University of Munich
80290 Munich, Germany

6 Department of Aerospace Engineering
University of the Federal Armed Forces
85577 Neubiberg, Germany

Abstract. This paper reports on AnnieWAY, an autonomous vehicle that is ca-
pable of driving through urban scenarios and that has successfully entered the
finals of the 2007 DARPA Urban Challenge competition. After describing the main
challenges imposed and the major hardware components, we outline the underly-
ing software structure and focus on selected algorithms. Environmental perception
mainly relies on a recent laser scanner which delivers both range and reflectivity
measurements. While range measurements are used to provide 3D scene geometry,
measuring reflectivity allows for robust lane marker detection. Mission and ma-
neuver planning is conducted using a concurrent hierarchical state machine that
generates behavior in accordance with California traffic laws. We conclude with a
report of the results achieved during the competition.

1 Introduction

The capability to concurrently perceive a vehicle’s environment, to stabilize
its motion and to plan and conduct suitable driving maneuvers is a remark-
able competence of human drivers. For the sake of vehicular comfort, effi-
ciency, and safety, research groups all over the world have worked on building

M. Buehler et al. (Eds.): The DARPA Urban Challenge, STAR 56, pp. 359–391.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

360 S. Kammel et al.

autonomous technical systems that can in part replicate such capability
[Bertozzi et al., 2000, Franke et al., 2001, Nagel et al., 1995, Thorpe, 1990,
Dickmanns et al., 1994].

The DARPA Urban Challenge 2007 has been a competition introduced for
expediting research on this kind of systems. Its finals took place on Nov. 3rd,
2007 in Victorville, CA, USA. As in its predecessors, the Grand Challenges
of 2004 and 2005 [DARPA, 2005, Thrun et al., 2006], the vehicles had to
conduct missions fully autonomously without intervention of human team
members (see Fig. 1). In contrast to the earlier competitions, the Urban
Challenge required operation in a mock urban scenario, including traffic made
up from both competing autonomous vehicles and human driven cars. The
major challenge imposed was collision-free driving in traffic in compliance
with traffic rules (e.g. right of way at intersections) while completing the
given mission. This required for passing parked cars, performing U-turns,
parking, and merging into regular flow of traffic. Finally, recovery strategies
had to be demonstrated in deadlock situations or in traffic congestions that
cannot solely be handled by strictly following traffic rules.

Fig. 1. AnnieWAY stopping at an intersection on track A during the NQE.

The scope of Team AnnieWAY was to extract early research results from
the Cognitive Automobiles project that would allow real-time operation of
the vehicle under the restricted traffic environment in the Urban Challenge.
Its team members are professionals in the fields of image processing, 3D per-
ception, knowledge representation, reasoning, real time system design, driver
assistance systems and autonomous driving. Some of the team members were
in the ’Desert Buckeyes’ team of Ohio State University and Universität Karl-
sruhe (TH) and developed the 3D vision system for the Intelligent Off-road
Navigator (ION) that traveled successfully 29 miles through the desert during
the Grand Challenge 2005 [Özgüner et al., 2007, Hummel et al., 2006].

Team AnnieWAY’s Autonomous System 361

2 Hardware Architecture

The basis of the AnnieWAY automobile is a VW Passat Variant (see Fig. 2).
The Passat has been selected for its ability to be easily updated for drive-by-
wire use by the manufacturer.

2.1 Computing System

AnnieWAY relies on an off-the-shelf quad-core computer offering enough pro-
cessing capacity to run all required software components for perception, situa-
tion assessment, and trajectory generation. The chosen hardware architecture
is optimally supported by the real-time-capable software architecture which
is described in Sec. 3.

The main computer is augmented by an electronic control unit (ECU) for
low-level control algorithms. It directly drives the vehicle’s actuators. Both
computer systems communicate over an Ethernet link. The drive-by-wire
system as well as the car odometry are interfaced via the Controller Area
Network (CAN) bus. The DGPS/INS system allows for precise localization
and connects to the main computer and to the low-level ECU.

emergency stop
sensors

2D lidar

1D lidar
(rear and front)

main computer

GPS/INS

odometry

ECU
vehicle interface

(CAN bus)
actuators

ignition and
parking break

main
computer

GPS antennas

ECU

1D lidar
power
supply

INS

2D lidar

Fig. 2. Architecture and hardware components of the vehicle.

362 S. Kammel et al.

2.2 Laser-Based Range and Intensity Sensors

Since LIDAR units produce their own light, low light conditions have no
effect on this kind of sensor. In our car we use a rotating laser scanner com-
prising 64 avalanche photo diodes that are oriented with constant azimuth
and increasing elevation covering a 26.5◦ vertical field of view. The lasers and
diodes are mounted on a spinning platform that rotates at a rate of 600 rpm.
Thus, the LIDAR provides a 360◦ field of view around the vehicle producing
more than 1 million points per second at an angular resolution of 0.09◦ hor-
izontally and a distance resolution of 5 cm with distances up to 100m. The
result is a dense, highly accurate scan representation of almost the entire
scene surrounding the vehicle. For each point, the sensor measures range and
reflectivity. The reflectivity map is well suited for monoscopic image analysis
tasks like lane marker detection. The inherent association of each reflectivity
pixel with a range measurement alleviates information fusion of these data
significantly. For parking maneuvers, the main LIDAR is supported by two
2D laser scanners that cover the area directly in front and behind the vehicle.

2.3 DGPS/INS

A precise localization is provided by a dead reckoning system which consists of
an advanced six-axis inertial navigation system with an integrated RTK/GPS
receiver for position and a second GPS Receiver for accurate heading mea-
surements. Odometry is taken directly from AnnieWAY’s wheel encoders.
The dead reckoning system delivers better than 0.02m positioning accuracy
under dynamic conditions using differential corrections and 0.1◦ heading ac-
curacy using a 2m separation between the GPS antennas.

2.4 Emergency Stop System

As the vehicle had to operate unmanned, a wireless stop system has been in-
tegrated for safety reasons as required by DARPA. This E-Stop system allows
to remotely command run-, pause-, or emergency-stop mode. The system is
connected directly to the ignition and the parking brake to assert appropri-
ate emergency stop regardless of the state of the computer system. Run and
pause mode are signaled to the low-level control computer.

3 Software Architecture

The core components of the vehicle are the perception of the environment, an
interpretation of the situation in order to select the appropriate behavior, a
path planning component and an interface to the vehicle control. Fig. 3 de-
picts a block diagram of the information flow in the autonomous system. Spa-
tial information from the sensors is combined to a static 2D map of the en-
vironment. Moving objects are treated differently. Such dynamic objects also

Team AnnieWAY’s Autonomous System 363

2D lidar

sensor interface perception planning vehicle control

1D lidar (front)

1D lidar (rear)

GPS/INS

object tracker

lane detection

terrain mapper

throttle / brake

gear shifter,
turn signal, etc.

steering

road planner

zone planner

RTDB communication system watchdog

global services

Fig. 3. Overview of the software architecture and the information flow.

include traffic participants that are able to move but have zero velocity at the
moment. To detect moving objects, the spatial measurements of the LIDAR
sensor are clustered and tracked with a multi-hypothesis approach. To detect
possibly moving objects, a simple form of reasoning is used: If an object has
the size of a car and is located on a detected lane, it is considered to be prob-
ably moving. Lane markings are detected in the reflectance data of the main
LIDAR. Together with the road network definition file (RNDF), the absolute
position obtained from the dead reckoning system and the mission data file
(MDF), this information serves as input for the situation assessment and the
subsequent behavior generation. Most of the time, the behavior will result in
a drivable trajectory. If a road is blocked or the car has to be parked, modules
for special maneuvers, like the parking zone navigation module, are activated.

All data exchange between processes is done via a central communica-
tion framework, the real-time database for cognitive automobiles KogMo-
RTDB [Goebl and Färber, 2007b]. All data within the RTDB is represented
as time-stamped objects. The centralized data storage gives the opportu-
nity to easily log and replay all or selected objects. For performance reasons
the database is completely memory based. It is capable of distributing even
large data objects, like LIDAR raw sensor data, to several processes and at
the same time relay vehicle control commands at a rate of 1 kHz between a
vehicle control process and the ECU [Goebl and Färber, 2007a].

4 Perception

4.1 Environmental Mapping

Accurate and robust detection of obstacles at a sufficient range is an essen-
tial prerequisite to avoid obstacles on the road and in unstructured envi-
ronments like parking lots. The basic idea is to maintain an evenly spaced
2D grid structure g where each cell gi represents a random variable. Each

364 S. Kammel et al.

random variable is binary and corresponds to the occupancy it covers. There-
fore, in the literature this approach is also called occupancy grid mapping
([Thrun, 2002, Thrun, 2003]) which has the goal to calculate the posterior
over maps p(g|z,x) where z is the set of all measurements and x is the path
of the vehicle defined through a sequence of poses. An example of a resulting
evidence map is depicted in Fig. 4.

Fig. 4. Example for the evidence mapping of 3D LIDAR data onto a 2D grid.
Darker spots correspond to high evidence for an obstacle while white cells corre-
spond to drivable area. Unknown cells are marked as grey.

AnnieWAY uses a grid that is always centered at the vehicle position but
aligned with a global coordinate system. The grid is shifted at each time step
to account for the new vehicle position. This restricts the size of the map to
an area around the vehicle while the cells are bound to an absolute position.
The size of each grid cell is 15cm×15cm. Fig. 5 shows an example of our
mapping algorithm. The grid is generated mainly from multi-layer, high res-
olution LIDAR data. Algorithms for the integration of low resolution LIDAR
data can be found in [Thrun, 2002, Thrun, 2003, Biber and Strasser, 2006,
Bosse et al., 2003].

Integrating the data of the laser scanners into an environmental map con-
sists of three steps. In the first step the range measurements zl∈L of one
revolution L are projected into a global coordinate system under consider-
ation of the vehicle’s motion xl. In the second step, different measures are

Team AnnieWAY’s Autonomous System 365

(a) Map generated from a parking lot. (b) Aerial imagery of the parking lot
with a detail photo of the curb in the
lower right corner.

Fig. 5. Example for a generated evidence map and an aerial image of the corre-
sponding region.

extracted from the data for each cell gi. Two straightforward measures are
the number of measurements ni and the number of different laser beams bi.
The most important measure we use is the elevation difference

ei(gi, zl) = max
l∈L

h(gi, zl)−min
l∈L

h(gi, zl) , (1)

where h is the vertical component of each measurement.
In the third step, we compute the evidence for each measure by using

an inverse sensor model. E.g. the inverse sensor model for the elevation dif-
ference returns locc if ei exceeds a certain threshold (e.g. 15cm) and lfree
otherwise. The inverse models for ni and bi are slightly more complex since
they are learned by a supervised learning algorithm. The result of the learn-
ing procedure is a forward model that accepts gi and ni or bi respectively as
parameters and returns the appropriate evidence.

Finally, we can compute the combined occupancy evidence oi,t as a
weighted sum of the three partial evidences:

oi,t = oi,t−1 + α1 · ni + α2 · bi + α3 · ei , (2)

and the estimated occupancy for a single cell

p(gi|z,x) = 1− 1
1 + exp oi

. (3)

As already mentioned, AnnieWAY is equipped with different sensors and
ideally one wants to integrate information from all sensors into a single map.
A naive solution is to update the map for each sensor separately which ne-
glects the different characteristics of each sensor, e.g. field of view, maxi-
mal range and noise characteristic. To ensure safe driving we use the most
pessimistic approach to fuse sensor data: We compute the maximum of all
estimated occupancies, where K is the number of sensors:

366 S. Kammel et al.

p(gi) = max
k∈K

p(gki) (4)

If any sensor detects a cell as occupied it will be occupied in the combined
map.

The standard occupancy grid mapping algorithm suffers from a major
drawback: It is only suitable for static environments. Driving environments
are typically highly dynamic and the result is very poor without modifica-
tions. Moving objects create virtual obstacles with high evidence while mov-
ing. To overcome this problem we introduce a temporal evidence decay. The
evidence is reduced at each time step by a factor εt for cells which are not up-
dated. The intuition is that the uncertainty increases for cells not augmented
by any sensor. Equation 2 turns now into

oi,t = argmax(0 , oi,t−1 + α1 · ni + α2 · bi + α3 · ei − εt) , (5)

where the argmax operator enforces positive evidences.

5 Tracking of Dynamic Objects

Driving in urban environments requires to capture and estimate the dynamics
of other traffic participants in real-time. AnnieWAY uses a processing pipeline
that takes raw sensor data (from different lasers) and generates a list of
dynamic obstacles, along with their estimated locations, sizes, and relative
velocities. This pipeline consists of a number of parts, including

1. Data preprocessing: Removing irrelevant readings: noise, ground read-
ings, readings from obstacles outside the road, etc.

2. Obstacle detection: Creating a list of obstacles raw readings...includes
segmentation for laser

3. Obstacle tracking: Corresponding obstacles time step with those of
another time step in order to determine their headings, relative velocities,
etc.

4. Obstacle post-processing and publishing

The data preprocessing step used for tracking was discussed earlier as part
of Sec. 4.1. The result of this part is a grid map with occupancy probabilities
attached to each cell. All the sensors’ information has been condensed within
this grid.

The first stage of dynamic object tracking is the object detection which
is—in the sense of a statistical approach—equivalent to the identification of
object hypotheses. AnnieWAY uses an occupancy grid map which has been
segmented using a connected components approach. Therefore, we treat each
grid cell as a node in a graph G. Two points are connected if and only if
the distance between them is within a threshold d (e.g. 0.5m). We then find
all the connected components in the graph and assign the same label to
those cells. To reduce noise, we discard any connected component with less

Team AnnieWAY’s Autonomous System 367

(a) High resolution LIDAR data. (b) Tracked vehicles on segmented grid
map.

Fig. 6. Tracking of dynamic objects with occupancy grid map and linear Kalman
filter.

than a minimum number of cells. Due to the uniform angle resolution of the
scanners, the number of cells an object consists of depends on its distance.
The closer an object is located to the scanner, the more laser rays will hit
the object.

The connected components are analyzed in a second step for their proba-
bility of being a traffic participants. Several heuristics are used based on their
shape and location relative to the road network. Only ’good’ candidates are
augmented in the following tracking step. Fig. 6(b) displays the resulting
objects after post-processing.

With this procedure, not all captured and tracked objects are relevant to
be published to other modules. This is due to noisy observations, occlusion,
dynamic objects leaving of our sensors’ fields of view, etc. All these effects lead
to unlikely object hypotheses, but nevertheless they are internally tracked. In
order to decide when to publish relevant obstacles, we define a notion of con-
fidence that works similarly to log-likelihood updates in an occupancy grid
map as mentioned earlier. If an obstacle is observed, we increment its confi-
dence, in case it goes unobserved in our field of view, we decrement it. Thus
defined, the confidence allows us to set minimum thresholds for the tracking
and publishing obstacles: if the object’s confidence exceeds the threshold, the
obstacle is published to all other attached modules. If its confidence undercuts
a certain threshold, the object is removed from the obstacle list. Hypotheses
within both thresholds are internally tracked, but not published.

Tracking of dynamic objects mainly serves two purposes. First, it aids
the correspondence of obstacles detected in one sensor frame at time t = k
with those in subsequent sensor frames at time t = k + 1. This can be eas-
ily achieved with distance-based methods or more sophisticated 3D fitting
and registration algorithms like iterative closest point (ICP). However, these

368 S. Kammel et al.

methods do not take into account the noise and uncertainty of our sensors.
The second and equally important purpose of tracking is to return estimates
of other vehicle’s relative velocities and headings.

AnnieWAY uses a linear Kalman filter [Kalman, 1960] to model a simpli-
fied dynamic obstacle with its appropriate state vector

[
x, y, ẋ, ẏ

]T . Obvi-
ously, this model ignores completely the underlaying physical and non-linear
behavior of a car, but the frequency of sensor updates (10Hz) means that cars
move very little between them which allows us to assume linear dynamics.
Transition updates are linear with an overlaid Gaussian noise characterized
by its covariance matrix Q:

T =

⎡

⎢
⎢
⎣

1 0 Δt 0
0 1 0 Δt
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ , Q =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 σ2

q,ẋ 0
0 0 0 σ2

q,ẏ

⎤

⎥
⎥
⎦ . (6)

Since we are extracting the obstacle’s position
[
x, y

]T from the measure-
ment, the observation matrix O looks as described below. Further, we assume
mutual independent Gaussian noise sources characterized by the covariance
matrix R:

O =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎦ , R =
[
σ2
r,x 0
0 σ2

r,y

]
. (7)

After performing an observation, we do not know which detected obstacles
within the measurements are already tracked or if they are new objects. Thus,
we are required to solve a problem of correspondence between observations
and the internally tracked dynamic obstacles. This is a nontrivial problem,
requiring that we define both a measure of distance and a procedure for
finding the optimal correspondence. AnnieWAY uses a maximum-likelihood
matching algorithm to find the optimal assignment of observations to ex-
isting Kalman filters. This matching is a one-to-one function from filters to
observations.

6 Lane Marker Detection

Digital maps of a road network are often not up-to-date or resemble the real
road network only approximately. Therefore, a local offset between the digital
and the real road network may exist. The detection of lane markings helps to
minimize this offset. An accurate and continuous detection of lane markings
even enables the creation of new road network maps.

In the context of this paper, lane markings can be either painted markings
or curbs. Painted lane markings are detected within the intensity readings of
the LIDAR whereas curbs cause small height changes in the range data of
the LIDAR. A combined intensity/range plot is depicted on the left side of

Team AnnieWAY’s Autonomous System 369

Fig. 8. Both kind of lane markings form one dimensional structures that can
be approximated by line segments locally. In contrast to camera based inten-
sity images, the laser reflectivity and range data is insensitive to background
light and shadows. However, the sensor samples the road very sparsely, espe-
cially at distance. In order to increase the density of lane marker information,
subsequent scans are registered spatially and accumulated employing abso-
lute positioning information from the dead reckoning system. The first step
in order to obtain a dense bird eye’s view representation of lane marker fea-
tures is a classification of data points in each scan into obstacle and ground
by the algorithms described in Sec. 4.1. Lane markings are expected to occur
on the road surface (painted markings) or at its borders (curbs) only. There-
fore, points of each individual laser labeled as ground are searched for large
continuous chunks (chunks that do not exhibit height changes exceeding the
height of curbs) representing the road. Only within those large chunks high
intensity gradients are detected. In addition, only measurements exhibiting
absolute intensities larger than the median intensity of each laser scan are
taken into account. Both types of features – painted markings and curbs –
are mapped into a feature grid g(x) similar to the evidence grid described
in Sec. 4.1, see Fig. 8(right). Features are detected first in the single scans
and mapped afterwards (instead of creating a dense map first and extract-
ing the features afterwards) to minimize the effect of errors in the vehicle
localization. A summary of the detection algorithm is shown in Fig. 7.

offset
estimation

street topology
mapping

obstacle / ground
classification

intensity feature
extraction

height feature
extraction

feature map
update

line extraction /
RNDF supported

line extraction /
all lines

offset calculation

line length
calculation

line segment
mapping

small chunk
removal

Fig. 7. Overview of the offset estimation and street topology mapping.

Lane segments are detected by applying the Radon transform to the ac-
cumulated feature map data. Since the Radon transform is an algorithm op-
erating globally on the map it proved to be robust against occlusions, noise
and outliers. Compared to the Hough transform, the Radon transforms ex-
hibits the advantage of a calculation time independent of the numbers of lane
markings and the capability to handle gray-scale images efficiently and with-
out thresholding. For a real-time calculation in the car, an implementation
exploiting the central-slice theorem was used [Bracewell, 1990]. The position
and direction of lane boundaries can be calculated by locating their corre-
sponding maxima in the Radon plane. Since we observed a systematic error
of RNDF data in some areas, it appeared sensible to determine a correcting
offset from the detected lane markings. To accomplish this, the lane markings
specified in the RNDF are first projected into the Radon plane. Assuming
that the offset of the road map data does not exceed one lane width, the
deviation is obtained in a second step from the distances to the maxima in

370 S. Kammel et al.

Fig. 8. Combined range and intensity readings of the LIDAR (left) and lane marker
map with the estimated current lane segment and an overlay of a part of the original
road network map (right).

the Radon plane closest to the predicted positions. Assuming further that
predicted and estimated lane boundaries are close to parallel, the vertical
distance is sufficient to determine the offset.

7 Reactive Layer

Our system integrates a reactive layer that allows AnnieWAY to modify a
planned trajectory based on GPS waypoints. While the obstacle tracker easily
handles objects like cars, small or extended objects like rocks or pavement
edges are more difficult to track explicitly. Hence, we integrated a reactive
mechanism that gets as input a vehicle-centered occupancy grid (built from
the LIDAR data) and the trajectory planned so far. The algorithm then first
evaluates, whether the given trajectory is clear and - only if not - starts a more
complex evaluation of the grid that results in a modification of the initially
given trajectory. This mechanism is biologically motivated and resembles
an insect’s use of its antennae to avoid obstacles. What are antennae in
nature, are precomputed trajectory primitives (we call them tentacles) in
our system. Here, all tentacles are simple circular arcs, but depending on the
speed of the vehicle, the parameters of these arcs vary such that at high speeds
no dangerous actions can be taken (see Fig. 9). To select the appropriate
primitive the occupancy grid is investigated in an area around and underneath
that primitive. The final selection is done on the basis of four aspects:

1. Could the vehicle drive the primitive without causing damage? In par-
ticular, within a distance the vehicles needs to stop, is the ground along
the tentacle clear of anything having a height above 0.1m?

2. How smooth is the terrain under the primitive?
3. How far is the next obstacle along that primitive?
4. How well does the primitive follow the original trajectory?

Team AnnieWAY’s Autonomous System 371

Fig. 9. The reactive system uses a precomputed set of motion primitives that vary
with the speed of the vehicle. As detailed in [v. Hundelshausen et al., 2008], those
primitives are used to evaluate a vehicle-centered occupancy grid to avoid obstacles.

By considering these aspects as detailed more precisely in
[v. Hundelshausen et al., 2008] the vehicle follows the given trajectory
if possible, but avoids obstacles, if not. To coordinate this reactive layer with
the obstacle tracker, tentacles were only evaluated up to the first explicitly
tracked obstacle. In this way, only unexpected obstacles were avoided.

As detailed in [v. Hundelshausen et al., 2008] the overall reactive mecha-
nism was tested excessively by intentionally defining bad GPS-trajectories,
e.g having a large offset to the real road (passing through the front gardens
of neighboring houses), passing through a traffic circle (instead of leading
around it), abbreviating a crossing through a complete house, and other tests
including moving vehicles. At the final of the urban challenge this mechanism
was important at narrow passages.

8 Planning

The major challenge imposed by the competition was collision-free driving
in traffic in compliance with traffic rules, e.g. right-of-way at intersections. It
included special maneuvers, like overtaking, U-turns, parking, and merging
into regular flow of traffic while completing the given missions. To accomplish
this, the robot must be capable of analyzing the situation, assessing devel-
opments, choosing the appropriate behavior and executing it in a controlled
way. AnnieWAY uses a planning module organized in three layers to address
these problems:

1. Mission Planning computes a strategic plan to accomplish mission
2. Maneuver Planning applies California traffic rules and plans actual

driving maneuvers (e.g. turns, intersection, passing) and generates a cor-
responding path.

3. Collision Avoidance tests whether the planned path is collision free
taking into account the obstacle map acquired from the perception mod-
ule. If a collision is probable it chooses an alternative path.

In a first preprocessing step, all elements of the RNDF (lanes, checkpoints,
exits, etc.) are converted to a graph-based, geometrical representation. RNDF

372 S. Kammel et al.

(a) (b) (c)

Fig. 10. Preprocessing of RNDF data. (a) Geometric graph derived directly from
RNDF. (b) Smoothing with splines. (c) Complete path for mission. It has continous
curvature.

waypoints form the vertices of the graph; lanes and exits are represented by
graph edges (Fig. 10(a)). Edges yield a geometric representation by smoothing
them by spline interpolation (Fig. 10(b). Information such as distances, lane
boundaries, and speed limits annotate the graph edges. These annotations can
be updated dynamically, to incorporate results from the perception module
(e.g. road blockages).

Dynamic objects recognized by the perception module are matched to the
most probable edge of the geometrical graph representation, based on their
position and orientation. This allows for attributing a role to every object,
e.g. identification of a leading vehicle, or semantically localizing an object
within an intersection scenario.

Mission Planning is the most abstract form of planning used by An-
nieWAY. It finds the optimal route from one checkpoint to another using
an optimal graph search algorithm operating on the geometric graph repre-
sentation of the road network. The criterion that is minimized by the search
process is travel time. The search process is repeated for every pair of sub-
sequent checkpoints in the MDF. In this way the mission planner finds the
optimal route traversing all mission checkpoints. It is a piecewise-defined
spline curve, as shown in Fig. 10(c). Generally the mission planner runs only
once while loading the mission file and whenever AnnieWAY has to diverge
from the planned route caused by situation dependent reasons (e.g. blocked
roads). The route is passed to the downstream maneuver planning.

The high-level plan and the AnnieWAY’s current position is used by Ma-
neuver Planning to compute actual driving maneuvers. The maneuver plan-
ner is implemented as a Concurrent Hierarchical State Machine (CHSM) with
every state representing a driving behavior. The key aspect of a hierarchical
state machine is to design and group the states in a way that a sub-state is
a specialization of its parent state, and only extensions to the more general
behavior of the parent state have to be modeled explicitly. Thereby, the func-
tional redundancy of the states and the amount of transitions is reduced, so it
is easier to capture the complex reactional behavior of a system. Fig. 11 shows
the UML state chart of the machine’s main level, with important sub-states
annotated as well.

Every behavior the car is capable of, is modeled as a state organized within
a state hierarchy. The state Drive comprises all regular driving maneuvers

Team AnnieWAY’s Autonomous System 373

error

error

error

goal_reached

Active

intersection_blocked goal_reached

goal_reached

Drive

...DriveStart
...DriveOnLane

...DriveStop
...DriveKTurn
...LaneChange
...DriveRecover

Intersection

...IntersectionApproach
...IntersectionQueue
...IntersectionStop
...IntersectionWait

...IntersectionDriveInside
...IntersectionRecover

Replan

...Reroute
...GetBackOnTrack

GlobalRecover Goal

intersection_ahead
intersection_passed

zone_passed

zone_ahead

back_on_track

blockade_head

Pause

...ShortTerm
...LongTerm

ErrorWaitForActivation

H

pause

pause

activate

Zone

...ZoneApproach
...ZoneEntering
...ZoneParking
...ZoneParked

...ZoneDriveToExit
...ZoneRecover

Fig. 11. Overview of the concurrent hierarchical state machine used to model traffic
situations and behavior.

on normal roads. It has several sub-states that cover different situations like
following the course of a lane (DriveOnLane), making a k-turn (DriveKTurn)
or changing the lane (LaneChange). All behavior at intersections is handled
by the Intersection state. It comprises some specialized sub-states for differ-
ent types of intersections. Some more insight on the real functionality and
architecture of the state machine is given in Sec. 9, where handling of mov-
ing traffic in an intersection scenario is explained in detail. The navigation
in unstructured environments and parking maneuvers is controlled by the
state Zone and its sub-states. These states control invocation of the navi-
gation module described in Sec. 10. In some situation it becomes necessary
for the robot to replan its route, e.g when the road ahead is blocked. This
is triggered by the state Replan, that re-activates the mission planning mod-
ule. Most states implement a recovery state that is activated whenever the
car makes no progress at all for a certain amount of time. If all situation
dependent recovery handling fails, a global recovery state is invoked to navi-
gate back on track using the navigation module.

374 S. Kammel et al.

When all situation assessment has taken place and all state transitions are
made, the reached state generates a path stub, that is input to the closed
loop control module (Sec. 11). It reaches approximately 30 m ahead and
consists of densely sampled waypoints combined with heading and curvature
information. In the most common case, when the car is driving on roads stored
within the graph representation, the trajectory is generated in a straight
forward way by sampling the graph edges ahead. These points are smoothed
by a spline approximation to generate a continuous curvature path. In areas
that lack road geometry description and whenever sensible localization within
the road network graph is not possible, the free navigation module in Sec. 10
is used to plan a collision free path to a given target configuration.

Paths generated by the state machine may be overwritten by the low level
avoidance system described in Sec. 7.

9 Moving Traffic

This section describes an algorithm which reduces dynamic maneuvers, such
as merging into moving traffic and crossing intersections with oncoming traf-
fic, to static maneuvers, such as simple turns. Unfortunately, the actual be-
havior of the other traffic participants cannot be exactly predicted. Therefore
certain assumptions, simplifications, and conservative estimates have to be
made in an appropriate way, such that the unmanned vehicle operates safely
as well as effectively.

9.1 Problem Abstraction and Simplifications

In the following, it is assumed that (1) the other traffic participants with the
right-of-way neither slow down nor speed up, (2) stay in the middle of the
road, (3) AnnieWAY’s longitudinal controller accelerates at a known constant
rate until the desired maneuver velocity is met, and (4) all traffic participants’
velocities and positions are known.

Assumption (1) and (2) have to be made, since the actual behavior of the
other vehicles (Bi) cannot be precisely predicted. Therefore it is assumed,
that the considered vehicles travel at a constant velocity in the center of the
priority road. Introducing t

BP
as the time needed for traveling a distance d

BP

in the road center and vB as the other vehicle’s constant velocity, leads to

t
BP

=
d

BP

vB
. (8)

Assumption (3) is based on the longitudinal control strategy, which is
described in Sec. 11. The resulting drive-off characteristic v(t) from a start
velocity v0 to a new desired velocity vd can be seen on the left in Fig. 12 as
a dashed line along with the approximation v̂(t) as a solid line.

Here tsw denotes the time, when the approximated velocity v̂(t) reaches
vd. It can be calculated by

Team AnnieWAY’s Autonomous System 375

Fig. 12. Actual and approximated drive-off characteristic.

tsw =
vd − v0
asat

. (9)

An integration of v̂(t) over time (see Fig. 12) yields the traveled distance of
AnnieWAY (A)

d
AP

(t) =
{

v0t+ asat

2 t2 t ≤ tsw
v0tsw + asat

2 t2sw + vd(t− tsw) t > tsw,
(10)

Solving (10) for t with

ta =
d

AP
− v0tsw − asat

2 t2sw
v0 + asattsw

+ tsw (11)

yields

t
AP

=

{
ta ta > tsw

1
asat

(−v0 +
√
v2
0 + 2asatdAP

) ta ≤ tsw, (12)

whereas the ambiguity of the solution was resolved.
Fig. 13 illustrates the transfer of different traffic scenarios to the equivalent

graphs, whose generic graph can be found left in Fig. 14 along with the four
relevant quantities to be measured, the current distances dA(t) and dB(t) to
MP , and the current velocities vA(t) and vB(t) (assumption (4)). As can be
seen, traffic participants are all assumed to be point masses. Based on the
previous equations and graphs, the movement of the vehicles can be predicted
and used for collision detection in the next section.

9.2 Spatial and Temporal Verification

On the one hand, at low speed it has to be guaranteed that the autonomous
vehicle avoids collisions by not getting too close to other traffic participants.
Therefore spatial safety distances were introduced (see Fig. 14, right-hand
side). On the other hand, spatial safety distances are not a proper measure
at higher speeds. In this case a temporal safety distance assures certain time
gaps between AnnieWAY and the other traffic participants. Since time gaps
become too small referred to the ground at low speed in turn, both spatial
and temporal conditions have to be fulfilled at the same time.

376 S. Kammel et al.

STOP

STOP

(a) Right turn with stop-
ping

(b) Left turn without
stopping

(c) Lane change
maneuver

(d) Double lane
change maneu-
ver with oncom-
ing traffic.

Fig. 13. Different moving traffic scenarios

For the sake of simplicity only a single vehicle is considered initially. In
order to be the first to enter the critical area, the following two conditions
have to be met:

1. At time tBPB1
, when B reaches PB1, A has to be beyond PA2.

freespat,AB = (dAP (tBPB1
) > dA +DA2) (13)

2. After A has passed MP , a given time span ΔTAB has to elapse, before
B reaches MP .

freetemp,AB = (tBMP > tAMP +ΔTAB) (14)

In order to be the second to enter the critical area, the following two
conditions have to be met:

1. At time tBPB2
, when B reaches PB2, A may not have passed PA1 yet.

freespat,BA = (dAP (tBPB2
) < dA −DA1) (15)

2. After B has passed MP , a given time span ΔTBA has to elapse, before
A reaches MP .

freetemp,BA = (tAMP > tBMP +ΔTBA) (16)

This means if

free = (freespat,AB ∧ freetemp,AB) ∨ (freespat,BA ∧ freetemp,BA)

is true, it is assured that neither A is between PA1 and PA2 as long as B is
between PB1 and PB2 nor the time gaps in MP are shorter than permitted.

The extension from a single vehicle B to n vehicles Bi is straightforward
As long as one vehicle fails the verification, A is not allowed to enter the
critical zone:

freetot = free1 ∧ free2 ∧ · · · ∧ freen (17)

Team AnnieWAY’s Autonomous System 377

Fig. 14. Measured quantities and geometric parameters of the graph.

Intersection

IntersectionRecover

IntersectionApproach

IntersectionQueue

IntersectionPrioWait

IntersectionDriveInside

IntersectionPrio
DriveInside

IntersectionWait

IntersectionPrioStop

IntersectionStop

stopped

has_right_of_way

has_right_of_way

stopline_reached

lane_freequeue_ahead

on_prio_lane &&
! right_of_way

on_prio_lane && has_right_of_way

! on_prio_lane

intersection
close

! has_right_of_way &&
before_point_of_no_return

Fig. 15. UML diagram of substate Intersection.

9.3 Integration into the State Machine

The planner of Sec. 8 always deploys the moving traffic check (MTC) when
AnnieWAY might come into conflict with other traffic participants demand-
ing the same traffic space (conflict spaces). Contingent upon the result ob-
tained from the MTC and the particular situation (conflict situations), state
transitions are triggered and the resulting state generates the desired path
and approves the free section for the longitudinal control.

In order to prevent frequent switching back and forth between states due
to measurement noise and control inaccuracy, hysteresis in the MTC is in-
troduced by slightly reducing the requirements once the autonomous vehicle
set itself in motion.

Since the actual behavior of the other traffic participants can be roughly
predicted at best, additional safety layers are introduced that prevent immi-
nent collisions (see Sec. 8), in ticklish situations with emergency braking.

378 S. Kammel et al.

The conflict situations that arise from the competition, are limited to

• intersections,
• passing other cars,
• and changing lanes.

Due to the general formulation of the MTC, the different traffic situations
can be accounted for with a corresponding parameter set.

For expository purposes the integration of the MTC in the intersection
scenario will be described. Fig. 15 shows the corresponding block diagram
in UML notation. When the vehicle approaches the intersection, the hierar-
chical state machine changes into the sub-state Intersection with the entry
state IntersectionApproach. This state is active until the vehicle enters the
intersection unless another traffic participant is perceived on the same lane
between AnnieWAY and the intersection. In this case IntersectionQueue is
activated until the other vehicle has passed the intersection and the lane
is free.

In IntersectionApproach, as soon as AnnieWAY gets close to the intersec-
tion, the state transition splits up into

(a) IntersectionStop if AnnieWAY is on a stop road,
(b) IntersectionPrioDriveInside if AnnieWAY is on a priority road and no

other vehicle has the right-of-way,
(c) or IntersectionPrioStop if AnnieWAY is situated on a priority road, but

needs to yield the right-of-way to priority vehicles, e. g. approaching traf-
fic, before it may turn left.

In case (a) AnnieWAY stops at the stop line and changes into the state
IntersectionWait. In this state all vehicles are registered that are already wait-
ing on another stop line which have the right-of-way according to the driving
rules (4-Way-Stop). As soon as these vehicles have passed the intersection
and the MTC turns out positive for all visible priority vehicles, the state
machine changes to IntersectionDriveInside and AnnieWAY merges into the
moving traffic according to the safety parameters.

In case (b) AnnieWAY drives into the intersection without stopping. If a
priority vehicle is perceived shortly after driving inside the intersection (point
of no return has not been passed yet) and the MTC turns out negative, the
state machine switches to IntersectionPrioStop which is equivalent to (c).

In case (c) in IntersectionPrioStop AnnieWAY stops before crossing the
opposing lane, waits until the MTC confirms that no danger comes from
priority vehicles anymore, and turns left.

10 Navigation in Unstructured Environment and
Parking

As has been described in Sec. 8, paths can be generated in a straight
forward way by sampling from the geometric road network graph where

Team AnnieWAY’s Autonomous System 379

sufficient road geometry information is available. However, Urban Challenge
regulations require for navigating in unstructured environments (zones) that
are only described by a boundary polygon. In the Urban Challenge, zones
are used to outline parking lots and off-road areas. In this kind of area,
a graph for path planning is not available. AnnieWAY’s navigation system
comprises a path planning algorithm that transcends the requirement for
precise road geometry definition. It has also proven useful to plan narrow
turns and as a general recovery mechanism when the vehicle gets off track,
the road is blocked or a sensible localization within the given road network is
impossible.

10.1 Configuration Space Obstacles

We restrict search to the collision free subset of configuration space (the
vehicle’s free space) by calculating configuration space obstacles from an
obstacle map obtained from a 360◦-laser range scanner (cf. Sec. 4.1). The
discrete nature of this obstacle map motivated dealing with configuration
space obstacles in a discrete way as well [Kavraki, 1995], as opposed to more
traditional approaches that require obstacle input in the form of polygonal
data [Schwartz and Sharir, 1983, Šwestka and Overmars, 1997]. Figs. 16(a)
and 16(b) illustrate how the robots free space can be generated for a discrete
set of orientations. By precomputing the free space in discretized form, a
collision check for a certain configuration can be performed quickly in O(1)
by a simple table lookup.

10.2 Search Graph and A*

We define an implicit search graph in which all paths are feasible. It is di-
rectly derived from a kinematic model of the car and not only guarantees

(a) (b) (c)

Fig. 16. Configuration space obstacles. (a): A 1 m safety distance is added to
the shape of the vehicle. Subsequent rotation and rasterization yields a convolution
kernel for configuration space obstacle generation. (b): Result of convolving obstacle
map with kernel from (a). If the robot has the same orientation as the kernel and
is placed in the red area, it must intersect with an obstacle. (c): Voronoi lines are
generated as a set of 8-connected pixels.

380 S. Kammel et al.

feasibility of the generated path, but also allows for straight forward design
of a combined feed forward/feed backward controller (see Sec. 11).

A node of the search graph can be completely described by a tuple (x,ψ,δ),
with x, ψ and δ denoting position, orientation and steering angle (i.e. the
deflection of the front wheels) of an instance of a kinematic one track model
(see Fig. 17(a)). Steering angle δ is from a set of nδ discrete steering angles
that are distributed equidistantly over the range of feasible steering: D =
{δ1 . . . δnδ

}. To generate successors of a node, the kinematic model equations
are solved for initial values taken from the node, a fixed arc length s and
a constant steering rate δ̇ = δp−δi

s , spanning clothoid like arcs between the
nodes. It is equivalent of driving the car model over a distance s at constant
speed while uniformly turning the front wheels from δp to δi. For the set
of nodes {(0, 0, δi),δi ∈ D}, this results in n2

δ successors, and another n2
δ

if backward motion is allowed. Successors of other nodes can be generated
quickly from this precomputed set by subsequent rotation and translation
(cf. Fig. 17(b)).

The search graph is expanded in this way by an A* search algorithm.
A* search is a well known concept in the domain of robotic path plan-
ning [Hwang and Ahuja, 1992], that allows for accelerating exploration of
the search space by defining a cost function that gives a lower bound of
expected cost-to-go for each node of the search graph. If the cost function
underestimates the actual distance to the goal, A* is guaranteed to find the
least-cost path. If the error of the cost function is big, A* quickly degener-
ates to an exponential time algorithm. This is common when a metric cost
function is used that does not account for obstacle positions, so that search
can get stuck in a dead end configuration. We avoid this problem by design-
ing an obstacle sensitive cost function that accounts for the topology of the
free space.

(a) (b)

Fig. 17. (a) Kinematic one track model underlying both search graph and closed
loop control. (b) Search graph. Successors are generated for nδ discrete steering
angles.

Team AnnieWAY’s Autonomous System 381

(a) (b)

Fig. 18. Cost functions. (a): RTR-metric for three different starting positions. Left
hand side shows the minimum RTR-paths, right image the value of the RTR metric,
densely evaluated on R

2 (bright: high value, dark: low value). (b): Voronoj based
cost function. Left: Voronoj graph labeled with distance by Dijkstras algorithm.
Right: Voronoj based cost function evaluated densely on R

2 by matching to the
Voronoj-graph.

10.3 Cost Function

To guide the search process, we combined two different cost functions. The
first one accounts for kinematic constraints of the vehicle, while the second
one is derived from the Voronoi graph of the vehicle’s free space and thus
incorporates knowledge of shape and position of the obstacles.

10.3.1 Local Cost Function
As a local cost function, the so called RTR metric is used. RTR (rotation-
translation-rotation) paths connect two configurations by two circular arcs
of minimum turning radius and a straight segment tangenting both. It can
be shown easily (cf. [Šwestka and Overmars, 1997]), that for every pair of
configurations a finite number of such paths can be constructed. The RTR
metric is the arc length of the shortest such path. RTR paths do neither
have continous curvature nor are they optimal (the optimal - in terms of arc
length - solution to the local navigation problem are the so called Reeds and
Shepp paths, cf. [Reeds and Shepp, 1991]), but are preferred by us due to
their computational simplicity. Fig. 18(a) illustrates the RTR metric.

10.3.2 Voronoi Based Cost Function
We construct a powerful, obstacle sensitive cost function based on the Voronoi
graph of the free space of the vehicle. Actually, a superset of the free space
is used that is invariant to the vehicles orientation. It is generated by gen-
erating configuration space obstacles for a disk shaped structure that is the
intersection of all structuring elements from Fig. 16(a).

Our algorithm to calculate Voronoi lines from a binarized obstacle map
is similar to [Li and Vossepoel, 1998], however, instead of using the vector
distance map, we use the approximate chamfer metric to be able to label
Voronoi lines using only two passes over the obstacle map. The method is

382 S. Kammel et al.

derived from an algorithm [Borgefors, 1986, Li and Vossepoel, 1998] for cal-
culating the euclidean distance transform. It gives the Voronoi lines as a set
of 8-connected pixels.

After matching the target position to the closest point on the Voronoi
graph, Dijkstras algorithm is used to calculate the shortest path distance
to the target position for every point on the graph. Cost for a position not
on the graph is derived by matching to the closest point on the graph and
incorporating the matching distance in a way that yields a gradient of the
cost function that is slightly sloped towards the Voronoi lines. Fig. 18(b)
shows an example.

Using this heuristic function is appealing for several reasons. Since the
Voronoi lines comprise the complete topology of the free space, search cannot
get stuck in a dead end configuration, as is common with heuristics that
do not incorporate knowledge of free space topology and therefore grossly
underestimate the cost in such a case. Additionally, the Voronoi lines have -
as the centers of maximum inscribing circles - the property of being at the
farthest distances possible from any obstacle. This is conveyed to the planned
paths, giving reserves to account for control- and measurement errors.

10.3.3 Combination of Cost Functions
We combine the two cost functions into one by the maximum operator. This
procedure can be justified from the admissibility principle for heuristics in
the context of A* search. A heuristic is called admissible, if it consistently
underestimates the cost to the target node. Consequently, combining two
heuristics via the maximum operator still gives an admissible heuristic. Re-
sult of comparing both costs coincides with the practical experience that in
the vicinity of the target position, cost is dominated by the necessity to ma-
neuver in order to reach the destination in right orientation, while cost at
long distances often is caused by the necessity to avoid obstacles. Fig. 10.3.3
shows some results of A* search using the search graph from Sec. 10.2 and
the combined cost function.

11 Vehicle Control

The last step of the processing chain is the vehicle control which can be sep-
arated into lateral and longitudinal control. Since the distances to dynamic
objects are fairly big in the Urban Challenge 2007 competition, for high-level
decision making the problem of trajectory planning (coordinates of the de-
sired vehicle position as a function of time) can be reduced to a combination
of path planning (path geometries with no time dependencies) and determin-
ing the free section of the path rather than an exact desired position. The
longitudinal strategy is thereby assigned to a lower level, which evaluates the
free section of the path and induces the vehicle to go faster or slower. The
information transfer of the interface is undertaken by so-called curve points,
a discrete representation of the path geometry.

Team AnnieWAY’s Autonomous System 383

(a) (b)

Fig. 19. Some results of path planning on simulated map data. (a): Navigating long
distances in a maze like environment. Planning was from A to B, B to C and C
to D subsequently. (b): Some difficult parking maneuvers performed subsequently.
Robot started on the right.

As the emphasis of the competition is on low to medium velocities, the
non-holonomic single track model holds and an orbital tracking controller
(e. g. [Müller, 2007]) is chosen for the lateral dynamics in Sec. 11.1. This
offers the advantage of a velocity independent transient lateral behavior for
the closed loop system. Suppose the vehicle had an offset from the planned
path of a couple centimeters caused by sensor drift of the navigation system,
the lateral controller would reduce the error over a certain traveled distance
rather than over time and avoids unpredictable overshoots of the front end
which might lead to collisions.

From the longitudinal controller’s point of view, the vehicle drives on rails,
as the lateral controller minimizes the lateral offset. Thus, the longitudinal
control strategy faces solely the task of following moving objects, stopping
at certain points, maintaining the maximum speed, and changing direction
along the given path. For this purpose different controllers are designed in
Sec. 11.2 that are included in an override control strategy ensuring bumpless
transfers between them. The output of every longitudinal controller is the ve-
hicle’s acceleration a. This acceleration will be converted to the manipulated
variables accelerator pedal value φgas and brake pressure pbrake in a cascaded
acceleration controller exceeding the scope of this contribution.

11.1 Orbital Tracking Controller

The dynamics of a non-holonomic vehicle (Fig. 20) in local coordinates sc, d,
and Δψ are given by

384 S. Kammel et al.

Fig. 20. Non-holonomic one track model.

d
dt

⎡

⎣
sc
d
Δψ

⎤

⎦ =

⎡

⎢
⎣

cosΔψ
1−dκc(sc)

sinΔψ
tan δ
l − κc(sc) cosΔψ

1−dκc(sc)

⎤

⎥
⎦ v, (18)

whereas the steering wheel angel δ and the longitudinal velocity v is the
system’s input, d is the lateral offset to the path, Δψ is the angle between
the vehicle and the tangent to the path, and l the distance between the rear
and the front axle. The singularity at 1 − dκc(sc) = 0 is no restriction in
practice since d� 1

κc(sc)
.

Since orbital tracking control does not have any time dependencies, (18)
can be rewritten with the arc length sc as the new time parametrization.

With d
dt () = d

dsc
() · dsc

dt it becomes

d
dsc

⎡

⎣
sc
d
Δψ

⎤

⎦ =

⎡

⎢
⎣

1
sinΔψ · 1−dκc(sc)

cosΔψ
tan δ
l · 1−dκc(sc)

cosΔψ − κc(sc)

⎤

⎥
⎦ . (19)

For small deviations d and Δψ from the desired curve and d
dsc

() = ()
′
, a

partial linearization leads to

[
d
Δψ

]′

=
[

0 1
0 0

] [
d
Δψ

]
+
[

0
−1

]
κc +

[
0
1
l

]
tan δ. (20)

The linearizing control law

δ = arctan(−lk0d− lk1Δψ + lκc) (21)
= arctan(−k�1d− k�2Δψ + lκc) (22)

Team AnnieWAY’s Autonomous System 385

Fig. 21. Trajectories for different initial positions.

with k0, k1 > 0 yields the stable linear error dynamics

d
dsc

[
d
Δψ

]
=
[

0 1
−k0 −k1

] [
d
Δψ

]
(23)

with respect to sc with the characteristic polynomial λ2+k1λ+k0 = 0. As long
as ṡc > 0, the system is also stable with respect to time. For backward driving
the signs of k0 and k1 have to be adjusted to the applied sign convention and
yields exactly the same error dynamics as for forward driving.

Fig. 21 shows the transient behavior to different initial errors Δψ and
d for forward (blue) and backward driving (red) simulated with MAT-
LAB/SIMULINK. As parameters for the simulation the Passat’s axis distance
l = 2.72, a maximum steering angle of δmax = 30◦, the controller parame-
ters k0 = 0.25 l and k1 = 1.25 l and equidistant curve point with Δ = 2m
were chosen. Obviously neither the input saturation δmax nor the discrete
representation of the curve cause any significant problems.

11.2 Longitudinal Controller System

11.2.1 Following Controller
Since the acceleration of a leading vehicle is hard to determine, it is assumed
that the vehicle keeps its velocity vB constant. Choosing the distance df and
its time derivative ḋf as the state variables and AnnieWAY’s acceleration
af = v̇ as the input, the system’s dynamics are given by

d
dt

[
df
ḋf

]
=
[

0 1
0 0

] [
df
ḋf

]
+
[

0
−1

]
af (24)

As DARPA requires the vehicle to maintain a minimum forward vehicle sep-
aration of one vehicle length minimum and one length for every additional
10 mph, the desired distance df,d can be calculated by

386 S. Kammel et al.

df,d = df,0 + τv (25)

with the according parameters df,0 and τ . Considering the acceleration v̇B of
the leading vehicle an unmeasurable disturbance, the linear set-point control
law

af = c0(df − df,d) + c1ḋf (26)
= c0(df − df,d) + c1(vB − v) (27)

and v = vB − ḋf yields the total system

d
dt

[
df
ḋf

]
=
[

0 1
−c0−c0τ − c1

][
df
ḋf

]
+
[

0
c0(df,0 + τvB)

]
. (28)

The characteristic polynomial λ2 + (c0τ + c1)λ+ c0 = 0 can directly be read
off from (28). A double Eigenvalue λ1/2 = −1 leads to a pleasant and yet safe
following behavior.

11.2.2 Stopping Controller
The following controller of the previous section leads to a behavior, which
can best be described as flowing with the traffic. By contrast, the stopping
controller should come to a controlled stop at a certain point as fast as
possible without exceeding any comfort criteria. The control law

as = − v2

2(df − dΔ)
(29)

leads to a constant deceleration until the vehicle is dΔ away from the stop
point. To prevent the controller from decelerating too soon and switching
on and off, a hysteresis with the thresholds as,max and as,min, as shown in
Fig. 22, is introduced. The singularity at df = dΔ is avoided by a PD position
controller that takes over via a min-operator and ensures a smooth and save
stop at the end.

11.2.3 Velocity Controller
As v̇ = a, the simple proportional velocity control law

av = −cv(v − vd) (30)

stabilizes AnnieWAY’s velocity v to the desired velocity vd with a PT1

behavior.

11.2.4 Override Control Strategy
All three previously introduced controllers are combined by an override
control strategy depicted in Fig. 22. The bumpless transfer between veloc-
ity control and following/stopping control is assured by the max operator.
Additional saturation, realized by amax and amin, prevent the vehicle from
inappropriately high acceleration or deceleration without reducing safety.

Team AnnieWAY’s Autonomous System 387

velocity controller

af

av

as

pbrake

Φgas

1

0

min

max

acceleration
controller

vehicle

×

amin

following controller

stopping controller

PD

max
amax

Fig. 22. Longitudinal override control strategy.

12 Results

Originally 89 teams have entered the competition, 11 of which were sponsored
by the organizer. After several stages, 36 of those teams were selected for the
semi-final. There, AnnieWAY has accomplished safe conduction of a variety
of maneuvers including

• regular driving on lanes
• turning at intersections with oncoming traffic
• lane change maneuvers
• vehicle following and passing
• following order of precedence at 4-way stops
• merging into moving traffic

Although the final event was originally planned to challenge 20 teams, only
11 finalists were selected by the organizers due to safety issues. AnnieWAY
has entered the final and was able to conduct a variety of driving maneuvers.
It drove collision-free, but stopped due to a software exception in one of the
modules.

Fig. 23 depicts three examples of the vehicles actual course taken from a
log-file and superimposed on an aerial image. The rightmost figure shows the
stopping position in the finals.

The following section points out some results of the navigation module.
Fig. 24(a) illustrates one test driven in a parking area close to our test ground.
Unlike the required navigation task in the Urban Challenge, the chosen setup
features many surrounding obstacles such as other cars and curbs.

Search time remains below 2 seconds in all practical situations. Though
the environment is assumed to be static, this is fast enough to cope with
slow changes in the environment by continuous replanning. Additionally, to
avoid collision with fast moving objects, a lower level process continuously
determines the free section of the planned path and, if necessary, invokes
a new search. The lateral controller follows the generated paths precisely
enough to implement all of the intended maneuvers.

Besides path planning in parking areas, the zone-navigation module was
used as recovery option in case of continuous blocking of lanes or intersections.

388 S. Kammel et al.

Fig. 23. Three steps of AnnieWAYs course driven autonomously in the finals.

Fig. 24. (a) Path planning in heavily occupied zone with mapper input (red)
and sampled waypoints as output to the controller (green). (b) Recovery maneuver
during final event, driven path is marked olive.

A wrong detected obstacle on the left lane forced activation of the navigation
module during the final event. The vehicle was successfully brought back on
track after a backup maneuver as can be seen in Fig. 24(b).

13 Conclusions

The autonomous vehicle AnnieWAY is capable of driving through urban sce-
narios and has successfully entered the finals of the 2007 DARPA Urban
Challenge competition. In contrast to earlier competitions, the Urban Chal-
lenge required to conduct missions in ’urban’ traffic, i.e. in the presence of
other autonomous and human-operated vehicles. The major challenge im-
posed was collision-free and rule-compliant driving in traffic. AnnieWAY is
based on a simple and robust hardware architecture. In particular, we rely on
a single computer system for all tasks but low level control. Environment per-
ception is mainly conducted by a roof-mounted laser scanner that measures
range and reflectivity for each pixel. While the former is used to provide 3D
scene geometry, the latter allows robust lane marker detection. Mission and
maneuver selection is conducted via a concurrent hierarchical state machine

Team AnnieWAY’s Autonomous System 389

that specifically asserts behavior in accordance with California traffic laws.
More than 100 hours of urban driving without human intervention in complex
urban settings with multiple cars, correct precedence order decision at inter-
sections and - last not least - the entry in the finals underline the performance
of the overall system.

Acknowledgments

The authors gratefully acknowledge the great collaboration of their partners
from Universität Karlsruhe, Technische Universität München and Universität
der Bundeswehr München. Special thanks are directed to Annie Lien for her
instant willingness and dedication as our official team leader. This work had
not been possible without the ongoing research of the Transregional Col-
laborative Research Centre 28 ’Cognitive Automobiles’. Both projects cross-
fertilized each other and revealed significant synergy. The authors gratefully
acknowledge support of the TCRC by the Deutsche Forschungsgemeinschaft
(German Research Foundation).

References

Bertozzi et al., 2000. Bertozzi, M., Broggi, A., Fascioli, A.: Vision-based intelligent
vehicles: State of the art and perspectives. J. of Robotics and Autonomous Sys-
tems 32, 1–16 (2000)

Biber and Strasser, 2006. Biber, P., Strasser, W.: nscan-matching: Simultaneous
matching of multiple scans and application to slam. In: IEEE International Con-
ference on Robotics and Automation (2006)

Borgefors, 1986. Borgefors, G.: Distance transformations in digital images. Com-
puter Vision, Graphics, and Image Processing 34(3), 344–371 (1986)

Bosse et al., 2003. Bosse, M., Newman, P.M., Leonard, J.J., Soika, M., Feiten, W.,
Teller, S.J.: An atlas framework for scalable mapping. In: Proceedings of the 2003
IEEE International Conference on Robotics and Automation, Taipei, Taiwan, pp.
1899–1906 (2003)

Bracewell, 1990. Bracewell, R.N.: Numerical transforms. Science 248(4956), 697–
704 (1990)

DARPA, 2005. DARPA, Grand Challenge 2005 (2005),
http://www.darpa.mil/grandchallenge/overview.html

Dickmanns et al., 1994. Dickmanns, E.D., Behringer, R., Dickmanns, D., Hilde-
brandt, T., Maurer, M., Thomanek, F., Schielen, J.: The seeing passenger car
“VaMoRs-P”. In: Proc. Symp. On Intelligent Vehicles, Paris, pp. 68–73 (1994)

Franke et al., 2001. Franke, U., Gavrila, D., Gern, A., Goerzig, S., Jansen, R., Paet-
zold, F., Wöhler, C.: From door to door – Principles and applications of computer
vision for driver assistant systems. In: Vlacic, L., Harashima, F., Parent, M. (eds.)
Intelligent Vehicle Technologies: Theory and Applications, ch. 6, pp. 131–188.
Butterworth Heinemann, Oxford (2001)

Goebl and Färber, 2007a. Goebl, M., Färber, G.: Eine realzeitfähige Soft-
warearchitektur für kognitive Automobile. In: Berns, K., Luksch, T. (eds.) Au-
tonome Mobile Systeme 2007, Informatik Aktuell, pp. 198–204. Springer, Heidel-
berg (2007a)

390 S. Kammel et al.

Goebl and Färber, 2007b. Goebl, M., Färber, G.: A real-time-capable hard- and
software architecture for joint image and knowledge processing in cognitive au-
tomobiles. In: Proc. IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, pp.
734–739 (2007b)

Hummel et al., 2006. Hummel, B., Kammel, S., Dang, T., Duchow, C., Stiller, C.:
Vision-based path-planning in unstructured environments. In: IEEE Intelligent
Vehicles Symposium, Tokyo, Japan (2006)

Hwang and Ahuja, 1992. Hwang, Y.K., Ahuja, N.: Gross motion planning - a sur-
vey. ACM Comput. Surv. 24(3), 219–291 (1992)

Kalman, 1960. Kalman, R.: A new approach to linear filtering and prediction prob-
lems. Journal of Basic Engineering 82(1), 35–45 (1960)

Kavraki, 1995. Kavraki, L.: Computation of configuration-space obstacles using the
fast fourier transform. IEEE Transactions on Robotics and Automation 11(3),
408–413 (1995)

Li and Vossepoel, 1998. Li, H., Vossepoel, A.M.: Generation of the euclidean skele-
ton from the vector distance map by a bisector decision rule. In: CVPR 1998:
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, Washington, DC, USA, p. 66. IEEE Computer Society, Los
Alamitos (1998)

Müller, 2007. Müller, B., Deutscher, J.: Orbital tracking control for car parking
via control of the clock. In: Methoden und Anwendungen der Regelungstechnik,
Erlangen-Münchener Workshops 2005 und 2006, Shaker Verlag, Aachen (2007)

Nagel et al., 1995. Nagel, H.-H., Enkelmann, W., Struck, G.: FhG-Co-Driver: From
map-guided automatic driving by machine vision to a cooperative driver support.
Mathematical and Computer Modelling 22, 185–212 (1995)

Özgüner et al., 2007. Özgüner, Ü., Stiller, C., Redmill, K.: Systems for safety and
autonomous behavior in cars: The DARPA Grand Challenge experience. IEEE
Proceedings 95(2), 1–16 (2007)

Reeds and Shepp, 1991. Reeds, J., Shepp, R.: Optimal paths for a car that goes
both forward and backward. Pacific Journal of Mathematics 145, 144–154 (1991)

Schwartz and Sharir, 1983. Schwartz, J.T., Sharir, M.: On the piano movers’ prob-
lem, ii: General techniques for computing topological properties of real algebraic
manifolds. Advances in Applied Mathematics 4, 298–351 (1983)

Thorpe, 1990. Thorpe, C.: Vision and navigation - The Carnegie Mellon Navlab.
Kluwer Academic Publishers, Dordrecht (1990)

Thrun, 2002. Thrun, S.: Robotic mapping: A survey. In: Lakemeyer, G., Nebel, B.
(eds.) Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann,
San Francisco (2002)

Thrun, 2003. Thrun, S.: Learning occupancy grid maps with forward sensor mod-
els. Auton. Robots 15(2), 111–127 (2003)

Thrun et al., 2006. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron,
A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley,
C., Palatucci, M., Pratt, V., Stang, P., Strohband, S., Dupont, C., Jendrossek,
L.-E., Koelen, C., Markey, C., Rummel, C., Niekerk, J., Jensen, E., Alessandrini,
P., Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., Mahoney, P.:
Stanley: The robot that won the DARPA Grand Challenge. Journal of Field
Robotics 23(9), 661–692 (2006)

Team AnnieWAY’s Autonomous System 391

v. Hundelshausen et al., 2008. v Hundelshausen, F., Himmelsbach, M., Mueller,
A., Wuensche, H.-J.: Tentacles- a biologically inspired approach for robot navi-
gation. Journal of Field Robotics (under submission)

Šwestka and Overmars, 1997. Šwestka, P., Overmars, M.: Motion planning for car-
like robots using a probabilistic learning approach. The International Journal of
Robotics Research 16(2), 119–143 (1997)

Driving with Tentacles - Integral Structures
for Sensing and Motion

Felix v. Hundelshausen, Michael Himmelsbach, Falk Hecker, Andre Mueller,
and Hans-Joachim Wuensche

Autonomous Systems Technology
Department of Aerospace Engineering
University of the Federal Armed Forces Munich
85579 Neubiberg, Germany
felix@unibw.de, michael.himmelsbach@unibw.de, falk.hecker@unibw.de,
andre.mueller@unibw.de, joe.wuensche@unibw.de

Abstract. In this paper we describe a LIDAR-based navigation approach applied
at both the C-Elrob (European Land Robot Trial) 2007 and the DARPA Urban
Challenge 2007. At the C-Elrob 2007 the approach was used without any prior
knowledge about the terrain and without GPS. At the Urban Challenge the ap-
proach was combined with a GPS-based path follower. At the core of the method
is a set of “tentacles” that represent precalculated trajectories defined in the ego-
centered coordinate space of the vehicle. Similar to an insect’s antennae or feelers,
they fan out with different curvatures discretizing the basic driving options of the
vehicle. We detail how the approach can be used for exploration of unknown envi-
ronments and how it can be extended to combined GPS path following and obstacle
avoidance allowing save road following in case of GPS offsets.

1 Introduction

In this paper, we put forth a very simple method for autonomous robot navi-
gation in unknown environments. The method is not restricted to a particular
robot or sensor, however we demonstrated it on the two vehicles in which the
approach was integrated. Our method was applied at the Civilean European
Land Robot Trial 2007 (C-Elrob 2007) on our VW-Touareg MuCAR-3 (Mu-
nich Cognitive Autonomous Robot, 3rd generation) and the DARPA Urban
Challenge 2007 (UC07) on the VW-Passat of Team AnnieWay. Both vehicles
had an almost identical hardware setup, in particular both being equipped
with a Velodyne 64 beam 360 degrees LIDAR (see figure 1).

While quite complex approaches to mobile robot navigation exist (e.g solv-
ing the SLAM problem (Dissanayake et al., 2001; Julier and Uhlmann, 2001),
methods based on trajectory planning (Sariff, 2006)), our research was driven
by the search for simplicity: What is the simplest approach that lets a
robot safely drive in an unknown environment? Intentionally, we write

M. Buehler et al. (Eds.): The DARPA Urban Challenge, STAR 56, pp. 393–440.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

394 F.v. Hundelshausen et al.

(b)(a)

Fig. 1. The two vehicles our approach was tested with. (a) The VW-Passat of
Darpa Urban Challenge finalist Team AnnieWay (b) The VW-Touareg MuCAR-3
(Munich Cognitive Autonomous Robot, 3rd generation), a C-Elrob 2007 Champion.
Both vehicles are equipped with a 360 degree Velodyne-LIDAR as primary sensor
scanning its environment at 10 Hz using 64 laser beams.

(a) (b) (c) (d)

Fig. 2. (a) Among other functions insects use antennae as tactile sense (b) Shakey
(Nilsson, 1984) - one of the first robots - uses mechanical “cat-whiskers” to detect
collisions (c) Braitenberg vehicles use some sort of antennae with simple, hard-
wired reactive mechanisms to produce complex behaviors (d) In our approach we
use speed depending sets of antennaes that we call “tentacles”.

“drive” instead of “explore” because we do not demand to construct a map of
the environment (in contrast to SLAM approaches (Dissanayake et al., 2001;
Julier and Uhlmann, 2001)), but just demand safe driving within that envi-
ronment. Our basic intention underlying this paper is to let our robot move
within an unknown environment similarly to how a beetle would crawl around
and uses its antennae to avoid obstacles. Indeed, our basic approach consists of
using a set of virtual antennae that we call “tentacles” probing an ego-centered
occupancy grid for drivability. Of course, the idea of using antennae is not new:
In fact, one of the first robots,“Shakey” (Nilsson, 1984), used “cat-whiskers”
(micro-switches actuated by a 6 inch long coil spring extended by piano wires to
provide longer reach) to sense the presence of a solid object within the braking

Driving with Tentacles - Integral Structures for Sensing and Motion 395

distance of the vehicle when traveling at top speed (see fig 2b). In his cybernetic
thought games (Braitenberg, 1984), Valentino Braitenberg showed that com-
plicated behavior can emerge by very simple mechanisms, and almost all of his
vehicles (known under the term Braitenberg vehicles) use sensors resembling
an insects’s antennae (figure2c).

Some systems in mobile robotics integrate modules that are similar to our
approach in that some sort of precalculated trajectories are verified to be driv-
able: In (Kelly and Stentz, 1998) the authors follow the idea of model refer-
enced control (Landau, 1979) implemented through command space sampling
and evaluating a set of candidate trajectories. In (Lamon et al., 2006) a set of
feasible arcs is used as a first step in a path planning algorithm. Stanley, the
robot that won the DARPA Grand Challenge in 2005, used a set of candidate
paths (“nudges” and ”swerves“) for path planning (Thrun et al., 2006).

In the DAMN framework (Distributed Architecture for Mobile Navigation)
(Rosenblatt, 1995) four different arbitration schemes for integrating the re-
sults of different distributed behaviors are proposed. One of those arbitration
schemes is actuation arbitration, and the work of (Rosenblatt, 1995) sketches
an example of that scheme, where different turn behaviors cast votes on can-
didate vehicle curvature commands. The difference of our approach is that the
candidate commands are not only used as candidate instances in a command
space but our ”tentacles” are also used as perceptual primitives and a very
detailed process of how those primitives are used to evaluate an occupancy
grid is proposed. This evaluation process includes some new structures and
aspects, including the differentiation between a support and a classification
area, the use of a longitudinal histogram for classifying tentacles as being
drivable or not, determining the distance to the first obstacle along a tenta-
cle, a speed depending evaluation length (the crash distance) that allows to
reduce the number of required primitives drastically.

Another work in the context of planetary rover exploration that looks very
similar to our approach at first glance is GESTALT (Grid-based Estimation
of Surface Traversability Applied to Local Terrain) (Goldberg et al., 2002).
Similar to our approach, GESTALT selects an arc with maximum good-
ness according to various criteria, however the main difference to our ap-
proach is that GESTALT uses a global grid and accumulates data over time
in this grid. In doing so, the approach becomes an instance of the SLAM
problem:

“At the end of each step, sensors are expected to provide a reasonably
accurate estimate of the rover’s new position. GESTALT does not require that
the rover motion exactly match that with the commanded, but it does assume
that whereever the rover ended up, its relative position and orientation can
be reasonably be inferred and provided as input. That is one limitation of the
system, that it relies on other modules to deal with myriad position estimation
problems (slipping in sand, getting stuck on a rock, freeing a jammed wheel,
etc)” ((Goldberg et al., 2002), page 4, last paragraph).

396 F.v. Hundelshausen et al.

In contrast, our approach does not accumulate data and uses a local ego-
centered grid, thereby avoiding the SLAM problem. Another difference of
our approach is that it provides speed-depending mechanisms for evaluating
tentacles. This speed-dependency is a crucial point in our approach because
it allows us to restrict the motion-primitives to a small set while still being
able to drive through narrow passages having shapes other than circular arcs.

The work most similar to our approach is (Coombs et al., 2000): Here, a
fixed tree structure with 5 levels (the root being located at the robot’s po-
sition) is used. The first level consists of 20 m long precalculated clothoids
while the other levels consist of straight line connections. Within this tree, all
possible paths from the root to the leaves form the set of possible trajectories.
The whole tree consist of about 4000 edges, resulting in a combinatorial power
of over 15 million trajectories. In contrast to this work our approach works
well with only 81 precalculated “tentacles” at a given speed, and no combi-
nations of adjacent path fragments are required. This low number of possible
path fragments is possible due to the special speed depending mechanism in
our tentacle-evaluation process (to be detailed later), and is even sufficient
in scenarios with narrow curved roads. All path fragments take the shape of
circular arcs. In contrast to the aforementioned approaches, the basic sam-
ples for maneuvers are more short-termed and more reactive in the sense of
simple Braitenberg-vehicles in our work, however - as will be shown - the way
of evaluating the different driving-options is much more detailed and multi-
faceted than existing approaches. The approach as detailed in this paper was
tested excessively on common residential roads and offroad terrain: Our al-
gorithm was successfully demonstrated at both the C-Elrob 2007 (driving
record time in a combined urban and non-urban course including serpentines
without using GPS, driving 90 percent of the course autonomously) and the
DARPA Urban Challenge 2007 (getting into the final)1. Our approach is fully
described, simple to implement and ready to use.

The remainder of the paper is organized as follows: In section 2 we detail
the generation process of an ego-centered occupancy grid - the input domain
for our method. In section 3 we detail the structure and generation of our
“tentacles”. Section 4 describes how the “best tentacle” is selected in each
iteration and section 5 how this tentacle is executed. Section 6 analyzes our
approach with respect to vehicle dynamics, computing upper bounds for path
deviations. Section 7 describes experiments and the performance at competi-
tions where our approach was used and details its overall system integration.
Also, some lessons learned are described in this section. Finally section 8
concludes our paper. Throughout our paper, we specify the values of all pa-
rameters, such that our approach may be reproduced and serve as a reference
for future improvements.
1 The algorithm was integrated in the DARPA Urban Challenge 2007 team

“AnnieWay” (Kammel, 2007).

Driving with Tentacles - Integral Structures for Sensing and Motion 397

2 Occupancy Grid

We use a two dimensional occupancy grid with 512× 512 cells, each covering
a small ground patch of 25cm× 25cm. Each cell stores a single floating point
value expressing the degree of how occupied that cell is by an obstacle. In our
implementation this value is a metric length with the physical unit ”meters“.
Before we detail its meaning and calculation, note that in our approach we
create a new occupancy grid on each new LIDAR rotation, i.e every 100ms
as our LIDAR is set to turn at 10Hz. Thus, we do not accumulate data for
a longer time. The reasons for this decision are: First one rotation of our
64-beam Velodyne-sensor supplies about 100.000 3D points, which proved
to be sufficient. Second, the quality of an accumulated occupancy grid can
easily deteriorate, if the physical movement of the sensor is not estimated
with very high precision. Small angular deviations in the estimate of the sen-
sor’s pose can result in large errors. Registering scans against each other, e.g.
using the ICP (Besl and McKay, 1992) algorithm or some of its derivatives
could solve this problem but would require substantial additional computa-
tional load. Similarly, accumulating data in a grid requires additional time-
consuming maintenance operations, like copying or removing data from the
grid. A scrolling or wrappable map as proposed in (Kelly and Stentz, 1998)
is not expedient in our case, because our method requires an ego-centered
grid for efficiency. Hence, we decided not to accumulate data although this
question might remain controversial:

Consider, for example, the case of the vehicle approaching a pavement
edge. Depending on how the sensor is mounted, the Velodyne LIDAR typ-
ically has a “blind area” of some meters around the vehicle not hit by any
beam. Thus, part of the pavement edge might get invisible. When no explicit
representation (besides the grid) of such a pavement edge is used, grid accu-
mulation would be helpful. However, this accumulation should be done with
care as will become clearer when detailing how the grid values are computed.
We first assume that every single LIDAR measurement of the last frame
has instantly been transformed to a global cartesian 3D coordinate system,
taking into account the vehicle’s own motion (exploiting IMU and odometric

64 laser beams
3D lidar measurements (points)

all three points fall into the same grid cell

max. difference in
z-coordinates

Fig. 3. To show how the grid is computed only 3 of the 64 laser beams of our
sensor are shown as they hit an obstacle. The corresponding points in 3D space fall
into the same grid cell. A grid value is computed to be the maximum difference of
z-coordinates of points in 3D space falling into the same grid cell.

398 F.v. Hundelshausen et al.

Fig. 4. At the right hand side a cut out of the occupancy grid on the left is shown.
The position of the vehicle in the grid is always in the center. The grid is “hard-
mounted” to the vehicle. Cells with large z-differences are shown white, smaller
z-differences are shown as gray values.

one of the 64 laser beams over time

all three points fall into the same grid cell

max. difference in
z-coordinates

obstacle

3D lidar measurements (points)

Fig. 5. One of the 64 LIDAR beams slices an obstacle over time. Due to the high
horizontal resolution of the LIDAR, even a single beam might produce different
z-values of points falling into the same grid cell.

information). This is done by simultaneously moving the coordinate system
of the vehicle while transforming the local LIDAR measurements to global
3D space. After a frame is completed all points are transformed back into the
last local coordinate system of the vehicle, simulating a scan as if all measure-
ments were taken at a single point of time instead of the 100ms time period
of one LIDAR revolution. While integrating IMU and odometric data over
a long period of time leads to large drifts, the drift can be neglected for the
short time period of 100ms. Each grid value is then computed to be the max-
imum difference in z-coordinates of all points falling into the respective grid
cell. We refer to this value as grid or occupancy value throughout the text.
To see the rational behind this computation consider an obstacle in front of
the vehicle as shown in figure 3. Such a z-difference doesn’t necessarily need
to emerge from different beams. Due to the high horizontal resolution of the
LIDAR, even a single beam might slice an obstacle and produce different
z-values of points that fall into the same grid cell (see figure 5).

Note that by using z-coordinate differences, we only get a 2 1
2D model of

the world. While this model can capture both obstacles that are in contact
with the ground as well as ones that aren’t, it can not differentiate between
both - it is missing absolute z-coordinates. As a result of this limitation, the
obstacle avoidance behavior will be conservative, e.g. the vehicle will try to

Driving with Tentacles - Integral Structures for Sensing and Motion 399

avoid tree branches even if it could safely pass beneath them. Likewise, it
will avoid obstacles such as barriers, as desired.

If our approach should be modified in a way that data accumulation is
done, we recommend to use points only from the same LIDAR turn when
calculating the differences in z-coordinates and rather accumulate the results
than the raw 3D point data . Figure 4 shows an example of our grid (with
no data accumulation).

3 Tentacle Structure and Generation

In our system we use 16 sets of tentacles. As shown in figure 6 each of these
“speed sets” contains 81 tentacles corresponding to a specific velocity of the
vehicle. The speed sets cover a range of velocities from 0 to 10 m/s with lower
speeds being represented more frequently. All tentacles are represented in the
local coordinate system of the vehicle. They start at the vehicle’s center of
gravity and take the shape of circular arcs. Each arc represents the trajectory
corresponding to a specific steering angle. At low speeds, higher curvatures
are present than at high speeds. The tentacle’s lengths increase with higher
speed sets, whereas within a set less curved tentacles are longer.

For a justification of the choice of circular arcs consider that each tentacle
will be executed only for 0.1 seconds, and hence the overall resulting trajec-
tory can be thought of a concatenation of small circular fragments. For the
above choice of a maximum speed of 10m/s the maximum length of a frag-
ment is 1m. Hence, we can reasonably well approximate all possible clothoids
the vehicle can drive.

3.1 Geometry

Our tentacles have the shape of circular arcs. They are used for both per-
ception and motion execution. For perception, they span two areas, a classi-
fication and a support area that are used to probe the grid underneath the
tentacle. For execution, an initial fragment of a selected tentacle is considered

Fig. 6. The range of speeds from 0 to 10 m/s is represented by 16 speed sets, each
containing 81 tentacles. Only four of these sets are shown here. The tentacles are
circular arcs and start at the center of gravity of the vehicle.

400 F.v. Hundelshausen et al.

as a path to be driven for one LIDAR frame (0.1 seconds). Different execution
options exist, with the simplest method just setting the appropriate steering
angle corresponding to the selected tentacle - combined with a temporal fil-
tering method to avoid all-too sudden changes in curvatures. As we will see
in section 6, the execution modes will cause the vehicle to not precisely drive
along the sequences of tentacles. Our rational is not to care about the pre-
cise trajectory but just to ensure that the resulting path is within a corridor
spanned by the tentacles. The trick is to make the tentacles broader than the
vehicle, such that the maximum possible path deviation is included in the
area that is evaluated to be free of obstacles.

3.1.1 The Tentacles in Our Experiments
Originally, our algorithm was conceived, implemented and used at the C-
Elrob and DARPA Urban Challenge 2007 without analyzing the vehicle dy-
namics. By large, the design was put forth in an ad hoc manner and verified
and refined by excessive experiments. Some design issues have a physical
reasoning, but with no real theoretic derivation that is founded on vehicle
dynamics. Many of the parameters and formulas that define them were de-
termined empirically. The justification for this is that all our choices are far
behind the physical limits of the vehicle. And within this space of physi-
cal feasibility we just exploit the given freedom in design. In section 6, we
will provide a theoretic study of the vehicle dynamics and we are able to
theoretically justify our choices in the retrospective. The analysis also sug-
gests some improvements, however we first want to precisely describe our
original ad-hoc design, such that this paper is still a valid reference on the
Darpa Urban Challenge 2007 implementation and the method can exactly be
reproduced.

We briefly detail the geometry of the tentacles used: With n = 16 being the
number of speed sets, the radius rk of the kth tentacle in a set is given by

rk =

⎧
⎨

⎩

ρkRj | k = 0, ..., 39
∞ | k = 40

−ρk−41Rj | k = 41, ..., 80
, (1)

where the exponential factor ρ = 1.15 and the initial radius Rj of speed set
j = 0, ...15 is

Rj =
l

Δφ(1 − q0.9) (2)

and
l = 8m + 33.5m q1.2 (3)

is the length of the outmost tentacles, with q = j/(n − 1) and Δφ = 1.2π2
being the angle subtended by the outmost tentacle of the lowest speed set
(the most curved one). The length of the kth tentacle is given by

Driving with Tentacles - Integral Structures for Sensing and Motion 401

lk =

⎧
⎨

⎩
l + 20m

√
k
40 | k = 0, ..., 40

l + 20m
√

k−40
40 | k = 41, ..., 80

. (4)

For the UC07, the velocity for speed set j was computed by

vj = vs + q1.2(ve − vs), (5)

where the speed of the lowest speed set is vs = 0.25m/s and the maximum
speed is ve = 10m/s. This choice has no physical justification other than that
the resulting curves are comfortably drivable with the specified speeds. The
design was set up empirically and tested by experiments. The motivation for
the exponential factor q1.2 is to sample low speeds more frequently. Similarly,
the reason for the exponential form in (1) is to have more tentacles with small
curvatures and a coarser distribution at larger curvatures. The idea is that
the tentacle approach should have more options for “fine-motor” primitives.
However, there is no physical reason for this choice. A uniform distribution
of radii would probably work, too. An interesting idea for the future is not
to design the tentacles but to learn the distribution from a human driver by
observing and segmenting the trajectories he drives. Equation (2) defines the
base radius Rj of each speed set that is the radius of the outmost and most
curved tentacle of speed set j. The tentacles that are directed straight need
to have a certain length to ensure a sufficient lookahead distance, depending
on the speed. When all tentacles of a given speed set would have this mini-
mum length, the outmost tentacles would actually bend behind the vehicle.
To avoid this, the outmost tentacles need to be shorter than the ones pointing
straight. The reason why the straight tentacles should have a certain length
is that we want to allow the selection mechanism to probe a larger portion of
space, detecting obstacles far before they cause danger and require immedi-
ate braking. Hence, if we ignore the term (1− q0.9) for a moment the initial
radius Rj is calculated such that the angular scope of the tentacle arc is ΔΦ,
slightly more than 90 degrees for the slowest speed set. This means, that at
very low speeds the vehicle can look around e.g. a road branch, slightly more
than 90 degrees. The term (1 − q0.9) lets the radii of the outmost tentacles
increase with successive speed sets. One could argue that it would have been
better to define the outmost radii according to an underlying physical prop-
erty, e.g limiting the centripetal force at a given speed. However, while such
a definition sounds more sophisticated at first glance, it is not pure physics
that defines the proper structure. Of course, for safety reasons, we want to
stay far beyond the physical limits of the vehicle. But within those bounds,
physics might not be the desired property. For instance, restricting or allow-
ing curvatures might also depend on the environment. For instance, when
driving on highways, one might want to restrict curvatures far beyond the
physical limits, knowing that highways are not built to have those high cur-
vatures. Hence, the design of the tentacles has an ecological perspective, too.
According to our design, the lengths of the tentacles then increase from outer

402 F.v. Hundelshausen et al.

to inner tentacles and from lower to higher speed sets. The given design lets
the center tentacle of the highest speed-set together with its classification and
support areas exactly reach the far end of the occupancy grid (see figure 6).

3.2 Support and Classification Area

When a tentacle is evaluated, occupancy cells within a radius ds to any point
on the tentacle are accessed. Those cells form the support area of the tentacle.
A subset of those cells form the classification area comprising cells within a
radius dc < ds to any point on the tentacle. The geometric definition of these
areas is illustrated in figure 7. While the classification area is later used to
determine tentacles that are drivable in principle, the support area is used to
determine the “best” of all drivable tentacles. For low speeds the classification
area is only slightly wider than the vehicle, allowing to drive along narrow
roads or through narrow gates. For higher speeds, the width of the area
increases. The reason for this is that the additional width has to ensure that
the trajectory that results from executing the tentacle is within the corridor
defined by the classification area. This is due to the fact that when executing
a tentacle, the vehicle will not precisely follow its shape. This is no problem as
long as we can guarantee that the resulting path is within the classification
area, and hence free of obstacles. A theoretical investigation on this issue
will be conducted in section Section 6. In contrast, the support area is much
wider than the vehicle. This allows the algorithm to be parameterized in a
way, that e.g the vehicle exploits free space and drives in the center of a wide
path, instead of driving always close to the border of the path. This behavior
might not be desired in some scenarios and can be disabled as explained in
later sections. The distances ds and dc increase with the speed of the vehicle
(speed sets), such that the vehicle would take a larger lateral security distance
when driving around obstacles at high speeds or declaring a narrow gate as
impassable at high speeds while classifying it as drivable at low speeds.

An important point is that the geometric relation between a specific ten-
tacle and the occupancy grid cells remains always the same, since the grid
is specified in the coordinate system of the vehicle. Thus, the cell offset
o = Δx · y + x (Δx = 512, the width of the occupancy grid, x, y being
cell indices) of the cells (x, y) indexed by a tentacle’s support and classifi-
cation area remain always the same. This static geometric relation allows
to precompute all cell offsets for each tentacle and store the ns cells of the
support area as the set A = {c0, ..., cns−1}, with

ci := (oi, wi, ki, fi). (6)

Here, oi is the offset of the cell, uniquely specifying its position in the grid
as described above and allowing fast memory access later. The value wi is a
weight and ki is a histogram index (both to be detailed later) associated with
the respective cell of the support area. The flags fi are set such that the subset
Ac ⊂ A describing the classification area is given by Ac = {ci ∈ A|fi = 1}.

Driving with Tentacles - Integral Structures for Sensing and Motion 403

s

lk

ds

ds

ds

rectangular
region excluded

(a) support area (b) classification area

dc

dc

dc

s

lk

Fig. 7. (a) The support area covers all cells within a distance ds of the tentacle
(start point shifted about s). The cells of the support area are subject to different
weights as explained in the main text. (b) The classification area is a subset of
the support area covering all cells within a distance dc < ds of the tentacle (start
point again shifted about s). No weights are specified for the classification area. A
rectangular region around the vehicle (no LIDAR measurements are made in this
area) is excluded from both the support and the classification area.

(a)

c
i

di

distance d

cross-profile function p(d)

ds0

wmax

(b)

di

wi

dc

Fig. 8. The weight wi of a cell ci is calculated by passing its distance di to the
tentacle (see (a)) to the cross-profile function p(d) (see (b) and equation 7).

As illustrated in figure 8 the weight wi of a cell ci is computed by passing
the cell’s distance di to the tentacle (orthogonal distance except at the start
and end point of the tentacle) as argument to the cross-profile function

p(d) =

{
wmax | d <= dc
wmax

κ+ d−dc
σ

| d > dc
, (7)

404 F.v. Hundelshausen et al.

histogram bins along tentacle
cell ci

012...

n
h

k
i

Fig. 9. Each tentacle has a longitudinal histogram with its bins aligned along the
tentacle, discretizing the tentacle’s length. Grid cells are projected orthogonally
onto the tentacle to compute the histogram index ki of a cell ci. (see definition 6
on page 402)

where κ = 1, σ = 0.16 and wmax = 10 in our implementation. For the C-Elrob
2007 and the DARPA Urban Challenge 2007 the value dc was empirically
specified for each speed set j with corresponding velocity v by:

dc =

{
1.7m+ 0.2m v

3m/s | v < 3m/s

1.9m+ 0.6m (v−3m/s)
10m/s | 3m/s < v <= 10m/s

(8)

A weakness of this design is that it not theoretically but only empirically
justified. However, we will provide a theoretical analysis in section 6, showing
that our choice was above a required minimum width that can theoretically
be justified considering the dynamics of the vehicle.

3.3 Longitudinal Histogram

We aim to binary classify all tentacles whether they are drivable or not. In
case they are occupied, we also wish to compute the distance to the first
obstacle along the tentacle. For these calculations, we define a histogram for
each tentacle with its bins aligned along the curve of the tentacle, discretizing
its length into a sequence of nh bins 0, ..., nh−1 (nh = 200 in our implementa-
tion). To determine the cells that contribute to a bins value, we orthogonally
project every cell onto the tentacle retrieving the cell’s histogram index ki. To
speed up later histogram calculations, all ki are precomputed (see figure 9).
Here, ki is the second to last value in definition 6 on page 402.

Driving with Tentacles - Integral Structures for Sensing and Motion 405

4 Selection Mechanism

With the description of the tentacle related data-structures and their com-
putation being completed, in this section we show how a tentacle is selected
with each new LIDAR frame (10 Hz). This tentacle is then used to derive the
final trajectory to drive. To decide for the “best” tentacle, first all drivable
tentacles are determined. For these valid tentacles, three values are calcu-
lated (clearance, flatness and trajectory value). Later, they will be linearly
combined to derive a single decision value which is minimized. Our descrip-
tion continues detailing the classification step and the three aforementioned
decision affectors. We assume that a new cycle has started and the occupancy
grid has been updated with the latest scan.

4.1 Tentacle Classification

Classifying a tentacle whether it is drivable or not happens at the same time
as determining the distance to the first obstacle (if any) along that tentacle.
The longitudinal histogram provided with each tentacle is used for this pur-
pose: Initially, the bins are all cleared. Then, all cells ci = (oi, wi, ki, fi) ∈ Ac
of the classification area are used to access the occupancy grid with memory
offset oi, obtaining the occupancy value vi = g(oi) at the cell’s location. Here,
g(o) is the function that returns the z-difference of the grid cell at location o.
Due to the wheel radius of our vehicle we are interested in obstacles greater
than 0.1m. Thus, if vi exceeds a threshold of tc = 0.1m, the histogram bin ki
is incremented (see figure 9). Only the classification area and not the support
area is used for this step, allowing the vehicle to drive through narrow areas
being only slightly wider than the vehicle. Also, no weighting takes place in
this step, since an obstacle in the classification area will cause damage to the
vehicle independent of its lateral position within the classification area. As
illustrated in figure 10, an obstacle is detected if the sum of all bins within a
sliding window (of nw bins) exceeds a threshold of no (in our implementation
nw = 5, no = 2 and the total number of bins is nh = 200). If no obstacle is
detected, the tentacle is classified as drivable. However, a peculiarity of our
approach is that if an obstacle is detected, the tentacle is classified as undriv-
able, solely if the distance to this obstacle is below a so-called crash distance
lc. Roughly speaking, if the obstacle is distant, the tentacle is still drivable
for some time. Here, the crash distance is the distance the vehicle needs to
stop using a constant convenient deceleration a plus a security distance ls. It
depends on the speed v of the vehicle and is calculated by

lc = ls +
v2

2a
. (9)

In our implementation, ls = 6m and a = 1.5m
s2 . Summarizing, a tentacle

is classified as non-drivable, only if an obstacle is within a distance lc along

406 F.v. Hundelshausen et al.

histogram bins along tentacle
cell ci

012...
n

h

k
i

Fig. 10. A sliding window is used to determine the position of the first obstacle.
The window is initially placed at bin 0 and successively slid to higher bin indices.
If the sum of bin values within this window exceeds a threshold no (no = 1 in our
experiments), an obstacle is detected and the position of the sliding window yields
the distance lo to this first obstacle.

that tentacle. While this mechanism might seem like an optional gadget, it
is actually very important. To see why, consider the scenario as illustrated in
figure 11a. Here, a car is blocking the lane leaving only a narrow passage to
drive around the car without hitting either the car or the pavement edges of
the road. As can be seen, the geometry of the scenario renders all tentacles
occupied by either the car or the road side, and no tentacle is completely free.
Hence, an approach that would classify all occupied tentacles as non-drivable
would not be able to drive around the car. This is the reason why similar
approaches like (Thrun et al., 2006) or (Coombs et al., 2000) require geome-
tries different from arcs. However, when introducing the concept of classifying
tentacles as “undrivable” only if an obstacle is within the crash-distance, the
case can be handled as illustrated in figure 11b. One might argue, that in-
troducing the crash distance is just the same as defining shorter tentacles.
However this is not the case, since tentacles with a more distant obstacle are
still preferred. This mechanism will be detailed in the next sections, where
we describe the calculation of three decision-affecting values. Those values
will only be calculated for tentacles that were classified as drivable, and only
these constitute the set the “best” tentacle is selected from.

Driving with Tentacles - Integral Structures for Sensing and Motion 407

(a) (b)

drivable tentaclesno drivable tentacles

Fig. 11. Both figures (a) and (b) show the case where a car is blocking the right
lane of a road and only a narrow passage is left to pass the car. The red points
mark the locations along the tentacles where the vehicle would hit either the car
or the road border. As can be seen, no tentacle is free of obstacles. Hence, by
neglecting the distance to an obstacle, all tentacles would be classified undrivable
(a). In contrast, (b) shows that the concept of classifying tentacles as undrivable
only in case of being occupied within a speed depending crash distance (see main
text). In this case, some drivable tentacles remain, allowing to pass the car.

4.2 Braking and Crash Distance

The influence of the crash distance lc (see (9)) on classifying a tentacle as
being drivable and its interplay with a simple braking mechanism is the main
reason why our approach accomplishes to use only 81 arcs but still can drive
along narrow roads and avoid obstacles in difficult situations. The crash dis-
tance can be seen as cutting the evaluation length (only for the purpose of
classification) of the tentacle before its end. This mechanism has to be seen
in combination with the simple braking mechanism that acts as follows:

If no tentacle is drivable the tentacle with the largest distance to the first
obstacle is selected and the vehicle chooses this tentacle for braking. The
vehicle then brakes with a constant deceleration along this tentacle. This
execution of this brake tentacle is only performed for a period of 0.1 seconds,
then all tentacles are evaluated anew at the next time step.

Now consider the case that the vehicle is entering a narrow way with a
speed set and crash distance that has no tentacle that is drivable, just because
the shape of the narrow way doesn’t correspond to any of the tentacles. Hence,
the vehicle will brake and the velocity and crash distance reduces. However,
reducing the crash distance lets some obstacles that were before the old crash
distance now be behind the new crash distance, “freeing” some tentacles. In
the extreme, the vehicle brakes until it almost stops. However, at low speeds
the crash distance is very small, meaning that even quite close obstacles along
a tentacle are not considered as making the tentacle undrivable for one time
step, simply because there is enough space left in order to postpone braking
to a later time. Hence, if a way is narrow, the vehicle typically just slows

408 F.v. Hundelshausen et al.

down, until the low crash distance allows to select tentacles that don’t match
the exact shape. This mismatch in shape does not constitute a problem, since
only a small fragment of the tentacles is executed, before a new curvature is
selected at the next time step.

4.3 Clearance Value

The clearance value is the first of three decision-affecting values computed for
each drivable tentacle. To make those values comparable they are normalized
to the range [0, ...1], where a value of 0 designates a preference of such a
tentacle. The calculation of the clearance value directly uses the distance
to the first obstacle lo calculated in the classification step. It expresses how
far the vehicle could drive along a tentacle before hitting an obstacle. It is
calculated by the sigmoid-like function

vclearance(lo) =
{

0 | if the tentacle is entirely free
2− 2

1+e−cclearance ·lo | otherwise , (10)

where the constant cclearance is calculated by (11) to yield vclearance(l0.5) = 0.5
at a distance l0.5 = 20m in our implementation.

cclearance =
ln 1/3
−l0.5 (11)

As shown by the plot of vclearance(lo) in figure 12 the clearance value converges
against zero for lo −→ ∞. The higher the distance to the first obstacle, the
less is the change in the clearance value and the change of impact in the
tentacle selection process. The clearance value is part of a linear combination
(with positive coefficients) of three values that is minimized later, and thus,
tentacles with a large distance to the next obstacle are preferred.

4.4 Flatness Value

The flatness value has the goal to prefer tentacles leading over smooth terrain.
While all tentacles passing the classification step are drivable without causing
damage to the vehicle, it might still be desired to prefer a smooth path. The
second purpose of the flatness value is to exploit free space, if possible: For
instance, if there is a broad dirt-road without any obstacle, the flatness value
lets the vehicle drive in the center of that path, instead of driving always
close to the border of that path. It is computed accessing the whole support
area of a tentacle by

vflatness =
2

1 + e−cflatness·vavg
− 1, (12)

where

Driving with Tentacles - Integral Structures for Sensing and Motion 409

distance to first obstacle lo [m]

le
ar

n
ce

v
l

c
a

a
u

ev
c

ea
an

e
l

r
c

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 12. The plot of vclearance(lo) (see equation (10) with cclearance as in (11)) shows
that the higher the distance to the first obstacle, the less is the change in the
clearance value and the change of impact in the overall tentacle selection process.

vavg =

∑
c=(o,w,k,f)∈Awg(o)∑

c=(o,w,k,f)∈Aw
(13)

and cflatness is computed in analogy to (11) such that vflatness reaches a value of
0.5 at vavg = 0.3 in our implementation. The set A describes the precomputed
support area as described on page 402, and g(o) is the value of the occupancy
grid at location o.

4.5 Trajectory Value

While the latter two values aim at obstacle avoidance in an unknown envi-
ronment, the trajectory value pushes the vehicle towards following a given
trajectory, e.g. defined by GPS waypoints. For each tentacle, a quality
of how much the tentacle follows or leads to a given trajectory is calcu-
lated. Different distance measures, like the Hausdorff or Frechet distance
(Preparata and Shamos, 1985) can be considered. However, the simplest
method is to consider a single point on the tentacle and a corresponding
point on the trajectory. The point on the tentacle is taken at the crash dis-
tance lc, such that at high speeds the point is more distant than at low

410 F.v. Hundelshausen et al.

crash distance l
c

�

a

t e orraj ct y

crash distance l
c

robot’s position
on the trajectory
(rear axis)

Fig. 13. For each tentacle a trajectory value is computed by considering the distance
and tangent orientations of two corresponding points - one on the tentacle and the
other on the (GPS-)trajectory to be followed.

speeds. If the steering angles of the tentacles are executed directly while fol-
lowing a given set of GPS waypoints, and ignoring the flatness and clearance
contributions, the approach is very similar to “Pure Pursuit”(Coulter, 1992)
which calculates an optimal circular arc to reach a GPS waypoint from the
current robot’s position and sets the steering angle to the curvature of the
calculated arc. The corresponding point is calculated by first matching the
robot on the trajectory as shown in figure 13 and then sampling a point from
the trajectory - located at a distance lc from the matched position. The effect
of sampling the points at the crash distance is that the vehicle tries to follow
the trajectory more closely at low speeds while at high speeds the vehicle
tries to recover a lost track further afar.

For each tentacle the distance measure vdist and finally the trajectory value
vtrajectory is calculated by taking both the distance a between the point on the
tentacle and its corresponding point on the trajectory as well as its relative
tangent orientations α into account:

vdist = a+ cαα (14)

vtrajectory =
vdist − vmin

vmax − vmin

. (15)

Driving with Tentacles - Integral Structures for Sensing and Motion 411

Here, cα = 3.0 m
rad is a constant, a and α are illustrated in figure 13 and

vmax, vmin are the minimum/maximum values of vdist over all tentacles of the
current speed set. Equation (15) produces normalized values within the range
of [0, ..., 1]. Compared to the normalization procedures of the other two val-
ues vflatness and vclearance the normalization process is not independent of the
vdistvalues of the other tentacles here. The reason is, that if the vehicle would
be distant from the trajectory (say 20 m), equation (15) would produce quite
high values. When these values would be normalized using a sigmoid-like
function (as is the case for vflatness and vclearance) all tentacles would receive
similar values for vtrajectory , such that when later combined with the flatness
and clearance values, the geometric variation of the tentacles with respect to
the trajectory would have little influence in the final decision. However, in
our case (15) produces normalized values that reflect the tentacles’ geometric
variation independent of the vehicle’s gross distance from the trajectory.

4.6 Combining Clearance, Flatness and Trajectory Values

For each tentacle, classified as drivable, the three values vclearance, vflatness and
vtrajectory are within the range 0, ..., 1. They are now linearly combined to a
single value

vcombined = a0vclearance + a1vflatness + a2vtrajectory . (16)

Here, a0, a1 and a2 are parameters that can be used to change the behavior
of our approach at a gross level. For instance, at the C-Elrob 2007 we used
a0 = 0, a1 = 1 and a2 = 0 resulting in that the vehicle chose to freely
drive over flat area without following a given trajectory. In contrast, we used
a0 = 1, a1 = 0 and a2 = 0.5 for the DARPA Urban Challenge 2007, letting
the vehicle follow a given trajectory while avoiding obstacles at the same time.
Note, that the primary obstacle avoidance mechanism is not accomplished by
the three values vclearance, vflatness and vtrajectory but by the classification step:
Only drivable tentacles constitute the set for which vcombined is calculated. If
no drivable tentacles exist, the tentacle with the largest clearance value is
selected, and the vehicle is commanded to brake along this tentacle.

The linear combination of (16) means that different contribution can bal-
ance each other if the respective ai values are non-zero. For instance, consider
the case of driving along a dirt road with GPS having a drift of 2m such that
following the GPS path would cause the vehicle to drive at the very boundary
of the dirt road. Assume that the wheels at one side of the vehicle constantly
drive slightly aside the road. If there was a pavement edge at this side, the
respective tentacles would have been classified as non-drivable and the vehi-
cle would not even have driven into this situation. But let’s assume that the
obstacles are just stones with their size being at the limit of allowing to drive
over them. Hence, let’s assume that the tentacles classify the respective areas
as being drivable. Now, the contributions in (16) can be seen as forces com-
peting with each other. The trajectory would let the vehicle neglect the small

412 F.v. Hundelshausen et al.

stones and just drive along the drifted GPS trajectory. The clearance value
is difficult to predict and depends on the situation. For instance, if within
the area next to the road no high obstacles exist, the clearance value would
not prevent the vehicle from continuing to drive aside the road. In contrast,
the flatness value gives the vehicle a tendency to prefer smooth areas. In this
way, it acts as a force typically pulling the vehicle onto the road, because in
most cases the road is the flattest area. By tuning a0, a1 and a2 different be-
haviors can be produced. The fine tuning however occurs by the parameters
of the individual functions vclearance, vflatness and vtrajectory . For the UC07, we
first tuned our system by experiments testing that our vehicle would drive
along narrow passages in the presence of GPS drifts (just simulating them
by adding an artificial drift). The important parameter for this is the crash
distance lc (see (9)). Also, we performed various other experiments as de-
scribed in the experimental results section in order to tune the system. For
the UC07, we decided to ignore flatness and drive along GPS if drivable, even
when driving over uneven terrain such as smaller rocks, etc. However, this
was not a decision without dissentient votes.

To avoid inconsistent selections of tentacles at successive time steps we use
the following hysteresis mechanism: We first determine the set S of drivable
tentacles with a combined value vcombined that is at most ε = 0.00001 worse
than the value vm of the best tentacle. From this set of “approximately equally
good” tentacles we then finally select the one which is geometrically most
similar to the tentacle selected in the last time step. Here, our similarity
measure is simply the absolute difference of the tentacles’ curvatures. Hence,
in ambiguous situations, the one tentacle is selected that is most consistent
with the last decision.

5 Tentacle Execution

There exist various options for steering the vehicle according to the selected
tentacle.

5.1 Direct Execution

By the fact that each tentacle corresponds to a circular arc and that the the
speed of the vehicle is given, a respective steering angle δF can be calculated.
It is then possible, to directly command this steering angle to a low-level
controller at the frequency of the tentacle selection process (10Hz). However,
since the tentacles represent discrete curvatures, the resulting driving behav-
ior might be jerky. Hence, it might be desired to generate smoothed steering
angles δs(k), e.g by the simple recursive filter

δs(k) = κδF (k) + (1− κ)δs(k − 1), (17)

where δF (k) is the steering angle of the current selected tentacle, δs(k − 1)
is the last smoothed curvature and 0 <= κ <= 1 is a constant. However,

Driving with Tentacles - Integral Structures for Sensing and Motion 413

such a filter introduces a temporal delay until a constantly sensed curvature
takes effects. At the C-Elrob 2007 we used this simple filtering method with
a value of κ = 0.9. At the Urban Challenge 2007 a different execution mode
was used.

We also experimented with a more sophisticated approach using a clothoid
model for the road, a bicycle model for the vehicle dynamics and additional
tentacles with different lateral displacements and yaw angles. Then selecting a
tentacle can be seen as measuring a curvature, a displacement and a yaw angle
and a Kalman filtering approach like (Dickmanns, 2007; Dickmanns, 1994)
can be used to produce a model-based filtered estimate of the curvature, dis-
placement and yaw angle. However, this is at the cost of using much more
tentacles and is either error-prone in case of discrepancies between the road
model and the real shape of the environment or requires an explicit recogni-
tion of different road models (e.g at crossings).

5.2 Fragment Execution

Another option for executing tentacles is to consider the currently selected
tentacle as a trajectory to execute. In this case, the vehicle is controlled by a
path controller that derives the steering commands from the geometric rela-
tionship between the vehicle’s pose in some cartesian space and the trajectory
specified in the same coordinate system. For instance, when using GPS, an
UTM-coordinate space could be used, and in this case the selected tentacle
has to be transformed in that space. Note that the tentacles are originally
specified in the vehicle-centered coordinate system. When no GPS is used, a
global but drifting position can still be computed by integrating odometric
and inertial measurements. The drift can be neglected for tentacle execution,
since a tentacle is used only for a small period of time in this drift space (0.1s).
The advantage of this method is that trajectory execution can be controlled
at a higher frequency allowing to compensate local disturbances using IMU
information. However, as shown in figure 14, the sequence of tentacles does
not necessarily yield a continuous trajectory over time. Deviations from the
true trajectory will occur due to effects of time delay, the mass of the vehicle
and imprecisions of the low-level controller for the steering angle. Since the
new tentacle starts from the new position again, it will start with an offset
to the old tentacle not continuing the old trajectory.

5.3 Trajectory Blending

The fact that the sequence of selected tentacles does not form a continuous
trajectory can conflict with the underlying path execution controller. Assume
for instance, that the path-execution controller uses the lateral displacement
of the vehicle with respect to the trajectory as one of its feedback values
and that due to some imprecisions a lateral displacement exists just before a
new tentacle is selected. Then suddenly, the displacement jumps to a value
of zero, because the new tentacle starts with no displacement to the vehicle.

414 F.v. Hundelshausen et al.

d ch
ec

ke
r

other vehicle

our vehicle

c

grid
hec

ker

G

pa
h(refine

)

P
S

t

d

dirgycnapuccoderetnec-oge

Fig. 14. The sequence of selected tentacles typically does not yield a continuous
trajectory, since only a small fraction of a tentacle is actually driven before a new
tentacle is selected (The fractions are shorter than shown in this figure. They have
been exaggerated here for the sake of clarity.) When a new tentacle is selected it
starts at the vehicle’s center of gravity again not continuing the old tentacle in case
of control deviations.

If the path execution controller includes an integral term this might cause
undesired effects, since the controller aims at correcting a deviation that is
suddenly reset to zero.

To avoid this discontinuity, we do not directly execute a selected tentacle
but calculate a trajectory that continues the old trajectory and blends over
to the end of the newly selected tentacle as shown in figure 15.

Let the old trajectory be parameterized as

pold : [0, ..., 1] −→ IR2 (18)
s �→ pold(s),

such that pold(0) is the vehicle’s reference point on the trajectory as used
by the path execution controller and pold(1) is the end point of the old tra-
jectory (see figure 15). Let the trajectory of the current selected tentacle be
parameterized as

ptentacle : [0, ..., 1] −→ IR2 (19)
s �→ ptentacle(s),

where ptentacle(0) is the start and ptentacle(1) is the end point of the tentacle.
Then the blended trajectory is calculated by

pblend(s) = β(s)pold(s) + (1− β(s))ptentacle(s), (20)

where the blend function β(s) is a monotonically increasing bijective mapping

β : [0, ..., 1] −→ [0, ..., 1]. (21)

Driving with Tentacles - Integral Structures for Sensing and Motion 415

ewn t ne at cle p
tentacle

cr jer jea ttd o yre pdnelb b el nd

robot’s reference position
on the trajectory

displacement

dp loyrotcejartdlo

Fig. 15. To avoid discontinuities in path execution when selecting a new tentacle
the vehicle does not directly execute the new tentacle but executes a blended trajec-
tory continuing the old trajectory at the vehicle’s reference pose and blending over
to the newly selected tentacle. The reference pose is the position used by the path
execution module to calculate its feedback values for control (e.g. displacement and
yaw angle).

In our implementation we used the trivial blend function β(s) = s. Finally,
we pass the blended trajectory to the path execution controller. In the next
iteration, this trajectory serves as input pold for the next blending step.

6 Considering Vehicle Dynamics

At each time step our method uses the current velocity of the vehicle to choose
the closest existing speed set, selects a tentacle from this set and executes
the tentacle. In the previous section, we described different options for this
execution. At the C-Elrob 2007 we used the direct method and at the Urban
Challenge we used fragment execution, that is we commanded the tentacles
as trajectories to the low-level path following module. This decision to use the
paths was only due to being compatible with the already existing low-level
interface to the vehicle. For our dynamic analysis we will stick to the “direct
execution” mode. This mode is simpler to analyze, because no control loop for
path following has to be included into the analysis. Later, the question will be
of how or whether our results are valid for the other execution modes. In this
section we will see that our method commits various errors, when considering
a tentacle as a piece of trajectory that has to be precisely followed. However,
this is not a required goal in our approach and hence the term “error” is
inappropriate. In our approach, the final goal is to avoid obstacles and we
allow a deviation of the resulting trajectory from the tentacle’s trajectory.
This is possible because we can show that the deviations are small enough to
be within a corridor (corresponding to the classification area of the tentacle),

416 F.v. Hundelshausen et al.

that is ensured to be free of obstacle. Before we detail this reasoning, it is
first necessary to understand the different effects that let the vehicle’s final
trajectory deviate from the center line of the tentacle. To understand and
predict those effects, we have to consider vehicle dynamics.

6.1 Motion Equations

In this section we derive the motion equations to model and predict the
dynamics of our vehicle. While it might seem overambitious to derive
those equations, in doing so, the variables and symbols we are using are
clearly defined and well illustrated from the very beginning. In this way
our argumentation is self-contained and comprehensible without having
to refer to other literature. Also, our approach differs from the classical
formulation(Mitschke and Wallentowitz, 2004) in that we do not make many
of the linearization simplifications, but numerically integrate over the non-
linear differential equations. Our consideration of dynamics is limited to four-
wheeled vehicles steered by two frontal wheels. Not our principal approach
but rather our theoretical analysis in this paper is restricted to those type of
vehicles. We consider a simplified model of such a vehicle assuming that the
center of gravity lies in the ground plane.

In doing so the centrifugal force that acts on the center of gravity
doesn’t change the load on the wheels. This allows us to reduce the pre-
cise geometric layout of the four wheels to the well-known “bicycle model”
(Mitschke and Wallentowitz, 2004). Using this model, various assumptions
are made, e.g. ignoring roll motions, assuming a uniform load onto in-
ner and outer wheels, etc... For a full enumeration of assumptions see
(Mitschke and Wallentowitz, 2004). There exists a well-known closed form
solution of the differential equations of the linearized version of the bicycle
model (also known as “linearized bicycle model”). However, those equations
are only valid for small steering angles, constant velocities and exhibit numer-
ical instabilities for low velocities. Since some of our tentacles require high
steering angles and because we want to be able to consider velocity changes,
we do not make most of the linearization assumptions of the closed-form solu-
tion but derive our own set of non-linear coupled differential equations in the
following: For our analysis, we will later solve those equations by numerical
integration.

As can be seen in figure 16 a) the velocity v = vCP of the vehicle’s
center of gravity CG is tangent to the trajectory, the same being valid for
the tangential acceleration v̇. In contrast, the centripetal acceleration v2

ρ
is directed to the center of curvature M . The distance ρ is the radius of
curvature. The angle between v and the heading direction (direction of the
center line) is the sideslip angle β. The yaw angle Ψ is the angle of the
heading direction measured against the global x-axis x0. The course angle of
the vehicle is ν = β + Ψ .

Driving with Tentacles - Integral Structures for Sensing and Motion 417

CG

F Rx

FyR

lR

lF

l

2
v/

2
mv/

mv

PP

eCG

F yA

FAx

F xF

F
y
F

F

CG

trajectory of the center of gravity CG

x0

PCv
v=

v
2

v/

M

x0

y0

(a)

(b)

Fig. 16. (a) kinematic entities and (b) forces using a bicycle model. For a descrip-
tion of the symbols see the main text.

Figure 16 b) shows the forces acting on the vehicle. The longitudinal forces
FxF and FxR are heading along the direction of the front (“F”=front) and
rear wheels (“R”=rear). The lateral force of air (“A”=air) FAy in case of side
wind acts on the pressure point PP , its distance to the center of gravity being
denoted with eCG. The air resistance is expressed in terms of the force FAx.

Using the mass of the vehicle m, the moment of inertia around the z-axis
Jz and the steering angle δF , we get the following equilibrium of forces in
longitudinal direction of the vehicle

418 F.v. Hundelshausen et al.

m
v2

ρ
sinβ −mv̇ cosβ + FxR − FAx + FxF cos δF − FyF sin δF = 0, (22)

and in lateral direction

m
v2

ρ
cosβ +mv̇ sinβ − FyR − FAy − FxF sin δF − FyF cos δF = 0. (23)

For the balance of moments we get

JzΨ̈ − (FyF cos δF + FxF sin δF)lF + FyRlR − FAyeCP = 0. (24)

The lateral forces acting at the front FyF and real wheel FyR emerge due to
their slip angles αR and αF - the angle between the velocity vector at the
wheel and the orientation of the wheel as depicted in figure 17. The corre-
sponding linearized relationships between slip angle and lateral forces are

FyF = cαFαF (25)
FyR = cαRαR (26)

where the lateral constant force coefficients cαF and cαR with physical units
[N/rad] depend on the tire. We aim at expressing the slip angles αR and αF
as functions of the velocity vector v of the vehicle’s center of gravity, the yaw
rate Ψ̇ and the sideslip angle β. To derive these dependencies consider figure
17 and the fact that the components of the velocity vectors v,vR and vF
in the longitudinal direction of the vehicle have to be equal. This is simply
because the vehicle can’t stretch, resulting in:

v cosβ = vR cosαR (27)
v cosβ = vF cos (δF − αF), (28)

where v, vR and vF are the lengths of the vectors v,vR and vF . The velocity
components in lateral direction to the vehicle’s center line differ as a conse-
quence of the yaw rate Ψ̇ evolving different velocity contributions over the
lengths lR and lF :

vR sinαR = lRΨ̇ − v sinβ (29)
vF sin (δF − αF) = lF Ψ̇ + v sinβ (30)

With tanx = sinx/ cosx we combine the two pairs of equations, yielding

tanαR =
lRΨ̇ − v sinβ

v cosβ
(31)

tan (δF − αF) =
lF Ψ̇ + v sinβ

v cosβ
(32)

Driving with Tentacles - Integral Structures for Sensing and Motion 419

CG

lR

lF

F

x0

y0

v

vR

vF

R
�

F
�

MP

Fig. 17. The slip angles αR and αF are the respective angular discrepancies be-
tween the velocity vector of a point at the center of the wheel and the orientation of
the respective wheel. The lateral forces FyR and FyF that act on each wheel depend
on these angles. The pole MP is in general different from the center of curvature
M in figure 16a).

Resolving for αF and αR yields

αR = arctan
lRΨ̇ − v sinβ

v cosβ
(33)

αF = δF − arctan
lF Ψ̇ + v sinβ

v cosβ
. (34)

Inserting the derived equations for αR and αF into 26 and 25, the lateral
forces can be expressed as functions of β, Ψ̇ and v:

FyR(β, Ψ̇ , v) = cαR arctan
lRΨ̇ − v sinβ

v cosβ
(35)

FyF (β, Ψ̇ , v, δF) = cαF (δF − arctan
lF Ψ̇ + v sinβ

v cosβ
) (36)

Next, we want to express the centripetal acceleration v2

ρ in 22 and 23 in terms
of the velocity v, the sideslip rate β̇ and the yaw rate Ψ̇ . The curvature of
the trajectory at the center of gravity of the vehicle is 1

ρ . Another way to
express the curvature of the trajectory is to consider the change of course

420 F.v. Hundelshausen et al.

angle d(β + Ψ) along an infinitesimal step du = vdt within the infinitesimal
time step dt along the trajectory, equating to

1
ρ

=
d(β + Ψ)

du
=
d(β + Ψ)
vdt

=
β̇ + Ψ̇

v
. (37)

Hence, the centripetal acceleration can be expressed by

v2

ρ
= v2 β̇ + Ψ̇

v
= v(β̇ + Ψ̇). (38)

Inserting (35),(36) and (38) into (22), (23) and (24) yields the following
balances:

mv(β̇ + Ψ̇) sin β −mv̇ cos β + FxR − FAx + FxF cos δF − FyF (β, Ψ̇, v, δF) sin δF = 0

(39)

mv(β̇ + Ψ̇) cos β + mv̇ sin β − FyR(β, Ψ̇, v)− FAy − FxF sin δF − FyF (β, Ψ̇, v, δF) cos δF = 0

(40)

JzΨ̈− (FyF (β, Ψ̇, v, δF) cos δF + FxF sin δF)lF + FyR(β, Ψ̇, v)lR − FAyeCP = 0.

(41)

Multipyling (40) with sinβ and adding (41) multiplied with cosβ yields

mv(β̇ + Ψ̇)(sin2 β + cos2β) + sin β[FxR − FAx + FxF cos δF −
FyF (β, Ψ̇ , v, δF) sin δF] + cos β[−FyR(β, Ψ̇ , v) − FAy − FxF sin δF −
FyF (β, Ψ̇ , v, δF) cos δF] = 0 (42)

β̇ = −Ψ̇ − sin β[FxR − FAx + FxF cos δF − FyF (β, Ψ̇ , v, δF) sin δF]

mv
−

cos β[−FyR(β, Ψ̇ , v) − FAy − FxF sin δF − FyF (β, Ψ̇ , v) cos δF]

mv
=

: f2(β, Ψ̇ , v, δF , FxF , FxR, FAx, FAy) (43)

Resolving (41) for Ψ̈ yields

Ψ̈ =
1

Jz
[(FyF (β, Ψ̇ , v, δF) cos δF + FxF sin δF)lF −

FyR(β, Ψ̇ , v)lR + FAyeCP] =: f1(β, Ψ̇ , v, δF , FxF , FAy). (44)

Multipyling (40) with cosβ and subtracting (41) multiplied by sinβ
yields

−mv̇(cos2 β + sin2 β) + cos β[+FxR−FAx+FxF cos δF −FyF (β, Ψ̇ , v, δF) sin δF] −
sin β[−FyR(β, Ψ̇ , v) − FAy − FxF sin δF − FyF (β, Ψ̇ , v, δF) cos δF] = 0 (45)

Driving with Tentacles - Integral Structures for Sensing and Motion 421

Solving for v̇ yields

v̇ =
cos β[+FxR − FAx + FxF cos δF − FyF (β, Ψ̇ , v, δF) sin δF]

m
−

sin β[−FyR(β, Ψ̇ , v) − FAy − FxF sin δF − FyF (β, Ψ̇ , v, δF) cos δF]

m
=

: f3(β, β̇, Ψ̇ , v, δF , FxF , FxR, FAx, FAy) (46)

Summarizing, we have the set of three coupled non-linear differential
equations

Ψ̈ = f1(β, Ψ̇ , v, δF , FxF , FAy) (47)

β̇ = f2(β, Ψ̇ , v, δF , FxF , FxR, FAx, FAy) (48)

v̇ = f3(β, β̇, Ψ̇ , v, δF , FxF , FxR, FAx, FAy) (49)

6.2 Numerical Integration

Given an initial velocity v(t0), initial yaw rate Ψ̇(t0) and sideslip angle β(t0)
at time step t0 = 0, our goal is to numerically calculate the functions v(t), Ψ̇(t)
and β(t) for a duration of T = 0.1s (one LIDAR frame), since those func-
tions can then be used to calculate the trajectory of the vehicle. The control
commands are the steering angle δF (t) and the force FxR(t) for velocity con-
trol. We assume a rear wheel drive setting FxF = 0. We ignore lateral wind
FAy = 0. For numerical integration we use explicit forward Euler with tem-
poral step size dt = 1.0−3s. The overall integration scheme is:

Ψ̇(tk + dt) = Ψ̇(tk) + f1(β(tk), Ψ̇ (tk), v(tk), δF (tk), FxF = 0, FAy = 0)dt

β(tk + dt) = β(tk) + f2(β(tk), Ψ̇(tk), v(tk), δF (tk), FxR(tk), FxF = 0, FAx)dt
v(tk + dt) = v(tk) + f3(β(tk), β̇(tk), Ψ̇(tk), v(tk), δF (tk), FxR(tk),

FxF = 0, FAx, FAy = 0)dt

The trajectory x(t), y(t) of the vehicle’s center of gravity is then computed
by numerical integration of

x(t) = x(t0) +
∫
v(t) cos (β(t) + Ψ(t))dt (50)

y(t) = y(t0) +
∫
v(t) sin (β(t) + Ψ(t))dt (51)

For all our numerical integrations we use the following parameters:

• mass m = 2900kg
• inertial moment Jz = 5561kgm2

• lateral force coefficient for front wheels cαF = 80000N/rad
• lateral force coefficient for rear wheels cαF = 110000N/rad
• distance from center of gravity to front axis lf = 1.425

422 F.v. Hundelshausen et al.

• distance from center of gravity to rear axis lf = 1.425 (center of gravity
right between the axes)

• integration step width dt = 0.001s

Since we have a low-level controller for the velocity and only consider slow
changes in the velocity we ignore the longitudinal forces, that is we set FxR =
0, FxF = 0, FAx = 0. We also ignore lateral wind, which is simply unknown,
hence FAy = 0.

6.3 Can the Curvatures of Our Tentacles Be Executed?

When our vehicle drives with a constant velocity v and steering angle for some
time period, the state (Ψ̇ , β, v)T of the vehicle becomes steady and the vehicle
drives on a circle. This steady state and its geometric relation to the final
circular trajectory is depicted in figure 18a). Note, that the steering angle
δF is not part of the system state. Rather it can be calculated from a given
system state. For the closed-form solution of the linearized bicycle model
there exists an analytical solution for calculating the state (Ψ̇ , β, v)T and the
corresponding steering angle δF . Indeed, the yaw rate Ψ̇ - with c = 1/r being
the curvature of the circle with radius r - is quite simple to calculate:

Ψ̇ = cv (52)

However calculating the sideslip angle β and the required steering angle δF
is more complicated: In the case of our non-linear model we use a recursive
search algorithm to calculate the values. The search algorithm exploits the
fact that once the steering angle δF is known, one can run a simulation (by
integrating the differential equations), initializing the state to (0, 0, v)T and
commanding the constant steering angle. Simulating over a period of T one
can observe whether the state becomes steady (by continuously comparing
the current state and a state ΔTback back in time) and read out the values
for Ψ̇ and β in this case (v is known from the very beginning). The search
algorithm then divides the range of potential solutions for δF (−0.5π, ...0.5π)
into n intervals (n=10 in our implementation), determines the steady states
(in case of convergence) for each of the n + 1 interval boundaries, finds the
interval that encloses the solution (by comparing the respective curvatures
that can be computed via (52)) and recursively narrows down the interval.
This method is possible because of the monotonic dependency of the steering
angle δF and the resulting steady curvature Ψ̇

v .
Since each tentacle is a circular arc, we can calculate the vehicle’s corre-

sponding steady state with the above method such that the vehicle drives a
circle with the same curvature. We will call this steady state corresponding to
the tentacle state of the tentacle. The velocity of this state is the velocity of
the tentacle’s speed set. At first glance, it is surprising that even if the vehicle’s
state is initialized such that the final trajectory has the curvature of the ten-
tacle, the resulting trajectory is rotated against the tentacle (see figure 18b).

Driving with Tentacles - Integral Structures for Sensing and Motion 423

Fig. 18. (a) Given a circle with radius r and a velocity v, a steady state (Ψ̇ , β, v)T

and a steering angle δF can be calculated, such that the vehicle drives on the circle.
(b) When calculating the steady state that corresponds to a tentacle and assuming
that the vehicle has the correct state from the very beginning, the vehicle’s resulting
trajectory doesn’t correspond to the tentacle. The reason lies in the sideslip angle β.

Even under perfect conditions, the vehicle cannot drive along the tentacle. The
reason is, that driving constantly along a circle requires a non-zero sideslip an-
gle β, meaning that in contrast to the velocity vector the vehicle is not heading
tangential to the circle. Thus, when starting as illustrated in figure 18b), the
final trajectory is rotated against the selected tentacle. The radius of the re-
sulting circular trajectory is correct, however. Hence, we can store with each
tentacle a steering angle, that at least produces the correct curvature once the
state is steady. The error is not in a wrong system state, but the initial geomet-
ric constellation. Right at the beginning the state of the vehicle has a non-zero
sideslip angle β. Hence, if both trajectories should be aligned, the vehicle would
have to start rotated about −β. This is illustrated in figure 19.

6.4 Determining Path Deviations

In general, the state of the vehicle before executing a new tentacle will not
be the steady state of the new tentacle. Also, the steering angle δF will
not correspond to the tentacle’s curvature at the beginning. To predict the
error that happens in such cases, we aim at predicting the trajectory the
vehicle executes and comparing this trajectory against the tentacle’s curve.
To calculate the resulting trajectory, we assume that the steering angle is
controlled to the goal steering angle δF by a low-level controller that linearly
adjusts δF to the desired value. In our system this controller has a maximum
rate of 0.3rad/s. Note that on MuCAR-3 the steering angle controller was
itself based on an angular rate controller. For the vehicle of Team AnnieWay

424 F.v. Hundelshausen et al.

�

e
vir

d
ot

elcatnet

Fig. 19. Given a tentacle the vehicle should precisely drive, the tangent at the
first point of the tentacle has to be aligned with the expected sideslip angle β . In
other words, the whole tentacle has to be rotated about β in order to be precisely
executable. This is a first potential improvement suggested by this analysis. Note,
that this doesn’t mean that the tentacles as designed in section 2 are invalid, since
the resulting path will be shown to still be in the corridor of the classification area.
Also this figure shows the an extreme case with a large sideslip angle β. The tentacle
considered is the most curved one of all tentacles in all speed sets.

the angular rate controller was itself the lowest unit. A complication arises
due to the fact that in the direct execution mode the goal steering angle is
not that of the tentacle, but the value calculated by the recursive formula
(17) on page 412.

6.4.1 Worst Case Transitions
To calculate upper bounds for path deviations, we will now proceed by con-
sidering transitions from a source tentacle ts to a destination tentacle td.
First, we only consider tentacles from the same speed set and we assume
that the vehicle has initially acquired the steady state of the source tentacle
and that it starts at the correct angle Ψ(t0) = −β2 such that the result-
ing trajectory perfectly aligns with the source tentacle. Then we switch to
the second tentacle, calculating the filtered goal steering angle by (17). When
the transition to the new steering angle is executed, we simulate the low-level
controller changing the steering angle at maximum rate (0.3rad/s).

The assumption that the vehicle initially has reached the steady state of
the first tentacle is not true in general. However, if we select the extreme case
for an initial tentacle - that is the outmost left or outmost right one - and
2 Not Ψ̇(t0)!, see (51) and figure 19.

Driving with Tentacles - Integral Structures for Sensing and Motion 425

e
mertxetfel

considered destination
tentacle td

tsa

tsb

Fig. 20. This figure shows two cases, in each of which two tentacles are executed
sequentially. In both cases the top tentacle is the same destination tentacle td

considered and only the first tentacle (source tentacle) varies (tsa or tsb). For a
given destination tentacle td, we consider the left and right extreme transitions
to this tentacle. We assume that the vehicle has reached a steady state on the
source tentacle and then executes the destination tentacle. The source tentacles
tsa and tsb are shown in its full length such that they can be better identified
within their speed set. However, a tentacle is executed only for the short time
period of 0.1s, hence the first tentacle will not be completely driven as shown in
this figure. Only a small fragment of the first tentacles is driven and the second
tentacle (the tentacle considered) directly follows this small fragment. Before a
transition to the destination tentacle is initiated, we assume that the vehicle is in
the steady state that corresponds to the respective source tentacles such that the
resulting trajectories and the source tentacles align perfectly. As shown in figure 19
this requires the vehicle to start rotated about −β -the expected sideslip angle- in
relation to the start orientation of the respective source tentacles.

consider the transition from this tentacle, then this represents an upper bound
on the deviation of the resulting path. Figure 20 shows the considered worst
case scenarios and the tentacle’s trajectories against which we want to com-
pare the simulated trajectories. The assumption made here is that the larger
the deviation in the steady states of the source and destination tentacle is,
the larger is the resulting deviation of the trajectory. This assumption seems
to be valid for the normal case, that is within the scope of validity of the
bicycle model. To simulate the results we will let the vehicle drive along the

426 F.v. Hundelshausen et al.

source tentacle for a time period of Ts and then switch to the destination
tentacle in the above described manner, executing it for a time period of Td
seconds. While the length of the first time period Ts doesn’t matter, since the
path deviation is zero, the second tentacle is executed only for one LIDAR
frame (0.1s), because then a new tentacle is selected again. Nevertheless, to
see the qualitative behavior of the deviations well, we will first consider the
full length execution of the second tentacle. Note that executing a tentacle
longer than 0.1s means that the tentacle is repeatedly selected and hence, the
smoothing filter (17) has to be applied consecutively every 0.1 seconds. For
(17) we will use a value of κ = 0.9. Figure 21 shows the resulting trajectories
when simulating the cases shown in figure 20. At low speeds the results can

destination tentacle

final trajectory

largest deviation

�

Fig. 21. The resulting trajectories for the low velocity of 0.25m/s simulated with
the non-linear bicycle model when executing the worst combinations shown in fig-
ure 20 using the direct execution mode with κ = 0.9 (see (17)) and a steering rate
limitation of 0.1rad/s. For low velocities the result is counter-intuitive: While one
might expect that the final trajectory would be left of the destination tentacle (as
it is the case in figure 22) on the left hand side, the resulting path is deviated to
the right. The reason is the sideslip angle: While driving on the source tentacle
the sideslip angle β is quite high, because of the high curvature. When the vehicle
switches to the destination tentacle it has a heading direction pointing rightwards
of the destination tentacle. Because of the low speed, the new steering angle is
adapted without the vehicle having moved far and the curve of the destination ten-
tacle starts out at an angle that lets the final trajectory be located at the right side
of the destination tentacle. At the right hand side the opposite case happens. This
behavior appears at only low speeds. The lines connecting the destination tenta-
cle and the final trajectory show the deviations by interconnecting corresponding
points at same lengths along the respective curves. The largest deviation is used to
represent the overall deviation of the two trajectories.

Driving with Tentacles - Integral Structures for Sensing and Motion 427

final trajectory

destination tentacle

largest deviation

source tentacle

Fig. 22. In this example the velocity is 1.66m/s and the deviation of the resulting
trajectory is as one would intuitively expect. A counter-intuitive example is shown
in figure 21.

be quite counter-intuitive: The large sideslip angle driving the source tentacle
can let the final deviated trajectory appear at an intuitively unexpected side
of the destination tentacle (see figure 21). The more intuitive case that occurs
at higher velocities is shown in figure 22.

6.4.2 Calculating Deviations
We define a distance measure for the deviations by considering the vehicle’s
true center of gravity at time t while traveling along the true trajectory
and a second point on the destination tentacle at the same travel length
(but along the destination tentacle). We consider all correspondences while
integrating over the differential motion equations. From all corresponding
pairs of points and their distances, the largest distance is taken as deviation
between the two curves. In figure 21 and 22 some of those corresponding
points are sampled and shown by interconnecting them with straight line
segments. The maximum deviations often occur at the end of the curves,
however there exist cases where the curves intersect, and because of this non-
monotonic behavior, we need to consider all correspondences. The measure is
conservative in the sense that it does not only punish deviations in space, but
also deviations in time. This is because the correspondences are established by
means of the velocity and time depending traveled length from the beginning
of both respective curves.

428 F.v. Hundelshausen et al.

In figures 21 and 22 we considered the deviation of executing the full
length of the destination tentacle. Now we are interested in the maximum
deviation that can occur for each tentacle within one LIDAR frame, that is
within 0.1 seconds. For this sake, we consider each tentacle in each speed set
as a destination tentacle in the sense of the above described evaluation and
calculate the maximum deviation that can happen within this 0.1 seconds.
We only need to consider one extreme tentacle and calculate the deviations to
all the other tentacles, because of the symmetry of the tentacles. The other
worst case then is automatically included in terms of the deviation of the
corresponding mirrored destination tentacle. Figure 23 shows the resulting
deviations dev(j, i) for all speed sets j and all tentacles i. Interestingly, the
deviation increases first with higher velocities and than decreases again from
speed set 6 on (3.5m/s). As expected, the deviation is larger for more curved
tentacles. However, the important fact is that for each tentacle, we have
calculated an upper bound for a deviation. For every tentacle, this upper
deviation is the maximum of the both extreme transitions to this tentacle.
In terms of figure 23 the upper bound dji for tentacle i in speed set j is

dji := max(dev(j, i), dev(j, nj − i)), (53)

where nj (nj = 81 for all speed sets j in our case) is the number of tentacles
in speed set j. As can be seen, within 0.1s, no deviation exceeds 6 cm. If
the classification area of the respective tentacle is about dji larger than the
vehicle, then we can ensure that within the 0.1s the vehicle will not collide
with a (static) obstacle. This is because a tentacle is classified as non-drivable
if an obstacle is within that area. It remains to show, that this can neither
happen at the next time step.3

Note, that this tolerance of 6cm was well included in our definition of the
classification areas we used for the UC07 (see (8)). Here, even the smallest
width of any classification area exceeds 2· 1.7m = 3.4m but the VW-Passat
is only about 2.01m wide.

6.5 Considering an Extreme Case

We showed that, if a tentacle is selected - and therefore was classified as
drivable before - the method guarantees that the vehicle will not hit an ob-
stacle within the next 0.1 seconds. However, it is not automatically given
that no collision can happen in the successive frames. To avoid collisions the
braking behavior plays an essential role. For the UC07, we use the simple
mechanism, that if no drivable tentacle was available, the vehicle selected
the tentacle with the largest distance to the first obstacle and decelerated
with a = −0.5g for the next 0.1 second frame along that brake tentacle.
3 Note, that only static obstacles are considered here. How the approach is com-

bined with a separate obstacle tracker for moving objects (as was the case for
the UC07) is detailed in the results section.

Driving with Tentacles - Integral Structures for Sensing and Motion 429

0

20

40

60

80

0

5

10

15

0

0.01

0.02

0.03

0.04

0.05

0.06

ith tentacle in speedset j

speed set j

d
e

v
(j

,i
)

m
a

x
im

u
m

d
e

v
ia

ti
o

n
[m

]

0
12

3

40

80
79

78
77

tentacle ids

Fig. 23. This figure shows trajectory deviations computed while letting a vehicle
perform tentacle transitions, executing the destination tentacle for 0.1 seconds. The
considered transitions are from the most curved tentacle 0 of a given speed set (left
side of the plot) to all the other tentacles i of the same speed set j. As can be seen,
the ego-transition from tentacle 0 to tentacle 0 has an expected deviation of zero.
The maximum deviation is below 6 cm. Transitions from one speed set to another
are not considered, assuming that the vehicle performs only slow velocity changes.

The speed reduction leads to decreased crash distance and - depending on
the case - can free new tentacles or, if all obstacles are too close, lead to a
continuation of braking. Freeing tentacles can happen by the reduction of the
crash distance itself, letting some obstacles move behind the new distance or
by switching to a new speed set and freeing new geometric primitives. The
intricate cases do not emerge from obstacles in front of the vehicle, because
the crash distance is designed such that there is plenty of room for stopping,
but from those obstacles the vehicle passes closely by. This shall be shown
at an example. Consider the admittedly very unrealistic case shown in figure
24. In the considered case the classification area of the last selected tentacle
is enclosed by a wall, such that the classification area is still free of obstacles.
Also the wall cuts the tentacle just behind the crash distance, such that the
vehicle detects the obstacle, but considers it being still too distant to be a

430 F.v. Hundelshausen et al.

wall

elcatnet

narrow road

Fig. 24. The constructed case, where the vehicle follows a narrow road with exactly
the same curvature than the tentacle the vehicle uses. The road has exactly the
width of the classification area, such that the wall is not recognized as obstacle
at the sides and neither at the front, since the wall is at a distance slightly above
the crash distance. Hence, any little movement of the car, will bring an obstacle
into the classification area. This case is used in the main text to discuss whether
our method could potentially fail. It is evident, that only the selected tentacle will
be classified as drivable, all the other tentacles intersect the wall before the crash
distance.

threat for the current speed. Hence, the vehicle drives along the tentacle for
0.1 seconds. If the execution of the tentacle is perfect, no problem arises,
because the crash distance will be undercut at the next time frame and the
vehicle can safely brake using the remaining part of the crash distance. That
is the space for braking only reduces by v· 0.1s if v is the speed of the vehicle.
However, if the vehicle deviates from the tentacle’s trajectory in terms of an
angular deviation, parts of the wall can suddenly protrude into the classifica-
tion area at a distance far before the crash distance reduced by v· 0.1s. This
situation is shown in figure 25. Since the wall protrudes into the classification
area, the tentacle is classified as non-drivable. It is evident that all the other
tentacles are classified as non-drivable, too. Hence the vehicle will deceler-
ate for the next 0.1 seconds choosing the tentacle with the largest distance
to the first obstacle as the path for braking. Braking with a deceleration of
a = −0.5g ≈ −0.5· 9.81m/s2 then takes place along the brake tentacle. The
process then repeats until the vehicle has stopped. A formal proof that a colli-
sion can be avoided in all cases is very hard to achieve because of the complex
interplay between geometric aspects, the process of drivability classification,
the tentacle selection for braking, the modification of the crash distance and
the final deviations of the tentacle’s trajectories due to vehicle dynamics.

Driving with Tentacles - Integral Structures for Sensing and Motion 431

wall

narrow road

wall intrudes

e

br
ak

e
t

n
ac

le
t

A

Fig. 25. The vehicle has moved for 0.1 seconds and we assume that a deviation
from the tentacle’s path occurred, such that the vehicle has an angular deviation
from the desired trajectory. As a consequence the wall at the bottom intrudes into
the classification area at a distance close to the vehicle. Hence, the tentacle will
be classified as non-drivable. Evidently, all other tentacles will also be classified
as non-drivable and the vehicle will start to brake for the next 0.1 seconds. For
braking, it will choose the tentacle with the largest distance to the first obstacle.
Note, that this is not the tentacle marked with A, because obstacles are mapped
orthogonally onto the classification histogram of the tentacle (see page 404).

7 Experiments and Competitions

Our approach was tested and demonstrated in several scenarios experiment-
ing with different parameter settings and execution modes.

7.1 System Integration at the C-Elrob 2007

At the C-Elrob 2007 we ran the vehicle in exploration mode. Here, both fac-
tors a0 and a2 of (16) were zero. That is the vehicle decided to drive always
towards the flattest areas without regarding any given trajectory. Tentacle ex-
ecution was done by temporal filtering of the selected tentacles and fragment
execution as described above. Even this simple approach worked surprisingly
well, and at the C-Elrob 2007 our CoTeSys4 demonstrator MuCAR-3 drove
a combined urban and non-urban course in record time5. Manual intervention
was only necessary at some crossings to force the vehicle to take the correct
course (since we did not exploit any GPS knowledge). In separate demonstra-
tions we let the vehicle drive along narrow serpentines. It was able to drive
the serpentines from the base camp at top of Monte Ceneri6 down to main
4 German Cluster for Exellence: Cognition For Technical Systems.
5 http://www.unibw.de/lrt13/tas/pressestimmen
6 Monte Ceneri, Swizerland.

432 F.v. Hundelshausen et al.

A

free area

combined urban and non-urban course

urban

demonstration track with serpentines

Monte Ceneri, Swizerland 46° 08 27.92'' N 8° 54 48.24E' ' ''

start and end position

m
ain

road

Fig. 26. The solid line shows the serpentines from the base camp at Monte Ceneri,
Swizerland down to the main road our vehicle was able to drive fully autonomously
without using any GPS information at the C-Elrob 2007. Occasionally, the vehicle
entered the free area A. The dashed-line shows the combined urban and non-urban
course our vehicle drove in record time (manual intervention at some crossings).

road without using any GPS information (see figure 26). Occasionally, the
vehicle decided to enter the free area at point A in figure 26 driving around
some parking trucks there, leaving the area again after some time or getting
stuck in a dead end.

7.2 System Integration within the DARPA Urban Challenge
2007 Finalist AnnieWay

Due to the success of our approach at the C-Elrob 2007 we integrated
our method into the system of DARPA Urban Challenge Team AnnieWay
(Kammel, 2007). A description of the overall system architecture is given by
(Kammel et al., 2008). In this setup tentacles were only used, if the areas in the
occupancy grid that corresponded to the current relevant section of the GPS
trajectorywere unexpectedly not free of obstacles. To check this we computed a
speed depending lookahead distance dcheck and defined a triangular mesh struc-
ture along the GPS-section as illustrated in figure 28. We then projected each
triangle into the ego-centered occupancy grid and scanned the cells of the trian-
gles using a standard triangle scan-conversionmethod from computer graphics.
The area was regarded as free if less than n = 2 grid cell exhibited a z-difference
more than 0.1m. If the area was regarded as occupied, the tentacle approach
was switched on. Note, that a separate obstacle tracker existed in the overall
system. This obstacle tracker was run before the grid-checkingmechanism, and
the distance dcheck was cropped by the distance to the first obstacle. Hence, the
tentacles only reacted on obstacles that were unseen by the obstacle tracker.

Driving with Tentacles - Integral Structures for Sensing and Motion 433

(a)

(b)

(c)

crossing

(b)

(c)

traffic circletraffic circle

Fig. 27. This figure shows the test area and road network we used in preparation
for the Urban Challenge 07. In excessive tests, our approach was proven to be
able to safely drive in this conventional residential area avoiding pavement edges,
parking cars and other obstacles. No traffic was present and a security driver was
onboard for safety reasons. In particular, our approach mastered the following two
difficult cases: In (b) the GPS-trajectory was intentionally defined to lead straight
through a traffic circle. Our approach was repeatedly shown to drive around the
traffic circle, not following collision course of the GPS-trajectory directly. In (c) the
GPS-trajectory was defined to shortcut a road crossing colliding with neighboring
houses. However, using our approach the vehicle followed the road to the next
crossing and turned right correctly, not strictly following the GPS-trajectory.

The obstacle tracker did detect and track obstacles only of the approximate
size of a vehicle, and evaluated the occupancy grid for obstacles only at the
expected area of the road as given by the GPS waypoints. Hence, in cases of
GPS-offsets the obstacle tracker could miss obstacles. In these cases the tenta-
cles provided a reactive protective shelter. However, even when the tentacles
were switched on, they tried to follow the GPS-trajectory if possible (because
of the trajectory value). For the Urban Challenge setup we run the tentacle ap-
proach with the parameters of equation (16) being a0 = 1,a1 = 0 and a2 = 0.5
such that the vehicle had a preference to follow the given GPS-trajectory but
avoided obstacles at the same time. The choice a0 = 0 means that flatness
was actually ignored for the Urban Challenge. The rationale for the Urban
Challenge was that as long as a tentacle is drivable, we would prefer the one
that follows the GPS-path instead of preferring flat tentacles in the extreme.
In general, the driving speed was determined by the behaviors of the overall sys-
tem. However, the tentacle method was allowed to undercut this speed. During
the UC07 the speed was cut down to 2.0m/swhen tentacles became active (if no
lower speed was initially selected). The reason for this low speed was that if the

434 F.v. Hundelshausen et al.

d ch
ec

ke
r

other vehicle

our vehicle

c

grid
hec

ker

G

pa
h(refine

)

P
S

t

d

dirgycnapuccoderetnec-oge

Fig. 28. The grid checker was a triangular mesh that was defined along the current
section of the RNDF in front of the vehicle. The triangles were projected into
the ego-centered occupancy grid to see whether the respective area was free of
obstacles. Tentacles were switched on, only if the area was not clear. To avoid the
tentacles reacting on other cars that were previously seen by the separate obstacle
tracker(Kammel et al., 2008), the speed depending length dchecker was cropped by
the distance to the first obstacle.

tentacles became active, one could conclude that something unpredicted had
happened, e.g due to a GPS-drift or an obstacle not detected by the obstacle
detection/tracking module.

7.3 Experiments in Preparation for the Urban Challenge

In preparation for the Urban Challenge our approach was tested excessively
at both a parking lot with manually placed obstacles and vehicles and a res-
idential area (under safe conditions, security driver). The most difficult tests
were performed in the residential area using a road network definition file
as shown in figure 27a): Here, the GPS trajectory was intentionally defined
directly through a traffic circle, such that if the GPS trajectory was executed
blindly, the vehicle would collide with the circular area in the center (see fig-
ure 27b). In dozens of repetitions our approach was confirmed to safely drive
around the traffic circle not strictly following the GPS-trajectory. In a simi-
lar experiment, we intentionally misplaced the GPS trajectory at a straight
road by an offset of about 10 meters, such that the trajectory passed through
the front gardens of the neighboring houses. Despite of this severe offset,
our approach lets the vehicle drive along the road, avoiding pavement edges,
parking cars, trees and other obstacles. Occasionally the vehicle tried enter-
ing wide doorways at the side corresponding to the GPS-offset but stopped
safely at dead ends. In the scenario shown in figure 27c) we intentionally
misdefined the GPS-trajectory short cutting the road crossing by about 50

Driving with Tentacles - Integral Structures for Sensing and Motion 435

meters through nearby buildings. Using our approach the vehicle did not fol-
low the collision course, but continued driving along the straight road, taking
the next road correctly to the right.

Care must be taken when dealing with moving objects. Oncoming traffic as
shown in figure 29a) is handled well by our algorithm and we did not experience
a single dangerous behavior in all our experiments. However the case in 29b)
is dangerous (for a human driver, too), since the vehicle would try overtaking
the car on the right lane, although another car is approaching on the left lane.
Hence, our approach should not be used in a stand-alone manner, in case of
traffic scenarios. Instead a separate tracker for moving objects should be run
in parallel (as we did for the Urban Challenge 2007). One option for combin-
ing our method with a separate obstacle tracker is to predict future obstacle
positions and explicitly draw them into the grid, blocking the corresponding
tentacles. Another option (we applied at the Urban Challenge 2007) is to eval-
uate tentacles just up to the first tracked object, such that a car driving ahead
is not sensed by the tentacles. Speed control then has to be handled in a way
that the robot follows the car. In this way, our approach can be restricted to
avoid only those obstacles that were not detected by the object tracker.

7.4 Performance at the Urban Challenge

At the Urban Challenge 2007 our method was active in all preliminary tests,
test A, test B and test C and also at the final race. Unfortunately, tentacle
logging was off, and no quantitative data is available of how often or when the

(a) (b)

Fig. 29. The situation shown in (a) is handled well by our method. Some tentacles
are blocked by the oncoming traffic (light gray) and the pavement edges of the
road leaving three groups of tentacles (black). It would be dangerous to select a
tentacle leading to the left lane. However, one of the straight tentacles is selected
(dashed black) because of the hysteresis step (see page 412) - preferring tentacles
that are more similar to the last selected tentacle in ambiguous situations. The
situation shown in (b) is dangerous, since the vehicle would try to overtake the
car in front, notwithstanding the oncoming traffic. Hence, our approach should be
combined with a separate object tracker in traffic environments (e.g. predicting
future obstacle positions and explicitly drawing them into the grid).

436 F.v. Hundelshausen et al.

Fig. 30. At the Urban Challenge 2007 our approach was important at narrow
passages where small GPS offsets could cause a collision.

tentacles where active. The only certainty about them having been active was
the slow speed of the AnnieWay vehicle observable when driving along narrow
passages. This can also be seen in videos we recorded. A typical scene where
tentacles were active is depicted in figure 30 showing narrow passages where
even small GPS offsets could be dangerous. When tentacles where active the
velocity was cropped to at most 2m/s. In one test, our car slightly hit a wall.
The reason was an error in the tentacle code but evidently a software bug.
With this bug (that happend by switching from debug to release mode) the
vehicle had computed NaN-floats as curvatures and transmitted them to the
low-level controller. In the final race, the AnnieWay car stopped at the entry
of a sparse zone. This was also due to a software bug, known to the team
and not related to the tentacle method. Overall, we believe that our stop in
the final was not because of a conceptual problem, but because of insufficient
time for testing and bug fixing.

7.5 Lessons Learned

The major lesson learned at the DARPA Urban Challenge is the inevitability
to handle problems arising due to GPS inaccuracies. Many teams participat-
ing at the challenge reported that one of the key enabling techniques was
to constantly keep track of the offset between GPS measurements and the
DARPA provided GPS waypoints. In this spirit, the approach presented in
this paper allows to follow a given GPS trajectory while avoiding obstacles at
the same time. Using feature based references for estimating the GPS offset
is particularly hard to accomplish as free space areas are often lacking such
features lane markings. For example, the path planner that was active at
zones had to cope with the problem that when the GPS destination point
was sometimes believed to be occluded by an obstacle due to GPS drifts.

Driving with Tentacles - Integral Structures for Sensing and Motion 437

We belief that this lesson points towards a new direction of how plans
for navigation should be represented. To open this perspective, we briefly
consider the merits of reactive schemes, such as the one this paper describes,
and path planning schemes. The most obvious difference is the temporal be-
havior of the both: while reactive schemes are fast and react immediately,
trajectory planning methods are comparatively slow. Often, replanning is
done at a rate too low to guarantee that no dynamic obstacle has moved
into the planned track. On the other hand, path planning allows to antic-
ipate and avoid traps a reactive scheme might just run into. However, the
fundamental difference we would like to emphasize is the way both methods
relate to the world as perceived. In contrast to path planning methods, where
planning takes place in abstract models of the world (e.g. SLAM, and carte-
sian map approaches in general), reactive schemes directly couple perception
with action. Consider, for instance, a reactive navigation approach driving
along a road, guided by the principle to drive on flat ground. Then, the road
essentially corresponds to what a planned path is in a path planning method.

We do not argue for reactive approaches in general, but for their inherent
property of direct reference to the world. Thus, the critical question is whether
this property can somehow be transferred to planning methods. We believe
that a change of the planning domain from cartesian coordinate systems fixed
to the ground to what one might call perceptual references is a promising
direction. With perceptual references, plans would be described similar to
how humans communicate plans: ”Overtake the obstacle to the left, pass
the next one at the right side”. We believe that successful future navigation
systems will follow this direction, instead of doing what most researchers do
now: implementing “GPS-trains” following “GPS trails”.

8 Conclusions and Future Work

In this paper we proposed a simple, very efficient and fast to implement reac-
tive navigation method intended for the use with multi-beam LIDARs. The
approach can be used for two purposes: It allows an autonomous robot to
safely navigate in previously unknown static terrain. As a second option it
can be used as protective shelter for systems that are based on following GPS-
waypoints, such that the method follows the GPS trajectory in case it is safe,
but avoids obstacles aside the track in case of GPS drift. The method is not
intended to deal with moving obstacles, but the paper shows how the method
can be combined with a separate dynamic obstacle tracker. Both options have
been demonstrated at robotic competitions, the exploration of unknown ter-
rain at the C-Elrob 2007, where our vehicle drove a difficult combined urban
and non-urban course 90 percent autonomously without using any GPS (man-
ual intervention at crossings to make the vehicle drive the correct course), and
the protective shelter option was implemented within the system of DARPA
Urban Challenge finalist Team AnnieWay. At the core of the system is a set
of motion primitives (called tentacles) that are used for both perception and

438 F.v. Hundelshausen et al.

motion execution. In contrast to other methods, our algorithm uses an ego-
centered occupancy grid. In this way the geometric relation between the ten-
tacles and the grid is static, allowing to pre-compute grid addresses. This static
relationship is the main reason for the efficiency of the method. However, the
efficiency comes at the cost of violating vehicle dynamics in the sense that the
geometric shape of the tentacles cannot be precisely executed. However, the
interesting aspect is - and we provide a theoretic analysis of this aspect - that
instead of this violation the algorithm can ensure that the deviation of the re-
sulting path to the tentacle is bound to be in an area that is ensured to be free
of obstacles. The second reason for the efficiency of the method is that it only
evaluates a small set (n = 81) of tentacles at a time, all having the shape of cir-
cular arcs. Instead of this seeming geometric restriction the method achieves a
huge space of possible trajectories by using a speed-varying evaluation mech-
anism of the tentacles and chaining only small fragments of the circular arcs.
The reactive method does not accumulate data and is completely data driven
thereby avoiding the SLAM problem. No global position of the vehicle or ob-
stacles has to be estimated.

Several interesting extensions of our method are possible. The first im-
provement would be to consider a set of tentacles for a large number of
sampled points in the state space of the vehicle dynamics. In this way, the
dynamically correct shapes could be picked up in every iteration. This im-
provement would only be at the cost of memory, not of computational load.
Further, it would be interesting to learn the tentacles of each state by observ-
ing and sampling the states and trajectories recorded while a human drives.
Another interesting idea arises by observing that the classification procedure
of the tentacles not only determines whether a tentacle is drivable or not,
but also determines the distance at which the first obstacle occurs. When
driving along a conventional road with pavement edges, one can observe that
the set of tentacles finds these edges well. The idea is to see the tentacles as
a curb-detector and try to group those obstacle positions, e.g. by verifying
whether they constitute a smooth sequence of positions, in this case detect-
ing the border of the road. Then, navigation could be done relative to the
detected and tracked road boundary. In case no detection is possible, the
method could fall back on the pure reactive navigation mode. In this way,
reactive and cognitive navigation in relation to perceived road boundaries
could nicely be combined.

Acknowledgements

This research was supported in part by the German Excellence Cluster
CoTeSys “Cognition For Technical Systems”

Driving with Tentacles - Integral Structures for Sensing and Motion 439

References

Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Transactions
on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)

Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT Press, Cam-
bridge (1984)

Coombs, Murphy, Lacaze, Legowik: Driving Autonomously Offroad up to 35 km/h.
In: Procs. IEEE Intelligent Vehicles Symposium 2000, Detroit, USA, pp. 186–
191 (2000)

Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Techni-
cal Report CMU-RI-TR-92-01, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA (1992)

Dickmanns, E.D.: The 4d-approach to dynamic machine vision. In: Proceedings
of the 33rd IEEE Conference on Decision and Control, vol. 4, pp. 3770–3775
(1994)

Dickmanns, E.D.: Dynamic Vision for Perception and Control of Motion. Springer,
Heidelberg (2007)

Dissanayake, M., Newman, P., Clark, S., Durrant-Whyte, H., Csorba, M.: A solution
to the simultaneous localization and map building (slam) problem. Robotics
and Automation, IEEE Transactions on 17(3), 229–241 (2001)

Goldberg, S., Maimone, M., Matthies, L.: Stereo vision and rover navigation soft-
ware for planetary exploration. In: Proceedings of the IEEE Aerospace Con-
ference, vol. 5, p. 2025 (2002)

Julier, S., Uhlmann, J.: A counter example to the theory of simultaneous localiza-
tion and map building (2001)

Kammel, S.: DARPA Urban Challenge, Team AnnieWay, team homepage (2007),
http://annieway.mrt.uni-karlsruhe.de

Kammel, S., Ziegler, J., Pitzer, B., Werling, M., Gindele, T., Jagzent, D., Schröder,
J., Thuy, M., Goebl, M., von Hundelshausen, F., Pink, O., Frese, C., Stiller,
C.: Team annieway’s autonomous system for the darpa urban challenge 2007.
International Journal of Field Robotics Research (2008)

Kelly, A., Stentz, A.T.: Rough terrain autonomous mobility - part 2: An active
vision, predictive control approach. Autonomous Robots 5, 163–198 (1998)

Lamon, P., Kolski, S., Triebel, R., Siegwart, R., and Burgard, W.: The smartter
for elrob 2006 a vehicle for fully autonomous navigation and mapping in out-
door environments. Technical report, Autonomous Systems Lab, Ecole poly-
technique Fdrale de Lausanne, Switzerland, Autonomous Intelligent Systems,
Albert-Ludwigs-University of Freiburg, Germany (2006)

Landau, Y.D.: Adaptive Control: The Model Reference Approach. Marcel Dekker,
Inc., New York (1979)

Mitschke, M., Wallentowitz, H.: Dynamik der Kraftfahrzeuge. Springer, Heidelberg
(2004)

Nilsson, N.J.: Shakey the robot. Technical Report 323, AI Center, SRI International,
333 Ravenswood Ave, Menlo Park, CA 94025 (1984)

Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Mono-
graphs in Computer Science. Springer, Heidelberg (1985)

Rosenblatt, J.: Damn: A distributed architecture for mobile navigation (1995)

440 F.v. Hundelshausen et al.

Sariff, N., Buniyamin, N.: An overview of autonomous mobile robot path planning
algorithms. In: 4th Student Conference on Research and Development, 2006.
SCOReD 2006, pp. 183–188 (2006)

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong,
P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M.,
Pratt, V., Stang, P., Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C.,
Markey, C., Rummel, C., Niekerk, J.v., Jensen, E., Alessandrini, P., Bradski,
G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., Mahoney, P.: Stanley:
The robot that won the darpa grand challenge: Research articles. J. Robot.
Syst. 23(9), 661–692 (2006)

Caroline: An Autonomously Driving Vehicle for
Urban Environments

Fred W. Rauskolb1, Kai Berger2, Christian Lipski2, Marcus Magnor2,
Karsten Cornelsen3, Jan Effertz3, Thomas Form3, Fabian Graefe3,
Sebastian Ohl3, Walter Schumacher3, Jörn-Marten Wille3, Peter Hecker4,
Tobias Nothdurft4, Michael Doering5, Kai Homeier5,
Johannes Morgenroth5, Lars Wolf5, Christian Basarke6,
Christian Berger6, Tim Gülke6, Felix Klose6, and Bernhard Rumpe6

1 Herzfeld & Rubin, P.C.
40 Wall Street
New York, NY 10005

2 Institute of Computer Graphics
Mühlenpfordtstraße 23
38106 Braunschweig, Germany

3 Institute of Control Engineering
Hans-Sommer-Straße 66
38106 Braunschweig, Germany

4 Institute of Flight Guidance
Hermann-Blenk-Straße 27
38108 Braunschweig, Germany

5 Institute of Operating Systems and Computer Networks
Mühlenpfordtstraße 23
38106 Braunschweig, Germany

6 Institute of Software Systems Engineering
Mühlenpfordtstraße 23
38106 Braunschweig, Germany
carolo-uc@tu-bs.de

Abstract. The 2007 DARPA Urban Challenge afforded the golden opportunity for
the Technische Universität Braunschweig to demonstrate its abilities to develop an
autonomously driving vehicle to compete with the world’s best competitors. After
several stages of qualification, our team CarOLO qualified early for the DARPA
Urban Challenge Final Event and was among only eleven teams from initially 89
competitors to compete in the final. We had the ability to work together in a large
group of experts, each contributing his expertise in his discipline, and significant
organisational, financial and technical support by local sponsors who helped us to
become the best non-US team.

In this report, we describe the 2007 DARPA Urban Challenge, our contribu-
tion ”Caroline”, the technology and algorithms along with her performance in the
DARPA Urban Challenge Final Event on November 3, 2007.

M. Buehler et al. (Eds.): The DARPA Urban Challenge, STAR 56, pp. 441–508.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

442 F.W. Rauskolb et al.

1 Motivation and Introduction

Focused research is often centered around interesting challenges and awards.
The airplane industry started off with awards for the first flight over the British
Channel as well as the Atlantic Ocean. The Human Genome Project, the
RoboCups and the series of DARPA Grand Challenges for autonomous vehi-
cles serve this very same purpose to foster research and development in a par-
ticular direction. The 2007 DARPA Urban Challenge is taking place to boost
development of unmanned vehicles for urban areas. Although there is an ob-
vious direct benefit for DARPA and the U.S. government, there will also be
a large number of spin-offs in technologies, tools and engineering techniques,
both for autonomous vehicles, but also for intelligent driver assistance. An in-
telligent driver assistance function needs to be able to understand the sur-
roundings of the car, evaluate potential risks and help the driver to behave
correctly, safely and, in case it is desired, also efficiently. These topics do not
only affect ordinary cars, but also buses, trucks, convoys, taxis, special-purpose
vehicles in factories, airports and more. It will take a number of years before we
will have a mass market for cars that actively and safely protect the passenger
and the surroundings, like pedestrians, from accidents in any situation.

Intelligent functions in vehicles are obviously complex systems. Large is-
sues in this project where primarily the methods, techniques and tools for the
development of such a highly critical, reliable and complex system. Adapt-
ing and combining methods from different engineering disciplines were an
important prerequisite for our success. For a stringent deadline-oriented de-
velopment of such a system it is necessary to rely on a clear structure of the
project, a dedicated development process and an efficient engineering that
fits the project’s needs. Thus, we did not only concentrate on the single soft-
ware modules of our autonomously driving vehicle named Caroline, but also
on the process itself. We furthermore needed an appropriate tool suite that
allowed us to run the development and in particular the testing process as
efficient as possible. This includes a simulator allowing us to simulate traffic
situations and therefore achieve a sufficient coverage of test situations that
would have been hardly to conduct in reality. Only a good collaboration be-
tween the participating disciplines allowed us to develop Caroline in time to
achieve such a good result in the 2007 DARPA Urban Challenge.

In the long term, our goal was not only to participate in a competition
but also to establish a sound basis for further research on how to enhance
vehicle safety by implementing new technologies to provide vehicle users with
reliable and robust driver assistance systems, e.g. by giving special attention
on technology for sensor data fusion and robust and reliable system architec-
tures including new methods for simulation and testing. Therefore, the 2007
DARPA Urban Challenge provided a golden opportunity to combine several
expertise from several fields of science and engineering. For this purpose, the
interdisciplinary team CarOLO had been founded, which drew its members

Caroline: An Autonomously Driving Vehicle for Urban Environments 443

from five different institutes. In addition, the team received support from a
consortium of national and international companies.

In this paper, we firstly introduce the 2007 DARPA Urban Challenge and
derive the basic requirements for the car from its rules in section 2. Section
3 describes the overall architecture of the system, which is detailed in sec-
tion 4 describing sensor fusion, vision, artificial intelligence, vehicle control
and along with safety concepts. Section 5 describes the overall development
process, discusses quality assurance and the simulator used to achieve suffi-
cient testing coverage in detail. Section 6 finally describes the evaluation of
Caroline, namely the performance during the National Qualification Event
and the DARPA Urban Challenge Final Event in Victorville, California, the
results we found and the conclusions to draw from our performance.

2 2007 DARPA Urban Challenge

The 2007 DARPA Urban Challenge is the continuation of the well-known
Grand Challenge events of 2004 and 2005, which were entitled ”Barstow to
Primm” and ”Desert Classic”. To continue the tradition of having names re-
flect the actual task, DARPA named the 2007 event ”Urban Challenge”, an-
nouncing with it the nature of the mission to be accomplished.

The 2004 course, as shown in Fig. 1, led from the Barstow, California (A)
to Primm, Nevada (B) and had a total length of about 142 miles. Prior to the
main event, DARPA held a qualification, inspection and demonstration for
each robot. Nevertheless, none of the original fifteen vehicles managed to come
even close to the goal of successfully completing the course. With 7.4 miles
as the farthest distance travelled, the challenge ended very disappointingly
and no one won the $1 million cash prize.

Thereafter, the DARPA program managers heightened the barriers for en-
tering the 2005 challenge significantly. They also modified the entire quality
inspection process to one involving a step-by-step application process, includ-
ing a video of the car in action and the holding of so-called Site Visits, which
involved the visit of DARPA officials to team-chosen test sites. The rules for
these Site Visits were very strict, e.g. determining exactly how the courses
had to be equipped and what obstacles had to be available. From initially
195 teams, 118 were selected for site visits and 43 had finally made it into
the National Qualification Event at the California Speedway in Ontario, Cal-
ifornia. The NQE consisted of several tasks to be completed and obstacles to
overcome autonomously by the participating vehicles, including tank traps,
a tunnel, speed bumps, stationary cars to pass and many more.

On October 5, 2005, DARPA announced the 23 teams that would partici-
pate in the final event. The course started in Primm, Nevada, where the 2004
challenge should have ended. With a total distance of 131.6 miles and several
natural obstacles, the course was by no means easier than the one from the
year before. At the end, five teams completed it and the rest did significantly

444 F.W. Rauskolb et al.

Fig. 1. 2004 DARPA Grand Challenge Area between Barstow, CA (A) and Primm,
NV (B).

better as the teams the year before. The Stanford Racing Team was awarded
the $2 million first prize.

In 2007, DARPA wanted to increase the difficulty of the requirements,
in order to meet the goal set by Congress and the Department of Defense
that by 2015 a third of the Army’s ground combat vehicles would operate
unmanned. Having already proved the feasibility of crossing a desert and
overcome natural obstacles without human intervention, now a tougher task
had to be mastered. As the United States Armed Forces are currently facing
serious challenges in urban environments, the choice of such seemed logical.
DARPA used the good experience and knowledge gained from the first and
second Grand Challenge event to define the tasks for the autonomous vehicles.
The 2007 DARPA Urban Challenge took place in Vicorville, CA as depicted
in Fig. 2.

The Technische Universität Braunschweig started in June 2006 as a new-
comer in the 2007 DARPA Urban Challenge. Significantly supported by in-
dustrial partners, five institutes from the faculties of computer science and
mechanical and electrical engineering equipped a 2006 Volkswagen Passat sta-
tion wagon named ”Caroline” to participate in the DARPA Urban Challenge
as a ”Track B” competitor.

Track B competitors did not receive any financial support from the DARPA
compared to ”Track A” competitors. Track A teams had to submit technical
proposals to get technology development funding awards up to $1,000,000 in
fall 2006. Track B teams had to provide a 5 minutes video demonstrating
the vehicles capabilities in April 2007. Using these videos, DARPA selected
53 teams of the initial 89 teams that advanced to the next stage in the

Caroline: An Autonomously Driving Vehicle for Urban Environments 445

Fig. 2. 2007 DARPA Grand Challenge Area in Victorville, CA.

qualification process, the ”Site Visit” as already conducted in the 2005 Grand
Challenge.

Team CarOLO got an invitation for a Site Visit that had to take place in
the United States. Therefore, team CarOLO accepted gratefully an offer from
the Southwest Research Insitute in San Antonio, Texas providing a location
for the Site Visit. On June 20, Caroline proved that she was ready for the
National Qualification Event in fall 2007. Against great odds, she showed her
abilities to the DARPA officials when a huge thunderstorm hit San Antonio
during the Site Visit. The tasks to complete included the correct handling
of intersection precedence, passing of vehicles, lane keeping and general safe
behaviour. After the demonstration, the team returned to Germany together
with Caroline.

On August 9, the team received the results of the Site Visit event together
with an inivitation to the next stage of the qualification process: The National
Qualification Event in Victorville, California. Being a semi-finalist team, the
team returned at the end of September to the Southwest Research Institute
in San Antonio to finalize the development and tests. Three weeks later,
Caroline and the team arrived in Victorville, California and participated in
the National Qualification Event. To qualify for the Final Event, three courses
had to be mastered by the vehicles, each one covering a certain part of the
requirements. At the first course, called ”Track A”, the robots needed to
merge into moving traffic, ”Track B” required the handling of very long and
complex routes with stationary obstacles and ”Track C” tested intersections
and how the vehicles handle the blockage of roads. Demonstrating repeatedly

446 F.W. Rauskolb et al.

the performance of Caroline in all tracks of the National Qualification Event,
Caroline qualified early for the final stage, the DARPA Urban Challenge Final
Event held on November 3. In chapter 6, the overall performance of Caroline
in the National Qualification Event and the DARPA Urban Challenge Final
Event is illustrated.

3 System Architecture

Caroline is a standard 2006 Volkswagen Passat station wagon equipped with
a variety of sensors, actuators and computers to function as an autonomous
mobile robot. In front, two multi-level laser scanners, one multi-beam lidar
sensor and one radar sensor cover a field of view up to 200 meters for ap-
proaching traffic or stationary obstacles. In addition, four cameras detect and
track lane markings in order to allow precise lane keeping. The stereo vision
system behind the windshield and another color camera combined with two
laser scanners mounted on the roof were installed to provide information
about the drivability of the terrain in front of the vehicle. Very similar to the
front of the vehicle, one multi-level laser scanner, one medium range radar,
one lidar and two radar-based blind-spot-detectors enable Caroline to detect
obstacles at the rear. All these sensors are depicted in Fig. 3.

An array of automotive PCs mounted on a rack shown in Fig. 4 functions
as the hardware platform for a distributed software architecture with all
internal communication based upon Ethernet. The access to Caroline’s by-
wire steering, brake and throttle system as well as to other low level actuators

Fig. 3. The perception system.

Caroline: An Autonomously Driving Vehicle for Urban Environments 447

is provided through a CANLOG III command interface, which also connects
to the vehicle’s E-stop system to provide emergency stop functionality even
if the complete software system described below should fail. Regardless to
those lower level components described above, all computing and control
hardware is based on industrial PC technology, thereby reducing hardware
variety, simplifying failure management along with component replacement.

The development of Caroline is divided among a number of institutes and
disciplines, including faculties for computer science and mechanical and elec-
trical engineering. Mirroring this internal structure, Caroline’s architecture is
grouped into eight principal modules, interconnected with predefined inter-
faces as shown in Fig. 5: Sensor Data Acquisition, Sensor Data Fusion, Image
Processing, Digital Map, Artificial Intelligence, Vehicle Path Planning and
Low Level Control, Supervisory Watchdog and Online-Diagnosis, Telemetry
and Data Storage for Offline Analysis. Due to the intentionally linear signal
flow between each function module without major signal loops, we are able
to develop different modules independently and with minimum interference.

Starting at the bottom of this linear flow, the data acquisition unit pro-
vides necessary hard- and software modules to collect and process incoming
data from all active sensors for object recognition. Since all of the sensors
used are standard components originating from contemporary automotive
driver assistance systems, they are equipped with a Controller Area Network
(CAN) communication interface. Taking into account the limitation of this
bus standard regarding data throughput and determinism, a private sensor
CAN was chosen for each sensor to keep latencies small and to avoid bus
conflicts.

The acquisition of GPS and INS data (referred as Ego State in the fol-
lowing) was moved directly into the real-time vehicle control unit in order
to avoid large latencies within the closed loop dynamic control. The time of

Fig. 4. Computer rack and power supply.

448 F.W. Rauskolb et al.

Fig. 5. System architecture.

Caroline: An Autonomously Driving Vehicle for Urban Environments 449

day is obtained from the GPS and distributed via the network time protocol
(NTP) to all subsystems.

Incoming video data is sampled from the assigned IEEE 1394 interface,
preprocessed and interpreted directly on the image acquisition PCs to avoid
overload of the vehicle’s internal network by image data. Lane detection data
is directly passed to the artificial intelligence. The stereo vision system deliv-
ers 3D scan points along with area data describing the drivability of the road.
This data is fused with further scan points obtained from the laser scanners
and area data from the additional color camera observing the ground in front
of the vehicle. This fusion results in a drivability grid which is sent to the
artificial intelligence module.

Furthermore, following Caroline’s signal flow, sensor data of all object-
recognition sensors is processed within a central sensor data fusion unit as
described in section 4.1, which transmits the object-based vehicle’s surround-
ings containing all static and dynamic targets in Carolines field of view to
the digital map. The digital map combines online environmental informa-
tion with available offline information generated from mission definition files
(MDF) and route network definition files (RNDF) provided for the mission.
This combined data is the basis for the artificial intelligence to generate
driving decisions based on a Distributed Architecture for Mobile Naviga-
tion scheme (DAMN) as proposed by [Rosenblatt, 1997] and described in
section 4.3.

The driving commands obtained, e.g. ”follow a given road” are issued to
the soft real time control module, which carries out trajectory generation
and optimization based on driving dynamics of the vehicle. The driving tra-
jectories generated are then passed along into hard real time control that
addresses the vehicle actuators.

All modules previously described are supervised by a central watchdog
process with the possibility to kill and restart one or several processes, com-
puters or sensors independently. Thus, a maximum of self-healing capability
is installed in Caroline’s systems.

The visualization module is used during development in order to display
all exchanged object data. This data consists of e.g. obstacles, lanes, terrain
drivability, the planned path and mission data files. A recorder and a player
module which logs data for the purpose of offline-analysis, are also integrated
in this module.

4 System Modules

Caroline’s software system consists of five modules. Tasks to be mastered
in order to compete in the 2007 DARPA Urban Challenge are environment
recognition, road finding, situation assessment and vehicle control supervised
by a safety module. These core modules are described below.

450 F.W. Rauskolb et al.

4.1 Sensor Fusion

Perception is one of Caroline’s key systems. The system detects obstacles
as well as the drivability of the environment. The sensor fusion system is
separated in two parts. The first one is responsible for obstables, such as
other cars, walls or pedestrians. The other one takes care of the drivability
of the environment. Thus, it is possible to keep the car on the road even in
rough evironments. Based on this information, the artificial inteligence is able
to find a safe path through traffic. The perception system will be described
in greater detail in the following sections. The following section introduces
the sensor concept, followed by the object-based data fusion and end with
the grid based fusion of the drivability.

4.1.1 Sensor Concept
A variety of sensor types originating from the field of driver assistance sys-
tems were chosen to provide detection of static and dynamic obstacles in the
vehicle’s surroundings as depicted in Fig. 3:

• Dark green: A stationary beam LIDAR sensor placed in the front and
rear of the vehicle, have a range of approximately 200 meters with an
opening angle of 12 degrees. The unit has an internal preprocessing stage
and thus delivers its readings in an object oriented fashion, providing
target distance, target width and relative target velocity with respect to
the car’s fixed sensor coordinate frame.

• Red: 24 GHz radar sensors were added to the front, rear, rear left and
right side of the vehicle. While the center front and rear sensors provide
a detection range of approximately 150 meters with an opening angle of
40 degrees, the rear right and left sensors function as blind-spot detectors
with a range of 15 meters and an opening angle of 140 degrees due to
their specific antenna structure. The front sensor acts as a stand-alone
unit delivering object-oriented target data, such as position and velocity
through its assigned external control unit (ECU). The three radar sensors
in the rear section operate as a combined sensor cluster using an additional
ECU, providing object-oriented target data in the same fashion as the
front system. From the perspective of the post processing fusion system,
the three rear sensors can therefore be regarded as one unit.

• Blue: Two Ibeo ALASCA XT laser scanners were installed in the vehicle’s
front section, each providing an opening angle of 240 degrees with a de-
tection range of approximately 60 meters. The raw measurement data of
both front laser scanners is preprocessed and fused on their corresponding
ECU, delivering complex object-oriented target descriptions consisting of
target contour information, target velocity and additional classification
information. Additionally, the raw scan data of both laser scanners can
be read by the fusion system’s grid-based subsection.

Caroline: An Autonomously Driving Vehicle for Urban Environments 451

• Purple: One Ibeo ML laser scanner was added to the rear side, providing
similar detection capabilities as the two front sensors, with a reduced
opening angle of 180 degrees due to its mounting position. All Ibeo sensors
are based on a four-plane scanning principle with a vertical opening angle
of 3.2 degrees between the top and bottom scan plane. This opening angle
enables smaller pitch movements of the vehicle to be covered.

• Green: Two SICK LMS-291 laser scanners were mounted on the vehicle’s
front roof section. These scanners are based on a single-plane technol-
ogy. They were set to measure the terrain profile at 10 and 20 meters,
respectively. The view angle was limited to 120 degrees by software.

• Light blue: A stereo vision system mounted behind the vehicle’s front
window covers an area of approximately 60 degrees within a range of 50
meters, providing 3-dimensional terrain profile data for all stereo vision
points retrieved. A simple classification into the driveway, curb and ob-
stacles classes is also available.

• Orange: A USB-based color mono camera installed on the front roof sec-
tion, covering an opening angle of approximately 60 degrees.

The sensors view areas are shown in Fig. 6. These view areas overlap for
a more reliable view of the environment.

Fig. 6. Sensor view areas.

452 F.W. Rauskolb et al.

ECU ECU

ECU ECU

Front Data Acquisition

Rear Data Acquisition

Tracking + Data Fusion

front

rear

Color
Analysis

Object Data

Object Data

C
A

N
C

A
N

E
th

e
rn

e
t

Stereo
Preprocessing

Grid Fusion

Drivability,
Height Profile

Surface Data, Classification

Classification Surface Data

Fig. 7. Fusion architecture.

The sensor architecture described reflects the hybrid post-processing
scheme applied. While the first four sensors deliver their data in an object-
oriented fashion and are therefore treated within the system’s object tracking
and data fusion stage, the three last sensors described are evaluated based on
their raw measurement data in the grid-based subsection. A distributed data
fusion system consisting of three interconnected units was set up. In order to
equally balance the available computing power, the object tracking system
was split into two independent modules, covering the front and rear sections
independently. Therefore, two automotive computers carry out data acquisi-
tion and data fusion of the front and rear object detecting sensors, while the
third PC is used to fuse the raw sensor readings of the SICK scanners, stereo
vision system and mono color camera as shown in Fig. 7.

4.1.2 Object Tracking Fusion
The object fusion system is based on a pipes and filters pattern as depicted
in Fig. 8. All incoming sensor data is queued and then processed sequentially
using a first in - first out strategy. Within the first step, data association is
carried out in order to assign incoming sensor objects to their corresponding
tracks in the fusion system that are taken from a real-time track database.
In case of a positive match between an existing track and incoming sensor
object, this pairing is then pushed into the processing queue of the system’s
Extended Kalman Filter in order to correct the track with new measurement
data. If no match can be found, the sensor object is regarded as a potential

Caroline: An Autonomously Driving Vehicle for Urban Environments 453

Laserscanner Front

Extended Kalman FilterPretracking

Data Association

Laserscanner Rear Radar Front Radar Rear

Track Database

Fusion Input Queue

...

Track ID 0

Track ID 1

Track ID 2

Track ID 3

Pretrack Database

...

Pretrack ID 0

Pretrack ID 1

Pretrack ID 2

Pretrack ID 3

Track
Initialization

Sensor Sweeps

Data Acquisition, Timestamping and Transformation

Lidar Front Lidar Rear

Track Managment

Fig. 8. Object fusion system architecture.

new target and pushed into the pretracking system. Within pretracking, sen-
sor data is justified against time and all other sensors taking into account
sensor redundancy where applicable. Pretracking and data association will
be described later in greater detail.

If a sensor object has reached a certain level of justification, a new track
will be instantiated and pushed into the real-time track database. Parallel
to data association, pretracking and final object tracking, a track manage-
ment unit periodically scans the track database for “dead“ tracks - i.e. fusion
objects that have not been updated for a certain amount of time. In addi-
tion to this garbage collection, all valid tracks are compared to each other
for track merging and track splitting, which is necessary to handle situations
including a passenger entering or leaving his vehicle or any other situation
where two objects in the real world converge or split. Instead of transferring
a whole track database image to downstream modules, create, update and
delete messages of the track database are issued via the network. Every client
is then capable of maintaining it’s own track database. Therefore, network
load can be significantly reduced without any loss of information.

Data Association and Pretracking. Data association and pretracking
have a key functionality within Caroline’s fusion system. Imperfect data as-
sociation leads inevitably to incorrect tracks, whereas incorrect track initial-
ization during pretracking leads to imperfect data association, since correct
tracks and false alarms will then compete for incoming measurement data.

454 F.W. Rauskolb et al.

With this central position, the association and pretracking stage dominates
the state estimator in the main tracking stage, since no state estimator can
transform falsely associated sensor readings into useful update information for
a track. In classical tracking approaches where objects are mostly described
through a state vector consisting of a generalized object position, velocity
and, if applicable, further derivatives of these quantities, data association
can be performed in a point-to-point matching process.

Within Caroline’s fusion system, these approaches had to be extended in
order to handle spread objects with complex shapes. Three different types
of sensor objects have to be processed: complex contours delivered by laser
scanners, line-shaped objects delivered by the LIDAR system and classical
point-shaped objects received from radar sensors. It is not possible to define
a common general object position seen by all sensors, since each sensor will
most likely see the target differently. For example the point of reflection
delivered from a radar is unknown compared to precise contour measurements
gained from a laser scanner. Additionally, as the vehicle moves through the
real world, the point of reflection of each sensor type moves on the outline of a
real-world object. Therefore a multi-point track model was chosen, describing
a detected object by an arbitrary number of contour points and postulating
a common movement vector following a rigid body assumption. This way
each contour measurement can be matched to the tracked contour point with
the best fit. A two-staged data association process was set up, with the first
stage serving as a justification as to whether or not track and measurement
describe the same real-world object and in the second stage then calculating
the optimal contour association between measured and tracked object points.
Within stage one, a weighting function counting for the minimum Euclidian
distance and similarity of velocities is calculated,

wi,j = a ·min[|xik − xjl |, ∀k, l] + b · |vi − vj | (1)

with wi,j being a scalar weight for association between track i and measure-
ment j with tracked and measured velocity vectors vi, vj , xik, x

j
l being the

kth and lth contour point position of track i and measurement j and a, b
serve as tuning parameters. A threshold for this weight is further defined and
an association below that threshold level will be pushed into stage two.

In stage two, an optimal match between all measured and tracked contour
points is calculated based on an association matrix ,

Ω =

⎡

⎣
|xi1 − xj1| . . . |xi1 − xjl |

.

|xik − xj1| . . . |xik − xjl |

⎤

⎦ (2)

Optimization can be carried out with standard algorithms such as the
Hungarian/Munkres method, Nearest Neighbor or similar approaches. We
used the fast Minimum-algorithm. This two-staged association process avoids
unnecessary computational load on the system, since unlikely associations will

Caroline: An Autonomously Driving Vehicle for Urban Environments 455

be filtered out in stage one while the computational challenging minimization
is only carried out for positive matches.

During pretracking, incoming sensor data is first associated with prelimi-
nary track objects (pretracks) using methods similar to those described above.
A pretrack carries along a vector of sensor assignments, storing for each sen-
sor type the last assigned sensor object id. A simple Kalman filter based on a
constant velocity motion model is calculated for each pretrack to update its
position given by incoming sensor data. In addition to the vector of sensor
assignments, an update counter is carried along storing the number of posi-
tive association events. Taking into account sensor redundancies read from a
configuration file, a threshold for track activation is evaluated based on this
update counter, depending on the level of redundancy in the affected obser-
vation area of that object. A simple description language was implemented
to efficiently model these redundancies and to influence the update count
threshold for track activation, e.g.:

polygon={0,2;10,2;10,-2;0,-2}
modifyCount=2000
condition=(RADARFront && !(LASERFront || LIDARFront)),

which means for the fusion system ”Activate track in a 2 x 10 meter, box-
shaped view area after 2000 positive matches when it is only seen by the
front radar system and not by the laser scanners or LIDAR sensors“, which,
in this case, serves as protection against random, unstable false alarms from
the radar sensor directly in front of the vehicle.

Tracking and Data Fusion. For the main tracking algorithm, a model-
switching Extended Kalman Filter, based on two track motion models was
implemented. A six-dimensional motion model describes fast-moving objects
using a state vector,

x6D =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

x1...n

y1...n
v
a
α
ω

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠

(3)

with x1...n and y1...n being the x and y coordinate of the n contour points, the
common velocity, acceleration, course angle and course angle velocity with
respect to the global earth-fixed reference frame. For slow or static objects,
a simpler four-dimensional state vector was chosen,

x4D =

⎛

⎜
⎜
⎝

x1...n

y1...n
v
a

⎞

⎟
⎟
⎠ (4)

thus taking into account that the majority of detected objects are of a rather
static nature and distribution of available sensor information in unnecessary

456 F.W. Rauskolb et al.

many state variables is suboptimal in that case. As seen in equations (4) and
(5), the classical state vector has been enriched by the number of contour
points, thus making it necessary to extend the Kalman Filter algorithm (see
[Kalman, 1960] for reference) to handle multiple positions within the same
state vector. Similarly, we define the sensor measurement vector for a sensor
object consisting of m contour points,

y =

⎛

⎜
⎜
⎝

x1...m

y1...m
vx
vy

⎞

⎟
⎟
⎠ (5)

with x1, y1, vx, vy being measured contour point x- and y-coordinates as well
as x- and y-velocity components with respect to the global earth fixed refer-
ence frame. Postulating a common position noise covariance for all contour
points within track and measurement, the update algorithm can be extended
as follows:

xk(v + 1|v) = f(xk(v))
P (v + 1|v) = FT · P · F +Q

sk,l = yl(v + 1)− h(xk(v + 1|v))
S(v + 1) = H · P (v + 1|v) ·HT +R

K(v + 1) = P (v + 1|v) ·HT · S(v + 1)−1

rk,l(v + 1) = K(v + 1) · sk,l(v + 1) (6)

with xk being the track state vector regarding contour point k, f(x) the non-
linear system transfer function, P the common state covariance matrix, F the
system transfer Jacobian, Q the system noise covariance, sk,l the innovation
vector of tracked contour point k compared with measured point l of the as-
sociated sensor object, yl the sensor measurement vector regarding measured
point l, h(x) the nonlinear system output function, S the common innovation
covariance matrix, H the system output Jacobian, R the estimated measure-
ment noise, K the Kalman gain in this update cycle and rk,l the correction
vector for tracked contour point k getting updated with measured point l.

The tracked contour points can then be updated by adding the first two
components of the associated vector rk,l. In order to calculate updated com-
mon velocity, acceleration, course angle and course angle velocity in the six
dimensional movement model, the mean value for vector rk,l is calculated
over all given contour point associations,

rmean =
1
N

N∑

k,l=1

rk,l (7)

with N being the total number of acquired contour point matches within
the second stage of data association. Corrected common values can then be

Caroline: An Autonomously Driving Vehicle for Urban Environments 457

acquired by adding the last four components of vector rmean to the corre-
sponding elements in the track state vector.

Obviously, by postulating a common system and measurement noise co-
variance for all contour points, Kalman gain can be computed once per update
cycle. While it would theoretically be possible to calculate a separate Kalman
gain for each tracked contour point and therefore removing the limitations to
system and measurement covariance, this would lead to a N-times bigger com-
putational load, since matrix inversion of the system innovation covariance
matrix is the most costly part of the algorithm. In this case, the algorithm
would simply calculate a separate Kalman filter for each contour point, which
is not practically realizable in a real-time application. In the approach de-
scribed we have no significantly higher computational effort compared to a
standard EKF, while at the same time realizing spread-contour functionality
and removing the need for a stable point of reference for tracked objects.

In order to prevent the track from being flooded with contour points, a
garbage collection mechanism was installed by carrying along update counters
for each contour point, which stores the last update timestamp and the overall
number of updates counted to that point in time. In this manner, inactive
contour points can be detected easily and removed from the track’s point list.

Object splitting and termination. Because of the track’s polyline object
model, it is necessary to implement a track splitting algorithm. If there is no
such method, one track can collect points from many objects and grow to a
rather huge but meaningless track. For example, a person dropping off a car
and moveing away would still be part of the car track because of the data
association algorithm depiced in Fig. 9. When the person just dropped off
and is still near the car, it will become one track. After moving away from
the car, the contour points will still be updated because there is an object at
the position of the car and the person is also still there. Between these two
objects there is nothing but the polyline from the track still describing an
outline of an object.

To detect these false tracks, an algorithm was developed to split such
tracks. The basic idea is to examine the objects based on the raw sensor
object data and find indepented sets of objects. These independent sets will
become the new tracks. Normally, there are no such sets but in the event of
an unsplit track, there are two or more partitions. Polygonal objects around
the track will be described as a planar undirected two colored graph. The
algorithm contains the following steps:

1. Build planar undirected colorable rectangular graph. set the color of every
node to black.

2. Set the polylines of every sensor object of the track to white.
3. Search for independend sets in the graph[Cormen et al., 2002].
4. If there is more than one set found, build new tracks from the points

describing the outlines.

458 F.W. Rauskolb et al.

Fig. 9. Person who drops off a car. From left to right: Person still in the car, person
just dropped off, person moves away. From top to bottom: Reality, track without
splitting, track after splitting.

The algorithm runs periodically during track garbage collection. Although
complexity depends on the maximal area (a) covered by a track (O(a)), this
algorithm can be implemented efficiently with graphic libraries.

4.1.3 Grid-Based Fusion
In contrast to the object tracking subsystem, the grid fusion system does not
describe agents in the vehicle’s environment with discrete state vectors, but
instead discretizes the whole environment into a rectangular matrix (grid)
structure. Each grid cell carries a number of assigned features:

• a height value expressed in the global earth fixed reference frame,
• a gradient value describing the height difference to neighboring cells,
• a set of Dempster-Shafer probability masses counting for the hypotheses

undrivable, drivable and unknown,
• a status flag stating whether or not measurement data has been stored

within the corresponding cell and
• an update time stamp storing the last time a cell update was carried out.

Data Structure. The biggest challenge with grid based models in an au-
tomotive environment is the need for real time operation. High maneuvering
speeds in automotive applications require update rates greater than 10 Hz,
which is almost too low since this equals a travel distance of 1.4 meters at
normal urban speeds. The approach of discretizing the environment into grid

Caroline: An Autonomously Driving Vehicle for Urban Environments 459

cells leads to significantly high memory requirements and therefore calls for
efficient data structures. As an example, the storage of a view area of only
100 x 100 meters with a resolution of 25 centimeters generates 160,000 grid
cells. Assuming a 4-byte floating point value for each feature as described
above, this grid extends up to 3 MByte. Together with an update rate of 10
Hz this leads to a constant data throughput of 256 MBit/s, which in any
case is more than the standard automotive bus infrastructure would be able
to handle. Efficient algorithms and data reduction prior to serialization is
therefore the key to a successful application. For addressing these issues we
implemented a rolling grid data structure wherein the vehicle’s own position
is a pointer to the corresponding grid cell. This position will be regarded
as virtual origin for all incoming sensor readings, which can then be subse-
quently accessed by moving through the double linked data structure rela-
tive to that virtual origin. The main grid is again subdivided into sub grids
whose size match the processor’s caching mechanism for optimal usage of
the available computing resources. While it would theoretically be possible
to make the surface large enough to cover the expected maneuvering area,
this would lead to extremely high memory usage and is therefore not feasible.
Instead, when the vehicle moves through the world, the reference point shifts
along the double linked spherical list. As soon as it crosses the border from
one sub grid to the next, the corresponding sub grids at the new horizon
of the data structure are cleared and are therefore available for new data
storage.

Treatment of laser and stereo vision point data. As the first step
within grid data fusion, the 3-dimensional point clouds received from the
laser scanners and stereo vision system are transformed into the global earth
fixed reference frame taking vehicle attitude into account (roll, pitch and
yaw) as acquired from the GPS/INS unit and sensor-specific calibration in-
formation. The accuracy of these transformations is crucial to subsequent
post-processing. Vehicle height as delivered by the GPS is especially impor-
tant and is therefore subject to further filtering and justification. For each
measured point, the corresponding grid cell is retrieved and a ray tracing
algorithm (Bresenham) is carried out to update all cells from the sensor co-
ordinate system’s origin to the measured target point. Several versions of
the Bresenham algorithm are described in the literature, in this case we will
introduce the 2D version following Pitteway [Pitteway and M.L.V., 1967] for
reasons of simplicity.

The lines are traced similar to the functionality of a plotter, which is
basically the origin of that algorithm. On the way through the traced lines,
each cell passed is updated according to following rules:

• If the cell lies on the path between sensor origin and measured target
point and it’s height value exceeds the current Bresenham line height
value, reduce the stored value to that of the current Bresenham line.

460 F.W. Rauskolb et al.

old values

sensor origin

target point

new values

Fig. 10. Ray update mechanism.

• If the cell is the end point of the Bresenham line, store the associated
height value.

• In both cases, store update time stamp and mark that cell as having been
measured.

The grid is updated following the direct optical travel path of any laser
ray (or virtual stereo vision ray) starting at the sensor origin and ending at
the target point as depicted in Fig. 10. This model follows the assumption
that any obstacle would block the passing optical ray and therefore any cells
on the traveling path must be lower than the ray itself.

Data Fusion. Parallel to entering the 3-dimensional point data acquired
from laser scanners and stereo vision, vision-based classification is processed
using a Dempster Shafer approach [Shafer, 1976, Shafer, 1990]. A sensor
model was created for each data source, mapping the sensor specific clas-
sification into the Dempster Shafer probability mass set, which can then be
fused into the existing cell probability masses using Dempster’s rule of com-
bination,

m∗
c(A) = mc(A)

⊕
mm(A) =

1
1−K

∑

B∩C=A �=∅
mc(B)mm(C), (8)

with mc, mm being the cell and measurement probability mass set and m∗
c

the combined new set of masses for the regarded cell, while the placeholders
A, B and C can describe any of the three hypotheses drivable, undrivable
and unknown. The term K expresses the amount of conflict between existing
cell data and incoming measurement, with

K =
∑

B∩C=∅
mc(B)mm(C). (9)

The mass set mm has to be modeled out of the acquired sensor data.

Caroline: An Autonomously Driving Vehicle for Urban Environments 461

With respect to the stereo vision system, which is capable of classifying
retrieved point clouds into the classes road, curb and obstacle, this mapping
is trivial and can be done by assigning an appropriate constant mass set
to each classification result. The exact values of these masses can then be
subject to further tuning in order to trim the fusion system for maximum
performance given real sensor data.

In the case of the mono vision system, Caroline assigns each pixel in the
retrieved image a drivability value Pd between 0.0 representing undrivable
and 1.0 representing fully drivable; a mapping function is then applied, which
creates the three desired mass values D: drivable, U : undrivable and N :
unknown, that can be either drivable or undrivable as follows:

mm(D) = Dmax · Pd,
mm(N) = (1 −Dmax),
mm(U) = 1−mm(D)−mm(N). (10)

The value Dmax will serve as a tuning parameter, influencing the maximum
trust placed into the mono vision system and based on the quality of its in-
coming data. Both, the classification mechanism of the stereo vision system
would be beyond the scope of this paper and will therefore not be explained
in detail. Basically, classification within the stereo system is based upon gen-
erating a mesh height model out of the point cloud obtained and applying
adaptive thresholds to this mesh structure in order to characterize roadway,
curb and obstacles. The mono vision system is based on a similar approach
to [Thrun et al., 2006].

Prior to mapping the mono vision data into the grid data structure, the
image must be transformed into the global world reference frame using the
known camera calibration [Heikkil and Silvn, 1996] and height information
which can easily be retrieved from the grid itself.

The creation of a sensor model for the 3-dimensional height data is more
complex: First, a gradient field is calculated from the stored height profile.
In Caroline’s grid fusion system, the grid is mapped into image space by
converting into a grayscale image data structure, with intensity counting for
cell height values. Subsequently, the Sobel operator is applied in both image
directions.The results of both convolutions are summed and - after proper
normalization - transformed back into the grid structure, storing the gradient
values ∂h

∂x∂y for each grid cell. Any existing obstacle will usually lead to a
bigger peak within the gradient field, which can easily be detected. During
the process of forward and reverse transformation, the grid structure in- and
out of a grayscale image would initially appear to be redundant, because the
gradient operator could easily be applied to the height field itself. Yet, by
transforming the information into a commonly used image format, the broad
variety of image processing algorithms and operators found in standard image
processing toolkits, such as the OpenCV library [OpenCV Website, 2007] can
easily be applied, thereby significantly reducing development time.

462 F.W. Rauskolb et al.

The acquired gradient values will then subsequently be mapped into a
Dempster-Shafer representation, which leads to the desired sensor model com-
bining all acquired height values. Similar to the method with the mono vision
system, a mapping function is defined as follows:

mm(D) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dmax,
∣
∣
∣ ∂h

∂x∂y

∣
∣
∣ ≤ GDmax

0, GDmax <
∣
∣
∣ ∂h

∂x∂y

∣
∣
∣ ≤ GUmin

0,
∣
∣
∣ ∂h

∂x∂y

∣
∣
∣ > GUmin

mm(U) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0,
∣∣
∣ ∂h

∂x∂y

∣∣
∣ ≤ GDmax

Umax
GUmin

−GDmax
·
(∣∣
∣ ∂h

∂x∂y

∣
∣
∣ −GDmax

)
, GDmax <

∣
∣
∣ ∂h

∂x∂y

∣
∣
∣ ≤ GUmin

Umax,
∣
∣
∣ ∂h

∂x∂y

∣
∣
∣ > GUmin

mm(N) = 1−mm(D)−mm(U), (11)

with Dmax and Umax serving as parameters for maximum drivability/
undrivability assigned to the gradient field, GDmax being the maximum gradi-
ent value that is still considered to be fully drivable and GUmin the minimum
gradient value that is considered to be fully undrivable. By carefully tuning
those four parameters, it is possible to suppress unwanted smaller gradients
resulting e.g. from unimportant depressions and knolls in the road while
supporting higher gradients as originating from curbs or berms in order to
correctly fuse this information into the grid cells by using Eq. 8.

4.2 Vision

Caroline’s computer vision system consists of two separate systems. The first
is a monocular color segmentation based system that classifies the ground in
front of the car as drivable, undrivable or unknown. It assists in situations
where the drivable terrain and the surrounding area (e.g. grass, concrete
or shrubs) differ in color. The output of this algorithm contributes to the
Grid Based Fusion as described in section 4.1.3. The second vision system
is a multi-view lane detection that identifies the different kinds of lanes de-
scribed by DARPA, such as broken and continuous as well as white and yellow
lane markings. Using four high-resolution color cameras and state-of-the-art
graphics hardware, it detects its own lane and the two adjacent lanes to the
left and right with a field of view of 175 degrees at up to 35 meters. The
output of the lane detection algorithm is directly processed by the artificial
intelligence.

4.2.1 Lane Detection
Detecting lane markings on roads in an urban environment is a difficult but
very important task. While concepts exist that depend on additional mark-
ings, such as magnetic bands in the street, a more useful method must make
intelligent use of what is available on today’s roads. Towards this goal, we

Caroline: An Autonomously Driving Vehicle for Urban Environments 463

Fig. 11. The four stages of the lane detection algorithm.

developed a lane detection system that is capable of analyzing several high-
resolution images simultaneously and in real-time. Our lane fitting algorithm
uses a very versatile lane model and is robust with respect to outliers and
artifacts. It also takes into account lane markings of adjacent lanes. It copes
with different road setups, lane markings and lighting situations. The lane
detection process is divided into four parts, as shown in Fig. 11. First, the
raw images are downloaded from the cameras via the IEEE1394b interface.
Second, they are uploaded to graphics hardware, the color information is re-
trieved from the raw Bayer pattern, and the images are transformed into a
single top view perspective, Fig. 12. Third, lane marking features are detected
in the image, Fig. 14. In the last step, a lane model is adjusted to match the
features detected.

Data Acquisition. Three cameras with field of view of 58 degrees cover
the area in front of the car. A 22 degrees telephoto lens camera provides a
high-resolution view of the street ahead of the car. The four 1376x600 8-bit
raw Bayer images are synchronously acquired via the IEEE1394b interface at
14 frames per second. The images are uploaded to the graphics card and con-
verted to the RGB color space using bilinear interpolation. As the lane fitting
algorithm works in a global coordinate system, the position and rotation of
the vehicle, also referred to as Ego State, must be available. A transforma-
tion function fego : pcar �→ pworld can be defined if the Ego State is known,
where pcar is a point in the car’s reference system, and pworld is a point in a
global Cartesian reference system. An Inertial Measurement Unit corrected
by a GPS signal was used to generate the Ego State.

Multi-View Fusion. Because local changes of the light intensity are an
indicator for white lines, and local saturation changes indicate colored lane
markings, the RGB images are converted to the HSV color space. This color
space encodes saturation and color in separate channels. Knowing the intrin-
sic and extrinsic parameters of the camera, and including the orientation of
the vehicle (pitch and roll), a lookup function that converts top view coor-
dinates to image coordinates can be used to create a single HSV top view
image. The lookup operation is applied to each source image. In regions where

464 F.W. Rauskolb et al.

Fig. 12. The four different images (a, RGB color space used for visualization) are
merged to a single HSV top view image (b).

the projected images overlap, precedence Itele > Imiddle > Ileft > Iright is
maintained as shown in Fig. 12. The region of interest covers the area of up
to 30 meters in front of the vehicle and 12 meters to the left and right at a
scale of 35 pixels per meter.

Features. Lane markings can be described as a thin pattern of local dif-
ferences of the road surface that cover long distances. Therefore, the basic
concept underlying feature detection involves identification of these local dif-
ferences in regions of 8x8-pixels that resemble road patches of approximately
25 by 25 centimeters. Analyzing the HSV top view image, the feature de-
tection’s output is a downsampled feature image that encodes the quality,
direction and color, i.e., white or yellow, of the lane features in Fig. 14. As
lane markings exist in various colors, qualities as well as widths, and appear
differently under changing lighting conditions, only few stringent assump-
tions apply. When analyzing the top view image for features, we check three
criteria that must be present:

1. The local contrast vdiff must exceed a certain threshold. The local con-
trast is the difference between the local minimal and maximal value
vdiff = vmax − vmin.

2. Analyzing a local adaptive histogram, the distance bdiff between the
two largest bins bhigh and blow must exceed a certain threshold. This is
because it can be assumed that blow contains pixels depicting the street
and bhigh identifies the lane marking.

3. The pixels in bhigh must have a recognizable shape and orientation. For
several discrete orientations, the ratio of the variances of the pixels’
x- and y-coordinates is checked.

Caroline: An Autonomously Driving Vehicle for Urban Environments 465

A detailed description is given in Alg. 1. As this algorithm is prone
to discretization errors, supersampling improves the quality of the feature
detection.

Data: An 8x8 region of a HSV top view image, thresholds tcon, thist, tdir and
tcol

Result: A feature quality q, direction a ∈ {0, 22.5, ..., 157.5} and color
c ∈ {white, yellow, undecided}

for the saturation and lightness channel do1
vdiff = vmax − vmin; vmax and vmin are the maximal and minimal values2
of the current channel
if vdiff < tcon then3

break;4
end5
compute adaptive histogram;6
determine two largest bins bhigh and blow, Fig. 13(b) ;7
bdiff = bhigh − blow;8
if bdiff < thist then9

break;10
end11
set of pixels phigh = pixels in bhigh;12
determine center of mass R of phigh;13
initialize rmax and amax to 0;14
for i = 0; i <= 157.5; i = i + 22.5 do15

rotate phigh around R by i degrees. determine ratio of variances16

r = V ar(X)
V ar(Y)

;
end17
if rmax < tdir then18

break;19
end20
label this region as a feature;21
if current channel is lightness then22

qwhite = bdiff ; awhite = amax23
else24

qyellow = bdiff ; ayellow = amax25
end26

end27
if qwhite > tcol & qwhite > qyellow then28

c = white; a = awhite29
end30
if qyellow > tcol & qyellow > qwhite then31

c = yellow; a = ayellow32
end33
q = max(qwhite, qyellow);34

Algorithm 1. Feature detection algorithm.

466 F.W. Rauskolb et al.

(a) 8x8 regions are analyzed (b) 8 bin histogram of the 8x8 region

Fig. 13. 8x8-pixel regions of the top view image (a, up) are tested for possible
features. The distance between the two largest bins blow (b, blue) and bhigh (b, red)
of the histogram determines the quality of the feature. The pixels gathered in bhigh

must be arranged in a directed shape (a, red area).

Lane Model. The lane model consists of connected lane segments. Each
segment si is described by a length li (given parameter), a width wi and
an angle di = αi − αi−1 describing the difference of orientation between
this segment and the previous one as shown in Fig. 16. The first segment is
initially placed on the current coordinates of the vehicle and facing in the
driving direction, assuming that the vehicle is actually located on the street.
Knowing the position c0 of the initial segment as well as the lengths li and the

Fig. 14. The direction (a), color (b) and quality (c) of the features are encoded in
an RGB image downloaded from the graphics card. For visualization purposes, the
channels encoding the direction (a) and color (b) are colorized.

Caroline: An Autonomously Driving Vehicle for Urban Environments 467

(a) labeling and discarding (b) mixing

Fig. 15. Regions of interest (a, blue boxes) determine to which lane marking fea-
tures are assigned. Afterwards, old and new features are mixed (b).

angular changes di of all segments, the position pi and global orientation αi of
each segment can be computed. Each segment contains information whether
the vehicle’s lane is confined by lane markings and whether additional lanes
to the left and right exist. Straight streets, sharp curves and a mixture of
both can all be described by the model.

Lane Fitting. The main goal of the lane fitting algorithm is to find a pa-
rameter set for a lane model that explains the features found in the current
top view image and the previous frames. In order to create a global model
of the lane, all feature points are mapped to world space coordinates and
inserted into a list lp. This is done using the function fego : pcar �→ pworld
defined by the current Ego State. Old data, i.e. feature points gathered dur-
ing previous frames, may be kept if the features of a single image are too
sparse. For each frame, the existing lane model or an initial guess is used
to define four regions of interest as shown in Fig. 15(a). These are the re-
gions expected to contain the own lane’s markings and the lane markings
of the adjoining lanes. If a feature is inside such a region, it is labeled as
outer left, left, right or outer right. Otherwise, it is discarded. After-
wards, features from previous frames are mixed with the new data as depicted
in 15(b).

As the first currently visible segment sf of the lane model is determined,
older segments are no longer considered. If the list of lane segments is empty,
it is initialized with s0 ← sf . Starting from sf , each segment si is estimated
(or reestimated if it has previously been estimated). Therefore, an initial guess
as to the orientation αi of si is made as shown in Fig. 16. All local features
relevant for estimating si are rotated by αi around the starting point pi
of si. A RANSAC algorithm is used to estimate the parameter di and wi:
Iteratively, two feature points px and py are chosen. Assuming that they are
located on the lane markings they were labeled for, the gradient gi = mi/li as

468 F.W. Rauskolb et al.

(a) estimating segment si (b) RANSAC fitting

Fig. 16. pi, αi, li and lgap identify the features relevant for si. After rotating
around αi, a RANSAC fitting eliminates outliers among the features.

well as the width wi are derived from their coordinates. All features that are
also sufficiently described by gi and wi are counted as inliers. This process
is repeated n times and the parameter set with most inliers is used to define
si. A quality function q takes into account the ratio of inliers and outliers,
the amount of inliers, the quality of the features and states the quality of
the segment. The quality is computed for every region of interest (outer left,
left, right and outer right). If the maximum of these qualities exceeds a
threshold tq, the segment is considered to be valid and the next segment si+1

is estimated. After all segments are estimated as shown in Fig. 17, a proposal
about the lane markings’ colors can be made by looking at the inliers’ average
color.

Results and Evaluation. The algorithm was thoroughly tested on several
sites in northern Germany and Texas. A frame rate of 10 fps could be main-
tained using a 2 GHz Intel Core 2 Duo with a GeForce 7600 GTS graphics
card. The testing sessions included different weather and lighting conditions.
The amount of false positives was reduced significantly by utilizing the ve-
hicle’s other sensors. The objects detected by lidar and radar sensors were
used to mask out regions in the feature image where other cars, walls, cones
and poles caused irritating artifacts in the top view image.

4.2.2 Area Processor
The Area Processor consists of a single IDS color camera whose images are in-
terpreted by a color segmentation algorithm suitable for urban environments.
This algorithm separates an image into areas of drivable and non-drivable ter-
rain. Assuming that a part of the image is known to be drivable terrain, other
parts of the image are classified by comparing the Euclidean distance of each

Caroline: An Autonomously Driving Vehicle for Urban Environments 469

Fig. 17. The lane model reprojected onto the original images.

pixel’s color to the mean colors of the drivable area in real-time. Moving the
search area depending on each frame’s result ensures temporal consistency
and coherence. Furthermore, the algorithm classifies artifacts such as white
and yellow lane markings and hard shadows as areas of unknown drivabil-
ity. Although Caroline is able to perform basic driving tasks without this
algorithm, it is needed in situations when terrain cannot be distinguished
by other sensors, i.e., sections without proper lane markings, streets without
high curbs and off-road tracks.

Related work. As a foundation for the area detection algorithm we used the
real-time approach suggested by Thrun et al. [Thrun et al., 2006] in the 2005
DARPA Grand Challenge. The basic idea is to consider a given region in the
actual image as drivable. The predominant mean color values in that area are
retrieved and compared to the pixel values in the entire image. Similar pix-
els are marked as drivable. The algorithm was designed for off-road terrain,
therefore it cannot be applied to urban scenarios without fundamental modi-
fications. We will describe the algorithm in the next section. The Expectation
Maximization (EM) algorithm used for color clustering in this approach is
thoroughly described in [Duda and Hart, 1973] and [Bilmes, 1997]. Instead of
the EM algorithm, the KMEANS algorithm that we used during the competi-
tion is also suitable for color clustering, as described in [Gary Bradski, 2005].
An algorithm similar to the one mentioned above points out the advantage
of other color spaces than RGB [Ulrich and Nourbakhsh, 2000], e.g., the HSI
space.

The Stanford University algorithm for detecting drivable terrain.
The main idea of the algorithm is to use the output of the laser scanner,
normally a scan-line, which is integrated over time to a height map in world
coordinates. A polygon is defined that covers an area in front of the car identi-
fied as level and therefore as a drivable surface. This polygon is transformed
into image coordinates from the camera and clipped to the image bound-
aries. The resulting polygon is considered as the area that is drivable. In this

470 F.W. Rauskolb et al.

Fig. 18. The drivability grid (b) depicts the output of algorithm, the results dif-
fer from black (undrivable) to white (drivable) . A yellow line (a) is marked as
undrivable (b, black) because the color differs by too much from the street color.

area the pixels’ color values are collected and clustered by color, for example
bright grey and yellow. These color clusters are compared to the color values
of each pixel in the image using distance measurements in the color space.
If a resulting distance is smaller than a given threshold, the area comprised
by the pixel is marked as drivable. The main benefit of the algorithm is that
the range in which drivability can be estimated is enhanced from only a few
meters to more than 50 meters.

Problems arising in urban and suburban terrain. Designed for com-
peting in a 60 mile desert course, the basic algorithm succeeds well in explicit
off-road areas, which are limited by sand hills or shrubs. When tested in ur-
ban areas new problems occur, because there are streets with lane markings
in different colors or tall houses casting long shadows. The yellow lane mark-
ings are often not inside the area of the polygon PScanner (output of the
laser scanner), so they are not detected as drivable. Especially non-dashed
lines prohibit a lane shift as shown in Fig. 18 and stop lines seem to block
the road.

Another problem are shadows cast by tall buildings during the afternoon.
Small shadows from trees in a fairly diffuse light change the color of the street
only slightly and can be adapted easily. But huge and dark shadows appear as
a big undrivable area as shown in Fig. 19. Even worse: Once inside a shadowed
area, the camera auto exposure adapts to the new light situation, such that
the area outside the shadow becomes overexposed and appears again as a big
undrivable area as depicted in Fig. 20.

Another problem during the afternoon is the car’s own shadow, in this
paper referenced as "egoShadow", when the sun is behind the car. Sometimes
it is marked as undrivable, sometimes it is completely adapted and marked
as drivable, but the rest of the street is marked as undrivable as shown in
Fig. 21. A fourth problem occurs when testing on streets without curbs but
limited by mowed grassy areas. The laser scanner does not recognize the grass
as undrivable, because its level is about the same as the street niveau. This

Caroline: An Autonomously Driving Vehicle for Urban Environments 471

Fig. 19. Large, dark shadows (a, left) differ too much from the Street Color (b,
dark).

Fig. 20. Exposure is automatically adapted inside shadows (a). Areas outside the
shadow are overexposed and are marked as undrivable (b, dark).

causes the vehicle to move onto the grass, so that colors are adapted by the
area processing algorithm, and consequentially keeps the car on the green
terrain.

Alterations to the basic algorithm. Differing from the original algo-
rithm, our implementation does not classify regions of the image as drivable
and undrivable. The result of our distance function is mapped to an integer
number ranging from 0 to 127, instead of creating a binary information via
a threshold. In addition, a classification into the categories ’known drivabil-
ity’ and ’unknown drivability’ is applied to each pixel. These alterations are
required because the decision about the drivability of a certain region is not
made by the algorithm itself, but by a separate sensor fusion application.
For the sake of performance the KMEANS Nearest Neighbors algorithm was
chosen instead of the EM-algorithm, because the resulting grids are almost of
the same quality but the computation is considerably faster. Tests have shown
that better results can be achieved by using a color space that separates the
luminance and the chrominance in different channels, e.g. HSV, LAB, YUV.
The problem with HLS and HSV is that chrominance information is coded in
one hue channel and the color distance is radial. For example, the color at 358
degrees is very similar to that one at 2 degrees, but they are numerically very

472 F.W. Rauskolb et al.

Fig. 21. The vehicle’s own shadow can lead to problems (a), for example if only
the shadowed region is used to detect drivable regions (b, white).

far away from each other. Thus a color space is chosen where chrominance
information is coded in two channels, for example in YUV or LAB, where
similarity between two colors can be expressed as Euclidean distance.

Preprocessing. To cope with the problems of large shadows and lane mark-
ings, a preprocessing system was developed. Before the camera picture is
processed, it is handed over to the following preprocessors: White preproces-
sor (masking out lane markings and overexposed pixels), black preprocessor
(masking out large, dark shadows), yellow preprocessor (masking out lane
markings), egoShadow preprocessor (masking out the car’s shadow in the
picture). The output of each preprocessor is a bit mask (1: feature detected,
0: feature not detected), which is used afterwards in the pixel classifying
process, to mark the particular pixel as "unknown", which means that the
vision-based area processor cannot provide valid information about the area
represented by that pixel. In the following, the concept of each preprocessor
is described briefly:

White Preprocessor. In order to deal with overexposed image areas dur-
ing shadow traversing, pixels whose brightness value is larger than a given
threshold are detected. The preprocessor converts the given image into HSV
color space and compares the intensity value for each pixel with a given
threshold. If the value is above the threshold, the pixel of the output mask
is set to 1.

Black Preprocessor. As huge dark shadows differ too much from the street
color and would therefore be labeled as impassable terrain, pixels whose
brightness value is smaller than a given threshold are masked out. The pre-
processor analogously converts the given image into HSV color space and
compares the intensity value for each pixel with a given threshold. If the
value is below the threshold, the pixel of the output mask is set to 1.

Yellow Preprocessor. Small areas of the image which are close to yellow in
the RGB color space are detected so that yellow lane markings are not labeled

Caroline: An Autonomously Driving Vehicle for Urban Environments 473

as undrivable but rather as areas of unknown drivability. For each pixel of
the given image, the RGB ratios are checked to detect yellow lane markings.
If the green value is larger than the blue value and larger or a slightly smaller
than the red value, the pixel is not considered yellow. If the red value is
larger than the sum of the blue and the green values, the pixel is also not
considered yellow. Otherwise, the pixel is set to min(R,G)

B − 1. Afterwards, a
duplicate of the computed bit mask is smoothed using the mean filter, dilated
and subtracted from the bit mask to eliminate huge areas. For different areas
of the image, different kernel sizes must be applied. In the end, only the
relatively small yellow areas remain. A threshold determines the resulting bit
mask of this preprocessor.

EgoShadow Preprocessor. When the sun is behind the car, the vehicle’s
own shadow appears in the picture and is either marked as undrivable, or it
is the only area marked as drivable. Therefore, a connected area directly in
front of the car is identified whose brightness value is low. At the beginning
of the whole computing process a set of base points p(x, y) is specified, which
mark the border between the engine hood and the ground in the picture.
The region of interesst in each given picture is set to ymax, the maximum
row of the base points, so that the engine hood is cut off. From these base
points the preprocessor starts a flood-fill in a copy of each given image, taking
advantage of the fact that the car’s shadow appears in similar colors. Then
the given picture is converted to HSV color space and the flood-filled pixel
are checked to determine if their intensity value is small enough. Finally, the
sum of the flood-filled pixels is compared to a threshold, which marks the
maximum pixel area that constitutes the car’s own shadow.

The dynamic search polygon. Using the output of the laser scanner to
determine the input polygon works quite well if the drivable terrain is lim-
ited by tall objects such as sand hills or shrubs. In urban terrain, however,
the output of the laser scanner must be sensitized to level distances smaller
than curbs (10 to 20 centimeters), which becomes problematic if the street
moves along a hill where the distance is much higher. Thus, the laser scanner

t t + 1

Fig. 22. This Fig. shows how the dynamic search polygon (a, green trapezoid) is
transposed to the right (b) because the calculated moment is positive in x-direction.

474 F.W. Rauskolb et al.

polygon does not remain a reliable source especially because both modules
solve different problems: The laser scanner focuses on range-based obstacle-
detection [Ulrich and Nourbakhsh, 2000], which is based on analysis of the
geometry of the surroundings, whereas the vision-based area processor follows
an appearance-based approach. For example, driving through the green grass
next to the street is physically possible, and therefore not prohibited by a
range-based detection approach, but it must be prevented by the appearance-
based system. This led to the concept of implementing a self-dynamic search
polygon which has a static shape, but is able to move along both the X-
and the Y-axis in a given boundary polygon Pboundary. The initial direction
is zero. Every movement is computed using the output of the last frame’s
pixel classification. For the computation a bumper polygon Pbumper is added,
which surrounds the search polygon. The algorithm proceeds in the following
steps:

Implementation and Performance. The algorithm has been imple-
mented with the Intel OpenCV library [OpenCV Website, 2007]. The frame-
work software is installed on an Intel Core 2 Duo Car PC with a Linux
operating system and communicates with an IDS uEye camera via USB. The
resolution of a frame is 640*480, but the algorithm applied downsampled im-
ages of size 160*120 to attain a manually adjusted average performance of 10
frames per second. The algorithm is confined to a region of interest of 160*75
cutting of the sky and the engine hood.

In Fig. 23 the difference between normal area processing and processing
with the black preprocessor is shown. Without the preprocessor, the large
shadow of a building to the left of the street is too dark to be similar to the
street color and is classified as undrivable. The black preprocessor detects the
shadowy pixels, which are classified as unknown (red).

The problem of overexposed areas in the picture is shown in Fig. 24, where
the street’s color outside the shadow is almost white and therefore classified as
undrivable in the normal process. The white preprocessor succeeds in marking
the critical area as unknown, so that the vehicle has no problem in leaving
the shadowy area.

Fig. 23. The results with black preprocessor. The picture in the center (b) shows
the classification results without the black processor. In picture on the far right (c)
the critical region is classified as unknown (red).

Caroline: An Autonomously Driving Vehicle for Urban Environments 475

Data: last frame’s grid of classified pixels, actual bumper polygon Pbumper

Result: updated position of the Polygons Pbumper

begin1
Initialize three variables pixelSum, weightedP ixelSumX,2
weightedP ixelSumY to zero
foreach pixel of the grid which is inside the bumper do3

count the amount pixelSum of visited pixels4
if drivability of the actual pixel is above a given threshold then5

Add the pixel’s x-Position relative to the midpoint of Pbumper to6
weightedP ixelSumX
Add the pixel’s y-Position relative to the midpoint of Pbumper to7
weightedP ixelSumY

end8

end9

Perform the division xmoment = weightedPixelSumX
pixelSum

and10

ymoment = weightedPixelSumY
pixelSum

and round the results to natural numbers
/* The value xmoment gives the amount and direction of the

movement of Pbumper in x-direction, the value ymoment gives
the amount and direction of the movement of Pbumper in
y-direction. */

Add the values xmoment and ymoment to the values of the actual midpoint11
of Pbumper to retrieve the new midpoint of Pbumper

Check the values of the new midpoint of Pbumper against the edges of12
Pboundary and adjust the values if necessary
Add the values xmoment and ymoment to the values of the actual midpoint13
of the search polygon to retrieve the new midpoint of the search polygon
as shown in Fig. 22
To prevent that the search polygon gets stuck in a certain corner, it is14
checked, if xmoment = 0 or if ymoment = 0
/* For example if xmoment = 0, it is evaluated, if the midpoint

of Pbumper is located right or left to the midpoint of
Pboundary; xmoment is set to 1, if Pbumper is located left,
otherwise it is set to −1. An analogous check can be
performed for the ymoment. */

end15

Algorithm 2. Dynamic search polygon algorithm.

Yellow lane markings differ from pavement in color space so that a human
driver can easily detect them even under adverse lighting conditions. This
advantage turns out to be a disadvantage for a standard classification system,
which also classifies the lane markings as undrivable, as shown in Fig. 25:
Lane markings are interpreted as tiny walls on the street. To counteract this
problem, we use a preprocessing step, which segments colors similar to yellow.
To deal with different light conditions, the color spectrum must be wider so
that a brownish or grayish yellow is also detected. This leads to some false

476 F.W. Rauskolb et al.

Fig. 24. The results with white preprocessor.The picture in the center (b) shows
the classification results without white processor. In picture on the far right (c) the
critical region is classified as unknown (red).

Fig. 25. The results with yellow preprocessor. The picture in the center (b) shows
the classification results without yellow preprocessor. In picture on the far right (c)
the lane marks are classified as unknown (red).

Fig. 26. The results with egoShadow preprocessor. The picture in the center (b)
shows the classification results without egoShadow processor. In picture on the far
right (c) the car’s own shadow is classified as unknown (red).

positives as shown in Fig. 25, but the disturbing lane markings are clearly
classified as unknown. The vehicle is now able to change lanes without further
problems.

A problem with the vehicle’s own shadow only occurs when the sun is
located behind the vehicle, but in these situations the classification can deliver
insufficient results. Figure 26 shows the shadowy area in front of the car as
unknown.

The benefit of a search polygon that is transposed by the output of the
last frame is tested by swerving about so that the car moves very close to
the edges of the street. Figure 27 shows the results when moving the car
close to the left edge. As the static polygon touches a small green area, a

Caroline: An Autonomously Driving Vehicle for Urban Environments 477

Fig. 27. The same frame first computed with a static search polygon (a, b), then
with the dynamic polygon (c, d). The dynamic movement calculation caused the
polygon to move to the right (c).

somewhat green mean value is gathered and so the resulting grid shows a
certain amount of drivability in the grassland, whereas the dynamic polygon
moves to the right of the picture to avoid touching the green pixels so that
the resulting grid does not show drivability on the grassland.

4.3 Artificial Intelligence

4.3.1 The DAMN-Architecture
To control Caroline’s movement, the artificial intelligence computes a speed
and a turning wheel angle for every discrete step. Turning the steering wheel
results in different circle-radii on which the car will move. Instead of the radii,
the approach is based on the inverse, a curvature.

A curvature of 0 represents driving straight ahead, while negative curva-
tures result in left and positive curvatures in right turns as shown in Fig. 28.

This curvature, as the most important factor to influence, is selected in an
arbiter as described in the DAMN-architecture [Rosenblatt, 1997]. This ar-
chitecture models each input as behavior, which gives a vote for each possible
curvature. More behaviors can be added easily to the system, which makes
it very modular and extendable. The following behaviors are considered:

• Follow waypoints: Simply move the vehicle from point to point as found
in the RNDF.

• Stay in lane: Vote for a curvature that keeps Caroline within the detected
lane markings.

• Avoid obstacles: Vote for curvatures that keep the vehicle as far away from
obstacles as possible and forbid curvatures leading directly into them.

• Stay on roadway: Avoid curb-like obstacles detected by grid-based fusion
with laser scanners and color camera.

• Stay in zone: Keep the vehicle in the zone, defined by perimeter points in
the RNDF.

All collected votes are weighted to produce an overall vote. The weights
again are not fixed, they depend on factors including distance to an intersec-
tion, presence of lanes and more. A trajectory point is calculated by following
the best voted curvature for one meter. A trajectory point holds information

478 F.W. Rauskolb et al.

obstacle

obstacle

startpoint

curvatures

0

-0.1

+0.1

vote

Fig. 28. Curvature field: Larger black circles represent preferred votes.

such as position, orientation and speed. Starting at this trajectory point,
all behaviors vote again for curvatures to find the next point until a list of
points is computed. This list has to be long enough to come to a complete
stop at current speed. The speed is controlled by another arbiter influenced
by different behaviors, which each provide a maximum speed. The arbiter
simply selects the lowest of these speeds. These behaviors are: RNDFMax,
sensor health, zone, reverse, safety zone, obstacle distance and following other
obstacles. Based on the trajectory points calculated iteratively we design a
drivable corridor for further processing by the next module in the chain, the
path planner.

4.3.2 Interrupts
Because the AI has to deal with more complex situations, e.g. stopping at
a stopline and yielding the right-of-way, than the DAMN-architecture is de-
signed for, we extended DAMN by an interrupt system. At each trajectory
point found each interrupt is called upon to decide if it wants to be activated
at its location. If so, the speed stored in the trajectory points is reduced to
bring the car to a smooth stop. If the point is reached, the interrupt is acti-
vated and the arbiters are stopped until the interrupt returns control to the
arbiters. Some of our interrupts are:

• Intersection: Activated at a stopline until it is our turn.
• Queue: Wait in a line at an intersection.

Caroline: An Autonomously Driving Vehicle for Urban Environments 479

• Overtake: Stop the car when the lane is blocked and wait for other lane
to clear to start passing maneuver.

• U-turn: Activated at a dead-end street - this interrupt actually performs
the U-turn and turns the car around.

• Road blocked: Activated if the entire road is blocked - this interrupt then
activates the U-turn interrupt when appropriate.

• Parking: Activated at a good alignment in front of the parkbox - this
interrupt returns control after the parking maneuver is finished.

• Pause: Active as long as the car is in pause mode.
• Mission complete: Final checkpoint is reached.

An example can be seen in Fig. 29, where the queueing interrupt has to
be activated at some point in the future and the speed must therefore be
reduced.

S
T

O
P

Queue
Interrupt

Intersection
Interrupt

v

Planned Trajectory Points

s

Fig. 29. Interrupt example.

4.3.3 Example
An example of how different behaviors interact is shown in Fig. 30. In the
recorded situation, Caroline just started overtaking another car, blocking
its lane. The plots represent the calculation of one trajectory: 20 trajectory
points are calculated from the front to the back. For each point votes for 40
curvatures are made, these are displayed from left to right.

The lane behavior (a) demands a sharp left for the first four curvatures,
then a right turn which finally transitions to straight driving. This would
bring Caroline quickly to the free lane to pass the obstacle vehicle. The ob-
stacle behavior (b) has two obstacles effecting the votes: On the left, a wall
forbids going farther to the left, on the right one can see the car that is be
passed. Finally the waypoint behavior (c) wants to go to the right all the time,
because that is the lane where Caroline should be and where the waypoints
are, but is outvoted by the other behaviors in (d).

480 F.W. Rauskolb et al.

a)

b)

c)

d)

Fig. 30. Votes of a) stay in lane, b) avoid obstacles, c) follow waypoints, d) weighted
sum.

4.4 Vehicle Control

Lateral and longitudinal control are the basics of autonomous vehicle guid-
ance. In the following, both concepts as installed in Caroline for the DARPA
Urban Challenge are discussed in detail.

4.4.1 Longitudinal Control
While the maximum and minimum speed of the vehicle is chosen by the ar-
tificial intelligence, the controller must calculate the braking and accelerator
set points in order to maintain a given speed.

For this purpose, the longitudinal controller is separated into an outer and
an inner loop controller. Based on the given speed set point, the outer loop
controller determines the required acceleration. Finally, the inner loop con-
troller calculates throttle and brake input to track the required acceleration.
The acceleration of the vehicle, which is needed for feedback of the lower
controller, is provided in high resolution by the GPS/INS system.

Gear shifting is handled via an automatic gear box. However, to switch
between forward, backward and parking state, an automatic lever arm is
attached at the gearshift. The lever arm position can be commanded with a
CAN (Controller Area Network) interface.

Caroline: An Autonomously Driving Vehicle for Urban Environments 481

Longitudinal Dynamics. The driving power must be greater than the sum
of all driving resistances, that is the sum of rolling, air and acceleration
resistance. Engine torque MM is a function of throttle αA, engine speed nM
and engine acceleration ṅM .

MM (αA, nM , ṅM) =
r

ηk ik
(fRmg + cw A

ρ

2
(
nM 2 πR0

ik
)2 + λm

ṅM 2 πR0

ik
)

(12)
The meaning of the parameter is given in table 1.

Table 1. Longitudinal model parameters.

Symbol Parameter
R0 Wheel Radius, Unloaded
r Wheel Radius, Loaded
ηk Degree of Efficiency, Gear Box
ik Gear Transmission Ratio
fR Rolling Friction Factor
m Mass
g Gravity
cw Air Resistance Factor
A Cross Sectional Area
ρ Air Density
λ Moulding Bodies Factor

The model is used for the inner loop controller to simulate different control
strategies for the longitudinal control. The plant model for the outer loop con-
troller is the transfer function between desired vehicle acceleration and actual
vehicle speed. The inner loop is approximated as a PT1 element. In addition,
an integral element is needed to integrate the speed from acceleration:

P (s) =
1

s (T s+ 1)
(13)

Introducing measured values of the drive chain into the model, leads to a
value of T = 0.6s for system lag.

P-PD-Control Controller Cascade. As mentioned above, the longitudi-
nal controller is separated into an outer and inner control loop. The block
diagram in Fig. 31 depicts the control structure. K(s) stands for each trans-
fer function of the different controller parts. Different control parameters
are used for acceleration and deceleration. While a PD controller is ap-
plied for the inner loop, a P controller is introduced for the outer control
loop. Control outputs for acceleration and braking are combined via a pre-
defined logic to prevent the system from activating throttle and brake at the
same time.

482 F.W. Rauskolb et al.

K(s)
Lower Controller

Throttle

K(s)
Lower Controller

Brake

Caroline
Dynamics

K(s)
Upper Controller

Throttle

K(s)
Upper Controller

Brake

vdesired

adesired

adesired

a v

Fig. 31. Block diagram of the longitudinal controller.

In addition, an engine map can be used for direct feed forward of the throt-
tle. Fig. 32 shows a typical implementation of an engine map for longitudinal
control.

Performance of the Longitudinal Controller. Figure 33 illustrates the
performance of the longitudinal control strategy. Two different examples are
shown with two different speed profiles. While in the first example, the desired
speed is changed in long and large steps, in the second example the speed is
changed in shorter and smaller steps. The desired as well as the actual speed
of Caroline are illustrated.

4.4.2 Lateral Control
It is the main goal of the lateral controller to follow a given trajectory with
a minimum of track error. Secondly, vehicle driving maneuvers should match
certain comfort parameters for smooth driving experience.

Vehicle Dynamics. For simulation of the vehicle as well as design of the
controllers it is necessary to describe motion behavior with a mathematical
model. In the following the bicycle model is used. The bicycle model is based
on the following assumptions:

• The center of mass of the car is located at street level.
• Two wheels of each axle are combined as one wheel in the center of the

axles.
• The longitudinal acceleration is zero.
• The wheel load of all wheels is constant.
• Lateral forces at the wheel are proportional to skew angle.

A state space representation within following structure is preferred:

ẋ(t) = Ax(t) +B u(t) + Ez(t), x(0) = x0 (14)

Caroline: An Autonomously Driving Vehicle for Urban Environments 483

1000
2000

3000
4000

5000
6000

7000

0

20

40

60

80

100
0

50

100

150

200

250

Engine Speed in RPM

Engine Map

Throttle in percent

E
ng

in
e

T
or

qu
e

in
 N

m

Fig. 32. Engine map.

Track error and track angle deviation have to be described mathematically to
take them into consideration. Track angle deviation is defined as the difference
between desired and actual orientation of the car. It is assumed that the
derivation of the track angle ζdesired can be calculated as the product of the
curvature κ of the track and the current speed v:

ζdesired = κ · v (15)

Yaw angle ψrel with respect to the desired track is the difference between
absolute yaw angle ψ and desired track angle ζdesired:

ψrel = ψ − ζdesired (16)

0 2 4 6 8
0

2

4

6

8

10

12
Example 1

Time t in sec

S
pe

ed
 v

 in
 m

/s

Actual Speed
Desired speed

0 1 2 3 4 5
0

2

4

6

8

10

12
Example 2

Time t in sec

S
pe

ed
 v

 in
 m

/s

Actual Speed
Desired speed

Fig. 33. Performance of the longitudinal controller.

484 F.W. Rauskolb et al.

SP

xHF

yVF

VAl

HAl

l

)(mvFzent

v

xVF

yHF

V

Fig. 34. Bicycle model.

As a result, yaw rate ψ̇rel with respect to the desired track can be determined:

ψ̇rel = ψ̇ − κ v (17)

Moreover, the derivation of the track error ḋ can be formulated based on
speed v, attitude angle β and relative yaw angle ψrel:

ḋ = v (β + ψrel) (18)

The state space representation of the bicycle model can be combined with
the mathematical representation of the track error, track angle deviation and
an additional time delay TL between commanded and actual steering wheel
angle. The state vector consists of yaw rate ψ̇, attitude angle β, relative yaw
angle ψrel, track error d and actual steering angle δ. The result is the following
state space model with the commanded steering angel δdesired as the input
variable and curvature κ as outer noise:
⎛

⎜
⎜
⎜⎜
⎝

ψ̈

β̇

ψ̇rel
ḋ

δ̇

⎞

⎟
⎟
⎟⎟
⎠

=

⎛

⎜
⎜
⎜⎜
⎝

a11 a12 0 0 a15

a21 a22 0 0 a25

1 0 0 0 0
0 v v 0 0
0 0 0 0 − 1

TL

⎞

⎟
⎟
⎟⎟
⎠
·

⎛

⎜
⎜
⎜⎜
⎝

ψ̇
β
ψrel
d
δ

⎞

⎟
⎟
⎟⎟
⎠

+

⎛

⎜
⎜
⎜⎜
⎝

0
0
0
0
iL
TL

⎞

⎟
⎟
⎟⎟
⎠
· δdesired +

⎛

⎜
⎜
⎜⎜
⎝

0
0
−v
0
0

⎞

⎟
⎟
⎟⎟
⎠
· κ

(19)
with

a11 = −cαV l
2
V + cαH l

2
H

θ v
, a12 = −cαV lV + cαH lH

θ
, a15 =

cαV lV
θ

(20)

a21 = −1− cαV lV − cαH lH
mv2

, a22 = −cαV + cαH
mv

, a25 =
cαV
mv

(21)

The parameters are described in table 2.

Caroline: An Autonomously Driving Vehicle for Urban Environments 485

The output of the system is the track error d.

y(t) =
(
0 0 0 1 0

)T x(t) (22)

Based on the state space model, the transfer function can easily be deter-
mined. The control transfer function is

Fc(s) =
iL

TL s + 1
· a25s

2 + (a15 a21 + a15 − a25 a11) s + (a25 a12 − a25 a12)

s2 − (a11 + a22)s + (a11 a22 − a12 a21)
· 1
s
· v

s
(23)

and the noise transfer function:

Fnoise = −v
s
· v
s

(24)

Table 2. Parameters of the bicycle model.

Symbol Parameter
cαV Skew Stiffness, Front Wheel
cαH Skew Stiffness, Back Wheel
lV Wheel Base Front to Center of Mass
lH Wheel Base Back to Center of Mass
θ Moment of Inertia
m Mass

Parallel Structure Control. As modeled, the vehicle has three degrees of
freedom, which are the x and y position as well as the orientation ψ of the
car. Only the steering angle δ is available for controlling the system. As a
result, the three degrees of freedom are handled simultaneously. Track error
and track angle deviation are used as feedback signals. The working point is
chosen at the speed of 30 km/h.

Figure 35 shows the structure of the control strategy used. Again, K(s)
stands for each transfer function of the controller. It consists of two parallel
control loops for track error and track angle deviation as well as a pilot
control taking the curvature of the desired trajectory into consideration. The
map-based pilot control algorithm calculates the steering angle that would be
needed to follow the desired track based on parameters of the bicycle model.

Performance of the Lateral Controller. Lateral control strategy has to
handle different kinds of trajectories. On the one hand, the vehicle has to
follow trajectories with a curvature of approximately κ ≈ 0 at higher speeds.
On the other hand, the track error in twisting areas is supposed to be as
small as possible. Figure 36 shows an example of a trajectory that consists
of a long straight part and two sharp curves. On the straight section, the
vehicle is accelerated up to a speed of almost v = 50 km/h. The curves are
driven at a speed of approximately 20 km/h. The speed profile is shown in

486 F.W. Rauskolb et al.

K(s)

Pilot Control

K(s)

Track Error

Track Angle

�

�

��

��

��

d

�

Desired
Trajectory

Position and
Orientation

Fig. 35. Lateral control strategy.

Fig. 37. The performance of the control strategy in terms of track error can
be seen in the same figure.

The control strategy shown worked well during all tests and missions dur-
ing the DARPA Urban Challenge. It has always been stable with quite a low
track error.

4.5 Safety

The safety systems of Caroline have to ensure the highest possible safety
for the car and the environment in both manned or unmanned operation. It
has to monitor the integrity of all viable hardware and software components.
In case of an error, it has to bring the car to a safe stop. Furthermore, it

−300 −280 −260 −240 −220 −200 −180 −160 −140 −120 −100
100

110

120

130

140

150

160

170

180

190

200
Trajectory

x−Position in m

y−
P

os
iti

on
 in

 m

Final Position

Starting Position

Fig. 36. Trajectory.

Caroline: An Autonomously Driving Vehicle for Urban Environments 487

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50
Speed Profile of the Track

Time in sec

S
pe

ed
 in

 k
m

/h

0 5 10 15 20 25 30
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Track Error

Time in sec
T

ra
ck

 E
rr

or
 in

 m

Fig. 37. Speed profile and track error of the trajectory.

must provide an interface for pausing or disabling the car using a remote E-
stop controller. We extended these basic features by including the possibility
to reset and restart seperate modules independently using hardware and/or
software means in order to gain the option of automated failure removal.
Figure 38 depicts this watchdog concept.

Caroline is equipped with two separate brake systems. The main hydraulic
system and an additional electrical parking brake. The main hydraulic brake
is controlled by pressure, usually generated with a foot pedal by the driver.
In autonomous mode, this pressure is generated by a small hydraulic brake
booster. The parking brake is controlled by a push button in the front console.

CANlog III

CAN powertrain

CAN actorics

CAN controller

go

disable

vehicle power

vehicle starter

monitoring
communication

monitoring actorics
state

controlling
emergency brake

generating vehicle
state message

controlling horn,
flashing beacon

emergency/parking brake

horn / warning beacon

Vehicle Controller

Car PC

Watchdog
monitoring heartbeats

sending autonomous
mode demands

communication
interface

connect

steering

braking throttle gear

vehicle
information

controlling vehicle
power, starter

Fig. 38. Watchdog architecture.

488 F.W. Rauskolb et al.

This brake is a useful additional feature. If the button is pressed while the
car is rolling, the main brake system is activated in addition to the parking
brake until the car comes to a complete stop. During autonomous mode,
the watchdog gateway, the emergency buttons on the top of the car and the
receiver for the remote E-stop controller form a safety circuit, which holds a
safety relay open. This relay is connected to the push button for the parking
brake. If one of the systems fails, or is activated, the safety circuit is opened,
the contact of the relay is closed and the push button of the parking brake is
activated. During emergency braking, the lateral controller of the car is still
able to hold the car on the given course.

Although the watchdog’s main purpose is to assure safety it also increases
the system’s overall reliability. Caroline is a complex system with custom or
pre-production hardware and software modules. These components were de-
veloped in a very short time and therefore are not as reliable as off-the-shelf
commercial products. For this reason we used devices primarily implemented
for all safety-relevant subsystems in order to also provide the means to mon-
itor and reset non-safety relevant subsystems.

Each host runs a local watchdog slave daemon, which monitors all local
applications as shown in Fig. 39. A process failing to send periodic heartbeats
within a given interval indicates a malfunction, such as memory leakage or
deadlocks. Therefore the process and all dependent processes are terminated
by the local watchdog slave, to be restarted with respect to the order required
by process dependencies.

The slave watchdog itself is monitored by a remote central master watch-
dog. This approach allows the detection of malfunctions that cannot be re-
solved by the local slave watchdog, e.g. if a computer freezes. If a computer
should freeze, an emergency stop is initiated and the failed system is power-
cycled to restart in a stable state. The master watchdog is monitored by the

gateway

heartbeat/reset/suspend

slave daemon 2

process 1

pc n...

process 2

process n

st
ar

t

h
ea

rt
b

ea
t

ki
ll

controller

CAN

actorics CAN

TCP/IP

relaisbox

for power shutdown

slave daemon 1

process 1

pc 1

process 2

process n

st
ar

t

h
ea

rt
b

ea
t

ki
ll

slave daemon n

watchdog
pc

process 2

process n

st
ar

t

h
ea

rt
b

ea
t

ki
ll

wd master

Fig. 39. Software watchdog architecture.

Caroline: An Autonomously Driving Vehicle for Urban Environments 489

CAN gateway, which initiates an emergency stop on failure of the master
watchdog.

5 System Development Process

For developing Caroline’s software and ensuring its quality, we implemented a
multi-level testing process using elements of extreme programming
[Beck, 2005] partly realized in an integrated tool chain shown in Fig. 40.
The workflow for checking and releasing software formally consists of five
consecutive steps. First the source is compiled to check for syntactical
errors. While running the test code, the memory leak checker valgrind
[Nethercote and Seward, 2003] checks for existing and potential memory
leaks in the source code. After the execution of the test code, source code
coverage is computed by simply counting the executed statements. The intent
is to implement test cases that completely cover the existing source code or
to find important parts of the source code that are still lacking test cases.
The last step is for optimization purposes only and executes the code in order
to find time-consuming parts inside an algorithm.

The tool chain is executed manually by the developer or by using an in-
tegrated development environment such as Eclipse. The tool chain itself can
be customized by the developer by selecting only necessary stages for the
current run, i.e. skipping test suites for earlier development versions of an
algorithm. Nevertheless, the complete tool chain is executed every time a
new version of the source code is checked in the revision system Subversion
[Collins-Sussmann et al., 2004]. Therefore, an independent bugbuster server
periodically checks for new revisions on the server. If a new version is found,
it is checked out into a clean and safe environment so that the complete
tool chain can be run. The results are collected and a report is automat-
ically generated. The report is easily accessible through the project’s web

Fig. 40. Workflow for testing and releasing software.

490 F.W. Rauskolb et al.

portal [Edgewall Software, 2007] for every developer. For measuring the per-
formance or consulting the results of a previous revision, the history of older
revisions is kept and accessible via same the web portal.

The main development process described above mainly covers only unit
tests[Liggesmeyer, 2002] for some functions or parts of the complete software
system. For the development of Caroline’s artificial intelligence, interactive
feed back tests using riskless simulations are necessary. Furthermore, the
interactive simulations describe different situations for testing the artificial
intelligence. After completing the interactive tests, they can be formalized
in acceptance tests for automatic execution on another independent server.
These test suites are automatically executed after every change to the revision
system comparable to the bugbuster server.

The next section describes the simulator development for the CarOLO
project. Afterwards, the adoption of the simulator in automatic accep-
tance tests is explained. This work continues prior work presented in
[Basarke et al., 2007a] and [Basarke et al., 2007b].

5.1 Simulator

The simulation of various and partly complex traffic situations is the key for
developing a high quality artificial intelligence that is able to handle many
different situations with different types of preconditions. The simulator pro-
vides appropriate feedback to the other parts of the system, by interpreting
the steering commands and changing the Ego State and the surroundings.

The simulator can be used for interactively testing newly developed ar-
tificial intelligence functions without the need for real vehicle. A developer
can simply, safely and quickly test the functions. Therefore, our approach is
to provide a simulator that can reliably simulate missing parts of the whole
software system. Furthermore, the simulator is also part of an automatic test
infrastructure described in the next section.

Figure 41 shows the main classes of the core simulator. The main idea
behind this concept is the use of sets of coordinates in a real world model as

Fig. 41. Main classes of the simulator.

Caroline: An Autonomously Driving Vehicle for Urban Environments 491

context and input. These coordinates are stored in the model and used by the
simulator. Every coordinate in the model is represented by a simulator object
position describing the absolute position and orientation in the world. Every
position is linked to a simulator object that represents one single object.
These objects can have a variety of behaviors, shapes and other information
necessary for the simulation. The model is linked with a simulator control that
supervises the complete simulation. The simulator application itself controls
the instantiation of every simulator component by using object factories.

Figure 42 shows the factories in detail. The simulator view encapsulates
a read-only view of an extract of the world model. Every simulator view is
linked with a simulator components group. A component represents missing
parts of the whole system like an actorics module for steering and braking or
a sensor data fusion module for combining measured values and distributing
the fused results. Thus, every component in the components group can access
the currently visible data of the core data model by accessing the simulator
view. As mentioned above, every simulator object position is linked with a
simulator object, each of them equipped with its own configuration. Thus,
every component can retrieve the relevant data of the owned simulator object.

The main task of the simulator is to modify the world model over time.
For simulating the world it is necessary to proceed a step in the simulation.
A simulation step is a function call to the world model with the elapsed time
step δti > 0 as a parameter that modifies the world model either sequentially
or in parallel.

A simple variant is to modify every simulator object sequentially. In this
variant, the list of simulator objects is addressed through an iterator and then
modified using original object data. Although this is an efficient approach,
it is not appropriate when the objects are connected and rely on behaviors
from other objects. Another possibility is to use the algorithms as if a copy of
the set of simulator object positions were created. While reading the original

Fig. 42. Object factories creating the simulator’s surroundings.

492 F.W. Rauskolb et al.

Fig. 43. World’s model and motion behavior interface.

data, the modification uses the copy and thus allows a transaction such as a
stepwise update of the system, where related objects update their behavior
together.

For modifying an object in the world model, every non-static object in the
world model uses an object that implements the interface MotionBehavior
as shown in Fig. 43. A motion behavior routine executes a simulation step
for an individual object. A simulator component implementing a concrete
motion behavior registers itself with the simulator object. For every simula-
tion step the simulator object must call the motion behavior and therefore
enables the behavior implementation to modify its own position and orienta-
tion according to a simulator component. The decoupling of objects and their
motion behavior allows us to change the motion behavior during a running
simulation, i.e. because of weather influences. Furthermore, it simplifies the
implementation of new motion behaviors at development time. For testing
Caroline, we have developed additional motion behaviors like MotionBehav-
iorByKeyboard for controlling a virtual car in the interactive mode by using
keys or a MotionBehaviorByRNDF that controls a car in its surroundings by
using a predefined route to follow.

The most interesting motion behavior however, is the MotionBehaviorBy-
Trajectory because it communicates directly with the artificial intelligence.
For the best imitation of the behavior of the real car, the simulator uses the
same code as the vehicle control module based on trajectories expressed as
a string of pearls that form consecutive gates. Furthermore, the motion of
the simulated car is computed with 3rd order B-splines such as the vehicle
controller module. Using a B-spline yields smoother motion in the simulation
and a driving behavior sufficiently close to reality - if it is taken into account
that for intelligent driving functions it is not necessary to handle the physical
behavior in every detail, but in an abstraction useful for an overall correct
behavior.

Using motion behaviors, it is possible to compose different motion behav-
iors to create a new composed motion behavior. For example, it is possi-
ble to build a truck with trailer from two related, but only loosely coupled

Caroline: An Autonomously Driving Vehicle for Urban Environments 493

objects. A composition of the motion behaviors yields a new motion behav-
ior that modifies the position and orientation of the related simulator objects
according to inner rules as well as general physical rules.

Getting such a simulator up and running requires quite a number of ar-
chitectural constraints for the software design. One important issue is that
no component of the system being tested tries to call any system functions
directly, like threading or communication, but only through an adapter. De-
pending on whether it is a test or an actual running mode, the adapter
decides if the function call is forwarded to the real system or substituted by
a result generated by the simulator. Because of the architectural style, it is
absolutely necessary that no component retrieves the current time by call-
ing a system function directly. Time is fully controlled by the simulator and
therefore knows which time is relevant for a specific software component if
different times are used. Otherwise, time-based algorithms will become con-
fused if different time sources are mixed up.

5.2 Quality Assurance

As mentioned at the beginning of this section, the simulator is not only used
for interactive development of the artificial intelligence. It is also part of a tool
chain that is automatically executed on an independent server for assuring
the quality of the complete software system consisting of several modules.
In the CarOLO project, we analyzed the DARPA Urban Challenge docu-
ments to understand the requirements. These documents contained partly
functional and non-functional definitions for the necessary vehicle capabil-
ities. In every iteration a set of tasks consisting of new requirements and
bugs from previous iterations is chosen by the development team, prioritized
and concretely defined using the Scrum process for agile software engineer-
ing [Beedle and Schwaber, 2002]. These requirements are the basis for both
a virtual test drive and a real test of Caroline.

After designing a virtual test drive the availability of necessary validators
is checked. A validator is part of the acceptance tool chain and responsible for
checking the compliance of the artificial intelligence’s output with the formal
restrictions and requirements. Validators implementing intelligent software
functions are used to automatically determine differences in the expected
values in the form of a constraint that cannot be violated by the test. A
validator implements a specific interface that is called up automatically after
a simulator step and right before the control flow returns to the rest of the
system. A validator checks, for example, distances to other simulator objects,
validates whether a car has left its lane or exceeded predefined speed limits.
After an unattended virtual test drive, a boolean method is called upon to
summarize the results of all test cases. The results are collected and formatted
in an email and web page for the project’s web portal.

The set of validators covers all basic requirements and restrictions and can
be used for automatically checking the functinality of new software revisions.

494 F.W. Rauskolb et al.

Fig. 44. Screenshot of the GUI tool for constructing RNDFs.

The main benefit is that these high level tests are black-box tests and do not
rely on the internal structure of the code. Thus, a subgroup of the CarOLO
team was able to develop these high level acceptance tests without a deep un-
derstanding of the internal structures of the artificial intelligence. Using this
approach, more complex traffic situations could be modeled and repeatedly
tested without great effort.

To allow for the quick and convenient creation of test scenarios, various
concepts and tools have been developed. The following describes how virtual
test drives are defined as well as how certain surroundings such as data fusion
objects or drivability data is generated and fed into the simulator. To make
this clear we briefly illustrate the proceedings on a basis of an example, which
deals with the simple passing maneuver as already described in section 4.3.3.
Assume we would like to determine wether the artificial intelligence is able to
recognize static obstacles in our travel lane and reacts properly by adhering
the required minimum distances.

First, an RNDF must be created that contains information about existing
lanes, intersections, parking spots and their connections. As an RNDF pro-
vides the basis for every test run, many of those route network definitions had
to be created. Therefore we developed a GUI tool to simplify the creation of
RNDFs as shown in Fig. 44.

Several features including dragging waypoints, connecting lanes and adding
stop signs or checkpoints speed up the construction process. Completed
RNDFs could be exported to a text file and used as input for the artificial
intelligence as well as for the simulator.

Caroline: An Autonomously Driving Vehicle for Urban Environments 495

Fig. 45. Screenshot with fusion objects.

The purposes of RNDFs within the simulator vary in different ways. One
purpose is to check the behavior of the artificial intelligence concerning the
RNDF provided and the actual lane. Therefore a second RNDF can be passed
to the simulator. The additional and independent RNDF is used to provide
lane data, which is normally detected by the computer vision system. This is
especially important if there are major differences between the linear distance
and the actual route to the next waypoint.

Another use of RNDFs is to define the behavior of dynamic obstacles
during the test run, as mentioned earlier. Thus we are able to check rel-
evant software modules for their interaction with dynamic obstacles. This
approach is similar to the one used for providing detected lanes. Dynamic
obstacles are interacting on a basis of their individual RNDFs by using the
MotionBehaviorByRNDF. This concept can be used for simulating scenarios
at intersections and even more complex traffic scenarios.

To extend the example of passing a static obstacle we need to create suit-
able data, which could be translated to sensor fusion objects. Two princi-
pal approaches are available to achieve this goal. Generating scenarios with
static obstacles can be accomplished by using our visualisation application,
which provides the ability to define polygons or by using a drawing tool.
Shapes of fusion objects could be exported to a comma-separated file. The
simulator parses the textual representation of polygons and translates them
to fusion objects to be processed by the artificial intelligence. The use of a
drawing tool implies the use of predefined colors. The positions of static ob-
stacles are computed by scanning the created image for special markers with

496 F.W. Rauskolb et al.

Fig. 46. Sreenshot with additional drivability data.

reference to a known coordinate. Fig. 45 depicts a screenshot of our visuali-
sation application where the corresponding fusion objects are displayed.

For a more realistic simulation, the data fusion objects generated by the
simulator could be created with different quality. This is used to simulate
sensor noise and GPS drifts and makes fusion objects suddenly disappear or
moves them by a tiny offset away from their original location. The sensor
visibility range could be specified to affect the range of fusion objects that
will be transmitted to the artificial intelligence.

Adding moderate drivability data completes this test run. This could be
accomplished by passing an image file to the simulator, which specifies the
required information through different colors. Fig. 46 shows the result. The
visualisation of drivability grid displays drivable terrain in green, undrivable
terrain in red and unknown terrain with blue cells.

6 The Race and Discussion

6.1 National Qualification Event

The National Qualification Event took place from October 26 to October
31 on the former George Airforce Base in Victorville, California as depicted
in Fig. 2. The entire area was divided into three major parts named ”Area
A”, ”Area B” and ”Area C” as shown in Fig. 47. First of all, Caroline had
to demonstrate the proper function of her safety system to participate in
the National Qualification Event. As expected Caroline stopped within the
necessary range using the E-stop remote controller as well as the emergency
stop buttons mounted on her roof.

Caroline: An Autonomously Driving Vehicle for Urban Environments 497

Fig. 47. Layout of the former George Airforce Base for the National Qualification
Event. The blue dot indicates the pit area for our team.

6.1.1 Area A
For our team, the National Qualification Event started in ”Area A”. The main
task for Caroline in that part was to merge into and through moving traffic.
Therefore, several other vehicles controlled by human drivers drove within
predefined speed limits to ensure the 10 seconds time slots as demanded by
the DARPA’s requirements. Fig. 48 shows the layout of the track. Caroline
was placed at checkpoint 2. She had to drive downward to the T-junction,
wait for an appropriate time slot and then turn left through the moving
traffic. Afterwards, she had to pass checkpoint 1 by following other vehicles
and drive to the upper junction. After waiting for an appropriate time slot,
she had to turn into the street to pass checkpoint 2 again. The goal was to
drive as many rounds as possible in this area.

Compared to other competitors, Caroline had to pass this task several
times. The first run in this part let Caroline drive into the opposite lane.
Analyzing this obviously strange behavior afterwards using our simulator as
depicted in Fig. 49, we figured out that the barriers shown by white lines
around the course narrowed the proper lane. Therefore, Caroline, shown as
a red rectangle driving downwards to the lower T-junction, interpreted them
as stationary obstacles in her way which she tried to overtake which can be
seen in the computed trajectory shown by yellow and black pearls that leads
into the opposite lane.

498 F.W. Rauskolb et al.

Fig. 48. Layout of ”Area A”.

After modifying several parameters, we had our second try in ”Area A”.
She drove five rounds, merged into moving traffic correctly, waited at stop
lines and followed other vehicles very well. Unfortunately, some problems
occurred on the above right corner, when Caroline decided to turn right
instead of following the road to the junction. We found out, that Caroline
got in trouble with the street surface in that corner. There was a mixture
of concrete and tar each with different colors. Thus, Caroline educated that
color difference and tried to drive towards areas with a similar surface.

After modifying that behavior, we got another try in that course. Caroline
started a perfect first run but waited too long for the second one. Therefore,

Fig. 49. Analysis of Caroline’s behavior in “Area A”.

Caroline: An Autonomously Driving Vehicle for Urban Environments 499

the judges paused our vehicle and demanded a more progressive behavior
of Caroline. Tuning again some parameters, we tried the course a fourth
time short time later. This time, Caroline drove very swiftly but she did not
give way to oncoming traffic. So, we changed the parameters again to get a
safer behavior again and convinced the judges in our last try in that area of
Caroline’s abilities to merge correctly into moving traffic after demonstrating
approximately eigth perfect rounds.

6.1.2 Area B
After encountering difficulties in the first task, we were unsure how Caroline
would perform in ”Area B” since several teams already failed to complete this
part. The entire course is shown in Fig. 50. The main task was to overtake
stationary obstacles, handle free navigation zones without any lane markings
and to park safely inside those zones between other vehicles. The course itself
could not be seen completely, so Caroline had to drive for herself without any
observation by our team. We only could hear her progress by the team radio
and by her siren.

Caroline started within a concrete start chute laid inside a free navigation
zone. Many other teams already failed to leave this zone into the traffic circle
correctly. She entered smoothly the traffic circle, left the circle and turned into
the part on the right hand side of Fig. 50. In the center of the lower circle

Fig. 50. Layout of ”Area B”.

500 F.W. Rauskolb et al.

she had to park between other vehicles. The entry to that zone was very
rough and several other teams already damaged the tires of their vehicle.
We analyzed the video right after the task and remarked heavy vibration of
the camera’s picture but she entered the zone smoothly. After finishing the
parking she left the zone to proceed the course.

Furthermore, Caroline had to deal with a gate located right at the exit of
the upper circle. Due to our sensor layout she had to attempt several times to
find the right way for leaving that circle. Returning to the start chutes again,
she honked twice to indicate the completion of her mission after passing the
last checkpoint. With this successful run, Caroline was one of only three
vehicles to accomplish this course completely and in time.

6.1.3 Area C
On the same day, Caroline was faced with ”Area C”. This area is shown in
Fig. 51. The main task was to handle intersections correctly and deal with
blocked roads.

Caroline started near checkpoint 30 in the upper left corner on the outer
lane. She handled both intersections on the left hand side and the right
hand side several times correctly with every combination of other vehicles
she was faced. Right in front of checkpoint 30 in the center part of this
course, Caroline encountered a road blockage as shown in Fig. 52. We were
unsure wether Caroline would detect the barrier since it had no contact to
the ground and our sensors could look right through that barrier.

Fig. 51. Layout of ”Area C”.

Caroline: An Autonomously Driving Vehicle for Urban Environments 501

Fig. 52. Blocked round in ”Area C” by a barrier.

But Caroline detected that barrier properly and initiated the U-turn to
choose another route the checkpoint. Afterwards, she passed all further traffic
and intersection situations correctly and finished ”Area C” finally. With all
results achieved in the three areas, Caroline qualified early as a newcomer for
the final event besides the well-established team with their experience of the
Grand Challenges.

6.2 Mandatory Practice for DARPA Urban Challenge Final
Event

The day before the DARPA Urban Challenge Final Event was scheduled,
everyone of the eleven finalists had to participate in a practice session. By
using this session, DARPA would ensure that every vehicle was able to leave
the start chute and turn into the traffic circle. Assuming that this would be
an easy task, we put Caroline into autonomous mode and waited for her to
begin her run. But she did not leave her start chute and our team failed that
practice session. We figured out a problem by parsing the RNDF provided by
the DARPA. This issue did not let Caroline understand the road network for
the final. After fixing this problem, we got another try. But Caroline still did
not leave her start chute. Thus, DARPA placed us in the last of the eleven
start chutes and cancelled the practice for our team.

Later analyzing the data we figured out the jitter in the GPS signal while
significantly waiting for the ”RUN” mode that yielded leaving the calculated

502 F.W. Rauskolb et al.

Fig. 53. Layout for the DARPA Urban Challenge Final Event.

trajectory. After fixing this issue we finally prepared Caroline for the DARPA
Urban Callenge Final Event on the following day.

6.3 DARPA Urban Challenge Final Event

Figure 53 shows the enlarged ”Area B” track for the DARPA Urban Challenge
Final Event, including the former ”Area A” as a parking lot. The start chutes
were the same as for the run in ”Area B”. Additionally, in the lower-right
corner of the map, there was a sandy off-road track located yielding a two-
lane road return the inner part of the DARPA Urban Challenge Final Event
area.

On November 3, 2007 at 6:53 am PST we loaded the first of three mission
files into Caroline and set her into ”PAUSE” mode. She calculated the route
for the first checkpoint and started her run at 7:27 am PST. Fig. 54 shows
the first part of her way during the first mission.

The asterisk in Fig. 54 indicates the location where two members of our
team had to accompany the DARPA judges. Caroline had passed approxi-
mately 2.5 kilometers until she was paused by the DARPA control vehicle
right behind her. Fig. 55 shows the reason for ”PAUSE” mode.

Caroline got stuck after she turned into the berms. Fig. 55 (a) and (b)
shows Caroline approaching a traffic jam right in front of her. Obviously, she
tried to pass the stopped vehicle by interpreting it as a stationary obstacle
using the clearance next the last car. The result of this attempt is shown
in Fig. 55 (c): Caroline got stuck and could not get free without human
intervention.

Caroline: An Autonomously Driving Vehicle for Urban Environments 503

Fig. 54. Passed way before the first problem.

After she got freed and set in ”RUN” mode again right at the beginning
of the two-lane road, she continued her route and passed several checkpoints.
The next incident was after 11.4 kilometers shown as the asterisk in Fig. 57.

At that location Caroline did not yield right of way to Talos, the au-
tonomous vehicle from team MIT. Therefore, the DARPA paused both
vehicles and let team members from MIT come to that location. After re-
placing Talos, both vehicles were sequentially set to ”RUN” mode and passed
safely each other. Unfortunately, the reason for not yielding right of way to
Talos could not be figured out analyzing our log files. Since the situation
was a left turn through oncoming traffic, it could be a problem detecting
and tracking Talos due to problems either with our front sensors or with the
interpretation in the artificial intelligence.

As shown in Fig. 58, Caroline continued her route. Additionally, she parked
in the parking lot shown in the upper left picture of Fig. 58. After the parking

Fig. 55. Caroline got stuck after 2.5 kilometers.

504 F.W. Rauskolb et al.

Fig. 56. Caroline went on after she got stuck.

maneuver, she returned the second time to the traffic circle and continued
her mission 1.

At approximately 9:55 am PST, again two team members from team Car-
OLO were driven to Caroline, who met Talos from team MIT for the second
time in a free navigation zone. This incident is shown as an asterisk in Fig. 59.

Our team members were faced with a twisted carrier rod of the Ibeo laser
scanners due to a collision with Talos from team MIT as shown in Fig. 60.
Until today it is still unresolved which car was in charge of the accident.
Caroline interpreted the situation as described in the technical evaluation
criteria [DARPA, 2006] by the section “Obstacle field”. Therefore, Caroline
tried to pass the oncoming Talos by pulling to the right side. Unfortunately,
further interpretation is impossible due to missing detailed log files of that
situation. Finally, DARPA retired Caroline as the fourth and last vehicle
from the DARPA Urban Challenge Final Event.

Altogether, Caroline drove 16.4 kilometers in total and was retired from
the race at 10:05 am PST. At 8:03 am PST, the watchdog module reset the
SICK laser scanners mounted on the roof due to communication problems. At

Caroline: An Autonomously Driving Vehicle for Urban Environments 505

Fig. 57. Next incident including Caroline and Talos from team MIT.

Fig. 58. Caroline went on after not yielding right of way to Talos.

approximately 9:00 am PST, the watchdog missed heartbeats from the IMU,
and therefore triggered a reset. Right after the collision with Talos from team
MIT, the watchdog observed communication problems with the laser scanners
mounted in the front of Caroline. After a reset, the communication was re-
established. During the race, computer ”Daq1” as shown in Fig. 4 froze two
times and had to be reset.

506 F.W. Rauskolb et al.

Fig. 59. Passed way before the first problem.

Fig. 60. Caroline was retired after the collision with MIT.

7 Conclusion

Team CarOLO is an interdisciplinary team made up of members from the fac-
ulties of computer science and mechanical and electrical engineering which is
significantly supported by industrial sponsors. Our vehicle Caroline is a stan-
dard 2006 Volkswagen Passat station wagon built to European specifications
that is able to detect and track stationary and dynamic obstacles at a distance
of up to 200 meters. The system’s architecture comprises eight main mod-
ules: Sensor Data Acquisition, Sensor Data Fusion, Image Processing, Digital
Map, Artificial Intelligence, Vehicle Path Planning and Low Level Control,
Supervisory Watchdog and Online-Diagnosis, Telemetry and Data Storage

Caroline: An Autonomously Driving Vehicle for Urban Environments 507

for Offline Analysis. The signal flow through these modules is generally lin-
ear in order to decouple the development process. Our design approach uses
multi-sensor fusion of lidar, radar and laser scanners, extending the classical
point shape based approach to handle extensive dynamic targets expected
in urban environments. Image processing detects lane markings along with
drivable areas. Artificial intelligence is modeled according to DAMN archi-
tecture, redesigned and enhanced to meet requirements of special behavior in
urban environments. Our approach is able to handle complex situations and
ensure Caroline’s proper behavior, e.g. obeying traffic regulations at intersec-
tions or performing U-turns when roads are blocked. Decisions of the artificial
intelligence are sent to the path planner, which calculates optimal vehicle tra-
jectories with respect to its dynamics in real time. Safety and robustness is
ensured by supervisory watchdog monitoring of all vehicle’s hardware and
software modules. Failures or malfunctions immediately result in a safe and
complete stop by Caroline. Since we are a large heterogeneous team with a
very tight project schedule, we recognized very early the need for efficient
quality assurance during the development process. Thus, we implemented an
automatic multi-level test process. Each new feature or modification runs
through a series of unit tests or comprehensive simulations before being de-
ployed on the vehicle.

As a competitor in the DARPA Urban Challenge Final Event, Caroline
is able to autonomously perform missions in urban environments. She drove
approximately 17 kilometers in about three hours in the final.

Acknowledgments

The authors thank their colleagues, students and professors from five insti-
tutes of the Technische Universität Braunschweig, who have developed Caro-
line. As a large amount of effort and resources were necessary to attempt this
project, it would not have been successful if not for the many people from
the university and local industry that had sponsored material, manpower and
financial assistance. Particular thanks go to Volkswagen AG, IAV GmbH and
the Ministry of Science and Culture of Lower Saxony. The authors’ team also
greatly thanks Dr. Bartels, Dr. Hoffmann, Professor Hesselbach, Mr. Horch,
Mr. Lange, Professor Leohold, Dr. Lienkamp, Mr. Kuser, Professor Seiffert,
Mr. Spichalsky, Professor Varchmin, Professor Wand and Mr. Wehner for
their help on various occasions.

References

Basarke et al., 2007a. Basarke, C., Berger, C., Homeier, K., Rumpe, B.: Design
and quality assurance of intelligent vehicle functions in the ”virtual vehicle”.
Virtual Vehicle Creation (2007a)

508 F.W. Rauskolb et al.

Basarke et al., 2007b. Basarke, C., Berger, C., Rumpe, B.: Software & systems
engineering process and tools for the development of autonomous driving intel-
ligence. Journal of Aerospace Computing, Information, and Communication 4
(2007b)

Beck, 2005. Beck, K.: Extreme Programming Explained: Embrace Change.
Addison-Wesley, Reading (2005)

Beedle and Schwaber, 2002. Beedle, M., Schwaber, K.: Agile Software Develop-
ment with Scrum. Prentice-Hall, Englewood Cliffs (2002)

Bilmes, 1997. Bilmes, J.: A gentle tutorial on the em algorithm and its applica-
tion to parameter estimation for gaussian mixture and hidden markov models.
Technical report (1997)

Collins-Sussmann et al., 2004. Collins-Sussmann, B., Fitzpatrick, B.W., Pilato,
C.M.: Version Control with Subversion. O’Reilly, Sebastopol (2004)

Cormen et al., 2002. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Intro-
duction to Algorithms, 2nd edn. (2002)

DARPA, 2006. DARPA, Technical evaluation criteria (2006)
Duda and Hart, 1973. Duda, R.O., Hart, P.E.: Pattern Classification and Scene

Analysis. John Wiley & Sons Inc., Chichester (1973)
Edgewall Software, 2007. Edgewall Software, Trac. Edgewall Software (2007)
Gary Bradski, 2005. Bradski, G., Adrian Kaehler, V.P.: Learning-based computer

vision with intels open source computer vision library, pp. 126–139 (2005)
Heikkil and Silvn, 1996. Heikkil, J., Silvn, O.: Calibration procedure for short focal

length off-the-shelf ccd cameras. In: 13th International Conference on Pattern
Recognition, Vienna, Austria, pp. 166–170 (1996)

Kalman, 1960. Kalman, R.E.: A new approach to linear filtering and prediction
problems. In: Transactions of the ASME-Journal of Basic Engineering, pp. 35–
45 (1960)

Liggesmeyer, 2002. Liggesmeyer, P.: Software-Qualitaet: Testen, Analysieren und
Verifizieren von Software. Spektrum, Akad. Verl. (2002)

Nethercote and Seward, 2003. Nethercote, N., Seward, J.: Valgrind: A program su-
pervising framework. Theoretical Computer Science 89 (2003)

OpenCV Website, 2007. OpenCV Website, The open cv library (2007)
Pitteway and M.L.V., 1967. Pitteway, M.L.V.: Algorithmn for drawing ellipses or

hyperbolae with a digital plotter. Computer Journal 10(3), 282–289 (1967)
Rosenblatt, 1997. Rosenblatt, J.: DAMN: A Distributed Architecture for Mobile

Navigation. PhD thesis, Robotics Institute, Carnegie Mellon University, Pitts-
burgh, PA (1997)

Shafer, 1976. Shafer, G.: A Mathematical Theory of Evidence. Princeton University
Press, Princeton (1976)

Shafer, 1990. Shafer, G.: Perspectives on the theory and practice of belief functions.
International Journal of Approximate Reasoning (3), 1–40 (1990)

Thrun et al., 2006. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron,
A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oak-
ley, C., Palatucci, M., Pratt, V., Stang, P., Strohband, S., Dupont, C., Jen-
drossek, L.-E., Koelen, C., Markey, C., Rummel, C., van Niekerk, J., Jensen,
E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian,
A., Mahoney, P.: Winning the darpa grand challenge. Journal of Field Robotics
(2006)

Ulrich and Nourbakhsh, 2000. Ulrich, I., Nourbakhsh, I.: Appearance-based obsta-
cle detection with monocular color vision. In: Proceedings of the AAAI National
Conference on Artificial Intelligence, Austin, TX, pp. 866–871 (2000)

The MIT – Cornell Collision and Why It Happened

Luke Fletcher1, Seth Teller1, Edwin Olson1, David Moore1, Yoshiaki Kuwata1,
Jonathan How1, John Leonard1, Isaac Miller2, Mark Campbell2,
Dan Huttenlocher2, Aaron Nathan2, and Frank-Robert Kline2

1 Team MIT
Massachusetts Institute of Technology
Cambridge, MA 02139
lukesf@mit.edu

2 Team Cornell
Cornell University
Ithaca, NY 14853
itm2@cornell.edu

Abstract. Mid-way through the 2007 DARPA Urban Challenge, MIT’s robot ‘Talos’ and
Team Cornell’s robot ‘Skynet’ collided in a low-speed accident. This accident was one of the
first collisions between full-sized autonomous road vehicles. Fortunately, both vehicles went
on to finish the race and the collision was thoroughly documented in the vehicle logs. This
collaborative study between MIT and Cornell traces the confluence of events that preceded
the collision and examines its root causes. A summary of robot–robot interactions during the
race is presented. The logs from both vehicles are used to show the gulf between robot and
human-driver behavior at close vehicle proximities. Contributing factors are shown to be: (1)
difficulties in sensor data association leading an inability to detect slow-moving vehicles and
phantom obstacles, (2) failure to anticipate vehicle intent, and (3) an over-emphasis on lane
constraints versus vehicle proximity in motion planning. Finally, we discuss approaches that
could address these issues in future systems, such as inter-vehicle communication, vehicle
detection and prioritized motion planning.

1 Introduction

On November 3rd, 2007, the Defense Advanced Research Projects Agency (DARPA)
Urban Challenge Event (UCE) was held in Victorville, California. For the first time,
eleven full-size autonomous vehicles interacted with each other and other human-
driven vehicles on a closed course. The aim of the contest was to test the vehi-
cles’ ability to drive between checkpoints while obeying the California traffic code.
This required exhibiting behaviors including lane keeping, intersection precedence,
queuing, parking, merging and passing.

On the whole, the robots drove predictably and safely through the urban road net-
work. None of the robots stressed the (understandably) conservative safety measures
taken by DARPA. There were, however, a number of low-speed incidents during the
challenge. This paper reviews those incidents and takes an in-depth look at one
of them, the collision between Team Cornell’s vehicle ‘Skynet’ and MIT’s ‘Talos’.
This paper scrutinizes why the collision occurred and attempts to draw some lessons
applicable to the future development of autonomous vehicles.

M. Buehler et al. (Eds.): The DARPA Urban Challenge, STAR 56, pp. 509–548.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

510 L. Fletcher et al.

Fig. 1. The collision. (left): Skynet. (right): Talos. This paper explores the factors which led
to the collision. Despite the mishap, both vehicles when on to complete the race.

The UCE was held on a closed course within the decommissioned George Air-
force base. The course was predominantly the street network of the residential zone
of the former base. Several graded dirt roads added for the competition. The contest
was cast as a race against time to complete 3 missions. The missions were different
for each team but were designed to require each team to drive 60 miles to finish
the race. Penalties for erroneous or dangerous behavior were converted into time
penalties. DARPA provided all teams with a single Route Network Definition File
(RNDF) 24 hours before the race. The RNDF is very similar to a digital street map
used by an in-car GPS navigation system. The file defined the road positions, num-
ber of lanes, intersections, and even parking-space locations in GPS coordinates. A
plot of the route network for the race is shown in Figure 2. On the day of the race,
each team was provided with a second unique file called a Mission Definition File
(MDF). This file consisted solely of list of checkpoints within the RNDF which the
vehicle was required to cross.

To mark progress through each mission, DARPA arranged the checkpoints in the
mission files to require the autonomous vehicle to return to complete a lap of the oval
shaped “Main Circuit” (visible in bottom left corner of Figure 2) at the end of each
sub-mission. Each mission was subdivided into 6 or 7 ‘sub-missions’. The vehicles
returned to the finishing area at the end of each mission so the team could recover and
reposition the vehicle for the next mission. Most roads were paved with a single lane
in each direction, similar to an urban road. Several roads had two lanes of traffic in
each direction, like an arterial road or highway. One road, in the southeastern corner
of the network, was a raised dirt road constructed especially for the event.

All 11 qualifying robots were allowed to interact in the UCE course simultane-
ously. Additional traffic was supplied by human-driven Ford Tauruses. To prevent
serious crashes during the competition, all autonomous vehicles were followed by
an assigned DARPA chase vehicle. The chase-vehicle driver supervised the robot
and could ‘Pause’ or, in extreme cases, ‘Disable’ the robot via radio link. ‘Paused’

The MIT – Cornell Collision and Why It Happened 511

Fig. 2. The UCE road network. Waypoints are designated as blue dots. Traversable lanes and
zone boundaries are represented as blue lines. Stop lines are designated as red circles. The
Skynet– Talos collision happened entering the Main Circuit on the bottom left.

robots could then be ‘Un-Paused’ to continue a mission when safe. ‘Disabling’ a
vehicle would kill the engine, requiring the vehicle’s team to recover it.

The qualifiers and the race provided ample opportunity for damage to the robots
on parked cars, concrete barriers, DARPA traffic vehicles and buildings. The fact
that the two vehicles were not damaged, other than minor scrapes in the collision,
despite hours of driving emphasizes the fact that the circumstances leading to the
collision were the product of confounding assumptions across the two vehicle ar-
chitectures. The robots negotiated many similarly complex situations successfully.

This paper begins with a brief summary in Section 2 of the robot–robot inter-
actions during the 6-hour race. Then, to aid in the collision analysis, summaries of
the MIT and Cornell vehicle software architectures are given in Sections 3 and 4 re-
spectively. Section 5 describes the Skynet–Talos collision in detail, before branching
in Sections 6 and 7 to provide detailed accounts of the robots’ software state during
the incident. The apparent causes of the incidents are studied here to shed light on
the deeper design issues involved. In Section 8, we draw together the insights from
the software architecture analysis to summarize the common themes, the lessons
learned, and the impediments to using these robots on the real urban roads.

2 Chronology of Robot–Robot Interactions

The following table is a list of robot–robot collisions or close calls during the UCE.
The list has been compiled from the race day web-cast and vehicle data logs. The
locations of the incidents are marked in Figure 2.

512 L. Fletcher et al.

Time (Approx) Location Description Reference
1h00m Utah and Washing-

ton
Cornell’s Skynet passing with IVS’
XAV-250 and Ben Franklin Racing
Team’s Ben oncoming

Section 2.1

1h30m George Boulevard Ben and Team UCF’s Knight Rider Section 2.2

2h00m North Nevada and
Red Zone

CarOLO’s Caroline turns across
MIT’s Talos

Section 2.3

3h00m White Zone Caroline and Talos collide. Section 2.4

4h00m Carolina Avenue
and Texas Avenue

Talos swerves to avoid Victor Tango’s
Odin

Section 2.5

4h30m George Boulevard
and Main Circuit

Skynet and Talos collide Section 5

5h20m Utah and Montana Talos turns across Ben Section 2.6

We invited teams with vehicles actively involved the incidents (CarOLO, IVS and
Ben Franklin Racing Team) to co-author or comment on the interactions. Received
comments are included in the incident descriptions.

A full discussion of the Skynet– Talos collision is given Section 5.
Diagrams have been drawn describing each incident. In the drawings, a solid line

shows the path of the vehicle, and a dashed line shows the intended/future path of
the vehicle. A lateral line across the path indicates that the vehicle came to a stop in
this location. DARPA vehicles are driven by DARPA personnel in the roles of either
traffic or chase vehicles.

Videos of the log visualization for incidents involving Talos can be found in
Section 9).

2.1 Skynet Passing with XAV-250 and Ben Oncoming at Utah and
Washington

The first near-miss occurred at the intersection of Utah and Washington. Knight Rider
was at the intersection. Skynet pulled up behind a traffic vehicle, which was queued
behind Knight Rider’s chase vehicle (the chase vehicle was queued behind
Knight Rider). The relative positions of the vehicles are shown in Figure 3(b).
Knight Rider was making no apparent progress through the intersection, so after
waiting, Skynet elected to pass. Skynet was behind three cars, which put it beyond the
safety zone in which passing was prohibited. (DARPA, 2007). The rules also stated
that vehicles should enter a traffic-jam mode after a prolonged lack of progress at

The MIT – Cornell Collision and Why It Happened 513

(a) (b)

(c) (d)

Fig. 3. After queuing behind the stationary Knight Rider, Skynet passes. (a) Visualization
of XAV-250 log when approaching Skynet (Image courtesy of Team IVS).(b) Diagram of
incident. (1): Vehicle positions when XAV-250 approaches. (2): Vehicle positions when Ben
approaches. (c) XAV-250 Camera view (Image courtesy of Team IVS). (d) Skynet(26) once
XAV-250(15) had passed.

an intersection. Skynet began to pass. Shortly into the maneuver, the Intelligent Ve-
hicle Systems vehicle XAV-250 turned right from Washington onto Utah and into
the on-coming path of Skynet. Skynet and XAV-250 were Paused. XAV-250 was Un-
paused and permitted to drive past Skynet, clearing the area. Skynet was then also
permitted to continue. Skynet determined that it could not get back into the correct
lane and was too near the intersection, so it pulled over to the curb side of the lane
and waited. Next Ben also turned onto Utah from Washington, and again, was on-
coming to Skynet. Skynet and Ben were Paused . Ben was Un-paused and permitted
to drive past. Interestingly, Ben’s chase vehicle drove onto the curb around to the
right to pass the Skynet vehicle. This provides an example of the assessment made
by a human driver in this scenario. Faced with Skynet in the on-coming lane, the
chase vehicle driver elected to drive far right onto the curb to accommodate the
potential behavior of the Skynet vehicle. The passage of Ben shows that mounting

514 L. Fletcher et al.

(a) (b)

Fig. 4. (a) Diagram of incident. (b) Knight Rider(13) and Ben(74) near miss.

(a)

(b) (c)

Fig. 5. (a) Diagram of incident. (b) Talos’ view of the final pose Caroline-Talos turning near-
miss. (c) Visualization from Talos’ log.

the curb was not necessary to physically pass the vehicle. Given a clear intersec-
tion, the Skynet vehicle was able to negotiate the intersection and continue the mis-
sion. A more detailed account of this event from Skynet’s point of view is given
in (Miller et al., 2008).

2.2 Ben and Knight Rider on George Boulevard

Figure 4 shows a near-miss featured in the webcast in which Ben appeared to
be merging into Knight Rider on George Boulevard. In this case, Ben had been

The MIT – Cornell Collision and Why It Happened 515

following Knight Rider. Ben had been traveling faster than Knight Rider so DARPA
decided to Pause Knight Rider once the vehicles were on George Boulevard, a
dual lane road, to permit Ben to pass. With Knight Rider stopped in the right lane,
DARPA expected Ben to continue in the left lane and then merge into the right
lane after passing Knight Rider. At the far end of George Boulevard, the vehicles
were required to be in the right lane. Because it involved a lane change at the start
of a dual-lane road and the stopped vehicle was in the destination lane, the sce-
nario was different from standard passing maneuvers and hence was not handled in
Ben’s software. Consequently Ben performed the lane change without accounting
for Knight Rider. Ben was Paused and stopped in time to prevent a collision.

2.3 Caroline and Talos at North Nevada and Red Zone

Figure 5 shows the first of two close encounters between Caroline and Talos. The
figure shows the diagram of the incident and how it appeared in the Talos software.
In this incident Talos was driving straight down North Nevada. Caroline was ap-
proaching in the oncoming direction down Carolina Avenue, then turned left into
the Red Zone across the path of Talos.

Talos detected the moving object of Caroline and found the closest intersec-
tion exit to project the assumed trajectory. Talos’ intended motion plans were then

(a)

(b) (c)

Fig. 6. (a) Diagram of incident. (b) Final pose of Caroline and Talos collision from Talos’
front right camera. (c) Visualization from Talos’ log.

516 L. Fletcher et al.

(a)

(b) (c)

Fig. 7. (a) Diagram of incident. (b) View from Talos’ front camera. (c) Talos’ log visualiza-
tion. Odin is turns right. Talos brakes and turns hard left to avoid Odin’s projected motion
direction.

severed by Caroline’s predicted trajectory, so the vehicle commenced an emergency
stop. DARPA Paused both vehicles. A full account of this event from Talos’ view is
given in (Leonard et al., 2008).

2.4 Caroline and Talos in White Zone

The second incident between Caroline and Talos ended in a collision. The Caroline
vehicle was retired from the race shortly after this event. Figure 6 shows the dia-
gram of the incident and collision between Caroline and Talos in the White Zone.
Caroline was near the Indiana Lane exit of the White Zone. Talos entered the Ken-
tucky Lane entrance to the White Zone and was en-route to the Indiana Lane exit.
Initially, Talos planned a route around Caroline’s chase vehicle to get to the Zone
exit on the left. Caroline’s chase vehicle then drove away from Talos. Talos then
replanned a more direct route to the left, to the zone exit. As Talos drove toward
the zone exit, Talos also approached Caroline. Initially Caroline was stationary,
then Caroline drove slowly forward toward Talos. Talos, with the zone fence to the
left and what it perceived as a static obstacle (which was actually Caroline) to the
right, attempted to negotiate a path in between. Caroline advances toward Talos.

The MIT – Cornell Collision and Why It Happened 517

Talos keeps adjusting its planned path to drive around to the left of what appears
to the Talos software as a stationary object. Just before the collision Talos’ motion
plans were severed, causing a “planner emergency stop”. Due to Talos’ momentum
and Caroline’s forward movement, the braking failed to prevent physical contact.
DARPA then Paused the vehicles. A detailed account of this chain of events from
Talos’ view is given in (Leonard et al., 2008).

2.5 Odin and Talos at Carolina and Texas

This incident featured a close call negotiated by the robots without intervention from
DARPA. Figure 7 shows the diagram and view from the Talos log. Talos arrived at
a stop line at the intersection of Carolina and Texas. Talos was intending to go from
Oregon to Texas (from bottom to top in Figure 7(a)). Talos yielded to Odin ap-
proaching. Odin arrived at the intersection intending to turn left into Texas Avenue.
Odin came to a stop entering the intersection. Talos detected the time to contact for
approaching vehicles had gone to infinity so proceeded across the intersection. Odin
also proceeded from Carolina Avenue into Texas Avenue. Odin, much quicker off

(a)

(b) (c)

Fig. 8. (a) Diagram of incident. (b) View from Talos’ right front camera. Talos’ view of the
Little Ben-Talos turning near-miss. Talos yielded to the velocity track of oncoming Ben(74).
Ben came to a stop at the intersection. Talos began motion. Ben began to go through the
intersection. Talos saw Ben as a creeping “static obstacle” and continued. Talos completed
the turn. Ben stopped. (c) Talos’ log visualization. Ben approaching on the right of Talos.

518 L. Fletcher et al.

the mark, was ahead of Talos. Talos reacted to Odin approaching by braking and
replanning an evasive maneuver, turning hard to the left. Odin and Odin’s chase
vehicle completed the turn and cleared the intersection. Talos then resumed course
down Texas Avenue behind the vehicles.

2.6 Ben and Talos at Utah and Montana

The final incident, a close call, is illustrated in Figure 8. Log data shows that Talos
turned left from Montana onto Utah. Talos arrived at the intersection and yielded
to oncoming traffic. Ben was approaching, so Talos remained stopped. At the inter-
section Ben also came to a stop. Again, Talos detected that the time to contact for
approaching vehicles had now gone to infinity, so commenced the left-hand turn. As
Talos crossed in front of Ben, Ben then also entered the intersection. At this point,
Ben was quite far to the right of Talos, so Talos’ forward path collision checking was
not altered by the vehicle approaching to the side. Talos exited the intersection while
Ben came to a stop. Once the intersection was clear, Ben continued the mission.

3 Team MIT’s ‘Talos’

This section is a summary of the Talos software architecture. The purpose of this
section is to describe the vehicle software in sufficient detail to understand the vehi-
cle behavior and contributing factors to the collision. A thorough description of the
robot architecture is given in (Leonard et al., 2008).

Talos is a Land Rover LR3 fitted with cameras, radar and lidar sensors (shown in
Figure 9). Forward, side and rear-facing cameras are used for lane marking detection.

Fig. 9. MIT’s ‘Talos’, a Land Rover LR3 featuring five Point Grey FireFly cameras, 15 Delphi
ACC3 radars, 12 Sick LMS-291 lidars and a Velodyne HDL-64 lidar.

The MIT – Cornell Collision and Why It Happened 519

Fig. 10. MIT’s Talos system architecture.

The Velodyne HDL-64 lidar is used for obstacle detection supplemented in the near-
field with 7 horizontal Sick LMS-291 lidars. Five additional downward-facing Sick
LMS-291 lidars are used for road-surface hazard detection including curb cuts. 15
Delphi ACC3 millimeter-wave radars are used to detect fast-approaching vehicles.

The system architecture developed for the vehicle is shown in Figure 10. All soft-
ware modules run on a 40-core Quanta blade server. The general data flow of the
system consists of raw sensor data processed by a set of perception software mod-
ules: the Position Estimator, Obstacle Detector, Hazard Detector, Fast [approaching]
Vehicle Detector and Lane Tracker.

The Navigator process decomposes mission-level decisions into a series of short
term (1m−60m) motion goals and behavioral constraints. The output from the per-
ception modules is combined with the behavioral constraints to generate a Driv-
ability Map of the environment. The motion planning to the next short-term goal is
done in the Motion Planner module with paths vetted against the Drivability Map.
The trajectory created by the Motion Planner is executed by the Controller module.
Each module is now discussed in detail.

During the Urban Challenge, the Navigator tracked the mission state and devel-
oped a high-level plan to accomplish the mission based on the map (RNDF) and the
mission data (MDF). The primary output was the next short-term goal to provide to
the Motion Planner. As progress was made the short-term goal was moved, like a
carrot in front of a donkey, to achieve the mission. In designing this subsystem, the
aim was to create a resilient planning architecture that ensured that the autonomous
vehicle could respond reasonably and make progress under unforeseen conditions.
To prevent stalled progress, a cascade of events was triggered by a prolonged lack of
progress. For example, after 10 seconds of no progress queuing behind a stationary
vehicle, the Navigator would trigger the passing mode if permitted by the DARPA
rules. In this mode the lane center-line constraint was relaxed, permitting the vehicle

520 L. Fletcher et al.

to pass. The Drivability Map would then carve out the current and oncoming lanes
as drivable. After checking for oncoming traffic, the Navigator would then permit
the vehicle to plan a passing trajectory around the stopped vehicle.

The Obstacle Detector used lidar to identify stationary and moving obstacles.
Instead of attempting to classify obstacles as vehicles, the detector was designed
to avoid vehicle classification using two abstract categories: “static obstacles” and
moving obstacle “tracks”. The output of the Obstacle Detector was a list of static
obstacles, each with a location and size, as well as a list of moving obstacle “tracks”,
each containing position, size and an instantaneous velocity vector. The obstacle
tracker integrated non-ground detections over relatively short periods of time in an
accumulator. In our implementation, the tracker ran at 15Hz (matching the Velodyne
frame rate). At each time step, the collection of accumulated returns were clustered
into spatially nearby “chunks”. These chunks were then matched against the set of
chunks from the previous time step, producing velocity estimates. Over time, the
velocity estimates were fused to provide better estimates. The tracking system was
able to provide velocity estimates with very low latency, increasing the safety of the
system. The reliable detection range (with no false negatives) was about 30m, with
good detections out to about 60m (but with occasional false negatives). The system
was tuned to minimize false positives.

For detecting vehicles, an initial implementation simply classified any object that
was approximately the size of a car, as a car. In cluttered urban scenes this approach
quickly led to many false positives. An alternative approach was developed based
on the clustering and detection of moving objects in the scene. This approach was
much more robust in cluttered environments, however one new issue arose. In par-
ticular circumstances, stationary objects could appear to be moving. This was due
to the changing viewpoint of our vehicle combined with aperture/occlusion effects
of objects in the scene. Due to this effect, a high velocity threshold (3.0m/s in our

(a) (b)

Fig. 11. Sensor fields of view on 20m grid. (a) Our vehicle used a total of seven horizontally
mounted 180o planar lidars with overlapping fields of view. Front and rear lidars have been
drawn separately to make the overlap more obvious. For ground plane rejection two lidars
were required to “see” the same obstacle to register the detection (except in the very near
field). (b) 15 radars with 18o-FOV each were fanned to yield a wide (255o) total field of
view.

The MIT – Cornell Collision and Why It Happened 521

implementation) was used to reduce the frequency at which stationary objects were
reported to be moving. Downstream software was written to accomodate that vehi-
cles could appear as a collection of stationary objects or as moving obstacle tracks.

Vehicles were also detected using the radar-based Fast-Vehicle Detector. The
narrow 18o field of view radars were fanned to provide 255o coverage in front
of the vehicle. The raw radar detections were compensated for vehicle ego-motion
then data association, and position tracking over time was used to distill the raw
returns into a second set of obstacle “tracks”. The instantaneous Doppler velocity
measurement from the radar returns was particularly useful for detecting distant but
fast-approaching vehicles. The information was used explicitly by the Navigator
module to determine when it was safe to enter an intersection, or initiate merging
and passing behaviors. Figure 11 shows the sensor coverage provided by Sick lidar
and radar sensors.

The low-lying Hazard Detector used downward-looking planar lidars mounted
on the roof to assess the drivability of the road ahead and to detect curb cuts. The
module consisted of two parts: a hazard map, and a road-edge detector. The “hazard
map” was designed to detect hazardous road surfaces by discontinuities in the lidar
data that were too small to be detected by the Obstacle Detector. High values in
the hazard map were rendered as high penalty areas in the Drivability Map. The
road-edge detector looked for long strips of hazardous terrain in the hazard map. If
strips of sufficiently long and straight hazardous terrain were detected, some poly
lines were explicitly fitted to these regions and identified as a curb-cut or berm.
These road edges were treated as obstacles: if no road paint was detected, the lane
estimate would widen, and the road-edge obstacles (curbs) would guide the vehicle.

The Lane tracker reconciled RNDF data with lanes detected by vision and lidar.
Two different road paint detectors were developed, each as a separate, stand-alone
process. The first detector used a matched “Top Hat” filter scaled to the projected
ground plane line width. Strong filter responses and the local gradient direction
in the image were then used to fit a series of cubic Hermite splines. The second
road-paint detector fitted lines to image contours bordering bright pixel regions.
Both road-paint detectors produced sets of poly lines describing detected road paint
in the local coordinate frame. A lane centerline estimator combined the curb and
road paint detections to estimate the presence of nearby lanes. The lane centerline
estimator didn’t use the RNDF map to produce its estimates. It relied solely on
detected features. The final stage of the lane tracking system produced the actual
lane estimates by reconciling the RNDF data with the detected lane center lines. The
map data was used to construct an a-priori estimate of the physical lanes of travel.
The map estimates were then matched to the centerline estimates and a minimization
problem was solved to snap the RNDF lanes to the detected lane centerlines.

The Drivability Map was constructed using perceptual data filtered by the cur-
rent constraints specified by the Navigator. This module provided an efficient in-
terface to perceptual data for motion planning. Queries from the Motion Planner
about future routes were validated by the Drivability Map. The Drivability Map con-
sisted of:

522 L. Fletcher et al.

• “Infeasible regions” which were no-go areas due to proximity to obstacles or
just undesirable locations (such as in the path of a moving vehicle or across an
empty field when the road is traversable).

• “High-cost regions” which would be avoided if possible by the motion planning
and

• “Restricted regions” which were regions that could only be entered if the vehicle
were able to stop in an unrestricted area further ahead.

Restricted regions were used to permit minor violations of the lane boundaries if
progress could be made down the road. Restricted regions were also used behind
vehicles to enforce the requisite number of car lengths’ stand-off distance behind a
traffic vehicle. If there was enough room to pass a vehicle without crossing the lane
boundary (for instance if the vehicle was parked on the side of a wide road), then
Talos would traverse the Restricted region and pass the vehicle, continuing to the un-
restricted region in front. If the traffic vehicle blocked the lane, then the vehicle could
not enter the restricted region because there was no unrestricted place to stop. In-
stead, Talos would queue behind the restricted region until the traffic vehicle moved
or a passing maneuver was commenced. No explicit vehicle detection was done.
Instead, moving obstacles were rendered in the Drivability Map with an infeasible
region projected in front of the moving obstacles in proportion to the instantaneous
vehicle velocity. As shown in Figure 12(c), if the moving obstacle was in a lane the
infeasible region was projected along the lane direction. If the moving obstacle was
in a zone (where there was no obvious convention for the intended direction) the
region was projected in the velocity direction only. In an intersection the obstacle
velocity direction was compared with the intersection exits. If a good exit candidate
was found, a second region was projected from the obstacle toward the exit waypoint
as a prediction of the traffic vehicle’s intended route (Shown in Figure 12(d)). The
Motion Planner identified, then optimized, a kino-dynamically feasible vehicle tra-
jectory that would move the robot toward the goal point. The module was based on
the Rapidly exploring Random Tree (RRT) algorithm (Frazzoli et al., 2002), where
the tree of trajectories was grown by sampling numerous configurations randomly.
A sampling-based approach was chosen due to its suitability for planning in many
different driving scenarios. Uncertainty in local situational awareness was handled
through rapid replanning. By design, the motion planner contained a measure of
safety as the leaves on the tree of potential trajectories were always stopping loca-
tions (Figure 12(a)). Shorter trees permitted lower top speeds as the vehicle had to
come to a stop by the end of the trajectory. In this way, if for some reason the se-
lected trajectory from the tree became infeasible, another branch of the tree could be
selected to achieve a controlled stop. The tree of trajectories was grown towards the
goal by adding branches that connected to the randomly sampled points. These were
then checked for feasibility and performance. This module then sendt the current
best vehicle trajectory, specified as an ordered list of waypoints (position, velocity,
headings), to the low-level motion Controller at a rate of 10 Hz.

The Controller was a pure pursuit steering controller paired with a PID speed
controller. It executed the low-level control necessary to track the desired path and
velocity profile from the Motion Planner.

The MIT – Cornell Collision and Why It Happened 523

(a) (b)

(c)

(d)

Fig. 12. (a) RRT Motion planning. Each leaf on the tree represented a stopping location.
(b) Drivability map explanation. White arrow on green background: Short-term goal location.
Red: Infeasible regions were off-limits to the vehicle. Blue: Restricted regions may only
be entered if the vehicle could stop in an unrestricted region further on. White or Gray:
High-cost regions accessible to the vehicle. Dark areas represented low-cost drivable regions.
(c) An infeasible region was projected in the moving obstacle velocity direction down lane
excluding maneuvers into oncoming vehicle. In this case lane constraints were rendered as
[White] High cost instead of [Red] Infeasible due to a recovery mode triggered by the lack of
progress through the intersection). (d) Within an intersection an infeasible region was created
between a moving obstacle and the intersection exit matching the velocity direction.

4 Team Cornell’s ‘Skynet’

Team Cornell’s ‘Skynet,’ shown in Figure 13, is an autonomous 2007 Chevrolet
Tahoe. Skynet was built and developed at Cornell University, primarily by team
members returning with experience from the 2005 DARPA Grand Challenge. The

524 L. Fletcher et al.

Fig. 13. Team Cornell’s ‘Skynet.’

Fig. 14. System architecture of Team Cornell’s Skynet.

team consisted of 12 core members supported by 9 part-time contributors. Experi-
ence levels included professors, doctoral and master’s candidates, undergraduates,
and Cornell alumni.

The high-level system architecture for Team Cornell’s Skynet is shown in
Figure 14 in the form of key system blocks and data flow. These blocks formed

The MIT – Cornell Collision and Why It Happened 525

the multi-layer perception and planning / control solution chosen by Team Cornell
to successfully drive in an urban environment. General descriptions of each of these
blocks are given below. Detailed descriptions of the obstacle detection and track-
ing algorithm and the intelligent planning algorithm, both root causes of Skynet’s
behavior during the Cornell – MIT collision, are given in sections 4.2 and 4.3.

4.1 General System Architecture

Skynet observed the world with two groups of sensors. Skynet’s position, velocity,
and attitude were sensed with raw measurements collected from Global Positioning
System (GPS) receivers, an Inertial Measurement Unit (IMU), and wheel encoders.
These raw measurements were fused in the pose estimator, an Extended Square
Root Information Filter, to produce robust pose estimates in an Earth-fixed coordi-
nate frame. Skynet’s external environment, defined in the Urban Challenge as parked
and moving cars, small and large static obstacles, and attributes of the road itself,
was sensed using a combination of laser rangefinders, radar, and optical cameras.

Skynet used two levels of probabilistic data fusion to understand its external en-
vironment. The Local Map fused laser, radar, and optical data with Skynet’s mo-
tion estimates to initialize, locate, and track static and dynamic obstacles over time.
The Scene Estimator then used the local map’s tracking estimates, pose estimates,
and road cues from processed optical measurements to develop key statistics about
Skynet and nearby obstacles. Two sets of statistics were generated: those concern-
ing Skynet, including location with respect to the road and lane occupancy, and those
concerning other obstacles, including position / velocity, an identification number,
lane occupancy, car likeness, and whether each obstacle was currently occluded
or not.

Planning over DARPA’s Route Network Definition File (RNDF) and Mission
Definition File (MDF) occurred in three layers. The topmost Behavioral Layer
combined the RNDF and MDF with obstacle and position information from the
Scene Estimator to reason about the environment and plan routes to achieve mis-
sion progress. The Behavioral Layer then selected which of four behaviors would
best achieve the goal: road, intersection, zone, or blockage. The selected behavior
was executed in the Tactical Layer, where maneuver-based reasoning and planning
occurred. The Operational Layer, the lowest level of planning, produced a target
path by adjusting an initial coarse path to respect speed, lane, obstacle, and phys-
ical vehicle constraints. Skynet drove the target path by converting it to a series of
desired speeds and curvatures, which were tracked by feedback linearization con-
trollers wrapped around Skynet’s steering wheel, brake, transmission, and throttle
actuators.

4.2 Obstacle Detection and Tracking

Team Cornell’s obstacle detection and tracking system, called the Local Map, fused
the output of all obstacle detection sensors into one vehicle-centric map of Skynet’s
environment. The Local Map fused information from three sensing modalities: laser

526 L. Fletcher et al.

Table 1. Skynet’s obstacle detection sensors

Sensor Location Type Rate FoV Resolution

Ibeo ALASCA XT front bumper left laser 12.5 Hz 150◦ 1◦
front bumper center laser 12.5 Hz 150◦ 1◦
front bumper right laser 12.5 Hz 150◦ 1◦

Sick LMS 291 left back door laser 75 Hz 90◦ 0.5◦
right back door laser 75 Hz 90◦ 0.5◦

Sick LMS 220 back bumper center laser 37.5 Hz 180◦ 1◦

Velodyne HDL-64E roof center laser 15 Hz 360◦ 0.7◦

Delphi FLR front bumper left (2x) radar 10 Hz 15◦ 20 tracks
front bumper center radar 10 Hz 15◦ 20 tracks

front bumper right (2x) radar 10 Hz 15◦ 20 tracks
back bumper left radar 10 Hz 15◦ 20 tracks

back bumper center radar 10 Hz 15◦ 20 tracks
back bumper right radar 10 Hz 15◦ 20 tracks

Unibrain Fire-i 520b back roof center optical 15 Hz 20◦ −30◦ N / A

rangefinders, radars, and optical cameras. Mounting positions are shown in Figure
13. Table 1 summarizes Skynet’s obstacle detection sensors, and Figure 15 gives a
top-down view of Skynet’s sensor coverage. All sensor measurements were fused in
the local map at the object level, with each sensor measurement treated as a measure-
ment of a single object. Skynet’s Delphi radars and MobilEye SeeQ software (run
on Skynet’s rear-facing Unibrain optical camera) fitted easily into this framework,
as their proprietary algorithms transmitted lists of tracked obstacles. Data from the
laser rangefinders was clustered to fit into this object level framework.

The Local Map formulated obstacle detection and tracking as the task of simul-
taneously tracking multiple obstacles and determining which sensor measurements
corresponded to those obstacles (Miller and Campbell, 2007), (Miller et al., 2008).
The problem was cast in the Bayesian framework of estimating a joint probability
density:

p(N (1 : k) ,X (1 : k) |Z (1 : k)) (1)

where N (1 : k) were a set of discrete variables assigning sensor measurements to
tracked obstacles at time indices 1 through k, X (1 : k) were the continuous states
of all obstacles being tracked at time indices 1 through k, and Z (1 : k) were the full
set of sensor measurements at time indices 1 through k. The number of obstacles
being tracked was also implicitly represented in the cardinality of the measurement
assignments and obstacle states, and needed to be estimated by the local map. To do
so, equation 1 was factorized to yield two manageable components:

p(N (1 : k) |Z (1 : k)) · p(X (1 : k) |N (1 : k) ,Z (1 : k)) (2)

The MIT – Cornell Collision and Why It Happened 527

Fig. 15. (left) Laser rangefinder azimuthal coverage diagram for Team Cornell’s Skynet.
(right) Radar azimuthal coverage diagram. Skynet faced right in both coverage diagrams.
A rear-facing optical camera is not shown, nor are two laser rangefinders with vertical scan
planes that detected obstacles immediately to the left and right of Skynet.

where, intuitively, p(N (1 : k) |Z (1 : k)) describes the task of determining the
number of obstacles and assigning measurements to those obstacles, and
p(X (1 : k) |N (1 : k) ,Z (1 : k)) describes the task of tracking a known set of
obstacles with known measurement correspondences. In the local map, these two
densities were estimated separately using a particle filter to make Monte Carlo
measurement assignments and banks of extended Kalman Filters (EKFs) to track ob-
stacles given those assignments (Miller and Campbell, 2007), (Miller et al., 2008).
The obstacles were then broadcast at 10 Hz on Skynet’s data network. A second
layer, called the Track Generator, combined these obstacles with Skynet’s position
estimates to generate high level obstacle metadata for the planner, including a
stable identification number, whether each obstacle was stopped or shaped like a
car, and whether each obstacle occupied any nearby lanes.

4.3 Intelligent Planning

Team Cornell’s intelligent planning system used Skynet’s probabilistic interpreta-
tion of the environment to plan mission paths within the context of the rule-based
road network. The planner’s top level behavioral layer combined offline mission in-
formation with sensed vehicle and environment information to choose a high level
behavioral state given Skynet’s current situation. The middle level tactical layer then
chose contextually appropriate maneuvers based on the selected behavior and the
states of other nearby agents. The low-level operational layer translated these ab-
stract maneuvers into actuator commands, taking into account road constraints and
nearby obstacles. The following sections describe each of the three primary layers
of the planner.

528 L. Fletcher et al.

4.3.1 Behavioral Layer
The Behavioral Layer was the most abstract layer in Team Cornell’s planner. Its job
was to plan the fastest route to the next mission checkpoint, and then to select one
of four high-level behavior states to achieve the planned route. The first part of that
task, route planning, was solved using a modified version of the A* graph search al-
gorithm (Russell and Norvig, 2003), (Ferguson et al., 2004). First, the DARPA road
network was converted from the RNDF format to a graphical hierarchy of segments
(Willemsen et al., 2003). The Behavioral Layer planned routes on this graphical hi-
erarchy using dynamically calculated traversal times as costs for road partitions,
lane changes, turns, and other maneuvers. After planning a route, the Behavioral
Layer selected a high-level behavior state to make progress along the desired path.
Four behavioral states were defined for the Urban Challenge: road, intersection,
zone, and blockage, each deliberately defined as broadly as possible to promote
planner stability. Each of these high-level behaviors executed a corresponding tacti-
cal component that drove Skynet’s actions until the next behavior change.

4.3.2 Tactical Layer
When Skynet transitioned to a new behavior state, a corresponding tactical compo-
nent was executed. All components divided the area surrounding Skynet into regions
and created monitors to detect events that might have influenced Skynet’s actions.
All components also accessed a common list of intelligent agents, whose behavior
was monitored in the planner using estimates from the track generator. Differences
between tactical components lay in the types of region monitors they used and in
the actions they took in response to nearby events.

The first tactical component was the Road Tactical, which controlled Skynet
when it drove down an unblocked road. This component was responsible for main-
taining a desired lane, evaluating possible passing maneuvers, and monitoring
nearby agents. At each planning cycle, the road tactical checked agents in front
of Skynet for speed adjustment, adjacent to Skynet for lane changes, and behind
Skynet for impending collisions and reverse maneuvers (Sukthankar, 1997). Using
these checks, the road tactical selected a desired speed and lane to keep. These were
passed to the operational layer as a reference path.

The second tactical component was the Intersection Tactical, which controlled
Skynet in intersections. This component was responsible for achieving proper inter-
section queuing behavior and safe merging. It accomplished these goals by monitor-
ing agent arrival times and speeds at each intersection entry, maintaining a queue of
agents with precedence over Skynet. When the intersection monitors determined that
Skynet was allowed to proceed, a target speed, goal point, and a polygon defining
the intersection were passed along to the operational layer as a reference path.

The third tactical component was the Zone Tactical, which controlled Skynet af-
ter it entered a zone. This component was responsible for basic navigation in uncon-
strained zones, including obstacle avoidance and alignment for parking maneuvers.
The zone tactical planned over a human-annotated graph drawn on the zone dur-
ing RNDF preprocessing. The graph imposed wide artificial lanes and directions of
travel onto portions of the zone, allowing Skynet to treat zones as if they were roads.

The MIT – Cornell Collision and Why It Happened 529

The zone tactical generated the same type of local lane geometry information as the
road tactical to send to the operational layer as a reference path.

The final tactical component was the Blockage Tactical, which controlled Skynet
when obstacles blocked forward progress on the current route. This component was
responsible for detecting and recovering from road blocks to ensure continued mis-
sion progress. Team Cornell’s blockage detection and recovery relied on the Op-
erational Layer’s constrained nonlinear optimization strategy, described in section
4.3.3, to detect the location of the blockage and any possible paths through it. Af-
ter initial blockage detection, the blockage tactical component proceeded through
an escalation scheme to attempt recovery. First, the blockage was confirmed over
multiple planning cycles to ensure that it was not a short-lived tracking error. Sec-
ond, a reverse or reroute maneuver was executed to find an alternate route on the
RNDF, if one were available. If no alternate route existed, Skynet reset the local
map and scene estimator to remove long-lived mistakes in obstacle detection. If this
step failed, planning constraints were relaxed: first the admissible lane boundaries
were widened, then obstacles were progressively ignored in order of increasing size.
Skynet’s recovery process escalated over several minutes in a gradual attempt to re-
turn to normal driving.

4.3.3 Operational Layer
The Operational Layer converted the Tactical Layer’s reference path and speed
into steering, transmission, throttle, and brake commands to drive Skynet along
the desired path while avoiding obstacles. To accomplish this task, the Opera-
tional Layer first processed each obstacle into a planar convex hull. The obstacles
were then intersected with lane boundaries to form a vehicle-fixed occupancy grid
(Martin and Moravec, 1996). The A* search algorithm was used to plan an initial
path through the free portion of the occupancy grid (Russell and Norvig, 2003). This
initial path was then used to seed a nonlinear trajectory optimization algorithm for
path smoothing.

Skynet’s nonlinear trajectory optimization algorithm attempted to smooth the ini-
tial path to one that was physically drivable, subject to actuator constraints and ob-
stacle avoidance. The algorithm discretized the initial path into a set of n equally
spaced base points pi, i ∈ {1,n}. A set of n unit-length ‘search vectors’ ui, i ∈ {1,n}
perpendicular to the base path are also created, one for each base point. The tra-
jectory optimizer then attempted to find a set of achievable smoothed path points
zi = pi + wi · ui, i ∈ {1,n} by adjusting search weights wi, i ∈ {1,n}. Target veloc-
ities vi, i ∈ {1,n} were also considered for each point, as well as a set of variables
ql

i and qr
i , i ∈ {1,n} indicating the distance by which each smoothed path point zi

violated desired spacings on the left and right of Skynet created from the list of
polygonal obstacles. Search weights, velocities, and final obstacle spacings were
chosen to minimize the cost function J:

J
(

wi,vi,q
l
i,q

r
i

)
= αc

n−1

∑
i=2

c2
i + αd

n−2

∑
i=2

(ci+1− ci)2 + αw

n

∑
i=1

(
wi−wt

i

)2

530 L. Fletcher et al.

+ αq

n

∑
i=1

(
ql

i + qr
i

)
+ αa

n−1

∑
i=1

a2
i −αv

n

∑
i=1

vi

where αc, αd , αw, αq, αa, and αv are tuning weights, ci is the approximated cur-
vature at the ith path point, wt

i is the target search weight at the ith path point, and
ai is the approximated forward vehicle acceleration at the ith path point. This cost
function is optimized subject to a set of 6 rigid path constraints:

1. Each search weight wi cannot push the smoothed path outside the boundary
polygon supplied by the tactical layer.

2. Each obstacle spacing variable ql
i and qr

i cannot exceed any obstacle’s minimum
spacing requirement.

3. Curvature at each path point cannot exceed Skynet’s maximum turning curva-
ture.

4. Total forward and lateral vehicle acceleration at each path point cannot exceed
assigned limits.

5. Each search weight wi and set of slack variables ql
i and qr

i must never bring
Skynet closer to any obstacle than its minimum allowed spacing.

6. The difference between consecutive path weights wi and wi+1 must not exceed
a minimum and maximum.

Additional constraints on initial and final path heading were also occasionally in-
cluded to restrict the smoothed path to a particular end orientation, such as remain-
ing parallel to a lane or a parking spot.

The constrained optimization problem is solved using LOQO, an off-the-shelf
nonlinear non-convex optimization library. Two optimization passes were made
through each base path to reach a final smoothed path. The first step of the smoothed
path was then handed to two independent low-level tracking controllers, one for
desired speed and one for desired curvature. The optimization was restarted from
scratch at each planning cycle, and was run at 10 Hz.

(a) (b)

Fig. 16. (a) Diagram of the incident. (b) The collision took place while the vehicles traversed
the intersection from waypoint (6.4.7) to (3.1.2).

The MIT – Cornell Collision and Why It Happened 531

5 The Collision

Undoubtedly the most observed incident between robots during the Urban Chal-
lenge was the low-speed collision of Talos with Skynet. The location of the incident
and a diagram of the accident progression are shown in Figure 16.

The collision between Skynet and Talos occurred during the second mission for
both teams. Both vehicles had driven down Washington Boulevard and were at-
tempting to merge on to Main Circuit to complete their latest sub-mission. Skynet
drove down George Boulevard and was the first to arrive at the intersection. The
vehicle paused, moved forward on to Main Circuit (around two car lengths), and
then came to a stop. It backed up about three car lengths, stopped, drove forward a
car length, stopped again before finally moving forward just as Talos was approach-
ing Main Circuit. Talos was behind Skynet and Skynet’s chase vehicle on approach
to the intersection. Talos then passed the queuing Skynet chase vehicle on the left.
Talos then stopped beside the chase vehicle while Skynet was backing up back over
the stop line. When Skynet moved forward again, Talos drove up and came to a stop
at the stop line of the intersection. Talos then drove out to the left of Skynet as if to
pass. Talos was along side Skynet in what was looking to be a successful passing
maneuver, when Talos turned right, pulling close in front of Skynet, which was now
moving forward.

Next, in Sections 6 and 7, we will branch off and look at the collision from inside
the Skynet and Talos software.

6 The Collision from Inside Skynet

UCE spectators characterized Skynet as having three erratic maneuvers in the sec-
onds leading up to its collision with Talos. First, Skynet stuttered through its turn
into the south entrance of the traffic circle, coming to several abrupt stops. Sec-
ond, Skynet drove backward after its second stop, returning almost fully to the stop
line from which it had just departed. Finally, Skynet stuttered through the turn once
again, ignoring Talos as it approached from behind, around to Skynet’s driver side,
and finally into a collision near Skynet’s front left headlight. Sections 6.1, 6.2, and
6.3 describe, from a systems-level perspective, the sequence of events causing each
erratic maneuver.

6.1 Stuttering through the Turn

Although it did not directly cause the collision, Skynet’s stuttering through its turn
into the traffic circle was one of the first erratic behaviors to contribute to the
collision. At its core, Skynet’s stuttering was caused by a complex interaction be-
tween the geometry of the UCE course and its GPS waypoints near the turn, the
probabilistic obstacle detection system discussed in section 4.2, and the constraint-
based planner discussed in section 4.3.3. First, Team Cornell defined initial lane
boundaries by growing polygonal admissible driving regions from the GPS way-
points defining the UCE course. This piecewise-linear interpretation of the lane

532 L. Fletcher et al.

worked best when the lane was straight or had shallow curves: sharp turns could
yield polygons that excluded significant portions of the lane. The turn at the south-
ern entrance to the traffic circle suffered from this problem acutely, as the turn was
closely bounded on the right by concrete barriers and a spectator area. Figure 17
shows that these concrete barriers occupied a large region of the lane polygon im-
plied by the DARPA waypoints. The resulting crowded lane polygon made the turn
difficult: Skynet’s constraint-based Operational Layer, described in section 4.3.3,
would not generate paths that drive outside the lane polygon. With space already
constrained by Skynet’s internal lane polygon, small errors in absolute position or
obstacle estimates could make the path appear infeasible.

Path infeasibility caused by these types of errors resulted in Skynet’s stuttering
through the south entrance to the traffic circle. At the time leading up to the colli-
sion, small variations in clusters of laser rangefinder returns and Monte Carlo mea-
surement assignments in the local map caused Skynet’s path constraints to change
slightly from one planning cycle to the next. In several cases, such as the one shown
in Figure 18, the constraints changed to make Skynet’s current path infeasible. At
that point Skynet hit the brakes, as the Operational Layer was unable to find a feasi-
ble path along which it could make forward progress.

In most cases, variations in the shapes of obstacle clusters and Monte Carlo
measurement assignments, like the one shown in Figure 18, cleared in one or two
planning cycles: for these, Skynet tapped the brakes before recovering to its normal
driving mode. These brake taps were generally isolated, but were more deleterious
near the traffic circle for two reasons. First, the implied lane polygons forced Skynet
to drive close to the concrete barriers, making it more likely for small mistakes to
result in path infeasibility. Second, Skynet’s close proximity to the concrete barriers
actually made clustering and local map mistakes more likely: Ibeo laser rangefind-
ers and Delphi radars tended to produce more false detections when within 1.5 m of

Fig. 17. (left) The lane polygon implied by piecewise-linear interpolation of DARPA way-
points in the turn near the south entrance to the traffic circle. Obstacle constraints from nearby
concrete barriers occupied a significant portion of the lane polygon. (right) Skynet camera
view of the concrete barriers generating the constraints.

The MIT – Cornell Collision and Why It Happened 533

an obstacle. The interaction of these factors produced the stuttering behavior, which
happened several times at that corner during the UCE.

6.2 Reversing toward the Stop Line

Occasionally, variations in obstacle clusters and poor Monte Carlo measurement
assignments in the local map were more persistent: in these cases phantom obsta-
cles may appear in the lane, blocking forward progress for several seconds. In these
failures the local map typically did not have enough supporting sensor evidence to
delete the phantom obstacle immediately, and allowed it to persist until that evi-
dence was accumulated. When this happened, Skynet considered the path blocked
and executed the blockage recovery tactical component to deal with the situation.
Blockage recovery was activated 10 times over the 6 hours of the UCE.

One of the 10 blockage recovery executions occurred immediately prior to
Skynet’s collision with Talos. In this scenario, a measurement assignment mis-
take caused a phantom obstacle to appear part-way into Skynet’s lane. The phan-
tom obstacle, shown in Figure 19, caused Skynet to execute an emergency brak-
ing maneuver. The phantom obstacle was deleted after approximately 2 seconds,
but the adjustments to the Operational Layer’s constraints persisted long enough
for the Operational Layer to declare the path infeasible and the lane blocked. The
mistake sent Skynet into blockage recovery. In blockage recovery, the Operational
Layer recommended the Tactical Layer reverse to reposition itself for the turn. The

Fig. 18. Small variations in Skynet’s perception of a concrete barrier cause its planned path
to become infeasible.

534 L. Fletcher et al.

Tactical Layer accepted the recommendation, and Skynet reversed one vehicle length
to reposition itself.

6.3 Ignoring Talos

After the reverse maneuver described in section 6.2, Skynet still had not completed
the turn necessary to continue with its mission. The planner therefore remained in
its blockage recovery state, though recommendation and completion of the reverse
maneuver left it in an escalated state of blockage recovery. In this state the Tactical
Layer and Operational Layer once again evaluated the turn into the traffic circle, this
time ignoring small obstacles according to the blockage recovery protocol described
in section 4.3.2. The Operational Layer decided the turn was feasible, and resumed
forward progress. Although the Local Map produced no more phantom obstacles for
the duration of the turn, small errors in laser rangefinder returns once again forced
the Operational Layer to conclude that the path was infeasible. At this point, the Tac-
tical Layer escalated to its highest state of blockage recovery, removing constraints
associated with lane boundaries. Figure 20 shows this escalation from Skynet’s nor-
mal turn behavior to its decision to ignore lane boundaries.

Unfortunately, Skynet still perceived its goal state as unreachable due to the
nearby concrete barriers. At the highest level of blockage recovery, however, Skynet
was deliberately forbidden to execute a second reverse maneuver to prevent an in-
finite planer loop. Instead, it started a timer to wait for the error to correct itself, or

Fig. 19. A measurement assignment mistake causes a phantom obstacle to appear, momen-
tarily blocking Skynet’s path.

The MIT – Cornell Collision and Why It Happened 535

Fig. 20. (left) Skynet resumed its turn after a reverse maneuver. (right) Perceiving the turn
infeasible a second time, Skynet dropped constraints associated with lane boundaries.

Fig. 21. Skynet ignored Talos as it drove outside Skynet’s polygonal lane boundary.

barring forward progress for several minutes, to reset the local map and eventually
the planner itself. Neither of these soft resets would be realized, however, as Talos
was already weaving its way behind as Skynet started its timer.

While Talos passed behind and then to the left of Skynet, the Operational Layer
continued to believe the forward path infeasible. Coincidentally, just as Talos pulled
out to pass Skynet on the left, a slight variation in the obstacle clustering and

536 L. Fletcher et al.

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

Mission Time (sec + 24,503.8sec.)

S
pe

ed
 (

m
/s

)

Skynet
Talos

time of collision

0 0.5 1 1.5
50

55

60

65

70

75

80

85

90

95

100

Mission Time (sec + 24,503.8sec.)

H
ea

di
ng

 (
C

C
W

 E
as

t,
de

g.
)

Skynet
Talos

time of collision

Fig. 22. From Skynet logs: Speed (left) and heading (right) for both Skynet and Talos just
before and after collision. Flat line in Talos’ plot indicates where Skynet stopped tracking
Talos.

measurement assignments accumulated enough evidence in the local map to per-
ceive the path as feasible. With the path momentarily feasible, Skynet began to drive
forward as Talos passed on its left. Here Skynet’s Tactical Layer ignored Talos, be-
cause Talos drove outside the piecewise-linear polygonal lane boundary, as shown
in Figure 21. Skynet’s Operational Layer also ignored Talos, as Talos did not con-
strain the target path in front of Skynet in any way. Once Talos passed to Skynet’s left,
Talos was no longer detected as a moving obstacle; Skynet’s sideways-facing Sick
LMS-291s were mounted with a vertical scan plane and provided only weak posi-
tion information and no velocity information. The Local Map began tracking Talos
as a moving obstacle only 1 second before the collision, when it entered into view
of Skynet’s forward-mounted Ibeo ALASCA XTs. Unfortunately, with concrete bar-
riers on Skynet’s right and Talos approaching on its left, no evasive maneuver was
available. At that point, given the preceding chain of events, the collision was in-
evitable.

Figure 22 shows the speed and heading, as estimated on Skynet, for both the
Skynet and Talos vehicles. Approximately 0.5 sec before collision, the speed and
heading estimates for Talos remain constant, which is the time that they are stopped
being tracked. Skynet did not change its heading or velocity before the collision,
indicating that no adjustments were made to the Talos movements. Finally, after
impact, there was a fast change in Skynet’s heading, indicating the collision, and its
velocity decreases quickly to zero soon after.

7 The Collision from Inside Talos

The incident from the Talos’ viewpoint is shown in Figures 23, 24 and 25. Figure 23
shows that earlier along George Boulevard, the road was dual-lane. Talos was going
faster along the straight road than the Skynet chase vehicle, so Talos passed to the
left of the chase vehicle (Figure 23(a)). At the end of Washington Boulevard, the
road merged (via cones on the left) into a single lane on the right. Talos did not have
room to merge right in front of the chase vehicle, so Talos slowed to a stop while the

The MIT – Cornell Collision and Why It Happened 537

(a)

(b)

(c)

Fig. 23. Talos’ view of the lead-up to the Skynet-Talos incident. (a) Talos started to pass
Skynet’s chase vehicle. (b) Talos was forced to slow down and merge behind the Skynet chase
vehicle. (c) Talos queued behind the Skynet chase vehicle.

Skynet chase vehicle moved ahead. When space was available, Talos merged behind
the Skynet chase vehicle (Figure 23(b)). Skynet and the chase vehicle then come to
a stop at the intersection (Figure 23(c)).

In Figure 24 we see that at first, Talos stopped behind the chase vehicle. However,
the lane width was sufficient that Talos soon found a path to the left of the chase
vehicle (Figure 24(a)). In this case Talos was not in a passing mode; it had simply
found room on the left-hand side of the current lane to squeeze past the DARPA
chase vehicle.

7.1 Wide Lane Bug

The lane was significantly wider to the left because of a Drivability Map construc-
tion bug. As described in Section 3, lanes were carved out of the lane-cost map

538 L. Fletcher et al.

(a)

(b)

(c)

(d)

Fig. 24. Lead-up to the Skynet-Talos incident. (a) Talos found a route around the chase vehi-
cle. (b) Skynet backed up onto Talos’ goal position, Talos braked. (c) Skynet advanced again.
Talos passed the chase vehicle. (d) Talos yielded at the intersection. There were no moving
vehicles nearby, so it proceeded.

like valleys through a plateau. Adjacent lanes carved out often caused small islands
remaining between the valleys. These islands were addressed by explicitly plan-
ing down the region between adjacent lanes. This strategy worked well in general,

The MIT – Cornell Collision and Why It Happened 539

however in this case the road merged down to one lane shortly before the inter-
section. The adjacent lane was not rendered after the merge, which was correct.
However, the planing operation was done all the way along the right lane past the
merge point. The effect of the planing alone made the road 3 meters wider on the
left than it would otherwise have been. Without the extra width, Talos would have
been forced to queue behind the DARPA chase vehicle.

7.2 At the Intersection

Figures 24(b) & (c) show how Talos pulled out and drove around to the left of the
chase vehicle. The robot had a motion plan which was attempting to reach a goal
point on the stop line of the intersection. Talos was beside the chase vehicle when
Skynet backed up and occupied Talos’ goal position. Talos came to a stop, unable

(a)

(b)

(c)

Fig. 25. Skynet-Talos incident. (a) Talos planned a route around Skynet, which appeared as a
static object. (b) While Talos was passing, Skynet began to move. (c) While applying emer-
gency braking, Talos turned into Skynet.

540 L. Fletcher et al.

to drive through the restricted region to get to the goal. In the visualization, Skynet
did not have a restricted region in front and behind the vehicle. This was because
Skynet was within the intersection. Obstacles detected inside the intersection did not
have restricted regions because the heuristic was that obstacles inside intersections
were things like sign posts, traffic islands and encroaching trees. Skynet then moved
forward again, making Talos’ goal position clear. Talos drove to the stop line. Al-
though now adjacent to Skynet’s chase vehicle, Talos wasn’t in a failsafe mode. The
artificially widened lane permitted Talos to drive up to the intersection as it would a
passing parked car or any other object on the side of the road not blocking the path.
At the intersection Talos followed the standard procedure of giving precedence to
obstacle/vehicles approaching on the left. There were no moving or static obsta-
cles in the intersection to the left of Talos on Main Circuit, so the software moved
the short-term goal point to the exit of the intersection (waypoint 3.1.2) and Talos
proceeded.

7.3 The Collision

Finally, Figures 24(d) and 25(a) show that Talos planned a path out to the left
through a region that had a low cost by avoiding Skynet (which Talos perceived
as a static obstacle). Talos’ goal point moved further down Main Circuit, requiring
the robot to find a trajectory that would have an approach angle to the lane shallow
enough to drive within the lane boundaries of Main Circuit. Talos was now inside the
intersection bounding box. Talos planned a path around the “Skynet static object”
and down Main Circuit within the lane boundaries. The path was close to Skynet so
the route had a high cost but was physically feasible. Talos drove between Skynet
(on the right) and the lane boundary constraint (on the left). Talos then pulled to the
right so that it could make the required approach angle to enter the lane. Had Skynet
remained stationary at this point Talos would have completed the passing maneuver
successfully. In Figure 25(b), we can see that Skynet starts moving forward. Had
Skynet been moving faster (i.e., > 3m/s instead of 1.5m/s), a moving obstacle track
would have been initiated in the Talos software and a “no-go” region would have
been extruded in front of the vehicle. This region would have caused Talos to yield
to Skynet (similar to what occurred with Odin and Talos in Section 2.5). Instead
Talos turned to the right to get the correct approach angle to drive down the lane;
Skynet moved forward; the robots collided (Figure 25(c)).

7.4 Clusters of Static Objects

Talos perceived Skynet as a cluster of static objects. The positions of the static ob-
jects evolved over time. This may sound strange, however it is not uncommon for
a cluster of static obstacles to change shape as the ego-vehicle position moves. It
could be due, for instance, to more of an object becoming visible to the sensors.
For example, the extent of the concrete barrier detected on the right of Talos in
Figures 23(a),(b)& (c) varied due to sensor range and aspect in relation to the ego-
vehicle. Because the software treated Skynet as a collection of static objects instead

The MIT – Cornell Collision and Why It Happened 541

Fig. 26. Talos’ speed, wheel angle and pedal gas and brake positions during the collision.
Time 0.0 is the initial collision. Motion Planner E-Stop was at −550msec. DARPA Pause at
−400msec. The vehicle came to rest after 750msec.

of a moving obstacle no forward prediction was made on Skynet’s motion. Talos
was driving between a lane constraint on the left and a collection of static objects
on the right. If Skynet had not moved Talos would have negotiated the gap just as
it had to avoid K-rails and other static objects adjacent to the lanes throughout the
day. Instead, unexpectedly for Talos, Skynet moved forward into the planned path
of Talos. Without a forward-motion prediction of Skynet, by the time Skynet was in
Talos’ path, Talos was unable to come to a stop before colliding.

Figure 26 shows the vehicle state during the collision. Talos had straightened its
wheels to around 9o to the right and was traveling around 2m/s. The vehicle de-
tected that the motion planning tree had been severed 550msec before the collision.
It was replanning and no evasive maneuver was performed yet. 150msec later the
vehicle was coasting and DARPA Paused the vehicle. At the collision Talos was
moving at 1.5m/s, dropping to zero 750msec after the initial collision. In the log
visualization Talos was pushed slightly forward and to the left of its heading by the
impact (about 0.3m).

The contributing factors of Talos’ behavior can be decomposed as: the inability to
track slow-moving objects, the use of a moving-obstacle model versus explicit vehi-
cle classification and the dominant influence of lane constraints on motion planning
& emergency path diversity. The other contributing factor, the Drivability Map ren-
dering bug which widened the lane to allow Talos to attempt to drive around instead
of queue, is a test-coverage issue and holds little to analyze further.

7.5 Inability to Track Slow-Moving Objects

At the lowest layer, all objects tracked by the obstacle detection system had a veloc-
ity component. However, both sensor noise and changing viewpoint geometry can
masquerade as small velocities, making it difficult to reliably determine whether an
object is actually moving. The problem of changing viewpoint is especially prob-
lematic. If Talos is moving, the visible portion of other obstacles can change; the
“motion” of the visible portion of the obstacle is difficult to distinguish from an
obstacle that is actually moving.

542 L. Fletcher et al.

Fig. 27. (a) Illustration of lidar aperture problem. The building on right generates a lidar
return indistinguishable from the fast-approaching vehicle on the left. (b) Walls entering the
White Zone generate phantom moving obstacles from building lidar returns.

Apertures between the sensor and the obstacle present addition complications.
Figure 27 shows an example in which a small near-field aperture resulted in a hallu-
cinated car. In this case, only a small patch of wall was visible through the aperture:
as Talos moved, an object appeared to be moving in the opposite direction on the
other side of the aperture. Several groups have attempted to counter this problem
using algorithms to determine the shadowing of distant objects by near-field re-
turns (Thrun et al., 2006). However, with more complex sensor characteristics such
as the 64 laser Velodyne sensor, and more complex scene geometries for urban en-
vironments, these techniques become difficult to compute. A flat obstacle occlusion
map is no longer sufficient since obstacle height must be considered.

7.6 Moving Obstacles versus Explicit Vehicle Classification

As described in Section 3, the MIT vehicle did not explicitly detect vehicles. In-
stead, objects in the scene were classified either as static or moving obstacles.
Moving obstacles were rendered with exclusion regions in the direction of travel
along the lane. The decision to use moving obstacles was taken to avoid the lim-
itations of attempting to classify the sensing data into “vehicle” or “non-vehicle”
classes. The integrated system was fragile however as classification errors or outages
caused failures in down stream modules blindly relying on the classifications and
their persistence over time. Up until and including the MIT site visit in June 2007,
the software did attempt to classify vehicles based on size and lane proximity. During
one mission lane precedence failed due to sensor noise, causing a vehicle to be lost
momentarily and then reacquired. The reacquired vehicle had a different ID number,

The MIT – Cornell Collision and Why It Happened 543

making it appear as a new arrival to the intersection, so Talos incorrectly went next.
In reaction to this failure mode, Team MIT migrated to use the concept of static and
moving obstacles. The rationale for this was that sensor data classification schemes,
by requiring a choice to be made, introduced the potential for false positive and
false negative classifications. Much care could be taken in reducing the likelihood
of mis-classifications, however classification errors could almost always still occur.
Developers have often designed down-stream applications to be over-confident in
the classes assigned to objects. Avoiding the assignment of “vehicle”/“non-vehicle”
classes to detected objects was an attempt to cut down assumptions made by the
down-stream applications interpreting the detected obstacle data. The assumptions
were made in relation to the strict definition of “static” and “moving” obstacles in-
stead. On the whole this approach scaled well with the additional complexity of
the final race. The apparent gap was in the correct treatment of active yet stationary
vehicles. The posture of Skynet was not very different from the stationary cars parked
in the Gauntlet of Area B during the qualifiers.

7.7 Lane Constraints and Emergency Path Diversity

In the nominal situation, the tree of trajectories ended in stopped states, so that
Talos always knew how to come to a safe stop. When Talos was moving and the
planner could not find any feasible safe path from the current configuration (possibly
due to a change in the perceived environment caused by sensing noise or dynamic
obstacles that changed the constraints) the planner generated a emergency braking
plan. This emergency plan consisted of the steering profile of the last feasible path
and a speed profile with the maximum allowable deceleration. Before the collision
(Figure 25(b)), the tree of trajectories was going towards the target further down the
road. When the gap between the left lane boundary and Skynet was narrowed as the
Skynet moved forward, no feasible plan was found that stopped Talos safely.When
no feasible solution is found, a better approach would be to prioritize the constraints.
In an emergency situation, satisfying lane constraints is not as important as avoiding
a collision. Therefore, when generating an emergency plan, the planner could soften
the lane constraints (still using a relatively high cost) and focus on ensuring collision
avoidance with the maximum possible braking.

8 Discussion

Neither vehicle drove in a manner “sensible” to a human driver. On a day of fine
weather and good visibility Skynet backed up in a clear intersection and started
to accelerate when another vehicle was closing in. Talos passed a vehicle instead of
queuing in a single-lane approach, then pulled in much too close to an active vehicle
in an intersection.

To summarize, contributing factors identified in the two vehicles’ software were:

• Talos’ lane-rendering bug permitting Talos to pass the DARPA chase vehicle
• Talos’ inability to track slow-moving objects

544 L. Fletcher et al.

• Skynet’s sensor data associations inducing phantom objects
• Talos’ failure to anticipate potential motion of an active stationary vehicle
• Skynet’s failure to accommodate the motion of an adjacent vehicle in an inter-

section
• Talos’ overly constrainted motion due to target lane constraints
• Skynet’s lane representation narrowing the drivable corridor

Apart from the lane-rendering problem, these factors were more than just bugs: they
reflected hard trade-offs in road environment perception and motion planning.

8.1 Sensor Data Clustering

Skynet’s phantom obstacles and Talos’ inability to track slow-moving objects rep-
resent the downsides of two different approaches to address the same problem of
sensor data clustering. Team Cornell chose to estimate the joint probability den-
sity across obstacles using Monte Carlo measurement assignments to associate sen-
sor data with objects (Section 4.2). The consequence was that sometimes the as-
sociations would be wrong, creating false positives. Team MIT found lidar data
clustering too noisy to use for static objects. Instead, relying on its sensor-rich
vehicle, the accumulator array with a high entropy presented static objects to mo-
tion planning directly. Once the velocity signal was sufficiently strong the clustered
features robustly tracked moving objects. A high threshold was set before moving
obstacle tracks were reported to suppress false positives. The consequence was that
until the threshold was passed, there was no motion prediction for slow moving
objects.

8.2 Implicit and Explicit Vehicle Detection

The treatment of vehicles in the road environment must extend past the physics-
based justification of obstacle avoidance due to closing rate. For example, humans
prefer never to drive into the longitudinal path of an occupied vehicle, even if it is
stationary. In Section 2 we mentioned how the DARPA chase vehicle driver pre-
ferred to drive on the curb than in front of the Paused Skynet vehicle.

Many teams in the contest performed implicit vehicle detection using the
object position in the lane and size to identify vehicles(Leonard et al., 2008;
Miller et al., 2008; Stanford Racing Team, 2007). Moving objects detected with
lidar or using radar Doppler velocity were also often assumed to be vehicles. To
prevent identified vehicles being lost, several teams had a “was moving” flag asso-
ciated with stationary tracked objects, such as queuing vehicles, that had once been
observed moving(Tartan Racing, 2007). It is not difficult to imagine a case where
a vehicle would not have been observed moving and the vehicle size and position
rules of thumb would fail. Some teams also used explicit vehicle detectors such as
the Mobileye SeeQ system. However, explicit vehicle detectors struggle to detect all
vehicles presented at all aspects. The reconciliation of the two approaches – explicit

The MIT – Cornell Collision and Why It Happened 545

(a) (b)

Fig. 28. Results of explicit vehicle detection in the collision. (a) DARPA chase vehicle de-
tected. (b) Last frame: Skynet is detected. Trees and clutter in the background also generate
false positives during the sequence. In the intersection there are no lane markings so lane
estimate confidence cannot be used to exclude the false detections.

vehicle detection/classification and the location/moving-obstacle approach – seems
a promising solution.

Figure 28 shows the result of explicit vehicle detection run on Talos’ logged
data. Both the Skynet and the DARPA chase vehicle are detected, though only in
a fraction of the frames in the sequence. There were also a number of false detec-
tions that would need to be handled. Explicit vehicle detection could have possibly
bootstrapped Talos’ data association and tracking, permitting standoff regions to
be placed in front and behind Skynet. There still was an apparent gap in the cor-
rect treatment of active yet stationary vehicles. The posture of Skynet was not very
different from the stationary cars parked along the side of a road (such as in “the
Gauntlet” of Area B during the national qualifying event). Even with perfect vehi-
cle detection, sensor data and modelling can only recover the current vehicle trajec-
tory. Non-linear motions like the stop-start behaviors require conservative exclusion
regions or an additional data source.

8.3 Communicating Intent

Drivers on the road constantly anticipate the potential actions of fellow drivers. For
close maneuvering in car parks and intersections, for example, eye contact is made
to ensure a shared understanding. In a debriefing after the contest, DARPA stated
that traffic vehicle drivers, unnerved by being unable to make eye-contact with the
robots, had resorted to watching the front wheels of the robots for an indication
of their intent. As inter-vehicle communication becomes ubiquitous, autonomous
vehicles will be able to transmit their intent to neighboring vehicles to implement
the level of coordination beyond what human drivers currently achieve using eye-
contact. This would not help in uncollaborative environments such as defense. There
are also many issues such as how to handle incomplete market penetration of the
communications system or inaccurate data from equipped vehicles. However, a sys-
tem where very conservative assumptions regarding other vehicle behavior can be

546 L. Fletcher et al.

refined using the intent of other vehicles, where available, seems a reachable objec-
tive. We look forward to these synchronized robot vehicle interactions.

8.4 Placing Lane Constraints in Context

Leading up to the collision both Talos and Skynet substantially constrained their be-
havior based on the lane boundaries, even though the physical world was substan-
tially more open. Skynet lingered in the intersection because the lane was narrowed
due to an interaction between the lane modeling and the intersection geometry. Then
the vehicles collided due to a funneling effect induced by both vehicles attempting
to get the optimum approach into the outgoing lane. The vehicles were tuned to get
inside the lane constraints quickly; this behavior was tuned for cases such as the
Area A test during the national qualifying event, in which the vehicles needed to
merge into their travel lane quickly to avoid oncoming traffic. In test Area A, the
robots needed to drive assertively to get into the travel lane to avoid the heavy traf-
fic and concrete barriers lining the course. In the collision scenario, however, the
road was one-way, so the imperative to avoid oncoming traffic did not exist. The
imperative to meet the lane constraints remained. For future urban vehicles, in ad-
dition to perception, strong cues for behavior tuning are likely to come from digital
map data. Meta data in digital maps is likely to include not only the lane position
and number of lanes but also shoulder drivability, proximity to oncoming traffic and
partition type. This a-priori information vetted against perception could then be used
to weigh up the imperative to maximize clearance from detected obstacles with the
preference to be within the lane boundaries. A key question is how the quality of
this map data will be lifted to a level of assured accuracy which is sound enough to
base life-critical motion planning decisions on.

9 Conclusion

The fact that the robots, despite the crash, negotiated many similarly complex sit-
uations successfully and completed the race after 6 hours of driving implied that
the circumstances leading to the collision were the product of confounding assump-
tions across the two vehicles. Investigating the collision, we have found that bugs,
the algorithms in the two vehicles architectures as well as unfortunate features of
the road leading up to the intersection and the intersection topology all contributed
to the collision.

Despite separate development of the two vehicle architectures, common issues
can be identified. These issues reveal hard cases that extend beyond a particular
software bug, vehicle design or obstacle detection algorithm. They reflect complex
trade-offs and challenges: (1) Sensor data association in the face of scene com-
plexity, noise and sensing “aperture” problems. (2) The importance of the human
ability to anticipate the expected behavior of other road users. This requires an es-
timation of intent beyond the observable physics. Inter-vehicle communication has
a good chance of surpassing driver eye-contact communication of intent, which is

The MIT – Cornell Collision and Why It Happened 547

often used to mitigate low-speed collisions. However, incomplete system penetra-
tion and denial of service for defense applications are significant impediments. (3)
The competing trade-offs of conforming to lane boundary constraints (crucial for
avoiding escalating problems with oncoming traffic) verses conservative obstacle
avoidance in an online algorithm. Map data and meta data in maps about on-coming
traffic and road shoulder drivability would be an invaluable data source for this equa-
tion. However, map data would need to be accurate enough to support safety-critical
decisions.

Multimedia Appendices

Talos’ race logs, log visualization software as well as videos of the incidents made
from the logs are available at: http://grandchallenge.mit.edu/public/

Acknowledgments

The authors would like to thank all the members of their respective teams namely
from Team MIT: Mitch Berger, Stefan Campbell, Gaston Fiore, Emilio Frazzoli, Al-
bert Huang, Sertac Karaman, Olivier Koch, Steve Peters, Justin Teo, Robert Truax,
Matthew Walter, David Barrett, Alexander Epstein, Keoni Maheloni, Katy Moyer,
Troy Jones, Ryan Buckley, Matthew Antone, Robert Galejs, Siddhartha Krishna-
murthy, and Jonathan Williams. From Team Cornell: Jason Catlin, Filip Chelarescu,
Ephrahim Garcia, Hikaru Fujishima, Mike Kurdziel, Sergei Lupashin, Pete Moran,
Daniel Pollack, Mark Psiaki, Max Rietmann, Brian Schimpf, Bart Selman, Adam
Shapiro, Philipp Unterbrunner, Jason Wong, and Noah Zych.

In addition, the authors would like to thank Jim McBride (IVS), Matt Rupp (IVS)
and Daniel Lee (Ben Franklin) who helped provide information for the events de-
scribed in this paper.

The MIT team gratefully acknowledges the sponsorship of: MIT School of En-
gineering, MIT Computer Science and Artificial Intelligence Laboratory (CSAIL),
MIT Department of Aeronautics and Astronautics, MIT Department of Electrical
Engineering and Computer Science, MIT Department of Mechanical Engineering,
The C. S. Draper Laboratory, Franklin W. Olin College of Engineering, The Ford-
MIT Alliance, Land Rover, Quanta Computer Inc., BAE Systems, MIT Lincoln
Laboratory, MIT Information Services and Technology, South Shore Tri-Town De-
velopment Corporation and Australia National University. Additional support has
been provided in the form of in-kind donations and substantial discounts on equip-
ment purchases from a variety of companies, including Nokia, Mobileye, Delphi,
Applanix, Drew Technologies, and Advanced Circuits.

Team Cornell also gratefully acknowledges the sponsorship of: Singapore Tech-
nologies Kinetics, Moog, Septentrio, Trimble, Ibeo, Sick, MobilEye, The Math-
works, Delphi, and Alpha Wire.

The MIT and Cornell teams were sponsored by Defense Advanced Research
Projects Agency, Program: Urban Challenge, ARPA Order No. W369/00, Program
Code: DIRO.

548 L. Fletcher et al.

References

DARPA, 2007. DARPA Urban Challenge rules (2007),
http://www.darpa.mil/GRANDCHALLENGE/rules.asp

Ferguson et al., 2004. Ferguson, D., Stentz, A., Thrun, S.: Pao* for planning with hidden
state. In: Proceedings of the 2004 International Conference on Robotics and Automation,
vol. 3, pp. 2840–2847 (2004)

Frazzoli et al., 2002. Frazzoli, E., Dahleh, M.A., Feron, E.: Real-time motion planning for
agile autonomous vehicles. Journal of Guidance, Control, and Dynamics 25(1), 116–129
(2002)

Leonard et al., 2008. Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore, G.,
Fletcher, L., Frazzoli, E., Huang, A., Karaman, S., Koch, O., Kuwata, Y., Moore, D.,
Olson, E., Peters, S., Teo, J., Truax, R., Walter, M., Barrett, D., Epstein, A., Mahelona, K.,
Moyer, K., Jones, T., Buckley, R., Attone, M., Galejs, R., Krishnamurthy, S., Williams,
J.: A perception driven autonomous urban robot. Submitted to International Journal of
Field Robotics (2008)

Martin and Moravec, 1996. Martin, M., Moravec, H.: Robot evidence grids. Technical Re-
port CMU-RI-TR-96-06, The Robotics Institute, Carnegie Mellon University, Pittsburgh
(1996)

Miller and Campbell, 2007. Miller, I., Campbell, M.: Rao-blackwellized particle filtering for
mapping dynamic environments. In: Proceedings of the 2007 International Conference
on Robotics and Automation, pp. 3862–3869 (2007)

Miller et al., 2008. Miller, I., Campbell, M., Huttenlocher, D., Nathan, A., Kline, F.-R.,
Moran, P., Zych, N., Schimpf, B., Lupashin, S., Kurdziel, M., Catlin, J., Fujishima, H.:
Team cornell’s skynet: Robust perception and planning in an urban environment. Sub-
mitted to International Journal of Field Robotics (2008)

Russell and Norvig, 2003. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Ap-
proach, 2nd edn. Prentice Hall, Pearson Education, Inc., Upper Saddle River, New Jersey
(2003)

Stanford Racing Team, 2007. Stanford Racing Team, Stanford’s robotic vehicle Junior: In-
terim report (2007),
http://www.darpa.mil/GRANDCHALLENGE/TechPapers/Stanford.pdf

Sukthankar, 1997. Sukthankar, R.: Situational Awareness for Tactical Driving. PhD thesis,
The Robotics Institute, Carnegie Mellon University (1997)

Tartan Racing, 2007. Tartan Racing, Tartan racing: A multi-modal approach to the DARPA
urban challenge (2007),
http://www.darpa.mil/GRANDCHALLENGE/TechPapers/Tartan_Racing.pdf

Thrun et al., 2006. Willemsen, P., Kearney, J.K., Wang, H.: Ribbon networks for modeling
navigable paths of autonomous agents in virtual urban environments. In: Proceedings of
IEEE Virtual Reality 2003, pp. 22–26 (2003)

Willemsen et al., 2003. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A.,
Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci,
M., Pratt, V., Stang, P., Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C., Markey,
C., Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B., Et-
tinger, S., Kaehler, A., Nefian, A., Mahoney, P.: Stanley: The robot that won the DARPA
Grand Challenge. Journal of Field Robotics 23(9), 661–692 (2006)

M. Buehler et al. (Eds.): The DARPA Urban Challenge, STAR 56, pp. 549–593.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

A Perspective on Emerging Automotive Safety
Applications, Derived from Lessons Learned through
Participation in the DARPA Grand Challenges

J.R. McBride1,*, J.C. Ivan1, D.S. Rhode1, J.D. Rupp1, M.Y. Rupp1,
J.D. Higgins2, D.D. Turner2, and R.M. Eustice3

1,* Ford Motor Company – Research and Advanced Engineering
Research and Innovation Center
2101 Village Road, MD 2141, Room 2113D
Dearborn, MI 48121
Phone: 313-323-1423
jmcbride@ford.com

2 Delphi Corporation
3 University of Michigan

Abstract. This paper reports on various aspects of the Intelligent Vehicle Systems (IVS)
team’s involvement in the recent 2007 DARPA Urban Challenge, wherein our platform, the
autonomous “XAV-250”, competed as one of the eleven finalists qualifying for the event.
We provide a candid discussion of the hardware and software design process that led to our
team’s entry, along with lessons learned at this event and derived from participation in the
two previous Grand Challenges. In addition, we also give an overview of our vision, radar
and lidar based perceptual sensing suite, its fusion with a military grade inertial navigation
package, and the map-based control and planning architectures used leading up to and
during the event. The underlying theme of this article will be to elucidate how the
development of future automotive safety systems can potentially be accelerated by tackling
the technological challenges of autonomous ground vehicle robotics. Of interest, we will
discuss how a production manufacturing mindset imposes a unique set of constraints upon
approaching the problem, and how this worked for and against us, given the very
compressed timeline of the contests.

1 Introduction and Overview

The narrative presented in this paper is derived from experiences gained by the
various authors through their participation in the series of DARPA Grand
Challenges (DGC1, DGC2, DGC3, also variously referred to by year, etc.).
During the inaugural edition of the Grand Challenge, two of the authors worked as
volunteers for DARPA, and performed tasks such as reviewing the participating
teams’ technical proposals, conducting safety evaluations of the entrants’ robots,
and serving as chase vehicle crew members. In the process, they were able to gain

* Corresponding author.

550 J.R. McBride et al.

Fig. 1. The XAV-250 poses for the camera at the 2007 National Qualifying Event (NQE).

insight into the existing state-of-the-art of ground vehicle robotics, and established
an invaluable array of personal contacts, ranging from government officials to
university researchers to corporate manufacturers. By the end of the event, the
consensus opinion was that many of the problems that were vexing ground vehicle
robotics were of the same technological nature as the hurdles impeding the rapid
development of advanced safety systems in the automotive industry.

With this conclusion in mind, in 2005 a collaborative effort was formed
between Delphi, Ford, Honeywell, and PercepTek, with the goal of conducting
joint research directed toward the creation of safe and robust intelligent ground
vehicle systems for production-intent commercial and military applications.
Participating under the collaborative name “Intelligent Vehicle Safety
Technologies”, or IVST, they entered the 2005 DGC, fielding the autonomous
Ford F-250 dubbed the “Desert Tortoise”. In their first attempt at ground vehicle
robotics, the team impressively made it all the way through the selection process,
earning the 5th starting pole position at the finals (IVST, 2005a, 2005b).

Upon announcement of the 2007 DARPA Urban Challenge (DUC / DGC3),
three core members from the previous effort formed a new collaboration, this time
known as “Intelligent Vehicle Systems” (IVS), which was initially comprised
primarily of employees from Delphi, Ford, and Honeywell. However, as the
project evolved, the collaboration expanded to include contributions from a
variety of external organizations, examples including Cybernet, the University of
Michigan (UMich), and the Massachusetts Institute of Technology (MIT). The
team once again used the F-250 as its base platform, but significant modifications
were made to the sensing suite and computing architecture. The “XAV-250”

A Perspective on Emerging Automotive Safety Applications 551

(eXperimental Autonomous Vehicle - 250) as it was now called, might seem to be
a surprising choice for an urban driving environment, given its size and mass, and
particularly given that its long wheel base resulted in a turning radius in excess of
8m. However, the truck had already proved its merits in the DGC2, and moreover
precisely represents the type of vehicle that would likely be employed in a realistic
autonomous mission capable of carrying any sort of significant cargo. If humans
could keep it centered in their lane on the road, we saw no reason to believe
computers could not do the same. The team was one of only eleven to achieve the
finals, and one of only six to have appeared consecutively in the last two DGC
final events.

It should be noted that the striking difference between the first Grand
Challenges and the latest is the dynamic nature of the urban event, which
introduced moving targets, intermittently blocked pathways, and extended
navigation in regions of denied-GPS reception. The team’s intent was to build
upon the lessons learned from the Desert Tortoise, and specifically to evolve from
a reactive, arbiter-based methodology to an architecture that dynamically senses
the 3D world about the vehicle and performs complex, real-time path planning
through a dense global obstacle map populated from multiple types of fused
sensor inputs.

The remainder of this article is organized as follows. In Section 2 we parallel
how advances in ground robotics research can lead to advances in automotive
active safety applications, thereby motivating our corporate research participation
in the DARPA challenges. In Section 3 we provide an overview of the hardware
and software architecture in place prior to our post DARPA Site-Visit redesign
which entailed a migration to the MIT software architecture (described in
Section 4). Section 5 reviews our performance during the National Qualifying
Event (NQE) and Finals while Section 6 offers a post-DGC reflection on
engineering lessons learned through our participation. Finally, Section 7 provides
some concluding remarks.

2 The Connection between Robotics Research and Automotive
Safety

In common with other long-term, visionary research projects, we are often asked
to explain the relevance of our work. The question of “just how does playing with
robots deliver benefits to the company, its stakeholders, and customers?” is not
uncommon. Our opinion is that by solving the complex challenges required to
make a vehicle capable of autonomous driving, we will simultaneously enable and
accelerate the development of technologies that will eventually be found on future
accident mitigation and avoidance systems throughout the industry.

As we will discuss later in the text, we do not anticipate that mass-production,
fully-autonomous automobiles (“autonomobiles”) will appear on the market
anytime in the foreseeable near-future. However, we do envision a steady and
systematic progression of improvements in automotive convenience, assistance, and
safety features, wherein the vehicle becomes capable of assuming an ever-increasing

552 J.R. McBride et al.

role in the shared human-machine driving experience. The general trend in the
automotive industry is evolving from merely providing value-added driver
information, to assisting with mundane driving tasks, warning and helping the driver
to choose a safe solution when presented with potential hazards, and ultimately
assuming increasing control when it becomes indisputably determined that the driver
is incapable of avoiding or mitigating an imminent accident on their accord.

The bulleted list below provides a generic overview of several of the upcoming
features being touted by automotive OEMs (Original Equipment Manufacturers),
and which will undoubtedly benefit from many of the algorithms derived from
autonomous vehicle research. Roughly speaking, the first four examples fall under
the categories of braking, throttle, steering, and vehicle dynamics. The end point
for each of these evolutionary systems converges with the others to provide a
comprehensive collision mitigation strategy. The remaining items on the list
involve infrastructure and human-machine interactions.

• Anti-lock brake systems (ABS), imminent collision warning, panic brake
assist, collision mitigation by braking (CMbB)

• Cruise control, adaptive cruise control (ACC), ACC plus stop-and-go
capability, urban cruise control (UCC – recognizes stop signs and traffic
signals)

• Lane departure warning (LDW), lane keeping assistance (LKA), electronic
power assist steering (EPAS), adaptive front steering (AFS), active steer
(EPAS + AFS), emergency lane assist (ELA)

• Traction control, electronic stability control (ESC), roll stability control
(RSC), active suspension

• Integration of pre-crash sensing with occupant protection equipment
(airbags, seat belts, pretensioners)

• Collision mitigation by integrated braking, throttle, steering and vehicle
dynamics control

• Vehicle to vehicle and infrastructure integration (VII / V-V), intelligent
vehicle highway systems (IVHS)

• Blind spot detection, pedestrian detection, parking assistance, night vision
• Driver drowsiness and distraction monitoring
• Total accident avoidance / autonomous vehicle control

2.1 The Magnitude of the Problem

Although we are frequently reminded of the annual impact to society caused by
vehicular accidents (NHTSA, 2005), it is nevertheless worth summarizing the
statistics for the United States (world-wide statistics, although less well-
documented, are more than an order of magnitude worse):

• 43,000 deaths
• 2.7 million injuries
• $230 billion in economic costs

A Perspective on Emerging Automotive Safety Applications 553

Cyclist - 1%
Pedestrian - 1%
Backing - 2%
Opposite Direction - 2%
Other - 3%
Animal - 5%
Lane Change - 10%
Off-Road - 21%
Crossing Paths - 25%
Rear-End - 30%

Fig. 2. Distribution of light vehicle crashes by type (Volpe, 2007).

To put this in perspective, this is roughly the equivalent of one major airline
crash per day. While we somehow seem to accept the inevitability of traffic
accidents, it is quite unlikely that the American public would board airplanes if
they knew one of them would crash every day, killing all occupants aboard.

Figure 2 shows a distribution of light vehicle crashes by type, as compiled in
“Pre-Crash Scenario Typology for Crash Avoidance Research” (Volpe, 2007).
While many of these scenarios are well understood and safety systems are either
in place or under development to address them, a noteworthy percentage of the
crash scenarios are presently not well-covered by emerging near to mid-term
automotive safety technologies. To expand a bit upon this point, the rear-end
collision prevention scenario is the closest to production deployment, since a bulk
of the hardware and algorithms required to achieve this application are logical
extensions of Adaptive Cruise Control systems, which are presently available on
selected OEM models. While the off-road and crossing path scenarios, which
comprise the largest share of unresolved safety challenges, could benefit greatly
from the results of the DGC research efforts, solutions to these issues could be
developed even faster if technologies that were explicitly omitted from the
DGCs were incorporated, notably vehicle-to-vehicle and vehicle-to-infrastructure
communications, and enhanced roadway maps replete with ample metadata. We
conclude that there are ample research opportunities for delivering improvements
in automotive safety to members of our society, and. it can be argued that these
gaps in coverage obviously represent scenarios that require a greater degree of
situational awareness of the world around the vehicle, advanced sensors, and more
sophisticated algorithms.

2.2 How Does the Reliability of a Present-Day Robot Compare with a
Human?

Before we can make any sort of intelligent comments about the impending
appearance of the autonomobiles that popular science writers have been promising

554 J.R. McBride et al.

Fig. 3. Yesterday’s “Cars of Tomorrow”. A couple of fairly typical concept cars from the
dawning of the Space Age – a photograph of the 1961 Ford Gyron (left) and pre-production
sketch of the 1954 Ford FX-Atmos (right).

for the past half century (e.g. Figure 3); or for that matter, any number of the
advanced active safety features enumerated in the bulleted list above, we need to
have a rough idea of how the performance of present-day autonomous vehicles
compare with human drivers. Given that the primary aim of this paper is not to
scientifically analyze robotic safety, but rather to discuss our experiences at the
2007 DARPA Urban Challenge, we present instead a “back-of-the-envelope”
calculation which serves to initiate the discussions to follow.

For small distances, we can assume the probability of a “failure” is
approximately given by

xPf δα≈ ,

where α is the mean failure rate per distance, and δx is the incremental distance
traveled. Conversely, the probability of “success” is given by:

fs PP −= 1 .

If we wish to repeatedly achieve success, and note that the total distance
traveled is simply xnx δ= , where n is the number of path segments (i.e., trials)

then the overall probability becomes:

() x
n

n

n
fs e

n

x
PP αα −

∞→
=⎟

⎠
⎞

⎜
⎝
⎛ −=−= 1lim1 .

Of course, this derivation makes some simplifying assumptions, most notably that
the events are randomly distributed and independent of one another so that they can
be modeled as a Poisson process. If, for example, our vehicle operated flawlessly
except whenever a train passed by, this equation would undoubtedly fail to hold.
Nevertheless, it makes a good starting point for a provocative discussion.

A Perspective on Emerging Automotive Safety Applications 555

If we examine the most recently published data from NHTSA’s “Traffic Safety
Facts 2005” (NHTSA, 2005), we observe that there are roughly:

3.0 × 1012 miles driven per year, and
2.0 × 108 registered drivers, translating to
1.5 × 104 average annual miles driven per person.

We also find there are:

14.5 fatalities per billion miles, and
900 injuries per billion miles.

Expressed in another manner, on average this is:

68.8 mean million miles between fatality, and
1.1 mean million miles between injury.

Using these NHSTA statistics and our derived equation, we can estimate the
lifetime odds of suffering a vehicular injury or fatality. Given that life
expectancy, at birth, for a middle-aged American was roughly 68 years (it is
longer for children born today), let us for the sake of simplicity assume that the
average person drives for 50 years of their lifetime. We now find that:

%1.491)50)(/105.1)(/100.9(47

=−≈ ××− − yryrmimii
injury eP , and

%1.11)50)(/105.1)(/1045.1(48

=−≈ ××− − yryrmimif
fatality eP .

While most government sources state that the lifetime odds of being involved

in a “serious” or “major” vehicle accident are about 1 in 3, they do not uniformly
define what the metrics are for this categorization, nor do they comment on minor
injuries. Fatalities, on the other hand, are not ambiguous, and numerous sources
such as the National Safety Council (Mortality Classifications, 2004), put the
lifetime odds of death due to injury in a vehicular accident at 1 in 84, or 1.2%.
This is in excellent agreement with our simple estimation.

We can also apply this line of reasoning to the behavior of the robots in the
DGCs. Although we did not explicitly acquire statistics on the mean time or
distance between failures, particularly since we frequently tested and worked out
one behavioral bug at a time, we did on occasion conduct some long,
uninterrupted test runs, and during these outings we generally felt that in the
absence of grossly anomalous road features, we could probably travel on the order
of 100 miles between significant failures. Of course this value is highly variable,
being dependent upon the type of road conditions being traversed. If one were lane
tracking on a freeway, the results would likely be an order of magnitude better
than those observed while negotiating dense urban landscapes. Nonetheless, this
average value of α ~ 0.01 mean failures per mile led one of our team members to
speculate that our chances of completing the DGC2 course would be:

556 J.R. McBride et al.

%7.26)132)(/01.0(=≈ − mimif
succcess eP .

Now what makes this interesting is that we can turn this argument inside-out
and consider the implications upon the other vehicles that participated in the finals
of the last two events. If we solve for the mean failure rate α, we find

()
x

Psln−=α .

At the 2005 DGC2, 5 of the 23 finalists successfully finished the 132 mile
course, while at the 2007 UCE, 6 of the 11 finalists finished (albeit with a few
instances of helpful human intervention) a 60 mile course (DARPA, 2008). Let us
see what this suggests.

()
012.0

132
23

5ln
2 =−=

milesDGCα mean failures per mile,

()
010.0

60
11

6ln
=−=

milesUCEα mean failures per mile.

Remarkably, the observational values between the two DARPA finals events
not only agree with one another, but also agree with the crude estimate we had
formulated for our own vehicle. To be clear, we do not in any manner wish to
suggest that the quality of any team’s accomplishments was simply a matter of
statistical fortune, nor do we want to make any scientific claims with regard to the
accuracy of these observations, given the very small statistics and large
assumptions made.

However, we do want to put the present-day capabilities of fully autonomous
vehicles in perspective with regard to human abilities. In this context, it would
appear that humans are 4 orders of magnitude better in preventing minor
accidents, and perhaps 6 orders of magnitude better in avoiding fatal (mission
ending) accidents. Therefore, the undeniable and key message is that the robotics
community has abundant challenges yet to be solved before we see the advent of
an autonomobile in each of our garages. To be fair, one can make a valid case for
very specific applications in which semi-autonomous or autonomous vehicles
would excel, either presently or in the near future, but bear in mind that these are
far outside the scope of the general automotive driving problem as framed above.
Examples of near-term applications would likely include a range missions from
robotic mining operations to platooning of vehicles in highway “road trains”.

2.3 Observations Regarding Customer Acceptance and Market Penetration

Despite the availability of a technology or its proven effectiveness, this is by no
means a guarantee that the customer will actually use it. Although present-day

A Perspective on Emerging Automotive Safety Applications 557

attitudes in society have tipped in favor of not only accepting, but demanding
more safety applications and regulations, there is nonetheless a sizeable portion of
the population who view the driving experience as something that should be
unencumbered by assistance (or perceived intrusions) from the vehicle itself. For
some, it’s simply a matter of enjoying the freedom and thrill of driving, while for
others, it can amount to a serious mistrust of technology, especially that which is
not under their direct control. The reader will undoubtedly recall the public
commotions made over the introduction of anti-lock brake systems, airbags, and
electronic stability control. However, once drivers became sufficiently familiar
with these features, their concerns tended to subside. On the other hand, it is yet
to be seen how the public will react to convenience and safety features that
employ semi- or fully-autonomous technologies.

To illustrate this point, consider the case of seat belts, arguably one of the
simplest and most effective safety technologies invented. Although they were
patented at essentially the same time as the automobile was invented (1885), 70
years passed before they were offered as optional equipment on production
automobiles. Furthermore, it took a full century, and legislative actions beginning
in the mid 1980s before customers began to use them in any significant numbers
(refer to Figure 4). Even at the present time, nearly 20% of Americans still refuse
to wear them (NHTSA, 2005).

Another issue confronting new technologies is the speed at which we can
expect penetration into the marketplace. For some features, this is not a big
concern, whereas for others, the utility of the technology depends upon universal
acceptance. For example, it does not matter very much if one customer chooses
not to purchase a premium sound system, but on the other hand, the entire traffic
system would fail to work if headlamps were not a required feature. Many factors
enter into how fast a new technology is implemented, including customer
acceptance, availability, cost, regulatory requirements, etc.

Year

1950 1960 1970 1980 1990 2000 2010

U
.S

. S
ea

tb
el

t U
sa

ge
 (

%
)

0

20

40

60

80

100

 Year

2000 2002 2004 2006 2008 2010 2012 2014

Ja
pa

ne
se

 M
ar

ke
t P

en
te

tr
at

io
n

(%
)

0

10

20

30

40

50

ACC
LKA

Fig. 4. Seat belt usage in the United States as a function of time (left). Note the dramatic
rise in acceptance following legislation passed in 1984. Actual and projected Japanese
market penetration for Adaptive Cruise Control (ACC) and Lane Keeping Assist (LKA)
automotive driving features (right).

558 J.R. McBride et al.

For the case of semi- or fully-autonomous driving, success will undoubtedly
depend on having as many vehicles as possible equipped with these features. It
has often been suggested that some portion of roadways, the federal interstate
system for example, may in the future be regulated so as to exclude vehicles that
do not conform to a uniform set of equipment requirements. Whereas having
individual autonomous vehicles on the roadway may improve safety, having an
entire fleet on the roadway could also increase vehicular density, improve
throughput, and by platooning could also reduce drag and improve fuel economy.

While statistics regarding the customer “take rate” of optional features on a
new car are often closely guarded by individual OEMs, Figure 4 above (Frost and
Sullivan, 2005) also presents a prediction of what “fast adopters”, such as the
Japanese market, are expected to do with regard to two of the basic robotic
building blocks leading toward autonomous operation – ACC and LKA. It should
be noted that while present-day acceptance for ACC in Japan and parts of Europe
is ~15%, in the U.S. it is a mere 4%. Perhaps more telling, the market penetration
for mature systems that merely provide informational content (not vehicular
control), such as GPS-based navigation devices, is still limited to a small subset of
new vehicles.

2.4 Concluding Remarks Regarding Implementation of Autonomy in
Production Vehicles

While the accident statistics and relative reliability of robots vs. human drivers
clearly indicate ample opportunities for future autonomous research solutions, we
have also illustrated that a number of factors, including customer acceptance and
delivery speed to the marketplace will ultimately determine when fully-
autonomous passenger vehicles become a commonplace reality. In this regard, the
data refutes optimistic projections of production-level autonomobiles by Model
Year (MY) 2015 as some have claimed (military and industrial robotic
applications obviously constitute a separate conversation), but rather indicates a
slower and continual progression of semi-autonomous driver support and safety
features. In this regard, we feel that the field of active safety will ultimately lead
the way, with robotics and autonomous vehicle research becoming the key
enablers for these future systems.

3 Vehicle Architecture

One of the guiding principles in the design of our entry was to assure that the
hardware, sensors, and algorithms developed not only addressed the mission goals
of the DUC, but also offered a practical path toward future production integration
into other active safety applications. In many phases of the project, this philosophy
implied that the wisest choice was to employ production components, whereas there
were certain aspects of the DUC for which no technical solution presently exists,
requiring that risks be taken exploring novel sensing, hardware, and algorithms.
With limited time and resources, success depended upon choosing the right balance

A Perspective on Emerging Automotive Safety Applications 559

between status quo and innovation. In the following, we provide an overview of our
vehicle hardware platform (Section 3.1), our perceptual sensing suite (Section 3.2),
and our software architecture (Section 3.3) prior to our DARPA Site Visit.

3.1 Platform

Based upon the success of and lessons learned from the Desert Tortoise used in
the DGC2, the 2005 model year Ford F250 again served as the platform for the
IVS research efforts. This truck series has been extensively used as a rugged all-
purpose workhorse, operating on roads of all sizes and surface conditions around
the world, making it an ideal platform for a realistic autonomous mission –
commercial or military. We fabricated two identical trucks for the DUC dubbed
the “XAV-250”s, models A and T (XAV for eXperimental Autonomous Vehicle).

Overarching the theme of simplicity stated earlier, safety was always at the
forefront of our efforts. Each of the by-wire systems (throttle, brakes, steering,
and transmission) operated with redundant mechanical interfaces, enabling the
XAV-250 to easily transition from human-controlled, street-legal to fully-
autonomous operation by the flip of a switch. Occupant and bystander safety was
further enhanced by the use of redundant, fully-independent, remote wireless e-
Stop systems. When a pause or disable command was initiated, there were
multiple means by which it was obeyed.

3.1.1 Vehicle Control Unit (VCU)
The VCU was implemented using a dSPACE AutoBox rapid control prototyping
system, and was primarily used to coordinate the by-wire systems that control
vehicle speed and steering. Commonly used by automotive OEMs and suppliers
for algorithm development, it uses MATLAB/Simulink/Stateflow and Real-Time
Workshop for automatic code generation. The VCU algorithms ran a position
control algorithm to control steering wheel (hand wheel) position, a speed control
algorithm that coordinated the throttle and brake systems, and also processed
launch timing and pause requests.

3.1.2 Throttle-by-Wire
The throttle on the production engine communicates with the engine ECU
(electronic control unit) via three voltage signals. A mixing circuit inserted
between the throttle pedal and ECU essentially added the by-wire control
commands to the outputs from the throttle pedal itself. A dedicated
microprocessor with a watchdog timer was used for this interface; nominally the
throttle interface commands are issued every 10ms by the VCU and if a valid
command is not received within 83ms, the by-wire commands default to zero.
This approach did not require modifications to the ECU or throttle pedal and has
proven to be simple, safe, and effective.

3.1.3 Brake-by-Wire
Modern active safety systems such as ABS, AdvanceTrac, ESC, and RSC control
brake pressures to increase vehicle stability. The XAV-250 has production-
representative ESC/RSC hydraulic brake hardware and ECUs, with modified

560 J.R. McBride et al.

software and hardware containing an additional CAN interface. These systems are
regularly used by OEMs and suppliers to develop and tune vehicle stability
algorithms. Through this interface, the VCU can command individual brake
pressures at each corner of the vehicle with the full capability of the braking system.
By using this production-proven hardware, our vehicle robustness and reliability has
been very high.

The parking brake was automated to improve safety and durability, and to
provide redundancy to the main braking system. Keeping with the desire to use
production proven parts, a MY2000 Lincoln LS electronic parking brake actuator
was used to activate the parking brake. To prevent overheating of the brake
modulator, the vehicle was shifted into park whenever the vehicle was at zero
speed for an extended period of time, and the hydraulic pressure was released on
the main brakes. This allowed the brake valves and disks to cool when they were
not needed. In the event of an unmanned e-stop disable, the parking brake was
actuated by a relay circuit independent of all computing platforms.

3.1.4 Steer-by-Wire
The steering system was actuated by a permanent-magnet DC motor, chain-
coupled to the upper steering column. The gear ratio (3.5:1) and inertia of the
motor are low enough that manual operation is not affected when power is
removed. By coupling to the upper steering column, the hydraulic power steering
system aids the DC motor. For production vehicles, the maximum driver torque
needed to command full power steering assist is ~10N-m. The motor can deliver
this torque at approximately 20% of its maximum capacity. To drive it, an off-
the-shelf OSMC H-bridge was used to create a high current 12V PWM signal.
Using a 12V motor and drive electronics simplified the energy management and
switching noise issues within the vehicle.

3.1.5 Shift-by-Wire
Transmission control was accomplished using a linear actuator to pull or push the
transmission shift cable. The position was determined using the production sensor
located inside the transmission housing. A microprocessor controls the linear
actuator and provides the interface to the manual shift selection buttons and VCU. It
also senses vehicle speed from the ECU and the vehicle state (run, disable, pause)
from the e-stop control panel, and affords simple push-button manual operation with
appropriate safety interlocks. This approach did not require any modification of the
transmission or engine ECU and resulted in a robust actuation that provided the
same retro-traverse capability that the Desert Tortoise had in the DGC2.

3.1.6 E-Stop Interface System
The e-stop interface system connects the radio controlled e-stop system and the
various by-wire subsystems to control the operating modes of the vehicle. This
system was implemented using automotive relays to increase reliability and reduce
complexity. The interface has two modes, Development and Race, and two states,
Run and Disable. In the development mode, used when a safety driver is in the
vehicle, the disable state allows for full manual operation of the vehicle and the

A Perspective on Emerging Automotive Safety Applications 561

run state provides full autonomous operation. In the race mode, the vehicle is
unmanned and the by-wire systems conform to DGC rules. Pause requests are
handled by the VCU to bring the vehicle to a gradual stop while still obeying
steering commands. Communication faults were monitored within dSPACE and a
signal to actuate an e-stop was issued when a fault was detected.

3.1.7 Navigation
Integration and support for the XAV-250 navigation system was provided by
Honeywell, as described in previously published reports (IVS, 2006, 2007a,
2007b). The system incorporated a commercially available NovAtel GPS receiver
using OmniSTAR HP satellite corrections, and was coupled with Honeywell’s
internally proprietary PING (Prototype Inertial Navigation Gyro) package. The
PING has a high degree of flexibility, being capable of using a variety of IMUs
(Inertial Measurement Units), and can input various state observations besides
GPS, such as wheel speed odometry derived from the vehicle. The navigation
algorithms from the PING exported position, attitude, acceleration and rotation
rates at 100Hz, with the pose information remaining stable and accurate even
during GPS outages of up to 20 or 30 minutes, owing to the high quality of ring
laser gyroscopes and accelerometers used in their IMUs.

3.2 Sensors

Changes in the mission specifications, as well as the transition from a desert
environment to an urban environment, required that many alterations be made to
the sensing philosophy and implementation on the XAV-250. In the earlier
DGC2, obstacle detection and path planning was essentially constrained to a
narrow corridor closely aligned with a pre-defined dense set of GPS waypoints. In
the DUC, the game became wide open, with sparse waypoints, large urban
expanses such as parking lots and intersections, and more importantly, moving
traffic surrounding the vehicle. Clearly this dictated a new solution, capable of
sensing the dynamic world surrounding the vehicle, but also able to process the
wealth of data in a real-time manner.

The introduction of the revolutionary Velodyne HDL-64E lidar seemed to be
the answer to it all, with 64 laser beams, a huge field of view (FOV), 360° in
azimuth and 26.5° in elevation, 120m range, and ability to capture one million
range points per second at a refresh rate of up to 20Hz. However, this sensor had
yet to be field tested, and with the known limitations associated with previous
lidar systems, there was certainly some degree of hesitancy to rely too heavily
upon this device. As such, it was apparent that we would need to provide a
redundant set of coverage for the vehicle. This would not only offer added
confirmation of obstacle detections, but would also serve to enhance the
robustness of the system to the failure of a single sensor.

While one could take the approach of adding as many sensors as possible to the
vehicle (and some teams did in fact do so), this adds an unwieldy burden to
computational, electrical power, and thermal management requirements. A better
solution was to determine where the XAV-250 most frequently needed to “look”

562 J.R. McBride et al.

in order to satisfy the required DUC mission maneuvers (Figure 7), and to place
sensors of the appropriate modality accordingly to fulfill these needs. We
conducted a detailed study to optimize this problem, which included
considerations such as:

• mission requirements of the DUC (GPS waypoint density, road network
geometry, route re-planning, merging, passing, stopping at intersections,
dealing with intermittent GPS reception)

• infrastructure (intersections, traffic circles, parking lots, dead-end roads)
• roadway design guidelines (line of sight requirements, minimum and

maximum road grade and curvature, pavement vs. other roadway surfaces)
• highway driving rules (observance of lane markings, intersection

precedence, spacing between vehicles)
• closing velocity of traffic (following time and look-ahead requirements)
• potential obstacles to be encountered (vehicles, curbs, buildings, signs,

power-line poles, fences, concrete rails, construction obstacles, foliage)

Based upon our analysis, we initially settled upon a sensing suite that included (in
addition to the Velodyne lidar) 8 Delphi Forewarn ACC radars, 4 Delphi dual-
beam Back Up Aid (BUA) radars, 2 Cybernet cameras, 1 Mobileye camera, and 2
Riegl lidars. The overall sensor placement is shown in the truck collage in
Figure 5, and is also described in more detail below.

Fig. 5. Collage of XAV-250 images revealing key elements of the external hardware. Truck
overview (top left); protective frontal exoskeleton with 3 embedded in-line ACC radars and
single centered BUA radar underneath (top center); rear view showing GPS mast on rooftop and
protected pair of ACC and BUA radars (top right); side exoskeleton with ACC and BUA radars
(bottom left); climate controlled and shock isolated box containing computing cluster (bottom
center); and lidar and vision systems (bottom right),with Velodyne at apex, Riegls left and right,
and cameras hidden within the Velodyne tower and behind the windshield glass.

A Perspective on Emerging Automotive Safety Applications 563

Fig. 6. Delphi radars: 76 GHz ACC (left) 24 GHz BUA (right).

Fig. 7. Depiction of the long-range (left) and mid-range (right) sensing FOVs for typical
roadways. The light blue triangles depict ACC radars, the shaded pink circle the Velodyne
lidar. Note that the various depictions are not necessarily drawn to scale.

Delphi’s 76 GHz ACC radars (Figure 6) are long-range, mechanically scanning
radars that have been in production for years on Jaguars and Cadillacs. This radar
senses targets at 150m with a 15° FOV and updates its tracking list every 100ms.
A grouping of three of these sensors were coupled together to form a combined
45° forward FOV, enabling multi-lane, curved road coverage. Three more ACC
units were strategically placed to also create a wide rearward FOV, with one on
the rear bumper and two placed on the front outboard corners of the truck to
provide rear and adjacent lane obstacle tracking. Additionally, two radars were
mounted in a transverse direction on the front corners to provide coverage of
obstacles at intersection zones.

In the forward center FOV, a Mobileye camera was used, primarily to provide
confirmation to the ACC radars that targets were vehicles, but also to aid with lane
tracking. The other cameras were dedicated to detect roadway lane markings and
curbs, and to log visual data. The two Riegl LMS Q120 lidars each had an 80°
FOV with very fine (0.02° per step) resolution. They were nominally set at
distances of 12.5m and 25m, and used to detect curbs and aid the Velodyne

564 J.R. McBride et al.

Fig. 8. Short-range sensor map illustrating the coverage of the Delphi BUAs.

in placing static obstacles in the map. For close proximity sensing scenarios, e.g.,
U-turns, backing up, maneuvering into a parking space, passing a close-by
vehicle, etc., multiple Delphi BUA radars were used (Figure 8). These sensors
have an effective range of ~5m; however, they do not return azimuth information
on the target.

3.3 Software

3.3.1 DGC2: An Arbiter-Based Design
In the prior DARPA Grand Challenge (DGC2), the IVST team employed a
situational dependent, arbitrating behavior-based solution (Figure 9) as reported in
(IVST, 2005a, 2005b). The arbiter combined the outputs from the current set of
contextual behaviors to produce a resultant steering and speed response. Each
positive behavior would send its desired steering response to the arbiter in the
form of a vector that represents the full range of steering, with the value at each
vector element being the degree to which that specific behavior believes the
vehicle should steer. Negative behaviors sent a response over the full steering
range that represents steering directions not to go. The arbiter produced a
weighted sum of all positive behaviors where the weight of a behavior is the
product of an assigned relative weight of the behavior to other behaviors in a
specific environmental context and the confidence of the behavior. The
superposition of the sum of negative behaviors was used to cancel out hazardous
directions and then the peak of the final response was used as the desired steering
direction. Those behaviors that control speed, also provided a speed vector over
the full steering range, where the value of a vector element represents the speed
the behavior wants to go for that steering direction. The arbiter took the minimum
speed over all behaviors for the chosen steering direction.

While this framework proved effective at NQE, during the final event a
situation occurred were multiple competing behaviors with high confidence came
into play at one time. These included, but were not necessarily limited to: vision-
based road following (a very successful feature) locked onto the wide forward
path while having an obstructed view toward the turn, a navigation request to turn

A Perspective on Emerging Automotive Safety Applications 565

Fig. 9. Schematic of the arbiter software architecture used by IVST during DGC2 (IVST,
2005a, 2005b).

Fig. 10. Location on the DGC2 course where the IVST Desert Tortoise departed corridor
boundaries. Multiple competing behaviors within the arbiter framework caused the vehicle
to delay at a fork in the road. The correct route is the narrow hidden pathway on the left, as
indicated by our team member standing where a DARPA photographer had been filming.
Site-visit software architecture

sharply left onto a very narrow road, and apparent in-path obstacle detections of a
pedestrian as well as from a cloud of dust created by the rapid deceleration to the
intersection speed limit. Though the correct behavior did eventually prevail, the
arbitration delay initiated a chain of events (Figure 10) that led to a minor
departure from the course, and ultimately the team’s disqualification. Learning
from this lesson, the IVS team decided to pursue a map-based sensor fusion
strategy for the DUC that was neither situational dependent nor arbitrated.

566 J.R. McBride et al.

Fig. 11. Schematic drawing of the software architecture employed on the IVS vehicle at the
2007 DARPA Site Visit. White boxes indicate major software components and gray boxes
embedded hardware.

3.3.2 Site-Visit Software Architecture
At the time of the DUC DARPA Site Visit, the bulk of the XAV-250 software was
provided by Honeywell, and is described in detail in previously published reports
(IVS 2006, 2007a, 2007b). We briefly review some key elements of the
architecture, as depicted in the Figure 11.

Mission controller: The function of the mission controller is to encapsulate the high-
level logic needed to accomplish a mission and to distribute that information to the
other components in the system. Each software element is responsible for producing
certain events which can trigger state changes and react to changes in state.

Mapper: The One Map (TOM) accepts classification data (unseen, empty, road,
line, curb, obstacle) from each sensor, fuses it spatially and temporally, and
provides a single map that contains the probabilities of each classification per
sensor per cell. Updates to the map are asynchronous per sensor. The map is
comprised of 1024 × 1024, 0.25m × 0.25m grid cells, centered on the vehicle. The
map is implemented as a doubly circular buffer (or torus) and TOM scrolls this
map with the movement of the truck (determined from the PING). Each cell
contains every sensor’s estimated probability of the classification as being unseen,
empty, road, line, curb or obstacle. A fusion algorithm is run at 10Hz across the
center 512 × 512 cells (128m × 128m) to derive a single probability of
classification for each cell. TOM feeds this data to both the short term planner
and to the Graphical User Interface (GUI).

Long term planner: The long term planner is responsible for determining the
route the truck will take through its mission. It reads the Route Network
Definition File (RNDF) and Mission Definition File (MDF), then based upon the

A Perspective on Emerging Automotive Safety Applications 567

GPS position of the truck, determines where it is on the route network and creates
a high-level plan consisting of a sequence of RNDF waypoints to reach the
checkpoints specified by the MDF. This plan is devised using Dijkstra’s Shortest
Path Algorithm, with edge weights in the constructed graph determined based on a
variety of factors, including estimated distance, speed limit specified in the MDF,
and whether or not the system has recently experienced that road to be blocked.
The long term planner provides the planned route to the short term planner.

Short term planner: The short term planner takes as input the position of the truck,
the next goal from the long term planner, and the fused map from TOM, and
produces a path to that next goal. The planning problem is formulated as a
gradient descent in a Laplacian potential field.

Speed planner: The speed planner takes as input the obstacle map and the path
computed by the short term planner and calculates safe speed along that path by
considering a number of issues, including intersecting tracks, proximity to
obstacles, curvature, speed limits and zones.

Path follower: The path follower takes as input the position, heading and speed of
the truck, and a list of path points from the speed planner, and calculates a goal
point on the desired path just ahead of the front axle using a vehicle model. The
position and curvature of the path at the goal point is used to calculate a steering
wheel position command which is passed to the vehicle control unit (VCU),
implemented in a dSPACE AutoBox.

4 Transition to the IVS/MIT Vehicle Architecture

An internal assessment of the state of the project was conducted after the IVS
team took a few weeks to digest the results of the DARPA Site Visit. Although
the demonstrated functionality was sufficient to satisfactorily complete all the
required Site-Visit milestones, it had become obvious that there were a number of
problems with our approach that would preclude completing the final system
development on schedule. These issues included unexpected delays introduced by
both hardware and software development, and were compounded by team staffing
limitations. While we will not elaborate on the details, we will point out a couple
of examples to help the reader understand our subsequent and seemingly radical
shift in plans. At the time of the Site Visit, our middle-ware employed a field-
based, Laplacian path planner, which had been demonstrated in other robotic
applications (IVS 2007a and references therein), notably with Unmanned Air
Vehicles (UAVs). In the context of the DUC, successful implementation of the
Laplacian planner required the inclusion of pseudo obstacles to prevent “undesired
optimal” paths; a simple example being a 4-way intersection. Without painted lane
markings existing within the intersection itself, the “un-aided” Laplacian planner
would calculate the best path as one passing directly through the center of the
intersection, obviously causing the vehicle to depart its lane. While these
limitations could be overcome in principle, in practice, the myriad of topological
possibilities made this algorithmic approach time consuming and cumbersome.

568 J.R. McBride et al.

Also of major concern at the time of Site Visit were infrequent, but significant
positional errors exported by the INS. Although the PING IMU was undeniably
orders of magnitude more sensitive than the commercial units employed by most
of the other teams, this also resulted in complications with tuning its prototype
software (Kalman Filter parameters) to accommodate a commercial GPS input as
one of the state estimators. Given that the functionality of virtually everything on
the vehicle relied on having accurate pose information, Honeywell focused its
efforts on this system, and it was decided that additional external collaborative
resources would be solicited to complete final system development on schedule.

MIT was a logical candidate in this regard, owing largely to the pre-existing,
well-established Ford-MIT Research Alliance. A fair number of projects falling
under this umbrella included students and professors whom were also part of MIT’s
DUC team. Furthermore, the teams had been in contact beforehand, as Ford had
provided them prior support, including helping with the acquisition of their Land
Rover LR3 platform. As a side benefit, expanded contact between the teams would
allow both sides to assess options for future joint autonomous vehicle research.

By mid-August, an agreement in principle had been made to work together.
After clearing this proposal with DARPA, an implementation plan was devised.
Although IVS had an existing set of code, albeit with gaps, it was instantly
apparent that it would be far quicker to simply migrate to the MIT middle-ware
code (Leonard, 2008), than it would be to try to merge disparate pieces of
software. On the positive side, the MIT software was already successfully running
on their platform, and the code structure was generic enough to incorporate most
sensor types into their mapper. On the negative side, we would be dealing with a
vast amount of code for which we had no inner knowledge, the transition would
require a large rip up of hardware and software architecture, and we would no
longer have a second identical truck for development.

4.1 Undeployed IVS Sensor Technology

Another one of the negatives of transitioning to the MIT architecture was that
several novel sensing systems that were being developed by IVS (and partners) had
to be put on hold so that all personnel resources could be reallocated to ensure
successful completion of the ambitious software transition. The remainder of this
section illustrates a few examples, not only to point out that they could have been
migrated to the MIT platform given enough time, but also because they are
still under consideration and/or development, and moreover there may be useful
new information for the reader (particularly concerning results from the Velodyne
lidar effort).

4.1.1 Lane Detection
Redundant vision systems were under development to aid in the fault tolerance of
lane detection. A customized Mobileye vision system with a primary focal point of
40m and a Cybernet vision system with a primary focal point of 25m were in
development prior to Site Visit. Each system was capable of detecting lane
markings and vision gradient differences between the roadway and side of the road.

A Perspective on Emerging Automotive Safety Applications 569

Fig. 12. Delphi/Mobileye radar/vision fusion with lane detection and in-path targets.

Fig. 13. Cybernet vision system roadway and traversability detection example.

Figure 12 is an example of urban driving data acquired from the Delphi/Mobileye
fused radar and vision application taken on a surrogate vehicle using a production
intent system comprised of a single radar and camera. The XAV-250
implementation was being developed to use three radars, effectively increasing the
radar FOV for forward object detection by a factor of three. Although the vision
system has a fairly wide FOV, it was initially intended to only confirm radar targets
from the center channel. Figure 13 illustrates two alpha-version feature-extraction
applications derived from the Cybernet vision system as actually installed on the
XAV-250. The algorithm running on the left identifies lane markings and other
sharp-edged features, such as curbs and sidewalks. The algorithm on the right
searches for traversable surfaces, based upon contrasts in color and texture, and is
heavily influenced by the sample roadway immediately in front of the vehicle
(yellow box).

4.1.2 Velodyne Processing
The Velodyne HDL-64E was the primary perceptual sensor used by team IVS, both
before and after the transition to the MIT code base. It provided 360° FOV
situational awareness and was used for both static and dynamic obstacle detection
and tracking, curb and berm detection, and preliminary results also suggested

570 J.R. McBride et al.

painted-line lane detection on asphalt was possible via the intensity channel. The
HDL-64E operates on the premise that instead of a single laser firing through a
rotating mirror, 64 lasers are mounted on upper and lower blocks of 32 lasers each
and the entire unit spins. This design allows for 64 separate lasers to each fire
thousands of times per second, providing far more data points per second and a
much richer point cloud than conventional “pushbroom” lidar designs. Each
laser/detector pair is precisely aligned at predetermined vertical angles, resulting in
an effective 26.8° vertical FOV. By spinning the entire unit at speeds up to 900rpm
(15Hz), a 360° FOV is achieved (resulting in 1 million 3D points per second).

Sampling characteristics: Each Velodyne data frame consists of 12 “shots” and is
acquired over a period of 384μs. This data frame is packetized and transmitted
over the network via UDP at a fixed rate. To properly decode and transform
points into the world-frame requires compensating for the rotational effect of the
unit, as all of the lasers within a block are not fired coincidentally. Each shot
consists of data from one block of 32 lasers; however, the Velodyne only fires 4
lasers at a time with a 4μs lapse between firings during collection of a full shot.
Therefore, 32 lasers per block divided by 4 lasers per firing yields 8 firings per
shot, with a total elapsed time of 8×4μs = 32μs (thus 32μs×12 shots = 384μs to
acquire 1 data frame.) This means that per shot, the head actually spins a finite
amount in yaw while acquiring one shot's worth of data. The reported yaw angle
for each shot is the sampled encoder yaw at the time the first group of 4 lasers are
fired, so that in actuality, the yaw changes by δyaw = spin_rate×4μs between the
groups of 4 firings, such that on the 8th firing the unit has spun by
spin_rate×28μs. For example, on a unit rotating at 10Hz (i.e., 600rpm), this would
amount to 0.1° of motion intra-shot, which at a range of 100m would result
in 17.6cm of lateral displacement.

Coordinate transformation: Figure 14 illustrates the HDL-64E sensor geometry
used for coordinate frame decomposition. The unit is mechanically actuated to
spin in a clockwise direction about the sensor’s vertical z-axis, zs. Encoder yaw,
Ψ, is measured with 0.01° resolution with respect to the base and positive in the

ys

xs

zs

Yaw

ys

xs

zs

ys

xs

zs

Yaw

α

Ψ

α φ

ys

xs

ph
θpv θ

d

dh

y’s

x’s

zs

xs-ys planeα

Ψ

α φ

ys

xs

ph
θpv θ

d

dh

y’s

x’s

zs

xs-ys plane

Fig. 14. Velodyne HDL-64E sensor coordinate frame used for decomposition (laser beam
depicted in red.)

A Perspective on Emerging Automotive Safety Applications 571

direction shown. Each laser is individually calibrated and parameterized by its
azimuth, φ, and elevation, θ, angle (measured with respect to the rotating x’s-y’s
sensor head coordinate frame) and by two parallax offsets, pv and ph, (measured
orthogonal to the laser axis), which account for the non-coaxial laser/detector
optics. Thus, a time-of-flight range return can be mapped to a 3D point in the
sensor coordinate frame as:

p

hv

e

s

s

s

ppd

z

y

x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0

sin

cos

cos

cossin

sinsin

sin

coscos

sincos

ˆ

α
α

θ
αθ
αθ

θ
αθ
αθ

 (1)

where d is the measured range and α=Ψ-φ. For real-time computation, this
mapping can be pre-cached into a look-up-table indexed by laser ID, i, and
encoder yaw (i.e., a 64 by 3600 LUT) so that only three multiplies and three
additions are needed per laser for decoding to the sensor frame:

),(),(ˆ ψψ ipiedxs += . (2)

Points can then subsequently be mapped to the world-frame based upon vehicle

pose. In our system, navigation updates were provided at a rate of 100Hz,
therefore, we causally interpolated vehicle pose to the timestamp of each shot
using forward Euler integration with a constant velocity kinematic model.

Site-visit technology – UMichMap: An independent alliance between Ford and
the University of Michigan was responsible for developing UMichMap, the
software package that interfaced and processed the raw data from the HDL-64E.
At the time of the Site Visit this software comprised two well tested algorithms:
obstacle/traversable area detection and lane marking detection. A third algorithm,
dynamic obstacle tracking, was undergoing alpha testing. All algorithms
classified 0.25m grid cells within a sliding tessellated map that was output to a
global map for fusion with other sensor maps.

Obstacle detection involved firstly eliminating overhead features (bridges,
trees, etc.) that did not obstruct the safe passage of the vehicle. An object within a
cell was then classified as an obstacle if it vertically exceeded an above-ground-
plane threshold of 0.25m and there was confirmational evidence from neighboring
cells. During the demonstration runs at the actual Site Visit, this threshold was
temporarily increased to 1m due to a ranging problem in the presence of retro-
reflective tape (discussed below). Preliminary results of lane detection were
positive. The algorithm was based upon thresholding the Velodyne intensity
channel returns and then fitting a contour to the remaining data points using a
RANSAC (Fischler, 1981) framework. Simply speaking, if the return amplitude
ranged from a value of 200 up to the maximum of 255, it was considered to be a

572 J.R. McBride et al.

Fig. 15. UMichMap Velodyne LIDAR interface.

candidate lane marking (for comparison, typical range intensities for asphalt were
well below a value of 100). Of those remaining thresholded points, those with a
sufficient RANSAC model consensus were deemed actual lanes. Lastly, a
graphical user interface using GLUT (OpenGL Utility Toolkit) was developed for
real-time display, data log playback, analysis, and calibration.

Figure 15 is a composite image illustrating how data captured from the
Velodyne is processed in the UMichMap system architecture. The photo on the
left is a typical road segment at Ford’s Dearborn campus. The center image
depicts a single data frame captured from the Velodyne HDL-64E, with each
LIDAR beam color-coded by the intensity of the return. One million range
measurements per second are transformed into Earth frame coordinates, used to
map the ground plane, and determine where the XAV-250 can physically drive.
This “driveability” index (one of several exported attribute features) is shown on
the right for each 0.25m x 0.25m cell surrounding the vehicle. It should be noted
that as the vehicle moved, the driveability map would rapidly fill in as the laser
beams swept the entire region in front of the truck.

Site-visit lesson – lidar issues associated with highly reflective materials: The
software developed for the Velodyne lidar proved to be a huge success, especially
after incorporating the latest firmware upgrades that were designed to correct
some vexing hardware issues. However, one item that had yet to be perfected, and
for that matter is still unresolved, involves the intensity channel information from
each of the 64 beams in the HDL-64E model. The last firmware upgrade enabled
our unit to detect obstacles to beyond 100m, and when our vehicle was parked
anywhere within the Site Visit course, we were easily able to detect all of the
painted lines.

Furthermore, the center of the lines registered in our map to within one pixel or
less of where they were calculated to be from the geometry of the course as
determined by the GPS survey markers (for the record, it is not known how
accurately the lane marking tape was actually laid with respect to these points).

A Perspective on Emerging Automotive Safety Applications 573

Fig. 16. Michigan Proving Grounds vehicle dynamics test Area, precision steering course,
and Site Visit Course. Lane markings for the Site Visit course were laid out using
reflective highway construction tape. The intersection area contained in the red rectangle is
discussed in the next figure.

Surprisingly, when we processed this data through the obstacle detection
algorithm, we saw phantom obstacles appearing on the lines, growing in size with
distance from the Velodyne. A brief discussion of lidar is needed in order to
explain this effect. Most lidar manufacturers calculate the range based upon the
time at which the back-scattered (returned) beam intensity reaches its maximum.
Under normal circumstances, this would physically correspond to the brightest
spot of the projected beam, typically the center of the dispersed spot. The problem
is that laser returns from highly reflective materials, such as retro-reflecting paint
found on traffic signs (in our case, road construction tape) are orders of magnitude
brighter than from normal materials. As such, the return will immediately saturate
the detector, and the peak signal will occur at the time when the beam first strikes
the reflector, and not necessarily at the center of the beam spot. As such, the
circular sweeping beam from the Velodyne produces a zigzag discontinuity in the
range measurements upon crossing a retro-reflecting line. Just prior to and after
striking the line, the range is correct. However, when the beam first strikes the
line, the perceived range is too short, and at the point where the beam exits the
line, the range is perceived as too long. The magnitude of the discontinuity
increases with distance owing to the divergence of the projected beam, and over
the span of the Site Visit course, could exceed 0.5m. The implications for obstacle
detection algorithms are obvious.

There were at least three methods we considered to deal with this. One was to
simply leave the lines as real obstacles in the map. The problem with this
approach is that the planner needed to ignore lines when passing stalled vehicles,
and additional logic would have been required to establish that these were in fact
lines. Additionally, declaring them as physical objects would slightly narrow the
lane widths (by at least 2 pixels, each 0.25m wide), something we could ill afford

574 J.R. McBride et al.

Fig. 17. We observed large range variations as the beams swept over road lane marking
tape at our Site Visit course. These delta ranges ended up causing our obstacle detection
algorithm to put spurious pixels on the map in these locations. Note the 4-fold symmetry in
the lane “zigzag” about the lateral and longitudinal axes. The red arrows highlight that this
effect is more pronounced as the laser incidence angle to the line increases; the yellow
arrows show that this effect is less so when the sweeping angle of incidence is small.

with a vehicle the size of an F250. Secondly, we had characterized the intensity of
laser returns for each of the 64 beams when scattering off asphalt (Figure 19);
hence we could easily identify the lines from the pavement. While we did in fact
demonstrate this method as means to easily discriminate lane markings, it required
more logic to implement than the temporary solution we settled upon – simply
raising the threshold for what was declared an obstacle.

Interestingly, a somewhat similar phenomenon was observed while the vehicle
was parked in the garage at our Site Visit location, which had a smooth cement
floor. A gaping hole appeared in the range map in front of the vehicle. Upon
further investigation, we noted a large retro-reflecting sign on the wall several
meters in front of the vehicle. The back-scattered laser return from the floor was
obviously far weaker than the forward-scattered signal off the floor and back again
from the bright sign. The sign was thus observed twice – once in the correct
location by the higher elevation beams which hit it directly, and secondly “beneath
the floor” by the beams that reflected off the cement and then struck the sign.
Unexpected artifacts of this nature plague nearly all sensors, and as such explains
the need for redundant sensing systems and conformational data in production

A Perspective on Emerging Automotive Safety Applications 575

Lane marking tape

Fig. 18. Screen capture (top) of some of the beams crossing a single piece of lane marking
tape, ~10cm wide. The lilac colored one is laser #0, and in our configuration falls on the
ground at the 20m horizontal range. The concentric circles are ± 0.25m from the nominal
arc everywhere else. Conceptually, a simple minded explanation (bottom) would be
provided by the following observation – if the maximum intensity in a range sample return
defines the range, then we could see something like that which occurs in the real data

Fig. 19. Inter-laser intensity variation within a single scan across a uniform asphalt surface.

576 J.R. McBride et al.

products like automobiles. While we were concerned that this might be an issue in
the race, as far as we could ascertain, traffic signs and license plates were never
aligned so as to produce these ghost obstacles.

4.2 Making the XAV-250 “Look” Like MIT’s LR3

At the start of the transition to the MIT architecture (Figure 20), the MIT team
members were actively engaged with tasks to add advanced navigation traffic
capabilities to their platform. To minimize distractions to their efforts, it was
decided to change the XAV-250 actuation, infrastructure, and sensing suite to
match MIT’s LR3 as closely as possible. With these alterations, it was
also necessary for Ford to write several software and interface modules, as
illustrated by the schematic in Figure 21. Some of the notable major changes are
listed below:

• In the Site Visit configuration of the IVS vehicles, the compute cluster used
a mixture of Advantech and Dell servers. The Dell servers were smaller
and had higher-speed CPUs, while the physically larger Advantech servers
had increased external I/O card capacity and were compatible with the
MathWorks xPC rapid prototyping software. To increase computational
power, the Advantech computers were removed and the Dell computers
from both IVS vehicles were combined into the race vehicle, resulting in a
compute cluster with 24 compute cores. Although less than the 40 cores
used by MIT, it was sufficient to run their core software with our reduced
sensor set.

• With the removal of the Advantech computers, the CAN concentrator was
replaced with an array of EthCAN modules. These modules were based
upon a Keil software evaluation board (model MCB2370) using an ARM9
processor and were programmed to pass CAN messages to the compute
cluster via Ethernet. Each module supported two CAN networks. For each
CAN message received, the EthCAN module would transmit the CAN
header information and data bits using one Ethernet packet. Similarly, an
Ethernet message could be sent to the EthCAN module and it would
repackage the information to produce one CAN message. The EthCAN
array was used to interface the radars and VCU (dSPACE AutoBox) to the
main compute cluster. It should be noted that the MIT software
architecture does not take advantage of the pre-processing that resides
within the ACC radar units (e.g. closest in path target identification).
Relying solely on raw radar data, the MIT development team created their
own radar processing software. The reader is directed to the MIT
documentation (Leonard, 2008) for details related to this data processing.

• The EthCAN modules and the PING had difficulties supporting high speed
Ethernet traffic. In the final configuration, two additional Ethernet switches
were added to form low (10Mb/s), medium (100Mb/s) and high speed
(1Gb/s) networks.

A Perspective on Emerging Automotive Safety Applications 577

• In the ADU command interface, control messages sent from the MIT core
software were repackaged and sent via CAN messaging to a dSPACE
AutoBox for by-wire execution. An EthCAN module performed the
conversion between Ethernet and the AutoBox CAN network. The
AutoBox contained the VCU software which controlled the low-level
functions of the by-wire systems, and monitored signals for fault detection.
Hardware-based monitoring was also implemented if the CAN connections
were broken or the network failed. If a hardware, software or out-of-range
signal was detected, an emergency stop was requested. In a similar fashion,
the vehicle by-wire states were sent back to the main controller module
running in the MIT core software for state information and for fault
monitoring.

• To avoid camera interface issues, the team decided the quickest way to
implement the MIT lane detection algorithms on the IVS vehicle would be
to add 3 roof mounted Point Grey Firefly MV cameras. The number of
cameras was limited by computational capability. Unfortunately, the
Mobileye system was abandoned due to its incompatibility with the
MIT software architecture. On a similar note, the Cybernet algorithms,
which had been operational well in advance of Site Visit, were also never
integrated.

• In contrast to the LR3, the XAV-250 was equipped with Delphi BUA
radars which gave nearby obstacle information out to a range of five
meters. This improved reliability in detecting low-lying, close-by obstacles,
which fell within the Velodyne vehicle shadow. In order to take advantage
of the BUA units, Ford developed a sensor interface function that allowed
BUA data to be processed by the MIT software. This software function first
read the BUA messages from the CAN bus in real time and then
transformed the range returns into map coordinates based on the BUA
calibration and vehicle pose within the map. If sufficient returns had
accumulated in a particular location, that position, with the inclusion of a
dilatational radius, was classified as a high-weighted obstacle in the map.

• The LR3 incorporated a large number of SICK line scanning lidars, which
have a nominal resolution of 1° per step. The XAV-250 used two high
resolution Riegl lidars for the same “pushbroom” functionality, acquiring
range returns at 0.02° per step. The Riegl interface function generically
repackaged the data into laser scan packets that the MIT software could use.

• The MIT software expected input from an Applanix POS LV 220 INS, thus
an emulator was written by Ford to pass the Honeywell PING data in the
same format.

Much of the effort to adapt the MIT software to the IVS platform was spent
changing calibrations concerning vehicle parameters and sensor reference
locations. In most cases, the changes could be made rather easily via calibration
files; however, in some instances, these values were hard-coded constants that

578 J.R. McBride et al.

Fig. 20. Schematic drawing of the MIT base code software architecture (Leonard, 2008).

Novatel

GPS PING
Ping to

Applanix
Emulator

Riegl
LADAR

(x2)

Riegl
Interface
Software

ACC
RADAR

(x8)
EthCAN

BUA
RADAR

(x4)
EthCAN

BUA
Interface
Software

Camera
(x3)

MIT Core
Software

Mapper

Planner

Vehicle
Control

ADU to
Command
Interface

By-Wire
States to

Main
Controller

EthCAN AutoBox

Estop
Hardware

Estop
Interface

Buttons &
Switches

Radio
Estop Parking

Brake

Throttle

Main
Brakes

Transmission

Steering

TurnSignals

IgnitionSensor and
Vehicle

Calibration
Parameters

Fig. 21. Schematic drawing of the software architecture employed on the IVS vehicle after
the transition to the MIT code.

needed to be identified and changed within the code itself. Within three weeks
after deciding to reconfigure the XAV-250, testing began using the MIT software
and toolset.

Once testing was underway, it was determined that some additional physical,
electrical and software changes were needed to accommodate the “denser”
computing cluster, including the installation of larger battery capacity,
redistribution of electrical loads between the front and rear electrical systems, and
redirection of the cooling air flow in the rear environmental computer enclosure.

A Perspective on Emerging Automotive Safety Applications 579

5 Performance Analysis

5.1 Testing at El Toro with MIT

MIT team members visited Dearborn in early October, with the primary objective
to help fine-tune the parameters which are used by the vehicle prediction model
portion of the planner code. Prior to this time, we were having limited success in
operating their code on our vehicle. However, once this exercise was complete,
we quickly thereafter were able to demonstrate a variety of autonomous behaviors
on the XAV-250, many of which exhibited peculiarities such as MIT was
reporting from their LR3. It was at this point that the potential utility of
collaborative testing was fully realized, and MIT suggested that we join them at a
test facility on the El Toro Marine Corps base. With some last minute alterations
to our schedule, we were able to divert the truck to southern California and
achieved approximately a week of joint testing prior to NQE.

Testing with two different robotic vehicles on the course at the same time
proved to be very productive, with both teams learning from each other. MIT had
been at El Toro for a couple of weeks prior to our arrival and had constructed a
RNDF of the road network, as well as a variety of MDFs. On our first attempt at
their course, we had serious difficulties staying in our lane due to a constant bias
in position. We had witnessed this before, watching a number of elite teams
exhibit this behavior at the first two Grand Challenges. The problem was obvious
to us – MIT used an Applanix INS, which by default exports coordinates in the
NAD83 datum, whereas our system used the WGS84 datum, the same as DARPA
uses. In southern California, these happen to differ by approximately 1.5m, or
roughly half a lane width. After a code fix by MIT and a translation of coordinates
in the RNDF, we were soon driving robotically past one another without issues.

With some cooperative help from MIT, we were able to successfully
demonstrate operational capability of each of the sensors and processes (specific
task algorithms, such as curb detection) that the MIT code would support on our
platform. A highlight of the testing was the ability to validate all of the
intersection precedence scenarios with both robots and traffic vehicles involved.
Numerous consecutive runs were made to assure consistent behavior, and the
success of this effort was later apparent at NQE and UCE, where (to our
knowledge) neither MIT nor IVS ever made a traffic-related driving error.
The only real downside of traveling to El Toro was the interruption caused by the
Los Angeles wildfires, which shortened our available test time and introduced
some hardware problems associated with the fallout of very fine ash.

As a final note, we would like to clarify that when IVS and MIT finished
testing at El Toro, there was a code split and no further technical interaction
occurred between the teams until after the race. We felt strongly that there should
be no advantage afforded to either team, relative to the field of contenders, based
upon any prior knowledge gained while undergoing testing at NQE.

580 J.R. McBride et al.

5.2 NQE and UCE

At various points during the NQE and/or UCE we successfully demonstrated each
of the sensor modalities and software algorithms that were capable of being
supported by the MIT code. As it turned out, it was not always possible to operate
the full sensing and software suite simultaneously, and as such, in the end we
converged upon the simplest stable configuration possible. This consisted of GPS
waypoint following, the Velodyne lidar, and a small set of Delphi ACC radars,
notably including the front forward unit. Throughout our vehicle evaluation on
the NQE sites, and during additional testing, we encountered and solved numerous
problems, both with the hardware and software. There were, however, some bugs
for which no near-term solution existed, and therefore this impacted what we
could reliably run. Even though some of the observed anomalies occurred on a
rare basis and we could have likely operated more of our system, we chose not to,
as we did not understand the root causes, and moreover because the same
functionality could be obtained with a simpler solution. To reiterate, although
some sensors were not used for autonomous decision making, the sensor hardware
itself was operational, and in many cases data from these systems was recorded for
later re-simulation studies.

5.2.1 NQE – Area C, the “Belt Buckle”
Our first test session occurred in Area C, referred to by many as the “belt buckle”.
This test was presumably designed to evaluate navigation, intersection logic and
traffic precedence, and route re-planning when presented with a blocked path.

For both of our runs in Area C, we demonstrated flawless execution of
intersection logic and traffic precedence, with the truck stopping precisely at the
painted stop lines and no errors occurring in any of the intersection scenarios. In
each run, we accurately navigated the course via GPS waypoint tracking and by
utilizing the curb detection process fed from both types of lidar – the two
pushbroom Riegls and the Velodyne. Although video was recorded for data
logging purposes, the lane detection process was not employed for navigational
guidance. This decision was made primarily in light of the abundance of curbs and
the faintness of painted lines in this neighborhood, but to some extent by issues we
were experiencing with our vision hardware and software. At the time of the first
run, we had not had an opportunity to validate the camera calibration (following
transport from El Toro), and on the second run, we did not want to introduce
changes to what had what had worked successfully the first time.

For us, the route re-planning proved to be among the most problematic of any
of the NQE tasks, and we would spend the majority of our remaining free time at
the event in an effort to solve this issue. On our first run in Area C, the truck was
issued a DARPA pause command after it attempted to circumnavigate the road
blockage by cutting between the construction barrels and a large tree in the
adjacent yard. We were allowed to re-position the vehicle on the road, and on the
second attempt it executed a U-turn; however, it did so by departing the street
again and completing the maneuver on a lawn. When the truck reached the second

A Perspective on Emerging Automotive Safety Applications 581

Fig. 22. Area C – intersection logic and dynamic re-planning. Aerial photo of Area C
course (top); red arrow indicates the intersection depicted in figures below. XAV-250
successfully exhibits advanced traffic behavior (bottom left). MIT viewer rendering of the
RNDF and tracked cars at the intersection (bottom right).

blockage constructed from stop signs on gated arms, it immediately recognized
them as obstacles, stopped for several seconds, and again appeared as if it was
going to seek a route around them. Coincidentally, our test time ran out at this
moment, so the final outcome in this scenario remains uncertain.

The behavior exhibited here was initially unexpected, and to explain it, requires
a discussion of the MIT planner code. The blockage occurred immediately in
front of a checkpoint on what was essentially a circular loop. In this case, it is
topologically impossible, following highway rules of the road, for the vehicle to
re-plan a route reaching the checkpoint. The only way this point could be
achieved would be to a priori assume that the same blockage would exist after the
vehicle had circled the course in the opposite direction; and furthermore, that the
vehicle could and would execute another U-turn so as to be in the correct lane in
the correct orientation. Unfortunately, this scenario was overlooked in the
planning logic, and had not been discovered in our limited prior testing, as there
had always been an intersecting roadway, providing a valid alternative route,
between blockages and the next checkpoint.

582 J.R. McBride et al.

5.2.2 NQE – Area A, the “Circles of Death”
The second test site we visited was Area A, a place we personally called the
“Circles of Death”. By our account, there were about a dozen traffic cars traveling
bi-directionally around an outer oval of roughly 300m in circumference. Our task
was to make left hand loops on a subsection of the course, yielding through gaps
in the oncoming traffic, and pulling out from a stop sign onto a very narrow
section of road abutted on one side by a solid concrete barrier.

We felt that our performance here was very good, despite receiving a fair
number of honks from the traffic vehicles. In each of our two attempts, we
completed more than a dozen laps, many of them perfect. Our robot always
recognized traffic and precedence and never came close to hitting a moving
object. The difficulty in this task stemmed not only from the density of traffic, but
also from our interpretation of the rules, in which we assumed a requirement of
allotting several vehicle lengths of spacing between our truck and the traffic
vehicles. Given that our vehicle is roughly 7m in length and we had to allow
spacing in both directions when exiting the stop sign, this left very little room or
time for traffic gaps along the 60m stretch we were merging onto. Adding to the
challenge was the 9 seconds it took for the XAV-250 to accelerate from a stop to
10mph through the tight 90° turn. There were quite a number of cases in which
our vehicle would determine it was clear to go, and then balk as a traffic vehicle
would make the far turn from the transverse segment of the course onto the
segment we were merging onto. Although the Velodyne was identifying the traffic
vehicles across the entire span of the test site, our intersection algorithm did not
classify these vehicles as obstacles of concern and assign them a track file until
they entered a pre-defined zone surrounding the intersection itself.

On our first attempt at the course, we used GPS waypoint tracking and vision-
based detection of lane markings for navigation, and left the curb detection
algorithm off. There were few curbs on the loop, and we had also recently
discovered the potential for a software bug to appear when the vision lane tracker
and curb detection algorithm reported conflicting estimates of the lane width or
position. This approach worked on all but one lap. In that instance, a group of
traffic vehicles passed very close to the F250 on the corner furthest from the stop
sign, the truck took the corner perhaps a meter wide, and struck or drove atop the
curb. We were generally very pleased, however, with the registration of our
sensors (lidar and radar) with respect to ground truth, as the vehicle maintained the
center of its lane while tracking very close to the concrete barriers.

We did make a change to our sensing strategy on the second run, however. In
this case, we chose to run the curb detection algorithm and turn the vision-based
lane tracking off. This decision was prompted in part by some bugs that had
cropped up in the vision software, as well as by performing a re-simulation of
our previous run. This simulation showed that the curb function provided
excellent guidance along the concrete barriers and on the curbs on the back
side of the loop, with the GPS waypoints on the other two segments being
sufficient to easily maintain lane centers. With this configuration, all loops were
navigationally perfect.

A Perspective on Emerging Automotive Safety Applications 583

Fig. 23. Area A “circles of death.” XAV-250 waits to merge into traffic (left). MIT viewer
showing the RNDF course with obstacles derived from the radars and Velodyne point
cloud (right).

5.2.3 NQE – Area B, the “Puzzle”
Area B was the last of the sites in our testing order. This area was very
representative of the final event, with the exception that it had an abundance of
stalled vehicles littering the puzzle-patterned streets. It was also very similar to
the roads we tested on at El Toro, and hence we expected to perform well. To the
contrary, we experienced our worst outings on this portion of the course, with
most of our failures the result of some bewildering hardware failures, software
bugs and a bit of misfortune. We were not able to fully complete the mission on
either of the runs, and as a result, ended up having scant data to analyze in order to
prepare for the finals. It would have been greatly beneficial to our team if
DARPA had provided a practice site resembling this area.

On our first attempt at Area B, we choose to navigate using the same sensor set
successfully employed in Area C – GPS waypoint tracking and curb detection
derived from lidar. Absent from our sensing suite was the forward facing radar
cluster, as we had been observing a fair number of false detects from ground
clutter on these radars, and we feared this would be a bigger concern in Area B
than in Areas A and C. It should also be reminded that the MIT code utilized the
raw radar signals, as opposed to filtered output that normally is exported from the
Delphi production radars. Given that the Velodyne lidar had been reliably
detecting all obstacles of interest, this was deemed an acceptable solution. The
vehicle demonstrated the ability to execute parking maneuvers, navigate around
stalled obstacles, and again performed without flaw at intersections and in the
presence of traffic. However, we did experience occasional issues with the curb
detection algorithm, and in some cases missed curbs that existed, resulting in
behaviors such as cutting corners between waypoints. In other cases, we
misclassified obstacles that were not curbs as curbs, resulting in failsafe modes
being invoked, in which case curbs could again be ignored and similar driving
behaviors would result. After jumping a curb about midway through the course,
the Velodyne process crashed due to the physical unseating of a memory chip.
Presented with no Velodyne obstacles in the map, the vehicle drifted at idle speed
and was DARPA paused just as it was about to strike a plastic banner located at
the interior of one of the puzzle pieces. Although it is highly improbable we would

584 J.R. McBride et al.

Fig. 24. Site B course RNDF and aerial photo.

have completed the course without the Velodyne, had the front radar been on, we
would have likely detected the banner and stopped. Shortly thereafter, we re-
aligned the front radars to a higher projection angle above the ground plane. In
order to preclude the possibility of getting a false return from an overhead object,
such as an overpass or low hanging tree branch, we filtered the data to reject
returns from ranges in excess of ~20m.

Our second attempt at Area B came after sitting for 7 hours in the sun on one of
the hottest days of the event. We were scheduled to begin promptly at 0700;
however, at each of the areas where we were tested, we were continually
leapfrogged in the schedule by other teams in the field. Given that this was our
last run before the finals, we decided to run all sensors and processes, including
the vision lane tracking and lidar curb detection, having felt we had resolved the
conflict between these two processes, and wanting to acquire a complete data set.
Upon launch, the vehicle proceeded nominally for a few hundred meters, then
began to stutter, starting and stopping abruptly. DARPA immediately halted the
test and sent us back to the start chute for another opportunity. Upon examining
the data logs, it was found that we were flooding the computer network with
traffic, and as a result navigation and pose messages were being periodically
dropped, causing the stuttering motion observed in the vehicle. We terminated the
lane detection function and re-launched the robot. It proceeded normally, until
reaching a stop sign at an intersection exiting the interior of one of the puzzle
pieces, and at this location a significant discontinuity in the ground plane was
formed by the crown of the facing road and/or the rain gutter between the two
perpendicular roads. This was perceived to be a potential curb, causing the
planner to keep the vehicle halted while it attempted to resolve the situation. After
a brief stoppage, the truck idled across the street and into a lawn. A DARPA
pause command was ineffectual, and we were subsequently disabled. The data
logs revealed that the brake controller module indicated an over temperature
warning and refused to command brake pressure, which is consistent with the
observed behavior with regard to the DARPA pause vs. disable (which commands
the parking brake) commands.

A Perspective on Emerging Automotive Safety Applications 585

At least three serious issues were raised from testing in this area:

Vision: Our vehicle employed three cameras, two forward-facing with a combined
FOV of ~100°, and one center rearward facing. While MIT had significantly
more visual coverage, their lane detection algorithm was designed to accept a
variable number of camera inputs, and had been shown during testing at El Toro
to work acceptably with our configuration when clear lane markings were present.
However, during the NQE, we were unable to demonstrate reliable functionality
from the vision system on our platform, and are presently not certain whether
hardware or software contributed to these shortcomings.

Curb detection: The primary functions of the lidars were to detect obstacles and to
determine the topography of the ground around the vehicle, which was used to
determine traversable terrain, as well as to infer the existence of curbs. Generally
speaking, the algorithms which perform these functions do so by making a
comparison of the elevation changes or slopes of neighboring map grid cells.
Declaring something an obstacle is much easier than declaring something a curb,
especially in the case of the F250, where the ground clearance is more than 0.25m.
On the other hand, curbs are often less than 0.10m in height relative to the
surrounding terrain. The trick is to tune the thresholds in the software to maximize
detection while minimizing false positives. An additional complication is that
some features will correctly trigger a detection, yet not be an obstacle of concern.
Examples of this would include speed bumps, or other ground discontinuities such
as grated sewer covers, rain gutters, etc. At present, when this type of detection
arises, the MIT code relies on failsafe modes to make forward progress. Given
additional time to develop more sophisticated algorithms, and given redundant
sensing corroboration, this problem could be addressed in other manners, but that
was beyond the containable scope of the DUC effort.

While these false positives were infrequent, we seemed to be more sensitive to
them than MIT’s LR3, again presumably due to the differences between our
platforms. While MIT operated far more lidars – which could provide a greater
degree of redundancy – we feel that the issue was more likely related to the
fidelity of the lidar data. MIT’s pushbroom scanners, produced by SICK, sampled
at 1° intervals, and their Velodyne, which they operated at 15Hz, sampled at 0.15°
intervals. On the other hand, our pushbroom Riegls acquired data at 0.02°
intervals, and our Velodyne, rotating at 10Hz, sampled at 0.09° intervals. All
things being equal, our sensing set would be more prone to elevation noise with an
algorithm that compares neighboring cells. Once we realized this, we went back
and re-simulated all of our prior data sets, tuning the available parameters until we
no longer saw these false positives. In the process, we recognized that the
Velodyne alone was sufficient to detect curbs, and to avoid potential noise from
the Riegls, we did not incorporate them in this algorithm in the UCE.

Brake Controls: The IVS vehicle braking system was implemented by the use of a
brake by-wire system furnished by TRW, one of Ford’s primary brake suppliers. A
production level ABS module with the addition of custom hardware and software
modifications allowed for independent dynamic braking of each wheel of the

586 J.R. McBride et al.

vehicle with superior braking accuracy and increased braking bandwidth, as
compared with brake pedal displacement devices such as employed by some of the
competing vehicles. This module is capable of providing smooth control of vehicle
velocities down to 0.5m/s. Another advantage of this system is its quick recovery
time, which significantly enhances safety for development engineers occupying the
vehicle during autonomous test runs. The main disadvantage of this prototype
system was the inability to hold the vehicle at a complete stop for more than ten
minutes. As with all production ABS systems, the control module’s heat dissipation
characteristics are primarily specified for intermittent use, and therefore for our
application, the continuous braking utility of the ABS module was limited. To
protect the brake module from potential physical damage under these continuous
braking applications, an internal software integrator timer was employed.

If the brake module actually overheats and/or the internal software integrator
times out, all primary braking for the IVS vehicle is lost, and the vehicle would
begin to roll at the idle speed of the engine, with an e-stop pause command being
ineffectual. A similar time out failure had occurred during Site Visit, and at that
time, DARPA suggested shifting to park position and releasing the brakes during
an extended pause condition. This suggestion was an idea we had also
contemplated, but had not yet implemented due to time constraints. Once the Site
Visit was over, we did follow this approach.

5.2.4 UCE – The Finals
When we started the truck on the morning of the race, one of the servers was
inoperative. After some inspection, we discovered that the power supply to this
server was not functional, and we had to remove all the servers in the rack to
access it. Fortunately, we had a spare, and reassembled the system just in time to
make it into the queue. While we were going through our checklist in preparation
for the start, we discovered that the low-level controller was exporting bad data.
This was quickly traced to a faulty connector, which had likely resulted from the
pandemonium in replacing the power supply. This connection was fixed and the
low-level controller subsequently seemed to be behaving correctly. Given that we
were only two vehicles from the starting chute, and that it takes about 20 minutes
for the INS to stabilize, we opted not to power down and perform a complete
reboot of the system. This was a clear mistake, as corrupt data remained in the
system, causing our steering controller to command a lock left turn upon launch.
We were re-staged, and during this time, did reboot the system from start. The
second launch proceeded with nominal behavior. This incident points out a clear
problem which needs to be resolved before autonomous systems ever reach
production product viability – as has been shown with numerous other systems,
the customer is unwilling to wait for even a few seconds after ignition before
driving, much less the minutes it presently takes for computers (and INS systems)
to initialize or re-initialize.

Based upon the lessons we had learned during NQE, we decided to run UCE
with the simplest stable configuration of sensors and algorithms possible. This
consisted of GPS waypoint following, curb detection using only the Velodyne
lidar, and obstacle detection using both lidar types and a small set of Delphi ACC

A Perspective on Emerging Automotive Safety Applications 587

Fig. 25. Incident where the Cornell team tried to pass into XAV-250’s lane requiring
evasive maneuvering on XAV-250’s part to avoid collision. The red arrow denotes the
Cornell vehicle as seen in the Velodyne point cloud, while the overlaid camera image to the
lower right clearly shows the Cornell team in our lane.

radars, notably including the front forward unit and the 90° intersection scanning
units. Because we were somewhat handicapped by not being able to run the vision
system (aside from data logging purposes), we did insert a limited number of
additional waypoints into the RNDF in regions we deemed might present issues.

During the time our vehicle was operational, it navigated well, obeyed the rules
of the road, passed numerous robots and traffic vehicles, displayed correct
intersection logic and traffic precedence, and successfully demonstrated parking
maneuvers. Furthermore, it exhibited intelligent behavior when presented with the
scenario of an oncoming robot approaching us in the wrong lane, slowing down
and taking evasive actions to avoid a collision (Figure 25).

The failure mode for our vehicle occurred when we again detected a false
positive upon exiting the interior of one of the puzzle pieces. While at the stop
sign between this small road and the main road, the curb detection process
incorrectly perceived either the crown in the facing road or the sharp discontinuity
formed by the rain gutter to be a potential curb (Figure 26). Under normal
circumstances, the vehicle would have waited for a short period (nominally 90
sec) and invoked a failsafe mode which would have relaxed the curb constraint.
However, following the difficulties we had with the topological conundrum in
Area C, the timer for this process had been increased by an order of magnitude to

588 J.R. McBride et al.

Fig. 26. Failure mode of the XAV-250 during the UCE. The red arrow indicates a false
detect of an in-path curb at an intersection. For reference, the white arrow indicates the
stop sign in both the Velodyne intensity channel and camera imagery.

rigidly enforce curb constraints while we evaluated a potential fix for this issue.
Unfortunately, through oversight on our part, the timer had not been restored to its
default value and we were subsequently and fairly disqualified for excessive delay
on the course. When we rescued the truck, the planner was indicating a valid path,
waiting for the failsafe timer to expire. While we can not say what would have
happened for the remainder of the course, we do know that this oversight
prevented us from ever finding out.

6 General Observations and Lessons Learned

This section presents, in no particular order, a variety of the remarks contributed
by team members during the writing of the DARPA Final Report and this article.
While these comments obviously pertain to our perception of the DUC experience,
we suspect that many of these general observations and lessons learned will be
shared by other teams as well.

• We expect that all teams will complain to some extent about having
inadequate developmental and testing time between the announcement of
the DUC program and the UCE. It is a very ambitious goal to create a test
vehicle within a year, much less one that autonomously drives itself in
simulated urban traffic. Complicating the challenge is the large number of

A Perspective on Emerging Automotive Safety Applications 589

intermediate milestones. While we can certainly understand DARPA’s
need to assess interim performance, the Track A Funding Proposal, video
submission, kick-off meeting, informal interim reports, Technical Paper,
Site Visit, multiple revisions to rules and procedures, etc., are nevertheless
distractions, especially for teams with few members.

• Many of us felt that the DARPA Site Visit and NQE did not adequately
represent the final events at any of the three Grand Challenges. In some
sense they are actually a bit of a detour – the Site Visit because it requires
an integrated, fully-functional system too early in the development timeline,
and the NQE because it demands performance objectives that are not
actualized again in the Finals. From our discussions with other teams at the
event, we found that a significant number had designed specifically for the
Site Visit – often with surrogate platforms, sensors or algorithms – knowing
in advance that they would operate different systems if they were invited to
participate at NQE.

• From our perspective, we would encourage any potential future event to
create mission goals that are both clearly defined and realistic. Conversely,
we do understand the opposing perspective, in that specifying requirements
too succinctly can result in less innovative solutions. While we felt
DARPA did an excellent job of conveying goals at this Challenge, we also
feel that they were not entirely representative of a practical mission
application. Our assumption is that maps, with ample metadata, will exist
for both automotive and military applications. Referring back to an
example shown at the Washington briefing, it seems highly improbable to
expect a robot to stop within 1m registration of a stop line at one
intersection, when the neighboring intersection is completely devoid of
GPS coordinates and requires the vehicle to execute a 90° turn through it.
Corporate entrants, such as IVS, are driven by a production mindset
demanding system reliability, redundancy and robustness, and as such are
already prone to over-design for the Challenge, without the added burden of
trying to correctly guess in advance what the metrics for success will be.

• Similarly, corporate teams are often disadvantaged with respect to
universities or military contractors, wherein the metrics for success are very
different. Universities can draw upon a vast pool of inexpensive, talented,
and highly-motivated labor, and there is very little downside to not
performing well, as they are after all, “just a bunch of students”. On the
other side of the coin, corporate teams must justify the high costs of (very
long-range) internal research and development, and carefully weigh the
potential rewards vs. the numerous risks, ranging from liability to negative
publicity. Given that major corporations, and not universities, are
ultimately going to deliver military and commercial hardware solutions, we
would encourage DARPA to consider how to better engage their
participation without making all but the winner appear to be a loser.

• Testing in a realistic environment is absolutely critical to uncovering
system weaknesses ranging from flaws in logic to bugs in algorithms. A
thousand laps in a parking lot is no match for a mere few blocks of urban

590 J.R. McBride et al.

roadway. Unfortunately, finding safe and secure test facilities requires
connections, time and money. The IVS team was fortunate to have tested at
more than half a dozen locations prior to NQE, yet one of our most critical
bugs was not realized until we attempted Area C. It was difficult to test
potential fixes to this flaw, however, as the practice areas at NQE did not
contain representative features of the UCE, one of the very few disappoints
we had with DARPA’s execution of this event. It would have also been
useful if DARPA could have allowed teams a couple of days in which to
attempt the courses after the UCE was complete, so as to close the loop on
the learning process. Based upon our mutual testing with MIT prior to
NQE, we are convinced that if DARPA could arrange for a common testing
venue for all teams, autonomous ground vehicle technologies would
advance at a much faster pace.

• One of the lessons we learned, and not necessarily by choice, was that the
vehicle system does not need to be too complex to accomplish an amazing
amount of autonomous behaviors. While we did drive several portions of
the course with only the INS and Velodyne lidar, we would not necessarily
advocate implementing a system without added redundancy. It should
further be noted that we did not even come close to fully exploiting the
capabilities of the lidar, particularly in light of the incomplete
developmental work on the intensity channel data from the Velodyne HDL-
64E. If this hardware/firmware were reliably functioning, one could
essentially derive black and white vision simultaneously from the unit and
apply the wealth of existing image processing algorithms to the data to
significantly expand sensing capabilities. We are looking forward to
pursuing this area of research in the near future.

• When the IVS team initially started testing the Velodyne lidar, we frequently
lost GPS reception, and hence the INS pose information that was necessary
for correcting sensor data in our map. Given our close working relationship
with Velodyne, we were able to rapidly validate that the HDL-64E was
indeed generating sufficient EMI to jam the electronics on our NovAtel GPS
receiver. To solve this, it was deemed necessary to mount our GPS antennas
above the Velodyne, and to use a choke-ring design which minimized
multipath interference from below the antenna phase center. Without data it
is impossible to prove, but we believe that many of the difficulties
encountered by other teams during the pre-final practice sessions were due
to EMI emanating from the many Velodyne units. There was some anecdotal
evidence that other electronic devices could also interfere with our system,
including 802.11 wireless communications from laptop computers in the test
vehicle. Although it was not employed at NQE, our secondary e-stop
system was known to fail if more than one 2.4GHz device (hand-held
radios) was keyed simultaneously, something we actually encountered
during Site Visit. In a similar vein, the hand-held radios used by DARPA
during NQE/UCE were powerful enough to cause the Velodyne units to
drop Ethernet packets (this was first observed by Stanford and later verified
in the lab by Velodyne). If we are to allow the fate of the vehicle to rely on a

A Perspective on Emerging Automotive Safety Applications 591

stack of electronics and not a human driver, it is clear that more care must be
taken in the future to properly address EMI issues.

• During our pre-race testing, particularly when we were collaborating with
MIT, we came to appreciate the importance and power of customized
software toolsets. There were several notable tasks, which one team or
another could do within minutes, while it would take the other team hours
to accomplish. Lots of time can be expended laying waypoints on maps,
creating RNDFs or visualizing data, to cite but a few examples. Perhaps
DARPA could solicit contributions from the participating teams in this
regard, and create a public domain repository of available tools, so that
each subsequent effort is not slowed by these mundane tasks. On a similar
note, we would like to extend kudos to DARPA for supplying aerial
imagery of the Victorville facility in advance of NQE, and for allowing us
to preview the UCE course prior to race day.

• An inspection of the entrants from the three Grand Challenges reveals that,
with rare exception (most notably the first-generation Velodyne lidar), most
of the hardware and sensors utilized were essentially off-the-shelf
technologies. It is clear that the cutting edge of autonomous vehicle research
really lies in the algorithms and software architecture. As such, the
customized construction of a by-wire vehicle platform could be viewed as an
unnecessary distraction, and an interesting future twist for a DARPA
Challenge might be to outfit each of the teams with an identical platform and
see what they could accomplish by virtue of innovative software alone. This
places the competitors on even ground, and is somewhat akin to the DARPA
PerceptOr program. (Of course, this is the converse of what IVS and MIT
did this year, i.e. run common code on vastly different platforms.) Given the
success of the Gray Team at the last Challenge and VTU at the DUC, (and
with some biased self-promotion) we might suggest the Ford Hybrid Escape
as a platform which is by-wire capable with minimal modifications.

7 Conclusion

In conclusion, we have demonstrated the successful operation of an autonomous
vehicle capable of safely maneuvering in simulated urban driving conditions.
Moreover, we have achieved this, to varying degrees of driving complexity, with
the implementation of two very different computer and software architectures. Our
switch to MIT’s architecture, which included a substantial amount of hardware
reconfiguration, was accomplished in a span of less than two months, and not only
demonstrated the versatility of their code, but also our resolve and devotion to
completing the mission. While we have only partially explored the bounds of what
is possible via autonomous vehicle operations, we have learned a great deal and
have ample reason for optimism. Although we have estimated, based upon our
performance and that of the other contenders, that the capabilities of present-day
robots are still orders of magnitude inferior to those of human drivers, we have
witnessed a rapid progression in autonomous technologies, despite the relatively
short developmental time afforded to the teams that participated in the Urban

592 J.R. McBride et al.

Challenge. As such, we anticipate that this general trend will continue, and foresee
that many of the lessons learned from this and similar endeavors will soon find
their way into commercially available automotive safety features.

Acknowledgements

We would also like to thank our colleagues at the University of Michigan and at
the Massachusetts Institute of Technology. Without the incredible support of
these organizations, we would not have been able to complete our project goals. It
is a testament to the quality of the MIT code that we were able to install it on a
completely different platform, with a completely different sensor set, and
demonstrate advanced autonomous driving behaviors within months of
implementation. Together, we learned a great deal, and hopefully planted the
seeds for many future collaborative efforts.

Finally, we would sincerely like to thank DARPA for conducting what we
believe to be the best Challenge to date. It has been a privilege and honor to
participate in this event. Although we dealt with an inordinate amount of
adversity and ultimately may not have produced the results we had hoped for, we
were nonetheless thrilled to once again make it all the way to race day. The
understanding and support we received on behalf of the DARPA personnel no
doubt contributed significantly to our success. We look forward to productive
future interactions with DARPA as opportunities become available.

References

DARPA, various archived data and written accounts found on the Grand Challenge website
(2008), http://darpa.mil/grandchallenge

Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with
application to image analysis and automated cartography. Comm. Assoc. and
Computing Machine 24, 381–390 (1981)

Frost, Sullivan: Japanese Passenger Car and Passive Safety, Systems Markets, Report
#4B79-18 (2005)

Intelligent Vehicle Systems (IVS) Team Proposal for the DARPA Urban Challenge,
Proposal for BAA 06-36, submitted by Honeywell Laboratories, June 26 (2006)

Intelligent Vehicle Systems (IVS) DARPA Urban Challenge Technical Paper, submitted on
behalf of the Intelligent Vehicle Systems (IVS) Team by J. McBride, April 13
(2007a), http://www.darpa.mil/grandchallenge/TechPapers/
Honeyell_IVS.pdf

McBride, J.: Intelligent Vehicle Systems (IVS) DARPA Urban Challenge Final Report,
December 22 (2007b) (Submitted)

Klarquist, W., McBride, J.: Intelligent Vehicle Safety Technologies 1 – Final Technical
Report, August 29 (2005a), http://www.darpa.mil/grandchallenge05/
TechPapers/IVST.pdf (Submitted)

Intelligent Vehicle Safety Technologies (IVST) User Manual, Mark Rosenblum, PercepTek
Robotics, Inc., November 11 (2005b)

A Perspective on Emerging Automotive Safety Applications 593

Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore, G., Fletcher, L., Frazzoli,
E., Huang, A., Karaman, S., Koch, O., Kuwata, Y., Moore, D., Olson, E., Peters, S.,
Teo, J., Truax, R., Walter, M., Barrett, D., Epstein, A., Maheloni, K., Moyer, K.,
Jones, T., Buckley, R., Antone, M., Galejs, R., Krishnamurthy, S., Williams, J.: A
perception driven autonomous urban vehicle. J. Field Robotics (2008) (Submitted)
(Under Review)

NHTSA (National Highway Traffic Safety Administration, U.S. Department of
Transportation), Traffic Safety Facts (2005),
http://www-nrd.nhtsa.dot.gov/Pubs/TSF2005.PDF

Mortality Classifications, from the National Safety Council (2004),
http://www.nsc.org/lrs/statinfo/odds.htm

Volpe, Pre-Crash Scenario Typology for Crash Avoidance Research, Volpe National
Transportation Systems Center, Project Memorandum, DOT-VNTSC-NHTSA-06-
02, DOT HS 810 767 (April 2007), http://www-nrd.nhtsa.dot.gov/
departments/nrd-12/pubs_rev.html

M. Buehler et al. (Eds.): The DARPA Urban Challenge, STAR 56, pp. 595–622.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

TerraMax: Team Oshkosh Urban Robot

Yi-Liang Chen1, Venkataraman Sundareswaran1, Craig Anderson1,
Alberto Broggi2, Paolo Grisleri2, Pier Paolo Porta2, Paolo Zani2, and John Beck3

1 Teledyne Scientific & Imaging, Thousand Oaks, CA
{ylchen,sundar,canderson}@teledyne.com

2 VisLab - University of Parma, Parma, Italy
{broggi,grisleri,portap,zani}@ce.unipr.it

3 Oshkosh Corporation, Oshkosh, WI
jbeck@oshkoshcorp.com

Abstract. Team Oshkosh, comprised of Oshkosh Corporation, Teledyne Scientific and
Imaging Company, VisLab of the University of Parma, Ibeo Automotive Sensor GmbH, and
Auburn University, participated in the DARPA Urban Challenge and was one of the eleven
teams selected to compete in the final event. Through development, testing, and participation
in the official events, we have experimented and demonstrated autonomous truck operations
in (controlled) urban streets of California, Wisconsin, and Michigan under various climate
and traffic conditions. In these experiments TerraMax™, a modified Medium Tactical
Vehicle Replacement (MTVR) truck by Oshkosh Corporation, negotiated urban roads,
intersections, and parking lots, and interacted with manned and unmanned traffic while
observing traffic rules. We have accumulated valuable experience and lessons on
autonomous truck operations in urban environments, particularly in the aspects of vehicle
control, perception, mission planning, and autonomous behaviors which will have an impact
on the further development of large-footprint autonomous ground vehicles for the military.

In this article, we describe the vehicle, the overall system architecture, the sensors and
sensor processing, the mission planning system, and the autonomous behavioral controls
implemented on TerraMax™. We discuss the performance of some notable autonomous
behaviors of TerraMax and our experience in implementing these behaviors, and present
results of the Urban Challenge National Qualification Event (NQE) tests and the Urban
Challenge Final Event (UCFE). We conclude with a discussion of lessons learned from all
of the above experience in working with a large robotic truck.

1 Introduction

Team Oshkosh entered the DARPA Urban Challenge with a large footprint
robotic vehicle, TerraMax™, a modified Medium Tactical Vehicle Replacement
(MTVR) truck. By leveraging our past experience and success in previous
DARPA Challenges, the combined multi-faceted expertise of the team members,
and the support of a DARPA Track A program award, we demonstrated various
autonomous vehicle behaviors in urban environments with excellent performance,
passed through many official tests at the National Qualification Event (NQE), and
qualified for the Urban Challenge Final Event (UCFE). TerraMax completed the

596 Y.-L. Chen et al.

first four sub-missions in Mission 1 of the UCFE before being stopped after a
failure in the parking lot due to a software bug. We brought TerraMax to UCFE
test site in Victorville in December 2007 where TerraMax completed successfully
three missions totaling over 78 miles in 7 hours and 41 minutes.

Team Oshkosh is comprised of Oshkosh Corporation, Teledyne Scientific and
Imaging Company, VisLab of the University of Parma, Ibeo Automotive Sensor
GmbH, and Auburn University. Oshkosh provided the vehicle, program
management, and overall design direction for the hardware, software and control
systems. Oshkosh integrated all the electrical and mechanical components, and
developed the low and mid-level vehicle control algorithms and software.
Teledyne Scientific and Imaging Company developed the system architecture,
mission and trajectory planning, and autonomous behavior generation and
supervision. University of Parma’s VisLab developed various vision capabilities.
Ibeo Automotive Sensor GmbH provided software integration of the LIDAR
system. Auburn University provided evaluation of the GPS/IMU package.

Although there are substantial hurdles that must be overcome in working with
large vehicles such as TerraMax™, we feel that large autonomous vehicles are
critical for enabling autonomy in military logistics operations. Team Oshkosh
utilized a vehicle based on the U.S. Marine Corps MTVR which provides the
majority of the logistics support for the Marine Corps. The intention is to optimize
the autonomous system design such that the autonomy capability can be supplied
in kit form. All design and program decisions were made considering not only the
Urban Challenge requirements, but eventual fielding objectives as well.

Our vehicle was modified to optimize the control-by-wire systems in providing
a superior low-level control performance based on lessons learned from the 2005
DARPA Grand Challenge (Braid, Broggi, & Schmiedel, 2006, Sundareswaran,
Johnson, & Braid, 2006). Supported by a suite of carefully selected and military
practical sensors and perception processing algorithms, our hierarchical state-
based behavior engine provided a simple yet effective approach in generating the
autonomous behaviors for urban operations. Through the development, testing and
participation in official events, we have experimented and demonstrated
autonomous truck operations in (controlled) urban streets of California,
Wisconsin, and Michigan under various climate conditions. In these experiments,
TerraMax negotiated urban roads, intersections, and parking lots, and interacted
with manned and unmanned traffic while observing traffic rules.

In this article, we present our experience and lessons learned from autonomous
truck operations in urban environments. In Section 2 we summarize the vehicle
and hardware implementation. In Section 3 we present the overall system
architecture and its modules. In Section 4 we describe TerraMax’s sensor and
perception processing. In Section 5 we present TerraMax’s autonomous behavior
generation and supervision approach. In Section 6 we discuss TerraMax’s field
performance and experience in the NQE and the UCFE. We comment on lessons
learned in Section 7.

TerraMax: Team Oshkosh Urban Robot 597

2 TerraMax: The Vehicle and Hardware Systems

2.1 Vehicle Overview

The TerraMax™ vehicle (see Figure 1) is a modified version of a standard
Oshkosh Medium Tactical Vehicle Replacement (MTVR) Navy Tractor1, which
comes with a rear steering system as standard equipment. The MTVR platform
was designed for and combat-tested by the U.S. Marine Corps. We converted the
vehicle to a 4X4 version by removing the third axle and by shortening the frame
rail and rear cargo bed. The TAK-4™ independent suspension allowed rear axle
steering angles to be further enhanced to deliver curb to curb turning diameters of
42 feet, equivalent to the turning diameter of a sport utility vehicle. In addition to
the enhancement of turning performance, Oshkosh developed and installed low-
level controllers and actuators for “by-wire” braking, steering, and powertrain
control. Commercial-off-the-shelf (COTS) computer hardware was selected and
installed for the vision system and autonomous vehicle behavior functions.

2.2 Computing Hardware

We opted for ruggedized COTS computing platforms to address the computing
needs of TerraMax. Two A-Plus Mobile A20-MC computers with Intel Core Duo
processors running Windows XP Pro were used for autonomous vehicle behavior

Fig. 1. TerraMax: the vehicle.

1 Oshkosh MTVR. http://www.oshkoshdefense.com/pdf/Oshkosh_MTVR_brochure_07.pdf.

598 Y.-L. Chen et al.

generation and control. The four Vision PCs use SmallPC Core Duo computers
running Linux Fedora. One PC is dedicated to each vision camera system (i.e.
trinocular, close range stereo, rearview, and lateral). Low-level Vehicle Controller
and Body Controller modules are customized Oshkosh Command Zone®
embedded controllers and use the 68332 and HC12X processors, respectively. To
meet our objectives of eventual fielding, all the computing hardware was housed
in the storage space beneath the passenger seat.

2.3 Sensor Hardware

2.3.1 LIDAR Hardware
TerraMax™ incorporated a LIDAR system from Ibeo Automobile Sensor, GmbH
that provides a 360° field of view with safety overlaps (see Figure 2). Two
ALASCA XT laserscanners are positioned on the front corners of the vehicle and
one ALASCA XT laserscanner is positioned in the center of the rear.
Each laserscanner scans a 220° horizontal field. Outputs of the front scanners are
fused at the low level; the rear system remained a separate system. The LIDAR
system native software was modified to operate with our system architecture
messaging schema.

Fig. 2. LIDAR Coverage of TerraMax (truck facing right).

TerraMax: Team Oshkosh Urban Robot 599

Fig. 3. Vision Coverage of TerraMax (truck facing right). Systems displayed: Trinocular
(Orange) looking forward from 7 to 40m, Stereo Front and Stereo Back (Purple) monitoring
a 10x10m area on the front of the truck and a 7x5m in the back, RearView (Blue)
monitoring up to 50m behind the truck, and Lateral (Green) looking up to 130m.

2.3.2 Vision Hardware
There are four vision systems onboard: trinocular, stereo, rearview, and lateral.
Figure 3 depicts the coverage of these vision systems. Table 1 summarizes the
functions and components of these vision systems.

Each vision system is formed by a computer connected to a number of cameras
and laserscanners, depending on the application. Each computer is connected
through an 800Mbps, FireWire B link to a subset of the 11 cameras (9 PointGrey
Flea 2, sensor: CCD, 1/3", Bayer pattern, 1024x768 (XGA) and 2 Allied Vision
Technologies Pike 2. Sensor: 1", Bayer pattern, 1920x1080 pixels (HDTV))
mounted on the truck, depending on the system purpose.

2.3.3 GPS/INS
Using a Novatel GPS receiver with Omnistar HP corrections (which provides 10
cm accuracy in 95% of cases) as a truth measurement in extensive tests under

600 Y.-L. Chen et al.

Table 1. Vision System Components.

Vision
System

TRINO STEREO LATERAL REARVIEW

Cameras 3x PtGrey Flea2
(XGA)

4x PtGrey Flea2 (XGA) 2x Allied Vision
Technologies
Pike 2 (HDTV)

2x PtGrey Flea2
(XGA)

Cameras
Position

Upper part of the
windshield, inside
the cab

2 on the front camera-
bar, two on the back of
the truck, all looking
downwards

On the sides of
the front camera-
bar

External, on top of the
cab, looking
backwards and
downwards, rotated
by 90°

Linked
Laser
scanner

Front Front, back Not used Back

Algorithms Lane detection,
stereo obstacle
detection

Lane detection, stop
line detection, curb
detection, short-range
stereo obstacle
detection

Monocular
obstacle detection

Monocular obstacle
detection

Range 7 to 40m 0 to 10m 10 to 130m -4 to -50m
Notes 3 stereo systems

with baselines:
1.156 m, 0.572 m,
1.728 m

2 stereo systems (front
and rear)

Enabled when the
truck stops at
crossings

Overtaking vehicles
detection

normal and GPS-denied conditions, we selected Smiths Aerospace Inertial
Reference Unit (IRU) as our GPS/INS solution based on its more robust
initialization performance and greater accuracy in GPS-denied conditions.

3 System Architecture

Based on a layered architecture design pattern (Team Oshkosh DARPA Urban
Challenge Technical Report, 2007), we designed the software modules as services
that provide specific functions to the overall system. These services interact with each
other through a set of well-defined asynchronous messages. Figure 4 illustrates these
software modules and the relations among them. As illustrated, there are two main
types of services: Autonomous Services, whose modules provide functionalities for
autonomous vehicle behaviors and System Services, whose modules support the
reliable operations of the vehicle and the mission. We summarize the main
functionalities of these software modules in the following description.

3.1 Autonomous Services

Autonomous Vehicle Manager
The Autonomous Vehicle Manager (AVM) manages the high level autonomous
operation of the vehicle. It is primarily responsible for performing route planning,
trajectory planning, and behavior management. The AVM receives perception
updates from the World Perception Server (WPS) and uses this information to
track the current vehicle state and determine the current behavior mode. The AVM
continuously monitors perceived obstacle and lane boundary information and
issues revised trajectory plans to the Autonomous Vehicle Driver (AVD) through
Drive Commands.

TerraMax: Team Oshkosh Urban Robot 601

World Perception
Server (WPS)

Vision System

Autonomous Vehicle
Manager (AVM)

GPS/INS Navigation
System (NAV)

LIDAR System

Autonomous Vehicle
Driver (AVD)

Autonomous Services

System Services

Service Manager
(SMAN)

Health Monitor
(HM)Event Log

Service
Control

Service
Events

Service Status

Mission Manager MDFRNDF

Course Visualizer /
Simulator (CVIS)

Vehicle Telemetry,
Perception Data,

Race Context

Simulated
Sensory and
Vehicle Data

Service
Beacons

Drive Commands /
Feedback

Perception
Data

Sensor
Data

Scan
Data

Race Context

Vehicle Telemetry Data

Start /Stop
Mission

Vehicle State Server
(VSS)

Failsafe (E-
Stop) and

Autonomous
Mode Alerts

Failsafe (E-Stop) and
Autonomous Mode Alerts

World Perception
Server (WPS)

Vision System

Autonomous Vehicle
Manager (AVM)

GPS/INS Navigation
System (NAV)

LIDAR System

Autonomous Vehicle
Driver (AVD)

Autonomous Services

System Services

Service Manager
(SMAN)

Health Monitor
(HM)Event Log

Service
Control

Service
Events

Service Status

Mission Manager MDFRNDF

Course Visualizer /
Simulator (CVIS)

Vehicle Telemetry,
Perception Data,

Race Context

Simulated
Sensory and
Vehicle Data

Service
Beacons

Drive Commands /
Feedback

Perception
Data

Sensor
Data

Scan
Data

Race Context

Vehicle Telemetry Data

Start /Stop
Mission

Vehicle State Server
(VSS)

Failsafe (E-
Stop) and

Autonomous
Mode Alerts

Failsafe (E-Stop) and
Autonomous Mode Alerts

Fig. 4. Software deployment architecture.

Autonomous Vehicle Driver
The Autonomous Vehicle Driver (AVD) provides vehicle-level autonomy, such as
waypoint following, lateral, longitudinal and stability control by accepting
messages from the AVM and commanding the lower level control-by-wire
actuations.

World Perception Server
The World Perception Server (WPS) publishes perception updates containing the
most recently observed vehicle telemetry, obstacle, and lane/road boundary
information. The WPS subscribes to sensory data from the LIDAR and VISION
systems. The WPS combines the sensory data with the vehicle telemetry data
received from the navigation service (NAV). Obstacles detected by the LIDAR
and VISION systems are further fused in order to provide a more accurate
depiction of the sensed surroundings. The AVM consumes the perception updates
published by the WPS and uses this information to determine the next course of
action for the vehicle.

602 Y.-L. Chen et al.

Vision System
The Vision System (VISION) publishes processed sensory data and meta-data
from different groups of cameras. The meta-data may contain information such as
detected driving lane/path, lane boundary and curb marking, and/or obstacles.
These sensory data and meta-data are sent to WPS for distribution.

Other autonomous services include: Vehicle State Server (VSS), which
monitors and manages low level control for transitions from manual to
autonomous operations, detects any low level faults, and attempts to recover the
system into failsafe mode, if needed; LIDAR System (LIDAR), which fuses and
publish obstacle information provided by the native obstacle detection and
tracking functionalities from different laser scanners; and the NAV Service that
manages communications to the GPS/INS.

3.2 System Services

Course Visualizer
The Course Visualizer is the prime interface to allow human operators/developers
to observe the internal operations and status of the autonomous systems during
a run. During an autonomous run, it provides real-time two-dimensional
visualization of the course data (i.e., Road Network Definition File, RNDF),
vehicle telemetry data, meta-data from sensors (e.g., lane updates, obstacles, etc.),
and status/ results of autonomous behavior generation (e.g., internal logics of a
particular autonomous mode, results of a particular behavior algorithm). It can
also serve as the main playback platform to enable post-operation analysis of the
data log. Incorporated with a simplistic vehicle model, it also serves as a rough
simulation platform to allow early testing and verification for developing or
adjusting behavioral algorithms.

Other system services include: Mission Manager, which provides the user
interface for configuring autonomous services, loading mission files, and starting
the autonomous services/ modes; Health Monitor, which monitors service beacons
from other services and alert the Service Manager if an anomaly occurs; and
Service Manager, which manages the initialization, startup, restart, and shutdown
of all autonomous services.

4 Sensor Processing and Perception

In previous Grand Challenge efforts we used a trinocular vision system developed
by VisLab at the University of Parma for both obstacle and path detection,
coupled with laser scanning systems for obstacle detection. We used several
SICK laser scanners and one IBEO laser scanner for obstacle detection. The
Grand Challenge generally involved only static obstacles, so sensing capabilities
focused on the front of the vehicle. Urban driving introduces a new dynamic—
obstacles move (i.e. other moving vehicles) and the vehicle must respond to these
moving obstacles, resulting in a much greater need for sensing behind and to the
sides of the vehicle. The autonomous vehicle manager needs more information

TerraMax: Team Oshkosh Urban Robot 603

about the obstacles, requiring their velocity as well as their location, and it also
needs great precision in detecting stop lines and lane boundaries. To meet these
goals, we enhanced capabilities in both laser scanning and vision.

IBEO provided three of their advanced ALASCA XT laser scanners and fusion
algorithms for an integrated 360º view. The new TerraMax™ vehicle utilizes
multiple vision systems, with perception capabilities in all the critical regions.

4.1 LIDAR

The IBEO laser scanners have two roles on TerraMax. First, they provide
processed object data (Wender, Weiss, et. al., 2006, Kaempchen, Bühler, &
Dietmayer, 2005) to the World Perception Server. Second, they provide scan-level
data used by the vision system to improve its results. The onboard External
Control Units (ECUs) fuse the data from the two front LIDARs2 acting as a single
virtual sensor in the front.

4.2 Vision System

4.2.1 Software Approach
All the vision computers run the same software framework (Bertozzi, Bombini, et.
al., 2008), and the various applications are implemented as separate plug-ins. This
architecture allows hardware abstraction, while making a common processing
library available to the applications, thus making algorithm development
independent of the underlying system. Each vision system controls its cameras
using a selective auto-exposure feature. Analysis of each image is focused on a
specific region of interest.

All the vision systems are fault tolerant with respect to one or more, temporary
or permanent, sensor failure events. The software is able to cope with FireWire
bus resets or laser scanner communication problems, and to reconfigure itself to
manage the remaining sensors.

4.2.2 The Trinocular System
Driving in urban traffic requires detailed perception of the environment
surrounding the vehicle: for this, we installed in the truck cabin a trinocular vision
system capable of performing both obstacle and lane detection up to distances of
40 meters, derived from (Caraffi, Cattani, & Grisleri, 2007). The stereo approach
has been chosen since it allows an accurate 3D reconstruction without requiring
strong a-priori knowledge of the scene in front of the vehicle, but just correct
calibration values, which are being estimated at run-time.

The three cameras form three possible baselines (the baseline is the distance
between two stereo cameras), and the system automatically switches between them
depending on the current vehicle speed; at lower speeds it is thus more convenient
to use the shorter (and more accurate) baseline, while at higher speeds the large
baseline permits the detection of obstacles when they are far from the vehicle.

2 Ibeo laserscanner fusion system. http://www.ibeo-as.com/english/technology_d_fusion.asp.

604 Y.-L. Chen et al.

(a) (b) (c)(a) (b) (c)

Fig. 5. (a) A frame captured from the right camera; (b) Corresponding V-Disparity map,
where the current pitch is shown in yellow text, and the detected ground slope is
represented by the slanted part of the red line; and (c) Disparity map (green points are
closer, orange ones are farther away).

Images are rectified, so that the corresponding epipolar lines become horizontal,
thus correcting any hardware misalignment of the cameras and allowing for more
precise measurements. The V-Disparity map (Labayrade, Aubert, & Tarel, 2002) is
exploited to extract the ground slope and current vehicle pitch, in order to
compensate for the oscillations that occur while driving (Figure 5(a), (b)).

The next step is to build a disparity map from the pair of stereo images: this
operation is accomplished using a highly optimized incremental algorithm, which
takes into account the previously computed ground slope in order to produce more
accurate results and to reduce the processing time (Figure 5(c)).

The disparity map, along with the corresponding 3D world coordinates, is used
to perform obstacle detection. After a multi-step filtering phase aimed at isolating
the obstacles present in front of the truck, the remaining points are merged with the
ones from the front LIDAR, and are initial values for a flood-fill expansion step,
governed by each pixel disparity value, in order to extract the complete shape of
each obstacle. This data fusion step ensures good performance in poorly textured
areas, while ensuring robustness of the vision-based obstacle detection algorithm
against LIDAR sensor failures. Previously identified obstacles are removed from
the full-resolution image used by the lane detection algorithm, lowering the
possibility of false positives, such as those introduced by poles or vehicle parts.
Figure 6 shows a typical scene and the lanes detected by the algorithm.

4.2.3 Stereo System
Navigation in an urban environment requires precise maneuvers. The trinocular
system described in the previous section can only be used for driving at medium to
high speeds, since it covers the far range (7-40m). TerraMax includes two stereo
systems (one in the front and one in the back, derived from (Broggi, Medici, &
Porta, 2007)), which provide precise sensing at closer range. Using wide-angle
(fisheye, about 160°) lenses, these sensors gather information over an extended
area of about 10x10 meters; the stereo systems are designed to detect obstacles
and lane markings with high confidence on the detection and position accuracy.

TerraMax: Team Oshkosh Urban Robot 605

Fig. 6. Results of lane detection algorithm projected on the original image. From right to
left, the red line represents a right boundary, green a left boundary, and yellow a far left
boundary. In this image, the right line is detected although it is not a complete line.

Obstacle detection is performed in two steps: first the two images, acquired
simultaneously, are preprocessed in order to remove the high lens distortion and
perspective effect, a thresholded difference image is generated and labeled
(Bertozzi, Broggi, & Medici, et. al., 2006), and then a polar histogram-based
approach is used to isolate the labels corresponding to obstacles (Bertozzi &
Broggi, 1998, Lee & Lee, 2004). Data from the LIDARs are clusterized so that
laser reflections in a particular area can boost the score associated with the
corresponding image regions, thus enhancing the detection of obstacles.

The chosen stereo approach avoids explicit computation of cameras intrinsic
and extrinsic parameters, which would have been impractical, given the choice of
using fisheye lenses to cover a wide area in front of the truck. The use of a lookup
table (generated using a calibration tarp) to remap the distorted input images to a
bird’s-eye view of the scene thus results in improved performance and reduced
calibration time.

Short-range line detection is performed using a single camera, to detect lane
markings (even along a sharp curve), stop lines, and curbs. As the camera
approaches the detected obstacles and lane markings, the position accuracy
increases, yet the markings remain in the camera field of view due to the fisheye
lens. A precise localization of lane markings enables the following: lane-keeping
despite large width of the vehicle; stopping of the vehicle at close proximity to the
stop line at intersections; accurate turning maneuvers at intersections; and precise
planning of obstacle avoidance maneuvers. Figure 7 shows a frame with typical
obstacle and lane detection.

4.2.4 Lateral System
We employ lateral perception to detect oncoming traffic at intersections. During a
traffic merge maneuver, the vehicle is allowed to pull into traffic only when a gap
of at least 10 seconds is available. For this, the vehicle needs to perceive the
presence of oncoming traffic and estimate vehicle speeds at range. The intersecting

606 Y.-L. Chen et al.

Fig. 7. A sample frame showing typical obstacle and lane detection.

Fig. 8. Lateral system algorithm results (detected vehicles are marked red).

road might be viewed at an angle other than 90°; therefore the lateral system must
be designed to detect traffic coming from different angles. We installed two high
resolution AVT Pike cameras (1920x1080 pixels) on TerraMax™ – one on each
side – for lateral view, together with 8 mm Kowa lenses. With this configuration
each camera can cover a 90° angle, and is able to see objects at high resolution up
to distances over 130m.

The lateral camera image is processed using a robust, ad-hoc background
subtraction based algorithm within a selected region of interest, with the system
being triggered by the Autonomous Vehicle Manager when the vehicle stops at an

TerraMax: Team Oshkosh Urban Robot 607

intersection, yielding to oncoming traffic. This approach allows us to handle the
high-resolution imagery with a simple, computationally effective approach by
leveraging the semantic context of vehicular motion.

4.2.5 Rearview System
When driving along a road, in both in urban and rural environments, lane changes
and passing may occur. The Rearview System is aimed at detecting passing
vehicles. This solution has proven to be very robust, while keeping processing
requirements low; the onboard camera setup (with cameras placed on top of the
cab, looking backwards) assures good visibility, since oncoming traffic is seen
from a favorable viewing angle. The Rearview system processing is based on
color clustering and optical flow. The first stage of processing performs data
reduction in the image: a category is assigned to each pixel depending on its color,
resulting in blobs that represent objects or portion of objects of uniform color. In
the second (optic flow) stage, blobs of uniform color are analyzed and tracked, to
estimate their shape and movement.

Obstacles found using optical flow are then compared with those detected by
the LIDAR: since the latter has higher precision, the position of obstacles
estimated by vision is refined using the LIDAR data, if available. The fusion
algorithm thus performs only position refinement and does not create/delete
obstacles, in order to isolate the detection performance of the vision system from
that of the LIDAR.

Fig. 9. Rear view system algorithm results (detected vehicles are marked in red).

608 Y.-L. Chen et al.

4.3 Obstacle Fusion and Tracking

We adopted a high-level approach for fusing (both dynamic and static) obstacle
information. The high-level fusion approach was favored for its modularity and
rapid implementation. It was also well-suited for our geographically dispersed
development team.

In this approach, obstacles are detected locally by the LIDAR and vision
systems. Detected obstacles are expressed as objects which contain relevant
information such as outline points, ID, velocity, height (vision only), and color
(vision only). The obstacles from LIDAR and vision are fused in the WPS based
on their overlap and proximity.

Similarly, we relied on the native functions of the LIDAR (Wender, Weiss,
et. al., 2006) and vision systems for obstacle tracking (through object IDs
generated by these systems). This low-level only tracking approach proved to be
effective for most of the situations. However, it was inadequate in more complex
situations where a vehicle is temporarily occluded by another (see discussions in
Sections 6.2 and 7).

To predict the future position of a moving vehicle, the WPS applies a non-
holonomic vehicle kinematic model (Pin & Vasseur, 1990) and the context of the
vehicle. For example, if the vehicle is in a driving lane, the WPS assumes that it
will stay in lane. If the vehicle is not in a lane, the WPS assumes it will maintain
its current heading.

5 Planning and Vehicle Behaviors

In this section, we describe our approach for vehicle behavior generation and
route/ trajectory planning.

5.1 Overview of Vehicle Behaviors

We adopted a goal-driven / intentional approach to mission planning and
generation of vehicle behaviors. The main goal for the mission and behavior
generation is to navigate sequentially through a set of checkpoints as prescribed in
the DARPA supplied Mission Definition Files (MDF). Functionality related to
autonomous vehicle behaviors is implemented in the Autonomous Vehicle
Manager (AVM).

Main components in the AVM (as depicted in Figure 10) include: Mission /
Behavior Supervisor (MBS), which manages the pursuit of mission goal (and sub-
goals), selects and supervises the appropriate behavior mode for execution;
Mission/ Route Planner, which generates (and re-generates as needed) high-level
route plans based on the road segments and zones defined in the Road Network
Definition File (RNDF); Behavior Modes & Logic, which contains a set of
behavior modes, the transitional relationship among them, and the execution logic
within each behavior mode; Event Generators, which monitor the vehicle and
environment state estimation from the WPS and generate appropriate events for

TerraMax: Team Oshkosh Urban Robot 609

Behavior
Supervisor

(FSM-based)

Event
Generators

Mission/
Route Planner

WPS

AVD

MDF

RNDF AVM

Autonomous
Vehicle

Commands

Behavior
Functions / Utilities

Condition
Inspectors
Condition
Inspectors

Condition
Inspectors

Vehicle DriversVehicle DriversVehicle Drivers

UtilitiesUtilitiesUtilities

Behavior Modes
& Logics

(FSM-based)

Behavior Modes
& Logics

(FSM-based)

Behavior Modes
& Logics

(FSM-based)

Behavior
Supervisor

(FSM-based)

Event
Generators

Mission/
Route Planner

WPS

AVD

MDF

RNDF AVM

Autonomous
Vehicle

Commands

Behavior
Functions / Utilities

Condition
Inspectors
Condition
Inspectors

Condition
Inspectors

Vehicle DriversVehicle DriversVehicle Drivers

UtilitiesUtilitiesUtilities

Behavior
Functions / Utilities

Condition
Inspectors
Condition
Inspectors

Condition
Inspectors

Condition
Inspectors
Condition
Inspectors

Condition
Inspectors

Vehicle DriversVehicle DriversVehicle Drivers
Vehicle DriversVehicle DriversVehicle Drivers

UtilitiesUtilitiesUtilitiesUtilitiesUtilitiesUtilities

Behavior Modes
& Logics

(FSM-based)

Behavior Modes
& Logics

(FSM-based)

Behavior Modes
& Logics

(FSM-based)

Fig. 10. Major function blocks in the Autonomous Vehicle Manager (AVM).

the behavioral modes when a prescribed circumstance arises (e.g. an obstacle
in the driving lane ahead, etc.); and behavior functions/utilities, which provide
common services (e.g. trajectory generation, etc.) for different behavior modes.

5.2 Behavioral Modes and Supervision

We adopted a Finite-State-Machine (FSM) based discrete-event supervisory
control scheme as our primary approach to generate and execute autonomous
vehicle behaviors. The FSM based scheme provides us with a simple, yet
structured, approach to effectively model the race rules/constraints and
behaviors/tactics, as opposed to the conventional rule-based approaches or
behavior-based approaches (Arkin, 1998). This scheme allows us to leverage
existing supervisory control theories and techniques (Ramadge & Wonham, 1987,
Cassandras & Lafortune, 1999, Chung, Lafortune, & Lin, 1992, Chen & Lin,
2001/CDC) to generate safe and optimized behaviors for the vehicle.

We model autonomous behaviors as different behavior modes. These behavior
modes categorize potential race situations and enable optimized logic and tactics
to be developed for the situations. We implemented seventeen behavior modes,
shown in Figure 11, to cover all the basic and advanced behaviors prescribed in
the Urban Challenge. Examples of the behavior modes include: Lane Driving,
where the vehicle follows a designated lane based on the sensed lane or road
boundaries; and Inspecting Intersection, where the vehicle observes the
intersection protocol and precedence rules in crossing intersections and merging
with existing traffic.

610 Y.-L. Chen et al.

Behavior Modes:
• ChangeLane
• DrvieInLane
• DriveInZone
• DriveToTarget
• EmergentDrive
• ExitParkingSpot
• InspectIntersection
• InspectLaneTurn
• InspectPassing
• InspectUTurn
• InspectZoneIntersection
• Park
• Pass
• PassRecovery
• PerformUTurn
• RoadBlockRecovery
• Wait

Driving Algorithms
• AlignVehicleDriver
• Change LaneDriver
• FreeSpaceDriver
• LaneDriver
• ParkingDriver
• UTurnDriver
• ZoneDriver

Mission Manager /
Behavior Supervisor

Strategies & Rules

Mode Machine

Mode Logics

…

Traj. Planner

Stop Line Proc.

Veh. Following

Utility Func.

…

Behavior
Modes &

LogicsMode
Transition
Machine

Logics /
Behaviors in
Each Mode

Utilities Shared
by Mode Logics

Mission Manager /
Behavior Supervisor

Strategies & Rules

Mode MachineMode Machine

Mode Logics

…

Traj. Planner

Stop Line Proc.

Veh. Following

Utility Func.

…

Traj. Planner

Stop Line Proc.

Veh. Following

Utility Func.

…

Behavior
Modes &

LogicsMode
Transition
Machine

Logics /
Behaviors in
Each Mode

Utilities Shared
by Mode Logics

Behavior Modes:
• ChangeLane
• DrvieInLane
• DriveInZone
• DriveToTarget
• EmergentDrive
• ExitParkingSpot
• InspectIntersection
• InspectLaneTurn
• InspectPassing
• InspectUTurn
• InspectZoneIntersection
• Park
• Pass
• PassRecovery
• PerformUTurn
• RoadBlockRecovery
• Wait

Driving Algorithms
• AlignVehicleDriver
• Change LaneDriver
• FreeSpaceDriver
• LaneDriver
• ParkingDriver
• UTurnDriver
• ZoneDriver

Mission Manager /
Behavior Supervisor

Strategies & Rules

Mode Machine

Mode Logics

…

Traj. Planner

Stop Line Proc.

Veh. Following

Utility Func.

…

Behavior
Modes &

LogicsMode
Transition
Machine

Logics /
Behaviors in
Each Mode

Utilities Shared
by Mode Logics

Mission Manager /
Behavior Supervisor

Strategies & Rules

Mode MachineMode Machine

Mode Logics

…

Traj. Planner

Stop Line Proc.

Veh. Following

Utility Func.

…

Traj. Planner

Stop Line Proc.

Veh. Following

Utility Func.

…

Behavior
Modes &

LogicsMode
Transition
Machine

Logics /
Behaviors in
Each Mode

Utilities Shared
by Mode Logics

Fig. 11. Components for behavior generation and execution.

For each behavior mode, a set of customized logic is modeled as an extended
finite state machine (e.g., a Finite State Machine with Parameters (FSMwP) (Chen
& Lin, 2000)), which describes the potential behavior steps, conditions,
and actions to be taken. The behavior logic may employ different utility functions
(e.g., trajectory planners/ driving algorithms, stop-line procedure, etc.) during
execution.

Transitions among behavior modes are modeled explicitly as an FSMwP (Chen
& Lin, 2000), named Mode Transition Machine (MTM), where guard conditions
and potential actions / consequences for the transitions are expressed. The Mode
Transition Machine is used by the Behavior Supervisor in MBS in determining the
appropriate behavior mode to transition to during execution.

The generation and control of the vehicle behavior may be formulated as a
supervisory control problem. We adopted the concepts of safety control (Chen &
Lin, 2001/ACC) and optimal effective control (Chen & Lin, 2001/CDC) for
FSMwP where the traffic rules and protocols are formulated as safety constraints
and current mission sub-goal (e.g., check point) as the effective measure to
achieve. However, to improve the real time performance during execution, we
manually implemented a simplified supervisor that does not require explicit
expansion of supervisor states (Chung, et. al., 1992) by exploiting the structure of
the MTM.

TerraMax: Team Oshkosh Urban Robot 611

Our finite state machine-based behavior generation scheme is intuitive and
efficient. However, it may suffer from several potential drawbacks. Among them
are the reduced robustness in handling unexpected situations and the lack
of “creative” solutions/behaviors. To mitigate the potential concern in handling
unexpected situations, we included an unexpected behavior mode
(RoadBlockRecovery mode) and instituted exception-handling logic to try to bring
the vehicle to a known state (e.g., on a known road segment, or zone). Through
our field-testing and participation at official events, we found that this unexpected
behavior mode to be generally effective in ensuring the robust autonomous
operation of the vehicle. A more robust unexpected behavior mode based on “non-
scripted” techniques, such as behavior-based approaches (Arkin, 1998) may be
introduced in the future to handle the unexpected situations. This hybrid approach
would strike the balance between simplicity/consistency and flexibility/robustness
of behaviors.

5.3 Route Planning

The objective of the route planning component is to generate an ordered list of
road segments among the ones defined in RNDF which enables the vehicle to visit
the given set of checkpoints, in sequence, at the least perceived cost of the current
sensed environment. We implemented the route planner as a derivative of the
well-known Dijkstra’s Algorithm (Cormen, Leiserson, & Rivest, 1990) which is a
greedy search approach to solve the single-source shortest path problem.

We used the estimated travel time as the base cost for each road segment,
instead of the length of the road segment. This modification allowed us to
effectively take into account the speed limit of the road segments (both MDF-
specified and self-imposed due to the large vehicle’s constraints) and the traffic
conditions the vehicle may experience through the same road segment previously
traveled (during the same mission run). Meanwhile, any perceived road
information, such as road blockage, and (static) obstacles are also factored into the
cost of the road.

5.4 Trajectory Planning

The trajectory planner generates a sequence of dense and drivable waypoints, with
their corresponding target speeds, for the AVD to execute, given a pair of start/end
waypoints and, possibly, a set of intermediate waypoints. Alternatively, the
trajectory planner may also prescribe a series of driving commands (which include
steering direction and travel distance). Instead of using a general purpose
trajectory/motion planner for all behavior modes, we implemented the trajectory
planning capabilities as a collection of trajectory planner utility functions that may
be called upon by different behavior modes depending on the current vehicle and
mission situation. Our approach exploited specific driving conditions in different
behavior modes for efficient and consistent trajectory planning.

612 Y.-L. Chen et al.

We implemented four different types of trajectory planners:

• Lane-following trajectory planner utilizes detected/estimated lane and
road boundaries to generate waypoints that follow the progression of the
lane/road. Targeted speed for each waypoint is determined by
considering the (projected) gap between TerraMax and the vehicle in
front, if any, dynamics of TerraMax (e.g., current speed, limits of
acceleration/deceleration), and the speed limit of the road segment.
Curvature among waypoints are further checked, adjusted, and smoothed
using a spline algorithm (Schoenberg, 1969) to ensure the waypoints are
drivable within TerraMax’s dynamic constraints.

• Template-based trajectory planners are a set of trajectory planners that
can quickly generate trajectory waypoints based on instantiation of
templates (Horst & Barbera, 2006) with current vehicle and environment
state estimates for common maneuvers such as lane changing, passing,
swerving, and turning at intersections. A template-based trajectory
planner determines first the targeted speed for (each segment of) the
maneuver, using the method similar to that for the lane-following
trajectory planner, and apply the targeted speed to the parameterized
trajectory template in generating the waypoints.

• Rule-based trajectory planners utilize a set of simple driving and
steering heuristic rules (Hwang, Meirans, & Drotning, 1993) that mimic
the decision process of human drivers in guiding the vehicle into a certain
prescribed position and/or orientation, such as U-turns or parking. Since
the rule-based trajectory planners are usually invoked for precision
maneuvers, we configured the targeted speed to a low value (e.g. 3 mph)
for maximum maneuverability.

• Open-space trajectory planner provides general trajectory generation
and obstacle avoidance in a prescribed open-space where obstacles may
be present. We adopted a two-level hierarchical trajectory planning
approach where a lattice/A* based high-level planner (Cormen, et. al.,
1990) provides a coarse set of guiding waypoints to guide the trajectory
generation of the low-level Real Time Path Planner (RTPP), which is
based on a greedy, breadth-first search algorithm augmented with a set of
heuristic rules. Similar to that for the rule-based trajectory planner, we
configure the target speed of the open-space trajectory planner to a low
value (e.g. 5 mph) for maximum maneuverability.

6 Field Performance and Analysis

In this section, we discuss TerraMax’s performance during testing and participation
in the Urban Challenge and related events.

6.1 Basic and Advanced Behaviors

TerraMax successfully demonstrated all the basic and advanced behavior
requirements set forth by DARPA. In the following, we comment on our
experience in implementing some key autonomous behaviors.

TerraMax: Team Oshkosh Urban Robot 613

Passing: Initially, the trajectory generation of the passing behavior was handled by
a template-based passing trajectory planner, which guided the vehicle to an
adjacent lane for passing the detected obstacle in its current lane and returned the
vehicle back to its original lane after passing. We added a swerve planner to
negotiate small obstacles (instead of passing them). This modification resulted in
smooth and robust passing performance.

U-Turn and Parking: Through testing, we found that a rule-based approach
outperformed a template-based approach for U-turns and parking. Therefore we
employed a rule-based parking maneuver, which performed flawlessly in the NQE
and UCFE.

Merge and Left Turn: We adopted a simple approach to inspect traffic in the lanes
of interest and determine if there is a safe gap for executing Merge or Left Turn
behaviors. We employ a simple vehicle kinematic model (Pin & Vasseur, 1990) to
predict the possible spatial extent that a moving vehicle in the lane may occupy in
the near future (e.g. in the next 10 seconds) and apply an efficient geometry-based
algorithm to check if the spatial extent intersects with TerraMax’s intended path.
To reduce false (both positive and negative) detections of traffic in a lane, we
further fine-tuned LIDAR sensitivity, employed a multi-sample voting scheme to
determine whether a vehicle is present based on multiple updates of the obstacles
reported by the LIDAR, and verified our modifications through an extended series
of controlled live-traffic tests. The enhancements resulted in near perfect merging
and left-turn behaviors.

6.2 Performance at the National Qualification Events

TerraMax participated in multiple runs in Test Areas A, B, and C during the
National Qualification Events. During these runs, TerraMax successfully
completed all the key autonomous maneuvers as prescribed in each Test Area.
Specifically, in Test Area A, TerraMax demonstrated merging into live traffic and
left turn maneuvers; in Test Area B, TerraMax completed leaving the start chute,
traffic circle, zone navigation and driving, parking, passing, and congested road
segment maneuvers; in Test Area C, TerraMax demonstrated intersection
precedence, queuing, roadblock detection, U-turn, and re-planning behaviors.

In Table 2, we summarize the performance issues we experienced during the
early runs in the NQE and our actions in resolving/ mitigating these issues for the
subsequent runs in the NQE and the UCFE. Following the table, we discuss each
of the performance items in detail.

Obstacles protruding from the edge of a narrow road could interfere with safety
spacing constraints and cause path deviation: During our first run of Test Area A,
TerraMax did not stay in the travel lane but drove on the centerline of the road
segment. The K-rails on the road closely hugged the lane boundary, appearing to
be inside the lane. This prompted obstacle avoidance, and due to our earlier
safety-driven decision to never approach an obstacle closer than 0.5 meters, the
AVM decided to cross the centerline to pass.

614 Y.-L. Chen et al.

Table 2. Performance issues and resolutions in NQE.

Performance
issue

Cause Impact on
performance

Mitigating
action(s)

Lessons learned

Minor obstacles
(k-rails) causing
planned path
deviation

Safety
parameter
setting

Vehicle rode
centerline

Reduce clearance to
obstacle

Widen path by
moving k-rails

Narrow roads are
harder to navigate
for a large truck

Path updates
incorrectly
processed

False positives
for road edges

Vehicle got stuck in
driveway

Corrected path
updates and
readjusted path
determination method

Road edge detection
and processing can
be complex and
unreliable

Parking twice in
the same spot

Dust clouds
behind vehicle
perceived as
obstacles

Total time taken
increased

None required

Temporary dust
clouds need to be
treated differently
than other obstacles;
high level obstacle
fusion desirable

Traveling too
close to parked
cars

Real-time path
planner not
activated in
time

Brushing a parked
car

Modified trajectory
planning transition
logic

Navigating
congested narrow
road segments needs
sophisticated
supervisory logic

Entering
intersection
prematurely

Timer bug
Incorrect
precedence at
intersection

Fixed timer bug
Simple bugs could
cause large-scale
performance impact

Incorrect
tracking at
intersections

Vehicle hidden
by another

Incorrect
precedence at
intersection

Implemented obstacle
caching; better sensor
fusion and tracking

Simple sensor
processing is
inadequate in
complex settings

Queuing too
close / erratic
behaviors

LIDAR
malfunction

Nearly ran into the
vehicle in front

Fixed bug in sensor
health monitoring

Critical system
services have to be
constantly
monitored

Unreliable path/lane updates could cause incorrect travel lane determination:
During the first run of Test Area B, TerraMax pulled into a driveway of a house
and, after a series of maneuvers, successfully pulled out of that driveway but led
itself right into the driveway next-door where it stalled and had to be manually
repositioned. This time-consuming excursion was primarily triggered by an
incorrect path update and subsequent incorrect travel lane selection. We resolved
the faulty path update and re-adjusted the relative importance of the different
information sources used to determine the travel lane.

TerraMax: Team Oshkosh Urban Robot 615

Dust clouds and other false positive “transient” obstacles could result in
unexpected behaviors: Unexpected behaviors observed in dirt lots of Test Area B
can be attributed to dust clouds having been sensed as obstacles. These behaviors
included parking-twice in both runs, a momentary stop, and “wandering around”
in the dirt lot. On all of these occasions, the system recovered well and did not
result in failures other than the superfluous excursions.

More sophisticated free-space trajectory planners (other than simple template-
based ones) are needed to negotiate highly congested areas: While navigating a
segment where many obstacles were set up on a curvy road during the first run of
Test Area B, TerraMax slowly knocked down several traffic cones and brushed a
parked vehicle with the left corner of its front bumper. Our post-run study
revealed that the RTPP was triggered much less often than desired. To prevent
TerraMax from hitting obstacles, especially in the congested road segments as we
experienced, we revised AVM’s transition logic and processes between normal
driving modes and RTPP. With the revisions, the Supervisor invoked RTPP in
more situations.

Persistent vehicle tracking needed for complex situations at intersections: During
the second run of Test Area C, TerraMax entered the intersection prematurely on
one occasion. This was due to the lack of proper tracking of the obstacles/vehicles
in our overall system. When the first vehicle entered the intersection, it
momentarily occluded the second vehicle. The AVM could not recognize that the
newly observed obstacle was in fact the vehicle that was there before. We mitigated
this problem by refining the obstacle caching and comparison mechanism.

Proper response should be designed to prepare for subsystem malfunction: In the
second run of Test Area C, TerraMax started to behave erratically after one-third
of the mission was completed. It drove very close to the obstacles (and K-rails) at
the right side of the lane and it almost hit a vehicle that queued in front of it at the
intersection. In analysis, we discovered that the front right LIDAR had
malfunctioned and did not provide any obstacle information. This, combined with
the fact that the Stereo obstacle detection had not been enabled meant that
TerraMax could not detect obstacles in the front right at close range. Fortunately,
there was some overlap coverage from the front left LIDAR, which was
functioning correctly. This overlap coverage from the front left LIDAR picked up
the vehicle queued in front of TerraMax at the intersection so that the Supervisor
stopped TerraMax just in time to avoid hitting this vehicle. Stereo obstacle
detection was not turned on since the team did not have time to tune the thresholds
before the start of this run.

6.3 Performance at the Urban Challenge Final Event

TerraMax completed the first four sub-missions in Mission 1 of the UCFE with
impressive performance. However, TerraMax was stopped after a failure in the
parking lot (Zone 61). Table 3 summarizes TerraMax’s performance statistics
prior to the parking lot event.

616 Y.-L. Chen et al.

Table 3. Performance statistics for UCFE prior to parking lot

 Mission 1 (first 4
sub-missions)

Total Time 0:40
Top Speed 21 mph
Oncoming vehicles
encountered

47

Oncoming autonomous
vehicles encountered

7

 Pass Fail
Int. precedence 9 0
Vehicle following 0 0
Stop queue 1 0
Passes 1 0
Road blocks/Re-plan 0 0
Zone 1 0
Park 1 0
Merge3 1 1

Fig. 12. UCFE Parking Lot: Successful parking maneuvers

6.3.1 Analysis of the Failure
The arrival into the parking lot was normal. There were no detected obstacles in
the path of TerraMax and therefore an s-shaped (farmer) turn was issued that
brought TerraMax into alignment with the target parking space (Figure 12(a)).
TerraMax continued the parking maneuver successfully and pulled out of the
parking space without error (Figure 12(c)). TerraMax backed out of the parking
space to the right so that it would face the exit of the zone when finished exiting
the parking spot.

3 Failed cases indicate that traffic flow was impeded by TerraMax during merge.

TerraMax: Team Oshkosh Urban Robot 617

There were two separate problems in the parking lot. The first problem was that

TerraMax stalled in the parking lot for a very long time (approx. 17 minutes). The
second problem was that TerraMax eventually continued, but no longer responded
to commands from the AVM and eventually had to be stopped.

Stall Condition
The Real-Time Path Planner (RTPP) produced paths that contained duplicate
waypoints while driving in a zone, resulting in a stall. This was a bug was introduced
in the RTPP during pre-race modifications. This bug was quickly corrected after the
UCFE and tested when we re-tested at Victorville in December 2007.

Unresponsive Vehicle
TerraMax recovered after stalling for more than 17 minutes. GPS drift "moved"
the position of TerraMax to where the RTPP returned 4 points (2 pairs of duplicate
waypoints). The Open-space trajectory planner then commanded TerraMax to
drive at 5 mph in a straight path toward the parking lot boundary. However, the
order of the commanded duplicate waypoints in the Drive command caused the
AVD service to fault, at the point where the vehicle had already accelerated to
approximately 1 mph. At this point, TerraMax became unresponsive to subsequent
commands, and continued to drive in a straight line towards a building until an
E-stop PAUSE was issued by DARPA officials.

Table 4. Performance statistics for Victorville test missions.

 Mission 1 Mission 2 Mission 3
Total Distance 24.9 miles 19.5 miles 33.8 miles
Total Time 2:28 1:55 3:18
Average Speed 10.09 mph 10.17 mph 10.24 mph
Oncoming vehicles
encountered in
opposite lane

42

92

142

Intersections 84 108 193
 Pass Fail Pass Fail Pass Fail

Int. precedence4 17 3 8 0 20 2
Vehicle following 3 0 1 0 2 0
Stop queue 2 0 1 0 1 0
Passes 5 0 3 0 1 0
Road blocks/Re-plan 0 0 1 0 2 0
Zone 5 0 4 0 7 0
Park 3 0 2 0 2 0
Merge5 7 1 5 0 10 1

4 In all cases, failed intersection precedence was due to the test vehicle(s) being more than

0.5m behind the stop line.
5 Merge results include left turns across opposing lane, and left and right turns into traffic

from a stop with other vehicles present. Failed cases indicate that traffic flow was
impeded by TerraMax during merge.

618 Y.-L. Chen et al.

6.4 Return to Victorville

We were unable to acquire full performance metrics during the UCFE due to the
premature finish. Therefore we brought TerraMax back to Victorville on
December 13, 2007 for a full test. Although we were not able to use the entire
UCFE course, we used the UCFE RNDF and limited the missions to the housing
area and added a parking spot in Zone 65. The MDF files created for these
missions used the speed limits from the MDF for the first mission at the UCFE.
TerraMax ran with the software version used in the UCFE. No revisions were
made. The team ran three missions totaling over 78 miles in 7 hours and 41
minutes for an average speed of 10.17 mph. Six test vehicles driven by team
members acted as other traffic. One safety vehicle followed TerraMax with a
remote e-stop transmitter at all times during autonomous operation. We list
performance statistics for the three missions in Table 4.

7 Concluding Remarks

Team Oshkosh entered the DARPA Urban Challenge with the intention of
finishing the event as a top contender. Despite not completing the final event, the
team believes that TerraMax had performed well and safely up to the point the
vehicle was stopped. TerraMax proved to be a very capable contender and is
arguably the only vehicle platform in the competition that is relevant for military
logistics missions.

Through the development, testing, and official events, we experimented and
demonstrated autonomous truck operations in (controlled) urban streets of
California, Wisconsin, and Michigan under various climate conditions. In these
experiments, TerraMax exhibited all the autonomous behaviors prescribed by
DARPA Urban Challenge rules, including negotiating urban roads, intersections,
and parking lots, interacting with manned and unmanned traffic while observing
traffic rules, with impressive performance. Throughout this endeavor, we learned
valuable experience and lessons, which we summarize in the following.

Course Visualizer / Simulator Efforts Truly Paid-off
Learning from our experience in DARPA Grand Challenge 2005, we invested
time and effort upfront to develop a graphic tool with a 2-D capability for
visualizing the RNDF and MDF. We later expanded the functionality of the tool to
include mission data log playback, sensor information display, built-in debugging
capability that displays results of various autonomous mode status, logic and
calculations in the AVM, and simple simulation of TerraMax operations.

This tool served as a true “force-multiplier” by allowing team members in
widely dispersed geographic locations to verify different functionality and
designs, experiment with different ideas and behavioral modes, pre-test the
software implementation prior to testing onboard TerraMax, and perform post-run
analysis to resolve issues. The tool not only sped up our development and testing
efforts, but also enabled us to quickly identify the causes for issues encountered
during NQE runs and to promptly develop solutions to address them.

TerraMax: Team Oshkosh Urban Robot 619

Simplicity Worked Well in U-Turn and Parking
Instead of using a full-fledged trajectory planner/generator for maneuvers such as
U-Turn and parking, we opted to search for simple solutions for such situations.
Our experiments with U-Turn prior to the Site Visit clearly indicated the
performance, simplicity, elegance, and agility superiority of a rule-based approach
over a template-based one. The rule-based approach, which mimics a human
driver’s actions and decision process in performing those maneuvers, was our
main approach for both U-Turn and parking maneuvers and performed flawlessly
in all our Site Visit, NQE and UCFE runs.

Better Persistent Object Tracking Capability Is Needed
In the original design object tracking was to be performed at a high level.
However, due to time constraints, the object tracking responsibility was delegated
to the processing modules of the individual sensor elements. As demonstrated in
our first two runs of Test Area C, a persistent object tracking capability is required
to handle situations where objects may be temporarily obstructed from
observations. However, this persistent object tracking mechanism should only
focus on the objects of both relevance and importance for efficiency and
practicality. Though we implemented a less-capable alternative to maintain
persistent tracking of vehicles at the intersection that yielded satisfactory results, a
systematic approach to address this shortfall is needed.

Our sensor technology proved capable, but additional work is required to meet all
the challenges
The use of passive sensors is one of the primary goals of our vehicle design.
LIDAR sensors produce highly accurate range measurements, however vision
allows cost effective sensing of the environment without the use of active signals
(Bertozzi, Broggi, & Fascioli, 2006, Bertozzi, Broggi, et. al., 2002, Broggi,
Bertozzi, et. al., 1999) and contains no moving parts which are less desirable in
operational environments. The calibration of vision systems needed special care
since many of them were based on stereo technology whose large baseline
precluded attachment of the two cameras to the same rig. Nevertheless, the
calibration of many of them turned out to be absolutely robust and there was no
need to repeat the calibration procedure in Victorville after it was performed a few
months before. The calibration of the trinocular system, which is installed into the
cabin, survived a few months of test and many miles of autonomous driving. The
front stereo system was uninstalled for maintenance purposes a few times and a
recalibration was necessary, including in Victorville. The back stereo system did
not need any recalibration, while the lateral and the rear view system, being
monocular, relied only on a weak calibration which was just checked before the
race. This is a clear step forward in usability and durability of vision systems for
real-world unmanned systems applications.

Performing low-level fusion between vision and LIDAR data has brought
considerable improvements in distance measurement for the vision systems
especially at further distances. Robustness and persistence of results are additional
improvements realized by means of this technique. Despite these improvements,
LIDAR was used as the primary sensor for obstacle detection and vision the
primary sensor for road boundary detection during the Final Event.

620 Y.-L. Chen et al.

Lane detection provided consistent data and was able to localize most of the
lane markings. Some problems were encountered when lane markings were too
worn out and in situations in which the red curb was misinterpreted as a yellow
line. The specific algorithm used to identify yellow markings was not tested in
correspondence to red curbs, which showed the same invariant features that were
selected for yellow lines.

Improved Road Boundary Interpretation Is Needed
Although the sensor system detected lanes and curbs in most situations, problems
were encountered in situations where sensed data differed significantly from the
expected road model obtained by interpreting the RNDF data. As a result
TerraMax would cross the centerline, cut corners or drive off the road in order to
reach the next RNDF waypoint.

Test for Perfection
The team had tested TerraMax extensively in a variety of environments and
scenarios; the NQE and UCFE differed from our testing situations sufficiently
however, that we were required to make last minute revisions to the system that
were not extensively tested. Unfortunately, these last minute revisions for the
NQE adversely impacted performance in the UCFE.

The DARPA Urban Challenge, as all DARPA Grand Challenges, has proven to
be an excellent framework for the development of unmanned vehicles for Team
Oshkosh. We have experimented and developed many elegant solutions for
practical military large-footprint autonomous ground vehicle operations in urban
environments. The system developed by Team Oshkosh for the Urban Challenge
has been shown to be robust and extensible, an excellent base to which additional
capabilities can be added due to the modular architecture.

References

Arkin, R.C.: Behavior-based robotics. MIT Press, Cambridge (1998)
Bertozzi, M., Bombini, L., Broggi, A., Cerri, P., Grisleri, P., Zani, P.: GOLD: a complete

framework for developing artificial vision applications for intelligent vehicles. IEEE
Intelligent Systems 23(1), 69–71 (2008)

Bertozzi, M., Broggi, A.: GOLD: a parallel real-time stereo vision system for generic
obstacle and lane detection. IEEE Transactions on Image Processing 1(7), 62–81
(1998)

Bertozzi, M., Broggi, A., Cellario, M., Fascioli, A., Lombardi, P., Porta, M.: Artificial
vision in road vehicles. Proc. of the IEEE - Special issue on Technology and Tools
for Visual Perception 90(7), 1258–1271 (2002)

Bertozzi, M., Broggi, A., Fascioli, A.: VisLab and the evolution of vision-based UGVs.
IEEE Computer 39(12), 31–38 (2006)

Bertozzi, M., Broggi, A., Medici, P., Porta, P.P., Sjögren, A.: Stereo vision-based start-
inhibit for heavy goods vehicles. In: Proc. IVS 2006, pp. 350–355 (2006)

Braid, D., Broggi, A., Schmiedel, G.: The TerraMax autonomous vehicle. J. of Field
Robotics 23(9), 655–835 (2006)

TerraMax: Team Oshkosh Urban Robot 621

Broggi, A., Bertozzi, B., Fascioli, A., Conte, G.: Automatic vehicle guidance: the
experience of the ARGO vehicle. World Scientific, Singapore (1999)

Broggi, A., Medici, P., Porta, P.P.: StereoBox: a robust and efficient solution for
automotive short range obstacle detection. EURASIP Journal on Embedded Systems
- Special Issue on Embedded Systems for Intelligent Vehicles (June 2007) ISSN
1687-3955

Caraffi, C., Cattani, S., Grisleri, P.: Off-road path and obstacle detection using decision
networks and stereo. IEEE Trans. on Intelligent Transportation Systems 8(4), 607–
618 (2007)

Cassandras, C., Lafortune, S.: Introduction to Discrete Event Systems, 2nd edn. Kluwer,
Dordrecht (1999)

Chen, Y.-L., Lin, F.: Modeling of discrete event systems using finite state machines with
parameters. In: Proc. 9th IEEE Int. Conf. on Control Applications, September 2000,
pp. 941–946 (2000)

Chen, Y.-L., Lin, F.: Safety control of discrete event systems using finite state machines
with parameters. In: Proc. 2001 American Control Conf. (ACC), June 2001, pp. 975–
980 (2001)

Chen, Y.-L., Lin, F.: An optimal effective controller for discrete event systems. In: Proc.
40th IEEE Conf. on Decision and Control (CDC), December 2001, pp. 4092–4097
(2001)

Chung, S.-L., Lafortune, S., Lin, F.: Limited lookahead policies in supervisory control of
discrete event systems. IEEE Trans. on Automatic Control 37(12), 1921–1935 (1992)

Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. MIT Press, Cambridge
(1990)

Horst, J., Barbera, A.: Trajectory generation for an on-road autonomous vehicle. In: Proc.
SPIE: Unmanned Systems Technology VIII. vol. 6230 (2006)

Hwang, Y.K., Meirans, L., Drotning, W.D.: Motion planning for robotic spray cleaning
with environmentally safe solvents. In: Proc. IEEE Intl. Workshop on Advanced
Robotics, Tsukuba, Japan (November 1993)

Kaempchen, N., Bühler, M., Dietmayer, K.: Feature-level fusion for free-form object
tracking using laserscanner and video. In: Proc. 2005 IEEE Intelligent Vehicles
Symposium, Las Vegas (2005)

Labayrade, R., Aubert, D., Tarel, J.P.: Real time obstacle detection in stereo vision on non
flat road geometry through V-disparity representation. In: Proc. IEEE Intell. Veh.
Symp., vol. II, pp. 646–651 (2002)

Lee, K., Lee, J.: Generic obstacle detection on roads by dynamic programming for
remapped stereo images to an overhead view. In: Proc. ICNSC 2004, vol. 2, pp. 897–
902 (2004)

Pin, F.G., Vasseur, H.A.: Autonomous trajectory generation for mobile robots with non-
holonomic and steering angle constraints. In: Proc. IEEE Intl. Workshop on
Intelligent Motion Control, August 1990, pp. 295–299 (1990)

Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes.
SIAM J. Control and Optimization 25(1), 206–230 (1987)

Schoenberg, I.J.: Cardinal interpolation and spline functions. Journal of Approximation
theory 2, 167–206 (1969)

622 Y.-L. Chen et al.

Sundareswaran, V., Johnson, C., Braid, D.: Implications of lessons learned from experience
with large truck autonomous ground vehicles. In: Proc. AUVSI 2006 (2006)

Team Oshkosh DARPA Urban Challenge Technical Report. Oshkosh Corp. (April 2007),
http://www.darpa.mil/grandchallenge/TechPapers/
Team_Oshkosh.pdf

Wender, S., Weiss, T., Dietmayer, K., Fuerstenberg, K.: Object classification exploiting
high level maps of intersections. In: Proc. 10th Intl. Conf. on Advanced
Microsystems for Automotive Applications (AAMA 2006), Berlin, Germany (April
2006)

Author Index

Alberi, Thomas 125
Anderson, Craig 595
Anderson, David 125
Anhalt, Joshua 1
Antone, Matthew 163

Bacha, Andrew 125
Bae, Hong 1
Bagnell, Drew 1
Baker, Christopher 1
Barrett, David 163
Basarke, Christian 441
Bauman, Cheryl 125
Beck, John 595
Becker, Jan 91
Berger, Christian 441
Berger, Kai 441
Berger, Mitch 163
Bhat, Suhrid 91
Bittner, Robert 1
Bohren, Jon 231
Broggi, Alberto 595
Brown, Thomas 1
Buckley, Ryan 163

Cacciola, Stephen 125
Campbell, Mark 257, 509
Campbell, Stefan 163
Catlin, Jason 257
Chen, Yi-Liang 595
Clark, M.N. 1
Cornelsen, Karsten 441
Currier, Patrick 125

Dahlkamp, Hendrik 91
Dalton, Aaron 125
Darms, Michael 1
Demitrish, Daniel 1
Derenick, Jason 231
Doering, Michael 441
Dolan, John 1
Dolgov, Dmitri 91
Duggins, Dave 1

Effertz, Jan 441
Epstein, Alexander 163
Ettinger, Scott 91
Eustice, R.M. 549

Farmer, Jesse 125
Faruque, Ruel 125
Ferguson, Dave 1, 61
Fiore, Gaston 163
Fleming, Michael 125
Fletcher, Luke 163, 509
Foote, Tully 231
Form, Thomas 441
Frazzoli, Emilio 163
Frese, Christian 359
Fujishima, Hikaru 257

Galatali, Tugrul 1
Galejs, Robert 163
Garcia, Ephrahim 257
Geyer, Chris 1
Gindele, Tobias 359
Gittleman, Michele 1
Goebl, Matthias 359
Graefe, Fabian 441

624 Author Index

Grisleri, Paolo 595
Gülke, Tim 441

Haehnel, Dirk 91
Harbaugh, Sam 1
Harper, Don 305
Hebert, Martial 1
Hecker, Falk 393
Hecker, Peter 441
Higgins, J.D. 549
Hilden, Tim 91
Himmelsbach, Michael 393
Hoffmann, Gabe 91
Homeier, Kai 441
Hong, Dennis 125
How, Jonathan 163, 509
Howard, Thomas M. 1, 61
Huang, Albert 163
Huhnke, Burkhard 91
Hundelshausen, Felix v. 393
Hurdus, Jesse 125
Huttenlocher, Dan 257, 509

Ivan, J.C. 549

Jagzent, Daniel 359
Johnston, Doug 91
Jones, Troy 163

Kammel, Sören 359
Karaman, Sertac 163
Keller, Jim 231
Kelly, Alonzo 1
Kimmel, Shawn 125
King, Peter 125
Kline, Frank-Robert 257, 509
Klose, Felix 441
Klumpp, Stefan 91
Koch, Olivier 163
Kolski, Sascha 1
Krishnamurthy, Siddhartha 163
Kurdziel, Mike 257
Kushleyev, Alex 231
Kuwata, Yoshiaki 163, 509

Langer, Dirk 91
Lee, Daniel 231
Leonard, John 163, 509
Levandowski, Anthony 91
Levinson, Jesse 91

Likhachev, Maxim 1
Likhachevs, Maxim 61
Lipski, Christian 441
Litkouhi, Bakhtiar 1
Lupashin, Sergei 257

Magnor, Marcus 441
Maheloni, Keoni 163
Marcil, Julien 91
McBride, J.R. 549
McNaughton, Matt 1
Miller, Isaac 257, 509
Miller, Nick 1
Montemerlo, Michael 91
Moore, David 163, 509
Moran, Pete 257
Morgenroth, Johannes 441
Moyer, Katy 163
Mueller, Andre 393

Nathan, Aaron 257, 509
Nickolaou, Jim 1
Nothdurft, Tobias 441

Ohl, Sebastian 441
Olson, Edwin 163, 509
Orenstein, David 91

Paefgen, Johannes 91
Papelis, Yiannis 305
Patz, Benjamin J. 305
Penny, Isaac 91
Peters, Steve 163
Peterson, Kevin 1
Petrovskaya, Anna 91
Pflueger, Mike 91
Pillat, Remo 305
Pilnick, Brian 1
Pink, Oliver 359
Pitzer, Benjamin 359
Porta, Pier Paolo 595

Rajkumar, Raj 1
Rauskolb, Fred W. 441
Reinholtz, Charles 125
Rhode, D.S. 549
Rumpe, Bernhard 441
Rupp, J.D. 549
Rupp, M.Y. 549
Rybski, Paul 1

Author Index 625

Sadekar, Varsha 1
Salesky, Bryan 1
Satterfield, Brian 231
Schimpf, Brian 257
Schöder, Joachim 359
Schumacher, Walter 441
Seo, Young-Woo 1
Singh, Sanjiv 1
Snider, Jarrod 1
Spletzer, John 231
Stanek, Ganymed 91
Stavens, David 91
Stein, Gary 305
Stentz, Anthony 1
Stewart, Alex 231
Stiller, Christoph 359
Struble, Joshua 1
Sundareswaran, Venkataraman 595

Taylor, Andrew 125
Taylor, Michael 1
Teller, Seth 163, 509
Teo, Justin 163
Terwelp, Chris 125
Thrun, Sebastian 91
Thuy, Michael 359

Truax, Robert 163
Turner, D.D. 549

Urmson, Chris 1

Van Covern, David 125
Vernaza, Paul 231
Vogt, Antone 91
von Hundelshausen, Felix 359

Walter, Matthew 163
Webster, Mike 125
Werling, Moritz 359
Whittaker, William “Red” 1
Wicks, Al 125
Wille, Jörn-Marten 441
Williams, Jonathan 163
Wolf, Lars 441
Wolkowicki, Ziv 1
Wuensche, Hans-Joachim 393

Zani, Paolo 595
Zhang, Wende 1
Ziegler, Julius 359
Ziglar, Jason 1
Zych, Noah 257

Springer Tracts in Advanced Robotics

Edited by B. Siciliano, O. Khatib and F. Groen

Further volumes of this series can be found on our homepage: springer.com

Vol. 55: Stachniss, C.
Robotic Mapping and Exploration
196 p. 2009 [978-3-642-01096-5]

Vol. 54: Khatib, O.; Kumar, V.;
Pappas, G.J. (Eds.)
Experimental Robotics:
The Eleventh International Symposium
579 p. 2009 [978-3-642-00195-6]

Vol. 53: Duindam, V.; Stramigioli, S.
Modeling and Control for Efficient Bipedal
Walking Robots
211 p. 2009 [978-3-540-89917-4]

Vol. 52: Nüchter, A.
3D Robotic Mapping
201 p. 2009 [978-3-540-89883-2]

Vol. 51: Song, D.
Sharing a Vision
186 p. 2009 [978-3-540-88064-6]

Vol. 50: Alterovitz, R.; Goldberg, K.
Motion Planning in Medicine: Optimization
and Simulation Algorithms for
Image-Guided Procedures
153 p. 2008 [978-3-540-69257-7]

Vol. 49: Ott, C.
Cartesian Impedance Control of Redundant
and Flexible-Joint Robots
190 p. 2008 [978-3-540-69253-9]

Vol. 48: Wolter, D.
Spatial Representation and
Reasoning for Robot
Mapping
185 p. 2008 [978-3-540-69011-5]

Vol. 47: Akella, S.; Amato, N.;
Huang, W.; Mishra, B.; (Eds.)
Algorithmic Foundation of Robotics VII
524 p. 2008 [978-3-540-68404-6]

Vol. 46: Bessière, P.; Laugier, C.;
Siegwart R. (Eds.)
Probabilistic Reasoning and Decision
Making in Sensory-Motor Systems
375 p. 2008 [978-3-540-79006-8]

Vol. 45: Bicchi, A.; Buss, M.;
Ernst, M.O.; Peer A. (Eds.)
The Sense of Touch and Its Rendering
281 p. 2008 [978-3-540-79034-1]

Vol. 44: Bruyninckx, H.; Přeučil, L.;
Kulich, M. (Eds.)
European Robotics Symposium 2008
356 p. 2008 [978-3-540-78315-2]

Vol. 43: Lamon, P.
3D-Position Tracking and Control
for All-Terrain Robots
105 p. 2008 [978-3-540-78286-5]

Vol. 42: Laugier, C.; Siegwart, R. (Eds.)
Field and Service Robotics
597 p. 2008 [978-3-540-75403-9]

Vol. 41: Milford, M.J.
Robot Navigation from Nature
194 p. 2008 [978-3-540-77519-5]

Vol. 40: Birglen, L.; Laliberté, T.; Gosselin, C.
Underactuated Robotic Hands
241 p. 2008 [978-3-540-77458-7]

Vol. 39: Khatib, O.; Kumar, V.; Rus, D. (Eds.)
Experimental Robotics
563 p. 2008 [978-3-540-77456-3]

Vol. 38: Jefferies, M.E.; Yeap, W.-K. (Eds.)
Robotics and Cognitive Approaches to
Spatial Mapping
328 p. 2008 [978-3-540-75386-5]

Vol. 37: Ollero, A.; Maza, I. (Eds.)
Multiple Heterogeneous Unmanned Aerial
Vehicles
233 p. 2007 [978-3-540-73957-9]

Vol. 36: Buehler, M.; Iagnemma, K.;
Singh, S. (Eds.)
The 2005 DARPA Grand Challenge – The Great
Robot Race
520 p. 2007 [978-3-540-73428-4]

Vol. 35: Laugier, C.; Chatila, R. (Eds.)
Autonomous Navigation in Dynamic
Environments
169 p. 2007 [978-3-540-73421-5]

Vol. 34: Wisse, M.; van der Linde, R.Q.
Delft Pneumatic Bipeds
136 p. 2007 [978-3-540-72807-8]

Vol. 33: Kong, X.; Gosselin, C.
Type Synthesis of Parallel
Mechanisms
272 p. 2007 [978-3-540-71989-2]

Vol. 30: Brugali, D. (Ed.)
Software Engineering for Experimental Robotics
490 p. 2007 [978-3-540-68949-2]

Vol. 29: Secchi, C.; Stramigioli, S.; Fantuzzi, C.
Control of Interactive Robotic Interfaces – A
Port-Hamiltonian Approach
225 p. 2007 [978-3-540-49712-7]

Vol. 28: Thrun, S.; Brooks, R.; Durrant-Whyte, H.
(Eds.)
Robotics Research – Results of the 12th
International Symposium ISRR
602 p. 2007 [978-3-540-48110-2]

Vol. 27: Montemerlo, M.; Thrun, S.
FastSLAM – A Scalable Method for the
Simultaneous Localization and Mapping
Problem in Robotics
120 p. 2007 [978-3-540-46399-3]

Vol. 26: Taylor, G.; Kleeman, L.
Visual Perception and Robotic Manipulation – 3D
Object Recognition, Tracking and Hand-Eye
Coordination
218 p. 2007 [978-3-540-33454-5]

Vol. 25: Corke, P.; Sukkarieh, S. (Eds.)
Field and Service Robotics – Results of the 5th
International Conference
580 p. 2006 [978-3-540-33452-1]

Vol. 24: Yuta, S.; Asama, H.; Thrun, S.;
Prassler, E.; Tsubouchi, T. (Eds.)
Field and Service Robotics – Recent Advances in
Research and Applications
550 p. 2006 [978-3-540-32801-8]

Vol. 23: Andrade-Cetto, J,; Sanfeliu, A.
Environment Learning for Indoor Mobile Robots
– A Stochastic State Estimation Approach
to Simultaneous Localization and Map Building
130 p. 2006 [978-3-540-32795-0]

Vol. 22: Christensen, H.I. (Ed.)
European Robotics Symposium 2006
209 p. 2006 [978-3-540-32688-5]

Vol. 21: Ang Jr., H.; Khatib, O. (Eds.)
Experimental Robotics IX – The 9th International
Symposium on Experimental Robotics
618 p. 2006 [978-3-540-28816-9]

Vol. 20: Xu, Y.; Ou, Y.
Control of Single Wheel Robots
188 p. 2005 [978-3-540-28184-9]

Vol. 19: Lefebvre, T.; Bruyninckx, H.;
De Schutter, J. Nonlinear Kalman Filtering
for Force-Controlled Robot Tasks
280 p. 2005 [978-3-540-28023-1]

Vol. 18: Barbagli, F.; Prattichizzo, D.;
Salisbury, K. (Eds.)
Multi-point Interaction with Real
and Virtual Objects
281 p. 2005 [978-3-540-26036-3]

Vol. 17: Erdmann, M.; Hsu, D.; Overmars, M.;
van der Stappen, F.A (Eds.)
Algorithmic Foundations of Robotics VI
472 p. 2005 [978-3-540-25728-8]

Vol. 16: Cuesta, F.; Ollero, A.
Intelligent Mobile Robot Navigation
224 p. 2005 [978-3-540-23956-7]

Vol. 15: Dario, P.; Chatila R. (Eds.)
Robotics Research – The Eleventh
International Symposium
595 p. 2005 [978-3-540-23214-8]

Vol. 14: Prassler, E.; Lawitzky, G.; Stopp, A.;
Grunwald, G.; Hägele, M.; Dillmann, R.;
Iossifidis. I. (Eds.)
Advances in Human-Robot Interaction
414 p. 2005 [978-3-540-23211-7]

Vol. 13: Chung, W.
Nonholonomic Manipulators
115 p. 2004 [978-3-540-22108-1]

Vol. 12: Iagnemma K.; Dubowsky, S.
Mobile Robots in Rough Terrain –
Estimation, Motion Planning, and Control
with Application to Planetary Rovers
123 p. 2004 [978-3-540-21968-2]

Vol. 11: Kim, J.-H.; Kim, D.-H.; Kim, Y.-J.;
Seow, K.-T.
Soccer Robotics
353 p. 2004 [978-3-540-21859-3]

	3642039901
	Springer Tracts in Advanced RoboticsVolume 56
	The DARPA UrbanChallenge
	Foreword
	Foreword
	Preface
	Acknowledgements to Reviewers
	Picture Gallery of Finalists
	Contents
	Autonomous Driving in Urban Environments: Boss and the Urban Challenge
	Introduction
	Overview

	Boss
	Motion Planning
	Trajectory Generation
	On-Road Navigation
	Zone Navigation

	Perception
	Moving Obstacle Detection and Tracking
	Static Obstacle Detection and Mapping
	Roadmap Localization
	Road Shape Estimation

	Mission Planning
	Detecting Blockages
	Blockages

	Behavioral Reasoning
	Intersections and Yielding
	Distance Keeping and Merge Planning
	Error Recovery

	Software Infrastructure
	Testing
	System Testing

	Performance at the National Qualification Event and Urban Challenge Final Event
	National Qualification Event Analysis
	Final Event Analysis

	Lessons Learned
	Conclusions
	References

	Motion Planning in Urban Environments
	Introduction
	System Architecture
	Motion Planning
	Trajectory Generation
	State Constraints
	Vehicle Modeling
	Controls Parameterization
	Initialization Function
	Trajectory Optimization

	On-Road Planning
	Path Extraction
	Trajectory Generation
	Trajectory Velocity Profiles
	Trajectory Evaluation
	Lane Changing
	U-Turns
	Defensive Driving
	Error Detection and Recovery

	Unstructured Planning
	Planning Complex Maneuvers

	Tracking Complex Paths
	Planning in Parking Lots
	Planning in Error Recovery Scenarios

	Results and Discussion
	Prior Work
	On-Road Planning
	Unstructured Planning

	Conclusions
	Vehicle Model

	Junior: The Stanford Entry in the Urban Challenge
	Introduction
	Vehicle
	Software Architecture
	Environment Perception
	Laser Obstacle Detection
	Static Mapping
	Dynamic Object Detection and Tracking

	Precision Localization
	Smooth Coordinates

	Navigation
	Global Path Planning
	RNDF Road Navigation
	Free-Form Navigation
	Intersections and Merges
	Behavior Hierarchy
	Manual RNDF Adjustment

	The Urban Challenge
	Results
	Notable Race Events

	Discussion
	References

	Odin: Team VictorTango’s Entry in the DARPA Urban Challenge
	Introduction
	VictorTango Overview
	Base Vehicle Platform
	Perception
	Planning

	Technical Approach
	System Architecture and Communications
	Perception
	Planning

	Final Software Configuration
	Motion Planning Parameters
	Sparse Road Detection
	Vision Drivable Area Coverage

	National Qualifying Event
	NQE A – Traffic
	NQE B – Navigation and Parking
	NQE C – Intersections and Road Blocks
	Practice and Preparation

	Urban Challenge Event
	Performance Overview
	Perception
	Driving Behaviors
	Motion Planning

	Overall Successes
	Base Vehicle Design
	Software Development

	Conclusions
	References

	A Perception-Driven Autonomous Urban Vehicle
	Introduction
	Architecture
	Infrastructure Design
	Design Considerations
	Race Vehicle Configuration
	Software Infrastructure

	Perception Algorithms
	The Local Frame
	Obstacle Detector
	Hazard Detector
	Lane Finding

	Planning and Control Algorithms
	Navigator
	Drivability Map
	Motion Planner
	Controller

	Challenge Results
	National Qualifying Event (NQE) Performance
	UCE Performance

	Discussion
	Perception-Driven Approach
	Slow-Moving Vehicles
	Improved Simulation
	Verification of Failsafe Approaches

	Release of Logs, Visualization and Software
	Conclusion
	References

	Little Ben: The Ben Franklin Racing Team’s Entry in the 2007 DARPA Urban Challenge
	Introduction
	Design Considerations

	Vehicle Platform
	Drive-by-Wire Actuation
	Emergency Stop
	Roof Rack
	Hood Sensors
	Other Sensors

	Software Architecture
	Computing System

	Perception
	Velodyne Processing
	LIDAR Ground/Obstacle Detection
	LIDAR Lane Marking Detection
	Dynamic Obstacle Tracking
	Vision

	Mapping
	Planning and Control
	Mission and Path Planning
	Path Following
	Overhead Imagery Registration

	NQE Performance
	UFE Performance
	Summary

	Team Cornell’s Skynet: Robust Perception and Planning in an Urban Environment
	Introduction
	System Architecture and Data Flow
	Real-Time Data Distribution Network

	Component Descriptions
	Vehicle Hardware
	Position, Velocity, and Attitude Estimation
	Obstacle Detection and Tracking
	Environment Structure Estimation
	Intelligent Planning

	Performance at the National Qualifying Event
	Area A
	Area B
	Area C

	Performance at the Urban Challenge Event
	Overall UCE Performance
	The Wrong Way Vehicle
	The Pass
	The Traffic Jam at Washington and Utah

	Conclusions

	A Practical Approach to Robotic Design for the DARPA Urban Challenge
	Introduction
	Urban Challenge Overview
	TeamUCF
	Overall Project Approach

	Robot Vehicle
	Actuators
	Sensors
	GPS/INS

	Software Architecture
	Laser Data Processing and Sensor Fusion
	Sensor Fusion
	AI - Intelligence
	Path Planning
	Control Systems
	ICE

	Project Process
	Simulation and Modeling
	Testing Methodology

	NQE and Race Results
	Finals

	Discussion
	References

	Team AnnieWAY’s Autonomous System for the DARPA Urban Challenge 2007
	Introduction
	Hardware Architecture
	Computing System
	Laser-Based Range and Intensity Sensors
	DGPS/INS
	Emergency Stop System

	Software Architecture
	Perception
	Environmental Mapping

	Tracking of Dynamic Objects
	Lane Marker Detection
	Reactive Layer
	Planning
	Moving Traffic
	Problem Abstraction and Simplifications
	Spatial and Temporal Verification
	Integration into the State Machine

	Navigation in Unstructured Environment and Parking
	Configuration Space Obstacles
	Search Graph and A*
	Cost Function

	Vehicle Control
	Orbital Tracking Controller
	Longitudinal Controller System

	Results
	Conclusions
	References

	Driving with Tentacles - Integral Structures for Sensing and Motion
	Introduction
	Occupancy Grid
	Tentacle Structure and Generation
	Geometry
	Support and Classification Area
	Longitudinal Histogram

	Selection Mechanism
	Tentacle Classification
	Braking and Crash Distance
	Clearance Value
	Flatness Value
	Trajectory Value
	Combining Clearance, Flatness and Trajectory Values

	Tentacle Execution
	Direct Execution
	Fragment Execution
	Trajectory Blending

	Considering Vehicle Dynamics
	Motion Equations
	Numerical Integration
	Can the Curvatures of Our Tentacles Be Executed?
	Determining Path Deviations
	Considering an Extreme Case

	Experiments and Competitions
	System Integration at the C-Elrob 2007
	System Integration within the DARPA Urban Challenge 2007 Finalist AnnieWay
	Experiments in Preparation for the Urban Challenge
	Performance at the Urban Challenge
	Lessons Learned

	Conclusions and Future Work

	Caroline: An Autonomously Driving Vehicle for Urban Environments
	Motivation and Introduction
	2007 DARPA Urban Challenge
	System Architecture
	System Modules
	Sensor Fusion
	Vision
	Artificial Intelligence
	Vehicle Control
	Safety

	System Development Process
	Simulator
	Quality Assurance

	The Race and Discussion
	National Qualification Event
	Mandatory Practice for DARPA Urban Challenge Final Event
	DARPA Urban Challenge Final Event

	Conclusion
	References

	The MIT – Cornell Collision andWhy It Happened
	Introduction
	Chronology of Robot–Robot Interactions
	Skynet Passing with XAV-250 and Ben Oncoming at Utah and Washington
	Ben and Knight Rider on George Boulevard
	Caroline and Talos at North Nevada and Red Zone
	Caroline and Talos in White Zone
	Odin and Talos at Carolina and Texas
	Ben and Talos at Utah and Montana

	Team MIT's `Talos'
	Team Cornell's `Skynet'
	General System Architecture
	Obstacle Detection and Tracking
	Intelligent Planning

	The Collision
	The Collision from Inside Skynet
	Stuttering through the Turn
	Reversing toward the Stop Line
	Ignoring Talos

	The Collision from Inside Talos
	Wide Lane Bug
	At the Intersection
	The Collision
	Clusters of Static Objects
	Inability to Track Slow-Moving Objects
	Moving Obstacles versus Explicit Vehicle Classification
	Lane Constraints and Emergency Path Diversity

	Discussion
	Sensor Data Clustering
	Implicit and Explicit Vehicle Detection
	Communicating Intent
	Placing Lane Constraints in Context

	Conclusion
	References

	A Perspective on Emerging Automotive Safety Applications, Derived from Lessons Learned through Participation in the DARPA Grand Challenges
	Introduction and Overview
	The Connection between Robotics Research and Automotive Safety
	The Magnitude of the Problem
	How Does the Reliability of a Present-Day Robot Compare with a Human?
	Observations Regarding Customer Acceptance and Market Penetration
	Concluding Remarks Regarding Implementation of Autonomy in Production Vehicles

	Vehicle Architecture
	Platform
	Sensors
	Software

	Transition to the IVS/MIT Vehicle Architecture
	Undeployed IVS Sensor Technology
	Making the XAV-250 “Look” Like MIT’s LR3

	Performance Analysis
	Testing at El Toro with MIT
	NQE and UCE

	General Observations and Lessons Learned
	Conclusion
	References

	TerraMax: Team Oshkosh Urban Robot
	Introduction
	TerraMax: The Vehicle and Hardware Systems
	Vehicle Overview
	Computing Hardware
	Sensor Hardware

	System Architecture
	Autonomous Services
	System Services

	Sensor Processing and Perception
	LIDAR
	Vision System
	Obstacle Fusion and Tracking

	Planning and Vehicle Behaviors
	Overview of Vehicle Behaviors
	Behavioral Modes and Supervision
	Route Planning
	Trajectory Planning

	Field Performance and Analysis
	Basic and Advanced Behaviors
	Performance at the National Qualification Events
	Performance at the Urban Challenge Final Event
	Return to Victorville

	Concluding Remarks
	References

	Author Index

