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To Professor George A. Bekey, on the
occasion of his 80th birthday.



Preface

The principal chapters of this book form a collection of technical articles span-
ning many areas of research in robotics, these are followed by a set of short rem-
iniscences and tributes written by former students of Professor George A. Bekey.
Professor Bekey, a pioneer in robotics, retired from the University of Southern Cal-
ifornia (USC) in 2002 after serving on its faculty for forty years. He maintains an
association with USC as University Professor Emeritus. Professor Bekey turned 80
in June 2008 - this is his Festschrift.

As one of Professor Bekey’s former students, it has been my privilege to know
him for many years. This book represents the collective warm feelings of his former
students, who remember their association with him in the fondest terms.

Part I of this book is composed of technical chapters representing threads of
active robotics research knitted loosely together. In many cases the themes of the
chapters have their origins in the work the authors did when they were graduate
students with Professor Bekey. These chapters are written for the reader interested
in a sampling of modern research in Autonomous Robots. It is my hope that, for the
serious reader, these chapters will serve as invitations to explore the field via further
reading and research.

Part II of this book is composed of short, non-technical essays by former students
of Professor Bekey. These serve to illustrate his multifaceted personality, and put on
record the feelings of affection which many of us have for him.

Los Angeles Gaurav S. Sukhatme
August 2008
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Chapter 1

Mobile Robots for Polar Remote Sensing

Christopher M. Gifford, Eric L. Akers, Richard S. Stansbury, and Arvin Agah

Abstract Mobile robots are becoming more heavily used in environments where hu-
man involvement is limited, impossible, or dangerous. These robots perform some
of the more dangerous and laborious human tasks on Earth and throughout the solar
system, many times with greater efficiency and accuracy, saving both time and re-
sources. As we explore further away from Earth, higher levels of autonomy are also
becoming more desired in such applications, one of them being remote sensing. This
chapter covers mobile robots that have been designed and built at the University of
Kansas to facilitate seismic and radar remote sensing of ice sheets in polar regions.
These robots have been developed for and deployed in unstructured, polar environ-
ments. System designs, components, deployment and data acquisition algorithms,
and experimental results are discussed. In this chapter, future applications, such as
an autonomous multi-robot seismic surveying team, are simulated. Future plane-
tary missions will hopefully incorporate similar robotic systems to conduct in-situ
experiments on other planets.
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1.1 Introduction

At the University of Kansas, the Center for Remote Sensing of Ice Sheets (CReSIS)
(48) performs polar research to gather data and model ice sheets to better under-
stand climate change and its effects on sea level rise. We have designed, built, and
deployed mobile robots to autonomously traverse polar terrain and support experi-
ments in Greenland and Antarctica. The problem we are faced with is to facilitate
the use, and increase the efficiency of seismic and radar data acquisition in these
types of environments. Integration of autonomy and mobility into remote sensing
methods can potentially improve and enhance the process.

One of the sensors used to perform this research is a seismic sensor, or geo-
phone. These highly sensitive geophones detect vibrations in the ground which can
be recorded as images. These images, for example, can show characteristics of the
subsurface, detect cracking (fault) locations, as well as provide information on what
is beneath the ice sheets. CReSIS has also developed ground and ice penetrating
radars that can also provide highly detailed images of the subsurface. We have used
these radars to identify layers and areas of potential water within Earth’s ice sheets,
as well as the extent of water presence at the interface between the ice sheet and the
underlying bedrock. Together, these remote sensing techniques allow us to study and
further understand how polar regions are changing in response to climate change.

Research in the field of robotics has been focusing on accurate sensing and au-
tonomy, mostly performed in structured environments such as factories and homes.
Robotic applications involving remote sensing and in-situ experiments in unstruc-
tured environments have, however, been limited. Not only are navigation and actua-
tion in such environments difficult problems, autonomy in hazardous environments
represent larger challenges (166).

Another important aspect of integrating robotics and remote sensing surveys is
that it limits human involvement, the most dangerous and costly portion of a sur-
vey. The accuracy and quality of acquired data can also be potentially increased.
For polar and planetary environments, this becomes extremely important for safety,
reliability, and resource consumption. Furthermore, robotics increases precision and
introduces repeatability into an otherwise time-consuming and complex human task.
In particular, because seismic deployment is labor-intensive, expensive in terms of
time and cost, and possibly dangerous, autonomously performing such tasks using
mobile robots can be highly beneficial. Therefore, the goal is to combine robotics
research with remote sensing systems to autonomously image the subsurface for
polar and planetary applications.

As we explore further away from Earth, a need for a coupled increase in intelli-
gence and autonomy arises as a result of large communication delays between robots
and their remote human operators. During communication delays, robots could nav-
igate to new locations, perform experiments, or build a map of an unexplored region
of the surface. Other planets and their moons offer various unique and challenging
environments for ground-based robots, ranging from the extreme heat and pressure
on the surface of Venus to the icy landscape of Jupiter’s moon Europa. Future mis-
sions to the icy moon Europa may one day include a multi-robot seismic mission to
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learn more about its subsurface and the ever-present search for Earth-like processes
and life in the solar system.

This chapter covers mobile robots that have been designed at the University of
Kansas to facilitate seismic and radar remote sensing in polar regions. Section 2
introduces two polar mobile robots, challenges and survivability issues, and their
field operations in Greenland and Antarctica. Section 3 discusses designs and sim-
ulations of single- and multi-robot approaches to automated seismic surveying. Fi-
nally, Section 4 discusses the conclusions and future directions of work related to
these systems.

1.2 Polar Mobile Robots

At the University of Kansas, mobile robots have been utilized to autonomously sup-
port the Center for Remote Sensing of Ice Sheets (CReSIS) (48) and Polar Radar
for Ice Sheet Measurements (PRISM) (100) projects. Mobile robots are required to
transport a radar system across the ice sheet, following a precise movement pat-
tern and tow an antenna, while ensuring the safety of the radar system. Mobile
robots designed for harsh environments such as the polar regions can increase the
efficiency of data collection in field experiments, reduce the potential dangers to
humans, and enable experiments beyond the regular field seasons. When the data
collection process requires several days, weeks, or months, special considerations
must be made for the survivability of these robots. Two mobile robots, shown in Fig-
ure 1.1, have been evaluated in Greenland and Antarctica during three field seasons
for autonomous data acquisition using radar remote sensing. The following sections
discuss challenges and survivability issues associated with polar robotics, platform
components, sensing, and field operations.

Fig. 1.1 MARVIN I (left, in Greenland) and MARVIN II (right, in Antarctica) equipped with
components for polar operations.
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1.2.1 Challenges and Survivability Issues for Polar Robotics

There are many challenges faced by polar robots, as described in detail in (11).
Polar robots must operate in extremely cold temperatures. The temperatures at the
Amundsen-Scott South Pole Base have been recorded to vary from -13.6o Celsius to
-82.8o Celsius (118). To address short-term survival during polar Summer seasons,
onboard robot components must at least meet a minimum operating temperature
of -40o Celsius. High wind speeds also produce many unique challenges to polar
survival. All components of the mobile robot must be ruggedized to handle high
wind speeds. At the South Pole Station, the average wind speed is 5.5 meters per
second with a maximum recorded gust of 24 meters per second (118). Polar winds
erode the ice sheet creating surface obstacles such as snow drifts and sastrugis. The
blowing snow further contributes to low visibility.

Obstacles such as sastrugis can cause damage to the mobile robot. Sastrugis are
dune-like ice structures that result from erosion of the ice sheet’s surface and may
have only one steep side. Due to their unique shape, blowing snow, a lack of surface
contrast, and inadequacies of stereo vision, sastrugis are difficult to detect. A robot
cannot remain stationary for an extended period of time without snow drifting along
one side. If a robot must suspend operation temporarily during a snow storm (i.e.,
lack of solar energy), it must maneuver such that it will not become stuck.

Any venture away from an established camp poses the risk of encountering a
crevasse. Crevasses may be hidden by a layer, or “canopy”, of snow. To date, air-
borne radar has been the most used mechanism for locating crevasses within an area,
but that may be insufficient for long distance traversals. Researchers have utilized
ground penetrating radar mounted on a boom several meters ahead of the vehicle to
detect crevasses, which requires that the vehicle travels quite slowly (15). Smaller
robots may not be capable of supporting such a configuration because of the mass
required to support the antenna boom. Additionally, vision sensors are often insuffi-
cient for operation within polar environments. Blowing snow may obscure cameras,
sonar, and laser measurement sensors. Depth perception is also limited when all
backgrounds are white. Cloudy days may reduce visibility due to a lack of contrast.
Currently, only millimeter-wave radar is capable of operating in these low visibility
situations, but those are often heavy, consume power resources, and could be infea-
sible in terms of cost. Figure 1.2 presents examples of limited visibility and snow
drifting that was formed overnight in the polar regions.

1.2.2 MARVIN I

The first mobile robot for the PRISM project, MARVIN I, was constructed using a
MaxATV Buffalo (141) All Terrain Vehicle (ATV) as the mobile platform. This sec-
tion presents a description of the robot, and more thorough descriptions are available
in (10; 81). The six-wheeled MaxATV, shown in Figure 1.3, features a skid-steering
drive system. The robot has a ground clearance of about 12.5 cm. It can tow up to
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Fig. 1.2 A snow drift that formed overnight behind MARVIN II while in camp (left), and limited
visibility due to blowing snow (right).

454 kg and haul 408 kg. A custom enclosure, shown in Figure 1.1, was built on
top of the rover to house the robot’s sensors, actuators, computers, and all the radar
equipment. A gas generator provides power to the onboard systems.

Fig. 1.3 Original Buffalo Max ATV used as the base platform for the MARVIN I mobile robot.

Linear actuators are used to automate the platform. The left and right brakes are
controlled using linear actuators attached to the respective control handle for each.
The engine’s throttle is controlled using a linear actuator, attached to the rover’s
throttle control cable. The actuators are magnetically driven and provide 5 mm posi-
tion accuracy. Localization was handled using a Topcon real-time kinematic (RTK)
GPS (179) for centimeter-level accuracy (required for radar measurements), along
with a gyroscope and inclinometer to provide the robot’s orientation. A compass
can not be used in polar robots due to the skew caused by the close proximity to
the magnetic poles. A laser range-finder is used to detect obstacles. An internal
temperature sensor provides feedback regarding the current temperature within the
environmental enclosure. Lastly, a weather station and a pan-tilt-zoom camera are
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included for outreach activities of the project. Figure 1.4 presents MARVIN I and its
components in Greenland (2004), and also shows the mounting of a radar antenna
on the platform. Automated navigation is handled using a ruggedized laptop.

Fig. 1.4 MARVIN I in Greenland (2004) with external sensor components. A radar antenna
mounted for data acquisition is also shown.

When designing and building MARVIN I, many design decisions such as elec-
tric versus gas powered engine, the type of vehicle, tracked versus wheeled, etc.
had to be made without the ability to test in the same conditions in which it had to
run. As a result, a virtual prototype of MARVIN I was created and tested in simula-
tion. MSC.visualNastran 4D (116) was used for both the modeling and simulation
of the vehicle. Figure 1.5 shows the model that was created for performing platform
and towing tests. The model does not perfectly match the actual vehicle, however,
as there are many shapes and contours that are difficult and unnecessary to model.
Also, the weight distribution of the vehicle was not completely known. The weight
of the vehicle was evenly distributed around the base of the vehicle when the exact
weight was known. The model for the antenna was created simply as a flat rectan-
gular box, also shown in Figure 1.5.

The simulation experiments were designed to answer some specific questions
about rover performance. First, what should the starting point be for the safety pa-
rameters? The safety parameters included the maximum slope the rover could climb
(the pitch angle) and the point at which the rover would roll over (the roll angle), and
how would the rover handle while performing basic movements and with different
load configurations? The results from these tests are described in (9), along with a
full description of the modeling and testing process. Software and control will be
discussed in the next section, as it was inherited by the second version of the robot:
MARVIN II.
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Fig. 1.5 Tracked vehicle model used for each simulation experiment (left), and the model towing
an antenna sled.

1.2.3 MARVIN II

In order to address some of the limitations of MARVIN I (12; 81), MARVIN II,
shown in Figure 1.1, was designed and built. Many of the decisions made regarding
the design of the new robot were traceable to the lessons learned from MARVIN I
(12). MARVIN II was built using a RangeRunner All Terrain Vehicle (ATV) from
TerraTrack (174) as the mobile platform base vehicle. The new vehicle has a 22.9
centimeters ground clearance, a 32 horsepower diesel engine, and a hydrostatic dif-
ferential drive system. Hydraulic motors with built-in speed sensors allow for a finer
control. Turns can be produced by speeding up one side, slowing down one side, or
both. This improves the system in two ways: (1) horsepower is not lost to braking,
and (2) one track no longer has to be dragged in order to turn. Another difference
is that the new base vehicle is built with tracks whereas the first is a six-wheeled
vehicle with a track kit. The tracks on MARVIN I had a tendency to detach when
turning on hard surfaces.

The sensor suite of MARVIN II is quite similar to its predecessor. The weather
station has been eliminated in place of a ground-based solution. The camera no
longer pans and tilts, but rather has a fixed mount because the motors could not
handle the vibration caused by a moving vehicle on the ice sheet. Speed sensors
have been integrated with the hydraulic motors used to drive the vehicle. Each speed
sensor provides a fixed number of pulses per revolution, which is used to determine
the speed of each track. During early development of MARVIN II, a Garmin (67)
handheld GPS receiver was used in place of the Topcon GPS. The Topcon GPS
receiver was later utilized, but no longer in RTK differential mode due to the longer
paths required during the 2005/2006 Antarctic field season.

A control box has been constructed to house an embedded control system, in-
ternal robotic sensors, and the power supplies for the various subsystems. Toggle
switches allow the various subsystems to be powered individually. I/O ports such as
USB, RS232, and Ethernet are provided such that multiple computers and external
devices may be integrated with the control box. An embedded controller was con-
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structed to handle low-level control of the robot. The embedded controller utilizes a
Xilinx Virtex-II Pro (197), which is equipped with FPGAs and dual embedded Pow-
erPC processors. Custom I/O boards were constructed to handle communication
between the controller, robotic components, and the control box’s user interface.
Figure 1.6 shows MARVIN II’s actuator setup for autonomous navigation as well
as the custom control box. Figure 1.7 displays the robot’s capabilities for mounting
data acquisition equipment.

Fig. 1.6 MARVIN II’s actuator setup for autonomous navigation (left), and custom control box
housing the embedded controller and other components (right).

Fig. 1.7 MARVIN II platform with environmental enclosure, radar crate mounted on the front, and
additional fuel on the back (left); and larger crates mounted on both sides of the custom aluminum
frame (right).
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The control system is divided between the embedded controller to control the
speed of the tracks and a laptop that communicates with the embedded controller.
The laptop determines where and at what speed the vehicle should move. The laptop
uses a wireless network to communicate remotely. Unlike MARVIN I, the new con-
trol software is written such that the two levels of control are decomposed from the
original monolithic control system. At the highest layer, the list of waypoints is eval-
uated and the waypoint navigator is given a new path to traverse. At the waypoint
navigator layer, the sensors are monitored to determine and assign desired speeds
for each track in order to drive the robot toward the path. Finally, at the lowest level,
the embedded controller adjusts the actuator state until the desired speed is reached.
This modularity allows the laptop to control the higher level actions of the robot
such as setting the desired speed of each track, performing obstacle avoidance, and
making route corrections. The embedded controller handles the lower-level control
which attempts to keep each track moving at the requested speed while adjusting
for bumps, hills, or anything that might hinder the speed of the tracks.

1.2.4 Software Architecture

A software application programming interface (API) was developed for PRISM and
CReSIS mobile robotics research. The API was designed with an emphasis on porta-
bility, robustness, and maintainability. As the underlying hardware of the mobile
robot changes, the overall structure of the software system should remain intact and
only require minor changes to adapt to the new hardware. The software libraries
should also be general enough so that they could be utilized for a variety of mobile
robots.

Figure 1.8 presents the robot API. Devices are modeled as either sensors or actu-
ators, and several abstract classes for each exist. When implementing for a particular
robot, the abstract sensor classes are implemented as drivers for the particular com-
ponent. By using these abstract classes, it is possible to change the robotic platform
while maintaining the same control system and automation software, utilizing the
same intelligence algorithms. Figure 1.9 shows the mapping from each platform to
a generic control system type. Figure 1.10 demonstrates the execution of software
to guide a robot to move in an “S-pattern” on both a Nomadic Scout testbed and the
MARVIN I polar rover.

The primary advantage of creating a reusable architecture for robot software
development is to simplify testing the robot. The same algorithms may be ported
between simulation, testbeds, and the field robots. When operating large mobile
robots, small tests to prove control logic can become quite logistically challenging
without sufficient use of prototypes, and this software helped bridge the necessary
gap to do so. The same challenge holds for robots for polar regions.
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Fig. 1.8 Robot API for PRISM/CReSIS mobile robots.

1.2.5 North Greenland Ice Core Project (GRIP) Camp Operations

Research during the Greenland 2003 field season focused on testing each of the in-
dividual components of MARVIN I. Components were subjected to a deep freeze
upon arrival on the ice sheet, and each was tested to ensure that it could reliably
operate within the polar conditions. The rover was tested over several long-range
traversals to determine how it handled when maneuvering on the snow. Figure 1.11
shows MARVIN I towing a prototype radar sled across the ice sheet. MARVIN I be-
came stuck in snow only once. During the North GRIP camp (121) experiments, the
sensors proved reliable. Figure 1.11 also shows the laser range-finder being tested
by imaging a man-made snow wall. Other experiments included attempting to de-
tect a simulated crevasse with the laser range-finder, which failed to yield positive
results. Evaluation of the GPS receiver was performed to determine sufficient satel-
lite coverage. From the results, it was clear that the minimum four necessary GPS
satellites were available at all times.

1.2.6 Summit Camp Operations

After a year of work, MARVIN I was sent back to Greenland in the Summer of 2004
to test its automation. It was integrated with a radar system such that it would au-
tonomously move across the ice sheet following a precise path so that radar data
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Fig. 1.9 Mapping of platform to actuator API class to control systems.

could be collected. Unlike the previous experience at North GRIP, it was much
warmer at the Summit Camp in 2004. As a result, the rover became stuck peri-
odically. This happened most frequently during turns in which one of the tracks was
stopped. The camera’s pan-tilt motor also failed due to excessive vibrations. Ulti-
mately, MARVIN I’s transmission failed due to the payload being too heavy, and
possibly a buildup of ice on the robot’s axles. These were lessons learned that were
then applied to the MARVIN II polar robot design.
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Fig. 1.10 Nomadic Scout testbed (left) and MARVIN I (right) performing ”S-pattern” using iden-
tical control software.

Fig. 1.11 Evaluation of MARVIN I systems at North GRIP, including using a laser range-finder to
image a snow wall (left) and towing a mockup radar array (right).

1.2.7 West Antarctic Ice Sheet (WAIS) Divide Camp Operations

Having learned lessons from the MARVIN I experiments in Greenland, MARVIN
II was deployed in Antarctica in 2006 to support mono-static and bi-static radar
applications. Figure 1.12 shows the MARVIN II rover towing two different radar
systems in the field. MARVIN II is the current ground-based robot used by CReSIS
for polar field expeditions.

Figure 1.13 illustrates the deployment of the two robots in the field. The left
figure plots the movement of MARVIN I between two waypoints with 25 meter grid
spacing. Despite a high-end GPS providing centimeter-level accuracy, MARVIN
I could not be mechanically controlled to provide a sufficiently straight path for
autonomous radar survey. This demonstrates the impact of its transmission failure.
The middle figure plots MARVIN II traversing between two waypoints with and
without high-end GPS enabled with a 5 meter grid separation. Without RTK GPS,
MARVIN II oscillated about the line. With the high-end GPS enabled, the amplitude
of oscillation about the line was dramatically reduced, as shown in Figure 1.13. The
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Fig. 1.12 MARVIN II rover towing a radar sled for a mono-static application (left) and a radar
sled for a bi-static application (right) in Antarctica.

Fig. 1.13 Navigation results for MARVIN I with 25 meter resolution (left), MARVIN II straight
line with 5 meter resolution (middle), and MARVIN II turn patterns with 5 meter resolution (right).

right image in Figure 1.13 plots (with 5 meter grid spacing) MARVIN II’s path as it
performs a turn maneuver to switch between paths.

1.3 Robotics-Based Approaches to Seismic Surveying

Seismic sensors, also known as geophones, are sensors which transfer vibration
waves as a series of analog signals based on the composition of the material beneath
the surface and the travel times of the measured seismic waves. Widely used for
oil exploration, geophones are activated by a seismic source, which can range from
striking the ground to a very large explosion or a natural geologic event. The source
sends elastic vibration energy down into and through the subsurface so as to even-
tually reflect and refract back after interaction with the internal layers. Based on the
travel times, wave velocities, and the received signals from a series of geophones,
Seismologists can digitize, filter, and analyze the results to learn such facts as water
table depth, fault location, and rock layer boundaries. The refracted and reflected
paths can provide structural information of the subsurface (136). The physical prop-
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erties of the rocks and beds affect travel times of seismic waves. These travel times,
along with the waveform and spectra, are then used to deduce information about the
subsurface and internal layering. Various styles and models of seismic sensors exist
for many applications on land, snow, and at sea. A single geophone and linear array
of deployed geophones are shown in Figure 1.14.

Fig. 1.14 Spiked geophone (left), and several deployed by inserting the spikes into the surface
(right).

Deployment of geophones translates into how each is inserted into the ground (or
alternatively, rests on the surface). During manual operations involving tens or hun-
dreds of geophones, each is typically stepped on or hand-pressed into the ground.
If necessary, holes are dug prior to deployment to create a shelter for the sensor to
record its data. This is a timely and arduous task, especially when performed in a
polar environment. Coupling of the geophones with the ground directly affects the
data quality and frequencies that can be recorded. Geophones must also be arranged
in a centimeter-level precision grid of equal spacing while being oriented no more
than 10o from the Earth’s gravitational vertical.

Seismic arrays can be formed to acquire a map of the subsurface, allowing de-
tailed imaging at many different resolutions and depths. Higher frequencies and
close (sub-meter to tens of meters) spacing results in a highly detailed, shallow
image of the subsurface. Deeper imaging requires sparse deployment and long dis-
tances from a powerful source, with spacing ranging from hundreds to thousands of
meters. Furthermore, high frequency acquisition translates into more accurate im-
ages. If geophones are positioned in a straight line, a seismic survey will result in
a two-dimensional (2D) image/slice of the subsurface. If the geophones are aligned
in a square or rectangular grid pattern, a three-dimensional (3D) view of subsurface
characteristics will result. A fourth dimension, namely time, can be introduced to
image movement of the subsurface and materials.
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1.3.1 Related Work

Very little work involving robotic deployment and retrieval of seismic sensors has
been done to date. However, work done in regular environments can provide helpful
information. As stated in (84), the future of seismic surveying on land is the elimi-
nation of cables. Seismic networks can also be of less weight and easily scalable in
terms of network size, structure, and shape.

The University of Kansas Geology Department recently developed an “autojug-
gie” (180) capable of planting 72 geophones in 2 seconds using a hydraulic press
and structured array system. Several variations of the autojuggie have also been de-
veloped and field-tested (165). These variations include automated deployment us-
ing farm equipment and deployment of closely-spaced lines of seismic sensors for
ultra-shallow imaging. Structures were used to simultaneously press all sensors into
the ground, and simultaneously retrieve all geophones when finished. Care was also
taken to try to reduce crosstalk between sensors through the deployment structures.
These approaches are still human-operated in that they use existing farm equipment
and vehicles as a means for deployment and retrieval. Scalability and robustness of
this approach is limited as well.

Land streamers are a method inherited from the marine seismic community,
which deploy a series of geophones by dragging them along the surface. Acqui-
sition takes place when stopped, where all geophones typically rest on metal plates
rather than being physically inserted into the ground. This increases deployment ef-
ficiency by reducing the time required for insertion and orientation of the sensors, as
well as reducing transportation time from one site to another. In (164), multiple land
streamers were pulled alongside each other at the same time using an ATV. Individ-
ual land streamers were spaced equidistant from one another to a towing structure so
as to create a wider 2D array. Results were acceptable for relaxed seismic require-
ments, but would not be applicable under higher frequency situations. Other efforts
have also been published (60; 95; 155) that employed single streamers in a polar
setting, or specifically designed for shallow data acquisition (181; 182). Survey re-
quirements and weather conditions dictated the geophone spacing, streamer length,
and materials used to construct the streamers. Several streamer designs have been
attempted in these works, ranging from the 1970’s to the present. The Kansas Geo-
logical Survey made their land streamer more rugged by encasing it and all wiring
in a fire hose (92).

NASA, working with Georgia Tech and Metrica, Inc., developed an Extra-
Vehicular Activity Robotic Assistant (39) capable of being handed a geophone
and inserting it into soil using a seven degree-of-freedom manipulator and a three-
fingered gripper (113). The 4-wheeled mobile robot could not perform the full de-
ployment task and was not made to retrieve the planted geophones. The main pur-
pose of this robot was to assist activity-suited humans in the field by performing
some tasks on its own. A trailer containing the geophones was pulled so the human
could hand them to the robot or store other various supplies.
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1.3.2 Robotics-Based Approaches

Many possible mechanisms exist for deployment and retrieval of seismic sensors
(71; 72). Automating the process makes detailed imaging on many scales much
more feasible.

Individual Deployment

Individual deployment covers those methods that deploy and retrieve a single
geophone at a time. This mechanism could be a robotic arm, crane-like apparatus,
air-powered device, planter, or any other form of pick-and-place device. In many
planting, weeding, and picking projects, robotic manipulators are utilized to help
automate the process. This type of mechanism is responsible for pressing into, ori-
enting, and pulling from the ground all seismic sensors and placing them in a trans-
port area, charging station, or organized rack. Size, shape, and weight influence the
overall design of platform(s) performing the task. Issues with this category involve
orientation, positioning, and weather. Autonomously dealing with and keeping track
of the tangling maze of seismic cable also represents a formidable challenge. A pos-
itive aspect of this approach is the millimeter repeatability and precision that ma-
nipulators offer. However, finding and retrieving geophones, manipulator payload,
required pushing power, and gripping the geophone are all major difficulties inher-
ent to this approach.

Array Deployment

The array deployment involves an array to deploy and retrieve a set of geophones,
their cables, and all necessary storage equipment. Seismic sensors would be pre-set
into the array, taken to the field location, and simultaneously (e.g., hydraulically)
pressed into the ground at equal spacing, tilt, and elevation. When ready for re-
trieval, the structure is raised to remove the sensors from the ground. Multiple ar-
rays could be pieced together to record larger areas. The design could also permit
variable sensor spacing to perform different resolution imaging. Geophone spacing,
orientation, and deployment depth are therefore controlled for the entire seismic
array. Scalability in terms of size and imaging resolution is lacking due to being
pre-built, however, and this approach is also still wired.

Land Streamers

The idea of land streamers came from marine seismic surveying, which involves
constantly towing marine streamers under water with use of pulse guns for the sound
source. Land streamers are a non-insertion seismic method where geophones are
wired in series and towed on the surface to acquire seismic data. When the recording
location is reached, the towing vehicle stops so that seismic acquisition can take
place. One or more of these streamers can be towed in parallel to cover larger areas
and perform 2D or 3D imaging.

Autonomous seismic acquisition can then be accomplished with, for example, the
MARVIN II robot. The Webots (51) simulation environment was used to test GPS
waypoint navigation, driving, and turning algorithms, whereas MSC visualNas-
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tran (116) was employed to simulate pulling and drag abilities of our autonomous
rovers. Figure 1.15 shows a MSC visualNastran simulation involving three stream-
ers, where each box represents an enclosed geophone.

Fig. 1.15 Simulation image of an autonomous robot towing a three-streamer array, used for study-
ing towing of streamers and how turning affects strain of the towing structure and travel of the
streamer components.

This mechanism could extend to cover a long distance behind the rover as well
as widen coverage width by using multiple streamers. An attractive aspect of this
category is the ability to choose and change spacing of sensors within and between
streamer lines. Other advantages of this approach are its ease of transport, efficiency,
simplicity, and no need for geophone insertion. The main advantage to these types
of systems is speed and the amount of seismic data that can be recorded with fewer
personnel. The unattractive characteristic of this approach is its lower coupling. This
may cause the geophones to miss higher frequencies, resulting in less detailed seis-
mic images. Some research has shown that, in some environments, performance
between conventional geophones and land streamers are very similar.

Hybrid Streamers

It has been proposed that a hybrid combination of land streamers with increased
coupling would be a good alternative (71). There are several design options to in-
crease hybrid streamer coupling:

• Employ a trenching or plowing attachment to prepare the ground to drag the
streamers below the surface for wind protection and to rest flat for orientation
purposes;

• Add weight to each streamer node;
• Change plate size and/or geometry;
• Increase the surface area the plates have with the ground;
• Heat streamer plates for snowy/polar environments so the melt can refreeze to

ice, giving a more rigid surface contact for the plates; and
• Drill the geophone into the ground like a threaded screw.
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Accordingly, a furrowing, plowing, or trenching apparatus could be attached to a
mobile robot. The robot would power all equipment, have seismographs onboard
for seismic data conversion and storage, and have a data cable which would act as
both the data transmission and communication medium for the entire system.

The simulation images in Figure 1.16 illustrate several variations and configura-
tions that could be utilized. One or more robots could be used and each could tow
one or more parallel streamer lines. A single robot can tow a single hybrid streamer,
or multiple robots can tow several parallel hybrid streamers and work together to
image larger areas. The advantages of such an approach are better coupling, faster
travel, and the potential to collect much more data with far fewer personnel involved.
Complex coordination, communication, and node collisions are essentially avoided
and there is no added attachment/detachment complexity for the streamer to the
robot. Disadvantages to this approach are a single point of failure and overcoming
coupling issues. Hybrid streamers represent a new seismic technique that has not
yet been fully designed or attempted in modern surveying. CReSIS is in the process
of designing and implementing these hybrid techniques (74) for polar deployment.

(a) Single robot, single hybrid streamer (b) Single robot, hybrid streamer array

(c) Multiple robots, single hybrid streamers (d) Multiple robots, hybrid streamer arrays

Fig. 1.16 Simulation images illustrating variations of hybrid streamers towed by mobile robots.
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Multi-Robot Seismic Surveying Team

Based on the demonstrated success of multi-robot systems (distributed robotics)
(8; 28), we have proposed use of a multi-robot seismic surveying team. The multi-
robot seismic surveying approach involves a team of several autonomous, mobile
robots that are smaller in size to deploy geophones and traverse the environment.
They work together to precisely align into a seismic grid pattern. Each robot repre-
sents a mobile node that deploys and retrieves its own geophone. Power is provided
by onboard sources, where each robot contains the necessary digitizing, storage, and
communication hardware for seismic acquisition.

A mobile robot can inject into or place a geophone onto the ground while pro-
tecting the deployed sensors from the wind and weather using an environmental
enclosure. Team size can be relatively small, such as a 25-robot team forming a
5x5 seismic grid, or extremely large, consisting of potentially hundreds of robots
forming grids of any size, shape, and spacing for different seismic resolution appli-
cations.

There are various ways that the team could move into position. Robots could
move one at a time in a certain fashion, by rows or columns, or dynamically align
while all moving at once. Positioning one robot at a time takes longer, but could
help increase accuracy and reduce collisions (73). Dynamically forming the seismic
grid would take less time and would likely be a more flexible solution, but would
suffer from inherently being less precise.

Figure 1.17 illustrates a shape formation scenario in simulation. The robots coor-
dinate which GPS positions they travel to based on a desired grid shape and spacing,
as provided by the main robot.

Fig. 1.17 Simulation images showing a team of mobile robots forming a square seismic grid, one-
by-one from top-right to bottom-left.

The advantages of the multi-robot seismic sensor network approach are that it
would be faster than a human team for large arrays, removes cumbersome wires
from the system, and allows safe remote sensing while being able to dynamically
adjust to the environment. This distributed methodology removes the single point of
failure. This is also a new seismic method that has not yet been attempted, mainly
because it remains too challenging at this time. The main bottlenecks lie in highly
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precise alignment of a team of mobile robots at any scale and any environment
(73), along with properly aggregating the seismic data. This is the most desirable
approach based on its mobility and ability to image at any resolution, shape, and
scale. This might also provide faster network assembly, especially for a large and
remote team. Dropping the robot team from an aerial vehicle to assemble, record,
and perform multiple missions represents a futuristic option in this category. A de-
sign has been proposed for such a mobile robot team platform, as well as precise
grid formation schemes such that the team could form a precise seismic grid one at
a time or in a dynamic fashion (71; 73). This category of seismic sensing has not
been formally performed, but is currently being studied at CReSIS.

Seismic TETwalker Mobile Robot

The NASA/Goddard Space Flight Center in Maryland is developing a new ap-
proach for the sustainable and affordable robotic exploration of the solar system: the
Autonomous Nano-Technology Swarm (ANTS) (49). The basic unit of the structure
is a tetrahedron consisting of nodes interconnected with struts that can be reversibly
and/or partially deployed or stowed to allow forward motion on a surface at a con-
trollable scale or gait. 3D networks are formed from interconnecting reconfigurable
tetrahedra, making structures which are scalable, massively parallel systems. These
robots have been thusly named Tetrahedral walkers, or TETwalkers.

With these aspects in mind, the 4-TETwalker’s center node that it uses to shift its
center of gravity has been studied for geophone deployment (41; 145; 189). As the
robot could potentially deploy through any “face” of its tetrahedral structure after
toppling, a center node was designed for this purpose with angled faces parallel to
the faces of the TETwalker’s outer shape. The corresponding vertical strut is used
to push/insert the sensor into or onto the surface. Lengthening and shortening struts
allow the deployment node to precisely place the geophone, as well as vertically
orient it for proper data acquisition on tilted surfaces.

The design utilized the 4-TETwalker’s center node to house one or more geo-
phones, each with a dedicated spike or surface plate. The robot could then place the
center node down onto the ground by extending the strut that is vertical during de-
ployment. Figure 1.18 shows models of the center node, designed with a geophone
and spike for downward deployment using any side of the 4-TETwalker.

Fig. 1.18 Center node design with geophones and spikes (far left image), and the upright 4-
TETwalker vertically aligning (second image from left) and deploying the downward-pointing
geophone in a gimbaled manner (right two images).
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Deployment and mobility simulations were conducted to study the dynamics of
4-TETwalker motion and strut extension properties for toppling. The struts are mod-
eled as lightweight actuators capable of extending and retracting given the weight
of the system. Figures 1.19 shows models used for deployment and mobility simu-
lations. Further simulation studies are taking place to improve these models.

Fig. 1.19 Simulation images of models used to study the physical characteristics of center node
deployment and retrieval.

1.4 Conclusion

This chapter described the research efforts at the University of Kansas and CReSIS,
focused on developing single- and multi-robot systems for remote sensing and ex-
ploration applications in polar environments, with extensions possible to planetary
missions. These systems represent established building blocks for further research
in the areas of robotics-based seismic surveying and related robotic deployment de-
signs, and mobile robots for autonomous data acquisition in extreme polar settings.
Using such robotic systems can decrease human involvement and reduce risk of
science platforms in unexplored environments.

Ground-based remote sensing experiments have been extremely limited in plan-
etary robotics due to the combination of lower reliability, increased risk, and limited
technical readiness levels. As we explore further from Earth, increased autonomy is
desired to compensate for the downtime associated with communication delays. We
envision autonomous mobile seismic and radar mapping networks on other planets,
such as Jupiter’s icy moon Europa, to explore their subsurface characteristics. Infor-
mation that can be acquired from such experiments could provide insight into the
developmental history of other planets, and also aid in the quest for better under-
standing of the solar system.

As part of this work, novel designs and algorithm simulations demonstrate that
a multi-robot seismic surveying team represents a futuristic approach for remote
sensing on Earth and other planets. We have developed a low-cost multi-robot ex-
ploration and mapping team that will be used to extend this task from simulation to
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reality. We also plan to scale the system up by building more robots, further research
low-cost sensing systems, and introduce more sophisticated multi-robot coordina-
tion and exploration techniques. We would also like to integrate more formal science
and sensor components so as to perform distributed science experiments while ex-
ploring an unknown environment. Polar rovers have provided CReSIS the unique
opportunity to safely and remotely acquire radar and seismic data. This data are be-
ing used to study the effects of climate change on the ice sheets and the inherent
impact of sea level rise on our planet. The University of Kansas and CReSIS will
continue advancing these systems for polar and planetary exploration and subsur-
face mapping.
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Chapter 2

Guidance and Control of Formation Flying

Spacecraft

F. Y. Hadaegh, G. Singh, B. Açıkmeşe, D. P. Scharf and M. Mandić

Abstract A key element of NASA’s future space exploration is high precision for-
mation flying (FF) for space interferometry. Precision FF has never been attempted
before and poses new and significant challenges to the underlying control system.
While the guidance and control (G&C) methodologies of single spacecraft for tradi-
tional planetary flyby and orbiter missions are well-understood, the G&C of FF mis-
sions is fundamentally different. The FF systems require new control systems, ar-
chitectures, and greater levels of autonomy to meet expected precision performance
in the presence of environmental disturbances, plant uncertainties and more com-
plex system interactions. This chapter will trace the motivation for these changes
and will layout approaches taken to meet the new challenges.
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2.1 Introduction

Formation flying spacecraft refers to a set of spatially distributed spacecraft , capable
of autonomously interacting and cooperating with one another (Figure 2.1). Many
of NASA’s future Earth and Space science missions involve formation flying. For
Earth science applications, formation-flying spacecraft will enable a next genera-
tion of instruments for understanding the Earth and the effect of natural and human-
induced changes on the global environment. For example, formations will enable
distributed sensing for Earth gravity mapping, distributed atmospheric data collec-
tion, magneto-spheric studies, co-observations, and global communication systems.
It will become possible to deploy large numbers of low-cost, Earth-orbiting minia-
turized spacecraft/instruments with the opportunity for introducing new members
to the formation for expansion, for upgrading technologies, or to replace a failed
member. Similarly, several space science missions (e.g., Terrestrial Planet Finder,
Interferometers (see Figure 2.2) and Terrestrial Planet Imager (103)) include dis-
tributed instruments such as a large phased array of lightweight reflectors and an-
tennas and long, variable baseline space interferometers. The group of collector and
combiner/integrator spacecraft would form a variable-baseline optical space inter-
ferometer for a variety of science applications from exo-Earth detection to imaging
the event horizon of a black hole. The elements of the formation flying system must
act collaboratively as a single unit, which represents a common system to perform
a task. The quality of the collective behavior of all the spacecraft in the formation
will determine the quality and the magnitude of the science return. Formation fly-
ing spacecraft must conform to extremely stringent control and knowledge require-
ments. Such precise requirements have never existed before. For example, the con-
trol system for space interferometry, for example, must provide precision station-
keeping from coarse requirements (relative position control of any two spacecraft
to less than 1 cm, and relative attitude control of 1 arcmin over a large range of
separation from a few meters to tens of kilometers) to fine requirements (nanometer
relative position control, and .01 milliarcsec relative attitude control). Conformance
to such precise performance metrics presents new challenges, not only in the areas
of guidance, estimation, and control, but also in the areas of dynamic modeling of
the formation flying spacecraft and their environment. It will be crucial to better

Fig. 2.1 Earth Orbiting and Deep Space Formation Flying Spacecraft Interacting with One An-
other for Co-observations
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understand and model physical effects that would have been deemed unimportant or
secondary for less precise spacecraft control applications.

The development of techniques to ensure stability, performance, and efficiency
throughout various stages of formation flying mission has been an active area of
research in recent years (161), (135) (163), (7), (160), (150). These researches
have focused on formation modeling, attitude coordination, formation geometry,
autonomous formation reconfiguration, time constraints, fuel efficiency, maneuver
optimality and collision avoidance (151), (152). The purpose of this chapter is to
provide an overview of the fundamental issues in areas of modeling, estimation,
guidance and control of formation flying spacecraft with references to recent theo-
retical and experimental research developments in this area.

2.2 Modeling and Simulation

The conception of models and the design of simulation techniques for formation
flying spacecraft poses significant challenges compared to those of conventional
spacecraft. An efficient description is needed of the absolute and relative transla-
tional and rotational dynamics of the entire formation. The formation geometry can
be expressed in terms of the states of a spacecraft in the formation and the states
of the remaining spacecraft relative to the designated reference spacecraft. This nat-
urally introduces an effective coupling between all spacecraft states that must be
maintained throughout the formation. Different scales of motion occur simultane-
ously in a formation: translations and rotations of the formation as a whole (macro-

Fig. 2.2 The Terrestrial Planet Finder Formation
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dynamics), relative rotation and translation of one formation member with respect
to another (relative dynamics), and formation member flexibility (micro-dynamics).
A challenge is to incorporate these modes of motion into a usable reduced order
model. The derivation of reduced order models for control, and the need to con-
veniently represent external perturbations and modeling uncertainties entering the
model of a formation, are also unsolved problems.

From a dynamical standpoint, a formation of spacecraft is characterized by a
wide dynamic range (from less than 1 Hz in the spacecraft dynamics to KHz in
the operation of the instrument synthesized by the formation), and by spatial scales
ranging from nanometers to thousands of kilometers. Techniques to model such
systems do not yet exist. Significantly higher fidelity modeling and computational
architectures will be needed to develop, test, and validate distributed spacecraft mis-
sions. Never before has the modeling fidelity been more strongly driven by the preci-
sion formation flying requirements. The formation can be thought of a virtual truss
in which the stiffness and dissipation levels of the connecting links are dictated
by the relative sensing and actuation between two or more neighboring spacecraft.
The dynamic model of this virtual truss suffers from undesired deformation modes
caused by sensor noise, actuator non-linearity, dynamic uncertainties, and environ-
mental disturbances. Some of these perturbations are stochastic in nature, others are
well predicted by deterministic models. In light of the unprecedented, extremely fine
performance requirements, a comprehensive modeling of all uncertainties becomes
more important for formation flying spacecraft than for conventional spacecraft.
Specifically, in a low Earth orbit, orbital dynamics and environmental disturbances
introduce additional strong, non-uniform, nonlinear dynamic perturbations to each
spacecraft in the formation. Whereas the full nonlinear model is used to validate per-
formance requirements, the formation control model is used to develop control laws.
The control model for formation-keeping dynamics includes linearized models of
the open-loop dynamics of each spacecraft, controller- and estimator-induced state
coupling, sensor/actuator dynamics, sensor/actuator location and locations and non-
linear models of the orbital dynamic effects of Earth and Sun. The dynamic model
also incorporates nonlinear models of the environmental perturbations induced by
Earth magnetic field, Earth radiation pressure, solar pressure, harmonics of gravita-
tional potential, gravity gradient disturbances, thermal effects of solar illumination
and Earth albedo.

The formation geometry can be severely impacted by the environmental effects in
low Earth orbits. Atmospheric drag is predominant over all other effects up to an alti-
tude of about 500 kilometers. For large formations in low Earth orbit, the spacecraft
at lower altitudes will experience stronger retarding forces as compared to those at
higher altitudes. Furthermore, the formation geometry is influenced by predominant
perturbations induced by high Knudsen number flow at higher altitudes. The effect
of the atmospheric drag can be classified as a variable spatial perturbation on the
formation that can only be accounted for by realizing appropriate state coupling
of the formation geometry. After drag, higher-order harmonics of the gravitational
potential are the primary disturbance source. This dynamic perturbation occurs at
a frequency commensurate with the orbital period. The formation states are then
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affected directly by different disturbance frequencies corresponding to the various
harmonics of the gravitational potential. A representative dynamic model of this
phenomenon must be included in the formation control model to explore the impact
on the formation geometry.

The geomagnetic field has a non-negligible intensity in low Earth orbits. The field
behaves as a disturbance source to the formation and introduces non-uniform pertur-
bations to the formation geometry. This is particularly important if each spacecraft
in the formation is carrying magnetic loops (97) or is an element of a conductive
loop with the ionospheric plasma (96), (89). The formation, in this case, acts as an
electrical conductor, or equivalently, behaves as a cluster of dipoles that can be po-
larized in response to variations of the external electromagnetic field. As a result,
the variability of the external field that varies proportionally with the size of the for-
mation introduces variable differential forces and torques acting on different states
of the formation.

Solar pressure is the dominant external perturbation on deep-space formation
flying spacecraft. The solar pressure effect is analogous to Earths albedo, which acts
on each spacecraft like a radiation pressure term at low altitude. Accurate modeling
of obscuration effects, implying a detailed shadowing analysis, become essential.

In addition to direct solar pressure, radiative input on each spacecraft from dif-
ferent sources such as Earths albedo and emitted radiation of nearby spacecraft,
needs to be taken into account for validation of tight formation requirements. Al-
though these effects may be negligible for micro- or nano-spacecraft, larger-size
spacecraft are particularly sensitive to it in proportion to the exposed area and rela-
tive distance. Impingement of thruster plumes from neighboring spacecraft must be
included (196).

Turning from environmental modeling to spacecraft subsystem modeling, infor-
mation processing on formation flying spacecraft is inherently distributed by nature.
A formation model must include the latencies and bandwidth limitations associated
with inter-spacecraft communications (162). Single spacecraft applications are im-
mune to such considerations and limitations. Simulation of distributed spacecraft
must also address a large range of spatial and temporal scales. It is in effect a
multiple-scale problem, a solution to which will require a new class of numerical
algorithms with special demands on accuracy and stability.

As with any spacecraft application, closed-loop, real-time testing of the flight
system is critical for reducing mission risks and costs. Satisfaction of the real-time
performance requirements in the presence of significantly higher modeling com-
plexity and increased processing needs of the formation flying control system poses
a challenge in the areas of development of distributed computing architectures,
novel formation modeling methodologies, and efficient, higher-order, numerical in-
tegration algorithms.
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2.3 Guidance and Control Architectures

Traditional single spacecraft applications have limited degrees of freedom in which
a guidance and control architecture may be implemented. In particular, there is gen-
erally a single spacecraft with a single processor that must carry out the process-
ing needed for all guidance and control functions. Co-operating spacecraft have
physically separated platforms and processors, which brings about the possibility
of shared, but distributed responsibilities. Many architecture implementation com-
binations are possible in a formation flying network, and the number of possible
implementations increases with the number of spacecraft in the formation. It is clear
that certain guidance and control architectures will be more robust, more computa-
tionally efficient and more cost-effective than others. The problem therefore is to
find which architectures are most suitable. The chosen architecture will dictate, to a
large extent, the sensor suite needed on each spacecraft. A centralized architecture
is one where most of the information processing related to formation guidance, es-
timation, and control functions takes place on a single spacecraft. On one extreme,
such an architecture would function by explicitly commanding all degrees of free-
dom of each spacecraft in the formation. Although it may make sense to do this
for certain functions, it is not desirable to have such an arrangement for reasons of
functional redundancy, robustness, and processing limitations. Additionally, com-
munication can grow large, limiting controller performance in larger formations.
A decentralized architecture, on the other hand, is one where formation functions,
sensing, and information processing related to formation guidance, estimation, and
control are the responsibility of physically separated platforms. Now, the stability of
decentralized control algorithms must be considered. Although, it will be desirable
for the standpoint of functional redundancy to adopt a decentralized architecture,
centralized formation knowledge and planning is absolutely essential for the opti-
mal planning of certain motions.

Figure 2.3 illustrates the exchange of information between two spacecraft in a
Leader-Follower Architecture. In addition to the traditional spacecraft functions of
inertial-relative attitude estimation, ephemeris propagation, control allocation and
attitude commanding and control, several additional functions unique to formation-
flying spacecraft are required. Autonomous collision avoidance is one such key ca-
pability. A centralized guidance architecture allows optimal, collision-free trajecto-
ries to be determined. Here, by “Centralized” we mean planning of relative trans-
lational degrees-of-freedom occurs on one, the Leader spacecraft. This is the re-
sponsibility of the “Translation Guidance” element in Figure 2.3 . Attitude planning
(“Attitude Guidance” in Figure 2.3) on the other hand is performed more naturally
in a local or a decentralized structure.

Formation state estimation is another formation-flying-specific function. Al-
though not absolutely essential, it is highly desirable (functional redundancy, fault
tolerance) to have local knowledge of relative states of all formation spacecraft, that
is, an estimate of relative positions and velocities between all formation pairs in iner-
tial space. The required relative state/measurement data is shared between formation
elements to facilitate a formation state estimate. Formation control in this architec-
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Fig. 2.3 A Leader-Follower Guidance, Navigation, and Control Architecture for Formation-Flying

ture is rendered as a path-following exercise in each of the six local degrees-of-
freedom. The Control Allocation Function is a more traditional spacecraft function
which ensures that the forces and torques required to track some desired path are re-
alized by a suitable combination of actuation elements (thrusters, reaction wheels).
Note that, for thruster-only actuation, 6 DOF thrust allocation algorithms are needed
to avoid over-conservatism. The pair-wise linking depicted in Figure 2.3 exists be-
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tween all Leader-Follower pairs and there may be several such pairs in a formation.
It is also possible for several Followers to share a single Leader. Stability is ensured
by Hierarchical Systems Theory (184).

A truly decentralized architecture is attractive from robustness and fault protec-
tion standpoints. A decentralized control architecture is often argued as the one most
suitable for large spacecraft formations. In this architecture, each spacecraft would
carry minimal sensor, actuator and functional capabilities. Increased reliance would
be placed on inter-spacecraft communications to enable formation guidance, esti-
mation, and control. However, striking an appropriate balance between centralized
and decentralized architectures is the key challenge in realizing large formations.
In one such architecture, a cluster of neighboring spacecraft would be placed in
a sub-formation with a single Leader as shown in Figure 2.3. Designated Leader
members from each sub-formation are in-turn governed by yet another layer of
Leader-Follower architecture. While many such layer may be proposed, arbitrar-
ily long leader-follower links can suffer from disturbance amplification, sometimes
referred to as “string instability” (169). Here again, a balance between centralized
and decentralized must be found.

2.4 Formation State Estimation

Formation Estimation plays a key role in control of distributed spacecraft. The for-
mation state estimator must provide estimates of the full state of the formation.
Each spacecraft in the formation typically carries, among other sensors, a sensor
which provides measurement of the relative position between itself and other space-
craft in the formation (e.g., using metrology, laser-ranging or RF-ranging lidars,
Autonomous Formation Flying (AFF) (177) sensor).

The problem of formation estimation is complex. It is in effect a large-scale opti-
mal data-fusion problem, where one has to not only fuse many different data types,
e.g. optical, radio, inertial, but also incorporate redundant data measurements to
obtain state estimate. This fusion must be done on-board, autonomously, and in
real-time, while accounting for delayed and dropped communicated data and time-
varying sensing and communication topologies. An estimation problem of such pro-
portions is not encountered in single spacecraft applications.

To fully appreciate the challenges involved, we introduce the translational rela-
tive state estimation problem for formations on a circular orbit. The formation rel-
ative translational state is defined as the vector of positions and velocities of each
spacecraft relative to a reference spacecraft in the formation, which is designated
with the index 1 without loss of generality. Specifically, (see (5) for a derivation)

x =
[
p12,1 . . . p1N,1 p12,2 . . . p1N,2 . . . v12,3 . . . v1N,3

]T (2.1)

where N is the number of spacecraft in the formation, and
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pi j =

⎡
⎣pi j,1

pi j,2
pi j,3

⎤
⎦ , vi j =

⎡
⎣vi j,1

vi j,2
vi j,3

⎤
⎦ , i = j, i = 1, ...,N 1, j = 2, . . . ,N,

where pi j,k (vi j,k), k = 1,2,3, is the kth coordinate of the position (velocity) of the jth

spacecraft relative to the ith spacecraft. The discrete time dynamics for the relative
formation state can be given by

xk+1 = Axk +B(uk +wk) (2.2)

where k = 0,1,2, .... are the time indices,

A = eA0Δ t IN 1, B =
∫ Δ t

0
eA0(t τ)B0dτ IN 1

wk is assumed to be zero mean white noise process with cov wk = Qk,

A0 =
[

03 I3
ω2D0 ωS0

]
, B0 =

[
03
I3

]
, D0 =

[
3 0 0
0 0 0
0 0 1

]
, S0 =

[
0 2 0
2 0 0

0 0 0

]
,

ω =
√

μ/R3, R is the radius of the orbit and μ is the gravitational parameter of
the primary body, Im and 0m are the m m identity and zero matrices, and is
the Kronecker product. Furthermore, u and w are the control and disturbance inputs
relative to the spacecraft 1. That is,

u =
[
u12,1 . . . u1N,1 . . . u12,3 . . . u1N,3

]T

where ui j = u j ui with ui is the control input of the ith spacecraft and

ui j =
[
ui j,1 ui j,2 ui j,3

]T

The same notation applies for the process noise vector w.
Measurements for estimation can be obtained by a variety of formation sensors

and can be of different types. Without loss of generality, we assume that the mea-
surements from each sensor gives a relative position vector between a pair of space-
craft in the formation (range-only measurements are treated subsequently). At any
discrete time instance k, let Ek be a matrix describing the mk available relative po-
sition measurements as follows: Each row of Ek corresponds to an independently
obtained relative position measurement pi j with jth entry of the row +1, ith entry

1, and the rest of the entries being zeros.
Throughout this section, we assume that the measurement links that exist at any

given time index form a connected sensing graph (see (58) for a definition). Intu-
itively, this assumption means there are enough measurements to construct an “ef-
fective measurement” between any two spacecraft via vector addition of measure-
ments. Given this assumption, one can show that (5), the vector of all measurements
can be given by excluding measurement noise,
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yk =
[
I3 EkT T (T T T ) 1 03(N 1)

]︸ ︷︷ ︸
:= Ck

xk (2.3)

where Ck IR3mk 6(N 1), and T IR(N 1) N matrix given by

T =

⎡
⎢⎢⎢⎣

1 1 0 . . . 0

1 0 1 0
...

...
...

. . .
. . . 0

1 0 . . . 0 1

⎤
⎥⎥⎥⎦ .

This matrix encodes the relative state definition with respect to spacecraft 1. Other
definitions are possible, resulting in different T matrices. Once we have the mea-
surement model given by the equation (2.3), the following system model is formed
to be used in the formation estimator synthesis

xk+1 = Axk +B(uk +wk)
yk = Ckxk +nk

(2.4)

where wk and vk are independent zero mean white noise processes with cov wk =
Qk and cov nk = Rk. This model of the system has linear-time-invariant state dy-
namics and the measured output is a linear but time-varying function of the state.
Ck is time-varying to capture time-varying sensor graphs, that is, which spacecraft
are measuring which other spacecraft. One interesting fact is that Lk := ET

k Ek is the
Laplacian matrix corresponding to the sensing graph at time index k and ET

k is also
known as the incidence matrix in graph theory.

When the sensing graph is connected the pair (Ck,A) is observable (5), (147).
Hence one can use a Kalman filter with this model and obtain the optimal estimates
of the relative formation state. However, this process requires matrix inversions and
multiplications that can be computationally demanding with large state and mea-
surement vectors. Additionally, Kalman filtering is optimal when the measurement
and process noise properties are known. The assumption may not be valid when
there is inaccurate thruster activity or corrupted initial conditions, and in that case,
the Kalman filter may converge slowly.

λ -Estimators (5) have been developed primarily to guarantee fast convergence
to an ultimate error covariance where the decay rate is robust to the process noise
uncertainties. Furthermore, since the estimator gains are computed off-line for each
possible sensor graph and stored onboard, the computational complexity is substan-
tially lower than that of Kalman filters. Before the λ -estimator is introduced, we
present an assumption that the measurement matrix Ck is in a finite set of possi-
ble matrices H1, ...,Hq for all k, that is, there is some integer valued function
τ : Z+ 1, ..,q such that

Ck = Hτ(k), k = 0,1,2, . . .
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Note that we do not know exact form of the function τ(k). In short, we know a pri-
ori possible sensor graphs but not which graph is in effect at each time k. However,
during operation in real-time, τ(k) can be determined from the available measure-
ments. Given this characterization of the measurement matrix, a λ -estimator has
the following form with a set of constant gains Lk, k = 1, ...,q, for each sensing
topology,

x̂k+1 = Ax̂k +Lτ(k)(Hτ(k)x̂k yk)+Buk. (2.5)

An issue in λ -estimators is the enumeration of all possible sensing topologies,
that is, all possible Ck’s. One practical solution of this problem is choosing a num-
ber of nominal topologies that must exist during planned mission operations and
designing the gain matrices for these topologies. Assuming that the sensing graph is
connected for all times, any other measurement set resulting from an unaccounted
topology can be compressed to a nominal topology that it contains via weighted
least squares (see Figure 2.4). This approach assumes there is at least one mini-
mally connected nominal topology (i.e., with a sensing graph that is a tree), so that
the measurement vector corresponding to any other topology can be expressed as a
linear function of the measurement vectors of this nominal topology.

Dynamics
H1 Hq

Compress data to the closest 
nominal

 topology containedyk = Ckxkuk

Formation
Estimator

zk = Hixk

x̂k

uk

Fig. 2.4 Data Compression to a Nominal Sensing Topology

Within this estimation framework, the formation state can be estimated by each
spacecraft and, therefore the measurements and control actions must be exchanged
between all spacecraft. Information exchange can introduce time delays due to the
bandwidth limitations of the communication channels. However, as long as each
spacecraft can communicate at least with one other spacecraft, there is a bound on
the delay for any information to reach every spacecraft. The spacecraft can carry a
formation estimator that produces estimates of the full delayed formation state with
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Time

(k p)Δt

(k p + 1)Δt

(k p + 2)Δt

(k 1)Δt

kΔt

Estimates

x̂(k−p)

Π(p−1)x̂(k−p+1)

Π(p−2)x̂(k−p+2)

Π1x̂(k−1)

Π0x̂k

Fig. 2.5 Estimation strategy with communication delays. pΔ t is largest delay due to communica-
tion network. Πi, i = 0, ..., p 1, are projection operators describing the locally observable state
at a spacecraft, which satisfy ranΠ0 ranΠ1, ..., ranΠ(p 1) IR6(N 1), where ran represents the
range space of a matrix.

the worst case delay, and the partial estimates of more current states based on the
instantaneously available information. See Figure 2.5.

We now consider a common measurement type, namely, one dimensional range
measurements from an inter-spacecraft communication system or laser-range finder.
While only range is measured, additional information is known based on sen-
sor/communication antenna field-of-view. This information may be thought of as
very coarse bearing information. The problem of determining positions relative to
a spacecraft by using the range measurements and field-of-view information can be
posed as: Compute p1i, i = 2, ...,N satisfying the following range relationships

p1i = d1i, i = 2, ...,N,

p1 j p1i = di j, i = j, i = 2, ...,N 1, j = 2, ...,N,
(2.6)

where di j, i = j, i = 1, ...,N 1 and j = 2, ...,N are the all the inter-spacecraft
distances measured (all the possible relative distances are measured), and the line-
of-sight constraints given by

nT
i j pi j di jσi j, i = j, i = 1, ....,N 1, j = 2, ...,N (2.7)
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where ni j is the known (from the spacecraft attitude measurements) unit vector de-
scribing the sensor bore-sight measuring the distance di j and σi j is determined by
the field-of-view of the sensor. The system of equations and inequalities determined
by (2.6) and (2.7) must be solved simultaneously to obtain the relative position vec-
tors. It can be shown additional sensing, such as relative bearing angles between any
pair of spacecraft, or spacecraft attitude maneuvers are needed for unique determi-
nation of these vectors.

2.5 Guidance and Control

By guidance we mean the planning of the attitude and translation of each spacecraft.
Attitude is typically inertial-relative while translations are typically relative posi-
tions in inertial frame. The unprecedented complexity introduced by the required
cooperation between several spacecraft flying in close proximity of one another
poses a major challenge, especially in the path-planning area. Several new maneuver
types, which are not needed by single spacecraft applications, must be addressed by
formation flying algorithms. Some of these strongly couple attitude and translation
path planning. While the coupling is completely absent in single spacecraft applica-
tions, for multi-spacecraft, guidance problem presents a new class of problems.

A formation-synthesized instrument is generally functional only when it has a
specific configuration, that is, when each spacecraft in the formation is located at a
prescribed position and attitude in relation to the other spacecraft. Such a configu-
ration may be dynamic or static. To perform desired mission objectives, formations
must often reconfigure, which is the process of reorienting, reshaping, and reposi-
tioning. This process involves each spacecraft in the formation translating to a new
position and rotating to a new attitude. The attitude and translation of each space-
craft has to be planned between the current and the desired terminal values such that
certain motion constraints are not violated. These motion constraints take the form
of pointing, collision-avoidance, resource, actuation, and optimality constraints. The
fundamental challenge in translational formation guidance is the non-convex colli-
sion avoidance constraint.

The general formation-flying path-planning problem for an N-spacecraft forma-
tion, with Linear Time-Invariant (LTI) relative dynamics is posed in the next section.
This formulation encompasses deep space configurations and those in circular or-
bits.

2.5.1 Formulation of Optimal Path Planning Problem

The spacecraft are modeled as point masses in deep space or a circular Low Earth
Orbit (LEO). We assume the following linearized dynamics for each spacecraft,
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ẋ j = Acx j +Bcui , j = 1, . . . ,N (2.8)

where N is the number of spacecraft, x j IR6 is the state vector and u j IR3 is the
control acceleration vector of the ith spacecraft.

The state vector is composed of position and velocity relative to the reference
orbit in LEO and to an inertially fixed point in deep space:

x j =
[

r j
v j

]
,

where r j IR3 is the position vector and v j IR3 is the velocity vector. The objective
of a reconfiguration maneuver is to bring the formation to a desired configuration
at time t = T > 0 from an existing configuration at time t = 0, which implies the
following state constraints

x1(0) = x1,0

x1 j(0) = x1 j,I , j = 2, . . . ,N

x1 j(T ) = x1 j,F , j = 2, . . . ,N
(2.9)

where, for j = 2, . . . ,N, x1 j,I and x1 j,F are the initial and final states of all space-
craft relative to the first spacecraft, x1,0 is the initial state of the first spacecraft. By
definition,

xi j = x j xi, j > i, i = 1, . . . ,N 1.

Note that the initial and final state are assumed to satisfy all other state constraints
that will be listed from this point on.

There can be an additional constraint of one of the following forms for the first
spacecraft’s final position

x1(T ) = x1,F or
x1(T ) Co a1, . . . ,am1

(2.10)

where m1 > 1 is a positive integer, Co a1, . . . ,am1 indicates the convex hull of
the vectors a1, . . . ,am1 . The equality in (2.10) constrains the final state of the first
spacecraft to a prescribed value and the inequality in (2.10) bounds it to a region.
In some cases, the absolute position of a formation is immaterial to the functioning
of a formation-synthesized instrument. That is, x1(T ) is free. In this case we do not
impose final state constraint.

Remark 2.1. A set of the following form

X = x : x Co a1, . . . ,am ,

where a1, . . . ,am are given vectors, can equivalently be expressed by a finite number
of linear inequalities. We use the convex hull notation in some of the constraint
descriptions for its notational compactness.

Relative state constraints are imposed in the following general form
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Fxi j(t) Co b1, . . . ,bm , j > i, i = 1, . . . ,N 1, t (0,T). (2.11)

For example, by choosing F = Cv where

Cv =
[

0 I
]
, (2.12)

we can bound the relative velocity between each pair of spacecraft with (2.11).
The only control constraint considered here is a bound on available control ac-

celeration
u j(t) Uj , j = 1, . . . ,N, t [0,T ]. (2.13)

The last constraint is the collision avoidance constraint that makes the problem
non-convex and NP-complete (40),

Cpxi j(t) Ri j > 0 , j > i, i = 1, . . . ,N 1, t [0,T ], (2.14)

where Ri j is the minimum allowable distance between ith and jth spacecraft,

Cp =
[

I 0
]
, (2.15)

and I and 0 are the identity and zero matrices, respectively, of appropriate dimen-
sions.

The formation reconfiguration trajectory planning problem may now be stated as
follows:

min
u j( ), j=1,...,N

φ l
λ subject to

{
(2.8), (2.9), (2.10), (2.11), (2.13), (2.14)

}
(2.16)

where φ l IRN is defined by

φ l
j =

⎧⎪⎨
⎪⎩
∫ T

0
u j(t) dt, l = 1;∫ T

0
u j(t) 2 dt, l = 2.

j = 1, . . . ,N, (2.17)

and φ λ defines the norm of the vector φ IRN as follows

φ λ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N

∑
j=1

φ j , λ = 1;

N

∑
j=1

φ 2
j , λ = 2;

max
j=1,...,N

φ j , λ = ∞.

(2.18)

Note that the cost in the equation 2.16 is also convex. The following table provides
a physical insight into the cost function.
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l � λ 1 2 ∞
1 Total fuel - Maximum fuel in a spacecraft
2 - Total energy Maximum energy in a spacecraft

The relative motion planning problem, as posed above, is an extremely diffi-
cult multi-dimensional, multi-objective optimization problem whose solutions must
be obtained numerically. Closed form solutions to the problem as posed here do
not exist. Further, the dimensionality of the problem increases with the number
of spacecraft in the formation. The need for autonomy and near real-time perfor-
mance of planning algorithms presents significant challenges in the areas of nu-
merical optimization. In the interest of keeping the problem manageable, certain
motion constraints that may be considered “secondary” have been ignored in the
problem statement. Anti-pluming, stray-light and thermal radiation constraints are
also relevant but perhaps not as important as the ones mentioned in equations (2.9-
2.11,2.13,2.14). Critically, by ignoring these extra constraints, translational and ro-
tational path planning degrees-of-freedom are decoupled. Disregarding rotational
degrees-of-freedom results in a considerable simplification.

Although the algorithm must execute on-board, the optimal path-planning prob-
lem does not require a solution in real-time, for it is possible to execute the pro-
posed algorithm slightly ahead of time, in anticipation of the impending reconfigura-
tion maneuver. Example inter-spacecraft separations for a five-spacecraft formation
reconfiguration are shown below. In the five-spacecraft formation reconfiguration
shown in the Figure 2.6, there are ten distinct spacecraft pairs. Correspondingly, the
optimal reconfiguration must satisfy ten collision avoidance constraints. None of the
inter-spacecraft separations must fall below 20 meters in this example. The dashed
time histories in the plot on the left depicts these separations if trivial, straight line
paths are traversed between the prescribed boundary conditions. Two such paths vi-
olate the 20 meter threshold. Optimal separations are depicted in blue, all of which
observe the 20 meter constraint. The plot on the right depicts the time histories of
cost functions associated with linear and optimal paths, respectively. Additional ex-
amples may be found in (159).

Another solution to the path-planning problem is proposed in (6). The problem
solution is applicable to the deep-space as well as earth orbiting formations. The
optimal control problem is discretized in time to obtain a finite dimensional pa-
rameter optimization problem. The collision avoidance constraints are imposed via
separating planes between each spacecraft pair. A heuristic is introduced to choose
these separating planes that leads to a convexification of the collision avoidance
constraints. Convexification permits claims regarding deterministic convergence of
the proposed algorithm. The resulting finite dimensional optimization problem is a
second order cone program, for which a number of traditional algorithms can be
used to compute the global optimum with deterministic termination and with a pre-
scribed level of accuracy of convergence. This solution property makes it eminently
suitable for a real-time implementation. In a more complex seven spacecraft exam-
ple discussed in (6), twenty-one collision avoidance constraints are observed. In this
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example all inter-spacecraft separations are required to remain above 4 meters. The
resulting separation time histories are depicted in Figure 2.7.

Reconfigurations with weighted-fuel expenditures across various spacecraft are
also important in formation flying applications. Mission longevity dictates near-
equal fuel expenditure across all formation-flying spacecraft. In the perfect case,
all spacecraft will exhaust their propellant at the same time in the mission. A het-
erogeneous formation would typically require penalizing reconfiguration delta-V
in inverse proportion to the spacecraft mass. Single spacecraft applications do not
have to address this issue. The relative motion dynamics (2.8) are dictated not by
absolute, but rather by differential accelerations. Therefore, it becomes possible to
integrate appropriate fuel-equalization metrics in the cost function by also requiring
the minimization of suitably-weighted acceleration differentials (21).

Flying multiple spacecraft in formation in a low Earth orbit poses additional
challenges. First, a suitable reference orbit must be determined. Unforced orbits of
multiple spacecraft in general do not remain in a stable formation. Perturbations due
to atmospheric drag and oblateness have destabilizing effects. It is possible to obtain
J2-invariant orbits by sufficiently constraining the formation geometry.

Formation control can be realized by tracking reference guidance commands
such as relative translations derived from the solution to the optimal formation re-

Fig. 2.6 Inter-Spacecraft Separations for a Collision-Free Optimal Reconfiguration Maneuver for
a Five-Spacecraft Formation. Performance without collision avoidance shown as dashed lines. Per-
formance with collision avoidance shown as solid lines.
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configuration problem or science based path such as virtual rigid body rotations
(143). This approach ensures optimality of control actions in the sense that the ref-
erence paths are optimal. Feedback control then provides essential disturbance re-
jection in the presence of environmental perturbations. It is envisioned that a single
controller will not be able to appropriately accommodate the large variations in spa-
tial scales and control requirements of formation flying applications. Such problems
are traditionally handled by using different control laws for different performance
regimes. A problem central to any six degree-of-freedom spacecraft control appli-
cation is that of control allocation so that appropriate six degree-of-freedom motion
is realized without incurring large control errors in any degree of freedom. Col-
lective thrust actions allow desirable six degree-of-freedom motions to be realized.
The problem is simplified when attitude degrees of freedom are controlled by mo-
mentum exchange devices. For practical applications, however, it is envisioned that
thrusters will provide the initial coarse attitude control as well with momentum ex-
change devices providing the required attitude control in the fine attitude control
regimes.

Fig. 2.7 Inter-Spacecraft Separations for a Collision-Free Optimal Reconfiguration Maneuver for
a Five-Spacecraft Formation
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2.6 Conclusions

Formation flying spacecraft enable new capabilities and new science. Space-borne
optical interferometry is one such capability that has been identified as a critical
technology for many of NASAs next generation science missions. The formation
guidance, estimation and control problems in such applications are complex from
the standpoint of higher-fidelity dynamic modeling of the spacecraft and its environ-
ment, computational complexities, GNC architectures, and information processing.
In many cases, conventional spacecraft control approaches do not apply. The mag-
nitude of these technical challenges, which increase with size of a formation, was
discussed and some possible solutions to these problems were identified. However,
significant advances in mathematical modeling, numerical simulation techniques,
efficient decentralized control architectures, and real time solution to large-scale
optimization problems in guidance and estimation will be needed to truly enable
precision formation flying spacecraft.
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Chapter 3

Adaptive Sampling for Field Reconstruction

With Multiple Mobile Robots

Bin Zhang and Gaurav S. Sukhatme

Abstract When a scalar field, such as temperature, is to be estimated from sen-
sor readings corrupted by noise, the estimation accuracy can be improved by judi-
ciously controlling the locations where the sensor readings (samples) are taken. In
this chapter, we formulate solve the following problem: given a set of static sensors
and a group of mobile robots equipped with the same sensors, how to determine
the data collecting paths for the mobile robots so that the reconstruction error of the
scalar field is minimized. In our scheme, the static sensors are used to provide an
initial estimate, and the mobile robots refine the estimate by taking additional sam-
ples at critical locations. Unfortunately, it is computationally expensive to search
for the best set of paths that minimizes the field estimation errors (and hence the
field reconstruction errors as well). We propose a heuristic to find ‘good’ paths for
the robots. Our approach first partitions the sensing field into equal gain subareas
and then we use a single robot planning algorithm to generate a path for each robot
separately. The properties of this approach are studied in simulation. Our approach
also implicitly solves a multi-robot coordination/task allocation problem, where the
robots are homogeneous and the size of task set might be large.

3.1 Introduction

A sensor actuator network (also a robotic sensor network ), which consists of both
static and mobile nodes, provides a new tool for measuring and monitoring the en-
vironment. On the one hand, with less energy consumed, the static sensor nodes
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are able to provide high resolution temporal sampling. On the other hand, with the
ability to move, the mobile nodes (henceforth robots) are able to change the spatial
distribution of the sensor readings leading (using an appropriate algorithm) to a high
density of readings in important areas. The key challenge is essentially an adaptive
sampling problem - come up with trajectories that the robots can follow, sampling
along which will improve the field reconstruction. In (203), we proposed an adap-
tive sampling algorithm for a system consisting of a set of static sensor nodes and
one mobile robot, a robotic boat. The system, part of the NAMOS (168) project at
USC (http://robotics.usc.edu/ namos), is used for measuring scalar fields, such as
temperature, salinity and chlorophyll concentration. We have shown (203) that by
combining optimal experimental design and path planning, we are able to achieve
an improved estimation performance, i.e., a lower Integrated Mean Square Error
(IMSE) with the same (finite) initial energy available to the mobile robot.

In (203), we assume that the scalar field to be reconstructed changes slowly.
That is, during the time the mobile robot is sent out for a data collecting tour, the
readings from the static sensors are still valid. However, this might not be true in
practice since it takes a while for the mobile robot to finish a tour. One way to
overcome this drawback is to use multiple mobile robots in parallel to accomplish
the task. If we can generate ‘good’ paths for all the mobile robots and let them carry
out the sampling task simultaneously, the speedup could be significant. Another
advantage of a system with multiple mobile robots is energy efficiency. In many
cases, the ideal distribution (leading to the best reconstruction of the field) of the
sensor readings contains several clusters. Since normally, we already have static
sensors covering the whole sensing field, the mobile robots may just need to take
readings within each cluster. If only one mobile robot is deployed, it has to move
between the clusters. If multiple mobile robots are used and the number of robots is
more than the number of clusters, each robot only needs to stay within a cluster and
the energy to move from one cluster to another could be saved.

Fig. 3.1 One of the robotic boats used in the NAMOS project at USC.
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In this chapter, we investigate the problem of adaptive sampling using multiple
mobile robots. Specifically, given a set of static sensor nodes deployed uniformly
across the sensing field, and a team of mobile robots each with the same energy,
how to exploit the information collected by the static sensors and coordinate the
motion of the mobile robots so that error associated with the reconstruction of the
underlying scalar field is minimized. Here we assume that all the mobile robots have
the same energy consumption profile and the underlying scalar field is continuous
and has finite second order derivative at any point.

As in the case of our prior work on the single robot problem (203), we use tech-
niques from optimal experimental design to define a gain associated with each lo-
cation and then apply a search algorithm to find ‘good’ paths for the mobile robots.
The challenge in the multiple mobile robot case comes from the path planning.
Even in the case of a single robot, to find the path with maximum sum of gains is
NP-complete. This is called the Orienteering problem, which has been studied in
the theoretical computer science and operating research communities. In the case
of multiple mobile robots, the situation is even worse since the search space grows
exponentially with the number of the mobile robots. Therefore, we will have to
compromise performance by approximation so that the path planning can be done
quickly enough to be realistically feasible for a real-world situation. In this chapter,
we propose a divide and conquer approach to solve the problem. Once the gain of
each location in the sensing field is computed, we partition the sensing field into
subareas with equal gain. Now the path planning problem reduces to a set of prob-
lems. Each robot is assigned a subarea and a path planning algorithm for single
robot within each region is applied. An advantage of this approach is that the path
planning for a single mobile robots can be done in parallel since the subareas do not
overlap.

This chapter is organized as follows. We first discuss related work in the next sec-
tion. Then, the optimal experimental design is explained briefly in section 3.3. We
discuss the partition strategy in section 3.4 and the simulations results are presented
in section 3.5. We discuss future work and conclude in section 3.6.

3.2 Related Work

Adaptive sampling and actuated sensing have been studied in the sensor network
community. Based on Wavelet theory, Willett (195) proposed an algorithm to extend
the life time of a static sensor network by putting some sensors to sleep without
significantly increasing the estimation errors. Rahimi (137) proposed a sequential
algorithm for a single mobile node to minimize the estimation error with the limita-
tion on the time or distance the mobile node travels. In his approach, more readings
are taken in the place where there is higher residual. Krause (98) proposed a near-
optimal algorithm to solve the problem of static sensor node deployment. However,
it is assumed that the underlying phenomenon is a Gaussian Process and a dense
deployment of sensors is needed to find the correlation between readings at any two
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locations. Based on the same assumption, Singh (158) introduced an approxima-
tion algorithm to solve a problem that is similar to ours and also extended to the
case with multiple mobile robots by using sequential allocation. Our approach does
not assume previous dense deployment of the sensors, and is faster than sequential
allocation.

Another problem related to adaptive sampling with multiple mobile robots is the
multi-robot exploration and mapping. It is normally assumed that the robots are de-
ployed in an unknown environment and no global information is available. In this
case, many techniques of coordinated exploration and mapping are based on the
idea of the frontier points or cells (65; 204; 157; 38). To assign frontier points to
individual robots, a market-based approach is used and the target locations are as-
signed through auctions (204; 157; 38). There are different ways to evaluate the
target locations for each robot. In the case where the energy consumption is impor-
tant, the assignment with best tradoff between energy and utility is chosen (38); Fox
took the uncertainty of the localization into consideration and proposed a strategy
that trades off between the frontier and the hypothesis. Normally, the coordination
strategies assign each robot one target location to visit. In the case multiple target
locations are to be assigned, a sequential allocation is used (204; 157). Stroupe (167)
proposed a value-based coordination algorithm, which trades off between dynamic
target observing, exploration, sampling and communications. However, the energy
consumption is not considered. In this chapter, we are looking at a slightly different
problem. First, we are going to use the static sensors to provide a coarse estimation
of the scalar field and hence rough global information is available. Second, multiple
target locations are to be assigned to each robot and each robot then visits these
locations sequentially. Finally, because of the existence of the static sensor nodes,
we assume that inter-robot communication is always possible using some sort of
multi-hop protocol and hence we do not consider communication as a constraint.

3.3 Adaptive Sampling

In this chapter, we assume that no parametric model is available for the scalar field
and non-parametric regression is appropriate. A Kernel estimator is one of the most
popular non-parametric regression techniques since it is easy to understand, analyze
and implement. Local linear regression is a kernel estimator where the value of the
scalar field at any location x is estimated by using weighted linear regression. It is
assumed that the closer two locations are, the higher the correlation between the
values. As a result, when the linear regression is applied to location x, more weight
is given to the data points closer to x while less weight is given to the data points far
away. We assume a non-parametric model shown as equation 3.1.

y = m(x)+σ(x)ε, (3.1)
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where x is sensor location, y is the corresponding sensor reading, σ2(x) is the vari-
ance of the noise and ε is a random variable with zero mean and unit variance and
are independent of x. The local linear regression can be represented by equation 3.2.

m̂(x,H) = e1 (XT
x WxXx) 1XT

x WxY, (3.2)

where Xx =

⎡
⎣ 1 (x1 x)T

1 (xn x)T

⎤
⎦, Y = [y1, ,yn]T , Wx = diag KH(x1 x), ,KH(xn

x) and e1 = [1,0, ,0]. The kernel KH(u) determines how much weight would be
assigned to each data point and is normally defined by a base K(u) and a matrix H,

KH(u) = H 1/2K(H 1/2(u)).

H determines the size and shape of the neighborhood and H 1/2 is called the band-
width matrix.

If K(u) satisfies
∫

uuT K(u)du is finite and
∫

ul1
1 uld

d K(u)du = 0 for all non-
negative integers l1, , ld such that their sum is odd, it has been proved that the
estimation error associated with the local linear regression is given by the following
equation (146):

MSE m̂(x;H) =
C1σ2(x)

n H 1/2 f (x)

+
1
4

C2tr2 HHm(x)

+op n 1 H 1/2 + tr2(H) . (3.3)

where n is the number of samples, f (x) is the density function with
∫

f (x)dx = 1,
and Hm(x) is the Hessian matrix of m(x) and C1 and C2 are the constant depending
on kernel K(u).

If nH 1/2 is big enough and H is small enough, the infinitesimal term is negligi-
ble. By applying the Lagrange-Euler differential equation, we can find the optimal
bandwidth and corresponding IMSE as follows.

h = (
dR(K)v(x)

n f (x)μ2(K)2tr2 Hm(x)
)

1
d+4 , (3.4)

IMSE(X1, . . . ,Xn0+n) ∝
∫

(
trd Hm(x) v2(x)

n2 f̂ 2(x)
)

2
d+4 dx, (3.5)

where f̂ (x) = n 1 ∑n
i=1 KH(Xi x) is the density function.

0 readings from static sensor nodes (x1,y1), ...,(xn0 ,yn0),
the path of the mobile robot passes through the points xn0+1, ..., xn0+n, then the opti-
mal path should minimize IMSE. The IMSE can be estimated with the equation 3.5
and the corresponding density can be estimated by using f̂ (x) = n 1 ∑n

i=1 KH(Xi

Assume that initially there are n
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x) . Similar to the information gain defined in robot exploration literature, we define
the gain for each point as follows.

G(x) = IMSE(X1, . . . ,Xn0) IMSE(X1, . . . ,Xn0 ,x), (3.6)

The gain associated with the path is defined as

G(p) = IMSE(X1, . . . ,Xn0) (3.7)
IMSE(X1, . . . ,Xn0 ,Xn0+1, . . . ,Xn0+n).

Now, the problem is to find the path or paths collecting the most gains and hence
a path planning problem needs to be solved.

3.4 Divide and Conquer

Algorithm 1: Adaptive Sampling With Multiple Mobile Robots
Construct the state graph G=(V , E);
Collect readings from static sensors r0;
for each vertex v V do

Compute gain g(v);
end

Partition G into subgraphs G1, ...,Gm;
for i = 1 to m do

πi = ABFS(Gi, E);
Collect new reading ri;

end

Reconstruct the scalar field from r0 r1 ... rm;

3.4.1 Discretization

In the problem of adaptive sampling with static sensor nodes and multiple mobile
robots, the main constraint is that the energy available to each mobile robot is lim-
ited. Therefore, path planning for the mobile robots needs to take into consideration
the energy consumption model. The simplest model is to assume that the energy
consumed by a mobile robot to move from location A to B is proportional to the
length of the line segment connecting the A and B. The energy consumption model
used in this chapter is the one for the robotic boat of the NAMOS project (59)
(shown in Figure 3.1). In this model, the state is the location and the orientation
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of the boat. The energy consumed for state transition not only depends on the dis-
tance between two states but also depends on the orientations of the two states.
The details of the energy consumption model are described in (203) and will not be
repeated here.

In our approach, we first construct a graph from the sensing field and the energy
consumption model. Each vertex of the graph represents one state of the location of
the mobile robot and the coordinates of any vertex are within the sensing field. The
edges between vertices represent a state transition. The length of an edge represents
the energy consumed for state transition. An important assumption is that all the
mobile robots share the same energy consumption model and are equipped with the
same sensors, i.e., the team of the robots is homogeneous. For each vertex of the
graph, the Hessian matrix is estimated by using Local Polynomial Regression using
the readings from the static sensors and the gain is computed by using equation 3.6.
Note that the vertices with the same coordinates share the same gain. If the robot
visits one location twice but in different orientations, it collects the gain once.

3.4.2 Graph Partition

Once the graph is constructed and the gain associated with each state is computed,
we divide the graph into subgraphs to simplify the problem. The graph is partitioned
in such a way that the sum of the gains of the vertices in each sub-graph are the same.
The basic idea here is that with the same amount of energy consumed, the same
amount of gain is achieved. Another constraint on the partition is that the boundary
between two sub-graphs should be as straight as possible. Generally speaking, a
complex boundary would result in more energy consumption. The complexity of
the boundary can be measured by using the length of the boundary and the length
of the boundary in turn can be measured by using the number of cuts of between
sub-graphs. Therefore, the partition problem is to find a partition of m sub-graphs
so that the total of gain of all the nodes in each sub-graphs is the same, where m is
the number of mobile robots.

Graph partition is a well known NP-complete problem and there is no polyno-
mial time algorithm to find the optimal partition. However, many approximation
algorithms have been proposed. The approach used in this chapter exploits a mul-
tilevel paradigm (50). This approach consists of two stages. In the first stage, the
graph is contracted until the size is less than a given threshold. Then, an interactive
process of expansion and refinement is performed in such a way that the weight is
balanced. This algorithm runs quickly with reasonable graph sizes.
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3.4.3 Path Planning for a Single Robot

Once the graph is partitioned, the problem is reduced to a set of smaller problems
each with a single mobile robot and many search algorithms can be used. The prob-
lem of finding the best path such that the gain collected along the path is maximized
is called the Orienteering problem. This problem has been well-studied and many
approximation algorithms are proposed. Most of the algorithms employ a prime and
dual scheme and the typical one is proposed in (31; 42). In (203), A Breadth First
Search (BFS) algorithm was proposed to find a approximate solution. Although the
approximation factor is not good, the algorithm runs quickly and the performance
is good. The approximate BFS is used here as the single mobile path planning algo-
rithm. However, any other path planning algorithm can well be used here.

In summary, the algorithm is described in Algorithm 1, where m is the number
of mobile robots, E is the initial energy for the mobile robots, G is the state graph,
Gi is a subgraph and πi is the path generated in subgraph Gi.

3.5 Simulations

We carried out a series of simulations in a unit square. Three scalar fields are used
in the simulations. They are shown in Figure 3.2 and their equation are below.

r =
1

1+ exp( 1
2 x2 y+ 1

5 )
(3.8)

r = exp(
1
2
(4x2 10y+3)) (3.9)

r = exp(
(5x 1)2 +(5y 1)2

2
) (3.10)

In the first field, there is a boundary across the sensing field and it separates the
high and low values. The second scalar field has a ridge across the sensing field. In
our simulation, we smooth the readings by applying a local linear regression on the
data to reduce the noise associated with it. As a result, in the place where the scalar
field is not symmetric, the place with the maximum trace of the Hessian matrix
would be moved. The biggest difference between field 1 and the other two is that in
field 1, the estimation of the Hessian matrix would not only have errors in magnitude
but also in location. Therefore, we expect higher estimation errors in reconstructing
field 1.

When sensor readings are taken, either from the static sensor nodes or the mobile
robots, we assume a Gaussian noise associated with the readings. Note that all the
scalar fields vary from 0 to 1 and we use the ratio of the noise to the variation of the
scalar field to describe the noise level. In the simulations, we use a coffeehouse de-
sign (117) to determine the locations of the static sensor nodes. The simulations are
performed in groups. The sensing field is discretized into a graph consisting of 100



3 Adaptive Sampling for Field Reconstruction With Multiple Mobile Robots 53

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

(a)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

(b)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

(c)

Fig. 3.2 Scalar fields used in the simulation.

vertices uniformly distributed in the unit square. For each set of initial sensor read-
ings, we estimate the Hessian matrix for each vertex in the graph and then compute
the corresponding information gain. Then the graph is partitioned into subgraphs
with equal gain. After that, the path planning procedure is called 25 times for each
initial energy level and the new readings are collected. The scalar field is estimated
and the IMSE is computed for 25 times. The whole process is in turn carried out
over 10 trials.

One example of the paths planned for all the robots is shown in Figure 3.3. The
underlying phenomenon is defined by equation 3.10. The paths are generated in
such a way that more readings are taken in the lower left part of the sensing field,
where the trace of the Hessian matrix is much higher than other places. Figure 3.4
shows how the IMSE changes with increased initial energy available to the mobile
robots in three different settings. In all simulations, the IMSE decreases when the
initial energy available to the mobile robots increases. We study the effect of two
parameters, the number of static sensors and the noise level. The simulation results
show that both of them have an effect on the performances. The simulation with the
best performance is shown in Figure 4(a), where 50 static sensors are used and the
noise level, 5%, is low. When the initial energy is 1.6 units, which means approxi-
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Fig. 3.3 The paths planned for all 4 robots. The underlying phenomenon is scalar field 3. Note the
cluster of samples in lower left where the most variation in the field happens.
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Fig. 3.4 The IMSE of the reconstruction of scalar field 1 with different noise levels (σ ) and differ-
ent number of static sensor nodes (m).

mately 36 new readings are taken, the IMSE decreases to 64% of the initial IMSE.
When the noise level of the readings increases, not only does the absolute value of
the IMSE increases, the rate at which the IMSE decreases also decreased. As shown
in Figure 4(b), with the same initial energy of 1.6, the IMSE is still approximately
75% of the initial IMSE. Fewer initial static sensors also reduce the rate of IMSE
decrease, as shown in Figure 4(c), where there only 25 static sensors to provide ini-
tial readings. The reason for this is that both parameters affect the accuracy of the
estimation of the Hessian matrix. When the number of initial readings is small or
the sensor noise is high, the error in the estimation of the Hessian matrix is high,
which in turn causes more readings to be taken at the non-critical places.

Figure 3.5 shows the results of simulations on the other two scalar fields. Both
sets of simulations are performed with the same noise level and the same number of
static sensors as in Figure 4(a). As we discussed above, both of the scalar fields are
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Fig. 3.5 The change in IMSE of the reconstruction of scalar field 2(a) and 3(b) with the availability
of increased initial energy to the robots.

symmetric and hence estimation of the Hessian matrix only has error in magnitude
with much less error on the location. Therefore, IMSE in both situations has a high
rate of decrease, which is obvious in Figure 3.5.
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3.6 Conclusion and Future Work

In this chapter we presented a simple strategy to coordinate multiple mobile robots
to take sensor readings so that errors associated with the reconstruction of a scalar
field would be reduced. Local linear regression is used to estimate the scalar field
and an optimal experimental design is used to define the information gain of each
location. The sensing field is partitioned into subareas with equal gain. Within each
subarea path planning for a single mobile robot is used to generate the path for each
individual robot. This properties of the strategy are studied using simulation.

However, equal gain is not the only strategy to partition the sensing field. For
example, another even simpler strategy, partitioning the sensing field into subareas
with equal area might be a good option. We performed preliminary simulations
on the latter strategy and the results show that it might be competitive with the
equal gain strategy. We are currently working on the detailed analysis on the second
strategy. Figure 3.6 shows the preliminary simulation results from the equal area
strategy. Figure 6(a) shows the paths planned for the four robots in one simulation.
Compared with Figure 3.3, fewer readings are to be taken in the lower left part of
the sensing field. However, equal area strategy is still able to achieve a estimation
error that is very close to the equal gain strategy, as shown in Figure 6(b).

We plan to apply this approach to the robotic boats in the NAMOS project. Cur-
rently, there are two robotic boats with the same configuration and they are used
for measuring physical, chemical and biological parameters on the water surface as
well as in depth. Our plan is to test our strategy on the robotic boats in a lake or
harbor where there are reasonable variations in the scalar field, such as temperature,
on the surface.
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Chapter 4

Grasping Affordances: Learning to Connect

Vision to Hand Action

Charles de Granville, Di Wang, Joshua Southerland, Robert Platt, Jr.
and Andrew H. Fagg

Abstract When presented with an object to be manipulated, a robot must identify
the available forms of interaction with the object. How might an agent automatically
acquire this mapping from visual description of the object to manipulation action?
In this chapter, we describe two components of an algorithm that enable an agent to
learn a grasping-oriented representation by observing an object being manipulated
by a human teacher. The first component uses the sequence of image/object pose
tuples to acquire a model of the object’s appearance as a function of the viewing
angle. We identify visual features that are robustly observable over a range of similar
viewing angles, but that are also discriminative of the set of viewing angles. Given
a novel image, the algorithm can then estimate the angle from which the object
is being viewed. The second component of the algorithm clusters the sequence of
observed hand postures into the functionally distinct ways that the object may be
grasped. Experimental results demonstrate the feasibility of extracting a compact
set of canonical grasps from this experience. Each of these canonical grasps can
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then be used to parameterize a reach controller that brings the robot hand into a
specific spatial relationship with the object.

4.1 Introduction

Manipulating one’s world in very flexible ways is a skill that is shared only by a
small number of species. Humans are particularly skilled at applying their manipu-
lation abilities in novel situations using a range of effectors, from hands and other
parts of the body, to tools. How can robots come to organize and learn knowledge
representations for solving grasping and manipulation problems in unstructured en-
vironments? J. J. Gibson (1966, 1977) suggests that these representations should be
partitioned into what can be done with particular objects and why an object should
be manipulated in a certain way. The first of these, which Gibson terms object affor-
dances, captures the details of what can be done with the object by the agent. The
latter captures information about how individual manipulation skills are to be put
together in order to solve a specific task. The task-neutral affordance representation
is important in that it can provide an agent with a menu of actions/activities that are
possible with a given object – whether the current task is well known or is a new
one. Hence, the affordance representation enables the agent to potentially bring a
substantial amount of knowledge to new tasks that are to be solved.

One important form of interaction is that of grasping. For a given object, how
might an agent come to represent the set of feasible grasps that may be made? Ulti-
mately, one must establish a mapping from perceivable visual and haptic features to
a set of parameterized grasping actions (specific positions and orientations for the
hand, as well as configurations for the fingers) that are expected to be successful if
executed. We would like for these representations to be rooted in an agent’s own
experiences – either through direct interaction with objects or through observation
of other agents’ interactions.

In this chapter, we describe two efforts toward addressing this challenge. First, we
describe an approach for visually recognizing the 3D orientation of an object. The
models of object appearance are based entirely on sequences of image/object pose
pairs as the object is being manipulated. The learning algorithm identifies robust
descriptions of object appearance from different viewing angles. Second, we intro-
duce a method of identifying descriptions of canonical grasps (that include hand
pose and finger configuration) based on observation of a large number of exam-
ple grasps made by a human teacher. We employ a clustering method in this hand
posture space that identifies a small number of these canonical grasps. The result-
ing grasp descriptions can then be used by the agent for planning and execution of
grasping actions and for interpreting the grasping actions of other agents.
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4.2 Learning Models of 3D Object Appearance

One of our ultimate goals is for a robotic agent to learn affordance representations
based on experience gathered by looking at an object as the agent manipulates it.
In particular, we would like to construct visual models that enable the agent to rec-
ognize the object and the angle from which it is being viewed. This interactive ap-
proach means that although the agent is able to control many of the conditions in
which this experience is gathered, the learning approach must be robust to spurious
features in the visual stream, including occlusions by the robot itself and lighting
effects such as shadows and specular reflections. The challenge is to discover visual
operators that are sensitive to the appearance of the object at some subset of viewing
angles (or aspects), but that are not “distracted” by these spurious effects. In our
approach, individual visual operators recognize the appearance of an object for a
subset of viewing aspects. A complete 3D appearance model of an object is cap-
tured by identifying a collection of visual operators that cover all possible viewing
aspects.

4.2.1 Edgel Constellations for Describing 2D Object Appearance

45; 191). Edgels are edge image features defined at each pixel, and are described by
their orientation in the image and their magnitude. Piater and Grupen (2002) define
a constellation as a set of edgels that are arranged in some geometric configuration
in the 2D image space. This geometric configuration is represented by the relative
position and orientation between edgels in a constellation. By construction, a con-
stellation is rotation-invariant in the image plane.

Fig. 4.1 illustrates two constellations that have been identified for two distinct
viewing angles of a cup. The constellation that matches the side view (a) captures
the top rim of the cup. The constellation that matches the bottom view (b) captures
edgels on both the top rim and the bottom of the cup. Within a novel image, a
constellation is considered to match if all of the constellation edgels can be found
at the correct relative position and orientation. The highest degree of match occurs
when the set of edgels in the constellation align perfectly with high-magnitude edges
in the query image.

4.2.2 Capturing Object Appearance in 3D

Although the 2D features are invariant under rotation within the image plane, it is
clear from Fig. 4.1 that the rotations out of this plane can dramatically alter the ap-
pearance of an object. We can represent all possible viewing aspects as the set of
points on the unit sphere with the observed object as the center (Fig. 4.2). Imagine a

A visual operator in our case recognizes a specific constellation of oriented edgels (129;
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(a) (b)

Fig. 4.1 Constellations matching a side view (a) and a bottom view (b) of a cup. The constellations
have been “painted” on top of the edge magnitude image for each viewing direction. Individual
edgels are shown using small circles; the geometric constraints between edgels are shown as dotted
lines.

Fig. 4.2 The aspect sphere of a cup with rotation symmetry about u.

camera located at some point on this aspect sphere, oriented toward the sphere’s ori-
gin. This point therefore constrains two orientation DOFs, leaving free the rotation
about the camera’s axis. The object appearance at a single point can be described
by one (or a small number of) edgel constellations. For the case of the cup, one can
imagine a unique constellation that only matches a set of views surrounding the top
pole of the sphere. As the viewing angle deviates from u, the likelihood of observing
the constellation can drop quickly. For a constellation that recognizes a “non-polar”
aspect, the set of recognized aspects will fall along a circular band on the sphere.
This is because the cup’s appearance does not change with rotations about the ver-
tical axis As the viewing angle deviates from the center of the band, it becomes less
likely that the constellation will be observed.
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(a) (b)

Fig. 4.3 Constellation matches for (a) the side constellation (of Fig. 1(a)) and (b) the bottom
constellation (Fig. 1(b)). Small dots show aspects that correspond to image samples; large dots
indicate where the constellation matches. In this case, the major axis of the cup is aligned with the
X axis.

Fig. 4.3 illustrates the aspects for which the constellations of Fig. 4.1 are found.
The major axis of the cup in these figures falls along the X axis, with the top of
the cup at X = 1. The constellation that recognizes the side of the cup is found
most often along the circle for which X = 0 (a). The constellation that recognizes
the bottom of the cup is found most often around X = 1, but is occasionally found
around X = 1 (b). This is the case because this particular constellation recognizes
pieces of two concentric circles of particular radii, a feature that is sometimes visible
from the top of the cup.

How can we compactly represent the set of viewing angles for which a con-
stellation is viewable? Specifically, we would like to capture the likelihood of the
aspect given that a particular constellation Ci has been observed: p(a Ob j,Ci). (30)
proposed the small circle distribution, which allows us to describe Gaussian-like
distributions on the unit sphere.

b(a τ,ν ,μ) =
1

F(τ,ν)
e τ(μT a ν)2

, (4.1)

where a, μ are unit vectors and μ denotes the mean direction; τ is a scalar that gives
the concentration of the distribution (the higher the τ , the more concentrated the dis-
tribution); ν is a scalar that determines the shape of the distribution; and F(τ,ν) is a
normalizing term. Note that equation 4.1 obtains a maximum value when μT a = ν .
This set of a’s fall at a fixed angle about μ . By adjusting the parameters of this distri-
bution, we can describe different shapes of clusters on our aspect sphere (Fig. 4.4).
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(a) (b) (c)

Fig. 4.4 Gaussian-like distributions on the unit sphere, where μ = [0,0,1]. In all cases, the surface
radius is 1 + p/(2 max(p)), where p is the likelihood at the corresponding aspect. (a) Uniform
Gaussian: τ = 50, ν = 1.2; (b) small circle: τ = 100, ν = 0.8; and (c) great circle: τ = 100, ν = 0.

4.2.3 Learning Complete 3D Appearance Models

Given a set of image/aspect tuples, the challenge is to discover a set of edgel con-
stellations that cover the entire aspect sphere. Our algorithm is outlined in Fig. 4.5.
During the training process, the algorithm samples a single constellation at a time
from a specific training image (call this image P). A two-step filtering process is
used to determine whether the constellation is locally robust and globally discrim-
inative. First, the set of images from aspects surrounding P are searched for the
constellation. If the constellation describes transient features such as shadows, then
it is unlikely to match neighboring images. If this is the case, the constellation is dis-
carded and a new one is sampled. The second filter examines all images in the train-
ing set for the constellation. If the degree of match of the constellation distinguishes
the neighboring images from most of the remaining training set, then the constel-
lation is considered to be discriminative. Formally, the discriminative power of the
constellation is measured using the Kolmogorov-Smirnoff distance (KSD) between
the neighboring and complete population of images (130). Should the constellation
satisfies both filters, the algorithm then finds the parameters of a probability density
function that describes the set of aspects in which the constellation is observed. This
training process continues iteratively until the entire set of generated constellations
cover most of the training images.

Given a novel image, we would like to accurately estimate the aspect from
which it is being viewed. More specifically, assuming that a set of constellations
C1,C2, ...,CN are either observed or not in an image, we would like to find the as-
pect, a that maximizes p(a Ob j,C1, ...,CN). Making the naı̈ve Bayes assumption,
we can estimate this likelihood accordingly:
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Fig. 4.5 Overall structure of the aspect recognition algorithm.

p(a Ob j,C1, ...,CN) =
N

∏
i=1

p(a Ob j,Ci). (4.2)

In practice, we make use of a local gradient ascent search with multiple starting
locations to identify the maximum likelihood a.

4.2.4 Data Collection and Preprocessing

In our experiments, each element in the data set is a tuple of image and object
pose. A Polhemus Patriot (Colchester, VT) is attached to the object so that the 3D
position and orientation of the object can be paired with each image. Tuples are
gathered continuously as the object is rotated in front of the camera. In all, a data
set will contain about 2000 such tuples. We employ an image preprocessing step
that identifies a region of interest (ROI) that ideally contains only the object. The
stationary background and skin-colored objects are first subtracted from the image.
The ROI is then selected to encompass a large, contiguous set of the remaining
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.6 Example aspect recognition. (a) a testing image of the cup, (b) the true aspect from which
the object is observed, (c) match of constellation 1 to the test image, and (d) p(a cup,C1). (e) match
of constellation 2 to the test image, (f) p(a cup,C2), (g) p(a cup,C1,C2), (h) the maximum likeli-
hood aspect, and (i) the nearest training image that corresponds to this aspect.

pixels within the middle of the image frame. In practice, the ROI contains the object
in excess of 99% of the images.

Fig. 4.6 illustrates the recognition process. An independent testing image of the
cup is shown in Fig. 4.6(a) and the corresponding (true) aspect is shown on the as-
pect sphere in Fig. 4.6(b). For this particular image, two constellations are observed
(Fig. 4.6(c) and Fig. 4.6(e)). The density functions corresponding to these two con-
stellations are shown in Fig. 4.6(d) and Fig. 4.6(f). The combined density function
(Eq. 4.2) is shown in Fig. 4.6(g). The maximum likelihood aspect is 0.31 from the
true aspect (Fig. 4.6h).
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4.2.5 Experimental Results

Both symmetric (a cup and a block) and asymmetric (a mug and a spray bottle) ob-
jects are used in the experiment. For each object, about 2000 sample image/aspect
tuples are taken uniformly in order to cover the aspect sphere as well as possible. For
each object, we performed 10 independent experiments. For each experiment, a dif-
ferent set of 100 samples are randomly selected and reserved as the test data set; the
remaining samples are used as training data. Error is measured for each test image
as the angle between the estimated and true aspects, down to the symmetry of the
object. When there are multiple estimated aspects, the mean of error is calculated for
a single test image. We report the mean error over 100 images and 10 experiments.
We compare the proposed approach with one in which no filtering is performed (the
“unfiltered method”) and with a method that guesses aspects randomly.

Both the filtered and unfiltered methods cover 3556 out of 4000 testing images
(of 4 objects, 100 test images and 10 experiments). No constellations are found in
the remaining test images. The aspect estimate error histogram for the three methods
is shown in Figure 4.7a. These histograms include errors from all ten experiments
and four objects. The filtered and unfiltered methods decrease exponentially with
increasing error. However, the filtered method is biased more toward lower errors.
The mean error for the random method is substantially higher than either of the
other two methods.

The mean errors and standard deviations for each object are shown in Fig. 4.7b.
For both methods, we can see that the errors for the spray bottle are relatively large
compared to that for the other objects. The reason is that the shape and texture of
the spray bottle are more complex than the other objects. As a result, many constel-
lations often match to a high degree with the texture of the labels, even though they
are not originally generated from those regions.

We can also see that filtering is a benefit, especially for the more complicated
objects. For the simple objects, sampled constellations for a particular aspect are of-
ten very similar to each other. Hence, the filtering step does not make any practical
distinctions between different constellations. As the objects become more compli-
cated, such as with the spray bottle, a particular aspect will give rise to a set of
rather different constellations. Hence, the filtering step is able to make meaningful
distinctions between these constellations.

The performance difference between the filtered and unfiltered methods is signif-
icant for all four objects by a two-tail, paired t-test (block: p < 0.05; cup: p < 10 3;
mug: p < 10 4; spray bottle: p < 10 4). We should also note that the random guess
method does not perform as poorly as one might expect. This is because these errors
have also been adjusted according to the symmetric properties of the objects.
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Fig. 4.7 (a) Histogram of aspect estimate errors made by the three methods (all objects), and (b)
aspect estimation errors for each method and object.

4.3 Learning Canonical Grasps for Objects

Once an object has been visually identified and localized in space, how can an agent
describe the set of possible grasping actions that may be taken? Because the set of
possible actions will ultimately be used for planning and for exploratory learning,
we are motivated to make this set as small as possible so as to reduce the complexity
of either search process. One approach to constructing this representation is to begin
with a large set of successful example grasps and then to cluster them into a small
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set of canonical grasps. This set of examples could be derived from manipulation
sequences produced by the agent itself, or by a human acting directly on the ma-
nipulated object or acting through the agent via teleoperation. Our focus to date has
been on these two human-driven methods.

We describe each example grasp with the following: 1) position of the hand in
an object-centered coordinate frame, 2) orientation of the hand, and (in some cases)
3) the joint angles of the fingers of the hand. Clustering is performed using a mix-
ture of probability density functions approach, in which each cluster corresponds
to a canonical hand configuration that describes all three of these components (de
Granville et al., 2006, 2009, and submitted; de Granville, 2008). Below, we detail
each of these steps and then show that this method can successfully identify mean-
ingful clusters from teleoperation experiments performed using NASA’s humanoid
robot Robonaut.

4.3.1 Modeling Hand Orientation

Unit quaternions are a natural representation of 3D orientation because they com-
prise a proper metric space, a property that allows us to compute measures of simi-
larity between pairs of orientations. Here, an orientation is represented as a point on
the surface of a 4D unit hypersphere. This representation is also antipodally sym-
metric: pairs of points that fall on opposite poles represent the same 3D orientation.
The Dimroth-Watson distribution captures a Gaussian-like shape on the unit hyper-
sphere, while explicitly acknowledging this symmetry (110; 138). The probability
density function for this distribution is as follows:

f (q u,k) = F (k)ek(qT u)2
, (4.3)

where q R4 represents a unit quaternion, u R4 is a unit vector that represents
the “mean” rotation, k 0 is a concentration parameter, and F(k) is a normalization
term. Note that qT u = cosθ , where θ is the angle between q and u. Hence, density
is maximal when q and u are aligned, and decreases exponentially as cosθ de-
creases. When k = 0, the distribution is uniform across all rotations; as k increases,
the distribution concentrates about u. Fig. 4.8(a) shows a 3D visualization of the
Dimroth-Watson distribution, and highlights its Gaussian-like characteristics. The
high density peaks correspond to u and u.

A second cluster type of interest corresponds to the case in which an object ex-
hibits a rotational symmetry. For example, an object such as a cylinder can be ap-
proached from any orientation in which the palm of the hand is parallel to the planar
face of the cylinder. In this case, hand orientation is constrained in two dimensions,
but the third is unconstrained. This set of hand orientations corresponds to an arbi-
trary rotation about a fixed axis, and is described by a great circle (or girdle) on the
4D hypersphere. We model this set using a generalization of the Dimroth-Watson
distribution that was suggested by (144). The probability density function is as
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(a) (b)

Fig. 4.8 Three dimensional representations of the Dimroth-Watson (a) and girdle (b) distribu-
tions on S2. In both cases, the surface radius is 1 + p, where p is the probability density at the
corresponding orientation

follows:

f̄ (q u1,u2,k) = F̄ (k)ek
[
(qT u1)2

+(qT u2)2
]
, (4.4)

where u1 R4 and u2 R4 are orthogonal unit vectors that determine the great
circle, and F̄(k) is the corresponding normalization term. Fig. 4.8(b) illustrates the
girdle distribution on the 3D unit sphere. First, note that all points on the great
circle are assigned maximal density. This corresponds to the set of points for which(
qT u1

)2 +
(
qT u2

)2 = 1. However, as the angle between q and the closest point on
the circle increases, the density decreases exponentially.

For a given set of observations, the parameters of the Dimroth-Watson and girdle
distributions are estimated using maximum likelihood estimation (MLE). The axes
of the distribution are derived from the sample covariance matrix, Λ R4 4:

Λ = ∑N
i=1 qiq

T
i

N
, (4.5)

where qi is the orientation of the ith sample, and N is the total number of samples.
The MLE of u is parallel to the first eigenvector of Λ (110; 138). The orthogonal
vectors u1 and u2 span the same space as the first and second eigenvectors of Λ
(144).

For the Dimroth-Watson distribution, the MLE of the concentration parameter, k,
uniquely satisfies the following (see (78) for the derivation):
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G(k)
F (k)
F (k)

=
∑N

i=1
(
qT

i u
)2

N
. (4.6)

In the case of the girdle distribution, the MLE of k uniquely satisfies:

Ḡ(k)
F̄ (k)
F̄ (k)

=
∑N

i=1

[(
qT

i u1
)2 +

(
qT

i u2
)2
]

N
. (4.7)

For computational efficiency, we approximate G 1() and Ḡ 1() when solving for k.
This approximation is discussed in detail by (78).

4.3.2 Modeling Hand Position

The position of the hand is represented as a 3D vector in Cartesian space. We choose
to model position using a Gaussian distribution:

p(x μ,Σ) =
1

(2π)
d
2 Σ

1
2

e
1
2 (x μ)T Σ 1(x μ) . (4.8)

Here, x Rd denotes a point in a d dimensional Cartesian space, while μ Rd

and Σ Rd d correspond to the mean vector and covariance matrix of the Gaussian
distribution. For our purposes, d = 3, μ describes the mean position of the hand,
and Σ captures covariance in hand position.

4.3.3 Modeling Finger Posture

Humanoid robots such as Robonaut typically have many degrees of freedom (DOF)
available to perform manipulation tasks. For example, each of Robonaut’s hands has
12 DOF: three for the thumb, index, and middle fingers; one for the ring and pinkie
fingers; and one for the palm (13). Incorporating finger configurations into our clus-
tering algorithm is a key step to constructing more complete grasp affordance rep-
resentations. One possible approach to this problem is to learn clusters using the
full dimensionality of the robot’s end-effector. However, hands with a large number
of joints can be difficult to model because an increasingly large number of training
examples is needed to adequately sample a space as more and more dimensions are
added to it.

One question is whether or not all of the available DOFs of the hand are even nec-
essary to accurately model the finger configurations used for grasping. For example,
when executing a power grasp, the fingers tend to flex in unison. This means that
there is a strong correlation between the distal and proximal joints of each finger, as
well as a correlation across fingers. (148) and (43) present an approach that takes
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advantage of such correlations through the notion of an eigengrasp. The eigengrasps
of a hand comprise a set of basis vectors in the joint space of the hand. Linear com-
binations of a small number these eigengrasps can be used to approximate the finger
configurations used when grasping.

More formally, let p Rd be a column vector of joint angles describing the finger
configuration of a robot’s end-effector, and V Rd d constitute a basis for the vector
space of which p is a member. The columns of V represent directions in the joint
space of the hand (the eigengrasps), and are ordered from those that capture the most
variance in finger configuration to the smallest (i.e., from the largest corresponding
eigenvalue to the smallest). Linear combinations of the columns of V can be used to
represent any possible pose for the fingers of the robot’s hand:

p =
d

∑
i=1

aivi = Va. (4.9)

Here, vi Rd is the i’th column of V, a Rd is a column vector of coefficients, and
ai R is element i of the vector a.

Because there may be a large number of joints in the robot’s hand, the configura-
tion of the fingers may be approximated by using a small number (K) of eigengrasps:

p =
K

∑
i=1

aivi = V̂â, (4.10)

where V̂ =
[

v1 v2 ... vK
]
, and â =

[
a1 a2 ... aK

]T . Given a finger configuration p

and a subset of the eigengrasps V̂, a low dimensional representation of p is obtained
by solving the system of linear equations in 4.10 for â.

We compute the set of eigengrasps using samples of the joint angle vector as a
teleoperator grasps a set of objects. Let P Rd N be the set of finger configurations
resulting from the human demonstration, where N denotes the number of examples.
The eigengrasps are determined by computing the eigenvectors of P’s covariance
matrix (80).

4.3.4 Modeling Mixtures of Hand Postures

We model a grasp using a joint distribution defined over hand pose and the finger
posture. Specifically:

g(x,q, â θ) = p(x θp) f
(
q θ f

)
p(â θh) , (4.11)

and
ḡ
(
x,q, â θ̄

)
= p(x θp) f̄

(
q θ f̄

)
p(â θh) . (4.12)
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Here, p(â θh) is a multivariate Gaussian distribution over K dimensions. We assume
that hand position, hand orientation, and finger configuration are conditionally in-
dependent given a cluster.

An individual hand posture distribution can capture a single cluster of points,
but a set of grasps is typically fit best by multiple clusters. Furthermore, the use of
multiple clusters captures any covariance that may exist between the position and
orientation of the hand when grasping a particular object. We therefore employ a
mixture model-based approach. Here, the density function of the mixture, h(), is
defined as:

h(x,q Ψ) =
M

∑
j=1

w jc j(x,q θ j), (4.13)

Ψ = (w1, ...,wM,θ1, ...,θM), (4.14)

and
M

∑
j=1

w j = 1, (4.15)

where M denotes the number of component densities, and cj is one of the two density
functions describing hand pose (g() or ḡ()). Each element of the mixture represents
a single cluster of points, and is weighted by wj. Estimation of the parameters of
the individual clusters and the cluster weight variables is accomplished using the
Expectation Maximization (EM) algorithm (57).

For a given set of observations, it is unclear a priori how many or of what type of
cluster is appropriate. Our approach is to construct all possible mixtures that have
a maximum of M clusters (we choose M = 10) and to choose the mixture that best
matches the observations. For this purpose, we make use of the Integrated Com-
pleted Likelihood (ICL) criterion (29) to evaluate and order the different mixture
models. Like the Bayesian Information Criterion, ICL prefers models that explain
the training data, but punishes more complex models. In addition, ICL punishes
models in which clusters overlap one-another. These features help to select models
that describe a large number of grasps with a small number of clusters.

Because the EM algorithm is a gradient ascent method in a likelihood space con-
taining many local maxima, each candidate mixture model was fit a total of Ω dif-
ferent times using the available training data (for our purposes, Ω = 80). For a given
mixture, this ensures that a variety of different initializations for the EM algorithm
are explored. The model that performs best on the first validation set according to
ICL is subsequently evaluated and compared with other mixtures using the second
validation set (again using ICL).

Due to our data collection procedure, some samples do not correspond to quality
grasps, and instead correspond to transitions between grasps. It is desirable that our
clustering algorithm be robust to this form of noise. However, when a large enough
number of mixture components is allowed, the EM algorithm tends to allocate one
or more clusters to this small number of “outlier” samples. We explicitly discard
these mixture models when an individual cluster covers a very small percentage
of the samples (indicated by a small magnitude cluster weight parameter, w j). In
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particular, a model is discarded when:

max j(w j)
min j(w j)

λ , (4.16)

where λ is a threshold. For our experiments, we choose λ = 5 because it tends to
result in the selection of high quality, compact models. Of the models that have not
been removed by this filter step, the one with the best ICL measure on the second
validation set is considered to be the best explanation of the observed data set.

4.3.5 Data Collection

The human teleoperator is able to control Robonaut’s many degrees of freedom
with a virtual reality-like helmet and a data glove equipped with a Polhemus sen-
sor (13). In addition to articulating Robonaut’s neck, the helmet provides visual
feedback from the environment to the teleoperator. The arms and hands of the robot
are commanded by tracking the movements of the human’s wrists and fingers, and
performing a mapping from human motion to robot motion.

Each trial consists of the human teacher haptically exploring an object for ap-
proximately 15 minutes. The object is located in a fixed pose relative to the robot.
To maximize the number of quality samples collected, different grasping strategies
may be employed by the teleoperator based on the local geometry of the object. For
example, when grasping larger surfaces, a sliding motion in conjunction with a fixed
finger configuration is used. This ensures that the feasible positions and orientations
of the hand are collected in a timely manner. In contrast, the teleoperator repeat-
edly opens and closes the robot’s hand when grasping small surfaces. This strategy
forces hand pose to vary even though the hand may not be able to slide along the
local surface.

When compared with the data collected during direct observation of a human
performing grasping actions (78; 54), the robot teleoperation experience tends to
contain larger amounts of noise. Robonaut’s arm motions are slower and less fluid
under human control. Hence, the hand posture samples contain a large number of
cases in which the hand is not in contact with the object. To alleviate this problem
the transitions are removed manually by identifying the time intervals in which they
occur.

4.3.6 Experimental Results

To demonstrate the effects of incorporating finger configuration into the grasp learn-
ing process, a number of experiments are performed. First, the eigengrasps are
learned based on experience that is generated by the human teleoperator. A num-
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(a) (b)

Fig. 4.9 The set of objects used in the Robonaut clustering experiments. (a) Handrail; (b) Hammer.

ber of different objects are used to ensure a reasonable sampling of the finger con-
figurations. Due to invalid sensor data, seven of the finger joints are ignored. This
means that the number of effective degrees of freedom in Robonaut’s hand has been
reduced from twelve to five. Of these remaining five degrees of freedom, approxi-
mately 98% of the variance can be explained by the first three principal components.
This, in conjunction with the ability to visualize the resulting low dimensional rep-
resentation of finger configuration, led to the use of only the first three eigengrasps
(i.e., K = 3).

4.3.6.1 Handrail

Figs. 4.10(a,c,e) show the training examples for the handrail object. Panel (a) shows
the 3D position of the hand throughout the course of the experiment, while panel
(b) provides a visualization of the corresponding hand orientations. Orientation of
the hand is represented as a single point on the surface of the unit sphere: imagine
that the object is located at the origin of the sphere; the point on the surface of the
sphere corresponds to the intersection of the palm with the sphere. Note that this
visualization technique aliases the set of rotations about the line perpendicular to
the palm. In both panels (a) and (c), the major axis of the handrail is located along
the X axis, with the grasped end at X = 60 in the position space and at X = 1
in the orientation space. Finally, panel (c) shows the finger configurations projected
into the eigengrasp space.

A total of five clusters were learned for the handrail object: two that correspond
to an overhand reach in which the handrail is approached from the top, two for
the underhand configuration, and one for the side approach. The learned position
clusters are shown in Fig. 4.10(b) as first standard deviation ellipsoids of the Gaus-
sian distribution. The orientation component of these clusters is represented using a
Dimroth-Watson distribution and is show in panel (d). The mean orientation is indi-
cated using the line segment emanating from the center of the sphere. Clusters 1 and
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(e) (f)

Fig. 4.10 The training examples and learned affordance model for the handrail. (a) The position
of the hand; (b) The position component of the learned affordance model; (c) The orientation of the
hand; (d) The orientation component of the learned affordance model; (e) The finger configuration
of the hand; (f) The finger configuration component of the learned affordance model.
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4 correspond to the top approach and show an elongation in the position component
along the X axis. This elongation encodes the fact that the top approach results in
grasps at many points along the length of the handrail. Likewise, clusters 2 and 5
correspond to the underhand approach (with the palm up) and are also elongated
along the handrail. Cluster 3 corresponds to the side approach to the handrail. The
demonstrated variation in hand position was very small, and is reflected in the size
of the ellipsoid.

Panel (f) shows the learned eigengrasp clusters. Each corner of the bounding box
provides a visualization of the mapping that occurs between the low dimensional
representation of finger configuration and each joint of the robot’s hand. Notice that
variation along the first eigengrasp corresponds to flexion of the index and middle
fingers, while variation along the second eigengrasp causes adduction and abduc-
tion of the thumb. However, variation along the third eigengrasp does not affect the
configuration of the fingers significantly, only affecting the flexion of the most dis-
tal joints of the index and middle fingers. Also, note that the ring and pinkie fingers
remain in their extended configurations. (these are among the degrees of freedom
for which no data were recorded).

Turning to the learned eigengrasp clusters, notice that the ellipsoids 1 and 2 are
in the same region of the finger configuration space even though they correspond
to grasp approaches from above and below the handrail. Because the same sliding
technique was employed by the teleoperator when demonstrating these grasps, the
hand had a similar shape for each approach. However, for cluster 2 there is more
variation in finger configuration, which is indicated by the elongation of ellipsoid
2. In contrast, the hand was continually opened and closed when the side approach
was used to grasp the handrail. This is evident by comparing the hand shapes that
correspond to points on opposite ends of ellipsoid 3’s major axis. On the right end
of the figure, the hand is in an open configuration, but on the left end the middle and
index fingers are flexed considerably. Also, notice that ellipsoid 3 is separated from
the other eigengrasp clusters, which highlights the different hand shapes used when
grasping the handrail from above and below versus from the side.

4.3.6.2 Hammer

The example grasps demonstrated by the human teleoperator and the learned grasp
affordance model for the hammer are shown in Fig. 4.11. In this case five clusters
were learned: cluster 1 represents grasps when approaching from above the ham-
mer’s head. The orientation of this cluster is represented using a girdle distribution,
as indicated by the circle on the surface of the sphere in panel (d). In our visualiza-
tion, the points along the circle correspond to the orientations of maximum density.
For the case of cluster 1, we would have expected the use of a Dimroth-Watson
distribution because there is little variation about the points corresponding to the
top approach. However, what variation there is falls along a narrow arc that is best
captured by the girdle.
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(e) (f)

Fig. 4.11 The training examples and learned affordance model for the hammer. (a) The position
of the hand; (b) The position component of the learned affordance model; (c) The orientation of the
hand; (d) The orientation component of the learned affordance model; (e) The finger configuration
of the hand; (f) The finger configuration component of the learned affordance model.
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The remaining clusters (2–5) capture grasps along the handle of the hammer
when approaching from the side. Girdle distributions were selected to model the
orientation of the hand for the side approach. While this is encouraging, the algo-
rithm learned four clusters instead of one. This is most likely due to the spatially
distinct hand positions used to grasp the hammer’s handle.

The finger configurations used by the teleoperator to grasp the hammer’s handle
were very different than those used to grasp the hammer’s head. When approaching
the object from the side, power grasps that maximized the contact surface area be-
tween the hand and the handle were more likely to be used. Conversely, precision
grasps that mainly used the finger tips were employed when grasping the head of
the hammer. These differences in hand shape can be seen in Fig. 4.11(f). Ellipsoid 1
represents the finger configurations used to grasp the hammer from above. The large
volume of the ellipsoid is due to the exploration strategy employed by the teleopera-
tor: the hand was continually opened and closed on this portion of the object. Hence,
there was a large variance in finger configuration. Also, notice that ellipsoids 2–5
are spatially distinct from eigengrasp cluster 1.

4.4 Discussion

In this chapter, we presented several steps toward robot learning of affordance rep-
resentations in support of grasping activities. Affordances provide a means of map-
ping sensory information, including vision, into a small set of grasping actions that
are possible with the object being viewed. Key to this representation is the fact that
it captures the specific interaction between the object and the agent. The ability
to learn these representations automatically will be important as we begin to field
robots in unstructured environments and expect them to perform a wide range of
manipulation tasks.

Given a sequence of tuples consisting of an image and an object pose, our algo-
rithm learns 3D appearance models for objects. In particular, the algorithm identifies
visual operators that are robust to spurious image features such as object occlusions
and shadows. Visual operators are implemented as edgel constellations that describe
a specific geometrical relationship between a set of small edges. The 3D appearance
of an object is captured by compactly describing the set of viewing angles from
which each image feature is viewable. When a novel image is presented, the set of
observed features can then be used to estimate the most likely viewing angle of the
object. Ultimately, we will estimate the complete pose of the object, which, in turn,
can be used for planning and executing grasping actions.

In more recent work, we have begun to make use of scale-invariant feature
transform (SIFT) image features in place of edgels (109). This method is showing
promise in addressing image scale issues, improving the computational efficiency
of identifying features, and increasing the accuracy of the viewing angle estimates.
One of the challenges in using such an approach is that of pruning the set of primi-
tive features that arise from such a large database of images that exhibit very similar
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appearance. In addition, we are now making use of a particle-based approach for
describing the density functions. This approach is helping to address the overfitting
issues that can arise with mixture-type models and allows us to capture irregular
shapes in the density functions.

The second component of our algorithm uses tuples of object pose and hand pos-
ture to construct a small menu of grasps that are possible with the object. These
compact representations are constructed from many example grasps made by clus-
tering the hand posture examples. This property enables the use of the affordance
as a way to access “primitives” in higher-level activities, including planning, learn-
ing, and the recognition of motor actions by other agents (64; 34). In particular, the
hand posture clusters that have been learned map directly onto resolved-rate con-
trollers that can bring a robot hand to a specific position and orientation relative to
the object. Note that this control step assumes that haptic exploration methods are
available to refine the grasps once the hand has approached the object (Coelho and
Grupen 1997; Platt et al., 2002, 2003; Platt 2006; Wang et al., 2007).

Our approach to date has assumed an intermediate representation between vision
and grasp that is rooted in the individual objects. However, we would ultimately
like for this representation to be able to generalize across objects. This step will be
important as the robotic agent is faced with objects with which it has little to no prior
experience. Our approach is to identify canonical grasps that routinely co-occur with
particular visual features. When two or more objects have components that share a
common shape, and hence common visual features, it is likely that similar hand
postures will be used to grasp these components.

The affordance representation captures the syntax of grasping (i.e., what grasps
are possible for a given object), and does not take into account the semantics of
grasping (how an object is to be used in the larger context of a task). This distinc-
tion, which is drawn by Gibson, is a critical one for a learning agent. When a new
task is presented, the syntax of interacting with a specific object can be readily ac-
cessed and used. The learning agent is then left with the problem of selecting from a
small menu of possible grasping actions to solve the new task. This abstraction can
have important implications for the agent quickly learning to perform in these novel
situations.
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Intelligent Robotics for Assistive Healthcare and

Therapy

Ayanna M. Howard, Sekou Remy, Chung Hyuk Park, Hae Won Park, and
Douglas Brooks

Abstract In this chapter, we discuss research methodologies focused on develop-
ing intelligent robotics for healthcare applications. In the first section, we present
methods in which robot assistants learn to perform daily tasks by generalizing in-
structions provided through human teleoperation. In the second section, we discuss
research that integrates robots and toys in order to institute interactive play behavior
for child therapy and education. The last section presents methods for using robots
to assist in physical therapy scenarios based on therapist-patient observation. We fi-
nally conclude with a discussion on future work in the area of robotics for assistive
healthcare and therapy.
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5.1 Introduction

Ten years ago, research in robotic grasping of deformable objects resulted in the
development of a generalized approach for handling of 3-D deformable objects in
which prior knowledge of object attributes was not required (86). The motivation
of the method was to enable robot grasping of a large class of object types (e.g.
asymmetric, nonhomogeneous, nonlinear object types) that are typically found in
a hospital environment. The methodology developed was composed of two main
threads – determining deformation characteristics for a non-rigid object represented
by a physically-based model and utilizing the characteristics to learn the minimum
grasping forces required for manipulating such objects.

For determining deformation characteristics, a model was derived by discretiz-
ing the deformable object into a network of interconnected particles, springs, and
damping elements. By assuming quasi-static system characteristics, nonlinear par-
tial differential equations were used to model the particle motion of the deformable
object and calculate the deformation characteristics. For calculating minimum lift-
ing force, an iterative lifting method was developed in which the robotic manipula-
tion system interactively learned by lifting the object with iterative measurements
of force. Once the deformation characteristics and the associated lifting force term
were determined, they were used as training input into a neural network for gener-
alizing future manipulation operations.

The major conclusion arising from this prior research was the realization that ma-
nipulation of everyday objects is difficult. Real-world manipulation in the healthcare
domain must occur in dynamic and complex environments based on a wide range of
tasks that evolve over time. Humans have learned to deal with these difficulties by
improving their abilities through the accrual of experiences. It makes logical sense
then to develop methods to transfer the experiences of humans to robots in order to
endow them with the ability to operate effectively in these environments. Although
our fundamental goal is to develop robots that can safely and effectively provide ma-
nipulative assistance in the rehabilitation, care, and education of others, we believe
this process starts by addressing fundamental problems in knowledge transfer be-
tween everyday human users (whether the patient or caregiver) and robots. As such,
in this chapter we discuss research methodologies focused on the first steps in de-
veloping intelligent robotics for healthcare applications through knowledge transfer.
In the first section, we present methods in robot learning in which robot assistants
learn to perform new tasks from human direction provided via a haptic interface. In
the second section, we discuss research that integrates robots and toys in order to
institute interactive play behavior for child therapy and education. The last section
presents methods for using robots to assist in physical therapy scenarios based on
therapist-patient observation. We finally conclude with a discussion on future work
in the area of robotics for assistive healthcare and therapy.
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5.2 Activities of Daily Living: Robot Learning from Human

Teleoperation

Based on the Americans with Disabilities report (2002), 10.7 million Americans
(over age 6) need assistance with one or more activities of daily living. Through
teleoperation, the process that permits a human operator to directly guide a robotic
device, robots can provide remote caregivers with the ability to help individuals
with certain activities of daily living while in the home. By coupling teleoperation
with robots endowed with manipulation capability, robots can aid caregivers and
provide assistance in the home, even without physically being collocated with the
healthcare provider. The success of teleoperated assistive robots though depends on
how robustly a caregiver can provide instruction and how easily key operations can
be automated by the robot in order to increase the reliability of task performance.

In these teleoperation scenarios, the human ultimately controls the operation of
the robot by using the robots sensory information for task achievement. It is almost
inevitable that the trainers of these assistive robots will not have equivalent technical
expertise as the designers of these robots. The human operators will have to be
provided with interfaces to control and modify the behaviors of the robots such that
they can be optimized for the home environment in which they are deployed. The
challenge that must therefore be addressed is to devise a scheme that permits transfer
of task knowledge and control of a robot while compensating for errors derived from
inexperienced users, i.e. human operators that will most likely not have the time,
expertise or exposure to the robot platform to which they are providing instruction.

The main theme of our method for robot learning via human teleoperation is
to put the human in the learning loop (Figure 5.1). The advantages in this type
of teleoperative control cycle is that a human operator, whether a technical expert
or non-expert, can provide much more sophisticated decision making and proper
reactions to the situations than a densely programmed robot, upon encountering
unexpected conditions in the home environment.

5.2.1 Divided Force Guidance for Haptic Feedback

A classical method found in path-planning applications is the potential field method
in which calculated forces are used to repel a robot away from obstacles and attract
a robot toward a designated goal location. Once these potential fields are calculated,
the robot can theoretically navigate to a final goal position within an obstacle-strewn
environment by transitioning along the force vectors. For robot learning via human
teleoperation, the goal of the haptic feedback system is to assist the human teacher
in implementing a new task through teleoperation, such that the control signals pro-
vided by the user are not strongly dependant on operator expertise. Based on the
concept of the potential field method, we have developed the divided force guid-
ance approach (124) to provide haptic force feedback to the user. In this method,
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Fig. 5.1 Description of putting the ‘human-in-the-loop’ for robot learning. Human teacher controls
the robot via teleoperation, while being aided by visual and haptic feedback. The robot student then
learns a task from the human operator’s guidance.

attractive forces are generated as the user moves toward a given goal and repelling
forces are generated when the user moves away from the goal. Diverging from the
potential field method, the divided force guidance approach adjusts for both differ-
ences in object distances as well as object size. Of most importance, is to account
for the subtle differences that are typically found in the potential field method (such
as small forces that might be generated when a robot is close to the goal). These
forces must be emphasized since too small of a force generated in the haptic device
will go unnoticed by the human user. This is accomplished by using vision-based
methods to calculate these forces (123). By combining haptics with vision and tele-
operation, we provide a more effective means of tele-operative control, such that the
user does not require extensive training before interacting with the robot. With this
guided process of teleoperation, robot task learning can then be performed.

5.2.2 Learning through Haptically Guided Manipulation

Learning of a new task via teleoperation involves capturing all relevant control sig-
nals necessary to execute the task once interaction with the human is complete. For
task performance, sensing of the target object and understanding the robots action
relative to the object are required. Since these reactive cognitions take place over
time, we focus on the temporal sequences of sensing and actuation data. Regarding
the learning algorithm, we use recurrent artificial neural networks (ANN) and the
backpropagation with momentum factor training method (127). ANN is a method
of supervised learning, having layers of nodes (neurons) and interconnections with
weights forming a network, which can be trained statistically to minimize the error
using a gradient descent algorithm. The momentum term is used to solve the local
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minima problem. Our method for learning execution of a new task focuses on build-
ing the neural network by considering actions of the end-effector in the Cartesian
space (Figure 5.2). Inputs into the ANN include object position and size (extracted
from a visual image stream), end-effector position values, one hidden layer, and one
output associated with the differential value for the end-effector. With this neural
network structure, we aim to decouple dependencies on the kinematic chain of the
manipulator from the learning loop.

Fig. 5.2 Artificial neural
network (ANN) structure
of learning for Cartesian
space. The ANN inputs are
derived from the camera
sensor and current position
of the end-effector. Outputs
are incremental values for x-
,y-,z-coordinates for the next
movement.

5.2.3 Experiments

5.2.3.1 Teleoperative Manipulation System

Our manipulation system consists of a 5-DOF manipulator arm (attached to a Pi-
oneer3AT mobile platform), a USB camera, and a laptop for hosting of the robot
controller. The Pioneer Arm is a relatively low-cost robot arm that is driven by six
open-loop servo motors, providing 5 degrees-of-freedom with an end-effector ca-
pable of grasping objects up to 150 grams in weight. For acquisition of the visual
data, we mount a small USB webcam on the gripper so our system can transmit
the workspace view observed by the end-effector to the user. The maximum frame
rate of the camera is approximately 30 fps with pixel resolution of 320x240. It also
has a diagonal 54 degrees of field-of-view angle with focus range of 5cm to in-
finity. The haptic device used by the human operator is a force-feedback joystick
(Microsoft SideWinder2 force feedback joystick), which has a 16bit 25MHz on-
board processor capable of delivering 100 different forces and 16 programmable
function buttons. The haptic device is also coupled with a user interface that re-
ceives the streaming images retrieved from the camera attached directly to the robot
end-effector.
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5.2.3.2 Experimental Results

We first validated our force guidance technique by conducting 20 trials for five se-
lected places for object centering (Figure 5.3). The visual data from the camera
system mounted on the robot is analyzed every 33ms and a target object is acquired
and tracked. The guidance force is then generated directly from the visual data to
guide the human operator using the haptic control device to move the arm toward
the top of the object. In these trials, the approach ratio is chosen as 0.5 and the
dimension of the object is (25mm, 30mm) as measured in the x-y plane.

Fig. 5.3 Camera view of
before and after Object Cen-
tering task. The arm is manip-
ulated by a human operator
who ‘sees’ through this view
and ‘feels’ the guidance force
directly generated from this
visual data. The ‘+’ mark
indicates the size of the ob-
ject, and the box indicates the
center area.

(a) Before. (b) After.

Figure 5.4 shows typical graphs of distance change in object centering when the
force guidance is enabled or disabled. With the guidance force, we can see the arm is
moving toward the object making a clean path, whereas without the force guidance
the arm hesitates at the beginning (since the operator has to decide where to move
the arm) and takes more time in centering (see Figure 5.5). The average time for
object centering (for a certain target position) was 2.1 sec for the first 10 trials and
1.8 sec for the latter 10 when the guidance force was enabled, while it took 3.2 sec
and 2.4 sec respectively when the force was off. We can see that the average time
with the force guidance is 29% less in total, and 33% smaller in the first 10 trials.
The common decrease in the latter 10 trials in both cases shows that the human
operator learned to operate better, and we can also see that the average time in the
latter part with force guidance was still 25% faster than that without force guidance
(see Table 5.1).

We then test our learning approach and show the results derived from applying
our learning methodology to an object manipulation task. To train our robotic system
to reach down and grasp an object, we acquire training trajectories for 9 different
locations of the target object. The number was chosen to provide spatial training
data sets, which includes a center position and 8 positions with different directions
having distances of 5-7cm from the center position. The average execution time for
completion of a sequence was 10.2sec, with the trajectories projects onto the XY
plane depicted in Figure 5.6. The resulting ANNs could perform 15 successful tasks
out of 20 trials over random target positions (different than those used to train the
system), resulting in a performance rate of 75%.
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Table 5.1 Average time for object centering.

(a) Force guidance enabled. (b) Force guidance disabled.

Fig. 5.4 Distances from object center in time domain.

(a) Force guidance enabled. (b) Force guidance disabled.

Fig. 5.5 Arm movement trajectories towards the center.
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Fig. 5.6 End-effector trajectories of nine training data sequences. Only XY plane is drawn and Z
axis term is omitted here. ‘S’ is the starting position and ‘E’ is the final position for each trajecto-
ries.

5.3 Child Therapy and Education: Robots in Interactive Play

Scenarios

Interactive play has an important role in the development of cognitive, physical, and
social development in children (128; 75). The effect of playing has shown to have a
lasting effect due to the dynamic nature of interacting with the world (76). In fact,
the interplay of social scaffolding and self-induced locomotion in play has been
shown to be fundamental to the development of joint attention and of ‘self’ (108).
While typically-developing children generally do not need the presence of an adult
to engage in play, studies have shown that the interactions of children with other
individuals will increase their social development in areas such as sharing and turn
taking. By playing with others, shared interest between playmates enables develop-
mental play, engaging the mind, and creating opportunities for extended play over
longer durations. As such, developing robots to engage children in play could pro-
mote an environment of active learning. Other researchers have shown that robots,
as toys, can aid in early intervention for children with development delays (e.g.
(52; 149)), assist with physically challenged children (e.g. (99)), and engage chil-
dren in imitation base play (e.g. (114)). Most robots though, do not physically ma-
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nipulate toys in conjunction with their human (child) partner. To become an effective
playmate, a robot must be capable of fully engaging in manipulative play. This is
compatible with the play theory that exploration and manipulation are prerequisites
to meaningful play experiences (63).

To develop an effective robot playmate, we begin by developing algorithms to
allow the robot to identify general play behavior associated with manipulation tasks
related to play activities (87). The basis of our methodology is that if the robot could
interpret the basic movements of a humans play, it will be able to interact with many
different kinds of toys, in conjunction with its human playmate.

5.3.1 Defining Play Primitives

One of the benefits of playing with toys through manipulation is to stimulate the
development of fine motor skills, which require control of small, specialized mo-
tions using the fingers and hands. These skills evolve over time starting with prim-
itive gestures, such as grabbing (76). By examining the interaction of children with
toys, a number of common primitive gestures can be extracted, such as grasping,
transporting, inserting, hammering, stacking, and pushing. With regards to a robotic
playmate, these primitive gestures are what we further define as play primitives.

In various studies conducted on the dynamics of play, a number of mutually ex-
clusive categories of play have been derived (108; 52). Of these, two are associated
with physical manipulation - 1) functional play, which involves the conventional use
of objects (Figure 7(a)) and 2) relational play, which is defined as the association of
two or more objects together (Figure 7(b)). As such, we define two types of robot
play primitives:

• Functional play primitives - hand/fingers manipulate a single toy object.
• Relational play primitives - hand/fingers manipulate a single toy object such that

it makes contact with another toy object.

(a) Grabbing. (b) Stacking or hammering .

Fig. 5.7 Examples of Functional play 7(a), and relational play 7(b).
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5.3.1.1 Motion Behavior Analysis

To identify individual functional or relational play primitives, we first extract low-
level behaviors observed during human playing actions. A motion behavior is used
to represent an interpretation of these basic play movements. Motion behaviors are
represented by a motion vector, which captures both the direction and velocity of the
motion. The possible values associated with direction and velocity are discretized
based on pre-defined linguistic classes, as depicted in Table 5.2, resulting in a finite
set of possible motion vectors (or a motion class). Functional direction represents
the absolute direction of the play object with respect to a world coordinate system.
Relational direction describes the positive or negative motion of an object relative to
a target. Distance between an object and a target is computed when a motion initiates
and terminates based on the target identified at the end of a play. These two distances
are then compared and define the positive and negative relational direction. The
velocity of the motion behavior is measured with respect to the distance between
the location of an object when a motion initiates and terminates and the average
time associated with the motion. This velocity component is reclassified as a speed:
SLOW/FAST, such that if a motion is faster than the overall sequence speed average,
it is defined as FAST, and as SLOW otherwise.

Table 5.2 Motion behavior definition structure.

As an illustrative example, Table III shows the association between low-level
motion behaviors and the resulting motion vectors.

Table 5.3 Association between motion behaviors and vectors.

The motion behavior analysis process involves populating instances of the mo-
tion vector based on observation of a human playing action. This process is executed
by computing a motion gradient during human play actions and fitting the motion
gradient to the pre-defined motion class. Algorithmically, our motion behavior anal-
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ysis process consists of the following steps: 1) Compute the motion gradient asso-
ciated with observation of the human. Compute and normalize the motion gradients
for N consecutive motion frames to minimize the effect of motion jitter. 2) Find the
motion vector which minimizes the least squares estimation of the motion model
fit, and 3) Normalize and fit the motion vector to the pre-defined motion class to
compute direction and velocity of the motion.

5.3.1.2 Behavior Sequencing

In order to extract play primitives for a robot playmate, behavior sequencing in-
volves identifying and labeling the sequence of motion behaviors associated with a
play scenario. To perform this sequencing operation, the play toy of interest is first
identified by using the highly saturated color parameters of childrens toys to perform
steps of RGB to HSV color conversion, histogram back-projection, and segmenta-
tion. The play toy, designated as the first one to take an action, is then tracked over
subsequent motion frames (Figure 5.8). Using the motion behavior analysis process,
the set of individual motion behaviors is then determined and sequenced based on
movement of the play object. The final resting destination of the play object is used
to identify the final play primitive.

Fig. 5.8 (Top) Identifying toy objects: Original toy scene, Back-projected hue histogram, Final
toy objects detected (Bottom) Tracking the play object: Original toy scene, Back-projected hue
histogram based on play object, Final play object detected.
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5.3.2 Experimental Results

Four human test subjects were asked to perform repeated play primitives for five
different play scenarios (Figure 5.9). The human was observed from a fixed camera
with a side view. Multiple toy objects were randomly positioned in the play scene
and the human was instructed to either 1) select any object and stack onto another
(stack primitive) or 2) select any object and insert into another (insert primitive).
In three of the play scenarios, the human was instructed to perform these actions
continuously (i.e. multiple times) and in two of the play scenarios the human was
instructed to perform only one play action. The experiments were designed to test
the capability of the system to identify both the motion behaviors as well as the
correct play primitives, given the differences in motion behaviors for the different
subjects.

Fig. 5.9 Some play scenarios.

Given the various test scenarios, the performance of the system was categorized
based on correct recognition of play and target objects (100%), identification of
the motion behaviors (98.17%), and correct labeling of the play primitive (100%).
The play/target object recognition rates are associated with the ability to correctly
identify both the play object (upon grabbing a toy object) and the target object (upon
releasing the play object). Motion behavior recognition results are associated with
correctly determining the best-fit motion vector associated with human movement.
Errors in this calculation were primarily due to miscalculation of speed (slow versus
fast). The play primitive recognition rate was associated with correctly identifying
the play primitive (insert/stack).

5.4 Physical Therapy: Robot Assistance via Patient Observation

Activities of daily living (ADL) are predicated upon the successful accomplishment
of basic actions or movements, according to the current International Classification
of Functioning, Disability and Health (ICF) framework (194; 4). Thus, in this sec-
tion, we discuss a methodology for monitoring of physical therapy exercises, as a
first step in providing feedback for assessing performance improvements in basic
ADL (88). Physical therapy, defined by the US Department of Labor as the practice
of providing services to help restore function, improve mobility, and limit permanent
physical disabilities of patients suffering from injuries, is a very practitioner inten-
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sive process. Physical therapy sessions typically transpire over an extended period
of time and require patient adherence to the exercises taught to the patient not only
during sessions with the therapist but also at home. Patient compliance is strongly
correlated with shorter time to recovery as well as reduction of pain in the long term
(190). During the time between therapy sessions there are many factors which affect
patient compliance, including forgetfulness, lack of motivation, boredom, and lack
of instant feedback. To deal with these issues, researchers have shown the positive
use of robots in assistive therapy applications ranging from stroke rehabilitation (77)
to motor development in children (66).

In many of these applications, if we can correctly identify and match at-home pa-
tient exercise behavior based on characteristics learned during the therapist-patient
session, we can develop a monitoring mechanism to provide feedback for patient
recovery. To enable this capability, we present two methods that utilize image-based
observation as a means of gathering sensing information, and classification to iden-
tify subsequent patient behavior based on observations during the therapist-patient
session.

5.4.1 Learning of Exercise Primitives

Similar in nature to the method presented in Section 3 for constructing robot play
primitives from motion vectors, we model an exercise scenario by sequencing a
series of repetitive motion behaviors together based on observation of a human ex-
ercise action. The first stage in the process involves tracking movement of the arm
using vision-based marker detection and tracking of a hand-held object (e.g. dumb-
bell) (Figure 5.10). Markers are detected by color segmentation using methods of
Histogram Back-projection and Gaussian Filtering. Among the multiple markers de-
tected, the first one to take an action is considered as the exercise marker. The other
markers are then marked as targets, and the motion of the exercise marker is de-
scribed relatively to these. The motion gradient associated with the exercise marker
is computed over consecutive image frames and fit to the set of pre-defined motion
classes, as discussed in the previous section, to identify the motion behavior. The
sequence of motion behaviors associated with an exercise scenario are stored and
labeled (by the therapist). After therapist-patient interaction, the system uses this
same process to identify the current exercise scenario and compare with the stored
therapy exercise information.

5.4.2 Learning of Exercise Behaviors

In the previous approach, image-based methods were used to construct an exer-
cise scenario from a sequence of identified motion behaviors. In the next approach,
we utilize a method that classifies the entire exercise scenario using a single rep-
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Fig. 5.10 Identifying exercise
and target markers. Blue is
associated with the exercise
marker and green with the
target marker.

resentation. Based on imaging the patient during a therapy session, a texture based
feature vector is first generated for each image (frame) and stored in a database.
This database is then used to train a self organizing map to classify the elements in
the dataset, using the approach as described in (142). During subsequent exercise,
the method presented in (156) is used to extract period and frequency information
for the captured data in order to generate a mapping between observed state and its
position in the exercise cycle. In this step, we assume only one exercise is exhib-
ited in the captured data sequence. After therapist-patient interaction, a measure of
similarity using the 2D Kolomogorov Smirnov test (112) is calculated to determine
the statistical goodness of fit between pairs of exercise behaviors. This test is used
to determine which of the stored therapy exercises the patient is performing during
subsequent exercises.

5.4.3 Experimental Results

For testing the performance of the algorithm, video clips of subjects performing
different arm exercises, of varying degree profiles, in seated and standing position,
and with the left and right arm, was collected (Figure 5.11). The three different arm
exercises considered were:

• Shoulder Flexion - Raise arm to point to ceiling, keeping elbows straight
• Shoulder Abduction - Raise arm out to shoulder level, keeping elbow straight
• Shoulder Rotation - Keep elbow in place and slide forearm back and forth

In the first methodology, which identifies exercises by sequencing together mo-
tion behaviors, the following test sequence was utilized.

In this test scenario, the algorithm was able to achieve a 100% classification rate,
and was even able to correctly classify test sequence 9 and 10 as incorrect exercises
(due to the patient not achieving the full range of motion).
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Fig. 5.11 Example sequence
of images captured during ob-
servation (top) 180 degree left
shoulder abduction (middle)
90 degree left shoulder ab-
duction (bottom) left shoulder
rotation.

Table 5.4 Test behaviors used for study with first methodology.

In the second methodology, which labels the entire exercise sequence using a
single representation, the following test sequence was utilized.

Table 5.5 Test behaviors used for study with second methodology.
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The resulting categorization of exercises grouped Exercise 1, 2, 4, and 5 into one
class, Exercise 6 and 7 into one class, Exercise 10 and 11 into one class, and 3,8,
and 9 each into separate classes. The resulting classification scheme is summarized
as follows:

Table 5.6 Results generated from second methodology.

5.5 Conclusions

In this chapter, we discuss methods we believe are the first steps for endowing robots
with the ability to provide manipulative assistance whether in interactive play or for
activities of daily living. As robots continue to hold a greater role in assisting in the
rehabilitation, care, and education of others, the necessity for endowing them with
improved learning capability poses interesting challenges. Through experimental
results, we have shown that there are future possibilities in developing an infrastruc-
ture for enabling humans to provide instruction to a robotic mate.

Given the methods discussed in this chapter, one aspect of future work includes
integrating interactive learning capability with robot mobility. For interactive play,
the structure of the derived play primitive is designed for transmission to a robot
platform for subsequent turn-taking in toy manipulation (Figure 5.12). For moni-
toring in therapy, the robot must have mobility capability to ensure correct image
capturing of the patient during execution of each exercise (Figure 5.13). And for
teleoperated assistive robots, the range of achievable tasks must include those of a
consistent, repetitive nature (Figure 5.14).
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Fig. 5.12 Robot (Ro-
bosapien) platform for in-
teractive play.

Fig. 5.13 Robot platform for
therapy monitoring.

Fig. 5.14 Experimental setup
and tasks for activities of daily
living (ADL).

(a) Food preparation. (b) Grooming and personal
hygiene.



Chapter 6

A New Direction in Human-Robot Interaction:

A Lesson from Star Wars?

Gerard Jounghyun Kim

6.1 Introduction

Robots are finding their ways into our everyday environment (68) and as such their
social aspect and interaction with humans are becoming a very important issue for
their successful deployment and control. However, “directly” interacting with robots
has thus far been largely unsuccessful.

Fig. 6.1 Interacting “directly” with robots. Robots may (or perhaps cannot) be ergonomically de-
signed for diverse users. It may also falsely induce expectations of human like responses.

One main reason is that most robots are not (or perhaps cannot be) designed well
human factor-wise for diverse users. Figure 6.1 illustrates the case very well. Touch
screens (on the robot) are usually small and difficult to reach, and their interfaces
are difficult to use. A robot as a moving desktop computer may not be a well thought
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out metaphor despite our familiarity with the desktop interfaces. On the other hand,
today’s robots tend to pursue human-like communication means while still lack-
ing much in most such abilities. Robust vision-based or voice/language-based robot
communication seems very difficult in practice. The problem of anthropomorphic
interfaces (of which robots are usually) generating false expectations of human-like
responses and behaviors from robots, and becoming a source of disappointment and
confusion to users, has been well known (18; 122).

Figure 6.2 shows shots from the movie Star Wars (3) in which the robot R2D2
uses a 3D holographic projection to convey a message from Prince Leia. Even
though the movie is only an imaginary plot, it is quite plausible to suggest that
such “non-human-like” communication means can be more effective, at least for
certain tasks or situations. Interestingly, in this particular shot, C3PO, a perfectly
human-like robot, also listens in to the projected message.

Fig. 6.2 Shots from the movie Star Wars (3), and the robot R2D2 with a holographic projector.
Even in the futuristic days, 3D projection is depicted to be more effective (or dramatic) than us-
ing human-like communication (e.g. notice that the humanoid robot, C3PO, also is drawn to the
situation).

While robotics research must be continued in the direction to produce human-like
capabilities, we propose (inspired by ideas from Star Wars) an alternative, that is, an
“indirect” human-robot interaction (HRI) mediated through a hand-held device and
a projection display (since 3D hologram technology is still immature). Figure 6.3
shows one possible way to employ such a framework where the robot projects onto
a donut shaped area on the floor to serve and interact with multiple users at the same
time. Such an HRI method could be useful for large but sparsely populated areas
like conventions, airports, post offices, etc. The robot can move around and stop to
offer interactive services by using a camera (and/or other sensors) to detect anybody
in the vicinity who may be interested to interact. Figure 6.4 shows another possi-
bility in which a robot actively guides a group of people in a museum. The robot,
given the map of the museum and a predetermined path, with access to localization
information for itself and the people surrounding it (using onboard sensors or in-
frastructure), can select an appropriate surface to project information for the users



6 A New Direction in Human-Robot Interaction: A Lesson from Star Wars? 101

and at the same time provide a medium through which users can interact with the
robot (e.g. using a laser pointer or a cell phone as an interaction device).

Fig. 6.3 A robot projecting to a donut shaped area to serve multiple users. The robot may roam
around and stop to serve by detecting (using sensors/camera) any potentially interested users.

We claim that such an interaction framework can alleviate much of the human
factors problem and enhance the overall experience by the “enlarged” communica-
tion channel and amplified presence of the robot. In addition, the proposed frame-
work is flexible to accommodate different types of users and tasks, one-to-many
interaction, even mixing of real and virtual objects, and when combined with a
hand-held interaction device, it can be extended to support a variety of interaction
techniques with the consideration of robot’s mobility. In this paper we concretize
our proposal and discuss various important technical issues in realizing it.

6.2 Indirect Human-Robot Interaction

As already indicated, our framework suggests to use the projection display as the
mediating element between the human user and the robot. Figure 6.5 illustrates the
indirect HRI framework. There are several technical challenges for this proposed
framework in each of the respective constituent parts.
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Fig. 6.4 A robot guiding a group of people in a museum. Depending on the robot’s position, floor
and object layout, and observer’s position, the robot can appropriately select the surface to project
useful information and at the same time provide a physical medium for interaction to occur using
a simple hand-held device like a laser pointer or a cell phone.

Fig. 6.5 Major technical challenges of the proposed indirect HRI framework: (1) robot tracking,
(2) user/environment sensing (3) flexible display projection, and (4) projection surface centered
multimodal interaction method.
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6.2.1 Robot location/pose tracking

First, the robot must be able to track itself in relation to at least its immediate en-
vironment. This is because the robot must determine an appropriate surface in the
environment to project onto. A technique called the “Simultaneous Localization and
Mapping (SLAM)” is a popular method to solve this problem (176). SLAM is based
on augmenting the dead reckoning (e.g. from odometry of the robot) with location
prediction through landmark detection and probabilistically building the environ-
ment map at the same time. Assuming a map of the environment exists, even more
accurate location tracking is possible. Other tracking or localization techniques are
certainly applicable. While theoretically it is possible to build the environment map
and extract surface information, we can often safely assume that a 2D map of the
robot operating area is given.

6.2.2 User/environment sensing

Secondly, the robot must be able to sense various aspects of the users from a nomi-
nal distance (e.g. 0.5m3̃m). For instance, the user’s position in relation to the robot
is important to determine the appropriate place to project to. It is relatively easy for
a robot to recognize the existence and approximate relative location of nearby users
(or obstacles) using ultrasonic sensors or cameras. In addition, the viewing direction
of the user, user’s motion characteristics, user’s identity (e.g. through face recogni-
tion) may all be used to tailor and customize the display/interface contents. Equally
important is the cursor tracking for interaction. Since the proposed mediating inter-
action element is the display surface, the most natural way to interact is through a
2D cursor. Simple methods of camera based tracking of laser pointers, special mark-
ers, body parts and object occlusion can be employed with relative ease (188; 101).
Note also that landmark detection is also needed for accurate robot localization as
already mentioned.

6.2.3 Flexible projection

The third important problem is making the projection. First, the robot must select
the appropriate surface in the environment in a stable and convenient manner (for the
user) as it moves along. Such a selection will depend on the changing absolute and
relative positions of the robot and the users. In addition, since the robot is moving,
the projection display is also moving. One must consider aiding the user in some
way to minimize any negative effects due to this characteristic (e.g. render a small
arrow explicitly indicating and drawing the attention of the user to the movement
of the display). Once the projection surface is selected, a control mechanism (e.g.
pan and tilt) would be needed to position and aim the projector toward that surface.
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Most commonly the projection axis and the target surface will not be perpendicular,
thus an off axis projection must be made. In fact, the surface may not even be flat
or could be angled. A related issue is rendering the visual content with the detected
user viewpoint in mind. Fortunately, many algorithms have been devised to handle
such non-planar surface projection (131; 139; 178).

6.2.4 Large display surface centered interaction design

Although the large display surface serves as a place at which standard cursor based
interaction can occur, the overall framework is quite different from the desktop com-
puting environment. For example, in Figure 2, the robot may be serving multiple
users and it is not immediately clear how sound feedback can be employed at the
same time (e.g. whether it should be used at all, or if directional sound be discerned
by the respective users). When projecting on to the floor, it can be effective to render
the contents with a 3D look as if they are standing on the floor for better visibility.
In the museum guidance situation of Figure 6.4, the robot may be moving as it tries
to convey information and interact with people. The right interplay between moving
robot and users would be one of the keys to producing a usable interface, one of the
original goal of this work.

6.3 Summary and Postscript

We have proposed a new indirect HRI framework based on the idea of mediating the
interaction through projection from the robot. Our work is motivated by the lack of
usability with the current mostly direct approach to interaction design for HRI. We
have streamlined major technical issues, and believe that the proposed framework
can serve as a good alternative to the current form of HRI practice.

I believe that it is not coincidental that I have developed this new interest in
human-robot interaction. Back when I entered the USC Robotics Laboratory to be-
come Professor Bekey’s student, my research interests were more in the traditional
aspects of robotics. But, one thing led to another and I wound up investigating de-
sign and manufacturing problems as related to robotic assembly. This later took me
into the field of virtual reality and simulation, and then 3D multimodal interaction.
Thus, it seems only natural that I have traveled full circle back to the field of my
heart. Looking back, I truly believe that my studentship under Professor Bekey and
association with the outstanding bunch of colleagues at the USC Robotics Lab still
form the backbone of my capabilities as a research professor and educator, particu-
larly in terms of developing a wide perspective, knowledge basis and strong initia-
tives (which allowed me to successfully venture into many interesting and related
fields).



Chapter 7

Neurorobotics Primer

M. Anthony Lewis and Theresa J. Klein

Abstract Neurorobots use accurate biological models of neurons to control the be-
havior of biologically inspired or biorobots. While highly simplified neural models
(e.g. ANN) have been used in robotics, recent innovations in mathematics, science
and technology have made possible the real-time control of robotics by highly com-
plex, biologically realistic neural models. In this chapter we present a self-contained
primer on Neurorobotics which serves to give an integrated view of the possibili-
ties of this nascent trend with important ramification in science and technology. In
particular, we argue that neurorobotics will replace the conventional computer sim-
ulation for many neural-system models. Further, within a relatively short-time it will
be possible to simulate 1011 neurons in real-time, roughly the number of neurons in
the human brain, on a desktop computer. If we can understand how to harness this
power, and productize it, we will be able to create robots of incredible complexity
and behavioral richness.

7.1 Introduction

I can not believe that the brain computes Jacobians - George A. Bekey circa 1992

Biorobots are artificial devices built to test hypotheses in biology. Examples include
work by Webb (193), Beer (25; 24) Lewis (107; 106; 105) and many others. Biolog-
ically inspired robots, on the other hand, are robots that use biology as metaphors
to solve practical problems in robotics. Examples include work by Brooks (35; 36)

M. Anthony Lewis
Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, 85721,
e-mail: malewis@ece.arizona.edu

Theresa J. Klein
Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, 85721,
e-mail: tjk@ece.arizona.edu

105



106 Lewis and Klein

Fig. 7.1 Integration of simulation studies with the scientific processes. Redrawn from (193).

and Arkin (16). A neurorobot is a special kind of biorobot that explicitly uses mod-
els of biologically realistic neurons as its computational substrate. In a neurorobot,
algorithms are replaced by extremely high dimensional dynamical systems based on
neural sub-units. These subunits range in complexity from leaky-integrator models
to integrate-and-fire models, Hodgkin-Huxley neurons and the recently discovered
model by Izhikevich (90). Neurorobots will one day solve real-world problems, thus
filling a dual use as both a biorobot and an biologically inspired robot.

Neurorobots, an outgrowth of biorobots, may find important commercial ap-
plications in biologically inspired robots in the near future. For a comprehensive
overview of biologically inspired robots, see (27).

7.1.1 Neurorobots and the Scientific Method

Can neurorobotics help us better understand the brain? Webb (193) has proposed
a model for integrating the traditional view of the scientific method with modern
technology, in particular, simulation. Referring to Fig. 7.1 the process of scientific
investigation begins with the identification of a target system that we are interested
in understanding. The scientist may theorize a mechanism that will explain the ob-
served target behavior. The scientist may use various sources for inspiration for this
mechanism. In biomechanics, it may be a cost function that we presume the human
body optimizes. In the example cited by Webb, the idea of a Fourier transformation
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may be used as a source for a hypothetical mechanism of how the cochlea transforms
sound into neural impulses.

To understand the ramification of this hypothesis, we can create a simulation that
takes similar input and gives similar behavioral output. A simulation can exist solely
in a computer, or, in the case of a biorobot, the system can interact with the world. As
computers are, of course, capable of fantastically faster mathematical computations
than the human brain, one may think of a simulation as cognitive prosthesis that
helps us think more effectively about complex problems that are reducible to a well
defined system of equations.

A biorobot is a simulation paradigm for understanding behavior in animals in
which a computer program is allowed to gather and process raw data from the world
in real-time and produce an effect on the world. A biorobotic simulation is as le-
gitimate a scientific tool as a self-contained computer simulation. Ultimately, the
difference between a simulation that runs in a simulated world and a simulation that
runs in the real-world is that we can compare our physical simulations with the tar-
get system in the same environment as the organism we are investigating. For this
reason, we might say that for understanding the neural basis of behavior, a biorobot
can be a more legitimate and scientifically meaningful simulation, than a computer
simulation.

7.1.2 21st Century Robotics: Productizing Mythology

The idea of a robot is grounded in biological inspiration. It is a search for what
constitutes the “spark of life” and what distinguishes the living from the non-living.
It raises the question, “how can we create artificial beings?” Automata have been
built for thousands of years to amaze and entertain and make promises of slave-
like machines that will serve human-kind. It was only in the 20th century, with
the advent of the stored program, digital computers that we could begin to realize
practical, commercially viable robotic machines. Stored program digital computers
enable the following capabilities in robots:

1. The ability to create highly complex behavior- Complex behavior is dependent
on the ability to make memories. In the case of computer programs, memories
can be constructed from bistable elements integrated on a massive scale onto in-
expensive chips. Complex behaviors uses a large number of non-linear processes
to make decisions, compute transformation and most importantly to derive per-
cepts. A percept is an element extracted from a sensory stream that captures some
invariant property of that sensory stream (104). We distinguish this from a lin-
ear transformation of an input stream where the original sensory input can be
recovered from the transformed elements. Many different sensory configurations
can create the same percept. This processing is easily and reliably simulated on
digital computer.

2. The ability to alter behavior to achieve different tasks (i.e. to be reprogrammed)-
A stored program computer can be altered in its operation by controlling the
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data it operates on, controlling the mode of the code that is executed and so on.
These are properties that are exceedingly difficult to achieve without modern
computers.

To date, the most aggressive uses of the ability to perceive have been seen in au-
tonomous robots and factory automation. However, at the level of consumer robots,
there has been marginal ability to perceive the environment, little ability to be repro-
grammed, and relatively simple behavior. Thus, the consumer robots have not fully
utilized the power of the modern computer. Why?

Productization of highly complex machines is highly problematic. In general, the
Occam’s razor principle of productization is that the simplest device is the one that
will most likely be built. Thus, introducing complexity is contrary to the parsimony
of productization.

From a product perspective the industrialist must answer several question:

1. What advantage does complexity give us? Does it make the product better or
worse?

2. How does one test such a machine to know if it is working?
3. How can we tell if a learning system is learning?
4. If a system requires thousands of cycles to significantly change behavior, how

can we test such a capability quickly?

The problem will be complicated even further in the case of a neurorobot. At the
end of the factory line, tests must be done to confirm the behavior of the robot being
built. Suppose that a robot system had the complexity of a human being. Much as the
human mind is ’programmed’ by a sequence of experiences, neurally based robots
will be programmed as well by experience. Their resulting behavior will be difficult
to predict. It might take 16 years to determine if the robot would be a juvenile robotic
delinquent or is on track to be a brain surgeon! Debugging, at the system level, will
require new automated tools that can analyze the system using invasive techniques,
or perhaps an entire field or robot psychology.

For these reason neurorobotic technology will be very limited in market accep-
tation, or indeed other highly intelligent machines, until we can solve the practical
problem of testing such systems, and demonstrating that these systems will yield
clearly superior performance— performance that can be achieved in no other way
more simply. One exception to the rule on market acceptance has been the robots
built by Mark Tilden. Tilden’s first prototype of the ’Robosapien’ line of robots was
built at the Neuromorphic engineering workshop in Telluride, Co, in July, 2001, see
Fig. 7.2. Some 5-10 million Robosapien robots and its derivatives have been sold.
The essence of Tilden’s idea was to use analog oscillators to generate the movement
of bodies. His robots, while remarkably sophisticated as a consumer product also
exhibit a je ne sais quoi quality of life-like movement that has not been duplicated
by others. His prolific experimentation in the 1990’s lead to the development of the
first prototype Robosapien in July of 2001.

Tilden’s robots were acceptable as products but had only limited perceptual ca-
pability due to the sever cost constraints of the toy market (not, indeed, by any
limitation of Tilden’s imagination).
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Fig. 7.2 The birth of a revolution in biologically inspired robots. (A) The first Robosapien pro-
totype was created in July 2001 in Telluride Colorado by Dr. Mark Tilden. Tilden successfully
incorporated many principles of biological motion into the a commercially viable product. (B)
November, 2005 People’s Republic of China, the second version of RoboSapien, RS-V2 is being
assembled, tested, and readied for shipment. Between 5-10 million robots, based on this design,
have been sold (198).

To date, Tilden’s commercial efforts have been limited to the consumer entertain-
ment market. It is evident that neurorobotics greatest impact will be both in science
and in the service robotics market, or robots that perform useful work.

Productization of a myth is exceedingly difficult, but progress is being made.

7.1.3 Computational Substrate

Neurorobots, by definition, must function in real-time. As a result, computational
speed and I/O bandwidth constrain the level of complexity now achievable in neu-
rorobotic brains. The substrate for computation is important. Computation used in
Neurorobot may be based on computer simulation or may be directly implemented
as Neuromorphic chips.

7.1.4 Neuromorphic Chips

A neuromorphic chip is an analog VLSI device that implements a specific neural-
system computation or class of computations. Historically, these neuromorphic
chips differ from their digital cousins in two essential ways. First, these systems
rely on analog computations that directly implement operations such as integration,
differentiation, multiplication and addition with the purpose of efficiently imple-
menting neuronal networks. Second, digital computers that we are familiar with
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are stored program computers. They are reconfigurable and capable of running an
extremely wide range of computations. Neuromorphic devices have lacked this ca-
pability. Neuromorphic chips trade speed and power efficiency for flexibility and
development ease. Each chip may have only a handful of people in the world that
understand how to use a given device. This limits their dissemination.

7.1.5 Graphics Processing Units

Another approach to computation in Neurorobots is to use conventional Central Pro-
cessing Units (CPU) and Graphics Processing Units (GPUs) for processing. GPUs
are leading a revolution in computing. GPU chip concentrate most of their real-
estate on computation rather than memory as in traditional CPUs. This allows 16
computational cores to be placed on a single chip. What is more, these chips are in-
expensive. The retail price for a state of the art Pentium CPU with 4 cores is roughly
the same as a GPU card with some 240 cores. GPU processing have doubled in speed
consistently every year (2). Today, a GPU is the most important computational el-
ement in a high performance computer, well overshadowing the raw computational
power of the CPU. As stated, GPUs are optimized for computation, not memory.
This make GPUs an ideal host for complex biophysical algorithms. GPUs will al-
low the use of models with dynamic synapses, multiple compartments and other
advanced features that, to date, have not been incorporated into neurorobotics due
to real-time requirements. This revolution in GPU technology will have a major
impact in neurorobotics, where computational dense models need to be constructed.

7.1.6 Purpose of this Chapter

It is clear that neurorobotics is on the cusp of a revolution due to the aforemen-
tioned technological advances. The dissemination of neurorobotic experimentation
is limited due to the relatively small group of individuals in the world that are cross
trained in robotics and neurocomputation. This article is meant to be a primer in
neurorobotics, bringing together fields of robotics, neurocomputation, and compu-
tational technology.

It is the hope that this chapter provides the first integrated view of Neurorobotics.
This chapter is based on a lecture given at the 2008 Telluride Neuromorphic Engi-
neering Workshop sponsored by NSF.
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7.2 Classical Robotics

We define classical robotics as the core topics featured in text books by Craig (47),
Paul (126), or Asada and Slotine (17). The classic topics consists of (1) configuration
space (2) kinematics and inverse kinematics (3) Differential motion (4) Statics (5)
Dynamics and (6) trajectory generation. In recent years Baysian probability has
come to the forefront as well, and might be considered as apart of the core topics in
robotics.

7.2.1 Configuration Space

The starting point of classical robotics is configuration space. A robot is an articulate
system with numerous rotational and prismatic joints. If the position of each joint is
fixed, the system will be in a particular configuration. The set of all possible joint po-
sitions of the robot is the configuration space. Picking a point in configuration space
defines the position of each point on the robot. You might consider a luxo lamp. By
fixing the rotation of the base, the rotation of the light, and the joints in between,
the robot has a well defined position or configuration. The configuration space point
also sets the position of every point on the surface and in the interior of the robot.
The former being important when considering collisions with the environment, and
the latter when considering the mass property of the robotics system.

Often, we wish to know how each of these points correspond to a world frame of
references, i.e. in Cartesian space. Cartesian space is a simple, generic way of spec-
ifying the location of any point on the robot. Cartesian space considers 3 mutually
orthogonal axes that define a coordinate system in space. You might think of the
corner of a room where the vertical seam is the z axis, and the horizontal wall-floor
seams are the x and y axes. Kinematics can help us determine, systematically, the
relationship between configuration space and Cartesian space.

7.2.2 Kinematics

Refer to the leg in Fig. 7.3. This leg is composed of two segments of length L1 and
L2. The position of the foot relative to the hip can be computed if we also know the
angle between the axis of each segment and the ground. These angles are given by
θ1 and θ2.

Thus the hip’s position can be computed as:

xe = L1 cos(θ1)+L2 cos(θ2) (7.1)

ye = L1 sin(θ1)+L2 sin(θ2) (7.2)
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Fig. 7.3 Two degree of freedom leg. We consider the application of basic techniques in classical
robotics to a simple, one legged robot.

The only subtly here is that we have purposefully placed joint angles θ1 and θ2
in the frame of reference of the foot. This makes the addition particularly easy. In
the typical case, however, the robot may have a sensor on each joint indicating the
angle of the one link relative to another link. For the current, planar case, we can
make the substitution:

θ2 = θ1 +θ2 (7.3)

where θ2 is the angle of the second link as would be measured by a sensor on the
robot. We make the simplifying assumption that the hip is always level.

Cartesian space has three axes and can be augmented with a rotation to create
the pose of a portion of the robot. For any point in configuration space, there is a
unique point in Cartesian space. Further, this map is smooth at almost every point.
By systematic analysis of the geometry of a robot, we can compute this map. This
is the robotics kinematics.

The magic of kinematics is that if we specify the configuration of our robot using
standard notation and apply a standard set of rules, we can turn the metaphorical
crank and determine solutions to forward kinematics, that is the mapping from con-
figuration space to world coordinates.

The main point here is that forward kinematics can be found by well defined pro-
cedures. Inverse kinematics, or going from Cartesian coordinates to configuration
space requires some insight. Referring again to Fig. 7.3, we can image that we are
given a vector Px,y , specifying were we would like to place the foot relative to the
hip. The length of this vector is just: p =

√
x2 + y2. We now have a triangle with

three sides of known length. Applying the law of cosines we have:
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α = cos 1

√
L2

1 + p2 L2
2

2L1 p
(7.4)

β = cos 1

√
L2

1 +L2
2 p2

2L1L2
(7.5)

α = arctan2(y,x) (7.6)

θ1 =
π
2

α α (7.7)

θ2 = π β (7.8)

Thus we find that we can define the angles. In general, as more links are added the
inverse kinematics solution becomes exceedingly difficult and requires an increasing
level of skill to find a solution.

7.2.3 Differential Motion

The mapping from configuration space to Cartesian space is continuous and it is
also differentiable. Thus may wish to calculate:

dx = f (dθ) (7.9)

This relates small changes in θ to small changes in x. The two are related by a
Jacobian Matrix: [

dx
dy

]
=

[
d fx
dθ1

d fx
dθ2

d fy
dθ1

d fy
dθ2

][
dθ1
dθ2

]
(7.10)

This can be summarized as :
dx = J(θ)dθ (7.11)

Using equations (7.1) and (7.2), we can compute as:[
dx
dy

]
=
[

(L1 sin(θ1)+L2 sin(θ1 +θ2)) (L2 sin(θ1 +θ2))
(L1 cos(θ1)+L2 cos(θ1 +θ2)) (L2 cos(θ1 +θ2))

][
dθ1
dθ2

]
(7.12)

What is the relationship between small changes in Cartesian coordinates and
small changes in configuration space? It is simple:

J(θ) 1dx = dθ (7.13)

Well, it is simple if it exists. We can find the Jacobian inverse as long as the
determinant of J(θ) is nonzero, i.e. det J(θ = 0. That is, we are checking for the
condition:
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0 = L1L2(sin(θ1 +θ2)cos(θ1) cos(θ1 +θ2)sin(θ1)) (7.14)

This happens when the robot’s leg is held straight out, i.e.: θ2 = 0 and :

0 = L1L2(sin(θ1)cos(θ1) cos(θ1)sin(θ1)) (7.15)

which is always true. Intuitively, when the leg is stretched out, we cannot make a
small movement, dθ1 or dθ2 that will result in the end of the leg moving away from
the hip radially.

7.2.4 Statics

Suppose we wish to find a relationship between the force produced at the foot of the
robot, and the torques exerted around the knees and hip.

This relationship is given as:

JT (θ)F = τ (7.16)

where F is a vector of forces at the robot foot, in our example, and τ is a vector
of torques placed at the knee and hip. We omit the proof here, but the reader is
referred to (17). This equation might be useful for determining the expected torque
on actuators given that the leg is in different configurations. Torque, τ is just:

τ = r F (7.17)

Of course we can find the inverse relationship as well:

F = (JT ) 1(θ)τ (7.18)

As noted above, the Jacobian will not have an inverse when the leg is straight
out. The reader can verify that in this case we will not be able find a torque that
will cause the leg to produce a force straight out from the hip. Intuitively, the reader
knows this is true. Try standing on your heels with legs fully extended, and then try
to jump! Your heel is supporting your weight, but that weight does not cause torques
on hips or knees in this example.

7.2.5 Redundancy

The most often case in biologically systems is that there are a large number of ways
of reaching the same point. As the reader can readily verify, for the simple case
of two links, there are two possible configuration for knee and hip for the foot to
reach a given point (even if one might represent a painful hyperextension of the
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Fig. 7.4 Illustration of redun-
dancy. In biological systems,
redundancy is the norm. An-
chor your feet and grab a door
handle. You should be able
to move your wrist, elbows,
torsos in many different ways
while keeping your feet an-
chored and still holding the
door handle. Make sure no
one else is around when you
try this experiment.

Fig. 7.5 Model of dynamic
system. Here we assume that
the mass are concentrated
as point masses (illustrated
as spheres). Note that when
computing Jacobian, we are
interested in the distance to
and velocity of these masses,
not the endpoint of the robot.

knee). Figure 7.4 gives an example of a simple, redundant system where infinite
configuration correspond to a given target point.

Humans take advantage of redundancy when they control they posture during
movement. Depending on the task, a person might change the configuration of
his/her body to be able to exert more force, or remain balanced etc.
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7.2.6 Dynamics

Real systems have mass and evolve through time, that is, they have dynamics. While
the dynamics are simple, only in the case of a 1 or perhaps 2 link system, the method-
ology that is used to write down closed form dynamics is common to both a 1 link
as well as a Nth order system. Referring to Fig. 7.5, first we form the Lagrangian.
The Lagrangian summarized the dynamics of a system.

L = KETOTAL PETOTAL (7.19)

That is, the total kinetic energy minus the potential energy.
The potential energy of a particle is:

PE = mgh (7.20)

If you lift an object in a constant gravitational field, with magnitude g, one can use
eqn (7.20) to compute the potential energy of this object.

If you have many objects, or in our case, more than one link, you can sum the
potential energy. For a mass, we consider the height of the center of gravity (mass).
The total potential energy is thus:

PE = g∑
i

heightimi (7.21)

We may with to use some of the machinary developed above to help us compute
the height of the mass above the ground, which we can do using forward kinematics,
and the velocity of these point masses, which we can do by knowing the joint veloc-
ities and using the Jacobian to find the point mass velocities. Eqn. (7.11) implies:

ẋ = J(θ)θ̇ (7.22)

Let us assume that the mass of each link of the leg can be considered as a single,
point mass, then the kinetic energy is:

KE =
1
2

mv2 (7.23)

where m is the mass of the particle, and v is its velocity. One way of looking at the
kinetic energy is that it summarizes the net work done on the particle up until that
point.

The kinetic energy of the leg is given as:

KE =
1
2

ẋT Mẋ (7.24)

which, using eqn (7.22) we can re-write as:

KE =
1
2

θ̇ T J(θ)T MJ(θ)θ̇ (7.25)
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here M is a matrix with diagonal elements equal to the mass of each link. In our
case, M is to dimensional.

We can now compute the dynamics using a formula:

τ =
d
dt

∂L
∂ q̇

∂L
∂q

(7.26)

This formula relates the torques at each joint to accelerations, and gravity’s pull
on each link. At low velocities, gravity is the dominate contributor to torque, far
outweighing any other dynamic effects.

7.2.7 Trajectory Generation

We must move the limb from point A to point B. If we suddenly accelerate the limb
as quickly as possible to the goal position, we will run into problems. First, the exact
trajectory of the limb will be ill-defined. We may collide with the environment, or
the robot may even colide with itself. Second, we induce a lot of wear and tear on
the robot’s joints and gears. It is better to choose a smooth trajectory that will allow
us to avoid obstacles, and gently accelerate.

The basic idea is to generate a spline from a series of knot points. See Fig. 7.6.
The spline has additional constraints placed on it including the position, velocity and
acceleration of beginning and end points. The knot points can be positions to avoid
obstacles. In classical robotics, the robot control system ensures that trajectories are
tracked well.

Note that in classical robotics, we were concerned with controlling the movement
of a manipulator. For tasks such as welding is critical that we can achieve good
trajectory tracking.

To do this, certain design features are incorporated into the robots. First, we might
use high gear reduction motors, perhaps 1:100 or more. This means the robot’s joint
might revolve 1 times per 100 revolution of the motor. High gear reduction has cer-
tain benefits. These benefits include good disturbance rejection: dynamic force per-
turbations are reduced dramatically as they are reflected back to the motor. Second,
we can run the robot at high RPM. In general, electric motor achieve their greatest
power output at high RPM. Finally, we would include a stiff feedback control loop.
Feedback is the process of comparing the actual position of the a joint to the desired
position of the joint and adding or subtracting torque to achieve a reduced error in
the next control cycle. In general, disturbances of the environment are repressed.

In a walking machine, if a leg strikes an obstacle while it is in swing phase, two
thing can happen: (1) The leg moves out of the way, around the obstacle or (2) the
induced torque caused by the strike destabilizes the robot and causes it to stumble.

Nature uses two methods to keep from stumbling. First, in swing phase the leg is
very complaint. That is, its feedback gain is very low. Thus, when it strikes, the strike
causes a motion of the leg, not the entire robot. Second, animals have reflexes. These



118 Lewis and Klein

Fig. 7.6 Trajectory Generation. Trajectories can be specified by a series of ’knot points.’ Trajec-
tory generation is the process of finding a smooth path, a spline, through these knot points, while
satisfying some endpoint criteria such as position, velocity and acceleration.

reflexes cause the leg to move back, up and over the obstacle. This is an automated
response.

In classical robotics we do not consider reflexes except in the case of careful,
slow movements,i.e. guarded moves. We do not alter the stiffness of the control
loop during trajectory execution.

The next thing to notice about the classical approach to trajectory generation is
that knot points are selected by task criteria and not by energy criteria. We have
shown that a leg can generate its own trajectory by allowing passive movement of
the leg during swing phase (106). Thus the inherent dynamics of the system selects
the best trajectory and takes a minimum energy path.

The final thing to notice is that trajectories generation by knot point do not ex-
plicitly take into account the cyclic nature of locomotion. Locomotion is highly
periodic. We touch on Central Pattern Generator Theory below as an alternative to
the classic robot knot-point paradigm.

7.2.8 A Pause to Reflect

The power of analytical methods are illustrated here by the ability to determine the
overall endpoint of the robot given configuration of subcomponents, i.e. the links.
We take can take advantage of some simple properties of vector spaces to allow the
addition of subcomponents to find the overall forward kinematics, for example. For
inverse kinematic mapping we cannot do this and it is therefore a more difficult in
practice.

We note that the Jacobian is a particularly handy transformation. It allows us to
tell when the system is capable of generating force at the foot by applying torques
at the ankle. It can tell us if the arm has reached a singularity and is therefore not
capable of motion in a certain direction.

We note that nowhere in the classical method did we explicitly represent time
and synchronization between robot and the environment and the robot and itself.
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This mapping problem is non-trivial when we consider tasks such as interaction
of any point on the skin of the robot and the world. Here, the kinematic-inverse
kinematic computations are so numerous that they cannot be calculated by hand.
We must resort to massive computer computations. We note that much of what we
uncovered are ways of creating mappings from one space to another. This can easily
be learned using even traditional neural networks.

While the purest may argue that the geometric approach is sufficient, its appeal
wanes as the complexity of problems grown. Learning methods, including those
based on neural building blocks, will become indispensable tools in the roboticists
toolbox. CPG methods offer an approach to the time synchronization problem. As
CPGs become better understood, they to will become important, indispensable tools.

Artificial Neural Networks have been shown to be universal function approxi-
mators. (85). The Universal function approximator is a powerful property that can
allow us to subsume much of conventional, geometric based robotics. In the next
section we discuss more complex models that allow us to go beyond just simple
mapping to create system of reach temporal behavior.

7.3 Basic Neurocomputation

Cells are the basic building block of multi-cellular organisms. Special cells exist
that are electrically excitable. These cells include muscles cells and in neural cells
(Neurons).

The cell membrane (Fig. 7.7) can be thought of as a bag containing the cellular
machinery that allows an imbalance in ion concentration to occur inside versus out-
side the cells. Computationally we do not care about the cells DNA, mitochondria,
cell nuclei etc. We do care about this ion imbalance. The cell membrane itself has a
very high resistance. On either side of the cell membrane is a conductive solution,
thus the cell membrane forms the dielectric of a capacitor. Ion channels penetrate
the cell bilipid (composed of two layers of fat molecules) membrane layer and are
highly selective to specific ion species.

7.3.1 Information Flows into Dendrites and Out of Axons

Neural cells have two types of processes that are attached to the cell body. The axon
is a long process that can transmit action potentials, discussed below, from the cell
body to other neurons throughout the brain. These axons synapse on the dendrites of
other neurons. These dendrites collect information from thousands of neurons. Each
synapse contributes a bit of current to the cell and results in the alteration of the cell
membrane voltage. Each synapse may have a different coupling strength. A given
cell can either make it more likely or less likely that a cell will generate an action
potential, fire, depending on if it is an excitatory synapse or an inhibitory synapse.
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Fig. 7.7 The Cell membrane is composed of a bilipid insulating layer and isolate conductive elec-
trolytes inside and outside the cell. Certain ion species, such as potassiam, calcium and sodium are
particularly important to electrical activity in neurons. The cell membrane contains ion channels
that are highly selective to specific ions and can be turned on and off by changes in voltage or
by a special protein (ligand). The cell membrane also contains ion pumps that maintain a specific
ion imbalance between the inside and outside of the cells. Opening ion channels take advantage of
this imbalance to create current flows and hence alter membrane potential. Highly dynamic events
called action potential encode voltage events and propagate this information to thousands of other
cells.

7.3.2 The Neuron Cell is a Capacitor with a Decision Making
Capability

The membrane/electrolyte system forms a capacitor. The electrical model of an ideal
capacitor is:

C
dV
dt

= i (7.27)

where C is the capacitance, i is a current flow, and V is the voltage potential mea-
sured relative to the inside of the neuron.

Ions flow is dirven by diffusion and voltage driving force. Ion pumps in the cell
membrane maintain a concentration gradient for various ions. Ion Channels allow
charged ions to flow across the cell membrane in a highly selective way. Given a
ion gradient between the inside and outside cell, a diffusion gradient is set up that
causes a net flow of ions from the higher to the lower gradient. As each ion particle
is charged, this causes a current flow. If a voltage potential is maintained across the
membrane, positive ions will be attracted to the negative side of the cell membrane.
This leads to the build up of a concentration gradient.

The Nernst potential specifies the relationship between concentration gradients
and the voltage potential across the membrane:
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E =
RT
zF

ln
[outside]
[inside]

(7.28)

where E is the potential, T is the absolute temperature, and R the gas constant,
F is the Faraday constant. For real cells the Ek = [ 70.. 90mv], ENa = [50mv],
ECa2+ = [150mv].

7.3.3 Neural Models Capture the Basic Dynamics of the Cell Body
and Throw Away Some Details

The difference in neural models comes down the to the equations specifying I in
eqn (7.27). The trade off is between the complexity of the dynamics, the ability
to analyze the systems and the ability to simulate a given model efficiently. The
most well known model is the Hodgkin-Huxley model. Hodkin-Huxley empirically
determined their equations (83; 82):

im = gL(V EL)+gkn4(V EK)+gNam4h(V ENa)+ Is (7.29)

h,n,m evolve according to complex equations, Is are synaptic currents coming from
other neurons. The equation can be understood in the following way: the values in
parentheses (V Ex) are driving forces that will tend to drive the potential of the
neuron to the Nerst reversal potential Ex. In front of each of these driving forces
are weighting factors. These weighting factors determine which driving force will
dominate the equation, and hence the equilibrium value for the cell membrane. If
only gl is active, the cell membrane will relax toward V > El . When the cell begins
to fire, after the cell membrane has increased in potential, the Na part of the equation
dominates and the membrane potential shoots up toward ENa. Next the potassium
term turns on and resets the neuron.

In general the integration of this equation is difficult, and the analysis is extraordi-
narily difficult, so researchers have turned to simplified models which capture some
of the features of this system. Here we focus on computationally efficient models.

7.3.3.1 Leaky Integrator

One of the simplest models is the so called leaky integrator. This model avoids the
complex dynamics of firing altogether:

cm
dVi

dt
= glVi + Ii (7.30)

ui = f (vi) (7.31)

Ii =
N

∑
i=1

wi ju j (7.32)
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where the V is the membrane potential, u is the average firing rate of the neuron
over a small time window. f (v) is a function that transforms membrane voltage into
firing rate.

In steady state dVi
dt = 0. This implies that glVi = Ii. We can often assume that

gl = 1. This equation is an integrator because absent the Vi term, it is a perfect
integrator. This equation is leaky because absent the input Ii, the voltage Vi “leaks”
back to zero.

This model does not capture the essential spiking characteristic of neurons. All
precise timing information is eliminated. The next step up in complexity is an inte-
grate and fire model.

7.3.3.2 Integrate and Fire

cm
dVi

dt
= gL(Vi EL)+ Ii (7.33)

i f (V > Vthres) > V = Vreset (7.34)

Ii =
N

∑
i=1

wi js(u j) (7.35)

In the integrate and fire model, as the membrane approaches a fixed threshold, the
cell ’fires’ and generates a spike. It then resets the membrane voltage. This model is
not sophisticated enough to build interesting models of networks controlling motors
systems. We must introduce spike frequency adaptation:

cm
dVi

dt
= gL(Vi EL)+ rmgsra(V Ek)+ Ii (7.36)

τsra
dgsra

dt
= gsra (7.37)

i f (V > Vthres) > V = Vreset ,gsra > gsra +Δgsra (7.38)

Ii =
N

∑
i=1

wi js(u j) (7.39)

Here we have an adaptation terms. The variable gsra functions much like a spike av-
erager, averaging spikes over an exponential time window. As the number of recent
spike increases, the (V Ek) term begins to dominate. This driving force is trying
to shut the neuron off. Hence with more spikes, the neurons spikes less frequently.

7.3.3.3 Matsuoka Oscillator

The Matsuoka Oscillator (111) another popular oscillator which seems almost like a
continuous time version of the integrate and fire model with adaptation and is given
as:
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τi
ui

dt
= ui β f (vi)+ ∑

j=i
wi j f (u j)+u0 (7.40)

τi
vi

dt
= vi f (ui) (7.41)

f (u) = max(0,u),(i = 1,2) (7.42)

As can be seen, as the neuron fires more, the value vi accumulates (almost like
averaging spikes, only this neuron does not spike). As vi increases, it introduces an
inhibitory term suppressing the “firing rate” of the neuron.

7.3.3.4 Izhikevich Model

The Hodgkin-Huxley model is capable of a rich range of behavior, but is difficult to
integrate. The leaky integrator, integrate and fire with adaptation, and the Matsuoka
oscillator are easy to integrate by have less richness than the HH.

The best of all-possible-world model was discovered by Izhikevich(90) :

dv
dt

= 0.05v2 +5v+140 u+ I (7.43)

du
dt

= a(bv u) (7.44)

i f (v > 30mv)v > c,u > u+d (7.45)

See Fig. 7.8 for the range of firing behaviors that can be obtained from this model.
These behaviors are controlled by parameters a,b,c, and d.

7.3.4 Numerical Integration

Next we turn to the practical matter of computing our equations. We can do so by
numerically integrating the equations on a digital computer.

The equations for neurons that we have discussed so far are of the form:

dx
dt

= f (x) (7.46)

we can write:

dx = f (x)dt (7.47)

Δx f (x)Δ t (7.48)
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Fig. 7.8 Range of behavior available with the Izhikevich neural model. Electronic version of the
figure and reproduction permissions are freely available at www.izhikevich.com

xn+1 = xn + f (x)Δ t (7.49)

x0 = x(0) (7.50)

The use of eqns (7.49) and (7.50) is called Eulers Integration. Derivation and use
of Euler Integration is straightforward, and they are completely adequate for most
equations. However equations such as the Hodgkin-Huxely equation may benefit
from a better integrator such as Runge-Kutta 4th order. The iterative equations are
given as:
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xn+1 = xn +
h
6
(a+2b+2c+d) (7.51)

a = f (tn,xn) (7.52)

b = f (tn +
h
2
,xn +

h
2

a) (7.53)

c = f (tn +
h
2
,xn +

h
2

b) (7.54)

d = f (tn +h,xn +hc) (7.55)

Runge-Kutta is more efficient than Euler Integration. While Runge-Kutta requires
more evaluations per time-step than Euler Integration, we can accurately take much
larger time steps using Runge-Kutta.

However, Euler is often fast enough for small networks and has the advantage
that it implementation is trivial.

7.3.5 Building Neural Oscillators: Nature’s Coordination and
Trajectory Generation Mechanism

Here we turn to the basic unit of movement generation in vertebrates: the oscillator.
Oscillator circuits can be seen at the core of virtually all models of rhythmic mo-
tion generation. They are the basic building blocks of the so-called Central Pattern
Generators, or CPG circuits. These circuits are groups of neurons (in vertebrates
they are in the spinal cord) seen in animals capable of periodic movement including
walking, running, swimming, flying etc.

Fig. 7.9 The basic element of the central pattern generator is the Brown half-centered oscillators.
Two neurons are coupled with mutual inhibition. As one neuron fires, it suppresses the other.
Eventually, the firing rate wanes and the other neurons becomes active and the cycle repeats.

The basic neural unit is a network oscillator composed of two neuron in mu-
tual inhibition, see Fig. 7.9. The basic idea of the half-centered oscillator was first
proposed by Brown (37) and was the key element in a theory of central pattern gen-
eration, that is, the generation of rhythmic movement by spinal circuits without the
need for a sensory trigger, or a detailed signal from the brain. While this idea was
successfully repressed for period of time, in recent years it has become accepted
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Fig. 7.10 A Brown half centered oscillator constructed using an integrate and fire neurons with
adaptation implemented with discrete components (i.e. real resistors, capacitor etc., according to
the equations given above).

Fig. 7.11 Basic circuitry controlling locomotion in lamprey, an eel like animal. Adapted from (61).
The C neurons are coupled across the midline with mutual inhibition. They form the basis of the
left-right bending of the lamprey.

since Grillner’s seminal work (79; 56). In Fig. 7.11 we see an illustration of the
spinal circuits for locomotion in lamprey. The lamprey is a animal that first evolved
some 550 million years ago and has been relatively undifferentiated since that time.
It thus gives us insight into the earliest solutions of biology. Such circuits, especially
with inhibition across the mid-line to enforce a 180 degree phase shift between the
left and right half body has been highly conserved. Whenever you walk, you take
advantage of the lamprey solution in the left and right alternation of your legs.
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7.3.6 Reflexes and High Level Control

The CPG circuits are modulated by sensory stimuli to adapt the CPG to the animal
and to its immediate environment. Thus, the CPG is not a rigorous general given
orders to a low level control system. Rather it cooperates dynamically with the en-
vironment via reflexes, for short term adaptation, and descending control from the
brain, for long range anticipatory control and to achieve high level goals.

For details on the biophysics of neurons, the reader is referred to (82). For more
details on neural models the reader is referred to (53)

7.4 Notable Systems

Here we highlight some notable models in neurobotics/biorobotics by others

1. Case Western group– Beer and colleages have created neural models of locomo-
tion. Starting from simulation, this group has built a robot controlled by CPG
based on the cockroach. This work is highly instructive. See (25; 24; 23; 22) for
details on their work.

2. Neuromechanical model of swimming— Ekeberg has created a series of neu-
romechanical models of swimming in lamprey. What is interesting here is the
integration of neurons, muscles, body and environment to achieve a complex be-
havior, swimming (61).

3. TAGA— Through simulation, Taga and colleagues have explored the relation-
ship between dynamics, neural networks, and the environment. (173; 171; 170;
172)

4. Tekken— Tekken is a quadrupedal robot driven by Matsuoka oscillators. It is
capable of rapid walking, and features highly innovative reflex integration with
CPGs, see (94; 93).

7.5 GPUs

Central Processing Units have doubled in speed about every 18 months for the
past 40 years (1). Graphics Processing Units have doubled in speed about every
12 months over the past 8 years (2). The result has been that graphics units are
arguably the most important computational element in the modern computer.

NIVIDIA has opened their architecture to allow other to use their highly parallel
architecture for general purpose simulation. GPUs are distinguished by devoting a
great deal of chip real-estate to computation, instead of memory. They have a rela-
tively small amount of high speed memory and also a large pool of They are there-
fore best suited for compute-bound processes. As an example, the Hodgkin-Huxley
model is estimated to require 1200 flops per 1 ms of computation (91) while using
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only a handful of state variables. Further, neuronal models are inherently paralleliz-
able as they rely on very similar computation applied to different state variables. On
the other, hand there are some elements of the neuron elements that high dimen-
sional and require a relatively small amount of computation for 1 ms of simulation.
An example of that is the simulation of axonal delay, which can be implemented as
an individual delay for each connection between an axon and a dendrites. Given the
small amount of high speed memory, it is not practical to port a large and complex
delay line onto GPU processors. The inhomogeneity of computational versus state
space dimension for different aspects of neural simulation seems to prescribe a cer-
tain mapping of the neuronal network simulation onto a combination of GPU and
CPU elements.

A neural simulation for neurons, the network connectivity, input and output pro-
visions, and learning rules. The neuron simulation is composed of a (1) Simulation
of the decision to fire, (2) Simulation of axonal delays (3) simulation of synapses (4)
dendrite simulation. The learning rule is typically confined to the synapse weight.
However, there is in principle no reason why axonal delays might not also be
changed or altered as they might play an important role in storage of activity pat-
terns.

The raw processing power of a GPU is staggering. The NVIDIA Telsa card with
128 core of processors is capable of nearly 500 GigaFlops of computation. A new
version, to be released in late 2008 will have double that power.

Recent experiments in our lab have achieved rates of 10 million Izhikevich neu-
rons in real-time. Currently this preliminary figure does not include long range
synapses. The results are promising. Within a year, we anticipate that a computer
with 4 NVIDIA GPU cards will be capable of integrating about 80 million neurons
in real time, or nearly 108 neurons in a single desktop computer. If GPU maintain
their rate of speed increase, doubling each eary, (which is not guaranteed), within a
little more than a decade it may be possible to simulate as many neurons as their are
in a human brain in real-time and to control a robot.

Problems still exist for the GPU paradigm including the problem of getting infor-
mation to the computational cores in an efficient manner. Yet even more insurmount-
able problem exist in taking advantage of the processing power we have today.

It is clear that one of the key innovations in neurorobotics will lie in harnessing
GPU processing power for real-time neural computation.

7.6 Conclusion

Neurorobotics is a paradigm which has evolved out of the desire to understand com-
putation in the human brain. Due to advances in the theory of neural computation,
and the dramatic increase in processing power, Neurorobotics may prove to be ca-
pable of creating highly complex behaviors in life-like machines. The market ac-
ceptance of such machines is complicated and remains uncertain, but promising.
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Chapter 8

Learning Inverse Dynamics by Gaussian Process

Regression under the Multi-Task Learning

Framework

Dit-Yan Yeung and Yu Zhang

Abstract In this chapter, dedicated to Dit-Yan’s mentor and friend George Bekey
on the occasion of his 80th birthday, we investigate for the first time the feasibil-
ity of applying the multi-task learning (or called transfer learning) approach to the
learning of inverse dynamics. Due to the difficulties of modeling the dynamics com-
pletely and accurately and solving the dynamics equations analytically to obtain the
control variables, the machine learning approach has been regarded as a viable alter-
native to the robotic control problem. In particular, we learn the inverse model from
measured data as a regression problem and solve it using a nonparametric Bayesian
kernel approach called Gaussian process regression (GPR). Instead of solving the
regression tasks for different degrees of freedom (DOFs) separately and indepen-
dently, the central thesis of this work is that modeling the inter-task dependencies
explicitly and allowing adaptive transfer of knowledge between different tasks can
make the learning problem much easier. Specifically, based on data from a 7-DOF
robot arm, we demonstrate that the learning accuracy can often be significantly in-
creased when the multi-task learning approach is adopted.

8.1 Appreciation and Dedication

When Dit-Yan arrived at the University of Southern California (USC) in the mid
1980s, he was planning to do theoretical research on the models of computation,
possibly including computational and mathematical models for human intelligence.
Robotics was initially not in his mind. Shortly afterwards he learned of the interest-
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ing robotics research carried out in George Bekey’s laboratory and was fascinated
by the fun and challenges in this research area. It was fortunate that George Bekey
agreed to be his PhD advisor.

George has always been a very open-minded scholar who gives unfailing sup-
port for new ideas and explorations, no matter how “silly” they first appear. Dit-Yan
was given a lot of freedom and encouragement to explore new ideas and even un-
explored territories. Eventually he worked on machine learning and robotic control
for his doctoral research. Although for various reasons he no longer worked on
robotics after graduation, the research experience he gained from his doctoral study
helped him greatly in pursing his current research interests in machine learning and
pattern recognition. In psychology such learning experience is known as transfer
of learning. This notion has inspired the development of an active research topic in
machine learning, known as transfer learning or multi-task learning. In this chapter,
it carries a very special meaning to put the three themes, namely, machine learning,
robotic control, and multi-task learning, together as an appreciation and dedication
to George for his great and fatherly mentorship.

The second author of this chapter is one of the recent PhD students of Dit-Yan.
So this transfer originated from George will continue on and on. Thank you George!

8.2 Robotic Control

8.2.1 Kinematics and Dynamics

Kinematics and dynamics are two important aspects that are central to the control
of robots or articulated objects with jointed rigid segments (125; 26). For given
angles of the joints, the forward kinematics problem refers to the computation of the
position and orientation of the end effector of a robot. The more difficult problem is
the inverse problem, called inverse kinematics, which determines the joint angles of
the robot in order for its end effector to achieve some desired pose.

To control the movement of a robot, we have to consider its dynamics as well in
addition to the kinematics. The forward dynamics problem refers to the computa-
tion of the trajectory in terms of the joint angles, velocities and accelerations given
the torques at the joints. Inverse dynamics, like inverse kinematics, is the inverse
problem which is much more difficult to solve than the forward problem.

8.2.2 Reasons Against Analytic Solutions

Analytic solutions for the kinematics and dynamics equations are often quite ex-
pensive to obtain. The main difficulties arise from the strong coupling between dif-
ferent degrees of freedom (DOFs) and the high dimensionality and nonlinearity of
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the equations for robots with many DOFs, such as humanoid robots which have
aroused a great deal of interests in the robotics community over the past decade. A
robot is a complex system whose parameters are not constant but can vary with the
control or state variables. Also, some parameters may never be known precisely for
control purposes. Methods such as adaptive control using parameter identification
techniques exist for solving such problems. However, these methods usually require
a complete model of the system in order to identify the parameters. In practice,
obtaining an accurate model is very difficult, if not totally impossible.

8.2.3 Insights from Human Arm Control

In human arm control, it is very unlikely for some dynamics equation to be solved
analytically somewhere inside the brain to issue control commands to the arm. To
move from one location to the other, the arm is usually controlled to go through
an initial feedforward phase of fast motion which brings the arm to the right “ball-
park” of the desired location (14). This is then followed by a second phase of fine
motion control which relies heavily on sensory feedback. The initial phase does not
require high precision in position control. Rather, its primary concern is to provide
fast computation of control commands for moving the arm rapidly to some neigh-
borhood of the desired location. Such a two-phase scheme is also useful for robotic
arm control. We only need an approximate model for control in the feedforward
path. Internal and external sensors can then be used to provide feedback informa-
tion to correct the errors made by the feedforward model.

8.2.4 Learning and Control

The considerations above motivate robotics researchers to take a machine learn-
ing approach as a viable alternative to the robotic control problem. As part of his
doctoral thesis research, the first author of this chapter proposed a neural network
model called context-sensitive network (200; 199) as a machine learning approach
to robotic control. Since then, the learning approach has become more commonly
used especially when more complex robotic systems such as humanoid robots are
studied. The focus of this chapter is on a learning approach to the inverse dynamics
problem.

8.3 Learning Inverse Dynamics

The most common learning approach to the inverse dynamics problem is to learn the
inverse model from measured data as a regression problem. Since typical robotic
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systems have multiple DOFs, the regression problem involves multiple response
variables. For example, each response variable corresponds to the torque at one
joint.

8.3.1 Recent Work

Nonparametric regression methods are more suitable for solving the inverse dy-
namics problem due to their higher model flexibility. The method known as locally
weighted projection regression (LWPR) (187; 186; 185) is currently the standard
learning method used in the robotics community since it is capable of online, real-
time learning even for complex robots such as humanoid robots. However, many
other powerful regression methods have been developed in the machine learning
community over the past decade or so. In particular, the kernel approach (153)
is arguably the most popular due to its mathematical elegance as well as promis-
ing performance in practice. Support vector regression (SVR) is an extension of
the support vector machine (SVM) from classification problems to regression prob-
lems (183; 153). Besides, Gaussian process (GP) models (140) are nonparametric
Bayesian kernel machines that, like SVR, have demonstrated state-of-the-art perfor-
mance in many regression applications. Recently, an empirical performance com-
parison was conducted to compare LWPR, SVR and GP regression (GPR) for learn-
ing inverse dynamics (119; 120). While LWPR is generally more efficient, SVR and
GPR are more accurate and have fewer hyperparameters to set. LWPR has many
meta parameters which are tedious to tune.

8.3.2 Learning Inverse Dynamics as a Regression Problem

The general form of the dynamics equation can be expressed as

τ = M(θ)θ̈ + τv(θ , θ̇)+ τg(θ)+ τ f (θ , θ̇), (8.1)

where θ , θ̇ and θ̈ are the joint angles, velocities and accelerations, respectively, τ
is the torque vector, M is the mass or inertia matrix, τv is a vector of centrifugal
and Coriolis terms, τg is a vector of gravity terms, and τ f is a vector of friction
terms. By regarding the learning of the inverse dynamics as a regression problem,
we rewrite (8.1) as the following regression function

τ = g(θ , θ̇ , θ̈), (8.2)
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where θ , θ̇ and θ̈ represent the explanatory variables (independent variables) and
τ represents the response variables (dependent variables).1 Note that g is a vector
function since τ is multivariate. For example, if the robot is a 7-DOF arm, then there
are 21 independent variables and 7 dependent variables.

8.4 Gaussian Process Regression

In this section, we first review the GP approach to regression. We then report our
experimental results on using GPR for learning inverse dynamics.

8.4.1 Brief Review

We first describe a weight-space view on GPR. Consider a regression problem with
p input variables represented as a p-dimensional input vector x Rp and an output
variable represented as a scalar output value y R. We are given a training set D =
(xi,yi) n

i=1 of n observations in the form of input-output pairs. Let φ( ) denote a
d-dimensional vector function representing d fixed basis functions that transform x

(usually nonlinearly) from the input space to some other space. The standard linear
regression model with Gaussian noise is given by

f (x) = wT φ(x) (8.3)
y = f (x)+ ε, (8.4)

where w Rd is a weight vector, f ( ) is a latent function, and ε is an indepen-
dent and identically distributed (i.i.d.) Gaussian noise variable with zero mean and
variance σ2, i.e., ε N(0,σ2).

Uncertainty is modeled probabilistically by defining w to be a random vari-
able following a multivariate Gaussian distribution with zero mean and covari-
ance matrix Σ, i.e., w N(0,Σ). The prior distribution over w induces a corre-
sponding prior distribution over f (x). Let us define f = ( f (x1), . . . , f (xn))

T and
Φ = (φ(x1), . . . ,φ(xn))

T . Thus the training data set D can be expressed by the lin-
ear regression model in matrix form as

f = Φw. (8.5)

We are interested in the joint distribution of the function values.
A GP is a collection of random variables such that any finite number of them

exhibit a consistent joint Gaussian distribution. GPR is a nonparametric Bayesian

1 Strictly speaking the variables θ̈ in the regression problem are not exactly the joint accelerations,
but they are corrected by the closed-loop results to give the joint accelerations. See (120) or (46)
for more discussions on inverse dynamics control.
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approach to regression which assumes that the latent function f follows a GP prior (a
prior distribution over functions, which in general are infinite-dimensional objects).
Since f is a linear combination of Gaussian random variables, f is itself Gaussian
with the following mean vector and covariance matrix:

E[f] = ΦE[w] = 0 (8.6)
cov[f] = E[f fT ] = ΦE[wwT ]ΦT = ΦΣΦT . (8.7)

So we have
f N(0,ΦΣΦT ). (8.8)

Instead of proceeding with the weight-space view, the function-space view bypasses
the modeling of the weights w and the basis functions φ( ). Based on this view, the
Gaussian distribution for f is directly modeled as

f N(0,K), (8.9)

where K is a positive semidefinite matrix with elements Ki j = k(xi,x j) for some
covariance function k( , ), which corresponds to a Mercer kernel in the kernel ap-
proach (153). Like the kernel approach in general, one advantage of this function-
space view is that we may choose a covariance function k( , ) that corresponds to
using a very large or even infinite number of basis functions giving high expressive-
ness. Since ε is an additive i.i.d. noise term, we can easily show that

y N(0,K+σ2I), (8.10)

where y = (y1, . . . ,yn)T and I is the n n identity matrix.
For a new test case x , the predictive distribution of its latent function value f (x )

has the following Gaussian distribution:

p( f (x ) x ,D) = N(kT C 1y, k(x ,x ) kT C 1k ), (8.11)

where k = (k(x1,x ), . . . ,k(xn,x ))T and C = K+σ2I. Computing this distribution
requires inverting the n n matrix C with O(n3) time complexity.

8.4.2 Gaussian Process Regression for Learning Inverse Dynamics

The GPR method reviewed above assumes that the regression function is univariate.
However, for learning inverse dynamics, usually there are multiple DOFs and hence
g = (g1, . . . ,gm) in (8.2) is a vector function. Learning g may be achieved by learning
each of the component functions g j separately and independently, as in (119; 120).
In this subsection, we report some experimental results we have obtained based on
this setting. This naı̈ve setting will be extended in the next section by regarding the
learning of different DOFs as dependent tasks via sharing information among them.
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We use GPR to learn the inverse dynamics of a 7-DOF SARCOS anthropo-
morphic robot arm by using the data set in http://www.gaussianprocess.
org/gpml/data/. Each observation in the data set consists of 21 input features
(7 joint positions, 7 joint velocities, and 7 joint accelerations) and the correspond-
ing 7 joint torques for the 7 DOFs. There are two disjoint sets, one for training
and one for testing. We only use the first 10000 examples of the training set for
training but the entire test set for testing. We use the MATLAB code provided by
Rasmussen and Williams in http://www.gaussianprocess.org/gpml/
code/gpml-matlab.zip for performing GPR. For our performance measure,
like in (119), we adopt the normalized mean squared error (nMSE) which is de-
fined as the mean squared error divided by the variance of the target. The squared
exponential covariance function is used for the GP.2 We want to see how the train-
ing sample size affects the learning accuracy. To do so, we perform experiments by
gradually increasing the training sample size from 100 to 1100 by 100 at a time. For
each sample size, multiple runs are performed on different training sets of the same
size and the average nMSE is reported. We also perform an experiment once on all
the 10000 training examples.

The results are depicted in Figures 8.1–8.7. Each figure shows the regression
result of one DOF expressed in terms of the average nMSE under varying sample
size. Ideally one would expect the average nMSE to decrease when the sample size
is increased. However, this trend is not clearly observed and the variation of nMSE
is only within a very small range. Essentially we can conclude that increasing the
sample size beyond 100 does not significantly increase the learning accuracy. Nev-
ertheless, the primary objective of this paper is on comparing the standard GPR with
a multi-task extension which will be studied in the next section.

8.5 Multi-Task Gaussian Process Regression

A common daily experience is that learning to solve a problem can be much easier
if we have learned to solve a different but related problem before. The more related
the two tasks are, the more we can benefit from the previous learning experience.
This is related to the notion of transfer of learning (62) in psychology. In machine
learning this is known as multi-task learning, transfer learning, inductive transfer,
or learning how to learn (175; 19; 20), which has received a lot of attention in the
machine learning community over the past decade or so.

In order that we can benefit from the multi-task learning setting, some tasks to
learn must be related in some sense and some common information must be shared
among these related tasks. One natural approach to this learning problem is through
hierarchical Bayesian modeling. While classical Bayesian modeling is based on
parametric models, nonparametric Bayesian models are generally more desirable
due to their higher model flexibility. GP is a promising nonparametric Bayesian ap-

2 The squared exponential covariance function is also known as the radial basis function (RBF) or
Gaussian covariance function.
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proach and hence our focus here will be on multi-task learning based on the GP
approach (115; 102; 154; 202; 32; 33; 201).

Note that transferring the learning experience regardless of whether the tasks
are related or not may lead to impaired performance. Ideally, how much to transfer
should depend on the “relatedness” between tasks. Many multi-task learning meth-
ods studied in the past simply assume a priori that the tasks concerned are related.
This assumption may be too strong for some real-world applications. A promising
method was proposed recently for multi-task learning by modeling the inter-task de-
pendencies explicitly (33). In so doing, transfer can be made adaptive in the sense
that the degree of transfer can depend on how related the tasks are. We will briefly
review this method below and then apply it to the learning of inverse dynamics.
The objective is to demonstrate that the learning problem can be made much easier
under the multi-task learning framework by sharing the learning experience among
different tasks.

8.5.1 Brief Review of Bonilla et al.’s Method (33)

The training set is now represented as D = (xi,yi) n
i=1 where xi Rp and yi =

(yi1, . . . ,yim)T Rm. For the kth task, there is a corresponding latent function fk. We
assume that fk(xi) has a GP prior with zero mean and each entry of the covariance
matrix is

E[ fk(xi) fl(x j)] = K
f
klk

x(xi,x j), (8.12)

where K f is an m m symmetric, positive semidefinite matrix with each entry
K

f
kl specifying the similarity between tasks k and l, and Kx is an n n sym-

metric, positive semidefinite matrix with each entry defined by kx( , ), which is
a covariance function over inputs just like k( , ) in Section 8.4. If we define
f = ( f11, . . . , fn1, f12, . . . , fn2, . . . , f1m, . . . , fnm)T , we can immediately see that

f N(0,K f Kx), (8.13)

where denotes the Kronecker product. We also assume that each task k has a
separate additive noise term, i.e.

yik = fk(xi)+ εk, (8.14)

where εk N(0,σ2
k ) or, equivalently, yik N( fk(xi),σ2

k ).
For a new test case x that belongs to task k, which is one of the m tasks in the

training data, the predictive distribution of fk(x ) can be expressed in a form similar
to that in (8.11) for the univariate (single-task) case, with its mean prediction given
by

f̄k(x ) = (k f
k kx)T C 1y C = K f Kx +D I, (8.15)
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where k
f
k denotes the kth column of K f , kx = (kx(x1,x ), . . . ,kx(xn,x ))T is the

vector of covariances between the n training data points and the test case x , y =
(y11, . . . ,yn1,y12, . . . ,yn2, . . . ,y1m, . . . ,ynm)T , and D is an m m diagonal matrix with
Dkk = σ2

k . The covariance matrix can be similarly generalized from that in (8.11).
Note that C is of size mn mn which is much larger than before.

While Kx is modeled parametrically via some kernel parameters θ x of the kernel
function kx( , ), K f is modeled in a nonparametric manner. Hence θ x and K f need
to be determined, either manually or, preferably, automatically. To distinguish them
from the (latent) weight parameters w of the model itself, these parameters are of-
ten referred to as hyperparameters in Bayesian modeling. A method was proposed
in (33) for learning these hyperparameters from data. In addition, they also proposed
a method for dealing with the problem of large n. We refer the readers to their paper
for more details.

8.5.2 Multi-Task Gaussian Process Regression for Learning
Inverse Dynamics

As in Section 8.4.2, the learning of each function g j corresponds to one learning
task. However, the difference here is that we now learn the inter-task dependencies
explicitly and make use of them in learning the tasks to achieve multi-task learning.

The experimental settings are the same as those in Section 8.4.2. The results are
depicted in Figures 8.8–8.14. For the convenience of comparing the performance
of GPR and Multi-Task GPR, we also incorporate the results from Figures 8.1–8.7
to Figures 8.8–8.14. From the results, we can see that the performance of Multi-
Task GPR is usually significantly better than that of GPR, except for the 6th DOF.
In fact, the performance of Multi-Task GPR with as few as 100 training examples
is often much better than that of GPR with as many as 10000 training examples,
demonstrating the effectiveness of multi-task learning. A possible explanation for
the somewhat abnormal behavior of the 6th DOF is the improper characterization
of inter-task similarity which makes the improper transfer to impair the learning
performance. Further investigation is needed to fully unveil the truth.

8.6 Conclusion

In this chapter, we have presented our first attempt to investigate the feasibility of
applying the multi-task learning approach to robotic control. Although our exper-
imental investigation is preliminary due to the limit of time, the results obtained
are very encouraging. Specifically, we demonstrate that by adopting the multi-task
learning approach, the learning accuracy can be significantly improved even using
two orders of magnitude fewer training examples than that reported recently by oth-
ers.
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There exist many interesting opportunities to take this work forward. Besides
the computational and algorithmic issues related to the multi-task learning method
itself, more extensive experimental investigation on the robotic control problem is
necessary. Among other things, combining feedforward nonlinear control with in-
verse dynamics control for the real-time control of humanoid robots is a challenging
yet rewarding research problem to pursue.

Acknowledgements This research has been supported by General Research Fund 621407 from
the Research Grants Council of the Hong Kong Special Administrative Region, China.
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Fig. 8.1 nMSE of GPR on the 1st DOF un-
der varying sample size.
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Fig. 8.2 nMSE of GPR on the 2nd DOF un-
der varying sample size.
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Fig. 8.3 nMSE of GPR on the 3rd DOF un-
der varying sample size.
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Fig. 8.4 nMSE of GPR on the 4th DOF un-
der varying sample size.
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Fig. 8.5 nMSE of GPR on the 5th DOF un-
der varying sample size.
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Fig. 8.6 nMSE of GPR on the 6th DOF un-
der varying sample size.
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Fig. 8.7 nMSE of GPR on the 7th DOF un-
der varying sample size.
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Fig. 8.8 nMSE of Multi-Task GPR on the
1st DOF under varying sample size.
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Fig. 8.9 nMSE of Multi-Task GPR on the
2nd DOF under varying sample size.
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Fig. 8.10 nMSE of Multi-Task GPR on the
3rd DOF under varying sample size.
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Fig. 8.11 nMSE of Multi-Task GPR on the
4th DOF under varying sample size.
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Fig. 8.12 nMSE of Multi-Task GPR on the
5th DOF under varying sample size.
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Fig. 8.13 nMSE of Multi-Task GPR on the
6th DOF under varying sample size.
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Fig. 8.14 nMSE of Multi-Task GPR on the
7th DOF under varying sample size.



Chapter 9

Professor George Albert Bekey

Gaurav S. Sukhatme

To synopsize Professor Bekey’s long and illustrious career is tricky. There are many
stories to tell, many kudos to list, and, for the reader, many lessons to learn. A
comprehensive account will have to wait for a biographer; what follow are selected
highlights, illustrative of Professor Bekey’s nature and professional achievements.

9.1 Personal Life

Professor George Bekey was born in Bratislava in 1928. His first given name was
Juraj. This changed to Jiri when the family moved to Prague in 1931, and then
to Jorge when they moved to Bolivia in 1939 as a consequence of the worsening
political climate across Europe. Their exit from Czechoslovakia was dramatic and
timely. Professor Bekey’s grandparents did not leave the country and he was never
to see them again. In 1945, the family moved to Los Angeles, where, at the age of
17, he became George. Professor Bekey’s father was an Electrical Engineer, and his
mother was a chemistry graduate, an unusual achievement for a woman in the first
quarter of the 20th century. He has an older brother, Ivan Bekey, an expert in space
systems, who spent his professional life at NASA.

Professor Bekey is married to Dr. Shirley Bekey, a child psychologist. They
have two children, Dr. Ron Bekey, a Professor at Portland Community College,
and Michelle Bekey, a principal at Bekey and Company which provides strategic
communications consulting.

Gaurav S. Sukhatme
Department of Computer Science, University of Southern California e-mail: gaurav@usc.edu
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Fig. 9.1 Professor Bekey’s first paper (April 1954).

9.2 Research

To many who don’t work at a University or know anyone who does, what Professors
do is largely a mystery. Professors teach, but what else? At a major research univer-
sity faculty spend a substantial portion of time engaged in fundamental research
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and advising PhD students. Professor Bekey spent his professional life as a member
of the faculty of the University of Southern California (USC). Over a period of 40
years, his research spanned eight broad areas, each a field of inquiry in its own right;
his contributions to these areas are summarized below.

Application of Computers to Unusual Domains: While still a graduate student
at UCLA, Professor Bekey succeeded in connecting a mechanical analog computer
to a static electrical power system simulator, in order to solve the differential equa-
tions of power system oscillation. Since these computers were located on different
floors of a building, this required (among other things) running cables through a hole
in the floor. This work resulted in his first journal publication, in April 1954 (see Fig-
ure 9.1). Also as part of his early work, he was the first to solve the Hodgkin-Huxley
equations of nerve propagation on an analog computer.

Mathematical Models of Human Operators: Professor Bekey’s Ph.D. thesis
was concerned with development of a discrete-time model of a human operator in a
closed-loop control system. Over a period of some twenty years he and his students
developed mathematical models to characterize the behavior of human operators
in control systems under a variety of conditions. His work in this area focused on
human behavior with tactile inputs, and the mathematical representation of the be-
havior of human drivers in single lane car following. It is interesting that this work
preceded (and in many ways anticipated) the current interest in automated vehicles
and highways by many years.

Optimization by Random Search: Professor Bekey developed several algo-
rithms for optimization of dynamic systems by random search. This was first pub-
lished in 1966, and later expanded and improved in 1980 in collaboration with Pro-
fessor Sami Masri of the USC Civil Engineering department. Jointly they applied
these methods to a variety of structural problems, such as earthquake-induced build-
ing oscillations, which resulted in a number of papers.

Biology and Medicine: Throughout his academic career, Professor Bekey has
had an interest in applying engineering and computer science methods to under-
standing biological phenomena. This work has included modeling respiration in the
fetus and adult, understanding muscle function, modeling human gait and using ex-
pert systems to diagnose its malfunctions. Many of these papers were published in
physiological journals.

System Identification and other Control System Contributions: During the
first twenty years of his academic career, the estimation of system parameters from
input-output measurements was Professor Bekey’s major research interest. Much
of his work on human operator models provided the data for new identification
algorithms.

Multifingered Robot Hands: Professor Bekey (and his long-time collaborator
from the former Yugoslavia, Professor Rajko Tomovic) designed and built a number
of multifingered hands for robot manipulators, and developed a theory for the repre-
sentation of robot grasping. They also developed an approach to minimal complexity
control of prosthetic hands. In this work Professor Bekey also had a long-standing
collaboration with Professor Michael Arbib, who he recruited to USC in the mid
1980s.
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Manufacturing: Professor Bekey’s work on manufacturing concentrated on is-
sues of assembly and design-for-assembly, including the use of artificial intelligence
methods for re-design and interleaving of planning and design. He recruited Profes-
sor Aristides Requicha to USC in this area in the mid 1980s, and also collabo-
rated with Professor Behrokh Knoshnevis extensively in this area. Another recruit
he brought to USC was Professor Ken Goldberg (now at UC Berkeley).

Autonomous Mobile Robots: During the 1980s and 1990s Professor Bekey and
his students concentrated on the theory and development of autonomous mobile
robots. Among these vehicles were a walking machine which used genetic algo-
rithms to evolve suitable gait patterns, and an autonomous helicopter. This phase of
Professor Bekey’s professional life lasted over two decades and motivates most of
the work described in the first part of this book.

9.3 Teaching and Students

Professor Bekey graduated 38 PhDs during his career, nearly one each year on the
average. 17 of these went on to careers in academia, the others have risen to lead-
ership positions in research labs and industry around the world. The ”Bekey Tribe”
is comprised of a collection of Professor George Bekey’s former students, three
students of the late legendary Professor Richard Bellman, and associates. In the
following chapter, two senior members of the tribe tell its story.

Being George’s PhD student was an interesting experience. He wanted students
to develop their own interests, and while he counselled, he never forced students to
do what he wanted. He showed unflagging support and belief in his students when
they needed it most. You forgot when you worked with him that he was an academic
giant. Some of the personal tributes and recollections that follow in a later chapter
speak to these qualities in a little more detail.

9.4 Service to the University and the Profession

While he was working on this research, Professor Bekey was steadily climbing the
academic ladder. He was granted tenure in 1964 (only two years after joining USC),
and promoted to full Professor in 1968. He was instrumental in founding the USC
Biomedical Engineering department. From 1978 to 1982 he was chair of the USC
Electrical Engineering-Systems department, and from 1984-89 he was chair of the
USC Computer Science department. He founded the USC Robotics Research Lab
in 1983 and led it for 15 years. From 1995 to 1999 he served as the Associate Dean
for Research in the USC School of Engineering (now the USC Viterbi School of
Engineering).

The following story is illustrative of Professor Bekey’s foresight and ability
to make connections. In 1972, Keith Uncapher, then at RAND Corporation, im-
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pressed officials at the Advanced Research Projects Agency (ARPA) by his work on
packet switching for computer communication networks. ARPA wanted Uncapher
to quickly grow his research. However the senior management at RAND responded
coolly to the proposal. Uncapher had an assurance from ARPA that his research
would get support wherever he located it, so he approached UCLA, and was told
he’d have to wait at least 15 months. ’I don’t have three weeks,’ Uncapher is said to
have replied at the time.

This much is well known. What is less well known is that Professor Bekey put
Keith Uncapher in touch with the then-dean of the School of Engineering, Zohrab
Kaprielian, a legend for his ability to seize opportunities. Dean Kaprelian and Un-
capher met on a Monday and closed the deal by Friday, deciding to form the the
USC Information Sciences Institute (ISI), and the rest is history. Since its inception,
ISI has been credited with enabling the Internet to grow from a research system to a
major national and international infrastructure.

What is extraordinary about Professor Bekey’s career is that such examples are
easy to find. This particular one had an immense impact, others were less influential,
but all had the same driving motivation behind them. When he saw an excellent new
idea (the more audacious the better), he tried to see if USC and society at large could
benefit from it.

Professor Bekey is well known for his own research in robotics, He has had a
tremendous impact on the field. He was the founding editor of the IEEE Journal of
Robotics and Automation (now known as the IEEE Transactions on Robotics) and
through his own work and his stewardship of the journal shaped the field in its early
days. In the mid 1990s he founded and edited a new journal, Autonomous Robots,
which is published today by Springer. These two journals are among the top 3-4
journals in the field today.

An anecdote comes to mind. In 1986, a young Assistant Professor at MIT, Rod-
ney Brooks, submitted an article to the IEEE Journal of Robotics and Automation
which presented a radically new way of building controllers for mobile robots. Pro-
fessor Bekey, as editor, solicited peer reviews of the paper. They all came back
recommending that the paper be rejected. In spite of these recommendations, Pro-
fessor Bekey decided to accept the paper. Hindsight has vindicated his decision.
The Brooks paper has since become one of the most cited papers in all of robotics
and computer science. Many years later, Professor Bekey was instrumental in hiring
one of Professor Brooks’ students as a faculty member in robotics at USC - Profes-
sor Maja Matarić, currently director of the USC robotics research labs, and senior
associate dean in the USC Viterbi School of Engineering.

9.5 Recognition, Honors, and Awards

Professor Bekey has been the recipient of many awards over the years. In 1972
he was elected Fellow of IEEE for ”Contributions to Hybrid Computation, Man-
Machine Systems and Biomedical Engineering”. In 1989 he was Elected Member of
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the National Academy of Engineering for ”Pioneering work in Computer Sciences
Contributing to Biomedical Engineering, Man-Machine Systems and Robotics”. He
was elected Fellow of the American Association for Advancement of Science in
1991, and in 1998 he was elected a Fellow of the the American Association for
Artificial Intelligence. He was appointed ”University Professor” at USC in 1999,
and was a recipient of the USC Presidential Medallion in 2000. He is now University
Professor Emeritus at USC.

9.6 A Personal Tribute

Professor Bekey has had an extraordinary career and an extraordinary life. He insists
that he is now retired but his work continues unabated. He has recently published a
book, he consults for several companies, and has been inventing new curricula for
Computer Science undergraduates. He’s full of enthusiasm as always and he’s fresh
for new challenges even today.

It has been my privilege to know Professor Bekey as a teacher, colleague, mentor,
and friend. Its not often one makes the acquaintance of someone who is both inspi-
rational and accessible. I thank him for his help, advice, and encouragement. But
mostly I thank him for his willingness - elusive among advisors - to let me pursue
my ideas freely.



Chapter 10

Current History of the Bekey Tribe

H. Pete Schmid and Monte Ung

The ”Bekey Tribe” is comprised of a collection of Professor George Bekey’s forty
former students, three students of the late legendary professor Richard Bellman, and
associates. It exists because we want to maintain a close bond between our Professor
and us. The group has met annually since 1984 and the last meeting, the Silver (25th)
Anniversary, was held in Arroyo Grande in May 2008. We consider ourselves the
living legacy that Professor Bekey presented to society. A montage containing the
likenesses of all members is shown on the next page.

Many of the Tribe have joined Academia abroad: Korea University (Gerry Kim
’94), National University of Singapore (Huan Liu ’89 who has moved back to Ari-
zona State University), Universidad de Santiago (Danilo Bassi ’90), Hongkong Uni-
versity of Science & Technology (Dit-Yan Yeung ’89). Within the USA our mem-
bers serve from East, Georgia Tech (Ayanna Howard ’99), Yale (John Coggshall
’68) to West, UC Davis (Andy Frank ’68). Andy Frank is a recognized authority on
hybrid electric vehicles and he travels the world promoting this futuristic car and
making deals on them. Our members can also be found at the University of Arizona
(Tony Lewis ’95) and California State Universities (Mohinder Grewal’74 & Tasos
Chassiakos ’86). In the heartland we are represented at University of Minnesota
(Stergios Roumeliotis ’00), University of Kansas (Arvin Agah ’94), and University
of Texas (Gerry Burnham’73), University of New Mexico (Ed Angel ’68). Two of us
still remain at Troyland (Monte Ung ’70 & Gaurav Sukhatme ’97). Monte Ung was
happily enrolled in the UCLA doctoral program in 1964 when he decided to take a
short course with Professor Bekey at USC. At the end of the course he jumped to
USC and the rest is history

H. Pete Schmid
Director, Advanced Technology (retd.), Raytheon Missile Systems Company, Tucson, Arizona, e-
mail: pete.schmid@alumni.usc.edu

Monte Ung
Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089,
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Fig. 10.1 The Bekey Tribe.

Two of us practice medicine: Louis Nardizzi ’67 and Thomas Grove ’77 (faculty
of Medicine, UCLA). One member answered the call of his faith and became a
pastor heading up his own congregation (John Kim ’94). Four of us are serving
NASA after studying robotics under Professor Bekey. They are Alberto Behar ’98,
Mike McHenry ’98, James Montgomery ’99, and Fred Hadaegh ’84 who plays an
important managerial role in planetary exploration. One of us is a commercial pilot
(Jim Maloney ’71, flying the Goodyear blimps).
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Many among us joined industry such as Northrop-Grumman (Mike Meritt ’67),
Aerospace Corp (Kirstie Bellman ’79), and Orthodyne Inc (Howard Olsen ’86).
The more adventurous simply formed their own businesses: Simulation Services
(Ray Nilsen ’68), International Cartoon & Animation (Wissam Ahmed ’84) and
Research & Development Co. (Dan Antonelli ’85).

Some of us, after active careers, have already joined the rank of the ”retired”:
John Coggshall ’68, Bayesteh Gaffary ’70 actively painting & organizing exhibi-
tions, Justin Biddle ’75 back to North Carolina, Pete Schmid ’76 actively sailing.
He spent forty years in the defense industry - directing advanced weapon technol-
ogy pursuits for General Dynamics, Hughes and Raytheon.

Four members of the Tribe are deceased: Sam Brainin ’66, Anil Phatak ’68,
Caswell Neal ’69, and Jinbom Seo ’74.



Chapter 11

Recollections and Tributes

Dan Antonelli, Arun Bhadoria, Willis G. Downing, Jr., Huan Liu, Michael Merritt,
L. Warren Morrison, and H. Pete Schmid

11.1 From Aerospace Engineering to Biomedical Engineering (L.

Warren Morrison)

I was a student of Professor Bekey more than forty years ago. After years of
Aerospace experience I thought that it was time to return to school and become in-
volved in what we now refer to as Biomedical engineering. Professor Bekey asked
me to prepare a research agenda.

Some twenty years later he was cleaning out his files and sent me a letter and
enclosed the agenda and a related paper ”The N-M-P A Neuro-Muscular Program-
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mer”. The work was supported in part under NIH Grant NB 06196-01 - an early
example of foresight on the part of NIH and Professor Bekey.

11.2 The Final Oral Examination (H. Pete Schmid)

I specifically recall the time of my final oral examination. All the preparation, re-
search, data analysis, and writing of the dissertation were complete - or so I thought.

My committee, headed by Professor George Bekey, had read the fist draft and
was well prepared to examine my work and my general preparation for receiving
the degree. As we know, this was the final obstacle that had to be overcome. The
examination was scheduled at a mutually convenient time. The members of my com-
mittee were gathered in the conference room ready for me. As I entered the room I
could not have been more nervous. As the examination progressed my nervousness
subsided - just a bit. Things went reasonably well, I thought - but I was not too sure.

At the end of the examination I was excused so the committee could discuss my
performance and come up with their recommendations. The time I spent waiting
outside the conference room seemed to be an eternity. My nervousness returned
full force. Finally, after what seemed to be hours, I was invited to return to the
conference room to hear the result of the committee’s deliberation.

The words I recall are: ”You passed, but”, my heart sank and I had this terrible
knot in my stomach as I listened to the recommendations. In hindsight, it really was
not a big deal. The recommendation was for me to combine two chapters covering
all the literature search discussion into a single chapter.

After the committee dispersed, Professor. Bekey suggested that I should come
to his office. I expected to receive further instructions. But instead, I got a dose
of what we all love about Professor Bekey. He said that he knew exactly how I
felt, and showed me a picture of a horse that had jumped a fence. The front of the
horse was over the fence, but the rear did not make it. That picture and Professor
Bekey’s understanding of my situation finally put me at ease and lifted the knot off
my stomach enough for us to go to lunch.

The moral of the story is that Professor Bekey always has the ability and willing-
ness to provide the required help in any situation. This is just one reason why he has
been honored with the large following of the ”Bekey Tribe”.

11.3 Recent Work on Preventing Fractures caused by a Fall (Dan

Antonelli)

For several years Professor Bekey has been interested and actively working on a
method to prevent hip fractures caused by a fall. Experimental procedures identified
the needed sensors and timing to sense the conditions preceding a fall. The problem
of an airbag needed some work but we identified the needed sensors and timing to
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sense the conditions preceding a fall. The algorithm was clear and described the ve-
locity, acceleration and direction of several different falls (forward, backward, side-
way or combinations of all three). Empirical tests and computer models confirmed
the algorithm and all was set to proceed to a product certain to be a commercial
success.

Alas, the holder of the patent refused to listen to sound advice as to how to
proceed and the project languishes today, unable to go forward because the patent
holder - having only the idea but no clear method to accomplish the goal - has
stopped the product from being developed.

11.4 Teacher, Mentor, and Friend (Arun Bhadoria)

Professor George Bekey is a very special human being who values feelings and
touches hearts. He is the one who supports and helps someone, regardless of their
importance, at their time of need -academic or otherwise. It hurts when I remember
my early days at USC. While I was pursuing my MS at USC in 2000, after the first
semester I had no money for the basic needs of life, and I struggling to get any
kind of assistance. Knowledge and prior education were of no use, and many times
I stayed awake for more than 3 days without sleeping. Now, as I am remembering
those days a few tears are trickling down my cheeks. Along with these tears, a smile
starts to play on my lips remembering a person who offered me assistance and held
my hand to guide me through that rough time. This was none other than Professor
Bekey. It was almost two long years when we worked together every day. Since then
he has always stood behind me to help me. Whether it was an issue related to my
Indian English, or a severe financial crisis, or offering food knowing that I might be
hungry for a few days.

Do I have a close relationship with him? No, I think it can’t be defined that
simply. Was he my role model? No, as it is not easy to copy him. Is he a hero?
Certainly he is and was much more than that. So what is he? If I can define him,
he is a ’Guru’, and if I have to compare my association with him then he was Lord
Krishna of the epic Mahabharata for me. It all started from his big heart. Always
smiling, jovial and kind hearted, a very good friend and a teacher who shares both
technical knowledge and jokes and laughter.

Every successful man has a woman behind his success. How can I forget Profes-
sor Bekey’s beautiful wife Shirley at this moment. This note will not be complete
if I don’t remember all the love and affection showered on my family by Shirley. I
remember when I was completely broken and dejected after my wife had her visa
rejected. Shirley consoled me saying that far away from home you have us as your
family. I still remember those highly soothing and memorable words. There are so
many people in this world, but only a few you can count as your real friends and as
family.

Now life has given me everything. I have progressed very well professionally in
a multi-billion global company and have a beautiful house with a big backyard for
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my kids in the Midwest. Life always offers new challenges and Professor Bekey’s
teachings always help me to keep myself motivated and inspired to progress on the
right path. Ultimately, as Professor Bekey says, ”Play your part and live your life
fully and well”. And that’s what I am trying to do.

I was very fortunate and feel privileged and honored to have had the opportunity
to be with Professor Bekey and Shirley. Time can’t come back but my family and
I feel that time spent with them is our most precious heritage. Salute to my great
teacher, my mentor and my friend.

11.5 A Testimonial (Willis G. Downing, Jr.)

Like other students of Professor Bekey, I have long admired his many fine qualities.
Several incidents during his chairmanship of my dissertation work illustrate some of
these qualities, which are: leadership, courageousness, a positive attitude which he
transfers to others, a willingness to investigate new ideas, and an ability to organize.
I feel that if he had not shared these qualities, the implementation and completion
of my dissertation research would have been in doubt.

The first incident happened at a particular time when I felt I had reached an im-
passible spot in the formulation of a research protocol. Professor Bekey’s response
was (paraphrased), “you can solve it and you can solve it by X a.m. tomorrow.”
Oddly enough, I worked it out by that time. Professor Bekey also suggested the
original research question, which was challenging to accepted concepts. Also, il-
lustrating more courageousness, he participated as a subject in my experimentation,
which used human subjects.

For all of this, and much else, I am grateful to Professor Bekey.

11.6 Making it Look Easy (Huan Liu)

When I joined Professor Bekey’s research group in the beginning of 1986, he also
served as the department chair. I was quite nervous whether he would even find time
to talk me as he already had some very capable students in his lab. I was so relieved
and happy that he kindly agreed to be my thesis advisor after a pleasant meeting.
From then on, Professor Bekey found time in his busy schedule to patiently guide
me into research as I had very little experience in research. I often told my students
how busy my advisor was as I vividly remembered that our regularly research meet-
ings were often interrupted. What amazed me is his superb multi-tasking capability:
it looked so easy and natural for him to effortlessly move from one task to another.
In addition to his patience, he truly trusted me and offered me the great opportunity
to work on the dextrous robot hand project. When I moved to Arizona State Univer-
sity from the National University of Singapore in the begining of 2000, Professor
Bekey again provided tremendous support and invaluable advice as everything was
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so strange and new to me after spending 10 years in Australia and Singapore. I
genuinely hope I could be as patient and supportive to my students as he was and
is toward me. When we meet next time, I will ask Professor Bekey the following
questions: (1) while remaining patient and supportive, how he could still be so pro-
ductive in getting students out of USC, and (2) what are the tricks for his effortless
multi-tasking that I really need to learn. After becoming a professor, I become more
and more grateful for what Professor Bekey has done for me, and I am trying my
best to graduate quality students who can make their great contributions to our fast
changing field.

11.7 Solving Complex Problems Efficiently (Michael Merritt)

Professor Bekey founded the Analog Hybrid Lab at USC (housed in Olin Hall).
The digital computer was originally an IBM 1710. This was really an IBM 1620
with additional features for analog computation: A/D converters, D/A converters,
general-purpose I/O lines, and interrupts. It was small and slow and had a lot of
quirks (like divide overflow and stop). Professor Bekey obtained funding to replace
it with an IBM Mainframe - an ambitious project at the time. The IBM 360 com-
puters were new and in great demand and any delays in getting the order placed
would substantially delay the delivery. At lunch with the IBM representative Pro-
fessor Bekey wrote the letter of intent for the computer on a napkin and signed it.
This insured that USC had a position in the assembly line and that, pending a more
formal order, it would be delivered quickly. While the words IBM Mainframe have
lost much of their meaning in the intervening years, at the time it represented a large
room full of computer equipment and a substantial monetary investment. Further,
IBM at the time was a very formal and straitlaced company. The IBM representative
was a bit startled, as you can imagine, but it is an example of Professor Bekey’s
ability to solve complex problems in a direct and efficient way.
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[5] Açı kmeşe, B., D.P., S., Carson, J., Hadaegh, F.: Distributed estimation for
spacecraft formationsover time-varying sensing topologies. In: Proceedings
of the 17th IFAC World Congress, pp. 2123–2130 (2008)
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