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Preface

Over the years, the field of intelligent vehicles has become a major research theme
in intelligent transportation systems since traffic accidents are serious and growing
problems all over the world. The goal of an intelligent vehicle is to augment vehicle
autonomous driving either entirely or partly for the purposes of safety, comforta-
bility, and saving energy. Indeed, many technologies of intelligent vehicles root in
autonomous mobile robots. The tasks of intelligent vehicles become even more chal-
lenging compared to indoor mobile robots for two reasons. First, real-time dynamic
complex environment perception and modeling will challenge current indoor robot
technologies. Autonomous intelligent vehicles have to finish the basic procedures:
perceiving and modeling environment, localizing and building maps, planning paths
and making decisions, and controlling the vehicles within limit time for real-time
purposes. Meanwhile, we face the challenge of processing large amounts of data
from multi-sensors, such as cameras, lidars, radars. This is extremely hard in more
complex outdoor environments. Toward this end, we have to implement those tasks
in more efficient ways. Second, vehicle motion control faces the challenges of strong
nonlinear characteristics due to high mass, especially in the processes of high speed
and sudden steering. In this case, both lateral and longitudinal control algorithms of
indoor robots do not work well.

This book presents our recent research work on intelligent vehicles and is aimed
at the researchers and graduate students interested in intelligent vehicles. Our goal
in writing this book is threefold. First, it creates an updated reference book of in-
telligent vehicles. Second, this book not only presents object/obstacle detection and
recognition, but also introduces vehicle lateral and longitudinal control algorithms,
which benefits the readers keen to learn broadly about intelligent vehicles. Finally,
we put emphasis on high-level concepts, and at the same time provide the low-level
details of implementation. We try to link theory, algorithms, and implementation to
promote intelligent vehicle research.

This book is divided into four parts. The first part Autonomous Intelligent Ve-
hicles presents the research motivation and purposes, the state-of-art of intelligent
vehicles research. Also, we introduce the framework of intelligent vehicles. The sec-
ond part Environment Perception and Modeling which includes Road detection
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and tracking, Vehicle detection and tracking, Multiple-sensor based multiple-object
tracking introduces environment perception and modeling. The third part Vehicle
Localization and Navigation which includes An integrated DGPS/IMU positioning
approach, Vehicle navigation using global views presents vehicle navigation based
on integrated GPS and INS. The fourth part Advanced Vehicle Motion control
introduces vehicle lateral and longitudinal motion control.

Most of this book refers to our research work at Xi’an Jiaotong University and
Carnegie Mellon University. During the last ten years of research, a large number
of people had been working in the Springrobot Project at Xi’an Jiaotong University.
I would like to deliver my deep respect to my Ph.D advisor, Professor Nanning
Zheng, who leaded me into this field. Also I would like to thank: Yuehu Liu, Xiaojun
Lv, Lin Ma, Xuetao Zhang, Junjie Qin, Jingbo Tang, Yingtuan Hou, Jing Yang,
Li Zhao, Chong Sun, Fan Mu, Ran Li, Weijie Wang, and Huub van de Wetering.
Also, I would like to thank Jie Yang at Carnegie Mellon University who supported
Hong Cheng’s research work during his stay at this university and Zicheng Liu at
Microsoft Research who helped Hong Cheng discuss vehicle navigation with global
views. I also would like to our sincere and deep thanks to Zhongjun Dai who helped
immensely with figure preparation and with the typesetting of the book in LaTeX.
Many people have helped by proofreading draft materials and providing comments
and suggestions, including Nana Chen, Rui Huang, Pingxin Long, Wenjun Jing,
Yuzhuo Wang. Springer has provided excellent support throughout the final stages
of preparation of this book, and I would like to thank our commissioning editor
Wayne Wheeler for his support and professionalism as well as Simon Rees for his
help.

Hong ChengChengdu, People’s Republic of China
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Chapter 1
Introduction

1.1 Research Motivation and Purpose

Autonomous intelligent vehicles are generic technology sets to augment vehicle au-
tonomous driving entirely or in part for autonomous and safety purposes. Funda-
mentally, autonomous intelligent vehicles refer to many mobile robot technologies.
In principle, we consider autonomous intelligent vehicles as mobile robot platforms
in this book. Hence, an intelligent vehicle consists of four fundamental technologies:
environment perception and modeling, localization and map building, path planning
and decision-making, and motion control [26], shown in Fig. 1.1.

The dreams of a human being are the power and source of pushing the world
forward. The National Research Council once predicted that the core weapon in
the twentieth century would be the tank, while that in the twenty-first century—an
unmanned battle system [1]. Moreover, a third of the U.S. military ground vehi-
cles must be unmanned by 2015. Therefore, since 1980s, the Defense Advanced
Research Projects Agency (DARPA) initiated a new project, namely the unmanned
battle project. Its goal is to design a car which can autonomously implement navi-
gation, obstacle avoidance, and path planning. Afterwards, it opened an intelligent
vehicle era. Moreover, the U.S. Department of Energy launched a ten year robot
and intelligent system plan (1986–1995), and also the space robot plan. In terms
of space exploration, the National Aeronautics and Space Administration (NASA)
has developed several wheeled rovers, such as Spirit and Opportunity, for science
explorations.1

A major concern associated with the rapid growth in automotive production is
an increase in traffic congestion and accidents [36]. To solve the problem, the gov-
ernments all over the world have been increasing funds to improve the traffic in-
frastructure, enforce traffic laws, and educate drivers about traffic regulations. In
addition, research institutes have launched R&D projects in driver assistance and
safety warning systems. Therefore, in the last decade, many research works in the

1http://marsrovers.jpl.nasa.gov/overview/.
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4 1 Introduction

Fig. 1.1 The basic framework of autonomous intelligent vehicles

area of intelligent vehicles all over the world led to Intelligent Transportation Sys-
tems (ITS) for improving road safety and reducing traffic accidents [7]. Autonomous
intelligent vehicles are now widely applied to Driver Assistance and Safety Warn-
ing Systems (DASWS) [36], such as Forward Collision Warning [9, 27], Adaptive
Cruise Control [32], Lane Departure Warning [16]. In recent years, with the devel-
opment of economy and society, the issues of traffic safety, energy shortage, and
environment pollution became more serious. Those problems then led to higher vol-
umes of research and applications. Toward this end, combining vehicles, drivers
and lanes together, we can implement better traffic capacity and traffic safety using
computer control, artificial intelligence and communication technologies [3].

The most important reasons for the large numbers of traffic accidents are bur-
densome driving and fatigue driving. When driving on the traffic congestion lanes,
drivers have to do a lot of operations, such as shifting and pulling clutches, and they
have to complete 20 to 30 coordination operations of hand and foot movements each
minute. With the economic development and the increase of vehicle ownership, the
number of non-professional drivers are rising, leading to frequent traffic accidents.
As a result, traffic accidents have become the first public nuisance in modern soci-
ety. Traffic problems have troubled the whole world, and then, the question of how
to improve traffic safety has become an urgent social issue. Lane departure systems,
fatigue detection systems, and automatic cruise control can greatly reduce driver’s
workload and improve transportation system safety.

The widely application prospects of intelligent vehicles promote the development
of transportation systems which attracts a growing number of research institutions
and auto manufacturers. The DARPA had held the Grand Challenges and the Ur-
ban Challenge since 2004. Their goal is to develop autonomous intelligent vehicles
capable of both perceiving various environments, such as desert trails, roads, and
urban areas, and navigating at high speeds2 [5, 30, 31]. In the first Grand Chal-

2http://www.urban-challenge.com/_eng/.

http://www.urban-challenge.com/_eng/


1.2 The Key Technologies of Intelligent Vehicles 5

lenge, CMU’s Sandstorm went for 7.4 miles from the start, opening the possibil-
ities of autonomous capability [30]. In 2005, five vehicles, namely Stanley, Sand-
storm, High lander, Kat-5, and TerraMax, were able to complete that challenge, and
Stanley took the first place ahead of Sandstorm [31]. After the success of the two
Grand Challenges, the DARPA organized the Urban Challenge [5]. In the Urban
Challenge, based on the technical reports of implementing safe and capable au-
tonomous vehicles, the DARPA allowed 53 teams to demonstrate how they navigate
simple urban driving scenes. After these demonstrations, only 36 teams were in-
vited to attend the National Qualification Event (NQE). Finally, only 11 teams were
qualified for the Urban Challenge Final Event (UCFE). In China, the 2008 Bei-
jing Olympic Games whose slogans were Hi-tech Olympics and Green Olympics
adopted many advanced traffic management systems, intelligent vehicles, electric
vehicles for improving vehicle safety performance, reducing pollution, easing traf-
fic congestion. Consequently, those innovations drew attention of many researchers.
In 2011, China released ten leading edge technologies and modern transportation
technologies among which were technologies aiming at developing intelligent ve-
hicles. Moreover, the National Natural Science Foundation of China launched the
state key development plan in 2008, so that audio-visual information based cog-
nizing computation3 could integrate human–computer interfaces, computer vision,
language understanding, and cooperative computing. Finally, upon those achieve-
ments, the goal of this plan is to develop autonomous intelligent vehicles which are
capable of both perceiving natural environment and making intelligent decisions.
Meanwhile, similar to the Grand Challenge supported by DARPA, the plan holds
the Future Challenge each year.

The research on intelligent vehicles can greatly facilitate the rapid development
of other disciplines, such as exploring planets. The U.S. Mars vehicles Spirit and
Opportunity play an irreplaceable role in exploring Mars and the vast universe be-
yond Mars [13, 23]. In China, the government released the White Paper “China
Aerospace” in November 2000, which targets exploring the moon and other planets
in the near future. Furthermore, space mobile robots are the key part for exploring
planets which could benefit the utilizing solar energy.

1.2 The Key Technologies of Intelligent Vehicles

As we mentioned before, intelligent vehicles are a set of intelligent agents which
integrate multi-sensor fusion based environment perception and modeling, local-
ization and map building, path planning and decision-making, and motion control,
shown in Fig. 1.1. The environment perception and modeling module is responsible
for sensing environment structures in a multi-sensor way and providing a model of
the surrounding environment. Here, the environment model includes a list of mov-
ing objects, that of static obstacles, vehicle position relative to the current road, the

3http://ccvai.xjtu.edu.cn.
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6 1 Introduction

Fig. 1.2 Multi-sensor fusion based modeling and environment perception

road shape, etc. Finally, this module provides the environment model and the local
map to the localization and map building module by processing the original data,
vision, lidar, and radar. The second module, vehicle localization and map building,
is to use geometric feature location estimate in the map to determine the vehicle’s
position, and to interpret sensor information to estimate the locations of geometric
features in a global map. As a result, the second module yields a global map based
on the environment model and a local map. The path planning and decision-making
module is to assist in ensuring that the vehicle is operated in accordance with the
rules of the ground, safety, comfortability, vehicle dynamics, and environment con-
texts. Hence, this module can potentially improve mission efficiency and generate
the desired path. The final module, motion control, is to execute the commands nec-
essary to achieve the planned paths, thus yielding interaction between the vehicle
and its surrounding environment. A brief introduction of these modules is presented
below.

1.2.1 Multi-sensor Fusion Based Environment Perception and
Modeling

Figure 1.2 illustrates a general environment perception and modeling framework.
From this framework, we can see that: (i) The original data are collected by vari-
ous sensors; (ii) Various features are extracted from the original data, such as road
(object) colors, lane edges, building contours; (iii) Semantic objects are recognized
using classifiers, and consist of lanes, signs, vehicles, pedestrians; (iv) We can de-
duce driving contexts, and vehicle positions.
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1. Multi-sensor fusion
Multi-sensor fusion is the basic framework of intelligent vehicles for bet-

ter sensing surrounding environment structures, and detecting objects/obstacles.
Roughly, the sensors used for surrounding environment perception are divided
into two categories: active and passive ones. Active sensors include lidar, radar,
ultrasonic and radio, while the commonly-used passive sensors are infrared and
visual cameras. Different sensors are capable of providing different detection
precision and range, and yielding different effects on environment. That is, com-
bining various sensors could cover not only short-range but also long-range ob-
jects/obstacles, and also work in various weather conditions. Furthermore, the
original data of different sensors can be fused in low-level fusion, high-level fu-
sion, and hybrid fusion [4, 14, 20, 35].

2. Dynamic Environment Modeling
Dynamic environment modeling based on moving on-vehicle cameras plays

an important role in intelligent vehicles [17]. However, this is extremely chal-
lenging due to the combined effects of ego-motion, blur, light changing. There-
fore, traditional methods for gradual illumination change, small motion objects
[28] such as background subtraction, do not work well any more, even those
that have been widely used in surveillance applications. Consequently, more and
more approaches try to handle these issues [2, 17]. Unfortunately, it is still an
open problem to reliably model and update background.

To select different driving strategies, several broad scenarios are usually con-
sidered in path planning and decision-making, when navigating roads, intersec-
tions, parking lots, jammed intersections. Hence, scenario estimators are helpful
for further decision-making, which is commonly used in the Urban Challenge.

3. Object Detection and Tracking
In general, in a driving environment, we are interested in static/dynamic ob-

stacles, lane markings, traffic signs, vehicles, and pedestrians. Correspondingly,
object detection and tracking are the key parts of environment perception and
modeling.

1.2.2 Vehicle Localization and Map Building

The goal of vehicle localization and map building is to generate a global map by
combining the environment model, a local map and global information. In au-
tonomous driving, vehicle localization is either to estimate road geometry or to
localize the vehicle relative to roads under the conditions of known maps or un-
known maps. Hence, vehicle localization refers to road shape estimation, position
filtering, transforming the vehicle pose into a coordinate frame. For vehicle localiza-
tion, we face several challenges as follows: (i) Usually, the absolute positions from
GPS/DGPS and its variants are insufficient due to signal transmission; (ii) The path
planning and decision-making module needs more than just the vehicle absolute
position as input; (iii) Sensor noises greatly affect the accuracy of vehicle localiza-
tion. Regarding the first issue, though the GPS and its variants have been widely
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Fig. 1.3 The framework of vehicle localization and navigation

used in vehicle localization, its performance could degrade due to signal blockages
and reflections of buildings and trees. In the worst case, Inertia Navigation Sys-
tem (INS) can maintain a position solution. As for the second issue, local maps
fusing laser, radar, and vision data with vehicle states are used to locate and track
both static/dynamic obstacles and lanes. Furthermore, global maps could contain
lane geometric information, lane makings, step signs, parking lots, check points and
provide global environment information. Referring to the third issue, various noise
modules are considered to reduce localization error [26].

Map building using various sensors has been addressed by many researchers [18,
22], and it needs to yield the interpretation for the sensor information. Intelligent
vehicles could be navigated under the conditions of either known maps or unknown
maps. For example, the DARPA Grand Challenge provided the Route Network Def-
inition File (RNDF), which belongs to the case of known maps. However, in ex-
ploring Mars, intelligent vehicles could not have the maps of Mars beforehand. This
problem is formulated as localizing vehicles traveling in an unknown environment.
In this problem, we will handle the dual task of localizing the vehicle and simul-
taneously modeling the environment, a.k.a., Simultaneous Localization and Map
Building (SLAM) [8]. Figure 1.3 illustrates the framework of vehicle localization in
an iterated way.

1.2.3 Path Planning and Decision-Making

For the purpose of safe and energy saving navigation, vehicles try to find an opti-
mal path in 2D/3D road space from the initial position to the target position avoid-
ing both static and dynamic obstacle collisions. Hence, global path planning is to
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Fig. 1.4 The framework of vehicle motion control

find the fastest and safest way to get from the initial position to the goal position,
while local path planning is to avoid obstacles for safe navigation [6, 11]. Decision-
making consists of mission planning and behavioral reasoning. When a vehicle au-
tonomously navigates through the environment, the mission planner incorporates
the new observation, thus updating the local maps. Afterwards, the mission plan-
ner generates a new rule. The behavioral planner implements behavioral reasoning
and the rule generated by the mission planner. Hence, those functions consist of
road following, making lane-changes, parking, obstacle avoidance, recovering from
abnormal conditions. In many cases, decision-making depends of context driving,
especially in driver assistance systems [10].

1.2.4 Low-Level Motion Control

The problem of investigating vehicle lateral and longitudinal control has stimulated
significant research work in the last two decades. Its typical applications consist
of automatic vehicle following/platoon [12, 29], Adaptive Cruise Control (ACC)
[25, 33], lane following [21]. Vehicle control can be broadly divided into two cat-
egories: lateral control and longitudinal control [19] (Fig. 1.4). The longitudinal
control [29] is related to distance–velocity control between vehicles for safety and
comfort purposes. Here some assumptions are made about the state of vehicles and
the parameters of models, such as in the PATH project [12]. The lateral control is
to maintain the vehicle’s position in the lane center, and it can be used for vehicle
guidance assistance [15, 34]. Moreover, it is well known that the lateral and lon-
gitudinal dynamics of a vehicle are coupled in a combined lateral and longitudinal
control, where the coupling degree is a function of the tire and vehicle parameters
[24, 34]. In general, there are two different approaches to design vehicle controllers.
One way to do this is to mimic driver operations, and the other is based on vehicle
dynamic models and control strategies.

1.3 The Organization of This Book

This book consists of four parts. The first part is a basic introduction about in-
telligent vehicles. Furthermore, Chapter 1 introduces the research motivation and
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purpose, the key technologies. Chapter 2 presents the state-of-the-art of intelligent
vehicles in the USA. Chapter 3 introduces the proposed basic framework of in-
telligent vehicles. The second part presents environment perception and modeling.
Chapter 4 presents road detection and tracking algorithms for structured and un-
structured roads. Chapter 5 presents on-road vehicle detection and tracking algo-
rithms using Boosted Gabor Features. Chapter 6 introduces a multiple-sensor based
multiple-object tracking approach. The third part is about vehicle localization and
navigation. Chapter 7 introduces an integrated DGPS/IMU positioning approach.
Chapter 8 presents a vehicle navigation approach using global views. The final part
is about advanced vehicle motion control. In Chapter 9, a lateral control approach is
introduced. In the final chapter, a longitudinal control approach is presented.
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Chapter 2
The State-of-the-Art in the USA

2.1 Introduction

The field of intelligent vehicles is rapidly growing all over the world, both in the
diversity of applications and research [3, 8, 18]. Especially in the U.S., government
agencies, universities, and companies working on this hope to develop autonomous
driving entirely or in part for safety and for saving more energy. Many previous
technologies, such as seat belts, air bags, work only after a traffic accident. Only in-
telligent vehicles can stop traffic accidents from happening in the first place. There-
fore, DARPA has organized the Grand Challenges and the Urban Challenge from
2004 to 2007, which remarkably promoted the technologies of intelligent vehicles
around the world. Hence, this chapter presents an overview of the most advanced
intelligent vehicle projects which once attended either the Grand Challenges or the
Urban Challenge supported by the DARPA in the USA.

2.2 Carnegie Mellon University—Boss

The research groups at Carnegie Mellon University had developed the Navlab se-
ries [8, 17], from Navlab 1 to 11, which include robot cars, tracks, and buses. The
Navlab’s applications have included Supervised Classification Applied to Road Fol-
lowing (SCARF) [6, 7], Yet Another Road Following (YARF) [12], Autonomous
Land Vehicle In a Neural Net (ALVINN) [11], Rapidly Adapting Lateral Posi-
tion Handler (RALPH) system [16]. In addition, Sandstorm is an autonomous ve-
hicle which was modified from the High Mobility Multipurpose Wheeled Vehicle
(HMMWV) and competed in the DARPA Grand Challenge in 2005. The Highlander
is another autonomous vehicle modified from HMMWV H1 which competed in
same competition in 2005.

Nevertheless, the latest intelligent vehicle is the Boss system (shown in Fig. 2.1)
which won the first place in 2007 Grand Challenge [18]. Boss combines various
active and passive sensors to provide faster and safer autonomous driving in an urban
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Fig. 2.1 The intelligent vehicle, named Boss, developed by Carnegie Mellon University’s Red
Team (published courtesy of Carnegie Mellon University)

environment. Active sensors include lidar and radar, and passive sensors include the
Point Grey high-dynamic-range camera. The following functional modules were
implemented on the Boss vehicle:

1. Environment perception: Basically, the perception module provides a list of
tracked moving objects, static obstacles in a regular grid, and vehicle localization
relative to roads, road shape, etc. Furthermore, this module consists of four sub-
systems, moving obstacle detection and tracking, static obstacle detection and
tracking, roadmap localization, and road shape estimation.

2. A three-layer planning system consisting of mission, behavioral, and motion
planning is used to drive in urban environments. Mission planning is to detect
obstacles and plan new route to its goal. Here, given Road Network Definition
File (RNDF) encoding environment connectivity, a cost graph guides vehicles to
travel on a road/lane planned by the behavioral subsystem. A value function is
calculated to both provide the path from each way point to target way point, and
allow the navigation system to respond when an error occurs. Furthermore, Boss
is capable of planning another route if there is a blockage.

The behavioral subsystem is in charge of executing the rules generated by the mis-
sion planning. In details, this subsystem makes decisions on lane-change, prece-
dence, and safety decisions on different driving contexts, such as roads, intersec-
tions. Furthermore, this subsystem needs to complete the tasks, including carrying
out the rules generated by the previous mission planner, responding to abnormal
conditions, and identifying driving contexts, roads, interactions, and zones. Further-
more, these driving contexts correspond to different behavior strategies consisting
of lane driving, intersection handling, and achieving a zone pose. The third layer
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Fig. 2.2 The Stanford University’s intelligent vehicle Junior that was the runner-up in the 2007
DARPA Urban Challenge (published courtesy of Stanford University)

of the planning system is the motion planning subsystem which consists of trajec-
tory generation, on-road navigation, and zone navigation. This layer is responsible
for executing the current motion goal from the behavior subsystem. In general, this
subsystem generates a path towards the target, and tracks the path.

2.3 Stanford University—Junior

The Stanford University’s research team on intelligent vehicles has been one of
the most experienced and successful research labs in the world. To better study
and promote the applications of autonomous intelligent vehicles, the Volkswagen
group founded the Volkswagen Automotive Innovation Laboratory (VAIL). Until
now, Stanford University collaborated with the Volkswagen Group and built several
intelligent vehicles, the Stanley (the autonomous Volkswagen Touareg that won the
DARPA Grand Challenge in 2005 [10]), Junior (the autonomous Volkswagen Passat
that was the runner-up in 2007 DARPA Urban Challenge [14]). Moreover, Google
has licensed the sensing technology from Stanley to map out 3D digital cities all over
the world. We will introduce Junior that participated in the 2007 Urban Challenge
below.

Junior [14], shown in Fig. 2.2, is a modified 2006 Volkswagen Passat wagon,
equipped with five laser range finders, a GPS/INS, five radars, two Intel quad core
computer systems, and a custom drive-by-wire interface. Hence, this vehicle is ca-
pable of detecting an obstacle up to 120 m away.

Junior’s software architecture is designed as a data-driven pipeline and consists
of five modules:
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• Sensor interface: This interface provides data for other modules.
• Perception modules: These modules segment sensor data into moving vehicles

and static obstacles, and also provide accurate position relative to the digital map
of the environment.

• Navigation modules: These modules consist of motion planners, a hierarchical
finite state machine, and generate the behavior of the vehicle.

• Drive-by-wire interface: This interface receives the control commands from navi-
gation modules, and enables the control of throttles, brakes, steering wheels, gear
shifting, turn signals, and emergency brake.

• Global services: The system can provide logging, time stamping, message-
passing support, and watch-dog functions to keep the system running reliably.

Furthermore, we introduce three fundamental modules: environment perception,
precision localization, and navigation. In the perception module, there are two basic
functions, static/dynamic obstacle detection and tracking, RNDF localization and
update, where lasers implement primary scanning, and a radar system works as an
early warning for moving objects in intersections as complement. After perceiving
traffic environment, Junior estimates a local alignment between a digital map in the
RNDF form and its current position from local sensors. In navigation module, the
first task is to plan global paths, where there are two navigation cases, road navi-
gation and free-style navigation. However, basic navigation modules do not include
intersections. Furthermore, Junior strives to prevent itself from getting stuck in be-
havior hierarchy.

Nowadays, researchers at Stanford University are still working on autonomous
parking in tight parking spots1 and autonomous valet parking.

2.4 Virginia Polytechnic Institute and State University—Odin

The team VictorTango formed by Virginia Tech and TORC Technologies developed
Odin2 [2], which took the third place in 2004 DARPA Grand Challenge. The Odin
consists of three main parts: base vehicle body, perception, and planning.

Now, we introduce the base vehicle platform. Odin is a modified 2005 Hybrid
Ford Escape, shown in Fig. 2.3. Its main computing platform is a pair of HP servers,
each with two quad-core processors.

In the perception module, there are three submodules: object classification, lo-
calization, and road detection. Here, object classification first detects obstacles and
then classifies them as either static or dynamic. The localization submodule yields
the vehicle position and direction in the 3D world. The road detection submodule
extracts a road coverage map and lane position.

The planning module uses a Hybrid Deliberative-Reactive model, which con-
sists of upper level decisions and lower level reactions as separate components. The

1http://cs.stanford.edu/group/roadrunner/.
2http://www.me.vt.edu/urbanchallenge/.

http://cs.stanford.edu/group/roadrunner/
http://www.me.vt.edu/urbanchallenge/
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Fig. 2.3 The intelligent vehicle Odin developed by the Team VictorTango (published courtesy of
Virginia Polytechnic Institute and State University)

coarsest level of planning is the route planner responsible for road segments and
zones the vehicle should travel in. The driving behavior component takes care of
obeying road rules. Motion planning is in charge of translating control commands
into actuator control signals.

2.5 Massachusetts Institute of Technology—Talos

Team MIT has developed an urban autonomous vehicle, called Talos3 (shown in
Fig. 2.4) [1, 9, 13]. There are three key novel features: (i) perception-based nav-
igation strategy; (ii) a unified planning and control architecture; (iii) a powerful
new software infrastructure. Moreover, this vehicle consists of various submodules:
Road Paint Detector, Navigator, Lane Tracker, Driveability Map, Obstacle Detector,
Motion Planner, Fast Vehicle Detector, Controller, Positioning Modules. The per-
ception module includes obstacle detector, hazard detector and lane tracking sub-
modules. Planning a control algorithm involves using a navigator, driveability map,
motion planner, and a controller. The navigator plays an important role in mission-
level behavior, and the rest of these submodules work together in a tight coupling to
yield the desired motion control goal in complex driving conditions.

3http://grandchallenge.mit.edu/.

http://grandchallenge.mit.edu/
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Fig. 2.4 The intelligent vehicle Talos developed by the Team MIT (published courtesy of Mas-
sachusetts Institute of Technology)

Fig. 2.5 The intelligent vehicle Skynet developed by Team Cornell (published courtesy of Cornell
University)

2.6 Cornell University—Skynet

Team Cornell’s Skynet4 is a modified Chevrolet Tahoe, shown in Fig. 2.5, and con-
sists of two groups of sensors [15]. One group is used for sensing vehicle itself, and
the other group (laser, radar and vision) is for sensing the environment. Thanks to
the above sensors, Skynet is capable of providing real-time position, velocity, and

4http://www.cornellracing.com/.

http://www.cornellracing.com/
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attitude for absolute positioning. Moreover, Skynet’s local map including obstacle
detection information is the map of local environment surrounding Skynet. In many
cases, autonomous driving in complex scenes is more than basic obstacle avoid-
ance. Hence, the vehicle-centric local map is not enough for absolute positioning.
We need to estimate environment structures using posterior pose and track generator
algorithms.

Skynet is using the probabilistic representation of the environment to plan mis-
sion paths within the context of the rule-based road network. One intelligent planner
includes three primary layers: a behavioral layer, a tactical layer, and a operational
layer. The goal of the behavior layer is to determine the fastest route to the next mis-
sion point. When there exist state transitions in the behavior layer, the corresponding
component of the tactical layer is executed. Among the four tactical components, the
road tactical component is to seek a proper lane and to monitor other agents in the
same and neighboring lanes. The intersection tactical component handles intersec-
tion queuing behavior and safe merging. The zone tactical component takes care
of basic navigation in unconstrained cases. The blockage tactical component im-
plements obstacle detection and judging whether there are temporary traffic jams,
and acts accordingly. The final layer is an operational layer which is in charge of
converting local driving boundaries and a reference speed into actuators, steering
wheels, throttles, and brakes.

2.7 University of Pennsylvania and Lehigh University—Little
Ben

Little Ben5 designed by the Ben Franklin Racing Team is a modified Toyota Prius
with various sensors and computers for the 2007 DARPA Urban Challenge [4],
shown in Fig. 2.6. Similar to other intelligent vehicles, Little Ben is equipped with
various sensors, such as three LMS291, two SICK LDRS, and a Bumble bee stereo
camera. The sensor array provides timely information about the surrounding envi-
ronment, which is integrated into a dynamic map for environment perception and
modeling.

Little Ben’s software framework consists of perception, planning, and control.
Its perception module is responsible for providing static obstacles, moving vehicles,
lane markings, and traversable ground. Little Ben’s primary medium-to-long-range
lidars are responsible for geometric obstacles and ground classification, road mak-
ing extraction, and dynamic obstacle tracking. Moreover, the stereo vision system
is used to detect close road makings. Once the perception module generates infor-
mation about static obstacles, dynamic obstacles, and lane markings, the MapPlan
module will update obstacles and lane marking likelihoods in a map centered at the
current vehicle location. The mission and path planning consists of two stages. The
first stage is to calculate the optional path by minimizing the mission time. The next

5http://benfranklinracingteam.org/.

http://benfranklinracingteam.org/


20 2 The State-of-the-Art in the USA

Fig. 2.6 The intelligent vehicle Little Ben (published courtesy of the University of Pennsylvania
and Lehigh University)

stage is to incorporate the dynamic map into new path planning. Afterwards, the
path follower module is responsible for calculating the vehicle steering and throttle-
brake commands to follow the desired trajectory.

2.8 Oshkosh Truck Corporation—TerraMax

The TerraMax Vehicle6 is a joint effort by Oshkosh Truck Corp., Rockwell Collins,
and the University of Parma [5], and is shown in Fig. 2.7. In this vehicle, Rock-
well Collins was in charge of the intelligent vehicle management system. Oshkosh
Truck Corporation was working on project organization, system integration, low
level control hardware, modeling and simulation support, and the vehicle, while the
University of Parma provided the vision module. The most important feature is that
this vehicle has big size (weighs around 30000 pounds, is 27 feet long, 8 feet wide,
and 8 feet high), so it has to travel slowly.

Considering dynamic analysis of its mechanical systems, TerraMax provides un-
derbody, steer angles, and lateral stability information for control modules. The full
vehicle model consists of suspensions, steering, chassis, and tires. A typical simula-
tion method over 70 different obstacles is used to evaluate the underbody clearance,
for better handling of different obstacles at low speeds. The steering simulation is
used to allocate both the front and rear steering angles, when given a steering wheel
input. In addition, constant-radius tests were used to evaluate the lateral stability of
the truck.

The intelligent Vehicle Management system (iVMS) developed by the Rockwell
Collins is an interface between the vehicle systems and onboard sensors. Moreover,

6http://en.wikipedia.org/wiki/TerraMax_(vehicle).

http://en.wikipedia.org/wiki/TerraMax_(vehicle)
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Fig. 2.7 The intelligent vehicle TerraMax (published courtesy of the Oshkosh Truck Corporation)

the iVMS provides various autonomous functions, such as vehicle control, real time
path planning, obstacle detection, behavior management, and navigation.
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Chapter 3
The Framework of Intelligent Vehicles

3.1 Introduction

The Asian Development Bank states: “In the five years 2000–2004, more than
500,000 people were killed and around 2.6 million injured in road accidents in the
People’s Republic of China (PRC), equivalent to one death every 5 minutes—the
highest rate in the world.” and estimates a yearly economic loss of $12.5 billion.
Driver assistance and safety warning systems promise to provide partial solutions
to these problems, and consequently many research efforts [1] aim at developing
algorithms and building frameworks for them.

Road situation analysis requires not only obstacle information at the current time,
but also predicted obstacle information at a future time. Indeed, an experienced
driver looks several seconds along the road and bases his actions on information so
obtained. This previewing of the road is necessary to avoid accidents since vehicle
dynamics limits the car in making speed or direction changes.

I2DASW uses more than one kind of sensors: image sensors, lidar, and radar.
No single sensor can provide input as complete, robust, and accurate as required by
I2DASW. Image sensors have some problems, such as low ability of sensing depth,
higher computation burden than lidar and radar. Radar shows limited lateral spatial
information because either it is not available at all, or the field of view is narrow,
or the resolution is reduced at large distances. Although lidar has a wide view field
solving part of the previous problems, there are other problems, such as low abil-
ity of discrimination, clustering error, and recognition latency. These restrictions of
the different sensor types explain the attention given to sensor fusion in research on
object detection and tracking [1, 3], resulting a wide spectrum of promising applica-
tions in assistance driving, including multi-sensor Adaptive Cruise Control (ACC),
fusion of advanced ACC and lane keeping systems [5], and smart airbag systems.

On the basis of the work [15, 16], we proposed a road safety situation and threat
analysis algorithm and framework based on driver behavior and vehicle dynamics.
In a current environment modeling phase, obstacles are detected and tracked by
fusing various sensors depending on applications. In a future situation assessment,
we use the position and size information of obstacles at the current time and vehicle
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dynamics equation to predict the future road situation at the time k + 1. For lidar
data, we distinguish the object types: static or moving objects, by estimating object
speed.

The remainder of this chapter as follows. Section 3.2 introduces the state-of-the-
art related to road safety frameworks. In Sect. 3.3, we provide a detailed description
of our interactive safety analysis framework.

3.2 Related Work

Road situation analysis for driver assistance and safety warning is an interdisci-
plinary endeavor involving a lot of research fields, for instance, computer science,
automobile engineering, cognitive science, and psychology, etc. It involves not only
looking-in but also looking-out of a vehicle [12]. We classify these frameworks
analyzing obstacle situation in a traffic scene into two categories. The first one is
a current situation analysis framework which attempts to provide the vehicle and
the driver with the obstacles’ state in the current time. Generally, sensor fusion is
used to estimate the current obstacles’ state [3, 4, 13]. The other one is obstacle
situation prediction in the future [2]. To assess the future situation, many predic-
tion approaches have been used, such as the Extended Kalman Filter (EKF), Monte
Carlo method [2], and Bayesian network [10].

Real-time safety analysis in traffic involving driver, vehicle, traffic environment,
and their interaction is a challenge for perception, modeling, and control. Several
safety analysis frameworks have been proposed to address different aspects in a
road situation [2, 4, 6, 12]. In [2], a Monte Carlo reasoning framework is to evalu-
ate the probability of a future collision and use a Monte Carlo importance sampling
for the approximation of a collision integral. The looking-in and looking-out frame-
work proposed by M.M. Trivedi et al. is a system-oriented safer driving framework
[12] which consists of driving ecology sensing, hierarchical context processing, and
modeling of drivers, vehicles, and environment. They build the Human-Centered
Intelligent Driving Support System (HC-IDSS) to emphasize the role of driver. In
context of an earthwork vehicle, a distributed sensor network aims at processing
data acquired by different sensors, integrating them, and producing an interpreta-
tion of the environment observed [4], its main objectives of low-level and high-level
data fusion are to obtain a rough and an accurate estimate of the number of ob-
jects present in the observed scene and their 3D positions, respectively. In addition,
intersection scenario analysis was done in the INTERSAFE project, showing the
need of driver assistance systems for intersection safety [6], where two parallel ap-
proaches, Top–Down-Approach and Down–Top-Approach, were realized. In these
approaches, a dynamic risk assessment is done based on object tracking and classi-
fication, and the intent of a driver. Consequently, potential conflicts with other road
users can be reported only a few seconds in advance.

This chapter proposes an integrated current and future safety situation analysis
framework as general as possible, where we model not only the sensing phase, but
also the control phase. In this framework, a speed estimation algorithm based on
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Fig. 3.1 Interactive road situation analysis framework

lidar data is used to distinguish two types of obstacles: static objects and moving
objects. On the basis of the speed and type of obstacles, we form obstacle tracks
only using a single sensor, and following that a track fusion approach is used to
yield accurate and robust global tracks. We use camera to detect lanes and obstacles
in a Regions of Interest (ROIs) generated by range sensors, such as vehicles and
pedestrians. Combining the lane structure with obstacle tracks, we can model the
traffic environment and assess road situation at both the current and a near future
time. We will introduce multiple-sensor based multiple-object detection and track-
ing module in Chap. 6.

3.3 Interactive Safety Analysis Framework

Many existing robotics technologies apply to intelligent assistance driving [14],
however, much research work neglects the preview of a driver and driver response
delay; moreover, the behavior of high speed vehicles differs greatly from other
robots. For safe driving, a driver is in the center of the safety analysis [12], driver
response delay together with other factors restricts the driving path of a vehicle. On
the basis of these factors, we proposed an integrated interactive road safety analysis
framework, where the system consists of the following modules: on-board sensor
network, environment modeling and sensor fusion, vehicle ego-state and vehicle
dynamics module, future situation assessment, decision-making agents, Human–
Machine Interface (HMI), and a preview-following model based control module (see
Fig. 3.1). In this framework, we consider a driver assistance system as a vehicle–
driver–environment interactive closed-loop system; moreover, we focus on not only
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the current situation but also the future situation by predicting the potential collision
probability distribution.

In our framework, on-board sensors provide the real-time information about
drivers, traffic environment, and vehicles. How to configure these sensors is closely
related to application domain. For example, in light of the requirement of multi-
sensor ACC systems, maybe radar and camera are enough, but for pedestrian pro-
tection systems, an infrared sensor is essential to robust detection under the vari-
ous weather conditions. In general, the external sensors capture object appearance,
range, and voice outside a vehicle, and interior sensors collect vehicle state, such as
speed, acceleration, and steering angle.

The main functions of environment modeling and sensor fusion are to sense ob-
stacles, to recognize lane and traffic sign, and to fuse various sensors to model the
environment. Lane detection is the problem of locating lane boundaries. We propose
robust lane boundaries on a variety of different road types under a variety of illu-
mination changes and shadowing by introducing an adaptive Randomized Hough
Transform (RHT) [11]. For moving objects, such as pedestrians and vehicles, we
use statistical background modeling techniques for the detection of such moving
objects. For instance, we obtain the dynamic background model under the condi-
tions of no passing vehicle and update the model when a passing vehicle enter into
the field of view for the close cut-in and overtaking vehicle detection.

At the situation assessment level, road safety situation in the future is assessed
by combining traffic rules, vehicle dynamics, and environment prediction. Since
the safety distance varies with the speed of a host vehicle, we adopt preview time
rather than safety distance as the measurement of safety response. Hence, the safety
response time is given by

To = dr + dv + ds

v
, (3.1)

where dr is the distance required to respond to the nearest object due to driver re-
sponse delay, dv is the distance to slow down, ds is the safety distance between the
host vehicle and obstacles, and v is the velocity of the host vehicle.

Decision-making agents have two functions, one is to generate warning strategies
for warning systems, such as route guide systems and the warning display device;
the other is to make decisions about the expected path of action planning interfacing
with actuators. A Preview Optimal Curvature (POC) model based on the Preview
and Following Model (PFM) and driver behavior characteristic is utilized to control
vehicle’s velocity and direction, where the key problem is to establish fuzzy evalua-
tion indexes and their membership functions that represent the front road geometry
shape, traffic rules and driver behavior. For the details we refer to [7]. Here decision-
making agents use the rigid kinematics and vehicle dynamics stable-state response
properties to yield expected path, and then action planning updates the ideal path by
using vehicle dynamics dynamic-state response properties. Their main interaction
activities involve a driver operating a vehicle and a vehicle producing the lateral and
longitudinal motion.

Furthermore, this framework involves communication and HMI modules. Com-
munication modules implement information sharing between vehicles and between
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a vehicle and a base station. An HMI module present warning information from
the decision and path planning module to the driver. The interaction between the
vehicle and traffic environment mainly focuses on vehicle–vehicle communication
and vehicle–base station communication. Vehicles in the future will be able to share
the information about the environment to provide cooperative, convenient and safer
driving.

On the basis of the Preview–Follow theory proposed by [8, 9], we proposed a
region-based Preview–Follow

J (t) =
∫ t2

t1

[
ye(S, t + ξ) − yr(S, t + ξ)

]2
p(S, ξ) dξ, (3.2)

where p(S, ξ) is the prior probability distribution given the region S and the time
increment ξ ; ye(S, t) and yr(S, t) are the expected and the real drivable region at
the time t , respectively; ξ is the time increment. For the curve-based preview model,
(3.2) simplifies to

J (t) =
∫ t2

t1

[
ye(t + ξ) − yr(t + ξ)

]2
p(ξ) dξ, (3.3)

where ye(t) and yr(t) are the expected and the real path at the time t , respectively.
Considering the fixed curvature, we assume that the ideal path of a vehicle is

y∗
r (t + ξ) = yr(t) + ξ ẏr (t) + ξ2

2
ÿ(t). (3.4)

For the optimum curvature control, we write the vehicle acceleration as

ÿr (t) =
[
y′
e(t) − yr(t)

∫ t2

t1

ξ2p(ξ) dξ − c1ẏr (t)

]
/c2, (3.5)

where

c1 =
∫ t2

t1

ξ3p(ξ) dξ, (3.6)

c2 =
∫ t2

t1

ξ4

4
p(ξ) dξ, (3.7)

y′
e(t) =

∫ t2

t1

ξ2p(ξ)ye(t + ξ) dξ. (3.8)

On the basis of the factors of road safety reasoning [2], we extend the factors of
the future road situation given below.

1. Traffic rules While a driver implements a driving activity, traffic rules have a
potential effect on the expected path. Traffic rules on highways and urban roads
ensure safe, comfortable, collision-free driving. To achieve these objectives, the
driver and the on-board sensors must recognize the traffic signs.

2. Vehicle dynamics The motion of a vehicle is restricted by vehicle dynamics and
includes two factors: the internal factor involving the tires, steering systems, and
acceleration/deceleration systems and the other external factor involving driver
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instruction. In our framework, we consider it as a whole to affect the safe driving
rather than look at each influencing sub-factor, and focus on vehicle stable-state
and dynamic-state response properties.

3. Driver behavior The aim of I2DASW systems is to develop an automatic system
that can fully or partly replace a professional and experienced driver. Clearly,
driver behavior characteristic are inevitably involved in safe driving. Except for
road conditions and vehicle mechanical failures, most of traffic accidents are
caused by drivers, for instance, inappropriate speed, ignoring right of way, over-
taking, following too close, etc. In real-life traffic scenes, driving behavior, such
as driver response delay, deeply affects the driving operation.

4. Sensor uncertainty Sensor noise causes uncertainty in data. The incomplete in-
formation is used to assess the scene, and modeling the background and dynamic
object is a challenge given the incomplete and uncertain information.

5. Vehicle state Vehicle state includes position, velocity, acceleration, direction an-
gle, yaw angle, etc. Yaw angle affects greatly the dynamic properties of a vehicle.
Given the basic state parameters, we can generate a predicted path.

I2DASW systems have three major functions:

1. Providing appropriate just-in-time information about the vehicle, driver, and traf-
fic environment for safer and better driving. For example, Real-Time Traffic and
Traveler Information (RTTI) aims at facilitating the access to public data and
providing drivers with information about the traffic environment and the other
vehicles.

2. Safety warning and assistance systems. The system warns the driver proactively
about a possible hazardous situation on the basis of the vehicle’s current posi-
tion, orientation, and speed, and the road situation; moreover, steps can be taken
to control the vehicle when a person’s vehicle is in a hazardous situation. The
safety warning systems monitor the driving situation and provide the traffic sit-
uation for drivers, for example, potential collision information, including route
guide systems, Lane Change Decision Aid Systems (LCDAS), Traffic Imped-
iment Warning Systems (TIWS), Forward Vehicle Collision Warning Systems
(FVCWS), etc. Safety assistance systems use the warning information to gener-
ate the expected path and control the vehicle directly. Typical systems are For-
ward Collision Avoidance Assistance Systems (FCAAS), ACC systems, Low
Speed Following Systems (LSFS), Stop & Go systems, etc.

3. In-vehicle safety protection device for drivers and passengers. Such a system
can protect drivers and passengers from the impact between humans and vehicle
bodies, for example, smart airbag systems.
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Environment Perception and Modeling



Chapter 4
Road Detection and Tracking

4.1 Introduction

Road detection and tracking are important tasks for many intelligent vehicle applica-
tions, such as Lane Departure Warning (LDW) systems, Anti-sleep systems,1 driver
assistance and safety warning systems [49], autonomous driving [9]. Road detection
means locating road boundaries without the prior knowledge of road geometry, and
includes a few basic tasks, namely, road localization, calculating the position of a
vehicle with respect to the road, while road tracking is to update the road parameters
from previous road parameters. Video-based road detection and tracking keep draw-
ing more and more attention to this subject since it has many advantages compared
to active sensors. In general, there are two types of road detection and tracking ap-
proaches: one is for structured roads with yellow or white lane markings, the other
is for unstructured roads.

The main advantages of video-based approach are as follows:

• Vision sensors acquire data in a non-invasive way, thus not polluting the road
environment. In other words, vision sensors do not interfere with each other when
multiple intelligent vehicles are moving within the same area. By contrast, besides
the problem of environment pollution, we have to carefully think about some
typical problems of active sensors, such as the wide variation in reflection ratios
caused by different reasons (such as obstacles shape or material), the need for
the maximum signal level to comply with some safety rules, and the interference
among active sensors of the same type.

• In most of Intelligent Transportation Systems (ITS) and Intelligent Vehicle (IV)
applications, vision sensors play a fundamental role, for example, in lane marking
localization, traffic sign recognition, obstacle recognition. Among those applica-
tions, other sensors, such as laser and radar, are only complementary to vision
sensors.

• We do not need to modify road infrastructures when using vision sensors to cap-
ture visual information. This is extremely important in practice applications.

1http://www.smarteye.se.
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• Vision sensors can get visual information with high spatial and temporal resolu-
tion about road environment. Whereas both radar and laser sensors have the same
problems of low spatial and temporal resolutions.

Hence, vision sensors possess key advantages over active ones, for foreseeing
in massive and widespread applications on autonomous intelligent vehicles. At the
same time, vision-based road detection and tracking approaches have a few limita-
tions:

• Vision sensors are less robust than laser sensors and radar sensors in extreme
illumination conditions, such as fog, night, sunshine, rain.

• Large amount of video/image data is a great challenge for embedded systems. As
a result, specific computer architectures and parallel processing techniques are
carefully considered to improve real-time performance.

• On a bright sunny day, various objects, such as trees, buildings, cars, bridges, and
channels, could generate shadows, thus changing road color and textures.

• On-road vehicles and obstacles could occlude part of a road, thus resulting in
discontinuity of lane markings.

In addition, to improve road detection and speed up the processing, some as-
sumptions in road detection and tracking are made:

• High contrast between lane markings and other part constraints: Apparently, the
lane markings are highly contrasted by road backgrounds, which is the basic as-
sumption for almost all lane markings based approaches. Here, different color
spaces are used in these approaches. Southall et al. extract lane markings from
the red channel of color images since lane markings are either yellow or white
[43]. Li et al. proposed to transform the RGB color space into I1I2I3 color space
[29], and the I2 = (R − B)/2 component is normalized to form a gray image,
called the I2 image. The advantages of this transform are twofold: First, the high
correlation among the R, G, and B components is removed. Second, the new
color space is more effective with respect to the quality of segmentation and the
computational complexity.

• The continuity of lane boundary and marking edges: The continuity of lane
boundary and marking edges is another basic assumption. Though some lane
markings are dashed, they are certainly continuous locally and could be linked
to get a complete one.

• Regions of Interest (ROI) assumptions: Instead of processing the whole image,
lane detection and tracking algorithms focus on specific regions of interest only.
In a current image frame, lane detection and tracking algorithms will seek ROIs
using the results of previously processed frames or assuming prior knowledge
on the road environment. In the lane detection integrated with lane tracking, the
current lane parameters are predicted using the parameters of the previous frame
and the vehicle dynamics, thus yielding search regions for the current detection
[36].

• The fixed lane width assumption: The assumption of a fixed or smoothly vary-
ing lane width allows enhancing the search criterion, thus limiting the search to
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almost parallel lane markings. Furthermore, a lane marking feature extractor is
based on the fact that lane marking width is in a small range of possible values on
a road [25], which implies geometric constraints on the observed lane-marking
width.

• Road geometric assumptions: The reconstruction of road geometry can be sim-
plified by assuming its shape. In general, different models could correspond to
different applications; we have to consider carefully. The commonly-used road
models are straight road models [46], curved road models (Clothoid lane mod-
els [31, 43], parabola models [33], quadratic models [24]), 3D road models with
horizontal and vertical curvature [26].

4.2 Related Work

In this section, we will introduce the state-of-the-art of road detection and tracking.

4.2.1 Model-Based Approaches

Kluge et al. proposed a deformable template model of lane structures to locate
lane boundaries without thresholding the intensity gradient information [37]. The
Metropolis algorithm is used to maximize a function which evaluates how well the
image gradient data supports a given set of template deformation parameters. Wang
et al. presented a B-Snake which is capable to describe a wider range of lane struc-
tures and is constructed by a set of control points [45]. Moreover, Minimum Mean
Square Error (MMSE) is used to estimate the control points by the overall image
forces on two lanes. Tie Liu et al. presented lane detection algorithm using a de-
formable template and a Genetic Algorithm (GA) [30]. In this approach, the first
step is to preprocess a road image using an edge operator to yield edges, and then
fit a deformable template model of road edges or marked lines. Here, its likelihood
function defines the fitting degree for a given template deformation parameters. Af-
terwards a GA is used to search the global optimal solution of the likelihood func-
tion, thus yielding the optimal parameters of the deformable road model.

4.2.2 Multi-cue Fusion Based Approach

Apostoloff et al. proposed using particle filtering and multi-cue fusion technolo-
gies to robustly handle several lane detection and tracking issues, such as shadows
on the road, unreliable lane markings, dramatic lighting changes, and discontinu-
ous changes in road shapes and types [1]. Here, six cues are used in lane detection
and tracking: lane markers, road edges, road colors, non-road colors, road width,
and elastic lanes. Gern et al. presented a new approach fusing two different types
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of road features, white lane markings and horizontal optical flow [21]. First of all,
a clothoidal lane geometrical approach is used to locally track the white markings.
Second, inspired by human behavior when a driver is under adverse weather condi-
tions, the horizontal optical flow is calculated to track the motion of all road parallel
structures. As a result, this leads to a precise road position estimation and vehicle
position relative to lanes, even under adverse weather conditions.

4.2.3 Hypothesis-Validation Based Approaches

Pomerleau et al. proposed determining the curvature of the road ahead using a ‘Hy-
pothesize and Validate’ strategy [40]. The RALPH first hypothesizes road models
with different curvatures, then subtracts these curvatures from the low-resolution
image, and finally validates which hypothesized curvature matches well the original
image.

4.2.4 Neural Network Based Approaches

In most prototypes of autonomous vehicles developed worldwide, road recognition
and vehicle driving are two separate modules. However, some early systems were
not based on the preliminary road detection, but obtained driving commands di-
rectly from road images. For example, Autonomous Land Vehicle in a Neural Net
(ALVINN) is the Carnegie Mellon University’s intelligent vehicle which consists of
a single hidden layer back-propagation network [39]. Here, its input layer of NN is
a 30 × 32 two-dimensional video frame and the output layer of NN is a linear rep-
resentation of the travel directions of the vehicle so that the vehicle can be kept on
the road. After training, the vehicle can autonomously follow the road. This system
had driven on various road types under different conditions.

4.2.5 Stereo-Based Approaches

Stereo vision algorithms can relax the common assumptions about a road: flat road
surfaces, constant pitch angles. Furthermore, depth information allows separating
road from obstacles. S. Nedevschi et al. modeled lanes as a 3D surface, defined
by the vertical and horizontal clothoid curves, the lane width, and the roll angle.
Also, the lane detection is integrated into a tracking process. In addition, the Generic
Obstacle and Lane Detection (GOLD) system is based on a stereo vision hardware
and software architecture [4, 8, 35], where the Inverse Perspective Mapping (IPM)
over both left and right stereo images is used to remove the perspective effect.
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4.2.6 Temporal Correlation Based Approaches

When a road following algorithm is aimed at not only lane detection but also lane
tracking, the temporal correlation between consecutive frames can be used either to
ease the feature determination or to validate the result of the processing. Redmill
et al. developed an image-based lane tracking system [41] in which the geometry
and width of the current lane ahead of the vehicle are estimated frame by frame.
Afterwards, the position and orientation of the vehicle are estimated w.r.t. the center
line between the two lanes.

4.2.7 Image Filtering Based Approaches

McCall and Trivedi proposed a method for lane detection using steerable filters [32].
Steerable filters are robust with respect to lighting changes and shadows and work
well in extracting both circular road markings as well as painted road markings.
In addition, road/lane segmentation and obstacle detection in a dynamic scene as a
part of the European PROMETHEUS project consist of a temporal filter, an edge
detector, and a watershed transformation [6]. Here, the morphological ‘watershed’
transformation is used to locate the lane edges in the gradient images.

4.3 Lane Detection Using Adaptive Random Hough Transform

4.3.1 The Lane Shape Model

For structured road, lane models play an important role in lane detection, where
some assumptions are made to better recovery 3D lanes from 2D images. In this
section, we assume that the two lane marks are parallel lines and also concentric
circular arcs on a flat ground plane. Let a pixel (u, v) in an image plane correspond
to a point (x, y) on the ground plane. Hence, a circular arc with curvature k is
approximated by a parabola of the form

x = 1

2
ky2 + my + b, (4.1)

where b is the offset of the arc on the ground plane. These circular arcs on the
ground plane are projected into curves in the image plane. These curves can be
closely approximated in the image plane by [28]

u = k′

v − hz

+ b′(v − hz) + u0, (4.2)

where k′ = αk; b′ is related to b, arc curvature k′, and the camera tilt angle; u0 is a
function of the tangent of the arc on the ground plane and the camera tilt.
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Taking the derivative of (4.2), we have

b′ = du

dv
+ k′

(v − hz)2
. (4.3)

Then (4.2) can be represented by

u = 2k

v − hz

+ du

dv
(v − hz) + vp. (4.4)

Now we transform the 3D parametric space of k′, b′, vp into the 2D parametric
space of k′, vp , thus reducing computational complexity and storage requirements.
Furthermore, both k′ and vp are the same for all lane shape features, whereas b′
is feature specific. In other words, among these lane shape features, lane edges ap-
proximately share k′ and vp . The difference between them is the value of the param-
eter b. This allows us to estimate k′ and vp robustly and quickly by Random Hough
Transform (RHT). Therefore, both k′ and vp can be estimated directly from the raw
edge point location and orientation without grouping the edge points together into
individual features.

Given two pixels, (u1, v1) and (u2, v2), sampled in the gray-edge map, k′ and vp

can be calculated as
⎧⎨
⎩

k′ = 1
2

(u1−u2)− du
dv

(v1−v2)

(v1−hz)−1−(v2−hz)−1 ,

vp = u1 − 2 k′
v1−hz

− du
dv

(v1 − hz).
(4.5)

Finally, we formulate lane detection as estimating k′ and b′ for the left and the
right lane in road images.

4.3.2 The Adaptive Random Hough Transform

Hough Transform (HT) is a classic parameter estimation approach, which is widely
used in lane detection [17, 22, 34, 47]. Since image features can be used indepen-
dently, the HT is suitable for implementing in a parallel computing system. Rallard
et al. generalized the HT to detect arbitrary shapes under a geometric transform [3].
However, increasing the number, range, and accuracy of the parameters may result
in high computing complexity. In line detection, Illingworth et al. proposed imple-
menting the HT efficiently by an adaptive accumulator array and a coarse-to-fine
strategy. The advantage of this approach is that it can yield a solution until a given
accuracy without increasing array size. In addition, a two-step adaptive generalized
HT for the detection of non-analytic objects under weak affine transformations was
introduced in [16].

RHT can improve efficiency in the detection of an analytic curve edge map, de-
termining the n parameters of the curve of interest. By contrast, the RHT has higher
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Fig. 4.1 The ARTH
algorithm flow

parameter accuracy, larger scope of the parameter space, smaller storage require-
ments, and higher speed. However, the procedure is repeated to combine the dis-
crete parameter values. Thereby, the wide range and high accuracy of the parameters
could yield remarkably large computing burden and storage space requirements.

Motivated by these problems, we present a new Adaptive RHT (ARHT) for lane
detection, which combines the advantage of both the AHT and RHT. Figure 4.1 is
the algorithm flow of the ARHT that illustrates the implementation strategy to detect
the lane markings in a road image.

A. Pixel Sampling on Edges The task of lane detection can be conducted on
a binary edge image usually from grey-level images by either simple thresholding
operations or by some standard edge detection techniques.

However, when using gradient operator to obtain edges, it is difficult to determine
an optimal threshold for selecting only true road lanes corresponding to the painted
yellow and white lane marks or road boundaries among many noisy edges. Also, in
many road scenes it is not possible to select a suitable threshold that eliminates noise
edges without eliminating many of the lane edge points of interest. In lane detection,
curves often disappear during the edge detection processes, and this becomes critical
for the succeeding processes. Therefore, a better alternative is to use the whole gray
edge map while no useful information is lost. However, computational cost is high if
all pixels are included, a very low threshold value is assumed to insure the existence
of true edges corresponding to road boundaries, and the remaining problem is the
selection of the real boundaries among many candidate edges. For the gray edge
magnitude map mentioned above, a very low threshold (e.g., 0.1 or 0.2) is set to
remove those points which do not belong to lane markings, thus keeping low false
negative rate.

In RHT based on a binary edge map, every edge pixel is sampled uniformly,
without considering its probability of being on a certain curve. In the ARHT, in-
spired by particle filtering [2], pixels in the gray edge map are weighted according
to its gradient magnitude, and then the pixels are sampled according to their weight,
i.e., pixels with larger gradient magnitudes are sampled more frequently. Here, the
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weight of a pixel with index n (n = 0,1, . . . ,N − 1) is defined as

w(n)(u, v) = f
(n)
m (u, v)∑W−1

u=0
∑H−1

v=0 f
(n−1)
m (u, v)

, (4.6)

where fm(u, v) = − du
dv

is the gradient magnitude, and
∑N−1

n=0 w(n) = 1.
The pixels are sampled as follows:

(a) Form a sample-set D using pixels having nonzero gradient magnitude;
(b) Calculate the weight wn(u, v) as defined in (4.6).
(c) Store everything together including the cumulative probability as (d(n),w(n),

C(n)), where C(0) = 0, C(n) = C(n−1) + w(n), n = 0,1, . . . ,N − 1.
(d) Generate a random number r ∈ [0,1].
(e) Find the smallest q for which C(q) ≥ r by binary subdivision.

We select q elements of D to be the sampled pixels. Afterwards, we estimate the
parameters k and vp; the correctness of the parameters should also be verified. Since
we cannot get lane shape from the parameters k and vp only, parameter b has to be
calculated. The parameter b of the model can be found by forming a histogram of
the accumulation of gradient magnitude of points on the curve supposed to be true
in the gray level edge image. The pixels throughout the curve can be accumulated
as

M =
∑

c∈Curve

fm(uc, vc), (4.7)

where M represents the length of the curve determined by k′. If M exceeds a speci-
fied threshold, the curve is true.

Once a marking is detected, the other marking can be obtained by some post
analysis, such as a simple histogram step.

B. Multi-Resolution Parameter Estimating Strategy A multi-resolution strat-
egy is used for both achieving a cumulative solution rapidly and reducing computing
complexity. Now we build a Gaussian pyramid, where each level Il is smoothed by
a symmetric Gaussian kernel and resampled to obtain the next level Il+1 by [19]:

Il+1 = S↓(Gσ ∗ Il), I0 = I, (4.8)

where I is the original image, Gσ is a Gaussian kernel with bandwidth σ , S↓(·) is
a downsampling operator. Figure 4.2 shows a multi-resolution image representation
for lane detection.

Now we can roughly and efficiently locate the global optimum using the ARHT
with a fixed accuracy. The parameters from the previous pyramid level are the ini-
tial parameters of the ARHT for estimating more accurate ones. By doing so, we
constrain the parameter search to a smaller range around the previous solution, thus
reducing computing complexity and storage space. This coarse-to-fine strategy of-
fers us an acceptable solution at an affordable computational cost, and thus speeds
up the lane detection.



4.3 Lane Detection Using Adaptive Random Hough Transform 41

Fig. 4.2 Gaussian pyramid of road images with resolution from 256 × 240 to 64 × 60

In the Gaussian pyramid, the parameter relationships between the two consecu-
tive pyramid levels are

k′
l = 4k′

l+1, vp,l = 2vp,l+1, bl = bl + 1. (4.9)

Now, we discuss the error criterion regarding the elements in the ARHT. Usu-
ally, we consider two elements the same if they have the same coordinates. One
alternative is that two elements are same if the distance between them is smaller
than a given tolerance ε. The smaller the tolerance, the higher the parameter ac-
curacy when using the ARHT. Although ε is fixed in our approach, the parameter
accuracy is still improved due to the multi-resolution image representation.

4.3.3 Experimental Results

This section presents the performance of the proposed method for the real road
scenes. We can extract the left lane boundary and the right lane boundary. The algo-
rithm is tested on some images from both the video grabbed by an on-board camera
in our lab and the images provided by Robotics Institute of CMU.2 All experimen-
tal images are 24-bit color images of size 256 × 240. Figure 4.3 shows some of our
experimental results of lane boundary detection, where detected boundaries are su-
perimposed onto the original images. These images represent various real highways
scenes, including a lane whose left and right markings are solid, a lane whose left
marking is solid and right marking is broken, a lane whose left marking is broken
and right marking is solid, a lane whose left and right markings are broken, a lane
with shadows, a lane with a highlight in the far field, a lane whose left marking has
a big blank, also a lane whose markings are fragmentary. Experiment results show
that the method retains the desirable HT characteristics of robustness to extrane-
ous data and the ability to detect model parameters from disturbed data, although
imperfect detection occasionally happens because of traffic signs drawn on the road.

2http://vasc.ri.cmu.edu/idb/html/road/index.html.

http://vasc.ri.cmu.edu/idb/html/road/index.html
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Fig. 4.3 Experimental results on different road scenes

Fig. 4.4 Experimental comparison of a genetic algorithm and the ARHT for lane detection

Figure 4.4 demonstrates the performance of genetic algorithm based lane detec-
tion [10] and ARHT based lane detection. The experimental comparison indicates
that the latter has some advantages over the former.
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4.4 Lane Tracking

4.4.1 Particle Filtering

In principle, particle filtering is a sequential Bayes filtering approach, a.k.a., se-
quential Monte Carlo filtering [15], which is widely used in lane tracking [38,
43]. Let Zk = {z0, z1, . . . , zk} denote the measurement before time k, and Sk =
{s0, s1, . . . , sk} denote the states before time k.

To better understand the particle filter, we briefly review Bayes’ filtering. The
Bayes’ rule is

P(s|z) = P(z|s) × P(s)

P (z)
= Likelihood × Prior

Evidence
. (4.10)

This equation indicates how we compute the posterior probability from the likeli-
hood and the prior probability. In this Bayes’ framework, we can determine s by
finding the most probable values of s given data z. This technique is called Maxi-
mizing A Posterior (MAP). When P(s) is a constant for any value of s, MAP can
be simplified to a Maximum Likelihood Estimation (MLE).

Furthermore, the recursive Bayes’ filtering consists of two steps: the prediction
step and the updating step. In the prediction step, we calculate the value of s at time
k according to a dynamic system model and a previous posterior probability at time
k − 1 by

p(sk|Zk−1) =
∫

p(sk|sk−1)p(sk−1|Zk−1) dsk−1, (4.11)

where p(sk|sk−1) is a probability density function (pdf ) of a dynamic model.
Afterwards, the updating step calculates the P(sk|Zk) given the likelihood and
p(sk|Zk−1) by

P(sk|Zk) = P(zk|sk,Zk−1) × P(sk|Zk−1)

P (zk|Zk−1)
, (4.12)

where P(zk|sk,Zk−1) is a measurement model, P(sk|Zk−1) is a prior model, and
P(zk|Zk−1) is a constant and can be represented by

p(zk|Zk−1) =
∫

p(zk|sk)p(sk|Zk−1) dsk. (4.13)

Now we turn to sampling algorithms to find the representation of the posterior
probability. That is, we sample from the posterior distribution with some discrete
and weighted particles the posterior distribution

p̂(sk|Zk) = 1

N

N∑
i=1

δ
(
sk − s

(i)
k

)
, (4.14)
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where the {si
k}i=1,...,N are independent identically distributed (i.i.d.). Let s0:k =

{s0, s1, . . . , sk}, and we can get any estimate of the form f (s0:k) approximately by

E
[
f (s0:k)

] =
∫

f (s0:k)p(s0:k|Zk)ds0:k ≈ 1

N

N∑
i=1

f
(
s
(i)
0:k

)
. (4.15)

Unfortunately, it is often not possible to sample directly from the posterior dis-
tribution. Hence, we sample from a distribution q(s0:k|Zk) which can be sampled
easier, called the Proposal Distribution. Then we have

E
[
f (s0:k)

] =
∫

f (s0:k)
p(s0:k|Zk)

q(s0:k|Zk)
q(s0:k|Zk)ds0:k

=
∫

f (s0:k)
p(Zk|s0:k)p(s0:k)
p(Zk)q(s0:k|Zk)

q(s0:k|Zk)ds0:k. (4.16)

Let wk(s0:k) = p(Zk |s0:k)p(s0:k)
q(s0:k |Zk)

. Since the probability p(Zk) is independent of s0:k ,
the estimate can be expressed as follows:

E
[
f (s0:k)

] = 1

p(Zk)

∫
f (s0:k)wk(s0:k)q(s0:k|Zk)dsk

=
∫

f (s0:k)wk(s0:k)q(s0:k|Zk)ds0:k∫
p(Zk|s0:k)p(s0:k) q(s0:k |Zk)

q(s0:k |Zk)
ds0:k

=
∫

f (s0:k)wk(s0:k)q(s0:k|Zk)ds0:k∫
wk(s0:k)q(s0:k|Zk)ds0:k

= Eq(s0:k |Zk)[wk(s0:k)f (s0:k)]
Eq(s0:k |Zk)[wk(s0:k)] . (4.17)

Now we can estimate approximately by directly sampling from the proposal distri-
bution q(s0:k|Zk) and get

E
[
f (s0:k)

] ≈
1
N

∑N
i=1 wk(s

(i)
0:k)f (s

(i)
0:k)

1
N

∑N
i=1 wk(s

(i)
0:k)

≈
N∑

i=1

w̃k

(
s
(i)
0:k

)
f

(
s
(i)
0:k

)
, (4.18)

where

w̃k

(
s
(i)
0:k

) = wk(s
(i)
0:k)∑N

j=1 wk(s
(j)

0:k )
. (4.19)

The above procedure is called Bayesian Importance Sampling.
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Since q(s0:k|Zk) = q(sk|s0:k−1,Zk)q(s0:k−1|Zk−1), we have

wk = p(Zk|s0:k)p(s0:k)
q(s0:k|Zk)

= p(Zk|s0:k)p(s0:k)
q(s0:k|Zk, s0:k−1)q(s0:k−1|Zk−1)

= p(Zk−1|s0:k−1)p(s0:k−1)

q(s0:k−1|Zk−1)

p(Zk|s0:k)
p(Zk−1|s0:k−1)

p(s0:k
p(s0:k−1)

1

q(s0:k|Zk, s0:k−1)

= wk−1
p(zk|sk)p(sk|sk−1)

q(sk|sk−1,Zk)
. (4.20)

Note that in the second row of (4.20), p(zk,Zk−1|s0:k) = p(Zk−1|s0:k)p(zk|s0:k) =
p(zk|sk)p(Zk−1|s0:k−1), p(s0:k) = p(sk|s0:k−1)p(s0:k−1) = p(sk|sk−1)p(s0:k−1).

In practice, choosing the proposal distribution is important for a successful par-
ticle filtering approach. Usually, we can take q(sk|Sk−1,Zk) = p(sk|sk−1). Hence,
sequential importance sampling is as follows:

wk = wk−1p(zk|sk). (4.21)

This equation means that we can obtain the estimates of the importance weights
in a recursive way under the constraint of Markov dynamic models. Moreover, the
weight update is proportional to the likelihood when the proposal distribution is
the prior system equation. Finally, we would like to point out that there are two
fundamental assumptions of particle filtering: a first-order Markov process of states
and observation models.

We summarize the Basic Particle Filtering Algorithm as follows:

1. Initialization: For k = 0, sample N particles si
0 (i = 0, . . . ,N − 1) from p(s0);

2. Important Sampling: Sample s̃i
k from p(sk|si

k−1), then evaluate the impor-

tance weights wi
k = p(zk|s̃i

k), and normalize the importance weights w̃
j
k =

w
j
k /

∑N
j=1 w

j
k ;

3. Re-sampling: According to the normalized importance weights w̃i
k , re-sample

with replacement N particles si
0:k (i = 0, . . . ,N − 1) from the set s̃i

0:k (i =
0, . . . ,N − 1);

4. Then proceed to the Importance Sampling step, when the next measurement ar-
rives.

4.4.2 Lane Model

In this approach, the lane tracking is formulated for the estimation of lane’s pa-
rameters and vehicle’s states. In this section, we introduce the lane model and the
dynamic system model.

We represent the lane shape by a Taylor series expression of a clothoid [38, 43]

y(x) = y0 + tan(φ) + a0

2
x2 + a1

6
x3, (4.22)
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Fig. 4.5 An illustration of a
vehicle dynamic system
model at different times

where y is the lateral position of the road center relative to the vehicle, x is the
longitudinal distance ahead, φ is the pitch of the camera relative to the road surface,
a0 and a1 are the curvature and curvature rate of the lanes.

4.4.3 Dynamic System Model

The lane tracking algorithm is based on a 4D state vector sk

sk = [
y0(k),φ(k), a0(k), a1(k)

]T
. (4.23)

Now we have the dynamic system model:

⎡
⎢⎢⎣

y0(k + 1)

φ(k + 1)

a0(k + 1)

a1(k + 1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 �x �x2

2
�x3

6

0 1 �x �x2

2
0 0 1 �x

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

y0(k)

φ(k)

a0(k)

a1(k)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
−�ψk

0
0

⎤
⎥⎥⎦ , (4.24)

where �ψk is the yaw rate at time k. The vehicle dynamic system model is shown
in Fig. 4.5.

4.4.4 The Imaging Model

Now, we have to build the dynamic system model. However, only the mapping
model between image coordinates and world coordinates can affect state changes
as an observation. The relationships between image coordinates (u, v) and vehicle
coordinates (x, y) are [43]

{
u = Yc

Xc
fu = Y

X cosφ+H sinφ
fu ≈ −y

x cosφ+H sinφ
,

v = Zc

Xc
fv = H cosφ−X sinφ

X cosφ+H sinφ
fv ≈ H cosφ−x sinφ

x cosφ+H sinφ
.

(4.25)
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Fig. 4.6 Vehicle, road and image coordinate systems. The road y-axis points into the page: (a) Ge-
ometric mapping between camera coordinates and world coordinates; (b) Image coordinates sys-
tems

Note that Zc denotes the red line in Fig. 4.6 and Xc denotes the blue line. Moreover,
the relationships between image coordinates and pixel coordinates are

u = i − u0

fu

, v = j − v0

fv

, (4.26)

where (u0, v0) is the principal point of the camera, and fu and fv are the effective
focal lengths of the camera in the i and j directions, respectively. The relationship
among vehicle coordinates, camera coordinates, and image coordinates is illustrated
in Fig. 4.6.

The camera pitch φ used in (4.25) is calculated by

vh = H cosφ − x sinφ

x cosφ + H sinφ
= H/x − tanφ

1 + H/x tanφ
; (4.27)

when x → ∞, vh can be represented as follows:

vh = − tanφ, (4.28)

where the vh is the v coordinate on the horizontal line.
Also, the camera height can be calculated by

H = w cosφ

I ′
r − I ′

l

, (4.29)

where I ′
r and I ′

l are image gradient of the right and left lanes, respectively, w is the
lane width.

In this section, we need to calibrate camera intrinsic and external parameters: the
principal point (u0, v0), focal length (fu, fv), and the pitch angle φ as described
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before. We use Caltech’s camera calibration toolbox for Matlab to obtain those pa-
rameters [48].3

4.4.5 The Algorithm Implementation

The CONDENSATION algorithm [27] is used to estimate the shape of the road
ahead of the vehicle. The basic idea is that the distribution is approximated by a set
of N ‘particles’, pairs [s,ω], s is a state vector, and ω is a weight that reflects the
plausibility of s as a representation of the true state of the system. In this section,
we will introduce several basic issues about the lane tracking implementation based
on particle filtering.

4.4.5.1 Factored Sampling

Let us first introduce the factorized sampling algorithm in order to represent succes-
sive image observations. For non-Gaussian observations from image sequences, as
we have mentioned before, lane tracking is formulated as a problem of estimating
the parameters s(k). In this case, the posterior density represents all the knowledge
about s from the observed data. From the Bayes’ rule, we obtain

p(s|z) = ηp(z|s)p(s), (4.30)

where η is a normalization factor; we are usually not able to calculate it simply in a
closed form. Hence, iterative sampling techniques can be used.

The factored sampling algorithm generates a random variate s from a proposal
distribution. First, we generate particles {s(0)

k , . . . , s
(N−1)
k } from its prior probability

p(s) and its weight ωn
k according to the likelihood p(z|sn

k ) at time k as follows:

ωn
k = p(zk|s(n)

k )∑N−1
j=0 p(zk|s(j)

k )
. (4.31)

Now, a re-sampling step is used to generate a new particle set {s′n
k+1, i =

0, . . . ,N − 1} as follows:

1. Generate a uniformly distributed random number r ∈ [0,1];
2. Seek the smallest j for which c

j
k ≥ r ;

3. Set s′n
k+1 = s

′ j
k , where cn

k is the accumulated weight of particle j at time k.

We would like to point out that the higher weight a particle has, the more likely
it will be sampled. The weight ωk

n effects the occurrence probability of the corre-
sponding particle sn

k from the observation. When N is sufficiently large, the samples

3http://www.vision.caltech.edu/bouguetj/calib_doc/.

http://www.vision.caltech.edu/bouguetj/calib_doc/
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Fig. 4.7 The filtering result
of a road image

will approach the posterior density p(sn
k |zk). That is, when N is large enough, the

weighed average of all the particles will approach the precise state.

4.4.5.2 The Observation and Measure Models

In lane tracking, we need to update the weights as in (4.31) using successive image
observations. This procedure divides into two steps, generating observations and
measuring the similarity between the extracted pixels and those from particles.

In the observation step, we directly extract lane pixel positions as image obser-
vations. Similar to [43], we extract lane markings from the red channel of our color
images. Afterwards, a 3 × 9 filter kernel is used to extract lane marks

⎡
⎣1 3 5 7 9 7 5 3 1

1 3 5 7 9 7 5 3 1
1 3 5 7 9 7 5 3 1

⎤
⎦ . (4.32)

From Fig. 4.7, we can see that the lane marks are obviously better seen.
Let us denote the pixel from lanes object pixels. Furthermore, we search the near-

est neighbors of the predicted pixels within object pixels, thus yielding the distance
between the predicted pixels and the resulting object pixels, shown in Fig. 4.8. In
practice, for each predicted pixel set from the corresponding particle, we search its
object pixels in yellow and gray search windows, respectively. Finally, we obtain
the distance from each predicted pixel to its object pixel.

After yielding the distance measures between the predicted pixels of each particle
and the corresponding object pixels, we calculate the weights of each particle. Let
pi(s

n
k ) denote the ith predicted pixel from particle sn

k and let p̂i(s
n
k ) denote the

corresponding object pixel. First, we sum the distances of particle sn
k

πn =
∑

i

d
(
pi

(
sn
k , p̂i

(
sn
k

)))
. (4.33)

Then, we calculate the weight ωn
k+1 of each particle using its sum of distances

ωn
k+1 = 1/π2

n . (4.34)
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Fig. 4.8 The search of object
pixels: the blue and red pixels
represent those from different
particles

Finally, we normalize the weight so that
∑

n ω
(n)
k+1 = 1. Moreover, the cumulative

weights cn
k+1 are

cn
k+1 = cn−1

k+1 + ωn
k+1, c0

k+1 = 0. (4.35)

Here, a new particle set {sn
k+1,ω

n
k+1, c

n
k+1} is generated.

According to the distances between each predicted pixel and its nearest neigh-
bor within object pixels of each particle, the predicted pixels of each particle have
different scores. Accumulating their scores generates the weight of each particle.
Figure 4.9 (left) shows the weights of the predicted pixels.

Once having the N particles, we calculate the state at time k + 1 by the weighed
average of all the particles

E[sk+1] =
N−1∑
n=0

ω
(n)
k+1s

(n)
k+1. (4.36)

Figure 4.9 (right) shows the estimated results.

4.4.5.3 The Algorithm Flow

We summarize the lane tracking algorithm based on particle filter as follows:
Input: A particle set {sn

k ,ωn
k , cn

k }n=0,...,N−1 at time k, and the observed image at
time k + 1;
Iteration: (n = 0, . . . ,N − 1)

1. Sample Selection: Select a sample s′n
k+1 from the particle set based on particle

weights {ωn
k }.

2. Prediction by the Dynamic Evolution Model: Equation (4.24) is used to
predict a new particle sn

k+1 from s′n
k+1.

3. Updating the Weights of Particles: We evaluate the plausibility of the
evolved particle by comparing the predicted pixels from the particle to object pixels
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Fig. 4.9 The predicted pixel distribution and their weights. Darker color indicates higher score.
The green lines are estimated lane marks calculated from the weighed average of N particles. So
the predicted points which are closer to lane marks have higher scores

Fig. 4.10 Lane tracking using the particle filtering approach

from a current observed image. Equation (4.34) can update the weight ωn
k+1 and the

accumulative weight cn
k+1 of the current particle.

Calculating lane position at time k+1: The lane position at time k+1 is calculated
by (4.31).

Figure 4.10 shows the lane tracking results using the particle filtering approach.

4.5 Road Recognition Using a Mean Shift algorithm

In the previous section, we assumed that there exist multiple lane marks on the so-
called structured roads, such as highways. Hence, we could define parameterized
lane models and then estimate the parameters of lane marks. However, there are no
visible lane marks on the unstructured roads, such as county roads [5]. In this case,
we have to use other visual cues, such as textures, colors. For example, Rapidly
Adapting Lateral Position Handler (RALPH) system [40] combines the color and
the texture of a road to better recognize it. In this section, we use Mean Shift (MS)
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Fig. 4.11 The road image and its feature space distribution

algorithms to cluster road pixels and non-road pixels based on color and texture
features, thus resulting in road recognition.

Feature space analysis approaches are widely used in low-level visual processing
tasks [12], where probability density estimation is the most basic algorithm. The
goal of feature space analysis is to seek significant features, space structures, and
even subspaces. The denser regions in the feature space could correspond to impor-
tant features, which leads to data clustering. The feature space analysis based on
probability density estimation consists of two steps. The first step is to represent the
feature spaces in some distributions. The most commonly-used feature space rep-
resentation is the Gaussian Mixture Model (GMM) [7, 42]. However, the number
of components is a prior in GMM. Hence, for arbitrarily structured feature spaces
(shown in Fig. 4.11), we have to turn to nonparametric approaches which do not
make assumptions. The second step is to seek significant features based the previ-
ous parametric/nonparametric approaches.

4.5.1 The Basic Mean Shift Algorithm

Nowadays, mean shift algorithms are widely used in computer vision community as
a robust feature space analysis approach, for example, in data clustering [10], im-
age and video segmentation [12, 44], visual tracking [11, 14]. Originally, the mean
shift algorithm was proposed as a nonparametric data clustering approach based on
the gradient estimation of probability density functions (pdfs) by Fukunaga et al.
in 1975 [20]. Later, Cheng further generalized and analyzed this algorithm and its
properties [10], which now attracts more researchers working on its applications
again. In computer vision community, Peter Meer and others first applied this al-
gorithm to various computer vision tasks, image segmentation [12, 13], non-rigid
object tracking [14]. The basic idea is to repeatedly move the nearby data points
to their mode. Finally, the iteration procedure will converge to its global optimal
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solution [10]. In principal, the mean shift algorithm is an iterative multi-start global
optimization approach [10, 18].

Given N features xi ∈ R
D , i = 0,1, . . . ,N − 1, within a feature space, we esti-

mate the pdf using a symmetric kernel density estimator:

p̂k(x) = α

N−1∑
i=0

K(x,xi,H) = α

N−1∑
i=0

K
(‖x − xi‖2,H

)
, (4.37)

where α = 1/(N
√

H),
∫

K(x)dx = 1. In practice, we simplify the complexity of
H by taking H = h2I and thus α = 1

NhD .
The gradient of (4.37) is

∇p̂K(x) = α1

N−1∑
i=0

(x − xi)K
′(‖x − xi‖2,H

)
, (4.38)

where α1 is a normalization factor.
Now, defining a function G(‖x − xi‖2,H) = −K ′(‖x − xi‖2,H), we get

∇p̂K(x) = α2

(
N−1∑
i=0

G
(‖x − xi‖2,H

))(∑N−1
i=0 xiG(‖x − xi‖2,H)∑N−1
i=0 G(‖x − xi‖2,H)

− x

)
, (4.39)

where G(·) ≥ 0. In the above equation, the first item is p̂G(x) = ∑N−1
i=0 G(‖x−xi‖2,

H). Let us define

yi =
∑N−1

i=0 xiG(‖x − xi‖2,H)∑N−1
i=0 G(‖x − xi‖2,H)

, (4.40)

and thus the second item is mG(x) = yi − x. Actually, yi is the filtered result of xi

by weighted neighbors within the feature space in mean shift filtering.
Therefore, we obtain the mean shift vector by

mG(x) = α3
∇p̂K(x)

p̂G(x)
, (4.41)

where α3 is a normalization factor. From (4.41), we can see that (i) the mean shift
vector is proportional to the normalized density gradient w.r.t. k, (ii) the normalized
weighted mean yi w.r.t. the kernel G is a weighted average within the neighbors of
xi , (iii) the mean shift vector moves always to the maximum gradient direction of
the density.

Now we discuss kernel functions in mean shift algorithms. The D-dimensional
multivariate Gaussian kernel is

KN(x) = 1√
2πD

exp

(
−1

2
‖x‖2

)
. (4.42)
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Another popular kernel is the Epanechnikov Kernel [12]

KE =
{

d+2
2Cd

× (1 − ‖x‖2) if ‖x‖ < 1,

0 otherwise.
(4.43)

Note that in the mean shift algorithm, the above two are radially symmetric ker-
nels. Furthermore, we will use a two-dimensional kernel. Assuming an image is a
two-dimensional lattice of D-dimensional pixels, the multi-variate kernel is repre-
sented as [12, 13]:

K(x,hs, hr) = C

h2
s h

D
r

K

(∥∥∥∥xs

hs

∥∥∥∥
2)

K

(∥∥∥∥xr

hr

∥∥∥∥
2)

, (4.44)

where h = (hs, hr ) is the kernel bandwidth, C is a constant, xs and xr are the posi-
tion part and the range part of a feature vector.

In the following section, we will introduce different computer vision tasks using
basic mean shift algorithms.

4.5.2 Various Applications of the Mean Shift Algorithm

Mean Shift Clustering The most basic application of mean shift algorithms is
data clustering. Given feature vectors xi and their resulting labels zi , we can use the
following procedure to filter feature vectors:

• Initialization: yi,1 = xi ;
• Repeat calculating yi,k+1 from yi,k using kernel G at time k + 1 as follows:

yi,k+1 =
∑N−1

i=0 yi,kG(‖x − yi,k‖2,H)∑N−1
i=0 G(‖x − yi,k‖2,H)

. (4.45)

Finally, we get yi,∞, thus yielding cluster centers yl , l = 0,1, . . . ,L − 1 until
coverage.

• Label features: zi = {xi, yi,∞, yl}.
The Mean Shift Segmentation Similar to mean shift clustering, we assume that
xi and yi are the feature vectors and the filtered vectors. The goal of image segmen-
tation is to yield the labels l, l = 0,1, . . . ,L−1 of all pixels. The detailed algorithm
flow is as follows:

• Extract feature vectors xi , i = 0,1, . . . ,N − 1 of all pixels.
• Implement mean shift filtering over all pixels xi , and thus generate the clusters

{yl}, l = 0,1, . . . ,L − 1. (4.46)

• Assign labels l = {c|yi,∞ ∈ yc}.
• Post-processing: remove image regions with less than the predefined number of

pixels.
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Mean Shift Tracking In principal, given the target position in the previous frame,
visual tracking is to estimate the target position in the current frame. Let q̂x represent
the density function of the target model based on feature xi , and let p̂x(y) be the pdf
of a candidate target at position y. Hence, mean shift visual tracking is to seek the
position y which is the most similar to q̂x by [14]

ŷ = argmin
y

√
1 − ρ

(
p̂x(y), q̂x

)
. (4.47)

The basic algorithm flow of mean shift tracking is as follows:

• Detect the initial position ŷ0 of the target in the first frame and thus compute the
target distribution {q̂u}, u = 0,1, . . . ,m − 1.

• Initialize the target position at frame k with ŷ0 and then calculate the distribution
{p̂u(ŷ0)}, u = 0,1, . . . ,m − 1, where the total distribution refers to [14]. Hence,
we evaluate

ρ
[
p̂(ŷ0), ŷ

] =
m−1∑
u=0

√
p̂u(ŷ0)q̂u. (4.48)

• Calculate the weight of each position xi , i = 0,1, . . . , nn − 1 of candidate targets

wi =
∑

δ
[
b(xi) − u

]√ q̂u

p̂u(ŷ0)
, (4.49)

where u is color value, δ(·) is the Kronecker delta function, b(xi) is the histogram
bin corresponding to the color value of pixel xi .

• Calculate the new position

ŷ1 =
∑nh−1

i=0 xiwiG(‖ŷ0 − xi‖2,H)∑nh−1
i=0 wiG(‖ŷ0 − xi‖2,H)

, (4.50)

and {p̂u(ŷ1)}, u = 0,1, . . . ,m − 1, and also ρ[p̂(ŷ1), q̂] = ∑m−1
u=0

√
p̂u(ŷ1)q̂u.

• While ρ[p̂(ŷ1), q̂] < ρ[p̂(ŷ0), q̂]
Do ŷ1 ← 1

2 (ŷ0 + ŷ1)

• If ‖ŷ1 − ŷ0‖ < ε, stop; Otherwise, ŷ0 = ŷ1, and go to Step 2.

4.5.3 The Road Recognition Algorithm

The commonly-used color spaces are RGB,HSV,CIE − XYZ, and CIE − L∗u∗v∗,
which are all applications dependant. The RGB color space is a linear color space
which is commonly used for display. Similar to [12], we use L∗u∗v∗ to represent
pixel features, since this color space is good for perceiving uniform color spaces.
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The L∗u∗v∗ color space is transformed from the RGB color space by

⎧⎪⎪⎨
⎪⎪⎩

L∗ = 116 × 3
√

Y
Yn

− 16,

u∗ = 13L∗(u′ − u0),

v∗ = 13L∗(v′ − v0),

(4.51)

where Y/Y0 > 0, u′ = 4Z
Z+15Y+3Z

, v′ = 6Y
Z+15Y+3Z

, and

⎡
⎣Z

Y

X

⎤
⎦ =

⎡
⎣0.607 0.174 0.2

0.229 0.587 0.114
0 0.066 1.116

⎤
⎦

⎡
⎣R

G

B

⎤
⎦ . (4.52)

Regarding this space, we can use the following equation to measure color dis-
tance:

�E =
√

(�L∗)2 + (�u∗)2 + (�v∗)2. (4.53)

We summarize the road recognition using mean shift segmentation as follows:

• Down-sampled original images for reducing computational complexity.
• Extract pixel features using L∗u∗v∗ color spaces.
• Segment image using mean shift segment algorithms.
• Remove the regions which contain fewer than the predefined number of pixels.
• Recognize road regions using a road reference region; here we use a small image

region before a vehicle as a road region.

4.5.4 Experimental Results and Analysis

We evaluate the road recognition algorithm on CMU’s road dataset,4 which are se-
ries of road images taken from various Navlabs [23].

Figure 4.12 shows a road image captured on a sunny day. Figure 4.12(a) is an
original image with resolution 256 × 240, Figs. 4.12(b) and 4.12(c) correspond to
the results of using mean shift segmentation when region_max = 10 and 100, re-
spectively. Figure 4.13 shows feature space distributions after using median filtering
and mean shift filtering. Similar to Fig. 4.12, Fig. 4.14 presents the results of using
mean shift segmentation but on a cloudy image.

From the experiments above, we can see that: (i) the feature space analysis using
mean shift algorithm is robust to different illumination; (ii) the performance of mean
shift filtering is remarkably better than that of median filtering; (iii) post-processing
can improve the recognition results.

4http://vasc.ri.cmu.edu/idb/html/road/index.html.

http://vasc.ri.cmu.edu/idb/html/road/index.html
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Fig. 4.12 Sunny country road images

Fig. 4.13 The feature space distributions after using median filtering and mean shift filtering

Fig. 4.14 The lane detection on cloudy country road images
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Chapter 5
Vehicle Detection and Tracking

5.1 Introduction

Statistics shows that about 60% of the rear-end crash accidents can be avoided if
the driver has additional warning time. According to the Ministry of Public Safety
of P.R. China, there were 567,753 reported road traffic accidents in 2004, among
those about 80% of the severe police-reported traffic accidents were vehicle–vehicle
crashes. Almost two-fifths of these crashes resulted in an injury, with over 2% of the
total crashes resulting in a death. Clearly, vehicle detection is an important research
area of intelligent transportation systems [2, 11, 20]. It is being used in, among
others, adaptive cruise control (ACC), driver assistance systems, automated visual
traffic surveillance (AVTS), and self-guided vehicles. However, robust vehicle de-
tection in real world traffic scenes is challenging.

Currently, IDASW systems based on radars have a higher cost than those based
on machine vision, while having narrow field of view and bad lateral resolution. In
Adaptive Cruise Control (ACC) systems, a camera can detect the cut-in and over-
taking vehicle from the adjacent lane earlier than a radar. Due to these reasons, it
is more difficult to apply such radar-based systems into practical IDASW systems.
Consequently, robust and real time vehicle detection in video attracts more attention
of scholars all over the world [2, 4, 14].

To detect on-road vehicle in time, this chapter introduces a multi-resolution
hypothesis-validation structure. Inspired by A. Broggio [2], we extract three ROIs:
a near one, one in the middle, and a far one, from a 640 × 480 image. His approach
uses fixed regions at the cost of flexibility, we remove this limitation and build a
simple and efficient hypothesis-validation structure which consists of the three steps
described below:

1. ROI determination: We generate ROI candidates using a vanishing point of the
road in the original image.

2. Vehicle hypothesis generation for each ROI using horizontal and vertical edge
detection: We create a multi-resolution vehicle hypothesis based on the preceding
candidate regions. From the analysis of edge histograms, we generate hypotheses
for each ROI and combine them into a single list.

H. Cheng, Autonomous Intelligent Vehicles,
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3. Hypothesis validation using Gabor features and SVM classifiers: We conduct ve-
hicle validation using the boosted Gabor features of 9 sub-windows and the SVM
classifiers. According to the judging of the classifiers, we determine whether hy-
potheses represent a vehicle or a non-vehicle.

5.2 Related Work

Hypotheses are generated using some simple features, such as color, horizontal
and/or vertical edges, symmetry [2, 5], motion, and stereo visual cue. Zehang Sun
proposed a multi-scale hypothesis method in which the original image was down-
sampled to 320 × 240, 160 × 120, and 80 × 60. His vehicle hypotheses were gen-
erated by combining the horizontal and vertical edges of these three levels, and
this multi-scale method greatly reduced random noise. This approach can generate
multiple-hypothesis objects, but a near vehicle may prevent a far vehicle from being
detected. As a result, the method fails to generate the corresponding hypothesis of
the far vehicle, reducing the vehicle detection rate.

B. Leibe et al. seated a video-based 3D dynamic scene analysis system from
a moving vehicle [9] which integrated scene geometry estimation, 2D vehicle and
pedestrian detection, 3D localization and trajectory estimation. Impressively, this
paper presented a multi-view/multi-category object detection approach in a real
world traffic scene. Furthermore, 2D vehicle pedestrians detection is converted into
3D observation.

Vehicle symmetry is an important cue in vehicle detection and tracking. Inspired
by the voting of Hough Transform, Yue Du et al. proposed a vehicle following ap-
proach by finding the symmetry axis of a vehicle [5]; however, their approach has
several limitations, such as large computing burden, and it only generates one object
hypothesis using the best symmetry. Alberto Broggi introduced a multi-resolution
vehicle detection approach, and proposed dividing the image into three fixed ROIs:
one near the host car, one far from the host car, and one in the middle [2]. This
approach overcomes the limit of only being able to detect a single vehicle in the
predefined region of the image, but it needs to compute the symmetry axis, making
it not real-time.

D. Gabor first proposed the 1D Gabor function in 1946 and J.G. Daugman ex-
tended it to 2D later. In fact, a Gabor filter is a local bandpass filter that can reach the
theoretical limit for the spatial domain and the frequency domain simultaneously.
Consequently, Gabor filters have been successfully applied for object representation
in various computer vision applications, such as texture segmentation and recogni-
tion [18], face recognition [19], scene recognition, and vehicle detection [14].

The basic issue of a Gabor filter is how to select the parameters of a filter that
responds mainly to an interesting object, such as a vehicle or a pedestrian. Accu-
rate detection only occurs if the parameters defining Gabor filters are well selected.
Three main approaches have been proposed in the literature for selecting Gabor
filters for object representation: manual selection, Gabor filter bank design (includ-
ing filter design) [18], and a learning approach [13, 14, 16, 19]. In [1], Ilkka Autio
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proposed an approach for manual selection: An initial set of Gabor filters were ex-
perimentally selected from a larger set and then manually tuned. In general, a Gabor
filter bank design defines a small filter pool, and determines the parameters of its
filters independent of the application domain; moreover, the bandwidth of those Ga-
bor filter design approaches cannot be determined autonomously. In image browsing
and retrieval, a strategy is used to ensure that the half-peak magnitude support of the
filter responses in the frequency domain touch each other by using a filter bank with
6 directions and 4 scales to compute the features of a texture [12]. Due to indepen-
dence of the filter bank and the application domain, such an approach can be used
for object classification, detection and tracking. The main problems of this filter de-
sign approach are small filter pool sizes, no prior knowledge, and poor performance.
Learning-based Gabor filter design approaches select the Gabor filters according to
its application domain. Du-Ming Tsai proposed an optimization algorithm for Gabor
filters using a simulated annealing approach to obtain the best Gabor filter in texture
segmentation [16]. A face recognition application using a strong classifier cascaded
by weak classifiers was proposed by S.Z. Li; in his approach, weak classifiers were
constructed based on both the magnitude and phase features from Gabor filters [19].

In terms of vehicle detection, Alberto Broggi introduced a multi-resolution ve-
hicle detection approach, and proposed dividing the image into three fixed ROIs
[2]. His approach allows detecting multiple vehicles in a predefined region. How-
ever, it uses a symmetry axis for detecting vehicles that is not only time-consuming
to compute but symmetry features are somewhat problematic. In [14], Zehang Sun
proposed an Evolutionary Gabor Filter Optimization (EGFO) approach for vehicle
detection, and used the statistical features of the response of selected Gabor filters to
classify the test image using a trained SVM classifier. Although good performance
has been reported, EGFO has large computational cost for the selection of a Gabor
filter. Moreover, each Gabor filter is optimized for a complete image, but it is applied
to each sub-window of a test image, which reduces the quality of the representation.

The requirements of Vehicle Active Safety Systems (VASS) are strict with re-
spect to the time performance for pedestrian detection and vehicle detection. Ac-
cordingly, in our approach we detect vehicles only in ROIs, allowing us to make a
real-time implementation. The ROI approach largely prevents a near car from hiding
a far car. All the hypotheses are generated in these regions. The positions of vehicles
are validated by SVM classifiers and Gabor features.

5.3 Generating Candidate ROIs

Inspired by A. Broggio [2], we extract three ROIs: a near one, one in the middle, and
a far one from a 640 × 480 image. But his approach uses fixed regions at the cost of
flexibility. In our approach, ROIs are extracted using lane markings. In a structured
lane, we detect the vanishing point using the lane edges. For the consideration of
real-time processing, we use a simple vanishing point detector rather than a com-
plex one. Discontinuity and noise related problems can be solved by combining, for
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Fig. 5.1 Edge detection results using single frame and multi-frame

instance, 10 subsequent images (see Fig. 5.1(a)). Edge detection is done on com-
bined images consisting of 10 overlapping subsequent images, and the equations of
two lanes are deduced from a voting procedures like HT by analyzing horizontal
and vertical edges. Four random points Pdi, d = l or r ; i = 0, . . . ,3, are selected
on each lane line, and each tangent direction of two points (shown in (5.1)) between
the closest 3 points

{Pdi,Pdj }; d = r or l; i, j ∈ {0,1,2,3}; i < j ; |j − i| ≤ 2, (5.1)

is obtained by

θdij = −−−−→
PdiPdj .

The tangent directions of two lane lines are calculated using the average value of
the above tangent angles and are described by

θ̄d = θd01 + θd02 + θd12 + θd13 + θd23

5
, d = r or l. (5.2)

Combining the average coordinates of 4 interesting points P̄d = 1
4

∑3
i=0 Pdi with

the average tangent angles θ̄d , we can get the equations of two lane lines. The in-
tersection point of the two lines is an approximation of the vanishing point; see
Fig. 5.2. Next we consider how to extract ROIs from the original image. For the
consideration of vehicle height and the camera parameters, the top boundaries of all
the ROIs are 10 pixels higher than the vertical coordinates of the vanishing point.
From the analysis of the camera parameters and image resolution, the heights of
the near, middle, and far ROIs are 160, 60, and 30 pixels, respectively. The left and
right boundaries of the near ROI are those of the image. The distance between the
left boundary of the middle ROI and that of the image is just one-third of the dis-
tance between the vanishing point and the left boundary of the image, and the right
one of middle ROI is determined similarly. The distance between the left boundary
of the far ROI and that of image is two-thirds of the distance between the vanish-
ing point and the left boundary of image, as well as the distance between the right
boundary of the far ROI and that of the image. Figure 5.2(b) shows the results of
each ROI.



5.4 Multi-resolution Vehicle Hypothesis 65

Fig. 5.2 Vanishing point and ROI generation

5.4 Multi-resolution Vehicle Hypothesis

For traditional approaches, the edges of small objects cover those of a large one;
Fig. 5.3(b) is the result of a global histogram of horizontal and vertical edges and
shows the edge histogram without a peak for the small vehicle. Based on the pre-
ceding candidate regions, the histogram of a ROI shows a peak for a small object,
shown in Fig. 5.4. The analysis of the peaks and valleys of an edge histogram re-
sults in several rectangles, and each one represents a vehicle hypothesis. We use
prior knowledge to eliminate some hypotheses. The minimum width of a vehicle
can be set for each ROI. If the width of a hypothesis is smaller than this width, the
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Fig. 5.3 Global statistical histogram of horizontal and vertical edges

Fig. 5.4 Histogram of horizontal and vertical edges for the near and far ROIs

Fig. 5.5 Comparison of hypothesis generation results

hypothesis will be eliminated. Additionally, the aspect ratio (width/height) of vehi-
cles is in a certain range; we assume this range to be [0.67,2.2]. Rectangles with
other ratios are eliminated. Since the histogram is made by extracting edges from
the ROIs and other objects, like power cables and traffic signs above the road which
are not in the ROIs, they do not disturb the edge histogram, reducing the false pos-
itive rate (see Fig. 5.5). The coordinates of all hypothesis objects will be translated
into the coordinates of the original image, and then the hypotheses of different ROIs
may be overlapping. According to the distance between two rectangles, d(r1, r2),
we can judge if the two rectangles ought to be incorporated into one. Equation (5.3)
defines the distance between rectangles r1 and r2, and here (xij , yij ) are the coor-
dinates of the j th vertex of the ith rectangle, i = 0,1; j = 0,1,2,3. Through the
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above process, we finish the generation of vehicle hypotheses:

d(r0, r1) = ‖r0 − r1‖2,

ri = (xi0, yi0, xi1, yi1, xi2, yi2, xi3, yi3), i = 0,1.
(5.3)

In conclusion, in our multi-resolution hypothesis generation approach, the ROIs
complement each other; moreover, appropriate constraints improve the search effi-
ciency, which greatly reduces the computing burden of hypothesis generation. Note
that the heuristic multi-resolution works well in real-time though an Efficient Sub-
windows Search (ESS) which was proposed to localize objects using branch-and-
bound optimizing algorithms [8].

5.5 Vehicle Validation using Gabor Features and SVM

After vehicle hypothesis generation, we are ready to validate the hypotheses. The
preprocessing of the original image includes image scaling to 32 × 32, smoothing,
histogram equalization, and image division. Afterwards, the vehicle can be repre-
sented with Gabor features, and the feature vector of a vehicle is input for the SVM
classifier. According to the judging of the classifier, we determine that the hypothe-
sis represents a vehicle or a non-vehicle.

5.5.1 Vehicle Representation

We first introduce some necessary definitions for Gabor filters and basic concepts
for vehicle representation. The 2D Gabor function can be defined as follows:

G{f,ϕ,σu,σv}(u, v) = 1

2πσuσv

exp

[
−1

2

(
U2

σ 2
u

+ V 2

σ 2
v

)]
exp[2πjf U ], (5.4)

where {
U = (u, v)(cosϕ, sinϕ),

V = (−u,v)(sinϕ, cosϕ).

Here f means the normalized spatial frequency of a complex sinusoidal signal mod-
ulating Gaussian function, ϕ is the direction of a Gabor filter, σu and σv are the scale
parameters of the filter. Therefore, {f,ϕ,σu, σv} can represent the parameters of a
Gabor filter. Actually, a Gabor filter is a bandpass filter, and the first step of vehicle
detection is to select the Gabor filters strongly responding to the detected object.

Gabor features can be obtained by convolving the input image I (u, v)((u, v) ∈
Ω , where Ω is the image pixel set) and a 2D Gabor filter g(u, v) as

R(u, v) =
∫∫

Ω

I (ξ, η)g(u − ξ, v − η)dξ dη. (5.5)
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Table 5.1 Selection of the optimized Gabor features

(i) Give the test error rate for the mth sub-window by (xi , yi)
N
i=0, where xi is the parameter vector,

yi is the error rate; Y0 = {y0, y1, . . . , yN }. P0 = {};
(ii) Select the optimized filters

For t = 0,1,2,3
Here: index = argmin‖Yt‖∞

Yt = Yt − {yindex}
if ‖xindex − xj‖ > ε,xj ∈ Pt

then Pt = Pt + {xmaxt }
else

goto Here
(iii) Get the best Gabor filter bank for the mth sub-window.

Although a linear feature could be directly used to represent (5.21), few scholars
use it. The general Gabor features include thresholded Gabor feature, Gabor-energy
feature, Complex moment Gabor feature, and grating cell operator feature. In our
approach, we adopt the complex moment features of a Gabor filter response as the
feature vector of our classifier.

We select the filter parameters with the strongest response for a certain sub-
window including a vehicle part, and use SVM as a performance estimation clas-
sifier. The test image is divided into 9 overlapping sub-windows, and the statistical
Gabor features from the convolution between sub-window image patch and a Ga-
bor filter, mean μ, standard deviation θ , and the skewness κ represent the vehicle
[14]. We optimize the SVM parameters for each of the 9 sub-windows, and test the
resulting 9 classifiers for each sub-window using test examples. Then we record the
average error rate. At last, for each sub-window, the 4 Gabor filters with the mini-
mum average error rate are combined into a filter bank for extracting a feature vector
(see Table 5.1).

Then the 9 sub-windows with 4 Gabor filters each make a feature vector of size
108,

[μ11, θ11, κ11, μ12, θ12, κ12, . . . ,μ93, θ93, κ93, μ94, θ94, κ94],
where μij , θij , κij , are the mean, standard deviation, and skewness, respectively;
i is the number of a sub-window, j is the number of a filter.

5.5.2 SVM Classifier

SVM is an efficient approach to find the optimal hyperplane in a binary classifica-
tion [3, 6, 17]. Here, the hyperplane has the maximum margin between two distin-
guished classes, which ensures not only the minimum empirical risk, but also the
minimum Vapnik–Chervonenkis (VC) confidence.

Let {xi, yi}, i = 0,1, . . . ,L − 1, yi ∈ {−1,1}, xi ∈ R
D , be training samples.

Assume that the hyperplane separates the positive samples from the negative ones.
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Fig. 5.6 An illustration of a
max margin classifier and
support vector

Then, the point x in the hyperplane satisfies

wx + b = 0, (5.6)

where w is the normal to the hyperplane, and ‖b‖
‖w‖ is the distance from the origin

to the hyperplane. For refine the margin of a separating hyperplane to be the short-
est distance between the closest positive and negative sample, respectively, and the
hyperplane. For the linearly separable case, the support vector machine seeks the
hyperplane with the largest margin. Therefore, all training data should satisfy the
following constraints

yi(xiw + b) − 1 ≥ 0, ∀i. (5.7)

Now we consider two different types of points. For the points on the hyperplane H1,
we have

xiw + b = 1. (5.8)

Similarly, the points on the hyperplane H2 satisfy the following equation

xiw + b = −1. (5.9)

The margin between H1 and H2 is

margin =
∣∣∣∣‖1 + b‖

‖w‖ − ‖b‖
‖w‖

∣∣∣∣ +
∣∣∣∣‖1 − b‖

‖w‖ − ‖b‖
‖w‖

∣∣∣∣ = 2‖w‖. (5.10)

Thus we can obtain the optimal hyperplanes by minimizing ‖w‖2, resulting in the
maximum margin classifiers. Moreover, define those training points on the hyper-
planes H1 and H2 to be the support vectors, where the hyperplane H2 is determined
as shown in Fig. 5.6 using the extra circles.
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Now we introduce unconstrained Lagrangian multipliers of the problem:

LP = 1

2
‖w‖2 −

L−1∑
i=0

αiyi(xiw + b) +
L−1∑
i=0

αi. (5.11)

Minimizing LP w.r.t. w, b, xi , we have
{

w = ∑
αiyixi,∑L−1

i=0 αiyi = 0.
(5.12)

Substituting (5.12) into (5.11), we have

LD =
L−1∑
i=0

αi − 1

2

L−1∑
i=0

L−1∑
j=0

αiαjyiyj xixj . (5.13)

Note that LP in (5.11) and LD in (5.13) have the same objective function but
with different constraints [3]. For the linearly separable case, we can obtain support
vectors from (5.13) by maximizing LD w.r.t. xi . In the solution, the points with
xi > 0 are the support vectors which determine the hyperplane. Finally, we obtain
w and b from (5.12) and (5.6).

We will discuss the non-separable SVM. To make the method flexible, the inner
products in (5.13) can be substituted by a kernel function K[xi, xj ]. Thus, we have

LD =
L−1∑
i=0

αi − 1

2

L−1∑
i=0

L−1∑
j=0

αiαjyiyjK[xi, xj ]. (5.14)

Kernel choice: There are many kernels investigated for computer vision and pat-
tern recognition and they are as follows:

Polynomial Kernel:

K[xi, xj ] = (xixj + 1)p. (5.15)

RBF Kernel:

K[xi, xj ] = e
− ‖xi−xj ‖2

2σ2 , (5.16)

Sigmoid Kernel:

K[xi, xj ] = tanh(kxiyi − δ). (5.17)

We use Radial Basis Functions as Kernel Functions.
If the training examples from two classes cause the two classes’ margin to be

maximal, then the classification hyperplane satisfies the following constrains:

f (x) =
L∑

i=1

yiaik[x, xi] + b, (5.18)
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Fig. 5.7 The XJT AI&R vehicle examples database (the left two images) and the false examples
of our detector (the right two images)

where x, xi ∈ R
N are N -dimensional input feature vectors, L is the number of la-

beled examples, yi ∈ (−1,1) is the ith labeled example, and k[x, xi] is the inner
product function. We use the radial basis function as a kernel function. For training
the classifier, we selected 500 images from our vehicle database which was collected
in Xi’an in 2005. They contain 1020 positive examples and 1020 negative examples.
When testing the classifier, we get above 90% average right detection rate using 500
negative and positive examples independent of the training examples, and the miss-
ing and error detection rate is below 10%. Figure 5.7 shows the database, some false
positive examples, and some false negative examples; Fig. 5.9 describes the ROC
curve of the classifier.

5.6 Boosted Gabor Features

To reduce the computational burden and improve the performance in vehicle detec-
tion, we propose a supervised learning approach based on boosted Gabor features.
A similar attempt to select the Gabor features is described in [13]. However, the
choosen Gabor feature set in that study is larger than those in our study; moreover,
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the SVM is only used to classify objects during the period of recognizing step rather
than the previous training step. Their approach may result in performance deterio-
ration. In contrast, we use SVM as a classifier during the period of both the training
step and classifying step.

5.6.1 Boosted Gabor Features Using AdaBoost

5.6.1.1 Gabor Feature

We first introduce some necessary definitions for Gabor filters and basic concepts
for vehicle representation. The 2D Gabor function can be defined as follows:

Gp(u, v) = 1

2πσuσv

e
− 1

2 ( U2

σ2
u

+ V 2

σ2
v

) · e2πjf̂ U , (5.19)

where {
U = (u, v)(cosϕ, sinϕ),

V = (−u,v)(sinϕ, cosϕ),
(5.20)

and f̂ is the radius frequency of a complex sinusoidal signal modulating Gaussian
function, ϕ is the direction of a Gabor filter, σu and σv are the scale parameters of
the filter, and p = (f̂ , ϕ, σu, σv) ∈ R

4 represents all the parameters of a Gabor filter.
Clearly, for image pixel set Ω , Gabor features can be obtained by convolving the
input image I (u, v) ((u, v) ∈ Ω) and a 2D Gabor filter g(u, v) as

R(u, v) =
∫∫

Ω

I (ξ, η)g(u − ξ, v − η)dξ dη. (5.21)

Although a linear feature could be directly used to represent an object, few schol-
ars do that. The most often used Gabor features are thresholded Gabor features,
Gabor-energy features, Complex moment Gabor features, and grating cell operator
features. In our approach, we adopt the complex moment features of a Gabor filter
response as the feature vector of our classifier.

5.6.1.2 Boosted Gabor Features

The selection of different Gabor features has some effect on detection performance;
however, the primary reason of selecting a Gabor filter is to find the Gabor filters
strongly responding to the object of interest. The filter parameters are adjusted to ob-
tain the strongest response for sub-windows comprising a vehicle part. The image is
divided into 9 overlapping sub-windows, and the vehicle is represented with statisti-
cal features, mean μ, standard deviation θ , and the skewness κ , from a convolution
between a sub-window and a Gabor filter [15].
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Table 5.2 BGF algorithm description

Input:

Training examples 1 (Ii , yi ),1 ≤ i ≤ n; Training examples 2 (Ij , yj ), n + 1 ≤ j ≤ n + m;

Gabor filters: c1, . . . , cN ; yi is the ith label of an example

Computation:

For each sub-window s

For each Gabor filter c

For each training example (Ii , yi)

r(Ii , c; s) = (Ii ∩ s) ∗ c, i = 1, . . . , n

Train the SVM classifier using the features

For each training example (Ij , yj )

r(Ij , c; s) = (Ij ∩ s) ∗ c, j = n + 1, . . . , n + m

Classify the training examples 2

Do T times

Obtain one feature using AdaBoost algorithm;

Output:

The 4 Gabor filters after 4 iterations with weights αi,j for each sub-window.

Having obtained Gabor features of an object, it is time to evaluate the perfor-
mance of a Gabor feature. Boosting approaches aim at improving the accuracy of
any given learning algorithm and focusing on “difficult” examples. The AdaBoost
algorithm proposed by E. Schapire is one of the most popular variations of basic
boosting algorithms [7]. In its original form, it is used to improve the accuracy of
any given learning algorithm. In our approach, it is used to boost the Gabor features
for vehicle detection.

There are many Gabor features associated with a sub-window; however, few Ga-
bor features are crucial for vehicle detection. Consequently, feature selection must
be performed on these Gabor features. In our approach, we optimize the SVM classi-
fier parameters for each of the 9 sub-windows, and then test the resulting 9 classifiers
for each sub-window using test examples recording the classification rate of each
Gabor filter for the 9 different sub-windows. According to the results, we perform
the boosting task on a larger set of Gabor features using the AdaBoost algorithm,
where each round of boosting finds one Gabor feature for a sub-window from the
candidate features. After T iterations, it yields T Gabor filters for each sub-window
(see Table 5.2). In our experiments, a total of 36 filters were combined into a feature
vector to represent vehicles. The detection performance of BGF approach using the
features after 4 iterations is better than those after 6 iterations.

The selection of a Gabor filter is to find the optimal parameter set in Gabor pa-
rameter space R

4

{p1, . . . , pi, . . . , pN },
where pi = (f̂i , ϕi, σui, σvi), and N is the number of Gabor filters. For convenience
of computing Gabor parameters are discretized. We define the range of f̂ to be
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[f̂min, f̂max]. According to the Nyquist theorem, the digital frequency ω = π cor-
responds to the maximum frequency of a band limited signal, and the frequencies
higher than π will be distorted. We write ωmax = 2πfmax/fs = 2πf̂max, and then
f̂max = ωmax/2π , where f is the general frequency, fs is the sampling frequency,
and f̂k is the kth normalized frequency that can be discretized by

f̂k = f̂min + f̂max − f̂min

L
ak with a =

(
f̂max

f̂min

) 1
L−1

,

where L is the number of sample points and a is the sample scale. For the direction
ϕ of a filter, the filter response to an object in [0,π] is the same as to an object in
[π,2π].

The sample interval for uniform sampling is �ϕ = 180/P degrees, where P is
the number of samples for ϕ. The scale parameters σx and σy are actually the ef-
fective size of a Gaussian function, and their ranges are equal, say [σmin, σmax]. The
upper limit σmax = Ws/5, where Ws is the sub-window width, resulting in 98.7%
energy in the range [−π,π] of ϕ. At the same time, the lower limit σmin equals 0,
and the number of samples for both σx and σy is M .

In the experiments of our approach, a = 1.5588, L = 15, P = 15, M = 10,
N = 22500, Ws = 40, f̂ ∈ [f̂min, f̂max] = [0,0.5], and σx,σy ∈ = [0,8]. Figure 5.8
shows our boosted Gabor filters for vehicle detection.

5.6.2 Experimental Results and Analysis

5.6.2.1 Vehicle Database for Detection and Tracking

For vehicle detection and tracking, we collected the vehicle video database under
two conditions: general and hard ones. According to weather, daytime, road type,
and congestion, we collected images of several kinds of vehicles, such as sedans,
trucks, and motorcycles. The host vehicle collecting the video operated at 3 dif-
ferent speeds: 40, 80, and 120 km/h. Table 5.3 is the summary of various road
conditions for video collection, and here ∗ indicates hard conditions;

√
indicates

general conditions.

5.6.2.2 Boosted Gabor Features

We have carried out vehicle detection using, apart from our approach, the EGFO
approach and a no-boosting approach. The distribution of Gabor filter parameters
(f̂ , ϕ, σx , σy) is shown in Fig. 5.10. We can see that our boosted Gabor filters are
different from the optimized Gabor filters using EGFO because each Gabor filter in
our approach is optimized for a sub-window rather than for a complete image. For
the frequency of Gabor filters, the boosted filters tend to have a low frequency due
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Fig. 5.8 Boosted Gabor
filters using AdaBoost
algorithm: each row shows
the boosted Gabor filters for
one sub-window, and the ith
column represents the Gabor
filter after the ith iteration

Table 5.3 The collection
conditions of vehicle video Conditions Curve Straight Upslope

No traffic congestion * * *

Traffic congestion
√

Sunny * * *

Cloudy * * *

Rain
√ √ √

After rain
√ √ √

Against sun
√ √

Night
√ √ √

to large structures in vehicles, like windows and bumpers. The directions of most of
the boosted Gabor filters are close to 0◦, 45◦, 90◦, and 135◦ (see the second sub-
figure of Fig. 5.10), due to the prevalence of these angles in vehicles. In addition,
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Fig. 5.9 ROC curves for our
vehicle classifier

Fig. 5.10 The distribution of the parameters of Gabor Filters

from the latter two sub-figures of Fig. 5.10, it follows that σy is larger than σx , in ac-
cordance with vehicles being wider rather than higher. To summarize, the choice of
Gabor filter parameters is heavily dependent on the detection object, a Gabor filter
that works well for vehicles probably does not work for pedestrians, and vice versa.
Our Gabor filter selection optimized for vehicle detection results in better perfor-
mance than those based on previous selection methods (Fig. 5.11). For training the
classifier, we selected 500 images from our vehicle database which was collected in
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Fig. 5.11 Vehicle detection
based on hypothesis
validation

Xi’an in 2005. They contain 1020 positive examples and 1020 negative examples.
In testing the classifier, we use 500 negative and positive examples independent of
the training examples.

For the validation of the performance of our BGF approach, the vehicle detection
experiments were performed on three different optimization approaches for 22,500
Gabor filters. The experimental results show the Average Right Rate (ARR) of a
no-boosting Gabor feature approach to be 90%, that of BGF approach to be 96%,
and that of EGFO approach to be 91%. Figure 5.12(a) is the comparison of our
detector with the other two approaches, and the Receiver Operating Characteristics
(ROC) curves that compare different boosting approaches are shown in Fig. 5.9.
These figures show that our vehicle detector has good discrimination ability with a
low decision bias when comparing the no-boosting and EGFO algorithms.

5.6.2.3 Vehicle Detection Results and Discussions

We tested our vehicle detector on the collected video using the Springrobot platform
[10]. Figures 5.13 and 5.14 show the results of our vehicle detector under general
and hard conditions, respectively. We proposed an approach for vehicle classifica-
tion and detection with good time performance using vanishing points and ROIs
and achieving high detection accuracy using Gabor features. The method using the
vanishing point to define ROIs eliminates the disturbing effects of some non-vehicle
objects, improving both the detection rate and the robustness of this approach. The
detection speed of our vehicle detector is approximately 20 frames/second on a
Pentium� 4 CPU 2.4 GHz both for the general and hard conditions. The detec-
tion rate is defined by

r =
∑N

i=1(nti − nfi)∑N
j=1(nvj )

, (5.22)
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Fig. 5.12 Two kinds of
curves comparing different
Gabor filter optimization
approaches

where nti represents the number of right detection in the ith frame; nfi represents
the error detection rate in the ith frame; nvj represents the actual number of vehicles
in the j th frame. With this definition, our vehicle detection rate is above 90%.

In our approach, we have introduced a structure of hypothesis and validation for
vehicle classification and detection. The experimental results of our system so far
show that the algorithm works well on a structured road. Extension of this approach
to unstructured roads needs to be investigated. Additionally, under the conditions of
congestion, the constraints are too strong to detect all vehicles but the unobstructed
vehicles are all detected. Further research work will focus on these problems.
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Fig. 5.13 Vehicle detection results under the general conditions

Fig. 5.14 Vehicle detection results under the hard conditions
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Chapter 6
Multiple-Sensor Based Multiple-Object
Tracking

6.1 Introduction

As we mentioned in previous chapters, vision sensors are capable of estimating
the relative position between the host vehicle and other vehicles, determining the
shapes of obstacles and lanes. However, vision sensors could depend on weather and
lighting conditions. Moreover, using single vision sensors it is difficult to estimate
the longitudinal distance since perspective projections remove depth information.
A radar/lidar based system is robust to weather and lighting conditions, and it is
also easy to estimate depth information. In conclusion, radar/lidar and vision sensors
have complementary properties. The systems combining these sensors remarkably
improve overall system performance.

6.2 Related Work

Multi-sensor multi-object detection and tracking systems have received consider-
able attention over the last 5 years [1, 5, 6, 9–11, 14, 15, 17, 18]. In [17], a strategy
that distinguishes between a static object and a moving object by estimating ob-
ject speed has been proposed, where both the speed and the direction of the objects
and the host vehicle are used to estimate the speed. In [9], three different geometric
object models are designed for small objects, the objects described by a rectangular
shape like that of a car, and free-form objects, respectively. In terms of obstacle clas-
sification and tracking, the most generally used combination approach consists of a
camera and a range sensor [1, 9, 11, 17]. An approach that simplifies the fusion be-
tween range and vision sensors using corresponding sets of hypothesis was proposed
in [1]. In this system, a radar device and a monocular camera are fused by sharing
sets of hypotheses for the detection of vehicles. In [5], a decentralized multiple-
sensor multiple-target tracking approach for the Autotaxi system is considered for
avoiding collisions, where the tracking involves three stages: data alignment, track-
to-track association, and track fusion. A sensor fusion strategy that introduces depth
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cue into the segmentation algorithm improves the target segmentation performance
due to the complement of radar and vision [6]. As a pre-crash system, SAVE-U
project aims at protecting pedestrians and bicyclists and avoiding collisions between
pedestrians and vehicles, where the sensor platform consists of radar sensors, nor-
mal cameras, and infrared cameras. Alternatively, another combination form, such
as using an infrared camera and a radar [14], has good performance in driver assis-
tance systems.

In environment perception, CHAUFFEUR Assistant system combined both radar
and video sensors, providing vehicle controllers with valuable data about preceding
vehicles and about the lane.

In Highway Lane Change Assistant (HLCA), vision and radar sensors are com-
bined to detect dangerous objects in the neighboring lanes [16], which was evaluated
by different drivers in different vehicles. On German highways, the common vision-
based lane recognition system is proved to be affected by weather, a fusion approach
was used to estimated road structures and the positions of the other vehicles in front
by combining vision and radar sensors [7]. Combining radar-based ACC and vi-
sional perception, a Hybrid Adaptive Cruise Control (HACC) was created to first
detect and track lanes and vehicles. And afterwards this information was used in the
longitudinal controllers [8].

6.3 Obstacles Stationary or Moving Judgement Using Lidar
Data

A lidar sensor is often used as an on-board sensor for driver assistance systems.
Much effort about clustering the original data and classifying the objects using a
lidar sensor have been made [13, 17]. A method consisting of three modules: scan
segmentation, object classification, and object tracking by a lidar is used to detect
and track multiple objects [13]. A strategy is proposed for distinguishing all objects
detected by a lidar and for dividing them into three categories: moving objects,
roadside reflectors, and overhead sign [17], where the motion of detected objects
is judged by the relationship between the path of the host vehicle and changes in
the positions of the objects. The position and size of obstacles are not sufficient to
assess its safety in I2DASW systems, and the various behaviors of all the obstacles
on the road should also be considered, such as the velocity and the acceleration. We
have developed an algorithm to estimate the velocity of all obstacles.

First, we segment the lidar data into several clusters, and each cluster repre-
sents one target. According to the distance between two laser points, we can judge
whether two points belong to an object or not by the following equation [13]

rk,k+1 ≤ rmin
2 tanβ sin(

φ
2 )

cos(φ
2 ) − sin(

φ
2 ) tanβ

, (6.1)

where rk is the distance of the kth point to the laser device, rk,k+1 = |rk − rk+1|,
rmin = min{rk, rk+1}, φ is the angular resolution. In our experiments, φ = 0.25◦ and
β = 85◦.
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Fig. 6.1 Our velocity estimation approach

In many similar systems, the vehicle speed is measured by the encoder [2]. In
contrast, we proposed a vehicle speed estimation algorithm by using a static object
given the two observation values (r1, θ1) and (r2, θ2) as follows:

vh = [
r2

1 + r2
2 − 2r1r2 cos(θ1 − θ2)

]
/(mT ), (6.2)

where T is the sampling interval; m is the number of the consecutive frames, and it
is generally larger than 1 for improving the velocity accuracy. Here we assume that
over a small interval of time mT the driving direction of the host vehicle is consistent
with the Y -axis in the Cartesian coordinates system XOY as shown in Fig. 6.1. After
finishing the velocity estimation of a host vehicle, we can obtain the coordinates of
two segments: P0 = (x0, y0) and P1 = (x1, y1). Therefore,

x0 = −r1 cos θ1, y0 = r1 sin θ1, (6.3)

x1 = −r2 cos θ2, y1 = x2mT vh + r2 sin θ2. (6.4)

Then we can estimate the absolute velocity of stable objects in the scene by the
following equation

vo =
√

(y1 − y0)2 + (x1 − x0)2

mT
. (6.5)
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Fig. 6.2 Lidar clustering and
speed estimation

Considering the noise and vibration of the lidar, we can judge whether an object is
moving or is stationary by the Mahalanobis distance given two segments P0 and P1:

d = (P0 − P1)
T Σ−1(P0 − P1),

where Σ is a covariance matrix reflecting the uncertainty characteristics of lidar
data. If d < d0, the object is stationary, otherwise the object is moving. Here the
decision rule can be interpreted geometrically as saying that the distance between
the two points is less than d0, taking into account the variance. Figure 6.2 shows the
results of velocity estimation using our algorithm, where the 13th, 14th and 15th
objects are stable for several consecutive frames.

6.4 Multi-obstacle Tracking and Situation Assessment

6.4.1 Multi-obstacle Tracking Based on EKF Using a Single
Sensor

6.4.1.1 Probability Framework of Tracking

From the viewpoint of probability, tracking is a kind of statistical inference, in other
words, given the observation values at time 1 and extending up to and including time
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k: Z1:k = {z1, z2, . . . , zk}, we may construct the posterior probability P(Xk|Z1:k),
and then obtain the estimate X̂k and the covariance matrix P of the state vector Xk

at time k.
For the sake of simplicity, we make two assumptions:

1. The state at the current time k only depends on the state at the last time k − 1,
which is called a first order Markov Process. Consequently, it yields the follow-
ing equation

P(Xk|Xk−1,Xk−2, . . . ) = P(Xk|Xk−1).

2. The observation at current time k depends only on the current state P(Z1:k|Xk) =
P(Zk|Xk)P (Z1:k−1|Xk).

By hypothesis, we can deduce the Bayesian posterior probability

P(Xk|Z1:k) = P(Zk|Xk)P (Xk|Z1:k−1)

P (Z1:k|Z1:k−1)
, (6.6)

where P(Xk|Z1:k) is the posterior probability, P(Zk|Xk) is the likelihood, P(Xk|
Z1:k−1) is the prior probability, and P(Z1:k|Z1:k−1) = ∫

P(Zk|Xk)P (Xk|Z1:k−1)dXk

is the belief.
For the probability framework of a tracking problem, we may proceed in the

manner described next:

3. Prediction Step. Given P(Xk−1|Z1:k−1), we can obtain P(Xk|Z1:k−1) and
X̂k|k−1.

4. Update Step. Given P(Xk−1|Z1:k−1) and Zk , we can obtain P(Xk|Z1:k) and
X̂k|k .

6.4.1.2 System Model

In this system, we adopt the constant acceleration model to build the system equa-
tion {

Xk = FXk−1 + G · v,

Zk = h(Xk) + w.
(6.7)

The state vector at time k defined as

Xk = [xk, ẋk, ẍk, yk, ẏk, ÿk]T ,

where xk , ẋk , ẍk are the position, velocity, and acceleration in the x-direction at time
k; yk , ẏk , ÿk are the position, velocity, and acceleration in the y-direction at time k.
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The state transition matrix can be written as

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 T T 2/2 0 0 0
0 1 T 0 0 0
0 0 1 0 0 0
0 0 0 1 T T 2/2
0 0 0 0 1 T

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (6.8)

where T is the sampling interval of a sensor. In (6.7), v = [vax , vay ]T is process
noise, modeled as a zero-mean white noise whose correlation matrix is defined by

E
{
vkv

T
j

} =
[
σ 2

x 0
0 σ 2

y

]
δkj ,

where n is the dimension of v; and here n = 2. The process noise distribution matrix
corresponding to the above is

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

T 2/2 0
T 0
1 0
0 T 2/2
0 T

0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (6.9)

We define the observation value at time k as

Zk =
[
rk
θk

]
, (6.10)

and its observation function is

h(xk) =
[ √

x2
k + y2

k

tg−1[yk/xk]

]
. (6.11)

Therefore, we can get the following form
{

xk = rk cos(θk),

yk = rk sin(θk).
(6.12)

In this system, the states of objects are in the Cartesian coordinate system, while
observation values are in the polar coordinate system. Consequently, the observation
equation is nonlinear. We may now linearize h(X) around X = X̂k|k−1 and obtain
the observation matrix

Hk = ∂h

∂X

∣∣∣∣
X=X̂k|k−1

=
⎡
⎢⎣

x̂k|k−1√
x̂2
k|k−1+ŷ2

k|k−1

0 0
ŷk|k−1√

x̂2
k|k−1+ŷ2

k|k−1

0 0

−̂yk|k−1

x̂2
k|k−1+ŷ2

k|k−1
0 0

x̂k|k−1

x̂2
k|k−1+ŷ2

k|k−1
0 0

⎤
⎥⎦ . (6.13)
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In (6.7), w = [wr,wθ ] is the observation noise, modeled as a zero-mean white noise
whose correlation matrix is defined by

E
{
wkw

T
j

} =
[
σ 2

r 0
0 σ 2

θ

]
δkj = Rδkj ,

where n is the dimension of w; and here n = 2.
Combining the probability framework of tracking with the Minimum Mean

Square Error (MMSE), we can obtain the EKF’s prediction equation

{
X̂k|k−1 = FXk−1|k−1,

Pk|k−1 = FPk−1|k−1F
T + GQGT ,

(6.14)

where X̂k|k−1 is the state prediction at time k given the state at time k − 1 and
P(k|k − 1) is the prediction covariance.

The update equation given zk and X̂k|k−1 at time k can be written in the form

{
X̂k|k = X̂k|k−1 + Wk[Zk − HkX̂k|k−1],
Pk|k = Pk|k−1 − WkSWT

k ,
(6.15)

{
S = HPk|k−1H

T + R,

Wk = Pk|k−1H
T S−1,

(6.16)

where S is the observation prediction covariance, and Wk is the Kalman gain, X̂k|k
is the output of state update, and Pk|k is the update state covariance.

6.4.1.3 Initial Conditions

Concerning the initialization of the EKF, we determine the local tracks by using the
acceleration of three points where it is assumed that motion of an object is modeled
as having constant acceleration, finishing the initialization operation; for details we
refer to [15].

6.4.1.4 Data Association for a Single Sensor

For lidar and radar data, data association is the first of all steps when new data ar-
rive, aiming at judging the corresponding relation between the current observation
and the previous track. Our data association includes two categories: observation-to-
observation and observation-to-track. The main objective of the association between
observations is to initialize tracks correctly, while the association between an obser-
vation and a track aims at holding and updating the existing tracks.
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Fig. 6.3 Various association gates: circle, sector, and ellipse

1. Observation-to-Observation Association When a new object appears, we can
hold the observation directly. For a single point, we do not know the moving direc-
tion of the object. In that case, when the object has an observation z1, we use the
circle association gate to judge the correlation between z1 and znew

2 without a mov-
ing direction (see Fig. 6.3).

To associate a new observation, the next problem is to compute the radius of the
association gate r . The radius of an associate gate is defined as

	rmax = (vh − vo) · Ts, (6.17)

where vh is the velocity of the host vehicle, vo is the velocity of the obstacle. If
|znew

2 − z1| ≤ 	rmax, it means that znew
2 is correlated with z1, otherwise they do not

correlate (see Fig. 6.3).
If there are two existing observation points of a certain object, z1 and z2, we

can use a sector association gate to judge the correlation between znew
3 and z2 (see

Fig. 6.3). If the following inequality is satisfied

{
rs ≤ |z1z

new
3 | ≤ rl,

| arg(z1z
new
3 ) − arg(z1z2)| ≤ θ,

(6.18)

then znew
3 is located inside the association gate, which represents the correlation

between znew
3 and z2. Here θ is a threshold value.

2. Observation-to-Track Association During the period of tracking, we obtain
the state update value of a track X̂k−1|k−1 at time k−1 and the state prediction value
of a track X̂k|k−1 at time k. Combining observation value znew

k at time k with the

previous two state values judges whether znew
k is associated with X̂k|k−1 or not.

After the initialization of tracks, it yields the state estimates of objects by using a
prediction-and-update model. In general, the longer exiting period results in lesser
estimation covariance. In our approach, we set an ellipse association gate with its
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center X̂k|k−1 (see Fig. 6.3), and choose the motion direction of an object as a major
axis.

Define the new observation as

znew
k = [

rnew
k , θnew

k

]
.

Consequently, we obtain the Cartesian coordinates of the observation given the
observation value znew

k in the form

{
xnew
k = rnew

k cos(θnew
k ),

ynew
k = rnew

k sin(θnew
k ).

(6.19)

Then we can obtain the state prediction value

X̂k|k−1 = [xk|k−1, ẋk|k−1, ẍk|k−1, yk|k−1, ẏk|k−1, ÿk|k−1]T

and the motion direction of the object

θo = arctan

(
ẏk|k−1

ẋk|k−1

)
.

Here θo is the rotation angle of the ellipse association gate.
On the basis of the previous results, we get the ellipse equation of the association

gate

x2
e

a2
+ y2

e

b2
= 1, (6.20)

where {
xe = (x − xk|k−1) cos θo + (y − yk|k−1) sin θo,

ye = (x − xk|k−1)(− sin θo) + (y − yk|k−1) cos θo.
(6.21)

We may now define a distance function

dX,Z = x2
e

a2
+ y2

e

b2
, (6.22)

where a and b are the half-lengths of the two axes of an ellipse.
Substituting the observation value znew

k = (xnew
k , ynew

k ) into (6.22), dX,Z ≤ 1 in-
dicates that znew

k and X̂k|k−1 are correlated; while dX,Z > 1 indicates that znew
k is

uncorrelated with X̂k|k−1.
On the basis of the distance function of the above observation-to-observation

and observation-to-track association, we build a distance matrix for all the passing
points, and use Global Nearest Neighbor (GNN) algorithm to associate the observa-
tion with observation or a track.
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6.4.1.5 Single Track Management

A single track management is an important step of object tracking. In our approach,
for every observation point, if there are 3 correlated observation values among 5
consecutive values, we can initialize the EKF, finishing the start of a track.

Track holding is to keep the tracks of objects continuously by the beforehand
stated rules after the start of the tracks. We use a sliding window detector to hold
tracks, where an N/M rule is used to judge whether these tracks exist. In other
words, N correlated observation values out of M observation values are considered
for the track to exist. With the increase of the holding time of a track, the belief of
this track is getting bigger and bigger. Consequently, in terms of actual implemen-
tation, M and N/M during the start period of a track can be set to a smaller value
than that of the later period of tracking. In our approach, M = 8,N = 5.

To process a vanishing object, canceling of tracks is necessary. There are three
categories tracks required to be canceled. The first one is the point without ini-
tialization: If there are no 3 correlated consecutive observation values, the track is
canceled. The second one is a start track: If the N/M rule is violated, the track
is canceled. The third one is a track made by a reverse direction object: When the
object moves behind a host car, the track can be canceled immediately. Figure 6.4
shows the tracks of multiple objects using a radar sensor.

6.4.2 Lidar and Radar Track Fusion

6.4.2.1 Data Alignment

Since lidars and radars work independently and are unsynchronized, for multi-
sensor fusion, we must first transform the different coordinates into the same co-
ordinate system and then fuse the local tracks. Here we map the lidar coordinates
and radar coordinates into the vehicle coordinates to solve the position alignment.
Moreover, we synchronize time between lidar and radar by using the prediction
equation of EKF.

6.4.2.2 Track Association

On the basis of the two local tracks of a lidar and a radar, X̂l and X̂r , we can yield
the corresponding relation between the two local tracks. The distance function is
defined as [3, 5]

dlr = (X̂l − X̂r )
T (Pl + Pr − Plr − Prl)

−1(X̂l − X̂r ). (6.23)

In actual implementation, we neglect the cross-covariance matrixes between the
lidar and radar: Plr and Prl , that is, Plr = Prl = 0.
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Fig. 6.4 Multiple-object tracking using a radar sensor

Let x = dij , and suppose it has a χ2 distribution with M degrees of freedom with
the density in the form [3]

f (x) = 1

2
M
2 �(M

2 )
x

M−2
2 e− x

2 , (6.24)

where � is the Gamma function with the following properties:

�

(
1

2

)
= √

π, �(1) = 1, �(m + 1) = m�(m).
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The probability of x ∈ (0, σ ) may be written as

α =
∫ σ

0
f (x)dx.

On the basis of a σ corresponding to a given α, we can set the ellipse association
gate {

H0 : dlr ≤ σ,

H1 : dlr > σ,
(6.25)

where H0 indicates that X̂l and X̂r come from the same object; H1 indicates that X̂l

and X̂r come from two different objects.
Assumed that there are N track pairs which pass the association gate, we rank

the track pairs by the corresponding distance value dij . Since one object has only
one track pair, we take the track pair with the minimum distance value dlr .

6.4.2.3 Track Fusion Algorithm

There now remains the problem of track fusion given local tracks of the lidar and
radar, X̂l and X̂r , and their covariance matrixes: Pr and Pl . To solve track fusion,
we use the Maximum Likelihood Estimation (MLE) approach to fuse the tracks [5].
First of all, we assume that the state estimation error has a Gaussian distribution,
and then obtain the state estimation value and its covariance of a local track in the
form [5] {

X̂ml = Pml(P
−1
l X̂l + P −1

r X̂r ),

Pml = (P −1
l + P −1

r )−1.
(6.26)

Through the above process, we can yield the Regions of Interest (ROIs) using
global tracks. Moreover, we can extract more accurate environment structure using
visual information. In our approach, the CCD sensors implement lane recognition
and vehicle detection. Our lane recognition approach is an Adaptive Randomized
Hough Transform (ARHT) [12] described in Sect. 4.3, which implements robust
and accurate detection of lane markings without manual initialization or priori in-
formation under road environment. The results of lane recognition provide the road
structure and limit the region of obstacles. In terms of vehicle detection, we use
Gabor features to represent and detect vehicles in ROIs [4]. Figure 6.6 shows the
fusion results of the three sensors at the Springrobot platform shown in Fig. 6.5.

6.5 Conclusion and Future Work

In our approach, we have proposed an interactive road situation analysis frame-
work and its algorithmic implementation, namely the multiple-sensor multi-object
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Fig. 6.5 Intelligent driver assistance and safety warning platform—Springrobot

Fig. 6.6 Obstacles tracks
using our approach
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detection and tracking approach. We put emphasis on the future situation evalua-
tion rather than current obstacles situation. Vehicle dynamics and driver behavior
are considered as two influencing factors for various I2DASW systems. In addition,
comparing other similar systems, our framework is a more integrated one, where the
control module based on preview-following is involved, which yields a concise and
efficient framework.

There are also several questions that need to be further investigated in our future
work. For special applications, deciding how to select and setup the sensor network
is also very important. We calibrate the sensors in our system, and it is normally the
case that it needs many manual operations. Needless to say, joint calibration of a
multiple-sensor including a camera, lidar and a radar is desired to be automatically
made in all driver assistance and safety warning systems.
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Part III
Vehicle Localization and Navigation



Chapter 7
An Integrated DGPS/IMU Positioning Approach

7.1 Introduction

For autonomous navigation, vehicles must be capable of determining their global
and local positions within their surrounding environment [10, 19, 27]. However, ve-
hicle localization is one of challenging problems due to the following issues. First of
all, sensor noises give rise to inaccurate position information in global localization.
If the vehicle can obtain the accurate global position information, we would sim-
plify localization problem a lot. Unfortunately, the precision of the nowadays GPS
is about several meters. Though differential GPS can provide the promising reso-
lution of several centimeters, on-vehicle GPS terminals could hardly receive any
signals especially in some urban environments. In addition, other sensors’ noises
(cameras, sonar, etc.) also degrade the localization a lot. Second, vehicle location
localization is not only to obtain the absolute position, but also to capture relative
position relationship between a host vehicle and its surrounding objects. This plays
an important role in obstacle avoidance.

The commonly-used positioning sensors are the Global Navigation Satellite Sys-
tem (GNSS), Inertial Measurement Unit (IMU), and encoders. The basic elements
of the GNSS are the set of satellites, ground augmentation systems, and user equip-
ment. There are four GNSS over the world: Global Positioning System (GPS) [15,
16], GLONASS [17], Galileo [3], and BeiDou/Compass [4, 14]. Among these
GNSS, GPS is the most commonly-used for vehicle navigation and localization.
As we mentioned before, the GNSS cannot provide accurate positioning informa-
tion at any time or any place. Hence, combining IMU and encoders is capable of
compensating for the disadvantages of the GNSS. The GNSS and DR are usually
mutually complementary. On the one hand, the GNSS provides the absolute position
to an IMU for both the initialization of the vehicle position and for sensor correc-
tion. On the other hand, the result of an IMU could compensate the random errors of
the GNSS. As a result, combining two approaches can overcome the disadvantages
of each single approach, thus improving positioning precision [1, 23].

Many problems in vehicle localization and navigation require estimating the
states of a system that change over time using noisy time sequences. The state–
space representation to dynamic time sequence modeling provides the state vectors
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of a system and the relationship between state vectors and measurements. Moreover,
to inference a dynamic system, both a system model and a measurement model are
necessary in a deterministic/probabilistic form. In terms of linear/Gaussian systems,
Kalman filtering approaches are linear least square-root estimators [12]. Though
Kalman filtering was originally developed for a linear system, the Extended Kalman
Filtering is used to handle nonlinear cases by approximating nonlinear functions us-
ing partial derivatives [18]. However, all of the previous approaches fail for multi-
modal pdfs and heavily skewed distributions.

In this case, the system models could be both nonlinear and non-Gaussian.
Hence, particle filtering, a.k.a. Sequential Monte Carlo filtering, is applied to repre-
sent the state distribution using particles [11, 13]. In recent years, this approach is
widely used in robot localization [11, 13, 22] and sensor fusion [25].

7.2 Related Work

The GPS has been widely used in vehicle navigation [5, 7, 24]. However, this kind of
positioning systems based solely on GPS does not work well when the GPS signals
are very bad due to either object blocking or not enough satellites. Therefore, many
real-world positioning systems integrate the GPS with dead reckoning sensors to
provide better positioning solutions. Moreover, KF/EKF/UKF/PF based techniques
are widely used to both fuse the GPS data and DR data, and iteratively estimate
vehicle position [2, 28].

In the last 30 years, integrated GPS/DR approaches are widely used in vehicle
navigation [1, 27]. Abbott et al. presented a quantitative examination of the impact
that individual navigation sensors have on the performance of a vehicle navigation
system [1]. Gamini et al. investigated building an environment map while simulta-
neously calculating the absolute position using this map in an unknown environment
[8]. Cui et al. proposed a vehicle positioning approach with GPS especially in urban
canyon environments where the GPS signals are easy to be blocked by high build-
ings, thus yielding insufficient satellite coverage. To this end, the authors presented
a constrained method by approximating vehicle path using line segments. By doing
so, the system can reduce the minimum number of required available satellites to
two. In recent years, Vehicle AdHoc Networks (VANets) are playing an important
role in communicating to provide various applications varying from safe driving to
assisted driving. Boukerche et al. discussed the positioning requirements of the main
VANet applications based on data fusion techniques [5]. Moreover, the authors in-
vestigated how to combine these positioning techniques using data fusion to obtain
robust positioning solutions in VANets. In TELEcommunications and inforMAT-
ICS (TELEMATICS) systems, a car navigation system plays a core role in both safe
and comfortable driving. Low-cost DR systems are critical for extending a commer-
cial navigation market. To this end, Cho et al. presented a low-cost GPS/DR system
where the DR system consists of an accelerometer and a gyro [6]. Moreover, the
authors investigated the performance of three estimating techniques, EKF, Sigma-
Point KF (SPKF), and the Sigma-Point-based Receding-HKF (SPRHKF), in various
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Fig. 7.1 The framework of
the DGPS/IMU positioning
system

situations. Yang et al. proposed a nonlinear filter algorithm for GPS/DR positioning
system, combining SR-KF and SR-UKF [24]. The experimental results show that
the proposed algorithm has both higher filtering precision and better stability than
those of the EKF. As we know, in-car positioning and navigation systems not only
guide drivers from one location to another by GPS/DR and a map, but also provide
communication service. Skog et al. presented data sources and fusion techniques for
an in-car navigation system [20]. Also, the authors introduced the advantages and
disadvantages of the four commonly used basic positioning sensors.

7.3 An Integrated DGPS/IMU Positioning Approach

In a GPS/IMU navigation system, IMU provides position, velocity, and pose, while
GPS provides position information for correcting IMU in general [9, 26]. However,
in our navigation system, we directly use the observed data from the DGPS as input
of GPS/IMU data fusion, without requiring separate DGPS filters. When DGPS
does not work well, IMU will provide localizing parameters, shown in Fig. 7.1. The
robust DGPS/IMU data fusion and IMU Filter are described below.

7.3.1 The System Equation

In this section, we assume that land vehicles are moving objects in 2D planes. Let
XT = [e n ė ṅ ë n̈ εe εn δθ δs] denote a state vector, where e and n are the coor-
dinates in the x- and y-directions, respectively; ė/ṅ and ë/n̈ are the velocity and
acceleration in the x- or y-directions; εe and εn are the position errors in the x- and
y-directions, respectively; δθ and δs are the relative rotating angle error of gyros and
the distance error of encoders.

As we know, we have the following equation from Newton’s laws of motion

{
s = vt + 1

2at2,

v = at,
(7.1)
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where t is the time, v is the velocity, a is the acceleration, and s is the distance.
From (7.1), we can see that both the distance and velocity are calculated from ac-
celeration. Though driving tasks are quite complex due to the effects of routines,
road surfaces, drivers, and traffic jams. The state change of a vehicle is provided
either directly or indirectly from the acceleration change. Therefore, it is important
to model acceleration change for building dynamic models of the vehicle.

There are many operations in vehicle driving, such as making a turn, accelerating,
decelerating and stopping a car, due to the complexity of urban traffic environment.
Hence, the acceleration of a vehicle is represented using the “current” model [21,
28, 29], and then the acceleration change of the vehicle is a first-order stationary
Markov process

ë = āe + ae, ȧe = −τae · ae + Wae, (7.2)

n̈ = ān + an, ȧn = −τan · an + Wan, (7.3)

where ae and an are zero-mean Singer acceleration processes; āe and ān are the
means of acceleration in the x- and y-directions, respectively; Wae and Wan are
zero-mean white noises with constant power spectral densities 2τaeσ

2
ae

and 2τanσ
2
an

,
respectively; τae and τan are the multiplicative inverses of correlation time constants.
At the same time, we model the other errors as a first-order Markov process as
follows {

ε̇e = −τεeεe + ωεe , ε̇n = −τεnεn + ωεn,

δ̇θ = −τδθ δθ + ωδθ , δs = −τδs δs + ωδs ,
(7.4)

where τεe , τεn , τδθ , τδs are the multiplicative inverses of correlation time constants;
Wεe , Wεn , Wδθ , Wδs are zero-mean white noises. Hence, we obtain the discrete state
equation described as

Xk+1 = Φk+1,kXk + Uk + Wk, (7.5)

where

Φk+1,k =

⎡
⎢⎢⎢⎢⎣

I2×2 T I2×2 C1 02×2 02×2
02×2 I2×2 C2 02×2 02×2
02×2 02×2 E1 02×2 02×2
02×2 02×2 02×2 E2 02×2
02×2 02×2 02×2 02×2 20F

⎤
⎥⎥⎥⎥⎦ ,

C1 = diag

{
1

τ 2
ae

(−1 + τaeT + e−τae T
)
,

1

τ 2
an

(−1 + τanT + e−τanT
)}

,

C2 = diag

{
1

τae

(
1 − e−τae T

)
,

1

τan

(
1 − e−τanT

)}
,

E1 = diag
{
e−τae T , e−τanT

}
, E2 = diag

{
e−τεe T , e−τεnT

}
,

F = diag
{
e−τδθ

T , e−τδs T
}
,
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Uk = [u1, u2, u3, u4, u5, u6, I1×4]T ,

u1 = 1

τae

(
−T + τaeT

2

2
+ 1 − e−τae T

τae

)
āe,

u2 = 1

τan

(
−T + τanT

2

2
+ 1 − e−τanT

τan

)
ān,

u3 =
(

T − 1 − e−τae T

τae

)
āe, u4 =

(
T − 1 − e−τanT

τan

)
ān ,

u5 = (
1 − e−τae T

)
āe, u6 = (

1 − e−τan T
)
ān.

Wk is a white noise sequence, E[WkW
T
k+j ] = 0 (∀j �= 0), and its covariance matrix

is

Qk = E
[
WkW

T
k

] =
⎡
⎣Q11 06×2 06×2

02×6 Q12 02×2
02×6 02×2 20Q13

⎤
⎦ , (7.6)

where

Q11 = [qij ]6×6,

q11 = σ 2
ae

τ 4
ae

[
1 − e−2τae T + 2τaeT + 2τ 3

ae
T 3

3
− 2τ 2

ae
T 2 − 4τaeT e−τae T

]
,

q13 = q31 = σ 2
ae

τ 3
ae

[
e−2τae T + 1 − 2e−τae T + 2τaeT e−τae T − 2τaeT + τ 2

ae
T 2],

q15 = q51 = σ 2
ae

τ 2
ae

[
1 − e−2τae T − 2τaeT e−τae T

]
,

q22 = σ 2
an

τ 4
an

[
1 − e−2τanT + 2τanT + 2τ 3

an
T 3

3
− 2τ 2

an
T 2 − 4τanT e−τanT

]
,

q24 = q42 = σ 2
an

τ 3
an

[
e−2τanT + 1 − 2e−τanT + 2τanT e−τanT − 2τanT + τ 2

an
T 2],

q26 = q62 = σ 2
an

τ 2
an

[
1 − e−2τanT − 2τanT e−τanT

]
,

q33 = σ 2
ae

τ 2
ae

[
4e−τae T − 3 − e−2τae T + 2τaeT

]
,

q35 = q53 = σ 2
ae

τae

[
e−2τae T + 1 − 2e−τae T

]
,
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q44 = σ 2
an

τ 2
ae

[
4e−τanT − 3 − e−2τanT + 2τanT

]
,

q46 = q64 = σ 2
an

τan

[
e−2τanT + 1 − 2e−τanT

]
,

q55 = σ 2
ae

[
1 − e−2τae T

]
,

q66 = σ 2
an

[
1 − e−2τanT

]
, the other qij = 0,

Q12 = diag
{
σ 2

εe

(
1 − e−2τεeT

)
, σ 2

εn

(
1 − e−2τεnT

)}
,

Q13 = diag
{
σ 2

δθ

(
1 − e−2τδθ

T
)
, σ 2

δs

(
1 − e−2τδs T

)}
.

7.3.2 The Measurement Equation

In this section, we can obtain position and velocity, er , nr , ėr and ėn, from DGPS
devices, the distance S from odometers, and the rotation angle Q from gyroscopes.
Furthermore, the relationships between the state vectors and the measurement vec-
tors are described as

Zk = [zk,1, zk,2, . . . , zk,6]T , (7.7)

where

zk,1 = er(k) = e(k) + εe(k) + v1(k),

zk,2 = nr(k) = n(k) + εn(k) + v2(k),

zk,3 = ėr (k) = ė(k) + v3(k),

zk,4 = ṅr (k) = ṅ(k) + v4(k),

zk,5 = Q(k) = α(k) − β(k − 1) + δθ (k) + v5(k), α(k) = arctan
ė(k)

ṅ(k)
+ γ,

(γ = 0,−π or π), β(k − 1) = α(0) +
k−1∑
i=1

[
Q(i) + δθ (i)

]
,

zk,6 = S(k) = T
√

ė2(k) + ṅ2(k) + δs(k) + v6(k).

Note that vi(k) (k = 1,2, . . . ,6) is a zero-mean Gaussian white noise sequence
with the covariance matrix R(k) = diag{r2

1 , r2
2 , . . . , r2

6 } and Vk = [v1(k), v2(k), . . . ,

v6(k)]T .
Hence, we obtain the measurement equation

Zk = h[Xk] + Vk = H1,kXk + H2,k[Xk] + Vk, (7.8)
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where

H1,k =

⎡
⎢⎢⎣

1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

⎤
⎥⎥⎦ ,

H2,k[Xk] =
[

α(k) − β(k − 1) + δθ (k)

T
√

ė2(k) + ṅ2(k) + δs(k)

]
.

Since (7.8) is a nonlinear equation, there are many potential choices to linearize
it, thus yielding the solution [24]. Here, we use Extended Kalman filtering (EKF) by
linearly approximating nonlinear measurement system around the last state estimate

Żk ≈ h[Xk,k−1] + H [Xk,k−1][Xk − Xk,k−1] + Vk, (7.9)

where

H [Xk,k−1] =
⎡
⎣I2×2 02×2 02×2 I2×2 02×2

02×2 I2×2 02×2 02×2 02×2
02×2 H2×2 02×2 02×2 I2×2

⎤
⎦ ,

H2×2 =
⎡
⎣

ṅ

ė2+ṅ2 − ė

ė2+ṅ2

T ė√
ė2+ṅ2

T ṅ√
ė2+ṅ2

⎤
⎦

∣∣∣∣∣∣
Xk,k−1

.

Letting Φ[Xk,k−1] = Zk − h[Xk,k−1] + H [Xk,k−1]Xk,k−1, we have

Φ[Xk,k−1] ≈ H [Xk,k−1]Xk + Vk, (7.10)

Equation (7.10) is a linearized measurement equation. Note that a fundamental
advantage of the EKF is that the distributions of the random variables are no longer
Gaussian, and the EKF only approximates the optimality of the Bayes’ rule by lin-
earization.

7.3.3 Data Fusion Using EKF

Upon both (7.5) and (7.10), we use a nonzero mean-adaptive acceleration model to
represent acceleration change [28]. Therefore, we can obtain an adaptive Kalman
filtering algorithm stated below:

1.

Xk,k−1 = Φ ′
k,k−1Xk−1,
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where

Φ ′
k,k−1 =

⎡
⎢⎢⎢⎢⎣

I2×2 T I2×2
T 2

2 I2×2 02×2 02×2
02×2 I2×2 T I2×2 02×2 02×2
02×2 02×2 I2×2 02×2 02×2
02×2 02×2 02×2 E2 02×2
02×2 02×2 02×2 02×2 Φ2

⎤
⎥⎥⎥⎥⎦ .

We would like to point out that Φ ′
k,k−1 is used to replace Φk,k−1. The rationale

behind this is that it is equivalent to increase the sampling rate (T → 0). For the
details, we refer to [28].

2.

Pk,k−1 = Φk,k−1Pk−1Φ
T
k,k−1 + Qk−1,

P ′
k,k−1 = Φ̃k,k−1P

′
k−1Φ̃

T
k,k−1 + Q̃k−1,

where

Φ̃k,k−1 =

⎡
⎢⎢⎣

I2×2 T I2×2 C1 02×2
02×2 I2×2 C2 02×2
02×2 02×2 E1 02×2
02×2 02×2 02×2 E2

⎤
⎥⎥⎦ , Q̃k−1 =

[
Q11 06×2
02×6 Q12

]
.

3.

Kk = Pk,k−1H
T [Xk,k−1]

{
H [Xk,k−1]Pk,k−1H

T [Xk,k−1] + Rk

}−1
,

K ′
k = P ′

k,k−1H
′T [Xk,k−1]

{
H ′[Xk,k−1]P ′

k,k−1H
′T [Xk,k−1] + R′

k

}−1
.

4.

Xk = Xk,k−1 + [
GT

1 GT
2

]T
,

where G1 = K ′
k{Z′

k − h1[Xk,k−1]}, G2 = [g1, g2]T , and g1 and g2 are ninth and
tenth elements of the vector Kk{Zk − h[Xk,k−1]}.

5.

P ′
k = [

I − K ′
kH

′
k

]
P ′

k,k−1, Pk = {
I − KkH [Xk,k−1]

}
Pk,k−1.

When a vehicle cannot get DGPS signals at time k′, the above equation cannot
be used to get a correct solution. In this case, the data fusion stops. Therefore,
the following equations provide vehicle position

ek′ = ek′−1 + sk′ sin[βk′−1 + θk′ ], nk′ = nk′−1 + sk′ cos[βk′−1 + θk′ ].
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Chapter 8
Vehicle Navigation Using Global Views

8.1 Introduction

Driver inattention is a major offender to highway crashes. The National Highway
Traffic Safety Administration estimates that at least 25% of police-reported crashes
involve some forms of driver inattention [15]. Driving is a process that requires a
driver to distribute his/her attention among different sub-tasks. First of all, a driver
needs to pay attention to issues directly related to safety, including the surrounding
traffic, dashboard displays, and other influx of information on the road such as traffic
lights and road signs. In addition, the driver may choose to talk to a passenger, listen
to the radio, and talk on the cell phone. Therefore, situation awareness plays an
important role in driving safety. In this research, we are developing technologies to
provide a driver with the information of dynamic surroundings around the vehicle
when he/she is driving to enhance his/her situation awareness.

Situation awareness is defined as the perception of the elements in the environ-
ment within a volume of time and space, the comprehension of their meaning, and
the projection of their status in the near future [7]. Sensing and representing infor-
mation is a key for situation awareness in driving a vehicle. A lot of research has
been directed towards improving in-vehicle information presentation. Green et al.
surveyed early studies on human factor tests in navigation displays [13]. They de-
scribed objectives, principles and guidelines for the design of in-vehicle devices.
Dale et al. investigated the problem of generating natural route descriptions for nav-
igational assistance [6]. Lee et al. developed a situationally appropriate map system
for drivers [14].

Navigation user interfaces have changed dramatically over the last few years due
to the availability of electronic maps and the Global Positioning System (GPS). The
displays in the current GPS navigation systems show the location of a vehicle on
a graphical map in a way that is similar to looking straight down at a paper map.
Recently, several companies, such as Microsoft and Google, have started providing
global view maps, such as aerial imagery maps, satellite imagery maps, and bird’s
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eye view maps. For example, in the bird’s eye view mode, Microsoft’s Windows
Live Local consists of high resolution aerial imagery taken from an angle rather
than straight down from four directions. Besides the GPS, a vehicle can also ob-
tain information about the driving environment from other sensors, such as video
cameras mounted at various positions, thermal infrared imagers, RADAR, LIDAR,
and ultrasonic sensors [9]. Among these sensors, video cameras are attractive from
a packaging and cost perspective. Recent advances in computer vision and image
processing technologies have made it possible to apply video-based sensors along
with the GPS in driving assistance applications.

Here, we propose a novel method to enhance situation awareness by dynamically
providing a global view of surrounding for drivers. The surrounding of a vehicle will
be captured by an omnidirectional vision system at the top of a vehicle. In order to
obtain high quality of surrounding images, we use an omnidirectional vision system
consisting of multiple cameras [2, 5], rather than a catadioptric camera used by
the most existing systems for intelligent vehicles [1, 11]. The video stream from
the camera is processed to detect nearby vehicles and obstacles. Positions of these
detected objects will be overlaid on a global view map of the vehicle. We deduce the
mapping between an omnidirectional vision system and global view map. This map
can be projected onto a Head-Up Display (HUD) on the windshield and provide a
dramatically realistic perspective view of the driving environment. By looking at the
display, a driver can have a global picture of the situation and likely produce a good
driving strategy.

The rest of this chapter is organized as the following: Sect. 8.2 describes the
problem and the proposed approach. Section 8.3 discusses the imaging model of
our camera system. Section 8.4 presents a panoramic Inverse Perspective Mapping
(pIPM). Section 8.5 shows how to implement the pIPM. Section 8.6 introduces the
elimination of the wide-angle lens radial error. In Sect. 8.7, we illustrate the pro-
posed method by an example that maps vehicles detected from the video stream
captured by am omnidirectional vision system onto the Google Earth map.

8.2 The Problem and Proposed Approach

The field of view, which is the part of the observable world that is seen at any given
moment, plays an important role in driving safety. While a human has an almost 180-
degree forward-facing field of view, his/her binocular vision, which is important
for depth perception, only covers 140 degrees of the field of vision. In a driving
situation, it is desirable to have a complete 360-degree field of view. In order to
expand a driver’s field of view, automobile manufacturers have equipped a rear-view
mirror and side mirrors on vehicles. More recently, rear-view video cameras have
been added to many new model cars to enhance the ability of the rear-view mirror by
showing the road directly behind the car. These camera systems are usually mounted
to the bumper or lower parts of the car allowing for better rear visibility. However,
looking at mirrors can move a driver’s attention away from the road.
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Fig. 8.1 Panorama images taken by a camera array sitting on top of a vehicle

Adding sensors and devices in a vehicle can potentially lead to more distractions.
Inattention is one of leading causes of car accidents, estimated to account for 25%
of all road traffic accidents. Our goal, therefore, is to increase a driver’s field of
view without adding distraction sources. In this approach, we propose to capture
surroundings of a vehicle by an omnidirectional vision system mounted at the top
of a vehicle and display the dynamic global view on the windshield using an HUD.
In this way, a driver can obtain a global view of the surrounding without shifting
his/her attention away from the front view of the vehicle.

Omnidirectional vision system has been previously used in intelligent vehicle
applications, such as vehicle tracking, indoor parking lot, and driver monitoring
driver, etc. [8, 10, 11, 16, 17]. These applications used different omnidirectional
sensors, such as wide Field-Of-View (FOV) dioptric cameras, catadioptric cameras,
Pan-Title-Zoom (PTZ) cameras and polydioptric cameras. Both wide FOV diop-
tric cameras and catadioptric cameras have some limitations. First, their images are
heavily distorted, and we have to spend much time on correcting the distortion. Sec-
ond, they cannot provide high resolution images of surroundings. PTZ cameras are
often used in environment surveillance by moving the cameras. Although PTZ cam-
eras can provide high resolution images, mechanical motion of the cameras causes
slow system responses. Instead of using these cameras, we will use an omnidirec-
tional vision system consisting of multiple cameras to capture a full view of the
surroundings around a vehicle with the high resolution up to 1600 × 320 simulta-
neously [5]. Figure 8.1 shows examples of two panoramic images captured in our
experiment. Rectangles in the images are the detected vehicles.

However, the panoramic video stream from the omnidirectional camera cannot
be easily understood by a driver, so we map the driving situation onto a global view
map. That is, we automatically extract objects (vehicles, pedestrians, etc.) from the
video stream and mark their positions on the global view map. We use a hypothesis–
validation structure to detect the nearby vehicles surrounding a host vehicle [4].
Without losing generality, in this approach, we have utilized Google Earth which
can provide us with high quality and resolution aerial and satellite images including
highways, streets, and more. In addition, data import feature from Google Earth
makes it possible to sense and represent the dynamic information surrounding a host
vehicle and import our custom geographic data into the Google Earth application.
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Fig. 8.2 Geometric relationship among the vehicle, camera array, and image coordinate system of
each individual camera: (a) front view, (b) image plane of an individual camera, (c) aerial view,
(d) camera array layout

8.3 The Panoramic Imaging Model

In this section, we describe the mathematical model of panoramic imaging and
provide a context for the mapping between the panoramic image and the global
electronic map. There are three different coordinate systems as shown in Fig. 8.2.
XvYvZv is the vehicle coordinate system. XcYcZc is the coordinate system for in-
dividual camera c in the camera array where c = 0, . . . ,N − 1, and N is the number
of cameras. UOV is the image coordinate system of camera c. Let r denotes the
radius of the camera array, and θ = 2π/N the shift angle. The 3D coordinates of the
camera array center is [l, d, h]T in the vehicle coordinate system. The orientation of
camera c is defined by two rotation angles αc and βc as shown in Fig. 8.2(a) and (b).

Assuming the road surface is horizontal, the coordinates of the optical center of
camera c in the XvYvZv coordinate system are

T c
0 = [l + r cosβc, d + r sinβc,h]T = [

l′, d ′, h
]T

. (8.1)

Given any 3D point, let Pv = [xv, yv, zv]T denote its coordinates in the vehi-
cle coordinate system XvYvZv . Let Pc = [xc, yc, zc]T denote its coordinates in the
camera coordinate system XcYcZc. We have

Pv =
⎡
⎣ cosαc cosβc sinβc − sinαc cosβc

− cosαc sinβc cosβc sinαc sinβc

sinαc 0 cosαc

⎤
⎦Pc + T c

0 . (8.2)

Consider camera c’s image plane UOV as shown in Fig. 8.2(b). Let (u0, v0) de-
note the coordinates of the principal point. According to perspective projection, any



8.4 The Panoramic Inverse Perspective Mapping (pIPM) 113

point S(u, v) on the image plane satisfies the following equation

yc

xc

= u − u0

fu

,
zc

xc

= −v − v0

fv

, (8.3)

where fu,fv are the scale factors along the U - and V -axis, respectively.
Let xc = t , t ∈ [0,∞), then applying (8.3) yields

xc = t, yc = t · u − u0

fu

, zc = −t · v − v0

fv

. (8.4)

Therefore, the parametric equation of line OcS can be written as

[xc, yc, zc]T = t ·
[

1,
u − u0

fu

,−v − v0

fv

]T

. (8.5)

Substituting (8.5) into (8.2), we obtain the line equation in the vehicle coordinate
system

⎡
⎣xv

yv

zv

⎤
⎦ = t · R ·

⎡
⎢⎣

1
u−u0
fu

− v−v0
fv

⎤
⎥⎦ +

⎡
⎣ l′

d ′
h

⎤
⎦ , (8.6)

where R is the rotation matrix in (8.2).
If we assume the road is flat, the equation of the road plane is zv = 0. Therefore,

the intersection of the line OcS with the road plane can be obtained by setting zv = 0
in (8.6), which yields

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xv(u, v) = h′[u′ v′ 1 ]
⎡
⎣ sinβc

sinαc cosβc

cosαc cosβc

⎤
⎦ + l′,

yv(u, v) = h′[u′ v′ 1 ]
⎡
⎣ cosβc

− sinαc sinβc

− cosαc sinβc

⎤
⎦ + d ′,

(8.7)

where h′ = h
v′ cosαc−sinαc

, u′ = u−u0
fu

, v′ = v−v0
fv

.
Note that the object detection is performed on the stitched panoramic image.

Given a pixel on the panoramic image, its corresponding positions on the individual
camera image planes are obtained from the stitching table, which is generated by a
stitching calibration process [5].
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Fig. 8.3 Mapping from a single image to panoramic image

8.4 The Panoramic Inverse Perspective Mapping (pIPM)

8.4.1 The Mapping Relationship Between Each Image and
a Panoramic Image

In this section, we build the mapping relationship between each image of its cor-
responding camera and a panoramic image. Let (uc, vc) represent the image co-
ordinates of the cth camera. Define the cylindrical panoramic image coordinates
captured by all N cameras as (θp, vp), where θp ∈ (0,2π) is the panning angle
shown in Fig. 8.3. Therefore, we obtain the mapping relationship of the cth camera
coordinates (uc, vc) and panoramic image pixel coordinates (θp, vp) according to
Fig. 8.3 as

{
θp = βc − 2π

Wp
(uc + u0 − Wc),

vp = vc,
(8.8)

where Wc is the single image width (here we assume that each camera has same
width), Wp is the panoramic image width. To guarantee θp ∈ [0,2π), we implement
the following operation

{θp}[mod 2π] = θ1, θ1 ∈ [0,2π). (8.9)

To simplify the description, we assume that each pixel within a panoramic image is
solely from a camera.
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8.4.2 The Panoramic Inverse Perspective Mapping

From (8.8), we obtain

uc = Wp

2π
(θp − βc) + (Wc − u0), vc = vp. (8.10)

Substituting (8.10) into (8.6), we obtain the mapping relationship between a pixel
(θp, vp) within the panoramic image and a 3D point (xv, yv, zv) in the vehicle co-
ordinate system as below

⎡
⎣xv

yv

zv

⎤
⎦ = tR

⎧⎨
⎩

⎡
⎣1 0 0

0 f −1
u 0

0 0 −f −1
v

⎤
⎦

×
⎛
⎝

⎡
⎣

1 0 0

0 −Wp

2π
0

0 0 1

⎤
⎦

⎡
⎣ 1

θp

vp

⎤
⎦ +

⎡
⎣

0
Wp

2π
βc+

−v0

Wc − 2u0

⎤
⎦

⎞
⎠

⎫⎬
⎭ + T c

0 . (8.11)

From (8.1), we know that both the rotation matrix R and the translation vector
T c

0 = [l′, d ′, h]T are functions of βc , that is, R = R(βc), l′ = l′(βc), d ′ = d ′(βc).
The camera external parameter βc is a piecewise linear function of θp:

{
βc(θp) = −{cθc + θ0},
θp ∈ (−(θ0 − �θu + (c + 1

2 )θc), −(θ0 − �θu + (c − 1
2 )θc)),

(8.12)

where �θu = 2π
Wp

(u0 − Wc

2 ) is a constant that the image center deviates from the
camera center; θ0 is the angle of the #0 camera w.r.t. Xv . Similar to (8.8), we imple-
ment same operation to guarantee βc, θp ∈ [0,2π).

Similar to (8.7), substituting road surface constraint equation zv = 0 into (8.11),
we obtain the mapping relationship between a 3D point (xv, yv,0) on the road in
the vehicle coordinate system and a point (θp, vp) in the panoramic image in the
following form

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xv(θp, vp) = h′
p[θ ′

p, v′
p,1]

⎡
⎣ sinβc(θp)

sinαc cosβc(θp)

cosαc cosβc(θp)

⎤
⎦ + l′,

yv(θp, vp) = h′
p[θ ′

p, v′
p,1]

⎡
⎣ cosβc(θp)

− sinαc sinβc(θp)

− cosαc sinβc(θp)

⎤
⎦ + d ′,

(8.13)

where h′
p = h

v′
p cosαc−sinαc

, θ ′
p =

Wp
2π

(θp−βc)+(Wc−2u0)

fu
, v′

p = vp−v0
fv

. Comparing (8.7)

and (8.13), we see that both perspective imaging and panoramic imaging have uni-
fied IPM forms.
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Fig. 8.4 The illustration of
FOV of the panoramic
camera in the vehicle
coordinate system

8.5 The Implementation of the pIPM

8.5.1 The Field of View of N Cameras in the Vehicle Coordinate
System

The first step of the implementation of the pIPM is to determine the Field of View
(FOV), xv ∈ [−Hg/2,Hg/2], yv ∈ [−Wg/2,Wg/2], shown in Fig. 8.4.

8.5.2 Calculation of Each Interest Point’s View Angle in the
Vehicle Coordinate System

For each point in the vehicle coordinate system, we calculate its view angle and
determine the corresponding mapping camera. In Fig. 8.4, XvOYv is the vehicle
coordinate system, θ is the view angle, we calculate θg using xv and yv and the
equation written below

θg =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[1−sgn(yv−ds)(1−sgn(yv−ds))]π
2 , xv − ls = 0 (Yv axis),

(1−sgn(xv−ls ))π
2 , yv − ds = 0 (Xv axis),

arctan(
yv−ds

xv−ls
), xv − ls > 0 and yv − ds > 0,

π + arctan(
yv−ds

xv−ls
), xv − ls < 0 and yv − ds �= 0,

2π + arctan(
yv−ds

xv−ls
), xv − ls > 0 and yv − ds < 0,

(8.14)

where ls = sgn(xv)l, ds = sgn(yv)d , and where sgn(·) is the sign function. As a
result, we can determine the image plane and βc of (xv, yv) given θg by (8.12).
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8.5.3 The Mapping Relationship Between a 3D On-road Point and
a Panoramic Image

From (8.13), we obtain

R−1

⎧⎨
⎩

⎡
⎣xv

yv

zv

⎤
⎦ −

⎡
⎣ l′

d ′
h

⎤
⎦

⎫⎬
⎭ = t

⎡
⎢⎢⎣

1
Wp
2π

(θp−βc)+(Wc−2u0)

fu

− vp−v0
fv

⎤
⎥⎥⎦ . (8.15)

Using the first line of the above equation and zv = 0, we obtain

t = [
R−1

11 ,R−1
12 ,R−1

13

]
⎡
⎣ xv − l′

yv − d ′
−h

⎤
⎦ . (8.16)

Similarly, using the results of the above formula, we obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θp = 2π
Wp

{fu

t
[R−1

21 ,R−1
22 ,R−1

23 ]
[

cxv−l′
yv−d ′
−h

]
− (Wc − 2u0)

} + βc,

vp = −fv

t
[R−1

31 ,R−1
32 ,R−1

33 ]
[

cxv−l′
yv−d ′
−h

]
+ v0,

(8.17)

where R−1
ij is the element in the matrix R−1 which belongs to the ith row and the

j th column.
Substituting θg from (8.14), βc from (8.13) and t from (8.16) into (8.17), we can

obtain the mapping relationship between a panoramic coordinate (θp, vp) and its
corresponding point (xv, yv) in the vehicle coordinate system.

8.5.4 Image Interpolation in the Vehicle Coordinate System

As we know, (θp, vp) calculated from (xv, yv,0) could be between pixels. There-
fore, we have to calculate the intensity values of each pixel of the panoramic image
by interpolating algorithms. Set (θ̃p, ṽp) = (�θp�, �vp�); here �·� is the floor func-
tion. Let p1 and p2 denote the distance between (θp, vp) and (θ̃p , ṽp) along θ and v,
respectively, as shown in Fig. 8.5. Here, 0 < p1, p2 < 1. Therefore, the intensity
value of (xv, yv) is

Iv(xv, yv) = Ip(θ̃p, ṽp)(1 − p1)(1 − p2) + Ip(θ̃p, ṽp + 1)(1 − p1)p2

+ Ip(θ̃p + �θP , ṽp)p1(1 − p2)

+ Ip(θ̃p + �θp, ṽp + 1)p1p2, (8.18)
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Fig. 8.5 The illustration of
non-integer image
interpolation

Fig. 8.6 The results of the pIPM algorithm

where �θp = 2π
Wp

. We would like to point out that better interpolation algorithms
also can be considered for improving display performance. Figure 8.6 shows the
experimental results of the pIPM algorithm.

8.6 The Elimination of Wide-Angle Lens’ Radial Error

Due to the effect of the number of cameras, we often use a wide-angle lens to in-
crease the angle field of view. However, the wide-angle lens will cause radial distor-
tion; the model is shown below

[
ũc

ṽc

]
= (

1 + κ1r
2
d + κ2r

4
d + κ5r

6
d

)[
uc

vc

]
+ dx, (8.19)

where dx = [ 2κ3ucvc+κ4(r
2
d+2u2

c )

κ3(r
2
d+2v2

c )+2κ4ucvc

]
, r2

d = u2
c + v2

c .
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Fig. 8.7 Google global navigation map

8.7 Combining Panoramic Images with Electronic Maps

Electronic map services such as Microsoft Virtual Earth and Google Earth can help
reduce a driver’s load by providing high quality electronic route and turn-to-turn di-
rections. For example, Fig. 8.7 shows the route, generated by Google Earth, around
Carnegie Mellon University.

We can further reduce a driver’s cognitive load by combining the images captured
by the omnidirectional camera with the electronic map in real time. In particular, we
perform image analysis to detect surrounding objects such as vehicles and pedestri-
ans, and display the detected objects on the electronic map.

In this approach, we mainly focus on vehicle detection. Our vehicle detection
approach includes two basic phases. In the hypothesis generation phase, we first
determine the Regions of Interest (ROI) in an image according to lane vanishing
points. From the analysis of horizontal and vertical edges in the image, vehicle hy-
pothesis lists are generated for each ROI. In the hypothesis validation phase, we have
developed a vehicle validation system by using Support Vector Machine (SVM) and
Gabor features. For details we refer to [3, 4]. Figure 8.1 shows the results of vehicle
detection in two omnidirectional images.

Let Vw = [φ,γ, η]T denote the coordinates of the host vehicle where φ and γ

are provided by an in-vehicle GPS device, and η is the direction of vehicle. Let
(xv(u, v), yv(u, v)) denote the coordinate of a detected vehicle, then the latitude
and longitude of the detected vehicle can be written as [12]:

[
φo

γo

]
=

[
k1 cosη −k1 sinη φ

k2 sinη k2 cosη γ

]⎡
⎣xv(u, v)

yv(u, v)

1

⎤
⎦ , (8.20)

where k1 and k2 are scalar values to put the points into the earth’s longitude and
latitude coordinate system. Thus we can display the detected vehicle on an electronic
map. Figure 8.8 shows the results of displaying the detected vehicles in the two
panoramic images as shown in Fig. 8.1 onto the Google Earth map.
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Fig. 8.8 Mapping from detected objects onto Google Earth map: (a) The objects are detected from
the top image in Fig. 8.1; (b) The objects are detected from the bottom image in Fig. 8.1
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Part IV
Advanced Vehicle Motion Control



Chapter 9
The Lateral Motion Control for Intelligent
Vehicles

9.1 Introduction

The goals of intelligent transportation systems are to improve the capacity of ex-
isting highways, and simplify manual operations under various road conditions.
Lane following systems are capable of providing safer and more efficient position-
ing commands. Hence, the functions of lane following systems are twofold. First,
the sensing system must calculate the radius of curvature of the road and the posi-
tion of the vehicle relative to the road. Second, the lateral controller must not only
track the center of the road but also steer the vehicle. In this case, the error between
the reference path and the actual path is kept minimal by the control at the cost of
both comfort and stability. A typical lane following system consists of four main
parts: a lateral controller, a steering wheel, a vehicle and some sensors, as shown in
Fig. 9.1. The actual driving response to a road is illustrated in Fig. 9.2.

The rest of this chapter is organized as follows. Section 9.2 reviews the re-
lated work. Section 9.3 introduces the proposed mixed lateral control strategy. In
Sect. 9.4, we present the relationship between motor pulses and the front wheel lean
angle.

9.2 Related Work

The vehicle lateral motion control plays a fundamental role in path following [5],
Automated Highway Systems (AHS) [2, 3, 9, 11, 12, 15, 18], Advanced Safety
Vehicle (ASV) [8], Automated Formation Changes (AFC) [17], and a lot of work
has been done. In the AHS, the goal of lateral control is to make vehicles follow
road/lane marks under various driving conditions, speeds, loads, road types, and to
maintain good comfortability and stability. Toward this end, Peng et al. combined a
feedback controller and a feed-forward controller to improve ride quality by using
the Frequency-Shaped Linear Quadratic (FSLQ) [12]. The feedback controller uses
the FSLQ to improve performance while the feed-forward controller is to gener-
ate preview steering commands when the curvature of the coming road is available.

H. Cheng, Autonomous Intelligent Vehicles,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-1-4471-2280-7_9, © Springer-Verlag London Limited 2011
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Fig. 9.1 A typical lateral control framework

Fig. 9.2 An illustration of
actual driving response

Furthermore, the authors present continuous deterministic preview control consist-
ing of feedback terms and two feed-forward terms [13]. As we know, both safety
and passenger comfort are important for buses. Therefore, to obtain superior sta-
bility and maneuverability, Matsumoto et al. controlled lateral velocity and yaw
rate at the same time by inputting both the force between the front wheels and rear
wheels, and the rear steering angle [7]. In Real-time Autonomous Navigator with
a Geometric Engine (RANGER), Kelly presented the state space representation of
a multi-input multi-output linear system which acts as the perceive–think–act loop
for a robot vehicle [6]. To maintain smoothness of the steering system at both high
speed and low speed, multiple look-ahead points were introduced to keep tighter
turns at low speed. Here, one is used to obtain the deviation from the path while the
rest are used to predict the steering angle for feed-forward control. Fraichard et al.
proposed the Execution Monitor (EM) whose goal is to follow a given trajectory and
respond to unexpected events in real time, thus generating control commands [4].

9.3 The Mixed Lateral Control Strategy

To maintain the smoothness of the steering system, different control strategies
should be used to control the steering system for linear and curvilinear roads, re-
spectively. Let us first see how a human driver drives a car. When a car enters into
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Table 9.1 The relationship between vehicle velocity, viewpoint angle and focusing-on distance

Vehicle velocity (m/s) 16.667 22.222 27.778 33.333 38.889

Angle of viewpoint (◦) 43 30 20 11 7

Look-ahead distance (m) 180 300 420 540 640

Look-ahead time (s) 10.8 13.5 15.1 16.2 16.5

a curvilinear road region, the driver perceives the curvature of the road by eyes.
Afterwards, the driver inputs a proper steering angle thus making a perfect turn ac-
cording to ‘current’ conditions. Actually, driverless vehicles should work in a same
way. In linear roads, in-car computers calculate look-ahead distance as the input of
controllers directly controlling the steering wheel angle of a vehicle. When a control
system gives a steering signal, the executive part will respond very quickly and the
steering magnitude is very small. By contrast, when the car is entering a curvilinear
road, the in-car computer first obtains the radius of the curve and the steering angle,
and then generates steering commands. To simulate human driving, we introduce
two different control strategies to adapt to different road conditions.

9.3.1 Linear Roads

1. Determining Look-Ahead Distance A human driver is focusing on a specified
distance before the vehicle when driving. This specified distance is called the look-
ahead distance which is related to speed. The relationship among vehicle velocity,
viewpoint angle, and focusing-on distance is shown in Table 9.1.

From Table 9.1, we can see that focusing-on distance varies accordingly with
both vehicle velocity and angle of viewpoint. Moreover, we have

D = 20.88v − 164.01. (9.1)

Hence, we repeated experiments many times and got the empirical formulation of
look-ahead distance as

ds = D/10. (9.2)

2. Calculating Looking-Ahead Error The actual path of a driving vehicle could
deviate from its reference path due to rough roads, lateral wind, and initial errors.
Hence, we need to correct the front wheel lean angle, thus keeping the error between
the reference path and the actual path at a minimum. The look-ahead distance error
yp is the distance between point A and B in Fig. 9.3. The slip angle is defined as
follows:

θs = arctan

(
ẏu

ẋu

)
, (9.3)
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Fig. 9.3 The geometry
model of lateral deviation

where ẏu and ẋu are the lateral velocity and longitudinal velocity, respectively. Usu-
ally, we assume that θs is negligible since the lateral velocity is much smaller than
the longitudinal velocity. As a result, we have [5]

ẏs ≈ ẏu + ẋuεr + ds ε̇1 +
(

ds

ẋu

)
ÿu, (9.4)

where εr = ε1 − εt ; ε1 is the angle between the vehicle coordinates and the ground
coordinates; εt is the absolute yaw of the reference trajectory in the inertial coordi-
nate frame.

In addition, the driving vehicle has the displacement of lateral slip due to the
front wheels rotating. The displacement yp is then defined in the following form

yp = ds tan(β), (9.5)

where

β = 1

2
arcsin

(
ds(ε̇1 + θs)

ẋv

)
. (9.6)

Finally, we calculate the look-ahead distance error as

ye = ys + yp. (9.7)

9.3.2 Curvilinear Roads

When previously considering linear roads, the strategy of look-ahead distance was
focusing on a fixed point. In other words, we only considered the error between
the reference path and the actual path at a specified point. Obviously, this strategy
ignores other geometry information of a road in front of the vehicle, such as the
orientation and curvature. As a result, the performance of the controller degrades.
In this section, we will incorporate more road geometric information into the con-
troller.
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Fig. 9.4 The geometry
model of lateral deviation

1. Existing Shape Representation Assume that object contours consist of lines
and arcs, where corners are intersection points between lines/arcs and lines/arcs, as
shown in Fig. 9.4. The shape representation of a contour is to keep the number of
both lines and arcs at a minimum by segmenting approaches. There are two types of
contour segmenting techniques: the first one is direct [14, 19], the other is indirect
[1, 10]. The direct approaches are to segment object shapes using point sets of object
contours [14, 19], while the indirect approaches are to formulate the problem of
segmenting contours into the characteristic functions of the contours [1, 10].

The Direct Approaches: Let Ps and Pe denote the start point and end point of
a contour, respectively. First, we calculate the distance di between point Pc and
line PsPe. If dmax = maxi{di} < ε0 (ε0 is a small constant), the contour PsPe is a
line. Second, if dmax ≥ ε0, we will continue to segment the contour until dmax < ε0.
Finally, the direct approaches generate some subsets of points which approximate
lines. The advantages of the direct approaches are as follows: (i) The implemen-
tation of these approaches is simple; (ii) They can achieve very high precision of
shape representation by adjusting ε0. However, the disadvantages of the direct ap-
proaches are as follows: (i) They have high computing burden due to large amount
of distance computation between points and lines; (ii) The value of ε0 greatly affects
the result of contour segmentation; (iii) The results of segmenting contours are only
lines, but not circles/arcs.

The Indirect Approaches: The curvature extreme approaches are typical indirect
approaches. In this approach, the point Pi with curvature Ci larger than threshold
CT is a contour corner. We can see that: (i) It is convenient to calculate the curvature
once for each point; (ii) Segmented contours are invariant with respect to rotation.
Unfortunately, the indirect approaches are very sensitive to noise. Moreover, the
curve extreme corresponds to contour corners, not tangent points. Toward this end,
we propose a segmenting approach of contours based on the sum of ideal contours.

2. The Proposed Segmenting Approach of Contours Let us discuss the real
contour in Fig. 9.4. Assume that the contour consists of lines and arcs. Given the
types of segmented contours and the positions of all the corners and tangent points,
we can obtain the curves of the curvature and its sum, shown in Fig. 9.5. In Fig. 9.5,
the curvature values of line AB,BC,EF are 0, and the curvature values of arc CD
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Fig. 9.5 Ideal contours:
(a) curvatures, (b) the sum of
curvatures

and DE are −1/R1 and 1/R2, respectively. From Fig. 9.5, we can see that:

1. The corners of contours correspond to the pulses of curvature CP which is larger
than CT .

2. There does not exist a corner between two neighboring corners, but there could
exist a tangent point. The contour segment between two corners is either a line
or an arc if there is no tangent point. Otherwise, the contour segment consists of
a line and an arc which are tangent.

3. A line contour segment without a tangent point between two neighboring corners
must agree in two aspects. First, the curvatures of all the points are 0. Second,
the sum of curvatures of all the points is 0.

4. A tangent point between two neighboring corners has the following properties.
The curvature change of the tangent point corresponds to a step wave. At the
same time, the sum of its curvature changes suddenly.

5. If a contour segment satisfies Condition 3, it is a line. Otherwise, it is an arc.
6. The orientations of arc contours can be determined by the signs of the curva-

tures of arcs. Correspondingly, the signs of the curvatures skew can determine its
orientation.

Using the above properties, we can segment a contour only consisting of lines
and arcs. However, real contours could be affected by a large amount of random
noise. Figure 9.6 shows the curvatures of a real contour. We can see that: (i) the cur-
vatures of a real contour are not horizontal but curved. Also, the pulse at the corner
becomes local maximum/minimum in real contours; (ii) It is difficult to distinguish
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Fig. 9.6 The curvature of a
real contour

the curvatures of lines and arcs since the curvatures of contours with a large radius
are greatly affected by noise.

Now we discuss the curvatures of roads. The values of sampling points consist
of two items, real data r(s) and random noise δ. The curvatures of lines and arcs are
0 and ±1/R, respectively.

Consequently, the curvature of the real line is a random function, Cl(s) = δl .
Similarly, that of the real arc is described as ±1/R + δc. From the statistical prop-
erties of random errors, the sum of random errors is zero, and we have

N∑
c=1

Cc(s) = ±
N∑

c=1

1

R
+

N∑
c=1

δc = ±N

R
,

N∑
l=1

Cl(s) =
∑

δl = 0, (9.8)

where N is the number of points on the contour.

9.3.3 Calculating the Radius of an Arc

The ideal equation of a circle is given in the following form

(x − x0)
2 + (y − y0)

2 = r2, (9.9)

where (x0, y0) is the center of the circle. It has another form as follows:

x2 + y2 − 2x0x − 2y0y + (
x2

0 + y2
0 − r2) = 0. (9.10)

Given observed points pi(xi, yi), i = 1,2,3, . . . ,N , we substitute them into (9.9),
and obtain the error function

Δi = x2
i + y2

i − 2x0xi − 2y0yi + (
x2

0 + y2
0 − r2). (9.11)

From least-mean-square algorithms, we can obtain the radius r of the ideal circle
by minimizing

∑
Δ2

i . Defining f (x0, y0, x1, y1, x2, y2, . . . , xN , yN, r) = ∑N
i=1 Δ2

i ,
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Fig. 9.7 The geometric
relationship when solving for
the radius of a circle

we have

df

dr
= 0. (9.12)

In Fig. 9.7, we define the equation of the line OA as y = kx +b. It is easy to obtain

k = − x2−x1
y2−y1

and b = y2
2−y2

1+x2
2−x2

1
2(y2−y1)

. Then we can obtain the solution of (x0, y0) by
using two conditions. First, when y1 �= y2,

⎧⎨
⎩

x0 =
∑N

i=1[2b(y1−yi )+(x2
i −x2

1 )+(y2
i −y2

1 )](yi−y1)

2
∑N

i=1[(x1−xi )+k(y1−yi )]2
,

y0 = kx0 + b,
(9.13)

when y1 = y2,

⎧⎨
⎩

x0 = x1+x2
2 ,

y0 =
∑N

i=1[(x2
i −x2

1 )−2x0(xi−x1)+(y2
i −y2

1 )](yi−y1)

2
∑N

i=1(yi−y1)
2

.
(9.14)

Now, the radius of the circle is calculated from the distance between (x0, y0) and
(xi, yi)

r =
√

(xi − x0)2 + (yi − y0)2. (9.15)

9.3.4 The Algorithm Flow

1. Smooth sampled data, and calculate the curvatures of each sampling point, thus
yielding the curve ζ − n. The curvature at point (x, y) is represented by

k(x, y) = ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
, (9.16)

where ẋ = dx/dt , ẍ = d2x/dt2, ẏ = dy/dt , ÿ = d2y/dt2. Furthermore, its dis-
crete form is

ẋk = xk+1 − xk−1, ẍk = xk+1 + xk−1 − 2xk. (9.17)
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2. Difference operations are sensitive to noise. Therefore, we need to smooth the
curvature of curves before seeking the extreme of curvature. In practice, the
Gaussian filters can remove the effect of random noise. As a result, the Gaus-
sian filters are used to smooth the curvature.

The 1D Gaussian smoothing filter is given by

h(t, σ ) = 1√
2πσ

e
− t2

2σ2 . (9.18)

The smoothed curve is
{

X(t, σ ) = x(t) ∗ h(t, σ ),

Y (t, σ ) = y(t) ∗ h(t, σ ),
(9.19)

where σ is the standard deviation and ∗ is the convolution operator.
3. Seek the local extreme of the curvature which corresponds to the corners of real

contours.
4. Merge the corners whose distance is smaller than σ , and keep the corners N1

with bigger curvature.
5. Accumulate the curvature between two neighboring corners, thus yielding the

curve of accumulated curvature.
6. Calculate the intersection point of the curve of accumulated curvature between

the two neighboring corners which correspond to the tangent points N2 of the
contour of the trace.

7. Calculate the final segmenting point set N = N1 ∪ N2.
8. Make a decision on contour types, either lines or arcs, from the curvature and

accumulated curvature of contours.
9. Calculate the radius r between two segmenting points, and fit the shapes of each

road segment.

To validate the proposed approach, we collected the road data using DGPS by
the Springrobot platform, as shown in Fig. 9.8. First, we filter the road curve using
(9.19) (shown in Fig. 9.8(b)), while the blue solid line is the result of the filtered
curve, and ‘◦’ denotes the original points. For better illustration, we take one point
within each contour segment with 0.5 m. Furthermore, we obtain corner points
(red ‘◦’ in Fig. 9.8(c)) of a road contour. Finally, we generate a fitted contour in
Fig. 9.8(d). To have a closer look at the performance of curve fitting, we list the
fitting errors of some sampling points in Table 9.2.

9.4 The Relationship Between Motor Pulses and the Front
Wheel Lean Angle

To obtain the relationship between motor pulses and the angle of the frontal wheel,
we give pulse commands to servomotor, and then measure the angle between the
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Fig. 9.8 Road curve fitting

Fig. 9.9 The relationship
between motor pulses and the
frontal wheel lean angle

frontal wheel and the central line of the vehicle. Similarly, we can get the relation-
ship between motor pulses and the angle of steering wheel. The data is shown in
Table 9.3.
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Table 9.2 Error of the road curve fitting

Point index Error (m) Point index Error (m) Point index Error (m)

588 0 621 −0.022514 654 −0.043589

589 −0.012631 622 −0.039874 655 −0.053452

590 −0.020484 623 −0.052511 656 −0.056682

591 −0.024201 624 −0.060143 657 −0.054189

592 −0.024525 625 −0.062779 658 −0.046865

593 −0.022203 626 −0.06039 659 −0.035606

594 −0.017965 627 −0.052993 660 −0.02133

595 −0.012483 628 −0.040492 661 −0.0049879

596 −0.0064056 629 −0.022922 662 0.012451

597 −0.00016625 630 0 663 0.029959

598 0.0058921 631 0.0051631 664 0.046507

599 0.011541 632 0.0069396 665 0.061063

600 0.016601 633 0.0064731 666 0.072614

601 0.021038 634 0.0046559 667 0.080203

602 0.024897 635 0.0022215 668 0.082944

603 0.028119 636 −0.00025257 669 0.080041

604 0.03077 637 −0.0023255 670 0.070818

605 0.032688 638 −0.0036638 671 0.054699

606 0.033284 639 −0.0040793 672 0

607 0.031133 640 −0.0035323 673 0

608 0.023164 641 −0.0022453 674 0.0020647

609 −2.8422e−014 642 −0.00074659 675 0.0032209

610 −0.1623 643 0 676 0.0035146

611 −0.38312 644 −0.0077284 677 0.0030564

612 0.56721 645 −0.0097033 678 0.002007

613 0.3719 646 −0.0073691 679 0.00056412

614 0.26257 647 −0.0023915 680 −0.0010431

615 0.19258 648 0.0034642 681 −0.0025696

616 0.13888 649 0.0084324 682 −0.0037593

617 0.095585 650 0.010715 683 −0.0043517

618 0.058418 651 0.008503 684 −0.0040855

619 0.026803 652 0 685 −0.0027133

620 −0.00028067 653 −0.026126 686 −2.8422e−014

From Fig. 9.9, we can obtain the regression function

ξ = 5.18 × 10−5P, (9.20)

where ξ is the angle of frontal wheel, and P is the number of motor pulses.
We would like to point out that a fuzzy controller is used as the lateral controller.

For the details, we refer to [16].



136 9 The Lateral Motion Control for Intelligent Vehicles

Table 9.3 The relationship between the angle of steering wheel, motor pulses, and the angle of
frontal wheel

Sequence Name

Angle of steering wheel Motor pulses Angle of frontal wheel

1 0 0 0

2 20 22222 0.474122

3 40 44444 1.173539

4 60 66667 2.276610

5 80 88889 3.622666

6 100 111111 4.913494

7 120 133333 6.100710

8 140 155556 7.361193

9 160 177778 8.577056

10 180 200000 9.769596

11 200 222222 11.01529

12 220 244444 12.24955

13 240 266667 13.47108

14 260 288889 14.70033

15 280 311111 15.91294

16 300 333333 17.0687

17 320 355556 18.22439

18 340 377778 19.37022

19 360 400000 20.50419

20 380 422222 21.63254

21 400 444444 22.74814

22 420 466667 23.85487

23 440 488889 24.94044

24 460 511111 26.01698

25 480 533333 27.05728

26 500 555556 28.1043

27 520 577778 29.15082

28 540 600000 29.93288
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Chapter 10
Longitudinal Motion Control for Intelligent
Vehicles

10.1 Introduction

From a system viewpoint, driving control tasks are to give pulse commands to throt-
tles, brakes and steer wheels to vehicle body, thus implementing vehicle state change
by vehicle dynamics. As we know, lateral road departures and longitudinal collisions
are the main sources of traffic accidents. Toward this end, the goal of longitudinal
control is to control a vehicle according to its relative position with respect to either
the lead vehicle or obstacles. Many approaches have been proposed to follow the
lead vehicle since the 1960s [3, 5, 8, 9].

The main longitudinal control approaches include PID approaches, mixed inte-
ger linear programming [3], backing control [10, 11], fuzzy control [12, 13], and
neural control [6, 7]. As the seminal work, the ALVINN used a single hidden layer
back-propagation network to control NAVLAB by directly inputting a 30 × 30 unit
2D image after training, thus keeping the vehicle on the road [6, 7]. In the early
stages, people selected either lateral control or longitudinal control for different ap-
plications, not attempting to integrate the lateral and longitudinal control. Actually,
this is the basic assumption of the PATH control system [8]. In many applications
of intelligent vehicles, lateral control and longitudinal control are closely related.
Hence, Li et al. investigated tire/road friction modeling for integrated lateral con-
trol and longitudinal control [4]. Moreover, many controller strategies incorporated
a modeling strategy of human driving behavior. As an example, Kim et al. pro-
posed using Piecewise Polynomial (PWP) model to represent the mapping from the
driver’s sensing information to the driving operations [3].

Figure 10.1 illustrates the framework of the control system. This framework con-
sists of a controller group, an executive module, feedback sensors, and a vehicle
body.

The rest of this chapter is organized as follows. Section 10.2 introduces the sys-
tem identification in the vehicle longitudinal control. Section 10.3 presents the pro-
posed controller. Section 10.4 validates the proposed controller.

H. Cheng, Autonomous Intelligent Vehicles,
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Fig. 10.1 The framework of a control system

10.2 System Identification in Vehicle Longitudinal Control

To control a vehicle better, it is necessary for estimating the dynamical model of the
vehicle. The commonly-used dynamical models are described as

First order systems: H(s) = K0

T0s + 1
, (10.1)

First-order lag systems: H(s) = K0

T0s + 1
e−τs, (10.2)

Second order systems: H(s) = K0

(T1s + 1)(T2s + 1)
, (10.3)

Second-order lag systems: H(s) = K0

(T1s + 1)(T2s + 1)
e−τs, (10.4)

where K0, T0/T1/T2, and τ are the magnifying coefficient, time constants and the
time lag, respectively. Usually, we can identify those parameters by the curve of step
response. In practice, either first-order systems in (10.1) or first-order lag systems
can approximate the real system very well. We briefly discuss how to select a system
model and its parameters below.

10.2.1 The First-Order Systems

Given a step signal x0, we can get its stable output y(∞) from Fig. 10.2(a). After-
wards, we can calculate both K0 and T0 according to the following steps.

• Calculate K0 by

K0 = y(∞)

x0
. (10.5)
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Fig. 10.2 The step response curve: (a) the input function x(t); (b) the response function y(t) of
x(t); (c) the normalized response function y∗(t) of x(t)

• To calculate T0, first normalize the response of a step signal shown in Fig. 10.2(b)
by

y∗(t) = y(t)

y(∞)
, (10.6)

and get the solution of y∗(t) (shown in Fig. 10.2(c)) as

y∗(t) = 1 − e−t/T0 . (10.7)

Therefore, we get

T0 = −t

ln(1 − y∗(t))
. (10.8)

Now, we select two points from the normalized curve, namely y∗(t1) = 0.333 and
y∗(t2) = 0.632, and calculate its corresponding time constants

{
T1 = −t1

ln(1−y∗(t1)) = 2.5t1,

T2 = −t2
ln(1−y∗(t2)) = t2.

(10.9)

If T1 ≈ T2, we obtain T0 = T1+T2
2 . However, when (T1 − T2) ≥ ε (a constant), we

will adopt either second-order systems or first-order lag systems.
We can evaluate how the first-order system function approximates the normalized

y∗(t) at t3 = T0/2 and t4 = 2T0. From (10.7), we have

⎧⎨
⎩

y∗(t3) = 1 − e
− T0

2T0 = 0.39, t3 = T0/2;
y∗(t4) = 1 − e

− 2T0
T0 = 0.87, t4 = 2T0.

(10.10)

If the values of y∗(t) from Fig. 10.2 at time t3 and t4 are remarkably different from
y∗(t3) and y∗(t4) in (10.10), it means large error. As a result, we have to select
another system function, such as a first-order lag system function.
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10.2.2 First-Order Lag Systems

Similar to the first-order systems, we first normalize y(t) into y∗(t) by

y∗(t) = y(t)

y(∞)
. (10.11)

Therefore, the solution y∗(t) is then

y∗(t) =
{

0, t < τ ;
1 − e

− t−τ
T0 , t ≥ τ.

(10.12)

Similar to the first-order systems, we take different values of y∗(t1) and y∗(t2) at
times t1 and t2 in Fig. 10.2. Afterwards, we can calculate T0 and τ by solving

⎧⎨
⎩

y∗(t1) = 1 − e
− t1−τ

T0 ,

y∗(t2) = 1 − e
− t2−τ

T0 .
(10.13)

Assuming t2 > t1 > τ in (10.13), we take logarithms and obtain

{
ln(1 − y∗(t1)) = − t1−τ

T0
,

ln(1 − y∗(t2)) = − t2−τ
T0

.
(10.14)

Hence, from (10.14), we have
⎧⎨
⎩

T0 = t2−t1
ln(1−y∗(t1))−ln(1−y∗(t2)) ,

τ = t2 ln(1−y∗(t1))−t1 ln(1−y∗(t2))
ln(1−y∗(t1))−ln(1−y∗(t2)) .

(10.15)

For computing convenience, we take y∗(t1) = 0.390, y∗(t2) = 0.632, and then we
have {

T0 = 2(t2 − t1),

τ = 2t1 − t2.
(10.16)

After obtaining T0 and τ , we will check y∗(t) at times t3, t4, and t5:

⎧⎪⎨
⎪⎩

y∗(t3) = 0, t3 < τ ;
y∗(t4) = 0.55, t4 = 0.8T0 + τ ;
y∗(t5) = 0.865, t5 = 2T0 + τ.

(10.17)

If the values of the normalized curve at times t3, t4 and t5 are remarkably different
from the above values, we could further validate second-order systems. For simpli-
fying our exposition, we do not discuss this validation further. For the identification
of a second-order system, we refer to [1].
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Fig. 10.3 The brake system

Fig. 10.4 The response curve of a step signal

10.2.3 Identification of Our Vehicle System

In this section, we explain how to identify the velocity model. Our test field is a flat
road whose length is 3 km. Figure 10.3 shows the brake system, where l1 is the dead
zone and l2 is the effective range. In our experiment, we input 1800 pulses before
vehicle’s acceleration, and get y(∞) = 18 after inputting 2700 pulses (shown in
Fig. 10.4).

1. The First-Order System Assumption The magnifying coefficient K0 is cal-
culated by (10.5) and is

K0 = y(∞)

x0
= 18

2700 − 1800
= 0.02. (10.18)

We take two points from the normalized curve in Fig. 10.4, namely y∗(t1) = 0.330
and y∗(t2) = 0.632, and then calculate the time constants

{
T1 = −t1

ln(1−0.632)
= 2.5t1,

T2 = −t2
ln(1−0.330)

= t2.
(10.19)

Since t1 = 5.6 s and t2 = 12.7 s are observed in our experiment, T1 ≈ T2. As a result,
T0 = T1+T2

2 = 13.35 s.



144 10 Longitudinal Motion Control for Intelligent Vehicles

Now we obtain the first-order system

H(s) = 0.02

13.35s + 1
, (10.20)

and validate the normalized values of step response at times t3 = T0/2 and t4 = 2T0.
From (10.7), we have

⎧⎨
⎩

y∗(T0/2) = 1 − e
− T0

2T0 = 0.39,

y∗(2T0) = 1 − e
− 2T0

T0 = 0.87.

(10.21)

The corresponding values of normalized curve of step response at times t3 and t4
are 0.405 and 0.833, respectively. As a result, the error between the actual and the
ideal system is very small.

2. Validating the First-Order Lag Assumption In Fig. 10.4, there exists a sud-
den slope change, which means time lag. According to the curve of Fig. 10.4, we
have y∗(t1) = 0.390 and y∗(t2) = 0.632, where t1 = 6.6 s, t2 = 12.7 s; hence, we
get T0 and τ by (10.16)

{
T0 = 2(t2 − t1) = 12.2,

τ = 2t1 − t2 = 0.5.
(10.22)

That is,

H(s) = 0.02

12.2s + 1
e−0.5s . (10.23)

Now, we take the values of the normalized curve at times t3 = 0.8T0 + τ and t4 =
2T0 + τ to validate the model

{
y′(t3) = 0.55, t3 = 0.8T0 + τ ;
y′(t4) = 0.865, t4 = 2T0 + τ.

(10.24)

The values of the normalized curve at times t3 and t4 are 0.55 and 0.8535, re-
spectively. As a result, the error between the ideal first-order lag system and the
Springrobot system model is very small.

3. Validating Second-Order Assumption According to the curve of Fig. 10.4,
we have y∗(t1) = 0.4 and y∗(t2) = 0.8, where t1 = 6.8 s and t2 = 21.225 s. Hence,
we get T1 and T2 [1] as

{
T1 + T2 ≈ t1+t2

2.16 ≈ 12.975,
T1∗T2

(T1+T2)
2 ≈ 1.74 t1

t2
− 0.55 ≈ 0.00746.

(10.25)
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Fig. 10.5 The simulated results with different time constants T0

From (10.25), we can see that one of T1 and T2 is very large while the other is very
small, and t1/t2 = 0.32, which means that the system function of Springrobot is a
first-order model. Therefore, we have

T0 = t1 + t2

2.12
≈ 13.220. (10.26)

Now, we can determine that the velocity model of the Springrobot is a first-order
lag system with T0 ∈ [12.2s,13.35s], K0 = 0.02 and τ = 0.5 s.

10.3 The Proposed Velocity Controller

10.3.1 Validating the Longitudinal Control System Function

In Sect. 10.2, we identified the system model of Springrobot as the first-order lag
system described as

H(s) = 0.02

T0s + 1
e−0.5s , (10.27)

where T0 ∈ [12.20s,13.35s]. The system responses for T 1
0 = 12.20 s and T 2

0 =
13.35 s are shown in Fig. 10.5.

We can estimate the accuracy of the system model. When T 1
0 = 12.20 s,

{
η1

1 = 0.787−0.780
0.780 × 100% ≈ 0.897%, t = 20 s;

η2
1 = 0.915−0.913

0.915 × 100% ≈ 0.219%, t = 30 s.
(10.28)
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Fig. 10.6 The structure of the velocity control system

When T 2
0 = 13.35 s,

{
η1

2 = 0.780−0.765
0.780 × 100% ≈ 1.932%, t = 20 s;

η2
2 = 0.915−0.886

0.915 × 100% ≈ 3.169%, t = 30 s.
(10.29)

Upon the previous analysis, we can see that the system with T0 = 12.20 s is better
than that with T0 = 13.35 s. Hence, the system function of the longitudinal system
is described as

H(s) = 0.02

12.20s + 1
e−0.5s . (10.30)

10.3.2 Velocity Controller Design

The proposed velocity controller adopts a cascade control scheme combining throt-
tle control and brake control (shown in Fig. 10.6), where the inner loop is a fuzzy
adaptive robust control module and its outer loop is an improved Single-Neuron
adaptive PID (SN-PID) control module based on the quadratic performance index.
This velocity controller is capable of enduring environment change though its struc-
ture is simple. As a result, it is robust with respect to complex environment. We
introduce the SN-PID below since it plays an important role in our system. Jetal et
al. proposed the SN-PID thanks to self-learning and self-adaptation properties of a
single neuron [2]. The SN-PID not only has a simple structure, but also adapts to
environment change. Its structure is shown in Fig. 10.7, where yr(k) and y(k) are its
input and output variables; x1(k), x2(k), and x3(k) are the outputs of the converter,

⎧⎪⎨
⎪⎩

x1(k) = yr(k) − y(k) = e(k),

x2(k) = e(k) − e(k − 1) = �e(k),

x3(k) = e(k) − 2e(k − 1) + e(k − 2) = �e(k) − �e(k − 1),

(10.31)
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Fig. 10.7 The control structure of the SN-PID

K > 0 is a proportionality factor of the neuron. Hence, the SN-PID control algo-
rithm is described as

�u(k) = u(k) − u(k − 1) = K

3∑
i=1

ωi(k)xi(k), (10.32)

where ωi(k) is the weight of xi(k). We would like to point out that both K and ωi(k)

can be adjusted by self-learning. There are many different parameter learning rules
each corresponding to different control algorithms. Here, we adopt the quadratic
performance index to learn those parameters, namely

E = 1

2
P

[
yr(k + d) − y(k + d)

]2 + Q∇u2(k), (10.33)

where d is the delay time; P is the weight of output error; Q is the weight of control
increments.

Assume the system equation is formulated as

y(k + d) = −
na∑
i=1

aiy(k + d − i) +
nb∑
i=0

biu(k − i). (10.34)

The weight update is in the direction of the negative gradient of E in (10.33).

∇ωi(k) = ωi(k + 1) − ωi(k) = −ηi

∂E

∂ωi(k)
(10.35)

= ηiK

{
Pb0e(k + d)xi(k) − QK

[
3∑

i=1

ωi(k)xi(k)

]
xi(k)

}
, (10.36)

where b0 is the response of a unit step function at the initial zero-state, and can be
obtained by experiments.

Therefore, we obtain the following equations

u(k) = u(k − 1) + K

3∑
i=1

ωi(k)xi(k),
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Fig. 10.8 The simulation of speed: (a) unsupervised Hebb learning rule; (b) supervised Delta
learning rule; (c) supervised Hebb learning rule; (d) improved Hebb learning rule

ωi(k) = ωi(k)∑3
i=1 |ωi(k)| ,

ωi(k + 1) = ωi(k) + ηiK

{
Pb0e(k + d)xi(k) − QK

[
3∑

j=1

ωj (k)xj (k)

]
xi(k)

}
.

In practice, we use e(k) instead of e(k + d) due to e(k + d) being unavailable.

10.4 Experimental Results and Analysis

We validate the longitudinal system model using four learning rules: unsupervised
Hebb learning rule, supervised Delta learning rule, supervised Hebb learning rule,
and improved Hebb learning rule. In our experiments, nP = 2, nI = 0.4, nD = 0.5;
K is taken as 0.005, 0.075, 0.0045, and 0.085 in the four learning rules. The ex-
perimental results are shown in Figs. 10.8 and 10.9. From the experimental results,
we can see that the value of K affects the performance of the controller, for exam-
ple, its response time and overshoot. Furthermore, we validate the SN-PID based on
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Fig. 10.9 Weights vary with different learning rules: (a) unsupervised Hebb learning rule; (b) su-
pervised Delta learning rule; (c) supervised Hebb learning rule; (d) improved Hebb learning rule

Fig. 10.10 The SN-PID based on the quadratic performance index: (a) speed tracking; (b) differ-
ent weights
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the quadratic performance index, shown in Fig. 10.10. In this experiment, P = 2,
Q = 1, b0 = 6, K = 0.02, nP = 80, nI = 0.4, and nD = 259. Compared to other
learning rules, this learning rule has a lower computing burden and clearer physical
meaning.
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