
Autonomous Learning Systems

Autonomous Learning
Systems
From Data Streams to Knowledge
in Real-time

Plamen Angelov
Lancaster University, UK

A John Wiley & Sons, Ltd., Publication

This edition first published 2013
© 2013 John Wiley & Sons, Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply
for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the
Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of
the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand
names and product names used in this book are trade names, service marks, trademarks or registered
trademarks of their respective owners. The publisher is not associated with any product or vendor
mentioned in this book. This publication is designed to provide accurate and authoritative information in
regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in
rendering professional services. If professional advice or other expert assistance is required, the services
of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data:

Angelov, Plamen P.
Autonomous learning systems : from data streams to knowledge in real-time / Plamen P. Angelov.

pages cm
Includes bibliographical references and index.
ISBN 978-1-119-95152-0 (cloth)

1. Self-organizing systems. 2. Machine learning. I. Title.
Q325.A54 2013
006.3′1–dc23

2012025907

A catalogue record for this book is available from the British Library.

ISBN: 978-1-119-95152-0

Set in 10/12.5pt Palatino by Aptara Inc., New Delhi, India

Contents

Forewords xi

Preface xix

About the Author xxiii

1 Introduction 1
1.1 Autonomous Systems 3
1.2 The Role of Machine Learning in Autonomous Systems 4
1.3 System Identification – an Abstract Model of the Real World 6

1.3.1 System Structure Identification 6
1.3.2 Parameter Identification 8
1.3.3 Novelty Detection, Outliers and the Link

to Structure Innovation 9
1.4 Online versus Offline Identification 9
1.5 Adaptive and Evolving Systems 10
1.6 Evolving or Evolutionary Systems 11
1.7 Supervised versus Unsupervised Learning 13
1.8 Structure of the Book 14

PART I FUNDAMENTALS

2 Fundamentals of Probability Theory 19
2.1 Randomness and Determinism 20
2.2 Frequentistic versus Belief-Based Approach 22
2.3 Probability Densities and Moments 23
2.4 Density Estimation – Kernel-Based Approach 26
2.5 Recursive Density Estimation (RDE) 28
2.6 Detecting Novelties/Anomalies/Outliers using RDE 32
2.7 Conclusions 36

vi Contents

3 Fundamentals of Machine Learning and Pattern Recognition 37
3.1 Preprocessing 37

3.1.1 Normalisation and Standardisation 38
3.1.2 Orthogonalisation of Inputs/Features – rPCA Method 39

3.1.2.1 The Basics of the PCA Method 39
3.1.2.2 Offline PCA 40
3.1.2.3 Online (Recursive) Version of PCA, rPCA 41

3.2 Clustering 42
3.2.1 Proximity Measures and Clusters Shape 44
3.2.2 Offline Methods 46

3.2.2.1 A Brief Introduction to the Mountain
Clustering Method 46

3.2.2.2 Subtractive Clustering Method Outline 47
3.2.2.3 Gustafson–Kessel Clustering Algorithm 48
3.2.2.4 Mean Shift Clustering Algorithm 49

3.2.3 Evolving Clustering Methods 49
3.2.3.1 Incremental VQ Clustering Method 50
3.2.3.2 Evolving Clustering Algorithm eClustering 50
3.2.3.3 Evolving Local Means (ELM) Clustering

Algorithm 51
3.2.3.4 Evolving GK-like Algorithm 52

3.3 Classification 56
3.3.1 Recursive LDA, rLDA 58

3.4 Conclusions 58

4 Fundamentals of Fuzzy Systems Theory 61
4.1 Fuzzy Sets 61
4.2 Fuzzy Systems, Fuzzy Rules 64

4.2.1 Fuzzy Systems of Zadeh–Mamdani Type 65
4.2.1.1 Linguistic Terms and Variables 65
4.2.1.2 Inference and Defuzzification 66

4.2.2 Takagi–Sugeno Fuzzy Systems 66
4.2.2.1 Architecture of Takagi–Sugeno Fuzzy Systems 66
4.2.2.2 Multi-Input–Multi-Output (MIMO) Takagi–Sugeno

Fuzzy Systems 68
4.2.2.3 Analysis of the Inference in Takagi–Sugeno

Fuzzy Systems 69
4.3 Fuzzy Systems with Nonparametric Antecedents (AnYa) 69

4.3.1 Architecture 70
4.3.2 Analysis of AnYa 72

4.4 FRB (Offline) Classifiers 73
4.5 Neurofuzzy Systems 75

4.5.1 Neurofuzzy System Architecture 75
4.5.1.1 TS Type NFS 76
4.5.1.2 AnYa Type NFS 78

Contents vii

4.5.2 Evolving NFS 78
4.5.3 Linguistic Interpretation of the NFS 79

4.6 State Space Perspective 79
4.7 Conclusions 81

PART II METHODOLOGY OF AUTONOMOUS LEARNING SYSTEMS

5 Evolving System Structure from Streaming Data 85
5.1 Defining System Structure Based on Prior Knowledge 85
5.2 Data Space Partitioning 86

5.2.1 Regular Partitioning of the Data Space 87
5.2.2 Data Space Partitioning through Clustering 87
5.2.3 Data Space Partitioning Based on Data Clouds 88
5.2.4 Importance of Partitioning the Joint Input–Output

Data Space 89
5.2.5 Principles of Data Space Partitioning for Autonomous

Machine Learning 91
5.2.6 Dynamic Data Space Partitioning – Evolving System Structure

Autonomously – Example of Fish Classification 91
5.2.6.1 Data Space Partitioning Based on Prior Knowledge 92
5.2.6.2 Regular Data Space Partitioning 95
5.2.6.3 Data Space Partitioning through Clustering 95
5.2.6.4 Data Space Partitioning through Clouds 95

5.3 Normalisation and Standardisation of Streaming Data
in an Evolving Environment 96
5.3.1 Standardisation in an Evolving Environment 97
5.3.2 Normalisation in an Evolving Environment 98

5.4 Autonomous Monitoring of the Structure Quality 98
5.4.1 Autonomous Input Variables Selection 98
5.4.2 Autonomous Monitoring of the Age of the Local Submodels 101
5.4.3 Autonomous Monitoring of the Utility of the Local Submodels 102
5.4.4 Update of the Cluster Radii 103

5.5 Short- and Long-Term Focal Points and Submodels 104
5.6 Simplification and Interpretability Issues 105
5.7 Conclusions 107

6 Autonomous Learning Parameters of the Local Submodels 109
6.1 Learning Parameters of Local Submodels 110
6.2 Global versus Local Learning 111
6.3 Evolving Systems Structure Recursively 113
6.4 Learning Modes 116
6.5 Robustness to Outliers in Autonomous Learning 118
6.6 Conclusions 118

viii Contents

7 Autonomous Predictors, Estimators, Filters, Inferential Sensors 121
7.1 Predictors, Estimators, Filters – Problem Formulation 121
7.2 Nonlinear Regression 123
7.3 Time Series 124
7.4 Autonomous Learning Sensors 125

7.4.1 Autonomous Sensors – Problem Definition 125
7.4.2 A Brief Overview of Soft/Intelligent/Inferential Sensors 126
7.4.3 Autonomous Intelligent Sensors (AutoSense) 127
7.4.4 AutoSense Architecture 128
7.4.5 Modes of Operation of AutoSense 129
7.4.6 Autonomous Input Variable Selection 130

7.5 Conclusions 131

8 Autonomous Learning Classifiers 133
8.1 Classifying Data Streams 133
8.2 Why Adapt the Classifier Structure? 134
8.3 Architecture of Autonomous Classifiers of the Family AutoClassify 135

8.3.1 AutoClassify0 136
8.3.2 AutoClassify1 137

8.3.2.1 Multiple (m) Two-Class Classification Problems 138
8.3.2.2 AutoClass1 MIMO 138

8.4 Learning AutoClassify from Streaming Data 139
8.4.1 Learning AutoClassify0 139
8.4.2 Learning AutoClassify1 139

8.5 Analysis of AutoClassify 140
8.6 Conclusions 140

9 Autonomous Learning Controllers 143
9.1 Indirect Adaptive Control Scheme 144
9.2 Evolving Inverse Plant Model from Online Streaming Data 145
9.3 Evolving Fuzzy Controller Structure from Online Streaming Data 147
9.4 Examples of Using AutoControl 148
9.5 Conclusions 153

10 Collaborative Autonomous Learning Systems 155
10.1 Distributed Intelligence Scenarios 155
10.2 Autonomous Collaborative Learning 157
10.3 Collaborative Autonomous Clustering, AutoCluster by

a Team of ALSs 158
10.4 Collaborative Autonomous Predictors, Estimators, Filters and

AutoSense by a Team of ALSs 159
10.5 Collaborative Autonomous Classifiers AutoClassify by a Team of

ALSs 160
10.6 Superposition of Local Submodels 161
10.7 Conclusions 161

Contents ix

PART III APPLICATIONS OF ALS

11 Autonomous Learning Sensors for Chemical and
Petrochemical Industries 165
11.1 Case Study 1: Quality of the Products in an Oil Refinery 165

11.1.1 Introduction 165
11.1.2 The Current State-of-the-Art 166
11.1.3 Problem Description 167
11.1.4 The Dataset 167
11.1.5 AutoSense for Kerosene Quality Prediction 168
11.1.6 AutoSense for Abel Inflammability Test 171

11.2 Case Study 2: Polypropylene Manufacturing 172
11.2.1 Problem Description 172
11.2.2 Drift and Shift Detection by Cluster Age Derivatives 176
11.2.3 Input Variables Selection 177

11.3 Conclusions 178

12 Autonomous Learning Systems in Mobile Robotics 179
12.1 The Mobile Robot Pioneer 3DX 179
12.2 Autonomous Classifier for Landmark Recognition 180

12.2.1 Corner Detection and Simple Mapping of an Indoor
Environment through Wall Following 182

12.2.2 Outdoor Landmark Detection Based on Visual Input
Information 185

12.2.3 VideoDiaries 189
12.2.4 Collaborative Scenario 190

12.3 Autonomous Leader Follower 193
12.4 Results Analysis 196

13 Autonomous Novelty Detection and Object Tracking in Video Streams 197
13.1 Problem Definition 197
13.2 Background Subtraction and KDE for Detecting Visual Novelties 198

13.2.1 Background Subtraction Method 198
13.2.2 Challenges 199

13.2.2.1 Illumination Changes 199
13.2.2.2 Shadows and Reflection 200
13.2.2.3 Occlusions and Camouflage 201
13.2.2.4 Nonstatic Background and Camera Oscillations 201

13.2.3 Parametric versus Nonparametric Approaches 201
13.2.4 Kernel Density Estimation Method 202

13.3 Detecting Visual Novelties with the RDE Method 203
13.4 Object Identification in Image Frames Using RDE 204
13.5 Real-time Tracking in Video Streams Using ALS 206
13.6 Conclusions 209

x Contents

14 Modelling Evolving User Behaviour with ALS 211
14.1 User Behaviour as an Evolving Phenomenon 211
14.2 Designing the User Behaviour Profile 212
14.3 Applying AutoClassify0 for Modelling Evolving User Behaviour 215
14.4 Case Studies 216

14.4.1 Users of UNIX Commands 216
14.4.2 Modelling Activity of People in a Smart Home Environment 218
14.4.3 Automatic Scene Recognition 219

14.5 Conclusions 221

15 Epilogue 223
15.1 Conclusions 223
15.2 Open Problems 227
15.3 Future Directions 227

APPENDICES
Appendix A Mathematical Foundations 231

A.1 Probability Distributions 231
A.2 Basic Matrix Properties 233

Appendix B Pseudocode of the Basic Algorithms 235
B.1 Mean Shift with Epanechnikov Kernel 235
B.2 AutoCluster 236
B.3 ELM 237
B.4 AutoCluster 239
B.5 AutoSense 240
B.6 AutoClassify0 240
B.7 AutoClassify1 241
B.8 AutoControl 243

References 245

Glossary 259

Index 263

Forewords

Adrian Stoica

Efficient and robust performance in imperfectly known, nonstationary, environ-
ments – and this characterizes the vast majority of real-world applications – requires
systems that can improve themselves, transcending their initial design, continuously
optimizing their parameters, models, and methods. These improvements come pre-
dominantly from learning – about the environment, about the ageing self, about the
interactions with, and within, the environment, and from the ability to put this learn-
ing to use. Batch learning – or at least repeated updating learning from most recent
batches, is sufficient only for a limited number of applications. For other applica-
tions learning needs to be incremental, to sample level, a learn-or-perish, or at least
learn-or-pay (a hefty price) situation. In particular, real-time learning is most critical
for bots, virtual or real, agents of the cyberphysical systems that need the agility to
swiftly react to virus attacks, or physical robots exposed to hazards while performing
search and rescue in disaster areas, or dealing with what is, for now, a largely unpre-
dictable partner: the human. The fast advancement in autonomous systems makes the
subject of real-time autonomous learning critically important, and yet the literature
addressing this topic is extremely scarce.

Dr Angelov’s pioneering book addresses this problem at its core, focusing on real-
time, online learning from streaming data on a sample-by-sample basis. It offers a
basic framework for understanding and for designing such systems. It importantly
contributes to a more powerful learning, not only of the parameters but of a better
structure as well. Conventional approaches are characterized by the fact that the
system structure (model) is determined in the beginning, by human designers of
the system, and only parameters are learned from the interaction. The entire model
identification–learning process can, however, be posed as an optimization problem,
as the author points out, and this includes automatically determining the optimal
structure in conjunction with the optimal parameters for it. This is done automatically
in the methods described in the book, and constitutes a significant and valuable
contribution. The system is continuously evolving, not in the evolutionary (genetic)
sense of improvement over generations, but continuously perfecting its development.

xii Forewords

A valuable contribution of the book is that it offers a high-level, holistic perspective
of the field, which helps both students and expert practitioners better comprehend the
interplay of various disciplines involved in learning autonomous systems, as diverse
as adaptive control and evolutionary algorithms, offering analogies between different
disciplines and referring to the equivalency of the concepts characterized by different
terminology in different disciplines. It is not meant to be a comprehensive reference
of concepts and methods in the field, the author instead paints the landscape with
selected brush strokes that allows the viewer to see the forest without getting lost
in seeing the trees. It is a work that charters a new field, innovates in methods to
advance into it, and outlines new challenges to be addressed by future explorers.

The selected concepts and methods, a good number of which come from the au-
thor’s own prior work, are used in the second part of the book to illustrate the im-
plementation of learning in autonomous systems. Concepts such as that of evolving
clusters, ‘age’ of an (evolving) local submodel, and methods such as recursive density
estimation (RDE) introduced by the author, showing significant improvement over
the state-of-the art, are important additions to the arsenal of tools for real-time learn-
ing. In particular, I believe that adaptive, self-learning (evolving) classifiers will play
a fundamental role in future autonomous learning systems.

The book’s last part is a review of three applications: autonomous learning sensors
for chemical and petrochemical applications, autonomous learning in mobile robots,
and autonomous novelty detection and object tracking in video systems. These di-
verse domains illustrate the general applicability of the set of methodology presented
in the book and focused on the main theme of this work: the real-time autonomous
online learning from data streams.

The field of autonomous learning systems is destined to play an increasingly im-
portant role in most systems that will surround us in cyberphysical space. Convert-
ing information in data streams, larger and larger, to actionable knowledge, in real
time: this is the great challenge ahead, and this book is an important step towards
addressing it.

Adrian Stoica
Jet Propulsion Laboratory

California Institute of Technology
June 2012

Vladik Kreinovich

In many practical situations, we have experts who are skilled in doing certain tasks:
expert medical doctors are skilled in diagnosing and curing diseases, professional
drivers are skilled in driving cars – in particular, driving them in difficult traffic and/or
weather conditions, etc. It is desirable to incorporate the knowledge of these top
experts in an automatic system that would help other users perform the corresponding
tasks – and, ideally, perform these tasks automatically.

Forewords xiii

Experts are usually willing to share their knowledge, but the difficulty is that
in many situations, experts describe their knowledge by using imprecise (“fuzzy”)
words from natural language, like “small”. For example, an expert driver rarely
describes his or her experience in precise terms like “if the car in front slows down by
10 km/h and it is at a distance of 10 meters, you should press the brake for 0.6 seconds
with a force of 2.7 Newtons”; most probably, the rule described by an expert driver
is “if the car in front of you is close, and it suddenly slows down some, then you
should brake right away”. In this rule, “close” and “some” are imprecise terms: while
everyone would agree that, say 100 meters is not close while 5 meters is close, there
will not be a precise threshold so that before this threshold the distance is close, and
a 1 cm larger distance is not close.

To describe such imprecise (fuzzy) knowledge in computer-understandable precise
terms, Professor Lotfi A. Zadeh invented, in the 1960s, a new approach called fuzzy
logic. Zadeh’s ideas led to revolutionary changes in many control situations: from the
first successful control applications in the 1970s through the fuzzy control boom in
the 1990s – when fuzzy-controlled washing machines, camcorders, elevators, trains
were heavily promoted and advertised – to the current ubiquity of fuzzy controllers.
Just like nowadays computers are ubiquitous – companies no longer brag about
computer chips in their cars, since all the cars have such chips – similarly, fuzzy
control is ubiquitous: for example, in many cars, automatic transmission systems use
fuzzy control.

The existing fuzzy controllers are very successful, but they have a serious limitation:
they do not learn. Once the original expert rules are implemented, these same rules are
used again and again, even when it becomes clear that the rules need to be updated.
We still need an expert to update these rules.

There are, of course, numerous intelligent systems that can learn, such as artificial
neural networks, but from the viewpoint of the user, these systems are “black boxes”:
we may trust them, but we cannot easily understand the recommendations. In con-
trast, fuzzy rules, by definition, are formulated in terms of understandable rules. If
we could make fuzzy systems themselves learn, make them automatically update the
rules – this would combine the clarity of fuzzy rules with the autonomous learning
ability of neural networks. This would make learning fuzzy controllers even more
efficient – and therefore, even more widely used. This would lead to a second revolution
in intelligent control.

And this revolution is starting. This book, by Dr. Plamen Angelov, one of the
world’s leading specialists in learning fuzzy systems, is the first book that sum-
marizes the current techniques and successes of autonomously learning fuzzy (and
other) systems – techniques mostly developed by Dr. Angelov himself, often in col-
laboration with other renowned fuzzy researchers (like Dr. Ronald Yager). Some of
these techniques have previously appeared in technical journals and proceedings of
international conferences, some appear here for the first time.

Ideas are many, it is difficult to describe them all in a short preface, so let us just
give a few examples. The first example is an interesting AnYa algorithm invented by
Angelov and Yager (Anya is also a Russian short form of Anna (Anne)). In fuzzy logic,

xiv Forewords

each fuzzy term like “small” is described by a membership function, i.e. a function that
assigns, to each possible value x, the degree μ(x) from the interval [0, 1] to which this
value is small. The value μ(x) = 1 means that x is absolutely small, every expert would
agree to this; μ(x) = 0 means that x is definitely not small, while values between 0
and 1 represent the expert’s uncertainty.

In the traditional fuzzy control algorithms, we select a finite-parametric family of
membership functions – e.g., functions that are of triangular, trapezoid, or Gaussian
shapes – and adjust parameters of these functions based on the expert opinions. As a
result, sometimes, the resulting membership functions provide a rather crude and not
very accurate description of the expert knowledge. To improve the situation, AnYa
does not limit the shape of the membership function. Instead, it uses all the value
x1, . . . , xn, that the expert believes to be satisfying the property (like “small”), and
defines the desired membership function by formalizing the statement “x is close
to x1 or x is close to x2, . . .”. Now, all we need to do is describe what experts
mean by “close” (and by “or”), and we will no only have a well-shaped member-
ship function, we will also have a way to update its shape when new observations
appear.

A similar idea can be implemented in probabilistic terms, when we use probability
density functions (pdf) ρ(x) instead of membership functions, but the authors show
a clear computational advantage of their fuzzy approach: A pdf is normalized by
the condition that the total probability is 1: ∫ρ(x)dx = 1, so we need to go through a
computationally intensive process of renormalize all its values every time we update
one value of ρ(x). In contrast, a membership function is usually normalized by the
condition that max

x
μ(x) = 1. Thus, if we change a value of the membership function,

we only need to renormalizing other values when the changed value is μ(x) = 1 – and
this happens rarely.

Similar ideas are used to automatically decide how to adjust the rule’s conclu-
sions, when to subdivide the original rule into two subrules – that would provide
a more subtle description of actions, when to dismiss the old data that is no longer
representative of the system’s inputs, etc.

Researchers and practitioners who have been using fuzzy techniques will defi-
nitely benefit from learning how to make fuzzy systems learn automatically (pun
intended :-). But this book is not only for them. Readers who are not familiar with
the current fuzzy techniques will also greatly benefit: the book starts with a nice in-
troduction that explains, in popular terms, what is fuzzy, and why and how we can
use fuzzy techniques. (Some math is needed – but math taught to engineers is quite
enough.)

This book is not just for the academics, practitioners will surely benefit. In the last
part of the book, numerous applications are described in detail, providing the reader
with an understanding of how these new methods can be used in practical situations.
It may be a good idea to glance through these exciting applications first, this will give
the readers an excellent motivation to grind through all the formulas and algorithms
in the main part of the book.

Forewords xv

Applications include learning sensors for chemical and petrochemical industries –
industries where the chemical contents of the input (such as oil) changes all the
time, and intelligent adjustments need to be constantly made. Another successful
application example is mobile robotics, where the robot’s ability to learn how to
navigate in a new environment – and learn fast – is often crucial for the robot’s
mission. The new methods have also been applied to novelty detection and object
tracking in video streams, to wireless sensor networks, and to many other challenging
application areas.

The second revolution – of making intelligent control systems fast learners – has
started. Its preliminary results are already exciting. This book will definitely help
promote the ideas of this second revolution – and thus, further improve its methods
and use these improved methods to solve numerous challenging problems of today.

Vladik Kreinovich
President

North American Fuzzy Information Processing Society (NAFIPS), El Paso, Texas
August 2012

Arthur Kordon

One of the most significant changes during the twenty-first century is the fast dy-
namics in almost all components of life. Economic, social, and financial systems, to
name a few, are moving more of their activities to a real-time mode of operation.
Extracting knowledge from data streams becomes as important as was information
retrieval from data bases several decades ago. The need for fast adaptation to un-
known conditions, due to the new complex nature of the global economy, is another
big challenge in operating the systems in the twenty-first century.

Unfortunately, the existing classical modeling techniques, based on first principles,
statistics, system identification, etc., cannot deliver satisfying solutions adequate to
the new fast dynamics. Adaptive systems are limited to models with a fixed struc-
ture and linear relationships. Some recent computational intelligence methods with
nonlinear and adaptive capabilities, such as evolutionary computation and swarm
intelligence, are too slow for real-time operation.

A potential solution to the new needs is the fast-growing research area of evolv-
ing intelligent systems. They offer a system that simultaneously learns its structure
and calculates its parameters “on the fly” from data streams. An advantage of this
approach is the simplicity and very low memory requirement of the used algorithms,
which makes them appropriate for real time. In addition, the algorithms are universal
(i.e. can be applied in various areas with no or minor changes), with minimal number
of tuning parameters, and in the case of evolving fuzzy systems – the suggested mod-
els are interpretable by the users. Autonomous learning systems (ALS) is the ultimate
solution of an evolved intelligent system that integrates the broadest possible range

xvi Forewords

of algorithms and requires minimal human intervention. The research area of ALS
has grown significantly in terms of publications, conference presence, and funding
support. An impressive feature of this emerging technology is its fast applicability in
different areas, such as inferential sensors, mobile robotics, video streams processing,
defence applications, etc.

Unfortunately, the literature for ALS is mostly available in journal or conference
papers. Some recently published books on evolving intelligent systems and evolv-
ing fuzzy systems give a generic overview and some guidelines on the different
components of the technology. However, researchers and practitioners need a book
that describes in sufficient details the foundation of ALS, offers software for inves-
tigating the key algorithms in a popular environment, such as Matlab, and gives
appropriate application examples. Autonomous Learning Systems is the first book on
the market that fills this need.

Purpose of the Book

The purpose of the book is to give the reader a comprehensive view of the current
state of the art of ALS. The key topics of the book are:

1. What are the fundamentals of ALS? The first main topic of the book focuses on the
ambitious task of describing the diverse research foundation of ALS. The key
methods, such as probability theory, machine learning and pattern recognition,
clustering, and fuzzy system theory are presented at a level of detail sufficient for
understanding the ALS mechanisms.

2. How to develop an ALS? The second key topic of the book is the description of the
methodology of ALS. Its main focus is on presenting the key steps in developing
of an ALS from streaming data, such as dynamic data space partitioning, normal-
ization and standardisation, autonomous monitoring of the structure quality, and
autonomous learning parameters of the local submodels.

3. How and where to apply ALS in practice? The third key topic of the book covers
the implementation issues and application areas of ALS. It includes an overview
of the potential application areas, such as autonomous predictors, estimators, fil-
ters, and inferential sensors; autonomous learning classifiers; autonomous learning
controllers and collaborative autonomous learning systems. Of special interest are
the results from several real-world applications of ALS, such as inferential sen-
sors in the chemical and petrochemical industries, ALS in mobile robotics, and
autonomous novelty detection and object tracking in video streams.

Who this Book is for?

Due to the wide potential application areas, the targeted audience is much broader
than the traditional scientific communities in computer science, data mining, and

Forewords xvii

engineering. The readers who can benefit from this book are described below:

� Academics – This group includes a large class of academics in the fields of computer
science, data mining, and engineering who are not familiar with the research and
technical details of this new field. They will benefit from the book by using it as an
introduction to the field, exploring the described algorithms, and understanding
its broad application potential.

� Students – Undergraduate and graduate students can benefit from the book by
understanding this new field. The book could be a basis for a graduate course on
this topic.

� Industrial researchers – This group includes scientists in industrial labs who create
new solutions for the busines. They will benefit from the book by understanding
the value of this new emerging technology in delivering novel solutions in the area
of real-time modelling based on data streams.

� Governmental agencies – ALS have almost unlimited potential in various military
applications and space exploration projects. This book can be used by the govern-
mental decision makers as an introduction to the technology and even may open
new application areas.

� Software vendors – This group includes vendors of process monitoring and control
systems, data-mining software, robotic systems, etc. They will benefit from the book
by understanding a new emerging technology, exploring the described algorithms,
and defining new application areas, related to data streams.

Features of the Book

The key features that differentiate this book from other titles on learning and evolving
systems are:

1. A systematic description of autonomous learning systems – One of the most valuable
features of the book is the systematic and comprehensive way of presenting related
methods. It gives the reader a solid basis for understanding the research foundation
of ALS, which is of critical importance for introducing this emerging technology
to a broad audience.

2. A detailed methodology for development of autonomous learning systems – Another
important topic of the book is the step-by-step description of the key algorithms,
used in the proposed technology. This allows the reader to easily implement and
explore the large potential of ALS on a simulation level.

3. A broad range of autonomous learning systems applications – The third key feature of
the book is the impressive list of described real-world applications across several
application areas. It illustrates one of the unique advantages of ALS – the fast
transition from theory to practice.

Arthur Kordon
Lake Jackson, Texas

March, 2012

xviii Forewords

Lawrence O. Hall

Today’s data-driven world has many large streams of data, for example a day’s worth
of images posted to the internet. Imagine the task of finding all instances, perturbed
or not, of an image. It would require learning and adaptation as the way images are
placed and modified evolve. This book provides an informative snapshot of how to
build autonomous learning systems for data streams. It covers the math you need,
probability, normalization, fuzzy systems, the basics of machine learning and pattern
recognition, clustering, feature selection and more. It shows how to do learning in an
autonomous setting and how to tune out noise/outliers.

Sensor learning, autonomous classifier learning, collaborative learning, learning
controls systems in an autonomous way are all covered in an interesting way. There
are case studies given to show how it all fits together. These include object tracking
in videos and autonomous learning robots. It is clear that we need adaptable robots
capable of modifying their behaviour. This is an ambitious, early book that covers
robot learning and the basics for much more autonomous learning. It is well worth
perusing for those interested in this broad subject.

Lawrence O. Hall
Dept. of Computer Science and Engineering, University of South Florida, USA

May 16, 2012

Preface

This book comes as a result of focused research and studies for over a decade in
the emerging area that is on the crossroads of a number of well-known and well-
established disciplines, such as (Figure 1):

� machine learning (ML);
� system engineering (specifically, system identification), SI;
� data mining, DM;
� statistical analysis, SA;
� pattern recognition including clustering, classification, PR;
� fuzzy logic and fuzzy systems, including neurofuzzy systems, FL;
� and so on.

On the one hand, there is a very strong trend of innovation of all of the above
well-established branches of research that is linked to their online and real-time ap-
plication; their adaptability, flexibility and so on (Liu and Meng, 2004; Pang, Ozawa
and Kasabov, 2005; Leng, McGuinty and Prasad, 2005). On the other hand, a very
strong driver for the emergence of autonomous learning systems (ALS) is industry, es-
pecially defence and security, but also aerospace and advanced process industries,

ML

SI

DM

SA

PR

FL

ALS

Figure 1 Autonomous learning systems theory is build upon other well-established
areas of research (the list is, of course, not exhaustive)

xx Preface

the Internet, eHealth (assisted living), intelligent transport, and so on. The demand in
defence was underpinned recently by a range of multimillion research and develop-
ment projects funded by DARPA, USA (notably, two Grand Challenge competitions
(Buehler, Iagnemma and Singh, 2010)); by MoD and BIS, UK (Defence Technology
Centre on Systems Engineering and Autonomous Systems; ASTRAEA and GAMMA
multimillion programmes, in which the author has played the research provider
role, being the technical lead for several projects) and similar programmes in other
European countries (France, Sweden, Spain, Czech Republic, Russia), and Israel.
Major global companies have established their own programmes, such as IBM’s
autonomous computing initiative (IBM, 2009) and BT’s intelligent network of au-
tonomous elements (Detyenecki and Tateson, 2005). The International Neural Net-
work Society (INNS) has established in 2011 a section on Autonomous Machine
Learning of which the author is a founding member, together with scientists such as
Bernard Widrow – the father of the famous least mean squares (LMS) algorithm.

This book attempts to address these challenges with a systematic approach that can
be seen as laying the foundations of what can become a fast-growing area of research
that can underpin a range of technological applications so needed by industry and
society. The author does not claim that this represents a finished and monolithic
theory; this is rather a catalyser for future developments, an inoculum, a vector
pointing the direction rather than a full solution of the problems.

An important aim of preparing this book was also to make it a one-stop shop
for students, researchers, practicing engineers, computer specialists, defence and
industry experts and so on that starts with the motivation, presents the concept
of the approach, describes details of the theoretical methodology based on a rig-
orous mathematical foundation, presents a wide range of applications, and more
importantly, provides illustrations and algorithms that can be used for further re-
search. The software (subject to a license) can be downloaded from the author’s web
site: http://www.lancs.ac.uk/staff/angelov/Downloads.htm. It is covered by USA
patent # 2010-0036780, granted 21 August 2012 (priority date 1 Nov. 2006) and two
pending patent applications and distributed by the spin-out company of Lancaster
University called EntelSenSys Ltd. (www.entelsensys.com). From the same web site
there will also be available for the readers for this book a set of lecture notes that
will be a useful tool for delivering specialised short courses or an advanced Master
level module as a part of various related programmes that cover the topics of ma-
chine learning, pattern recognition, control systems, computational intelligence, data
mining, systems engineering, and so on.

The book was initially planned at the end of 2006 during the very successful IEEE
Symposium on Evolving Fuzzy Systems held in Ambleside in the Lake District, UK
but the turn of events (as usually happens) postponed its appearance by more than
five years, which gave an opportunity for the concepts to mature and evolve further
and new results and applications to be added.

It would not have become a reality without the support of the colleagues and col-
laborators, students, associates and visitors of the author. In the hope not to miss
someone this includes Prof. Ronald Yager (Iona College, NY, USA), Dr. Dimitar Filev

Preface xxi

(Ford, MI, USA), Prof. Nikola Kasabov (Auckland University, New Zealand), Prof.
Fernando Gomide (University of Campinas, Brazil), Dr. Xiaowei Zhou (HW Com-
munications, UK), Dr. Jose Antonio Iglesias (University Carlos III, Madrid, Spain),
Dr. Jose Macias Hernandez (CEPSA, Tenerife, Spain), Dr. Arthur Kordon (The Dow
Chemical, TX, USA), Dr. Edwin Lughofer (Johan Kepler University, Linz, Austria),
Prof. Igor Skrjanc (University of Ljubljana, Slovenia), Prof. Frank Klawonn (Ostfalia
University of Applied Sciences, Germany), Mr. Jose Victor Ramos (University of
Coimbra, Portugal), Dr. Ana Cara Belen (University of Granada), Mr. Javier Andreu
(Lancaster University), Mr. Pouria Sadeghi-Tehran (Lancaster University), Mr. Denis
Kolev (Rinicom Ltd.), Mrs. Rashmi Dutta Baruah (Lancaster University), Mr. Ramin
Ramezani (Imperial College, London), Mr. Julio Trevisan (Lancaster University), and
many more.

The feedback on the manuscript by Professor Vladik Kreinovich (University of
Texas, USA) who is also President of the North American Fuzzy Information Pro-
cessing Society (NAFIPS); Dr. Adrian Stoica, Senior Research Scientist at the Au-
tonomous Systems Division, NASA Jet Propulsion Laboratory, Pasadena, CA, USA,
Dr. Arthur Kordon, Team Leader at Dow Chemical, TX, USA; as well as from Dr. Larry
Hall, Distinguished Professor and Chair at the Department of Computer Science and
Engineering, University of South Florida, USA was also instrumental to improve and
smooth out the presentation and remove some omissions.

Plamen Angelov
November 2009–May 2012

Lancaster, UK

About the Author

The author, Dr Plamen Angelov, is a Reader in Computational Intelligence and coor-
dinator of the Intelligent Systems Research Area at Infolab21, Lancaster University,
UK. He is a Senior Member of the IEEE and of INNS (International Neural Networks
Society) and Chair of the Technical Committee on Evolving Intelligent Systems, Sys-
tems, Man and Cybernetics Society, IEEE. He is also a member of the UK Autonomous
Systems National Technical Committee and a founding member of the Centre of Ex-
cellence in CyberSecurity officially recognised by UK GCHQ for the period 2012–2017.

He has authored or coauthored over 160 peer-reviewed publications in leading
journals (50+) peer-reviewed conference proceedings, three patents, two research
monographs, half a dozen edited books, and has an active research portfolio in the area
of computational intelligence and autonomous system modelling, identification, and
machine learning. He has internationally recognised pioneering results into online
and evolving methodologies and algorithms for knowledge extraction in the form of
human-intelligible fuzzy rule-based systems and autonomous machine learning.

Dr. Angelov is a very active researcher leading numerous projects (over fifteen
in the last five to six years) funded by UK and EU research councils, industry, HM
Government, including UK Ministry of Defence (total funding of the order of tens of
millions pounds with well over £1M for his group alone). His research contributes to
the competitiveness of the industry, defence and quality of life and was recognised by
‘The Engineer Innovation and Technology 2008 Award in two categories: i) Aerospace
and Defence and ii) The Special Award.

Dr. Angelov is also the founding Editor-in-Chief of Springer’s journal on Evolv-
ing Systems and Associate Editor of the leading international scientific journals in
this area, including IEEE Transactions on Systems, Man and Cybernetics, IEEE Trans-
actions on Fuzzy Systems, Elsevier’s Fuzzy Sets and Systems, Soft Computing, Journal
on Automation, Mobile Robotics and Intelligent Systems Journal on Advances in Air-
craft and Spacecraft Science and several others. He also chairs annual conferences
organised by IEEE on Evolving and Adaptive Intelligent Systems, will be General
co-Chair of the prime conferences on neural networks (IJCNN-2013, Dallas, Texas,
August, Texas and fuzzy systems, FUZZ-IEEE-2014, June 2014, Beijing, China and
on Cybernetics, CYBCO-2013, Lausanne, Switzerland), acted as Visiting Professor

xxiv About the Author

(in Brazil, Germany, Spain) regularly gives invited and plenary talks at leading con-
ferences, universities and companies More information can be found at his web site
www.lancs.ac.uk/staff/angelov.

The evolving face of the author (who is, of course an autonomous learning and
evolving system himself) can be seen below:

1
Introduction

The main differentiator of the new generation of autonomous systems that is emerg-
ing in the twenty-first century is the adaptivity of their intelligence. They are not
simply automatic (usually remote) control devices, not only adaptive control systems
in the narrow sense of systems with tunable parameters as in the last decades of the
past century, but they are rather systems with a certain level of evolving intelligence.
While conventional adaptive techniques (Astroem and Wittenmark, 1989) are suit-
able to represent objects with slowly changing parameters, they can hardly handle
complex (usually, nonlinear, nonstationary) systems with multiple operating modes
or abruptly changing characteristics since it takes a long time after every drastic
change in the system to update model parameters. The evolving systems paradigm
(Angelov, 2002) is based on the concept of evolving (expanding or shrinking) system
structure that is capable of adapting to the changes in the environment and internal
changes of the system itself that cannot solely be represented by parameter tuning/
adjustment.

Evolving intelligent systems (eIS) the concept of which was pioneered recently
(Angelov, 2002; Kasabov, 2002; Angelov and Kasabov, 2005; Kasabov and Filev, 2006,
Jager, 2006), develop their structure, their functionality, and their internal knowl-
edge representation through autonomous learning from data streams generated by the
(possibly unknown) environment and from the system self-monitoring. They often
(but not necessarily) use as a framework of implementation fuzzy rule-based (FRB)
and neurofuzzy (NF) or neural-network (NN) based systems and machine learning
as a tool for training. Alternative frameworks (such as conventional multimodel sys-
tems, decision trees, probabilistic, e.g. Markov, mixture Gaussian models, etc.) can
also be explored as viable frameworks of eIS and autonomous learning systems.

It should be noted that the physical embodiments of such systems can range
from micro-systems-on chip (Everett and Angelov, 2005), motes of a wireless sen-
sor network (Andreu, Angelov and Dutta Baruah, 2011), mobile robots (Zhou and

Autonomous Learning Systems: From Data Streams to Knowledge in Real-time, First Edition. Plamen Angelov.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

2 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Angelov, 2007; Liu and Meng, 2004; Kanakakis, Valavanis and Tsourveloudis, 2004)
to unmanned airborne vehicles (Valavanis, 2006) and computer-controlled industrial
processes (Filev, Larson and Ma, 2000; Macias-Hernandez et al., 2007).

The potential of these systems for industry was acknowledged by leading re-
searchers with a solid industrial background such as Dr. A. Kordon, R&D Leader,
Dow Chemical, TX, USA who said in 2006 “Evolving Intelligent Systems have a
high potential for implementation in industry” (http://news.lancs.ac.uk/Web/News/
Pages/930389757F5B0BF4802571FB003CB1A2.aspx); Dr. D. Filev, Senior technical
Staff at Ford R&D, Dearborn, MI, USA who also in 2006 said “Embedded soft com-
puting applications are the natural implementation area of evolving systems as one of the
main tools for design of real time intelligent systems” (same web reference as above).

The problem of automatic design of computationally intelligent systems for mod-
elling, classification, time-series prediction, regression, clustering from data has been
successfully addressed during the previous century by a range of techniques such as
by gradient-based techniques (as in the neurofuzzy approach ANFIS (Jang, 1993)), by
genetic/evolutionary algorithms (Fogarty and Munro, 1996; Angelov and Buswell,
2003), by using partitioning by clustering (Babuska, 1998), learning by least squares
(LS) techniques and so on. But, these approaches were assuming all data to be known
in advance (a batch or offline mode of learning) and were not directly applicable to
data streams.

At the same time, the twenty-first century is confronting us with a range of new
challenges that require completely new approaches. As John Naisbitt famously said
“today we are drowning in information but starved for knowledge” (Naisbitt, 1988).
We are in the midst of an information revolution witnessing an exponential growth
of the quantity and the rate of appearance of new information by; Internet users,
consumers, finance industry, sensors in advanced industrial processes, autonomous
systems, space and aircraft, and so on.

It is reported that every year more than 1 Exabyte (=1018 bytes) of data are
generated worldwide, most of it in digital form (http://news.bbc.co.uk/2/hi/
technology/4079417.stm). Toshiba recently coined the phrase ‘digital obesity’ to illus-
trate the ever-growing amount of data that are generated, transmitted and consumed
by the users today. In this ocean of data the useful information and knowledge very
often is difficult to extract in a clear and comprehensive, human-intelligible form. The
availability of convenient-to-use and efficient methods, algorithms, techniques, and
tools that can assist in extracting knowledge from the data (Martin, 2005) is a pressing
demand at individual and corporate level, especially if this can be done online, in
real time.

The new challenges that cannot be successfully addressed by the existing tech-
niques, especially in their complexity and interconnection, can be summarised
as follows:

i. to cope with huge amounts of data;
ii. to process streaming data online and in real time;

iii. to adapt to the changing environment and data pattern autonomously;

Introduction 3

iv. to be computationally efficient (that means, to use recursive, one-pass, nonitera-
tive approaches);

v. to preserve the interpretability and transparency in a dynamic sense.

To address these new challenges efficient approaches are needed that deal with data
streams (Domingos and Hulten, 2001), not just with batch sets of data (Fayyad et al.,
1996), detect, react and take advantage of concept shift and drift in the data streams
(Lughofer and Angelov, 2011). Efficient collaborative and interactive schemes are
also needed for a range of applications in process industries (for self-calibrating, self-
maintaining intelligent sensors of the new generation), in autonomous systems and
robotics (for systems that have self-awareness, replanning and knowledge summari-
sation capabilities), in multimedia and biomedical applications, to name a few.

Autonomous learning (AL) is understood in this book in the context of both system
structure and system parameters. This means that the overall process of design, devel-
opment, redesign/update, adaptation, use and reuse of such systems is autonomous,
including the stages of the system design that traditionally assume heavy human
involvement and are normally done offline (the system being designed not in real time
in which the process that is using this system runs in). Therefore, our understanding
of AL and our concept of eIS is intricately related to the concepts of online and real-time
system structure and parameter design and exploitation and to data streams rather
than to data sets. This is the main differentiator in comparison with the traditional
disciplines.

1.1 Autonomous Systems

Autonomous systems are often seen as the physical embodiments of machine intel-
ligence. The concept of autonomous systems (AS) is not new and is closely related
to AI and cybernetics, but became more popular during the last decade or so mainly
due to the interest (and funding) from the defence and aerospace industries. AS are
significantly different from simple automatic control systems, ACS (Astroem and
Wittenmark, 1989). In fact, each AS has at its lower level (Layer 1) an ACS, usu-
ally, for motion control, for control of the sensors and actuators, and so on. An AS,
however, has also important upper layers in its architecture (Figure 1.1) that concern
perceptions-behaviours (layer 2 that also corresponds to structure identification in
AL systems) and the representation of the environment (usually in a form of rule
base, states, or a map, but not necessarily limiting to these forms of representation)
in the model and self-monitoring functions (layer 3 that is linked to the prediction).

AS can be seen as a fusion of computationally enabled sensor platforms
(machines/devices) that possess the algorithms (respectively, the software) needed
to empower the systems with evolving intelligence that is manifested through inter-
action with the outside environment and self-monitoring.

Examples include, but are not limited to unmanned airborne systems, UAS, un-
manned ground-based vehicles, UGVs (Figure 1.3), and so on.

4 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Perceptions

Sensors

Behaviours

Actuators

Self-monitoring

environment

info goals

Layer 3

Layer 2

Layer 1

Increasing
Abstraction

Increasing
Detail

Data Actions

Model

Figure 1.1 A three-layer structure of an autonomous system. (layer 1 – low-level direct
control, including teleoperation; layer 2 – a more abstract, behavioural autonomy,
specific tasks; layer 3, often called deliberate autonomy – the upper abstract layer of
modelling the environment and self-monitoring)

1.2 The Role of Machine Learning in Autonomous Systems

The core functionality of an AS depends on the ability to be aware of the environment
(through data streams generated by the sensors) and to make decisions accordingly.
Obviously, such decisions cannot be made on the basis of a preprogrammed logic
because this will assume a full knowledge of all the environments in which the
system will operate and will not be flexible enough. Therefore, core elements of any
AS are self-monitoring and self-adaptation. Autonomous learning and extracting new
knowledge as well as updating the existing knowledge base are vitally important for
such type of systems.

The dependence between autonomy and learning is a two-way process – on the
one hand, autonomous systems require learning in order to be aware of, explore, and
adapt to the dynamic environment; on the other hand, learning algorithms require
autonomy to make them independent of human involvement. The lack or low level
of autonomy in most of the currently existing algorithms leads to the need to develop
new generations of AL systems (ALS) to play an important role in the design and
maintenance of autonomous systems (e.g. UAV, UGV, intelligent/soft sensors, etc.).
A system (however well may it have been designed) that is not empowered by an
autonomous machine learning capability will fail helplessly in a situation that was

Introduction 5

Evolving
clustering

Offline
Clustering

Error criteria
minimisation

Structure
Identification

Parameters
Learning

Evolving the
System

process

info goals

Layer 3

Layer 2

Layer 1

Data
Predictions/
Classification/
Control

Density
Estimation

Increasing
Flexibility,
Autonomy

Figure 1.2 A graphical representation of an autonomous machine learning system
(layer 1 – ‘traditional’ (parameters only learning) approach; layer 2 – offline learning of
system structure using clustering and data density (it should be noted that other meth-
ods instead of density-based clustering can be used at this layer); layer 3 represents
the evolving system structure – the upper layer of autonomous learning that often also
includes self-monitoring (not represented for simplicity)

not predicted at the design stage or a situation that is described by parameters widely
out of the range of parameters considered during the design stage.

A system that has learning capabilities and an evolving model of the real world
will try to adapt and create new rules, to drop rules that are outdated and irrelevant
to the new situation and will at least have a higher chance to succeed. In reality, most
of the complex environments are unpredictable, nonlinear and nonstationary. An

Figure 1.3 Autonomous UGVs (laboratory-scale mobile robot Pioneer3DX) in a convoy
formation outside Infolab21, Lancaster University campus

6 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

autonomous system must have the ability to learn quickly (from a single or few data
samples) and to extract knowledge from the data streams collected by the sensors in
real time, to rank the previously existing knowledge and to compare the relevance
of the new knowledge to the previous knowledge leading to an update of the world
model. The role of specific types of machine learning that are particularly suitable for
online, real-time update of a real world model with evolving (growing or shrinking)
nature is vitally important for the development of truly autonomous systems.

1.3 System Identification – an Abstract Model of the Real World

An autonomous system must have a model of the world (the environment that sur-
rounds the AS and its internal functioning). Usually, this model is in the context of
the goal that the AS must perform. Development of such models is governed by the
system identification (Ljung, 1987), which is a topic usually considered in relation
to control theory. Systems are often considered to be described by a set of (differen-
tial) equations. Alternative representations, for example statistical Bayesian, Markov
models, decision trees, and so on. are also viable world models (see Chapter 2). An al-
ternative that is particularly suitable to represent intelligent systems and knowledge is
the fuzzy rule-based form of representation (to be discussed in Chapter 4). Whichever
framework is used, however, the identification is usually considered in terms of:

a. the structure (with heavy human involvement, usually offline, at the design
stage); and

b. parameters (often automatically, online, during the process of exploitation).

In what follows the concept for each of the two key aspects of identification problem
will be briefly described.

1.3.1 System Structure Identification

The structure of the world model or the system is usually considered to be suggested
by the human expert. It may take the form of:

a. a set of differential equations;
b. transfer function (time or frequency domain);
c. a set of fuzzy rules;
d. a neural network;
e. a stochastic model (e.g. Markov states model), and so on.

In this book, without limiting the concepts, the last three forms will be considered
as examples. The main reason is their suitability to represent human intelligible
knowledge in a granulated form.

System structure in the case of differential equations may comprise of the num-
ber and type of the differential (or difference) equations, the number of inputs and

Introduction 7

outputs. In the case of the transfer function it may include the order and type (e.g.
‘all poles’ or ‘all zeros’). For neural networks (NN) the structure may define layers,
feedback or feedforward, memory, number of inputs, outputs, and other elements
that are optional. For the case of fuzzy systems the structure includes the following:

a. number of fuzzy rules;
b. number of inputs (features) and outputs;
c. type of the membership functions and their position in the data/feature space

(this is not necessary for the specific type of fuzzy rule-based models considered
in Section 4.3);

d. type of antecedents (scalar or vector);
e. type of the consequents (e.g. Zadeh–Mamdani (Zadeh, 1975; Mamdani and

Assilian, 1975) or Takagi–Sugeno (Takagi and Sugeno, 1985));
f. type of connectives used (AND, OR, NOT);
g. type of inference (centre of gravity, ‘winner takes all’, etc.).

These will be further detailed and described in the next chapter.
Structure identification is an open research problem that still does not have a

satisfactory and universally accepted answer. Structure identification can be seen as a
nonlinear optimisation problem (Angelov, Lughofer and Klement, 2005) that aims to
select the best structure in terms of minimum error in prediction/classification/
control. Usually, it is not solved directly, but the structure is assumed to be provided.
In some works the authors apply genetic algorithms, GA (Michalewicz, 1996), genetic
programming, GP (Koza, 1992) and other numerical techniques for (partially) solving
it. In this book a systematic approach will be used that is based on density increment
that relates to the data density and distribution in the data space also taking into
account the time element (shift of the data density). A fully theoretical solution is
difficult, if possible at all.

Figure 1.4 illustrates in a very simplistic form the difference between the proposed
and the traditional approach with respect to the role of the system structure identifi-
cation – in ALS it is part of the automated process, while traditionally it is outside of
the loop of automation.

There are different ways to devise automatically the structure of the model, includ-
ing data space (regular) partitioning (Carse, Fogarty and Munro, 1996), clustering
(offline or online and evolving) (Chiu, 1994; Babuska, 1998; Angelov, 2004a), based
on data density (Angelov, 2002), based on the error (Leng, McGuinty and Prasad,
2005), and so on. The principle behind most of them is the old Latin proverb ‘divide et
impera’ which means ‘divide and conquer’ and leads to decomposition of a complex
problem into (possibly overlapping and interdependent) subproblems or subspaces
of the data space. The key questions that arise are:

� How to divide the problem or data space objectively (based on data density or the
error are two obvious options); note that the traditional criteria for cluster quality,
for example (Akaike, 1970) and so on, are designed to separate clusters well while

8 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Traditional approach The proposed ALS approach

Human

System
structure

Learning
parameters

Plant and environment

System structure

Plant and environment

Learning parameters

Figure 1.4 The traditional versus the proposed approach

for the purpose of model structure identification the overlap must be tolerated to
avoid abrupt transitions between local models and gaps between them.

� Shall a data sample that is an outlier (which differs significantly from the existing
local models or clusters) be ignored or it may be a start of a new local model (regime
of operation); this problem is much more acute in online and real-time implemen-
tations when the decision must be taken based on the current data samples and no
or little history.

� The optimality of the structure is, generally, a nonlinear problem, and therefore, its
solution is, in principle, possible only numerically and offline; a possible pragmatic
solution is to optimise the parameters subject to a structure that is selected auto-
matically, but the optimality is then conditioned on the assumptions (as in other
existing approaches).

� The dilemma between plasticity and stability – how often the structure can and
should change – if it changes too often the system will lose its robustness; if it
changes very rarely it will lose its sensitivity.

� Ideally, an automated algorithm for model structure identification should not de-
pend on user- or problem-specific thresholds and parameters.

1.3.2 Parameter Identification

The problem of parameter identification is a much more established one (Ljung, 1987).
The aim is to determine the optimal values of parameters of the model/system in
terms of minimisation of the error of prediction/classification/control. If we use a
fuzzy rule-based model as a framework that include parameters of the consequents

Introduction 9

of the fuzzy rules and parameters of the membership functions of the antecedent part
of the rules (to be described and discussed in Chapter 4). If we use the particular
type of fuzzy rule-based model introduced recently by (Angelov and Yager, 2012),
(see Section 4.3) then the antecedent part is nonparametric.

The problem of parameter identification is also an optimisation one, but often can
be considered as a linear or quadratic optimisation that guarantees uniqueness of the
solutions subject to certain constraints. This is the basis of the widely used recursive
least squares (RLS) method (Ljung, 1987). For general, nonlinear cases, they also use
numerical procedures, such as error back-propagation, EBP (Werbos, 1990), other
gradient-based techniques (e.g. conjugate gradients approach), and so on.

1.3.3 Novelty Detection, Outliers and the Link
to Structure Innovation

The topic of novelty (respectively, anomaly) detection is pivotal for fault detection
(Filev and Tseng, 2006) and video-analytics (Elgammal et al., 2002; Cheung and
Kamath, 2004). It has its roots in statistical analysis (Hastie, Tibshirani and Friedman,
2001) and analysis of the probability density distribution. The rationale is that novel-
ties (respectively, anomalies, outliers) significantly differ and their probability density
is significantly lower. Therefore, the test for a data sample to be considered as an
outlier/anomalous is to have a low density.

The problem of system structure identification, especially in real time, is closely
related to the outliers and anomaly detection, because an outlier at a given moment
in time may be a start of a new regime of operation or new local model. In such
case, the structure innovation will lead to increase of the density locally (around the
new focal point). In this book we argue that the data density (local and global) can
be used as an indicator for automatic system structure innovation and identification.
A drop of the global density indicates an innovation; an increase of local density indicates a
consolidation of a new regime of operation/new local behaviour.

1.4 Online versus Offline Identification

Autonomous systems have to be able to process and extract knowledge from stream-
ing data in a so-called online mode. This means that the data stream is being processed
sample-by-sample (here sample also means data item/instant) in a serial fashion, that
is, in the same order as the data item was fed to the ALS without having the entire
data stream/set available from the start. Imagine, a video stream – online processing
(Figure 1.5, right) means processing it frame by frame, not storing (buffering) the
whole video and then processing it offline (Ramezani et al., 2008).

Systems that operate in offline mode may be good in scenarios that are very close
or similar to the ones that they are specifically designed and tuned for. They need,
however, to be redesigned or at least retrained/recalibrated each time when the
environment or the system itself changes (e.g. in industry, the quality of raw materials,
such as crude oil entering a refinery varies; catalysers are being removed or added to

10 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Online mode

timereal_process

Learning from historical data

timereal_process

Learning from
current data only

Offline mode

Figure 1.5 Online and offline modes of operation of a system

the polymerisation tank; hackers change their behaviour when they attack a computer
system, UGV may enter an unknown zone, faults may develop in the subsystems of an
AS, etc.). Offline systems (Figure 1.5, left) work with a historical ‘snapshot’ of the data
stream and require all the previous data, which implies a much higher memory and
computational requirements. In contrast to that, online systems work on a per sample
basis and only require the current data sample plus a small amount of aggregated
information; they do not require all the history (all previously seen data samples) of
the data stream.

The online mode is often related to the real-time operation. It is important to stress
that there is a subtle difference in the sense that an algorithm can be online (in terms
of not storing the whole data sequence and processing data items one-by-one) and yet
it might work slowly enough to be real time (if the real-life process is very fast while
the computer processing unit, CPU is not that fast). In such cases there will be a delay
in the output (prediction, class label, control action) produced by the model/system
with respect to the real-world response. At the same time, a system may operate in a
real-time manner and yet be offline if the sampling rate is extremely low. For example,
in some biomedical problems the sampling (frequency of visits to the doctor and
taking of measurements) can be as low as once every week or even month. In such
cases, the system can learn from the whole previous history, process all previous data
samples iteratively. Since these are extreme cases, in this book the focus will be on
the ability of autonomous systems to learn online and in real time. Moreover, we
will be primarily interested in so-called recursive algorithms that assume no iterations
over past data, no storage/buffering of previous data and in a so-called one-pass
processing mode.

1.5 Adaptive and Evolving Systems

As was already said, an AS should adapt to the environment. The theory of adaptive
systems (Astroem and Wittenmark, 1989) is now a well-established part of control
theory and digital signal processing (Haykin, 2002). It usually is restricted to systems
with linear structures only and, more importantly; it does not consider the problem

Introduction 11

Adaptive
systems

Evolving
systems

Figure 1.6 Evolving systems as a superset of adaptive systems

of system structure adaptation. An adaptive system is considered a system with a
fixed, known structure that allows its parameters to vary/be adjusted. In this respect
the concept of evolving systems (Angelov, 2002) as a system with evolving structure
differs significantly. It is true, however, that evolving systems are also adaptive, but
the subject of the adaptation are both system parameters as with the adaptive (in a
narrow sense) systems as well as its structure. In this context, evolving systems can
be seen as a superset of adaptive systems, Figure 1.6.

The area of evolving systems (as described above) that was conceived around
the turn of the century (Angelov and Buswell, 2001; Angelov, 2002; Kasabov and
Song, 2002) is still under intensive development and ‘fermentation’. It is closely
related to (albeit developing independently from) the works on self-organising sys-
tems (Lin, Lin and Shen, 2001; Juang and Lin, 1999) and growing neural networks
(Fritzke, 1994). In the late 1990s and until 2001–2002 the term ‘evolving’ was also
used in a different context – in terms of evolutionary (this will be clarified in the
next section). Since 2002 and especially since 2006 when the IEEE started sup-
porting regular annual conferences and other events (the last one, the 2012 IEEE
Conference on Evolving and Adaptive Intelligent Systems, being in May 2012 in
Madrid) it is used for dynamically evolving in terms of system structure systems. In
2010, the publishing company Springer started a new journal on Evolving Systems
(http://www.springer.com/physics/complexity/journal/12530) and the number of
papers and citations is growing exponentially.

The research area of evolving systems is central to the very notion of autonomous
systems and autonomous learning and this will be made clearer and detailed in the
rest of the book.

1.6 Evolving or Evolutionary Systems

In computational intelligence research evolutionary algorithms (EA), including such
specific examples as genetic algorithms, GA (Goldberg, 1989; Michalewicz, 1996),
genetic programming, GP (Koza, 1992), artificial immune system (Kephart, 1994), and
so on. are computational algorithms that borrow heavily from the natural evolution.
They often use a ‘directed’ random search for solving loosely formulated optimisation
problems. They mimic a specific aspect of the natural evolution that is related to the
population-based genetic evolution that is driven by such mechanisms as mutation,

12 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

12 =

Figure 1.7 Human beings are a good example of an ALS that evolves by learning
(new rules) from experience through their sensors using their brain

chromosomal crossover, reproduction, selection. The natural evolution also has the aspect
of individual self-development, especially for the case of human beings (Figure 1.7).
Starting as small babies we do not have any idea about the surrounding world, but
we start to collect data streams through our sensors and soon we start to create rules
using and evolving our brains. We start to recognise what is good and what is bad,
what is dangerous and what is safe, and so on. With time, our rule base grows; some
rules stop being used or become irrelevant or need some adaptation and adjustment
throughout our whole life. Some rules we are taught, some we infer ourselves.

It is interesting to note that the rules we acquire, update or stop using are not
precise, for example ‘IF we lift a bag weighing over 63.241 kg THEN we will get a broken
back’, but they are rather fuzzy, for example. ‘IF we lift heavy loads THEN we may get
a broken back’ or ‘IF it is cold THEN we take a coat’, and so on.

In essence, we self-develop. In this book we propose a systematic approach that
allows building autonomous systems with such capabilities – to self-develop, to learn
from the interaction with the environment and through exploration.

The Oxford Dictionary (Hornby, 1974, p. 358) gives the following definition of
genetic – “a branch of biology dealing with the heredity, the ways, in which char-
acteristics are passed on from parents to off-springs”. The definition of evolving
it gives (p. 294) is “unfolding; developing; being developed, naturally and gradu-
ally”. In brief, despite some similarity in the names, EA differ significantly from the
more recently introduced concept of evolving systems. While genetic/evolutionary
is related to populations of individuals and parents-to-offspring heredity, evolving is
applicable to individual system self-development (known in humans as autonomous
mental development, Figure 1.7). ‘Evolving’ relates more to learning from experience,
gradual change, knowledge generation from routine operation, rules extraction from
the data. Such capabilities are vital for autonomous systems and, therefore, we will
expand this idea in the book.

If we consider a fuzzy rule-based system as a framework, an evolving FRB system
will learn new rules from new data gradually preserving majority of the rules learned
already (Angelov, 2002). This is very similar to the way that individual people learn,
see Figure 1.7. In a similar way to humans, an evolving fuzzy system (EFS) can be
initiated by an initial rule base (in a supervised manner the way we learn from parents
and teachers) or can start learning ‘from scratch’, autonomously.

Introduction 13

1.7 Supervised versus Unsupervised Learning

The very notion of autonomous systems is closely related to the unsupervised learn-
ing and reinforcement learning (Sutton and Barto, 1999). However, semisupervised
learning also has an important part to play because pragmatically no autonomous
system is assumed to be reproductive and out of users’ (human’s) control in terms
of monitoring – remember the famous Azimov’s laws of robotics (Azimov, 1950).
In other words, the level of autonomy of systems that are of practical interests
for industry, including defence and security is 4 or maximum 5a according to
Table 1.1. Examples of systems with lower level of autonomy (1–3) are decision
support systems, DSS (McDonald, Xydeas and Angelov, 2008).

In this book, we are interested in autonomy of the knowledge extraction from
data streams (autonomous learning) that (the same as the overall scheme of an AS,
Figure 1.2 – see the smiley face at the very top of the figure) does not fully exclude the
human user, but reduces his/her role to bare provision of goals and monitoring plus
the option to abort the operation on safety grounds (autonomy level 5a, see Table 1.1).
Provision of goals itself can be a source of definition of criteria for optimisation and
learning objectives. Most often the latter are related to minimisation of the prediction
error, maximisation of the classification rate, and so on.

The autonomous learning (AL) that can enable AS to adapt and evolve should
acquire more than a simple input–output mapping that is typical for traditional
(machine learning, fuzzy systems, neural networks, etc.) model learning techniques.

Table 1.1 Autonomy levels adapted from (Hill, Crazer, and Wilkinson, 2007)

Level Autonomy Authority Interaction

5b Full Machine monitored
by human

Machine does everything
autonomously

5a Machine chooses action, performs
it and informs human

4b Action unless
revoked

Machine backed up
by human

Machine chooses action and
performs it unless human
disapproves

4a Machine chooses action and
performs it if human approves

3 Advise and, if
authorised, act

Human backed up
by machine

Machine suggests options and
proposes one of them

2 Advice Human assisted by
a machine

Machine suggests options to
human

1 Advise only if
requested

As above when
requested

Human asks machine to propose
actions and human selects

0 None Human Whole task done by human except
for actual operation

14 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Instead, the emphasis in AL is on building and constantly monitoring the quality
and updating the structure of the system. The extracted knowledge usually (but not
necessarily) is in the form of human interpretable, fuzzy rules (Hopner and Klawonn,
2000). This learning is ‘on the fly’ starting from few or even a single data sample, if
needed, adapting quickly, but also being able to accommodate previous knowledge
(if it exists) and fuse it with the newly acquired knowledge.

The most effective scheme proved to be the combination of unsupervised learning
for model structure identification and semisupervised learning for parameter adjust-
ment where the supervision comes from the data stream but with a time delay and
not necessarily after each time step. The key in this scheme that is very much like
the scheme of adaptive filtering (Haykin, 2002) and adaptive control (Astroem and
Wittenmark, 1989) is the timing. The data stream often provides both the input and
output in terms of the AS but at the moment of prediction/classification/control ac-
tion generation a value can be unavailable (thus, the need to be predicted) while at the
next time instant (see Figure 1.5) these values (if available and measured) can serve
to feed back the learning in a supervised form. In this way, the supervised learning
can also be considered as an automatic process that is related more to the online form
of operation.

For example, if a system automatically models/infers/predicts the value of the
outside temperature tomorrow or the exchange rate tomorrow based on some mea-
surements and previous observations (history) then these predictions will be very
useful until we get the real/true value the next day (so, in some 23–24 hours we can
benefit from these predictions). The next day, we can use, however, the real/true val-
ues (if they are available because it may be available only sometimes, not necessarily
every day). If and when the true values are available an autonomous learning system
will be able to adjust and evolve without any direct human intervention.

1.8 Structure of the Book

The book is structured in three main parts preceded by this introductory chapter
and closed by an Epilogue. This introductory chapter provided the motivation, back-
ground, a brief review of the previous and existing research work and publications
in related areas as well as sets up some of the basic terminological definitions in the
context of ALS.

The first part is dedicated to the systematic foundations of the methodology
on which the ALS is based, including basics of probability theory (Chapter 2),
pattern recognition and machine learning and especially clustering and classifica-
tion (Chapter 3), the basics of fuzzy systems theory including neurofuzzy systems
(Chapter 4).

Part II describes the methodology of autonomous learning systems. Chapter 5
introduces the evolving systems covering topics like data space partitioning, prox-
imity measures, clustering, online input variable selection, monitoring the quality,
utility and age of clusters, and so on. Chapter 6 describes the methodology for

Introduction 15

autonomous learning of the parameters of evolving systems stressing the difference be-
tween local and global learning methods. It also describes multi-input–multi-output
(MIMO) systems, the inference mechanisms and methods for autonomous normali-
sation and standardisation of the data streams that the ALS processes online. In this
chapter the fuzzily weighted recursive least squares (wRLS) method is described in
the context of various possible learning modes. The issue of outliers and drift are
discussed in the context of robustness.

In Chapter 7, the autonomous predictors, estimators, and filters are described. They
are powerful tools for addressing time-series modelling and a range of other related
problems of adaptive estimation and filtering. For example, the methodology behind
one of the very interesting applications of ALS – autonomous sensors, AutoSense,
is described in more detail in this chapter form the theoretical point of view and is
revisited in Part III of the book from the application point of view.

Chapter 8 describes the autonomous classifiers using AutoClassify as an example
that is based on evolving clustering and fuzzy rule-based systems.

Chapter 9 outlines autonomous learning controllers, AutoControl based on the
concept of evolving fuzzy rule-base and the relatively old concept of indirect adaptive
control.

Finally, Chapter 10 closes Part II with a discussion of collaborative ALS – a topic that
has large potential for future development mainly in robotics, defence and related
areas of security, surveillance, aerospace, and so on.

Finally, Part III is dedicated to various applications of the ALS with the clear
understanding that the list of applications that the author and his students and
collaborators have developed during the last decade is open for expansion. Indeed, a
growing number of publications by other authors in the area of evolving, autonomous
learning system, the regular IEEE conferences and events on this topic illustrate the
huge potential for further growth. The adoption by leading industrial companies of
these ideas demonstrates the potential which these pioneering concepts have for the
Economy and the Society.

Chapter 11 describes the application aspects of AutoSense to a range of products
(e.g. kerosene, gasoil, naphta) of a real large-scale oil refinery located in Santa Cruz de
Tenerife, owned and run by CEPSA, Spain. One particular problem discussed in this
chapter that has safety implications is the autonomous prediction of inflammability
index (e.g. Pensky-Martens or Abel (Ishida and Iwama, 1984)) in real time. In the
same chapter another range of application studies (courtesy of Dr. Arthur Kordon,
The Dow Chemical, Texas, USA) are described. These include chemical compositions
and propylene.

Chapter 12 is focused on the application issues of AutoClassify and AutoClus-
ter in mobile robotics. The illustrative examples and video material are available
at www.wiley.com/go/angelov. Both landmark identification and recognition and
navigation and control subtasks were considered.

Chapter 13 describes applications of the recursive density estimation (RDE) ap-
proach to video surveillance applications (autonomous novelty detection and object
tracking in video streams) that the author and his students introduced recently.

16 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Chapter 14 provides a description of the application of the proposed ALS approach
to model evolving user behaviour. This applies to users of computers, home appliances,
the Internet, and so on. Most of the existing approaches ignore the aspect of dynamic
evolution of the behaviours of the users and considers them as ‘averaged’ statistics
very much in the sense of ‘one size fits all’ paradigm. The proposed ALS approach
allows personalisation and learning specific users) in real time.

The book also provides a source of basic mathematical foundations used in the text,
discusses the problems of real-life applications and will be very useful to be used with
the software package available at www.entelsensys.com.

Additional teaching material (slides) that can be used for short courses or lectures
can also be downloaded from the above website.

PART I
Fundamentals

2
Fundamentals of
Probability Theory

It is a truth very certain that when it is not in our power to determine what is true we ought to
follow what is most probable.

(R. Descartes in Discourse on Method)

I will never believe that God plays dice with the Universe.
(A. Einstein)

Probability theory is one of the methodologies to represent and tackle some types
of uncertainties (specifically, randomness). It was mainly developed in the eigh-
teenth century with main contributions from the mathematicians such as Blaise Pascal
(1623–1662), Pierre de Fermat (1601–1665), Daniel Bernoulli (1700–1782) and later the
British clergymen Thomas Bayes (1701–1761) addressing problems of gambling and
insurance. A huge role to make it more mathematics based and scientific was played
by the Russian mathematician Andrey A. Markov (1856–1922) and the Soviet aca-
demic Andrey N. Kolmogorov (1903–1987).

This theory is widely used and read in most prestigious universities. It is the view
of the author of this book that it indeed provides an elegant framework to describe
random processes and data, but is overused, because the assumptions on which
it is based (random nature of the processes and events, independence of the data
samples from one another and, often required, normal or parameterised distributions)
rarely (or, more precisely, never fully) hold in practice. A possible explanation why
probability theory is accepted much more widely than, for example, fuzzy logic theory
is, perhaps, its philosophical and attitude/mentality closeness to the opportunism
(taking chances) and gambling rather than to determinism or to dialectics – something

Autonomous Learning Systems: From Data Streams to Knowledge in Real-time, First Edition. Plamen Angelov.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

20 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

that is much more dominant in the so-called Anglo-Saxon world that itself is dominant
now – a good example is the economic and financial crash of 2008.

Nevertheless, a brief introduction to probability theory will be provided here for
the following reasons:

a. In real processes (mainly because of the complexity of the underlying physical,
biological, economic, etc. phenomena) there are components that are not described
fully that leads to so-called noise that, indeed, can be considered as a random in
nature data stream.

b. Probability theory is closely related to the statistical analysis – so-called frequentistic
approach (Hastie, Tibshirani and Friedman, 2001) that dominated over the more
recent belief-based approach (Demspter, 1968) that considers the probability from an
epistemiological point of view; thus, it plays an important role of a bridge between
the statistics and fuzzy logic (Liu and Yager, 2008).

c. There is some duality between the main results of the theory of probability and the
results in other areas such as neural networks, fuzzy systems, machine learning,
which will be stressed further.

2.1 Randomness and Determinism

There are several problems that are of interest for ALS and will be considered in this
book, such as:

i. clustering (grouping the data);
ii. classification (supervised clustering with labels for the classes);

iii. prediction, estimation, filtering (time series, prognostics, regression);
iv. control (adaptive, self-learning controllers);
v. outliers (anomaly/novelty) detection;

vi. automatic inputs selection (sensitivity analysis);
vii. collaboration between more than one ALS.

The philosophical question that most of these problems, which come from the areas
of control, machine learning and pattern recognition theories, raise can be formulated
as ‘can we make valid assumptions for future values, distributions, class labels or number of
clusters based on some (past and present) observations?’.

The short (Bayesian) answer to this question is ‘we make a priori estimation that we
update once a posteriori information is available’. They use Bayes theorem to make
this inference (Hastie, Tibshirani and Friedman, 2001):

p(Y | X) = p(X | Y)p(Y)
p(X)

(2.1)

Fundamentals of Probability Theory 21

where

p(.) denotes a probability density function;
p(. | .) denotes the conditional probability;
X denotes prior and Y – the posterior;
p(Y | X) denotes the probability that Y will take a value y if X takes value x.

This concerns the probability density function (pdf) that will be discussed in
Section 2.3 and relies heavily on the strong assumptions regarding data distributions,
(in-)dependency, and random nature.

The data mining and machine learning short answer to the same question is to
solve an optimisation problem which has to provide the ‘optimal’ clusters/classifier/
predictor/controller/estimator/filter. Maximum likelihood optimisation leads to
analytical solutions only in a limited circle of problems when strong assumptions
regarding the data distributions and (non)linearity are made (Bishop, 2009).

The (adaptive) control theory short answer to the same question is to perform
an ‘estimate–update’ pair of actions similarly to the prior–posterior pair at each time
step (Astroem and Wittenmark, 1989). In this book we also adopt the adaptation
approach and combine it with the use of statistical information regarding the data
density that is not the same as (although is similar to) probability density functions;
the main difference is that it does not integrate to 1. It also does not require unlimited
observations (N → ∞) while probability theory applies for large numbers only. There
is also no need for the observations to be independent or to know their mutual
dependencies apart from their mutual position in the data space (closeness).

For example, the two main results of the frequentistic approach are the so-called
central limit theorem and the strong law of large numbers (Bishop, 2009). Both require
(are correct for) an infinitely large number of observations (N → ∞). Therefore,
the use of the probability theory must be done with care and with attention to the
assumptions on which the principles, laws and conclusions of this theory are based
upon. For example, based on a single or a small number of observations one can not
apply the laws of probability theory with a solid justification.

In this book an innovative approach is presented that is a more deterministic
solution in which the uncertainties are considered as a structural phenomenon (the
structure does not fully represent the complexity of the problem and we allow it
to evolve) rather than to be considered as (purely) independent, random one. They
are addressed by adaptation (which concerns not only the parameters as in adaptive
control theory), but at the same time, it is predictable, because for the same data
stream (including the order of the data) the result will always be the same, unlike
random systems.

The author of the book strongly believes that this is more appropriate form of
solution of the problem of stability–plasticity dilemma that addresses the question
“how learning can be processed in response to significant input patterns and at the same time
not to lose the stability for irrelevant patterns” (Carpenter and Grossberg, 2003).

22 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Indeed, there are processes in Nature that are ‘purely’/strictly random (such as
gambling games, etc.), but many other processes that we actually want to describe,
control or classify are not random and the elements of ‘randomness’ that we observe
are, in fact, a result of our limitations in describing and handling them. For example,
climate is not random by nature; it is, rather, too complex to describe completely; the
same is true, for example, for the economic data, social and biological processes, and
so on.

If the complexity of a problem is high, an old principle used over the centuries
is ‘divide et impera’ – to decompose the problem into a simpler set of subproblems;
another useful approach is to consider adaptation and evolution as a way to adapt a
simple solution to a more complex and dynamic phenomena. These are precisely the
two pivotal principles (divide et impera and adaptation and evolution) that underpin
the theory of evolving and autonomous learning systems.

2.2 Frequentistic versus Belief-Based Approach

The frequentistic approach is the older one. It considers the probability as a frequency
of occurrence of an event. For example, if it was raining during 10 of the days of a
month (assuming months with 30 days) then the probability of raining is said to be
p = 0.3(3) (33(3)%) or 1/3):

p(X) = Nx

N
(2.2)

where

Nx denotes the number of rainy days;
N denotes the number of all days in the month;
X in this case is the event that the day is rainy.

The belief (or evidence) approach to probabilities is closer to the betting and
the degree of belief that an event (for example that it will rain tomorrow)
will take place.

Obviously, the belief-based approach is more subjective, epistemiological, while
the frequentistic approach is rooted in statistics. Although the belief-based approach
to probabilities has closer links with fuzzy logic theory (Liu and Yager, 2008) some
elements of which we will use, we prefer and will stick to the frequentistic version
of the probability theory. The reason is that it is more objective and data-centred; in
a similar way, the elements of fuzzy logic (FL) that we will use are related to basic
concepts such as partial degree of membership that can be elicited and represented by
the data distribution and are, thus, objective. This is somewhat different form the
traditional subjective (expert-based or related) character of the FL.

Fundamentals of Probability Theory 23

2.3 Probability Densities and Moments

Probabilities are non-negative (since they represent frequencies) and are represented
by probability densities that are positive values from the range [0;1] normalised to
sum up to 1:

0 ≤ p(x) ≤ 1 (2.3)
∞∫

−∞
p(x)dx = 1 (2.4)

where x denotes the value that the random variable X can take.
The second condition follows from the definition of the probability that the value

of x will be in certain interval/range (a, b):

p (x ∈ (a , b)) =
b∫

a

p(x)dx (2.5)

Weighted averages play an important role in the calculus (Yager, 1988). Probabilities
are used as weights in the estimation theory and lead to the definition of expectations:

E(f (x)) =
∞∫

−∞
p(x) f (x)dx (2.6)

When the data are finite (taken from a data stream or set) expectation can be repre-
sented as a sum and that is called a mean or average:

E(f (x)) ≈ 1
k

k∑
i=1

p(xi) f (xi) (2.7)

In this book, when referring to statistical (frequentistic) mean/average the following
notation will be used:

μk = 1
k

k∑
i=1

p (xi) f (xi) (2.8)

In a vector form of a (first) norm it can also be written as:

μ = ‖p (x) f (x)‖ (2.9)

24 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Expectation (or mean) plays a very important role in statistics and machine learning.
It is called the first moment. Because the random variables and processes can not be
described with certainty, they can (only) be described ‘on average’, as an estimate. The
traditional mean as described above, however, has the following problem: in some
cases it may represent an infeasible point.

For, example, let as consider a simple example of throwing fair die. The expected
value (the mean) is actually an infeasible value of 3.5, because:

μ = 1
6

6∑
i=1

i = 1
6

+ 2
6

+ 3
6

+ 4
6

+ 5
6

+ 6
6

= 3.5

Obviously, the mean is only one of the forms of representing the expectation for a
random variable or process and is not enough and moreover, may even have infeasible
value! Another important moment (of second order) is the variance, which provides a
statistical measure of the deviation from the mean:

var[f] = E[(f (x) − E[f (x)])2] (2.10)

The notation that will be used in this book has statistical/frequentistic sense:

σ 2 = ‖ f (x) − μ‖2 (2.11)

Its square root, σ is also-called the standard deviation. Strictly speaking, the expres-
sion (2.11) is biased in terms of maximum likelihood and expectation. The unbiased
expression assuming k values in total is given by:

σ 2 = 1
k − 1

k∑
i=1

(f (x) − μ)2 (2.12)

When the variance concerns two or more independent random variables the covari-
ance is defined in a similar way (e.g. for two variables, x and y):

cov[x, y] = Ex,y [(f (x) − E[f (x)]) (f (y) − E[f (y)])] (2.13)

The notation that will be used in the book has again a statistical/frequentistic sense:

�x,y = (f (x) − μx) (f (y) − μy)T (2.14)

The variance itself is not enough to represent the random variable or process because
if the variance is high the information that the mean itself brings is less certain.

Fundamentals of Probability Theory 25

The density distribution of real data sets and streams is usually complex, multi-
modal and variable with time, but in practice they often consider several ‘standard’
types of probability density distributions because of their convenience and role in
theoretical derivations on which the theory of probability is based. The most promi-
nent of these probability density functions (pdf) is the Gaussian one named after Carl
Friedrich Gauss (1777–1855), which is also-called normal:

pG = 1
(2πσ 2)1/2 e−(x − μ)2/2σ 2

(2.15)

The above definition is over a single variable, x. In a similar way, the Gaussian (normal)
distribution over n-dimensional vector x of continuous variable can be defined:

pG = 1

(2π)n/2 |�|1/2
e− (x−μ)T �−1(x−μ)

2 (2.16)

where |�| denotes the determinant of the covariance matrix, �.
Other ‘standard’ types of pdf include Cauchy named after Augustin Cauchy

(1789–1857):

pC = 1

πγ

(
1 +

(
x − x0

γ

)2
) (2.17)

which for x0 = 0 and γ = 1 simplifies to what is known as the standard Cauchy
function:

pC = 1
π (1 + x2)

(2.18)

It is interesting to note that the two functions (Gaussian and Cauchy) are closely
linked. They have very similar shape (with the Cauchy function being sharper in the
centre and decreasing asymptotically towards zero slower than the Gaussian one).

It can even be shown that the Cauchy-type function (Figure 2.1) can be considered
as a first-order Taylor-series approximation of the Gaussian one, because:

e
− ‖x−μ‖2

2σ 2 = 1

e
‖x−μ‖2

2σ2

≈ 1

1 + ‖x−μ‖2

2σ 2 + . . .
(2.19)

The main problem in reality is that the distributions of the real data sets/streams
are usually quite different from the ‘standardised’ distributions that are, on the other

26 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

1

0.8

0.6

0.4

0.2

0
–10 –8 –6 –4 –2 0

independent variable, x

O
ut

pu
t,

y

2 4 6

Gaussian function, sigma = 1

A comparison of Gaussian and Cauchy functions

Gaussian function, sigma = 0.5
Cauchy function

8 10

Figure 2.1 An example of Gaussian and a Cauchy type of functions

hand, very convenient and suitable for theoretical derivations. Real distributions
are multimodal (have many local extreme points), not smooth and time varying
(nonstationary). In this respect, the quote from Albert Einstein “as far as the laws of
mathematics refer to reality, they are not certain; and as far as they are certain, they
do not refer to reality”, quoted in (Newman, 1956) is very appropriate.

2.4 Density Estimation – Kernel-Based Approach

Kernels became popular recently because they allow representing a multimodal (as
opposed to the standard, unimodal) distribution as a set of simpler, kernel represen-
tations that are valid locally. In this sense, the kernel approach is of the type of ‘divide
et impera’ and, therefore, it helps reduce the complexity of the real problems. One
of the first kernels represent the so-called Parzen windows, named after Emanuel
Parzen (1929).

Kernel density estimation (KDE) is a generic approach where the conclusions apply
to the whole data distribution but the kernels are drawn from a finite set of repre-
sentative data samples. Kernels apply locally (to a region, for example, let us denote
such a region containing x by). The probability mass associated with this region
can then be defined as an integral/sum:

P =
∫

	
p(x)dx (2.20)

where P denotes the probability mass of the kernel over a region 	.

Fundamentals of Probability Theory 27

If we assume additionally that the region is so small that the probability p(x) is
roughly constant over the region, we can express the probability density function as
(Bishop, 2009):

p(x) = N	
kV

(2.21)

where

N	 denotes the number of points that lie inside 	;
k denotes the number of data points;
V denotes the volume of the region 	.

The same constraints/requirements apply to kernels as to pdf, in general, namely
eqns. (2.3) and (2.4):

0 ≤ K (x) ≤ 1 (2.22)

∞∫

−∞
K (x)dx = 1 (2.23)

Given k independent and identically distributed random data points xi, i = 1, . . . , k
in an n-dimensional space Rn with an unknown density p, the multivariate KDE p̂(x)
at x is given as (Bishop, 2009):

p̂(x) = 1
khn

k∑
i=1

K
(

x − xi

h

)
(2.24)

where K (·) is the kernel function that is symmetric but not necessarily positive and
integrates to one, and h > 0 is the radius.

Again, there are different types of kernels, for example Gaussian, Cauchy, Epanech-
nikov. For example, the Epanechnikov type of kernel is defined as follows (Bishop,
2006):

K
(

x − xi

h

)
=

⎧⎪⎨
⎪⎩

1
2

V−1
n (n + 2)

(
1 −

∥∥∥∥ x − xi

h

∥∥∥∥
2
)

;
∥∥∥∥ x − xi

h

∥∥∥∥
2

< 1

0 otherwise
(2.25)

where Vn is the volume of the unit n-dimensional sphere.

28 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

The overall probability, when using kernels, is usually defined as an average over
the number of data samples considered:

p(x) = 1
k

k∑
i=1

K
(

x∗ − xi

h

)
(2.26)

where x∗ denotes the centre/focal point of the kernel.
KDE has a single parameter – the kernel radius, h and its choice is still one of the

weaknesses of this, otherwise, very accurate approach. In addition, the physical units
in which h is being measured also influence the result. It is true that some problem-
independent (objective) principles can be applied in the choice of the kernel radius
(the only parameter that needs to be specified) such as the expected number of kernels
in a normalised or standardised data space. However, another major disadvantage
of the KDE approach is that it is computationally expensive because it is inherently
offline (a sum of exponentials, in the case of Gaussians, is not easy, if possible at all,
to calculate recursively).

2.5 Recursive Density Estimation (RDE)

Data density (Figure 2.2) plays a very important role in model structure design,
novelty/anomaly/outliers detection (respectively, fault detection) and other related
problems, including collision detection (Angelov, Ramezani and Zhou, 2008), video-
analytics and so-called landmark detection and identification (Zhou and Angelov,

x2

A

B

x1

Figure 2.2 An illustration of the idea of density (to be distinguished from pdf). The
density at point A is low while at point B is high

Fundamentals of Probability Theory 29

2007). Its usefulness, however, is greatly limited by its computational complexity and
the requirement for offline calculations that impose limitations on both the memory
and computational power (for large values of k). Additionally, the presence of the
parameter, h also limits the universal applicability to different data streams.

To address these problems a recursive approach was introduced that dates back
as far as 2001 (Angelov and Buswell, 2001), but got its name RDE in 2008 (Angelov
et al., 2008) and its latest version is a part of a patent application (Angelov, 2012). It is
based on the Cauchy type of kernel (Angelov, 2004a):

Dk(x) = 1

1 + d
2
k

(2.27)

d
2
k = 1

k

k∑
i=1

‖xk − xi‖2

where Dk denotes the global density calculated at the moment in time, k; we will refer
to it also in the future simply by D.

The mean norm, d
2
k is defined as the mean distance between the current data sample,

xk and all the other points seen so far. It can be of Euclidean form as shown in the
second equation of (2.27), but equally, it can be of Mahalonobis or cosine or any other
eligible type of proximities described in more detail in the next chapter.

The proposed form of density differs from the pdf, because, while condition (2.3) or
(2.22) is satisfied, condition (2.4) or, respectively, (2.23) – is not. The value of the data
density (by differ from the probability density) is equal to 1 when all the data samples
have the same value that is also equal to the value of the focal point (a singular case
that is rare in practice):

Dk(x) = 1 iff xi = xk ; ∀i (2.28)

The proposed expression for the density is nonparametric (it does not have even the
pretty generic parameter, h). It does depend on the relative data distribution while
the standard probability density distribution assumes independence of the observa-
tions, which is true only for handful of problems like tossing coins, throwing die,
lottery and other ‘purely’ random phenomena. In real processes the individual obser-
vations and measurements influence each other and Bayesian propagation rule (see
Equation (2.1)) usually takes into account only two consecutive observations and
cannot take into account all past measurements (this is the reason popular hidden
Markov models, HMM are usually considered of so-called first order only). The data
density expression (2.27) introduced by the author in 2001 takes into account all past
observations and the relation of the current observation to them in terms of an inverse
of the scatter measured from the current observation. While for typical ‘random’ pro-
cesses such as tossing a coin, throwing die or playing a lottery the traditional, Bayesian
inference and pdf formulation is appropriate and the author’s view is that the data

30 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

density formulation of the type of (2.27) is more appropriate for most of the real pro-
cesses where we usually observe complexities that are difficult to describe rather than
‘pure’ random processes. The traditional pdf answers a different question as compare
to the data density expression (2.27). The traditional pdf answers the question ‘What
is the probability that the value of the variable is . . .?’ while the data-density expression
(2.27) answers the question ‘How the value . . . of the variable relates to all previous/other
values observed for this variable?’ that, in general and more often, is not the same. For de-
tecting outliers, clustering, and complex system structure identification data density,
D (not the traditional pdf, p) plays a critical role, as detailed later in the book.

Let us consider a very simple, yet illustrative, example to point the differences
between the traditional pdf and the data density of the form of (2.27). Let us have a
dice and let us have 3 on the dice the first time and try to estimate the probability
of the event that the dice will have 6 following 3. Following the traditional Bayesian
approach (2.1) one will get

p(6 | 3) = p(3 | 6)p(6)
p(3)

=

(
1
6

)(
1
6

)

1
6

= 1
6

The same will apply for any other value on the dice. If, however, the data density for
the value 3 will be represented with a Cauchy type of curve with values as shown in
Table 2.1 and Figure 2.3. For example, for the value 6 the density will be much lower
than for the same value 3 and will be equal to:

D2(6) = 1

1 + 1
2

(
(6 − 3)2 + (3 − 3)2

) = 2
11

Note that the pdf and density, D address different questions as described above. The
key moment is that for processes like tossing a coin, throwing die or lottery num-
bers prediction pdf and traditional Bayesian approach is more appropriate because
all possible values are equally probable (since their sequence is ‘purely’ random).
However, for most real processes there is no independence between all different
observations/measurements, which is assumed in the Bayesian inference. The data
density definition at (2.27) also does not require an infinite number of observations
and can be more representative and useful, as will be described later in the book.

Table 2.1 A comparison of the traditional pdf with the data density distribution for
the example of throwing a dice

x 1 2 3 4 5 6

pdf 1/6 1/6 1/6 1/6 1/6 1/6
D 1/3 2/3 1 2/3 1/3 2/11

Fundamentals of Probability Theory 31

1

0.8

0.6

0.4

0.2

0
1 2 3 4 5 6

D
pdf

Data density vs. traditional pdf for the dice throwing example

Figure 2.3 Traditional pdf versus the proposed data density distribution for the simple
example of throwing a dice

Last but not least, the data density expression (2.27) unlike pdf makes possible
recursive calculations (Angelov, 2004a; Angelov, 2012). This means that only a very
small amount of data – only the mean of all data samples, μk and the scalar product
averages quantity,

∑
k calculated at the current moment in time k – are required to

be stored in the memory and updated. The current data sample, xk is also used, but
it is available and there is no need to store or update it. This has huge implications,
because it allows theoretically an infinite amount of data (infinitely large data sets
or infinitely long and open-ended time-wise data streams) to be processed exactly
(not approximately!) in real time, very fast. For example, a comparison was made for
video-analytics problems where RDE outperformed the best-known KDE approach
(Elgammal et al., 2002) in orders of magnitude both time wise and computational
complexity wise (Angelov et al., 2011).

Local density (in addition to the global density) was also introduced on the basis of
the kernel type of formulation for Euclidean type distance (Angelov and Filev, 2005):

d�(xk) = 1

1 + 1
N�

N�∑
i=1

‖xk − xi‖2

(2.29)

where d� denotes local density of region �; N� denotes the number of data samples
associated with the region �.

The recursive expression applicable to both global and local density has been
derived as an exact (not approximated or learned) quantity as (Angelov, 2011):

D(xk) = 1
1 + ‖xk − μk‖2 + �k − ‖μk‖2 (2.30)

32 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

where both, the mean, μk and the scalar product, �k can be updated recursively as
follows:

μk = k − 1
k

μk−1 + 1
k

xk μ1 = x1 (2.31)

�k = k − 1
k

�k−1 + 1
k
‖xk‖2 �1 = ‖x1‖2 (2.32)

The recursive expressions of the RDE (2.30)–(2.32) are exact (they lead to exactly the
same result as Equation (2.27)) and apply for both global (2.27) and local density
(2.29). They can be derived, for example, starting from Equation (2.27). After simple
reorganisation we get:

Dk = 1

1 + x2
k − 2xk

1
k

k∑
i=1

xi + 1
k

k∑
i=1

x2
i

(2.33)

This expression can be further regrouped into:

Dk = 1

1 + x2
k − 2xk

1
k

k∑
i=1

xi +
(

1
k

k∑
i=1

xi

)2

−
(

1
k

k∑
i=1

xi

)2

+ 1
k

k∑
i=1

x2
i

(2.34)

This can be further simplified into:

Dk = 1

1 +
∥∥∥∥∥xk − 1

k

k∑
i=1

xi

∥∥∥∥∥
2

+ 1
k

k∑
i=1

x2
i −

(
1
k

k∑
i=1

xi

)2 (2.35)

Using the following notations we arrive at Equation (2.30):

μk = 1
k

k∑
i=1

xi (2.36)

�k = 1
k

k∑
i=1

x2
i (2.37)

2.6 Detecting Novelties/Anomalies/Outliers using RDE

There is a solid body of literature concerning statistical approaches for novelty (respec-
tively, anomalies, outliers) detection, but the approaches are predominantly offline or

Fundamentals of Probability Theory 33

require expert knowledge (Patton et al., 2000). The problem from the machine learn-
ing point of view can be considered as a single-class classification. Moreover, they are
unbalanced problems with the majority of samples being ‘normal’ and only a tiny
minority of samples being ‘anomalous’. Because outliers/novelties/anomalies are
sparse they do not render multiclass classification problem as such. Well-established
methods for addressing this problem include Hotteling statistics (Hotteling, 1931),
cluster analysis (to be discussed in the next chapter) and more recent approaches
such as one-class support vector machines (SVM) (Manevitz and Yousef, 2001) and
Artificial Immune System (Krishnakumar, 2001).

One can group the methods for outliers/novelties/anomalies identifications as:

a. Fully unsupervised (when no prior information is assumed about the distribution
of the data).

b. Model-based (both normal and abnormal distributions are being modelled us-
ing some form of a model – e.g. probabilistic, fuzzy, neural network, support
vectors, etc.). Naturally, this approach requires active participation of the ex-
pert/supervisor. A natural subgroup of approaches considers only the normality be
modelled.

There is no strict mathematical definition of what an outlier/anomaly is (Figure 2.4),
but the so-called 3σ principle (which follows from Chebyshev’s theorem) is
widely used.

Another widely used statistical principle relates to hypothesis testing and, for exam-
ple, when comparing the deviation from multivariate Gaussian/normal distribution.
It is often formulated by the so-called χ2 principle that is based on precalculated
tables with values for different dimensions of the input vector, n (Duda et al., 2000;
Hastie, Tibshirani and Friedman, 2001). In general, however, χ2 tests assume normal

2

1.5

1

0.5

–0.5
5 10 15

Data sample, x

va
lu

e
of

 x

20 25 30

0

An outlier

Figure 2.4 Outlier/anomaly – illustration

34 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Gaussian distribution and are not recommended for high values of n (Georgieva and
Filev, 2010).

Outlier detection is very important in fault, intrusion and fraud detection, video-
analytics, cyber security, event detection in sensor networks, landmark detection,
navigation, and, simply, data preprocessing (Duda et al., 2000; Zhou and Angelov,
2007; Trevisan et al., 2010).

Outlier/anomaly/novelty detection is a difficult task even if done offline (Hastie,
Tibshirani and Friedman, 2001), but here an approach is offered that can be performed
online. It is based on the RDE. Traditionally, statistical approaches are based on the
density estimation. Based on the value of the density calculated by RDE a simple, yet
efficient outlier detection method is proposed as follows (Angelov, 2012):

First, the density, Dk is calculated in real time per data sample as described earlier
(2.30)–(2.32). The mean density, Dk is then:

Dk = 1
k

k∑
i=1

Dk (2.38)

and it can also be updated in real time as follows:

Dk = k − 1
k

Dk−1 + 1
k

Dk D1 = D1 (2.39)

The variance of the density (not of the original signal, x) is then:

(
σ D

k

)2 = ∥∥Dk − Dk
∥∥2

(2.40)

and it, too can be recursively updated by:

(
σ D

k

)2 = k − 1
k

(
σ D

k−1

)2 + 1
k

(Dk − Dk)2 (
σ D

1

)2 = 0 (2.41)

Based on Equation (2.39) and Equation (2.41), outliers are easy to detect and identify
using the standard deviation, σ D

k from the mean of the density, Dk which is illus-
trated in Figure 2.5 for an example of real-time video analytics (to be detailed in
Chapter 13).

Another example (Figure 2.6), which is given here purely for illustrative purposes,
is described in more detail in the report to the STAKE project with the UK MoD
(2011), which is also mentioned in Chapter 12. It depicts an outlier in terms of phone
calls made by a person who is young (21 years old), white. The density in terms of
characteristics/features of these calls was particularly lower than for all the other
callers. This was possible to be calculated automatically and in real time.

Fundamentals of Probability Theory 35

1.1
RDE applied to real-time videoanalytics

1.05

1

0.95

0.85

0.8

0.75

0.7

0.65

0 200 400 600 800 1000 1200

data sample (pixel of an image frame)

outliers/novelties/anomalies

D
en

si
ty

, D

0.9

Figure 2.5 The density, D is plotted by the solid line and the mean is plotted by the
dashed line, while the mean with subtracted standard deviation is plotted by the dot-
ted line. The outliers/anomalies are clearly detectable by the sudden drop of the
density. These outliers represent a new object (van) that appears on the scene ob-
served by a security camera (a video-analytics application which will be described in
more detail in Chapter 13)

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 75 79 82 85 88 91 94 97 10
0

10
3

10
6

10
9

11
2

11
5

11
8

12
1

12
4

12
7

13
0

13
3

13
6

13
9

14
2

14
5

Calls

0.5

0.55

0.6

0.7

0.65

0.75

0.8

0.85

0.9

0.95

1

Outlier

Outliers Calls

D
en

si
ty

Information Call:Information Call: Caller: Caller:

05:00-06:00 07:00-08:00
909 sc. 1825 sc.

10547 miles 4164 milesID Caller: 157
21 years old

ID Caller: 301
45 years old

Outlier

Figure 2.6 An illustration of using RDE for automatically identifying untypical/strange
calls and respectively callers (adapted from STAKE project report (Angelov et al., 2011))

36 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

2.7 Conclusions

In this chapter the basic notions from probability theory were introduced. The aim
was not to provide a detailed description of what is a very broad topic (the reader can
find more details, for example, in (Hastie, Tibshirani and Friedman, 2001; Duda et al.,
2000; Bishop, 2009)), but primarily to introduce concepts that will be used later on. At
the same time, the author introduced his own more critical view on probability theory,
which differs from the rather dogmatic view that currently dominates. Moreover, a
significant innovation was also introduced regarding density estimation in the form
of RDE that can be very useful on its own for novelties/anomalies detection and
identification as well as in complex systems structure identification, as will be detailed
later in the book.

Philosophically, the concept is considered to be rooted in association of a current
observation (or measurement or evidence) with previously observed ones in terms of
closeness in the data space (in terms of some proximity measure) rather than in terms
of frequency of appearance (as is the case with the objective frequentistic approach
to probability theory) or in terms of belief (as is the case with the subjective approach
to probability theory and, similarly with the fuzzy logic). This allows having valid
conclusions with very few observations and exact calculations. In probability theory
the theoretical conclusions are only valid fully for an infinite number of observations.

3
Fundamentals of Machine
Learning and Pattern
Recognition

In this chapter a brief introduction to the main elements of machine learning and
pattern recognition will be made that are related to the ALS such as normalisation,
proximity measures, clustering, classification. They play an important role in auto-
matic system structure identification, as will be detailed in Chapter 5, Part II.

3.1 Preprocessing

In machine learning the data is often represented as a multivariate set (in the offline
case) or stream (in the online case). The number of objects/samples are characterised
by more than one feature (sometimes also-called attribute in decision making, obser-
vation in data mining, measurable variable in control theory, or, simply, input). Let
us denote the number of features by n:

x = (x1, x2, . . . , xn)T (3.1)

In the offline mode the following matrix of observations/inputs can be formed:

X =

⎡
⎢⎢⎣

x11 x12 . . . x1n

x21 x22 . . . x2n

.

xN1 xN2 . . . xNn

⎤
⎥⎥⎦ (3.2)

Autonomous Learning Systems: From Data Streams to Knowledge in Real-time, First Edition. Plamen Angelov.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

38 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

where

N is the total number of observations/data samples recorded; in the online mode
this will be replaced by k – the current data sample assuming that the first data sample
has index 1; each row of the matrix refers to a data sample/observation characterised
by the features/attributes in the columns; an element, xij denotes the jth feature of the
ith sample.

3.1.1 Normalisation and Standardisation

If the data of different columns (different features/inputs) lie within significantly
different ranges (which in real problems is often the case) in order to apply correctly
the distance measures one needs to normalise or standardise the data.

Normalisation is often made by forcing/mapping the data to the range [0;1]. This
is done by the following formula (Duda, Hart and Stork, 2000):

x̂ j = xj − x j

x j − x j
j = [1, n] (3.3)

where

x̂ j denotes the normalised value of the jth feature/input;
x j and x j denote, respectively, the minimum and maximum values for the same

feature/input.

This transforms the original data space into a hypercube with unit dimensions
(Figure 3.1):

Obviously, this formula requires the range (and, respectively, the minimum and
maximum values) per feature/input to be known and fixed, which is in contradiction
with the requirement for online processing (except in some rare cases when the ranges

1

1

1

0

2
^x

1
^x

nx^

Figure 3.1 Unit hypercube in which all normalised data lie (including on the edges
and vertices)

Fundamentals of Machine Learning and Pattern Recognition 39

are well known in advance). It is possible to update the normalised value each time
when the range changes (Zhou and Angelov, 2007), but this also affects the dynamic
model update and becomes practically cumbersome.

A more suitable (from practical applications point of view) operation for conversion
of the data into comparable form is the so-called standardisation (Duda, Hart and
Stork, 2000):

x̂ j = xj − μ j

σ j
j = [1, n] (3.4)

Obviously, the mean and variance are not necessarily the same for each feature/input;
moreover, the distribution of the data per feature/input may not be of the same type.
However, it can be proven (using Chebyshev theorem (Papoulis, 1991)) that for an
arbitrary distribution the probability that the normalised data will lie outside the
range [−3;3] is less than 1/9. The Chebyshev inequality can be given as follows:

P (|X − μ| ≥ k) ≤ σ 2

k2

From the Chebyshev’s inequality it is obvious that the mean and the variance are
enough to determine the limits of the probability within which the variable, X will
lie. For example, if k = 3σ the inequality becomes the well-known 3σ condition:

P (|X − μ| ≥ 3σ) ≤ 1
9

If the distribution of the data is Gaussian then the probability that the data lies
outside the interval [–3;3] is even lower – around 0.3% (Duda, Hart and Stork, 2000).
Obviously, one can derive similar conditions for 2σ , 6σ , and so on.

Standardisation is very convenient for online data because it is possible to update
both, mean and variance online (as shown by Equations (2.31) and (2.41)).

3.1.2 Orthogonalisation of Inputs/Features – rPCA Method

3.1.2.1 The Basics of the PCA Method

When performing analysis of complex data one of the major problems stems from the
number of variables involved. Analysis with a large number of variables, generally,
requires a large amount of memory and computation power or an algorithm that
overfits the training sample and generalises poorly to new samples. The inputs/
features are often correlated and, in some problems, the number of available/
measurable inputs/features is high (of the order of hundreds or more). Therefore,
in such cases a dimensionality reduction is desirable. An approach that is widely
used to address both of the above problems (reducing correlation between the inputs
by so-called orthogonalisation and reducing complexity in terms of number of in-
puts used) is the so-called principle component analysis, PCA (Hastie, Tibshirani

40 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

 *

 * *

 * *

*

PC1
PC2

x1

xn

Figure 3.2 The idea of PCA method for orthogonalisation of inputs/features

and Friedman, 2001). In principle, the PCA approach is offline, but recently,
online/recursive versions were also introduced (Dagher, 2010). The idea of the PCA
approach is to make a transformation of the original set of inputs/feature into a new
set of inputs that are, orthogonal (independent/perpendicular). This is illustrated in
Figure 3.2.

The new inputs/features are formed as a result of a linear combination of the
existing ones in such a way that the variation is maximised (see Figure 3.2) and the
interdependence between the new input variables is nullified. The newly generated
inputs/features, which are orthogonal to each other and capture most of the variance
in the original data are called principal components, PCs. PCA transforms the data into
new features space (Figure 3.2) where most of the variance is contained in the first
few principal components and the remaining PCs (see axis PC2 in Figure 3.2) can be
ignored. This leads to reducing the dimensionality of the inputs used.

3.1.2.2 Offline PCA

The offline procedure is based on the so-called singular value decomposition, SVD
(Duda, Hart and Stork, 2000). The multivariate matrix, X (see Equation (3.2)) can be
factorised as follows:

X = UMVT (3.5)

where

matrix U is a n × n matrix of eigenvectors of XXT, which performs a rotation of the
original axes of the inputs;

M is a n × N rectangular diagonal matrix with non-negative real numbers on the
diagonal which performs scaling along the rotated axes, and the N × N matrix V is
the matrix of eigenvectors of XTX, which performs another rotation.

Fundamentals of Machine Learning and Pattern Recognition 41

The new coordinate system that is orthogonal and optimal (in terms of maximum
variance kept) is determined by the so-called eigenvectors, u that are solutions of the
equation:

χu = �u (3.6)

where

χ denotes the eigenvalue;
� denotes the covariance matrix, not sum.

By selecting the largest eigenvalues only we can limit the complexity and the number
of inputs actually used. As an extreme, they can be as many as the original number
of inputs, n, but in practice a significantly smaller number, p is used with the largest
eigenvalues containing the largest proportion of the variance of the data.

The PCA procedure starts with removing the mean value from the data (which is
an element of the standardisation procedure, see Equation (3.4)):

x̂i = xi − μ i = 1, 2, . . . , N (3.7)

Next, the scatter matrix, S is obtained via:

S =
N∑

i=1

x̂i x̂T
i (3.8)

and then compute the eigenvectors, u with the largest eigenvalues, χ of the scatter
matrix S.

After that, a projection matrix is made from the largest eigenvectors U = (u1, u2, . . . ,
up) where p is the number of eigenvectors selected. The transformed data will then be

χ = UT x̂i

3.1.2.3 Online (Recursive) Version of PCA, rPCA

Recently, Dagher (2010) proposed a recursive version of PCA algorithm that is suitable
for our purposes. The recursive expression of the PCA starts from Equation (3.6). This
is combined with the expression (Dagher, 2010):

vk = 1
k

k∑
i=1

xi xT
i ui (3.9)

where vk is the estimate of u after the kth time step.

42 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

From the properties of the eigenvector and eigenvalues we get χ = ‖u‖ and u =
v/‖v‖; ui is then set to vi–1/‖vi–1‖. Now, the eigenvector can be estimated as follows
(Dagher, 2010):

vk = 1
k

k∑
i=1

xi xT
i

vi−1

‖vi−1‖ (3.10)

Replacing the sum, with the recursive expression we get:

vk = k − 1
k

vk−1 + 1
k

xk xT
k

vk−1

‖vk−1‖ (3.11)

The first component is initialised by:

v1 = x1xT
1

v0

‖v0‖ ; v0 = x1 (3.12)

Each time a new data sample is provided, the eigenvectors are updated. Eigenvectors
are stored in a decreasing order, starting from the largest eigenvalues. The second
eigenvector is estimated by subtracting the projections of the data on the estimated
first eigenvector, v1. The new projected data x1 on the basis of eigenvector v2 can be
computed as follows (Dagher, 2010):

x2 = x1 − xT
1

v1

‖v1‖
x1

‖v2‖ (3.13)

3.2 Clustering

A well-known technique from machine learning for partitioning the data space based
on the data pattern alone is clustering (Duda, Hart and Stork, 2000; Hastie, Tibshirani
and Friedman, 2001). An important attractive feature of clustering is that it is an
unsupervised learning method. Another important characteristic of this method is
that it easily operates over high-dimensional data vectors.

The aim of clustering, in principle, is to ‘best’ separate the data into groups. How-
ever, there is not necessarily a unique separation of a certain amount of data. For
example, in Figure 3.3 it is easy to see that one can identify different numbers of
clusters that all seem logical.

There is a number of criteria of optimality for clustering data. The typical aim of
clustering is to find natural groupings in such a way that the data points in a cluster
are as similar as possible and the data points from different clusters are as dissimilar
as possible (Duda, Hart and Stork, 2000):

J (w) = wT SBw
wT Sww

→ max (3.14)

Fundamentals of Machine Learning and Pattern Recognition 43

µ1

µ0

 * *
 * *
 * *
 * * * * *
* * * * * * *
 * * *
 * * *

xn

x1

Figure 3.3 Clustering; different number of clusters (with different shape and parame-
ters) can be built with the same data (using dotted, dashed or solid lines)

where

SB = (μ0 − μ1) (μ0 − μ1)T is between-cluster scatter, and
Sw = ∑

x∈L0
(x − μ0) (x − μ0)T + ∑

x∈L1
(x − μ1) (x − μ1)T is within-cluster scatter

w denotes so-called canonical variables that define the (best/optimal) line of sepa-
ration; the optimal solution for w leads to w = �−1 (μ1 − μ0)

Clustering is also intrinsically related to complex systems structure identification
when they are defined as multimodel systems. In this case, however, the aim of
clustering is somewhat different from the aim of the clustering per se. In multi-
model system design each cluster corresponds to a local simple model (subsystem)
and, therefore, all the data samples/points that belong to a cluster are described
by this local model. The overall output is usually generated as a weighted sum
of local outputs and, therefore, local models are not mutually exclusive, but rather
cooperative. Therefore, the data space partitioning/clustering for complex system
structure identification tolerates an overlap in the clusters, unlike the conventional
clustering itself.

An important problem in clustering, in general, and specifically in clustering for
complex system structure identification, is the way to determine the number of clus-
ters. Most of the clustering approaches, such as k-means (Duda, Hart and Stork, 2000),
fuzzy C-means (Bezdek, 1974), Gustafson–Kessel (Gustafson and Kessel, 1978), and
so on. assume that the number of clusters is prespecified. Subject to this assumption
they determine the position of cluster centres and cluster parameters (radius) that
minimise the objective function (3.14).

The questions ‘how to determine the most appropriate number of clusters?’ and
‘how the number of clusters influences the result?’, however, remain. Some other

44 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

clustering methods, such as hierarchical clustering, k-nearest neighbours, learning
vector quantisation (LVQ) approach and so on. (Duda, Hart and Stork, 2000) rely on
thresholds, which has to be set up and influence the result.

A clustering approach that will be suitable for complex systems design must be
able to:

� determine the most appropriate number of clusters from data distribution alone;
and

� use a minimum amount of prior knowledge in the form of thresholds and algorithm
parameters.

The aim of any clustering method is to find the following two items:

a. the focal points (centres) of the clusters;
b. the boundaries of the clusters.

The focal point of the cluster may not necessarily be the geometrical centre (mean)
but it can be a prototype chosen to serve the role of the focal point. This is the case in
prototype-based clustering approaches such as Mountain and subtractive clustering
(Yager and Filev, 1993; Chiu, 1994). The boundaries of the clusters can be hypercubic,
hyperspherical, hyperellipsoidal and so on.

One also needs to select the type of proximity and dissimilarity measure used in the
clustering method, which will be described in more detail in the next subsection. Once
the focal points of the clusters are defined any data points/samples can be assigned
to the nearest cluster using the distance measure of choice (Euclidean, Mahalonobis,
cosine, etc.).

Fuzzy clustering considers the more realistic case when the data points can belong
to more than one cluster at the same time (with different degree of membership). This
is particularly true when the semantic meaning of the linguistic terms used to define
cluster boundaries is fuzzy rather than crisp (de Oliveira, 1999).

3.2.1 Proximity Measures and Clusters Shape

While clustering, various similarity measures can be considered; one of the most
commonly used one is the distance between data samples. There are different types
of distances such as

� Euclidean;
� Mahalonobis;
� cosine;
� Minkowski, and so on.

Fundamentals of Machine Learning and Pattern Recognition 45

We will mostly use the first two. For example, Euclidean distance between two data
samples (xj and xk) is defined as (Duda, Hart and Stork, 2000):

δ2
jk = ‖xj − xk‖2 = (xj − xk)(xj − xk)T =

n∑
i=1

(xji − xki)2 (3.15)

The distance between a data sample, xk and the cluster centre/prototype, μk is called
norm (Duda, Hart and Stork, 2000):

δ2
k = ‖xk − μk‖2 = (xk − μk)(μk − xk)T =

n∑
i=1

(μki − xki)2 (3.16)

Mahalonobis distance also takes into account the covariance:

δ2
jk = (xj − xk)�−1(xj − xk)T (3.17)

One can also define in a similar to Equation (3.16) manner the Mahalonobis norm:

δ2
k = (xk − μk)�−1(μk − xk)T (3.18)

Even if the data is normalised or standardised, the shape of the clusters depends
on the type of the distance metric used. For example, Euclidean distance does not
differentiate between the features/inputs and, therefore, the cluster shape is circular
or, in general, a hyperspherical. The Mahalonobis type of distance gives more weight
to the inputs/features which have higher variance and, thus, in general, the cluster
shape is hyperellipsoidal (Figure 3.4).

 *
 * * *

 * * *

 * * *

* * x1

Ellipsoidal cluster
using Mahalonobis
distance metric

xn

Spherical cluster
using Euclidean
distance metric

Figure 3.4 The difference in the shape of the clusters formed with the same data using
different distance metrics

46 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

3.2.2 Offline Methods

Clustering methods can be broadly grouped into offline and online. As a separate
group the author did introduced evolving clustering (Angelov, 2004a) in which not
only data samples are considered one by one (as in online methods), but also the
number of clusters is not fixed, but rather evolves dynamically.

Some important clustering methods will be briefly outlined. Other widely used
offline clustering methods will not be described, but can easily be found in some of
the many books on the subject such as (Duda, Hart and Stork, 2000; Bishop, 2009).
These include (but are not limited to); hierarchical clustering and k means methods.

In what follows, the so-called Mountain clustering method (Yager and Filev, 1993)
and its modification known as Subtractive clustering method (Chiu, 1994) will be
briefly described. Both these approaches do not require the number of clusters to be
predefined and extract this number form the data distribution alone. Additionally,
they are prototype-based clustering techniques as opposed to the others that are
mean- (centre-) based. For that reason, clusters’ focal points are really existing data
samples instead of virtual, abstract nonexisting (possibly nonfeasible) points as it is
the case very often with the mean-based methods.

3.2.2.1 A Brief Introduction to the Mountain Clustering Method

Mountain clustering (Yager and Filev, 1993) is an important algorithm that can be used
as a first step to more involved algorithms or independently aiming to generate initial
cluster centres. In Mountain clustering a grid (Figure 3.5) is formed by discretising
each dimension of the data space into equidistant intervals.

The intersection of the grid lines are called nodes and are the potential cluster
centres (focal points). A mountain function, M is defined that is related to the density
of neighbouring data points and is used to calculate the potential (density) of each
grid point (node) to become a cluster centre.

The value of the function is high for a node with many neighbouring data points. For
all the nodes the mountain function is calculated and the node with the highest value

x1

xn v

Figure 3.5 The grid of the Mountain clustering method; v denotes the node of the grid
at which the potential is calculated

Fundamentals of Machine Learning and Pattern Recognition 47

is selected as the first cluster centre. To determine the next cluster centre, an amount
proportional to the distance from the point to the first cluster centre is subtracted
from the current mountain function value of each of the nodes (Yager and Filev, 1993):

Mi
(
vj

) =
N∑

i=1
e−‖xi −v j‖2

2σ2 j = [1, �] (3.19)

where

N is the total number of data points;
� is the number of points in the grid.

Thus, the nodes close to the first cluster centre will have a higher reduction of their
value in comparison with the distant nodes. This ensures that nodes closer to the
cluster centre are not selected as new cluster centres. Then, the node with the next
highest value of the mountain function is chosen as the next cluster centre.

This process of selecting cluster centres and subsequently reducing the mountain
function value continues until a threshold (expressed as a percentage of the first max-
imum) is reached. The algorithm is simple, however, computationally expensive for
high-dimensional data. Each iteration requires evaluation of O(mn) nodes (consider-
ing equal number of grid lines in all dimensions) (Baruah and Angelov, 2010). The
generation of number of clusters is sensitive to the grid resolution that also provides
a trade-off between accuracy and computational complexity. In addition, this method
requires a threshold value to be predefined as a termination criterion.

3.2.2.2 Subtractive Clustering Method Outline

Subtractive clustering is an improved version of the Mountain clustering method
with the single, but significant difference that data points themselves are considered
as candidate focal points (cluster centres) instead of the grid points. This method
also assumes that the data points are normalised and bounded by a hypercube. For
every data point a potential value (density) is calculated and the point with the highest
potential value is selected as the first cluster centre.

The potential value is inversely proportional (reciprocal) to the sum of distances
from the data point to all other data points; that is the smaller the sum distances
to all other data points the higher the potential of that point (data sample) see also
Figure 2.1. The neighbourhood of a data point is defined by a constant (radius, r);
data points outside the neighbourhood do not have a significant influence on the
potential value.

Similar to the Mountain method, the next step is to reduce the potential/density of
all data points by an amount that is dependent on their distance to the cluster centre.
In this way, the points closer to the cluster centre have smaller chance to be selected
as the next cluster centre. The next cluster centre is the point with the remaining
maximum potential, and so on. Two threshold values are defined that control the
termination of the clustering process.

48 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

If the ratio of the potential (Pk) of the current data point (xk) and the potential of the
first cluster centre (P1) is greater than an upper threshold value then x is accepted as
the cluster centre and the process continues. If this ratio is less than a lower threshold
value then xk is rejected and the process terminates. If the ratio lies between the two
threshold values then the smallest distance (δmin) between xk and existing clusters is
determined and the following condition is examined:

IF
(

dmin

r
+ Pk

P1
≥ 1

)

THEN (x is set as the new cluster centre and the process continues)
ELSE (it is rejected and the data point with the next highest potential is selected

and tested for the above conditions).

Although, the computational complexity increases linearly with the dimension of the
data set, it is quadratic, not exponential. However, this algorithm requires certain
critical parameters (potential-related, neighbourhood and threshold values) to be
predefined. The algorithm of the Subtractive clustering algorithm is available in
MATLAB R© function subclust.m.

3.2.2.3 Gustafson–Kessel Clustering Algorithm

Gustafson–Kessel (GK) algorithm (Gustafson and Kessel, 1978) is an extension of
the fuzzy c-means (FCM) algorithm (Bezdek, 1974) that itself is an extension of the
k-means algorithm. The GK algorithm uses Mahalanobis norm that allows generating
clusters of various size and shapes other than spherical. Each cluster is characterised
by a centre and a covariance matrix that are the parameters of the cluster prototype.
The use of the Mahalonobis norm allows the shape of the clusters to reflect the data
better, because the eigenstructure of the cluster covariance matrix represents the shape
and orientation information of the cluster. If the matrix is restricted to a diagonal form
then axis-parallel clusters are generated. The disadvantage of this algorithm is that
it is computationally more intensive if compared to FCM due to the involvement
of matrix inverse calculations while updating the covariance matrix. Moreover, it is
sensitive to initialisation of the parameters.

The algorithm starts with a random allocation of data samples to clusters (note that
this approach similarly to k-means, FCM and most of the other clustering approaches
requires the number of clusters to be prespecified). The mean values of each cluster
are then calculated based on this initial random allocation and fuzzy memberships
to each cluster are defined. Then, the reallocation process starts aiming minimisation
of a criterion of optimality using a gradient-based method. Reallocation iterations
continue until no significant improvement of the criterion is observed or no actual
reallocation takes place.

Fundamentals of Machine Learning and Pattern Recognition 49

3.2.2.4 Mean Shift Clustering Algorithm

The mean shift algorithm (Fukunaga and Hostetler, 1975; Comaniciu and Meer, 2002)
is based on the KDE and the gradient-based optimisation aiming to identify the
peaks of the probability density function (pdf). One limitation of this approach is
that it is iterative and multipass (it starts from each of the available data samples)
and is, therefore, computationally very expensive. However, because it is based on
solid theoretical foundations of both the KDE and gradient-based search concepts
the results it provides are very intuitive and meaningful (they often succeed to iden-
tify all or most of the local peaks of the pdf). A shortcoming of the original ap-
proach is that the choice of the kernel and distance function influences the result
somewhat.

The mean shift method resembles expectation maximisation (EM) algorithm. Mean
shift has a single parameter – kernel radius, h. If the data is normalised, the values of
h are problem independent. The pdf is defined through a kernel in the following way
(Comaniciu and Meer, 2002):

p(xk) = 1
khn

k∑
i=1

K
(

xk − xi

h

)
(3.20)

where K(.) denotes the kernel function.
The expression for the mean shift vector is derived through the gradient of the pdf

as (Comaniciu and Meer, 2002):

mr (xk) =

k∑
i=1

xk∇
(∥∥∥∥ xk − xi

h

∥∥∥∥
2
)

k∑
i=1

∇
(∥∥∥∥ xk − xi

h

∥∥∥∥
2
) − xk (3.21)

where ∇(.) denotes the gradient of the kernel function.
The algorithm procedure of the mean shift algorithm is outlined in Appendix B1.

3.2.3 Evolving Clustering Methods

Evolving clustering methods differ from offline methods by the fact that in evolv-
ing clustering the number of clusters can evolve; that means, grow and shrink, be
increased or reduced. In this respect, the first method that will be considered, in-
cremental vector quantisation (VQ) is more limited in the sense that the number of
clusters does not shrink – they can only grow.

50 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

3.2.3.1 Incremental VQ Clustering Method

In incremental online clustering methods the data samples are supposed to be used
one by one (sample by sample), while in the offline methods all the data samples are
available at once before the start of the procedure. The online methods are usually
also noniterative and one pass that means that each data sample is used only once and
is not memorised. An evolving version of one of the most simple and intuitive (and
thus, popular) incremental online approaches for clustering – vector quantisation, VQ
(Bharitkar and Filev, 2001) will be considered.

This algorithm starts with the first data sample assumed to be a cluster centre/
prototype. Each new data sample has two options:

a. to be assigned to an already existing cluster (if there are more than one existing
clusters at a time it is assigned to the one with the nearest prototype); or

b. to initiate a new cluster.

The second option is triggered when the distance between the new data sample
and any of the existing cluster prototypes/means is larger than the variance of the
respective cluster. If option a) is triggered then the cluster prototype to which a new
data sample is assigned is updated to take into account the new data sample using
Equation (2.31). The VQ algorithm is computationally very light, but tends to create
a large number of clusters many of which are formed by outliers.

3.2.3.2 Evolving Clustering Algorithm eClustering

Evolving clustering (eClustering) method (Angelov, 2004a) builds upon subtractive
clustering. It can be seen as its evolving version, but is significantly different from
subtractive clustering and only borrows its ‘spirit’). It is also potential (density) based.
The potential/density is calculated per data sample.

As a first step, the first sample of the data stream is established as the first cluster
centre with a density set to 1. As the next data sample arrives, its potential/density is
calculated using RDE.

Since the potential/density depends on the distance to all the data points, arrival
of a new sample causes the potential/density of all the cluster centres to change. The
potential/density of the new data sample is compared with the potentials/densities
of all the existing cluster centres and one of the following actions is performed:

A.The new data sample is added as a new cluster centre if it has the highest poten-
tial/density (because of its high descriptive/representative power).

OR if the potential/density is lowest in comparison to all the existing cluster
centres (to allow exploration of new areas of the data space);

B.If the new data sample has the highest potential/density and it is near to a cluster
centre then it replaces the later one.

Fundamentals of Machine Learning and Pattern Recognition 51

If both conditions are not satisfied then the data sample is added to the cluster with
the closest cluster centre and then next data sample in the stream is considered. The
process continues till all the samples in the data stream have been considered. The
second part of condition A) ensures a good coverage of the whole data space. How-
ever, if data samples selected by the second part of condition A) are actually outliers,
and not new operating regions no new data samples are associated with them in the
future, then the algorithm takes into account also the support (number of samples
per cluster) as a criterion to remove such clusters with low support (e.g. less than 1%
of the total data samples at a particular instant of time).

One of the favourable characteristics of this algorithm is that it automatically han-
dles the outliers because the potential/density of such data samples would be low
due to their distance to the other data and the support of such clusters will be very
low. Further, it does not require any user-defined threshold values or parameters like
number of clusters that are usually required in other clustering methods.

In its initial form (Angelov, 2002, 2004a) eClustering was incapable of adapting the
cluster radius and it was predefined before the start of the clustering process. How-
ever, later versions of eClustering (Angelov and Zhou, 2006), eClustering+ (Angelov,
2010) alleviate this drawback by adapting the cluster radius.

A measure called cluster age was also introduced (Angelov and Filev, 2005) to assess
the quality of the clusters. The value of the cluster age is within the range (0; k] and it
determines whether a cluster is young (values close to 0) or old (value close to k):

Ak = k − 1
Nk

Nk∑
i=1

ki (3.22)

where

Nk denotes the number of data samples associated with this particular cluster;
ki denotes the time index/stamp/tag when a particular data sample has been

associated with this cluster (at the moment of its assignment to the cluster this sample
was obviously the current sample).

If a cluster is young it means that recent data samples are included in the cluster. So,
new data sample with high potential/density value can replace old ones. This measure
is applicable to all types of evolving clustering algorithms. The latest version called
AutoCluster is described in Appendix B2.

3.2.3.3 Evolving Local Means (ELM) Clustering Algorithm

This is a recently developed clustering algorithm (Angelov, 2011; Baruah and Angelov,
2012) that stems from the popular mean-shift clustering algorithm. It is based on an
Epanechnikov type of kernel that has a very convenient representation of the derivative
(the mean shift) – see Equations (3.24) and (3.25).

52 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Indeed, an Epanechnikov type of kernel is optimal in the sense of minimum
variance:

KE (xk) =
⎧⎨
⎩

1
h

‖xk − xi‖2 if ‖xk − xi‖2 ≤ h

0 otherwise
(3.23)

The main advantage of using Epanechnikov kernels is the fact that the mean shift
expression (3.21) reduces to an update of the nearest mean if the new data sample,
xk is close (in terms of the radius, h and variance of the nearest cluster, σ) to it. The
vector of the mean shift points precisely towards the existing mean and there is no
need of iterations since there is only one new data sample at a time (therefore, ELM
is noniterative and one pass!).

ELM starts from the very first data sample, same as AutoCluster and assumes that
this is the first local mean (cluster prototype). With each new data sample it calculates
the mean shift by updating the local/nearest mean and variance (Angelov, 2011; Baruah
and Angelov, 2012) by:

μ j ← njμ j + xk

n j + 1
(3.24)

σ j ←
njσ j + njμ

2
j x

2
k −

(
nj + 1 − μ2

j

)

nj + 1
(3.25)

where

μj denotes the mean of the jth cluster;
σ j denotes the variance of the jth cluster;
nj denotes the number of data samples associated with the jth cluster.

If the new point is further away from any of the existing local means it forms a new
cluster. It is important to stress that it is optimal if the data distribution is convex.
The algorithm of the ELM method is described in more detail in Appendix B3 and
examples of its application to identify local peaks and to image segmentation are
illustrated in Figures 3.6–3.8.

3.2.3.4 Evolving GK-like Algorithm

An online and evolving version of GK algorithm was proposed by Georgieva and
Filev (2010) that was based, however, on an approximate learning of the inverse
covariance matrix and determinant of the covariance matrix. An exact expression
of the recursive update of the inverse covariance matrix and its determinant was
proposed recently by Angelov, Kolev and Markarian (2012) based on which one can
develop a GK-like evolving algorithm following the line of reasoning proposed in

Fundamentals of Machine Learning and Pattern Recognition 53

6

4

2

0

–2
1.4 1.2 1 0.8 0.6 0.4 0.2 0 –0.2

0

0.5

1

1.5

x2
x1

p(
x)

Figure 3.6 An example of applying the ELM clustering method to identify the local
peaks of the density function (adapted from Baruah and Angelov, 2012)

(Georgieva and Filev, 2010). This algorithm provides clusters with ellipsoidal shape
due to the use of a Mahalonobis-type distance.

In what follows, the proof of the analytical (closed from) derivation of the expres-
sions for the inverse covariance matrix and determinant of the covariance matrix is
provided (Angelov, Kolev and Markarian, 2012). If the aim is to calculate the determi-
nant of the covariance matrix in time k + 1, |�k+1|. Starting from the expression of the

10

0

–10

1.4 1.2 1 0.8 0.6 0.4 0.2 –0.2 –0.4

–0.5

0.5

1.5

0

1

0

p(
x)

x1

Figure 3.7 Application of the ELM clustering method to identify multiple local peaks
of the density function (adapted from Baruah and Angelov, 2012)

54 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

image labeled by cluster index

Figure 3.8 Using the ELM clustering method to segment an image (adapted from
Baruah and Angelov, 2012)

covariance matrix

�k = 1
k

k∑
i=1

(xk − μk) (xk − μk)T = 1
k

k∑
i=1

xi xT
i − μkμ

T
k (3.26)

Let’s denote the first element in Equation (3.26) the mean inner product of the data
item, x by itself as:

�k = 1
k

k∑
i=1

xi xT
i (3.27)

Then, the (k + 1)th element can be expressed recursively as:

�k+1 = k
k + 1

�k + 1
k + 1

xk+1xk+1 (3.28)

Using the matrix inverse, Woodbury (1950), lemma (see also Appendix A2) the recur-
sive update of the inverse of � can be described as (Angelov, Kolev and Markarian,
2012):

�−1
k+1 = k + 1

k
�−1

k −
(
�−1

k xk+1
) (

xT
k+1�

−1
k

)
k + 1 + xT

k+1�
−1
k xk+1

(3.29)

Fundamentals of Machine Learning and Pattern Recognition 55

Let us reorganise Equation (3.26) as follows:

�k+1 = �k+1 − μk+1 μT
k+1 = �k+1 + (iμk+1)

(
iμT

k+1

)
(3.30)

where i = √−1.
The inverse covariance is then:

�−1
k+1 = �−1

k+1 −
(
�−1

k+1iμk+1
) (

iμT
k+1�

−1
k+1

)
1 + iμT

k+1�
−1
k+1iμk+1

= �−1
k+1 −

(
�−1

k+1μk+1
) (

μT
k+1�

−1
k+1

)
1 − μT

k+1�
−1
k+1μk+1

(3.31)

Let us start with an initial estimate, �o by defining the (usually used) starting condi-
tions in a covariance estimate:

�0 = α I μ0 = 0 (3.32)

where α is a small constant.
In this way, the covariance matrix will be nonsingular from the very beginning. The

determinant of �k+1 can be expressed using Equations (3.26) and (3.28) as follows:

|�k+1| =
∣∣∣∣ k
k + 1

�k + 1
k + 1

xT
k+1xk+1 − μT

k+1μk+1

∣∣∣∣ (3.33)

The first two components in the brackets can be transformed as follows:

∣∣∣∣ k
k + 1

�k + 1
k + 1

xT
k+1xk+1

∣∣∣∣ = |�k |
∣∣∣∣ k
k + 1

I + 1
k + 1

�−1
k xT

k+1xk+1

∣∣∣∣ (3.34)

Here, we provide without proof (the proof is in the recent patent application, (Angelov,
Kolev and Markarian, 2012) the following

Lemma:

|�k+1| =
∣∣∣∣ k
k + 1

�k + 1
k + 1

xT
k+1xk+1 − μT

k+1μk+1

∣∣∣∣ (3.35)

Based on this we can derive the exact expression for �k+1 as follows:

|�k+1| = |�k |
(

k
k + 1

)n−1
(

k
k + 1

+
〈
�−1

k+1μk+1, μk+1
〉

k + 1

)
(3.36)

|�k+1| = |�k+1|
(
1 − 〈

�−1
k , xT

k+1xk+1
〉)

(3.37)

56 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Georgieva and Filev (2010) proposed the following adaptive and recursive method for covari-
ance matrix estimation :

μk = (1 − α) μk−1 + αxk (3.38)

�k = (1 − α) �k−1 + α (xk − μk) (xk − μk)T (3.39)

The noniterative formula of such estimation is given by:

μk =
k∑

i=1
wi xi wi = αi−1 (1 − α)k−i+1 (3.40)

�k =
k∑

i=1

wi (xi − μi) (xi − μi)
T (3.41)

Suppose that α ≡ αk = 1/k (and only in this case) the results for the inverse and determinant
of the covariance matrix (Equations (3.31) and (3.37) are similar to the ones provided by
Georgieva and Filev (2010), but even then they are not exactly the same!). The expression in
(Georgieva and Filev, 2010) takes the estimate at step (k−1) and, is thus, an approximation
of the exact expression provided here that takes the inverse for the covariance at the same
step, k.

3.3 Classification

Classification is assigning labels to input vectors which contain features. Therefore,
classification requires supervision and is offline by default (it requires training data
sets). To design a classifier means to determine the mapping function x → L, where
x ∈ Rn is the vector of features and L ∈ Rc is the set of labels. Labels are, usually,
integer values or can be represented as such. Very often this set contains only binary
values (0 or 1). The mapping itself L = f (x) can have various forms, such as (but not
limited to) linear or nonlinear regression, polynomial, fuzzy rule-based, neural net-
work type, decision trees, and so on. The classifiers can be trained by learning using
some supervised learning method and training data samples (with labels). Usually,
this is done offline in so-called ‘batch’ mode when a set of training data samples is
available for training and once the training is done the classifier can be used (Marin-
Blazquez and Shen, 2002; Kovacs and Bull, 2005). There are also incremental classifiers
in the sense that they can update the chosen model type and structure with each new
data sample or periodically. The incremental classifiers are, however, still not evolv-
ing in the sense that the classifier structure (order of the polynomial representation,
rules, neurons, etc.) are fixed.

To the best of the author’s knowledge the first evolving (not evolutionary) fuzzy
rule-based (and, respectively, neurofuzzy) classifier in the sense of adding or

Fundamentals of Machine Learning and Pattern Recognition 57

0.9

Focal point
of Cloud1 Focal point

of Cloud2

Classification surface
(two linear local submodels)

An example of classification surface evolution (k = 50)

0.8

0.7

0.6

0.5

0.4

0.3

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

Figure 3.9a An illustration of the evolving classification surface. The solid line repre-
sents the classification surface at time step 50 based on a single-variable synthetic
example case

0.9

Focal point
of Cloud1

Focal point
of Cloud2

Classification surface which evolved
to three linear local submodels

An example of classification surface evolution (k = 80)

0.8

0.7

0.6

0.5

0.4

0.3

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

Figure 3.9b An illustration of the evolving classification surface. The solid line repre-
sents the classification surface that evolved based on 30 more data samples to three
linear local submodels

removing new rules or neurons to evolve the classification surface online with-
out complete retraining was proposed some five years ago (Angelov, Zhou and
Klawonn, 2007; Angelov and Zhou, 2008)1, see Figure 3.9. The idea is to apply

1 In fact, there was a paper published in 2006 by the author on an evolving classifier for a specific problem
(EEG signals classification) as well as a number of publications by other authors in which the term ‘evolving
classifier’ has been used but in a completely different meaning – in the sense of evolutionary (genetic
algorithms) – the difference between evolving and evolutionary is explained in detail in Section 1.6.

58 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

the estimate–update pair of operations (which is similar in adaptive control and
estimation theory) to the classifiers design. The most popular methods for classi-
fication includes linear discriminant analysis, LDA (Bishop, 2009), SVM (Vapnik,
1998), neural networks, especially linear vector quantisers, LVQ. fuzzy rule-based
classifiers (Kuncheva, 2000) are one of the popular classifiers, also owing to their
human-intelligible linguistic form.

3.3.1 Recursive LDA, rLDA

The LDA is based on the simple principle of finding the optimal line of separation
of the two (or more) classes. Obviously, this simple method cannot cope well with
complex data distributions, but is a very good starting point and component in other
more sophisticated methods. It was introduced in the first half of the twentieth century
by Fisher (1936) and generates a linear combination of the input features:

L = wxT =
n∑

i=0

wi xi (3.42)

where w ∈ Rn+1 is a (n + 1)-dimensional vector of the weights.
This formula is convenient for so-called two-class classification problem (c = 2)

while for multiclass classification problems w ∈ Rc(n+1) is a c(n + 1)-dimensional
vector and L ∈ Rc.

An underlying assumption of the LDA method is that the input features (indepen-
dent variables) are normally distributed (mean is zero and the distribution is Gaus-
sian, see also Appendix A1) which is often not the case in practice. LDA explicitly
attempts to model the difference between the classes. The solution of the optimisation
problem defined by Equation (3.14) provides the best/optimal line (or, in general, a
(n + 1)-dimensional hyperplane) of separation between the two (or more) classes.
The criterion of an input, x being in a class L is based on the projection of the multidi-
mensional point, x onto a direction determined by w. In other words, the observation
belongs to L if the corresponding x is located on a certain side of the hyperplane
perpendicular to w. If we assign a threshold value, T to the expression of the line
(hyperplane, in general) then the location of the plane is defined by the threshold T
(it is like the offset in the equation of a line).

3.4 Conclusions

In this chapter the surface of the huge topic of machine learning and pattern recog-
nition was barely scratched and the author does not claim to have exhaustively de-
scribed it. The readers who are interested in more details on this topic are directed to

Fundamentals of Machine Learning and Pattern Recognition 59

more comprehensive readings such as (Duda, Hart and Stork, 2000; Hastie, Tibshirani
and Friedman, 2001; Bishop, 2009, etc.).

The aim was twofold. On one hand, concepts that will be useful for the remainder
of the book were defined. On the other hand, an innovative view on clustering was
introduced. In terms of the innovative clustering it concerns the evolving clustering
in which the number of clusters is not prespecified, but dynamically develops as a
function of the density in the data space.

4
Fundamentals of Fuzzy
Systems Theory

Everything is a matter of a degree.
(Australian Minister of Defence, 1908)

Fuzzy sets theory and fuzzy logic were introduced in 1965 by Lotfi A. Zadeh (Zadeh,
1965) but in a similar way as neural and evolutionary computation the theory of
fuzzy sets, fuzzy logic, and fuzzy models and systems become popular only in the
1980s after the works of E. Mamdani from Imperial College, London (Mamdani
and Asilian, 1975) on fuzzy controllers and T. Takagi and M. Sugeno from Japan
(Takagi and Sugeno, 1985) on fuzzy modelling. It is somewhat similar to the delay
between the first publications on a single perceptron in 1946 and the more wide use of
neural networks in the 1980s and 1990s after the seminal works of Werbos (1974) and
Rumelhart and McClelland (1986). In a very similar way, genetic algorithms (GA)
pioneered by Holland (1975) were popularised only in 1990s after the much more
practical book by Goldberg (1989) was published.

4.1 Fuzzy Sets

A fuzzy set is an extension of the normal set, with the main difference that an object
can belong partially to the fuzzy set, instead of the binary choice that is used for
the traditional (crisp, nonfuzzy) sets that limits the analysis to the following two
options only:

a. to belong to a set (xj ∈ Si);
b. not to belong to the set (xj /∈ Si).

Autonomous Learning Systems: From Data Streams to Knowledge in Real-time, First Edition. Plamen Angelov.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

62 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

If the membership (belonging) of the jth object to the ith set is denoted by ν the first
case can be written as:

a. νij = 1.

The second case will then be:

b. νij = 0.

Instead, the use of fuzzy sets describing the membership/belonging to the cluster
allows partial membership to a certain cluster:

0 ≤ νij ≤ 1 (4.1)

It is usually required that the total membership to all sets for a data sample adds
up to 1:

C∑
i=1

νij = 1 (4.2)

Fuzzy logic is a very powerful methodology of how to present information and
knowledge by rules that have high generalisation and summarisation ability (Yager
and Filev, 1994). One of the important characteristics of the fuzzy logic is that it can be
expressed in a linguistic (natural language) form and, thus, be very intuitive. Fuzzy
logic is a convenient, yet mathematically sound, tool to formalise the knowledge we
extract from data.

Fuzzy logic can be blended with the traditional (classical) control (Wang, 1994),
modelling (Babuska, 1998) and machine learning techniques, as will be demonstrated
in the next chapters of this book. Fuzzy systems have a very important property – it
was mathematically proven (Wang, 1992) that they can describe arbitrarily well any
nonlinear (complex) function; that is, fuzzy systems are universal approximators.

A fuzzy set is described by its membership function. There exist a variety of types
of membership functions, but the most commonly used ones are (Dubois, Prade and
Lang, 1990; Yager and Filev, 1994):

i. triangular;
ii. trapezoidal;

iii. Gaussian;
iv. Cauchy;
v. sigmoid, and so on.

If we take the Gaussian membership function, for example, there is a superfluous simi-
larity between membership to a fuzzy set and probability density function. Analysing

Fundamentals of Fuzzy Systems Theory 63

1
ν

0.8

0.6

0.4

0.2

0
19 21

VL

Membership functions of T amb

T amb, °C

L M H

23 25

1
ν

0.8

0.6

0.4

0.2

0
12 14 16 18

RH

Membership functions of T out

T out, °C

L M H

20 22

Figure 4.1 Examples of bell-shaped membership functions of ambient temperature
(left plot) and outlet temperature of the air-conditioning systems heat exchanger
(Angelov, 2002) which represent the linguistic variables Very Low, Low, Medium, High
and Relative High

deeper, however, there are substantial differences in the meaning. In addition, for-
mally, the membership functions to a fuzzy set have normally a maximum of 1 and
the integral under the membership function is (significantly) larger than 1, unlike pdf
that integrates to 1 and has maximum lower than 1. This follows from Equations (2.3)
and (2.4) and, respectively, Equations (2.22) and (2.23) that are part of the Kolmogorov
conditions for probability, but do not apply to membership functions of fuzzy sets
and, equally, do not apply to the density function formulated by Equations (2.27) and
(2.29) and used in this book.

The difference in the meaning is that the probability defines uncertainty of a fact
that may take place or not, but if it takes place it is entirely available, not partially
while the fuzzy sets represent uncertainty in terms of a partiality. For example, looking
at the membership functions represented in Figure 4.1 if the ambient temperature is
23 ◦C that means that it is partially (with some degree) Medium, but also to a certain
degree it will be a High temperature. There is some duality, some uncertainty still
left even after the real measurement is made. It is not of a random nature, but of
ambiguity, lack of sharpness type. One should consider the linguistic labels with
some flexibility because in this specific case they relate to the air-conditioning system
(otherwise a temperature of 21 ◦C is hardly a Low temperature). If we consider a
similarly looking pdf (they will have, of course, maxima lower than 1) the meaning is
completely different. The probability, for example, that the ambient temperature will
be tomorrow 23 ◦C means that when tomorrow comes the ambient temperature may

64 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

be 23 ◦C or may not. And out of N cases in N23 it will be. But if that is one of these
cases it will not be partially 23 ◦C.

A more obvious example is with the pregnancy. The probability that a woman in
her 20s was pregnant can be, for example, 60%, which means that out of 1 million
women in their 20s 600 000 were pregnant, but (this is important to note) every single
one of them was fully (not partially!) pregnant while a fuzzy set for this example is
hard to formulate.

However, if we take smoking, the probabilistic example may consider the fact that,
for example 12% of the people in an area are smokers, but if we take a single one
(s)he will be either smoker or nonsmoker. For this particular example a fuzzy set can
be defined, but it will have an entirely different meaning. Namely, we can consider
the degree of smoking habit and we can formulate fuzzy sets similar to the ones
represented graphically with their membership function in Figure 4.1.

Then we can distinguish between ‘Heavy’ smokers (for example on the horizontal
axis we can have the number of cigarettes being smoked per week and then this can
mean over 100), ‘Occasional’ (who smoke less than 10 cigarettes), and so on.

The difference in the meaning becomes clear from these practical everyday-life
examples. It is also obvious that both types of uncertainties representation have their
own place. Fuzzy sets represent partial truth, duality (the ability to be represented
by more than one label, description, model, structure at the same time, to a certain
degree. The probability represents the frequency or belief in a fact taking place (but
when it takes place it is fully and entirely existing, not partially).

4.2 Fuzzy Systems, Fuzzy Rules

Based on fuzzy sets and fuzzy variables one can formulate fuzzy rules that are lin-
guistic statements of the following type:

Rulei: IF (antecedent)

THEN (consequent) i = [1, R]
(4.3)

where R is the number of fuzzy rules; antecedent and are different for different types
of fuzzy rules (can be linguistic or functional/mathematical expressions).

There are several types of fuzzy rules, but two of them are widely used now:

i. so-called Mamdani or Zadeh–Mamdani type, and
ii. so-called Takagi–Sugeno (TS) called sometimes Takagi–Sugeno–Kang type.

Both are named after the researcher(s) who introduced them. In this book we will also
consider a third alternative type that was recently introduced by Angelov and Yager
(2010, 2012) and is called AnYa.

All three types of fuzzy rules differ by the form of their antecedent and/or con-
sequent part. Their mechanism of producing the overall output as a fuzzy blend of
local outputs that is called defuzzification is the same for all the three types.

Fundamentals of Fuzzy Systems Theory 65

Based on fuzzy rules one can compose a fuzzy rule-based system (classifier, predic-
tor, controller, filter, estimator). Such systems have been applied to a range of control
systems, decision making, pattern recognition and system modelling disciplines. They
play a crucial role in a range of industrial applications such as consumer products,
robotics, manufacturing, process control, medical imaging, financial trading and so
on (Yager and Filev, 1994).

4.2.1 Fuzzy Systems of Zadeh–Mamdani Type

Sets of such linguistic fuzzy rules are known as Mamdani-type fuzzy systems and
were first introduced in early 1970s by Lotfi Zadeh (Zadeh, 1975) and Abe Mamdani
and his students for linguistic description of a feedback controller (Mamdani and
Asilian, 1975). The (Zadeh–) Mamdani type of fuzzy rule-based systems is a collection
of fuzzy rules of the form:

Rule1: IF (Car Weight is High) AND

(Volume Cylinders is High) · · · AND · · ·
THEN (Fuel Efficiency is Low)

(4.4)

where

High, Low, and so on are linguistic terms represented by fuzzy sets defined by their
membership functions;

Fuel_Efficiency denotes the miles one can drive by a gallon – so-called miles per
gallon (mpg).

In (Zadeh–) Mamdani-type fuzzy rule-based systems both the antecedent and conse-
quent parts of the fuzzy rules are defined by fuzzy sets. In addition, the antecedent
part is defined per input variable (not in a vector form) and the fuzzy sets per vari-
able are then connected by conjunction operators (t-norm) that can be interpreted as
a logical AND (Dubois, Prade and Lang, 1990).

It is well known that the linguistic information is imprecise in its nature (Kacprzyk
and Zadeh, 1999) and, therefore, the formalism in the design of (Zadeh–) Mamdani-
type linguistic fuzzy systems is focused on the definition of membership functions
of the respective fuzzy sets describing the linguistic variables. The level of overlap
between neighbouring membership functions plays a pivotal role in the flexibility
and the power of the fuzzy inference. It is determined by the parameters of the fuzzy
sets and affects the interpretability in the sense that the lower the overlap the more
clear is the interpretability.

4.2.1.1 Linguistic Terms and Variables

The linguistic expressions are used to represent values that are imprecise such as
‘young’, ‘warm’, ‘small’ and so on. A representation is called complete if for any value of
the variable (e.g. Car_Weight) there is at least one fuzzy set that covers and describes

66 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

it. An example of a complete representation is the Gaussian membership function,
while examples of noncomplete representations are, for example, the triangular and
trapezoidal membership functions. Having the ability to represent the models in a
linguistic form is one of the main advantages of fuzzy rule-based models. This is true
for both the ability to ‘extract’ knowledge from data (streams) and for encoding and
formalising existing expert knowledge and integrating it with data-driven models.
Interpretability of fuzzy rule-based models is an important aspect of their design
(de Oliveira, 1999). Another important advantage of the fuzzy sets is their ability
to represent partial truth, to belong to more than one class or cluster at the same
time (partially). For example, it is very obvious that in life the preferences for a film,
music or politician are more naturally to be represented by a fuzzy membership. Sim-
ilarly, a situation or observation can possibly be described by more than one (simple)
model partially.

4.2.1.2 Inference and Defuzzification

The defuzzification is usually done by one of the two widely used techniques, namely:

a. the mean of the maximum (MoM) also known as ‘the winner takes all’:

y = yi∗ ; i∗ = R
arg max

i=1
(λi) (4.5)

b. the centroid or centre of gravity (CoG) method:

y =
R∑

i=1

λi yi (4.6)

4.2.2 Takagi–Sugeno Fuzzy Systems

Takagi–Sugeno (TS) type of fuzzy systems (Takagi and Sugeno, 1985) are currently
one of the most popular types of fuzzy rule-based systems. This is mainly due to
their dual nature – they combine a linguistic, fuzzy IF part with a functional (usually,
linear) consequents part, for example:

Rule1: IF (Car Weight is High) AND (Volume Cylinders is High)

THEN (Fuel Efficiency = a + b∗Car Weight + c∗Volume Cylinders)

4.2.2.1 Architecture of Takagi–Sugeno Fuzzy Systems

The overall TS-type fuzzy model can be described in the following form:

Ri : IF
(
x1 ∼ x∗

1i

)
AND · · · AND

(
xn ∼ x∗

ni

)
THEN (yi = L Mi)

(4.7)

Fundamentals of Fuzzy Systems Theory 67

LM1

LMR

......

x y

...
LM2

Figure 4.2 TS-type fuzzy system

where

Ri denotes the ith fuzzy rule; i = [1, R];
R is the number of fuzzy rules;
(xj ∼ x∗

ij) denotes the jth fuzzy set of the ith fuzzy rule;
j = [1, n]; x∗

i is the focal point of the ith rule antecedent part;
L Mi denotes ith local model, i = [1, R];
y is the output.

The antecedent part is a linguistic representation of the partition of the measurable
input variables space into fuzzily overlapping regions that define locally valid (often,
but not necessarily) linear systems.

The linguistic antecedent part of the TS fuzzy systems makes them attractive for
human operators (if we compare to neural networks (NN), support vector machines
(SVM) or polynomial models, for example). Their architecture, see Figure 4.2, is
composed of fuzzily weighted local (in terms of data space) output linear models that
can be represented in a vector form as:

LMi : yi = XT A (4.8)

where
X = [1, x1, x2, . . . , xn]T denotes the (n + 1) × 1 extended vector of measurable

variables;
Ai = [a0i a1i · · · ani]T denotes the matrix of consequent parameters.

All of the R linear models describe the process in a local area defined by fuzzy rules
and are blended in a fuzzy way (see Equation (4.6)) to produce the overall output, y
which is nonlinear in terms of the measurable/observable input variables, x; but is
linear in terms of the parameters, A. The global (in terms of data space) model can be
described in a vector form as:

y = ψT A (4.9)

68 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

LM1

LMR

...
x

y1

ym

...

Figure 4.3 A MIMO TS-type fuzzy system

where

ψ = [λ1 XT , λ2 XT , . . . , λR XT]T is a vector of the measurable variables that are
weighted by the normalised firing strength (or activation levels) of the rules,

λi , i = [1, R] is the normalised firing level of ith fuzzy rule that is a function of x,
that is λi (x).

The degree of membership of certain data sample, x to any of the fuzzy rules is usually
described by a Gaussian function centred at its focal point, x∗

i :

νi = e
−‖x−x∗

i ‖2

2σ 2
i (4.10)

4.2.2.2 Multi-Input–Multi-Output (MIMO) Takagi–Sugeno Fuzzy Systems

In their standard form, TS FRB were defined for the case of so-called MISO (multiple-
input–single-output) models (Takagi and Sugeno, 1985), but in 2004 a MIMO
(Multiple Inputs Multiple Outputs) form was introduced for the case of evolving
TS models (Angelov et al., 2004b), see Figure 4.3. In this formulation the output,
yi = [y1i , y2i , . . . , ymi]T is also a vector with dimension (m × 1) that can be inter-
preted linguistically as:

Ri : IF (x1i ∼ X1i) AND · · · AND (xni ∼ Xni)

THEN (y1i L M1i) AND · · · AND (ymi = L Mmi)
(4.11)

The dimensionality of the parameters of the local submodels of the consequent part
increases and they are represented by a matrix (Angelov et al., 2004b):

Ai =

⎡
⎢⎢⎢⎣

a01i a02i · · · a0mi

a11i a12i · · · a1mi
...

... · · · ...
an1i an2i · · · anmi

⎤
⎥⎥⎥⎦ (4.12)

Fundamentals of Fuzzy Systems Theory 69

Thus, each element (y1i y2i · · · ymi) of the m-dimensional output, yi can be represented
as a separate line:

y1i = a01i + x1a11i + · · · + xnan1i ;

y2i = a02i + · · · + xnan2i

and so on.

4.2.2.3 Analysis of the Inference in Takagi–Sugeno Fuzzy Systems

In the case of classical/traditional sets (‘normal’, two-valued, binary) logic IF–THEN
rules are easy to interpret as follows:

IF (the premise/antecedent is true)
THEN (the consequent is also true/holds)

Classical rules were used in 1970s and 1980s in so-called expert systems (Giarratano
and Riley, 1998). In the case of fuzzy (multivalued) logic these conditions are relaxed
by allowing a degree of satisfaction, degree of truth, partial truth. This is closer to the
complexity of the real-life situations and gives a more realistic than just ‘black and
white’, ‘true or false’ picture.

Interpreting IF–THEN rules is a three step process (Yager and Filev, 1994; Dubois,
Prade and Lang, 1990):

1. Perception: That means mapping all the inputs in the antecedent part to a degree
of membership (lying in the interval [0;1]) to respective (linguistic) fuzzy sets.

2. Aggregate the multiple part antecedents: If there are multiple parts of the an-
tecedent, apply a conjunction (intersection, AND) operator to find the overall
degree of truth of the antecedent part. Note, that this stage is not necessary in the
AnYa type of FRB.

3. Apply inference (defuzzification) method: use the degree of support for the entire
rule to shape the output of the fuzzy rule-based system. Because the rule, is,
generally, only partially (by λi) true, therefore the output is a truncated version of
the fuzzy set of the output (in the case of a Mamdani-type fuzzy rule) or only a
fraction (represented by a weight between 0 and 1) of the output y that the fuzzy
rule produces (in the TS and AnYa type of fuzzy rule).

4.3 Fuzzy Systems with Nonparametric Antecedents (AnYa)

The new type of fuzzy rule-based systems called AnYa (Angelov and Yager, 2010,
2012) was proposed as an attempt to revise and simplify the antecedent part of
fuzzy rule-based systems that for both traditional types (Mamdani and TS) is the
same. At the same time, the antecedent part plays a key role in learning (as will be
demonstrated in the next two chapters). It is traditionally either predetermined by

70 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

regular partitioning or clustering (Babuska, 1998; Carse, Fogarty and Munro, 1996)
or is optimised by supervised learning, for example computationally expensive error
back-propagation (Jang, 1993) or genetic algorithms (Cordon et al., 2004; Angelov and
Buswell, 2003).

AnYa includes a nonparametric antecedent part of a new type which also simpli-
fies the linguistic expression removing the need for logical AND, and the ambiguity
related to the choice of the t-norm operator. In addition, the neural networks inter-
pretation (which in the case of TS model is of a five-layer network) is simpler and
reduces to a four-layer structure as will be shown later.

4.3.1 Architecture

Let us consider a complex, generally nonlinear, nonstationary, nondeterministic
system that can only be described and observed by its input and output vectors,
x = [x1, x2, . . . , xn]T and yi = [y1i , y2i , . . . , ymi], respectively. The aim is to describe
the input–output dependence based on a history of observation of input–output pairs,
z j = [xT

j ; yT
j]T , j = 1, 2, . . ., k−1 and current, k inputs, xT

k only. The dimension of the
vector of input–output data zj is (n + m): n dimensions of the inputs and m dimensions
of the outputs.

The new alterative type of fuzzy rule-based systems (Angelov and Yager, 2010,
2012) is based on data clouds that are very much like clusters, but differ in several
aspects. They are nonparametric. They do not use their mean or variance and, thus,
they do not have a specific shape and boundary. They are just collections of data
samples (points in the multidimensional data space), see Figure 4.4.

y

Cloud2

Cloud1

1kz

1kd

2kd
* *

*
*

*
*

*

*

*
*

*

*

2kz
*

x

Figure 4.4 Data clouds. Data items (points) from Cloud1 are linked with the data item,
zk1 using dotted lines and, respectively, the data items (points) from Cloud2 are linked
with the data items, zk2 using dashed lines. It is obvious that data clouds (unlike clusters)
have no specific shape

Fundamentals of Fuzzy Systems Theory 71

The main difference is that clustering approaches simplify the real data represen-
tation replacing it with a set of cluster centres and cluster zones of influence have a
specific shape (hyperspherical shape if using Euclidean type distance and hyperel-
lipsoidal shape if using a Mahalonobis-type distance). Data clouds, on the contrary,
take full account of the density based on all data samples/points.

As a result, an AnYa type of fuzzy rule-based systems does not consider and does
not require membership functions or fuzzy sets per scalar variable to be formulated
(Angelov and Yager, 2012). In this sense, the proposed simplified fuzzy rule-based
structure can also be seen as type 0 fuzzy sets (by analogy to the type II fuzzy sets
(Karnik, Mendel and Liang, 1999) for which the membership functions are defined
by a fuzzy set for each point of the membership function. “Type 0” means that there
is no need to define even the membership functions per variable but it only suffice to
define (calculate recursively) the local density.

AnYa-type fuzzy rule-based systems do not require an explicit definition of the
membership function or even a prior assumption of its form). On the contrary, if
necessary, the membership function per input variable/feature can be defined based
on the real data distribution (Angelov and Yager, 2010). A very interesting and strong
aspect of the proposed method is the nonparametric form of the data clouds as local
building blocks of an overall complex system.

Data clouds are sets of previous data samples with common properties (closeness in
the data space). They directly represent all previous data samples. Contrast this to the
traditional membership functions that usually do not represent the true data distribu-
tions; instead, membership functions represent some desirable/expected/estimated
(often subjectively) preferences.

The fuzziness in AnYa FRB is primarily related to the inference and the fuzzy
membership of a particular data sample to (multiple or) all clouds simultaneously
with different degree, λ∈[0;1] defined by the local density, d (2.29). A cloud is de-
scribed by the set of data samples that belong to it as well as by a statement of the
following form:

(x ∼ �i) �i ∈ Rn i = [1, R] (4.13)

where

�i � ∈ Rn i = [1, R] denotes a cloud;
‘∼’ can be read as ‘is like’.

The degree of membership to a cloud is measured by the normalised (using, the centre
of gravity principle) local density for a particular data sample, xk:

λki = dki∑R

j=1
dkj

i = [1, R] (4.14)

72 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

where dik is the local density of the ith cloud for a particular data sample, xk (index k will
be further omitted for simplicity for both d and λ); it is defined by Equation (2.29); or
recursively as in Equation (2.30) for the global density.

Because the fuzzy membership to a cloud, λi is normalised, they sum up to 1:

R∑
i=1

λi = 1 (4.15)

An AnYa-type FRB has the following linguistic expression:

Rulei: IF (x ∼ �i)

THEN
(
yi = XT ai

) (4.16)

where the degree of fulfilment of the antecedent part is determined by the normalised
local density, λi.

4.3.2 Analysis of AnYa

Comparing the two traditional types of fuzzy rule-based systems (see Table 4.1) one
can observe their similarity in terms of the antecedent (premise) part.

While both the consequent part and the defuzzification inference differ, the an-
tecedent parts of both Mamdani and TS are exactly the same. Yet, this type of an-
tecedent part formulation is often a stumbling block in the practical design of fuzzy
rule-based systems. This is true both in the case when their design relies on real data
as well as when it relies on expert knowledge. The reason is that defining member-
ship functions per scalar variable and parameterisation of all of them requires a very
high level of approximation (because the real data distributions and real problems
are often not smooth and easy to describe ‘per variable’).

An AnYa-type fuzzy rule-based has some parallels and similarities with the
Bayesian probabilistic systems in terms of their inference. Indeed, we can summarise

Table 4.1 A comparison of the three types of fuzzy rule-based systems

Antecedent/IF Part
Consequent/ THEN
Part Defuzzification

Mamdani Scalar, parameterised
fuzzy sets

Scalar, parameterised
fuzzy sets

Centre of gravity

TS
”

Functional (usually
linear)

Fuzzily
weighted sum
(average)

AnYa All data; nonparametric
data clouds ” ”

Fundamentals of Fuzzy Systems Theory 73

Table 4.2 Duality between the inference in Bayesian
(probabilistic) and AnYa-type fuzzy rule-based models

Bayesian (probabilistic) AnYa-type FRB/NFS

p(y|x) y
p(y) yi

p(x|y) di

p(x)
∑

i di

p(y | x) = p(x | y)p(y)
p(x)

y =
R∑

i=1

di∑R
j=1 d j

yi

the inference of AnYa type fuzzy rule-based systems by Equations (4.9) and (4.14).
Indeed the overall output, y of the AnYa-type FRB is conditioned on the input, x:

p(y | x) → y (4.17)

where ‘→’ denotes ‘corresponds to’.
The unconditional probability of the output can be related to the local/partial

outputs:

p(y) → yi i = [1, R] (4.18)

The probability of the input conditioned on the output, p(x|y) is related to the density
of the data sample, d while the unconditional probability of the input, p(x) is obviously
a sum/integral of local densities. Combining, we can derive Table 4.2 that represents
the duality between the AnYa type of FRB and Bayesian inference.

4.4 FRB (Offline) Classifiers

Fuzzy rule-based (FRB) classifiers consist of fuzzy rules of the following form:

Rulei: IF
(
x1 ∼ x∗

1i

)
AND · · · (

xn ∼ x∗
ni

)
THEN (Li)

(4.19)

where

i = [1, R]; R is the number of fuzzy rules;
(xj ∼ x∗

ji) denotes the jth fuzzy set of the ith fuzzy rule; j = [1, n];
x∗

i1 is the focal point of the ith rule antecedent (note that this is a prototype – a real,
existing data sample not the mean).

Li is the label of the class of the ith prototype (focal point);
‘∼’ denotes the linguistic expression ‘is like’ represented by a fuzzy set.

74 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

This type of FRB classifier is of so-called 0 order because the consequent part consist
of singletons. It is also possible to have first-order classifiers where the consequent
part consist of lines (Angelov et al., 2007). Then, the value of the consequent is used
for comparison with a threshold (the threshold is 0.5 if we use normalised values in
the interval [0, 1]).

Rulei: IF
(
x1 ∼ x∗

1i

)
AND · · · (xn ∼ x∗

ni

)

THEN

⎛
⎝yi = w0i +

n∑
j=1

wjixj

⎞
⎠ (4.20)

For a given set of feature values, x, first, the membership functions of the fuzzy sets
are determined as values between [0; 1]. The membership functions that describe the
degree of association with a specific prototype can, for example, be of Gaussian form
that is characterised by good generalisation capabilities and coverage of the whole
feature space. Then, these values are aggregated for all features, j = 1, 2, . . . , n and the
so-called firing level of (degree of confidence in) the ith fuzzy rule, τ i is determined
using an operator (minimum or product) for logical AND. Once the firing levels, τ i

per rule are determined the label can be inferred by the so-called ‘winner takes all’
principle:

L = Li∗ ; i∗ = R
arg max

i=1
(λi) (4.21)

The firing level, τ of a fuzzy rule is determined by a t-norm, which can be represented
as an inner product (Yager and Filev, 1994):

τi =
n∏

j=1

νij(xj) (4.22)

or minimisation

τ i = min

(
n
νij
j=1

(xj)

)
(4.23)

where n is the number of fuzzy sets/linguistic terms such as ‘Small’, ‘Medium’, and
so on, which are represented by their membership functions, ν.

The firing level is then normalised so that it sums up to one:

λi = τi∑R

j=1
τ j

(4.24)

Fundamentals of Fuzzy Systems Theory 75

For first-order FRB classifiers the overall output is determined as a weighted sum
using so-called ‘centre of gravity’ (CoG) principle where the weights represent the
normalised firing level of a particular rule and, respectively, its local (linear) output:

y =
R∑

i=1

λi yi (4.25)

where yi = yi∑R
j=1 yj

is the normalised output.

Since the normalisation leads the output, yi to be in the region [0;1] therefore the
two classes can be separated, for example, as:

IF (y > 0.5)

THEN (Class 0)

ELSE (Class 1)

(4.26)

The FRB classifiers can be trained/learned using training data or, alternatively, the
rules can be provided by expert knowledge. Learning can be performed offline (train-
ing data are provided as a batch set) or online (training data arrive one by one in
real time) or can be developed in an evolving manner (the number of rules and fuzzy
sets can be dynamically changing (growing or being reduced) instead of being fixed
(Angelov and Zhou, 2008).

4.5 Neurofuzzy Systems

The combination of fuzzy rule-based systems with neural networks led in 1990s
to so-called neurofuzzy systems (NFS) that combine the advantages of fuzzy rule-
based systems having linguistic expression, allowing partially valid simpler local
models with the layered structure of neural networks that makes them convenient for
learning. One particular type of neural networks – radial-basis function (RBF) type
NN has also very close links with FRB because neurons in the hidden layer of an RBF
(Figure 4.5) can be interpreted as fuzzy sets with Gaussian membership function.

RBF-type neural networks have three layers, namely input layer that merely passes
the inputs to all neurons of the next layer, called the hidden layer; hidden layer itself
that determines the closeness of particular inputs to prototypes that are determined
as a result of learning; and, finally, the output layer that performs a linear combination
of the (partial) outputs produced by each neuron from the hidden layer.

4.5.1 Neurofuzzy System Architecture

The architecture of a NFS is formed of several layers with specific role. Both, an-
tecedent and consequent parts of the fuzzy rule-based systems are represented
by more than one layer as will be detailed in the next subsections. Certain layers

76 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

xn

RBF2

RBFR

…

x1
y1

ym

… …

RBF1

Figure 4.5 RBF-type NN that can be interpreted as a FRB

perform only multiplication or summation tasks. In general, the architecture of NFS
is of feed-forward type. Perhaps, the first NFS architecture was the TS type NFS
proposed by Jang (1993), which is discussed in the next subsection.

4.5.1.1 TS Type NFS

The TS type NFS can be represented as a five-layer neural network (Jang, 1993):
The functioning of the TS type NFS is as follows (see also Figure 4.6):

xn

… …

ym

…

Σ

y1Σa11

aRm
Π

λ1

λR

Layer 5
Outputs

Layer 3
Normalisation

Layer2
Antecedents

Layer1
Fuzzy sets

Layer 4
Aggregation

νn1

x1
μ1;σ1

μn;σn

ΠT

T

ν11

ν1R

νnR

τ1
CoG

CoG
τR

Figure 4.6 TS-type NFS architecture (the arrows that correspond to the antecedent
part are represented by a solid line; the arrows that corresponds to the consequent
part are shown by a dash-dotted line)

Fundamentals of Fuzzy Systems Theory 77

Layer 1: Every node in this layer performs the following function:

L1i = νAi (x) (4.27)

where x is the input to node i, and Ai is the linguistic label (small, large, etc.) associated
with this node function.

In other words, L1i is the value of membership function of Ai and it specifies the
degree to which given x satisfies the qualifier Ai. Usually, the preferred choice of a
type of a membership function, νAi (x) is the Gaussian one.

Layer 2: Every node in this layer is labelled by T that stands for ‘t-norm’ and it
represents the t-norm (multiplication or minimum) that is also a representation of the
logical AND:

L2i = τi =
n∏

j=1

L1 j (x) =
n∏

j=1

ν j (x)

or

L2i = τi = n
min

j=1

(
L1 j (x)

) = n
min

j=1

(
ν j (x)

)
(4.28)

Each node output represents the firing strength of a rule.
Layer 3: Every node in this layer is a node labelled N (normalisation). The ith

node calculates the ratio of the ith rule’s firing strength to the sum of all rules’ firing
strengths:

λi = L2i∑R

j=1
L2 j

= τi∑R

j=1
τij

; i = [1, R] (4.29)

For convenience, outputs of this layer will be called normalised firing strengths
(activation level).

Layer 4: Every node, i in this layer is a node with a function

L4i = λi yi = L3i yi = L3i

⎛
⎝ n∑

j=0

aij Xj

⎞
⎠ = λi

⎛
⎝ n∑

j=0

aij Xj

⎞
⎠ (4.30)

where λi is the output of layer 3, and a is the vector of parameters.
We will refer to these parameters as consequent parameters.

78 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Layer 5: The single node in this layer is a node labelled
∑

that computes the overall
output as the summation of all incoming signals, that is:

L5i =
R∑

j=1

L4 j y =
R∑

j=1

λ j yj (4.31)

4.5.1.2 AnYa Type NFS

The new AnYa type of FRB can also be represented by a NFS similar to the TS type
one, but with one layer less (layer 2) and no parameters that needs to be learned in
the antecedent part, Figure 4.7.

The functioning of the AnYa type NFS is similar to that of TS type NFS, but simpler:

Layer 1 performs the same function as in TS type NFS, however, the parameters,
σ and μ (two per input dimension, that is 2n in total) are not necessary to determine
through learning.

Layer 2 of the TS type NFS is not necessary in AnYa-type NFS at all.
Layer 2 of the AnYa-type NFS performs the same type of operation (normalisation)

as Layer 3 of the TS type-NFS, but it is now over local density to a data cloud, (4.14).
Layers 3 and 4 of the AnYa-type NFS are the same as Layers 4 and 5 of TS type

NFS, respectively.

4.5.2 Evolving NFS

The evolving versions of fuzzy systems of TS type by Angelov and Buswell (2001,
2002); Angelov and Filev (2002, 2003, 2004) and of NFS (Kasabov, 2002, 2006a and b)

aR

a1

Π

x1

xn

…… …… …………

…………

… …… …

………… ……… …… …… …… ………

Cloud1

CloudR

1λ

Rλ

1y

my

11y

my1

R1y

Rmy

Layer 4Layer 1

N

N

Rγ

1γ

Layer 2

Π

Π

Σ

Σ

Π

Layer 3

Figure 4.7 AnYa-type NFS architecture

Fundamentals of Fuzzy Systems Theory 79

were introduced around the turn of the centuries as techniques for online learning
and autonomous adaptation of both the structure (rule-base, fuzzy sets or neurons)
as well as parameters of the respective models.

Evolving fuzzy models, and, in particular, evolving TS type models, eTS (Angelov
and Filev, 2004) and the more simple and advanced AnYa type (Angelov and Yager,
2012) are particularly well suited to be the framework for autonomous learning and
knowledge extraction from data streams for several reasons.

The basic idea of evolving fuzzy models, EFM (Angelov, 2002) is to assume the fuzzy
rule-based system to have an open (expandable or reducible) structure that adapts to
the (possibly) changing data pattern similarly to the adaptation of the parameters of
any type of adaptive models/systems. The difference in parameter adaptation and
structure evolution is the pace – parameter adjustment is usually done at each time
step (for each new data sample) while model/system structure that normally reflects
the structural changes of the data pattern (appearance of a new operating regime,
new state, new area of data space or disappearance of such one) usually is much
more rare and, respectively, the pace of this evolution is much slower (a change of the
model/system structure usually takes place once for several dozens or even hundreds
or thousands of data samples).

The main driver for model/system structure evolution is the variation in the data
density (pattern), while the main driver for parameter adjustment is the ‘fine tuning’
of an adopted structure to the particular (recent) data. Therefore, the issue of structure
versus parameter adaptation is also closely related to the problem of long-term and
short-term learning and to global and local (in terms of time) validity of the models. It
should be noted, however, that local and global models are also considered in terms
of data space (which will be discussed in more detail in Chapter 6).

4.5.3 Linguistic Interpretation of the NFS

As it was mentioned earlier, the main advantage of NFS is their linguistic interpre-
tability (due to the link to FRB). In particular, AnYa-type NFS can also be represented
by a fuzzy rule-based system as shown in Figure 4.8.

The structure, generally, can be fixed or evolving (expanding or shrinking in terms
of rules/neurons and inputs/features). In many applications it is an attractive feature
that allows human operators to better understand the way the system works and
makes it a ‘grey box’ type of system rather than a ‘black box’ one as the ‘pure’ neural
network are. It also allows both ‘extraction’ of human interpretable knowledge and
use of such knowledge if it exists or is easy to obtain.

4.6 State Space Perspective

The AnYa-type fuzzy rule-based system and NFS can also be considered through
the prism of state space representation (Kailath et al., 2000). Let us have the state
vector, ζ and the vector of measurable inputs x and outputs, y to the system,
Figure 4.9.

80 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

() 111
0

111 ;;~: ηNAgeXayTHENCloudxIFRule
n

j
jij ⎟⎟⎠

⎞
⎜⎜⎝

⎛
= ∑

=

...

() RRR

n

j
jijRRR NAgeXayTHENCloudxIFRule η;;~:

0
⎟⎟⎠

⎞
⎜⎜⎝

⎛
= ∑

=

1+RRule

Online input selection Quality parameters

Evolve

rules

Figure 4.8 Linguistic interpretation of AnYa-type NFS – a FRB with parameter-free an-
tecedents and linear consequents; Agei denotes the age of the ith local submodel
(fuzzy rule); Ni denotes the support of the ith local submodel (fuzzy rule); ηi denotes the
utility of the ith local submodel (fuzzy rule) which will be introduced later

The state space expressions of the dynamics then are well-known (Astroem and
Wittenmark, 1989) and can be represented as:

ζk+1 = f (ζk, xk) + wk (4.32)

yk+1 = h (ζk, Ak) +
k (4.33)

where w and
 denote the noise in the input and output channel, respectively.
In AnYa-type systems the state vector takes the form of the density, D or more

specifically, the mean, μ and the scalar product, � through which we determine D:

ζ =
[

μ

�

]
(4.34)

Therefore, Equation (4.32) is represented by the Equations (2.31) and (2.32) that de-
scribe the update of the state vector. Equation (4.33) is represented by Equation (4.14).
In summary, Equation (4.14) plus Equations (2.29–2.32) form the representation of
AnYa in state space. It is nonlinear, in general, (because of the nature of the update

x yζ

Figure 4.9 State space representation of the AnYa FRB/NFS

Fundamentals of Fuzzy Systems Theory 81

equations for the density and of the, generally, nonlinear nature of the model), but
can be still considered and analysed as locally linear.

4.7 Conclusions

In this chapter the fundamentals of the fuzzy set theory were briefly outlined. The
aim was not to provide much detail that is available in other books (Dubois, Prade
and Lang, 1990; Yager and Filev, 1994), but to briefly describe the notions that will
be necessary for the proposed approach. In particular, an entirely new type of FRB
that offers a simpler, yet powerful description if compared with traditional Mamdani-
and TS-type FRB systems has been described. FRB systems are also described in this
chapter as a NFS, including the new, AnYa type and indicated what an evolving
structure FRB systems (respectively, NFS) means.

In terms of classifiers, the pioneering concept of evolving classifiers was described
that works in a similar manner to the adaptive control systems and estimators by
pairs of ‘classify’ and ‘update’ actions for each new data sample (or for these new
data samples for which class label is known.

Very interesting parallels were made in this chapter with the Bayesian probabilistic
models that were outlined in Chapter 2 in addition to the more familiar similarities
(duality) between fuzzy rule based models (of TFS and AnYa type) to RBF-type
neural networks. Note, that Bayesian inference and AnYa, fuzzy rule based system of
Takagi–Sugeno or AnYa type of fuzzy rule based systems or NFS as well as RBF-type
neural networks are not exactly the same, but are very similar.

PART II
Methodology of
Autonomous
Learning Systems

5
Evolving System Structure
from Streaming Data

5.1 Defining System Structure Based on Prior Knowledge

Traditionally, the system structure (whichever type it is, e.g. based on probabilistic
models, neural networks, fuzzy rule-based systems, polynomial models, etc.) is being
predefined and fixed. The choice of the structure (Bayesian, hidden Markov models,
number of states, neurons, rules, order of the polynomial, type of distributions, acti-
vation functions, membership functions, number of inputs/features, etc.) is usually
based on prior knowledge and insight from the problem domain. For this reason,
such an approach is problem-specific, expert-dependent (therefore, not suitable for
autonomous and online behaviour) and ignores the possible dynamic evolution of
the problem at hand. The last factor becomes more and more important nowadays.

The innovative approach on which this book and the author’s research in the last
decade is based is focused on the development of objective, automatic, adaptive
and autonomous methods for system structure identification (in a dynamic con-
text) from the data streams. This approach was called evolving systems a decade ago
(Angelov, 2002).

For example, initially, fuzzy systems structure identification was based on the
use of prior expert knowledge (Zadeh, 1975; Driankov, Hellendoorn and Reinfrank,
1993). This was a logical step since the introduction of the fuzzy set theory and fuzzy
linguistic variable by L. A. Zadeh was seen primarily as a tool and technique to capture
and represent knowledge and linguistic (qualitative) information. To a certain extent,
this approach is similar to the system structure identification based on first principles
as opposed to the so-called ‘black-box’ type of methods (Ljung, 1987).

Both approaches rely heavily on the human involvement and lead to highly in-
terpretable structures. Indeed, the strength of the fuzzy systems is in their ability to
formalise and use human-intelligible knowledge and reasoning in the form of fuzzy

Autonomous Learning Systems: From Data Streams to Knowledge in Real-time, First Edition. Plamen Angelov.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

86 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

rules over fuzzy sets. In this approach, expert knowledge available a priori is expressed
verbally in a form of fuzzy rules and formalised through fuzzy sets, their member-
ship functions, and parameters. Parameters can be further tuned by a supervised
learning – an approach that will be described in the next chapter.

The adjective ‘prior’ to the knowledge means that this precedes the process of system
identification itself. Contrast this to the knowledge extracted from the data (posterior
knowledge), which will be discussed later.

The structure of a system, generally, includes:

A. the number and nature of the subsystems (components);
B. their interconnection (links, overlap);
C. the number and nature of the inputs and output(s);
D. the inference mechanism.

For example, for a hidden Markov model (HMM) that means, the number of states
(observable and hidden), transition probabilities, number and nature of inputs and
outputs, the inference mechanism which is Bayesian.

For the example of a neural network that includes the specific types such as RBF,
LVQ and so on, the number (and type) of layers, inputs and outputs, activation
functions.

For the example of a fuzzy rule-based system that includes the type of the system
(Mamdani, Takagi–Sugeno or AnYa), number of fuzzy rules, input and output vari-
ables, and the inference mechanism that is directly linked to the type of the fuzzy
rule-based system considered. In addition, for Mamdani- and Takagi–Sugeno-type
FRB this also includes the fuzzy sets (linguistic variables), linguistic connectives (ag-
gregating operators such as t-norms and conorms).

When all of the above are predetermined by an expert (decision maker) we have a
system structure identified from the prior knowledge.

5.2 Data Space Partitioning

An alternative to the expert prior knowledge approach for system structure identi-
fication is through partitioning the data space into overlapping local regions of the
data space (Sugeno and Kang, 1988; Harris, 1994; Wang, 1994). The idea of this ap-
proach is straightforward – the problem of design of complex, nonlinear systems is
decomposed into simpler locally valid subsystems following the millennia old Latin
principle divide et impera.

This principle is behind such approaches as the multiple model systems (Boukhris,
Mourot and Ragot, 1999), neural networks (Rumelhart and McClelland, 1986), hidden
Markov models (Bishop, 2009), FRB (Sugeno and Kang, 1988), and so on. For example,
the fuzzy logic is particularly suitable to formalise the flexibility and uncertainty that
arises from the interconnection of the local subsystems. Fuzzy sets theory provides
a convenient tool for a formal description of the transition from one local region to

Evolving System Structure from Streaming Data 87

1

0.5

0

0

1
0.5

–0.5
–1 –1

–0.5
0

0.5
1 x1

xn

ν

Figure 5.1 Regular orthogonal data space partitioning. The third dimension (the ver-
tical one) represents the membership function (MF), ν if assume FRB with triangular-
type MF

another one. It also provides an excellent vehicle for combination and expression of
the prior knowledge that originates from human experts and the posterior knowledge
that has been extracted from data patterns.

5.2.1 Regular Partitioning of the Data Space

The n-dimensional inputs data space can be evenly partitioned into a lattice of axes-
orthogonal hyperboxes along the linguistic variables and the membership functions
that describe them in the antecedent part of a fuzzy rule-based or a neurofuzzy system.
This form of partitioning (Figure 5.1), however, requires a very large number of fuzzy
rules in order to cover the whole data space. This number depends exponentially on
n and on the number of linguistic terms of each variable, p:

R = pn

For example, for a problem with two hundred inputs (n = 200) and five linguistic
variables (e.g. Very Low, Low, Medium, High, Very High) for each one we get R = 5200,
which is practically intractable.

5.2.2 Data Space Partitioning through Clustering

In the more general case, the data space can be partitioned by clustering, see Section
3.2 (Chiu, 1994; Babuska, 1998; Angelov, 2004a). The shape of the clusters (Section
3.2.1) depends on the type of proximity measures used, for example, the traditional
and more straightforward Euclidean distance measure leads to hyperspherical clus-
ters (see Figure 3.4), while the more involved Mahalonobis-type distance that requires

88 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

*
1x *

2x

*
2y

*
1y

x

y

Cluster2

Cluster1

Figure 5.2 An example of hyperellipsoidal clusters resulting from the use of a
Mahalonobis-distance metric. The pdfs (or respectively, membership functions) are
represented by dash-dotted lines assuming Gaussian distribution

an inverse covariance matrix to be calculated leads to the more realistic hyperellip-
soidal shape clusters (Figure 5.2). The reason is that the actual variance of the data
is taken into account by the Mahalonobis-type distance. The resulted local regions of
data subspace, generally, are described by multivariate membership (or, respectively,
probability density) functions. The blending of local submodels into an overall model
can be addressed either by the ‘winner take all’ principle, as this is done in the prob-
abilistic context or by the ‘centre of gravity’ principle that tolerates ‘fuzziness’ in the
sense of joint and partial membership to more than one local submodel at the same
time (the total membership has to be normalised so that it sums up to 1).

5.2.3 Data Space Partitioning Based on Data Clouds

In the AnYa approach the local submodels are referred to respective data subsets and
not to specific subregions of the data space (e.g. clusters, regular hyperrectangles,
etc.), see Figure 4.3 and compare this with Figure 5.2. In this way, no specific shape or
parameters of the antecedents are defined.

The way partitioning into data clouds practically works is very similar to clustering
(e.g. AutoCluster and ELM) with the main difference that there is no need to determine
the centre (mean) and the radius of the data cloud. In addition, the inference of the
overall model is different with the normalised firing levels (weights), λ formed in a
simpler way through the local densities directly – see Equation (4.14) (Angelov and
Yager, 2010).

Evolving System Structure from Streaming Data 89

5.2.4 Importance of Partitioning the Joint
Input–Output Data Space

An important property of any partitioning of the data space for the purposes of system
structure identification is the coverage of the whole data space. If the whole data space
is not covered, situations may arise when no output can be generated, which is
unacceptable and may be unsafe. This property is called ‘completeness’. One way to
guarantee completeness is by considering the full range of all variables and apply
regular partitioning assigning a local submodel to each ‘cell’ of the divided data space
in such a way that at least one local submodel is active (with nonzero degree). Another
alternative is to use such local submodels that have guaranteed nonzero output for any
input variable. For example, if we use Gaussian- or Cauchy-type density functions
or membership functions, theoretically the whole data space will be covered with
different from zero outputs. Alternatively, triangular-type membership functions can
also guarantee completeness for a regular partitioning if there is an overlap between
each neighbouring pair (see Figure 5.1).

In practice, however, data points that are outside of the so-called ‘3σ zone’ from
the focal point of the local submodel (where σ denotes the standard deviation) the
value of the output produced will be negligible. Therefore, a good method for data
space partitioning has to pay attention to an effective coverage of the whole data space
to avoid computational problems (possible divisions by small numbers, which may
lead to singularities).

One fundamental issue is the dimensionality of the data space that is being par-
titioned. In some works, the partitioning was performed per individual variable
(per individual feature in classification case), for example in (Pedrycz, 1994) for
so-called entropy equalisation, in (Baldwin, Martin and Pilsworth, 1995) for so-called
mass assignment, in (Pedrycz, 1993) and (Berenji and Khedkar, 1993) for antecedents
identification. In order to represent the complexity of interactions between all the
variables, however, one needs to partition the joint input space of all input variables
together. The approach to the system identification in the vector inputs (features)
space (Kasabov, 1998, 2001; Angelov, 2004a) is along the lines of the VQ.

Despite being a significant step forward, vector partitioning of the input data space
only does not represent the whole complexity of the system identification problem. A
complex system is modelled by a mapping of a n-dimensional vector of input variables
(in the case of classification, features) onto a (generally) m-dimensional space of
outputs (in classification these might be class labels or possibility/confidence degree
to a certain class). If we identify separately the input and the output data subspaces
the resulting system model will not necessarily represent the correct mapping.

For example, in a simplified 2D case (single input, x and single output, y) that is
represented in Figures 5.3 and 5.4, if we analyse the input data space only a single
model will suffice. If, however, the joint input–output data space is considered, it is
obvious that two separate submodels will be necessary. For example, if the data in
one of the local submodels suggests output ‘Turn Left’ for a mobile robot while the
other local submodel suggests ‘Turn Right’, having only one model will practically

90 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

*x

θ

x

Cluster2

Cluster1

Right

Left

Figure 5.3 In terms of the input, x only one local model appears to be needed, but
two obviously different outputs are produced (respectively, suggesting to turn left or
right)

result in averaging all the data and, as a result, the output may be ‘Go Straight’, which
can have damaging consequences. In this case, the two local models aggregated using
‘winner takes all’ (or ‘few winners take all’ in the case of more than two alternatives)
type of inference instead of the typically used ‘centre of gravity’ one would avoid the
problems described.

This simple example demonstrates that the joint input–output (n+m)-dimensional
data space has to be considered rather than the n-dimensional input and m-
dimensional output data subspaces separately. When normalisation to the range [0;1]
is applied the modelling is a mapping x ∈ [0; 1]n → y ∈ [0; 1]m.

go left

go right

go straight
obstacle

Figure 5.4 A simplified 2D example (a ‘robot’ and an obstacle) demonstrating the
problem that may occur if we consider input and output data subspaces separately.
The dashed line in the middle represents ‘go straight’, which is an average resulting
from Figure 5.3

Evolving System Structure from Streaming Data 91

5.2.5 Principles of Data Space Partitioning for Autonomous
Machine Learning

The proposed methodology for autonomous machine learning is based on the follow-
ing principles for decomposition of the data space into (possibly overlapping) local
regions:

A. new data samples that have high descriptive power (e.g. estimated by its density)
are eligible to be added as focal points of new local regions (submodels);

IF
(

D (xk) >
R

max
i=1

D
(
x∗

i

))

THEN
(
xk → x∗

R+1

)

B. new areas of data space that were not covered before should be covered if they
contain a certain number of new data samples;

IF
(

δmin = R
min
i=1

∥∥xk − x∗
i

∥∥2
>

r
2

)

THEN
(
xk → x∗

R+1

)

C. Focal points of local regions (submodels) should not:

i. be very close to each other, to avoid significant overlap;

IF
(

δmin = R
min
i=1

∥∥xk − x∗
i

∥∥2 ≤ r
2

)

THEN
(

xk → x∗
j∗ ; j∗ = R

arg min
i=1

∥∥xk − x∗
i

∥∥2
)

ii. describe old data only, see Equation (5.12);
iii. have low utility, see Equation (5.14).

5.2.6 Dynamic Data Space Partitioning – Evolving System Structure
Autonomously – example of Fish Classification

Methods for data space partitioning described above (using prior knowledge, using
regular partitioning, using clustering or data clouds) can be done offline, in a batch
mode, but all except the first one (using prior knowledge) can be done in the online
mode, recursively also. This is in the centre of the concept of evolving systems –
to extract the system structure automatically online from the data stream. In this
way, the overall system is a (fuzzy) blend of a much simplified partially, locally
simpler (possibly, linear) submodels that are not prefixed or predetermined, but
rather adapt/evolve based on the changing data density pattern following the main
principles listed above.

92 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Let us consider a simple standard classification problem. For example, let us try to
classify fish into two categories

a. ‘Salmon’; and
b. ‘Sea Bass’.

The features based on which an automatic system can categorise them can be, for
example, the size (length) and weight of the fish.

For this simple example one can consider all types of data space partitioning as-
suming a Bayesian probabilistic model as well as a fuzzy rule-based type of model.
Let all the data samples that are available from both types of fish be represented in
Figure 5.5.

5.2.6.1 Data Space Partitioning Based on Prior Knowledge

For this simple problem one can assume the following data space partitioning
(Figure 5.6):

� Area 1 is typical for Salmon (length >1.5 m; weight >1.5 kg);
� Area 2 is typical for Sea Bass (length <1.5 m; weight <1.5 kg).

However, it is well known and also obvious from Figure 5.5 that some species of
Salmon can be smaller or lighter and on the contrary, some Bass can be larger or

3

2.5

2

1.5

1

0.5

0
0 0.5 1 1.5

length, m

w
ei

gh
t,

kg

Salmon
Sea Bass

Salmon versus Sea Bass example

2 2.5 3

Figure 5.5 Data from two types of fish regarding two features – length and weight
(stars denote Salmon; diamonds denote Sea Bass)

Evolving System Structure from Streaming Data 93

3

2.5

2

1.5

1

0.5

0
0 0.5 1 1.5

length, m

Salmon
Sea Bass

Area 2

Area 1

Simple data space partitioning

2 2.5 3

w
ei

gh
t,

kg

Figure 5.6 Data space partitioning based on prior knowledge for the example of two
types of fish represented in Figure 5.5

heavier. So, partitioning based on prior knowledge represents some form of accumu-
lated and averaged prior knowledge and principles rather than the specific situation
and data at hand.

One can develop, instead, local submodels (e.g. Bayesian or FRB) for the two Areas.
For example, the Bayesian model can be developed based on the pdf of the data in
this Area. FRB model can have the form of Mamdani-type fuzzy rules:

R1: IF (Data sample is in Area1)
T HE N (Salmon)

R2: IF (Data sample is in Area2)
THEN (Sea Bream)

(5.1)

where (Area is 1) is the antecedent represented by the fuzzy sets (Length > 1.5 m) AND
(Weight > 1.5 kg), which themselves are represented by membership functions.

For example, membership functions of Gaussian type for a fuzzy description of the
variable length of the fish are depicted in Figure 5.7.

Another example of membership functions of the same variable of triangular type
is depicted in Figure 5.8.

It should be stressed that the membership functions may look very similar to
the pdfs, but the main difference is that they represent a degree of membership to
the fuzzy set, not the probability and the maximum of the membership functions
is 1 because the membership function do not satisfy the condition (2.23). The main

94 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

1

0.8 focal point
for Sea Bass

focal point
for Salmon

0.6

0.4

0.2

0
0 0.5 1.5

length, m

Fuzzy Sets membership functions for the fish example
m

em
be

rs
hi

p
fu

nc
tio

n,
 n

i

2 2.5 3 3.51

Figure 5.7 An example of Gaussian-type membership functions for a fuzzy description
of the variable length of the fish

problems (for both FRB and Bayesian type of representation) is, however, that the
forms convenient for mathematical treatment such as normal Gaussian distributions
are not necessarily adequately describing the real data, as can be appreciated from
Figures 5.5 and 5.6. Alternatives include, in the probabilistic domain, so-called par-
ticle filters (Arulampalam, Maskell and Gordon, 2002; Doucet, Godsill and Andrieu,

1

0.8
focal point

for Sea Bass

focal point
for Salmon

0.6

0.4

0.2

0
0 0.5 1.5

length, m

Fuzzy Sets membership functions for the fish example

m
em

be
rs

hi
p

fu
nc

tio
n,

 n
i

2 2.5 3 3.51

Figure 5.8 Triangular-type membership functions for a fuzzy description of the variable
length of the fish

Evolving System Structure from Streaming Data 95

2000) and in the area of FRB systems the AnYa type of representations and using of
data clouds.

5.2.6.2 Regular Data Space Partitioning

Regular data partitioning (Figure 5.6) is similar to the partitioning based on prior
knowledge in the sense that it also disregards the actual data. For example, the whole
range of lengths and weights for both types of fish can be divided into two equal parts
and, thus, have four local regions of data space where respective local submodels (e.g.
Bayesian or fuzzy) can be developed. In fact, the data are primarily in two of these
four regions – see Equation (5.1) and Figure 5.6.

5.2.6.3 Data Space Partitioning through Clustering

The same data can also be separated into (possibly overlapping) clusters using any
suitable clustering method, see Figure 5.9 below.

5.2.6.4 Data Space Partitioning through Clouds

Finally, if we use data clouds one only needs to identify the focal points (Figure 5.10).
One can, then, associate the incoming data points based on their local density

3

2.5

2

1.5

1

0.5

0
0 0.5 1 1.5

length, m

Salmon
Sea Bass

Salmon versus Sea Bass example

2 2.5 3

w
ei

gh
t,

kg

Figure 5.9 Data space partitioning through clustering for the example of two types
of fish represented in Figure 5.5. The problems with using clusters (even if they are
ellipsoidal – using Mahalonobis distance metrics) are obvious

96 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

3

2.5

2

1.5

1

0.5

0
0 0.5 1 1.5

length, m

Data Cloud 1

Prototype/
focal point

new data
sample

Data Cloud 2

w
ei

gh
t,

kg
Salmon versus Sea Bass example

2 2.5 3

Figure 5.10 Data space partitioning through clouds for the example of two types of
fish represented in Figure 5.5 (the relative density to a cloud is determined through the
distances from the new data sample to all points from each cloud

(a data item can be assigned to the data cloud, which has maximum local density,
Equation (5.2)).

zk ∈ C j∗
∣∣ j∗ = R

arg max
i=1

(di) (5.2)

where C j∗ denotes the j∗th data cloud.
Each focal point can also be a prototype for a local submodel.
In this way, the main elements of the structure of a complex system – the number

and position of the local simpler (possibly, linear) submodels can be determined by
one of the above ways with clustering and data clouds being the most promising ones.
Data clouds have an additional advantage – they do not require specific parameters,
while clustering requires two parameters per cluster – the cluster centre and radius.

In the remainder of this chapter we will consider in more detail how to evolve
different aspects of the structure, such as normalisation and standardisation in an
evolving environment, number of inputs, age, utility and radii of the local submodels.

5.3 Normalisation and Standardisation of Streaming
Data in an Evolving Environments

A very important problem related to any online algorithm is the normalisation or stan-
dardisation of the streaming data. Applying one of the two techniques is necessary in
order to transform the data so that they are made comparable. Both, normalisation and

Evolving System Structure from Streaming Data 97

standardisation are well established techniques for the offline case when all the data
is available in a batch mode, see Section 3.1.1. In online environment, however, the
range of the data is not necessarily known in advance. Moreover, in an evolving system
structure scenario new local submodels may be formed and have to be initialised and
updated properly. Therefore, both normalisation and standardisation cannot be ap-
plied straightforwardly as in the offline case and alternative algorithms are required.

5.3.1 Standardisation in an Evolving Environment

In an online mode the data stream may have time-variable statistical characteristics
(being, generally, a nonstationary one) and, therefore, both mean, μ and standard
deviation, σ , generally, change (evolve). Although, the update of both the mean and
standard deviation can be done easily, see Equation (2.31):

μk = k − 1
k

μk−1 + 1
k

zk μ1 = z1 (5.3)

where

z = [xT ; yT]T ; z ∈ Rn+m denotes the joint input–output data sample
x = [x1, x2, . . . , xn]T is the n-dimensional input vector
y = [y1, y2, . . . , ym] – the m-dimensional output vector.

The standard deviation can be updated as follows (Duda, Hart and Stork, 2000), see
also Equation (2.32):

σ 2
k = k − 1

k
σ 2

k−1 + 1
k

‖zk − μk‖2

σ 2
1 = 1

(5.4)

The main difficulty in standardisation in an evolving environment is, actually, not
the operation itself (Equations (5.3) and (5.4)), but the fact that this update has to
be done for every new data sample and it does not apply retrospectively. On the
other hand, the normalisation requires update only when new data exceeds one of
the boundaries, which may practically be rare if we know these boundaries well in
advance. In addition, a single data sample cannot exceed both boundaries (lower
and upper) at the same time and, thus, only one of the boundaries needs to be
updated sometimes. This argument is in favour of the normalisation for an evolving
environment because it leads to fewer computations and is exact because it treats all
data points equally, despite the fact that the range of the data may change.

Standardisation in an evolving environment, on the contrary, is asymptotical, be-
cause both mean and standard deviation are changing with each new data sample
and, thus, each time the data is standardised under varying conditions. The changes
to the algorithm parameters, however, which are required by the evolving normali-
sation, are abrupt; because any new data point that is outside of the range that ap-
plies up to this point extends it. The changes due to evolving standardisation, on the

98 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

contrary, are more robust because the mean and standard deviation accumulate/filter
the effects of all the data and do not change suddenly and drastically. Therefore, with-
out limiting the choice, we recommend evolving standardisation that confines over
99% of the standardised data into the range [−3;3] (Duda, Hart and Stork, 2000).

5.3.2 Normalisation in an Evolving Environment

Zhou and Angelov (2007) proposed normalisation in an evolving environment based
on the update of the minimums and maximums per input variable (see Equation
(3.3)) which takes place only when the new data sample leads to one of the extreme
values (lower or upper boundary of zj; j = 1, 2, . . ., n) to be exceeded.

The procedure (Zhou and Angelov, 2007) starts with the third data sample, zk (k =
3, 4, . . .), because it makes no sense for two samples or less. First, it is checked if zk is
within the current boundaries:

zk ≤ zk ≤ zk (5.5)

where

zk = k−1
max

i=1
(zi) denotes the current upper boundary of z at the moment of time k;

zk = k−1
min
i=1

(zi) denotes the current lower boundary of z at the moment of time k.

If Equation (5.5) is satisfied then zk is normalised using the current lower and upper
boundaries, zk and zk by applying Equation (3.3). If Equation (5.5) is not satisfied then,
first, the boundaries, zk and zk are updated using Equations (5.6) or (5.7) corresponding
to which part of Equation (5.5) is violated – they cannot be violated both at the same
time. After that, we normalise zk as follows:

zk = min(zk−1, zk) (5.6)

zk = max(zk−1, zk) (5.7)

Let us introduce the ratio ρk = zk−1 − zk−1

zk − zk

. Note, that quite often, when there is

no need for change of the range, in practice, ρ = 1. Each time the normalisation
boundaries change, all the parameters of the algorithm need to be updated with the
ratio ρ as an additional parameter (Zhou and Angelov, 2007).

5.4 Autonomous Monitoring of the Structure Quality

5.4.1 Autonomous Input Variables Selection

Traditionally, the number of input variables, n is considered to be predefined and
fixed. This is very often the case, because the factors that affect the output are, usually,

Evolving System Structure from Streaming Data 99

known from the prior knowledge. In many problems, however, some input variables
are highly correlated. To avoid this problem the traditional offline approach, which is
a part of preprocessing, includes techniques such as orthogonalisation through PCA
(Li, Yue and Valle-Cervanteset, 2000), selection of input variables (features) through
techniques such as genetic programming (GP) (Kordon and Smits, 2001), partial
least squares (PLS) (Fortuna et al., 2007), sensitivity analysis (Hastie, Tibshirani and
Friedman, 2001), and so on. PCA and PLS have two major disadvantages:

i. The model interpretation is difficult because they are, in fact, linear combinations
of the original input variables; and

ii. They are limited to the linear systems. GP is very slow and computationally
expensive.

It is also offline and assumes stationarity of the data; its results are valid only if the
data distribution does not change for the validation data in comparison with the
distribution of the training data.

In an online scenario when the system structure evolves the selection of most
suitable input variables becomes even more challenging. It is order dependent and
not retrospective (a certain variable may be important based on certain subset of data,
but not important based on the next subset, for example). Therefore, automatic input
variable selection ‘on the fly’, even if possible, is not necessarily optimal or unique in
global sense. Such a technique allows the system initially to encompass all available
inputs and automatically trim gradually the structure in terms of selecting the most
important inputs only.

One approach for input selection (automatic gradual reduction of the number of
used input variables) is based on the contribution each input has to the overall model
(Angelov, 2006). For this purpose, the local submodels (usually, linear) are monitored
online and the values of their parameters are analysed (Angelov, 2010). If the values
of the parameters are negligibly small across the local submodels for certain input
(feature), j = [1, n] and certain output (in a MIMO case), l = [1, m] for all the data
samples seen so far, the algorithm removes this particular input/feature, j

∗
because it

is not contributing significantly towards the overall output.
This can be expressed mathematically by the accumulated sum of the local sub-

models’ parameters for the specific, jth input/feature in respect to (normalised by) all
n inputs/features (Angelov, 2006):

ωijlk = πijlk
n∑

r=1

πirlk

, i = [1, R]; j = [1, n], l = [1, m] (5.8)

where πijlk =
k∑

r=1

∣∣aijlr
∣∣ denotes the accumulated sum of parameters’ values.

100 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

The values of aijlk indicate the contribution of a particular input/feature that can
be monitored. The values of ωijlk indicates the ratio of the contribution of a particular
(jth) input/feature compared with the contributions of all features, pilk = ∑n

r=1 πirlk or

with the contribution of ‘the most influential’ feature, π = n
max
r=1

πirlk, l = [1, m], i =
[1, R], t = 1, 2, . . . In Equation (5.8) the former is assumed.

An extensive empirical study was made by Angelov and Zhou (2008) which indi-
cates that it is more appropriate to compare the ratio out of all features for problems
with less than 10 inputs/features. At the same time, for problems with multiple (over
10 inputs/features) the same study suggests to use the ratio out of the most influen-
tial input/feature, π . When the number of features is large the sum of contributions
becomes a large number on its own and masks the effect of a particular feature.
Therefore, the comparison in this case is with the feature that contributes most, π .

The condition to automatically select the most relevant inputs/features can be
summarised as follows (Angelov, 2006):

Condition AIS1 IF
(∃ j∗| ωij∗lk < εpilk

)
AND (n ≤ 10) THEN (remove j∗)

where i = [1, R], l = [1, m], k = 2, 3, . . .
(5.9)

Condition AIS2 IF
(∃ j∗| ωij∗lk < επ ilk

)
AND (n > 10) THEN (remove j∗)

where i = [1, R], l = [1, m], k = 2, 3, . . .
(5.10)

where

AIS denotes automatic inputs selection;
ε denotes a coefficient – (suggested values are 3 to 10%).

It should be stressed that the removal of an input/feature leads to a change in the di-
mension (shrinking) of the overall system. Therefore, the inputs vector, x, respectively,
the focal points of local submodels, x∗, covariance matrix,

∑
, standard deviation, σ

and all variables of the algorithm related to them will have a new dimension n(k) <

n(k − 1) if the removal of the input is made at the moment of time k.
When new inputs/features are being added a new column and a line is being

added in the covariance matrix and initialised in the same way as if a new rule is
being added, see Section 6.3.

Let us have the matrix Ck and the ith feature is to be removed. Then the fol-
lowing transformation of the matrix takes place for the removal of a feature:

Ck =

c11 . . . c1i . . . c1n.
ci1

--
--
--
--
--
--
--
--
--
--
--
-

. . . cii . . . cin.
cn1 . . . cni . . . cnn

Evolving System Structure from Streaming Data 101

Ck+1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

c11 . . . c1(i−1) c1(i+1) . . . c1n

.

c(i−1)1 . . . c(i−1)(i−1) c(i−1)(i+1) . . . c(i−1)n

c(i+1)1 . . . c(i+1)(i−1) c(i+1)(i+1) . . . c(i+1)n

.

cn1 . . . cn(i−1) cn(i+1) . . . cnn

⎤
⎥⎥⎥⎥⎥⎥⎦

and similarly, for the addition of a new feature:

Ck =

⎡
⎢⎢⎢⎢⎣

c11 . . . c1i . . . c1n

.

ci1 . . . cii . . . cin

.

cn1 . . . cni . . . cnn

⎤
⎥⎥⎥⎥⎦

Ck+1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

c11 . . . c1i . . . c1n 0
. 0
ci1 . . . cii . . . cin 0
. 0
cn1 . . . cni . . . cnn 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

5.4.2 Autonomous Monitoring of the Age of the Local Submodels

The age of the (evolving) local submodel can be defined (Angelov, 2006) as the accu-
mulated time of appearance of the data samples that form the cluster or cloud based
on which the local submodel was formed:

Ageik = k −

Nik∑
l=1

Il

Nik
; i = [1, R] (5.11)

where

k denotes the current time instant;
Nik denotes the number of data samples (support) that are associated with the

cluster or cloud;
Il denotes the time index of the moment when the respective data sample was read.

The values of Age vary from 0 to k and the derivative of Age in respect to time
is always less than or equal to 1 (Lughofer and Angelov, 2011). Clusters (clouds)
are said to be ‘old’ (their Age is high) when they have not been updated recently.
‘Young’ cluster (clouds) have predominantly new samples or recent ones. The (first

102 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

and second) derivatives of the Age are very informative and useful for detection of
data ‘shift’ and ‘drift’ (Lughofer and Angelov, 2011). The Age indicates how old the
information that supports certain local submodel is. One can monitor the Age of
each local submodel online and compare this with the mean Age that is determined
as Agek = 1

R

∑R
i=1 Ageik , which can also be updated online. One can use the Age to

remove older local submodels or to detect the concept drift that corresponds to the
inflexed point of the Age curve (the point when the derivative of Age in terms of time
index, d(Age)

dk changes its sign (Angelov and Kordon, 2010).
When a new data sample creates a new local submodel, its Age is initiated (the new

cluster is ‘born’). Each time a new data sample is associated with an existing local
submodel, the Age of that cluster gets smaller/younger (see Equation (5.11)). If no
sample is associated with this local submodel it gets older.

The Age of local submodels is especially important for data streams. It gives ac-
cumulated information about the timing when a certain sample was assigned to a
cluster or cloud. It is well known that incremental approaches are order dependent.
With the Age one can make use of this specific feature of the data streams.

The following simple rule for update of global system model can be formulated for
removing older local submodels (whose Age is above the mean Age by more than ‘one
sigma’):

IF
(

Agei > Agei + σAgei

)
THEN (λi ← 0; R ← (R − 1))

(5.12)

where Agei denotes the mean age; σAgei denotes the standard deviation of the Age of
the ith rule.

5.4.3 Autonomous Monitoring of the Utility of the Local Submodels

The utility of the local submodel was introduced for fuzzy rule-based type systems
(Angelov, 2006) as the degree of support for this local submodel by the future data
samples. Utility can be seen as a measure of the support for the local submodel (it
takes real numbers in the range [0;1] while the Age, for example, takes crisp integer
values). Utility is a more representative measure, because it is based on the weight
(firing level, confidence) rather than on the distance to the focal point only as in the
case of Age or frequency as in pdf. Utility is formulated as (Angelov, 2006):

ηik =

k∑
l=1

λl

k − ti
; i = [1, R] (5.13)

where

ti denotes the time instant when the ith local submodel has been created;
λ denotes the firing level (in the case of a fuzzy rule), confidence level (in the case

of a probabilistic model), weight or activation function.

Evolving System Structure from Streaming Data 103

Utility, ηi , accumulates the weight of the local submodel’s contributions to the
overall output during the life of that local submodel (from the current time instant
back to the moment when this local submodel was generated). It is a measure of
importance of the respective local submodel. The relative nature of λ (see Equation
(3.49) or, respectively, Equation (4.14) of the centre of gravity inference mechanism)
holds the comparison between a given local submodel and all other local submodels.

Similarly to the case with the Age, utility provides a tool to benefit from the order
dependency of the models that are derived from data streams. These tools can be
used to address the nonstationary nature of the data streams by evolving/adapting
the structure of multimodel systems in terms of number of local submodels, but also
in terms of their relevance once created measured by the Age and utility. A similar rule
to Equation (5.12) for removal of local submodels with low utility can be formulated:

IF (ηi < ε)
THEN (λi ← 0; R ← (R − 1))

(5.14)

where ε denotes a coefficient – (suggested values are 3 to 10%).

5.4.4 Update of the Cluster Radii

The value of the cluster radii (zone of influence of the clusters), r can also be up-
dated online in a data-driven fashion by learning the data distribution and variance
(Angelov, 2006):

r2
ijk = αr2

ijk−1 + (1 − α)
1

Nik

(
zjk − z∗

j

)2 (5.15)

where

α denotes the learning step (recommended value 0.5);
Nik denotes the number of data samples that are associated with the ith cluster based

on the closeness; the initial value of the spread is usually r j1 = 0.5.

The cluster radius, r is an important parameter that affects the results. For example,
in fuzzy rule-based systems it is a part of the membership function and, thus, of
the activation level of the fuzzy sets; in Bayesian pdf it determines the spread of the
Gaussian and, in general, it determines the zone of influence of the cluster. Tradi-
tionally, it is assumed to be predefined, e.g. in Mountain (Yager and Filev, 1994) and
subtractive clustering (Chiu, 1994), even in early versions of AutoCluster (Angelov,
2004a).

It has to be noted that the absence of problem-specific parameters is an obvious
advantage of any algorithm (this is especially true for online algorithms). While the
parameter α is suitable for all problems, the value of the radius, r is, to a great extent,
problem specific (although suggested values in range [0.3;0.5] for normalised data is

104 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

1

0.8

0.6

0.4

0.2

0
0 50 100 150 200 250

data sample

Evolution of the radii

r1(k)

r2(k)

r3(k)

r4(k)

r
(n

or
m

al
is

ed
)

300 350 400

Figure 5.11 Evolution of the radii of the clusters – an example based on Equation (5.15)

also relatively problem independent, it can be demonstrated that it does affect the
results). Figure 5.11 illustrates the evolution of the radius.

From Figure 5.11 one can see that the radii of all the clusters converge to a stable
value pretty quickly.

5.5 Short- and Long-Term Focal Points and Submodels

The system is adapted (it evolves) as a reaction to significant structural changes that
are marked by innovations. These innovations are represented by data samples that
are not described well by the existing structure (including all subsystems). In this
respect, innovations are identical to anomalies (see Section 2.6).

However, if a new submodel is established for each anomaly, the model quickly
becomes intractable, complex and biased, not reflecting correctly the total data dis-
tribution (on average). This is the main disadvantage of some greedy clustering
algorithms and the evolving systems based on them (Leng, McGuinty and Prasad,
2005) that later require some sort of ‘pruning’.

Instead, a more prudent and robust approach is to require the density of the new
focal points to be high (as AutoCluster does), see principle A from Section 5.2.5. When
new focal point is established in accordance with the principle B (same section), that
is, to cover the data space, an additional condition must cover the minimum number
of points in the vicinity (e.g. 3) or local density. In this book a new approach to evolve
system structure (by considering two types of focal points and, respectively, local
submodels) is proposed. This applies not only to fuzzy rule-based systems, but also
to neural networks, probabilistic multimodel systems. To the best of the author’s

Evolving System Structure from Streaming Data 105

knowledge, none of the evolving systems (starting from the very first, such as eTS
and DENFIS which are dated back to the beginning of the century) as well as non-
evolving adaptive and offline systems, including probabilistic multimodel systems,
neural network and fuzzy rule bases use this method.

The idea is to establish any innovation (which initially is nothing more than an
outlier) as a candidate focal point of a local submodel and to declare and use it as a
regular one only after it is supported by more points in its vicinity. In this way, it is
possible to differentiate between short-term memory that keeps all candidate focal
points (outliers) and long-term memory that keeps only focal points that are actually
used in the model. Of course, focal points that are created based on the principle A
(see Section 5.2.5) are always used directly unless they contradict principle C, item i).

In addition, principle C (items ii) and iii)) takes care at a later stage of removing
the submodels that are based on outliers (short-term memory), because they will be
either not used further (low utility) or old (no new data samples will be associated
with them).

5.6 Simplification and Interpretability Issues

Selecting the focal points and designing local submodels based on them follows the
general principles described in Section 5.2.5. Although, the principle C i) takes care
of data samples that are close to an existing focal point not to be considered as a new
one it applies in a vector sense (multidimensional distance), see Figure 5.12.

Low 1x (length, m)

Cluster2

Cluster1

Low

Very

*
Rx

*
R+1x

(weight, kg)
2x

Figure 5.12 The two focal points are not close to each other overall (in a vector sense),
but are close to each other in terms of one of the dimensions

106 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Such data samples (like the one depicted in Figure 5.12) for which the distance in
one (or few) particular dimensions are very close to previously existing focal points
can lead to interpretability problems (ambiguity). This is a particularly important and
acute problem for the fuzzy rule-based systems (which pride themselves precisely
for the interpretability, transparency and human intelligibility), but is also a problem
for probabilistic, neural network systems and so on.

For example, the new focal point may have been established following principles
A and C i) – see Section 5.2.5; however, in terms of one particular dimension (e.g.
‘length of the fish’) it may have almost the same position and, therefore, parameters
as the existing focal point x∗

R.
In terms of FRB this means that the linguistic variables that will be related to the

fuzzy sets with respect to the variable length will have approximately the same mean-
ing although different linguistic label (Low and Very Low). In terms of a probabilistic
model this will mean that the parameters of the Gaussian functions (if Gaussians are
used) of both distributions will be very close to each other in terms of the variable
length of the fish (although, in terms of the multivariate distance they will not be very
close overall, see Figure 5.12 line |x∗

Rx∗
R+1|). The meaning for neural network is similar,

but in terms of activation functions and their parameters.
As a tool to address this problem, Angelov et al. (2001) proposed to derive by simple

averaging new parameters which are the same for both focal points that are close to
each other in one (or few) dimensions:

xj∗ = xRj∗ + x(R+1) j∗

2
(5.16)

σ j∗ = σRj∗ + σ(R+1) j∗

2
(5.17)

where

j∗ denotes the particular input dimension in question (e.g. length of the fish);
for AnYa-type models Equation (5.17) is not necessary and Equation (5.16) trans-

forms to xj∗ ← xRj∗ .

This, effectively, leads to a simplification of the overall model in terms of a lower
number of parameters and simpler linguistic interpretation (in the case of a fuzzy
rule-based system) while preserving to a great extent the precision. This approach
deals automatically with the issue of interpretability. In general, there are vari-
ous approaches, especially in the area of fuzzy systems research, that, essentially
introduce constraints of linguistic and interpretatability nature, which are to be
taken into account by the system identification (in fact, optimisation) problems
(de Oliveira, 1999). However, most of these approaches are suitable for offline
applications only.

Evolving System Structure from Streaming Data 107

5.7 Conclusions

In this chapter the most important innovation represented by evolving systems struc-
ture is described. First, we describe the data space partitioning (including partitioning
based on prior knowledge, regular partitioning methods, clustering, data clouds) and
how this can be used to autonomously evolve the structure of the system from data
streams in real time. In essence, following the millennia-old principle ‘devide et im-
pera’, complex problems can be decomposed into a set of (possibly overlapping)
locally valid subsystems. Moreover, it has been demonstrated that this can be done
online, in real time from streaming data. In the next section methods for autonomous
monitoring the quality of the local submodels measured by their utility, Age, radius
(in the case of clustering) are proposed.

Finally, methods for real-time, online normalisation and standardisation of the data
samples are presented together with an analysis of the advantages and disadvantages
of the alternatives. It should be stressed that these principles apply to various types
of systems, including, but not limited to fuzzy rule-based, Bayesian, neural network,
and so on. The models that are designed in this way are globally nonlinear yet locally
can be treated as linear. When fuzzy rule-based systems are used, the models are
also linguistically interpretable, which can be a big advantage for acceptability of
these models by human operators. The approach that is adopted in this book, namely,
evolving the system structure autonomously form data streams is fully unsupervised
with regards to the system structure. Neither the number of submodels, nor their
focal points or the effective number of inputs used needs to be predefined – instead
it can be extracted from the data stream in an online mode and in real time.

6
Autonomous Learning
Parameters of the Local
Submodels

In the previous chapter the methods for structure design (if we use prior knowledge
or regular data partitioning) and learning (if using clustering or data clouds) were
described. It was mentioned that when using data clouds there are no parameters of
the structure as such. In clustering, which are additional parameters (the position of
the cluster centers which in some methods are means of the data samples, while in
some other methods, such as AutoCluster, these are selected data samples as in the
data clouds). These additional parameters concern the cluster radii.

Parameters that define the structure of the system are equal to the number of focal
points that need to be selected (and possibly also cluster radii, if we use clustering
instead of data clouds). It was described how to find them in the previous chapter. In
this chapter the focus will be on the parameters of the local submodels (consequents).
In general, local submodels can take various forms, for example singletons – zero
order, linear – first order, Gaussian, triangular, trapezoid, polynomial, and so on.

Without loss of generality, we can assume linear submodels, because they include
the simpler type of zero-order singletons as a special case and they are the most
widely used type. For a set of locally valid linear submodels (see Figure 4.2) the task
is to find the optimal values of parameters A in terms of minimising the error of
prediction/classification/control/estimation/filtering. Before formalising and pro-
viding methods to solve this task in an online mode recursively the specifics of the
particular problem will be stressed.

First, let us assume an evolving structure in which the number of local submod-
els is not predetermined and fixed and, thus, direct application of well-known and
established techniques such as least squares (LS) (Hastie, Tibshirani and Friedman,

Autonomous Learning Systems: From Data Streams to Knowledge in Real-time, First Edition. Plamen Angelov.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

110 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

2001) and, moreover, its recursive version, RLS (Astroem and Wittenmark, 1989) are,
strongly speaking, not valid. In the next section, the offline LS method applied to
multimodel systems will be briefly outlined. In addition, learning a complex multi-
modal system means that the criteria of optimisation can be defined either globally,
in terms of the overall system or locally, per subsystem. The result of both types of
optimality criteria will not be the same and each one has its own right to exist and
its own meaning. This specific of the problem will be considered in more detail in
Section 6.2.

6.1 Learning Parameters of Local Submodels

The overall output of the mutlimodel system can be given in a vector form as follows:

y = ψT A (6.1)

where

A = [a T
1 , a T

2 , . . . , a T
R]T is a vector formed by the local (linear) submodel parameters;

ψ = [λ1 XT , . . . , λR XT]T is a vector of the inputs that are weighted by the nor-
malised activation levels of the local submodels,

λi, i=[1,R] (if the model is zero order ψ = [λ1, λ2, . . . , λR]T); Xk = [1, xT
k]T .

Assuming the structure of the system is determined (see the previous chapter), the
estimation of the local (linear) submodels parameters transforms into a LS problem.

For a given set of input–output data pairs (xT
i , yi), i = [1,k], the (global) objective

function is defined as (Angelov and Filev, 2003):

EG =
k∑

i=1

(
yi − ψT

i A
)2 → min (6.2)

where �i = [λ1(xi) XT
i , λ2(xi) XT

i , . . . , λR(xi) XT
i]T .

This objective function can be written in a vector form as (Angelov and Filev, 2003):

EG = (
Y − �T A

)T (
Y − �T A

) → min (6.3)

where the matrix � and vector Y are formed by ψT
i , and yi, k = [1, N], respectively.

Then, the vector � minimising Equation (6.3) could be obtained by the pseudo-
inversion (Hastie, Tibshirani and Friedman, 2001):

A = (�T�)−1�T Y (6.4)

The vector of (linear) local submodel parameters a minimising Equation (6.3) can
more effectively be estimated online using the RLS algorithm (which itself is a

Autonomous Learning Parameters of the Local Submodels 111

simplified version of the Kalman filter):

âk = âk−1 + Ckψk
(
yk − ψT

k âk−1
)

(6.5)

Ck = Ck−1 − Ck−1ψkψ
T
k Ck−1

1 + ψT
k Ck−1ψk

(6.6)

with initial conditions and C0 = �I
where

� is a large positive number;
C is a R(n + 1) × R(n + 1) covariance matrix;
âk is an estimation of the parameters based on k data samples.

6.2 Global versus Local Learning

The objective function, Equations (6.2) and (6.3), is globally optimal which guaran-
tees best overall (global) performance in the whole data space on average (errors are
summed). However, it does not guarantee locally optimal or even adequate behaviour
of the local submodels, (see Figure 6.1 for a comparison). One can appreciate that lo-
cally optimal submodels do preserve the meaning approximating the data locally
while the globally optimal submodels may achieve a better approximation overall,
but this is for the expense of local interpretability (Angelov, Zhou and Klawonn, 2001;
Yen and Gillespie, 2002).

In order to find locally meaningful submodels an objective function has to be locally
weighted (Angelov and Filev, 2003):

E L =
R∑

i=1

(Y − XT ai)T�i (Y − XT ai) (6.7)

where

matrix X is formed by XT
k ; � ∈ RR(n+1);

matrix �I is a diagonal matrix with λi(xk) as its elements in the main diagonal (note
that the weights λ depend on the input variables, x).

y

x

LM1

LM2

LM3

Figure 6.1 A simple 2D case of global (dotted lines) versus locally optimal submodels
(dashed lines); the data are shown with stars

112 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

An approximate solution minimising the cost function (6.7) can be obtained by
assuming that the linear subsystems are loosely (fuzzily) coupled with levels of in-
teraction expressed by the weights λi(xk). Then the total cost, Equation (6.7) can be
represented as a sum of local cost functions (Angelov and Filev, 2004):

E L =
R∑

i=1

E L
i (6.8)

where E L
i = (Y − XT ai)T�i (Y − XT ai).

Solutions ai that minimise the weighted LS problems expressed by the local error
functions E L

i can be obtained by applying a weighted pseudoinversion (Bishop, 2009):

ai = (
XT�i X

)−1
XT�i Y i = [1, R] (6.9)

Alternatively, a set of solutions to individual cost functions E L
i (vectors ais) can be

recursively calculated through the weighted RLS (wRLS) algorithm (Angelov and
Filev, 2004). In this case, a wRLS algorithm that minimises each of the cost functions
E L

i is applied to the linear subsystem:

âik = âi(k−1) + cik Xk λi (xk)
(
yk − XT

k âi(k−1)
)

(6.10)

cik = cik−1 − λi (xk) cik−1 Xk XT
k cik−1

1 + λi (xk) XT
k ci(k−1) Xk

(6.11)

for k = [1,R] and initial conditions â0 = 0 and ci0 = �I ; a = [a0, a1, . . . , an]T .
Note, that the covariance of the local submodel, c is not the same as the global

covariance matrix, C.
The wRLS looks like the RLS with exponential forgetting (which is also, usually,

denoted by λ), but the meaning is quite different. In wRLS λ represents the weights
of each local submodel that are all taken into account in the overall system model.
In RLS with forgetting λ represents the weight assigned to old data samples and the
model is one, not a composition of simpler submodels.

In an extreme, when the weight, λ of a certain submodel is equal to 1 (obviously,
the rest of the weights have to be 0) the wRLS algorithm reduces to a simple RLS
based on this submodel.

When applying RLS locally to each submodel separately, Equations (6.10) and
(6.11), the covariance matrices, c are separate for each submodel and have smaller
dimensions (cik ∈ R(n+1)×(n+1); i = [1, R]).

The locally weighted RLS is significantly less affected by the structure evolution
disturbance of the theoretical optimality for the RLS condition in comparison to the
globally weighted RLS. In addition, it is computationally significantly less complex.

Autonomous Learning Parameters of the Local Submodels 113

6.3 Evolving Systems Structure Recursively

In the online mode the system output is determined recursively by:

ŷk = ψT
k âk−1 k = 2, 3, . . . (6.12)

The ‘hat’ means that these values are estimates as opposed to actual measurements.
RLS is based on the assumption of a fixed system structure (a single linear model). It
can be extended to the case of a mixture Gaussian or multiple other simpler models
the number of which, however, is fixed. The optimisation problems (6.2) and (6.3)
and, respectively, (6.7) and (6.8) are linear in parameters under these assumptions.

In an evolving scenario, however, the system structure is allowed to gradually evolve
and, as a consequence, the number of submodels can vary, though the changes are,
normally, quite rare (e.g. in a process with hundreds or thousands of time steps
only a few dozen changes of the structure are, usually, observed). As a result of
this evolution, the normalised firing strengths, λi can change. Since this evolution
affects all the data (including the data collected before the moment of the change) the
straightforward application of the RLS is not correct. A resetting is required of the
RLS as described in (Angelov and Filev, 2004). This includes resetting the covariance
matrices and initialisation of the submodels’ parameters each time a new submodel
is added or removed.

In the evolving structure scenario (when new subsystems are added or removed),
the simplified Kalman filter is reset in the following way:

a. Parameters of the new submodel (in the time instant when a new submodel is
added, that is R → R + 1) can be determined using the parameters of the exist-
ing submodels and taking a weighted average of them (Angelov and Filev, 2004),
â R+1k = ∑R

i=1 λi âik−1. The weights that are be used can be determined from the nor-
malised activation firing levels of the existing submodels, λi ; Covariance matrices
are reset as

Ck =

⎡
⎢⎢⎢⎢⎢⎢⎣

ρς11 . . . ρς1R(n+1) 0 . . . 0
. .

ρςR(n+1)1 . . . ρςR(n+1)R(n+1) 0 . . . 0
0 0 0 � . . . 0
. . .

0
. . .

0
. . .

0
. . .

0
. . .

. . .

0
�

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.13)

where

ςij is an element of the covariance matrix (i = [1,R × (n + 1)]; j = [1,R ×
(n + 1)]);

ρ = R2+1
R2 is a coefficient.

114 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

b. Parameters of the other submodels can be inherited from the previous time step,

Âk =
[
â T

1(k−1), â T
2(k−1), . . . , â T

R(k−1), â T
(R+1)k

]T
.

According to this approach, the covariance matrix is updated as follows:

i. the last n + 1 columns and last n + 1 rows that are associated with the new,
(R + 1)th submodel are initialised with a large number, � in its main diagonal
(as usual);

ii. the remaining part of the covariance matrix (the top left R × R part) are multi-
plied by ρ.

This correction aims to compensate (or, rather, approximate) the effect it would have
if changes (the new, (R + 1)th submodel) had been in place form the very beginning.
The derivation of the expression for ρ follows below (Angelov and Filev, 2004):

Starting from a vector of weighted inputs by the local densities (dj) � can be
expressed as (Angelov and Filev, 2004):

ϕk = [
d1(xk) XT

k , d2(xk) XT
k , . . . , dR(xk) XT

k

]T
(6.14)

ψk = 1
R∑

j=1
d j

ϕk (6.15)

where dj is the local density of the jth cloud/rule.
From the RLS (Equation (6.6)) the recursive update of the covariance matrix can be

represented as:

Ck = Ck−1 − Ck−1ϕkϕ
T
k Ck−1(

R∑
j=1

d j

)2

+ ϕT
k Ck−1ϕk

(6.16)

or expressing the history until the time instant k in an explicit way:

Ck = �I −
k∑

i=1

Bi

Fi + G
(6.17)

where

Bi = Ci−1ϕiϕ
T
i Ci−1;

Fi = ϕT
i Ci−1ϕi ;

G =
(

R∑
j=1

d j

)2

;

C0 = �I .

Autonomous Learning Parameters of the Local Submodels 115

Let us suppose that the submodel added at the step k had been added from the very
beginning (from time step 1) so, there are R + 1 submodels instead of R. Then, the
covariance matrix at time k would have been:

C̃k = �I −
k∑

i=1

Bi

Fi +
(

R∑
j=1

d j + dR+1

)2 (6.18)

or

C̃k = �I −
k∑

i=1

Bi

Fi + G + δG1 + δG2

where
δG1 = 2dR+1

R∑
j=1

d j ;

δG2 = d2
R+1.

It can be seen that adding a submodel at the time step k results in affecting the
covariance matrix (Angelov and Filev, 2004), which is expressed in an increase of the
denominator of the part subtracted from C0 = �I. Let us analyse the expression of
the corrupted covariance. It can be seen that the values of δG1 and δG2 are strongly
less than 1, Bi could be a big number since it is a quadratic form of the input data
multiplied by the covariance matrix, F is bigger than δG1 (since it is a sum of R positive
values) while δG1 is a single value only. F is also bigger than δG2 if dR+1 > 1

2

∑R
j=1 d j .

Therefore, the role of the addends would be more significant only if all values of Xi

(for all past time steps) or the covariance matrix tend to zero. The practical tests with
a number of functions illustrate that the corruption of the covariance matrix by the
addition of a new submodel is marginal and is absorbed by the remaining submodels.

This (small) influence can be approximated by a correction that amounts to an
inverse mean. Indeed, if the corrupted covariance matrix is denoted by C̃k+1 it can be
expressed as some kind of function of the original one (Ck+1):

C̃k+1 = f (Ck+1) (6.19)

Angelov and Filev (2004) proposed to use the inverse squared mean to express this
function f :

C̃k+1 = Ck+1
R2 + 1

R2 = Ck+1

(
1 + 1

R2

)
= ρCk+1 (6.20)

From where we get ρ =
(

1 + 1
R2

)
.

In conclusion, the wRLS for the case of an evolving system structure (Angelov and
Filev, 2003) is approximate, not exact and, thus, suboptimal.

116 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Figure 6.2 Offline training followed by online operation

6.4 Learning Modes

There are, generally, three modes of operation of an autonomous learning systems
(ALS) that dependent on the level of process changes.

First, the traditional mode (Figure 6.2) includes an offline design phase followed by
a clearly separated online operation when the model predicts reliably with the chosen
fixed structure and parameters. Such models can be reliably used including in indus-
try. For example, they formed the basis of the so-called self-calibrating, autonomous
sensors (Angelov and Kordon, 2010) assuming that the process changes are negligible
(for example, on average <5% outside the offline model development range).

For this particular example taken from the chemical industry (courtesy of Dr. Arthur
Kordon, The Dow Chemical, USA) the predictions drastically deteriorate at sample
113 due to the change in the operating conditions and because the sensor (model)
structure is fixed and does not have ability to evolve and to reflect the change in the
data pattern. As a result, a significant error is generated.

A possible solution would be to collect enough data and retrain the original system
model (the inferential sensor) in exactly the same way as the originally designed
one (in an offline mode). The downsides of such an approach are the considerably
increased cost of the development and maintenance and the overall lifecycle costs
as well as the time of redevelopment and recalibration that is, usually, significantly
larger than the sampling interval time. In addition, such a mode of operation leads
to a complete loss of previously collected information and valuable knowledge. This
second scenario may be required if the process changes are more significant (for
example, 5 to 20% of the average deviation from the offline model development range).

Autonomous Learning Parameters of the Local Submodels 117

Figure 6.3 Evolving model structure prompted by the change in data pattern (around
sample 113)

In Figure 6.3 the second submode is illustrated. The first submode would have its
evolving (online training) phase after each new data sample immediately followed by
a prediction or estimation or filtering (both model structure evolution and prediction/
estimation are performed before the next data sample arrives in a manner similar to
the adaptive control (Astroem and Wittenmark, 1989) and online estimation (Widrow
and Stearns, 1985; Bar-Shalom, Rong and Kirubarajan, 2001).

Finally, a third alternative is to continuously monitor and adapt/evolve the system
structure to cope with and represent the significant changes in the data stream pat-
tern. For example, as seen from Figures 6.2 and 6.3, a significant change of the data
stream pattern takes place at sample 113 and the system structure adapts/evolves
accordingly by adding a new subsystem online in order to react to this shift without
interrupting the process of prediction. At the same time, this change is not replacing
completely the previous system structure but keeps most of it (except one subsystem),
thus, making the evolution process gradual and not abrupt (based on complete offline
retraining).

When the data stream has frequent changes of its statistical characteristics (signifi-
cant nonstationarity) the second mode (offline full retraining) has to take place quite
often. If, in addition, the stream includes a lot of data, this becomes prohibitively costly
to be done. In such cases the third mode of operation (evolving system structure) be-
comes necessary. The continuous adaptation of the local submodel parameters alone
without the update of the structure cannot cope with these more significant changes.

In practice, the data samples needed for training usually come from measurements
and might be collected over several sampling time intervals, which for different

118 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

industrial processes may take seconds, minutes, hours, or even days (as is the case
with oil refinery or waste water treatment processes) for example. The training sam-
ples may also come in batches. Therefore, the third mode of operation itself can be
performed in the following two submodes:

a. evolve the system in online mode after each new data sample is available;
b. periodically evolve the system when new data is available.

In the latter case, during the periods of time when training data is not available,
the inferential sensor will make predictions or estimations of the output based on
the existing rule-base at the time. Obviously, when the feedback is available at each
sampling time, the model of the inferential sensor can gradually evolve with each
new data available.

Ideally, the system (e.g. an inferential sensor) should be able to adapt and retrain
‘on the fly’, without interrupting the online prediction each time a new data is avail-
able that can be used for training. This ability is critical when the system (e.g. an
inferential sensor) is installed on a nonstop industrial system, which does not allow
offline retraining like most of the industrial installations in the chemical, bio-, and
petrochemical industries.

6.5 Robustness to Outliers in Autonomous Learning

If a data sample is identified to be an outlier (see Section 2.6) it should not influence
the learning process, because this may introduce a bias. Therefore, once a data sample
is identified to be an outlier using the RDE approach the local submodel parameters’
learning is skipped for this time step.

6.6 Conclusions

In this chapter methods and algorithms for autonomous learning of the parame-
ters of evolving systems are introduced. Stepping on the decomposed structure as
described in Chapter 5 the task of learning parameters of local submodels seems
significantly simplified. Indeed, local submodels are often linear (first order), single-
tons (zero order) or Gaussian, for which well-established offline learning techniques
exist. However, the complexity of the problem is related to the fact that the system
structure is not fixed, but evolves. Therefore, a specific, fuzzily weighted version of
the well-known RLS is presented.

The optimality criteria (which for the case of a single and fixed linear model is linear
in parameters) has different meaning in the local and global sense. This difference was
thoroughly explained.

System structure (and, respectively, parameters) can be evolved in different modes
of operation that are also described and illustrated with examples from a polymeri-
sation process.

Autonomous Learning Parameters of the Local Submodels 119

Finally, the problem with outliers in autonomous learning is addressed. In brief, a
new data sample that is not described well by the existing system structure may be
an outlier, but it also may be a seed of a new regime of operation or a new cluster
or a data cloud. A distinction has to be made and a mechanism has to be developed
to make the autonomous learning process more robust to such innovations. After
all, the evolution is an innovation of the system structure, but not all anomalies are
innovations, same as in the Nature!

It must be stressed that learning parameters of the submodels is a semisupervised
problem because the true (actual/correct) values of the system output are assumed
to be available to the system (at least during the online update periods).

7
Autonomous Predictors,
Estimators, Filters,
Inferential Sensors

The autonomous learning systems (ALS) concept described in this book is quite
generic and can be applied to numerous problems. They can be summarised as:

A. clustering (unsupervised learning, multiple inputs, no output, MINO);
B. predictors, estimators, filters, inferential sensors (semisupervised learning, multi-

ple inputs, multiple outputs, MIMO);
C. classifiers (semisupervised learning or unsupervised learning, MISO for the so-

called two-class problem and MIMO for the general multiclass classification prob-
lem);

D. controllers (semisupervised learning; usually MISO, but can be MIMO).

Clustering was described in Section 3.2. In the context of ALS one can use
AutoCluster or the ELM approach; that is, evolving clustering methods, which were
described in Section 3.2.3.

7.1 Predictors, Estimators, Filters – Problem Formulation

In this chapter the problem B as itemised above will be described, namely, predictors,
estimators, filters and inferential sensors. These seemingly different problems that
are subject to various disciplines such as forecasting and statistical learning, signal

Autonomous Learning Systems: From Data Streams to Knowledge in Real-time, First Edition. Plamen Angelov.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

122 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

π
Σ

yx

ParametersStructure

RDE

Figure 7.1 A schematic representation of the prediction, estimation, filtration and in-
ferential sensors by an ALS. The feedback from the outputs (the true/target values
are only taken when available, not necessarily after each sample – therefore, the link
is shown with a dashed line); the adaptive feedback from the recursively estimated
density concerns both the system structure and parameters

processing, chemical industry automation, system identification, and so on can be
combined in the simplistic representation of Figure 7.1.

This extremely simplistic diagram represents a vector of inputs, x ∈ Rn being trans-
formed into the outputs, y ∈ Rm. The ALS has, broadly, a structure and parameters.

The difference between the filtering, estimation and prediction is best explained in
terms of a time line, Figure 7.2.

The difference between estimation and filtering is illustrated in Figures 7.3 and 7.4.
From Figure 7.4 it is clear that the estimator provides a transformed value (an

estimate) of the current, kth value and the predictor provides the next/future, (k +
�)th value. In general, the step of prediction/filtering can be different from 1, as in
this simple example. Apart from this important difference, all three transformations
are quite similar.

Inferential (also known as soft or intelligent) sensors (Fortuna et al., 2007) are algo-
rithms or devices that are used to estimate or predict physical, chemical, biochemical
and so on variables that are difficult to measure directly (by so-called hard/traditional
sensors). Inferential sensors can be seen as a special case of estimators (if the current

k k+Δ time k-Δ

ALS

Figure 7.2 The difference between the prediction (solid line), estimation and filtration
(dashed line), in terms of the time line. � denotes an integer number of time step

Autonomous Predictors, Estimators, Filters, Inferential Sensors 123

1

0.5

0

–0.5

–1
0 0.5 1 1.5

Noisy signal

2 2.5 3

Filter

1

0.5

0

–0.5

–1
0 0.5 1 1.5

Filtered signal

2 2.5 3

Figure 7.3 An illustration of the problem of filtration

value of the variable of interest is produced by the autonomous learning sensor) or
predictors (if the next/future value is produced). This topic will be considered in
more detail in Section 7.4.

7.2 Nonlinear Regression

Regression is a well-known problem from the statistical learning (Bishop, 2009; Hastie,
Tibshirani and Friedman, 2001) that boils down to modelling (expression) of an output
vector, y as a function of a vector of inputs, x:

yk = f (xk) (7.1)

where f is a regression function performed, for example, by an ALS.

Estimating XkEstimating Xk

Estimator

1 1
0.8
0.6
0.4
0.2
0

–0.2
–0.4
–0.6
–0.8

–1

0.8
0.6
0.4
0.2

0
–0.2
–0.4
–0.6
–0.8

–1
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3

Figure 7.4 An illustration of the estimation problem

124 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

In the case of a regression, inputs and outputs have different physical (chemical,
biochemical, social, etc.) meaning. In the case of a time series, both inputs and outputs
represent the same physical (chemical, biological, social, etc.) variables, but differ by
the time indices.

For example, the output can be ‘the quality of the product produced’ or the so-called
‘inflamability index‘ in an oil refining process (Horak, 1993; Hernandez and Angelov,
2010) while the input vector can comprise density of the crude, pressure, temperature
of the naphtha, and so on.

A specific of the regression models is that the input and output represent different
physical variables. Usually (but not necessarily) they perform in estimation mode
(that means, the output is made in the same moment of time as the inputs arrive, see
Figure 7.2). They can also work in a prediction mode:

yk+� = f (xk) (7.2)

as well as in a filtering mode:

yk = f (xk) (7.3)

The role of ALS is to represent the nonlinear regression, especially in case of a non-
stationary data stream (data sequence with time-varying statistical characteristics).
The nonlinearity and nonstationarity can be addressed by decomposing the original
problem into a loosely (possibly, overlapping, fuzzy) combined locally (in the data
space) valid simpler (usually, linear, singletons or Gaussian) regression models.

7.3 Time Series

Another popular problem (apart from regression) is the time series. This problem is
also widely used in forecasting, statistical learning (Hastie, Tibshirani and Friedman,
2001) and signal processing (Haykin, 2002). In brief, it can be represented with a
reference to Figures 7.1 and 7.2. A time series is a sequence of data samples. The
main difference from the regression models is that both, the input, xk and output
vectors, y = xk+� have the same physical meaning and the only differentiator is the
time instances when a data sample is taken:

xk+� = f (xk, Ak) (7.4)

where Ak denote a parameter matrix.
Equation (7.4) represents the prediction of a time series (perhaps, the most popular,

but not the only mode of operation of an ALS).
One can even have estimation:

x̂ = f (xk, Ak) (7.5)

where x̂ is the estimated value.

Autonomous Predictors, Estimators, Filters, Inferential Sensors 125

Any problem of type B (see the beginning of the chapter) including regression as
well as time-series analysis (including also inferential sensors that will be described
in the next section) consists of two subproblems that are performed in real time for
an interval of time shorter than the sampling time:

a. system structure identification; and
b. parameter estimation.

The first subproblem can be fully unsupervised (e.g. clustering, forming data
clouds; it can also be regular partitioning or partitioning based on prior/expert
knowledge).

As a result, focal points are generated that are representative, not very close to each
other (overall and in terms of any specific input dimension) and cover well the whole
data space. In addition, if not using AnYa method a parameter per focal point (cluster
radii) is also determined as described in Chapter 5. If we use probabilistic models,
these focal points are centers and the radii are spreads of Gaussian distributions.

If we use NFS this corresponds to layers 1 to 3 of the network (see Figure 4.6). If we
use FRB systems this corresponds to the antecedent part of the rules:

Rulei : IF
(
x1 ∼ x∗

1i

)
AND . . . AND

(
xn ∼ x∗

ni

)
(7.6)

The second subproblem is a semisupervised learning problem, as described in Chap-
ter 6. It corresponds to adjusting the parameters of the local submodels (usually lines
or singletons). If we use NFS it corresponds to layers 4 and 5, see Figure 4.6. If we
consider a FRB system it corresponds to the consequent part.

7.4 Autonomous Learning Sensors

7.4.1 Autonomous Sensors – Problem Definition

Inferential or soft sensors can be seen as a special case of the systems of type B (see
the beginning of the chapter for the description of the types) that have relatively
wide application in various industries such as chemical and petrochemical, food and
pharmaceuticals, automotive and other process industries (Liu, 2005). Their aim is
to estimate or predict some important process variables that are difficult to measure
directly representing them as mathematical functions of other available (easier to
measure by traditional, also-called hard, sensors) variables.

In the engineering practice the true values of the important variables of interest
(outputs of soft/intelligent/inferential sensors) are measured infrequently using lab-
oratory analysis. This is necessary for calibration of the soft/intelligent/inferential
sensors (to generate the target/ground truth values for the supervised learning). Lab-
oratory analysis itself is a tedious and expensive offline process that usually requires
interrupting the industrial process, which is very costly. It often includes material
property tests, expensive gas chromatograph analysis, and so on.

126 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

The process monitoring and control using the target values derived offline can
itself be online because the inputs are usually available online form cheap hard-
ware sensors. It is, however, an open-loop process, because the structure of the
soft/intelligent/inferential sensor is assumed once and is fixed (no longer changed).
In practice, recalibration is usually done very rarely (e.g. once or twice per annum) be-
cause of the related costs (human involvement, interruption of the industrial process,
computational costs, amount of new data). This adds to the overall lifecycle costs of
the soft/intelligent/inferential sensors, making them less attractive to the industry
users (Angelov and Kordon, 2010).

Soft/intelligent/inferential sensors can use various inference mechanisms. One
can derive the output from so-called first principles if there is a clear understand-
ing of the nature of the process. In this case one can estimate the parameters of the
soft/intelligent/inferential sensor using an extended (nonlinear version of) Kalman
filter (Kalman, 1960), extended kalman filters (EKF) (Bar-Shalom, Rong and Kirubara-
jan, 2001). In simpler cases the input-output relation can be approximated by a linear
function and we use linear (multivariate) regression.

7.4.2 A Brief Overview of Soft/Intelligent/Inferential Sensors

Soft/intelligent/inferential sensors are widely used in industry due to their ability to
provide accurate real-time estimates or predictions of difficult to measure variables
of interest and replaces expensive measurements. Examples include product quality,
inflamability index, emissions, biomass concentration, melt index, and so on that are
being estimated or predicted from the cheap and widely available traditional/hard
sensors like temperature, pressure, mass flow, and so on.

To maintain the quality of the products in the chemical and process industry, in
general, it is a routine practice to take samples from the product during the process-
ing (fermentation, rectification, etc.) due to the lack of or difficulties related to the
measurement of some parameters such as concentrations, product quality, and so on.
Samples are usually taken with intervals of a few hours and analysed in a laboratory
environment. The main aim is to certify the process by monitoring the deviation from
a specification. Another scenario includes modelling at the design and process plan-
ning stage – the inference between certain measurable process variables and certain
target value (product quality, for example) is of great importance.

Many of the soft/intelligent/ inferential sensors available on the market and used
in industries (provided by vendors, such as Pavilion Technologies, Aspen Tech-
nologies, Honeywell, Siemens, Gensym, etc.) use black-box type of models such
as neural network, SVM, genetic programming, statistical and empirical models.
Such models, however, have high lifecycle cost because of the high development
as well as maintenance costs related to manual interventions and computational
expertise required.

In reality, the environment in which the industrial process and soft/intelligent/
inferential sensors operate is dynamically changing, evolving; the equipment is

Autonomous Predictors, Estimators, Filters, Inferential Sensors 127

wearing and contaminated, often being replaced. Any (even minute) process changes
outside the conditions which were used for the offline soft/intelligent/inferential sen-
sor development can lead to performance deterioration that requires maintenance
and recalibration.

This requires redesign of the sensor/model, including derivation of an entirely new
structure. In this case, modelling expertise is needed and, as a result, maintenance
costs are increased

In addition, a number of aspects of the industrial processes are often ignored in
practice due to their complexity; raw materials (which are represented by the input
variables) alter in quality. The main weakness of such sensors is that significant efforts
are involved in their development (which is offline, based on a batch set of data) and
maintenance (which includes laboratory tests and process interruptions).

7.4.3 Autonomous Intelligent Sensors (AutoSense)

An alternative was proposed recently by Macias et al.(2006) and Angelov et al.
(2008) in the form of evolving (self-calibrating, self-maintaining, autonomous) in-
ferential/soft/intelligent sensors that are flexible to the extent that they can adapt their
structure as well as parameters in order to follow the data pattern, to retrain, and
recalibrate ‘on the fly’. They were reported (Angelov and Kordon, 2010; Ferreyra and
Rubio, 2006) to save time, computational and human resources. These autonomous
sensors have an additional important advantage in that they are also transparent and
interpretable, because they use FRB models.

The gradual evolution means that the model structure remains largely the same
with only one fuzzy rule (or neuron or Gaussian local pdf) being added or removed
from time to time (not very often – only when a significant change in the data density
pattern takes place, see Figure 6.3).

Soft/intelligent/inferential sensors are, in general, nonlinear. This is related to chal-
lenges, such as unpredictable extrapolation, lack of model confidence limits, and
multiplicity of model solutions. The reliable performance with acceptable accuracy
of prediction/estimation inside the range of the training data cannot be guaranteed
because the data may (and usually are, in practice) nonstationary. Since the process
and operating condition changes are rather a rule than an exception, sensor recalibra-
tion or even complete redesign is often required which increases the lifecycle costs
significantly (Angelov and Kordon, 2010).

The main reasons for the economic benefits that soft/intelligent/inferential sensors
provide can be summarised as follows (Hernandez and Angelov, 2010):

� they allow tighter control of the most critical parameters of final product quality
and, as a result, the product consistency is significantly improved;

� they reduce upsets of the industrial processes due to early detection of possible
problems via online estimation of critical variables;

� they improve working conditions by reducing or eliminating laboratory measure-
ments in dangerous environments;

128 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

� they are very often optimal from the economical point of view;
� their development and maintenance cost is lower in comparison to the alternative

solutions (hardware or first principles models);
� they reduce capital investments by optimising the use of expensive hardware;
� they can be used not only for estimation and prediction, but also for running

“what-if ” scenarios in production planning.

Due to these economic benefits the process industries started widely to success-
fully develop and deploy soft/intelligent/inferential sensors during the last twenty
years.

The most popular application area of soft/intelligent/inferential sensors is the en-
vironmental emission monitoring (Qin, Yue and Dunia, 1997). For example, NOx

emissions in burners, heaters, incinerators, and so on, can be inferred from associated
process variables, like temperatures, pressures, and flows. Traditionally, emission
monitoring is performed by expensive analytical instruments with costs in the order
of hundreds of thousands of pounds plus maintenance costs in the order of tens of
thousands of pounds per annum. The soft/intelligent/inferential sensors offer a much
cheaper alternative with acceptable accuracy (Kordon, 2006). Therefore, since the
mid-1990s according to the leading vendor in soft sensors for emission monitoring
Pavilion Technologies, over 250 predictive emission monitoring, PEMs soft sensors
have been installed.

Another area where soft/intelligent/inferential sensors were successfully applied is
the estimation of biomass (also-called cell mass) concentration in continuous and fed-
batch bioprocesses (mainly fermentations) used in food, pharmaceutical and other
industries (Chen et al., 2004). Estimating the cell mass concentration is pivotal for the
control of fermentation processes, especially during the micro- organisms’ growth
phase (Angelov and Tzonkov, 1993). Traditionally, the cell mass concentration is
determined offline by a laboratory analysis every 2 to 4 hours. This low frequency
leads to a poor control performance that can partially be compensated by online
estimates. This is the rationale for the use of soft/intelligent/inferential sensors for this
problem.

Yet another popular application of soft/intelligent/inferential sensors is the estima-
tion of product composition in distillation columns and prediction of polymer quality
in terms of the melt index, average molecular weight, polymerisation rate or conver-
sion that are inferred from the reactor’s, jacket inlet and outlet temperatures, and the
coolant flow rate through the jacket (Kordon et al., 2003). Soft/intelligent/inferential
sensors can also be used to estimate online the amount of reactor impurities during
the initial stage of the polymerisation (Kordon et al., 2003).

7.4.4 AutoSense Architecture

The architecture of autonomous learning sensors AutoSense can be represented as in
Figure 7.5.

Autonomous Predictors, Estimators, Filters, Inferential Sensors 129

Plant/ProcessInput

Selection

‘hard’

sensors
...

Real outputs

-

Prediction/

estimation
...

AutoSense

RDE

Parameters
learning

Figure 7.5 Architecture of AutoSense. The dashed lines are active only from time to
time when true information is available (e.g. by laboratory tests or other) and is used
for automatic supervisory retraining. They indicate the use of the predicted outputs in
(recursive) density estimation based on which the sensor/model structure may need
to evolve

The procedure of AutoSense can be represented by a pseudocode as shown in
Appendix B5. The main advantages of AutoSense are that:

� it is evolving, self-calibrating and self-maintaining (they are not pretrained and
fixed);

� learning can start ‘from scratch’ with the very first data sample or from a priori
information (if available);

� it can have a MIMO structure and, thus, build a separate regression model for each
output variable;

� it can ensure high prediction rates;
� it is one-pass, recursive and have low computational requirements, which makes it

suitable for hardware (on chip) implementation;
� it contributes to the online analysis and monitoring of industrial processes including

drift of the data density in the data stream, anomalies and possible faults.

7.4.5 Modes of Operation of AutoSense

Generally, inferential sensors have three modes of operation, as described in Section
6.4. The first mode is the online operation when they predict reliably with a prefixed
structure and parameters.

The industrial experience from the chemical industry shows that the inferential/soft
sensors in practical use demonstrate acceptable performance in this mode if the process
changes are minor, that is, on average <5% outside the offline model development
range. In the case of more significant process changes (i.e. on average 5–20% outside

130 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

the offline model development range), the sensor starts to provide higher errors and
needs recalibration or retraining. The most frequent solution is offline refitting the
model parameters to the new process conditions. However, in the case of frequent
changes, a continuous adaptation to the new conditions is needed through parameter
estimation within the fixed structure.

The third mode of operation of inferential/soft sensors, handles the most difficult
case of major process changes (i.e. on average >20% outside the offline model de-
velopment range) when the sensor model changes automatically its structure and
corresponding parameters to adjust to the new data density pattern.

7.4.6 Autonomous Input Variable Selection

An important part of the autonomous learning sensors design and development is
the automatic input variables selection, as described in Section 5.4.1. The process of
input selection is usually a part of the preprocessing and traditionally is performed
either by the operator (human, model designer, decision maker) or by approaches
that are offline such as PCA, PLS, independent component analysis (ICA), and so on.

The approach proposed and described in Section 5.4.1 offers a continuous monitor-
ing of the modelling process and removing the inputs/features that do not contribute
significantly to the output. This simplifies the overall system and affects the dimen-
sionality of the covariation matrix in particular, of the vector of inputs used and the
related parameters.

An example of the choice of the input variables to be used based on the weight of
their contribution as described in Section 5.4.1 is depicted in Figure 7.6

Figure 7.6 An example of input selection by an ALS

Autonomous Predictors, Estimators, Filters, Inferential Sensors 131

7.5 Conclusions

In this chapter several types of models were described that can be combined into a
single one (denoted as type B in the classification made in the beginning of this chap-
ter). These include predictors, estimators, filters as well as inferential (soft/intelligent)
sensors that can be seen as a special case of the above.

These types of models are, generally MIMO; they take multiple inputs and produce
(possibly) multiple outputs. The main difference is the position of the output with
regards to the input in terms of time. They play an important role in signal processing,
statistical analysis, econometrics and other disciplines and with the proposed ALS
approach they can be evolved online real time in an autonomous manner even if they
are nonlinear and nonstationary.

These types of problems can take a form of a regression or a time series. In addition,
special attention is given to the particular type of such models in the form of so-
called inferential (also-called commercially soft or intelligent) sensors. This specific
type of predictors or estimators have significant commercial importance especially in
chemical, petrochemical and related process industries and will be further described
from the application point of view in Chapter 12.

8
Autonomous Learning
Classifiers

8.1 Classifying Data Streams

One traditional approach to classifying data streams is the incremental classifier (Fung
and Mangasariany, 2002). In the literature there are various classification frameworks
that work in an incremental mode (per sample), for example, decision trees (Yuan and
Shaw, 1995), neural network such as adaptive resonance theory, ART (Carpenter and
Grossberg, 2003), incremental learning vector quantiser, iLVQ (Poirier and Ferrieux,
1991), probabilistic such as incremental versions of Bayesian classifiers (Schlimmer
and Fisher, 1986), incremental Fisher LDA (Pang, Ozawa and Kasabov, 2004), and
so on. It should be stressed, however, that the classifier structure in all incremental
classifier methods mentioned above is fixed.

Incremental classifiers are inefficient with respect to the problem of the so-called
drift and shift in the data density pattern. In machine learning by drift they refer to a
modification of the concept over time that relates to a relatively smooth transition of
the data distribution from one local region of the feature space to another (Widmer
and Kubat, 1996). It is author’s point of view that drift and shift have to be considered
from the point of view of data density (not pdf but the density as described earlier in
this book).

By shift they traditionally refer in machine learning literature to a more abrupt
change such as the sudden appearance of a fault or an abrupt change of a regime
of operation (Tsymbal, 2004). In order to represent such sudden and abrupt changes
tuning only (consequent) parameters of a classifier is not enough. In this respect
the autonomously learning and self-evolving classifiers described in this chapter are
particularly suitable, because they allow changing the classifier structure dynamically
and automatically.

Autonomous Learning Systems: From Data Streams to Knowledge in Real-time, First Edition. Plamen Angelov.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

134 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

8.2 Why Adapt the Classifier Structure?

In practice, nowadays, the classifiers need to cope with large quantities of data, often
streaming with a fast rate. The challenges that classifiers face are related to the need
to address

a. nonlinearity and nonstationarity;
b. large or even huge amounts of data;
c. real-time, recursive processing.

Most of the traditional classifiers (e.g. the one described in Section 4.4, for example) are
designed to operate in batch (offline) mode and have a fixed structure (pdfs, fuzzy or
decision rules, neurons, etc.). This fixed structure corresponds to a fixed classification
hypersurface.

In reality, however, new data samples that arrive during the operation of the clas-
sifier do not necessarily follow the same distribution as the training data (the non-
stationarity of which is well known to lead to problems such as overfitting, low
generalisation and drift and shift of the density in the data stream (Lughofer, Angelov
and Zhou, 2007)).

A more efficient alternative is to use adaptive, self-learning, also called evolving
classifiers such as eClass (Angelov, Zhou and Klawonn, 2007; Angelov and Zhou,
2008), FLEXFIS-Class (Lughofer, 2011), AnYa-Class (Angelov and Yager, 2012). They
are able to capture and react to the changes in the density evolution of the data
pattern present in the data stream during the operation of the classifier and self-
develop/evolve.

The AutoClassify algorithm presented here can be seen as a NFS or a FRB but
same principles apply to probabilistic (Bayesian) classifiers also if consider local (per
cluster) Gaussian pdfs, for example.

One example where such classifiers are very useful is the automatic classification
of the behaviour of users (Iglesias et al., 2009). Another strong example is the area
of so-called cybersecurity related to network intrusion detection and classification
(Angelov and Zhou, 2008; Baruah and Angelov, 2012). In both cases, if we assume
a classifier with a prefixed structure it will be unable to distinguish a new type
of behaviour (new type of users) or a new type of threat. At the same time, it is
well known that users change their behaviour and a new type of users may join a
service/office or leave it (there is a dynamic element that is often ignored and an
element of evolution of the behaviour). Hackers are also well known to be inventive
and try ever newer ‘tricks’.

In this sense, a traditional offline trained and with a prefixed structure classifier
will only be able to recognise behaviour of certain types of users and of certain attacks
to the network, respectively, while an evolving and self-learning classifier will be able
to autonomously evolve its structure to adapt to a potentially changing data pattern
without expensive full retraining, redesign and human involvement.

Autonomous Learning Classifiers 135

In effect, the traditional, offline classifiers (Ishibuchi et al., 2004) are valid only to a
‘snapshot’ of the data stream and require all the previous data for a possible retraining
and redesign, which is costly from computation and memory usage point of view.
In contrast, AutoClassify works on a per-sample basis and only requires the features
of that sample plus a small amount of recursively updated information related to
the density. In addition, it can also performs online feature selection, as described in
Section 5.4.1. It does not require the history of all past data samples yet it takes into
account the data distribution (through the RDE) of all past data exactly. AutoClassify
is a one-pass (noniterative) algorithm – each sample is processed only once at a time
and is then discarded from the memory.

8.3 Architecture of Autonomous Classifiers
of the Family AutoClassify

A classifier is a mapping from the feature space to the class label space. An ALS of
type C (as itemised at the beginning of Chapter 7) can be used to autonomously learn
and adapt the classifier as shown in Figure 8.1.

The main differences (if comparing this scheme with the similar scheme from
Figure 7.1, type B ALS) is that the outputs are class labels (usually integer values)
and that a (recursive) preprocessing phase is added. Note, that all three phases are
performed for a time shorter than the sampling period (between the current time
instant, k and the next time instant, k + 1). Also, the feedback with the ground
truth (target) labels is only available for AutoClassify1 (see Section 8.2) and this is not
necessarily the case for each data sample, but only when available.

As a consequence of the different form of the output vector, the inference of clas-
sification problems is also different – it is usually of the ‘winner takes all’ type,

features, x Labels, L
Classifier
parameters

Classification
surface

Pre-processing
(rPCA, rLDA)

 RDE

Figure 8.1 A general scheme of AutoClassify. x ∈ Rn denotes the vector of features;
L ∈ Rm denotes the vector of labels

136 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Figure 8.2 An illustration of the prototype-based nature of AutoClassify

Equation (4.21), although not always – it will be shown later that CoG type of infer-
ence, Equation (4.24), is also possible to be used.

The AutoClassify family consists of prototype-based classifiers. The well-known k
nearest neighbours, kNN classifier (Duda, Hart and Stork, 2000) is also a prototype-
based one. However, the majority of the other classifiers are mean based.

The difference between the two approaches can be illustrated by the following
example. Let us have a 2D problem, as represented in Figure 8.2. If we apply a mean-
based approach (such as k means, Bayesian or a traditional FRB classifier, LVQ or
RBF neural network, etc.) the class label (A or B) will be determined by the distance
between the new validation sample (previously unseen by the classifier) and the class
means (stars of red and green colour, respectively).

It is obvious that if the new data point is close to many of the points of class B, which
are close to the mean of class A, it will be misclassified. Finally, if it is close to many
points of class A that are close to the mean of the class A it will be misclassified, too.

At the same time, the prototype-based approach has clustering (or data clouds)
as its first stage. The prototype points have another advantage that they are al-
ways feasible points, while means are abstract, nonexisting points that may even be
infeasible.

In addition, FRB or NFS classifier (and, to some extent, probabilistic and deci-
sion tree-type ones) unlike multilayer perceptron type neural network classifier have
interpretable and human-intelligible structure.

8.3.1 AutoClassify0

The main difference between the zero order AutoClassify0 and the first-order Auto-
Classify1 is in the form of their consequent part. In AutoClassify0 it is represented

Autonomous Learning Classifiers 137

by the class labels directly as in Equation (4.19). The inference is produced using
the ‘winner takes all’ principle, see Equation (4.21) and several rules per class are
formed. The main difference from the traditional offline (e.g. FRB, NFS or Bayesian)
classifiers is that the classifier structure (rules, neurons, pdfs) is not fixed, but
evolves autonomously. The focal points around which the local submodels (sin-
gletons, linear ones, or Gaussian pdfs) are being later developed are determined
based on the data density using AutoCluster or ELM or forming data clouds using
AnYa method.

8.3.2 AutoClassify1

The architecture of AutoClassify1 differs significantly from the architecture of Auto-
Classify0 by the use of linear submodels in the consequent part, Equation (4.20). In
the case of the probabilistic model the consequent part may be represented by locally
valid Gaussian pdfs. AutoClassify takes into account the fact that the classification
surface is dynamically changing/evolving and tries to approximate it by learning
from the data stream.

The difference between AutoClassify1 (ALS type C) and the ALS type B (regression
and prediction models) is that AutoClassify1 (ALS type C) has m groups of submodels
(per class) and, respectively, the averaging is performed accordingly – the outputs of
particular local submodels are normalised (to sum up to 1) by:

yi = yi∑Rl

j=1
yj

(8.1)

where

Rl∑
i=1

yi = 1;

Rl denotes the number of local submodels per class l = [1, m].

The overall output is formed as a weighted sum of the normalised outputs of each
local submodel using CoG inference (unlike AutoClassify0 that is using the ‘winner
takes all’ inference):

y =
R∑

i=1

di∑R

j=1
d j

yi (8.2)

If use FRB or NFS, AutoClassify1 can also be interpreted as a combination of loosely
(fuzzily) linked locally valid LDAs.

138 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

8.3.2.1 Multiple (m) Two-Class Classification Problems

In general, AutoClassify1 considers a MIMO (multiclass) classifier, but the specific
case of a so-called two-class classifier (m = 2) is quite popular and widespread. In
many cases multiclass classification problems are considered as a combination of m
two-class classification problems (Bishop, 2009). If that is the case then parameters
of the local linear submodels, ai form a vector-column (index i will be omitted for
clarity) �a = [a01 a11 . . . an1]T .

The output is used then to discriminate between the two classes. For example,
using a threshold of 0.5 outputs above 0.5 are classified as one of the two classes,
while outputs below 0.5 are classified as the other class:

IF(y > 0.5)

THEN(Class A)

ELSE(Class B)

(8.3)

8.3.2.2 AutoClass1 MIMO

When an overall MIMO model is used, parameters form a (n + 1) × m matrix as
in Equation (4.11). In AutoClassify1 MIMO, the outputs form a m-dimensional vector
row – one normalised output for each class, yi = [yi1, yi2, . . . , yim]. Each of the m
‘wining’ labels are determined by the highest value of the normalised outputs per
class, yl (Angelov and Zhou, 2008):

L = L∗
i ; i∗ = m

arg max
l=1

yl (8.4)

Note, that Equation (8.4) is not the typical ‘winner takes all’ principle in terms of the
firing strength of the rules as applied in classification problems. It resembles more the
LDA and SVM rather than typical FRB classifiers.

The target labels are usually 0 and 1 (where 1 is used for the membership to a
class) and, therefore, the normalised outputs per local submodel, yij; j = [1, m] can
be interpreted as the possibility of a data sample belonging to the respective class. In
this context, AutoClassify1 MIMO resembles the so-called indicator matrix approach
(Hastie, Tibshirani and Friedman, 2001) which is used for traditional offline classifiers.

It is interesting to note that AutoClassify1 MIMO can also be used for a two-class
classification problem. Then, the target outputs are two dimensional. For example, us-
ing the notations from Equation (8.3) then y = [0 1] if the class label is B. The number
of parameters (of the consequent part) in this case will, however, be twice as large:

(2 × (n + 1) since �a =
[

a01 a11 . . . an1

a02 a12 . . . an2

]T

in comparison to AutoClassify1 MISO

n + 1 parameters since �a = [a01 a11 . . . an1]T).

Autonomous Learning Classifiers 139

8.4 Learning AutoClassify from Streaming Data

8.4.1 Learning AutoClassify0

Learning AutoClassify0 is unsupervised and is based on focal points by clustering
or partitioning into data clouds. The class label of the focal points is then used for
‘winner takes all’ (or ‘few winners take all’, which is similar to the kNN approach)
inference mechanism, similarly to Equation (8.4).

Learning of AutoClassify0 is, therefore, largely described by the clustering method
(or method for forming data clouds), which can be AutoCust, ELM, and so on. The
joint features-labels data space is considered, z = [xT , L]T per class. In this manner,
a number of focal points (respectively, clusters or clouds) are formed for each class.
Then, around the prototypes (focal points) either fuzzy rules or local Gaussians are
being formed. This leads to the formation of information granules, which can be
described linguistically and in this way the data is automatically transformed into
primitive forms of knowledge.

It is important to stress that the overall model is composed of m subgroups of local
submodels and in each subgroup the consequents (labels) of all submodels are the
same, but the number of submodels, Rl ≥ 1 (l = 1, 2, . . . , m) can be different. The total
number of submodels, R = R1 + R2 + Rm should be at least as big as the number of
classes, m: R ≥ m.

Every new data sample with a class label that has not been previously seen becomes
automatically in real time a new prototype (focal point). However, this prototype is
often later replaced by more descriptive prototypes, because there is a prototype
replacement and removal mechanism according to the principle C (Section 5.2.5)
as described in Section 5.4. Therefore, AutoClassify0 can learn autonomously even
starting ‘from scratch’ and without knowing the number of classes in advance! This
is a unique property (especially for areas such as mobile robotics) as will be described
in Chapter 12.

The procedure of AutoClassify0 is summarised in the pseudo-code given in the
Appendix B6.

8.4.2 Learning AutoClassify1

Learning of AutoClassify1 is very similar to the ALS of type B, which usually also
consists of first order (with linear consequents) submodels. Learning is based on the
decomposition of the identification problem into:

a. overall system structure design; and
b. parameter identification.

Both of these subproblems can be performed in the online mode during a sin-
gle time step (per sample) similarly to the way adaptive control and estimation

140 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

work – in the period between two samples two phases are performed:

a. classification; and
b. classifier update (from time to time when necessary – see the principles A to C

from Section 5.2.5).

During the first phase the class label is not known and is being predicted; during
the second phase, however, it is known and is used as a supervisory information
to update the classifier (including its structure evolution as well as its parameters
update). In this sense, AutoClassify1 is using a semisupervised learning method and
the training samples with correct/true labels are required.

The algorithm procedure is given in Appendix B7.

8.5 Analysis of AutoClassify

The main novelty of AutoClassify can be summarised as follows:

� It is evolving (the classifier is not pretrained and fixed; learning can start ‘from
scratch’ with the very first data sample);

� It can have a MIMO structure and, thus, build a separate regression model for each
class. If a sample with a previously unseen class label is met the MIMO structure
of AutoClassify expands naturally by initialising learning of the new (R + 1)th class
from this point onwards in the same way as for the remaining R classes;

� It can attain high classification rates comparing favourably with well-known offline
and incremental classifiers;

� It is one-pass, recursive, and, therefore, has extremely low memory requirements
(therefore, suitable for hardware including on-chip implementations);

� It is useful for online analysis and monitoring of the drift of the density in data
streams using the concept of monitoring the age of the local submodels.

If we compare AutoClassify0 with AutoClassify1, in general, the former stands out with
its unsupervised nature, but its performance (classification rate) is usually signifi-
cantly lower because the zero-order local submodels have a lower degree of freedom
compared to the first-order AutoClassify1.

8.6 Conclusions

In this chapter the autonomous self-learning classifier family AutoClassify is presented.
This is an ALS of type C (as described at the beginning of Chapter 7). The main
differences if compare with the ALS of type B are that the outputs are class labels
(usually integer values) and, therefore, this approach, although being able to work in
an unsupervised manner, has a lower degree of freedom, which leads to significantly
lower performance.

Autonomous Learning Classifiers 141

AutoClassify0 is very interesting and attractive by the fact that it is completely
unsupervised and only at the level of label interpretation human involvement can
take place, but not a must. The class labels can be assigned by default as sequential
numbers, but more meaningful labels can also be provided.

AutoClassify1, the other alternative type of autonomous learning classifier, is of first
order, which allows much better performance to be achieved, but is semisupervised
and has more parameters (of the local submodels). AutoClassify1 can work as a MIMO
type of model for multiclass classification problems. It can also solve the same type
of problems by applying m (where m is the number of classes) two-class classification
problems (AutoClassify1 MISO problem).

These types of classifiers with evolving, self-developing structure have been first
introduced by Angelov, Zhou and Klawonn (2007), Angelov, Ramezani and Zhou
(2008) some five years ago and here they are put in the context of ALS. The re-
sults of their application to the practical problems of landmark recognition, scene
recognition, evolving user behaviour modelling and other related problems from mo-
bile robotics, ambient assisted living and ubiquitous computing will be described in
Chapters 12–14.

9
Autonomous Learning
Controllers

The idea for self-learning controllers is not new and is, perhaps, at the origins of the
very idea of self-learning and self-organising systems taking its roots from the very
strong, at that time, Moscow Institute of Control Problems (IPU), (IPU was also the
work place of Vladimir Vapnik, the ‘father’ of SUM) and mainly related to the works of
Tsypkin (1968). This gave the seed for the powerful modern adaptive control theory
(Ljung, 1987; Astroem and Wittenmark, 1989). It was and still is, however, mostly
valid for linear systems (Kailath et al., 2000) or so-called Hammerstein-type quadratic
models and concerns parameter tuning rather than system-structure adaptation.

Later, Procyk and Mamdani (1979) proposed their self-organising fuzzy logic con-
troller (FLC) that was, however, confined to a fixed-size look-up-table, thus, the struc-
ture adaptation was very limited and related to the choice of predefined fuzzy sets.
Narendra and Parthasarathy (1990) extended the adaptive control systems theory to
NN-based multimodel systems, but this was again limited to the case of a fixed system
structure and concerned parameter tuning only. Psaltis, Sideris and Yamamura (1988)
proposed to model the inverse plant dynamic in an adaptive control scheme using an
offline-trained NN and use this to derive controller that would get the performance
(output) as desired assuming the plant dynamic is perfectly modelled.

Angelov (2002, 2004b) and Angleov and Buswell (2001), proposed to use evolving
FRB to model the inverse plant dynamic and coined the self-evolving FRB eController
and the self-evolving parameter-free rule-based controller, SPARC (Sadeghi-Tehran
et al., 2012) and OSECC (Angelov, Skrjanc and Blazic, 2012). eController combined
the benefits of the FRB controllers, namely that they do not require the plant and
environment (mathematical/physical) models to be known, that they can use and
operate with linguistic and human-intelligible knowledge and are proven universal
approximators (Wang, 1992) with the advantages of self-learning online and dy-
namically evolving structure (fuzzy linguistic rules). In this sense, eController was a

Autonomous Learning Systems: From Data Streams to Knowledge in Real-time, First Edition. Plamen Angelov.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

144 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

 Plant

Inverse
Model

y u

y ^u
+

-

e

Figure 9.1 A schematic representation of the indirect adaptive control scheme ac-
cording to Psaltis, Sideris and Yamamura (1988)

pioneering result – the first publication on controllers that adapt their structure (not
just tune parameters) online, during the process control and can start ‘from scratch’
or be initialised. This type of controllers was later further developed by Cara et al.
(2010) by adding new membership functions (MF) in places where the mean squared
error is high and applied to laboratory and industrial processes and mobile robotics
(Sadeghi-Tehran et al., 2010). Another significant step forward was made with the
AnYa-type fuzzy rules that made possible (antecedent)-parameter-free controllers to
be autonomously designed (Sadeghi-Tehran et al., 2012) and (Angelov, Skrjanc and
Blazic, 2012).

In the remainder of this chapter the principles of indirect adaptive control scheme
will be described first. This will be followed by the description of the inverse plant
dynamics model and, finally, the autonomous controller structure.

9.1 Indirect Adaptive Control Scheme

Indirect adaptive control (Andersen, Teng and Tsoi, 1994) is a scheme that aims to
substitute the inverse plant dynamic by a model (usually a neural network or a fuzzy
rule-based system), Figure 9.1.

If the dynamics of the plant (usually expressed by a set of differential equations)
is completely known and available, the control problem reduces to a selection of
the controller structure and tuning the parameters. However, in reality, the plant
dynamics is often subject to evolution and changes due to wear, change of operating
regimes, variations in the quality of raw materials, contaminations, and so on. This
leads to models of the plants that become quickly imprecise and noisy.

An alternative is offered by the robust control approach that, essentially, studies
the bounds on possible changes to the model of the plant and controller. There are
studies for controller adaptation including its structure when such bounds are known
in advance (Gao and Er, 2003). In the more general case, when such bounds are not
known the structure of the controller remains to be determined.

For example, if in a discretised form, the plant dynamics is denoted by the following
function

yk+1 = f (xk, uk); k = 0, 1, . . . (9.1)

Autonomous Learning Controllers 145

where

xk = (yk, yk−1, . . . , yk−p; uk−1, uk−2, . . . , uk−q) ∈ Z is the state vector;
Z is the operating regime of the plant;
uk ∈ R is the control signal exerted by the plant;
f is unknown (generally, nonlinear) function;
p and q are constants that determine the order of the plant.

The controller produces the control signal,

uk = g (ζk, ak)

where

ζk = (
yref

k , yk, yk−1, . . . , yk−p; uk−1, uk−2, . . . , uk−q
)

denotes the extended states vec-
tor and differs from the state vector, x by appending it with the reference signal,

yref
k at the front;

g(.) is the (nonlinear) function of the controller;
ak is the vector of parameters of the controller.

The aim of the control is to force the plant output to follow the reference signal, yref
k

as close as possible.
The algorithm of the indirect adaptive control (Andersen, Teng and Tsoi, 1994) can

be summarised as:

1. start with applying any (possibly, generated by a simple proportional or PI type)
control;

2. action, u1 for one sample, k = 1;
3. measure the actual output of the plant at the next time step, yk+1 after applying uk;
4. model the inverse plant dynamics by the mapping uk = g (ζk, ak);
5. apply the control signal, uk+1 derived using the mapping from the previous step

using yref
k in the state vector;

6. go to step 2 unless a stop criteria is reached.

Using this indirect adaptive control algorithm in order to achieve a certain reference
value of the output, yref

k it is necessary to apply such a control signal uk which would
have caused, ideally, at the next time step an output, yk+1 = yref

k .

9.2 Evolving Inverse Plant Model from Online Streaming Data

The schematic representation of the proposed autonomous controller AutoControl can
be given in Figure 9.2 below where a simplified state vector that is composed of the
error and error difference components, ξk = (ek,�ek).

One way to train the controller is to use offline learning and apply NN or a FRB be-
cause both are proven universal approximators. However, the offline training requires

146 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

 uk 1+ky

Plant AutoControl

Delay

RDE &
error-based

ref
ky

ek+1

kξek

ek+1

-
dek

-

Figure 9.2 A schematic representation of AutoControl

availability of a large number of representative training samples and is against the
very idea of adaptive control, because it ignores the possibility of the plant dynamics
changing.

Equivalently to the use of the plant output directly, one can use the error, ek (and
change of error) formed between the plant output, yk and the reference value, yref

k as
shown in Figure 9.2.

An effective alternative for online autonomous self-learning is presented by apply-
ing ALS of ETS type (Angelov, 2004a; Cara et al., 2010) or AnYa type (Sadeghi-Tehran
et al., 2012) with zero order consequents:

Rulei : IF
(
ξk ∼ ξ ∗

i

)
THEN (uik = Uik)

(9.2)

where

Uik denotes the singleton outputs of the consequent part;

ξk =
[

ek

dek

]
denotes the state vector composed of the error and error difference

components.

The overall output is determined (as with other FRB models of so-called
Takagi–Sugeno–Kang type) using centre of gravity defuzzification:

uk =
R∑

i=1

λikUik (9.3)

where λi denotes the firing strength of the ith local submodel.

Autonomous Learning Controllers 147

In this case, the structure of the controller (fuzzy rules, related focal points) is
determined online and autonomously during the process of control itself. In such a
scenario, one can either start ‘from scratch’ and learn ‘on the fly’ or use some a priori
simple controller (such as P, PI, FLC) for the initial short period to avoid safety or
other possible problems that may be related to the first few (usually, half a dozen or
so) samples when the inverse plant dynamics model and, respectively, the controller
structure is not yet established. The role of the initial control algorithm (for the first
few time steps) is just to generate several starting training samples and is replaced
after these initial steps. Therefore, it is not critical which algorithm exactly will be
used. Such an approach represents a true ‘learning trough experience’. This flexible and
intelligent autonomous controller is called AutoControl.

9.3 Evolving Fuzzy Controller Structure from Online Streaming Data

An overall flow chart diagram that represents AutoControl is provided in Appendix
B8. Its principle of work combines the concepts of indirect adaptive control (described
in Section 9.1), of AnYa-type nonparametric (in terms of the antecedents) structure
(described in Chapter 5) and the least mean squares approach for tuning the conse-
quents.

AutoControl can start from a very simple configuration or even ‘from scratch’ and
self-develop its structure based on the data obtained online. It has two main phases.
In the first phase the local submodels (singletons) are determined and in the second
phase the focal points of the data clouds, x∗

i , which are identified.
The modification of the controller structure is driven by the same three principles,

A–C described at the beginning of Chapter 7 and used in ALS, in general. The un-
derlying concept is that of the data density determined recursively (using RDE). In
practice, different sequences of training data may produce different structures (the
approach is order dependent).

AutoControl starts with the first data sample being assumed to be the first focal point,
unless an alternative initialisation is provided (see the flow chart of the algorithm
presented in Appendix B8). The first rule has a form of expression (9.2) and can form
its antecedent (IF) part around the data sample x1. The consequents of the rules are
tuned using the LMS-like algorithm. Aiming to minimise the square error, E = e2

LMS follows the gradient-based optimisation:

Uik = Uik−1 − ∂Ek

∂uk
(9.4)

where the error, ek = yref
k − yk−1.

If we denote the update of the outputs per local submodel by �Uik = Uik = Uik−1

one can get the equation for the update of the consequent singletons of AutoControl
using the LMS algorithm, taking into account the expression of the gradient of the

148 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

error as follows:

�Uik = Cλi(k−1)ek (9.5)

where C is a constant.
Additionally, in many practical applications there are limits over the control signal.

Let us denote them by umin and umax. Then, additional actuators limitations can be
imposed (Sadeghi-Tehran et al., 2012):

�Uik =
⎧⎨
⎩

0 if (uk−1 = umin) AND (�Uik < 0)
0 if (uk−1 = umax) AND (�Uik > 0)

�Uik otherwise
(9.6)

It should be stressed that the consequent adaptation is performed online while the
controller is operating; therefore, the control action is applied from the very first
moment.

9.4 Examples of Using AutoControl

Two simple examples are shown here with AutoControl primarily with illustrative
purposes. The first example is from the area of food (sugar production) industry. The
aim is to control the changing reference point of the water level in the tank (Sadeghi-
Tehran et al., 2012). The discretised differential equation (of first order) that describes
the process can be given by:

yk+1 = yk + T

(
−√

19.6yk

y2
k + 1

+ uk

y2
k + 1

)
(9.7)

where T is the sampling rate set to 0.5 s.
In order to simulate the plant one also needs to take into account the obvious

physical constraints that the water level is non-negative. The combined equation is:

yk+1 = max

{
0, yk + T

(
−√

19.6yk

y2
k + 1

+ uk

y2
k + 1

)}
(9.8)

For this simulation the reference point is assumed to be changing by the following
law:

yref
k = cos(0.05k) + sin(0.07k) + 3.7 (9.9)

Autonomous Learning Controllers 149

Following the procedure described in Appendix B8 and Sections 9.2 and 9.3 Auto-
Control starts with no model and an empty rule base and develops autonomously a
structure that consists of three data clouds with prototypes as shown below:

ξ ∗ = [
e de

]T =

⎡
⎢⎢⎣

4.735 0
1.486 −0.367

−0.438 0.338
0.632 0.434

⎤
⎥⎥⎦

T

Based on these prototypes, four linguistic rules of the form (9.2) were formulated and
the parameters tuned using the LMS-like approach as described above that at the end
of the process get values:

U3000 =

⎡
⎢⎢⎣

12.19
36.09

−44.59
61.83

⎤
⎥⎥⎦

It should be stressed that the values of U change all the time.
The evolution of the controller structure is sketched in Figure 9.3 and the perfor-

mance is illustrated in Figure 9.4.
The position of the focal points and all other data points of the four clouds are

represented in Figure 9.5.

500 1000 1500 2000 2500 3000

data sample

0
0

1

2

3

nu
m

be
r

of
 fo

ca
l p

oi
nt

s
(r

es
p.

 r
ul

es
)

4

5
Evolution of number of rules of AutoControl

evolving structure
of AutoControl

adding new focal points
(resp. rules)

Figure 9.3 Autonomous evolution of the structure of AutoControl (adding new focal
points and new rules for the sugar tank water level control illustration problem)

150 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

500 1000 1500 2000 2500 3000

data sample

0
0

2

4

6y,
 m

8

10

12

Performance of AutoControl (sugar tank water level)

reference
AutoControl signal, uk

Figure 9.4 Performance of AutoControl for the sugar tank water level control illustra-
tion problem

It is clear that the controller after a relatively short period of setting its structure
completely autonomously ‘from scratch’ forms its rules with no parameters in the
antecedent (IF) part and learning the consequents autonomously collecting feedback
from the performance in a closed loop. Yet the performance after the initial period
is quite satisfactory (this can be appreciated from Figure 9.4 after data sample 140
onwards till the end, data sample 3000).

Four data clouds and their focal points

error, ek

er
ro

r
di

ffe
re

nc
e,

 d
el

ta
 e

k

–10
–14

–12

–10

–8

–6

–4

–2

0

2

4

–8 –6 –4 –2 0 2 4 6

Focal point of
a Data Cloud

Figure 9.5 Position of the focal points and the data clouds at the end of the control
process (after data sample 3000)

Autonomous Learning Controllers 151

The second example represents a control problem in a water bath (Sadeghi-Tehran
et al., 2012). The discretised first-order differential equation that describes the process
is given by:

yk+1 = a (T)yk + b(T)uk

1 + e0.5yk−γ
+ (1 − a (T))Y0 (9.10)

where

a (T) = e−αT ; b(T) = β(1 − e−αT)
α

α = 10−4; β = 0.0087; γ = 40
Y0 = 25 ◦C; T = 25 s

The reference signal is a random step-wise function. AutoControl again started with
no prior model and an empty rule base and developed autonomously a structure that
consisted of three data clouds with prototypes as shown below:

ξ ∗ = [
e de

]T =
⎡
⎣ 0.405 0

1.086 0.314
0.007 −0.002

⎤
⎦

T

Based on these prototypes three linguistic rules are formulated at the end of the
process:

Rule1 : IF
([

ek

dek

]
∼

[
0.405

0

])
THEN (U1k = 3.673)

Rule2 : IF
([

ek

dek

]
∼

[
1.086
0.314

])
THEN (U2k = 0.038)

Rule3 : IF
([

ek

dek

]
∼

[
0.007

−0.002

])
THEN (U3k = −1.318)

(9.11)

The evolution of the controller structure is sketched in Figure 9.6 and the performance
is illustrated in Figure 9.7.

The position of the focal points and all other data points of the three clouds are
represented in Figure 9.8.

It is clear that the controller, after a relatively short period of setting its structure,
completely autonomously ‘from scratch’ forms its three rules with no parameters
in the antecedent (IF) part and learning the consequents autonomously collecting
feedback from the performance in a closed loop. Yet the performance after the initial
period is quite satisfactory, which can be appreciated from Figure 9.4 after data sample
90 and then after changing the reference point around data sample 670 onwards till
the end (data sample 5000).

152 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

500 1000 1500 2000 2500

data sample

Evolution of the number of rules of AutoControl

evolving structure of AutoControl
adding autonomously

a new focal point and a new rule

3000 3500 4000 4500 50000
0

0.5

1

1.5

2

nu
m

be
r

of
 fo

ca
l p

oi
nt

s
(r

ul
es

 r
es

p.
)

2.5

3

3.5

4

Figure 9.6 Autonomous evolution of the structure of AutoControl (adding new focal
points and new rules for the temperature control illustration problem)

5000
55

60

65

70
Performance of AutoControl (temperature control)

reference point
AutoControl output, uk

1000 1500 2000 2500

data sample

y,
 °

C

3000 3500 4000 4500 5000

Figure 9.7 Performance of AutoControl for the temperature control illustration
problem

Autonomous Learning Controllers 153

Figure 9.8 Position of the focal points and the data clouds at the end of the control
process (after data sample 5000)

9.5 Conclusions

The autonomous learning controller, AutoControl described in this chapter has the
following distinguishing features:

� It does not require the model of the plant to be known.
� It does not require previous knowledge about the control policy to be known.
� The controller structure is self-developed (possibly starting ‘from scratch’) based

on the density and error information from the history of control process collected
during its operation and used recursively (without memorising, but using it fully).

� AutoControl has high adaptive ability and corrects later the initial rules when nec-
essary based on experimental data collected during the process run.

10
Collaborative Autonomous
Learning Systems

In many applications there may be more than one systems that can act autonomously.
There are numerous examples of such situations. For example, students and teachers
in a class room, drivers and pedestrians on the roads, and so on. These are natural
systems. Similarly, one can imagine artificial autonomous systems (robots, agents).
For example, a team of uninhabited vehicles (aerial, ground, water or underwater),
a sensor network in which each node may be an intelligent sensor, enabled with
processing and communication capability, ensemble of classifiers that may just be
a software or including some hardware realisation (e.g. image-based), and so on.
In such scenarios there may be, generally, the following two modes in which these
autonomous entities work, as follows:

a. completely independent or competitive;
b. cooperative or collaborative, which itself can be:

i. centralised;
ii. decentralised.

In what follows the collaborative scenario will be briefly described as applied to
ALS in the form of clustering, classifiers, controllers, predictors, estimators, filters or
intelligent sensors.

10.1 Distributed Intelligence Scenarios

In a collaborative scenario, each ALS acts on its own pursuing its own objectives and
goals, but they can collaborate to achieve a common, shared goal. For example, in the
so-called self-localisation and mapping (SLAM) problem (Choset and Nagatani, 2001)

Autonomous Learning Systems: From Data Streams to Knowledge in Real-time, First Edition. Plamen Angelov.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

156 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Figure 10.1 A schematic representation of a system of M centralised collaborating
ALS

each mobile robot from a team can act on its own to localise and start mapping the
environment (an example of application of ALS for such a task will be described in
Chapter 12), but the mobile robots may also, in addition to this individual behaviour,
exchange the aggregated information they have discovered (e.g. landmarks, their lo-
cation, possibly imagery, relative position and some additional data that are essential
for continuing to explore the environment), Figure 10.1. In a collaborative scenario,
there are M > 1 ALS (which may be implemented on a dedicated hardware, such
as mobile or static sensor platform, mobile phone, laptop computer, mote – mobile
node of a sensor network, for example SunSpot by Sun Corporation (Healy, Newe
and Lewis, 2008), and so on or simply as separate software agents, where M is an
integer number.

There can, broadly, be two different modes of operation:

Mode 1 Centralised collaborative ALSs
In this mode, there is a Leading ALS and members of the team. The difference is that
all ALS send information to the Leading ALS from time to time, periodically or when
requested to do so. It can also send back requests or information.

The advantages of the centralised mode are that less information needs to be ex-
changed reducing the bandwidth requirements and probability of interception in
unmanned aerial/ground-based/undersea vehicles (UxV) application for reconnais-
sance and surveillance, for example.

However, a serious disadvantage of this mode is the vulnerability – if the Leading
ALS is damaged or disappears, the whole team will have reduced access to previously
collected information (which was collected only by the Leader and distributed to other
members of the team). Since each member of the team is an ALS as opposed to a

Collaborative Autonomous Learning Systems 157

Figure 10.2 A schematic representation of a system of M decentralised collaborating
ALS

fixed structure system this has a lesser effect and, therefore, one can recommend
either applying a decentralised mode from the very beginning or switching to a
decentralised mode in case the Leading ALS is destroyed or disappears.

Mode 2 Decentralised collaborative ALSs
In this mode there is no Leading ALS and all ALSs are equal in terms of exchange of
information. This mode is depicted in Figure 10.2. In what follows only the decen-
tralised mode will be considered.

10.2 Autonomous Collaborative Learning

Autonomous systems can collaborate while performing their mission in terms of any
or a combination of the following tasks (which have been described and discussed
earlier in the book; see Chapters 7–9):

a. density estimation and clustering of the incoming sensory data;
b. prediction, filtering, estimation, self-calibrating inferential sensors;
c. classification;
d. control.

In addition, collaborative decision making and situation awareness (Endsley, 1996)
is of great interest to UxVs and can benefit from some of the above, but will not be
specifically considered in this book.

The following interesting hypothesis can be formulated:
Let us assume that there are M > 1 collaborating ALS that take streaming data

as input and perform either of the tasks a–d as described above. Let us denote the

158 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

multivariate, possibly nonstationary, data stream by DS. Let us assume it is composed
of chunks (parts) as follows:

DS = [DS1, DS2, . . . , DSK]; K > 1

Let us assume that one ALS processes the data stream DS and let us denote the result
by Result. Let us now assume that another ALS gets (receives, possibly transmit-
ted/communicated, possibly, wirelessly or simply reads previously stored) certain
amount of recursively calculated interim set of variables, Vj (where j = [1, K]) and
after that starts processing the data stream from the DSj+1

th chunk onwards. For ex-
ample, if j = 1 that means that the ALS gets V1 and data stream [DS2, DS3, . . . , DSK]
and the result is denoted as Result1; if j = 3 that means that the ALS gets V3 and data
stream [DS4, DS5, . . . , DSK] and the result is denoted as Result3.

The interesting question is – if we compare the results (Result, Result1, Result3) how do
they relate to each other?

Angelov (2006) has proven that for any of the tasks a–d they will be exactly the
same! Because the ALS methods described in this book are recursive and use all
historical data without memorising them this leads to the very important and useful
conclusion that an ALS (e.g. mobile robots or agents) can exchange only Vj and in
this way guarantee that the result (in terms of classification of a target or clustering,
density estimation or prediction and so on as listed above) will be exactly the same
made by another ALS that never has seen a part of the data stream [DS1; . . . , DSj].
This leads to huge savings in bandwidth because there is no need to transmit the raw
data ([DS1; . . . , DSj]) yet the same conclusion can be made as if the data was available
to all ALS.

This method is more efficient than simply a compression that is, usually, not
exact. The rate of reduction of the transmitted information is given by the ratio
ξ = dim(Vj)

dim([DS1; . . .; DSj])
where dim(.) denotes the dimensionality of the vector. A realistic

example would be dim(Vj) = 50; dim([DSj, . . . , DSK] = 10 000. For such an example,
ξ = 200, but much bigger savings are also possible in a real-time scenario with im-
agery data, for example. Moreover, one can get exactly the same result as if 200 or
more times more data has been processed and transmitted!

10.3 Collaborative Autonomous Clustering, AutoCluster
by a Team of ALSs

For example, a team of collaborative ALSs for clustering can be demonstrated by a
collaborative SLAM task:

The focal points are determined online by an ALS (Figure 10.3) as described in Section
3.2 using RDE. The aggregated information as described below can be transmitted to
the other ALSs. Therefore, the vector of the data that has to be transmitted between
the ALS includes:

� the focal points, x∗
ij where j is the time instant when the data is transmitted;

� the statistical variables needed to continue the recursive calculation of the RDE: D∗
ij,

μj,
∑

j.

Collaborative Autonomous Learning Systems 159

Start (0;0)
Wp /Lm1 1

Wp /Lm2 2

Wp4/ Lm4

Wp / Lm3 3

Wpn-1/Lmn-1

Figure 10.3 A schematic representation of an ALS performing clustering. Wp – way
point; Lm – landmark. This may be a part of a collaborative SLAM task if other ALSs are
involved and aggregated information is passed to them

Therefore, for collaborative clustering, Vj = [x∗
ij ; Di∗

ij ; μ j ; � j]. Their dimension
is 4Rn:

R coordinates of the focal points with dimension n,
R densities (of focal points),
R mean values and
R covariance values – all with the same dimension.

For example, if R = 4 and n = 3 (e.g. R,G,B in a colour-coding scheme) that makes
48 (real) variables. They may represent thousands or millions of raw data (3D in this
case) of a data stream.

10.4 Collaborative Autonomous Predictors, Estimators,
Filters and AutoSense by a Team of ALSs

In this scenario, the focal points are determined online as described in Chapters 5 and
7 that includes, in general, two subtasks:

i. structure evolution: and
ii. parameter learning.

Therefore, the vector of the data that has to be transmitted between the ALS
includes:

� the focal points, x∗
ij where j is the time instant when the data is transmitted with

dimension Rn;
� the statistical variables needed to continue the recursive calculation of the RDE: D∗

ij,
μj,

∑
j each with dimension Rn;

� local submodels parameters: Aj with dimension R(n + 1).

160 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Therefore, for collaborative prediction, filtering, estimation or self-calibrating sen-
sors, Vj = [xi

ij; D∗
ij; μ j ; � j ; Aj]. The dimension of the vector that is to be transmitted is

5Rn + R. For example, if R = 4 and n = 3 (e.g. R,G,B in a colour-coding scheme) that
makes 64 (real) variables. They again may represent a data stream with thousands or
millions of raw data (3D in this case).

10.5 Collaborative Autonomous Classifiers AutoClassify
by a Team of ALSs

For example, a team of collaborative ALSs for the autonomous classification task can
be illustrated by the following example (Figure 10.4):

In this scenario, the focal points are determined online as described in Chapters 5
and 8. Therefore, the vector of the data that has to be transmitted between the ALS
includes:

� the focal points, x∗
ij , where j is the time instant when the data is transmitted with

dimension Rn;
� the statistical variables needed to continue the recursive calculation of the RDE: D∗

ij,
μj,

∑
j each with dimension Rn;

� if AutoClassify1 type of ALS is used then, in addition, the local submodels parame-
ters: Aj with dimension R(n + 1) are also included.

Therefore, the amount of data transmitted in collaborative autonomous classification
is the same as in clustering if AutoClassify0 is used and the same as predictive/

ALS1 ALSi ALSM

……

……

Figure 10.4 A schematic representation of collaborative ALSs performing autonomous
classification. Each camera may classify the image data into separate objects (biscuits,
CDs, etc.) into ‘good’ or ‘bad’ automatically. ALS1 may learn new rules online and may
pass this information to ALS2

Collaborative Autonomous Learning Systems 161

estimation/filtering or self-calibrating sensors if AutoClassify1 is used – see previous
two subsections for details.

10.6 Superposition of Local Submodels

In a collaborative scenario when an ALS receives the vector Vj with the recursively
calculated variables it continues the autonomous learning process using the infor-
mation for initialisation. If the receiving ALS has already generated a model then a
superposition of the two models will take place adding the transmitted focal points
(and pdf if use probabilistic model) to the existing focal points (and, respectively,
membership functions or pdfs if relevant). This may raise problems of interpretabil-
ity and may require model simplification as described in Section 5.6. Note that this is
only relevant in the case of Mamdani or Takagi–Sugeno FRB. If an AnYa-type systems
is used there is no need for membership functions and, respectively, their parameters.

10.7 Conclusions

In this chapter the powerful and interesting idea of the team of ALS that can col-
laborate is briefly described. It was first described by Angelov (2006) in a patent
application and tested with the ETS algorithm (Angelov and Filev, 2004). It has huge
unexploited potential in areas such as mobile robotics, wireless sensor networks and
unmanned vehicles (UxVs) to name a few. It allows reduction of the complexity of
problems by reducing it to simpler subproblems, dramatically reducing the amount
of information required to be transmitted and, thus, communication bandwidth). It
also allows increased survivability in multi-UxV tasks by performing collaborative
task execution without loss of information by an UxV that may be affected.

PART III
Applications of ALS

11
Autonomous Learning
Sensors for Chemical and
Petrochemical Industries

One of the most interesting applications of ALS for prediction and estimation is
for self-calibrating (intelligent/smart/soft/inferential) sensors. They are applicable in
various industries, but most widely in chemical and petrochemical branches. In this
chapter there will be some illustrative examples of the research work the author did
collaboratively with Dr. Jose Macias Henrandez from CEPSA oil refinery, Santa Cruz
de Tenerife, Spain and Dr. Arthur Karl Kordon, The Dow Chemical, Freeport, Texas,
USA.

11.1 Case Study 1: Quality of the Products in an Oil Refinery

11.1.1 Introduction

In oil refineries the crude oil is separated in different (quality) petroleum cuts (being
refined) in distillation towers by lateral extraction (Macias and Feliu, 2000; Macias,
Angelov and Zhou, 2006), see Figure 11.1.

These cuts include:

� gasoline;
� gas oil;
� naphtha;
� kerosene, and
� other commercial products.

Autonomous Learning Systems: From Data Streams to Knowledge in Real-time, First Edition. Plamen Angelov.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

166 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

HEATER

SALT WATER
STEAM

FUEL OIL

GASOIL

CRUDE

CRUDE

STEAM

STEAM

GOL

KNO

KNO

WATER

NAPHTA

REFLUX DRUM

LPG RECOVERY

CW

DESALTER

Figure 11.1 A schematic representation of a distillation unit (adapted from Macias-
Hernandez and Angelov from Angelov, Filev and Kasabov C© John Wiley & Sons, Ltd.,
2010). The points at which the data are measured periodically (with high frequency)
using conventional (‘hard’ sensors) are indicated with circles. Points at which the prod-
uct is taken and its quality is to be predicted are indicated with stars and the point at
which the crude enters the distillation unit is indicated by a diamond

Specification requirements for these technological processes are very strict, because
the yield obtained in these cuts contributes significantly to the overall refinery profit.
The amount of product that can be extracted in a side stream is regulated and limited
by a voluntary standard called ASTM (ASTM, 2011). For example, the so-called ‘95%
ASTM’ distillation curve analysis is the relation between the vapour leaving the pot
and the distillated product and temperature.

The commercial aim is, obviously, to obtain maximum amount of product with
the highest quality within the specification. Extracting more of the product from
distillation towers is linked to higher end points and heavier cuts. Maintaining the
quality and specification is, therefore, a very important goal of the oil refining process.

11.1.2 The Current State-of-the-Art

Currently, expensive and time-consuming laboratory analysis is performed to the
side stream products in order to monitor the quality. In some refineries they in-
stall continuous analysers, but this is an even more costly solution (Hernandez and

Autonomous Learning Sensors for Chemical and Petrochemical Industries 167

Angelov, 2010). It is often difficult to maintain a stable correlation between the results
from the laboratory analysis and the continuous analysers.

They started using so-called inferential sensors to estimate the product quality from
available plant measurements, such as temperature, flow rates, pressures as far back
as 1960s. Later, they started to also use online analysers and statistical models such
as PCA and PLS (partial least squares), which are currently widely applied. Later, in
the 1990s, came NN-based inferential/soft sensors.

All these methods suffer from errors in the measurements as well as from the
sensor/model structure inadequacy. In reality, the plant (distillation tower) has a
dynamic, nonstationary behaviour, the crude oil characteristics are variable, contami-
nations are often present, but the model is fixed. In addition, effects such as ‘drift’ and
‘shift’ of the data stream also cannot be taken into account by fixed model structures
(Angelov and Kordon, 2010).

11.1.3 Problem Description

The data used for this study is from a crude distillation unit with a design capacity of
80 000 barrels per day of crude from the Arabian Peninsula. The distillation tower has
valve trays and two cold pumps around, kerosene oil (KNO), gas oil (GOL) and a hot
pump around GOP (washout). It has five side streams from top to bottom listed below
(Hernandez and Angelov, 2010) and a vapour-side stripper for each side stream and
a bottom vapour injection:

� heavy naphtha (HN);
� kerosene oil (KNO);
� light gas oil (LGO);
� medium gas oil (MGO);
� heavy gas oil (HGO);
� atmospheric residue (RES).

11.1.4 The Dataset

The data (courtesy of Dr. Jose Macias Hernandez, CEPSA Oil Refinery, Santa Cruz de
Tenerife, Spain) include the analysis from the laboratory (usually performed once a
day, seven days a week) and the ‘hard’ sensors data from the tower operation. The
readings from hard sensors are taken much more often, but in order to be compat-
ible with the limitation that the laboratory results impose they are averaged daily.
The data include the period of the whole 2006 starting on 1 January and ending
31 December. During this period there were emergencies, shutdowns, process and
instrument malfunction and even laboratory sample errors. No filtering was applied
to the dataset (it is real and raw).

The laboratory analysis data is, in fact, the training (target) output data, y including
the oil fractions listed above (HN, KNO, LGO, MGO, HGO). The instrument readings
of temperatures, flow rates and pressures of the main tower are, in fact, the input data
vector, x.

168 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Let us denote by y the output variable of interest, for example the temperature of the
heavy naphtha when it evaporates 95% liquid volume (Thn) or the temperature of the
gasoil (Tgol). The aim is to model it as a function of the measurable variables, x, such
as the pressure at the tower (p), the amount of the product taking off (P), the density
of the crude (ρ), the temperature of the column overhead (Tco), the temperature of
the naphtha extraction (Tne).

The most important variables in the monitoring and analysis of a distillation pro-
cess are the extraction temperatures of different fractions (products). The physical
variables, which are easy to measure (such as density of the crude, amount of product
taken off, pressure in the tower, etc.) are highly correlated.

The error (which represents a performance indicator for AutoSense) is based on the
standard deviation of the absolute errors in regards to the average error for the period
of recalibration:

e2 =
(

1
Nval − 1

) Nval−1∑
i=1

(εi − ε)2 (11.1)

where

e is the error used by AutoSense;
Nval is the number of samples during the calibration period;
ε denotes the absolute error;
ε denotes the mean/average error.

11.1.5 AutoSense for Kerosene Quality Prediction

For example, one of the problems of interest is to predict the temperature of the
kerosene, Tk (◦C) when it evaporates 95% liquid volume according to the standard
ASTM D86-04b (ASTM, 2011). It depends mostly on the following factors (phys-
ical variables that are easily measurable by traditional/‘hard’ sensors with high
frequency):

� pressure of the tower, p (kg/cm2g);
� amount of the product taken off, P (%);
� density of the crude, ρ (g/l);
� temperature of the column overhead, Tco (◦C);
� steam introduced in gasoil, SGK (kg/h);
� temperature of the kerosene, Tke, (◦C).
� temperature of the naphtha extraction, Tne, (◦C).

The results applying AutoSense are depicted in Figure 11.3. AutoSense recalibrates
autonomously, reducing lifecycle costs related to maintenance, daily laboratory tests,
human involvement (including lab technician and chemical process engineer).

Autonomous Learning Sensors for Chemical and Petrochemical Industries 169

Distillation
unit

...Input

Selection

‘hard’ sensors ... y, T hn

-

^yAutoSense

x =[p, P, ρ, T, m, SK,...]

Tco

P

Figure 11.2 A schematic representation of AutoSense for the oil refinery. Notations
concern an example of predicting the temperature of the heavy naphta, T hn when it
evaporates 95% liquid volume according to the standard ASTM D86-04b

AutoSense can theoretically start ‘from scratch’, but it is more practical to initialise
it with a calibrated soft sensor. This can be done, for example, by using AutoSense to
predict hourly or more often if needed, but on a daily basis recalibrate (automatically)
by providing the ‘true’ value of Tk. By ‘true’ value here we mean the result of the
laboratory test (which itself relies on using graphs and first-principles models). This
initial training period (during which AutoSense still predicts, but requires on a daily
basis the ‘true’ values to be provided) can last (as was the case in our experiment)
for some 90 days (3 months). After this initial period AutoSense does not require
any human intervention and works, for example, for the next 6 months (180 days)
in a completely unsupervised manner. After this 180-day period a relatively short
retraining/recalibration period of 60 days again requires ‘true’ values of the variable
that is predicted, Tk.

However, it should be stressed that even during this period there is no need
for human intervention and the retraining is done recursively, so there is no
complete remodelling and iterative processes. Following this retraining period,
AutoSense predicted for further 4 months (120 days) completely autonomously. In
this way, retraining periods are only required from time to time, but there is no need
for expert involvement to remodel the sensor. This is indicated in Figure 11.2 by
dotted lines.

Internally, AutoSense evolves its structure as described in Chapter 7 by adding or
removing local submodels that is visualised in Figure 11.4.

From the figure it can be seen that the internal stricture of AutoSense is very simple
and dynamically evolves. The overall model is nonlinear (even if local linear sub-
models are used), nonstationary (because it is evolving) and non-Gaussian (even if
Gaussian local submodels are used). In fact, AutoSense has a dynamically evolving
multimodel structure that is not prefixed.

170 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Figure 11.3 Results of prediction of the kerosene temperature when it evaporates 95%
(according to ASTM D86-04b); the data from the laboratory analysis are shown with
crosses; the data from the predictions are shown with stars linked with a dotted line.
The value of the error, e is below 2%

Figure 11.4 Evolution of the local submodels in prediction of temperature of kerosene
when it evaporates 95% (according to ASTM D86-04b) problem described above

Autonomous Learning Sensors for Chemical and Petrochemical Industries 171

11.1.6 AutoSense for Abel Inflammability Test

A problem of high importance not only as an indirect measurement of physical
variables, which is difficult or impossible to measure directly, but also from the point
of view of safety is the so-called inflammability index.

This depends mostly on the following factors (physical variables that are easily
measurable by traditional/‘hard’ sensors with high frequency):

� pressure in the tower, p (kg/cm2g);
� amount of the product taken off, P (%);
� density of the crude, ρ (g/l);
� temperature of the column overhead, Tco (◦C);
� steam introduced in kerosene stripper, SK (kg/h);
� Temperature of the naphtha extraction, Tne, (◦C).

The results applying AutoSense are depicted in Figure 11.5. A value of the error,
e as low as 2.23% was reported by Macias-Hernandez and Angelov (2010). In addition,
if we use FRB as a framework, transparent and human-understandable rules can be
achieved that have linear consequent parts indicating proportionalities that are valid
locally around the focal points.

Figure 11.5 Operation of AutoSense in terms of retraining phases and evolution of the
internal structure (local submodels) for Abel inflammability index prediction in kerosene
extraction

172 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

11.2 Case Study 2: Polypropylene Manufacturing

11.2.1 Problem Description

Another case study includes polymerisation processes from the chemical industry
(courtesy of Dr. Arthur Kordon from The Dow Chemical, TX, USA). AutoSense was
applied for prediction of the properties of chemical compositions and propylene in a
simulated online mode (Angelov and Kordon, 2010). The data were noisy and with
incorporated changes of the operating regime of the process. In addition, the number
of measured (with ‘hard’/physical sensors) variables is large and input selection is
required as a preprocessing or as a part of the overall algorithm. AutoSense demon-
strated its flexibility in addressing all of these problems that are typical for this real
industrial data.

The first subproblem concerns product composition in the bottom of the distillation
tower with significant amount of noise in the data. The input data include 47 variables
(some of which may be correlated and loosely related to the product composition),
x ∈ R47. The target output, y is derived from laboratory analysis, which is, however,
less noisy than the output for the other three datasets. This dataset also contains a
significant operational change around data sample 113.

The second subproblem describes propylene in the top of the distillation tower. In
this case, the input data contains 3000 measurements from 22 ‘hard’ sensors, x ∈ R22

taken every 15 minutes using gas chromatography, which cover a very broad range
of operating conditions.

AutoSense can be (optionally) initialised but can also self-learn the model from
the very first data sample it reads. The prediction can start from the second data
sample (this depends on the particular application). In this way, the autonomous
sensor continuously evolves its structure and self-calibrates (adapts its parame-
ters). For example, if the model used is a FRB system it evolves by adding or
removing fuzzy rules, selecting inputs and adapting parameters as described in
Chapters 5 and 6 and as depicted in Figures 11.6 and 11.7 for the composition
in the bottom of the distillation column and in Figures 11.9 and 11.10 for the
polypropylene.

The comparison of the output by AutoSense with the values from the laboratory
analysis (the target) is depicted in Figure 11.7 for the first subproblem.

The results in terms of root mean square error, RMSE and correlation, number of
local submodels (respectively, rules) and inputs are also tabulated in Table 11.1 (using
all input variables) and Table 11.2 (using online input variable selection as described
in Section 5.4.1).

The accuracy of AutoSense for both cases is very good in both scenarios (using all
inputs as well as using the online input variable selection). The structure (measured by
the number of fuzzy rules, R) that was self-evolved is quite small and the generated
fuzzy rules (Figure 11.8) are linguistic, that is, interpretable (Figure 11.10). These
results demonstrate that AutoSense can work efficiently and self-calibrate even after
a drastic change in the operating conditions by autonomous evolution.

Autonomous Learning Sensors for Chemical and Petrochemical Industries 173

Figure 11.6 Evolving the structure of the model of AutoSense (first subproblem)

Figure 11.7 Output of AutoSense versus the ‘true’ values (measured using gas chro-
matograph)

174 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Rule1: IF (x1 ~ 24.6) AND (x2 ~ 26.3) THEN

(1 20.039 0.324y x x= +)

Rule2: IF (x1 ~ 39.0) AND (x2 ~ 43.5) THEN

(1 20.615 4.77 0.340y x x= +)

Rule3: IF (x1 ~ 46.2) AND (x2 ~ 49.5) THEN

(1 20.679 1.090 0.450y x x= + +)

Rule4: IF (x1 ~ 45.9) AND (x2 ~ 49.9) THEN

(1 21.340 5.570 3.320y x x= +)

Rule5: IF (x1 ~ 36.2) AND (x2 ~ 43.5) THEN

(1 20.002 0.320 0.065y x x= +)

Rule6: IF (x1 ~ 31.6) AND (x2 ~ 38.7) THEN

(1 20.007 0.366 0.129y x x= +)

Figure 11.8 AutoSense structure using FRB system as a framework for estimating
polypropylene. ∼ means ‘is around’; ȳ, x̄ denote the normalised inputs and outputs,
respectively

Figure 11.9 The shift in the data stream is visible around sample 1300 for the case study
of propylene

Autonomous Learning Sensors for Chemical and Petrochemical Industries 175

Table 11.1 Results applying AutoSense to the chemical
industry case studies (‘composition’ means ‘composition in
the bottom of the distillation tower’ – the first subproblem)

Composition Propylene

RMSE 0.096 0.169
correlation 0.832 0.948
submodels (rules) 3 4
n, number of inputs 47 23

Table 11.2 Results applying AutoSense to the same chemical
industry case studies but including online input selection

Composition Propylene

RMSE 0.091 0.072
correlation 0.847 0.989
submodels (rules) 3 6
n, number of inputs 4 2

AutoSense applied to propylene prediction

data sample (one step corresponds to 15 min)

pr
op

yl
en

e

Significant change
in the operating

conditions

AutoSense prediction

0

0

–0.5

0.5

1

1.5

2

500 1000 1500 2000 2500 3000

real data
(gas chromatogrpahy)

Figure 11.10 AutoSense for the propylene prediction

176 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Moreover, Table 11.2 shows that the overall accuracy of AutoSense can be improved
by using a more compact sensor model structure (fewer fuzzy rules, fewer inputs
actually used). In addition, this structure simplification leads to a better interpretabil-
ity. If we use AnYa-type FRB there will be an additional advantage of the lack of
parameters in the antecedent part.

11.2.2 Drift and Shift Detection by Cluster Age Derivatives

The concept of so-called ‘drift’ and ‘shift’ in data streams (Widmer and Kubat, 1996)
recently attracted a lot of attention in machine learning literature. Drift is the term
used to denote the gradual evolution of the data stream over time. It refers to the
smooth slide of the data distribution through the data/feature space from one region
to another and occurs when there is a change of the distribution of the new data as
compared to the old data. Shift refers to an abrupt change in the data density. Drift
and shift provide a representation of the join time-data space dynamics, while data
density is a representation in the data space with no explicit time.

The aim is to, first, detect the drift and shift and, then, act in accordance by
changing/evolving the system (model/classifier/predictor/controller) structure tak-
ing into account the changed/evolved data density. For example, the shift is an
indication that the system (model/classifier/predictor/controller) structure has to
evolve adding a new local submodel to cover the new, unexplored region of the
data space. Drift is related to a smooth change and can, therefore, be dealt with
by replacing a local submodel with another, more relevant one. Traditional mod-
elling/classification/prediction/filtering/control methods use a certain fixed struc-
ture and in the case of a drift or even shift in the data distribution they either represent
the average (if the data affected by the drift and shift are part of the training) or lose
their representativeness (otherwise).

Drift and shift can be caused by seasonal effects, wear and tear, contaminations,
change of catalyser (in chemical industry), change of operating regimes, and so on
(Angelov and Kordon, 2010). ALS are able to automatically detect and react to drift
and shift in data streams by replacing and creating new focal points (prototypes)
and local submodels, respectively. This ability is instrumental for such systems to
handle nonstationary data streams and be autonomous self-developing, self-learning,
and evolving. Moreover, it is important that this be done online. Some previously
published approaches address drift and shift, but offline using, for example, the SVM
method (Klinkenber and Joachims, 2000). This is, obviously, incompatible with the
requirement for online real-time mode of operation demanded by the ALS.

In ALS the drift and shift can be automatically detected using the concept of cluster
cloud Age (see Section 5.4.2) and its derivatives (Lughofer and Angelov, 2011). The
gradient of the Age evolution curve indicates the dynamics of the data distribution.
For example, a constant gradient (zero second derivative) of the Age curve indicates a
stationary behaviour of assigning the data to a certain cluster/cloud/local submodel.
A change of the gradient of the Age curve (nonzero second derivative) indicates
a nonstationarity with the inflex point (point when the gradient changes its sign)

Autonomous Learning Sensors for Chemical and Petrochemical Industries 177

indicating the shift of the data distribution and a change of the value (slope) but not
the sign indicating a drift.

It is important also to distinguish between the drift and shift of the joint input–output
data space and of the input or output data only. A good example of drift in the data
pattern was observed with both case studies described in the previous section (around
sample 113 and 1300, respectively, see Figures 11.6, 11.10.

The above paragraph describes how to detect drift and shift. Once this is de-
tected, the model/classifier/predictor/filter/controller structure has to evolve to
reflect that. If drift is detected the new focal point (prototype) and, respectively, lo-
cal submodel that represents the new subarea of the data space to which the data
stream drifts replaces the nearest of the previously existing ones from which the
data distribution drifts away). If the drift is detected in the output variables only the
model/classifier/predictor/filter/controller structure does not change but the learn-
ing of the local submodel (consequent) parameters increases the rate of forgetting
(Lughofer and Angelov, 2011).

The reaction to shift is a substantial change of the model/classifier/predictor/filter/
controller structure by adding a new focal point (prototype) and local submodel,
respectively, to cover the new subregion of the data space.

11.2.3 Input Variables Selection

In these case studies the number of input variables was large (23 and 47, respectively).
Many of them were highly correlated (which is often the case when working with
industrial data). A thorough offline study was performed using genetic programming
to identify the optimal subset of variables (Kordon et al., 2003; Angelov, Kordon and

Figure 11.11 Autonomous online input variables selection

178 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Zhou, 2008). It resulted in suggesting a significantly smaller subset of 7 and 2 input
variables, respectively. Alternatively, applying AutoSense we found an even smaller
subset of inputs for the chemical composition at the bottom of the distillation tower
(namely, 4 inputs) and the same number of 2 inputs for the propylene. Moreover, the
reduction of the inputs was done autonomously online as described in Section 5.4.1.
Figure 11.11 illustrates the weights of the input variables that were used initially. The
two inputs with the highest weight that are selected autonomously as described in
Section 5.4.1 are indicated with an arrow.

11.3 Conclusions

In this chapter several special cases were considered from the chemical and petro-
chemical industries that have a lot in common, but also differ significantly. These
include an oil refinery process and distillation unit, in particular, where AutoSense
proved to be very useful for predicting the quality of various products such as
kerosene, heavy naphtha, gasoil, and so on. It is also very useful in predicting the
so-called inflamability (Abel) index.

AutoSense was also tested and applied to predict the composition in the bottom
of a distillation tower in polymerisation processes. It was also applied to propylene
modelling and prediction. The specific property of AutoSense to self-calibrate can save
significant costs in the overall lifecycle and can, in addition, be used to automatically
downselect a small subset of input variables needed.

In addition, the quality of the local submodels parameter Age (or more specifically,
its second derivative) was proven to be directly linked to the so-called shift in the
data pattern, which is an important research area in data stream mining and machine
learning, but can also be linked to sudden changes in industrial processes, such as
change of the operating mode, change of catalysers, and so on.

12
Autonomous Learning
Systems in Mobile Robotics

The area of mobile robotics is, perhaps, the most natural area for implementation of
ALS. By virtue of their role to sense, act, make decisions, plan and predict as humans
but without direct human involvement robots are, in fact, the most obvious physical
embodiment of ALS. In this chapter the application of ALS to laboratory-type mobile
robots Pioneer 3DX (ActiveMedia, 2004) will be described based on the experiments
made in Infolab21, Lancaster University by the author and his students.

12.1 The Mobile Robot Pioneer 3DX

In the experiments described in this chapter mobile robot Pioneer-3DX (ActiveMedia,
2004), supplied by ActiveMedia Ltd, Amehirst, USA was used, Figure 12.1. It is
equipped with an onboard real-time controller called ARCOS, computer (Pentium III
CPU, 256 MB RAM), an electronic-driven motor, a high-resolution real-time camera
(Cannon), digital compass, sixteen sonar disks and bumper sensors, and a wireless
connection. The laser scanner mounted on the robot has a resolution of 10 in spatial
terms and detectable range up to 10 000 mm. All devices, including the motor and
the sensors are controlled by the software loaded on the onboard computer through
the onboard real-time controller ARCOS.

The application algorithms that realise higher-level ‘behaviours’ such as ‘wall fol-
lowing’, ‘novelty/landmarks detection’, ‘following the leader’ are implemented us-
ing ARIA software suit. ARIA provides a wide range of foundation classes written
in C/C++ language facilitating the control of the robot and onboard devices (ARIA,
2011) and runs on top of the ARCOS.

Autonomous Learning Systems: From Data Streams to Knowledge in Real-time, First Edition. Plamen Angelov.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

180 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Figure 12.1 Mobile robot Pioneer 3DX used in the experiments at Infolab21, Lancaster
University, UK

From a software point of view, the robot can be seen as an autonomous agent with
a five-layer architecture (see Figure 12.2).

At the lower layer are the devices such as ‘hard’ sensors (sonar, laser, electronic
compass, motor drives, etc.). At a higher level is the embedded controller, ARCOS
that acts as a server in a client-server mode with clients residing at the onboard
computer at the higher layers. The embedded controller receives signals and data
from the sensors at the lower level through interface and commands from the higher
level through the software of ARCOS.

At the higher functional layer high-level programmes in ARIA that realise be-
haviours are implemented. The object-orientated class structure of ARIA simplifies
the programming development and testing cycle time, enabling an easy access to the
functionality of the mobile robot as a physical device such as to maintain the velocity
of the wheels, adjust the robot headings, getting readings from the sensors, setting
robot status, and so on (Angelov and Zhou, 2007).

At the top application layer the application programmes implement specific mis-
sions and tasks. This layer has the highest level of ‘intelligence’ since it deals with prob-
lems such as automated reasoning, decision making, route planning, self-localisation
and mapping (SLAM), object detection, identification, tracking/following, and so on.

12.2 Autonomous Classifier for Landmark Recognition

Mobile robots require for navigation in an unexplored environment a map (usu-
ally preloaded) and use of a global positioning system (e.g. the American GPS, the
Russian GLONASS or the planned European Galileo). A very attractive alternative,
especially in a dynamic environment (where maps and global positioning may fail),
is to navigate using so-called landmarks and their relative position acquired automat-
ically. It is superior to the so-called ‘dead reckoning’ (Kleeman, 1992) that is prone to

Autonomous Learning Systems in Mobile Robotics 181

drifting errors. The ability to autonomously extract landmarks and use them for lo-
calisation, navigation and routing may contribute to the survivability in cases when
GPS/GLONASS is unavailable or unreliable. Landmarks can be defined as specific
physical objects of the environment that stand out, are unusual and differ from the
contextual background (Netto, 2006).

There is a significant difference if we compare indoor and outdoor environment;
for example, GPS/GLONASS does not, in principle, work indoors, there are no trees
and monuments indoors. Features of the architecture such as corners, corridors, doors
can be used for navigation even if they do not fully comply with the definition of
landmarks. It is significantly easier to build a map of an indoor environment due to
the availability of long linear features, such as the walls and corridors.

A map of an outdoor environment can still be built but it is of a significantly more
simplified and abstract nature linking the detected and identified landmarks with
straight lines, see Figure 10.3. Such a simplified map can also include all points when
a turn has taken place representing in this way a feasible (accessible) road (Sadeghi-
Tehran et al., 2012). In addition, outdoor landmarks are much more open to influence
by the weather and environment that may change their appearance, including but
not only in regard to the luminance. This includes seasonal and daily changes.

The ability to automatically detect and identify the landmarks and build a sim-
ple map based on them is clearly beneficial or even required in order to provide a
level of autonomy and independence from the preloaded maps. Moreover, because
of the autonomous character of the system, this should be done in an unsupervised
and evolving manner. The reason for the latter requirement is that the number of
landmarks is not known beforehand. The requirement for the learning to be unsuper-
vised is obvious for an autonomous system. In addition, because of the constraints of
miniaturisation of the size and/or to the payload this should also be computationally
simpler and applicable in real time.

Finally, for the purpose of monitoring and in compliance with the famous Isaac
Azimov’s principles (that the robots/autonomous systems should never threaten
humans), the landmarks and simple maps generated autonomously should be trans-
parent and interpretable. The methods and algorithms described further in this sec-
tion address all of the above requirements. They are based on RDE, AutoCluster and
AutoClassify0 described earlier and perform joint landmark detection, identification
and classifier design.

Alternative approaches for unsupervised learning such as SOM (Kohonen, 1982,
1984, 1995) and evolving and self-organising neural network such as growing cell
structures, adaptive resonance theory (ART) mapping (Carpenter and Grossberg,
2003), dynamically evolving neurofuzzy inference systems (Kasabov and Song, 2002),
resource allocation networks (Plat, 1991) do not take into account the data density
and are prone to generate too many clusters that are hard to use as landmarks.

All these approaches are not prototype-based; the cluster centre in all of them is the
mean/average and/or is a result of an adaptation, thus, being an abstraction that may
be located in an infeasible point of the data space. In addition, the new data sample
is compared to the cluster centers only, not to all previous data because the real-time

182 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

nature precludes memorising the data history. In this way, important information is
usually lost.

In contrast, the RDE takes into account all previous data samples; AutoCluster
and the related AutoClassify0 are prototype-based. They are fully unsupervised in
the sense that not only the labels/outputs but also the number of prototypes are not
predefined but are determined based on the data density. In AutoClassify0, in addition,
class labels (landmarks ID) are assigned automatically.

12.2.1 Corner Detection and Simple Mapping of an Indoor
Environment through Wall Following

The first experiment involves a mobile robot Pioneer 3DX moving autonomously
in an office environment (ActiveMedia, 2004). The motion is considered in a 2D
plane (the floor) with corners as main ‘landmarks’. In order to move autonomously,
the mobile robot needs a map with ‘way points’. In an autonomous scenario in-
stead of this being preloaded or provided by a human there should be an ability
to generate it automatically even in a completely unknown environment (Zhou and
Angelov, 2007).

Landmarks can be extracted autonomously by the robot implementing an ALS in
its embedded computer collecting the data by its sensors (in this case, sonar and
odometer sensors were used only, but radar can also be used for more precise results
and/or camera for visual landmarks as described in the next section) while travelling
applying so-called wall following. Wall following itself is a relatively simple control
problem aiming to move in parallel to the walls, and in this way, to go round the
room exploring and identifying the corners that can, generally, be of two types –
convex and concave (Zhou and Angelov, 2006).

Based on the corners, their type and the distance between them one can build a
simple map of the room and use it later, transmit it to a centre or another robot if
working in a team/swarm and even arrange rendezvous (Zhou and Angelov, 2006;
Angelov, 2006). Such a scenario does not require a direct human involvement (except,
possibly, the ability to monitor or abort the mission), the use of GPS/GLONASS,
preloaded maps, plans and controllers design.

The odometer (inertial sensor) provides information about the relative coordinates
(the start point has always coordinates (0,0) in a 2D plane) from which the distance
travelled between turnings can be extracted. At the top layer (see Figure 12.2), an ALS
was implemented that realises RDE and evolving clustering.

A similar, but much simpler experiment was realised by Nehmzow, Smithers and
Hallam (1991) who used offline supervised learning with a fixed stricture model
(predefined number of corners, or, more generally, landmarks). Zhou and Angelov
(2006, 2007) used RDE and eClusteirng in experiments performed in B69 office of
Infolab21, Lancaster University, UK. This particular office has eight rectangle corners
(six concave and two convex), see Figure 12.3.

The aim of the experiment was to uniquely identify the corners of the room (used
as simplified landmarks in this experiment) and, based on them and their position, to

Autonomous Learning Systems in Mobile Robotics 183

Sensors

Server

Client

Application level
objects

Intelligence/Autonomy
level objects

Camera Sonar Compass Bumper

...

ARCOS
Embedded controller
(SH2+ AROS)

On-board PC
(PIII + WIN2000) ARIA

Saphira

...

LaserMapper ARNL

RDE AutoClust AutoClass ...

Figure 12.2 The architecture of the software on Pioneer 3DX

build a simplified map (which can be used for a navigation or arranging rendezvous).
Two input variables were measured only, namely

a. ϕi – rotation of the robot when it steers around the corner; and
b. di – distance between the robot and the previous corner.

where

i = [1, K]
K is the number of corners, which is not predefined).

1

2

3

4 5

6
7

8

Figure 12.3 A sketch of the office B69, Infolab21, Lancaster University, UK

184 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

270o

(0.75)
90o

(0.25)

180o (0.5)

0o (0)

Figure 12.4 Rotation of the Pioneer robot – schematic representation

If we compare the experiment settings, they differ from the one described in
(Nehmzow, Smithers and Hallam, 1991) primarily by the fact that K is not prede-
fined and no pretraining by a ‘teacher’ (human being) is used.

The rotation is measured clockwise in degrees (or radians) and is normalised by
360◦ (or 2π , if use radians) starting with 0 representing the straight back (reverse)
direction from the robot, Figure 12.4. For example, rotation ϕ = 0.5 corresponds to
heading straight forward; rotation ϕ = 0.25 corresponds to turning left at a right angle;
rotation ϕ = 0.75 corresponds to turning right.

The distance, δi is measured in meters by the rear sonar device (note that only
one out of the available sixteen sonars is used in this experiment). The values are
normalised to conform to the range [0;1] normalising with the value of the range,
which is 10 m (ActiveMedia, 2004).

The data that are collected at each time instant, k with a frequency of 1 Hz are
in the form of a vector, xk = [ϕk, δk]. From a methodological point of view, the
novelty/anomaly detection method (Section 2.6) based on RDE (Section 2.5) is applied
or, alternatively, an inverted version of the eClustering as reported by Zhou and
Angelov (2006, 2007) or an autonomous classifier of type AutoClassify0. ‘Inverted’ here
means that a new cluster is formed around data points with density values lower
than the values of the already existing ones (which is precisely the opposite to the
eClustering method, where new clusters are formed around points with values higher
than the values of the already existing ones).

From the software implementation point of view, the classes ArRobot and ArSon-
arDevice from the ARIA library are used to control the velocity of the wheels of the
robot and the sonar sensors, respectively. The wall-following behaviour is implemented
as an algorithm defined in class RecognitionApp.

Autonomous Learning Systems in Mobile Robotics 185

Corner 1

...

φ

ϕ

Corner 2

Corner 3

Corner …

Figure 12.5 ALS as a NN that self-evolves

Note that the number of the corners is not predefined and the algorithm is applicable
to an arbitrary/unexplored room. Each corner is a focal point (a prototype) around
which fuzzy rules (or respective neurons or probabilistic data distributions) can be
defined, Figure 12.5:

R1 : IF

([
ϕ

δ

]
is ∼

[
ϕ∗

i

δ∗
i

])
(12.1)

THEN(Corner 1)

This autonomous classifier can be used to associate future data with one of the
previously encountered corners or to evolve the autonomous classifier (AutoClassify0)
further by adding a new corner. Moreover, this approach can be used for SLAM and
mapping of an unknown environment because the distance and relative position of
the corners is discovered autonomously rather than being provided (even the number
of corners does not need to be provided).

In the experiments reported by Zhou and Angelov (2006, 2007) seven out of the eight
existing corners were autonomously identified. Only one corner was misclassified
due to the noisy real data. These results (Zhou and Angelov, 2006) were superior in
comparison to the results reported by Nehmzow, Smithers and Hallam (1991) and,
in addition, there was no pretraining (the autonomous clustering and classification
based on RDE started ‘from scratch’).

12.2.2 Outdoor Landmark Detection Based on Visual
Input Information

In a separate set of experiments performed outdoors in the campus of Lancaster
University the aim was to detect and identify autonomously landmarks extracted
from video input from a robot camera mounted on Pioneer 3DX. The video signal
used as input was processed online in real time, while the robot travelled within the
campus. This scenario posed additional challenges in the sense that the mobile robot
had to control concurrently in real time several processes, namely:

i. control and interface with the camera acting as a sensor in this scenario;
ii. control of the wheels and motion of the robot; and

iii. processing of the video stream.

186 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

For building a map in order to identify the relative location at the time instances
when a new landmark is detected an odometer was used in addition to the cam-
era. Different features can be extracted from the imagery, but most of them may
require computationally expensive processing (e.g. edge detection combined with
object identification, shape and size of objects etc.). A computationally efficient alter-
native is to use the colours (red, green and blue, RGB) or the transformations such as
hue, saturation and value of brightness (HUV) which are readily extracted from the
images (Zhou and Angelov, 2007).

As the robot moves in a previously unseen and unknown environment it generates
a video stream using the onboard camera. With the proposed algorithm based on RDE,
AutoCluster and AutoClassify0 the image frames are processed in real time. The current
frame is only used and discarded (only accumulated statistical information about the
distribution of the colour information is kept in the memory). The image frames
that have significantly lower density and are distinct are detected automatically and
declared as landmarks. They are automatically assigned an ID (label) and a fuzzy
rule-based classifier of the following form has been autonomously evolved:

Rulei : IF
(
xk ∼ x∗

i

)
THEN(xk is LMi)

(12.2)

where

i = [1, R];
R is the number of fuzzy rules; the consequent L Mi is the ith landmark;
xk − k-th image frame;
x∗

i is the prototype of the ith rule antecedent.

Note, that due to the fuzzy nature of the rules the similarity between images is
measured by a degree (they do not need to be exactly the same), which contributes to
the flexibility and robustness in recognition of previously seen scenes that may differ
slightly in terms of appearance, luminance, angle of view and so on.

The algorithm starts with grabbing the bitmap image frame with size H × V pixels
and segmenting it into a grid of bins (Zhou and Angelov, 2007) – smaller subareas
of the image frame of m × n pixels that may contain objects that will be used as
landmarks. In the experiment that was conducted at Lancaster University image
frames of size 640 × 480 pixels separated into twelve 160 × 160 pixel bins were used,
as illustrated in Figure 12.6.

In each bin, the mean value of the colour intensity of all pixels is calculated for each
colour (Red, Green, and Blue):

μR
ij = 1

mn

m∑
i=1

n∑
j=1

I R
ij (12.3)

Autonomous Learning Systems in Mobile Robotics 187

Figure 12.6 Image (with size 640 × 480 pixels) segmented into12 bins with size 160 ×
160 pixels

where

I R
ij denotes the intensity of the Red of the ith column; jth row of the bin;

μR
ij denotes the mean value of the Red in the bin formed by the ith vertical and jth

horizontal of the image (i = [1, 3]; j = [1, 4]).

The inputs/features of the autonomously evolving classifier are formed by the three
colours of each bin, which make thirty six features, Figure 12.7.

The experiment was conducted in the campus of Lancaster University, UK. This
experiment, described in more detail by Angelov and Zhou (2007), took about 6
minutes during which a real-time video stream was generated by the camera mounted
on the robot. The camera took shots at a rate of 25 fps, but the frames used by the
algorithm were processed by the embedded computer at a rate 11.6 fps.

The algorithm accumulates recursively the similarity (of the current image frame
with all of the previous image frames) represented through the density calculated
using RDE as described in Section 2.5. Let us recall that the landmarks are defined
as ‘physical objects of the environment that stand out, are unusual and differ from the
contextual background’. Therefore, the image frames that cause a drop of the density
represent a landmark (which is in other contexts, an anomaly, or outlier). The land-
marks are kept in the memory and each new landmark identified based on the drop
of the density is also compared with the previously encountered landmarks to detect
if it was already seen (which would mean that the mobile robot has already seen this
landmark and had been there – closing the loop). When linking this with the relative
location data from the odometer of the mobile robot a simple map can be derived
autonomously and without any intervention of humans or use of GPS/GLONASS.

188 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

...

Red11

Blue34

Green11

Blue11

...

Lm1

Lm2

LmRLmR

Lm2

Lm1

Figure 12.7 AutoClassify0 as an evolving NN

This experiment illustrates the capability of AutoClassify0 to autonomously self-
develop its classification hypersurface, (rule-based) structure and simultaneously to
classify the incoming video stream into:

i. landmarks; and
ii. images that are rather routine.

In this way, higher-level knowledge (in the form of simple map, a set of images
representing landmarks visited and rules, based on which the decision is based)
can be extracted without any human intervention. Such higher-level information
is human-intelligible and understandable and can be transmitted to a human or
another mobile robot (in a collaborative scenario). A very important, innovative and
useful feature is the open-ended form of AutoClassify, which means that the number
of the landmarks does not need to be predefined, but is rather extracted from the
environment. This flexibility is very important for the autonomous systems because

Autonomous Learning Systems in Mobile Robotics 189

it is unrealistic to know in advance the environment. In addition, because of the
recursive and noniterative nature, this method is also computationally very light,
which is also very important for any real-time application.

12.2.3 VideoDiaries

In this subsection another application will be described which can automatically ac-
quire a sequence of visual landmarks – places visited during the day with time and
location assigned to them that may form an improvised VideoDiary. It can be realised
as a smart phone app (Angelov, Andreu and Vong, 2012) or as a smart wearable micro-
camcorder fixed to the head of the patient such as the one produced by Microsoft’s
SenseCam (Berry et al., 2007).

Nowadays, smart phones are involved deeper in our everyday life and are, perhaps,
the most popular device with elements of intelligence. They are handheld and/or
wearable, equipped with a range of sensors, processing capability, memory, wifi and
GSM as well as cameras and inertial sensors, often with GPS/GLONASS and so on.
The VideoDiary app on a smart phone can be an attractive application for young users.

The application on a wearable microcamcorder can be very useful for patients
diagnosed with neurodegenerative disease. Personal experiences can be stored as
pictures, in an autobiographical collection of “flash” memories. Previous research
has shown that the use of such devices for memory-impaired individuals, improves
successfully the recall of personal experiences (Hodges et al., 2006).

This increases the flexibility of the programmers who do not necessarily need to
develop special cases for each type of streaming sources.

An application was developed in the form of a software suite with several “views”
and “screens”. The main class or widget is responsible for handling the object menu,
between the FrameGrabber screen, density graph and album diary.

The user can navigate through the following screens of the application:

� Life Content Window: This is the default view to be displayed when a video source
is selected. The current frame, the last captured landmark and some informative
data as shown in Figure 12.8.

� Diagram Window: This view shows (Figure 12.10) all the captured landmarks
during a single record and visualises the values of the density, mean and standard
deviation of the density over a period of time. The view is updated frame by frame.

� GPS Mapper: This view is only available when GPS data is being recorded. It
shows the captured landmarks over the trajectory displayed in red. The current
user’s position is shown as a blue circle, Figure 12.9.

� Diary Window: This view implements a simple interface for reviewing captured
landmarks. Users can view the landmarks by date or by video files and scroll
through the view.

� Application Dialogues: The application dialogues include the main window and
auxiliary windows used to select video sources, to change Landmark Recognition’s
parameters, view and to enter the diary viewer.

190 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Figure 12.8 Life Content Window (from Angelov, Andreu and Vung C© IEEE 2012)

� Settings Dialogue: From this screen users may change the camera dimensions to
tune the number of pixels retrieved. Besides, users can define the number of bins,
they request to use. For novice users “simple” type’s settings are provided. If the
bin dimension is high, smaller landmarks can be isolated in a bin and vice versa.

12.2.4 Collaborative Scenario

One application of the collaborative scenario is related to multiple (possibly, inde-
pendent) agents working on information related to the same objects or people. It is
an interesting dialectic phenomenon that, on the one hand, the algorithms that were
described earlier in Part II of this book and on which ALS are based on are order

GPS signal is poor

A
588

S
tanm

ore D
r

B
rettarch D

r

D
orringlon R

d

H
eaton R

d

A
58

8

R
d

Spruce Ave

High School

Eden Park

Leo

St. Paul’s Rd

Victoria Ave

Fern Bank

Palatine Ave
Chester P

l

Wellington Rd

Rutland Ave

Gloucester A
ve

A
6

Rulland Ave

D
urham

 Ave

York R
d

B
ow

erham
 R

d

Ba
rto

n
R

d

ha
m

 D
r

m DrHall Park

Barto

n
R

d

Lindbergh Ave

H
averbreaks Rd

La
rchw

ood

Albert Ct

Figure 12.9 GPS Mapper View (form Angelov, Andreu and Vung C© IEEE 2012)

Autonomous Learning Systems in Mobile Robotics 191

Figure 12.10 Example of the application (courtesy of Mr. Javier Andreu)

dependent (because they are one pass, recursive, online and work on data streams),
although they are evolving and tolerate uncertainties optionally using fuzzy logic
in their inference. At the same time, these algorithms always provide the same re-
sult if applied to the same data if we keep the same order. Therefore, they combine
the uncertainty of the flexible and open structure, tolerance of deviations from the
prototypes with the determinism of the statistical learning principles based on the
data density distributions. In this sense, they are very much like the probabilistic
models, but unlike them they consider the uncertainty not as a chance or belief but
as a representation of the mismatch between the complexity of the real-world prob-
lems, processes and data streams and the simplicity of the ‘convenient’ theoretical
representations such as linear models, normal distributions and so on.

One very interesting and useful application of the fact that these algorithms have
a strong element of determinism and predictability of their behaviour is the collab-
orative scenario, which is described in this subsection. The main idea is that a given
data stream can be processed either by one ALS or a multitude of ALS can pro-
cess the same data stream (with the order of data kept unchanged!) piece by piece,
Figure 12.11 (see also Chapter 10).

This very useful property was proven by Angelov (2006) and demonstrated in the
project ‘Multisource Intelligence: STAKE: Real-time Spatio-Temporal Analysis and Knowl-
edge Extraction through Evolving Clustering’ (2011) funded by Centre for Defence Enter-
prise, UK Ministry of Defence on the examples of phone call data. It is very interesting
that the result of applying any of the two schemes described above is guaranteed to be
exactly the same. At the same time, the benefits of the collaborative way of processing
the data stream are that in this way:

a. the amount of data processed by each ALS can be significantly reduced (the so-
called principle divide et impera can be used);

192 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

ALS 1 ALS 2 ALS 3

Results 1 Results 2 Results 3=

Recursive
variables

ALL DATA =

Data + Data
Stream 1 Stream 2

Data
Stream 1

Data
Stream 2

Figure 12.11 Collaborative scenario – schematic diagram

b. the amount of data transmitted between the ALS and, therefore, the bandwidth
required is minute as compared to the amount of raw data processed (equal to
the amount of the focal points/prototypes identified so far plus the accumulated
statistics – densities, means, covariances, radii, Ages, supports, utilities);

c. each ALS has access only to a part of the data (in some scenarios this may be
desirable and important for higher secrecy);

d. survivability and mission success of the team can increase significantly because if,
for example, one ALS disappears or stops functioning for some reason it is enough
that the focal points/prototypes and the accumulated statistic as described in item
b) is transmitted to the other ALS to get the same result as if all ALS were intact
(the dashed line in Figure 12.11).

On the right-hand side of Figure 12.11, we can observe that only ALS3 receives
all the data and it processes this data using an ALS, as we have explained before.
On the other side of the figure, one can see that the same process is done by two
different ALSs (ALS1 and ALS2). In this case, the input to the ALS1 is the part of
the Data Stream 1. This ALS processes this data, and transmits to ALS2 the focal
points/prototypes identified and the accumulated statistics only. ALS2 then starts
to (continues if consider all data) receive the Data Stream 2. It is important to stress
that, although ALS2 has not seen all the raw data (not seen Data Stream 1, to be more
precise), the result of the processing is exactly the same as the one that can be obtained
by the ALS3 that has seen all the data. One can think of ALS2 as being initialised by
ALS1.

The list of variables that has to be transferred from ALS1 to ALS2 includes:

� vector of current focal points/prototypes, x∗ (size R × n) and their densities, D (size
R × 1);

Autonomous Learning Systems in Mobile Robotics 193

� vector of mean values, μ (size R × n);
� the scalar product, � (size n × n);
� Age; utility, η; support, Ni- all with size R × 1;
� radius, r of clusters (size R × n), and;
� number of samples processed, k.

Another application scenario for the collaborative ALS is the team of uninhabited
vehicles (UxV). For example, interesting missions may include the same SLAM prob-
lem considered above, but performed by a team of mobile robots rather than by
single robot. This may offer additional operational capabilities such as arranging
rendezvous at previously unspecified time and location (during the mission) without
using a preloaded map or GPS/GLONASS and, in this manner, moving significantly
forward in the direction of achieving a higher level of autonomy.

A particular mission involving multiple UxVs is, for example, the problem of for-
mation control. It has been investigated in a variety of applications for unmanned
aerial vehicles, UAVs (Ren and Beard, 2003), autonomous underwater vehicles
(Stilwell and Bishop, 2000; Azimi-Sadjadi et al., 2002; Kaknakakis et al., 2004;
Carline et al., 2005), AUVs, unmanned ground-based vehicles (UGVs) (Desai,
Ostrowski and Kumar, 2001), and so on. Overall, the approaches to formation control
of mobile robots can be grouped into the following three main categories:

a. behaviour based;
b. virtual structure; and
c. leader following.

The last one of these methods was implemented as an ALS by Sadeghi-Tehran et al.
(2010).

12.3 Autonomous Leader Follower

The AutoControl method described in Chapter 9 was applied to the ‘Leader-follower’
problem in the framework of a UK Ministry of Defence, Centre for Defence Enterprise
funded project ‘Assisted Carriage: Intelligent Leader Follower’ (2009). The problem is
illustrated in a very simplistic manner in Figures 12.12 and 12.13.

The ‘Leader’ (‘L’) and the follower (‘F’) are defined by (xL, yL, θL) (vL, ωL) and (xF, yF,
θF) (vF, ωF), respectively. The relative distance between the leader and the follower, δLF

as well as the angle between the headings of the ‘Leader’ and the follower θLF can be
expressed from simple geometrical considerations:

δLF =
√

(xL − xF)2 + (yL − yF)2 (12.4a)

θLF = arctan
(

yL − yF

xL − xF

)
(12.4b)

194 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

X

Y

xF

YF

Heading

δLF
θLF

(yL,xL)

Figure 12.12 Leader Follower – a schematic diagram

Figure 12.13 Leader Follower – an illustration of the outdoor experiment that was per-
formed in the campus of Lancaster University, UK (in the picture is Mr. P. Sadeghi-Tehran,
a PhD student of the author). The video is available on YouTube [http://www.youtube
.com/watch?v=4OEOgLSnoak]

Autonomous Learning Systems in Mobile Robotics 195

δ

ω

v

θ

δref

θref

Auto
Control-

-

∆ed

∆eθ

dt

ded

dt

deθ

Figure 12.14 A schematic diagram of the autonomous learning controller AutoControl
for the ‘Leader-follower’ task

The diagram of the autonomous learning MIMO controller (AutoControl) with four
inputs (error and derivative of the error for δ and θ respectively) and two outputs
(linear and angular velocities) is designed to maintain the reference values for the
distance (δref = 0.5 m) and bearing (θ ref = 0◦), see Figure 12.14.

The inputs and outputs are defined as follows:

ed
k = δ

ref
k − δLF

k (12.5)

	ed
k = ed

k − ed
k−1 (12.6)

eθ
k = θ

ref
k − θLF

k (12.7)

	eθ
k = eθ

k − eθ
k−1 (12.8)

vk+1 = AutoControl
(
ed

k ,	ed
k

)
(12.9)

ωk+1 = AutoControl
(
eθ

k ,	eθ
k

)
(12.10)

AutoControl develops ‘from scratch’ a set of local submodels of the type:

IF

⎛
⎜⎜⎝

⎡
⎢⎢⎣

ed

	ed

eθ

	eθ

⎤
⎥⎥⎦ ∼

⎡
⎢⎢⎣

ed∗

	ed∗

eθ∗

	eθ∗

⎤
⎥⎥⎦

⎞
⎟⎟⎠

THEN
([

υ

ω

]
= Cλ

[
υ∗

ω∗

])
(12.11)

designed as described in Chapter 9.
The use of AutoControl helps to solve a number of problems. The plant/object

of control in this case is highly uncertain (the movements of the ‘Leader’ are hard
to predict and are characterised by randomness, nonstationarity and nonlinearity).
Applying a traditional stochastic, neural network or fuzzy logic controller would

196 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

have problems with the above-mentioned characteristics and, in addition, would
have a complex and nontransparent structure. For example, even if we apply a FLC
with Mamdani-type fuzzy sets (the most transparent and human intelligible type of
controllers of the above list) there will be a large number of fuzzy rules (of the order
of tens or even hundreds) and an even bigger number of parameters (of the order of
hundreds).

In order to cope with the nonlinearity, let alone the nonstationarity, frequent adap-
tation and (offline) redesign is needed that requires a lot of training data with the
same statistical characteristics as the data from the expected exploitation process.
For example, Sadeghi et al. (2010) reported that applying a traditional Mamdani-
type FLC required 49 fuzzy rules for this task. In addition, such a controller requires
‘tuning’ based on predefined training data that does not necessarily guarantee same
performance in another environment making such a solution inflexible.

Alternatively, the AutoControl described in Chapter 9 requires for the same problem
only nine focal points and fuzzy rules respectively (Sadeghi-Tehran et al., 2010).
Additionally, AutoControl can start working ‘from scratch’ and learns and evolves
during the process of control with the real (not specially preselected) data used
as training on a sample by sample basis in the same way as adaptive control and
estimation works.

12.4 Results Analysis

In this chapter different applications of ALS to mobile robotics were presented. Exper-
imentations took place with laboratory-type Pioneer 3DX mobile robots at Infolab21,
Lancaster University, UK in the last five years or so by the students of the author.
Using AutoCluster, AutoClassify and AutoControl completely unsupervised learning
of the environment in terms of identifying landmarks, mapping and navigation can
be achieved. More details on this and other applications related to mobile robotics
can be found in the journal and conference papers by the author and his students
listed in the references. Here they are presented with the prime aim to illustrate the
methodology presented in Part II of this book.

13
Autonomous Novelty
Detection and Object
Tracking in Video Streams

13.1 Problem Definition

In machine learning the problem of autonomous novelty detection is not new and
has been studied in relation to fault detection and video analytics extensively. It aims
to identify a new or previously unknown data item in the data stream or object
in a video. It plays a pivotal role in a range of applications such as computer vision
and robotics, surveillance and security, machine health monitoring, medical imaging,
human–computer interaction, and so on.

In this chapter this problem will be considered from the point of view of its applica-
tion to autonomous video-analytics. Same principles are behind the pioneering results
on autonomous real-time anomaly detection and flight data analysis (FDA) in aviation
which resulted in an EU project SVETLANA (http://www.svetlanaproject.eu/). This
has an increasing importance nowadays when there is a huge and growing amount
of video streams produced (for example, in UK there are over 4 million CCTV cam-
eras installed, which makes one camera for every 14 people in the country (Daily
Mail, 2009)) that require real-time analysis. The main aim of such an autonomous
system (Hampapur, 2005) would be to detect, identify/classify, and track anomalous
movements behaviour and activities in the area being observed/monitored.

The data stream can take the form of a video (image frames) from a digital camera,
electro-optical (EO), infrared (IR) or other source, for example signature aperture
radar (SAR) or passive millimetre wave (mmW). Video stream is usually taken with
the frequency/rate of 25 to 30 frames per second (fps) to make the replacement
invisible for the human eye. Most of the existing methods for processing video input
are offline.

Autonomous Learning Systems: From Data Streams to Knowledge in Real-time, First Edition. Plamen Angelov.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

198 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

START

Grab frame, Φk

Novelty detection, RDE

Object identification

Sharp drop of
the density?

no

yes

Tracking or other action

k:=k+1

Figure 13.1 Schematic representation of real-time video processing (the last phase,
for example, may be trajectory classification or other action)

The method, which is a step towards autonomous video analytics, was recently
proposed by Angelov, Ramezani and Zhou (2008). It makes use of RDE and can be
summarised by Figure 13.1.

13.2 Background Subtraction and KDE for Detecting
Visual Novelties

13.2.1 Background Subtraction Method

Background subtraction (BS) is one of the most widely used methods for novelty
detection that is based on modelling the background (bg) of the scene by statistical
learning and subtracting this form the current image frame. In this manner, the
foreground (fg) or the novel, unexpected object passing or appearing on the scene is
being separated and identified. Such models have to be robust to noise, illumination
changes and occlusion, representative and, at the same time, sensitive.

Autonomous Novelty Detection and Object Tracking in Video Streams 199

i

j
1

W

...

h

v

Figure 13.2 A window of W frames used in KDE approach, h denotes the number of
pixels in the horizontal and v – the number of pixels in the vertical direction; the (i,j)th

pixel is indicated by a black square

An intuitive technique is to compare the pixels of the current image frame with the
pixels of previous frames having the same position (e.g. from a window of frames
with a size W, as it is shown in Figure 13.2) in terms of some features, for example,
colour (R,G,B) or hue saturation and value (H,S,V). The size of the window is usually
40 to 70 frames.

In this way, a separate model is built and updated for each pixel. The model
estimates the density of a particular, (i,j)th pixel in comparison with the pixels in the
same position from previous, W frames of the window. If the density has a low value
(below a prespecified threshold) it is assumed to be a foreground. Usually, Gaussian
normal distributions are assumed as a model of ‘normality’ (the background) and
colours as features. The assumption is that the colour of the moving objects is different
from the background.

The robustness of the method is required in order to distinguish between noise
that results from movements of the tree leaves, branches and bushes, variation of the
luminance during the day and so on and the genuine appearance of a new object on
the scene. The sensitivity is required in order to minimise false negatives (FN), that
is, to avoid missing a genuine new object that actually appears on the scene and to
tackle occlusion and use of camouflage.

13.2.2 Challenges

There are a number of challenges that an ideal approach has to address. These are
briefly outlined below.

13.2.2.1 Illumination Changes

It is well known that the illumination varies during the day and this affects the
appearance of the background. The brightness may also be affected by the external
sources of lights such as street or car headlights, lamps, sun or the moon, and so on.
Clouds also affect the brightness as well as the corridors or mountains. Such changes
may lead to the background model becoming irrelevant or incorrect or even to be

200 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

frame/time

D

1

0

Figure 13.3 Density drop that represents the change in illumination is not sudden and
is global (applies to all pixels)

misinterpreted as a foreground. This challenge can be addressed by using the fact
that it is usually not sudden, but rather prolonged and it affects all or most of the
pixels and is, thus, global, while a novelty (new object) is usually local in the image
frame and affects a relatively small number of pixels.

RDE can be useful to eliminate the effects of change of illumination by proving an
adaptive (not static) bg model in terms of density, see Figure 13.3.

The approach to distinguish between a novelty and illumination changes can be
formulated as follows: If such a smooth (not sudden and significant) drop is de-
tected in all or most of the pixels of the image frame this represents a change of the
illumination of the environment rather than a new object that appears on the scene.

13.2.2.2 Shadows and Reflection

Shadows that are cast by the moving objects usually differ from the background and
can be misclassified as a foreground, which would increase the false positives (FP). In
addition, reflections from wet surfaces, glasses, windows lead to an even more acute
problem, because, unlike shadows, they retain colour, texture and edge information
that is required by most algorithms for background subtraction.

One way to address shadows is to use a representation by brightness and chro-
maticity, HSV instead of RGB. The shadows affect mostly the brightness and not so
much the chromaticity (Porikli and Tuzel, 2003). Reflections are more difficult and
methods to address it rely on using 3D maps, stereovision or thermal imagery to aid
the scene interpretation.

From the point of view of density representation, shadows and reflection will lead
to an area of pixels having a drop in the density, but unlike real novelty objects, the
drop will be less significant (colour will be dark) movements of these pixels will

Autonomous Novelty Detection and Object Tracking in Video Streams 201

be significant (or linked) to the movement of the object, which is unlikely for two
independent objects.

13.2.2.3 Occlusions and Camouflage

Occlusions occur when two or more objects pass close by or are undistinguishable
from the view of the camera. Camouflage is related to the foreground having the
same or very similar colour and/or texture as the background, in general.

A technique to tackle occlusion is to use motion information and track objects.
Camouflage can be addressed using thermal channels and colour values.

13.2.2.4 Nonstatic Background and Camera Oscillations

In practice, cameras are often shaken by rain, wind or other factors that leads to
comparing pixels with same positions, for example (i,j)th in neighbouring frames to
actually represent not precisely the same point of the background. In addition, the
background itself is not perfectly static – for example, moving clouds in the sky,
trees being blow by the wind, a car or large object being permanently moved from
the scene, and so on. Moreover, these oscillations or background nonstationarity are
often nonpredictable.

An approach to address this problem is by using local models (Christiani et al.,
2010). A similar approach to the one presented in Figure 13.3 can be applied to a
nonstatic background as well. Then, such a smooth drop of the density will be visible
in an area of the image (not all pixels but some of them).

13.2.3 Parametric versus Nonparametric Approaches

Statistical modelling techniques can be broadly divided into:

a. parametric; and
b. nonparametric (or parameter free).

All parametric approaches assume that the data come from (possibly a set of) random
distributions such as the normal/Gaussian ones that can be parameterised by two
parameters (mean and covariance). In the context of evolving and autonomous sys-
tems this translates to learning both the model structure and the parameters from the
data. Nonparametric approaches, on the other hand, do not make such assumptions.

In this context the background subtraction method can be considered as a density
thresholding approach. In addition, parametric approaches usually assume a sta-
tionarity or ergodic nature (Duda, Hart and Stork, 2000) of the video stream, which
means that the ensemble average is assumed to coincide with the time average. This
assumption allows estimation of the density numerically from the available train-
ing data sequence rather than from many parallel video processes with the same
statistical characteristics that, in practice, will not be exactly the same. Obviously, this
is seldom true and one has to take nonstationarity into account.

202 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

More advanced versions of the parametric methods include so-called Gaussian
mixture model (GMM) approach where a non-Gaussian distribution can be approxi-
mated using parametric local submodels. At each step of this approach two subtasks
are addressed:

i. the current data sample (features, e.g. colour of the current pixel) to be assigned
to the best matching distribution; and

ii. update the submodels parameters.

In the so-called hidden Markov models (HMM) approach the transition probabili-
ties are being modelled between predefined states such as background, foreground,
shadow (Rittscher et al., 2000). Learning HMM that includes probabilities of transi-
tions between states is traditionally done by offline methods such as Viterbi algorithm
(Rabiner, 1989) or more recent recursive algorithms such as (Rittscher et al., 2000; Filev
and Kolmanovsky, 2012). GMM with evolving structure were considered by Ramezani
et al. (2008) and Sadeghi-Tehran, Angelov and Behera (2011). An interesting option
would be to consider evolving HMM where new states are added or states become
obsolete. In some respect such an approach is the one presented by Stenger et al.
(2001).

Parameter-free (or nonparametric) approaches include, in general, so-called particle
filters (Arulampalam, Maskell and Gordon, 2002) and kernel density estimation (KDE)
techniques. KDE will be considered and used further as already described in Section
2.4 of the book. As opposed to parametric approaches parameter-free techniques do
not require prior assumption of the distribution of the statistical properties of the
data samples. These approaches are very accurate and flexible, but require a lot of
memory (sometimes prohibitively much) to store past image frames. This problem is
lessened to some extent by using windows of frames of size W, parallelisation of the
algorithms using specialised hardware and other simplifications.

13.2.4 Kernel Density Estimation Method

The KDE approach is often used for separating the background from the foreground
in video streams processing (Elgammal et al., 2002; Zhivkovic and Van der Heijden,
2006). A normal Gaussian distribution is usually assumed (determined by the specific
kernel used, see also Section 2.4) and applied to the (i,j)th pixel:

p(zij) = 1
k

k∑
l=1

K

(
z∗

ij − zlij

σ

)
(13.1)

where

zij = [z1i j , z2i j , . . . , ztij, . . . , zwij]T ; z ∈ Rn;

Autonomous Novelty Detection and Object Tracking in Video Streams 203

σ is the bandwidth; n denotes the number of features (for example, if we use colour
intensity values, R, G, B – red, green, blue or H, S, V – hue, saturation, brightness
n = 3);

W – denotes the number of consecutive frames of the window that are used (mem-
orised); I denotes the horizontal and j – vertical position.

Pixels with high value (usually above a certain predefined threshold) of the pdf are
assumed to be background and vice versa for the foreground (Elgammal et al., 2002):

IF (p(zi jt) < ε)

THEN (ztij i s f g)

ELSE (ztij i s bg)

(13.2)

where ε denotes a prespecified threshold value.
This approach is applicable offline only, because it requires a window (usually

a few dozen) of frames each containing, usually, a million pixels to be stored and
manipulated for a time interval shorter than 40 ms (to get the result before the next
image frame arrives, assuming a rate of 25 fps). The computational complexity of KDE
can be estimated at O(nWhv), where h denotes the number of pixels in the horizontal
and v – in the vertical (Sadeghi-Tehran et al., 2010).

This approach has an additional disadvantage in terms of the user-specific threshold
value, ε, that has to be prespecified balancing between sensitivity and robustness.
This is in addition to the bandwidth of the kernel function, σ . For example, a narrow
bandwidth will increase false positives making the algorithm oversensitive, but too
wide a bandwidth would cause increase of false negatives due to smoothing (Sadeghi-
Tehran et al., 2010).

13.3 Detecting Visual Novelties with the RDE Method

The RDE method (see Section 2.5) was introduced as a more efficient, recursive
alternative to the KDE approach and applied to video analytics by Angelov et al.
(2008, 2010). RDE reduces radically the computational complexity to O(nhv), that is
by W times or two orders of magnitude! For example, for a window with size W =
60 the recursive estimation of the density will need 45 times less time and memory!
This makes the algorithm applicable for real-time applications and the use of as many
previous image frames as needed (with the whole video or, theoretically, with an
infinite number of frames).

Once processed, the images are discarded from the memory and only the current
image frame is being used plus a small amount of accumulated statistics in terms of
mean, μ and the scalar product, �, see Equations (2.31) and (2.32).

In addition, using this nonparametric approach removes the need to define user-
or problem-specific threshold, which removes subjectivity and reduces the effect of
the noise as a factor of detection. For example, if we use a Cauchy kernel there is no
bandwidth parameter, σ .

204 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Figure 13.4 Example of the evolution of the density throughout the video-stream for a
specific pixel. Frames for which the value of the density drops below the value of μD −
σ D are denoted by a star and a novelty is detected there (Ramezani et al., 2008)

RDE applied to video stream works per pixel; for example, for the (i,j)th pixel it can
be represented by the following rule, see Figures 13.2 and 13.4:

IF
(
D(ztij) < D̄(zlij) − σ (D(zlij))

)

THEN (zlij i s f g)

ELSE (zlij i s bg)

(13.3)

where σ (D(zlij)) is the standard deviation of the densities of image frames seen so far.
D̄ denotes the mean/average of the global density.

13.4 Object Identification in Image Frames Using RDE

The pixels suspected to be foreground can be identified using RDE. Once this is ap-
plied to each pixel of the current frame the next step of the video analysis algorithm
(see Figure 13.1) is to identify the physical object(s) that are new to the scene. Tra-
ditionally, this is done by clustering or, simply, grouping the suspected pixels often
using the mean/average position, see Figure 13.5:

h∗
k = 1

NF

NF∑
i, j=1

hkij

v∗ = 1
NF

NF∑
i, j=1

vkij

(13.4)

Autonomous Novelty Detection and Object Tracking in Video Streams 205

Figure 13.5 On the right half of the figure is the real image and on the left half of the
figure are the pixels detected as foreground in black. One can see the pixels on the
right top of the left half of the figure are circled with an ellipse that represent noise
due to movements of the leaves of the tree. The two squares indicate the centre of
the target as identified by the traditional approach (spatial mean of the suspected
pixels) and RDE, respectively

where NF denotes the number of pixels in a frame classified as foreground
(NF � hv).

The traditional approach is straightforward, but can often lead to problems in
identifying the precise position of the object due to the presence of noise that acts as
false positives and the lock on the target may be shifted even into some infeasible
locations, see Figure 13.5 that is reproduced form (Angelov, Ramezani and Zhou,
2008).

Alternatively, if RDE is applied to the suspected pixels only spatially (in terms of
the vertical and horizontal positions within the frame not between frames as it is
in Figure 13.2) a much better lock on the target can be achieved as seen in Figure
13.5. The pixel that is closer to most of the other suspected pixels (that is, has higher
density) is considered to represent the physical object:

T∗
t = NF

arg max
i, j=1

{Dtij}

T∗
t = [

h∗
t , v∗

t

] (13.5)

where

T∗
t denotes the vector of the object/target position in the current;

tth image frame with its horizontal and vertical components.

The rationale of such an approach is that pixels that are detected due to noise, not
because they represent actual physical objects are more likely to be dispersed and not
concentrated in a local area, while the physical objects, on the contrary, are grouped

206 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Figure 13.6 Background subtraction using RDE method, Left-hand side plot represents
the scene in which there are two moving objects new to the scene; right-hand side
plot represents the foreground in black and the background in white. The squares
denote the focal points of the physical objects identified to be moving (the car and
the pedestrian, respectively)

closely together. This results in a more robust identification of the point/object that is
to be tracked. Identifying multiple objects (Figure 13.6) can be done using clustering
of the foreground pixels only (Sadeghi-Tehran et al., 2010).

Typically, in video analytics this step follows the step of detecting the foreground
pixels, but it can also be used as a standalone approach for image segmentation,
landmark detection or SLAM based on visual information.

13.5 Real-Time Tracking in Video Streams Using ALS

As illustrated in Figure 13.1, the first step in video stream processing is detecting
the foreground (which was described in Section 13.3) followed by identifying the
physical object/target (which was described in Section 13.4) and then upgraded by
the higher level of analysis such as motion tracking from frame to frame and/or in
the physical space, trajectory generation and/or classification (Sadeghi-Tehran and
Angelov, 2012) and/or other higher level analytical tasks (such as intent identification,
face expression etc., for example).

The main goal of object tracking in video streams is to predict the position of the
object/target within the next, (t + 1)th image frame:

T̂∗
t+1 = f (T∗

t) (13.6)

where T̂∗
t+1 is the predicted position of the target/object in the (t + 1)th frame.

Autonomous Novelty Detection and Object Tracking in Video Streams 207

Figure 13.7 Tracking performance compared with the real data for the horizontal
component of the motion

In practice, only the centre of the object (as described in Section 13.4) is being
tracked. An approach that is widely applied for online tracking is the so-called
Kalman filter (Kalman, 1960) that assumes a linear model of the target movements,
Gaussian distribution and independence of the parameters and can be used in a
Gaussian mixture models (GMM) if we use local submodels and the divide et im-
pera principle. If, in addition, we use an FRB system as a framework for ALS one
can extract an interesting linguistic interpretation of the prediction models in the
following form

Rule : IF
((

h∗
t

v∗
t

)
∼

(
χ∗

ω∗

))

THEN
{

ĥt+1 = a10 + a11ht + a12vt

v̂t+1 = a20 + a21ht + a22vt

(13.7)

where

a represents the parameters of the (linear) consequents;
h denotes horizontal and v – vertical position within an image frame.

Several such rules (local submodels) can be extracted and evolved autonomously
from the video-stream, see Figure 13.8. Due to the evolving nature of the ALS the
number of such rules is not fixed.

208 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Figure 13.8 Focal points (shown with stars) of the local submodels (rules) for the object
tracking using AnYa-type model, see expression (13.9)

The overall prediction of the position of the object/target in the next image frame
can be produced using a weighted sum following Equation (4.6), Figure 13.7:

T̂∗
t+1 =

R∑
l=1

λl T∗
tl (13.8)

where

λl is the normalised firing level of the lth local submodel;
T∗

tl is the prediction by the lth local submodel (rule).

The performance of the RDE approach was compared with the traditional BS and
KDE approaches and proved to be superior. RDE is more robust, threshold-free,
and computationally more efficient. The tests reported by Ramezani et al. (2008)
demonstrate that RDE is orders of magnitude faster and requires orders of magnitude
less memory than the traditional KDE-based approach.

An important advantage of using FRB framework ALS specifically is that the result
can be represented linguistically in a transparent and interpretable manner (Angelov,

Autonomous Novelty Detection and Object Tracking in Video Streams 209

Ramezani and Zhou, 2008), for example:

Rule1 : IF
((

h∗
t

v∗
t

)
∼

(
283
9

))
THEN

{
ĥt+1 = −4.77 + ht + 0.068vt

v̂t+1 = 20.75 − 0.03ht + 0.84vt

Rule2 : IF
((

h∗
t

v∗
t

)
∼

(
301
135

))
THEN

{
ĥt+1 = 5.04 + 0.98ht + 0.01vt

v̂t+1 = 31.48 − 0.10ht + vt

Rule3 : IF
((

h∗
t

v∗
t

)
∼

(
333
354

))
THEN

{
ĥt+1 = 50.37 + 0.8ht + 0.05vt

v̂t+1 = 248.54 − 0.94ht + 1.18vt

(13.9)

These are three fuzzily blended KFs that are responsible for their respective local area
defined by the antecedents as vicinities of the respective focal points. Jointly, however,
they cover the entire image and, especially, the areas where the physical object passes
by, see Figure 13.8.

13.6 Conclusions

In this chapter applications of RDE for foreground detection in a computationally
more efficient way (3W/4 times faster and using 3W/4 less memory than the traditional
BS and KDE approaches) were described and illustrated for the example of video
analytics.

The use of RDE in terms of spatial density for a more precise identification of the
focal point of physical objects to be tracked was also presented in Section 13.4. Finally,
an alternative method for tracking in video-streams based on ALS of AnYa type was
presented that has a linguistic and multimodal (GMM-like) nature, but is extracted
(and evolved) autonomously from the video stream.

The proposed ALS of AnYa type with the use of RDE offers the opportunity to
perform video analytics in real time without direct human involvement, faster, using
less memory, no user- or problem-specific thresholds. It is, thus, instrumental for a
range of security and surveillance as well as mobile robotics applications.

14
Modelling Evolving User
Behaviour with ALS

Human (including user) behaviour modelling is a challenging task and a complex
phenomenon that is very important nowadays from many perspectives:

� quality of services provided;
� available technology (ubiquitous sensors, computational and wireless communica-

tion devices) makes this dream a reality;
� privacy and security;
� physics, physiology and psychology, medicine and care;
� mathematical modelling, learning, and so on.

In this chapter only the last aspect will be the focus of consideration. The ALS proposed
in the book will be studied as a useful tool for modelling user behaviour in its dynamic
evolution. This problem is important for computer users, users of the Internet, for
the so-called assisted living directed towards the increasingly older population in the
developed world and in the context of the ubiquitous computing, communication
and sensory devices that are becoming an everyday reality.

14.1 User Behaviour as an Evolving Phenomenon

Traditionally, user behaviour is considered as a complex, but fixed category. The
important aspect of its dynamically evolving nature is often completely ignored. In
reality, the behaviour of users is a dynamic category that may change with time, it
can be erratic or influenced by other factors (Iglesias et al., 2012).

A brief review of the existing literature indicates that the methods and techniques
proposed and used ignore the evolving nature of the problem. For example, (Han
and Veloso, 1999) use Hidden Markov Models (HMM) to recognise behaviours of
agents and each state of the HMM corresponds to an abstraction of the behaviour

Autonomous Learning Systems: From Data Streams to Knowledge in Real-time, First Edition. Plamen Angelov.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

212 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

of the agent. The structure of the HMM is, however, predefined and the training
of the HMM is performed offline based on a precollected data stet. In addition, the
Markovian assumption (which is necessary in order to facilitate the computational
derivation means that the current sate depends directly only on the previous one,
which is an idealisation.

The approach used in ALS as presented earlier does take into account the ordered
sequence of events. In another study, Godoy and Amandi (2005) present an approach
for user profiling based on the use of the Internet, but they consider a batch set of
data available offline, which is not realistic in a real-life scenario.

The ability to recognise human behaviour in real time and to classify it without
being limited to a pretrained sample data, prespecified number of classes or data
patterns is of immense importance for the contemporary intelligent services and
devices. Typically, this task is performed by a software agent that gets as inputs the
sensory data stream in real time, but is most often pretrained to recognise only a
specific set of behaviours or actions (Pepyne, Hu and Gong, 2004).

In the so-called ambient assisted living scenario, but also in general, accurate user
behaviour modelling can be useful for predicting the reactions of users to a certain
environment or offering. So-called user profiles are traditionally hand crafted and rely
heavily on expert knowledge (Pepyne, Hu and Gong, 2004). It can be defined as a col-
lection of user interests, preferences, characteristics, behaviours (Iglesias et al., 2012).

In fact, behaviour is only one of the facets that is manifested by the user activity
and in a nowadays digital world it can relatively easily be detected, parameterised,
recorded or processed digitally. The problems are related to the fact that there are
more subtle elements that describe the user such as goals, intention, sometimes mas-
querading or mimicking someone else, emotions, and so on.

Therefore, the ALS proposed in this book are particularly suitable for the uncertain
and dynamically evolving nature of the problem, which boils down to extracting
knowledge from an evolving data stream and in particular to classifying it into a not
necessarily predefined number of classes. The proposed solution should address the
following characteristics:

� should be able to learn additional information from new data;
� should be able to identify and accommodate if a new class is needed based on the

data pattern;
� should preserve the previously acquired knowledge in a human intelligible form;
� should not require access to the past historical data (to avoid overload they will not

be stored in the memory).

14.2 Designing the User Behaviour Profile

As a first step towards the online design of a user behaviour profile from streaming
data one needs to convert the raw sensory data into a form suitable for the classifier.
This is usually a stage of preprocessing that is traditionally done offline based on a

Modelling Evolving User Behaviour with ALS 213

batch set of training data. The disadvantages of such an approach are obvious and,
therefore, here an alternative proposed by Iglesias et al. (2009) will be briefly described.

The data stream that describes user behaviour can be considered as a sequence of
ordered events. For example, they can be labelled by letters and then the data stream
will look like a natural text with words and sentences. In different applications these
events take different forms.

For example, if one describes a user of a computer with UNIX operating system,
the events may represent, simply, typing different UNIX commands in the command
line (similarly, in Web browsing). In another scenario of a smart home (Badami and
Chbat, 1998) these may represent activities of a daily life, such as making a phone
call, washing hands, cooking, eating, and so on. Equally, this can be represented by a
sequence of sensor readings which can be binary (ON/OFF) (Iglesias et al., 2010) or
continuous (Andreu et al., 2011).

Iglesias et al. (2009) proposed to use a trie structure to represent the sequence of
events in the user’s contact with the computer or smart home or another smart device.
This structure itself is not new – it was described first by Fredkin (1960), but its
attractiveness for such problems, in particular, is linked to the fact that it can easily be
updated recursively (thus, it is computationally very efficient). It also represents quite
well the human behaviour in its variety and keeps the order-dependency statistics.
As a second stage, statistical characteristics of the trie structure are extracted and
updated also in real time and recursively.

Finally, the ALS, namely AutoClassify, as described in Chapter 8, is applied and
linguistic, easy to interpret rules are derived (extracted) from the data stream and
evolved. Class labels are assigned automatically and can be confirmed or amended
by a human operator whose role is only to monitor the process.

Let us consider a user of a computer with UNIX operating system and the sequence
of commands that this user types in. This may be, for example:

{date → ls → mv → ls} (14.1)

The first step is to segment the sequence of events, E into subsequences of equal
length, l. For example, if we have the sequence:

E = E1 E2 . . . En (14.2)

then, we aim to get subsequences of the following form:

Ei . . . Ei+l (14.3)

In the case study described later, the length of the subsequence considered is l = 3
or l = 6, but this is very much problem dependent. For the example provided in (14.1)
for l = 3 one will have:

{date → ls → mv} (14.4)

214 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Root

date [1]

ls [3]

mv [2]

ls [1]

mv [1]

Figure 14.1 An example of a trie structure

and

{ls → mv → ls} (14.5)

In the memory are stored the trie structures, not the raw data with the UNIX com-
mands (events), which are significantly more. The trie starts at some point to only
update the frequencies of appearance of certain combinations rather than to store all
of them. However, it preserves the sequential nature of the events that took place
(Iglesias et al., 2009).

Every trie has a root and children nodes. The first node following the root repre-
sents the closing event (the one that is at the end of the sequence). Every children
node represents an event that preceded this event and so on (see Figure 14.1 for an
illustration of the example shown above).

It is important to note that each node keeps (and updates in real time) the number of
times a specific event (in this particular case, UNIX commands typed in the command
line by the user; alternatively, this can be the web sites visited, the activities undertaken
in a smart home environment, etc.). Moreover, this trie structure is evolving with time
to reflect the events that take place and, in particular, if a new event takes place that
does not exist in the trie structure a new root and a node is being added and a new
trie structure starts to grow/evolve.

The trie structure updates the statistics/relative frequency of appearance of each
event, but, more importantly, it also takes into account the sequence under which
these events take place, which is not the case with the ‘simple’/traditional statistics.

Once the trie is available the user profile is designed based on the relative frequency
of the appearance, see Figure 14.2. The relative frequency is defined by Iglesias et al.
(2010) as a ratio of the number a particular subsequence of events towards the total
number of subsequences of the same length.

Modelling Evolving User Behaviour with ALS 215

Figure 14.2 Relative frequency used as a basis for designing user profiles

In this way, the trie structure can be represented by a distribution of the rel-
ative frequencies. Iglesias et al. (2012) propose to consider the user profile as a
matrix composed of the distributions of relative frequencies as described above,
see Figure 14.3.

14.3 Applying AutoClassify0 for Modelling Evolving User Behaviour

ALS, and, in particular, AutoClassify0 are particularly suitable for the task of joint
learning and classifying user behaviour profiles into classes that are not predefined
and can expand/evolve. AutoClassify0 is a 0-order evolving classifier that is com-
pletely unsupervised and can expand its rule base and can add labels to the classes
post factum (a posteriori to the observations). The work of AutoClassify0 is described in
Chapter 8 and also in Appendix B6 and illustrated for the case of UNIX commands
users in Figure 14.4 in the next section.

It takes as input the user profiles that are derived automatically and recursively
updated as described in the previous section. These are composed of relative frequen-
cies of the events distributions. Based on these, in the data space composed of all the
n existing subsequences the density of each particular observation is calculated recur-
sively and based on the principles described in Section 5.2.5 data clouds (or clusters)
are being evolved.

Each prototype selected based on the procedure described in Chapter 8 and in
Appendix B6 initiates a (fuzzy) rule. The consequents of these rules initially are filled
in automatically with ‘Class i’ until a human operator or an automatic algorithm
labels them with more appropriate/meaningful labels such as ‘novice programmers’,

216 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

0

0.2
0.4

0.6

0.8
1

User profile, A (experienced programmer)

ls

ls-date

date

ls-mv date-mv

0

0.2
0.4

0.6

0.8

1
User profile, B (nonprogrammer)

ls

ls-mv mv-ls date-ls

ls-date date date-mv

0

0.2
0.4

0.6

0.8
1

User profile, C (computer scien�st)

ls

mv-ls

date-lsls-date

date

date-mvls-mv

mv
mv-date

rela e
frequency

rela�ve
frequency

rela e
frequency

User A

User B

User C

Figure 14.3 User profiles in a matrix form

‘experienced programmers’, ‘computer scientists’, and so on. It must be stressed that
this labelling is not a form of supervision and merely aims to increase the human
interpretation capacity of the ALS used, because these labels are not used in the
optimisation or other learning scheme.

14.4 Case Studies

14.4.1 Users of UNIX Commands

In this case study a dataset collected form 168 real users collected by Greenberg (1988)
was used. They represent several types of programmers, namely

� novice programmers (users with little or no previous experience with program-
ming, operating systems, and UNIX in particular that has specific command line
interface);

� experienced programmers (senior graduates from the Computer Science Depart-
ment who have a significant amount of knowledge and experience with program-
ming, operating systems, and, in particular, with the UNIX environment; these

Modelling Evolving User Behaviour with ALS 217

0
1 4 7 10 13 16 19 22 25

Number of Users

“Novice programmer” class being added; Subsequence length = 5

28 31 34 37 40 43 46 49

20

40

%
 C

or
re

ct
ly

 c
la

ss
ifi

ed

60

80

100

Figure 14.4 Performance of AutoClassify0 (in line with diamonds) versus the known
classifiers (kNN, naı̈ve Bayesian classifier, C5.0) in the scenario when a new class of
programmers is being introduced – the curves show the percentage of users of the
‘new class’ correctly classified (vertical axis) versus the number of users of the new
class that contains the training dataset

users have prior experience with coding, word processing, using more advanced
UNIX facilities);

� computer scientists (graduates and researchers from the Computer Science Depart-
ment who have varying experience with UNIX although they are all experienced
users of computers, in general);

� nonprogrammers (office staff and faculty members who mostly used computers for
word processing and communications and the knowledge of UNIX of whom was
the bare minimum needed to do the job).

The available data is summarised in Table 14.1.

Table 14.1 Dataset for the case study of UNIX users behaviour
modelling

Users type # of users Total # of command lines

Novice programmers 55 77 423
Experienced programmers 36 74 906
Computer scientists 52 125 691
Nonprogrammers 25 25 608
Total 168 303 628

218 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

Table 14.2 Results at the end of the run (in %) of applying
AutoClassify0 and other classifiers for subsequence length 6
and 1000 commands used per user

AutoClassify0 C5.0 Naı̈ve Bayes kNN (k = 1)

72.0 74.6 76.1 44.6

It must be stressed that, although, the labels of the groups of users were known
they were not used by AutoClassify0 and only provided for comparison.

The performance of AutoClassify0 that automatically generated the clusters and
(fuzzy) rules was compared with the performance of other well-known and widely
used classifiers such as the very powerful tree-based classifier C5.0 (Quinlan, 2003)
that is offline and requires all the information including class labels to be known and
provided to the classifier beforehand, k nearest neighbours (kNN), naı̈ve Bayes, and
so on, see Table 14.2.

The following experimental study (Iglesias et al., 2012) includes using the data form
one particular class (new to the rule base used so far) to be added to a classifier that
has been trained on the data form the other three classes only plus one, then two,
and so on samples of the new class. The validation data consists of data form all
four classes. The performance of the classifier has been recorded and is depicted in
Figure 14.4.

From Figure 14.4 one can see how fast AutoClassify0 adapts to the new data pattern
by evolving its rule base. For the example of ‘novice programmers’ after only three
new data samples (user profiles) being added in the training phase the ALS is able to
predict with nearly 90% precision the users type! Other classifiers not only require a
complete retraining but are able to ‘catch up’ only after seeing a significantly larger
number of users (data samples) being provided.

14.4.2 Modelling Activity of People in a Smart Home Environment

The smart home scenario is a quite fashionable recent environment for more futuris-
tic research linked to ubiquitous computing, wireless communications and sensory
devices. These devices are becoming ever smaller and yet more capable with every
year passed.

In this example a dataset collected and reported by CASAS smart home project
by Washington State University was used (CASAS, 2010). The data concerns sensor
measurements from a smart apartment – a specially designed facility for experiments
in intelligent living environments in Washington State University, USA. These include
motion sensors, temperature, water, burner, telephone usage. The data represent
24 users (inhabitants) who perform the following five activities of a daily life:

� making a telephone call;
� washing hands;
� cooking;

Modelling Evolving User Behaviour with ALS 219

Table 14.3 An extract of the sensory records for the daily
activity Cooking (adopted from Iglesias et al. (2010))

Date and time Sensor readings Sequence of activities

29/02/2008 13:25:05 101 ABSENT I01 ABSENT
29/02/2008 13:25:09 M16 OFF M16 OFF
29/02/2008 13:25:10 M17 ON M17 ON
29/02/2008 13:25:11 I07 ABSENT I07 ABSENT
.

� eating;
� cleaning.

The overall dataset consist, thus, of 120 different subsets labelled by one of the
above labels where each subset consists of 30 to 150 sensor readings. For example, in
Table 14.3 an extract is shown of the daily activity Cooking.

In this table M16 and M17 represent motion sensors and I01 and I07 represent a
sensors that are activated when a person or an item is present in the room and the
default alternative value is ABSENT.

In a similar manner to the user behaviour analysis of the UNIX commands the ALS
of type AutoClassify0 was used. The results were, again, compared with the results
of existing state-of-the-art classifiers including offline high performers such as C5.0
that require all the training data to be available including class labels and perform
many iterations as well as incremental classifiers such as kNN and naı̈ve Bayes that
can work on a sample by sample basis, but do not evolve and the number of classes
is also required to be known and provided to the classifier beforehand. The results
are tabulated in Table 14.4.

The results demonstrate that a comparable and superior precision can be achieved,
but with no prior knowledge of the class number or labels and the ability to add new
classes as they arrive.

14.4.3 Automatic Scene Recognition

Finally, another interesting application is represented by an automatic system for
learning scenes from images. Nowadays, the spread and importance of social web
sites and media such as Facebook and the like is growing fast and the amount of
images loaded on the Internet is exponentially growing as well. Processing images

Table 14.4 Results – classification rate (in %) of applying
AutoClassify0 and other classifiers for subsequence length 3

AutoClassify0 C5.0 Naı̈ve Bayes kNN (k = 1)

94.2 95.0 88.3 86.6

220 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

is, in principle, a computationally expensive task that is rarely performed in real
time and, especially, recognition and association of the images with elements of
the environment or objects associated by the humans with some specific type of
environment.

In this line of thinking, the application to automatically learn and recognise images
is very attractive. The proposed ALS is able to automatically recognise if a specific
image is taken, for example, on the beach, in a rural environment, in a forest, in a city
or in a small village. That is very attractive for numerous applications, including, but
not limited to miniaturised specialised devices, online service accessible remotely or
to a standalone software or hardware implementation.

In the research literature there were attempts to address this problem by using
graphical models (Murphy, Torralba and Freeman, 2004). Alternatively, Ankenbrandt,
Buckles and Petrya (1990) tried to split the scene into semantic concept nets. This
required dividing the image into grids of subregions linked with the semantic nets.
Oliva and Toralba (2001, 2002, 2006) applied the so-called GIST approach for feature
extraction (Li et al., 2008) based on Gabor spectral representation (Gabor, 1946).

It may be strange that the humans are able to recognise complex scenes by just
glancing on an image. The rational thinking cannot capture and process complex
images in one simple glance. But the human brain captures a spatial representa-
tion of scenes and recognises meaningful objects and salient features of the scene. It
constructs a representative picture that consists of low-level perceptual and concep-
tual (such as colour, contours), intermediate (such as shapes, texture regions), and
high-level (semantic) information (Andreu, Angelov and Dutta Baruah, 2011).

GIST is designed to provide a low-dimensional representation of the scene in terms
of universal coordinates without partitioning (Murillo and Kosecka, 2009). The fea-
tures that are derived represent perceptual dimensions such as roughness, openness,
naturalness, expansions, which represent the spatial structure of the scene (Murillo
and Kosecka, 2009).

Torralba et al. (2000, 2003) studied methods to satisfy the fingerprint of an image
in terms of unique features by creating a structured representation of the scene. For
example, urban zones are structured vertically and forests are textured. But different
from many other approaches that partition the scene into bins, GIST considers the
whole scene and assigns to it a vector of features called a spatial envelope based
on spectral representation and coarsely localised information (Murillo and Kosecka,
2009).

The ALS of AutoClassify1 type with recursive (online) feature extraction (rPCA-
rLDA) was applied to a dataset (Oliva and Toralba, 2001), which contains eight
types of outdoor scenes (streets, open country, cities, forests, coasts, mountains, high-
rise buildings, and highways). In total, the data consists of 2600 colour images with
resolution 256 × 256 pixels. The confusion matrix is depicted in Figure 14.5.

The GIST approach produces 513 initial features that were further reduced online
to 22 by rPCA-rLDA approach. The classification rates of 70–73% were achieved on
average although some types of scenes where correctly classified in over 90% of the
cases, such as cities, open country, mountains, forests, Table 14.5. Some types of scenes

Modelling Evolving User Behaviour with ALS 221

Figure 14.5 Confusion matrix for the automatic scene recognition using AutoClassify
type ALS as described above (reproduced from Andreu, Angelov and Dutta
Baruah (2011))

Table 14.5 Classification results for the automatic scene
recognition using AutoClassify type ALS (Andreu, Angelov and
Dutta Baruah, 2011)

Method Classification rate, % Computational Time, s

AutoClassify1 79.1578 0.00065
kNN 74.3187 0.00031
SVM 79.6646 0.01
Naı̈ve Bayes 80.2935 0.002

are easy to misclassify and difficult to distinguish, such as coasts and highways that on
sunny days may resemble sea water (Andreu, Angelov and Dutta Baruah, 2011).

It should be stressed again that AutoClassify1 unlike the other methods works online
on a per data sample basis evolving the classification rate, while the other methods
are offline.

14.5 Conclusions

In this chapter the application of ALS to modelling evolving user behaviour is demon-
strated on several case studies. The ability of ALS and AutoClassify in particular, to

222 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

adapt its structure and evolve is particularly suitable for applying it to such complex
and dynamic tasks.

In the first case study, real data from 168 users of computers with UNIX operating
system were studied. They were from four different groups (novice programmers, expe-
rienced programmers, computer scientists and nonprogrammers) that were not provided
to AutoClassify0 but were correctly classified in nearly 90% of the cases even if using
a very limited number of a certain group (for example, novice programmers). ALS of
AutoClassify0 type demonstrates that it can evolve and learn from a very limited
amount of data adapting to the changing data density pattern.

In the second case study, again AutoClassify0 was used for automatically classifying
everyday activities performed by inhabitants of a smart apartment in the framework of
the project CASAS. These activities include but are not limited to phone call making,
cooking, eating, and so on. Again, AutoClassify0 was able to evolve its structure
(human intelligible rule base and classification surface) completely autonomously
and achieve over 94% correct classification. Alternative classifiers achieved either
marginally higher or lower classification rate, but, more importantly, they required
the number of classes and their labels to be provided and for the C5.0 classifier (which
is the only one to marginally outperform AutoClassify0) a batch set of training data
has to be provided as well.

Finally, AutoClassify1 type ALS is applied for a very interesting problem of au-
tomatically recognising the type of a scene from an image. Again, the autonomous
classifier has very high performance (on average over 70% correct classification with
some types of scenes being recognised with over 90% correct classification).

This again was compared with the most competitive alternatives that again re-
quire the number of classes to be prespecified, and in the case of SVM, the batch set
of training data. The computational burden of the proposed AutoClassify type ALS
(measured here by the computational time spent) is significantly lower due to the
recursive calculations performed, which makes it a viable option for implementation
in a range of real-life devices and systems.

15
Epilogue

This book was planned some five years ago as a vehicle to put in one place the
theory and applications of the innovative research, but it evolved in parallel with
the development and maturing of the investigations that led to some new and inter-
esting results. The book is structured in three parts; Part I – Foundations, Part II –
Methodology of ALS, and Part III – Applications of ALS.

Part I itself is composed of three chapters that represent the foundations of the
main cognate areas of research, including probability theory, machine learning and
pattern recognition, and fuzzy sets theory (including NFS). Although, this part of
the book is rather introductory, new and original ideas and elements are presented,
including the powerful (patent pending) concept of RDE, a new method for evolving
clustering, ELM and the recent ground-breaking method for fuzzy and neurofuzzy
systems modelling, AnYa.

Part II contains the theoretical basis of the innovative and powerful approach
of ALS. In particular, Chapters 5 and 6 describe the principles and methodology
for autonomous learning of system structure and parameters from data streams.
Chapters 7–9 describe predictors, estimators, filters, autonomous learning sensors,
classifiers and controllers using ALS. Chapter 10 describes the principles and proce-
dures for collaborative ALS.

Finally, Part III consists of four chapters that describe various applications of ALS to
areas as diverse as chemical and petrochemical industry, mobile robotics, autonomous
video analytics and user-behaviour modelling.

15.1 Conclusions

This book starts with introducing an innovative and powerful concept – autonomous
learning systems. For many years researchers aimed to achieve self-learning and self-
organising systems. For example, as far back as 1968 the Russian/Soviet scientist
Yakov E. Tsypkin said: ‘To solve a real-time control problem it is necessary to determine

Autonomous Learning Systems: From Data Streams to Knowledge in Real-time, First Edition. Plamen Angelov.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

224 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

the current characteristics of the object. The controller, as it proceeds with its control actions,
is undergoing a self-learning process to learn about its relationships with the objects and
about the events that influence a change of these relationships. Over the course of doing
that, the controller will discover laws that control events in the best possible way, and be
even able to predict further development of events.’ Further in the same seminal work,
Tsypkin continued: ‘We cannot control an object in an optimal fashion without knowing its
characteristics, but we can study a plant by controlling it. This can then give us an opportunity
to improve the control and eventually to reach an optimal control law, thanks to simultaneous
identification and control of the plant. Thus, algorithms of learning and control are closely
related to each other that is depend on each other and are inseparable.’

However, it took decades before the required advances in other areas of research and
engineering practice made possible nowadays not only to dream about but to formu-
late, test, simulate and even run (in the case of mobile robots or motes, smart phones,
UAVs, industrial plants equipped with intelligent sensors, etc.) real applications.
In the introductory, first chapter the advances and related problems of the cognate
disciplines are described, such as machine learning, system engineering (specifically,
system identification), data mining, statistical analysis, pattern recognition, including
clustering, classification, fuzzy logic and fuzzy systems, including NFS, and so on.

The overall concept of ALS, introduced in this book, can be summarised and visu-
alised as shown in Figure 15.1.

In Chapter 2 the basics of probability theory were critically described in a very brief
form that makes possible their later use and comparison with the other techniques
that were also considered such as fuzzy systems and neural networks. An impor-
tant and significant innovation is made by introducing in a systematic way of the

Learn
Parameters

Predict/
Classify/
Control

RDE

Cluster
(structure
iden�fica�on)

Preprocess
(normalise,
select inputs)

hard sensors Actuator/display

ALS

Time/process dynamics

Figure 15.1 The concept of ALS visualised as a never-ending autonomously evolving
process

Epilogue 225

concept of the recursive density estimation (RDE). It has great potential in detection
of novelties/anomalies (Kolev et al., 2012a, 2012b) as well as for system structure
identification.

In Chapter 3 another well-established discipline, machine learning and pattern
recognition was briefly introduced. Again, innovative evolving clustering approach
was introduced in which the number of clusters is not prespecified, but dynamically
develops as a function of the density in the data space – in particular the ELM approach
that is an evolving version of the mean shift clustering approach.

The recently pioneered by the author concept of evolving classifiers, which works in
a similar manner to the adaptive control systems and estimators by pairs of ‘classify
and update’ actions for each new data sample (or for these new data samples for
which class label is known) is also innovative. In this book a particular novel optimal
classifier is also introduced based on the quadratic Fisher discriminant analysis which
is subject to pending patents.

Chapter 4 provides a concise summary of the theory of fuzzy systems and related
NFS. It is, obviously, not possible and it was not the main aim to go into much
detail (e.g. operations with fuzzy systems, linguistic hedges, fuzzy equalities and
inequalities, fuzzy relational models, etc.) and the interested readers can find these
details in other more specialised books. The details that are presented on both FRB
and NFS are precisely those that are needed for the further consideration of ALS,
which is the topic of the present book.

At the same time, in this chapter, again, novel and recent concepts were intro-
duced, such as AnYa-type FRB/NFS that offer a simpler, yet powerful, description
if compared with traditional Mamdani- and TS-type FRB/NFS. Interesting parallels
between the Bayesian-type probabilistic models and FRB and NFS of TS and AnYa
type were also made.

Chapter 5 starts the second part of the book with the description of the concept
of system structure evolution. The key role of the data space partitioning in the
process of autonomous system structure design is explained and detailed. Methods
for autonomous monitoring the quality of the local submodels measured by their
utility, Age, radii (in the case of clustering) were described as well as methods for
real-time, online normalisation and standardisation of the data.

It should be stressed that these principles apply to various type of systems, includ-
ing, but not limited to fuzzy rule-based, Bayesian, neural network, and so on. The
models that are designed in this way are globally nonlinear yet locally can be treated
as linear. In addition, ALS of FRB type has an additional advantage – they are also
linguistically interpretable, which can be a big advantage for acceptability of these
models by human operators.

In this way, a fully unsupervised approach for evolving the system structure au-
tonomously form the data streams emerges that does not require the number of sub-
models, their focal points or the effective number of inputs used to be predefined –
instead it is extracted from the data stream online, in real time.

In Chapter 6 methods and algorithms for autonomous learning of the parameters of
evolving systems were introduced. Optimal (both in terms of local and global criteria)
solutions were discussed based on the weighted extensions of the well-known RLS

226 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

algorithm adapted to the case of multimodel evolving structure. The problem of
outliers in learning is also addressed. It has to be noted that while system structure
identification is an unsupervised learning problem, parameters of the submodels are
determined by semisupervised learning.

In Chapter 7 problems of time-series prediction, filtering and estimation (which
are closely related to each other) are described as well as self-calibrating autonomous
sensors that play an important role in signal processing, statistical analysis, econo-
metrics and other disciplines and have significant commercial importance, especially
in chemical, petrochemical and related process industries.

In Chapter 8 autonomous classifiers are described that form a family AutoClassify,
including the zero-order AutoClassify0 and the first-order AutoClassify1 (both, MISO
and MIMO versions). This type of classifier is innovative and pioneering in its own
right. Their applications are discussed in more detail in Chapters 13 and 14.

In Chapter 9 the autonomous learning controller, AutoControl has been described,
which does not require the model of the plant nor previous knowledge about the con-
trol policy to be known. The controller structure is self-developed (optionally starting
‘from scratch’) based on the density and error information from the history of control
process collected during its operation and used recursively (without memorising, but
still using the history in full and exactly).

In Chapter 10 the powerful and interesting idea of the team of ALSs that can
collaborate is briefly described. It has huge unexploited potential in areas such as
mobile robotics, wireless sensor networks and UxVs to name just a few. It has been
proven precisely that the same result can be achieved by collaborating ALSs as if
they all process the whole data when in reality they only have access to and process
only their parts of the data plus respective recursively updated statistical variables as
detailed in Chapter 10 and in the US patent # 2010-0036780 granted 21 August 2012
(Angelov, 2006).

Part III of the book is devoted to the applications of ALS in the areas of oil refiner-
ies, chemical industry, mobile robotics, computer vision, evolving user-behaviour
modelling, and so on. These applications are provided primarily to demonstrate the
capacity of ALS and are the result of recent research of the author and his students
during the last five to six years.

It should be stressed that the applications that are described in Chapters 11–14 are
not exhaustive in any way. They do not close the circle of possible applications or
even the circle of applications in which the author of the book was involved.

For example, an application domain that was not described in the book, but de-
tails on which can be found by the conference and journal papers by the authors
and his associates and students, is biomedical problems. For example, the problem
of Fourier transformed infrared, FTIR, spectroscopy classification was addressed us-
ing ALS in a series of publications (Kelly et al., 2008, 2010; Trevisan et al., 2012a,
2012b). Decision support systems were developed using ALS by McDonald, Xydeas
and Angelov (2008). RDE was extensively used for autonomous anomalies detection
in flight data analysis (FDA) within the framework of the EU funded project SVET-
LANA that involves companies SAGEM, France; NLR, The Netherlands, United

Epilogue 227

Aircraft Corporation, Russia; Concern Avionica, Russia and Lancaster University
(http://www.svetlanaproject.eu/).

Readers who are interested in more details are kindly referred to these and similar
papers by other authors, for example in the journal Evolving Systems (http://www
.springer.com/physics/complexity/journal/12530) and the IEEE annual confer-
ences on Evolving and Adaptive Intelligent Systems (http://www.uc3m.es/portal/
page/portal/congresos_jornadas/home_cfp_eais).

15.2 Open Problems

ALS offer very promising new directions of research. They answer many open ques-
tions such as the old dream of designing systems that are more intelligent and self-
organising even if they are nonlinear, nonstationary and complex. This applies to
problems as diverse as clustering, classification, control, filtering, estimation, time-
series prediction, intelligent self-calibrating sensors, collaborative systems and a va-
riety of applications.

However, they are not the end of the road, the highest peak one can reach or the
‘silver bullet’. They still leave a number of questions unanswered or partially an-
swered. For example, optimality of the proposed schemes, stability and convergence
of control and other schemes.

In addition, applicability and possible constraints of ALS is based on a differ-
ent model framework, for example hidden Markov models, decision trees, and so
on. These are problems worth investing more time and research in and investigat-
ing. They were not covered at all or not fully in this book and will be of interest
for the further development of this emerging and novel branch of research with huge
potential to engineering and other applications and are certainly on the horizon of
the author’s interests.

15.3 Future Directions

As usual, the time and other constraints did not allow expanding further and this
book, although being a complete and well-balanced one, represents only a snap-shot
of what is an evolving process of the development of this research area. The next steps
(at least form the point of view of the research and study) can be summarised as:

� The optimality of the process is difficult to guarantee globally and overall; The
RLS procedure itself is optimal, but once combined with the local models one can
have either a locally or globally optimal solution and when the structure starts to
evolve/change this is, strictly speaking, not true. Ideally, clustering or data space
partitioning into data clouds should also be optimal. This is a very challenging
problem when the data are streaming and, possibly, nonstationary. The current
methodology provides a solution that is optimal subject to the structure resulting
from the clustering or data clouds and this optimality is partial – whenever a system

228 Autonomous Learning Systems: From Data Streams to Knowledge in Real-time

structure evolution takes place the problem needs to be reinitialised with new
optimality conditions. Addressing all these problems is one possible direction for
future research.

� Stability is an important problem in control. AutoControl is a very attractive and
innovative scheme that does not require plant model or control law to be known
or predetermined, yet human-intelligible and interpretable control rules can be
extracted during the process of control of an unknown plant. However, proof of
stability of the algorithm and constraints subject to which this will be valid is left
for further research.

� Applying the concept of ALS to other frameworks (different form FRB, NFS) such
as hidden Markov models, decision trees, and so on. is also another very promising
direction for future research.

Appendices

Appendix A
Mathematical Foundations

A.1 Probability Distributions

� Gaussian (normal)
The Gaussian, also known as normal (when the mean is zero) distribution is the most
widely used one in practice because of its properties. For example, the so called
central limit theorem states that the averages of random variables and signals tend
to Gaussian; a sum of two Gaussians is a Gaussian again; the distribution that
maximises the entropy for a given variance is the Gaussian; it is robust to linear
transformations, and so on.

For a single variable, x it is defined by two parameters, the mean, μ and the
variance, σ 2 or equivalently by its square root, the standard deviation, σ :

N(x | μ, σ 2) = 1√
2πσ 2

e− (x−μ)2

2σ2 (A.1)

The entropy is given by:

H[x] = 1
2

ln(σ 2) + 1
2

(1 + ln(2π)) (A.2)

The inverse of the variance, σ−2 is called the precision.
In a vector form, the Gaussian distribution is defined by the n-dimensional vector,

μ and an (n × n)-dimensional covariance matrix, � as described in Chapter 3. The
covariance matrix is by definition symmetric and positive (since it is formed by
squares of distances) quantities/elements.

N(x | μ,�) = 1
(2π)n/2 |�|1/2 e− (x−μ)T �−1(x−μ)

2 (A.3)

Autonomous Learning Systems: From Data Streams to Knowledge in Real-time, First Edition. Plamen Angelov.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

232 Appendix A

The entropy is then given by:

H[x] = 1
2

ln |�| + n
2

(1 + ln(2π)) (A.4)

The precision is again defined as an inverse, but in this case of the covariance
matrix, �−1.

� Cauchy
The Cauchy type of pdf is named after Augustin Cauchy (1789–1857) and is
given by:

pC = 1

πγ

(
1 +

(
x − x0

γ

)2
) (A.5)

which for x0 = 0 and γ = 1 simplifies to what is known as the standard Cauchy
function:

pC = 1
π (1 + x2)

(A.5a)

The Cauchy function can be considered as an approximation of the Gaussian in a
first-order Taylor series (see Chapter 2). The main advantage of the Cauchy function
is that it is nonparametric and also that it can be calculated recursively, as shown
by Angelov (2004, 2006).

� Epanechnikov
This type of distribution is named after V. A. Epanechnikov and was published in
1969. It is defined through a kernel:

p̂(x) = 1
khn

k∑
i=1

K
(

x − xi

h

)
(A.6)

where

K
(

x − xi

h

)
=

⎧⎪⎪⎨
⎪⎪⎩

1
2

V−1
n (n + 2)

(
1 −

∥∥∥∥ x − xi

h

∥∥∥∥
2
)

;
∥∥∥∥ x − xi

h

∥∥∥∥
2

< 1

0 otherwise

is the

Epanechnikov kernel function that is symmetric but not necessarily positive and
integrates to one;
h > 0 is the radius;
Vn is the volume of the unit n-dimensional sphere.

Appendix A 233

� Student
The student or t-distribution, as it is known, was proposed by William Gosset in
1908 who published under a pseudonym. It can be seen as an infinite mixture of
Gaussian distributions with the same mean and different variances:

t(x | μ, λ, p) =
�

(
p+1

2

)

� (1/2)

√
λ

πp

(
1 + λ (x − μ)2

p

)−(p+1
2)

(A.7)

where

p > 0 denotes the degrees of freedom (if p = 1 the distribution reduces to Cauchy
distribution);
� denotes the so-called gamma function (Bishop, 2009);
λ is the precision.

The vector/multivariate t-distribution is given by:

t(x | μ,�, p) = �
(p+n

2

)
�(n/2)

�1/2

(πp)n/2

(
1 + 	2

p

)−(p+n
2)

(A.8)

where

the Mahalonobis distance is defined by 	2 = (x − μ)T�(x − μ);
the covariance is given by p

p−2�−1.

� Uniform
The uniform distribution is the simplest one. For a single variable, x it is defined
as:

U(x | a , b) = 1
b − a

(A.9)

where

the mean, μ = a + b
2

;

variance, σ 2 = (b − a)2

12

A.2 Basic Matrix Properties

� Scalar (or inner) product
The scalar (or inner) product is defined over two vectors with the same dimension,
n (which, in general may be the same) by:

� = xT y = yT x =
n∑

i=1

xi yi (A.10)

234 Appendix A

� Eigenvector and eigenvalue
Eigenvector and eigenvalues are properties of square matrices that have spe-
cial roles, in particular in the PCA approach described in Chapter 3. They are
defined by:

Aui = λi ui ; i = 1, 2, . . . , n (A.11)

where

A is a n × n matrix;
ui is the eigenvector, and
λi is the corresponding eigenvalue.

This set of n linear equations has solutions (because the order is n there will be n
solutions) given by:

|A− λi I | = 0 (A.12)

which is also called the characteristic equation.
� Matrix determinant

The matrix determinant is defined over a square matrix. For example, for a 2D
matrix (n = 2) it is defined as follows:

|A| =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21 (A.13)

The determinant of the inverse matrix is given by:

∣∣A−1
∣∣ = |A|−1 = 1

|A| (A.14)

� Woodbury lemma concerning matrix inverse
The so called Woodbury lemma (named after Max A Woodbury) provides the
identity for the inverse of a correction to a matrix by correcting the inverse of the
original matrix (assuming that the correction is with rank q).

(A+ BCD)−1 = A−1 − A−1 B(C−1 + DA−1 B)−1DA−1 (A.15)

where

A, is a n × n matrix;
U is a n × q matrix;
C is a q × q matrix, and
D is a q × n matrix.

The Woodbury lemma can be proven and is used in derivation of the results for the
RLS (see Chapter 6) and Kalman filter.

Appendix B
Pseudocode of the Basic
Algorithms

B.1 Mean Shift with Epanechnikov Kernel

Algorithm 1 Pseudocode of the mean shift algorithm with Epanechnikov kernel

Begin (MeanShift_E)

DO for i=1,. . .,N

For each data point, xi, x ∈ Rn calculate the gradient by ∇̂ p(x) ≡
∇ p̂(x) = 1

Nhn

N∑
i=1

∇K
(x−xi

h

)
;

If use Epanechnikov kernel, K (u) =
{

1
2 V−1

n (n + 2)(1 − ||u||2), if ||u||2 < 1
0, otherwise

its gradient is given by:

∇K
(

x − xi

h

)
= ∇

[
1

2Vn
(n + 2)

(
1 −

∥∥∥∥ x − xi

h

∥∥∥∥
2
)]

= 1
2Vn

(n + 2)
h2 [−2(x − xi)]

The gradient of the pdf then becomes:

∇̂ p(x) = 1
N2(hnVn)

(n + 2)
h2

N∑
i=1

[−2(x − xi)] = Nx

N(hnVn)
(n + 2)

h2

⎛
⎝ 1

Nx

∑
xi ∈Sh (x)

(xi − x)

⎞
⎠

where the region Sr(x) is a hypersphere of radius h having the

volume hnVn, centred at x, and containing Nx data points.

The so-called sample mean shift (M(x)) is then:

M(x) = 1
Nx

∑
xi ∈Sh (x)

(xi − x) = μ − x

Autonomous Learning Systems: From Data Streams to Knowledge in Real-time, First Edition. Plamen Angelov.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

236 Appendix B

where μ is the local-mean i.e. the mean of samples in the region

Sh(x).

Taking into account also that the constant term Nx
N(hnVn) is the pdf

estimate over the region Sh(x), thus p̂(x) = Nx
N(hnVn) ∇ p̂(x) = p̂(x) (n+2)

h2 M(x)
Each sample is moved towards the mean using gradient ascent with

normalized gradient:

xk+1
j = xk

j + c
∇ p̂(x)

p̂(x)

where xk
j = jth data sample at the kth iteration.

Substituting the constant c = h2

n+2, one finally gets (each sample

is shifted with a value equal to the local mean):

xk+1
j = xk

j + M
(
xk

j

) = xk
j + μ − xk

j = μ

End (MeanShift_E)

B.2 AutoCluster

Algorithm 2 Pseudo-code of the AutoCluster algorithm

Begin (AutoCluster)

Initialise possibly ‘from scratch’; IF ‘from scratch’ THEN

the first data point becomes a focal point, x∗
1 ← x1;

its density increment is set to 1, δ1←1;

the mean value with the first data point, x1 ← x∗
11; k←1.

Starting from the next data point (k←k+1, xk)

DO WHILE there is no more available data or

UNTIL a requirement to stop the process is received:

1) calculate the density increment, δk in respect to all previ-

ously existing focal points;

2) update the global mean value (of all data points), xk;

3) IF Principle A (see Section 5.2.6) holds

THEN add the new data point as a new focal point, x(R+1)∗ ← xk;

update quality parameters (Age, support, utility, radius);

4) IF Principle B (see Section 5.2.6) holds

THEN remove the(se) previous focal point(s) that are close

to the new data point and replace it/them with the new data

point, xi∗ ← xk;

ELSE ignore (do not add new focal point) but update the qual-

ity parameters (age, support, utility, radius);

Appendix B 237

5) IF there is (a) focal point(s) with low utility, support or

high age

THEN remove it/them;

End (AutoCluster)

B.3 ELM

Algorithm 3 Pseudocode of the ELM algorithm

Define xi = current data sample, i indicates the instant

at which x has arrived or simply the position in a data se-

quence, x ∈ Rn.μi = ith cluster centre (local mean).r = radius.

σ i=average from ith centre to all the samples in cluster i. c
= number of clusters, counti = number samples belonging to ith

cluster. ‖x − y‖ = norm of vector x-y. αi = sum of all x in ith

cluster, βi = sum of all x2 in ith cluster.

Step 1: Read the first sample x1.
Create the first cluster around this sample and set the
following.
μ1 = x1, σ 1 = 0, c = 1, count1 = 1, αi = x, βi = x2

Step 2: Repeat the following steps until samples are
available (or until not interrupted).
Step 3: Read the next sample xi.
Calculate the distance between xi and all the existing
cluster centres ccj
distij = ‖ xi − μj ‖, for all j = 1,..., c
Step 4: Select the cluster centres that satisfy the
following:
distij > (max (σ j , r) + r) for all j = 1,..., c
Let s1 be the set of indices of all such cluster centres
that satisfy the above condition.
Step 5: IF s1 is not empty THEN go to Step (6)
ELSE Create a new cluster around xi.
c = c+1, μc = xi, σ c = 0, countc = 1, go to Step (2)
Step 6: Select the pth cluster centre that is closest to xi
and satisfies the condition given in Step (4).
distip = ‖ xi − μp‖ = min(‖xi − μl‖) for all l ∈ s1
Considering that now xi belongs to the pth cluster, update
the cluster centre and average distance.
βp= βp+xi2, αp= αp+xi

238 Appendix B

mean = (countp × μp + xi) / (countp +1)
variance = (βp+countp × mean2 − × mean∗αp)/(countp +1)
μp = mean, σ p = variance, countp = countp +1
Step 7: Since now the position of the pth cluster centre
has shifted.
Determine if it is required to be merged with any exist-
ing cluster centre that is close enough.
distpj = ‖μp - μj‖ for all j = 1,...,c and j 	= p
Select the cluster centres that satisfy the follow-
ing condition.
distpj > max(σ p,r)+max(σ j,r) for all j = 1,..., c and
j 	= p
Let s2 be the set of indices of all such cluster centres
that satisfy the above condition.
Step 8: If s2 is not empty then select the closest cluster
centre q.
distpq = ‖ μp − μq ‖ = min (‖μp- μl‖) for all l ∈ s2
Merge cluster p and cluster q and update centre position,
variance, and count.

Appendix B 239

B.4 AutoCluster

Algorithm 4 Pseudocode of the AutoPredict for prediction, estimation and
filtration

B4 AutoPredict

Update the consequents by
(6.5)-(6.6) or (6.10)-(6.11)

Calculate local density by (4.15)

Calculate the firing strength by (4.16)
Update the nearest data

cloud by (2.31), (2.32),

(5.11), (5.13), (5.15)

Generate a new data cloud
and, respectively, rule

Initialise AutoPredict

Calculate the output by (6.12)

A. OR B.
(from Section 5.2.5)?

YES

NO

240 Appendix B

B.5 AutoSense

Algorithm 5 AutoSensor

Begin AutoSense
Initialize AutoSense by the first data sample, z1 = [x1, y1];

D1←1(or by iniSense if available); k←1.

DO for each data sample WHILE data are acquired

Read the measurable variables, xk;
Calculate the density, D by RDE;

Calculate the local submodel firing strength, λ;

Estimate the outputs,ŷk;

At the next time step (k ← k + 1)

IF (mode=’self-calibration’)

Get the real value of the estimated variables, yk;
Apply the AutoPredict algorithm;

END (self-calibration)

END (DO. . .WHILE)

END (AutoSensor)

B.6 AutoClassify0

Algorithm 6 Pseudocode of the AutoClassify0

Begin AutoClassify0
Initialize possibly ‘from scratch’; IF ‘from scratch’ THEN

Form a focal point (and rule) based on the first data sample,

z1 = [x1, L1]; set its density to 1, D11←1; k←1.

Starting from the next data point

DO WHILE there is no more available data or

UNTIL a requirement to stop the process is received:

1) Read feature vector (inputs) of the data sample, xk;
2) Calculate the normalized firing strength, λk;

3) Determine the class label,L̂k;

4) At the next time step (k ← k + 1) get the true label, Lk;
5) Calculate the density, Dk(zk) in the input/output data space

of the vector zk = [xk,Lk];
6) update the densities and quality parameters of the existing

prototypes;

IF Principle A (see Section 5.2.5) holds

THEN

Appendix B 241

Add a new focal point based at the current data point;

Initiate its density to 1;

Update quality parameters for the focal points with labels

of the corresponding class.

IF Principle B (see Section 5.2.5) holds

THEN Remove the rules for which it holds;

END (IF)

ELSE

Ignore (do not change the classifier structure);

Update quality parameters for the focal points with labels of

the corresponding class.

Remove focal points with low support, utility and high Age.
END (IF THEN ELSE)

END (DO. . .WHILE)

END (AutoClassify0)

B.7 AutoClassify1

Algorithm 7 Pseudocode of the AutoClassify1 algorithm

Begin AutoClassify1
Initialize possibly ‘from scratch’; IF ‘from scratch’ THEN

Form a focal point (and rule) based on the first data sample,

z1 = [x1, L1]; set its density to 1, D11 ← 1; k ← 1.

Starting from the next data point

DO WHILE there is no more available data or

UNTIL a requirement to stop the process is received:

1) Read feature vector (inputs) of the data sample, xk;
2) Calculate the normalized firing strength, λk;

3) Determine the class label,L̂k;

4) At the next time step (k ← k + 1) get the true label, Lk;
5) Calculate the density, Dk(zk) in the input/output data space

of the vector zk = [xk, Lk];
6) update the densities and quality parameters of the exist-

ing prototypes;

IF Principle A (see Section 5.2.5) holds

THEN

Add a new focal point based on the current data point;

Initiate its density to 1;

Update quality parameters for the focal points with labels of

the corresponding class.

Initialise the consequents parameters of local submodels.

242 Appendix B

IF Principle B (see Section 5.2.5) holds

THEN Remove the rules for which it holds;

END (IF)

ELSE

Ignore (do not change the classifier structure);

Update quality parameters for the focal points with labels of

the corresponding class;

Remove focal points with low support, utility and high Age;
Update the consequent parameters of the local submodels.

END (ELSE)

END (DO. . .WHILE)

END (AutoClassify1)

Appendix B 243

B.8 AutoControl

Algorithm 8 Pseudocode of the AutoControl algorithm

B8 AutoControl

Update the consequents by (9.5)

Calculate local density by (4.15)

Calculate the firing strength by (4.16)

Update the nearest data

cloud by (2.31), (2.32),

(5.11), (5.13), (5.15)

Generate a new data cloud
and, respectively, rule

Initialise AutoControl

Calculate the control signal by (9.3)

A. OR B. from Section 5.2.5?

YES

NO

References

ActiveMedia (2004) Pioneer-3DX, User Guide, ActiveMedia Robotics, Amherst, NH, USA.
Akaike, H. (1970) Statistical predictor identification. Annals of the Institute of Statistical Mathe-

matics, 22 (1), 203–217.
Angelov, P. and Tzonkov, S. (1993) Optimal Control of Biotechnological Processes Described

by Fuzzy Sets. Journal of Process Control, 3 (3), 147–152.
Andersen, H.C., Teng, F.C. and Tsoi, A.C. (1994) Single net indirect learning architecture. IEEE

Transactions on Neural Networks, 5 (6), 1003–1005.
Andreu, J., Angelov, P. and Dutta Baruah, R. (2011) Real-time Recognition of Human Activities

from Wearable Sensors by Evolving Classifiers. IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2011), June 27–30, 2011, Taipei, Taiwan, pp. 2786–2793.

Angelov, P. (2002) Evolving Rule-based Models: A Tool for Design of Flexible Adaptive Systems,
Springer Verlag, Heidelberg, Berlin, Germany.

Angelov, P. (2004a) An approach for fuzzy rule-base adaptation using on-line clustering. Inter-
national Journal of Approximate Reasoning, 35 (3), 275–289.

Angelov, P. (2004b) A fuzzy controller with evolving structure. Information Sciences, 161 (1–2),
21–35.

Angelov, P. (2006) Machine Learning (Collaborative Systems) patent (WO2008053161, priority
date: 1 Nov. 2006; international filing date 23 Oct. 2007); USA publication 11 Feb. 2010, #
2010–0036780, granted 21 August 2012.

Angelov, P. (2010) Evolving Takagi-Sugeno Fuzzy Systems from Data Streams (eTS+), In Evolv-
ing Intelligent Systems: Methodology and Applications (eds. P. Angelov, D. Filev and N. Kasabov),
John Willey and Sons, IEEE Press Series on Computational Intelligence, pp. 21–50, ISBN: 978-
0-470-28719-4, April 2010.

Angelov, P. (2011) Autonomous Machine Learning (ALMA): Generating Rules from Data Streams.
Proc. Special International Conference on Complex Systems, COSY-2011, September 16–19,
2011, Ohrid, FYR of Macedonia, pp. 249–256.

Angelov, P. (2012) Anomalous System State Identification. Patent application GB1208542.9
priority date 15 May 2012.

Angelov, P., Baruah, R.D., Iglesias, J. and Andreu, J. (2011) STAKE: Real-time Spatio-Temporal
Analysis and Knowledge Extraction through evolving clustering, Technical Report of the
MoD project STAKE, DSTLX10000544446, June 30, 2011.

Autonomous Learning Systems: From Data Streams to Knowledge in Real-time, First Edition. Plamen Angelov.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

246 References

Angelov, P. and Buswell, R. (2001) Evolving Rule-based Models: A Tool for Intelligent Adaptation.
In Proc. of the Joint 9th IFSA World Congress and 20th NAFIPS Intern. Conf., July 25–28,
2001, Vancouver, BC, Canada, 2: pp. 1062–1066.

Angelov, P. and Buswell, R. (2002) Identification of evolving rule-based models. IEEE Transac-
tions on Fuzzy Systems, 10 (5), 667–677.

Angelov, P. and Buswell, R. (2003) Automatic generation of fuzzy rule-based models from data
by genetic algorithms. Information Sciences, 150 (1/2), 17–31.

Angelov, P. and Filev, D. (2004) An approach to on-line identification of evolving Takagi-
Sugeno models. IEEE Transactions on Systems, Man and Cybernetics, Part B Cybernetics, 34 (1),
484–498.

Angelov, P. and Filev, D. (2005) Simpl_eTS: A Simplified Method for Learning Evolving Takagi-
Sugeno Fuzzy Models, In Proc. Of The 2005 IEEE Intern. Conf. on Fuzzy Systems FUZZ-
IEEE–2005, Reno, USA, pp. 1068–1073.

Angelov, P. and Filev, D. (2002) Flexible Models with Evolving Structure, IEEE Symposium on
Intelligent Systems, Varna, Bulgaria, September 10–12, 2002, v.2, pp. 28–33.

Angelov, P. and Filev, D. (2003) On-line Design of Takagi-Sugeno Models, In: Lecture Notes in
Computer Science 2715 Fuzzy Sets and Systems IFSA2003 (eds. T. Bilgiç, B. De Baets and
O. Kaynak), pp. 576–584, ISBN 3-540-40383-3, 2003

Angelov, P., Kolev, D. and Markarian, G. (2012) Automatic System State Classification, patent
application GB1218209.3, priority date 10 October 2012.

Angelov, P., Kordon, A. and Zhou, X. (2008) Evolving Fuzzy Inferential Sensors for Process Industry,
3rd International Workshop on Genetic and Evolving Fuzzy Systems, March 4–7, 2008, Witten-
Bomerholz, Germany, pp. 41–46, ISBN 978-1-4244-1613-4.

Angelov, P. and Kordon, A. (2010) Adaptive inferential sensors based on evolving fuzzy models:
an industrial case study. IEEE Transactions on System, Man, and Cybernetics, Part B–Cybernetics,
- Part B, 40 (2), 529–539.

Angelov, P. and Yager, R. (2010) A Simple Rule-based System through Vector Membership and
Kernel-based Granulation. Proc. 5th International Conference on Intelligent Systems, IS-2010,
July 7–9, 2010, London, England, UK, IEEE Press, pp. 349–354.

Angelov, P. and Yager, R. (2011) A new type of simplified fuzzy rule-based systems. International
Journal of General Systems, 41 (2), 163–185.

Angelov, P. and Yager, R. (2011) Simplified Fuzzy Rule-based Systems using Non-parametric
Antecedents and relative Data Density, IEEE Symposium Series on Computational Intelligence
SSCI-2011, April 11–15, 2011, Paris, France, pp. 62–69, ISBN 978-1-4244-9977-9.

Angelov, P. and Zhou, X. (2006) Evolving Fuzzy Systems from Data Streams in Real-time. Proc. 2006
International Symposium on Evolving Fuzzy Systems, Sept. 7–9, 2006, Ambleside, Lake District,
UK, IEEE Press, pp. 29–35.

Angelov, P. and Zhou, X. (2007) Evolving fuzzy classifier for real-time novelty detection and
landmark recognition by a mobile robot, in Mobile Robots: The Evolutionary Approach (eds
N. Nedja, L. Coelho and L. Mourelle), Studies in Computational Intelligence Series, Springer,
pp. 95–124.

Angelov, P. and Zhou, X. (2008) Evolving Fuzzy Rule-based Classifier from Data Streams. IEEE
Transactions On Fuzzy Systems, 16 (6), 1462–1475.

Angelov, P., Andreu, J. and Vong, T. (2012) Automatic Mobile Photographer and Assisted Picture
Diary for Memory Aid. IEEE Symposium on Evolving and Adaptive Intelligent Systems,
EAIS-2012, May 17–18, 2012, Madrid, Spain.

Angelov, P., Buswell, R. and Wright, J.A. (2001) Transparency and Simplification of Rule-Based
Models for On-line Adaptation. 2nd EUSFLAT Conference, Leicester, September 5–7, 2001,
pp. 234–237.

References 247

Angelov, P., Ramezani, R. and Zhou, X. (2008) Autonomous Novelty Detection and Object Track-
ing in Video Streams using Evolving Clustering and Takagi-Sugeno type Neuro-Fuzzy System.
2008 IEEE International Joint Conference on Neural Networks, June 1–6, 2008, Hong Kong,
pp. 1457–1464.

Angelov, I., Skrjanc, S. and Blazic, Self-learning Controllers, In Springer Handbook on Computa-
tional Intelligence, (O. Castillo and P. Melin Ed.), 2012, to appear.

Angelov, P., Victor, J., Dourado A. and Filev, D. (2004a) On-line evolution of Takagi-Sugeno Fuzzy
Models. Proc. 2nd IFAC Workshop on Advanced Fuzzy and Neural Control, Sept. 16–17, 2004,
Oulu, Finland, pp. 67–72.

Angelov, P., Xydeas, C. and Filev, D. (2004b) On-line Identification of MIMO Evolving Takagi-
Sugeno Fuzzy Models. Proc. of the Intern. Joint Conf. on Neural Networks and In-
tern. Conf. on Fuzzy Systems, IJCNN-FUZZ-IEEE, July 25–29, 2004, Budapest, Hungary,
pp. 55–60.

Angelov, P., Zhou, X. and Klawonn, F. (2007a) Evolving Fuzzy Rule-based Classifiers. Proc. of
the First 2007 IEEE International Conference on Computational Intelligence Applications for Signal
and Image Processing – a part of the IEEE Symposium Series on Computational Intelligence,
SSCI-2007, April 1–5, 2007, Honolulu, Hawaii, USA, pp. 220–225.

Angelov, P., Zhou, X., Lughofer, E. and Filev, D. (2007b) Architectures of Evolving Fuzzy Rule-
based Classifiers. Proc. Of the 2007 IEEE International Conference on Systems, Man, and
Cybernetics, Oct. 7–10, 2007, Montreal, Canada, pp. 2050–2055.

Angelov, P.P. and Kasabov, N. (2005) Evolving Computational Intelligence Systems. Proc. 1st Intern.
Workshop on Genetic Fuzzy Systems, Granada, Spain, pp. 76–82.

Ankenbrandt, C.A., Buckles, B.P. and Petrya, F.E. (1990) Scene recognition using genetic algo-
rithms with semantic nets. Pattern Recognition Letters, 11 (4), 285–293.

ARIA (2011) http://robots.mobilerobots.com/ARIA/README.txt (last accessed November
2011).

Arulampalam, M., Maskell, S. and Gordon, N. (2002) A tutorial on particle filters for on-line
nonlinear non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50 (2),
174–188.

ASTM (2011) American Standard Test Method for Distillation of Petroleum Products at Atmo-
spheric Pressure, http://myastm.astm.org/filtrexx40.cgi?-P+MEM_NUM++ P+cart++/
usr6/htdocs/newpilot.com/subscription/historical/D86-04B.htm (last accessed November
2011).

Astroem, K. and Wittenmark, B. (1989) Adaptive Control, Addison Wesley, Massachusetts, USA.
Azimi-Sadjadi, M., Yao, D., Jamshidi, A. and Dobeck, G. (2002) Underwater target classification

in changing environments using an adaptive feature mapping. IEEE Transactions on Neural
Networks, 13 (5), 1099–1111.

Azimov, I. (1950) I, Robot, Doubleday & Company, New York.
Babuska, R. (1998) Fuzzy Modelling, Kluwer Academic Publishers, Norwell, MA, USA.
Badami, V. and Chbat, N. (1998) Home appliances get smart. IEEE Spectrum, 35 (8),

36–43.
Baldwin, J.F., Martin, T.P. and Pilsworth, B.W. (1995) Fril-fuzzy Evidential Reasoning in Artificial

Intelligence, Published by Research Studies Press (RSP), Taunton, UK. Marketed by John
Wiley & Sons Ltd, Baffins Lane, Chichester, West Sussex, PO19 1UD, UK. Tel. +44 243 779777,
Fax. +44 243 775878. Registered No: 641132, England. ISBN 0 86380 159 5, 404 pp, published
Jan. 1995.

Bar-Shalom, Y., Rong, L.X. and Kirubarajan, T. (2001) Estimation with Applications to Tracking
and Navigation: Theory, Algorithms and Software, John Wiley & Sons, Inc. Wiley Interscience
Publication, New York, 2001.

248 References

Baruah, R. and Angelov, P. (2010) Clustering as a Tool for Self-generation of Intelligent Systems:
A Survey. Proc. International Conference on Evolving Intelligent Systems, EIS’10, Leicester,
UK, pp. 34–41.

Baruah, R. and Angelov, P. (2012) A New On-line Clustering Algorithm: Evolving Local Means.
Proc. 2012 IEEE World Congress on Computational Intelligence, June 10–15, 2012, Brisbane,
Australia, pp. 2161–2168 (IEEE Press ISBN 978-1-4673-1489-3).

Berenji, H.R. and Khedkar, P.S. (1993) Adaptive Fuzzy Control with Reinforcement Learning. Amer-
ican Control Conference, June 1993, San Francisco, CA.

Berry, E. et al. (2007) The use of a wearable camera, SenseCam, as a pictorial diary to im-
prove autobiographical memory in a patient with limbic encephalitis: a preliminary report.
Neuropsychological Rehabilitation, 17, 582–601.

Bezdek, J. (1974) Cluster validity with fuzzy sets. Journal of Cybernetics, 3 (3), 58–71.
Bharitkar, S. and Filev, D. (2001) An online learning vector quantization algorithm. In Proc. of

Sixth International Symposium on Signal Processing and its Applications, 2: pp. 394–397.
Bishop, C. (2009) Pattern Recognition and Machine Learning, 2nd edn., Springer, NY, USA.
Boukhris, A., Mourot, G. and Ragot, J. (1999) Non-linear dynamic system identification: a

multi-model approach. International Journal of Control, 72 (7–8), 591–604.
Buehler, M., Iagnemma, K. and Singh, S. (eds) (2010) Autonomous vehicles in city traffic, The

DARPA Urban Challenge, Series: Springer Tracts in Advanced Robotics, Springer-Verlag, Berlin,
Heidelberg, 2009, 56, pp. 626.

Cara, A., Lendek, Z., Babuska, R. et al. (2010) Online Self-Organizing Adaptive Fuzzy Controller:
Application to a Nonlinear Servo System. International Conference on Information Processing
and Management of Uncertainty in Knowledge-Based Systems.

Carline, D., Angelov, P. and Clifford, R. (2005) Agile Collaborative Autonomous Agents for Robust
Underwater Classification Scenarios. In the Proceedings of the Underwater Defense Technology
Conference, June 2005, Amsterdam.

Carpenter, G. and Grossberg, S. (2003) Adaptive resonance theory, in The Handbook of Brain
Theory and Neural Networks, 2nd edn. (ed. M.A. Arbib), MIT Press, Cambridge, MA, USA,
pp. 87–90.

Carse, B., Fogarty, T. and Munro, A. (1996) Evolving fuzzy rule-based controllers using GA.
Fuzzy Sets and Systems, 80, 273–294.

CASAS (2010) Smart home project, School of Electrical Engineering and Computer Science – Wash-
ington State University, available on-line at http://ailab.wsu.edu/casas/ (last accessed 12
February 2012).

Chen, L., Nguang, S., Li, X.M. and Chen, X. (2004) Soft sensors for on-line biomass measure-
ments. Bioprocess Biosystem Engineering, 26 (3), 191–195.

Cheung, S.-C. and Kamath, C. (2004) Robust Techniques for Background Subtraction in Urban
Traffic Video. In Proc. SPIE, Electronic Imaging Video Comm. and Image Proc., San Jose,
pp. 881–892.

Chiu, S. (1994) Fuzzy model identification based on cluster estimation. Journal of Intelligent and
Fuzzy Systems, 2, 267–278.

Choset, H. and Nagatani, K. (2001) Topological simultaneous localization and mapping
(SLAM): toward exact localization without explicit localization. IEEE Transactions on Robotics
and Automation, 17 (2), 125–137.

Christiani, M., Farenzena, M., D. Bloisi and V. Murino (2010) Background subtraction for
automated multisensory surveillance: A comprehensive review. Journal of Advances in Signal
Processing.

References 249

Comaniciu, D. and Meer, P. (2002) Mean shift: a robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (5), 603–619.

Cordon, O., Gomide, F., Herrera, F. et al. (2004) Ten years of genetic fuzzy systems: current
framework and new trends. Fuzzy Sets and Systems, 141 (1), 5–31.

Dagher, I. (2010) Incremental PCA-LDA Algorithm. International Conference on Computational
Intelligence for Measurement Systems and Applications, pp. 97–101.

DailyMail (2009) http://www.dailymail.co.uk/news/article-1205607/Shock-figures-reveal-
Britain-CCTV-camera-14-people–China.html (last accessed December 2011).

Demspter, A.P. (1968) A generalization of Bayesian inference. Journal of Royal Statistics Society,
30, 205–247.

Desai, J., Ostrowski, J. and Kumar, V. (2001) Modeling and control of formation of nonholonomic
mobile robots. IEEE Transactions Robot Automation, 17, 905–908.

Detyenecki, M. and Tateson, R. (2005) Nature-Inspired Networks: The Telecommunications Industry
Point of View, Activity Report, BT, NiSiS.

Domingos, P. and Hulten, G. (2001) Catching up with the data: Research issues in mining data
streams. Workshop on Research Issues in Data Mining and Knowledge Discovery, Santa
Barbara, CA.

Doucet, A., Godsill, S. and Andrieu, C. (2000) On sequential Monte Carlo sampling methods
for Bayesian filtering. Statistics and Computing, 10 (3), 197–208.

Driankov, D., Hellendoorn, H. and Reinfrank, M. (1993) An Introduction to Fuzzy Control,
Springer, Verlag, Berlin, Heidelberg, New York.

Dubois, D., Prade, H. and Lang, J. (1990) Fuzzy Sets and Approximate Reasoning, IRIT.
Duda, R.O., Hart, P.E. and Stork, D.G. (2000) Pattern Classification, John Wiley & Sons, NY, USA.
Elgammal, A., Duraiswami, R., Harwood, D. and Davis, L. (2002) Background and Foreground

Modelling Using Non- Parametric Kernel Density Estimation for Visual Surveillance KDE.
Proceedings of the IEEE In Proceedings of the IEEE, Vol. 90, No. 7. (July 2002), pp. 1151–1163.

Endsley, M. (1996) Automation and situational awareness, in Automation and Human Perfor-
mance: Theory and Applications (eds R. Parasuraman and M. Mouloua), Earlbaum, Mahwah,
New Jersey, pp. 163–181.

Everett, M. and Angelov, P. (2005) EvoMap: On-Chip Implementation of Intelligent Information
Modelling using Evolving Mapping, Lancaster University, pp. 15.

Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P. (1996) From Data Mining to Knowledge Discovery:
An Overview, Advances in Knowledge Discovery and Data Mining, MIT Press, Massachusetts,
USA.

Ferreyra, A. and Rubio, J. (2006) A New On-line Self-constructing Neural Fuzzy Network. Proc.
45th IEEE Conf. Decision Control, Dec. 13–15, pp. 3003–3009.

Filev, D. and Kolmanovsky, I. (2012) Markov chain modeling and on-board identification
for automotive vehicles identification for automotive systems, in Lecture Notes in Control
and Information Sciences, Editors: Daniel Alberer, Håkan Hjalmarsson, Luigi de lRe; Iden-
tification for Automotive Systems, Lecture Notes in Control and Information Sciences,
ISBN: 978-1-4471-2220-3 (Print) 978-1-4471-2221-0 (Online), vol. 418, Springer, Berlin/
Heidelberg, pp. 111–128.

Filev, D. and Tseng, F. (2006) Novelty Detection-based Machine Health Prognostics, In the Proc. of
the 2006 Intern. Symposium on Evolving Fuzzy Systems, IEEE Press, pp. 193–199.

Filev, D., Larson, T. and Ma, L. (2000) Intelligent Control for Automotive Manufacturing – Rule-
based Guided Adaptation. Proc. of the IEEE Conference on Industrial Electronics, IECON-2000,
Oct. 2000, Nagoya, Japan, pp. 283–288.

250 References

Fisher, R. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics,
7 (2), 179–188.

Fortuna, L., Graziani, S., Rizzo, A. and Xibilia, M. (2007) Soft sensors for Monitoring and Control
of In Industrial Processes, Springer-Verlag, London, UK.

Fredkin, E. (1960) Trie memory. Communications of the ACM, 3 (9), 490–499.
Fritzke, B. (1994) Growing cell structures–a self-organizing network for unsupervised and

supervised learning. Neural Networks, 7 (9), 1441–1460.
Fukunaga, K. and Hostetler, L.D. (1975) The estimation of the gradient of a density func-

tion, with applications in pattern recognition. IEEE Transactions on Information Theory, 21,
32–40.

Fung, G. and Mangasariany, O. (2002) Incremental Support Vector Machine Classifier. Proceedings
of the Second SIAM International.

Gabor, D. (1946) Theory of communications. Proceedings Institute of Electrical Engineering, 93,
429–459.

Gao, Y. and Er, M.J. (2003) Online adaptive fuzzy neural identification and control of a class of
MIMO nonlinear systems. IEEE Transactions on Fuzzy Systems, 11 (4), 12–32.

Georgieva, O. and Filev, D. (2010) An extended version of the Gustafson-Kessel algorithm
for evolving data stream clustering, in Evolving Intelligent Systems: Methodology and Applica-
tions, eds. P. Angelov, D. Filev and N. Kasabov John Wiley and Sons, Hoboken, NJ, USA,
pp. 273–300.

Giarratano, J. and Riley, G. (1998) Expert Systems, PWS Publishing Co., Boston, MA, USA.
Godoy, D. and Amandi, A. (2005) User profiling for web page filtering. IEEE Internet Computing,

9 (4), 56–64.
Goldberg, D. (1989) Genetic Algorithms in Search, Optimization and Machine Learning, Addison-

Wesley, Reading, MA, USA.
Greenberg, S. (1988) Using UNIX: Collected traces of 168 users. Master’s thesis, Department of

Computer Science, University of Calgary, Alberta, Canada.
Gustafson, D.E. and Kessel, W.C. (1978) Fuzzy Clustering with a Fuzzy Covariance Matrix, Proc.

IEEE Conference on Decision and Control, including the 17th Symposium on Adaptive Pro-
cesses, Jan. 1978, pp. 761–766.

Hampapur, A. (2005) Smart video surveillance, exploring the concept of multi-scale spatiotem-
poral tracking. IEEE Signal Processing Magazine, 22 (2), 38–51.

Han, K. and Veloso, M. (1999) Automated Robot Behavior Recognition Applied to Robotic Soccer. In
Proc. IJCAI-99 Workshop on Team Behaviors and Plan Recognition.

Harris, C.J. (ed.) (1994) Advances in Intelligent Control. Taylor and Francis, London, UK.
Hastie, T., Tibshirani, R. and Friedman, J. (2001) The Elements of Statistical Learning: Data Mining,

Inference and Prediction, Springer Verlag: Heidelberg, Germany.
Haykin, S. (2002) Adaptive Filter Theory, 4th edn., Prentice Hall, Upper Saddle River NJ, USA.
Healy, M., Newe, T. and Lewis, E. (2008) Wireless Sensor Node Hardware: A Review. In 7th IEEE

Conference on Sensors, Lecce, Italy.
Hernandez, J.M. and Angelov, P. (2010) Applications of Evolving Intelligent Systems to Oil and

Gas Industry, In Evolving Intelligent Systems: Methodology and Applications (eds. P. Angelov,
D. Filev and N. Kasabov), John Willey and Sons, IEEE Press Series on Computational Intel-
ligence, pp. 399–420, ISBN: 978-0-470-28719-4, April 2010.

Hill, A., Crazer, F. and Wilkinson, P. (2007) Effective Operator Engagement with Variable Autonomy.
Proc. 2nd SEAS-DTC Technical Conference, B5, June 2007, Edinburgh, Scotland, UK.

Hodges, S., Williams, L., Berry, E. et al. (2006) SenseCam: a retrospective memory aid. in
UbiComp 2006: Ubiquitous Computing, vol. 4206 (eds P. Dourish and A. Friday), Springer,
Berlin/Heidelberg, pp. 177–193.

References 251

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial Intelligence (Complex Adaptive Systems), MIT Press:
Boston, MA, USA.

Hopner, F. and Klawonn, F. (2000) Obtaining Interpretable Fuzzy Models from Fuzzy Clustering and
Fuzzy Regression. In Proc. of the 4th Intern. Conf. on Knowledge-based Intelligent Engineering
Systems (KES), Brighton, UK, pp. 162–165.

Horak, O. (1993) Standardized methods of testing flammability of plastics. Makromolekulare
Chemie, Macromolecular Symposia, 74, 339–342.

Hornby, A. (1974) Oxford Advance Learner’s Dictionary, Oxford University Press.
Hotteling, H. (1931) The generalisation of Student’s ratio. Annals of Mathematical Statistics, 2 (3),

360–378.
IBM strategy on Autonomic Computing (2009) http://www.research.ibm.com/autonomic/

overview/solution.html, visited April 2009.
Iglesias, J.A., Angelov, P., Ledezema, A. and Sanchis, A. (2009) Modelling Evolving User Be-

haviours. Proc. 2009 IEEE Symposium Series on Computational Intelligence, 2 April, 2009,
Nashville, TN, USA, pp. 16–23.

Iglesias, J.A., Angelov, P., Ledezma, A. and Sanchis, A. (2010) Human activity recognition based
on evolving fuzzy systems. International Journal of Neural Systems, 20 (5), 355–364.

Iglesias, J.A., Angelov, P., Ledezma, A. and Sanchis, A. (2012) Creating user behaviour profiles
automatically. IEEE Transactions on Knowledge and Data Engineering, 24 (5), 854–867.

Ishibuchi, H., Nakashima, T. and Nii, M. (2004) Classification and Modeling with Linguistic Gran-
ules: Advanced Information Processing, Springer Verlag, Berlin.

Ishida, H. and Iwama, A. (1984) Ignition characteristics of gelled (0/W Emulsified) hydrocarbon
fuel pool. Combustion Science and Technology, 36 (1–2), 51–64.

Jang, J.S.R. (1993) ANFIS: adaptive network-based fuzzy inference systems. IEEE Transactions
on Systems, Man & Cybernetics, Part B–Cybernetics, 23 (3), 665–685.

Juang, C.-F. and Lin, C.-T. (1999) A recurrent self-organizing neural fuzzy inference network.
IEEE Transactions on Neural Networks, 10 (4), 828–845.

Kacprzyk, J. and Zadeh, L.A. (1999) Computing with Words in Information/intelligent Systems:
Foundations, Physica-Verlag, Heidelberg, New York.

Kailath, T., Sayed, A.H. and Hassibi, B. (2000) Linear Estimation, Prentice Hall, Upper Saddle
Rive, NJ, USA.

Kalman, R.E. (1960) A new approach to linear filtering and prediction problem. Transactions of
the American Society of Mechanical Engineering, ASME, Ser. D, Journal of Basic Engineering, 82
(Serise D), 34–45.

Kanakakis, V., Valavanis, K.P. and Tsourveloudis, N.C. (2004) Fuzzy-logic based navigation of
underwater vehicles. Journal of Intelligent and Robotic Systems, 40 (1), 45–88.

Karnik, N.N., Mendel, J.M. and Liang, Q. (1999) Type-2 fuzzy logic system. IEEE Transactions
on Fuzzy Systems, 7 (6), 643–658.

Kasabov, N. (2001) Evolving fuzzy neural networks for on-line supervised/unsupervised,
knowledge-based learning. IEEE Transactions on Systems, Man and Cybernetics – Part B, Cyber-
netics, 31 (6), 902–918.

Kasabov, N. (2002) Evolving connectionist systems for adaptive learning and knowledge dis-
covery: method, tools, applications. IEEE International Conference on Intelligent Systems, 1,
24–28.

Kasabov, N. (2006a) Adaptation and interaction in dynamical systems: modelling and rule
discovery through evolving connectionist systems. Applied Soft Computing, 6 (3), 307–322.

Kasabov, N. (2006b) Evolving Connectionist Systems: Brain-, Gene-, and, Quantum Inspired Com-
putational Intelligence, Springer Verlag, London, Heidelberg, NY.

252 References

Kasabov, N. and Filev, D. (2006) Evolving Intelligence Systems: Methods, Learning, & Applications.
International Symposium on Evolving Fuzzy Systems, Sept. 7–9, 2006, Ambleside, Lake
District, plenary talk.

Kasabov, N. and Song, Q. (2002) DENFIS: dynamic evolving neural-fuzzy inference system and
its application for time-series prediction. IEEE Transactions on Fuzzy Systems, 10 (2), 144–154.

Kasabov, N.K. (1998) Evolving fuzzy neural networks: theory and applications for on-line
adaptive prediction, decision making and control. Australian Journal on Intelligent Information
Processing Systems, 5 (3), 154–160.

Kelly, J. et al. (2008) A self-learning fuzzy classifier with feature selection for intelligent interro-
gation of mid-IR spectroscopy data derived from different categories of exfoliative cervical
cytology. International Journal on Computational Intelligence Research, 4 (4), 392–401.

Kelly, J.G. et al. (2010) Robust classification of low-grade cervical cytology following analysis
with ATR-FTIR spectroscopy and subsequent application of self-learning classifier eClass.
Journal of Analytical and Bio-analytical Chemistry, 398 (5), 2191–2201.

Kephart, J.O. (1994) A Biologically Inspired Immune System for Computers. Proc. Artificial Life IV:
The Fourth Intern. Workshop on the Synthesis and Simulation of Living Systems, MIT Press,
pp. 130–139.

Kleeman, L. (1992) Optimal estimation of position and heading for mobile robots using ul-
trasonic beacons and dead-reckoning. IEEE Transactions on Robotics and Automation, 3, 2582–
2587.

Klinkenberg, R. and Joachims, T. (2000) Detection Concept Drift with Support Vector Machines.
Proc. of the 7th International Conference on Machine Learning (ICML), Morgan Kaufman,
pp. 487–494.

Kohonen, T. (1982) Self-organizing formation of topologically correct feature maps. Biological
Cybernetics, 43 (1), 59–69.

Kohonen, T. (1984) Self-organisation and Association Memory, Springer-Verlag, New York.
Kohonen, T. (1995) Self-Organizing Maps, Series in Information Sciences, Vol. 30. Springer Verlag,

Heidelberg, Germany.
Kolev, D. et al. (2012a) Autonomous flight data analysis by recursive density estimation and

statistical analysis methods. IEEE Transactions on Intelligent Transport, submitted.
Kolev, D. et al. (2012b) A non-symmetrical single-class SVM classifier for flight data analysis.

IEEE Transactions on Neural Networks, submitted
Kordon, A. (2006) Inferential Sensors as Potential Application Area of Intelligent Evolving Systems.

International Symposium on Evolving Fuzzy Systems, Ambleside, Lake District, UK, key
note presentation.

Kordon, A. and Smits, G. (2001) Soft Sensor Development using Genetic Pro Gramming. Proc.
GECCO, San Francisco, CA, pp. 1346–1351.

Kordon, A. et al. (2003) Robust soft sensor development using GP, in Nature-Inspired Methods
in Chemometrics (ed. R. Leardi), Elsevier, Amsterdam, The Netherlands, pp. 69–108.

Kovacs, T. and Bull, L. (2005) Foundation of Learning Classifier Systems (Studies in Fuzziness and
Soft Computing), Springer-Verlag.

Koza, J. (1992) Genetic Programming: On the Programming of Computers by Means of Natural
Selection, MIT Press, USA.

Krishnakumar, K. (2003) Artificial Immune System Approaches for Aerospace Applications.
American Institute of Aeronautics and Astronautics, 41st Aerospace Science Meeting and
Exhibit, 6–9 Jan. 2003, Reno, Nevada, USA.

Kuncheva, L. (2000) Fuzzy Classifiers, Physica-Verlag, Heidelberg, Germany.

References 253

Leng, G., McGuinty, T.M. and Prasad, G. (2005) An approach for on-line extraction of fuzzy
rules using a self-organizing fuzzy neural network. Fuzzy Sets and Systems, 150 (2), 211–243.

Li, W., Yue, H.H. and Valle-Cervanteset, S. (2000) Recursive PCA for adaptive process moni-
toring. Journal of Process Control, 10 (5), 471–486.

Li, X., Wu, C., Zach, C. et al. (2008) Modeling and Recognition of Landmark Image Collections Using
Iconic Scene Graphs. Proc. European Conference on Computer Vision, ECCV08, 12–18 Octo-
ber 2008, Marseille, France; LNCS, Part I, pp. 427–440, Springer Verlag, Berlin-Heidelberg,
Germany.

Lin, F.J., Lin, C.H. and Shen, P.H. (2001) Self-constructing fuzzy neural network speed controller
for permanent-magnet synchronous motor drives. IEEE Transactions on Fuzzy Systems, 9 (5),
751–759.

Liu, J. (2005) On-line Soft Sensor for Polyethylene Process with Multiple Production Grades. Proc.
16th IFAC World Congr., Prague, Czech Republic.

Liu, L. and Yager, R.R. (2008) Classic Works of the Dempster-Shafer Theory of Belief Functions: An
Introduction, Studies in Fuzziness and Soft Computing, Springer, Vol. 219/2008, 1–34.

Liu, P.X. and Meng, M.Q-X. (2004) On-line data-driven fuzzy clustering with applications to
real-time robotic tracking. IEEE Transactions on Fuzzy Systems, 12 (4), 516–523.

Ljung, L. (1987) System Identification: Theory for the User, Prentice-Hall, New Jersey, USA.
Lughofer, E. (2011) Evolving Fuzzy Systems – Methodologies, Advanced Concepts and Applications,

Physica-Verlag, Heidelberg, Berlin.
Lughofer, E. and Angelov, P. (2011) Handling drifts and shifts in on-line data streams with

evolving fuzzy systems. Applied Soft Computing, Elsevier, 11 (2), 2057–2068.
Lughofer, E., Angelov, P. and Zhou, X. (2007) Evolving Single- and Multi-Model Fuzzy Classifiers

with FLEXFIS-Class. Proc. of the 2007 IEEE International Conference on Fuzzy Systems, 23–26
July, 2007, London, UK, pp. 363–368.

Macias, J. and Feliu, J.A. (2001) Dynamic Study of Inferential Sensors (NN) in Quality Prediction
of Crude Oil Distillation Tower Side Streams. 11th European Symposium on Computer Aided
Process Engineering, ESCAPE 11, May 2001, Kolding, Denmark.

Macias, J., Angelov, P. and Zhou, X.-W. (2006) Predicting Quality of the Crude Oil Distillation using
Evolving Takagi-Sugeno Fuzzy Models, In Proc. 2006 International Symposium on Evolving
Fuzzy Systems, September 7–9, 2006, Ambelside, Lake District, UK, IEEE Press, pp. 201–207,
ISBN 0-7803-9719-3.

Macias-Hernandez, J.J., Angelov, P. and Zhou X. (2007) Soft Sensor for Predicting Crude Oil
Distillation Side Streams using Takagi–Sugeno Evolving Fuzzy Models. Proc. 2007 IEEE In-
tern. Conference on Systems, Man, and Cybernetics, 7–10 Oct., 2007, Montreal, Canada,
pp. 3305–3310.

Mamdani, E.H. and Assilian, S. (1975) An experiment in linguistic synthesis with a fuzzy logic
controller. International Journal of Man-Machine Studies, 7, 1–13.

Manevitz, L.M. and Yousef, M. (2001) One-class SVMs for document classification. Journal of
Machine Learning Research, 2, 139–154.

Marin-Blazquez, J.G. and Shen, Q. (2002) From approximative to descriptive fuzzy classifiers.
IEEE Transaction on Fuzzy Systems, 10 (4), 484–497.

Martin, T. (2005) Fuzzy Sets in the fight against digital obesity. Fuzzy Sets and Systems, 156 (3),
411–417.

McDonald, S., Xydeas, C. and Angelov, P. (2008) Decision Support Systems – Improving levels
of Care and Lowering the Costs in Anticoagulation Therapy. First International Conference on
Electronic Healthcare for the 21st Century, eHelath, London, UK, pp. 175–178.

254 References

Michalewicz, Z. (1996) Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn.,
Springer-Verlag, Belin, Heidelberg, New York.

Murillo, A.C. and Kosecka, J. (2009) Experiments in Place Recognition using Gist Panoramas. 9th
IEEE Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras
(OMNIVIS), with Int. Conf. on Computer Vision, pp. 2196–2203.

Murphy, K., Torralba, A. and Freeman, W. (2004) Using the forest to see the trees: a graphical
model relating features, objects, and scenes. Advances in Neural Information Processing Systems,
16, 1499–1506.

Naisbitt, J. (1988) Megatrends: Ten New Directions Transforming Our Lives, Grand Central Publ.
Narendra, K.S. and Parthasarathy, K. (1990) Identification and control of dynamical systems

using neural networks, IEEE Transactions on Neural Networks, 1 (1), 4–27.
Nehmzow, U., Smithers, T. and Hallam, J. (1991) Location recognition in a mobile robot us-

ing self-organizing feature maps, in Information Processing in Autonomous Mobile Robots (ed.
G. Schmidt), Springer, Berlin.

Netto, H.V. (2006) Visual Novelty Detection for Autonomous Inspection Robots, PhD Thesis, Uni-
versity of Essex, Colchester, UK.

Newman, J.R. (1956) The World of Mathematics, Simon and Schuster, New York.
Oliva, A. and Torralba, A. (2002) Scene-Centered Description from Spatial Envelope Properties.

Proc. International Workshop on Biologically Motivate Computer Vision, BMCV 2002, 22–24
November 2002, Tubingen, Germany (eds H.H. Bulthoff, et al.), LNCS 2525, pp. 263–272,
Springer-Verlag, Berlin-Heidelberg, Germany.

Oliva, A. and Torralba, A. (2001) Modeling the shape of the scene: a holistic representation of
the Spatial Envelope. International Journal of Computer Vision, 42, 145–175.

Oliva, A. and Torralba, A. (2006) Building the gist of a scene: the role of global image features
in recognition, Visual Perception, Progress in Brain Research, 155, 23–36.

de Oliveira, J.V. (1999) Semantic constraints for membership function optimization. IEEE Trans-
actions on Systems, Man and Cybernetics, Part A: Systems and Humans, 29 (1), 128–138.

Ozawa, S., Pang, S. and Kasabov, N. (2005) A Modified Incremental Principal Component
Analysis for On-Line Learning of Feature Space and Classifier, Lecture Notes in Artifi-
cial Intelligence LNAI, Vol. 3157, Springer-Verlag: Berlin, Heidelberg, Germany, pp. 231–
240.

Pang, S., Ozawa, S. and Kasabov, N. (2005) Incremental linear discriminant analysis for classifi-
cation of data streams. IEEE Transactions on Systems, Man and Cybernetics, Part B – Cybernetics,
35 (5), 905–914.

Papoulis, A. (1991) Probability, Random Variables, and Stochastic Processes, 3rd edn., McGraw-Hill,
pp. 113–114.

Patton, R.J. et al. (2000) Issues of Fault Diagnosis for Dynamic Systems, Springer-Verlag, London,
pp. 87–114.

Pedrycz, W. (1993) Fuzzy Control and Fuzzy Systems, 2nd edn., Research Studies Press Ltd.,
Taunton, UK.

Pedrycz, W. (1994) Why triangular membership functions?. Fuzzy Sets and Systems, 64 (1), 21–30.
Pepyne, D.L., Hu, J. and Gong, W. (2004) User profiling for computer security, In Proc. American

Control Conference, pp. 982–987.
Platt, J. (1991) A resource allocation network for function interpolation. Neural Computation, 3

(2), 213–225.
Poirier, F. and Ferrieux, A. (1991) DVQ: Dynamic vector quantization – An incremental LVQ.

Proceeding International Conference Artificial Neural Networks, 2, 1333–1336.

References 255

Porikli, F. and Tuzel, O. (2003) Human body tracking by adaptive background and mean-shift
analysis, IEEE International Workshop on Performance Evaluation of Tracking and Surveillance.

Procyk, T.J. and Mamdani, E.H. (1975) A linguistic self-organizing process controller, Automat-
ica, 15, 15–30.

Psaltis, D., Sideris, A. and Yamamura, A.A. (1988) A multilayered neural network controller.
IEEE Control Systems Magazine, 8, 17–21.

Qin, S.J., Yue, H. and Dunia, R. (1997) Self-validating inferential sensors with application to air
emission monitoring. Industrial Engineering Chemistry Research, 36, 1675–1685.

Quinlan, J. (2003) Data Mining tools see5 and C5.0., available on-line at http://www.rulequest
.com/see5-info.html (last accessed 19 January 2012).

Rabiner, L.R. (1989) A Tutorial on hidden Markov models and selected applications in speech
recognition. In Proceeding of the IEEE. 77 (2), 257–286.

Ramezani, R., Angelov, P. and Zhou, X. (2008) A Fast Approach to Novelty Detection in Video
Streams using Recursive Density Estimation, 4th International IEEE Symposium on Intelligent
Systems, September 6–8, 2008, Varna, Bulgaria, v. II, pp. 14-2–14-7, ISBN 978-1-4244-1739-
1/08.

Ren, W. and Beard, R.W. (2003) A Decentralized Scheme for Spacecraft Formation Flying via the
Virtual Structure Approach. Proceeding of the American Control Conference, pp. 1746–1751.

Rittscher, J. et al. (2000) A Probabilistic Background Subtraction Model for Tracking. Proc. IEEE
Conference on Computer Vision.

Rumelhart, D.E., McClelland, J.L., the PDP Research Group (1986) Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. Volume 1: Foundations, MIT Press, Cambridge,
MA.

Sadeghi-Tehran, P. et al. (2012) Self-evolving Parameter-free Rule-based Controller. World Congress
on Computational Intelligence, 10–15 June 2012, Brisbane, Australia, pp. 754–761 (IEEE Press,
ISBN 978-1-4673-1489-3).

Sadeghi-Tehran, P. and Angelov, P. (2012) A Real-time Approach for Novelty Detection and
Trajectories Analysis for Anomaly Recognition in Video Surveillance Systems, Proc. 2012
IEEE Conference on Evolving and Adaptive Intelligent Systems, Madrid, May 16–17, 2012,
pp. 108–113, ISBN 978-1-4673-1727-6/12.

Sadeghi-Tehran, P., Angelov, P. and Behera, S. (2011) Autonomous Visual Self-localization in
Completely Unknown Environment. Proc. 2012 IEEE Conference on Evolving and Adaptive
Intelligent Systems, Madrid, 16–17 May 2012, pp. 90–95, ISBN 978-1-4673-1727-6/12.

Sadeghi-Tehran, P., Angelov, P. and Ramezani, R. (2010) A Fast Approach to Autonomous
Detection, Identification, and Tracking of Multiple Objects in Video Streams under Uncer-
tainties, In: (eds. E. Hüllermeier, R. Kruse and F. Hoffmann): IPMU 2010, Part II, CCIS 81, pp.
30–43, 2010, ISBN 3-642-14057-2 Springer Berlin Heidelberg NewYork, ISSN 1865–0929.

Schlimmer, J.C. and Fisher, D.H. (1986) A case study of incremental concept induction. In AAAI,
pp. 496–501.

Stenger, B.V. et al. (2001) Topology-free Hidden Markov Models: Application to Background Modelling.
Proc. of IEEE Conference on Computer Vision.

Stilwell, D.J. and Bishop, B.E. (2000) Platoons of underwater vehicles. IEEE Control Systems
Magazines, 20 (6), 45–52.

Sugeno, M. and Kang, G.T. (1988) Structure identification of fuzzy model. Fuzzy Sets and Systems,
28 (1), 15–33.

Sutton, R.S. and Barto, A.G. (1999) Reinforcement learning. Journal of Cognitive Neuroscience,
MIT, 11 (1), 126–134.

256 References

Takagi, T. and Sugeno, M. (1985) Fuzzy identification of systems and its application to modeling
and control. IEEE Transactions on Systems, Man & Cybernetics, 15 (1), 116–132.

Trevisan, J. et al. (2010) Syrian hamster embryo (SHE) assay (pH 6.7) coupled with infrared
spectroscopy and chemometrics towards toxicological assessment. Analyst, 135 (12), 3266–
3272.

Trevisan, J. et al. (2012a) Extracting biological information with computational analysis of
Fourier-transform infrared (FTIR) biospectroscopy datasets: current practices to future per-
spectives. Analyst, 137 (14), 3202–3215.

Trevisan, J. et al. (2012b) IRootLab: an open-source MATLAB Toolbox for biospectroscopy data
analysis, Bioinformatics, to appear.

Tsymbal, A. (2004) The problem of concept drift: definitions and related work. Technical Report
TCD-CS-2004-15, Department of Computer Science, Trinity College Dublin, Ireland.

Tsypkin, Y. (1968) Self-learning–What is it?, IEEE Transactions on Automatic Control, 13 (6),
608–612.

Valavanis, K. (2006) Unmanned Vehicle Navigation and Control: A Fuzzy Logic Perspective, Proc. of
the 2006 International Symposium on Evolving Fuzzy Systems, Ambleside, Lake District, UK,
IEEE Press, pp. 200–207.

Vapnik, V.N. (1998) The Statistical Learning Theory, Springer Verlag, Berlin, Germany.
Wang, L.-X. (1992) Fuzzy Systems are Universal Approximators. Proc. of the First IEEE Interna-

tional Conference on Fuzzy Systems, FUZZ-IEEE – 1992, San Diego, CA, USA, IEEE Press,
pp. 1163–1170.

Wang, L.X. (1994) Adaptive Fuzzy Systems and Control, Prentice Hall Inc, USA.
Werbos, P.J. (1974) Beyond Regression: New Tools for Prediction and Analysis in the Behavioral

Sciences, PhD thesis, Harvard University.
Werbos, P.J. (1990) Back-propagation through time: what it does and how to do it. Proceedings

of the IEEE, 78 (10), 1550–1560.
Widmer, G. and Kubat, M. (1996) Learning in the presence of concept drift and hidden contexts.

Machine Learning, 23 (1), 69–101.
Widrow, B. and Stearns, S. (1985) Adaptive Signal Processing, Prentice Hall, Englewood Cliffs,

NJ, USA.
Woodbury, M.A. (1950) Inverting Modified Matrices, Memorandum Rept. 42, Statistical Research

Group, Princeton University, Princeton, NJ, p. 4.
Yager, R. (2006) Learning Methods for Intelligent Evolving Systems. In Proc. 2006 International

Symposium on Evolving Fuzzy Systems, Ambleside, UK, IEEE Press, pp.3–7.
Yager, R.R. (1988) On ordered weighted averaging aggregation operators in multi-criteria

decision making, IEEE Transactions on Systems, Man and Cybernetics, 18 (1), 183–190.
Yager, R.R. and Filev, D.P. (1993) Learning of Fuzzy Rules by Mountain Clustering. Proc. of the

SPIE Conf. on Application of Fuzzy Logic Technology, Boston, MA, USA, pp. 246–254.
Yager, R.R. and Filev, D.P. (1994) Essentials of Fuzzy Modeling and Control, John Wiley and Sons,

New York, USA.
Yen, J. and Gillespie, W. (2002) A Global Local Learning Algorithm for Identifying Takagi-Sugeno-

Kang Fuzzy Models. Proc of VIEEE International Conference on Fuzzy Systems, pp. 967–972.
Yuan, Y. and Shaw, M.J. (1995) Induction of fuzzy decision trees. Fuzzy Sets and Systems, 69,

125–139.
Zadeh, L.A. (1965) Fuzzy sets. Information and Control, 8 (3), 338–353.
Zadeh, L.A. (1975) The concept of a linguistic variable and its application to approximate

reasoning – I. Information Sciences, 8 (3), 199–249.

References 257

Zhivkovic, Z. and Van der Heijden, F. (2006) Efficient adaptive density estimation per image
pixel for the task of background subtraction. Pattern Recognition Letters, 27 (7), 773–780.

Zhou, X. and Angelov, P. (2007) An Approach to Autonomous Self-Localization of a Mobile Robot in
Completely Unknown Environment Using Evolving Fuzzy Rule-Based Classifier. Proc. First 2007
IEEE Intern. Symposium on Computational Intelligence Applications for Defense and Secu-
rity, IEEE Symposium Series on Computational Intelligence, SSCI-2007, Honolulu, Hawaii,
USA, pp. 131–138.

Zhou, X.-W. and Angelov, P. (2006) Real-Time joint Landmark Recognition and Classifier Generation
by an Evolving Fuzzy System. Proc. of the 2006 IEEE World Congress on Computational
Intelligence, WCCI-2006, Vancouver, BC, Canada, pp. 6314–6321.

Glossary

AI artificial intelligence
AIS autonomous input selection
AL autonomous learning
ALS autonomous learning systems
ACS automatic control system
ANFIS adaptive neuro-fuzzy inference systems
AnYa one of the three main types of FRB
ARCOS advanced robotics control and operations firmware
ARIA advanced robot interface for applications (software package in C)
ART adaptive resonance theory
AutoClassify autonomous classifier
AutoCluster autonomous clustering
AutoControl autonomous controller
AutoPredict autonomous predictor
AS autonomous system
ASTM American Society for Testing and Materials
AutoSense autonomous sensor
BS background subtraction
CCTV closed-circuit television
CPU computer processing unit
DARPA Defense Advanced Research Projects Agency
DENFIS dynamically evolving fuzzy inference systems
DM decision making
DSS decision support systems
EA evolutionary algorithm
EBP error backpropagation method (also known as the delta rule)
EFM evolving fuzzy models

Autonomous Learning Systems: From Data Streams to Knowledge in Real-time, First Edition. Plamen Angelov.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

260 Glossary

EFS evolving fuzzy systems
EKF extended Kalman Filter
ELM evolving local means
eIS evolving intelligent system
eTS evolving Takagi–Sugeno type fuzzy rule-based system
EO electro-optical
FCM fuzzy C means
FL fuzzy logic
FLC fuzzy logic controller
FN false negative
FP false positive
FRB fuzzy rule-based system
FTIR Fourier transform infrared (spectroscopy)
GA genetic algorithm
GFS genetic fuzzy systems
GMM Gaussian mixture models
GK Gustafson–Kessel clustering method
GP genetic programming
GPS global positioning system
GSM Groupe Speciale Mobile, also Global System for

Mobile Communications
HGO heavy gas oil
HN heavy naphtha
HUV hue, saturation and value (a representation in image processing)
HMM hidden Markov models
ICA independent component analysis
iLVQ incremental learning vector quantiser
IR infrared
KDE kernel density estimation
kNN k nearest neighbour
KNO kerosene oil
LDA linear discriminant analysis
LGO light gas oil
LMS least mean squares
LS least squares
LVQ learning vector quantiser
MGO medium gas oil
MIMO multi-input–multi-output system
MINO multiple-input, no output
MISO multi-input–single-output
ML machine learning
MoM mean of maxima
MoD Ministry of Defence, UK
NDEI nondimensional error index

Glossary 261

NFS neuro-fuzzy system
NN neural network
P proportional controller
PI proportional integral controller
PC principle component
PCA principle component analysis
PDF probability density function
PLC partial least squares
PR pattern recognition
RBF radial basis function
RDE recursive density estimation
RES atmospheric residue
RLS recursive least squares
RMSE root mean square error
rPCA recursive PCA
rLDA recursive LDA
SA statistical analysis
SAR singular aperture radar
SLAM self-localisation and mapping
SI system identification
SPARC self-organising parameter-free autonomous rule-based controller
SOM self-organising map
SVM support vector machines
SVD singular value decomposition
TS Takagi–Sugeno-type fuzzy rule-based systems
UAS uninhabited/unmanned aerial/airborne system
UAV unmanned aerial vehicle
UGV unmanned ground-based vehicle (mobile robot)
UxV unmanned vehicles
VQ vector quantisation
wRLS (fuzzily) weighted RLS

Index

a posteriori information, 20
a priori estimation, 20
a prototype, 44
Abel index, 178
accuracy, 172
acquired knowledge, 212
activities of a daily life, 197, 213
actuator, 148
adaptive control systems, 1, 14, 139, 143
adaptive control theory, 143
adaptive estimation, 15
adaptive filtering, 14
adaptive resonance theory, ART, 133
adaptive systems, 10
age, 101
Age curve, 102
album diary, 189
ambient assisted living, 141, 212
analysers, 167
analytical, 53
anomaly detection, 9, 184
antecedent, 64
AnYa type of FRB, 64, 69
application scenario, 193
arranging rendezvous, 193
Artificial Immune System, 33
ASTM, 166
Atmospheric Residue, 167
attribute, 37
automated reasoning, 180

automatic control, 3
automatic input variables selection, 20, 100,

130
automatic scene recognition, 219
automatic system structure identification, 37
automatic system structure innovation, 9
autonomous classifiers, 15, 185
autonomous controller, 145, 147
autonomous evolution, 172
autonomous learning, 1, 3, 4
autonomous learning and knowledge

extraction from data streams, 79
autonomous learning process, 161
autonomous learning sensors AutoSense, 123,

128
autonomous learning system, 14
Autonomous Learning Systems, xxi
autonomous novelty detection, 197
autonomous predictors, 15
autonomous sensor, 172
autonomous systems, 1, 3, 4
autonomous underwater vehicles, 193
autonomous video analytics, 198
autonomously learning and self-evolving

classifiers, 133
autonomy, 4
AutoSense architecture, 128
average, 23
average molecular weight, 128
axis-parallel clusters, 48

Autonomous Learning Systems: From Data Streams to Knowledge in Real-time, First Edition. Plamen Angelov.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

264 Index

background, 199
background model, 199
background subtraction, 198
bandwidth, 156, 203
batch, 213
Bayes theorem, 20
Bayesian, 20
Bayesian approach, 30
Bayesian inference, 30, 73
Bayesian probabilistic system, 72
Bayesian propagation rule, 29
behaviour, 156, 197
behaviours of agents, 211
belief-based approach, 20, 22
binary, 213
biomass concentration, 126
bioprocesses, 128
bitmap image frame, 186
‘black box’ type of system, 79
‘black-box’ type of methods, 85
bottom vapour injection, 167
boundaries of the clusters, 44
brightness, 199
bumper sensor, 179

calibrate, 169
camouflage, 199
care, 211
Cauchy function, 25
Cauchy kernel, 203
central limit theorem, 21
centre of gravity, 7, 66, 71, 75, 90
characteristics/features, 34
Chebyshev’s inequality, 39
Chebyshev’s theorem, 33, 39
chemical compositions, 172
chemical industry, 172
chemical industry automation, 122
chemical process engineer, 168
children nodes, 214
chromaticity, 200
chromosome, 12
class labels, 89, 219
classification, xxi, 2}, 20, 37
classification rate, 140
classifier structure, 56
classifier update, 140

classifiers, 121, 155
client-server mode, 180
closed from, 53
closing event, 214
cluster age, 51, 176
cluster analysis, 33
cluster boundaries, 44
cluster centre, 46
clustering, xxi, 2, 20, 37, 121, 155
clustering data, 42
cold pump, 167
collaboration, 20, 157
collaborative ALS, 15, 193
collaborative autonomous classification, 160
collaborative scenario, 155, 190, 191
collision detection, 28
colour coding, 160, 200
column overhead, 168
command line, 213, 214
commercial products, 165
communication bandwidth, 161
communication capability, 155
competitive, 155
complete, 65
completeness, 89
complex systems, 43
computational complexity, 48, 203
computational costs, 126
computational intelligence, 11
computational requirements, 10
‘computer scientists’, 216
computer users, 211
computer vision, 197
concept drift, 102
concept shift, 3
conceptual, 220
conditional probability, 21
conjunction, 69
conjunction operator, 65
connectives, 7
consequents, 7
consumer products, 65
contaminations, 144, 176
continuous analysers, 166
contours, 220
control, 20
control policy, 153

Index 265

control problem, 182
control signal, 145
control theory, 6, 10, 37
controllers, 121, 155
conventional clustering, 43
cooperative, 43, 155
covariance, 24
covariance matrix, 41, 48
covariance matrix estimation, 56
coverage, 51
coverage of the whole data space, 89
crisp, 61
criteria for optimisation, 13
criteria of optimality, 42
crossover, 12
crude distillation unit, 124, 167
crude oil, 167
cyber security, 34, 134
Cybernetics, 3

data cloud, 70, 96, 109, 137
data density, 7, 21, 176
data mining, xxi, 37
data preprocessing, 34
data samples, 43
data sets, 3
data space, 7, 38, 215
data space partitioning, 43
data stream, 10, 14
data streams, 1, 3, 191
data-centred, 22
data-driven model, 66
‘dead reckoning’, 180
decentralised mode, 157
decision making, 37, 157, 180
decision support system, 13
decision tree, 1, 6, 133
decomposition of the data space, 91
defuzzification, 69
degree of belief, 22
degree of freedom, 140
degree of membership, 22, 44
degree of support, 69
density distribution, 9, 25
density estimation, 157
density graph, 189
density increment, 7

density thresholding approach, 201
detect the drift, 176
determinant of the covariance matrix, 53, 56
determinism, 19, 191
deviation, 24
diagonal, 48
dialectics, 19, 190
differential equations, 6
digital obesity, 2
digital signal processing, 10
digital world, 212
dimensionality, 158
dimensionality reduction, 39
‘directed’ random search, 11
dissimilarity measure, 44
distillated product, 166
distillation column, 172
distillation curve, 166
distillation process, 168
distillation tower, 165, 172, 177
divide et impera, 191
drift, 3, 102, 167
drifting errors, 180
duality, 20
dynamic environment, 4
dynamic evolution, 85
dynamic phenomena, 22
dynamically evolving, 169, 212
dynamically evolving structure, 143

eClass, 134
eClusteirng, 182
eClustering+, 51
edge, 200
eigenstructure, 48
eigenvalue, 41
eigenvector, 40, 41
electro-optical, 197
electronic compass, 180
ELM method, 52
embedded controller, 180
emissions, 126
emotions, 212
empirical models, 126
end point, 166
ensemble average, 201
ensemble of classifiers, 155

266 Index

Epanechnikov type of kernel, 27
epistemiological point of view, 20, 22
ergodic, 201
error back-propagation, 9
estimation, 20, 24, 122
estimators, 15, 155
Euclidean type distance, 31
event detection in sensor networks, 34
evolutionary, 11
evolutionary algorithms, 11
evolutionary computation, 61
evolving, 6, 176
Evolving Clustering (eClustering) method,

15, 46, 49, 50, 182
evolving FRB, 143
evolving fuzzy models, EFM, 79
evolving fuzzy system, 12
evolving intelligence, 1, 3
Evolving Intelligent Systems, 1
Evolving Local Means (ELM) clustering

algorithm, 51
evolving structure, 11, 113, 202
evolving systems, 1, 11, 85, 91, 105
evolving TS model, 68, 79
exact expression, 55
expansions, 220
expectation, 24
expectation maximisation (EM) algorithm, 49
expectations, 23
‘experienced programmers’, 216
expert knowledge, 212
expert system, 69
exploration, 50
extracting knowledge, 6, 212
‘extract’ knowledge from data (streams), 66
‘extraction’ of human interpretable

knowledge, 79

face expression, 206
false negatives, 199
false positives, 200
fault detection, 9, 197
feature extraction, 220
features space, 7, 40
fermentation, 126
few winners take all, 139
filtering, 20, 122

filters, 155
financial trading, 65
‘fine tuning’, 79
first moment, 24
first principles, 85
first principles models, 128, 169
first publications, 61
fixed classification hypersurface, 134
“flash” memories, 189
flow rate, 167
focal point, 44, 88, 109
‘following the leader’, 179
food industry, 148
forecasting, 121
foreground, 202
formation control, 193
frame by frame, 9
fraud detection, 34
frequentistic approach, 20, 22
fuzzily weighted recursive least squares

(wRLS), 15
fuzzy C-means, 43
fuzzy c-means (FCM) algorithm, 48
fuzzy clustering, 44
fuzzy linguistic variable, 85
fuzzy logic, xxi, 61
fuzzy modelling, 61
fuzzy rule-based model, 1, 8
fuzzy rule-based system, 12
fuzzy rules, 6, 9
Fuzzy sets theory, 61
fuzzy system, xxi, 13

Gabor spectral representation, 220
Galileo, 180
gas chromatograph analysis, 125
gas chromatography, 172
gas oil, 165, 167
gasoline, 165
Gaussian, 25
Gaussian membership function, 66
Gaussian mixture model (GMM) approach,

202
generalisation, 134
genetic algorithms, 7, 11
genetic programming, 7, 11
geometrical centre (mean), 44

Index 267

GK-like evolving algorithm, 52
global, 9
global density, 31
Global Positioning System, 180
global validity of the model, 79
globally optimal, 111
GLONASS, 180, 187, 189, 193
goal, 13
GPS, 187, 189, 193
GPS data, 189
GPS Mapper, 189
gradient of the pdf, 49
gradient-based optimisation, 9, 49
gradual change, 12
gradual evolution, 127, 175
gradually evolve, 113
graphical models, 220
graphs, 169
‘grey box’ type of system, 79
grid point (node), 46
growing neural network, 11
GSM, 189
Gustafson–Kessel (GK) algorithm, 43, 48

hackers, 134
hard sensors, 122, 167, 172
hardware (on chip) implementation, 129
hardware realisation, 155
hardware sensors, 126
heavy gas oil, 167
heavy naphtha, 167
hidden layer, 75
hidden Markov models (HMM), 29, 211
hierarchical clustering, 44
high descriptive power, 91
high dimensional data vectors, 42
historical data, 212
hot pump, 167
Hotteling statistics, 33
hue, 186, 199
human behaviour, 212, 213
human expert, 6
human intelligibility, 106
human intervention, 169
human involvement, 141
human operator, 67, 213
human-computer interaction, 197

human-understandable rules, 171
hypercubic, 44
hyperellipsoidal, 44, 45
hyperrectangle, 88
hyperspherical, 44
hypersurface, 188

identification, 6, 180
illumination, 199
illumination changes, 198
image frame, 198
incremental classifiers, 56, 133, 219
incremental Fisher LDA, 133
incremental Learning Vector Quantiser,

iLVQ, 133
incremental online clustering methods, 50
incremental vector quantisation, 49
independent and identically distributed

random data, 27
independent component analysis (ICA), 130
indirect adaptive control, 15, 144, 145, 147
individual self-development, 12
indoor, 181
industrial data, 172, 177
industrial process, 126, 144
infeasible point, 24
inference, 7
inference mechanism, 139
inferential sensor, 118, 125, 167
inflammability index, 124, 171
inflex point, 176
information granules, 139
information revolution, 2
infrared, 197
initial rule-base, 12
innovation, 105
input variable selection, 99
intelligence, 1
intelligent living environments, 218
intelligent sensor, 155
intelligent sensors, 3
intelligent services, 212
intelligent systems, 2, 6
interconnection, 86
interface, 185
interpretability, 66, 106, 161
interpretable, 127, 172

268 Index

interpretable structures, 85
inverse covariance, 55
inverse plant dynamic, 143
iterative, 49
iterative process, 169

join time-data space, 176
joint input space, 89
joint input-output data space, 89

k-means, 43
k-nearest neighbours, 44
Kalman filter, 111, 207
kernel density estimation (KDE), 26, 202
kernel function, 27
kernel radius, 28, 49
Kernels, 26
kerosene, 165
kerosene oil, 167
knowledge extraction from data streams, 13
knowledge generation, 12
knowledge summarisation, 3

lab technician, 168
labels, 56
laboratory analysis, 125, 166
laboratory tests, 168
landmark, 156, 180, 186
landmark detection, 29
laser scanner, 179
lateral extraction, 165
lattice of axes-orthogonal hyperboxes, 87
leader following, 193
learn online, 10
learning ‘from scratch’, 12
learning objective, 13
‘learning trough experience’, 147
learning vector quantisation (LVQ), 44
Least Squares (LS), 109
level of autonomy, 4, 13, 181
lifecycle costs, 116, 126, 168
light gas oil, 167
linear, 9
linear combination, 40, 99
linear submodel, 109
linear system, 67, 143
linguistic, 172

linguistic expression, 65
linguistic information, 65
linguistic label, 76
linguistic statement, 64
linguistic term, 44
linguistic variable, 87
liquid volume, 168
LMS-like algorithm, 147
LMS-like approach, 149
local, 9
local density, 31, 71
local interpretability, 111
local models, 8, 43
local regions, 91
local submodels, 109, 140
local validity of the model, 79
localisation, 181
locally linear, 81
locally optimal, 111
locally weighted, 111
locally weighted RLS, 112
logical AND, 65
long-term learning, 79
long-term memory, 105
lower threshold, 48
luminance, 181, 199

machine health monitoring, 197
machine intelligence, 3
machine learning, xxi, 13, 37
Mahalonobis, 29
Mahalonobis distance, 45
Mahalonobis norm, 45
maintenance, 168
maintenance costs, 126
Mamdani type FLC, 196
manufacturing, 65
mapping, 185, 196
mapping function, 56
Markov models, 6
Markovian assumption, 212
mathematical modelling, 211
matrix inverse calculations, 48, 54
matrix of observations, 37
maximum likelihood, 21
mean, 23
mean Age, 102

Index 269

mean distance, 29
mean of the density, 34
mean of the maximum, 66
Mean shift algorithm, 49
mean value, 41
mean-shift clustering algorithm, 51
measurable variable, 37
measurements, 30
medical imaging, 65, 197
medicine, 211
Medium Gas oil, 167
melt index, 126
membership function, 7, 9
memory requirement, 140
memory-impaired individuals, 189
MIMO structure, 129
Minkowski distance, 44
MISO (multiple-input–single-output) model,

68
mission, 157, 182
mission success, 192
mixture Gaussian models, 1
mobile phone, 156
mobile robotics, 139, 141, 144, 179
mobile robots, 1, 156
model-based, 33
modelling, 2
monitoring of the drift, 140
monitoring the age, 140
monitoring the quality, 14, 166
mote, 156
motion sensors, 218
motion tracking, 206
motor drives, 180
Mountain clustering method, 46
mountain function, M, 46, 47
Multi-Input Multi-Output (MIMO)

Takagi–Sugeno fuzzy system, 68
multi-input–multi-output (MIMO), 15
multiclass classification, 33
multilayer perceptron, 136
multimodal, 25
multimodel structure, 169
multimodel systems, 1, 43, 110, 143
multipass, 49
multiple UxVs, 193
multivalued logic, 69

multivariate KDE, 27
multivariate set, 37
mutation, 11
mutual dependencies, 21
mutual position, 21

Naı̈ve Bayes, 218, 219
naphtha, 124, 165
naphtha extraction, 168
natural evolution, 11, 12
natural groupings, 42
naturalness, 220
navigation, 180, 196
network intrusion detection, 134
neural network, 1, 6, 13
neurodegenerative disease, 189
noise, 20
non-Gaussian, 169
non-Gaussian distribution, 202
noncomplete representation, 66
noniterative and one pass, 52
noniterative formula, 56
nonlinear optimisation, 7
nonlinearity, 196
nonparametric, 9, 29, 201
nonparametric approach, 203
nonsingular, 55
nonstationarity, 196
nonstationary, data stream, 158
nontransparent structure, 196
normal Gaussian distribution, 202
normal set, 61
normalisation, 37, 96, 97
Normalisation in an Evolving Environment,

98
normalised firing strength, 68
novelty detection, 34
‘novice programmers’, 215
number of clusters, 43

object detection, 180
object identification, 204
object menu, 189
object tracking, 197
object-orientated, 180
observations, 30, 37
occlusion, 198

270 Index

odometer, 182
office environment, 182
offline, 46
oil fractions, 167
oil refining process, 166
‘on average’, 24
on-chip implementation, 140
onboard computer, 179
onboard devices, 179
one pass, 191
one-class support vector machines (SVM), 33
one-pass processing mode, 10
online, 3, 46
online input variable selection, 172
online mode, 10
online processing, 38
open (expandable or reducible) structure, 79,

191
openness, 220
operating conditions, 172
operating regime, 144, 176
operational capabilities, 193
operational change, 172
opportunism, 19
optimality criteria, 110
order dependency, 213
order-dependent, 190
ordered events, 213
orientation, 48
orthogonalisation, 39, 40, 99
outdoor, 181
outdoor scenes, 220
outlier, 8
outlier detection, 34
outliers, 20
overlap, 43, 91
overload, 212

parameter adjustment, 14
parameter identification, 8
parameter learning, 159
parameter tuning, 143
parameter-free controller, 144, 202
parametric, 201
parametric local submodel, 202
partial least squares (PLS), 99, 167
partial membership, 62

partial truth, 66, 69
particle filters, 202
partitioning the data space, 42
Parzen windows, 26
passive millimeter wave (mmW), 197
patient, 189
pattern recognition, xxi, 37
payload, 181
perception, 69
perceptual dimensions, 220
personal experience, 189
petrochemical industry, 118
petroleum cuts, 165
pharmaceuticals, 125
physical device, 180
physical variables, 124, 171
physiology, 211
PI type control, 145
plant dynamics, 145
plant measurements, 167
polymerisation, 178
polymerisation rate, 128
polynomial model, 67
polypropylene, 172
population-based genetic evolution, 11
populations of individuals, 12
posterior knowledge, 86
potential, 46
predictability, 191
prediction, 20, 122
predictors, 155
preferences, 212
preprogrammed logic, 4
prespecified, 43
primitive forms of knowledge, 139
principal components, PCs, 40
Principle Component Analysis, PCA, 39
prior knowledge, 44, 85, 86, 109
privacy, 211
probabilistic models, 85, 191
probability density function, 21
probability theory, 19
problem-independent, 49
problem-specific parameters, 103
problem-specific threshold, 8
process control, 65
product composition, 172

Index 271

product quality, 126, 167
product taking off, 168
prognostics, 20
projection, 42
propylene, 172
prototype, 139
prototype-based classifiers, 136
prototype-based clustering, 44, 46
proximity, 44
proximity measures, 37
pseudo-inversion, 110
psychology, 211

quadratic optimisation, 9
quality of services, 211
quality of the clusters, 51

radial-basis function (RBF) type NN, 75
random, 20
random distributions, 201
random variable, 24
randomness, 19
range, 38, 184
raw material, 144
raw sensory data, 212
RDE, 29
real data distribution, 71
real-time, 3
rear sonar, 184
recalibrate ‘on the fly’, 9, 127
recalibration, 116, 126, 169
recognition, 220
reconnaissance, 156
rectification, 126
recursive (online) feature extraction

(rPCA-rLDA), 220
recursive algorithm, 10
recursive calculations, 31
recursive least squares, 9
reducing complexity, 39
regression, 2, 20
regression model, 124, 140
reinforcement learning, 13
relative coordinates, 182
relative data distribution, 29
relative frequency, 214
relative location, 187

relative position, 156, 185
remodelling, 169
rendezvous, 182
reproduction, 12
resetting the covariance matrices, 113
retraining, 9, 169
retraining period, 169
RLS with exponential forgetting, 112
robotics, 65
robust control, 144
robustness, 15, 203
root, 214
rotation, 183
roughness, 220
route planning, 180
routing, 181
rules extraction, 12

salient features, 220
sample-by-sample, 9
sampling time, 125
saturation, 186, 199
scalar product, 31, 193
scene, 220
scene interpretation, 200
seasonal effects, 176
security, 197, 211
segmentation, 206
selection, 12
self localisation and mapping (SLAM), 180
self-awareness, 3
self-calibrating, 3, 127, 129, 165, 172
self-calibrating, autonomous sensors, 116
self-developing, 134, 147, 176, 188
self-evolving FRB, 143
self-learning, 143, 176
self-learning classifier, 134
self-learning controllers, 20, 143
Self-Localisation and Mapping (SLAM), 155
self-maintaining, 3, 127, 129
self-monitoring, 1, 3
self-organising fuzzy logic controller, 143
self-organising system, 11, 143
semantic concept nets, 220
semantic information, 220
semantic meaning, 44
semisupervised learning, 13, 14

272 Index

sensitivity, 203
sensitivity analysis, 20
sensor platform, 156
sensor readings, 213
sensory data stream, 212
sensory devices, 211, 218
sequence of events, 213
shadows, 200
shapes, 48, 220
shift, 102, 133, 134, 167
short-term learning, 79
short-term memory, 105
side stream products, 166
signal processing, 122
Signature Aperture Radar (SAR), 197
similarity, 187
simplified Kalman filter, 113
simplified map, 181, 187
simulated online mode, 172
single perceptron, 61
single-class classification, 33
singular value decomposition, SVD, 40
situation awareness, 157
SLAM, 185
smart apartment, 218
smart device, 213
smart home, 213, 214, 218
smart phone app, 189
smart wearable micro-camcorder, 189
social web sites, 219
soft sensors, 125
software agents, 156, 212
sonar, 179
spatial structure, 220
specification requirements, 166
spread, 125
stability-plasticity dilemma, 21
standard deviation, 34, 189
standardisation, 39, 96, 97
Standardisation in an evolving environment,

97
state space representation, 79
statistical analysis, xxi, 9
stochastic model, 6
streaming sources, 189
structural phenomenon, 21
structure design, 109

structure evolution, 140, 159
structure identification, 7, 14, 43
structure inadequacy, 167
structure innovation, 9
subregion, 88
subsequence, 213
subsystem, 43
Subtractive clustering method, 44, 46
summarisation ability, 62
supervised learning, 14, 86
support (number of samples per cluster),

51
support vector machines (SVM), 67
surveillance, 156, 197
survivability, 192
swarm, 182
System engineering, xxi
system identification, 6, 122
system modelling, 65
system parameters, 3
system structure, 3, 85
system structure adaptation, 11, 143
system structure identification, 7, 85, 125
systems-on chip, 1

t-norm, 65, 74
Takagi-Sugeno, 7
team of mobile robots, 193
team of uninhabited vehicles (UxV), 193
technological process, 166
termination criterion, 47
texture, 200
texture regions, 220
thermal imagery, 200
3σ principle, 33
threshold, 44
time-series, 15, 20
time-series prediction, 2
total membership, 62
tracking, 180
trajectory, 206
transfer function, 6
transition probabilities, 86
transparency, 106
transparent, 127
trapezoidal membership function, 66
trie, 213

Index 273

two-class classification, 138
type of antecedents, 7

ubiquitous computing, 141, 211, 218
ubiquitous sensors, 211
uncertainties, 19, 191
unconditional probability, 73
unexplored environment, 180
universal approximator, 143, 145
universal approximators, 62
universal coordinates, 220
UNIX commands, 219
UNIX operating system, 213
unmanned aerial vehicles, UAVs, 2,

193
unmanned airborne systems, 3
unmanned ground-based vehicles (UGVs),

193
unmanned vehicles, 161
unsupervised learning, 13, 14
upper threshold, 48
user behaviour, 211
user behaviour analysis, 219
user behaviour modelling, 212
user interests, 212
user profiles, 212
user-defined threshold, 51
utility, 91, 96, 102

value of brightness, 186, 199
vapour, 166
vapour side stripper, 167
variance, 24

variation, 40
variation in the data density (pattern), 79
vector inputs (features) space, 89
video analytics, 197
video signal, 185
video source, 189
video stream, 9, 186, 187, 204
Video Streams, 197
video-analytics, 9
VideoDiaries, 189
visual landmarks, 182, 189
Viterbi algorithm, 202
voluntary standard, 166
vulnerability, 156

wall following, 179, 182
wall following behaviour, 184
wear and tear, 176
wearable micro-camcorder, 189
Web browsing, 213
weighted sum of local outputs, 43
widget, 189
wifi, 189
‘winner takes all’, 7, 74

principle, 137
wireless communication devices, 211
wireless communications, 218
wireless sensor networks, 1, 161
world model, 6

Zadeh-Mamdani, 7
χ 2 principle, 33
χ 2 tests, 33

