
Modelling and Controlling
of Behaviour for Autonomous
Mobile Robots

Hendrik Skubch

Modelling
and Controlling
of Behaviour
for Autonomous
Mobile Robots

Hendrik Skubch
Kassel, Germany

University of Kassel, 2012
Date of Disputation 17.08.2012

ISBN 978-3-658-00810-9 ISBN 978-3-658-00811-6 (eBook)
DOI 10.1007/978-3-658-00811-6

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Library of Congress Control Number: 2012953467

Springer Vieweg
© Springer Fachmedien Wiesbaden 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, compu-
ter software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or schol-
arly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this
publication or parts thereof is permitted only under the provisions of the Copyright Law of
the Publisher’s location, in its current version, and permission for use must always be ob-
tained from Springer. Permissions for use may be obtained through RightsLink at the Copy-
right Clearance Center. Violations are liable to prosecution under the respective Copyright
Law.The use of general descriptive names, registered names, trademarks, service marks, etc.
in this publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore free for
general use. While the advice and information in this book are believed to be true and accu-
rate at the date of publication, neither the authors nor the editors nor the publisher can accept
any legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer Vieweg is a brand of Springer DE.
Springer DE is part of Springer Science+Business Media.
www.springer-vieweg.de

Acknowledgements

I would like to thank my doctoral advisor Kurt Geihs for the amazing atmosphere
he created at the Distributed Systems Group at the University of Kassel. The
freedom to pursue our ideas and the friendly spirit are what makes this place so
special. I would also like to thank my second supervisor, Alexander Kleiner, for
the time he invested and his very helpful suggestions.

The people who influenced this work the most are Roland Reichle and Philipp
Baer, who successfully completed the incredible challenge of founding a RoboCup
Middle-Size team before I started work in Kassel. Without them, this work would
not have been possible. At that time, I also had the pleasure of working with
Thomas Weise, who provided many insights and always gladly shared his unique
perspective, Michael Wagner, who is maybe the best colleague one can have, Stef-
fen Bleul, who always managed to get our feet back on the ground, and Michael
Zapf, who was always open for fruitful discussions. Together with Diana Comes
and Christoph Evers, these people contributed so much to the friendly atmosphere
in our group. I am also very grateful for our administrative staff, namely Thomas
Kleppe, Iris Roßbach, and Heidemarie Bleckwenn, who always helped out when
needed.

Carpe Noctem is now organised by Dominik Kirchner, Daniel Saur, and Andreas
Witsch, who already have fascinating ideas to be implemented on the robots. The
time with you was just great! Many thanks go out to the Carpe Noctem team, both
current and former members, who all put in a lot of effort so that the team could be-
come what it is now: Till Amma, Kai Baumgart, Jewgeni Beifuß, Fridolin Gawora,
Tareq Haque, Janosch Henze, Timo Heumüller, Kai Liebscher, Claas Lühring, Ste-
fan Jakob, Stefan Niemczyk, Stephan Opfer, Stefan Triller, Andreas Scharf, Jens
Schreiber, Martin Segatz, Florian Seute, Daniel Walden, and Martin Wetzel. I will
never forget the great time we had working, experimenting on the robots, or just
hanging out.

Last but not least, I thank my parents who managed to get me this far and I
am very grateful for the support and patience of Caroline Wagenaar who always
encouraged me.

Hendrik Skubch

Abstract

As research progresses and capabilities of robots increase, robotic systems become
viable solutions in more and more scenarios. This especially applies to multi-
robotic systems, which combine the skills and functions of individual robots. Ro-
bustness, efficiency, and adaptivity are key characteristics for such future teams
of autonomous mobile robots being employed in increasingly complex and dy-
namic scenarios. Hence, the question arises how different modelling and reasoning
paradigms can be combined to describe the intended behaviour and achieve these
characteristics. We present a comprehensive solution to modelling and execution
of behaviour for teams of autonomous mobile robots. The proposed framework,
ALICA (A Language for Interactive Cooperative Agents), combines modelling
techniques drawn from different paradigms in an integrative fashion. Hierarchies
of finite state machines are used to structure the behaviour of the team, such that
temporal and causal relationships can be expressed. Utility functions are used to
weigh different options against each other and to assign agents to different tasks.
Finally, constraint satisfaction and optimisation problems are integrated, allowing
for complex cooperative behaviour to be specified in a concise, theoretically well-
founded manner. The system is geared towards highly dynamic environments, in
which robots must act quickly, communication is unreliable, and individual robots
can break down at any time. In such environments, it is imperative that agents
act immediately whenever they are confronted with changing situations instead of
establishing agreement beforehand. ALICA agents therefore make decisions lo-
cally and act accordingly before any communication takes place. Conflicts arising
from incoherent decisions and beliefs can be reliably detected and resolved. Since
ALICA works completely decentralised, no single point of failure exists.

From a modelling perspective, ALICA presents itself as a modern language in
which the behaviour of a team can be modelled from a global perspective. Abstrac-
tions through hierarchical structures and program components make the inherent
complexity of the topic transparent and foster reusability. The combination of state
machines, utility functions, and non-linear continuous constraint satisfaction and
optimisation problems is a completely new approach to describing the behaviour
of a team of robots, extending the state-of-the-art.

The resulting execution layer is equipped with a novel anytime algorithm to
solve the integrated constraint problems, which allows tracking of solutions over

VIII Abstract

time in a dynamic environment, coordinates solutions within the team, and exploits
the distributed computational power available within the team for solving.

We evaluate our approach in the robotic soccer domain, which focuses on re-
activity and robustness with respect to unreliable communication. In the domain
of extraterrestrial exploration, we sketch some advanced techniques for describ-
ing dynamic formations of robots. Finally, we examine the scalability of ALICA
and compare the employed techniques with other state-of-the-art methods using a
popular rescue scenario.

Contents

I Preliminaries 1

1 Introduction 3

1.1 Motivation . 3
1.2 Problem Statement . 4
1.3 Scenarios . 6

1.3.1 RoboCup . 7
1.3.2 Exploration . 8
1.3.3 Rescue . 8

1.4 Approach . 9
1.5 Contributions . 10
1.6 Structure of this Work . 11
1.7 Conventions . 12

2 Foundations 13

2.1 Agents . 13
2.2 Multi-Agent Systems . 15
2.3 Teamwork . 17
2.4 Constraint Programming . 18

3 Related Work 21

3.1 Action Calculi . 21
3.2 BDI Languages . 22
3.3 Plan Execution Languages . 23
3.4 Teamwork . 25
3.5 Task and Role Allocation . 28
3.6 Estimating Agreement and Conflict Resolution 30
3.7 Task Models . 31
3.8 Constraint-Based Modelling . 32

X Contents

II Propositional ALICA 33

4 Syntax 35

4.1 Behaviours . 36
4.2 Plans . 38
4.3 Synchronisations . 44
4.4 Roles . 45
4.5 Well-Formedness . 46
4.6 Overview of the Syntactic Elements in pALICA 48

5 Semantics 51

5.1 Fundamental Principles . 51
5.2 Agent Model . 53

5.2.1 Plan Base . 54
5.2.2 Belief Base . 55
5.2.3 Belief Update . 59
5.2.4 Execution Set . 60
5.2.5 Role Set . 60

5.3 Locality . 60
5.4 Team Configuration . 61
5.5 Success Semantics . 62
5.6 Role Allocation . 63
5.7 Canonical Behaviour Plans . 66
5.8 Task Allocation . 67
5.9 Recursive Task Allocation . 69
5.10 Optimal Task Allocation . 79
5.11 Utility Functions . 80
5.12 Task Allocation Algorithm . 81
5.13 Rules . 91

5.13.1 Operational Rules . 93
5.13.2 Repair Rules . 97

5.14 Agent Configuration Consistency 106
5.15 Summary . 110

6 Conflict Detection and Resolution 113

6.1 Conflict Detection . 113
6.2 Conflict Resolution . 118

Contents XI

7 Software Architecture 127

7.1 Modelling Tools and Exchange Format 127
7.2 Engine Layout . 128
7.3 Agent Software Architecture . 130
7.4 Implementation Details . 132
7.5 Communication . 132

7.5.1 Information Exchange 133
7.5.2 Estimating the Current Team 134

7.6 Summary . 137

III General ALICA 139

8 Generalising ALICA 141

8.1 Introduction . 141
8.1.1 Standard Situations . 141
8.1.2 Blocks World . 144

8.2 Behaviour Parameters and Plan Variables 145
8.3 Agent Variables . 148
8.4 Constraints in ALICA . 150
8.5 Constraint Store . 154
8.6 Rules . 155

8.6.1 Lifting Propositional ALICA Rules 155
8.6.2 Constraint Handling Rules 158

8.7 Queries . 159
8.8 Summary . 162

9 Solving Constraint Problems 165

9.1 Exemplary Constraint Satisfaction Problems 165
9.2 Non-Linear Continuous Constraint Satisfaction Problems 167
9.3 SMT-Solvers Revisited . 170
9.4 Realtime Considerations . 175
9.5 Coordination . 178
9.6 Constraint Optimisation . 185
9.7 Constraints and Task Allocation 187
9.8 Summary . 190

XII Contents

IV Assessment 193

10 Evaluation 195

10.1 Modelling in RoboCup . 195
10.1.1 Strong and Weak Synchronisation 196
10.1.2 Finite State Machines and Dynamic Task Allocation . . . 197
10.1.3 Select and Commit . 198

10.2 Unreliable Communication . 199
10.3 Constraint Solving and Optimisation 207

10.3.1 The Ring Problem . 208
10.3.2 Blockers . 210
10.3.3 Inverse Kinematics . 213
10.3.4 Summary . 215

10.4 Case Study: Exploration . 216
10.4.1 Retrieving . 217
10.4.2 Exploration . 220
10.4.3 Summary . 224

10.5 Rescue Simulation . 224

11 Conclusion 235

11.1 Requirements Revisited . 236
11.2 Outlook and Future Work . 237

Bibliography 239

List of Figures

2.1 Agent Execution Loop . 14

4.1 Example Plan: Waiting . 40
4.2 Example Plan: Hierarchical Waiting 43

5.1 Task Allocation Example . 71
5.2 Recursive Task Allocation in the Restaurant Scenario 72
5.3 Incoherent Task Allocation in the Restaurant Scenario 73
5.4 Example: Asynchronous Plan Success 98

7.1 The ALICA Engine Reference Architecture 129
7.2 Agent Architecture . 131

8.1 Example Standard Situation Plan in pALICA 142
8.2 A STRIPS Action Sequence in pALICA 144
8.3 Example Plan: Finding a Book . 146
8.4 CSP Construction: Upwards Traversal of the Plan-Tree 161
8.5 Example Plan: A Strategy for an Attack in RoboCup 163

9.1 Exemplary Transformed Constraints 170
9.2 Performance of Local Searches and SMT Solvers in the 3-SAT-Sine

Test Case . 173
9.3 Number of (Re-)starts Performed in the 3-SAT-Sine Test Case 174
9.4 Utility of Solutions to Queries over Time 176

10.1 Strong Synchronisation in ALICA 196
10.2 Weak Synchronisation in ALICA 197
10.3 RoboCup Strategy 1-2-1 . 198
10.4 RoboCup Plan for Attacking Robot 199
10.5 RoboCup Strategy 3-1 . 200
10.6 RoboCup Plan for Throw-In Situations 201
10.7 Coordination under Simlated Package Loss 202
10.8 Coordination under Simlated Package Delay 203

XIV List of Figures

10.9 Coordination under Packet Loss with Systematic Errors 205
10.10 Coordination under Packet Delay with Systematic Errors 206
10.11 Resulting Noise Levels over Time in the Ring Problem 209
10.12 Resulting Noise Levels within the Team in the Ring Problem 209
10.13 Resulting Noise Levels for σin = 400 in the Ring Problem 210
10.14 Resulting Noise Levels over Time in the Blocker Problem 211
10.15 Resulting Noise Levels within the Team in the Blocker Problem . . . 212
10.16 Resulting Noise Levels over Time in the Blocker Problem 213
10.17 Resulting Noise Levels over Time in the Kinematics Problem 214
10.18 Resulting Noise Levels for 5 Agents in the Kinematics Problem . . . 215
10.19 Plan for Search & Retrieval . 217
10.20 Plan for Retrieval . 218
10.21 Search Patterns . 220
10.22 Closed Loop Controlling a Formation 221
10.23 Robots Following Search Patterns 223
10.24 RMASBENCH Screenshot . 225
10.25 Performance in the Fire Extinguish Scenario 230
10.26 Function Evaluations for 60 to 80 Fires 231
10.27 Task Allocation Expansion Steps 232
10.28 Exemplary Fire Fighting Performance with 18 Agents 233

List of Tables

4.1 Elements of a pALICA Program . 49
4.2 Structure Definitions of a pALICA Program 50

5.1 Operational Rules of pALICA from Highest to Lowest Precedence . . . 107

6.1 Beliefs and Rules Used to Express Conflict Detection and Resolution . 125

Listings

5.1 Priority-Based Role Allocation . 65
5.2 Task Allocation Algorithm for a Plantype 86
5.3 Node Expansion Function for Task Allocation 87
5.4 Recursive Task Allocation Algorithm 88

6.1 Conflict Resolution Algorithm . 120

9.1 Rprop-Based Local Search . 171
9.2 Clustering of Cached Solutions . 182
9.3 Local Search with Coordination through Caching 183
9.4 Local Search with Optimisation and Coordination 188
9.5 Single Optimisation Run . 189

Part I

Preliminaries

1 Introduction

1.1 Motivation

Individual robots have been a very active field of research since the robot Shakey
autonomously drove around at Stanford using STRIPS (Stanford Research Insti-
tute Problem Solver) [45] to control its actions [139]. Although since then tremen-
dous scientific advances have been made in the areas of robotics, artificial intelli-
gence, and machine learning, only recently have robots begun to appear in every
day situations. Today, robots are used as socially assistive technology in hospi-
tals [9], employed as surgical tools [165], and are envisioned to be used in house-
hold settings in the near future [162].

Yet when robots are further integrated into modern society and economy, the
demand for them to exhibit intelligent, adaptive behaviour in the dynamics of
modern day to day life will grow. Apart from day to day life, one of the main
goals of robotics is to provide cleverly designed machines that can be deployed in
areas inaccessible to or too dangerous for humans. Such areas include rescue sce-
narios after catastrophic events, space exploration endeavours, or future asteroid
mining [68]. Moreover, these machines can take on tasks considered too repetitive.

In these scenarios, teams of potentially heterogeneous robots are highly benefi-
cial. A team is more robust than a single robot and can cover more ground in the
same time. Further, integration of new robots is in general easier than integrating
new specialised equipment into an already working robot. However, operating a
team in an efficient and robust way faces new challenges compared to operating
a single robot. The team has to coordinate itself, react coherently in a dynamic
environment, and compensate for incapacitated members. All these issues need to
be handled at runtime in an adaptive and distributed manner, since the usage of
any central control mechanism voids one of the team’s strongest advantages: its
robustness against failing components.

Under these conditions, the creation of a recipe, or plan, to achieve a desired
goal becomes a difficult task, regardless whether this recipe is generated by a plan-
ning algorithm, modelled by an expert of the respective domain, or created in an
interactive planning process. It is therefore crucial that the underlying execution
of said recipes exhibits the desired behaviour even in difficult situations, such as

H. Skubch, Modelling and Controlling of Behaviour for Autonomous Mobile Robots,
DOI 10.1007/978-3-658-00811-6_1, © Springer Fachmedien Wiesbaden 2013

4 1 Introduction

high sensory noise, unreliable communication between the team members, and
dynamically changing situations.

At this juncture between the higher level recipes and the exhibited behaviour
of the team, the language in which these recipes are formulated becomes the piv-
otal element. The language, or at least a representation of this language, must
be understood by all involved parties, be it system developer, planning algorithm,
or execution layer. The language should therefore feature formal semantics, such
that individual tools can be verified to adhere to a common understanding of it.
Furthermore, the language must be sufficiently expressive to capture the various
scenarios robotic teams can be employed in.

In scenarios such as search and rescue, a robotic team has to deal with dynam-
ically changing situations, since the environment can change abruptly, individual
robots can break down, and finally communication cannot be regarded as reliable.
Especially in these situations, the role of the execution layer is crucial. This com-
ponent estimates for each new situation whether a selected course of action can
be continued, should be repaired, or must be aborted altogether. It then selects
the appropriate repair mechanism and triggers higher level components, such as
a planning algorithm if need be. Depending on the situation, this might require
swift reactions without communication, in other cases, communication with team
members may be required to resolve conflicts. Moreover, it is this component that
links the symbolic description of the intended behaviour with the lower level ac-
tuators. In other words, it grounds action symbols in physical acts. In this way,
the execution layer supports cognitive abilities such as planning and learning on
higher levels.

Finally, the language should be able to abstract the complexity of specific parts,
such that system designers only need to concern themselves with a concrete prob-
lem at a time. That entails that the language should support separation of concerns
and reusability of components.

1.2 Problem Statement

The objective of this work is to provide a comprehensive solution to modelling
and controlling the behaviour of teams of cooperative autonomous robots. This
solution consists of two parts: a language in which the behaviour of a robotic team
can be expressed and a corresponding execution layer that understands elements
of this language as programs and executes them efficiently and robustly.

In order to facilitate further tool support and allow for future embeddings into or
from other languages, the modelling language must provide clear formal seman-

1.2 Problem Statement 5

tics. Depending on domain and scenario, language elements, i.e., programs, will
be written by human developers or generated by planning or learning algorithms.

In contrast to many available languages and frameworks which will be discussed
in Chapter 3, the framework should support modelling from a global perspective,
such that the designer can focus on coordination at a high abstraction level and
does not need to deal with multiple interacting individual programs. At the same
time, the framework should allow for fine-grained modelling of the internal struc-
ture of the intended tasks.

As stated earlier, the proposed language must facilitate the formulation of com-
plex behaviours in a concise and well-defined manner. Since such a behaviour
always relates to domain-specific entities such as positions, the language must be
able to express properties about these entities, while at the same time retain its
domain-independent nature. We integrate an expressive class of constraint satis-
faction and optimisation problems into the language and equip the execution layer
with a corresponding solver.

This work focuses on scenarios where the inherent dynamics require fast reac-
tion and reasoning. More specifically, the execution platform must deal with a
dynamic environment where

• The situations changes continuously in real-time, i.e., while reasoning.

• Sensors are noisy, requiring a certain robustness from the execution layer.

• The environment is only partially observable, so robots cannot effectively
anticipate their course of action over a longer period of time.

• Communication is unreliable. While we assume that communication is pos-
sible with a probability larger than 0, packet loss and packet delay are com-
mon occurrences.

• Individual robots can break down at any time or lose some of their capabili-
ties. Whenever possible, the team’s performance should degrade gracefully.
This excludes the use of any central component.

There are certain interrelations between these properties, which create trade-
offs in which this work needs to be positioned. Firstly, when dealing with sensory
noise in a dynamic environment, reactivity and robustness against noise are two
conflicting goals. Similarly, communication cannot be regarded as synchronous in
a highly dynamic domain; therefore, received messages always refer to past situ-
ations. In particular, a sudden increase in package delay may appear as a sudden
change in the environment if the clocks of the agents are not synchronised tightly

6 1 Introduction

enough. In general, we emphasize reactivity over robustness against noise; how-
ever, our framework can be combined with any kind of sensor processing and fu-
sion approach which deals with noise. Thirdly, an agent breaking down is not dis-
tinguishable from packet loss, unless the agent’s actions can be observed through
sensory data. Finally, reactive behaviour and coordinated behaviour form two con-
flicting goals as well. Highly reactive behaviour cannot be achieved if communica-
tion is required for decision making. On the other hand, communication seems to
be the only currently feasible way to achieve coordination. Therefore, an adaptive
approach is needed, that can make swift decisions without prior communication
and switches to a less reactive decision making protocol with higher coherence
when necessary.

Since there is a vast number of research areas related to multi-robot systems, we
exclude certain topics from this work, namely:

Sensor Fusion – Sensor fusion in heterogeneous teams of robots is discussed in
detail by Reichle [131]. In all scenarios, we assume the presence of appro-
priate sensor fusion algorithms, such that decision making can be done on
top of it.

Collaborative Systems – In collaborative systems, individuals follow poten-
tially different goals, which can temporarily align and warrant the formation
of coalitions to achieve common goals. We assume that all robots pursue the
same global goal and thus form a team throughout their life-cycle.

Planning – Planning algorithms produce totally or partially ordered sequences of
actions in order to achieve a specific goal. We do not devise or integrate a
planning algorithm. However, we provide a language in which the output of
a planning algorithm can be easily described.

1.3 Scenarios

In the following, we briefly describe the scenarios used to develop and evaluate the
result of this work. Note that our approach is not limited to these domains and can
easily be transferred to others. This is emphasized by the clear distinction between
domain-specific entities and general entities made in our approach. Hence, the
domain description is easily exchangeable.

1.3 Scenarios 7

1.3.1 RoboCup

RoboCup is a multi-national research endeavour fostering advances in robotics,
artificial intelligence, and related fields. At its core is an annual competition in
different leagues and a vision:

“By mid-21st century, a team of fully autonomous humanoid robot
soccer players shall win the soccer game, comply with the official
rule of the FIFA, against the winner of the most recent World Cup.” –
The RoboCup Website [137]

With this vision, RoboCup also commits to a main research scenario, namely
robotic soccer. Since its first competition in 1996, RoboCup has been expanded
and now targets other domains as well, such as rescue robotics and robots in house-
hold environments. However, the simple, yet surprisingly challenging soccer do-
main is still its primary focus. The advantages of soccer over other domains as
a research domain are plentiful: Soccer is a well-known sport and therefore re-
quires little explanation and holds interest for the general public. It also provides
a test-bed where completely different approaches can be evaluated against each
other in a natural way: by competition. Moreover, in soccer, the skills of each in-
dividual player are as important as teamwork among the players. Thus, both must
be pursued in order to form a successful robotic soccer team. Finally, soccer is a
fast-paced game, requiring a high degree of reactivity and speed. This requirement
differentiates RoboCup from typical laboratory settings and must be accounted for
in all aspects of a participating robotic team.

When referring to the RoboCup domain in this work, we focus on a specific
RoboCup league, namely the middle size league (MSL). In the MSL, teams of five
robots compete against each other on a field of 18m× 12m. A game consists of
two half-times, each lasting 15min. The robots use a normal FIFA soccer ball to
play. During a game, each robot acts completely autonomous; human interaction
is strictly forbidden. Currently, competing robots are up to 80cm high and weigh
no more than 40kg. Most robots use a holonomic drive to move about and a
separate kicking device to kick the ball over longer distances. The robots of a
team communicate via wireless LAN. The game is very dynamic; robots can reach
speeds of 5m/s and accelerate the ball to about 12m/s. Given that the typical
sensory range of a robot is no more than 10m under ideal conditions and often
less than 6m, reaction speed plays a pivotal role in the performance of a robot.
But reacting is not enough within a team, the robots also have to act and react
coherently. In this work, we explore possibilities to maintain swift reaction time
while coordinating the team to establish coherent actions.

8 1 Introduction

1.3.2 Exploration

One scenario in which the usage of autonomous mobile robots is highly beneficial
is exploration. The environment encountered in exploration missions is typically
either difficult to reach in the first place or hazardous to humans. In the case of ex-
traterrestrial exploration, both are the case. Moreover, the large distances between
celestial bodies render teleoperation difficult or outright impossible. Therefore, it
is crucial to endow exploring robots with an appropriate level of autonomy.

Such scenarios are tackled by the research project IMPERA, which is under-
taken by DFKI1 Robotics Innovation Center together with the Distributed Systems
Group of the University of Kassel and coordinated by the DLR2. Following the
idea that a team of robots is more robust and fault tolerant than a single robot
and that a team can even accomplish tasks such as exploration faster than a single
robot, IMPERA investigates methods to coordinate teams of robots in extraterres-
trial environments.

While the environment of Mars or the Moon, for instance, are far less dynamic
than a soccer game, the other domain features we discussed in Section 1.2 are to
be considered. However, the robotic team itself can induce certain dynamics in the
environment by interaction.

The approach we present in this work serves as a basis for IMPERA to control
and coordinate robots during extraterrestrial missions. Most notably, IMPERA
will extend this work with state-of-the-art planning algorithms.

1.3.3 Rescue

The potential tasks, which robots can fulfil in rescue scenarios are manifold.
Robots might be employed to search large areas for survivors, provide commu-
nication networks, clear rubble, and enter unstable buildings. In the context of this
work, we investigate a simple scenario, based on the RoboCup Rescue Simulation
League. In this scenario, agents are tasked with extinguishing fires that break out
in multiple places in a city. We simulate this benchmark problem using RMAS-
BENCH by Kleiner et al. [86]. This domain requires to coordinate many more
agents than exploration or soccer scenarios typically feature.

1 Deutsches Forschungszentrum für künstliche Intelligenz – German Research Center for Artificial
Intelligence

2 Deutsches Zentrum für Luft- und Raumfahrt – German Aerospace Center

1.4 Approach 9

1.4 Approach

As previously mentioned, the proposed solution consists of a language and a corre-
sponding execution layer. In order to provide an abstraction between the described
behaviour and the concrete robots at hand during execution, a two tiered map-
ping between robots and tasks within the described behaviour is used. Agents, or
robots, are mapped onto roles based on their individual capabilities regarding spe-
cific actuators or sensors. Roles are then used to determine the tasks an agent can
take on and how well it can perform them. This mapping closely follows the ideas
described by Wooldridge et al. [182]. Thereby the team behaviour can be specified
independently of the concrete robots available during runtime and the team can be
specified independently of the problem it should solve later on.

The program encoding the team behaviour is a hierarchical structure consist-
ing of multiple finite state machines. Each state in such a machine can contain
sub-programs, which are meant to be executed by all agents inhabiting that state.
At each level, conditions and utility functions are used to determine which state
machines are executed by which agent. Evaluation of these conditions and func-
tions is done locally by each agent, allowing for highly reactive behaviour. The
hierarchical structure hides the complexity of lower levels at each level.

This base language is extended by a conflict detection and resolution mecha-
nism, which temporally switches the decision protocol employed by electing a
leader in order to resolve the detected conflict. The leader then commands the
rest of the team only with respect to the decision in conflict. After the conflict is
resolved, the team switches back to its original, more dynamic decision making
mode.

Finally, constraints are used to describe target values that robots should pursue.
This results in dynamic constraint optimisation problems, which are solved by the
team members during runtime. We provide an efficient anytime solver for non-
linear continuous constraint optimisation problems for this task. This solver is
able to track solutions as the environment and, correspondingly, the optimisation
problem changes. Moreover, the team is cooperating in solving harder problem
instances, such that it can find a solution faster than a single agent can. Finally,
the solving algorithm enables the team to coordinate its solutions, i.e., come to a
coherent result. The execution layer manages the set of active constraints, allowing
any component to query variables for their values.

The benefits of incorporating constraints as declarative descriptions into the lan-
guage are plentiful.

• It greatly simplifies the modelling task and reduces the number of necessary
atomic behaviours.

10 1 Introduction

• Constraints are easy to extend and combine as their mathematical relations
are well understood. For instance, constructing the intersection of two con-
straint satisfaction problems is straightforward.

• In comparison to imperative programs, far fewer special cases need to be
addressed.

• The direct correspondence of the implementation to the mathematical de-
scription enables the generation of constraints by planning and learning al-
gorithms.

• Most importantly, constraints offer a way to ground symbolic behaviour de-
scriptions in numeric values which can be passed to lower level components
such as motor controllers.

Naturally, there is also a drawback. A general purpose solver is always outper-
formed by problem-specific solutions in terms of efficiency. Hence, an imperative
program designed to tackle a specific task can always be more efficient than a
constraint-based solution to the same problem.

1.5 Contributions

The main contribution of this work is a comprehensive solution to describing the
behaviour of robotic teams. The combination of paradigms presented here con-
stitutes a novel way to model the cooperative behaviour of multi-robot systems.
The approach, coined ALICA (A Language for Interactive Cooperative Agents),
encompasses description of capabilities, role allocation, task description similar to
hierarchical state machines, task allocation based on utility functions, explicit co-
ordination through synchronised transitions, implicit coordination in a broadcast-
and-compute fashion, and conflict detection and resolution by switching the deci-
sion making protocol on the fly. Finally, non-linear constraint satisfaction prob-
lems are integrated in order to allow reasoning over domain-specific entities such
as positions or configurations of joints. We see this comprehensive combination as
the largest contribution of this work.

The implementation has been successfully employed by the RoboCup MSL
team Carpe Noctem since 2009 and is currently being used in the research project
IMPERA. The source code is available under a BSD-based open source license.1

On the theoretical level, we provide new insights into hierarchical task allocation
leading to two different allocation schemes with different requirements on the task
1 http://ros.org/wiki/cn-alica-ros-pkg

1.6 Structure of this Work 11

structure. Furthermore, an anytime constraint optimisation solver is presented,
which extends state-of-the-art approaches for non-linear continuous satisfaction
problems. Most notable are its abilities to track solutions over time, coordinate
solutions within the team, and distributively solve problems while retaining reac-
tivity of the individual robot.

1.6 Structure of this Work

This document is divided into four parts. The remainder of the first part consists
of an introduction to the foundations of this work in Chapter 2, followed by a
discussion of related work with respect to our approach in Chapter 3.

Part II presents the propositional core language of ALICA in detail. After dis-
cussing its syntax in Chapter 4, the semantics is introduced step-by-step in Chap-
ter 5. Task allocation and rule-based execution are emphasized in this part of the
thesis, as they form the foundations for the following extensions.

Chapter 6 extends the basic semantics with conflict detection and resolution. A
domain-independent conflict detection scheme is derived, which allows reliable
detection of persistent conflicts within team coordination. Afterwards, we present
a conflict resolution approach based on local leader election. Part II ends with
a discussion of the underlying software architecture and implementation details
in Chapter 7.

Part III presents an extension of the propositional language by incorporating
variables and constraints over them. Correspondingly, the syntax and operational
semantics are extended in Chapter 8 to accommodate for the additional language
elements. Further, in Chapter 9 a suitable constraint solving algorithm is derived
and discussed in detail. The rest of the chapter explains how solutions can be
tracked over time and how coordination in this non-propositional case can be
achieved.

Part IV is concerned with the evaluation and discussion of the presented solu-
tion. In Chapter 10, we present thorough evaluation results. Using scenarios drawn
from the domains robotic soccer, exploration, and rescue, we highlight robustness
under poor network conditions, robustness under noise, modelling capabilities,
scalability, and applicability for different scenarios. We conclude in Chapter 11
and discuss possible future work.

12 1 Introduction

1.7 Conventions

For the sake of brevity, we assume the following notational conventions in this
work:

• Subtraction of finite sets is denoted by −:

A−B
de f
= {a | a ∈ A∧a �∈ B}

• Free variables in formulae are universally quantified unless otherwise stated.

• The following abbreviations are used in first-order formulae:

(∀x ∈ S)φ de f
= (∀x)x ∈ S → φ

(∃x ∈ S)φ de f
= (∃x)x ∈ S∧φ

• By img(f) we denote the image of function f in the usual sense.

• 2S denotes the power set of set S.

• In cases where we explicitly refer to free variables in terms or formulae, we
use vars(p) to denote the set of free variables of term or formula p.

2 Foundations

In this chapter, we briefly explain the main theoretical foundations of this work.
Section 2.1 introduces the concept of agents, followed by a classification of differ-
ent multi-agent systems in Section 2.2. Section 2.3 illustrates the main teamwork
theories in the literature. Finally, Section 2.4 gives a short overview on constraint
programming.

2.1 Agents

The concept of agents has been used in various settings. Agents were explored
by researchers as a software technology entity (e.g., [115]), as means to simulate
the behaviour of ecosystems (e.g., [61]), and as a concept of artificial intelligence,
differentiating between an environment and an interior.

“An agent is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through actuators.”
– Russell and Norvig [139, p. 32]

This is probably the most generic agent definition in the literature. An agent typi-
cally implements a control loop as depicted in Figure 2.1, although the names and
numbers of internal steps vary between models.

In the first step, sensory input is processed, the result is used in a reasoning step,
which yields a decision for actions. Executing this action will in turn modify the
environment, which then leads to different input. There are various ways to clas-
sify agents, depending on how these steps are implemented, what kind of internal
model is used and with what kind of environment the agent can deal with. An
excellent overview is given by Russell and Norvig [139]. Here, we limit the dis-
cussion to three different agent models, namely rational agents, BDI-agents, and
reasoning agents.

Rational agents try to maximise their expected performance measure. That is,
they behave in a decision-theoretically optimal sense, provided appropriate
information about possible rewards and probabilities is available.

H. Skubch, Modelling and Controlling of Behaviour for Autonomous Mobile Robots,
DOI 10.1007/978-3-658-00811-6_2, © Springer Fachmedien Wiesbaden 2013

14 2 Foundations

Sensory Input

Reasoning

Execute Actions

Percepts

Actions

Figure 2.1: Agent Execution Loop

BDI-agents follow the BDI model by Bratman [12]. BDI concentrates on a
practical way to perform reasoning, imbued with particular mental attitudes,
namely: Beliefs, Desires, and Intentions. Beliefs represent the informational
state of the agent about the world (including itself and other agents). The
desires of an agent represent objectives or situations that the agent would
like to accomplish or bring about. Intentions represent the deliberative state
of the agent: what the agent has chosen to do. This practical approach was
highly successful and led to a multitude of languages based on the BDI
model.

Reasoning agents follow a very classical view of AI, where reasoning is
mapped onto deductions in some formal logic. Research in this area fo-
cuses on how knowledge can be represented to allow for powerful reasoning
techniques to be used. Foundational work in this area dates back to Mc-
Carthy and Hayes [100]. Two of the most influential calculi for reasoning
agents are the situation calculus [134] and the fluent calculus [72, 166].

Our work is compatible with all of these agent models, although ALICA is
strongly inspired by the BDI model, and can be seen as a BDI language. In the
following, we use the words agent and robot interchangeably.

2.2 Multi-Agent Systems 15

2.2 Multi-Agent Systems

Based on the notion of agents, systems comprising multiple agents were, and still
are, subject to intensive research. Such systems can be classified in various ways,
e.g., based on the abilities of the individuals, the organisational metaphors used,
or whether the agents can be considered homogeneous or heterogeneous. An ex-
cellent overview over the field is given by Wooldridge [181]. One of the most
important aspects for this thesis is the level of cooperation. A system can be clas-
sified as:

Cooperative Meaning that all agents try to achieve the same global goal. They
will therefore cooperate in any way that is deemed beneficial to this goal.

Collaborative Agents do not necessarily try to achieve the same goal, but goals
that can be compatible. They will therefore form coalitions whenever there
individual goals align. Compared to cooperative systems, the organisational
structure is much more dynamic, since teams can form and disband contin-
uously within the system.

Neutral Agents have different goals, and ignore each other. Any form of cooper-
ation happens purely by chance.

Antagonistic Agents have goals that are in direct competition with each other,
that is one agent obtaining its goal entails that no other agent is able to do
so.

Naturally, these categories are not strict and actual systems can feature elements of
each category. In robotic soccer for instance, each team forms a purely cooperative
system and each team player is completely altruistic. However, the multi-agent
system that is formed by the two opposing teams during a match is, of course,
antagonistic.

In our work, we only consider purely cooperative systems. While our main
scenario contains an opponent team, we are not interested in analysing the overall
behaviour of soccer playing robots, but instead want to model the behaviour of a
single team. In other words, we treat the opponent team as part of the environment,
since we cannot control their actions.

Multi-agent systems which feature a large number of typically homogeneous
robots with fairly simple individual cognitive and communicative abilities are in-
vestigated by the fields of swarm intelligence and swarm robotics. Swarm-based
approaches are often inspired by biological systems, e.g., [119]. Modelling a set
of robots as a team on the other hand assumes that the individual is already capable

16 2 Foundations

of relatively complex reasoning. In Section 2.3 we will discuss the main theories
relevant to cooperative teams.

Besides swarms and teams, there are plenty of different possibilities to organise
multi-agent systems. Horling and Lesser [73] give a thorough overview of the
different paradigms investigated in the literature:

Hierarchy In a hierarchy, agents at higher levels have a more global view than
agents at lower levels. Typically, agents only communicate with those di-
rectly connected to them through the tree-like structure. Data is commu-
nicated upwards, while commands are passed downwards. While the hi-
erarchical structure is appealing in its simplicity and its relationship with
hierarchical goal or task trees, it is rather rigid, cannot adapt well, and can
feature single points of failure.

Holarchy Holarchies are nature-inspired structures, similar to hierarchies, where
a group is formed at each level out of a certain kind of parts and these parts
again are groups of parts at a lower level of abstraction. At the lowest level,
a group consists of agents. Thus, holarchies can be seen as less strict hierar-
chies, allowing more communication between individuals and more auton-
omy.

Coalition Coalitions follow the idea of collaborative agents noted above. Here,
agents form relatively short-lived, flat groups in order to achieve aligned
goals.

Team Teams consist of cooperative agents that work together to achieve a com-
mon goal. In contrast to coalitions, they form a purely cooperative system.

Congregation Congregations are long-lived flat hierarchies of agents. In con-
trast to teams, they do not have a single goal, but form in order to combine
complementing capabilities.

Society Agent societies are long-lived open systems, such as an electronic mar-
ket. Agents pursue different goals, have heterogeneous capabilities, and
interact with each other through various channels. The society imposes a set
of constraints individuals must adhere to, commonly named social laws or
norms.

Federation In agent federations, potentially complex groups of agents are each
represented by a single distinguished member of the group, which is in
charge of communicating and interacting with the representatives of other
groups.

2.3 Teamwork 17

Market In contrast to societies, the whole interaction process in markets is mod-
elled after commerce, i.e., they buying and selling of goods, placing bids,
and offering services. The situation is typically competitive; that is, the in-
dividual goals conflict with each other.

Matrix Matrix-based agent organisations allow the definition of multiple dimen-
sions of authority. The individual agent has to be equipped with a sufficient
amount of autonomy in order to deal with the potential local conflicts than
can arise from dealing with different authorities.

Compound The last paradigm basically combines different organisational struc-
tures for different purposes, such as data-flow, control, discovery, etc.

Since we are most interested in small scale groups of robots following a common
goal, the approach presented in this work follows the characteristics of a team-
based multi-agent system.

2.3 Teamwork

Teamwork among intelligent agents has been extensively analysed in the literature.
Today, most approaches to modelling teamwork in agent languages are based on
at least one of the two following prominent theories:

Joint Intentions Theory The Joint Intentions Framework [28, 97] is a theoret-
ical framework founded on BDI logics. The framework focuses on a team’s joint
mental state, called a joint intention. A team jointly intends a team action if all
team members are jointly committed to perform an action while in a specified
mental state.

In order to enter a joint commitment, the team members have to establish appro-
priate mutual beliefs and individual commitments. Although the Joint Intentions
Theory does not mandate communication and several techniques are available to
establish mutual beliefs about actions from observations (see for example [75]),
currently communication seems to be the only feasible way to attain joint com-
mitments. A very interesting key aspect of the Joint Intention Theory is the com-
mitment to attain mutual belief about the termination of a team action. This helps
to ensure that the team stays updated about the status of the team actions. This
behaviour is achieved by enforcing that agents committing to a joint intention also
commit to inform their team about any relevant failures or premature terminations.
Joint intentions and joint commitments provide a basic framework to reason about

18 2 Foundations

coordination required for teamwork as well as guidance for monitoring and main-
taining team activities. However, a single joint intention for a high-level team goal
is not sufficient to model team behaviour in detail and to ensure coherent team-
work.

Shared Plans Theory In contrast to Joint Intentions, the Shared Plans The-
ory [63, 64] employs hierarchical structures over intentions, thus overcoming the
shortcoming of a single Joint Intention for complex team tasks. The Shared Plans
Theory is not based on a joint mental attitude but on an intentional attitude called
intending that, which is very similar to an agent’s normal intention to perform
an action. However, an individual agent’s ’intention that’ is directed towards its
collaborator’s action or towards a group’s joint action. ’Intention that’ is defined
via a set of axioms that guide an individual to take actions (including the com-
munication), that enable or facilitate its team-mates, sub-team, or team to perform
assigned tasks.

A SharedPlan for a group action specifies beliefs about how to do an action
and sub-actions [63, 64]. The formal model captures intentions and commitments
toward the performance of individual and group actions. A collaborative plan is
composed of a mutual belief, of a (partial) recipe, individual intentions to per-
form the actions, individual intentions that collaborators succeed in their sub-
actions and individual or collaborative plans for sub-actions. With the concept of
actions and sub-actions the Shared Plans Theory describes a hierarchy of plans to
reach a common goal. This is also the main difference between the Joint Inten-
tions Theory and the Shared Plans Theory; the Shared Plans Theory describes the
way to achieve a common goal whereas the Joint Intentions Theory describes only
this common goal. However, the lack of principles like joint intentions and joint
commitments results in limited possibilities to reason about team coordination and
team activities.

The two theories Joint Intentions and SharedPlans have been extensively used
to examine and describe teamwork. In our approach, we will draw from both,
although the relationship to SharedPlans is most apparent due to the structural
similarities between collaborative plans and ALICA plans in execution.

2.4 Constraint Programming

The paradigm of constraint programming advocates a declarative description of
problems, which are then solved by appropriately chosen constraint solvers. A
recent overview is given in Rossi et al. [138]. A very general framework has been

2.4 Constraint Programming 19

proposed by Frühwirth [49, 50], which defines Constraint Handling Rules (CHRs)
as a unified way to express constrains. Slightly simplified, a constraint handling
rule is of the form Head <==> Guard | Body, meaning, that if some of the con-
straints currently imposed unify with Head, and the Guard evaluates to true given
the unification without modifying variables in the Head, the Head is replaced by
Body. This system has been integrated into the constraint programming framework
ECLiPSe [2]. CHRs can be used to propagate and simplify constraints, however,
they need to be combined with a search method in order to identify solutions to
the constraint satisfaction problem encoded. Such a search typically makes as-
sumptions about the variables by posting further constraints and backtracks once
an assumption leads to a detectably unsatisfiable constraint. Backtracking can be
extended to backjumping, where multiple steps are retracted at once in order to
search a more promising region of the search space earlier [124, 26].

Constraint satisfaction in a Boolean domain has been shown to be NP-complete
[29, 143]. Later, the same could be shown for general constraint satisfaction
problems over finite domains [43]. While some tractable subclasses were identi-
fied [27], these hardly fit the requirements of robot control, especially since many
different problems need to be formulated.

The class of problems spanning over continuous domains is even more interest-
ing from the perspective of robotics research, as many values that appear in robotic
domains are real-valued, such as positions or angular states of joints. In general,
the problem of solving constraint-based mathematical models over the real num-
bers is undecidable [135]. However, solutions can be approximated. Finding in-
tervals that approximate solutions of reasonable precision is NP-hard [10]. The
most general case of a constraint satisfaction problem corresponds to a first order
formula for whose free variables a solution is to be found, and this problem is
undecidable, due to satisfiability being undecidable in first order logic in general.

In order to capture more complex problems, Jónsson and Frank [80] introduced
dynamic constraint problems, where individual constraint problems are linked in
a sequence. Neighbouring problems can be obtained from each other by restric-
tion or relaxation. They propose a reasoning technique based on procedures to
solve such systems. Thereby, the resulting system can solve problems efficiently,
provided corresponding procedures are given. In this way, they relax the require-
ment that all variables need to be known before solving a system, and can consider
problems where the number of variables are unknown in advance. This way, un-
bounded planning tasks become representable as constraint satisfaction problems.
Similarly, Nareyek [105] represented planning as a constraint-based local search
in a space of graphs, where each graphs represents a possible plan.

20 2 Foundations

More recently, distributed constraint optimisation problems have been used to
control the behaviour of MAS systems. This field is described in detail by Petcu
[121]. In this setting, each agent owns and controls a constraint optimisation prob-
lem, which relates to the problems possessed by other agents through some shared
variables. The agents obtain a global solution by interleaved local solving and
message exchange. Typically, no agent has a global view on the problem.

In summary, constraint programming constitutes a very concise and mathemat-
ically well-founded way to express problems. This is the main motivation to inte-
grate constraint programming techniques into our solution. However, the problem
classes that occur in the domains we consider together with the inherent dynam-
ics of these domains have not yet been tackled under soft real-time considerations
from a constraint programming point of view.

3 Related Work

There are various approaches to describing the behaviour of agents, from the fa-
mous STRIPS planning language [45] and the first formalisms following the BDI
model by Bratman [12], to modern languages such as 2APL by Dastani et al. [35].
In the following, we will give a short overview of this vast field and discuss differ-
ent approaches in relation to our language.

3.1 Action Calculi

STRIPS [45] was one the first formalisms to allow agents to reason about their
actions. Although STRIPS was limited to describing actions using propositional
preconditions and effects only, it was surprisingly effective. This work and the
foundational questions raised by McCarthy and Hayes [100], such as the frame
problem, led to the development of the situational calculus [133, 134]. A family
of programming languages were developed based on this theoretical foundation.
Its earliest member, GOLOG by Levesque et al. [98], was followed by numerous
variants such as ConGolog [37], which allows for concurrency, reaction to exoge-
nous actions, and interrupts. Later on the prominent IndiGolog [57] added support
for planning and searching.

Meanwhile, a second calculus was developed by Thielscher [166] based on the
work by Hölldobler and Schneeberger [72], the fluent calculus. It focuses more
on the dynamic facts that describe the environment than on the actions that change
them. Thielscher [167] developed a programming framework based on the flu-
ent calculus, called FLUX. FLUX is mainly concerned with the representation
of partial knowledge and updates of this knowledge. Both are achieved through
constraints.

The event calculus by Kowalski and Sergot [88] is another highly promising ap-
proach, as it allows reasoning with time intervals, while the previously mentioned
calculi only consider discrete states. Details can be found in [151]. Unfortunately,
to our knowledge, there is no complete agent-oriented language based on the event
calculus yet.

All these languages focus on the representation of the agent’s knowledge, the
effect of actions and how reasoning can be done based on this knowledge. In con-

H. Skubch, Modelling and Controlling of Behaviour for Autonomous Mobile Robots,
DOI 10.1007/978-3-658-00811-6_3, © Springer Fachmedien Wiesbaden 2013

22 3 Related Work

trast, ALICA focuses on the representation of strategies that are meant to solve cer-
tain problems or deal with specific situations. Moreover, ALICA is a team-centric
language, while the languages above typically focus on single agent scenarios.
Thus, from the perspective of action calculi, ALICA can be seen as a possible
program representation that is combinable with, for instance, a GOLOG or FLUX
dialect. Similarly, from the perspective of ALICA, action calculi-based languages
fill the gap that is needed to reason about behaviour, as ALICA intentionally leaves
the representation of the environment open.

3.2 BDI Languages

The BDI model by Bratman [12] (see Section 2.1) led to a set of successful agent
languages. While ALICA can be seen as a BDI language, it lacks an explicit
representation of desires or goals, since it focuses on plans as intentions. In the
following, we discuss some of the most influential BDI languages in relation to
ALICA:

3APL is an agent oriented programming language [71, 34] aiming at modelling
cognitive agents and high level control of cognitive robots. ALICA shares many
concepts with 3APL, e.g., the definition of the belief base and the interpretation
of goals as ’goals-to-do’, which are not described declaratively but via plans that
are directed towards achieving a goal. However, in contrast to ALICA, 3APL also
facilitates explicit specification of goals. It introduces rule sets and beliefs to allow
reasoning over both, goals and plans. Moreover, ALICA defines its operational
semantics through a transition system much in the same way as 3APL. In fact,
3APL distinguishes between a transition system for the pure language elements
and a transition system for the meta-language to specify the control structures of
an agent. In ALICA, we do not provide this distinction, and thus, the two transition
systems are merged. Although 3APL implementations support communication in
a FIPA1 [47, 46] compliant manner, explicit multi-agent plans as supported by
ALICA cannot be expressed in 3APL. ALICA also extends the notion of runtime
substitutions, which are part of an agent configuration in 3APL, by replacing them
with a more expressive constraint store.

2APL by Dastani et al. [35] is a successor of 3APL, featuring various program-
ming constructs such as exception handling, repair mechanisms, and language in-
terfaces. However, 2APL does not feature any way to model multi-agent plans
1 Foundation for Intelligent Physical Agents

3.3 Plan Execution Languages 23

from a global perspective. Instead, single agent plans need to be devised which
interact with each other through explicit messages.

AgentSpeak(L) allows BDI agents to be specified similar to logic programs
[129]. Rao identified a gap between implemented BDI systems and the theory.1

Rao tried to overcome this shortcoming by introducing the AgentSpeak(L) which
abstracts an implemented BDI system. AgentSpeak(L) is a programming language
based on a restricted first-order language with events and actions. Unfortunately,
the modelling of multi-agent plans is not possible in AgentSpeak(L). Interestingly,
AgentSpeak(L) can be simulated by and thus embedded into 3APL [69].

KARO is not a programming language, but an agent logic based on dynamic
logic. However, Hindriks and Meyer [70] proposed a programming language that
directly relates to the logic. We argue that the modalities of dynamic logic are only
of limited use in robotic scenarios, where actions happen concurrently and extend
over time intervals. As such, robotic scenarios are potentially easier to describe in
theories working with time intervals, such as the event calculus [151] mentioned
above.

3.3 Plan Execution Languages

Viewed from a more practically motivated perspective, plan execution languages
do not follow a rational agent approach, instead they typically provide an execution
layer for plans and a language to specify them. While this is also what ALICA aims
at, typically they do not provide extensive means to repair failed plans in the sense
of BDI languages. Furthermore, they do not integrate coordination as tightly as
ALICA and languages such as STEAM [163] (see Section 3.4).

PLEXIL One of the most prominent plan execution languages is NASA’s
PLEXIL [40]. PLEXIL is completely geared towards deterministic execution,
yielding itself well to its primary field of usage, namely semi-autonomous space
vehicles, such as satellites. It maintains tasks as a tree-based structure and provides
synchronous execution semantics. All nodes in the tree are executed in parallel,
and can communicate via shared variables. PLEXIL does not provide any multi-
agent semantics. Its fine grained programming metaphors allow assignments to

1 Independently, Wooldridge [181] identified the same as the ungrounded semantics problem.

24 3 Related Work

variables and calls to library functions. In contrast, the smallest executable ele-
ments in ALICA are behaviours, which are essentially Turing-complete programs.

SMACH Another noteworthy framework that falls into the category of plan ex-
ecution languages is SMACH by Bohren and Cousins [11], a library for task level
coordination and execution in ROS [127]. It understands itself as a mid-level task
execution between a higher-level planning system and low-level action primitives.
SMACH mainly supports hierarchical state machines, although other execution
policies are possible.

The practical internal structures used by SMACH, namely hierarchical state ma-
chines, which allow, among others, concurrency and service calls within the ROS
framework, make SMACH among all the languages mentioned here probably the
language that most closely resembles the internal structure of an ALICA program.
However, SMACH only considers single robots and indeed provides coordina-
tion metaphors only among components of a single system. ALICA, on the other
hand, focuses on the robotic team and instead provides hierarchies of sets of state
machines. Additionally, ALICA incorporates task allocation by means of utility
functions and constraint-based modelling of team behaviour.

XABSL A prominent behaviour modelling approach that can be seen as a plan
execution language was developed by Lötzsch et al. [99], namely the language
XABSL. XABSL describes agent behaviour through a hierarchical structure of
states and options. Zweigle et al. [187] expanded this approach with a petri-net-
like structure to capture multi-agent interaction. The graphically modelled XPlM
Nets were compiled into XABSL trees. Although the general idea of a hierarchi-
cal interaction net is central to ALICA as well, there are fundamental differences
to XPlM Nets. Most importantly, ALICA describes agents using capabilities and
implements a double-layered abstraction between plans and agents through the
use of roles and tasks. This allows for easier definition of complex cooperative
plans, which rely on heterogeneous capabilities of the involved agents. Moreover,
ALICA combines the state-based description of behaviour with utilities for task
allocation and constraints. The former allow for highly dynamic, yet stable adap-
tations of the team’s behaviour, while the latter extend the language with a fraction
of first-order logic able to express complex relations over the real numbers. Hence,
ALICA exceeds simple hierarchical state-based approaches.

3.4 Teamwork 25

3.4 Teamwork

The teamwork theories Joint Intentions and Shared Plans discussed in Section 2.3
led to a number of implementations. Here we briefly highlight the most prominent
ones.

GRATE* The system GRATE* by Jennings [78] is based on the Joint Intention
Theory. GRATE* provides a rule-based modelling approach to cooperation using
the notion of Joint Responsibilities, which in turn is based on Join Intentions.
However, GRATE* is geared towards industrial settings in which both agents and
the communication between them can be considered to be reliable. Thus it uses
central concepts to organise the establishment of joint actions and uses extensive
communication protocols before the corresponding actions are executed.

STEAM STEAM (Shell for Teamwork) [163, 125] builds on both Joint Inten-
tion Theory and Shared Plan Theory and tries to overcome their shortcomings.
Based on joint intentions, STEAM builds up hierarchical structures that parallel
the Shared Plan Theory as described in the previous chapter. Hence, STEAM for-
malises commitments by building and maintaining joint intentions and uses Shared
Plans to formulate the team’s attitudes in complex tasks.

ALICA is very similar to and borrows a number of ideas from STEAM and thus
also from the Joint Intentions Theory and from the Shared Plans Theory. Just like
STEAM, ALICA builds hierarchical structures of team plans that cover the collab-
orative behaviour of whole teams and sub-teams, provides mechanisms to assign
agents to (sub-)teams, and identifies the need for tracking of actions performed by
teammates. ALICA also draws from the Joint Intention Theory, in particular in
the definition of Synchronisations (see Section 5.13) and in capturing the need to
communicate failures. However, in ALICA, failures are communicated implicitly
in periodic messages (see Section 7.5).

In contrast to STEAM, ALICA agents in general do not establish joint inten-
tions before acting towards a cooperative goal. Instead, each agent estimates the
decisions of its teammates and acts upon this estimation. Conflicting individual
decisions are detected and corrected using the periodically communicated internal
states of teammates. Although STEAM provides approaches for selective commu-
nication and tracking of mental attitudes of team-mates, we argue that for highly
dynamic domains and time-critical applications the strict requirement to estab-
lish or estimate a joint commitment before a joint activity is started has to be
skipped. In ALICA, agents decide and act until contradictory information is avail-
able, which seems to be much more suitable for such applications. Nevertheless,

26 3 Related Work

ALICA provides language elements to enforce an explicit agreement, resulting in a
joint intention, for activities that require time critical synchronisations, such as co-
operative lifting of an object. Also the assignment of agents to teams and teams to
operators (which encapsulate the actual team-behaviour) done by STEAM seems
to be too static for highly dynamic domains. For example in a soccer game, a robot
that is assigned as defender should also be able to take over the tasks of an attacker
if it obtains the ball and the game situation seems to be promising to do so. In order
to facilitate such behaviour, we provide a slightly different definition of roles and
incorporate the concept of tasks and preferences towards tasks. Unlike STEAM,
ALICA also does not rely on the concept of a team leader, which STEAM assumes
for different purposes. Instead, ALICA only reverts to leader-based decision mak-
ing if a persisting conflict is detected. Thus it switches the coordination protocol
during runtime.

The project “Machinetta” [142] is based on STEAM. In order to provide a
lightweight and portable implementation of the teamwork framework, Machinetta
uses the concept of proxies to build a reusable software package that encapsulates
the teamwork model. Each proxy works closely with a single domain agent, rep-
resenting that agent in the team.

While STEAM bridged the gap between cooperation theory and practice, it is
not a complete implementation for a working robotic team. It provides mecha-
nisms to reason about or to establish teamwork, but does not go into detail about
the description of the internals of plans or operators. STEAM and its implemen-
tation TEAMCORE [126] just assume reactive or situated plans, do not provide
support to really ’program’ plans with regard to sequential and/or parallel ac-
tions, and do not really specify the internal control cycle of an agent. In this
context, agent programming languages have inspired the design of ALICA, most
notably 3APL [71] and its successor 2APL [35]. Tambe et al. later on defined a
framework for team-oriented programming [164] based on TEAMCORE. Here,
individual agents, programmed in different languages coordinate themselves via
TEAMCORE proxies. This approach lends itself very well to coordinating hetero-
geneously programmed agents working together over distances. However, it does
not address the problem of a team of robots confronted with a dynamic domain
any further.

CAST CAST [183, 184] (Collaborative Agents for Simulating Teamwork) is a
teamwork framework based on the Shared Plans Theory. CAST focuses on flex-
ibility in dynamic environments and on proactive information exchange enabled
by anticipating what information team members will need. Petri Nets are used to
represent both the team structure and the teamwork process, i.e., the plans to be

3.4 Teamwork 27

executed. This representation avoids the computational complexity of reasoning
with beliefs and is very similar to the finite state machines employed by ALICA.
Furthermore, the dynamic role selection employed by CAST bears similarities to
the dynamic task allocation rule we will discuss in Section 5.13.

However, the representation of roles in CAST is less expressive than the two-
tiered abstraction based on agents, roles, and tasks used in ALICA. Furthermore,
CAST cannot compensate for team members breaking down. Finally, in cases
where the number of agents that can take on a task is bounded (XOR operator),
CAST requires communication before an action can be taken.

ALLIANCE The ALLIANCE architecture by Parker [118] aims at fault toler-
ance in a cooperative team of mobile robots. They established a framework in
which robots coordinate and adapt to faults without any central control. Similar
to ALICA, ALLIANCE relies on periodic broadcast communication to achieve its
goal. In contrast to ALICA, ALLIANCE does not feature the notion of high-level
team-oriented plans, in which complex coordinated behaviour can be expressed.
Instead, ALLIANCE defines sets of behaviours, of which one is executed while
the other sets hibernate. Using a concept based on impatience and acquiescence
values, robots dynamically select the appropriate set. Each group is controlled by
a motivational behaviour, which is interrelated with the motivational behaviours
of other groups. While this approach can cope with dynamically changing situa-
tions, this modelling perspective does not lend itself very well to complex plans
which may feature a high number of causal and temporal dependencies. In partic-
ular, transforming a partially ordered plan generated by a planning algorithm into
a corresponding ALLIANCE program seems hardly feasible.

Reis et al. [132] identified the trade-off between reactivity and cooperation when
coping with the necessity to coordinate in a dynamic, noisy, real-time environment
that might feature adversaries. In order to deal with this trade-off, they propose
to differentiate between what they call strategic situations and active situations,
essentially introducing a flat hierarchy. ALICA extends this in a sense by allow-
ing arbitrarily deeply nested plans, so that the degree of reactivity can be tuned
individually at each level using thresholds and similarity measures for task real-
location (see Section 5.8). Furthermore, Reis et al. distinguish between positions
and roles. Positions dictate the physical place an agent has within a formation,
while roles determine how they behave. Their approach was successfully used in
the RoboCup simulation league.

However, the role exchange algorithm DPRE (Dynamic Positioning and Role
Exchange) they employ only allows role switching between two agents and does
not consider a completely new allocation. It is unclear what happens if two role

28 3 Related Work

switches collide and the corresponding utility measures interrelate as DPRE uses
potential utility gains when deciding whether or not to exchange roles with an-
other agent. The approach does not transfer well from the soccer domain since it
considers all agents to be homogeneous and integrates formations and positions
very tightly into the framework. Finally, their approach does not feature any plan-
internal structure, nor any repair mechanisms other than role exchange.

None of the teamwork approaches discussed here feature behaviour modelling
via constraint satisfaction and optimisation problems. To the best of our know-
ledge, ALICA is the first comprehensive framework for teamwork in robotic do-
mains, in which such declarative description is possible as an completely inte-
grated language element. Since ALICA solves problems formulated in this way
dynamically during runtime, coordinates solutions robustly within the team, and
utilises the team’s combined computational power to solve hard problems if nec-
essary, this feature is the most important contribution of ALICA to teamwork ap-
proaches.

3.5 Task and Role Allocation

There has been extensive research on the topic of task and role allocation; dis-
cussing them in any comprehensive way would exceed the boundaries of this
work. Campbell and Wu recently provided a well-researched overview in [20, 21].
Gerkey [55] identified different problem classes in which task allocation and, con-
sequently, role allocation algorithms can be classified. Subsequently, they estab-
lished a taxonomy for different task allocation problems. Mainly, they identified
three properties to classify multi-robot task allocation:

Single-task robots (ST) vs. multi-task robots (MT): Indicating whether a
robot can take on multiple tasks at once (MT) or not (ST). In ALICA, a task
allocation problem assumes single-task robots, however due to the hierarchi-
cal nature of ALICA programs, and the fact that robots, or teams can execute
different plans in parallel, the global problem reflected in ALICA can deal
with multi-task robots. Similar to the assumptions made by Gerkey, the
decision-relevant entities, such as utilities and preconditions must be inde-
pendent in the multi-task robot case.

Single-robot tasks (SR) vs. multi-robot tasks (MR): Reflecting whether a
task requires exactly one robot (SR) or potentially multiple (MR). Cardinal-
ities in ALICA are used to denote the number of robots each task requires in
a specfic context, thereby describing a multi-robot task problem where some

3.5 Task and Role Allocation 29

tasks and even some robots can be optional, since cardinalities are seen as
intervals.

Instantaneous assignment (IA) vs. time-extended assignment (TA):
Indicates whether planned future tasks need to be considered (TA) or that no
further information is available regarding potential future tasks (IA). ALICA
typically deals with instantaneous assignments due to the dynamics of the
environment. However, in principle, the utility functions used by ALICA
to evaluate task allocations can incorporate arbitrary information, such as
potential future allocations.

Gerkey showed that the ST-SR-IA problem is tractable by relating it to the Optimal
Assignment Problem [51]. Furthermore, he showed that the ST-MR-IA problem,
which is most relevant to this work, as well as the MT-MR-IA problem are NP-
hard. Nair et al. independently showed that the problem of finding an optimal
allocation when considering future allocations is NEXP-complete [104].

In their work, they advocated the use of POMDPs (Partially Observable Markov
Decision Processes) to model role allocations by introducing role-taking and role-
execution actions. Such an approach can lead to optimal decisions if the necessary
probability estimates are available and the MDP assumption is applicable. ALICA
takes a more general route using utility functions. These can represent decision
theoretic entities, such as POMDPS, or simpler heuristic estimates, in case no
probability estimates or no proper Markov Model are available.

The problem of dynamic task allocation, where robots continuously need to
reevaluate their decisions and reallocate to other tasks in order to adapt to new sit-
uations, was studied by Lerman et al. [94]. They advocated a mathematical model
to analyse specific multi-robot systems, which allows similar insights as extensive
simulations over vast sets of parameters. However, their model is not yet able to
deal with real-world robotic teams, which consist of heterogeneous robots whose
sensors are subject to noise and which deal with many different environmental
information simultaneously.

Naturally, the problem of task allocation was tackled by the RoboCup commu-
nity as well. Vail and Veloso [170] presented an approach similar to task allocation
in ALICA, where robots locally compute the result of a task allocation based on
shared information and then act upon it. However, their task allocation algorithm
greedily processes an ordered list of tasks and assigns to each task the robot with
the highest utility. This process can be embedded into task allocation in ALICA
by using an appropriate utility function to order the tasks. Furthermore, in order to
stabilise tasks within the team, they specified a minimal time interval between task
reallocation. This interval is in the order of several seconds. In ALICA, a thresh-

30 3 Related Work

old can be specified that must be exceeded by a utility difference in order for a
reallocation to take place. Additionally, a similarity measure is used to distinguish
between reallocations that change little (e.g., exchange the task of two robots) and
reallocations that change the complete assignment.

Weigel et al. [178] used utility functions for dynamic role allocation, which mea-
sure the utility of each robot-role pair independently of the other robots. Thereby,
a robust and efficient role allocation algorithm is created. However, this approach
is limited to independent utility measures and to the single-task, single-robot case.

Other coordination and allocation approaches from the RoboCup community
often use a central component for some of the decisions to be made. For instance,
Lau et al. [93] use a distributed role assignment, but calculate position assignments
centrally. For both problems, Lau et al. essentially use a greedy algorithm coupled
with a priority list.

Wang et al. [175] suggested another approach, in which robots switch to the least
represented role based on a minority game [22]. Thereby, they are able to adapt the
role selection strategy dynamically according to the outcome of previous choices.
The results are very promising; however, the resulting performance depends on
the length of the history considered and the algorithm’s space complexity scales
exponentially with the history size.

3.6 Estimating Agreement and Conflict Resolution

STEAM allows reasoning about the cost of communication versus the risk to the
coordination quality [163], if no communication is used. It then offers repair oper-
ators that maintain and fix teamwork as needed. While this approach is appealing,
in most real world applications the necessary parameters determining the cost of
communication and the risk of failure cannot be precisely determined in advance,
as this approach requires. Instead, rough estimates have to be used.

Plan recognition can also be used to detect and thus repair conflicts in team-
work, as done by Kaminka and Tambe [82] through the use of socially attentive
monitoring. Augmenting our approach with plan recognition is possible and prob-
ably beneficial to the overall performance. However, this is out of the scope of this
thesis.

The BDI architecture BITE by Kaminka and Frenkel [81] allows for synchro-
nised actions as well as task allocation to be modelled, similar to our approach.
BITE offers interchangeable decision protocols for both problems so that a de-
signer can select the best protocol for each specific problem. In a similar fashion,
ALICA allows for either weak synchronisation via conditions or more communi-

3.7 Task Models 31

cation intensive strong synchronisation using synchronisation elements (see Sec-
tion 5.13). Furthermore, ALICA automatically switches decision protocols for
task allocation when persistent conflicts are detected (see Chapter 6). BITE does
not support automatic switching between protocols. Moreover, in all cases, BITE
establishes agreement before acting, while in ALICA actions are started before
any communication takes place, thus ALICA has a stronger emphasis on reactiv-
ity in dynamic environments. The underlying assumption in ALICA is that the
situation might change quicker than messages can be exchanged. Hence, acting
immediately is crucial.

Finally, in contrast to all approaches discussed above, ALICA also supports the
modelling of team behaviour by constraint systems over real-valued variables and
offers a mechanism to coordinate the resulting values in a weak sense. That is, due
to the assumed dynamics of the environment, coordination is not geared towards
achieving precisely the same instances of vectors in R

n. Instead, coordination
establishes a tendency to chose similar values. This method of coordination is
discussed in detail in Section 10.3.

3.7 Task Models

The idea of decomposing complex tasks into smaller ones and thereby simplifying
the original problem has led to the development of Hierarchical Task Networks
(HTN) [140]. HTNs are widely used by planning algorithms, which decompose
high-level tasks subsequently into finer-grained structures given action decompo-
sition operators. The result of such a planning step can be expressed as an ALICA
plan structure.

The original HTN structure later inspired the TAEMS model (Task Analysis,
Environmental Modelling and Simulation) [74]. TAEMS is a very rich multi-agent
task model, where each task has a deadline and various different interrelations be-
tween tasks can be expressed. Most importantly, TAEMS represents the activity
of agents using a distributed goal tree, i.e., in contrast to ALICA, no common pro-
gram hierarchy is assumed. Instead, agents can potentially discover interrelations
to other trees during runtime. In that respect ALICA is more similar to STEAM
than to TAEMS due to the assumption of a common program hierarchy. More-
over, instead of the various interrelationships between tasks in TAEMS, ALICA
uses finite state machines and supports interrelations between them, i.e., allows
transitions to refer to the states inhabited by other agents in other machines. Thus,
ALICA takes a more operational stance than TAEMS. Later on, TAEMS was ex-
tended with generalized partial global planning (GPGP) [95], yielding a planning

32 3 Related Work

oriented approach that is mainly concerned with scheduling concurrent tasks in a
distributed environment.

3.8 Constraint-Based Modelling

Chalmers and Gray [23] showed how BDI deliberation can be understood as con-
straint solving. FLUX [167] represents partial knowledge in the form of partially
grounded terms, over which constraints express additional knowledge.

One of the first integrations of constraints in agent specifications was done
by Ooi and Ghose [117]. Later it was extended by Dasgupta and Ghose [33],
whose approach allows for integration of objectives, which agents try to optimise.
Both are based on the BDI language AgentSpeak(L) [129].

They showed that the integration of constraints in high-level agent specification
languages can greatly improve efficiency and expressiveness. However, in Ooi
and Ghose [117] constraints are only used to select or generate plans based on
intentions. We constrain action or behaviour parameters, thereby enabling the
specification of behaviour using constraints in a more specific and direct way.

In contrast to these extensions to AgentSpeak(L), our approach models con-
straints from a global perspective for a team of multiple agents, allows hierarchi-
cal decomposition of the constraint problem, such that sub-problems are easier to
solve for individual agents, assumes dynamically changing constraints, and inte-
grates coordination into the solving process (see Chapter 8).

De Schutter et al. [38] developed a generic approach to modelling complex spa-
tial tasks for a single robot, which give rise to controller structures to be used
during runtime. Their work heavily focuses on control, while we provide generic
non-linear constraints, without imposing a control model. In ALICA, the specific
controller is to be defined by the executing behaviours.

In [38], constraints were still limited to equality constraints on the controller’s
output and the joint coordinates. The resulting framework, iTasc, was later ex-
tended by Decré et al. [39], making the constraint problem more explicit. The
resulting framework allows for problem-specific objective functions and for the
constraints to include inequalities. Further, they added non-instantaneous con-
straint, i.e., constraints over time. However, the problem class remains convex and
cannot support arbitrary Boolean combinations of non-linear constraints. The fun-
damental difference between constraint-based control in iTasc and ALICA is that
controllers in iTasc only react to violated constraints while constraints in ALICA
are solved before a controller is used. Hence, ALICA potentially spends more time
solving than iTasc, but can consider the controlling task on a global scope.

Part II

Propositional ALICA

4 Syntax

In this chapter, the syntactic elements of a propositional variant of ALICA (coined
pALICA) are introduced step-by-step. The next chapter introduces corresponding
semantics. In Chapter 8, we extend this basic language to the first-order case.
Intuitively, the basic problem targeted here can be formulated quite concisely: A
team of agents needs to act towards a common goal in a coherent and coordinated
manner. In order to reach this goal, the team needs to follow a set of instructions
which determine the course of actions. While doing so, they need to continuously
monitor their progress in order to detect and avoid potential pitfalls or compensate
for problems which have already occurred.

Deriving a set of instructions from a goal description is called planning. Plan-
ning, however, is not the focus of this work. Instead, we seek to devise a language
in which said set of instructions can be formulated. Furthermore, we are concerned
with the efficient and coordinated execution of these instructions.

Imagine for instance two robots that assemble a small structure. A planning
algorithm would compute a set of instructions indicating in which order each of
them grabs parts, moves, and attaches parts to the structure. The language allows
the planner to express the necessary notions such as temporal and causal depen-
dencies between actions. E.g., if robot a assembles part p, robot b might have to
wait for this action to complete, so that it can assemble other parts that depend
on p. The execution layer of each robot interprets these instructions and executes
them. While doing so, it monitors their progress and calls each individual action
after the previous action has successfully been completed. Moreover, it reacts to
and compensates for failures, such as a robot’s unsuccessful attempt to grab a part,
or even the complete breakdown of one the robots. Finally, it handles the necessary
communication and coordination, such that both robots are aware of the progress
of the respective other.

Agents that can act autonomously have a certain set of basic actions at their dis-
posal. The language should allow the identification of the correct action to take for
each agent, for each point in time, and under any circumstances. In order to do this,
a way of expressing beliefs about the world and conditions on them is needed. We
assume the presence of an adequate logic L with language L(Pred,Func) for ex-
pressing these conditions. There is no requirement posed on this language, though
we assume a set of predicates Pred and a set of function symbols Func, thus L has

H. Skubch, Modelling and Controlling of Behaviour for Autonomous Mobile Robots,
DOI 10.1007/978-3-658-00811-6_4, © Springer Fachmedien Wiesbaden 2013

36 4 Syntax

a certain first-order flavour. However, it is entirely possible that L is compilable
into propositional logic.

Furthermore, to describe the specific agents available in a scenario, we refer to
the set A, containing all agents that can possibly participate in the team. These
two entities, A and L make up the domain signature of a pALICA program.

Definition 4.1. A pALICA domain signature (A,L) consists of

• a set of Agents A, which form the cooperative team;

• a logic L, with language L(Pred,Func) meant to describe the agents’ belief
bases with a set of predicates Pred and a set of function symbols Func.

By �L we denote a theorem proving calculus and corresponding algorithm in
L, i.e., F �L φ indicates that the algorithm �L infers the logical consequence
φ from the set of formulae F . In Chapter 8, we will extend the basic language to
incorporate constraint satisfaction problems, and discuss corresponding algorithms
in more detail. Here, we assume the presence of a proving algorithm for L. If
the logic is clear from the context, we omit it and just write �. In propositional
ALICA (pALICA), no formula used may have free variables. We denote the set
of sentences of L(Pred,Func) by LS. Thus, similar to SMT-theories1, a pALICA
program can be interpreted as a propositional formula, whose variables are in turn
formulae of another theory, namely L.

In Section 4.1 we introduce the basic action elements available to an agent,
behaviours. In contrast to classical action calculi, behaviours in ALICA have a
significant duration, which typically is only loosely bounded. Section 4.2 contin-
ues with higher-level concepts, plans, which build a structure based on the atomic
behaviours. In the remainder, we discuss additional concepts such as Synchroni-
sations, Roles, and syntactically well-formed programs.

4.1 Behaviours

In real world scenarios, featuring real robots, actions, such as driving to a certain
room, can take a significant amount of time, and are non-deterministic; that is, they
can fail and even if they succeed, they can have different outcomes. For instance,
the action of driving to the kitchen will, when repeated multiple times, almost
never bring the executing robot to the exact same spot twice due to noisy sensors
and imprecise actuators.

1 For a discussion of SMT solving, refer to Nieuwenhuis et al. [112].

4.1 Behaviours 37

This brings us to the first elements of the language, namely low-level, atomic
activities called behaviours, encapsulated in the finite set B. Behaviours usually
can only be executed under certain conditions, e.g., it does not make sense to open
a door already open, or it is even dangerous to drive onto an unobservable road
intersection. Thus, each behaviour has a precondition that needs to hold if it is
executed:

Pre : B 	→ LS

Hence, Pre(b) denotes the precondition of behaviour b. Furthermore, since be-
haviours take a certain timespan to be executed, there may be conditions which
need to hold throughout its execution time, called runtime conditions:1

Run: B 	→ LS

Finally, behaviours are in most cases meant to achieve a certain change in the envi-
ronment. In other words, an agent executing them tries to achieve a postcondition:

Post : B 	→ LS

With these three types of conditions, it is already possible to formulate and solve
planning problems, similar to propositional problems formulated in STRIPS [45].
In contrast to action calculi, we do not present a solution for the frame prob-
lem [100] and do not define update equations. Instead, we rely on solutions al-
ready available (e.g., [92, 134, 150, 168]) and enable the interchangeable usage
of ALICA with any belief or knowledge representation and corresponding update
semantics.

In this spirit, we enable behaviours to signal successful or unsuccessful termi-
nation. In other words, a behaviour — which essentially is a software component
implementing one or multiple algorithms, such as controllers or searches of vari-
ous paradigms — does not need to rely on the implementation of the belief base to
encompass the necessary notions nor on the ability of the reasoning algorithm to
infer the postcondition. Semantically, this requires two predicates, Success(b) and
Fail(b) to be represented in L(Pred,Func), which can be set by behaviour b. Note
that these are compilable into propositional logic, as B is finite.

However, planning algorithms usually rely on the postcondition to find a suitable
path to the goal state. In some scenarios, a simulator might instead be employed to
execute trial runs, but this is often not feasible. Thus, planning requires the logical
equivalence of success signal and postcondition.
1 Runtime conditions relate to invariants in other calculi. However, in contrast to classic invariants,

a runtime condition must initially evaluate to true. Furthermore, a runtime condition can change
its value, e.g., due to unforeseen changes in the environment, in which case, a corresponding
failure is raised.

38 4 Syntax

Definition 4.2. Planning Axiom

Σplan
de f
= Success(b)↔ Post(b)

It is, however, not required of the reasoning algorithm �L to be able to prove the
postcondition in all cases where the behaviour signals success. Though, for any
set of beliefs B,

B∪{Σplan ∧Success(b)} �L Post(b)

must hold, which essentially comes down to a modus ponens application.

4.2 Plans

Given the atomic behaviours together with their annotations, a structure is needed
to formulate more complex recipes or plans. This structure constitutes the focus
of the language. In general, it describes actions that are to be executed in order
to achieve a certain goal, maintain a condition, or control a dynamic system. The
simplest way to describe a plan is a list of behaviours to be executed one after the
other. There are various representations of such recipes or policies, which extend
this simple description.

One prominent representation for action selection is decision-trees, where a de-
cision is made at each node in the tree according to some property of the envi-
ronment and an action is associated with each leaf-node. Decision-trees and their
simpler cousins, decision-lists, have been profoundly researched by the machine
learning community. See for instance the works by Quinlan [128] and Murthy
[103] on decision-tree learning and [156] for an approach to induction of decision-
lists representing single-agent behaviour.

Pure decision-trees can only capture reactive, deterministic behaviour. Prob-
abilistic policies extend that notion to non-deterministic cases, yielding a repre-
sentation more suitable for classic reinforcement learning techniques. Confronted
with more complex tasks, agents need to remember parts of their history. A simple
way to capture such a memory in a limited fashion is to use a finite automaton,
which can be a much more compact representation than decision-trees. Also note
that any decision-tree can be trivially expressed as a finite automaton. More re-
cently, task networks and hierarchical task networks (HTNs) have been used to
express agent behaviour, primarily in the context of planning problems [140, 106].
We are aiming for a more expressive language, with additional features to express
alternatives, loops, and teamwork aspects such as synchronisations, and dependen-
cies between concurrent tasks.

4.2 Plans 39

The basic concept of plans is therefore strongly related to finite automata, which
not only allow the formulation of sequences of actions, but also of loops and con-
ditional execution. Hence, every plan p in the set of plans P is a structure of states
and the transitions between them. The set of all states in a pALICA program is
denoted by Z . Transitions intuitively dictate when and how an agent switches
from one state to another. Thus, each transition t is a relation between two states
and a sentence in L. The transitions of a pALICA program are defined by the set
W ⊆Z×Z×LS. This relationship between transitions and states forms a directed
graph for each plan with transitions as edges and states as nodes.

The intuitive idea behind a state is that an agent can, similar to places in petri-
nets, inhabit a state and while doing so it is obliged to do something, i.e., execute
one or multiple behaviours. The function Behaviours : Z 	→ 2B defines which
behaviours are contained in a state and are therefore to be executed by inhabiting
agents.

A finite automaton has an initial state, indicating where to start a calculation.
A single initial state, however, does not suffice to grasp the behaviour of multi-
agent systems. Instead, we allow for multiple initial states, each one defining a
starting point for a sub-group of agents. The automaton is thereby divided into
sub-automata, which are not necessarily connected. This way, it is possible to
describe activities for multiple agents which depend on each other. Section 5.13
introduces a method for describing such dependencies and thereby coordinating
different activities within a plan. For now, we introduce the notion of a task, which
points to an initial state within a plan, and thus identifies a sub-automaton within
it. The set of all tasks of a program is referred to as T . Note that while we do
not enforce the sub-automata identified by each task to be disjoint, disjoint sub-
automata are beneficial, since in this case each state unambiguously identifies a
task. This can be exploited to limit communication overhead (see Section 7.5).

The partial function Init : P ×T 	→ Z maps a task and a plan to an initial state,
e.g., Init(p,τ) is the initial state of task τ in plan p. This allows for tasks to be
independent of a specific plan, a feature useful later on when we consider sets of
plans. Given tasks as means to identify different parts of a plan, agents can be
assigned to and work on different parts of the plan. However, some tasks might
still require multiple agents. An object that needs to be moved might be too heavy
for a single agent or an area too large to be searched in feasible time. Hence, we
allow multiple agents to execute the same task within a plan. The number of agents
executing a task might be subject to some constraints. We capture such bounds on
the number of agents by the partial function ξ : P ×T 	→ N0 × (N0 ∪{∞}), such
that ξ (p,τ) = (n1,n2) indicates how many agents must at least (n1) and may at
most (n2) execute task τ in plan p.

40 4 Syntax

Waiting

DoorKeeper

1..1

Waiter
1..∞

Z0 Z1

OpenDoorObserve

Agent approaches

Agent passed

Z2

Observe

Z3

GoToTable

Z4

RecordOrder

Z5

FetchOrder

Z6

PlaceFood

Signal received
At table,
no food present

Order parsed
Food received

At table,
have food

Food accepted

Figure 4.1: Example Plan: Waiting

Some plans are meant to maintain certain conditions and run indefinitely. Oth-
ers, however, are goal-directed and terminate once the intended environmental
state is reached. Reflecting this, we incorporate terminal states into the plan struc-
ture. Let States(p) denote the states of plan p, then some states Success(p) ⊆
States(p) are successful terminal states. Once an agent has reached such a state, it
has successfully completed its task. Similarly, by Fail(p) ⊆ States(p), we denote
the set of terminal states that indicate a failure. An agent reaching a failure state
has failed to complete its task. In Section 5.5, we will discuss successful termina-
tion in more detail. Section 5.13.2 presents possibilities to deal with failures.

With the elements defined so far, we can already express some complex be-
haviour, such as the example in Figure 4.1 from the service robotic domain. The
plan Waiting contains two tasks: one for a set of robots serving the tables and one
for a single robot taking care of the door to the service area.

However, there are two major shortcomings. Firstly, as problem domains be-
come complex, so do plans that specify solutions and we have not yet introduced
any way to abstract complexity. Secondly, it is cumbersome to express alterna-
tives in a single state machine. While alternative transitions are possible, these
quickly converge towards fully connected state machines if the scenario requires
quick adaptation. Both problems require ways to compare plans with each other.

4.2 Plans 41

Hence, we introduce conditions for plans similar to those defined for behaviours.
We extend the functions Pre and Run to map the set of plans to sentences of L as
well:

Pre : P ∪B 	→ LS

Run: P ∪B 	→ LS

Facilitating planning, a plan should also feature a postcondition. Since we de-
fined the notion of terminal states, it is sensible to attach postconditions to suc-
cessful terminal states. This allows for different, yet successful outcomes to be
modelled for each plan. Similarly, failure states are also equipped with a postcon-
dition. This allows for failure analysis by a reasoning component. We extend Post
to the partial function

Post : Z ∪B 	→ LS

which maps terminal states to postconditions. On the semantic level, there is a
major difference between the postcondition of a state and that of a behaviour. If
a terminal state is reached, this indicates that the postcondition holds. However, a
postcondition being evaluated to true given the internal belief of an agent does not
implicate that an agent, or even the corresponding agent inhabits the corresponding
terminal state. When introducing runtime semantics in Section 5.13, we will come
back to this distinction.

With the set of conditions introduced so far, plans can be evaluated with respect
to a situation, be it the current one or a hypothesised situation during planning.
Assuming L(Pred,Func) is monotonic1, it is difficult to express preferences for
one plan over others should multiple pre- and runtime conditions hold.

Therefore, we introduce a fourth element to evaluate a plan: utility functions.
A utility function maps a situation, described by a belief base, i.e., by a set of
formulae in L(Pred,Func) to a set over which a total order is defined. Following
a popular choice, we assume utility functions map onto the real numbers.

U : P 	→ 2LS 	→ R

Each plan p ∈ P has a utility function, denoted by U(p), which in turn maps a
set of formula to the real numbers. Thus, it rates a plan according to a situation.
Due to the fact that plans can have multiple initial states, it can also rate different
ways of executing plans, i.e., different allocations. This notion will be discussed
in Section 5.8.
1 See [14] for how preferences relate to non-monotonic logics.

42 4 Syntax

Given utility functions and pre- and runtime conditions, plans are comparable
with respect to a situation. To allow agents to select a plan from a set of pos-
sible alternatives through comparison, we group plans together in what we call
plantypes. Such grouped plans can be (but are not necessarily) directed towards
the same goal. The set of all plantypes in a pALICA program is referred to as
P∨ ⊆ 2P . A plan p belonging to plantype P is also called a realisation of P.

Fostering the idea of hierarchies, we introduce these sets as properties of states.
Thus, each state can contain a number of sets of alternative plans in the same
manner as it can contain behaviours. The function

PlanTypes : Z 	→ 2P∨

maps each state onto a possibly empty set of sets of alternative plans such that each
plantype is meant to be executed in parallel.

The relationships between states and plantypes and between plantypes and plans
span a directed graph between plans. In Section 4.5, we will constrain this graph
to a tree. The top-most element of this tree is identified by the plan p0. It contains
a single task τ0, and a single state z0. Thus, p0 can be seen as the main procedure
of the resulting multi-agent program. We refer to this structure as plan-tree.

Figure 4.2 shows how the plan Waiting in Figure 4.1 can be simplified by hier-
archical abstraction. Two new plantypes are introduced: one for handling single
tables and one for fetching food from the service room. Both abstract away the
complexity of each task. This also fosters the possibility of reusage. For instance,
a plan for fetching food from the service room can now be used in other settings.
The plans GetOrder and BringFood are two realisations of HandleTable, each han-
dling a specific case, distinguished by their respective preconditions. Note that
only BringFood ends in a terminal state which indicates the success of handling
the specific table.

The plan structure as introduced so far will play a major role in the next chapters.
Therefore, we introduce some macros simplifying expressions over plans:

• By PlanTypes+(z), we denote a transitive flavour of PlanTypes, inductively
defined by:

– PlanTypes(z)⊆ PlanTypes+(z)

– If P ∈ PlanTypes+(z) then
(∀z′, p)p ∈ P∧ z′ ∈ States(p)→ PlanTypes(z′)⊆ PlanTypes+(z).

• Plans : Z 	→ 2P , Plans(z) denotes the set of plans that can be executed within
state z:

Plans(z)
de f
=

⋃
PlanTypes(z)

4.2 Plans 43

Waiting

DoorKeeper

1..1

Waiter
1..∞

Z0 Z1

OpenDoorObserve

Agent approaches

Agent passed

Z2

Observe

Z3

HandleTable

Z4

FetchFood

Signal received Order known

SuccessSuccess

GetOrder Pre: ¬HaveFood(Waiter)

Waiter

1..∞

Z0

GoToTable

Z1

RecordOrder

At table

BringFood Pre: HaveFood(Waiter)

Waiter

1..∞

Z0

GoToTable

Z1

PutFood

Z2
At table Food accepted

Figure 4.2: Example Plan: Hierarchical Waiting

44 4 Syntax

• Plans+ : Z 	→ 2P is the transitive closure of Plans, defined by:

Plans+(z)
de f
=

⋃
PlanTypes+(z)

• Reachable : P ×T 	→ Z denotes the set of states transitively connected to
Init(p,τ), i.e., reachable in p by task τ . It is inductively defined by:

– Init(p,τ) ∈ Reachable(p,τ)
– If z ∈ Reachable(p,τ) then
(∀z′,φ)(z,z′,φ) ∈W → z′ ∈ Reachable(p,τ)

• The macro ChildOf captures the parent-child relationship between plans:

ChildOf(p, p′)
de f
= (∃z)z ∈ States(p)∧ (∃P)P ∈ PlanTypes(z)∧ p′ ∈ P

The transitive closure of ChildOf is denoted by ChildOf+.

4.3 Synchronisations

The language elements introduced so far already allow the description of coordi-
nated behaviour. In Chapter 5, we will discuss how this is achieved by reflecting
the internal status of agents executing an ALICA program into the belief base of
other agents. However, depending on the scenario, different levels or strengths
of coordination are needed. For instance, when cooperatively lifting a potentially
fragile object a tighter coordination is needed than when leaving a room one after
the other. In the limit, actions might need to be synchronised as tightly as commu-
nication latencies allow.

We therefore introduce an additional language element, following the idea of
synchronisations formulated by Kinny et al. [85]. In contrast to their work, we
use an explicit language element to distinguish between loosely synchronised and
tightly synchronised execution. Loose synchronisation is achieved simply by re-
ferring to the local representation of other agents’ internal state. For tighter syn-
chronisation we use the language element synchronisation. A synchronisation s
is a set of transitions ⊆ W . Λ denotes the set of all synchronisations in an AL-
ICA program. Intuitively, a synchronisation requires that all agents involved move
along their respective transition synchronously, i.e., at the same time. Moreover,
either the whole set of agents involved moves along said transitions, or none at all.
This requires a degree of commitment akin to a joint intention [97]. Similar con-
structs have also been introduced in other languages, such as synchronising speech
acts in the planning language MAPL [13].

4.4 Roles 45

4.4 Roles

Plans describe activities, i.e., they describe how a certain goal can be achieved.
Tasks denote specific parts within plans. In order to assign agents to tasks, a third
concept is needed, which we refer to as roles. Roles are assigned to agents, al-
lowing to evaluate an agent’s adequateness for a certain task and establish a gen-
eral team make-up. Following Wooldridge et al. [182], roles in ALICA reflect an
agent’s expected function within the team. This functionality is determined by the
problem domain, the capabilities of the agent, and the team composition. For in-
stance, an agent equipped with highly sophisticated sensors can perform searches
more efficiently than an agent with moderate sensing capability. This leads to a
definition of roles and tasks as described by Campbell and Wu [20].

Let R denote the set of all roles of a pALICA program. Then the function
Pref : R×T 	→ [−1,1] maps a role and a task to a real number in the interval
[−1,1], expressing the preference of tasks towards specific roles.

There are various approaches to the problem of assigning roles to agents. In the
simplest case, each agent is assigned a single static role. The resulting problem
has been described by Gerkey [55] as the single-task, single-robot instantaneous
assignment (ST-SR-IA) and can be solved in polynomial time.

More complex techniques allow for adaptation in case a team member breaks
down or is partially incapacitated and allow multiple roles per agent, multiple
agents per role, and possibly consider future events. In this case, the complex-
ity of the problem increases to NP [55] or even to NEXP-time if possible future
reallocations are considered [104]. Possible role assignment algorithms were re-
cently discussed by Campbell and Wu [21].

For the execution of an ALICA program, it is required that each agent is as-
signed a non-empty set of roles and that this set is known throughout the team. We
do not limit ALICA to a specific role allocation algorithm and thus only give a gen-
eral description of the necessary concepts in ALICA. In Section 5.6, we introduce
a possible instance of a suitable role allocation algorithm.

In order to achieve role allocations according to the different skills and abilities
of the agents involved, another concept is needed: Capabilities. A capability is a
description of a specific skill, or ability, together with a degree rating it. Informal
sentences such as “Robot r is very fast.” or “This role requires grasping.” refer
to capabilities. Again, we do not pose any restrictions on how capabilities are
represented here, but discuss them further in Section 5.6, where we introduce a
concrete role allocation algorithm. By C, we denote the set of all capabilities.

The function Cap: R∪A 	→ 2C maps agents onto their provided capabilities
and roles onto their required capabilities. Given agents, roles, and their respective

46 4 Syntax

required and provided capabilities, a role allocation algorithm can match agents to
roles. However, this can only be done unambiguously if there are as many roles
as agents and each agent must take on exactly one role (ST-SR). Furthermore,
additional information cannot be taken into account. Hence, we introduce a third
concept: Formations. A formation fills the gap by providing information about
which roles are essential and which are prioritised over others given a specific
set of agents and potentially a situation in which to decide. As the concept of
formations highly depends on the role allocation semantics, we leave it open and
discuss an example in Section 5.6.

4.5 Well-Formedness

In the previous sections, we introduced the language elements of pALICA and
stated some relationships between them, such as the plan-tree. We now constrain
the syntax of a pALICA program in a syntactical manner, in order to guarantee the
intended structure of these relationships. This leads to the notion of well-formed
pALICA programs. Let Σsyn be the set containing the following axioms:

• The top-level plan contains precisely one state, z0, and one task, τ0:

States(p0) = {z0}∧Tasks(p0) = {τ0} (4.1)

• States belong to at most one plan:

(∀p, p′ ∈ P)States(p)∩States(p′) = /0∨ p = p′ (4.2)

• No transition connects states in different plans:

(∀(z1,z2,φ) ∈W)(∃p ∈ P)z1 ∈ States(p)∧ z2 ∈ States(p) (4.3)

• Synchronisations happen only within a plan:

(∀s ∈ Λ)(∀w,w′ ∈ s)(∃z1,z2,z3,z4,φ1,φ2)w = (z1,z2,φ1) (4.4)

∧w′ = (z3,z4,φ2)∧ (∃p ∈ P)z1 ∈ States(p)∧ z3 ∈ States(p)

• Failure and success sets are disjoint subsets of the corresponding state set:

(∀p ∈ P)Success(p)∪Fail(p)⊆ States(p) (4.5)

∧Success(p)∩Fail(p) = /0

• A task associated with a plan identifies an initial state within that plan:

(∀τ ∈ Tasks(p))(∃z ∈ States(p)) Init(p,τ) = z (4.6)

• All plan-task pairs have a valid cardinality interval associated:

(∀p ∈ P ,τ ∈ T)τ ∈ Tasks(p)→ (4.7)

(∃n1,n2)ξ (p,τ) = (n1,n2)∧n1 ≤ n2

4.5 Well-Formedness 47

• There is a postcondition associated with each success and failure state:

(∀p ∈ P)(∀z ∈ Success(p)∪Fail(p))(∃φ)Post(z) = φ (4.8)

• Terminal states do not have sub-plans or behaviours attached:

(∀z)((∃p)z ∈ Success(p)∨ z ∈ Fail(p))→ PlanTypes(z) = /0 (4.9)

∧Behaviours(z) = /0

• The top-level plan is connected to all plans:

(∀p)p = p0 ∨ChildOf+(p0, p) (4.10)

• Every plan has at most one parent:

(∀p, p1, p2)ChildOf(p1, p)∧ChildOf(p2, p)→ p1 = p2 (4.11)

• The transitive closure of the parent-child relationship is asymmetric:

(∀p, p′)ChildOf+(p, p′)→¬ChildOf+(p′, p) (4.12)

An ALICA program is well-formed if and only if it satisfies Σsyn.
Axiom 4.1 guarantees the existence of a unique root node in the plan-tree. This

simplifies execution and coordination, as the number of possible states any agent
can have with respect to the highest level is limited: either the agent participates
or it does not. The axioms 4.2 to 4.6 limit the internal structure of plans to be
local, that is, elements belonging to different plans are not connected. Axioms 4.6
to 4.8 guarantee the existence of some elements essential for execution, such as
cardinalities for task-plan tuples. Note that trivial elements such as the cardinality
(0,∞) and the postcondition � are allowed.

Axiom 4.9 disallows terminal states to have children. Although this is not
strictly necessary, terminal states intuitively terminate execution and should not
contain internal programs.

The axioms 4.10 to 4.12 constrain the plan-tree structure to a finite tree. More
specifically, Axiom 4.10 enforces that the top-level plan p0 is transitively con-
nected to all plans. Axiom 4.11 enforces that each plan has at most one parent.
Together with Axiom 4.10, this entails that every plan other than p0 has exactly
one parent. Finally, Axiom 4.12 enforces asymmetry of the transitive closure of
the parent-child relationship. Since P is finite, the plan-tree is also finite. Note
that p0 cannot have a parent due to Axiom 4.10 and Axiom 4.12.

From a software architectural view, enforcing a tree-structure seems to be overly
restrictive, and indeed on the implementation level, a directed acyclic graph is sup-
ported, allowing for plans to be reused in different contexts. The runtime engine
recognises the different plan instances and handles them accordingly as if they
were different plans. We constrain the structure to a tree in order to avoid overly
complex notations, which would be required when distinguishing plans and plan

48 4 Syntax

instances. Note that a directed acyclic graph can trivially be transformed into a tree
by duplicating nodes with multiple parents, so the expressiveness is not restricted
with respect to acyclic graphs.

However, for both theory and implementation, the plan-tree must not contain
cycles. While permitting cycles would allow for recursive definitions and thus
increase the expressiveness, the semantics of recursion in the presence of multiple
agents are not at all straight-forward. For instance, each agent could be operating
at different recursion depths at a given time. We therefore exclude recursion.

4.6 Overview of the Syntactic Elements in pALICA

Summarising, a pALICA program contains only very few different elements.
Firstly, the domain signature defines the set of possible agent, as well as the logic
expressing beliefs about the world. The central element of pALICA are plans,
which formulate recipes to tackle given problems. Plans consist of states and tran-
sitions between them. Transitions can be linked together by synchronisations in
order to enforce a tight coupling between agents. States can contain plantypes,
which represent sets of alternative plans. Moreover, states can contain behaviours,
which are atomic action programs. This relationship yields a tree-shaped graph
whose nodes are plans. Initial states within plans are tagged by tasks to which
agents can be allocated. Such an allocation takes the roles of each agent into ac-
count. Roles are assigned to agents given their respective required and provided
capabilities.

Table 4.1 summarises the formal elements of pALICA. With the exception of
L(Pred,Func), all the sets are finite. This allows for compilation into proposi-
tional logic, if L(Pred,Func) is compilable into propositional logic. The individ-
ual elements are structured using the (partial) functions listed in Table 4.2.

4.6 Overview of the Syntactic Elements in pALICA 49

(A,L) the domain signature The domain signature consists of the
set of possibly interacting agents and
the logic with which the world is rep-
resented.

R a set of roles This set contains all availables roles
any agent can be assigned to.

B a set of behaviours Behaviours are atomic action programs
which form the means to interact with
the environment.

P a set of plans Each plan describes a specific coopera-
tive activity.

P∨ a set of plantypes A plantype is a set of alternative plans.
T a set of tasks Each task intuitively describes a func-

tion or duty within plans, meant to be
fulfilled by one or more agents.

Z a set of states A state occurs within a plan as a step
during an activity. It can contain plan-
types and behaviours.

W a set of transitions Each transition (z1,z2,φ) relates a pre-
decessor state z1 with a successor state
z2 and a condition φ ∈ L(Pred,Func).

Λ a set of synchronisations Each relating transitions in order to ex-
press the need for synchronised actions.

C the set of all capabilities Capabilities are used to match agents
and roles.

p0,τ0,z0 top-level elements The top-level plan, task, and state re-
spectively form the root node of the
program graph.

Table 4.1: Elements of a pALICA Program

50 4 Syntax

States : P 	→ 2Z States maps plans to the set of contained
states.

Tasks : P 	→ 2T Tasks maps plans to the set of related tasks.
ξ : P ×T 	→ N0 × (N0 ∪{∞}) ξ defines the upper and lower bound of

agents assignable to a task τ in plan p.
Init : P ×T 	→ Z Init maps a plan and a task to the correspond-

ing initial state.
Pre : P ∪B 	→ LS Pre(p) denotes the precondition of plan or

behaviour p.
Run: P ∪B 	→ LS Run(p) denotes the runtime condition of plan

or behaviour p.
PlanTypes : Z 	→ 2P∨ PlanTypes(z) denotes the set of plantypes to

be executed in state z.
Behaviours : Z 	→ 2B Behaviours(z) denotes the set of behaviours

to be executed in state z.
Success : P 	→ 2Z Success(p) denotes the set of terminal states

of plan p, which indicate successful execu-
tion of the plan.

Fail : P 	→ 2Z Fail(p) denotes the set of terminal states of
plan p, which indicate unsuccessful execu-
tion of the plan.

Post : Z 	→ LS Post(z) is a partial function, that maps termi-
nal states of a plan to postconditions.

U : P 	→ 2LS 	→ R U(p) is the utility function of p, evaluating p
with respect to a set of formula.

Pref : R×T 	→ [−1,1] Pref(r,τ) is the preference of task τ towards
role r.

Table 4.2: Structure Definitions of a pALICA Program

5 Semantics

In the previous chapter, we introduced the language pALICA and its syntax. We
thereby distinguished between syntactically incorrect and well-formed programs.
Here, we will introduce a meaning to the latter.

The semantics defined here serve three purposes. Firstly, it should yield an intu-
itive understanding of pALICA programs, such that a developer can easily design
multi-agent programs. Secondly, it specifies in detail how agents execute a pro-
gram and thus defines a range of possible execution engines. Thirdly, it should
allow mechanical proofs of various properties, such as liveliness or safety condi-
tions. Out of the three, we regard the second purpose as the most important, since
we are mostly interested in practical applications, and thus, in the execution of
programs.

In the following, we declare a set of principles the semantics should follow. Af-
terwards, we begin introducing the semantics with an agent model that defines in a
most general way how agents are understood in the context of ALICA. Afterwards,
we define operational semantics in terms of a transition system [122] which dic-
tates how the internal representation of an agent changes over time given a specific
ALICA program.

5.1 Fundamental Principles

The design of the ALICA semantics is guided by the following principles: Do-
main independence, autonomy, and locality. They are meant to guarantee portabil-
ity, scalability, and robustness against adverse domain features such as unreliable
communication.

Domain Independence Although robotic scenarios are in the focus of this work,
ALICA is designed domain independently, such that the results of this work can
be used in other domains than those discussed here. Therefore, ALICA makes as
little assumptions as possible about how an agent represents its environment. For
instance, it is entirely possible to use a closed world assumption or an open world
assumption when referring to the environment. Moreover, one can use a classical
first-order logic, a modal logic, or even a hybrid approach such as a probabilistic

H. Skubch, Modelling and Controlling of Behaviour for Autonomous Mobile Robots,
DOI 10.1007/978-3-658-00811-6_5, © Springer Fachmedien Wiesbaden 2013

52 5 Semantics

logic. A specific ALICA program references the world representation through the
language of L, which must be defined as part of the signature.

Autonomy One of the requirements we formulated in Chapter 1, is the ability
to cope with unreliable communication. ALICA tackles this problem by perform-
ing calculations redundantly, that is, decisions regarding the team are made by all
agents individually and autonomously. Inconsistent decisions can be subsequently
detected and corrected once corresponding information is available, e.g., through
communication or action recognition. This principle allows ALICA to operate
even under highly degraded network conditions, as shown in [159]. Due to redun-
dant calculations, message delivery times can be almost unbounded. There is only
one exception to this rule, which is related to the recognition of an incapacitated
agent. Our implementation assumes that if no message was received from an agent
for a certain period of time, this agent is no longer able to function properly. The
time period used depends on the expected network quality, the degree of dynamics
in the domain, and the likelihood of an agent breaking down. In Section 7.5, we
will discuss this in more detail.

Locality The global state of a team of agents executing an ALICA program is
represented by the combined states of all agents involved. In order to cope with
the potential complexity of the problem tackled by the team, ALICA exploits the
hierarchical structure of the program. Solutions for encountered problems are de-
scribed by plans, which split the team using tasks, and employ sub-plans to solve
potential sub-problems.

Maintaining this tree structure and performing all necessary calculations to
make all decisions involved can very well overwhelm the computational power
of a single agent, which might be why a multi-agent system was chosen in the
first place. Hence, ALICA adopts a locality principle. Each agent keeps track of
the plans it is involved in and only participates in decisions regarding these plans.
Parts of the global state of the team in which an agent does not participate are
ignored by this agent.

If the problem can be decomposed into sub-problems, this principle significantly
reduces the computation costs in large teams. Thereby the locality principle fosters
scalability with respect to the number of agents participating. This is also a prin-
ciple that comes very naturally to us human beings. For instance, during soccer,
an attacker currently dribbling towards the opponent goal, will not concern herself
with the precise positioning of her team members defending the goal, she is con-
tent knowing that they are defending. This is equivalent to the ALICA notion of

5.2 Agent Model 53

knowing which agents are allocated to which task at a higher level of the plan hier-
archy. The same principle is also applied by humans in less dynamic scenarios. If
your department participates in a large collaborative project, you will not concern
yourself with every detail of your partners’ doings. Instead, it suffices to know an
abstracted progress status.

5.2 Agent Model

In Section 2.1, we introduced the concept of agents. Following the most general
model of an intelligent agent described there, we do not impose any restrictions,
but embed the ALICA control structure in the appropriate place. Assuming a con-
trol loop consisting of the three parts Belief Update, Reasoning, and Execution,
ALICA integrates itself into the reasoning step.

The preceding belief update incorporates perceived information in the agent’s
internal model of its surroundings. Within an ALICA program, L(Pred,Func) can
be used to express facts and relationships within this model. The reasoning step
involves any kind of internal calculations, such as planning and intention update.
Most importantly, the internal state of the executed ALICA program is updated in
this step. In other words, an ALICA computation step is performed.

The execution phase executes any action command as decided by the reasoning
steps. In the context of ALICA, this refers to the atomic behaviour programs which
issue action commands. These commands can be processed further by intermedi-
ate reasoning steps. Finally, this last step also includes any active communication,
as the act of sending information is regarded as an action by itself.

We do not require agents to follow the model in Figure 2.1 in a strict sense.
It is merely a guideline of necessary steps, and their suggested order. Especially
given today’s parallel hardware architectures, a more modular architecture is sen-
sible. However, it still holds that perceptions need to be integrated into the internal
model, the result should be reacted upon in reasoning steps, and afterwards nec-
essary action updates should be made. In Chapter 7, we will introduce a more
elaborate software architecture.

From the point of view of ALICA, an agent has a configuration at any point in
time. This configuration reflects its internal status, comprising of its belief base,
its roles, and its state with respect to the ALICA program in execution.

54 5 Semantics

Definition 5.1 (Agent Configuration). For any agent a ∈A, let Conf(a) denote its
configuration. An agent configuration in pALICA is a tuple (B,ϒ,E,R), where

• B is the agent’s belief base.

• ϒ is the agent’s plan base.

• E ⊆ B×Z is the agent’s execution set, i.e., the set of behaviour-state tuples
the agent executes.

• R is the set of roles a currently holds.

The belief base holds the current model of the environment – everything the
agent believes to be true. The plan base is a representation of the agent’s current
state within the program. The execution set contains all tuples (b,z) of behaviours
b the agent executes together with the state z in which b occurs, called the context
of b. R contains all roles a holds within the team.

Initially, an agent’s configuration is empty except for domain-specific beliefs.
Hence, after start up, an agent does not make any assumptions about the current
state of the team. In particular, it does not believe to be executing any plan.

Definition 5.2. An initial agent configuration has the form (B, /0, /0, /0). Such that
B does not contain any belief referring to the status of the ALICA program.

The operational semantics define how agent configurations are updated as the
agent executes a program. Before we introduce corresponding rules, we will dis-
cuss the elements of agent configurations in more detail.

5.2.1 Plan Base

The plan base of an agent captures its current intentional state. Specifically, it de-
notes which state the agent inhabits for each plan it participates in and which tasks
it committed to. Hence, each element holds a procedurally represented intention.

Definition 5.3 (Plan Base). An agent’s plan base is a set of triples (p,τ,z), con-
sisting of a plan p, a task τ , and a state z. The plan base of an agent a is denoted
by PBase(a).

If (p,τ,z) is an element of PBase(a) for an agent a, we say a participates in
p (or executes p), is committed to task τ and inhabits state z. An agent cannot
arbitrarily participate in plans, but instead can only take on one task per plan at a
time, and only execute one plan per plantype. Furthermore, it can only commit to
tasks belonging to the respective plan and inhabit only states reachable within that
task. This restriction is expressed by the plan base axioms.

5.2 Agent Model 55

Definition 5.4. The set of plan base axioms Σp contains exactly the following:

(p,τ,z) ∈ PBase(a)∧ (p,τ ′,z′) ∈ PBase(a)→ τ = τ ′ ∧ z = z′ (5.1)

(p,τ,z) ∈ PBase(a)∧ (p′,τ ′,z′) ∈ PBase(a)∧ p ∈ P∧ p′ ∈ P → p = p′ (5.2)

(p,τ,z) ∈ PBase(a)→ τ ∈ Tasks(p)∧ z ∈ States(p)∧ z ∈ Reachable(p,τ) (5.3)

We define the following macro over plan bases, which captures their hierarchical
structure:

Definition 5.5. Plans+(ϒ,z) denotes the set of plans that are executed by an agent
with plan base ϒ in the context of z. It is defined inductively as the smallest set
such that:

• p ∈ Plans+(ϒ,z)← (p,τ,z′) ∈ ϒ∧ p ∈ Plans(z)

• p ∈ Plans+(ϒ,z) ← p′ ∈ Plans+(ϒ,z) ∧ (p′,τ ′,z′) ∈ ϒ ∧ p ∈ Plans(z′) ∧
(p,τ,z′′) ∈ ϒ

On the implementation level, a plan base might be represented using a structure
other than a set. Using a graph structure allows for swifter execution of the rule set.
Depending on the rule, a single instance can be executed in O(1) or O(n) instead
of O(n2), where n is the number of triples in the plan base. In Section 5.14, we will
show that if the pALICA program is well-formed, then the plan base always forms
a tree. This property further simplifies the runtime representation of the program.
Here, we assume a set representation, which allows for a more intuitive description
of the semantics, rather than focussing on efficiency. In Chapter 7, we will discuss
implications for the implementation in more detail.

5.2.2 Belief Base

The belief base represents the internal model an agent has of the environ-
ment, which includes its beliefs about cooperative agents executing the same
plan. Within ALICA, conditions and utilities refer to this representation using
L(Pred,Func). Thus, ALICA makes some assumptions concerning the represen-
tation of beliefs about team members.

Let L(Pred,Func) be the language of the belief base. L is a first-order logic1

extended by the modal operators Bela and Ka, for each agent a in A.

1 In principle, ALICA can also work with a propositional modal logic, since the set of ground terms
is finite.

56 5 Semantics

The operator Bela expresses individual belief of agent a. Bela φ denotes that
agent a believes φ . Formally and according to the knowledge axioms by Fagin
et al. [42], Bel is defined (as KD45 system) by the following axioms:

• Bela(φ → ψ)→ (Bela φ → Bela ψ) (Distribution Axiom)

• Bela φ →¬Bela¬φ (Consistency Axiom)

• Bela φ → Bela Bela φ (Positive Introspection Axiom)

• ¬Bela φ → Bela¬Bela φ (Negative Introspection Axiom)

• (∀x)Bela φ(x)→ Bela((∀x)φ(x)) (Knowledge Quantifier)

These axioms form the notion of strongly rational belief. The modality K ex-

tends Bel towards knowledge: Ka φ de f
= (Bela φ)∧φ .

Building on individual belief, we use the usual notions of “everyone believes”,
EBel, and mutual belief, MBel. Everyone believes is defined by (after Rao et al.
[130]):

EBelA φ de f
= (∀a ∈ A)Bela φ

The formula EBelA φ is satisfied if and only if all agents a in group A believe φ .
The mutual belief of φ is defined as all agents a of a group A believing φ and all
of them believing this mutually. More formally, MBelA φ is defined as the greatest
fixpoint of:

MBelA φ = EBelA φ ∧EBelA MBelA φ

This yields an infinite conjunction of the form:

MBelA φ ↔ EBelA φ ∧EBelA EBelA φ ∧ . . .∧EBelA . . .EBelA φ ∧ . . .

In words, everyone believes φ , believes that everyone believes φ , believes that
everyone believes that everyone believes φ , and so on.

The set of terms in L(Pred,Func) contains certain ALICA specific terms, such
as a constant for each agent in A, and domain-specific terms, such as coordinates
or terms representing physical objects. Formally, the set of terms in L(Pred,Func)
is given by:

• A countable infinite set of variables, X = {x1,x2, . . . ,xn, . . .},

• A set of n-ary function symbols (n ≥ 0), Func. 0-ary function symbols are
called constants. Func contains:

5.2 Agent Model 57

– A, B, Z , P , T , R
– a domain-specific set of function symbols, Fdom.

In order to reflect the state of other agents with respect to the executed program
into the belief base, the following predicates are introduced:

• In(a, p,τ,z), defined to hold if and only if (p,τ,z) ∈ PBase(a). This allows
an agent to reason about its beliefs about the internal states of other agents.
For instance, Bela In(b, p,τ,z) denotes that a believes b to be committed to
τ in p and that b is currently in state z. Due to the plan base axioms, Σp, the
occurrence of In(a, p,τ,z) within a belief base is limited in the same way as
the corresponding plan-task-state triples in a plan base.

• HasRole(a,r), expressing that agent a holds role r,

• Succeeded(a, p,τ), true if and only if agent a successfully completed task τ
in plan p.

The set of predicates in L(Pred,Func), Pred is assumed to contain these predi-
cates. Furthermore, since the rule-based execution of an ALICA program needs
additional stateful information, a set of additional predicates Prules is assumed to
be a subset of Pred. The operational semantics discussed in Section 5.13 assume
the following predicates in Prules:

• Handle f (b,z), which holds if an agent should handle the failure of behaviour
b in state z,

• Handle f (p), which is true if an agent should handle the failure of plan p,

• Failed(p, i), indicating that plan p failed i-times,

• Failed(b,z, i), indicating that behaviour b failed i-times in state z,

• Alloc(z), true if and only if an allocation of tasks to agents for state z is
deemed necessary,

• Success(b) and Fail(b), indicating a success or failure signal from behaviour
b, as already noted in Section 4.1.

Finally, Pdom contains predicates relating to the world representation of the
agent, e.g., DistanceTo(object,dist) or Carries(agent,object). The language ele-
ments introduced here allow agents to reason about the environment (with symbols

58 5 Semantics

in Fdom and Pdom), and about the internal states of themselves and each other. Thus,
calculations such as role assignment can be done with respect to an agent’s beliefs.

In order to capture the relationship between the different predicates reflecting
beliefs about internal states of agents, we define a set of axioms, Σb.

Definition 5.6. Let Σb contain for each agent a in A the following axioms:

• Unique Name Axioms over agents, behaviours, plans, states, tasks, and

roles:

UNA(A,B,P,Z,T ,R)

• If failure handling for a plan is needed, it is relevant:(
Bela Handle f (p)∨Failed(p, i)

)
→

(
p = p0 ∨ (∃p′,τ,z) In(a, p′,τ,z)

∧p ∈ Plans(z))

• In the same way, if failure handling for a behaviour is needed, it is relevant:(
Bela Handle f (b,z)∨Failed(b,z, i)

)
→ (∃p,τ) In(a, p,τ,z)

• An agent’s success in a task is only relevant as long as there is another agent

still within the state that contains the corresponding plan:

Succeeded(a, p,τ)→ (∃z)p ∈ Plans(z)∧ (∃a′,τ ′, p′) In(a′, p′,τ ′,z)
• Task allocation is only needed for a state inhabited by the agent:

(Bela Alloc(z))→ (∃p,τ) In(a, p,τ,z)

Definition 5.7 (Common Knowledge). Let ΣB be the set given by:

ΣB = Σsyn∪Σdom∪Σb∪Σp

where Σdom is a set of domain-specific axioms, describing the domain, Σb is the
set of belief base axioms according to Definition 5.6, Σsyn is the set of syntactic
constraints (see Section 4.5), and Σp is the set of plan base axioms according to
Definition 5.4. ΣB is assumed to be common knowledge in A, i.e., ΣB∧MBelA ΣB
holds.

Definition 5.8 (Belief Base). A set of formulae B ⊂L(Pred,Func) is a belief base
for agent a if and only if

ΣB∪B �|=⊥

and
In(a, p,τ,z) ∈ B ↔ (p,τ,z) ∈ PBase(a)

5.2 Agent Model 59

Thus, an agent’s belief base reflects its beliefs about the world as well as its
beliefs about all other agents’ internal states, i.e., plan bases. The above definition
results in a belief base that reflects the intuition that an agent always believes it
does what it intentionally is doing. Moreover, the belief base is always consistent
with respect to ΣB. By BelBase(a), we denote the belief base of agent a.

Definition 5.9 (Agent Proof). Let a be an agent, F be a set of formulae in L, η a
substitution, and φ a formula. We denote that a proves φ with respect to F and ΣB
by

F �a
L,η φ

where η is the computed answer of the proof. If it is clear from the context, we
omit a, L, or η .

The proof operator � refers to a theorem proving algorithm in the logic L and
can be exchanged with respect to the domain.

5.2.3 Belief Update

The belief base of an agent is updated frequently, either to accommodate for new
sensory data, communication acts, or internal updates. Here, we only treat the last
case explicitly. We write B+F to denote that the belief base B is updated by the
(finite) set of formulae F = { f1, f2, . . . , fn}.

B+F
de f
= B+

∧
f∈F

f

B−F
de f
= B+

∧
f∈F

¬ f

We require the belief update operator + to satisfy the KM-postulates [83] U1 - U4,
and U8, adopted to accommodate for the static common knowledge, ΣB, and thus
+ forms an inertial basic update operator (after Lang [92]):

ΣB∪(B+ f) |= f (U1)

ΣB∪B |= f → (B+ f)↔ B (U2)

If ΣB∪B and f are both satisfiable then ΣB∪(B+ f) is also satisfiable (U3)

If B ↔C and f ↔ g then B+ f ↔C+g (U4)

(B∪C)+ f ↔ (B+ f)∪ (C+ f) (U8)

Most importantly, the belief base must be consistent at all times. Note that
consistency with respect to Σb can be easily established by removing literals of

60 5 Semantics

the form Handle f (p,z), Handle f (b), Failed(p, i), Succeeded(a, p,τ), Alloc(z),
Success(b,z), and Fail(b,z).

Assume, for example, an agent a executes a plan p, hence In(a, p,τ,z) holds
in BelBase(a). Now, the agent aborts the execution of p, due to a reaction on a
higher level in the plan hierarchy. Then BelBase(a) is updated: BelBase(a)′ =
BelBase(a)− In(a, p,τ,z). If, for example, an allocation for state z was pending,
Alloc(z) ∈ BelBase(a), it is no longer relevant, and therefore Alloc(z) is removed
as well.

5.2.4 Execution Set

The execution set E of an agent holds tuples of the form (b,z), where b is a be-
haviour and z a state, such that b occurs in z (b ∈ Behaviours(z)). We call state z
the context of b. E can be passed to a software component dedicated to the lower-
level execution of behaviours. The contained context allows behaviours to query
the belief base for agents inhabiting corresponding plans, states, or tasks. The op-
erational semantics must guarantee that if (b,z) occurs in the execution set of a, a
plan p and task τ exist such that (p,τ,z) is an element of its plan base, and thus
In(a, p,τ,z) is believed by a. We will return to this property in Section 5.14.

5.2.5 Role Set

The role set R ⊆ R of an agent consists of all roles the agent currently fulfils.
Thus, it holds that Bela HasRole(a,r) ↔ r ∈ R. Roles are assigned by a role al-
location algorithm and dictate an agent’s preferences for the available tasks. This
two-tiered approach simplifies the task allocation problem [21]. Furthermore, de-
coupling agents and plans using roles and tasks allows for plans to be developed
independently of the team composition, which is usually not completely known
during development. In general, a globally optimal solution to role allocation is
NEXP-time complete [104]. Section 5.6 presents a practical solution to a simpli-
fied problem class.

5.3 Locality

Allowing arbitrary conditions to occur in plans would violate the locality prin-
ciple defined in Section 5.1. We therefore restrict occurrences of the predicate
In(a,ρ,τ,z), such that an agent can only refer to its own local view.

5.4 Team Configuration 61

Definition 5.10. A formula φ is plan-local for plan p if and only if for all occur-
rences of the predicate In(a,ρ,τ,z) in φ , ρ is the constant p.

Definition 5.11. Locality Requirement: All formulae occurring as precondition or
runtime condition of a plan are plan-local to the respective plan.

This definition is somewhat stricter than needed to enforce the locality principle.
Completely forbidding references to agents in other plans, as done here, guaran-
tees that each plan can be easily reused in other contexts, a property very useful for
planning algorithms as well as human system designers working with highly com-
plex ALICA programs. Furthermore, as we will see in Section 5.12, it allows the
calculation of a task allocation of a plan independent of its siblings and children,
hence greatly simplifying the task allocation problem.

Note that references to the predicates Succeeded(a, p,τ) and Failed(p, i) are
not restricted, and can be used to refer to other plans. Thus, a plan can react to
successful or unsuccessful termination of a sub-plan in a situation specific way.
Furthermore, the conditions of transitions are not restricted either. Thereby, a tran-
sition can freely refer to sub-plans, giving rise to some modelling patterns, which
we will discuss in Section 10.1. Since transitions are irrelevant in solving task
allocation problems, this does not cause any problems. Conditions of behaviours
are treated separately (see Section 5.7).

5.4 Team Configuration

Based on the notion of an agent executing a plan, which is represented in the belief
base by the predicate In(a, p,τ,z), we introduce the concept of a team working on
a plan. In ALICA, each agent constantly monitors the actions of its team members
with respect to the plans it participates in. Hence, an agent can not only react to
another agent breaking down and consequently being removed from the team, but
also each agent considers the progress of all other agents when making a decision,
such as committing to a task within a plan. Note that due to locality, an agent
might not be able to deduce the state of the team with respect to plans it does not
participate in.

Definition 5.12. Let a be an agent in A and let TeamIn(A, p) denote that team
A ⊆A executes a plan p, formally:

TeamIn(A, p)
de f
= (∀τ ∈ Tasks(p))(∃n1,n2)ξ (p,τ) = (n1,n2)∧

(∃A′)A′ ⊆ A∧n1 ≤ |A′| ≤ n2 ∧
(∀a′ ∈ A)a′ ∈ A′ ↔ (∃z) In(a′, p,τ,z)∨Succeeded(a′, p,τ)

62 5 Semantics

If A =A, we abbreviate TeamIn(A, p) by TeamIn(p).

Definition 5.12 captures the most important notion of a team working on a plan.
It is non-monotonic in the sense that there can be two sets A, A′ with A′ ⊃ A
such that TeamIn(A, p) and ¬TeamIn(A′, p). Hence, an agent’s beliefs regarding
its team are vital for its evaluation of plans. Note that this definition also takes
successful task completions into account.

5.5 Success Semantics

Depending on the domain, some behaviours and tasks can be completed, that is,
there is a distinct goal description that is meant to be reached. Should an agent
reach that goal description, the behaviour or the task is said to be completed, and
the agents in question are free to work on something else. In case of a behaviour,
this success is captured by the predicate Success(b), which indicates that the post-
condition of the behaviour is reached. An agent a completing a task τ in plan
p supports the believe in Succeeded(a, p,τ). As already apparent from Defini-
tion 5.12, having already succeeded in a task influences how agents regard the
team’s state with respect to the corresponding plan.

In various scenarios, one is also interested in the success of a whole plan in-
stead of a single task. However, the success of an agent in a task is not enough to
conclude that the corresponding plan is successful. Instead, the success of a plan
depends on the state of its tasks. Since some of the tasks of the plan may be op-
tional, a new notion is needed to capture the relationship between a plan’s success
and its tasks’ success.

Consider, for instance, a set of robots tasked with transporting some equipment
through unknown terrain. It could be beneficial to have some robots scout ahead
for the best route to avoid carrying the equipment over unnecessarily long routes.
However, if only a few robots are available, scouting can be omitted in favour of
more transporting robots. Hence the plan can still succeed even though no robot
ever completed the scouting task.

Definition 5.13. A task can either be optional or required with respect to a plan.
We denote the set of tasks which are required for plan p as Required(p). A plan
is successful once, for all its required tasks, the minimal number of agents have
successfully completed it.

Succeeded(p)
de f
= (∀τ ∈ Required(p))(∃n,n′,m)ξ (p,τ) = (n,m)

∧n′ = max(1,n)∧n′ ≤ |{a | Succeeded(a, p,τ)}|

5.6 Role Allocation 63

Hence, for any required task, the minimal number of agents able to execute it
must also complete it. In case the minimal cardinality is zero, at least one agent
must complete it.

As an example, consider again the transportation scenario above. There could
be debris blocking the path of the transporting agents. By using a minimal cardi-
nality of zero, it would be allowed for all agents to put down the cargo, move the
debris out of the way in another task and continue transporting without aborting
the execution of the plan.

If the cardinality of plan-task pair (p,τ) is for instance (2,4), this entails that
at least two agents must complete τ for p to be completed. The actual number of
executing agents can of course be higher. Although initially, at least two agents
must start working on τ to satisfy TeamIn(p), these are not necessarily those which
complete the task.

When agents are working on completing a plan, they do not necessarily com-
plete all required tasks at once. Instead, some tasks may be completed early, free-
ing the respective agents to do something else. The function ξt : P ×T × 2LS 	→
N0 × (N0 ∪{∞}) captures the currently required plan cardinalities, given a set of
beliefs:

ξt(p,τ,B) =

{
(n,m) if τ �∈ Required(p)

(max(0,n− c),max(0,m− c)) otherwise

where ξ (p,τ) = (n,m) and c = |{a | Succeeded(a, p,τ) ∈ B}|. The notion of still
required agents, captured by ξt is used during task allocation as discussed in Sec-
tion 5.8.

By the belief axioms Σb, the success of a task is only valid until all agents
have left the corresponding plan. If the agents leave a plan entirely and reenter it
at some later time, the plan must be completed again, i.e., the second execution
refers to a new problem instance. Otherwise, once a plan is completed it can never
be executed again until the agents are reset by some other means.

5.6 Role Allocation

In Section 4.4, we introduced the basic concept of roles. We now discuss a way
of allocating roles to agents. Campbell and Wu [20] give a detailed overview
of existing role allocation methods. We do not extend the state-of-the-art in role
allocation, but instead demonstrate how existing approaches can be integrated into
ALICA by example.

64 5 Semantics

Similar to Vail and Veloso [170], we follow a broadcast-and-compute approach,
where agents broadcast information relevant to the role allocation and compute
the allocation locally, allowing for a highly reactive allocation. Compared to their
work however, roles in ALICA are relatively static as they do not depend on highly
dynamic properties of the domain such as positions of robots or other objects of
interest. Instead, they solely depend on the number and capabilities of the agents
involved. More dynamic features are captured by task allocation, which we will
discuss in Section 5.8.

In order to allocate agents to roles, a measurement is needed, a role utility, ex-
pressing the adequateness of an agent for a certain role. This utility is determined
by the required and provided capabilities of the role and the agent, respectively.
We assume a similarity measurement Δ : C ×C 	→ [0,1], such that Δ(x,x) = 1 and
Δ(x,xc) = 0, where xc denotes the complement of x. Such measurements based on
fuzzy sets can be found in [186].

Definition 5.14 (Role Utility). The utility U(a,r) of a certain agent a for a certain
role r is based on the similarity Δ between the provided capability of the agent
Cap(a) and the required capability of the role Cap(r). The normalised sum of
these values reflects the utility of an agent for a certain role:

U(a,r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if (∃c ∈ Cap(r))

maxc′∈Cap(a) Δ(c,c′) = 0
1

|Cap(r)| ∑c∈Cap(r) maxc′∈Cap(a) Δ(c,c′) if Cap(r) �= /0

1 otherwise

That is, every required capability is matched with the best matching provided
capability of the agent.

Given role utilities, a role allocation procedure can be defined, which distributes
roles among all agents of the team. We assume this procedure is encapsulated by
a formation.

Definition 5.15. For a given ALICA program we denote the formation by F. The
formation holds the specific role allocation algorithm as well as any further infor-
mation needed to compute a role allocation. A role allocation is a set of beliefs of
the form HasRole(a,r), computed by F(A), where A is a set of agents.

A simple yet effective formation can be described by a priority list. A priority
list defines a total order over role instances out of R and assigns the best fitting
agent to the most important role instance according to the total order. A corre-
sponding algorithm is depicted in Listing 5.1. In this specific case, if there are

5.6 Role Allocation 65

A := set of available agents ;
R := non−empty sorted list of roles according to their priority ;
i := 0;
j := 0;

while(A �= /0) {
a := argmaxa∈A U(a,r[i]);
if (U(a,r[i])> 0) {

assign a to role r [i];
remove a from A;
j := 0;

} else j++;
i := (i+1) mod |R|;
if (j = | R|) return FAILURE;

}

Listing 5.1: Priority-Based Role Allocation

more agents than roles, the algorithm starts over with the remaining agents. Also
note that the value 0 is used to denote the inability of an agent to take on a certain
role, expressing that it lacks a certain capability.

In the robotic soccer domain, a suitable list of role instances could be:

�R = (Attacker, Goalie, Defender, Attacker, Defender, Supporter)

which describes that first and foremost, an attacking robot is needed, followed by
a Goalie and a Defender. If further robots are available, a second Attacker and a
second Defender are allocated, followed by a Supporter. Capabilities can now be
used to express that only suitably large robots take on the goalie role, and only
robots able to kick the ball take on the role of an attacker. If a robot cannot be
allocated to a role due to missing capabilities, the algorithm fails after allocating
all robots which can take on a role.

More sophisticated techniques can handle cardinalities for each role, as well as
take interrelated utilities into account. However, we do not discuss these here, as
the underlying problem is similar to the task allocation problem discussed in Sec-
tion 5.8. Note that the role allocation only depends on the number and capabilities
of the available agents and thus only needs to be calculated in the event one of
these changes, e.g., when an agent loses a capability or a new agent joins the team.

This approach enables the integration of monitoring facilities which detect mal-
functioning components of agents or robots. In this case, role allocation can react
on the newly missing or degraded capability and allocate the damaged robot to a
less critical role. A similar approach was discussed by Weber and Wotawa [177].

66 5 Semantics

In Section 5.13, we provide an operational rule, which integrates role allocation
into the runtime semantics of ALICA.

5.7 Canonical Behaviour Plans

Behaviours are the central primitives out of which ALICA programs are con-
structed. Coordination and cooperation depend on accurate information about
which agent is executing which behaviour, whether this information is repre-
sented explicitly or implicitly. In ALICA, behaviours encapsulate atomic action
programs, treated as black boxes, which are annotated by pre-, post-, and run-
time conditions. In contrast to plans, we did not introduce a belief which reflects
whether or not an agent executes a behaviour, thus an agent cannot reason about
the behaviours executed by another agent directly. However, agents can reason
about plans, the correspondingly higher level structure. This gap becomes appar-
ent, when behaviours are annotated with non-trivial pre- and runtime conditions
which only a local agent can evaluate.

The gap can be closed by introducing appropriate beliefs which represent the
execution of behaviours. However, such beliefs would unnecessarily complicate
the operational semantics, leading to poor readability. Instead, we note that be-
haviours can be embedded in plans, which reflect their conditions. Thereby, a
behaviour is lifted such that the team can reason and communicate about the rela-
tionship between individual agents and specific behaviours.

This embedding must guarantee that whenever the plan is executed, the be-
haviour is executed as well. Such an embedding can be achieved automatically by
generating a plan and a plantype for each available behaviour. A straightforward
embedding is given by a plan with two states: one containing the behaviour, and
one terminal state. We refer to this straightforward embedding as a canonical plan
for a behaviour.

Definition 5.16 (Canonical Plan). A canonical plan for a behaviour b, pb is defined
by the following structure:

• States(pb) = {zb,zs
b}

• Tasks(pb) = {τ0}

• Init(pb,τ0) = zb

• ξ (pb,τ0) = (0,∞)

• Pre(pb) = Pre(b), Run(pb) = Run(b)∧¬Fail(b)

5.8 Task Allocation 67

• U(pb)(B) = 1

• PlanTypes(zb) = /0

• Behaviours(zb) = {b}

• W � (zb,zs
b,Succeeded(b))

• Success(pb) = {zs
b}, Fail(pb) = /0

• Post(zb) = Post(b)

• Required(pb) = {τ0}

The canonical plan is the single element of a corresponding canonical plantype:

Definition 5.17 (Canonical Plantype). A canonical plantype for a behaviour b, Pb
contains exactly the canonical plan for b, Pb = {pb}

Assuming that each behaviour is embedded in a canonical plan, agents are freed
from considering behaviour conditions separately; it suffices to consider plan con-
ditions. While it is possible to use other embeddings, which implement additional
structure, this does not yield additional expressiveness. Therefore, we assume in
the following that every behaviour only occurs in its canonical plan.

5.8 Task Allocation

One of the most central problems to multi-agent coordination is task allocation [20,
104]. In ALICA, this problem is defined by the choice of a plan from a plantype
and an assignment of agents to tasks within the selected plan. As ALICA allows
multiple agents per task, the problem is NP-hard [55]. In contrast to task allocation
discussed by Nair et al. [104] , the utility function of each plan involved potentially
depends on the complete allocation, thus the utility for each agent may not be
computable without knowing the complete allocation.

The task allocation problem arises whenever an agent enters a state. In this
case, it has to decide for all plantypes within that state, which plan to execute and
to which, if any, task it commits to. That is, it has to calculate a task allocation for
all participating agents. Following a broadcast-and-compute approach to guarantee
swift reactions, the agent computes the task allocation by itself based on its current
beliefs. Ideally, every agent involved computes the same task allocation, however
this is not guaranteed, since the involved agents may have different sensor data

68 5 Semantics

affecting their calculations. ALICA follows a weak commitment idea. Calculated
allocations are assumed to be correct until contradictory information is available.
Chapter 6 will elaborate on how allocations can be repaired and conflicts resolved.

Formally, a task allocation C for a plan p is a set of predicates of the form
In(ai, p,τ,z), one for each agent ai allocated to participate actively in p. For each
In(ai, p,τ,z) in C, τ is a task relevant for p, i.e., an element of Tasks(p), and z is
the initial state of τ in p, Init(p,τ). An allocation is never calculated without a
frame of reference. Typically, a situation in the problem domain, for instance the
current situation or a planned hypothetical situation, acts as frame of reference. We
represent this frame of reference as a set of sentences of L. In line with the belief
update notion, this set of assumptions is also sometimes referred to as a belief
state. Note that these assumptions may contain literals of the form In(a, p,τ,z) as
well, thus some agents might already be allocated to some tasks in p.

Definition 5.18. A task allocation is a set of ground beliefs of the form
In(a, p,τ,z).

Definition 5.19. A task allocation C is valid for plan p under the set of assump-
tions F if and only if:

• (∀l ∈C)(∃a,τ)l = In(a, p,τ, Init(p,τ))∧ τ ∈ Tasks(p)

• ΣB∪F ∪C �|=⊥

• ΣB∪F ∪C � Pre(p)∧Run(p)

• ΣB∪F ∪C � TeamIn(p)

• U(p)(F ∪C)≥ 0

The macro TAlloc(p|F)(C) is defined to hold if only if C is a valid task allocation
for plan p under the assumptions F .

By this definition, a valid task allocation is consistent with the ALICA axioms
as well as with the corresponding situation F . If an agent allocates with respect to
the current state, F equals its belief base. Hence, an agent believed to be already
committed to a task in p will be considered. This allows for a dynamic repair in
case some agents withdraw from a plan and need to be replaced. Furthermore,
the definition guarantees that the plan allocated to is properly executed by the
team. Finally, since a positive utility is required, the utility function can forbid the
execution of certain assignments or execution under specific conditions.

The utility function of a plan indicates not only how well the plan fits a certain
situation, but it also takes the task allocation into account. Thus, it can reflect

5.9 Recursive Task Allocation 69

rewards for certain tasks similar to the approach discussed by Nair et al. [104]. An
agent allocating tasks for a plan p should maximise U(p)(F ∪C), where C is a
valid task allocation and F the assumptions, e.g, the currently believed situation.
In other words, it calculates

T = argmax
C

U(p)(F ∪C) subject to TAlloc(p|F)(C)

Definition 5.20. A task allocation C is valid for a plantype P under the set of
assumptions F if and only if there exists a plan p in P such that TAlloc(p|F)(C).

By Definition 5.20, a valid task allocation for a plantype is a valid task allocation
for one of the plans within that plantype, thus it selects a plan. The optimisation
task is extended to involve the selection of plan p as well:

T = argmax
C

max
p∈P

U(p)(F ∪C) subject to TAlloc(p|F)(C)

Since only valid allocations are considered for this optimisation task, a solution
might not exist in all cases.

5.9 Recursive Task Allocation

Based on the notion of task allocation, we discuss a recursive version, which allo-
cates agents to a branch of plans in the plan-tree. Intuitively, whenever an agent
enters a state, it must solve the task allocation problem for all plantypes within that
state, enter the states entailed by the allocation, and is then confronted with task
allocation problems in these sub-states as well.

Due to the hierarchical nature of ALICA programs, the recursive task allocation
problem is central to ALICA. In Section 5.13, we will discuss how allocations are
adapted dynamically during the execution to accommodate dynamically changing
environments or unforeseen problems, such as agents breaking down. Such a dy-
namic reallocation requires a highly efficient allocation algorithm able to produce
optimal allocations in real-time.

The following example illustrates the recursive task allocation problem and we
will use it to discuss properties of allocation algorithms.

Example 5.1. The manager of a larger restaurant wants to use robots to serve his
customers. To start out, he buys three serving robots, cleverly named a, b, and
c. He specifies a top-level plan for them, P0, and leaves the rest to his staff to
complete. Figure 5.1 shows P0 and the plans written by his staff members. For

70 5 Semantics

simplicity, each plantype involved contains only one plan. Thus, when executing
ServeGuests, a robot can either fetch food from the kitchen and bring it to a ta-
ble (task DeliverOrder), or observe the customers and take orders if needed (task
TakeOrder). The chef of the restaurant wants food to be delivered as fast as possi-
ble to avoid serving cold food. Thus, he declares that as many robots as possible
should deliver food. Expressing that as a utility function, he writes

U(ServeGuests) =
|{a | In(a,ServeGuests,DeliverOrder,z)}|

100

+0.1
|{a | In(a,ServeGuests,TakeOrder,z)}|

100

as he considers 100 to be the absolute maximum of robots ever serving in his
restaurant. His smart apprentice specifies a plan for delivering orders to tables,
DeliverOrder. Knowing that robots will just idly stick around and take up space
when they are waiting for something to do, he adds a precondition, expressing that
no more robots may execute FetchOrder than there are dishes ready in the kitchen:

(∃x)| In(a,DeliverOrder,Waiter,Z3)| ≤ x∧DishesAvail(x)

Now consider a situation where the robots just start to work and two dishes are
ready to be served, DishesAvail(2). A recursive task allocation for state Z0 in plan
P0 is due. Maximising the utility of plan ServeGuests, the only plan within plan-
type ServeGuestsPT, would allocate all three robots to the task DeliverOrder, thus
requiring the whole team to execute DeliverOrder. However, as only two dishes
are ready to be served, allocating three robots in DeliverOrder would violate its
precondition. Thus, only two robots can be allocated to the DeliverOder task in
ServeGuests, the remaining robot should observe the customers and wait for fur-
ther orders to take.

In this simple example, three robots are allocated to two tasks within the plan
ServeGuests, yielding eight possibilities. In general, the number of possible allo-
cations in a plan with n robots and m tasks is mn, making a brute force enumeration
of all possibilities quickly infeasible. A more efficient approach is needed. In Sec-
tion 5.11, we discuss how utility functions can be structured to allow for search
algorithms such as A∗ to be employed.

However, allocating robots within a single plan is only part of the problem. The
allocations of the parent plan, ServeGuests, and the two sub-plans can interact as
in this example. An algorithm that finds a solution consistent with all conditions
and optimal with respect to the utilities involved would need to consider the global
problem, i.e., consider all plans involved. This would negate any positive effect

5.9 Recursive Task Allocation 71

P0

Waiter

1..100

Z0

ServeGuestsPT

ServeGuests Pre: �

DeliverOrder

0..100

TakeOrders

0..100

Z1

DeliverOrderPT

Z2

HandleCustomersPT
ServeGuestsPT= {ServeGuests}
DeliverOrderPT= {DeliverOrder}

DeliverOrder Pre: (∃x)| In(a,DeliverOrder,Waiter,Z3)| ≤ x∧DishesAvail(x)

Waiter

1..100

Z3

FetchOrder

Z4

GoToTable

Z5

PutFood

Z6
Has order At table Food accepted

Figure 5.1: Task Allocation Example

the hierarchical decomposition might have on the computation time. Moreover,
since each agent needs to calculate the allocation, as communication may be too
slow and too unreliable, complex plan structures with many agents can quickly
overwhelm the computational power of an individual agent. Finally, the necessary
information to decide on an allocation in plan p might not be available to agents not
participating in it. Thus, we consider a global allocation algorithm to be infeasible.

In Section 5.1, we introduced the locality principle, which demands that each
agent should only be concerned with plans it is involved in and should not do
any calculations about plans it does not participate in. Following this principle,
the three agents could individually conclude that they cannot allocate all three of
them to the task DeliverOrder. Using a total order over agents and tasks, each one
can individually come to the conclusion that agents b and c should fetch dishes
and a should take orders. Agents b and c would evaluate the precondition of De-
liverOrder to true, while agent a does not evaluate it. Figure 5.2 illustrates this

72 5 Semantics

ServeGuests
a,b,c

DeliverOrder

TakeOrders

a,b,c
Allocation with highest
utility in ServeGuests

ServeGuests
a,b,c

DeliverOrder

TakeOrders

b,c

a

Allocation satisfying
Pre(ServeGuests) with
DishesAvail(2)

Figure 5.2: Recursive Task Allocation in the Restaurant Scenario

situation. Here, all agents agree on the allocation, and coordination is achieved.
However, what if only a single dish is ready to be served? In this case, only one
agent is allowed to execute DeliverOrder. The ensuing situation is depicted in
Figure 5.3.

Given this modified belief, the agents involved calculate different allocations,
yielding an incoherent situation. Each robot considers another allocation to be
the best valid one with respect to the utility function of ServeGuests. At first
glance this seems to be an inherent problem of the locality principle, as conditions
and utilities of plans at different levels can interact with each other relative to the
domain, i.e., through arbitrary relations in L.

This effect can be countered in the following ways:

Global Allocation – A global allocation algorithm does not obey the locality
principle and thus produces coherent allocations even in situations such as
the one above. However, global allocation quickly becomes computationally
infeasible as the number of agents, the depth, and the width of the plan-tree
increase. Furthermore, as mentioned above, the necessary information to
compute a global allocation might not be available to any single agent.

5.9 Recursive Task Allocation 73

ServeGuests
a,b,c

DeliverOrder

TakeOrders

a,b,c Allocation with
highest utility in
ServeGuests

ServeGuests
a,b,c

DeliverOrder

TakeOrders

b,c

a

Agent a’s view

Agent a allocates b and c to Deliv-
erOrder, being oblivious to the pre-
condition not being satisfied.

ServeGuests
a,b,c

DeliverOrder

TakeOrders

a,c

b

Agents b’s view

Agent b allocates both a and c to
DeliverOrder, maximising the utility
of ServeGuests.

ServeGuests
a,b,c

DeliverOrder

TakeOrders

a,b

c

Agent c’s view

Maximising the utility, c allocates a
and b to DeliverOrder.

Figure 5.3: Incoherent Task Allocation in the Restaurant Scenario

Transformation – A computational step before run-time of the plans in question
could modify conditions and utilities by incorporating information about

74 5 Semantics

sub-plans, thus avoiding situations such as the one above. This process
however depends on L, particularly on the decidability of entailment with
respect to background knowledge. For first-order logic this is undecidable
in general. If the ALICA program is generated by a planning algorithm,
this algorithm should take care that the generated programs avoid structures
featuring problems such as the above one. In the following, we will discuss
what this formally entails.

Communication – Agents can also communicate to arrive at a coherent alloca-
tion. In practice, communication takes time and is unreliable, but in some
domains might be a reasonable option. An agent could, for instance, in-
form its team members of its inability to participate in a certain plan and
each agent could incorporate this information into the allocation process. In
highly dynamic domains, however, it is unclear for how long such an infor-
mation can be considered valid. In the limit, the information can become
outdated before it is received by all agents, making it impossible to arrive
at a coherent allocation. Since we are focussing on dynamic domains, we
refrain from this option.

Alternatively, agents can elect a leader for each plan, which calculates the
local allocation and thus achieves coherence. This is done, for instance, in
STEAM [163, 125]. The process of electing a leader consumes some time
and introduces an additional problem: when the elected leader breaks down,
a new one needs to be elected. Thus, we think that in general the team
should be able to work without an explicit leader. In Chapter 6, we discuss
how an election process can be triggered upon the detection of a conflict in
teamwork and how the resulting leader then takes charge of an allocation
problem local to a specific plantype.

Decoupling – The final option avoids the problem of interacting conditions alto-
gether by decoupling the allocation problems. This is achieved by allowing
agents to not partake in plans they otherwise would and, instead, idle. Intui-
tively, this is akin to adding a task to each plan with cardinality (0,∞) such
that conditions and utilities are neutral towards this task. In the restaurant
example, this would result in all agents being allocated to the task Deliv-
erOrder, maximising the utility of ServeGuests, but the superfluous agents
would idle and not partake in the plan DeliverOrder until there are dishes
available again.

Although the decoupling approach results in allocations which are not optimal
with respect to the global problem, it has some appealing properties. Firstly, it

5.9 Recursive Task Allocation 75

guarantees that the agents will agree on an allocation for each plan given their be-
lief bases are equivalent with respect to the conditions and the utilities of each plan
separately. Secondly, the approach is compatible with both the transformation and
the communication options, i.e., incorporating transformations or communication
is viable even if the allocation problems are decoupled. Therefore, we will discuss
different degrees of coupling between plan and sub-plan allocations and formalise
the respective notions under the locality principle in the following.

This aims at the definition of an recursive allocation, which limits the allocation
task to those plans, the allocating agent is participating in. In this way, the idea of
reducing complexity through hierarchical decomposition is maintained. Recursive
task allocation is always done with respect to a state that contains the tree in which
agents are to be allocated.

Firstly, we define a minimal requirement an allocation must fulfill, followed by
stricter definitions, which enforce a tighter coupling between the allocation of a
plan and the allocations of sub-plans.

Definition 5.21 (Recursively valid task allocation). Let C be a task allocation done
by agent a for state z under assumptions F , let �P be the set of plans mentioned in
C, i.e., �P = {p|(∃a′,τ,z′) In(a′, p,τ,z′) ∈ C}, and let G denote F ∪C. Then C is
recursively valid if and only if:

ΣB∪G �|=⊥ (5.4)

ΣB∪G �

⎛
⎝∧

p∈�P
Pre(p)∧Run(p)

⎞
⎠ (5.5)

(∀p ∈ �P)G �TeamIn(p) (5.6)

(∀p ∈ �P)p ∈Plans+(z)∧
(

p ∈ Plans(z)∨ (∃p′,τ ′,z′) (5.7)

In(a, p′,τ ′,z′) ∈ G ∧ p ∈ Plans(z′)
)

(∀l ∈C)(∃a′, p,τ)l = In(a′, p,τ, Init(p,τ)) (5.8)

(∀p ∈ �P)U(p)(G)≥0 (5.9)

(∀a′)(∃p′,τ ′,z′) In(a′, p′,τ ′,z′) ∈C →F � (∃p′′,τ ′′) In(a′, p′′,τ ′′,z) (5.10)

Let TAlloc∗(a,z|F)(C) denote that C is a recursively valid task allocation for
state z done by agent a with respect to the assumptions F .

By Condition 5.4, a recursively valid task allocation is consistent with the as-
sumptions F and the common knowledge. Hence, by Definition 5.3 and 5.8, an
agent cannot be assigned two conflicting tasks. In particular, an agent already

76 5 Semantics

believed to be participating in a plan p cannot be reassigned within that plan. Con-
dition 5.5 ensures that all preconditions and runtime conditions of the involved
plans are met. Condition 5.6 rules out partially assigned plans, i.e., enforces that
each plan is executed by a proper number of agents. Condition 5.7 limits the task
allocation to plans mapped onto by plantypes occurring in states the allocating
agent enters by adopting the allocation.

Due to Condition 5.8 each agent that is newly allocated to a task is believed to be
in the corresponding initial state, i.e., cannot be allocated to arbitrary states within
the task. Condition 5.9 ensures that all resulting utility values are not less than 0
and hence the allocation is not considered harmful. Finally, by Condition 5.10,
agents can only be allocated if they inhabit the state z, for which the allocation is
computed.

The task of finding an optimal solution to this problem is called the recursive
task allocation problem. We will discuss it in the next section.

Note that the empty set is a recursively valid task allocation. Moreover, a recur-
sively valid task allocation is not required to guarantee execution of all involved
plantypes. This allows for plans which are not executable to be skipped and for
agents to idle while the rest of the team completes a task if they cannot contribute.

A stricter requirement is enforced by the next property, completeness.

Definition 5.22. A recursive task allocation C done by agent a for state z under
the assumptions F is recursively complete if and only if it is recursively valid and

(∀P ∈ PlanTypes(z))(∃p ∈ P)(F ∪C � TeamIn(p))∧ (5.11)

(∀ In(a, p′,τ,z′) ∈C)(∀P ∈ PlanTypes(z′))(
(∃p′′ ∈ P)(F ∪C � TeamIn(p′′)

)
By TAlloc∗c(a,z|F)(C) we denote that C is a recursively complete task allocation
for state z done by agent a under the assumptions F .

A complete recursive task allocation requires that for the original state z and for
every state the local agent a is allocated to, the team executes one plan per con-
tained plantype. In other words, if this property is maintained at all times, the agent
must ensure that for each state z it inhabits, for all plantypes P ∈ PlanTypes(z), one
plan p ∈ P is executed. Note, that the agent a does not necessarily participate in
the execution of all plans, it just has to make sure the team executes them. This is
akin to a Joint Intention [97], all involved agents commit to the execution of the
plan, even if some of them do not actively participate. In case an active participant
breaks down and the execution of the plan is endangered, the passive participants
are forced to become active due to their commitment.

5.9 Recursive Task Allocation 77

While enforcing the completeness property does not cause any problems in the
scenario described above, it can cause conflicting team states whenever an agent
or a group of agents cannot execute a sub-plan, but is so required by an allocation
on an ancestor level.

An even tighter coupling of the individual allocation problems is captured by
the notion of a perfect allocation:

Definition 5.23. A recursive task allocation C done by agent a for state z under
the assumptions F is recursively perfect if and only if it is recursively valid and

(∀P ∈ PlanTypes(z)) In(a′, p′,τ,z) ∈ F ∪C → (5.12)

(∃z′, p′′,τ ′)p′′ ∈ P∧ In(a′, p′′,τ ′,z′) ∈ F ∪C

In(a, p,τ,z′) ∈C →
(
(∀a′) In(a′, p,τ,z′) ∈C → (5.13)

(∀P ∈ PlanTypes(z′))(∃p′,τ ′,z′′)p′ ∈ P

∧ In(a′, p′,τ ′,z′′)
)

Analogous to the above definitions, let TAlloc∗p(a,z|F)(C) denote that C is a re-
cursively perfect task allocation for state z done by agent a under the assumptions
F .

The conditions 5.12 and 5.13 require the task allocation to allocate all agents.
That is, every agent inhabiting the original state z is part of the execution of every
plantype in z (Condition 5.12). Furthermore, by Condition 5.13, the same holds
for the recursive case. If a is allocated so that it inhabits a certain state, all agents
in that state must participate in the execution of all plantypes within that state.

It is easy to see that due to Condition 5.6 of Definition 5.21, a recursively per-
fect allocation is also recursively complete. Both the complete and the perfect
allocation can suffer from the coupling problem, where utilities and conditions of
plans on different levels interact in such a way that the agents cannot calculate a
corresponding allocation individually.

In a sense, plans ought to exhibit a certain compatibility in order to avoid such
interactions. Such a notion of compatibility depends on the domain axioms, Σdom.

Definition 5.24. A plantype P is hierarchically compatible with task τ in plan p
if and only if for all belief bases F , if a valid allocation C for p exists under F ,
a valid task allocation C′ for a plan p′ ∈ P under F ∪C exists as well, such that
{a | In(a, p,τ, Init(p,τ)) ∈ F ∪C} ⊇ {a | In(a, p′,τ ′,z′) ∈ F ∪C′}.

78 5 Semantics

Definition 5.25. A plan p is sound with respect to Σdom, if and only if

• for all tasks τ ∈ Tasks(p), all plantypes in PlanTypes(Init(p,τ)) are hierar-
chically compatible with τ in p, and

• for all states z ∈ States(p), all plans in
⋃

PlanTypes(z) are sound.

Hence, during recursive allocation, in a compatible plan, a valid allocation can
be derived using at most the available agents. The soundness property can guar-
antee agreement of the team with respect to calculated recursive allocations, given
that the belief bases of the agents involved are not contradictory.

The notion of sound plans does not necessarily yield perfect allocations, this
requires a slightly stronger notion, captured by the next two definitions.

Definition 5.26. A plantype P is hierarchically perfectly compatible with task τ
in plan p if and only if for all belief bases F , if a valid allocation C for p exists
under F , a valid task allocation C′ for a plan p′ ∈ P under F ∪C exists as well,
such that {a | In(a, p,τ, Init(p,τ)) ∈ F ∪C}= {a | In(a, p′,τ ′,z′) ∈ F ∪C′}.

Definition 5.27. A plan p is perfectly sound with respect to Σdom, if and only if

• for all tasks τ ∈ Tasks(p), all plantypes in PlanTypes(Init(p,τ)) are hierar-
chically perfectly compatible with τ in p, and

• for all states z ∈ States(p), all plans in
⋃

PlanTypes(z) are perfectly sound.

Thus, in a perfectly compatible plan, all available agents can be allocated, yield-
ing a perfect allocation.

The above definitions allow for various options of performing recursive task al-
location, from the base case where the result only needs to be valid, to the strongest
requirement of perfect allocations. Given that the involved plans are sound or even
perfectly sound, corresponding results can be guaranteed, as we will show in Sec-
tion 5.12.

Whether soundness or perfect soundness can be established depends on the do-
main, and the generation process. A development process for ALICA programs
can include a validation step, checking the modelled plans for the respective prop-
erties, while a planning or learning algorithm could be constrained to only produce
sound or perfectly sound plans. In general, an unsound plan can be transformed
into a sound one by specialising its conditions such that they entail the conditions
of the sub-plans. Of course, this requires that all agents involved at the parent level
have the necessary information available.

In the following, we discuss the notion of an optimal allocation, which max-
imises the utility functions involved. In Section 5.12, we will derive a correspond-
ing task allocation algorithm.

5.10 Optimal Task Allocation 79

5.10 Optimal Task Allocation

In the previous section, we formally defined the task allocation problem as well as
valid solutions to it. Here, we concentrate on what an optimal solution is and how
it can be calculated.

Nair et al. [104] discussed this problem in detail, although they referred to it as
role allocation, and do not separate roles and task in the way we do. In their view,
a task allocation considers potential rewards stemming from events or action out-
comes. A globally optimal task allocation would consider future reallocations due
to agents breaking down or the situation changing. They showed that this prob-
lem is NEXP-time complete and thus intractable. A locally optimal task allocation
only considers the current situation, and is still NP-hard. They also showed how
local task allocation algorithms can be improved using a pre-runtime calculation
by considering potential future triggers for reallocation. However, in complex do-
mains, this process quickly becomes infeasible as well, as it scales exponentially
with the product of the number of triggers considered and the number of available
policies. Furthermore, Nair et al. only considered independent rewards, e.g., they
assume that a reward can be associated with an agent taking on a certain task. We
allow for interrelated utility functions, that depend on the full allocation for the
corresponding plan. Moreover, in highly dynamic domains, necessary probability
estimates to consider future rewards are hard or even impossible to obtain. Fi-
nally, in order to simplify the problem, we consider the hierarchical case, where
on each level different utility functions govern the allocation process. These utility
functions do not necessarily relate, but can be derived from each other.

In order to design a suitably general and efficient allocation algorithm we estab-
lish the following premises:

• The reward problem is left open. A utility function may consider rewards,
but this is domain-specific.

• Allocations can occur very frequently and thus must be highly efficient.

• During runtime, the utility of a plan must be fully computable given a task
allocation and corresponding situation. It does not depend on allocations for
sub-plans. Such dependencies can be removed in a pre-runtime calculation
step.

To this end, we establish hierarchical optimality as a criteria for a solution to
the recursive task allocation problem.

80 5 Semantics

Definition 5.28. A recursive task allocation C for state z by agent a given the
assumptions F is hierarchically optimal, if and only if C is the smallest set such
that for all plantypes P mentioned in C, i.e., (∃a′, p,τ,z′)p ∈ P∧ In(a′, p,τ,z′)∈C:

{In(a′, p′,τ ′,z′) | In(a′, p′,τ ′,z′) ∈C∧ p′ ∈ P}= argmax
D

max
p∈P

U(p)(F ∪D)

subject to either TAlloc∗c(a,z|F)(C) or TAlloc∗p(a,z|F)(C).

That is, a hierarchically optimal task allocation maximises the utility of every
involved plantype while maintaining completeness or perfect completeness, de-
pending on which of the two properties are required. Note that, if only validity is
required, i.e., only TAlloc∗(a,z|F)(C) is enforced, the empty allocation becomes
optimal, as their is no incentive for the agents to take on any plan. Without the
completeness requirement, such an incentive would need to select plans to exe-
cute. However, the selection of plans to execute should be governed by the plan
structure itself (potentially supplied by a planning algorithm) and the state of the
team within it. Thus, we see such an additional selection mechanism as super-
fluous and thereby establish completeness as the minimal required property for
recursive task allocations.

5.11 Utility Functions

Besides preconditions and runtime conditions, utility functions capture the appli-
cability of a plan in a certain situation, and determine a task allocation. Thus, they
fulfil a pivotal role within ALICA. As mentioned in the previous section, calculat-
ing a task allocation calls for an efficient search. Thus we impose a structure on
utility functions, which allows for a heuristic estimate.

Firstly, a utility function depends on both the current situation, captured by
a domain-specific part, and the current role assignment, captured by a domain-
independent function.

Definition 5.29. The function pri(p) evaluates the preferences of all agents in-
volved in executing plan p towards their current tasks in p:

pri(p)(F) =

⎧⎪⎪⎨
⎪⎪⎩
−1 if F � (∃a,τ,r)φ [a, p,τ,r]∧

Pref(r,τ)< 0
1
|A| ∑F�φ [a,p,τ,r] Pref(r,τ) otherwise

where φ [a, p,τ,r] = HasRole(a,r)∧ (∃z) In(a, p,τ,z).

5.12 Task Allocation Algorithm 81

That is, pri(p) sums up all preferences of allocated agents towards their corre-
sponding task. The factor 1

|A| normalises the result. In case a single preference is
below zero, pri(p) is defined to be −1, following the idea that negative preferences
express an inability to do something.

Definition 5.30 (Utility Function). The utility U(p)(F) of a plan p with respect
to belief base F has the form:

U(p)(F) =

⎧⎪⎪⎨
⎪⎪⎩
−1 if pri(F)< 0

w0 pri(F)+∑1≤i≤n wi fi(F) if F |= TeamIn(p)

0 otherwise

A utility function is a weighted sum of several functions pri, f1, . . . , fn over belief
sets. The weights wi are constants such that ∑n

i=0 wi = 1 and (∀i)0 ≤ wi ≤ 1.
The functions fi : 2LS 	→ [0..1] capture domain-specific information. Following
the locality principle introduced in Section 5.1, in all occurrences of the predicate
In(a,ρ,τ,z) in each fi, ρ may only refer to p.

By this definition, utility functions are restricted to weighted sums. However, as
w0 can be set to 0 and each summand can be arbitrarily complex, this structure is
not confining. The next section will show that it is good practice to make use of
this structure and keep each summand as simple as possible.

5.12 Task Allocation Algorithm

A task allocation algorithm computes an assignment of agents to tasks, represented
as a set of beliefs. The result should satisfy Definition 5.20 or Definition 5.28 in
case of a hierarchical allocation.

We propose an algorithm based on the well-known search algorithm A∗ by Hart
et al. [67]. Though in contrast to the classical definition, we are maximising a util-
ity function instead of minimising a cost function. For this, we derive a heuristic
estimate H of the utility function U . In each iteration, the search procedure will
expand a search node by assigning an agent to all possible tasks. An allocation
is found once all agents are assigned and the plan conditions hold given the cal-
culated allocation. As a utility function maps the belief state of an agent onto the
real numbers, a heuristic function maps the belief state together with a set of still
unassigned agents to the real numbers: H(p) : 2LS × 2A 	→ R. The efficiency of
A∗ is determined by both the accuracy and the computing time of the heuristic.

82 5 Semantics

Given a utility function according to Definition 5.30, we can derive a heuristic in
the following way: For a given search node for a search under the assumptions F
with partial allocation H and available agents A, on the path to the goal allocation
G, it holds that

U(p)(F ∪G)≤ max
H ′

U(p)(F ∪H ∪H ′)

where H ′ allocates exactly all agents in A. Further,

max
H ′

U(p)(F ∪H ∪H ′)≤ w0 max
H ′

pri(F ∪H ∪H ′)+ ∑
1≤i≤n

wi max
H ′

fi(F ∪H ∪H ′)

due to wi ≥ 0. That is, by maximising each summand individually, we construct
an admissible heuristic. Note that again in contrast to the classical definition, our
heuristic includes the utility, thus it estimates the complete utility of a partial node
instead of the potential gain. This is merely a technical way to simplify the defini-
tions below.

In case only complete allocations are required, the summand maxH ′ pri(F ∪H∪
H ′) can be further estimated by

hpri(p)(F ,A) =

⎧⎪⎪⎨
⎪⎪⎩
−1 if Φ[p,F ,A]

1
|A|

(
∑F�φ [a,p,τ,r] Pref(r,τ)+

∑a∈A maxτ:ψ[a,p,τ,r] Pref(r,τ)
)

otherwise

where

Φ[p,F ,A]
de f
=F � (∃a ∈ A,r)HasRole(a,r)∧ (∃z,τ) In(a, p,τ,z)∧Pref(r,τ)< 0

φ [a, p,τ,r] de f
= HasRole(a,r)∧ (∃z) In(a, p,τ,z)

ψ[a, p,τ,r] de f
=F � HasRole(a,r)∧ τ ∈ Tasks(p)∧
(n,m) = ξt(p,τ,F)∧m < |{a′ | In(a′, p,τ,z) ∈ F}|

That is, hpri(p)(F ,A) sums up the maximal preference each unallocated agent has
towards any available task in Tasks(p).

If the resulting allocations ought to be perfectly complete, a stricter heuristic
can be used, with

Φ[p,F ,A]
de f
= F �(∃a,r)HasRole(a,r)∧ (∃z,τ) In(a, p,τ,z)∧Pref(r,τ)< 0∨

(∃a ∈ A) max
τ:ψ[a,p,τ,r]

Pref(r,τ)< 0

5.12 Task Allocation Algorithm 83

Such that the heuristic reflects that unallocated agents must be assigned to a task
for which their roles have a positive preference.

Trivially,
max

H ′
pri(F ∪H ∪H ′)≤ hpri(p)(F ,A)

hpri(p)(F ,A) can overestimate the possible value, since it disregards the plan’s
conditions. Note that the heuristic for the complete allocation problem is also
admissible for the perfectly complete allocation problem, but not vice versa.

The domain-specific functions fi : 2LS 	→ R are estimated by corresponding
heuristic functions hi : 2LS × 2A 	→ R. As the functions fi can be arbitrarily cho-
sen, it is difficult to give a constructive definition for their respective heuristic
functions.

Assuming Ti is the set of tasks referred to in fi, then hi can be defined by:

hi(p)(F ,A) = max
Q:φ [Q,A,F ,p]

fi(p)(F ∪Q)

where

φ [Q,A,F , p] =Q ⊆ {In(a, p,τ, Init(p,τ)) | a ∈ A∧ τ ∈ Ti}∧(
In(a, p,τ,z) ∈ Q∧ In(a, p,τ ′,z′) ∈ Q → τ = τ ′ ∧ z = z′

)
∧

(∀τ ∈ Ti)(∃n,m)ξt(p, t,F) = (n,m)∧
|{a | (∃z) In(a, p,τ,z) ∈ Q∪F}| ≤ m

Ideally, each function fi depends on as few tasks as possible, thus allowing simple,
yet efficient heuristics. While a heuristic constructed in such a way is admissi-
ble, in most cases a more informed heuristic can perform significantly better by
exploiting the structure of fi itself.

Consider the following examples:

Example 5.2. The summand used by the chef in Example 5.1,

f (ServeGuests)(F) =
|{a | In(a,ServeGuests,DeliverOrder,z) ∈ F}|

100

can trivially be extended to the heuristic

h(ServeGuests)(F ,A) =
|{a | In(a,ServeGuests,DeliverOrder,z) ∈ F ∨a ∈ A}|

100

Yielding a heuristic much more efficient than a construction using the definition
above.

84 5 Semantics

In the soccer domain, a common approach is to have the robot closest to the
ball take on the task Attack. This can be expressed by the function:

f (p)(F) = max
a:In(a,p,Attack,z)∈F

1− Dist(a,ball)
maxDist

where Dist refers to the Euclidean distance between two objects and maxDist to
the maximum distance possible, e.g., the diagonal of the soccer field.

The heuristic estimate can be defined by a simple extension to f

h(p)(F ,A) = max
a:φ [a,p,F ,A]

1− Dist(a,ball)
maxDist

where

φ [a, p,F ,A] = In(a, p,Attack,z) ∈ F ∨ (ξt(p,Attack,F) = (n,m)

∧m < |{a′ | In(a′,Attack, p,z) ∈ F}|∧a ∈ A
)

In another situation, when a pass can be played, the distance between the pass-
ing robot and the receiving robot plays a role, thus a useful function might be:

f (p)(F) = max
a:In(a,p,Passing,z)∈F

max
b:In(b,p,Receiver,z)∈F

1−
(

7m−Dist(a,b)
maxDist

)2

specifying the ideal distance for a pass as 7m.
The corresponding heuristic function is slightly more complex:

f (p)(F ,A) = max
a:φ [a,p,F ,A]

max
b:ψ[a,b,p,F ,A]

1−
(

7m−Dist(a,b)
maxDist

)2

with

φ [a, p,F ,A] = In(a, p,Passing,z) ∈ F
∨ξt(p,Passing,F) = (n,m)∧m < |{a′ | In(a′,Passing, p,z) ∈ F}|
∧a ∈ A

ψ[a,b, p,F ,A] = In(b, p,Receiver,z) ∈ F ∨ (ξt(p,Receiver,F) = (n,m)∧
m < |{a′ | In(a′,Receiver, p,z) ∈ F}|∧b ∈ A∧b �= a

)
These examples illustrate that, while in some cases the automatic construction

of heuristic functions described above yields decent results, in other cases, a much
more efficient heuristic can easily be constructed by hand. Especially with larger

5.12 Task Allocation Algorithm 85

numbers of tasks involved per summand, efficient heuristics become crucial. We
will not delve further into the automatic construction of heuristic functions, the
interested reader is referred to [120, 123].

Given all individual heuristic estimates, we can formulate the complete heuristic
function:

H(p)(F ,A) =

⎧⎪⎪⎨
⎪⎪⎩
−1 if hpri(F ,A)< 0

w0 hpri(F ,A)+∑1≤i≤n wi hi(F ,A) if φ [p,F ,A]

0 otherwise

where

φ [p,F ,A] =|A| ≥ ∑
n:τ∈Tasks(p)∧ξt(τ,p,F)=(n,m)

max(0,n−|{a′ | In(a′, p,τ,z) ∈ F}|)

∧|A| ≤ ∑
n:τ∈Tasks(p)∧ξt(τ,p,F)=(n,m)

m−|{a′ | In(a′, p,τ,z) ∈ F}|

Based on utility function and heuristic function, we can define a search based
on A∗. The task allocation algorithm for a plantype is depicted in Listing 5.2. We
assume a total order over agents, tasks, and plans, which is needed to guarantee
that given the same belief state, different agents compute the same allocation, even
if the utility of different allocations is the same.

The algorithm consists of two main functions, InitTaskAlloc and NextAlloc.
InitTaskAlloc initialises the search queue with one node per plan in the respective
plantype. Each node contains a partial allocation and an ordered list of agents free
to be allocated. Agents believed to be not already allocated in one of the plans are
added to the list of free agents of each node.

NextAlloc iteratively expands the best node according to the heuristic until an
allocation is found satisfying AllocGoal or the queue is empty, in which case a
failure is returned. Subsequent calls to NextAlloc will return all valid task alloca-
tions for the plantype given the assumptions F in descending order of their utility.

The function Expand, depicted in Listing 5.3, reflects the successor relationship
between search nodes and produces the set of children of a search node. Depending
on whether or not the overall problem is to find a perfectly complete allocation,
the function can be used to enforce all agents to participate or allow for agents to
be skipped.

Note that allocations of different plans in the same plantype are in direct com-
petition, even though the utility functions might differ. Hence, the problem of
selecting a plan from a plantype is made part of the task allocation problem. This

86 5 Semantics

InitTaskAlloc(P,F,Agents) {
Queue_P := empty Queue;
foreach (Plan p in P) {

new Node n;
n.Plan := p;
foreach (Agent a in Agents) {

if (F contains In(a ,p, t ,z) for some t ,z) {
Remove a from Agents;

}
}
Add n to Queue_P;

}
foreach (Node n in Queue_P) {

n.AgentsAvail := Agents;
n.Alloc := /0;
n. Heuristic := H(n.Plan)(F, n.AgentsAvail);

}
Sort Queue_P by heuristic ;

}

NextAlloc(P,F) {
while(Queue_P is not empty) {

n := RemoveFirst(Queue_P);
if (AllocGoal(n,P,F)) return n.Alloc;
Add Expand(n) to Queue_P;
Sort Queue_P by heuristic ;

}
return FAILURE;

}

AllocGoal(node,P,F) {
if (node.AgentsAvail not empty or node. Heuristic < 0) return false;
foreach (Task t in node.Plan) {

(nmin,nmax) := ξt(node.Plan,t,F);
n := |{a | In(a ,node.Plan , t ,z) ∈ node.Alloc ∪ F}|;
if (n < nmin ∨n > nmax) return false;

}
if (F ∪ node.Alloc � Pre(node.Plan)∧Run(node.Plan)) return true;
else return false ;

}

Listing 5.2: Task Allocation Algorithm for a Plantype

requires the utility functions of the plans to be comparable with each other. The
structure enforced on utility functions and the fact that they map valid allocations
to the interval [0,1] make it easier to design comparable utility functions.

5.12 Task Allocation Algorithm 87

Expand(node,F) {
if (node.AgentsAvail is empty) return /0;
a := RemoveFirst(node.AgentsAvail);
nodes := /0;
foreach (Task t in node.Plan) {

n := copy of node;
Add In(a ,node.Plan , t , Init(node.Plan,t)) to n.Alloc;
(nmin,nmax) := ξt(node.Plan,t,F);
n := |{a | In(a ,node.Plan , t ,z) in n.Alloc ∪ F}|;
if (n ≤ nmax ∧n+ |n.AgentsAvail| ≥ nmin) {

n. Heuristic := H(n.Plan)(F ∪ n.Alloc,n.AgentsAvail);
Add n to nodes;

}
}
if (perfectly complete allocation not required) {

n := copy of node;
n. Heuristic := H(n.Plan)(F ∪ n.Alloc,n.AgentsAvail);
Add n to nodes;

}
return nodes;

}

Listing 5.3: Node Expansion Function for Task Allocation

Proposition 1. If the task allocation algorithm returns an allocation for plan p, it
is valid.

Proof. The proof is straight forward. Firstly, if an allocation is returned, it satisfies
the conditions defined by AllocGoal. Hence, its utility is larger than 0, and thus
it satisfies TeamIn(p) for plan p since the cardinalities are satisfied. Further, it
satisfies the pre- and runtime conditions of p. As the only beliefs contained in
the allocation returned are of the form In(a, p,τ, Init(p,τ)) for some agent a, and
some task τ in Tasks(p), and agents are only allocated if they are not allocated
according to F, the result is also consistent with F and ΣB.

Proposition 2. If a valid task allocation for a plantype P under the assumptions
F using agents A exists, it is eventually returned by NextAlloc(P,F).

Proof. Proof by contradiction: Assume a valid task allocation C is not returned. C
would allocate agents A to a plan p ∈ P. Thus, C is either not expanded or does
not satisfy the conditions in AllocGoal. Since by the definition of InitTaskAlloc,
an initial node for plan p is created, and since Expand subsequently allocates
all available agents to tasks in p, if the cardinalities allow so, C must eventually

88 5 Semantics

Let a be the calculating agent
RecTaskAlloc(z,F) {
A := {x | In(x,p, t ,z) ∈ F};
Q := /0;
foreach (PlanTypes P ∈ PlanTypes(z)) {

InitTaskAlloc(P,F,A);
do {

G := NextAlloc(P,F);
if (G = FAILURE) return FAILURE;
zn := state of a in P according to G;
if (zn exists) H := RecTaskAlloc(zn,F∪G);
else H:= /0;

} while(H = FAILURE);
Q := Q∪G∪H;

}
return Q;

}

Listing 5.4: Recursive Task Allocation Algorithm

be expanded, as the set of agents and the set of tasks is finite, and all valid task
allocations satisfy the cardinalities.

Since C is valid, its utility and its heuristic are not smaller than 0. Further, it
satisfies all task cardinalities of p and, together with F , models pre- and runtime
conditions of p. Thus, it also satisfies all conditions in AllocGoal.

Note that both Definition 5.19 and Listing 5.2 refer to an agent’s capability to
prove pre- and runtime conditions by �. An incomplete proving algorithm can
cause allocations to be invalid which would be valid otherwise. In practice how-
ever, these conditions are often very simple and can be expressed by a few imper-
ative functions mapping onto Boolean values.

Given a task allocation algorithm, a recursive extension is straight forward. List-
ing 5.4 shows the recursive version. RecTaskAlloc allocates agents to all plan-
types within the given state z. It does so by recursively calling itself with the state
the allocating agent must inhabit if it adopts the resulting allocation.

Proposition 3. A task allocation done by agent a using RecTaskAlloc for state z
under assumptions F is recursively valid.

Proof. Let C be the resulting recursive allocation. Since C is constructed as the
union of task allocations by calls to NextAlloc, by Proposition 1, it satisfies all
pre- and runtime conditions of plans a is allocated to, thus Condition 5.5 of Defi-
nition 5.21 holds. Conditions 5.6 and 5.9 also hold due to Proposition 1.

5.12 Task Allocation Algorithm 89

Since RecTaskAlloc recursively descends the plan structure using the state zn,
which a allocated itself to, Condition 5.7 holds. Condition 5.8 holds since Expand

only allocates to initial states. Condition 5.10 holds since agents are only allocated
if they inhabit the original state z.

Finally, no agent is allocated twice within the same plantype, InitTaskAlloc

removes all agents which already inhabite the corresponding plantype, and C only
contains literals of the form In(a, p,τ,z) for some agent a, plan p, task τ , and
initial state z, hence Condition 5.4 holds.

Proposition 4. A task allocation done by agent a using RecTaskAlloc for state z
under assumptions F is recursively complete.

Proof. Let C be the resulting recursive allocation. By Proposition 3, C is recur-
sively valid. Since C is the union of valid allocations produced by NextAlloc, and
RecTaskAlloc returns an allocation only if for all states a is allocated to, the re-
cursive call returns an allocation, and since a is allocated to at most one state per
plan, C together with F entail a valid allocation for every plantype in every state a
is allocated to. This satisfies Condition 5.11 of Definition 5.22.

Proposition 5. A task allocation done by agent a using RecTaskAlloc for state z
under assumptions F is recursively perfectly complete if so required.

Proof. Let C be the resulting recursive allocation. C is recursively complete. Since
Expand subsequently allocates all agents to tasks if so required, and AllocGoal

requires the set of unallocated agents to be empty, all solutions to the task allo-
cation problem initialised by InitTaskAlloc(P,F,A), allocate all agents in A to a
plan in P. Since A contains precisely those agents, which inhabit the parent state,
Condition 5.12 and Condition 5.13 hold.

Proposition 6. If a recursively perfectly complete task allocation exists,
RecTaskAlloc returns one, if so required.

Proof. A recursively perfectly complete task allocation must allocate agents to all
available agents in all plantypes involved according to Condition 5.12 and 5.13.
Since RecTaskAlloc iterates over all valid task allocations for each plantype (by
Proposition 2) until the respective recursive problem is solved, and since all in-
volved conditions and utilities are plan local, the claim holds.

Proposition 7. If a recursively complete task allocation exists, RecTaskAlloc re-
turns one, if so allowed.

90 5 Semantics

Proof. Analogous to the proof for Proposition 6, except that in each single alloca-
tion step, NextAlloc exhaustively iterates over all possibilities to drop agents, due
to Expand. If any of them satisfies AllocGoal, it is returned eventually.

Thus, the algorithm in Listing 5.4 constitutes a sound and complete solution to
the recursive task allocation problem. However, returning to the restaurant sce-
nario in Example 5.1, agreement of the agents involved is still not guaranteed. The
issue here is that the plantype holding solely DeliverOrder is not perfectly com-
patible with the task DeliverOrder in plan ServeGuests, thus ServeGuests is not
perfectly sound. However, the plantype is compatible and hence ServeGuests is
sound. Therefore, given the same belief bases the agents a,b and c can agree on a
complete allocation, but not on a perfectly complete one.

Definition 5.31. A set of allocations C agree, if
⋃C is consistent with ΣB.

A set of agents A, each with belief base Bi, is in agreement about the allocation
for a plantype P, if

⋃
i{In(a, p,τ,z) | In(a, p,τ,z) ∈ Bi ∧ p ∈ P} is consistent with

ΣB.

Lemma 1. If all agents a ∈ A individually compute an allocation for plantype P
based on the same assumptions F , they arrive at the same resulting allocation.

Proof. This follows trivially from the fact that each agent uses the same assump-
tions, that ΣB is common knowledge, and that plans, tasks, and agents are totally
ordered by the same ordering.

Proposition 8. If plan p is sound, then for all finite sets of agents A, for
all states z in p, A is in agreement about the recursively complete allocation
RecTaskAlloc(z,B).

Proof. By Lemma 1, the agents compute the same allocations for each individ-
ual plantype, given the same assumptions. Since the initial assumptions B are the
same, we only need to show that each agent updates its assumptions in the same
way, as it recursively computes the allocation. Since all plans only contain plan
local formulae and utilities, individual allocations do not depend on other individ-
ual allocations. Further, since p is sound, the only calls to NextAlloc which can
fail are on the topmost level, i.e., for plantypes in PlanTypes(z). Since all agents
try to compute an allocation for all plans in PlanTypes(z), they agree on this level
by Lemma 1.

Proposition 9. If plan p is perfectly sound, then for all finite sets of agents A,
for all states z in p, A is in agreement about the recursively perfectly complete
allocation RecTaskAlloc(z,B).

5.13 Rules 91

Proof. Analogously to the proof of agreement for the sound case.

Of course, these conditions are only relevant when the agents in question have
the same belief bases, which is rarely the case in realistic scenarios. Conflicting
beliefs can easily lead to conflicting allocations. In Chapter 6, we will show how
these cases can be detected and resolved.

With recursive task allocation as an essential tool available, we discuss the rule-
based operational semantics of pALICA in the next section. In the following,
we denote the result of a task allocation done by agent a for plantype P using
agents A in the belief state F by TAlloc(a,P,A|F) and the result of a recursive task
allocation done by agent a for state z in the belief state F by RecTAlloc(a,z|F).
Furthermore, we denote a failure in finding a valid task allocation by ⊥, e.g., if
RecTAlloc(a,z|F) =⊥, then there is no valid recursive task allocation for z given
F .

Note that we do not constrain whether the completeness or the perfect com-
pleteness property are used to calculate allocations. As will be evident in the next
section, both cases can be used with the same operational rules. It depends on the
scenario and the plan structure which of the two properties should be used.

5.13 Rules

Transition rules define how an agent’s configuration changes during a single com-
putation step. Each rule is guarded by a condition and transforms a given configu-
ration into a new one:

RuleName:
Condition

Current Agent Configuration−→New Agent Configuration

Since multiple rules may be applicable in a given situation, a precedence rela-
tionship is introduced. This precedence determines which out of a set of applicable
rules is applied. If rule r1 has a higher precedence than r2, we write r1 > r2. The
precedence relation over rules, >, is transitive and asymmetric.

In the following, a denotes the agent subject to the transition system. A rule is
applied only if its condition is satisfied, the agent’s configuration, Conf(a), unifies
with the left hand side of the transition and no rule with higher precedence is
applicable.

We distinguish two kinds of transition rules, operational rules, which describe
an agent’s normal operation and repair rules, which provide means to recover from
a failure. Execution of an ALICA program begins with the Init rule. From there on,
the rules Trans and STrans describe how an agent reacts to transitions within plans.

92 5 Semantics

Trans captures the case of normal transitions, STrans the case of synchronised
transitions, which require establishing mutual belief between all involved agents.
The application of both rules is followed by the application of rule Alloc, which
handles recursive task allocation for agents believed to be in the newly entered
state. Finally, the rules BSuccess and TSuccess modify an agent’s configuration
due to success signals from a lower level (in case of BSuccess) and due to reaching
a success state within a plan (TSuccess). At any point, the rule Sense is used to
express the incorporation of new sensor information into the belief base.

In principal, these seven rules are sufficient to describe the operative behaviour
of the agents involved, unless a failure occurs. Failure handling is done using
repair rules. Here, we present a set of ten repair rules, capturing different kinds of
reaction to failures. Some of these rules are not applicable in all domains, hence
repair rules are somewhat domain dependent. The rule system is meant to be
adapted to the specific needs of a domain.

The rule BAbort stops a behaviour that is executed if it signals a failure. BRedo
and BProp handle this failure. BRedo tries to re-execute a failed behaviour if pos-
sible, while BProp propagates the failure upwards to the plan in whose context
the failed behaviour was executed. PAbort acts similar towards plans as BAbort
does towards behaviours, it stops the failed plan and all plans and behaviours ex-
ecuted in its context. However, it can be overridden by PRedo which resets the
agent’s state within a failed plan if possible. This avoids computational and possi-
bly communication overhead, as the agent continues to work on its task, and does
not calculate a new allocation.

In case such a “soft” restart through PRedo is impossible and PAbort stops a
plan, PReplace triggers a new task allocation. A new task allocation can also
choose an alternative plan from the corresponding plantype. If all other means of
failure handling are exhausted, PProp propagates a failure upwards to the parent
plan. Finally, PTopFail captures the case where the top-level plan has failed, and
simply triggers a clear initialisation through Init.

There are three special rules, NExpand, which triggers a failure if a due task
allocation cannot be performed, and Adapt which is used to periodically check
the utility of a task allocation, and which performs a task reallocation if the cur-
rent utility is deemed to be unsatisfying. Adapt thereby allows for highly dynamic
changes in the allocation and thus accommodates for swift changes in the environ-
ment. Finally, RoleAlloc handles role allocation and reallocation. Since realloca-
tions usually happens whenever the team composition or some capabilities change,
we regard it as a repair rule as well.

5.13 Rules 93

5.13.1 Operational Rules

Operational rules always take precedence over repair rules, following the idea that
a failure might become irrelevant by another change in an agent’s configuration.
Repair rules are geared to preserve a certain status or provide alternatives for a
currently pursued, but failed, intention. This also allows one to specify domain-
specific handling of failures by referring to a failed sub-plan in a condition of a
transition.

The Initialisation Rule

Init :
�

(B, /0,E,R)−→(B+{In(a, p0,τ0,z0),Alloc(z0)},{(p0,τ0,z0)}, /0,R)

Intuitively, the Initialisation Rule obligates the agent to start the execution of the
plan tree. This is due whenever an agent’s plan base is empty, i.e., after start up and
whenever an agent’s plan base has been emptied completely due to plan failures.

The Sensing Rule

Sense :
Sense(φ)

(B,ϒ,E,R)−→((B+φ),ϒ,E,R)
The sensing rule incorporates sensory information into the belief base. The spe-
cial predicate Sense(φ) denotes the sensory information available. We assume
that communicated information is incorporated in the same way. One of the key
messages exchanged between ALICA agents is the periodic (or semi-periodic)
broadcast of the plan-base information together with success information. Such
a message encodes beliefs of the form In(a, p,τ,z) for every triple (p,τ,z) in the
plan base of a, and negative beliefs of the form ¬ In(a, p,τ,z) for every triple not
in the plan base. Thus the belief base can be updated by removing all beliefs of the
form In(a, p,τ,z) for agent a, and adding those entailed by the received message
afterwards. Success information can be treated similarly.

Most sensory information should be handled by a perception component outside
of ALICA and correspondingly update the agent’s belief state, as described in
Section 5.2. We list this rule merely for completeness sake, so that all relevant
updates can be described using rules.

The Transition Rule The Transition Rule controls when and how an agent fol-
lows a transition from one state to another.

Trans :
B � φ ∧ (p,τ,z) ∈ ϒ∧ (z,z′,φ) ∈W∧¬(∃s ∈ Λ)(z,z′,φ) ∈ s

(B,ϒ,E,R)−→((B−ϑ−
b)+ϑ+

b ,(ϒ−ϑ−
p)∪ϑ+

p ,E ′,R)

94 5 Semantics

where

• ϑ−
b = {In(a′, p,τ,z) | B � In(a′, p,τ,z)}

∪{In(a′, p′,τ ′,z′′) | a′ ∈ A∧ p′ ∈ Plans+(z)∧ z′′ ∈ States(p′)}

• ϑ+
b = {In(a′, p,τ,z′) | In(a′, p,τ,z) ∈ ϑ−

b }∪{Alloc(z′)}

• ϑ+
p = {(p,τ,z′)}

• ϑ−
p = {(p,τ,z)}∪Plans+(ϒ,z)

• E ′ = E −{(b,z′′) | (p′,τ ′,z′′) ∈ ϑ−
p }

An agent will follow an outgoing transition from state z to z′ if it currently resides
in z and believes the condition φ annotating the transition to hold. Furthermore,
this transition must not belong to a synchronisation set. Following a transition
entails that the agent stops executing all plans and behaviours that are executed in
the context of z, i.e., are in Plans+(ϒ,z). The addition of Alloc(z′) to the belief base
encodes the need for a task allocation with respect to the newly entered state z′.
Note that an agent applying this rule also assumes that every other agent currently
in z applies it, i.e., believes its precondition. This realises a partial tracking of other
agents through the plan tree.

The Synchronised Transition Rule handles a transition within a synchronisa-
tion set. Intuitively, a synchronisation models the start of a cooperative act that
depends on the involved agents to act in a very small time frame. The upper bound
on the size of this time frame depends on the latency and reliability of the commu-
nication and the precision with which agents can track their teammates’ intentions.
In the worst case, the condition guarding the Synchronised Transition Rule cannot
be established.

STrans :
(∃A ⊆A)a ∈ A∧ (∃s ∈ Λ)(z,z′,φ) ∈ s∧ψ

(B,ϒ,E,R)−→((B−ϑ−
b)+ϑ+

b ,(ϒ−ϑ−
p)∪ϑ+

p ,E ′,R)

where

• (p,τ,z) ∈ ϒ

• ψ = (∀(z′′,z′′′,φi) ∈ s)(∃a′ ∈ A,τ ′ ∈ Tasks(p))B �
MBelA(In(a′, p,τ ′,z′′)∧φi)

• ϑ−
b = {In(a′, p,τ ′,z′′) | a′ ∈ A∧ τ ′ ∈ T ∧ z′′ ∈ States(p)}∪

{In(a′, p′,τ ′′,z′′′) | a′ ∈ A∧ (B � In(a′, p,τ ′,z′′))∧ p′ ∈ Plans+(z′′)}

5.13 Rules 95

• ϑ+
b = {In(a′, p,τ ′,z′′′) | a′ ∈ A∧ (B � In(a′, p,τ ′,z′′))∧ (z′′,z′′′,φ) ∈ s}

∪{Alloc(z′)}

• ϑ+
p = {(p,τ,z′)}

• ϑ−
p = {(p,τ,z)}∪Plans+(ϒ,z)

• E ′ = E −{(b,z) | (p,τ,z) ∈ ϑ−
p }

Here, an agent will follow a synchronised transition only if it can identify a group
A of agents it is part of, such that a believes that there is mutual belief in A that all
relevant conditions φi hold. Moreover, a has to believe that there is mutual belief
in A that all agents in A are in the correct states, that is, that every transition in
the synchronisation set will be used by one agent. Hence, there is mutual belief
about the individual intentions to progress along the synchronised transitions. If
the agent believes this condition to hold, it will act in the same manner as in the
case of a normal transition rule. Additionally, it assumes that all participating
agents do the same.

Synchronised Transition Rules take precedence over normal transition rules,
STrans > Trans. This is done following the intuition that a synchronisation guards
a part of a plan that is of higher benefit to the team and more difficult to reach. It
is easy to see that the condition of Trans would subsume the condition of STrans
if it were not for the exclusion of synchronisations (¬(∃s ∈ Λ)(z,z′,φ) ∈ s).

Synchronisations realise, as the name suggests, a tight coupling between agents.
The mutual belief is established via communication (see Section 7.5 for details).
In some cases, this additional communication is counter productive, depending
on the quality and load of the communication medium. In such a case, a weaker
form of synchronisation can be used, based on ordinary transitions. Suppose two
transitions (z1,z2,φ) and (z3,z4,ψ) are to be synchronised. Assuming neither
z2 nor z4 are initial states and no other transition leads to z2 or z4, a behaviour
similar to synchronisations, but less strict can be achieved by replacing φ with
φ ∧ψ ∨ (∃a, p,τ) In(a, p,τ,z4) and ψ with φ ∧ψ ∨ (∃a, p,τ) In(a, p,τ,z2). Thus,
the agents will follow one another. This weaker kind of synchronisation requires
only a single message, but is more susceptible to packet loss or delay.

The Allocation Rule The Allocation Rule takes over where the transition rules
above left an agent. It causes a task allocation to be performed, usually in a state
just entered.

Alloc :
(B � Alloc(z)∧ In(a, p,τ,z))∧RecTAlloc(a,z|B) �=⊥

(B,ϒ,E,R)−→((B−{Alloc(z)})+ϑ+
b ,ϒ∪ϑ+

p ,E ∪ϑ+
e ,R)

96 5 Semantics

where

• ϑ+
b = RecTAlloc(a,z|B)

• ϑ+
p = {(p′,τ ′,z′) | In(a, p′,τ ′,z′) ∈ ϑ+

b }

• ϑ+
e = {(b,z′) | ((p,τ,z′) ∈ ϑ+

p ∨ z′ = z)∧b ∈ Behaviours(z′)}

That is, if a believes a task allocation with respect to state z is needed and possible,
it will update its believe base with the computed allocation RecTAlloc(a,z|B), as
introduced in Section 5.12, insert all plans it is involved in into its plan base, and
start to execute all behaviours relevant to the added plan-task-state-triples.

Since the result of an allocation is only relevant until the agent leaves the cor-
responding state, Transition Rules have a higher precedence than the Allocation
Rule, Trans > Alloc.

The Behaviour Success Rule In ALICA, behaviours are atomic actions, which
can fail or succeed at any point in time during their execution. Such a termination is
reflected by the atoms Success(b) and Fail(b), where b is the behaviour in question.
Since b is embedded in a canonical behaviour plan or a plan with similar properties,
the agent will subsequently enter the success state of that plan by means of the
Transition Rule.

BSuccess :
(b,z) ∈ E ∧B � Success(b)

(B,ϒ,E,R)−→(B,ϒ,E −{(b,z)},R)
where z is the state which acts as the context of b. If a running behaviour suc-
ceeds, it is stopped. By the Planning Axiom, its postcondition should hold as well.
Since this rule processes a signal and updates the execution set accordingly, it takes
precedence over the previous Trans and Alloc rules which modify the plan base.

Task Success Rule An agent succeeds in completing a task within a plan, if and
only if it reaches a state z ∈ Success(p).

TSuccess :
(p,τ,z) ∈ ϒ∧ z ∈ Success(p)

(B,ϒ,E,R)−→(B+ϑ+
b ,ϒ,E,R)

where ϑ+
b = {Succeeded(a, p,τ),Post(z)}.

This rule updates the belief base with the postcondition attached to the terminal
state reached. Moreover, the successful completion of task τ in p is recorded as
well.

5.13 Rules 97

This update might lead to an inconsistent allocation, if TeamIn(p) no longer
holds due to the changed cardinalities ξt(p,τ,B+ϑ+

b). A subsequent task real-
location by the Adaptation Rule will reallocate agent a correspondingly, unless a
transition on the parent level reacts on the successful completion of the task. The
success needs to be communicated to other agents working on p, otherwise, it
might be the case that they abort the plan due to an insufficient number of agents
working on it, once a itself reacts to the success (see Example 5.3). Thus, an
agent is committed to informing its team about the achieved goal represented by
Succeeded(a, p,τ), similar to a joint intention.

We give precedence to the success of lower level behaviours, but still treat
this success rule with a higher priority than the Transition Rules, BSuccess >
TSuccess > STrans. This way, a subsequent check of a transition rule can react
to the success of the task.

Example 5.3 (Asynchronous Plan Success). This example shows the case that one
task of a plan is finished before another task of that plan. As aforementioned the
successful completion of a task is represented in the belief base and communicated
to other agents. Figure 5.4 illustrates such a case. Initially the two agents a and
b are allocated to the tasks τ1 and τ2 of plan p1. Both tasks have an associated
cardinality of 1..1, which means that exactly one agent must be allocated to each
task for the execution of the plan. Both agents start with the initial state of their
task within the plan. Agent a executes plantype P2 and agent b plantype P3. After
some time, agent a progresses to the next state s2. Agent b leaves state s3 following
the transition to the success state s4. Now agent b leaves the plan and therefore
it is not longer committed to task τ2. If the successful completion of task τ2 were
not recorded, the plan would be aborted as the cardinalities of the task are not
satisfied. See also the definition of TeamIn (Definition 5.12). With the success
being communicated, assuming τ2 is the only task in Required(p1), agent a would
be free to leave the plan as well, as p1 is successfully completed.

5.13.2 Repair Rules

Typical BDI languages feature techniques handling failures that occur, e.g., due
to unexpected changes in the dynamic environment agents act in. Classic BDI
languages also distinguish between plan failures and goal failures. The first can be
due to some side constraint being violated, the latter due to the goal itself becoming
impossible to achieve. Refer for instance to Sardina and Padgham [141].

While goals are represented as appropriate postconditions, ALICA does not
come with any reasoning capability to infer whether or not a goal is still achievable

98 5 Semantics

p1

s1τ1

1..1
s2

s4

P2 . . .

s3τ2

1..1 P3

a

b

1. Task allocation

p1

s1τ1

1..1
s2

s4

P2 . . .

s3τ2

1..1 P3

a

b

2. Start execution

p1

s1τ1

1..1
s2

s4

P2 . . .

s3τ2

1..1 P3

a

b

3. b finishes successful

Figure 5.4: Example: Asynchronous Plan Success

given only domain knowledge. Instead, the failure to achieve a goal or the belief in
unachievable goals is represented using plan elements such as runtime conditions
and failure states.

The corresponding notion of plan failures can happen frequently, depending on
the scenario. For instance in the dynamic robotic soccer domain, each robot has
to make assumptions about the status of its teammates, which can prove to be
wrong. Repair rules are special transition rules which are meant to recover from
such failures. There are different ways to handle failures and a specific way can
depend on the domain. A failed plan can be retried, replaced by an alternative,
or the failure can be propagated up the plan tree. In some languages, such as
AgentSpeak [129], a failure can even raise a specific goal, triggering custom plans
meant to handle precisely the occurred failure.

ALICA features a similar way to deal with plan failures explicitly. A failed plan
or behaviour is recognised and causes a corresponding believe to be inserted in the
belief base (Handle f (p) for a plan, and Handle f (b,z) for a behaviour, respectively,
as described in Section 5.2.2). Since the Transition Rule takes precedence over
repair rules, an explicit mechanism can be modelled via a transition. Otherwise,
default handling takes place.

The Behaviour Abortion Rule A behaviour is aborted if it signals a failure.
Thus, it is removed from the execution set.

BAbort :
(b,z) ∈ E ∧B � Fail(b)

(B,ϒ,E,R)−→(B′,ϒ,(E −{(b,z)}),R)

where

5.13 Rules 99

• B′ = (B−{(∀i)Failed(b,z, i),Fail(b)})
+{Failed(b,z, j),Handle f (b,z)},

• j =

{
i+1 if Failed(b,z, i) ∈ B,

1 otherwise.

The belief Failed(b,z, i) keeps track of how many times a behaviour had to be
aborted. This allows the consecutive application of different failure recovery rules.
Note that if the corresponding state z is left, e.g., through a transition, this belief is
dropped to keep the belief base consistent with Σb (see Definition 5.6).

The Behaviour Repair Rules act as a default mechanisms to handle behaviour
failure.

BRedo :
B � In(a, p,τ,z)∧Failed(b,z,1)∧Handle f (b,z)

(B,ϒ,E,R)−→(B′,ϒ,E ′,R)
where

• E ′ = E ∪{(b,z)}

• B′ = B−{Handle f (b,z)}

BProp :
B � In(a, p,τ,z)∧ (∃i)Handle f (b,z)∧Failed(b,z, i)∧ i > 1

(B,ϒ,E,R)−→(B′,ϒ,E,R)

where

• B′ = (B−{Handle f (b,z),Failed(b,z, i),(∀k)Failed(p,k)})
+{Handle f (p),Failed(p, j)}

• j =

{
j′+1 if Failed(p, j′) ∈ B

1 otherwise

BRedo restarts a failed behaviour if possible, and BProp propagates the failure
upwards to the containing plan if restarting has already been tried. The universal
quantification in (∀k)Failed(p,k) ensures that Failed(p,k) is removed regardless
of the current value of k. It is the case that at most one instance of Failed(p,k)
holds per plan p. Note that the applicability of these rules is subject to the concrete
domain. For instance, retrying a failed behaviour might not make sense at all
in certain scenarios. In others, a behaviour’s success can be associated with a
known probability distribution, in which case the utility of a retry can be estimated.
Therefore, it is sensible to customise these rules with respect to the domain.

100 5 Semantics

The Plan Abortion Rule is quite similar to the Behaviour Abortion Rule:

PAbort :
(p,τ,z) ∈ ϒ∧ (z ∈ Fail(p)∨B � ¬Run(p)∨¬TeamIn(p))

(B,ϒ,E,R)−→((B−ϑ−
b)+ϑ+

b ,ϒ−ϑ−
p ,E −ϑ−

e ,R)

• ϑ−
b = {In(a′, p,τ ′,z′) | a′ ∈ A,τ ′ ∈ T ,z′ ∈ States(p)}

∪{In(a′, p′,τ ′,z′) | (∃z′′ ∈ States(p))p′ ∈ Plans+(z′′)}
∪{(∀k)Failed(p,k)}

• ϑ+
b = {Handle f (p),Failed(p, j)}

• ϑ−
p = {(p,τ,z)}∪Plans+(ϒ,z)

• ϑ−
e = {(b,z) | (p,τ,z) ∈ ϑ−

p }

• j =

{
j′+1 if Failed(p, j′) ∈ B

1 otherwise

This rule aborts a plan if the corresponding runtime condition is violated, a fail-
ure state is reached or if the agent believes that the team no longer executes the
plan. Additionally, the rule aborts all plans and behaviours executed in the context
of the current state z, and assumes that all agents involved in executing p detect
the plan failure and apply the same rule accordingly. If another participating agent
does not detect the failure, this leads to conflicting belief states, where some agents
still believe that the plan can be executed, while others do not. Resolving this state
requires the agent to inform its teammates about the plan failure. A periodic broad-
cast of the plan base contains sufficient information to deduce the plan failure, or
compensate for the missing agent. In Section 7.5, we will discuss these messages
in more detail.

The Plan Repair Rules implement default ways to handle failed plans. Intui-
tively, a plan can be restarted, replaced by an alternative or the failure can be
propagated upwards.

PTopFail :
B � Handle f (p0)

(B,ϒ,E,R)−→(B−{(∀p,τ,z) In(a, p,τ,z),Handle f (p0)}, /0, /0,R)

PTopFail handles failures of the top-level plan by resetting the agent configuration,
thus triggering Init again. The only way to handle a failure at this level is to retry
the whole program.

5.13 Rules 101

PRedo :
(p,τ,z) ∈ P∧ z ∈ Fail(p)∧ (B � ¬(∃x)Failed(p,x))∧B′ � ψ

(B,ϒ,E,R)−→(B′,(ϒ−ϑ−
p)∪{(p,τ,z′)},E ′,R)

where

• B′ = (B−ϑ−
b)+{In(a, p,τ,z′),Alloc(z′),Failed(p,1)}

• ϑ−
b = {In(a, p,τ,z)}∪{In(a, p′,τ ′,z′′) | τ ′ ∈ T ∧ p′ ∈ Plans+(ϒ,z)}

• z′ = Init(p,τ)

• ψ = TeamIn(p)∧Pre(p)∧Run(p)

• ϑ−
p = {(p,τ,z)}∪Plans+(ϒ,z)

• E ′ = E −{(b,z) | (p,τ,z) ∈ ϑ−
p }

By applying PRedo, an agent retries to fulfil its task within a plan p, if it has
reached a failure state and believes its team is still working on p and that the pre-
conditions and runtime conditions are still met. Note that evaluating the condition
of this rule requires the agent to hypothesis B′ before applying PRedo. PRedo takes
precedence over PAbort, PRedo > PAbort, so a less extensive failure handling is
tried first. Subsequent failures of the same plan will not be handled by PRedo due
to the insertion of Failed(p,1) into the belief base. Since there is only one way to
handle failure of the top-level plan, PTopFail > PRedo.

PReplace :
B � Handle f (p)∧Failed(p,1)
(B,ϒ,E,R)−→(B′,ϒ,E,R)

where

• B′ = (B−{Handle f (p)})+{Alloc(z)}

• p ∈ Plans(z)

PReplace handles a failure by triggering a new task allocation for the state in which
p is executed.

PProp :

(
B � Handle f (p)∧Failed(p,2)

)
∧ (p′,τ,z) ∈ ϒ

(B,ϒ,E,θ ,R)−→((B−ϑ−
b)+ϑ+

b ,ϒ−ϑ−
p ,E −ϑ−

e ,θ ,R)

where

102 5 Semantics

• p ∈ Plans(z)

• ϑ−
b = {In(a′, p′,τ ′,z) | a′ ∈ A∧ τ ′ ∈ T }

∪{In(a′, p′′,τ ′,z′) | (∃z′′ ∈ States(p′))p′′ ∈ Plans+(z′′)}
∪{(∀k)Failed(p′,k)}

• ϑ+
b = {Handle f (p′),Failed(p′, j)}

• ϑ−
p = {(p′,τ,z)}∪Plans+(ϒ,z)

• ϑ−
e = {(b,z) | (p′,τ,z) ∈ ϑ−

p }

• j =

{
j′+1 if Failed(p′, j′) ∈ B

1 otherwise

The last option for an agent confronted with a plan failure is to propagate the
failure upwards, which is done here by aborting the parent plan and triggering
failure handling rules for it. Since a failure should be handled at the lowest level
possible, PReplace > PProp.

The Allocation Failure Rule handles the case where a task allocation cannot
assign any agent to a plan, for instance if a precondition cannot be met. If an
allocation for state z fails, a failure for the corresponding plan p is raised.

NExpand :
(B � Alloc(z))∧RecTAlloc(a,z|B) =⊥∧ (p,τ,z) ∈ ϒ
(B,ϒ,E,R)−→((B−ϑ−

b)+ϑ+
b ,ϒ−ϑ−

p ,E −ϑ−
e ,R)

where

• ϑ−
b = {Alloc(z)}∪{In(a′, p,τ ′,z) | a′ ∈ A∧ τ ′ ∈ T }

∪{In(a′, p′,τ ′,z′) | (∃z′′ ∈ States(p))p′ ∈ Plans+(z′′)}
∪{(∀k)Failed(p,k)}

• ϑ+
b = {Handle f (p),Failed(p, j)}

• ϑ−
p = {(p,τ,z)}∪Plans+(ϒ,z)

• ϑ−
e = {(b,z) | (p,τ,z) ∈ ϑ−

p }

• j =

{
j′+1 if Failed(p, j′) ∈ B

1 otherwise

5.13 Rules 103

The Adaptation Rule treats the case where a plan has not failed but has a com-
paratively low utility evaluation. In this case, an agent can trigger a new task
allocation if it believes there exists an allocation which is more suitable to the
current situation. This yields a task reallocation mechanism similar to the local
decisions discussed by Nair et al. [104]. However, task reallocation in this way
is seamlessly integrated into the language and happens on-the-fly without further
need for expensive deliberation.

An allocation is replaced by a new one in case the utility of the new one is
deemed higher. In order to stabilise decisions, we use a plan-specific threshold
value, t(p), that must be exceeded by the difference in order for the reallocation to
take place. Additionally, we use a similarity measure Sim(p,B,B′), weighted by
the plan-specific factor ws(p), such that reallocations that are very different must
have a correspondingly higher utility.

Adapt :
U(pn)(B′′)−ws(pc)Sim(pc,B′′,B)> U(pc)(B)+ t(pc)

(B,ϒ,E,R)−→(Bn,ϒn,En,R)

where:

Agents A currently inhabit state z:

A = {a′ | In(a′, p,τ,z)}

Agent a is currently executing pc in the context of z or is passively participating in
pc:

a ∈ A∧ (B � TeamIn(A, pc))∧ pc ∈ Plans(z)

The plans pc and pn belong to the same plantype:

pc ∈ P∧ pn ∈ P

�Pc are the plans in the sub-branch subject to reallocation:

�Pc = {pc}∪{p′ | (∃z′ ∈ States(pc))p′ ∈ Plans+(z′)}

B′ is the belief base without any assumptions about pc and its sub-plans:

B′ = (B−{In(a′, p′,τ ′,z′) | a′ ∈ A∧ p′ ∈ �Pc}

104 5 Semantics

B′′ is the result of a task allocation for plantype P combined with the assumptions
B′:

B′′ = B′+TAlloc(a,P,A|B′)

pn is the plan selected by the valid task allocation:

TAlloc(a,P,A|B′) �=⊥∧B′′ � TeamIn(A, pn)

Δ−
A denotes the reallocated agents:

Δ−
A = {a′ | In(a′, pc,τ ′,z′) ∈ B∧¬(∃z′′) In(a′, pc,τ ′,z′′) ∈ TAlloc(a,P,A|B′)}

Br are the beliefs regarding the sub-branch that remain unchanged:

Br = {In(a′, p′,τ ′,z′) | a′ ∈ A∧a′ �∈ Δ−
A ∧ In(a′, p′,τ ′,z′) ∈ B∧ p′ ∈ �Pc}

B′′′ contains only the beliefs that do not conflict with Br:

B′′′ = B′′ −{In(a′, p′,τ ′,z′) | (∃z′′) In(a′, p′,τ ′,z′′) ∈ Br}

Bn is the new belief base, containing all unchanged beliefs, the new task allocation,
and Alloc(zn) in case a beliefs at least one agent was reallocated to zn, i.e., the state
a inhabits after reallocation:

Bn =

{
B′′′ ∪Br ∪{Alloc(zn)} if φ
B′′′ ∪Br otherwise

where

φ = In(a, pn,τn,zn) ∈ (B′′′+Br)∧ (∃a′) In(a′, pn,τn,zn) ∈ B′′′

The plan base and the execution set are limited to the new beliefs:

ϒ′ =ϒ−{(p′,τ ′,z′) | In(a, p′,τ ′,z′) �∈ Bn)

En = E −{(b,z′) | (p′,τ ′,z′) �∈ ϒ′)

If the agent entered a new state as a consequence of this rule, this is reflected in
the new plan base:

ϒn = ϒ′ ∪{(pn,τn,zn) | In(a, pn,τn,zn) ∈ Bn}

5.13 Rules 105

Sim(p,F ,G) is the similarity measure:

Sim(p,F ,G) = 1− |{a | In(a, p,τ,z) ∈ F ∧ (∃z′) In(a, p,τ,z′) ∈ G}|
max(1, |{a | (∃p,τ,z) In(a, p,τ,z) ∈ G}|)

That is, if a new task allocation for a plantype P has a utility higher than the
current allocation with respect to the situation at hand, the agent will adopt the
new allocation. The threshold value t(p) limits the applicability of this rule. t(p)
as well as ws(p) are specific to each plan p. Note that pn and pc can refer to the
same plan or to two different plans in the same plantype P. Thereby, this rule
allows the agents to switch from one alternative solution to the other in case the
former becomes infeasible or is deemed comparatively hard to achieve. Similar
to the Transition Rule, the current allocation is removed from belief base, plan
base, and execution set. The new allocation is adopted directly, similar to the Task
Allocation Rule. Since this rule also implements a soft repair mechanism in case
a runtime condition is violated, it has a higher precedence than all repair rules.

The definition of the belief update captures the notion of minimal change, i.e.,
agents that do not need to change their tasks do not change their states either.
Should the local agent be reallocated by Adapt, or believes that another agent is
reallocated to the state it inhabits, the belief Alloc(zn) is inserted into the belief
base, triggering a subsequent recursive task allocation.

The Adaptation Rule enables a team to react swiftly to changing situations. Due
to the threshold value and the similarity measure, oscillation can be avoided. How-
ever, their value depend on the utility functions used and are therefore domain de-
pendent. Further, both threshold and similarity weight can be used to emphasis
dynamic adaptation or forbid it altogether for each plan separately. In general, as
an agent progresses towards successful completion of its task, the overall utility
should increase. One way to achieve this, given reward functions for successful
completion, is using utilities which obey the Bellman equations [8].

The Role Allocation Rule treats the case where a role reallocation is necessary.
The reallocation is computed by the formation F (see Definition 5.15), and adapted
by the agent in case any agent is allocated differently than before.

RoleAlloc :
{HasRole(a′,r) | HasRole(a′,r) ∈ B} �= F({a′ | In(a′, p0,τ0,z0) ∈ B})

(B,ϒ,E,R)−→((B′ −ϑ−
b)+ϑ+

b ,ϒ,E,R′)

where

• R′ = {HasRole(a,r) | HasRole(a,r) ∈ F({a′ | In(a′, p0,τ0,z0) ∈ B})

106 5 Semantics

• ϑ−
b = {(∀a,r)HasRole(a,r)}

• ϑ+
b = F({a′ | In(a′, p0,τ0,z0) ∈ B})

As stated in Section 5.6, role reallocation is only needed when the team compo-
sition changes, either due to agents leaving or joining the team, or due to a change
in an agent’s capabilities. For sake of simplicity, the corresponding triggers are not
represented explicitly in the rule.

The complete team is represented in an agent’s belief base by the set of agents
that inhabit the solitary state in the top-level plan, {a′ | In(a′, p0,τ0,z0)}. Thus,
it is sufficient to check the applicability of this rule when this set changes or the
agent is notified of a change in any participating agent’s capabilities.

In summary, the presented repair rules form a flexible and customisable sys-
tem to react on failures, allowing for robust adaptation of the team’s behaviour to
changing situations. Table 5.1 gives a brief overview of the introduced rules in an
order compatible with the partial precedence order established between rules.

The represented rules are not a minimal set, in the sense that smaller rule sets
are sufficient to execute an ALICA program. For instance, the rules PRedo and
BRedo are not necessary, or the rules Alloc and Adapt could be merged into a
single rule. However, the presented set of rules is easier to modify than a minimal
set. For example, in domains where dynamic adaptation is not needed or even
counter-productive, Adapt can simply be removed.

5.14 Agent Configuration Consistency

In this section, we verify the operational semantics with respect to the plan base
axioms introduced in Definition 5.4. Additionally, we show that the plan base of
an agent always forms a tree, that no behaviour is left orphaned, i.e., the context of
a behaviour in execution is always referred to in the plan base, and that an agent
always beliefs in what it is doing. This last property is a requirement for a belief
base according to Definition 5.8.

According to Definition 5.8 a belief base is required to be consistent with the
common knowledge and the plan base.

Proposition 10. If Conf(a) = (B,ϒ,E,R) then (p,τ,z) ∈ ϒ if and only if B �
In(a, p,τ,z).

Proof. The initial belief base does not contain any beliefs of the form In(a, p,τ,z)
and the initial plan base is empty by Definition 5.2. Moreover, every rule that
modifies the plan base makes an equivalent update to the belief base.

5.14 Agent Configuration Consistency 107

Init Initialises or reinitialises an agent’s configuration.
RoleAlloc Updates an agent’s role assumptions according to a newly com-

puted role allocation.
Sense Incorporates new sensory information into the belief base.
BSuccess Reacts upon the success of a behaviour.
TSuccess Reacts upon the success of a task.
STrans Moves an agent along a synchronised transition after an appropri-

ate mutual beliefs was established.
Trans Moves an agent from one state to another.
Alloc Implements recursive allocation within a state the agent entered.
Adapt Replaces the current task allocation with a new one if the differ-

ence in the corresponding utility values is significant.
BAbort Aborts the execution of a failed behaviour and raises a correspond-

ing flag.
BRedo Retries a failed behaviour if possible.
PTopFail Handles the case where the top-level plan, p0, failed.
PRedo Restarts the execution of a task within a failed plan if possible.
PAbort Aborts a failed plan.
PReplace Replaces a failed plan by triggering a new task allocation in its

parent state.
PProp Propagates the failure of a plan to its parent plan.
NExpand Promotes the inability to calculate a valid task allocation to a plan

failure.
Table 5.1: Operational Rules of pALICA from Highest to Lowest Precedence

Thus, the belief base is consistent with the plan base and an agent always be-
lieves what it intentionally is doing. Consistency with respect to the common
knowledge is maintained by the belief update semantics as discussed in Sec-
tion 5.2.3.

Proposition 11. If a program is well-formed, all plan bases that can occur during
runtime contain at most one triple (p,τ,z) per plan p.

Proof. In the following, we call a plan base which contains at most one triple per
plan consistent. The initial plan base is empty, and therefore fulfils the property.
Plan bases are modified through the application of rules. The rule Init adds a triple
to the empty plan base, thereby producing a consistent plan base.

108 5 Semantics

The rule Sense, TSuccess, BAbort, BRedo, BProp, BSuccess, PReplace, and
RoleAlloc do not modify the plan base. The rules PAbort, PTopFail, PProp, and
NExpand only remove triples from the plan base, thus maintain consistency. The
rule PRedo adds a single triple (p,τ,z′) to the plan base, but also removes (p,τ,z),
maintaining consistency.

The rules Trans and STrans remove the triple which refers to the plan p and state
z in which the transition occurs, and all triples belonging to the branch Plans+(z).
They only add a single new triple, which refers to p. Thus if the input plan base
was consistent, both rules produce consistent plan bases.

The rule Alloc employs the recursive task allocation and adds the resulting
triples to the plan base. Since the program is a tree, the recursive task alloca-
tion algorithm allocates an agent at most once to each plan (by Proposition 3), and
it takes the current beliefs into account, which are consistent with the input plan
base by Proposition 10, all plan bases produced by the rule Alloc are consistent if
the corresponding input plan base was consistent.

The rule Adapt removes all beliefs referring to a sub-branch in case the local
agent is reallocated. Consequently, it also removes the corresponding triples from
the plan base. The only triple that can be added refers to the newly entered state,
since TAlloc(a,A,P|F) only results in valid allocations with respect to P. If this tu-
ple is added, any tuple referring to the formerly executed plan is removed. Hence,
the claim holds for Adapt as well.

Proposition 11 is a requirement, but not a sufficient condition that the plan base
forms a tree at all times.

Proposition 12. For any tuple (p,τ,z) in a plan base ϒ

• p = p0 or

• another tuple (p′,τ ′,z′) occurs in ϒ such that p ∈ Plans(z′).

Proof. In the following, we call a plan base that fulfils the requirement consistent.
The initial plan base is empty, thus the initial plan base is consistent. The rule
Init adds the tuple (p0,τ0,z0) to the empty plan base, hence the claim holds as
well. The rules Sense, TSuccess, BAbort, BRedo, BProp, BSuccess, PReplace,
and RoleAlloc do not modify the plan base. The rules Trans and STrans remove
all triples, which are executed in the context of the state left by the agent, and
therefore maintain the claim.

The rule Alloc adds a complete branch to the plan base, since RecTAlloc pro-
duces only recursively valid task allocations. Adapt reallocates in the plantype P.
It removes a complete branches from the plan base and only adds a single tuple

5.14 Agent Configuration Consistency 109

referring to the plan pn. Since pn belongs to the same plantype as the replaced
plan pc, and the tuple (p,τ,z) remains untouched, the resulting plan base stays
consistent.

The rules PAbort, PProp, and NExpand remove all plans that are executed in
the context of the aborted plan. PTopFail results in an empty plan base. PRedo
removes the triple (p,τ,z) and all tuples in the context of z, and only adds
(p,τ, Init(p,τ)), thus if the input plan base was consistent the resulting plan base
is consistent as well.

Theorem 5.1. If the ALICA program is well-formed, all plan bases that can occur
during runtime form a tree.

Proof. The claim holds due to Proposition 11 and Proposition 12, and due to the
well-formedness of the program, which requires the plan-tree to be a tree.

The property that a plan base always forms a tree is quite important, it simplifies
reasoning and allows implementations to use appropriate data structures, allowing
for efficient traversal and rule application.

Given the tree-shape of the plan base, we can now guarantee that the plan base
is always consistent with the plan base axioms (see Definition 5.4):

Theorem 5.2. If the ALICA program is well-formed, all plan bases that can occur
during runtime are consistent with the plan base axioms Σp.

Proof. Consistency with Axiom 5.1 is implied by Proposition 11. Axiom 5.2 is
satisfied since:

• p0 cannot belong to a plantype in the program tree. Otherwise, the program
would not form a tree. Hence, Init maintains consistency.

• RecTAlloc allocates only to one plan per plantype since the program forms
a tree.

• Adapt removes the triple referring to the formerly executed plan if it adds
one.

• No other rule starts to execute a new plan, i.e., adds a tuple (p,τ,z) such that
no tuple (p,τ ′,z′) was in the input plan base.

Consistency with Axiom 5.3 is maintained since:

• The empty plan base is consistent with the axiom.

• The tuple (p0,τ0,z0) satisfies the conditions of the axiom.

110 5 Semantics

• Trans and STrans remove the tuple (p,τ,z) and add the tuple (p,τ,z′) only
if a transition (z,z′,φ) exists for some φ , thus both maintain consistency.

• Task allocation allocates only to tasks of the respective plan, i.e., which are
an element of Tasks(p), and allocates only to initial staes. Hence Adapt and
Alloc maintain consistency.

• No other rule changes the task of an agent or adds a tuple other than
(p,τ, Init(p,τ)) for some plan p and some task τ such that (p,τ,z) was
in the input plan base for some state z.

Besides consistency of the plan base, we also want to guarantee that a robot only
does what it intends. In other words, it should only execute behaviours that reflect
the procedural intentions represented by the plan base.

Proposition 13. No behaviour is left orphaned. For any agent configuration
(B,ϒ,E,R) that can occur during runtime:

(∀(b,z) ∈ E)(∃p,τ)(p,τ,z) ∈ ϒ

Proof. Behaviours are added to the execution set by the rules Alloc and BRedo.
BRedo requires the agent to inhabit the corresponding state by In(a, p,τ,z), and
Alloc only adds tuples (b,z) such that a corresponding triple (p,τ,z) is added to
the plan base at the same time.

Triples are removed from the plan base by the rules Trans, STrans, PAbort,
PTopFail, PRedo, PProp, NExpand, and Adapt. All these rules remove all tuples
from the execution set which refer to states of triples removed from the plan base,
except PTopFail, which results in an empty execution set.

Consequently, if a behaviour is executed in the context of state z, the agent also
believes that it inhabits z.

5.15 Summary

This chapter presented the formal semantics of the language pALICA. We dis-
cussed an underlying agent model, which is represented in the semantics by an
agent configuration, consisting of a belief base, a plan base, an execution set, and
a role set. The belief base captures the current information an agent has about its
environment and its team. An agent’s internal state with respect to the executed

5.15 Summary 111

ALICA program is represented by the plan base, which constitutes a procedural
description of the agent’s intentions. The execution set consists of the behaviours
the agent currently executes, and thus forms the link to lower-level actuator com-
ponents. Finally, the role set contains all roles an agent assumes within the team.

The main part of the semantics is given by a transitional rule system, which
describes in detail how and when the agent configuration is updated. The set of
rules consists of operational rules, that guide the normal operation of an agent, and
repair rules, which formulate reactions to failures and unexpected changes in the
environment. For solving the task allocation problem, a recursive algorithm is pre-
sented that allocates agents to tasks at each level in the plan hierarchy. Following
the locality and autonomy principles, each agent computes this allocation locally
for the plans it participates in. This approach requires a soundness property that
given ALICA programs must fulfil in order for the agents to compute compatible
allocations. Depending on the degree of coupling between the plans, two differ-
ent requirements are identified and discussed. Finally, we showed that the internal
state of each agent always forms a tree and satisfies necessary consistency axioms,
if the program is well-formed according to the previous chapter. This property can
be exploited by implementations in order to gain efficiency.

6 Conflict Detection and Resolution

Conflicts in teamwork manifest themselves in ALICA in conflicting task alloca-
tions. Each agent maintains a set of beliefs for each plan it participates in, which
represents the assignment of agents to tasks within that plan. As discussed in Sec-
tion 5.8, a conflict with respect to these assignments can be caused by different
belief bases in the team, the execution of unsound plans, or the execution of plans
which are not perfectly sound if idling is not allowed, i.e., perfectly complete allo-
cations are enforced.

In [158], we discussed a way to detect and resolve such conflicts without relying
on domain dependent information. This chapter is largely based on that work. Re-
call definitions 5.18 and 5.19, which describe a task allocation as a set of beliefs of
the form In(a, p,τ,z). Task allocations are calculated for plantypes or hierarchies
of plantypes by a task allocation algorithm. Afterwards, the corresponding beliefs
are updated by received messages. As ALICA agents periodically broadcast their
plan bases, locally computed task allocations are updated with parts of the result
of remotely calculated ones. Alternatively, such an update can stem from action
recognition, such that if the local agent is able to observe the actions of another, it
can reason about its state within the plan-tree [75]. We treat such recognition tasks
as communication by means of the environment.

6.1 Conflict Detection

As conflicts occur with respect to a plan or a plantype, in the following we will
refer to allocations for a specific plantype P, which are subsets of belief bases
limited to beliefs of the form In(a, p,τ,z), where p ∈ P. Furthermore, since states
are not important for the following conflict detection scheme, we introduce the

macro In(a, p,τ) de f
= (∃z) In(a, p,τ,z).

Definition 6.1 (Conflict). Two allocations C1 and C2 are in conflict, if and only if
they are for the same plantype P, and, for some agent a, it is not the case that C1 �
In(a, p,τ)↔C2 � In(a, p,τ). Two agents a1 and a2 are in conflict with respect to
plantype P if and only if they believe in conflicting allocations. We say In(a, p,τ)
is a cause of the conflict. Note that there can be multiple causes for a conflict.

H. Skubch, Modelling and Controlling of Behaviour for Autonomous Mobile Robots,
DOI 10.1007/978-3-658-00811-6_6, © Springer Fachmedien Wiesbaden 2013

114 6 Conflict Detection and Resolution

Proposition 14. If two agents a1 and a2 are in conflict with respect to plantype P,
caused by In(b, p,τ), then there is a conflict between one of them and agent b.

Proof. Suppose two agents a1 and a2 are in conflict about plantype P. Suppose
furthermore, w.l.o.g., agent a1 believes in a task allocation for P, which contains
In(b, p,τ,z) for some state z and this is the cause for the conflict. Then it holds for
the task allocation C2 for P, a2 believes in, that

• b is not allocated at all – (∀p′,τ ′,z′) In(b, p′,τ ′,z′) �∈C2, or

• b is assigned to another task τ ′ in p – (∃τ ′,z′) In(b,τ ′, p,z′) ∈C2∧τ �= τ ′, or

• b is assigned to another plan in P – (∃p′,τ ′,z′) In(b, p′,τ ′,z′)∧ p �= p′

Since b cannot be allocated to two tasks within the same plan or two plans within
the same plantype due to plan base consistency (Theorem 5.2), it cannot support
the belief In(b, p,τ,z) without being in conflict with a2. Since not supporting
In(b, p,τ,z) causes a conflict with a1, the claim holds. If b is either a1 or a2 the
claim holds as well.

This property guarantees that the agent, whose assignment is in dispute among
the team is in conflict with at least one agent and thus has a chance to detect it.

In order to devise a detection mechanism, we examine how allocations are mod-
ified over time. An agent’s allocation for a plantype P can change due to one of
the following events:

• Reallocation – the agent adopts a new allocation to improve the utility.

• Message – the agent receives a message informing it about the state of an-
other with respect to P.

• Leaving – the agent leaves the plan and thus no longer tracks its allocation.

• Deletion – the agent has not received a message from another agent for some
time. In this case the agent is removed from the team and thus from all task
allocations.

Deletion is done to account for agents breaking down and losing their ability to
communicate. We will not consider the deletion event further, as it can be seen as
a special case of the message event, namely as an empty plan base message. We
will also not consider agents leaving a plan, this event terminates the local agent’s
tracking of the plan and is visible to other agents by message events. These are
able to detect a conflict arising by an agent entering and leaving a plan repeatedly.

6.1 Conflict Detection 115

Persistent conflicts, i.e., those which endure for a longer period of time, cause
a temporal pattern to appear in allocations believed by the involved agents. We
therefore define formally how allocations change over time.

Definition 6.2 (Allocation Event). An allocation event e is a tuple (ϑ+,ϑ−),
consisting of allocation additions ϑ+ and allocation subtractions ϑ−, both
sets of ground atoms of the form In(a, p,τ), such that ϑ+ ∩ ϑ− = /0 and
(∃P)(∀p) In(a, p,τ) ∈ ϑ+ ∪ϑ− → p ∈ P, i.e., an allocation event contains only
additions and subtractions with respect to a single plantype P.

We use the binary functor ◦ to denote the composition of allocation events, i.e.,
e1 ◦ e2 = e3.

Definition 6.3 (Allocation Event Composition). Let e1 = (ϑ+
1 ,ϑ−

1) and e2 =
(ϑ+

2 ,ϑ−
2) be two task allocation events. Then their composition is defined as:

e1 ◦ e2
de f
=

(
(ϑ+

1 −ϑ−
2)∪ (ϑ+

2 −ϑ−
1),(ϑ−

1 −ϑ+
2)∪ (ϑ−

2 −ϑ+
1)

)
This composition allows reasoning about results of multiple events indepen-

dently of the allocations they apply to. Allocation events form an Abelian group
under event composition.

If an agent a receives a plan message from another agent b, this causes an al-
location event for every plantype agent a is executing. There are four cases to
distinguish:

• a agrees with b on its allocation, hence the allocation event is empty and can
be ignored.

• a does not believe that b participates in the plantype, but b does, this yields
the allocation event ({In(b, p,τ)}, /0) for some p and τ .

• a believes that b executes a different plan or task than b actually does, yield-
ing the event ({In(b, p,τ)},{In(b, p′τ ′)}) such that p �= p′ ∨ τ �= τ ′.

• a wrongly believes that b participates in the plantype, causing
(/0,{In(b, p,τ)}) for some p, τ .

By Proposition 14, these are the only cases we need to consider. If a now real-
locates and the composition of both events contains no statement about b, a cycle
occurred.

116 6 Conflict Detection and Resolution

Definition 6.4 (Allocation Cycle). Let em be a non-empty allocation event due to a
plan message sent by agent b to agent a, and let er be the next allocation event after
a receives the message. If em ◦ er = (A,B) such that (∀p,τ) In(b, p,τ) �∈ (A∪B), a
cycle occurred.

Hence, a cycle occurs, if an agent reverts its allocation with respect to a message
by reallocation. An agent can easily monitor its allocation events and thus detect
such cycles. Of course, a cycle does not necessarily entail a conflict, it might
well be that the cycle just reflects a very quickly changing situation. However, if
multiple cycles occur subsequently, this becomes more and more unlikely to be
a proper reaction to the changing conditions. The cycle length depends on the
frequency with which the agents communicate and deliberate. In robotic soccer,
suitable values could be 10Hz for the average communication frequency and 30Hz
for the deliberation loop. Thus, the duration of two subsequent cycles is in average
117ms. It is improbable that during this time frame the situation requires the team
to change its allocation back and forth twice. Thus, a limit n ≥ 2 on the number
of subsequent cycles can be established, above which an agent can assume with
reasonable confidence that a conflict occurred. A reasonable limit can be found
whenever both communication frequency and deliberation frequency are relatively
high compared to the dynamic of the environment, and sent messages are received
with a probability other than 0.

In the following we present an integration of cycle detection into the operational
semantics of pALICA. We write Δ(P,B1,B2) to indicate the allocation difference
between two belief bases B1 and B2 for a plantype P:

Δ(P,B1,B2)
de f
= ({In(a, p,τ) | p ∈ P∧ (∃z) In(a, p,τ,z) �∈ B1 ∧ In(a, p,τ,z) ∈ B2},

{In(a, p,τ) | p ∈ P∧ (∃z) In(a, p,τ,z) �∈ B2 ∧ In(a, p,τ,z) ∈ B1})

In order to detect cycles, agents must remember parts of the allocation history.
We assume the presence of two predicates in the belief base: Cycles(P, i), indi-
cating that i subsequent cycles occurred during the execution of plantype P, and
ADiff(P,d), which indicates that d is the currently remembered allocation differ-
ence for plantype P.

The necessary updates are formulated in the form of operational rules, extending
the original operational semantics defined in Section 5.13.

We write

t :
Conf(a) r−→ Conf(a)′

(B,ϒ,E,R)−→(B′,ϒ′,E ′,R′)

to indicate that if the rule r maps the configuration Conf(a) to Conf(a)′, the rule t
will map (B,ϒ,E,R) to (B′,ϒ′,E ′,R′).

6.1 Conflict Detection 117

Firstly, whenever an agent learns new information regarding the state of other
agents due to message reception or action recognition, the rule Sense incorporates
that information into the belief base. The rule Sensecd extends this update to update
history information represented by ADiff as well.

Sensecd :
(B,ϒ,E,R) Sense−−−→ (B′,ϒ′,E ′,R′)

(B,ϒ,E,R)−→((B′ −ϑ−)+ϑ+,ϒ′,E ′,R′)

where

• ϑ− = {ADiff(P,d) | (p,τ,z) ∈ ϒ∧ p ∈ P}

• ϑ+ = {ADiff(P,d ◦Δ(P,B,B′)) | ADiff(P,d) ∈ ϑ−}

Secondly, whenever an agent applies the rule Adapt to dynamically reallocate
agents within a plan, the allocation difference is updated as well. Furthermore,
should a non-empty reallocation yield an empty difference, a cycle is detected.
This is captured by the rule Adaptcd .

Adaptcd :
(B,ϒ,E,R) Adapt−−−→ (B′,ϒ′,E ′,R′)

(B,ϒ,E,R)−→((B′ −ϑ−)+ϑ+,ϒ′,E ′,R′)

where

• A− = {ADiff(P,d) | (p,τ,z) ∈ ϒ∧ p ∈ P}

• A+ = {ADiff(P,d ◦Δ(P,B,B′)) | ADiff(P,d) ∈ A−}

• B− = {Cycles(P, i) | Cycles(P, i) ∈ B∧ADiff(P,(γ+,γ−)) ∈ A− ∧
(γ+ �= /0∨ γ− �= /0)∧ADiff(P,(/0, /0)) ∈ A+}

• B+ = {Cycles(P, j) | Cycles(P, i) ∈ B− ∧ j = i+1}

• C− = {Cycles(P, i) | Cycles(P, i) ∈ B∧Cycles(P, i) �∈ B− ∧
Δ(P,B,B′) �= (/0, /0)}

• C+ = {Cycles(P,0) | Cycles(P, i) ∈C−}

• ϑ+ = A+∪B+∪C+

• ϑ− = A− ∪B− ∪C−

118 6 Conflict Detection and Resolution

That is, whenever a reallocation is performed, the corresponding allocation dif-
ferences are updated. Should an update yield an empty allocation difference, the
corresponding cycle count is increased. If a reallocation yields a non-empty dif-
ference, the cycle count is reset to 0, as in this case the sequence of cycles ended,
and the adaptation is probably due to the dynamics of the environment.

Finally, whenever an agent leaves a plantype, information about allocation dif-
ferences and cycles are reset. Thus, the next rule, Resetcd , resets the corresponding
information, whenever a rule r from the original set of rules, denoted by pALICA
stops the execution of the plantype.

Resetcd :
(B,ϒ,E,R) r∈pALICA−−−−−−→ (B′,ϒ′,E ′,R′)

(B,ϒ,E,R)−→((B′ −ϑ−)+ϑ+,ϒ′,E ′,R′)

where

• ϑ− = {Cycles(P, i),ADiff(P,d) | P ∈ P∨∧¬(∃p)(p,τ,z) ∈ ϒ′ ∧ p ∈ P}

• ϑ+ = {Cycles(P,0),ADiff(P,(/0, /0)) | P ∈ P∨∧¬(∃p)(p,τ,z) ∈ ϒ′ ∧ p ∈ P}

6.2 Conflict Resolution

Given the detection scheme discussed in the previous section, we can devise a re-
action to observed conflicts. Once an agent has detected n consecutive cycles, it
can assume the presence of a conflict. In order to overcome a conflict, we switch
the task allocation procedure for the plantype in conflict to a central coordina-
tor scheme. Such a local leader concept is similar to the team leaders used in
STEAM [163], however, here we only revert to a leader-based decision making
approach in case of conflicts, not as a default handling mechanism.

One of the simplest method to elect a leader is bullying [54]. Bullying requires
nodes to broadcast election messages if they deem themselves a leader. A total or-
der over the potential participants dictates which out of the active nodes becomes
leader. Therefore, whenever a node receives a message from a node with lower
precedence, it starts broadcasting, should it receive a message from a node with
higher precedence, it stops. Note that in case of unreliable, asynchronous commu-
nication, a node can never be sure to be the only one that considers itself a leader.
However, we can make the assumptions that messages are either correctly received
or not received at all, i.e., messages are not distorted by the communication chan-
nel, and that not all messages are lost. We deem these assumptions reasonable, as
one can use appropriate error detection codes to recognise and discard distorted

6.2 Conflict Resolution 119

messages. Based on these assumptions, a continuous bullying algorithm, in which
a node that deems itself leader never stops broadcasting, can guarantee that a single
node will eventually become the unique leader of the group in question.

In our case, the leader periodically broadcasts an allocation for a plantype. We
can therefore combine the election message with the actual content and thereby
reduce communication overhead. In the remainder, we refer to these combined
messages as authority messages. The resulting protocol allows an agent to imme-
diately react to a received authority message. Upon reception of such a message,
an agent has three options: Firstly, it starts to broadcast authority messages of its
own, if it has not received an authority message from an agent of higher precedence
with respect to the bullying order. Secondly, it adapts the contained allocation in
case the authority message has the highest precedence out of the messages it re-
ceived so far. Thirdly, it ignores the message, if it knows of a leader with higher
precedence.

When the team’s allocation is determined by a leader, it is less reactive than
in the normal, distributed decision-making state. This is due to the additional
messages which need to be sent by the leader and the fact that the leader has to
be informed of any situation change which it cannot observe itself. Therefore,
the team should revert back to its more dynamic mode as soon as possible. On
the other hand, if the team switches back too quickly, the source of the conflict,
such as an inconsistency in the belief bases, may still persist, and the conflict will
reoccur. Therefore, the time interval in which the team is in authoritative state with
respect to a plantype should be adapted dynamically.

A corresponding algorithm is depicted in Listing 6.1. Each agent maintains
for each plantype the mode of coordination, Mode(P), and a varying time inter-
val, AuthTime(P), indicating the time the team spends in authoritative mode. This
time varies between tmin and tmax, depending on how frequently conflicts are de-
tected. The precedence among agents can be chosen arbitrarily, but must be com-
mon knowledge within the team. Unique identifiers from a totally ordered set are
a typical choice for bully algorithms.

Incorporating this algorithm into the operational semantics is straight forward.
Firstly, additional beliefs are needed to reflect the state of each plantype with re-
spect to conflict resolution. Thus we assert the following predicates into the belief
base:

• Mode(P,x) – indicating that plantype P is currently executed in mode x.

• AuthTime(P, t) – indicating that the current authority time for plantype P is
t.

120 6 Conflict Detection and Resolution

foreach (plantype P in execution) do {
if (Mode(P) = normal) {

if (conflict detected or incoming authority message with lower precedence) {
Mode(P) := authority ;
tbegin := now;
AuthTime(P) := min(tmax,AuthTime(P) · t+);

}
if (incoming authority message with higher precedence)

Mode(P) := commanded;
else {

perform reallocation if needed;
AuthTime(P) := max(tmin,AuthTime(P) · t−);

}
}
else if (Mode(P) = authority) {

perform reallocation if needed;
broadcast authority message;
if (AuthTime(P) < tbegin) Mode(P)) := normal;
if (incoming authority message with higher precedence) Mode(P) := commanded;

}
else {

adopt allocation of last received message with highest precedence;
if (time since last authority message > ttimeout)

Mode(P) := normal;
}

}

Listing 6.1: Conflict Resolution Algorithm

Additionally, the following axioms are included in Σb:

(∀P ∈ PlanTypes+(z0))(∃x)Mode(P,x)

(∀P ∈ PlanTypes+(z0))(∃t)AuthTime(P, t)∧ t > 0

Mode(P,x)∧Mode(P,y)→ x = y

AuthTime(P, t)∧AuthTime(P,s)→ t = s

Mode(P,x)→ x = normal∨ x = commanded∨ x = authority

The first two predicates are functional in their second argument, and for each plan-
type there is exactly one positive occurrence of this predicate in the belief base.
Furthermore, the only modes allowed for execution are normal, commanded, and
authority, expressing that the respective plantype is executed normally, under the
authority of another agent, or as a leader, respectively.

6.2 Conflict Resolution 121

In the following we extend the set of rules discussed so far to include conflict
resolution. Most importantly, the rule Adapt is modified such that it only applies
to plantypes not currently executed in commanded mode. That is, dynamic reallo-
cation is only done in normal mode or by the leader in authoritative mode.

Adapt :
Mode(P,x)∧ x �= commanded ∧ (B,ϒ,E,R) Adapt−−−→ (B′,ϒ′,E ′,R′)

(B,ϒ,E,R)−→((B′ −AuthTime(P, t))+AuthTime(P, tn),ϒ′,E ′,R′)

where P is the plantype in which a reallocation is triggered and tn =
max(tmin, t · t−).

An agent assumes authority, whenever the number of subsequent cycles detected
reaches the set threshold n. In this case, the mode switches to authority, the author-
ity time is increased, and the number of cycles is reset. The rule Authcr captures
this behaviour.

Authcr :
(p,τ,z) ∈ ϒ∧ p ∈ P∧Mode(P,normal)∧AuthTime(P, t)∧φ

(B,ϒ,E,R)−→((B−ϑ−)+ϑ+,ϒ,E,R)

where

• φ = Cycles(P,x)∧ x ≥ n

• n is a fixed threshold, indicating that n subsequent cycles according to Defi-
nition 6.4 occurred.

• ϑ− = {Mode(P,normal),Cycles(P,x),AuthTime(P, t)}

• ϑ+ = {Mode(P,authority),Cycles(P,0),AuthTime(P,min(tmax, t · t+))}

The core of conflict resolution by authority is the rule Cmdcr, which reacts to
incoming authority messages. The event of such a message reception is denoted
by AuthMsg(a′,P,C), where a′ is the sending agent, P the plantype in question,
and C the task allocation a′ proposes. If the receiving agent considers the sending
agent of higher precedence (a < a′), and participates in P, it will assume the sent
allocation, and if it thereby enters a new state it will schedule a task allocation for
the newly entered state.

Cmdcr :
AuthMsg(a′,P,C)∧a < a′ ∧ In(a, p,τ,z)∧ p ∈ P

(B,ϒ,E,R)−→((B−ϑ−
b)+ϑ+

b +ϑ ′
b,(ϒ−ϑ−

p)∪ϑ+
p ,(E −ϑ−

e),R)

where

122 6 Conflict Detection and Resolution

• a indicates the local agent

• ϑ−
b = {Mode(P,x),Cycles(P,c)}∪{In(a′′, p′,τ ′,z′) | p′ ∈ P}

• ϑ+
b = {Mode(P,commanded),Cycles(P,0)}∪C

• ϑ ′
b =

{
{Alloc(z′)} if In(a, p′,τ ′,z′) ∈C∧ z �= z′

/0 otherwise

• ϑ−
p =

{
{(p,τ,z))}∪{(p′,τ ′′,z′′) | p′ ∈ Plans+(z)} if Alloc(z′) ∈ ϑ+

b

/0 otherwise

• ϑ+
p = {(p′,τ ′,z′) | In(a, p′,τ ′,z′) ∈C}

• ϑ−
e = {(b,zd) | (pd ,τd ,zd) ∈ ϑ−

p ∧b ∈ Behaviours(zd)}

If, on the other hand, the receiving agent considers itself of higher precedence,
it will in turn switch to authority mode and start to broadcast task allocations,
according to the bully protocol:

TakeAuthcr :
AuthMsg(a′,P,C)∧a > a′ ∧ In(a, p,τ,z)∧ p ∈ P∧Mode(P,normal)

(B,ϒ,E,R)−→((B−ϑ−
b)+Mode(P,authority),ϒ,E,R)

where ϑ−
b = Mode(P,normal).

When the time threshold for authority is reached, the leader will drop back to
normal mode, and stop broadcasting. Although not required, it can notify the team
of this mode switch by an additional message, which can speed up mode switch
for the rest of the team. Otherwise, commanded agents will register the lack of
authority messages and switch back after a timeout has been reached, due to rule
DropCmdcr. This timeout is essential, since the leading agent can break down at
any time, leaving the team without a leader.

DropAuthcr :
Mode(P,authority)∧AuthTime(P, t)∧φ(P, t)

(B,ϒ,E,R)−→((B−ϑ−
b)+Mode(P,normal),ϒ,E,R)

where ϑ−
b = Mode(P,authority) and φ(P, t) holds if the time since the mode for P

was switched to authority is larger than t.

DropCmdcr :
Mode(P,commanded)∧φ ′(P, ttimeout)

(B,ϒ,E,R)−→((B−ϑ−
b)+Mode(P,normal),ϒ,E,R)

6.2 Conflict Resolution 123

where ϑ−
b = Mode(P,commanded) and φ ′(P, ttimeout) holds if the time since the

last authority message received is larger than ttimeout. The constant ttimeout is a
parameter that depends on the communication frequency, and the expected packet
loss.

Finally, the information represented by Mode(P,x) needs to be reset whenever
the local agent leaves a plantype. This is modelled by the rule Resetcr.

Resetcr :
(B,ϒ,E,R) r∈pALICA−−−−−−→ (B′,ϒ′,E ′,R′)

(B,ϒ,E,R)−→((B′ −ϑ−)+ϑ+,ϒ′,E ′,R′)

where

• ϑ− = {Mode(P,x) | (p,τ,z) ∈ ϒ∧ p ∈ P∧¬(p′ ∈ P∧ (p′,τ ′,z′) ∈ ϒ′)}

• ϑ+ = {Mode(P,normal) | Mode(P,x) ∈ ϑ−}

This set of rules enables a team to react to conflicts dynamically and adaptive
by creating a leader responsible for the task allocation for a single node, i.e., plan-
type within the plan-tree. Most notably, the leader is only elected with respect
to a specific node in the plan-tree, thus operation of the rest of the tree is unaf-
fected by conflict resolution and continues in the normal dynamic way. Of course,
other schemes of agreement are possible, for instance using a majority vote. Such
schemes can be integrated into ALICA in a similar fashion.

It is easy to see that this conflict detection and resolution scheme maintains the
properties discussed in Section 5.14.

Proposition 15. The rule extension maintains consistency with the plan base ax-
ioms Σp and maintains the tree shape of the plan base.

Proof. The only new rule that modifies the plan base is Cmdcr. It adapts a valid
allocation, since only valid allocations are sent by the leader. In cases where the
leader cannot find a valid allocation, it would abort the corresponding plan. Cmdcr
removes the current sub-branch from the plan base in case the local agent is re-
allocated by the leader, in which case it adds at most one tuple to the plan base
and triggers a recursive allocation in the newly entered state. This tuple refers to
a plan in the plantype P. Since any tuple referring to a plan in the plantype P was
removed, the claim holds.

Proposition 16. The rule extension does not leave any orphaned behaviours.

Proof. None of the newly introduced rules adds a behaviour to the execution set.
The only rule that modifies the plan base is Cmdcr, which removes all tuples (b,z)

124 6 Conflict Detection and Resolution

from the execution set if it removes the corresponding triple (p,τ,z) from the plan
base.

Proposition 17. The rule extension maintains Proposition 10.

Proof. The only rule that modifies the plan base or beliefs of the form In(a, p,τ,z)
is Cmdcr, which updates both in the same way.

We will present an empirical evaluation of this conflict resolution technique
in Section 10.2. Note that it is not possible to solve all conflicts in this way. Con-
flicts resulting from unsound plans or not perfectly sound plans executed without
allowing for agents to idle cannot be resolved in this way. A resolution to such
issues by authority requires the leading agent to consider sub-plans it does not
take part in. This could be achieved by switching to a global task allocation when-
ever a leader is elected. In this case, the leader would calculate the recursive task
allocation for all participating agents with the conflicting plantype as root node.
However, as mentioned earlier in Section 5.9, the leader might not have sufficient
information to do that. Alternatively, the leader is informed by team members of
conflicts resulting from requirements in lower-level plans. Agents could broad-
cast information indicating that they find themselves unable to perform the task
required, whenever it cannot comply with an authority message. Subsequently, the
leader can take that information into account. However, since potentially multi-
ple of such messages need to be exchanged in order to find a suitable allocation,
such an approach might result in an outdated allocation due to the dynamic envi-
ronment. We consider investigating such techniques as future work. Ideally, this
kind of conflict is avoided entirely, since conflict resolution always degrades per-
formance to a certain degree. Instead, the soundness of plans should be verified
in a pre-runtime validation step or be guaranteed by the generating process, e.g.,
by the employed planning algorithm. Table 6.1 summarises the beliefs and rules
introduced in this chapter in order to express conflict detection using allocation
cycles and conflict resolution by means of a local leader.

6.2 Conflict Resolution 125

Beliefs
ADiff(P,d) ADiff(P,d) identifies for each plantype P the current alloca-

tion difference. If the difference becomes empty due to an
application of the rule Adapt, a cycle occurred.

Cycles(P, i) Cycles(P, i) denotes how many subsequent allocation cycles
were detected while executing of plantype P.

Mode(P,x) x is the mode in which plantype P is executed. The mode can
be either normal, authority, or commanded.

AuthTime(P, t) This predicate reflects for each plantype P the dynamically
adaptable duration of a conflict resolution.

Rules
Sensecd This rule modifies the rule Sense such that allocation differ-

ences are recorded in the belief base.
Adaptcd Adaptcd modifies the rule Adapt to update allocation differ-

ences and cycle count.
Resetcd Resetcd resets information kept about plantypes no longer in

execution.
Adapt The original rule Adapt is modified such that commanded

agents do not modify their allocation autonomously.
Authcr Authcr switches an agent to authority mode whenever it de-

tects a sufficient amount of subsequent cycles.
Cmdcr Cmdcr enforces authority by switching the local agent to com-

manded mode whenever an authoritative message from an
agent with higher precedence arrives. In this case, the con-
tained allocation is enforced.

TakeAuthcr TakeAuthcr implements the bully rule, that is whenever an au-
thoritative message from an agent with lower precedence is
received, the agent switches to authority mode.

DropAuthcr DropAuthcr forces a leading agent to drop back to normal
mode once the duration indicated by AuthTime is reached.

DropCmdcr DropCmdcr expresses that an agent returns to normal opera-
tion from commanded operation after no authority message
was received for a certain time.

Resetcr Resetcr resets the mode of a plantype the agent stops execut-
ing, regardless of the reason.

Table 6.1: Beliefs and Rules Used to Express Conflict Detection and Resolution

7 Software Architecture

Although software architecture considerations are not at the heart of this work, the
complexity of multi-agent coordination and the diversity of possible approaches
warrants a discussion. The ALICA reference implementation serves as a basis
for this discussion. This reference implementation is publicly available1 under a
BSD-based license.

An ALICA engine is a software module, that executes an ALICA program. It
maintains a consistent state of the plan base, as well as all beliefs related to it and
discussed here, triggers behaviours, and communicates with other agents running
ALICA engines. In order to do that, the ALICA program needs to be available in
some machine readable form. This form is provided by a modelling tool chain,
which we will discuss in Section 7.1. Afterwards, we discuss the internal layout of
the reference ALICA engine in Section 7.2. In Section 7.3, we discuss a possible
model for the overall architecture, in which ALICA can be embedded.

7.1 Modelling Tools and Exchange Format

The ALICA reference implementation features a graphical development environ-
ment, called the ALICA PlanDesigner, which allows the creation of all ALICA
language elements. The original implementation was developed by Scharf [144]
in 2008 and was since then continuously advanced.

The practical representation of ALICA is an XML-based language, which can
be used as interchange format between modelling tools, execution engines, and
model checkers. This representation is a domain-specific language (DSL), imple-
mented with the Eclipse Modelling Framework (EMF) [161]. The EMF model,
specified in UML [116], gives rise to the XMI [76] serialisation used as inter-
change format between editor and engine.

The PlanDesigner is a graphical tool based on the Eclipse Development Plat-
form [7]. It supports modelling of all parts of an ALICA program, i.e., roles,
tasks, plans, plantypes, utility functions, and conditions, as well as to generate
code from the models in a model-driven development fashion. As described be-
fore, modelled plans are stored in the XMI format and loaded afterwards by the
1 http://ros.org/wiki/cn-alica-ros-pkg

H. Skubch, Modelling and Controlling of Behaviour for Autonomous Mobile Robots,
DOI 10.1007/978-3-658-00811-6_7, © Springer Fachmedien Wiesbaden 2013

128 7 Software Architecture

runtime engine. However, for efficiency reasons, the tool provides mechanisms
for generating platform-specific code for the evaluation of conditions and utilities.
Since these evaluations happen very frequently during runtime, the generation of
platform-specific code, which can be executed directly, results in enormous effi-
ciency benefits. In order to facilitate an intuitive understanding, language elements
are represented graphically.

7.2 Engine Layout

The ALICA reference engine is implemented in C#, and runs under mono.1 C# is a
strongly-typed, imperative, object-oriented language. C# programs are commonly
compiled just-in-time2 and use a garbage collector.3 C# lends itself to reference
implementations, since the imperative object-oriented programming paradigm is
widely used and known [15]. Further, C# is easier to read and understand than
C++ [174], while still retaining efficiency [56]. Finally, it contains additional fea-
tures not present in older languages like Java, such as delegates, limited operator
overloading, generics over value types, lambda expressions, and properties (see
also [24]).

The reference engine is meant to be integrated into a domain-specific frame-
work, which comprises of other components such as a belief representation frame-
work, a communication middleware, sensor and actuator drivers. As such, it is
built as a library providing an extensive API.

Figure 7.1 depicts a very general layout of the reference implementation. It
comprises of five central components and a set of additional modules.

Engine Interface The Engine Interface provides all necessary functionality to
start the engine, access different components, and configure its runtime be-
haviour.

PlanBase Central to the execution of an ALICA program is the PlanBase. It
contains the runtime representation of the program, i.e., the current state
of the agent within the plan structure. In its main loop, it takes care that
all relevant components and modules have subsequent access to the plan
structure.

1 www.mono-project.com
2 See for instance the work by Aycock [4] and Arnold et al. [3] for an overview on just-in-time

compilation and other techniques.
3 Garbage Collectors are discussed in-depth in [79].

7.2 Engine Layout 129

Engine Interface PlanBase BehaviourPool

RuleBook

TaskAllocation

Parser SynchModule TeamObserver

Logging RoleAssignment ConflictHandling

Figure 7.1: The ALICA Engine Reference Architecture

RuleBook The RuleBook contains the operational rules of ALICAĊalled period-
ically by the PlanBase, it updates the plan-structure according to the rules.

TaskAllocation The TaskAllocation contains the algorithms discussed in Sec-
tion 5.8. If needed, the RuleBook uses these task allocation algorithms to
update the plan structure.

BehaviourPool This component manages the set of behaviours available to the
agent. It calls behaviours currently in the execution set periodically or event
driven, depending on the specification of the behaviour. It also supplies
behaviours with all necessary parameters.

Apart from these essential components, the engine manages an extensible set of
important, but replaceable modules.

Parser This module builds the internal representation of the ALICA program
given the XML-documents and libraries built by the modelling tools dis-

130 7 Software Architecture

cussed in Section 7.1. Although this an essential task, other means of con-
structing a program in memory are possible.

SynchModul Synchronised transitions according to the rule definition in Sec-
tion 5.13 require some additional communication to establish mutual belief.
This is done by the SynchModul.

TeamObserver The TeamObserver handles all periodic communication with
team members, holds the internal representation of their current state within
the program and makes estimations based on received messages.

RoleAssignment The RoleAssignment allocates roles to agents according to the
allocation algorithm discussed in Section 5.6.

ConflictHandling The ConflictHandling module detects and resolves conflicts in
task allocation according to Chapter 6.

Logging The logging module provides a simple facility to log rule applications
to a file.

7.3 Agent Software Architecture

In this section, we propose agent architecture based on the agent model discussed
in Section 5.2. The proposed architecture is largely based on deliberations by Baer
[5] and the domain-specific architecture CANOSA described in his work and
in [1].

Figure 7.2 shows the layout of the proposed architecture. Information stemming
from sensors are processed by a single or potentially multiple external Perception
components. These perform various tasks, such as image processing or sensor
fusion. Abstract information is sent to the WorldModel. The WorldModel is a
process-internal representation of the agent’s belief state. Although in some sce-
narios it is unnecessary to maintain an internal representation of the world, in most
real-world scenarios, the environment as well as the tasks that need to be per-
formed in it become complex. Thus, an internal representation of the beliefs is
more than helpful. We do not impose any restrictions as to how beliefs are rep-
resented and indeed, the ALICA engine does not access the WorldModel directly.
Hence, any representation suitable to the domain can be used, be it BDI-based be-
lief models according to Bratman [12], knowledge representation models such as
employed by FLUX [168], ontology-based models (c.f. [25, 41]), or just plain data
structures holding the most recent sensory information.

7.3 Agent Software Architecture 131

Sensors

Actuators

Perception

Control

Main Process

WorldModel
Shared
WorldModel

Expressions

AlicaEngine

Behaviours

Inter Agent

Communication

Monitoring &
Command UI

Figure 7.2: Agent Architecture

The WorldModel can be extended with a SharedWorldModel, which integrates
information coming from other agents. The task of the SharedWorldModel is two-
fold, firstly it estimates the knowledge and belief of other agents, secondly it fuses
information received with local information in order to obtain a unified, consistent
view on the world. Reichle [131] discussed this topic in detail.

As mentioned, the AlicaEngine does not access information in the WorldModel
directly, but relies on two domain-specific components, namely the Expressions
and the Behaviours. The Expressions component holds the implementations of all
formulae and utility functions used in plans. As discussed in Section 7.1, these
are not part of the XMI-based representation of the ALICA program, but are sep-
arate code fragments, since this potentially increases efficiency while maintaining
a loose coupling between engine and belief representation. Beliefs regarding the
internal state of agents, such as In(a, p,τ,z) and Succeeded(a, p,τ) are managed
internally by the AlicaEngine, which provides suitable interfaces to access these
beliefs.

The Behaviours component contains all domain-specific behaviours used in the
ALICA program. These are controlled by the BehaviourPool within the engine. In
turn, each behaviour communicates with actuation controllers, situated externally
in the Control component. These controllers then communicate with the robotic
hardware or software actuators.

132 7 Software Architecture

This strict division between main process, and additional sensor or actuator-
related components enables an easy exchange of the latter. Especially in robotics,
where simulation environments are an integral part of the development process,
exchangeability is very important.

7.4 Implementation Details

Internally, the plan base is represented as a tree, which is traversed by the Rule-
Book in order to apply rules. Each triple within the plan base corresponds to
a node in this tree, which holds various additional data structures, ranging from
timestamps to authority information. In this way, all information necessary for
rule application is available locally.

All language elements are identified by unique 64-bit identifiers and stored in
hash maps, such that agents only need to communicate these identifiers in order to
refer to plans, tasks, or states. Thus serialisation and deserialisation overhead are
kept at a minimum.

Each behaviour is identified with a thread, that is constantly in stand-by until
the behaviour is executed, reducing start-up time for individual behaviours signif-
icantly. All threads within the engine are able to run asynchronously to each other
in regular intervals, or react on signals, which are exposed via the EngineInterface.
Thereby, the engine’s runtime behaviour can easily be adopted to accommodate
for the specific needs of a domain. For example, a behaviour setting a success sig-
nal (Success(b,z)) immediately wakes the PlanBase thread, which in turn applies
all applicable rules in sequence, which can lead to another behaviour becoming
active. This eliminates latency due to asynchronously running threads.

7.5 Communication

Each agent communicates with the team via some inter-agent communication
method, commonly based on a middleware. The ALICA reference implementation
is based on ROS (Robot Operating System) by Quigley et al. [127], which among
many other features provides communication mechanisms based on a publish-
subscribe model. However, since ROS uses a master process to establish and man-
age communication channels, it is currently by itself not usable in a multi-robot
scenario, since this master becomes a single point of failure. In order to overcome
this problem, proxies to other middleware systems such as the Data Distribution
Service (DDS) [65] can be used. In the robotic soccer domain, we use a simple
UDP multicast proxy due to efficiency reasons.

7.5 Communication 133

7.5.1 Information Exchange

Information exchanged between pALICA agents can be divided into two cate-
gories: domain-specific information regarding the environment and ALICA inter-
nal messages. The domain-specific messages typically reflect the sender’s belief
base or parts of it. This part of the communication is not governed by ALICA
and is assumed to take place through some potentially unreliable communication
channel.

pALICA defines the following communication means:

• A status broadcast, containing an agent’s plan base, together with relevant
success information,

• A handshake-protocol to establish mutual belief for synchronised transi-
tions.

• Allocation authority messages, containing allocations for specific plans for
conflict resolution according to Chapter 6

Although ALICA is meant to be a domain-independent language for multi-agent
systems, it has a certain emphasis on mobile robotic domains, where communica-
tion is typically realised wireless. Thus, communication uses an unreliable broad-
cast medium, which lends itself well to broadcast messages as employed by AL-
ICA. We assume the cost of a broadcast is equivalent to the cost of a peer-to-peer
message.

The status broadcast is sent periodically with a dynamically chosen frequency of
either fmax or fmin, depending on whether the internal state has changed recently or
not. The status message contains the internal state of the agent, i.e., its plan base,
and the task-plan tuples it successfully completed and still believes to be relevant
according to Definition 5.6. Failures are not explicitly sent as these are apparent
due to the agent no longer executing the corresponding plan. Success information
however must be made explicit, in order to distinguish the two cases. If in agent
is notified of a failure in this way, it can either try to compensate for the missing
agent, or abort execution of the respective plan itself.

The size of these status messages depends on whether or not states are reachable
from different initial states, i.e., whether or not the state machines contained in
plans are connected or disjoint. In case they are disjoint, a state unambiguously
identifies the corresponding task. This potentially halves the message size. The
reference implementation therefore assumes disjoint state machines.

In practice, it is not always ideal to accept an incoming plan base message, due
to message delay. For instance, after an agent performed a dynamic reallocation

134 7 Software Architecture

it can expect that messages arriving just afterwards will contradict it, as they were
sent before the corresponding event in the environment was detect. Therefore, it
is sensible to ignore such contradictions for a short, delay depending time interval
after (re-)allocations.

The synchronisation protocol is implemented as a three-way handshake. Each
participating agent announces its readiness to synchronise if it inhabits a state z
such that a transition t = (z,z′,φ) is an element of a synchronisation s and if it
believes φ to hold. Each participating agent acknowledges the announcement,
and broadcasts a readiness signal once it received an acknowledgement of all an-
nouncements from every participating agents. In that moment it starts to support
the mutual belief and is able to follow the synchronised transition according to
the rule STrans. Should an agent receive a readiness signal while believing its
respective condition φ holds, it immediately supports the mutual belief. Should
contradictory information arise during the establishment of the belief, the corre-
sponding agent informs the group to retract its commitment.

Establishing mutual belief in a synchronised manner through communication
comes down to solving the coordinated attack problem [62, 58], which is known to
have no finite solution, given asynchronous, unreliable communication. Therefore,
any protocol for synchronised transitions can only be approximately correct. We
deem a three-way handshake acceptable under most conditions, however, it is easy
to extend this basic protocol to an n-way handshake.

Allocation authority messages are broadcast periodically by an agent which
deems itself the leader with respect to a certain plantype according to the detection
and resolution scheme discussed in Chapter 6. Each message identifies the sender,
such that bullying can take place. Furthermore, each message contains the full al-
location for the plantype in question. Should the leader stop to send its messages,
the conflict is deemed to have been resolved and the team drops back its normal
mode of operation. Thereby, the potential break down of a leader is handled as
well.

7.5.2 Estimating the Current Team

For a team to function in a coherent manner, it is of crucial importance to estimate
the set of agents participating in the team, i.e., the current team composition. While
ALICA assumes that the whole team of agents, A, is known in advance, this does
not mean that all agents potentially participating are actually available. Moreover,
agents may be incapacitated anytime. Thus, each agent needs to keep track of the
active team, which is defined to be the set of agents participating in the top-level
plan, {a | B � In(a, p0,τ0,z0)}.

7.5 Communication 135

When agent a receives a message from agent b, it can conclude that agent b
was active when it sent the message. Assuming all robots are within communi-
cation range to each other, it can also make estimations based on the number of
expected, but not received messages. Since ALICA agents periodically broadcast
messages with a frequency of fmin or fmax, the number of missing messages ranges
between t · fmin and t · fmax where t is the time since the last message reception,
assuming communication jitter is negligible. If the difference between fmin and
fmax is relatively small, an agent can estimate the number of expected messages as
ñ = 0.5t(fmin + fmax).

The more messages from a specific agent are expected, but not received, the
lower the probability that this is due to messages being lost. Given the probability
of a message sent being delivered, pm, the probability that the missing messages
are due to communication errors can be roughly estimated by

ploss = (1− pm)
ñ

However, this is a very crude approximation. Network errors typically appear in
bursts, thus the probabilities for each message are not independent of each other.
Messages sent consecutively by an agent are likely subject to the same error burst.
Moreover, messages sent by different agents at the same time are also likely subject
to the error.

There has been extensive research on the modelling of burst errors and their
probability distribution. A widely used description is the Neyman-A contagious
model [109], which was originally used to describe the distribution of larvae in ex-
perimental field tests. Using this model, the length of burst errors can be described
with a Poisson-distribution (cf. [44]). Thus, we can model the probability of the
loss of ñ subsequent messages as the probability of a burst error of length k ≥ ñ:

p(k ≥ ñ) = 1− e−λ
ñ−1

∑
i=0

λ i

i!
(7.1)

Assuming an a priori probability estimation for a robot breaking down, pdown(a),
is available, each agent can estimate the active team by:

{a | B � In(a, p0,τ0,z0)}= {a | pdown(a)< p(k ≥ ñ(a))} (7.2)

where ñ(a) is the number of consecutive messages expected but not received from
agent a. Equation 7.2, together with ΣB dictates that an agent removes all believes
of the form In(a, p,τ,z) from its belief base if it estimates pdown(a)≥ p(k ≥ ñ(a)).
Thus, if for example pdown(a) = 10−3, fmax = 15, fmin = 5, and λ = 10 an agent

136 7 Software Architecture

will assume that another agent a broke down after 22 consecutive messages miss-
ing, i.e., after 2.2s of not receiving any message from a. In the robotic soccer
domain for instance, these values are a reasonable assumption.

Note that this estimation does not model any dependencies between messages
received from different agents. Moreover, when agents are expected to move in
and out of communication range for extended periods of time, this simple approx-
imation will no longer suffice. Furthermore, there may be additional evidence
available besides the reception of messages or lack thereof. An agent might be
able to sense another agent’s effect on the environment and use that information
to draw conclusions about its internal state. See for instance Huber and Durfee
[75] for a discussion on how joint intentions can be achieved without communi-
cation. Here, we assume all information perceived regarding the state of another
agent can be expressed in terms of communication, be it explicit (through for in-
stance a wireless communication link), or implicit through action effects on the
environment.

In mobile robotic scenarios, where robots can move out of communication
range, the probability of receiving a message is a function of their positions in
the environment.

pm(Δt) =
∫ t0+Δt

t0
f (pos(a, t), pos(b, t))dt

where t0 denotes the time of the last message reception, pos(a, t) and pos(b, t)
the positions of the sender and receiver at time t respectively and pm(Δt) a prob-
ability distribution of a message being successfully delivered during Δt given the
positions of sender and receiver within the environment. The probability distri-
bution can be arbitrarily complex if the environment features objects which reflect
radio signals or sources of interference. Accurate approximations of such probabil-
ity distributions can be obtained using ray tracing and other simulation techniques
but are computationally expensive to obtain in complex environments (see for in-
stance [114, 145]). Such elaborate models are usually not suitable for real-time
capable probability estimations. Instead, faster methods are sought after, which
sacrifice accuracy for speed. These usually only take line-of-sight and distance
into account, estimate the probability based on the signal-to-noise ratio [148], or
use test packages to measure the link quality [87]. For the purpose of this work,
we limit ourself to the simple estimation in Equation 7.1.

7.6 Summary 137

7.6 Summary

In this chapter, we described the ALICA engine architecture, which follows the
theoretical foundations described in the previous chapter. Moreover, a modelling
tool and an exchange format for ALICA programs were described. While the AL-
ICA engine can be embedded in any agent architecture, we discussed necessary
features on the basis of a general architecture. Finally, we presented communica-
tion metaphors used by the reference implementation and a way to estimate the
liveliness of team members based on the number of expected messages. The ref-
erence implementation is publicly available as open source.

Part III

General ALICA

8 Generalising ALICA

8.1 Introduction

Propositional ALICA offers a variety of modelling options to tackle multi-agent
scenarios. However, the fact that it is limited to propositional semantics can cause
an explosion of specific language elements, most strikingly, behaviours. In pAL-
ICA, every behaviour is static. Thus, each behaviour essentially performs the same
action, regardless in what situation it is called. While this limitation is somewhat
lifted by the fact that behaviours are black boxes, and thus can be Turing complete
programs interacting with the belief base, this is not represented within ALICA and
therefore cannot be coordinated or reasoned about by means internal to ALICA.
We therefore aim for a more elaborate modelling technique, where behaviours,
and thus plans as well, are parametrised, such that they can be adapted to different
situations. Thereby a generic behaviour DriveTo(x) can express what would oth-
erwise be expressed by multiple behaviours such as DriveToKitchen, DriveToFloor,
DriveToDoor, and so on.

Should parameters with potentially infinite domains be required, the corre-
sponding program is no longer expressible in pALICA. In the following, we will
discuss the problem of pure propositional programs in the context of some exam-
ple domains. Afterwards, we will develop a generalised version of ALICA, where
plans and behaviours are parametrisable, and where reasoning in parameter spaces
only bounded by memory is allowed.

8.1.1 Standard Situations

Let us consider a problem range from the RoboCup scenario. In robotic soccer,
an ongoing game is often stopped due to rule violations, e.g., when the ball rolls
outside of the field, or when a robot fouls another. Such a rule violation is followed
by a “standard situation”. In these situations, the referee positions the ball on the
field, names one of the participating teams the attacker and issues a command to
the robots to position themselves. After giving the robots some time to react and
complete the positioning, the referee will start the game again. When the game
is started, the attacking team is required to play a pass, after which the defending

H. Skubch, Modelling and Controlling of Behaviour for Autonomous Mobile Robots,
DOI 10.1007/978-3-658-00811-6_8, © Springer Fachmedien Wiesbaden 2013

142 8 Generalising ALICA

FreeKick

Executor

1..1

Receiver
1..1

Defend
0..∞

Z0

FKPosExecutor

Z1

FKPosReceiver

Z2

FKPosDefend

Figure 8.1: Example Standard Situation Plan in pALICA

team is allowed to intervene. The positioning phase of a standard situation is
governed by various rules. For instance, no defending robot is allowed to be closer
to the ball than a certain distance, e.g., 3m. As standard situations occur quite
often, a team with good positionings has a distinct advantage over one that has
not. Hence, teams invest a lot of time and work into their implementations for
standard situations. It is even common for a team to have specific positionings for
specific opponents or environmental conditions such as inhomogeneous lighting.
Given the number of different standard situations (throw-in, free kick, goal kick,
etc.), and opponents, a plethora of different strategies are possible, very similar to
actual soccer.

Figure 8.1 sketches the positioning phase of such a strategy implemented in
pALICA. There is very little information about the actual strategy contained in this
plan, it only requires one robot to act as the executor, passing the ball, one robot
acting as receiver of the pass and assigns the rest of the robots to the defending
task. Different strategies for the same situation would look very similar, as the
actual strategy for positioning is contained in the three behaviours. While it is very
easy to use and maintain several strategies for the same problem using pALICA by
employing plantypes, conditions and utilities, it is impossible to express solutions
to the positioning problem concisely without using several unique behaviours per

8.1 Introduction 143

strategy. This is the propositional explosion we mentioned at the beginning of this
chapter. The resulting vast number of necessary behaviours can become difficult
to handle and maintain during development. This is avoided by general ALICA.

We omit detailing possible implementations for the three behaviours in Fig-
ure 8.1, but extract three properties which they have in common.

Common execution: all behaviours involved are used to reach a certain, albeit
different, position on the field. Given the destination, they use the same al-
gorithms and parameters to determine motor commands (e.g., path planning
and velocity controllers).

Complex decision procedure: As the destination varies over each behaviour,
so does the implementation that calculates it. The resulting algorithm can
become fairly complex and is susceptible to implementation errors.

Interaction: The behaviours interact with each other in that the positions depend
on each other. For instance, the executor, ball, and receiver form a line,
along which the pass is played later on.

We deem these properties to be general, that is, they occur in other scenarios as
well, where a number of agents need to coordinate first-order entities (in this case,
their positions) dynamically and with respect to the environment.

From the perspective of planning and machine learning approaches, the struc-
ture depicted in Figure 8.1 is also less than ideal. Both planning and learning are
typical solved by searching a hypotheses space, e.g., the space of all programs (for
instance in [96]) or task-graphs (as in [106]) for a solution to their input problem.
One of the main characteristics of the search space are the behaviours in question.
For the positioning problems, the search space is reduced to the possible combina-
tions of available behaviours, which features little structure, and little information
usable to guide a search.

In contrast, a first-order approach can drastically reduce the amount of be-
haviours needed. In the particular case of the positioning problem, only a single
behaviour would be needed, which corresponds to the common execution algo-
rithms mentioned above. Furthermore, as a first-order approach removes the need
for complex black boxes, it allows planning and learning algorithms to search
within a far richer representation of possible solutions to the problem in question.

One machine learning research area able to deal with this kind of search space
is Inductive Logic Programming (ILP). An in-depth introduction into ILP is given
by Nienhuys-Cheng and Wolf [111]. First order planning is tackled in various
ways, such as by Regression Planning within the Situation Calculus [134], or the

144 8 Generalising ALICA

SolveBlocksWorld

Robot

1..1

Z0

Pickup_A

Z1

Put_A_Table

Z2

Pickup_B

Z3

Put_B_A

. . .

Figure 8.2: A STRIPS Action Sequence in pALICA

Relational Bellman Algorithm by Kersting et al. [84]. In the following, we re-
fer to any algorithm that generates plans by planning, learning, or otherwise as a
generative algorithm.

8.1.2 Blocks World

As another motivating example, consider the blocks world, a prominent AI toy
problem, which was originally described by Winograd [179]. In the blocks world,
an agent or robot is tasked with building predefined structures out of geometric
primitives. Nilsson [113] introduced an elementary version, which limits the ge-
ometric primitives to cubical blocks and a large table, holding all blocks. Each
block is said to be on a single other object, either the table itself, or another block.
Further, each block is either clear, or there is a single other block on it. The robot
is able to pick up a clear block if it does not carry block, and put a block it carries
on the table or on another clear block. This elementary blocks world is maybe
the most well-known example for STRIPS planning.1 This even led to some real-
world experiments, such as the one by Toussaint et al. [169]. In the following, we
refer to this elementary blocks world simply as blocks world.

The solution to a blocks world problem is a sequence of actions of the form
Pickup(A),Put(A,Table),Pickup(B),Put(B,A), As STRIPS plans are propo-
sitional, these actions are actually pretty-printed constants, which poses no theo-
retical problems, since the number of blocks is finite. Representing such a plan
as a pALICA program is straight-forward, each action would correspond to a be-
haviour within a state, and the states are connected by transitions reacting on the
successful completion of the corresponding action (see Figure 8.2).

1 Listing articles, books, and lectures that use the blocks world domain in conjunction with a
STRIPS planner would go far beyond the scope of this thesis. At the time of writing, a google
search for “strips blocks world” returned over 3.2·107 results.

8.2 Behaviour Parameters and Plan Variables 145

However, targeting the problem in such a way would potentially require n2 +n
behaviours in a blocks world with n blocks. Generating this amount of behaviours
seems very inefficient, especially since most behaviours would do almost the same,
namely either picking up a block or putting one on something else. Thus, the
problem of executing a blocks world plan features the same common execution
property as the standard situation scenario, however there is no interaction, as only
one robot executes the plan and there are no further decisions to be made, as a
static and deterministic plan is provided.

In the following, we will introduce a generalised version of ALICA based on
pALICA as introduced in Part II. We will show that the general version is strictly
more expressive while retaining its ability to dynamically adapt to changing situa-
tions.

8.2 Behaviour Parameters and Plan Variables

The fact that multiple behaviours share the same execution pattern can be tackled
by introducing parameterised behaviours similar to first-order actions in languages
such as IndiGolog [57] or FLUX [167].

Definition 8.1. Each behaviour b has a potentially empty list of variables �x, its
parameters. We write b(�x) to indicate behaviour b with its parameters�x.

By allowing behaviours to feature parameters, the problem of common execu-
tion patterns can be dealt with. Each occurrence of a behaviour in the program can
thereby have a different set of parameters. This allows the blocks world plan to
be described using only two behaviours, Pickup(x) and Put(x,y). However, even
though infinitely many different behaviour instances1 can now be expressed using
a finite amount of behaviours, and thereby a finite amount of code, this is not suf-
ficient to deal with parameters whose values are unknown or only partially known
before runtime. This is the case in the standard situation scenario above.

Consider the following simple example: A robot is tasked with finding a book
in an office, and identifying it by moving towards it. Before runtime, the specific
book the robot will find is unknown, as there are various different books in the
office. The concrete book the robot should move towards only becomes apparent
after the robot has searched for some time and the corresponding beliefs are in-
serted into its belief base. Figure 8.3 shows how a corresponding plan could look
like. The robot executes the behaviour LookAround until a book is represented

1 or, more precisely, up to a memory-bounded number of instances.

146 8 Generalising ALICA

FindBook

Robot

1..1

Z0

LookAround

Z1

Goto(x)

Book(x)

Figure 8.3: Example Plan: Finding a Book

in the belief base, and that very object is passed as parameter to the behaviour
Goto(x).

However, the plan FindBook is not expressible in pALICA, even when allowing
behaviour to have parameters. What is needed additionally is a link between free
variables in conditions and behaviour parameters. This allows the reasoning task,
in this case the identification of a book to be defined within the plan. Similarly,
this allows the identification of positions in the standard situation scenario to be
defined in the plan as well.

In the following, we extend plans, states and plantypes, i.e., the elements which
structure an ALICA program, with the appropriate notions to allow variables to
occur in plans and relate them to each other.

Definition 8.2. Each plan p has a potentially empty list of unique variables �x,
written p(�x). Each plantype P has a potentially empty list of variables �x, written
P(�x).

Definition 8.3 (Independence of Plans). All plans, plantypes, and behaviours are
standardised apart.

Thus, each plan and plantype has a set of unique variables available, which
can be referred to by conditions. According to Definition 8.3, different plans and
plantypes are associated with pairwise disjoint sets of variables. In order to relate
variables of different plans to each other, we introduce the notion of bindings.

Definition 8.4. Each state s within each plan p(�x) defines a possibly empty
substitution θ(s), called a binding, such that θ(s) = {y1 	→ x1, . . . ,yn 	→ xn},
all xi are terms with variables only among the variables of the corresponding
plan, (∀xi)vars(xi) ⊆�x, and all yi are variables of behaviours or plantypes in s,
(∀yi)yi ∈

⋃
b(�y)∈Behaviours(s)∨P(�y)∈PlanTypes(s)�y.

8.2 Behaviour Parameters and Plan Variables 147

Definition 8.5. Each plantype P(�x) defines a possibly empty substitution θ(P),
called a binding, such that θ(P) = {y1 	→ x1, . . . ,yn 	→ xn}, all xi are terms with
variables only among the variables of P(�x), (∀xi)vars(xi) ⊆�x, and all yi are vari-
ables of plans in P, (∀yi)yi ∈

⋃
p(�y)∈P(�x)�y.

Thus, each state and each plantype declares a local parametrisation of the plans,
plantypes, and behaviours it contains, allowing to relate variables with each other,
but also allowing for static substitutions. Note that bindings do not necessarily bind
all variables of sub-plans or behaviours, it is entirely possible leave sub-variables
unbound. Similarly, variables of the parent plan can occur arbitrarily often in a
binding.

Variables of plans can now serve as means to express dynamic bindings through
conditions within plans. For instance, a condition attached to a transition can refer
to a book just found and bind it to a plan variable, which in turn is bound to a
behaviour variable by a state. This can easily be achieved by allowing conditions
to have free variables among the variables of their plan. However, in some scenar-
ios, one might not want to identify a unique ground value for each variable. For
instance in the standard situation scenario in above, calculating precise positions is
cumbersome, instead one might only want to list a set of properties such positions
should fulfil. Furthermore, as bindings can be used to pass variables down the plan
hierarchy, such that they are eventually used as behaviour parameters, one might
only want to constrain the values for each variable to values suitable to the problem
tackled at each level, and leave the details to sub-plans. In this particular scenario,
a plan at a high level can describe the general problem constraints, such as the set
of game rules the robots must observe. It can then make use of strategy specific
sub-plans, bundled in a plantype. Each of these sub-plans can further constrain the
variables according to a specific strategy, such as an aggressive, yet risky strategy
for free-kicks in the opponent’s half, or a defensive strategy in case the team is in
the lead.

This idea leads us to a constraint programming approach, where each individual
plan does not ground parameters passed to behaviours, but states requirements,
or constraints, ground solutions must fulfil. This way, the resulting behaviour of
the multi-agent team can be expressed in a declarative manner, decoupled from
implementation details of the underlying solver. Furthermore, a generative algo-
rithm does not need to concern itself with the question whether or not generated
conditions ground all variables passed to behaviours in all circumstances.

Languages such as FLUX or GOLOG [98] enforce that each action is fully
grounded when posted for execution. This is vital, as there is no further reasoning
happening before a corresponding action is executed, and the result of executing

148 8 Generalising ALICA

a non-ground action such as Goto(x) is not defined. In contrast, we allow for
non-ground constrained parameters, which can be grounded to appropriate values
by issuing a query to a constraint solver on-demand, thus solving the problem of
non-ground actions by an intermediate reasoning step. In Section 8.4, we will
formally introduce the notion of a constraint formula in the context of ALICA. In
Chapter 9, we will discuss means to solve the resulting constraint problems and
thereby dynamically provide ground values.

8.3 Agent Variables

While the notion of plan variables potentially allows for expressive descriptions of
cooperation using first-order terms, it turns out that in some instances, this is not
sufficient to capture the intended team behaviour in a concise manner.

Consider the popular Foraging Scenario, used for instance by Campbell and Wu
[21]. Here a team, or a swarm of agents [91] is tasked with searching and retriev-
ing certain items, such as food or resources, while at the same time protecting their
base or nest. The scenario has mainly been used to investigate role or task allo-
cation techniques, which dynamically decide for each individual agent whether it
should forage or protect. In this case, the precise number of agents assigned to a
task is unknown until runtime, only an upper bound is given, even the total number
of agents may be unknown until runtime. Further, the number of agents foraging
or protecting can change dynamically.

Given a suitable role- and task allocation approach, the individual behaviours
need to be specified. So far, expressing these behaviours using constraints in AL-
ICA requires plan variables. Each plan variable would represent an agent’s target
position given it is tasked with foraging or protecting, respectively, thus twice as
many variables are needed as agents can possibly participate. The resulting con-
straint problem would be overly complicated in all situation, as each agent only
takes on one task at a time, so at most half the variables would be actually used.
Furthermore, in a realistic scenario, the number of agents actually active would
almost always be lower than the number of possibly active agents.

8.3 Agent Variables 149

Example 8.1. Consider the following simple example constraints for the Foraging
Scenario:

(∀a,b ∈ A)MinimalDist(a,b,ε)∨a = b (8.1)

(∀a) In(a,P,Protecting,z)→ Near(a,Base) (8.2)

(∀a,b)a �= b∧ In(a,P,Foraging,Search)∧ In(b,P,Foraging,Search) (8.3)

→ MinimalDist(a,b,SearchRadius)

The constraints state that all agents should maintain a minimal distance to each
other (8.1), agents assigned to the task Protecting should stay near the base (8.2),
and agents assigned to the task Foraging, which inhabit the state Search should
maintain a larger distance to each other in order to search more efficiently (8.3).

The domain-specific predicates Near and MinimalDist can be expressed as:

Near(a, l)
de f
= (∃p)Pos(a, p)∧

√
(p.x− l.x)2 +(p.y− l.y)2 < 100

MinimalDist(a,b,d)
de f
= (∃p1, p2)Pos(a, p1)∧Pos(b, p2)∧√

(p1.x− p2.x)2 +(p1.y− p2.y)2 > d

This concise way of formulating the constraints makes use of a domain-specific
predicate within L(Pred,Func), Pos, and implicitly assumes it is functional in the
second parameter. Such predicates are similar to functional fluents in the Situation
Calculus [134], however, they do not express the state of the world or knowledge
about it, but represent intended values, or rather allow constraints to assert in-
tentions or obligations. Thereby, such constraints can be seen as a declarative
extension of plans, which otherwise formulate intentions in a procedural way.

In order to support the specification of constraints which abstract from the actual
agents that execute a plan or a task at a specific point in time, a set of corresponding
axioms is needed to fill in the gap between constraints and beliefs:

Definition 8.6. Let F be a finite set of binary predicate symbols, and for every
P ∈ F , let ΣA contain

(∀a ∈ A)((∃x)P(a,x))∧ ((∀x,y)P(a,x)∧P(a,y)→ x = y)

Thereby, all elements of F are functional in their second argument, given the
first is an agent. We extend the belief axioms of pALICA, Σb (Definition 5.6) to
include ΣA. Predicates constrained by beliefs in this form are called functional
agent fluents.

150 8 Generalising ALICA

Thus, each formula in ΣA enforces the existence of a single value x per agent
a such that P(a,x) holds. In other words, P(a,x) attaches a variable to agent a
under the name P. A domain-specific extension to ΣA in Σdom can enable similar
constructs for other domain-specific elements agents are able to modify and reason
about. In the next section, we will clarify how constraints of this form can be
incorporated into plans.

8.4 Constraints in ALICA

In the previous section, we already introduced some examples for constraint for-
mulae. Intuitively, a constraint is a formula which in some way limits valid choices
for domain entities. Formally, this is described by the following definition:

Definition 8.7. A constraint is a formula φ ∈ L with free variables�x = x1, . . . ,xn,
n ≥ 0. φ is said to constrain�x. Every xi is representing a value in a domain Di. A
solution to a constraint formula with respect to a belief base B is a substitution θ
such that�xθ is ground, φθ is consistent with B, and�xθ ∈ D1 × . . .×Dn.

By Definition 5.9, B �a
L,θ φ denotes that agent a proves φ with respect to belief

base B in logic L and θ is the computed answer, which constitutes a solution for
the queried formula φ .

Definition 8.7 captures the most general notion of a constraint satisfaction prob-
lem according to Section 2.4. In the following, we refrain from explicitly stating
domains in the interest of conciseness. The constraints stated in Example 8.1 do
not fit into this definition, since they contain quantified variables, for which values
are sought. As the corresponding sorts are finite, this is merely a technical prob-
lem.1 Hence, formulae such as those used in Example 8.1 can be unfolded into
corresponding constraints.

Definition 8.8. We denote the unfolded constraint of φ as Γ(φ). Γ(φ) can be
obtained from φ by recursively replacing

• all occurrences of ((∀a)ψ) by
∧

A∈A(ψ{a 	→ A}) if In(a, p,τ,z) or
Succeeded(a, p,τ) occurs in ψ for some p,τ,z,

• all occurrences ((∃a)ψ) by
∨

A∈A(ψ{a 	→ A}) if In(a, p,τ,z) or
Succeeded(a, p,τ) occurs in ψ for some p,τ,z,

1 While we do not use many-sorted logic (cf. [19, 52]) to define ALICA, the principle is the same.

8.4 Constraints in ALICA 151

• all occurrences of ((∀x)ψ) by ψ{x 	→ xi} where xi is a variable unique to P
and A if P(A,x) occurs in ψ , P is a functional agent fluent according to ΣA,
and A ∈ A,

• all occurrences of ((∃x)ψ) by ψ{x 	→ xi} where xi is a variable unique to P
and A if P(A,x) occurs in ψ , P is a functional agent fluent according to ΣA,
and A ∈ A.

The conditions referring to the predicates In and Succeeded in this quantifier
elimination step are used to ensure that only variables ranging over agents are re-
placed. It is easy to see that constraint unfolding terminates, as with each operation
a quantifier is removed from the formula. Note also that unfolding can be done as
soon as A is known, i.e., during the initialisation phase of an ALICA agent, as A
is considered to be static throughout runtime.

A formulae φ occurring in plan p is applicable for unfolding, if it is plan local to
p, and each variable of φ occurs at most once as second parameter in a functional
agent fluent. Note that the empty conjunction is treated equivalently to � and the
empty disjunction equivalently to ⊥, following the standard semantics.

Consider the following additional constraint in the Foraging scenario:

(∀a,x) In(a,P,Foraging,Search)→ Pos(a,x)∧Unexplored(x) (8.4)

Intuitively, this constraint forces robots which are currently searching to move to-
wards unexplored space by constraining the robots’ position variables using the
background predicate Unexplored, which possibly refers to some map represented
in the robots’ belief states. As the robots move around, previously unexplored ter-
ritory becomes known, thus the interpretation of Unexplored changes dynamically.
Especially when a Foraging robot explores the fringe of the known territory, the
map is updated constantly and thus in each iteration previously unexplored posi-
tions become explored, hence solutions to the constraint satisfaction problem need
to be updated constantly. Semantically, this dependency on the current belief is
captured by Definition 8.7, since a solution to a constraint problem always relates
to a belief base.

Constraints in ALICA are meant to control the agents’ behaviour, as such they
can occur in plan conditions, e.g., as part of preconditions or as part of condi-
tions guarding transitions. Constraints therefore relate to achievement goals in
AgentSpeak [129], as they describe properties of the world the agents should pur-
sue. In order to distinguish between condition and constraint, we introduce a new
binary operator between formulae, which is not part of the underlying language
L(Pred,Func).

152 8 Generalising ALICA

Definition 8.9. If φ is a sentence in L and ψ a constraint in L, φ �ψ is a guarded
constraint in L.

Intuitively, φ � ψ (read: φ guards ψ) has the intended meaning that if φ holds,
the constraint ψ should hold. This syntax and semantics are loosely based on Con-
straint Handling Rules by Frühwirth [49, 50]. In the following, we will formalise
this notion and in Section 8.6 discuss how guarded constraints are handled during
runtime.

From a certain point of view, such a construct seems unnecessary. Firstly, the
set of constraints is closed under conjunctive (and disjunctive) addition of sen-
tences (or constraints). Secondly, if no solution exists for a given constraint, the
corresponding condition should evaluate to false. However, treating constraints
equivalent to conditions would be short sighted. As discussed in Section 2.4, de-
pending on the expressiveness of L, the complexity of identifying a solution can
vary greatly, e.g., from tractable problems, such as 2SAT [89], NP-hard problems
such as general constraints over finite domains, to undecidable problems such as
arbitrary non-linear inequalities over the real numbers. Furthermore, while finding
a solution to a CSP is not harder than proving the existence of one [27], this not
the case for the problem of finding an optimal solution according to some objective
function. In Section 9.6, we will introduce constraint optimisation within ALICA,
which allows comparison of different solutions by means of an objective function.

Thus, finding a solution to a constraint can take a significant amount of time.
Moreover, even though the problem class might be decidable, solvers might sacri-
fice completeness for efficiency (e.g., local searches such as WalkSAT by Selman
et al. [147]). Depending on expressiveness of the constraint language, the solver
employed, and the scenario at hand, one might chose different semantics for the
guarding operator�.

We can distinguish two possible interpretations for the guarding operator, a weak
and a strong one. In case constraint solving in L is tractable, as well as for NP-hard
constraint satisfaction problems of limited size, a strong interpretation, requiring
the existence of a solution can be used. In cases where constraint solving is hard,
or the employed solver is incomplete, a weak interpretation is more sensible.

Definition 8.10 (Weak guarding interpretation). A guarded constraint φ � ψ
holds under weak interpretation if and only if φ holds.

Hence, under weak interpretation, an agent evaluating a guarded constraint
proves the guard and asserts the constraint.

Definition 8.11 (Strong guarding interpretation). A guarded constraint φ � ψ
holds under strong interpretation if and only if it holds under weak interpretation

8.4 Constraints in ALICA 153

and ψθ holds for some substitution θ grounding all free variables in ψ with respect
to the agent’s current configuration.

Under strong interpretation an agent is also required to prove the existence of a
solution to the constraint in order to evaluate the guarded constraint. However, as
constraints potentially interrelate through their free variables, such a proof is only
meaningful in a context, which is provided by the agent configuration. In Sec-
tion 8.5 we will discuss how this context is represented and in Section 8.7 describe
how context and constraint formula yield a constraint satisfaction problem.

The difference between weak guarding and strong guarding interpretation be-
comes apparent when guarded constraints are attached to plans. Under weak
guarding, an agent will follow a transition, if it evaluates the guard to true. Under
strong guarding, it must additionally prove the existence of a solution to the con-
straint. In both cases, the constraint will become active afterwards, that is influence
the agent’s behaviour. Similarly, if no solution can be found for a constraint in a
runtime condition, the corresponding plan must be aborted, while the participating
agents will continue to execute it under weak guarding interpretation as long as the
guard holds. In this case, even though temporarily no solution can be found, the
constraint continues to influence the agents’ behaviour.

Ideally, guarded constraints would be formulated in such a way that the guard
entails the existence of a solution to the constraint problem, while being easy to
prove, in which case strong and weak interpretation become equivalent. While
it is possible to mechanically construct an overly general approximation of such
a guard, using some subsumption model, such as Buntime’s generalised θ -
Subsumption [17], such methods are out of scope of this work.

In order to incorporate constraints into ALICA, the relevant formulae are ex-
tended from sentences in L to guarded constraints.

Definition 8.12. If p(�x) is a valid ALICA plan then its precondition, runtime con-
dition, and all formulae occurring in transitions are guarded constraints φ � ψ ,
such that φ is a sentence and ψ a formula applicable for unfolding, such that all
free variables of Γ(ψ) occur as second parameters of functional agent fluents or
are among �x. Furthermore, the guards of the pre- and the runtime condition are
plan local to p.

Post conditions describe the goal a behaviour or plan is meant to achieve. Once
an agent achieves that goal, the corresponding plan or behaviour is typically termi-
nated. Hence, post conditions do not involve constraints. Behaviours are extended
similarly such that preconditions and runtime conditions involve constraints:

154 8 Generalising ALICA

Definition 8.13. If b(�x) is a valid ALICA behaviour then its precondition and
runtime condition are guarded constraints φ � ψ , such that φ is a sentence and ψ
a formula applicable for unfolding, such that all free variables of Γ(ψ) occur as
second parameters of functional agent fluents or are among�x.

Note that behaviours are still embedded in canonical behaviour plans, as dis-
cussed in Section 5.7.

8.5 Constraint Store

Constraint logic programming systems typically feature what is referred to as a
constraint store, which on the operational level can be seen as a store for encoun-
tered and thus enforced constraints. Once new information is presented, relevant
constraints are “woken” and information is propagated according to the constraint
handling rules. Should the set of stored constraints be found to be inconsistent, the
system backtracks [2].

From a more declarative point of view, constraint stores can be seen as gen-
eralisations of classical substitutions, since constraints express information about
possible valuations and any substitution can be expressed as a set of constraints.

In ALICA, each agent maintains a constraint store, which holds the set of con-
straints the agent currently considers to be active. As constraints occur in the
context of plans or behaviours, each constraint within the store is annotated by the
respective plan or behaviour.

Definition 8.14. A constraint store is a possibly empty set of tuples (P,φ), where
P is a set of plans and φ a constraint.

In classical constraint programming systems, the constraint store is modified
by simplification or propagation rules. For instance, a constraint that is provably
satisfied in all cases is removed, or two constraints are merged into a single one.
In ALICA, constraints can be added or removed from the constraint store as the
agent traverses the plan-tree. Thus, at each point in time, the agent must be able
to remove a formerly asserted constraint. This is achieved by annotating each con-
straint with the set of plans it stemmed from. A constraint φ , asserted by plan p, is
inserted into the constraint store as ({p},φ). This allows for the identification of
constraints given their plan. In the base case, this set contains a single plan. In Sec-
tion 8.6.2, we will introduce an operational rule that reflects constraint propagation
according to Frühwirth [50], which results in sets with multiple elements.

We extend the notion of an agent configuration from Definition 5.1 to include a
constraint store.

8.6 Rules 155

Definition 8.15 (Agent Configuration). An agent configuration in ALICA is a
tuple (B,ϒ,E,R,G), such that

• (B,ϒ,E,R) is an agent configuration in pALICA and

• G is a constraint store.

For any agent a ∈ A, Conf(a) denotes its configuration. The initial agent configu-
ration contains an empty constraint store, i.e., has the form (B, /0, /0, /0, /0), such that
B does not make any assumptions about the state of the team. In particular, it does
not contain any belief of the form In(a, p,τ,z).

8.6 Rules

Similar to pALICA, an ALICA agent’s internal state is transformed according to
a set of operational rules. In contrast to pALICA, these rules now also involve a
constraint store, which contains the set of active constraints or intentions. In Sec-
tion 8.6.1, we lift the original rule system introduced in Section 5.13 to the general
case and describe how and when the constraint store is updated. Afterwards in
Section 8.6.2, we discuss a possible extension, where constraints are updated ac-
cording to Constraint Handling Rules [50].

8.6.1 Lifting Propositional ALICA Rules

The rules system described in Section 5.13 is almost directly applicable to general
ALICA. We only need to reflect the new element of an agent configuration, the
constraint store, which contains the set of constraints that are active, i.e., that cur-
rently can influence an agent’s behaviour. In the following we define each ALICA
rule with respect to the respective pALICA rule. Most changes are minor and only
affect the constraint store. We write

T ∈ S :
(B,ϒ,E,R) T−→ (B′,ϒ′,E ′,R′)

(B,ϒ,E,R,G)−→(B′,ϒ′,E ′,R′,G′)

to denote that an agent with configuration (B,ϒ,E,R,G) updates its configuration
to (B′,ϒ′,E ′,R′,G′) if it would update (B,ϒ,E,R) to (B′,ϒ′,E ′,R′) by applying
pALICA rule T ∈ S. For most rules, it is sufficient to retract constraints referring
to plans that are no longer in execution. We denote a limitation of a constraint
store G with respect to a plan base ϒ as C(G,ϒ):

C(G,ϒ) de f
= {(S,ψ) | (S,ψ) ∈ G∧ (∀p ∈ S)(p,τ,z) ∈ ϒ}

156 8 Generalising ALICA

In other cases, i.e., when a plan is entered using a rule, the constraints of the corre-
sponding pre- and runtime conditions must be asserted. For notational simplicity,
we use the macro D(G,ϒ), which retracts all constraints of plans no longer exe-
cuted and asserts all constraints of pre- and runtime conditions of plans referred to
in ϒ:

D(G,ϒ) de f
=C(G,ϒ)∪{({p},ψ) | (p,τ,z) ∈ ϒ∧

Pre(p) = (φ � ψ)∨Run(p) = (φ � ψ)}

Rules without an effect on the constraint store: The rules Sense, BSuccess,
TSuccess, BAbort, BRedo, BProp, and RoleAlloc, as well as all rules for conflict
detection and resolution with the exception of Cmdcr, do not modify the plan base.
Therefore, they do not modify the constraint store either.

T ∈ S :
(B,ϒ,E,R) T−→ (B′,ϒ′,E ′,R′)

(B,ϒ,E,R,G)−→(B′,ϒ′,E ′,R′,G)

where

S = {Sense,BSuccess,TSuccess,BAbort,BRedo,BProp,RoleAlloc,Sensecd ,

Adaptcd ,Resetcd ,Authcr,TakeAuthcr,DropAuthcr,DropCmdcr,Resetcr}

Rules limiting the constraint store: The rules PAbort, PRedo, PReplace, PProp
and NExpand remove triples from the plan base. Hence, their lifted versions limit
the constraint store to constraints referring to plans still active.

T ∈ S :
(B,ϒ,E,R) T−→ (B′,ϒ′,E ′,R′)

(B,ϒ,E,R,G)−→(B′,ϒ′,E ′,R′,C(G,ϒ′))

where
S = {PAbort,PRedo,PReplace,PProp,NExpand}

Rules asserting and retracting constraints: The rules Alloc, Adapt, and Cmdcr
modify the plan base by addition and removal of triples. This is reflected in the
constraint store by limitation to constraint referring only to plans still in execution
and the assertion of constraints from the respective pre- and runtime conditions of
newly entered plans. Note that the three rules only add triples referring to initial
states.

T ∈ S :
(B,ϒ,E,R) T−→ (B′,ϒ′,E ′,R′)

(B,ϒ,E,R,G)−→(B′,ϒ′,E ′,R′,D(G,ϒ′))

8.6 Rules 157

where
S = {Alloc,Adapt,Cmdcr}

Rules clearing the constraint store: An agent initialises its configuration using
the rule Init. In case of a failure that occurs in or is propagated to the top-level
plan, the rule PTopFail is used to handle the failure and trigger a reinitialisation.
In both cases, the constraint store is emptied, freeing the agent from any previous
intention expressed as constraints.

T ∈ {Init,PTopFail} :
(B,ϒ,E,R) T−→ (B′,ϒ′,E ′,R′)

(B,ϒ,E,R,G)−→(B′,ϒ′,E ′,R′, /0)

This leaves two special cases, namely the rules dealing with transitions.

The Transition Rule: By applying the Transition Rule, an agent traverses a tran-
sition in a state machine. This causes the corresponding constraint to be asserted.

Trans :
(B,ϒ,E,R) Trans−−−→ (B′,ϒ′,E ′,R′)

(B,ϒ,E,R,G)−→(B′,ϒ′,E ′,R′,C(G,ϒ′)∪{({p},ψ)})

where ψ is the constraint of the transition (z1,z2,φ � ψ) the agent traverses and
p the plan which contains the transition. Thus, by entering a new state via a tran-
sition, the agent inserts the corresponding constraint into its constraint store. Note
that the constraint can trivially be �, since any sentence φ can be rewritten as an
equivalent guarded constraint φ � �. Additionally, constraints referring to plans
no longer executed are removed.

The Synchronised Transition Rule: Analogously to the Transition Rule, the
Synchronised Transition rule inserts constraints into the constraint store and re-
moves constraints referring to the branch of plans left by the agent. However,
since multiple agents are involved in the synchronisations, the constraints of every
transition belonging to the synchronisation are inserted.

STrans :
(B,ϒ,E,R) STrans−−−→ (B′,ϒ′,E ′,R′)

(B,ϒ,E,R,G)−→(B′,ϒ′,E ′,R′,C(G,ϒ′)∪F)

such that if s is the synchronisation in question and p the plan in which s occurs
then F = {({p},ψ) | (z1,z2,φ � ψ) ∈ s}.

This extension of the rule set to incorporate the constraint store is consistent with
the properties discussed in Section 5.14. That is, the plan base stays consistent

158 8 Generalising ALICA

with the plan base axioms, no orphaned behaviour is introduced and the agent
keeps believing in what it is intending. This is simply due to the fact that lifting
only causes the rules to handle the constraint store. The handling of the other
components of an agent configuration remains the same.

8.6.2 Constraint Handling Rules

Frühwirth [50] defines a declarative programming system based on Constraint
Handling Rules (CHRs). While such rules are not in the focus of this work, it
is possible to augment an ALICA engine with a set of constraint handling rules in
order to simplify subsequent reasoning steps such as solving a query for specific
variables. Currently, this is not supported by the implementation. Here, we briefly
illustrate how such an extension can be formulated.

The following definition by Frühwirth [50] captures the syntax of CHR pro-
grams.

Definition 8.16. A CHR program is a finite set of CHRs. Each CHR is of one of
the following forms:

• A simplification CHR is of the form: H1, . . . ,Hi ↔ G1, . . . ,G j | B1, . . . ,Bk

• A propagation CHR is of the form: H1, . . . ,Hi → G1, . . . ,G j | B1, . . . ,Bk

• A simpagation CHR is of the form: H1, . . . ,Hl \Hl+1, . . .Hi → G1, . . . ,G j |
B1, . . . ,Bk

where i > 0, j ≥ 0, k ≥ 0, l > 0, and the multi-head H1, . . . ,Hi is a non-empty
sequence of CHR constraints, the guard G1, . . . ,G j is a sequence of built-in con-
straints, and the body B1, . . . ,Bk is a sequence of built-in and CHR constraints.

In the CHR framework, built-in constraints are the atomic building blocks of
more complex constraints defined entirely by means of CHRs.

Intuitively, if for each constraint Hx in the head of a simplification rule an in-
stance Hxσ exists in the constraint store, and the corresponding guard instance
G1σ , . . . ,G jσ of the rule can be proven with answer θ , such that θ does not sub-
stitute variables occurring in the head, then all Hxσ are removed from the con-
straint store and replaced by the constraints in the body, Bxσθ . The propagation
rule works similarly, but does not remove the head from the store. The simpagation
rule is a combination of the two, H1σ , . . . ,Hlσ are removed, while Hl+1σ , . . . ,Hiσ
are not. The resulting system is Turing complete [160].

We can provide an operational rule that incorporates propagation CHRs into
ALICA. In contrast to the original CHR system, a constraint in ALICA is never

8.7 Queries 159

removed from the store unless the agent leaves the corresponding plan. Given a
set of propagation rules acting as CHR extension to ALICA, the following rule,
CProp, defines the corresponding update to an agent configuration.

CProp :
(B �θ (G1 ∧ . . .∧G j)σ)∧ (S1,H1σ) ∈ G∧ . . .∧ (Si,Hiσ) ∈ G

(B,ϒ,E,R,G)−→(B,ϒ,E,R,G′)

where

• H1, . . . ,Hi → G1, . . . ,G j | B1, . . . ,Bk is a propagation rule in the CHR exten-
sion,

• θ is the computed answer to the proof of the guard.

• G′ = G∪{(T,Biσθ) | 1 ≤ i ≤ k}, and

• T =
⋃i

k=1 Si.

The rule CProp asserts the body of a propagation rule into the constraint store
if the guard holds with respect to the current set of beliefs and an instance of the
head of the rule is active, i.e., is in the constraint store. Similar to rule application
in CHR languages, CProp may be applied at most once to the same constraints to
avoid nontermination. Using this rule, it is possible to transfer parts of the CHR
semantics to work within ALICA.

Embedding simplification rules in this way is not possible, since the constraint
store is dynamic and reflects the set of active constraints at any point in time. Con-
sider for instance a scenario in which the two tuples ({p1},φ1) and ({p2},φ2) are
part of the constraint store. An application of a simplification rule could remove
the two tuples and add a tuple corresponding to the body of the simplification
rule, e.g., ({p1, p2},ψ). If the agent now leaves p2, it must retract this conse-
quence from the constraint store, since constraints from p2 are no longer relevant.
Thereby, the agent also retracted the original constraint φ1, which should still be
active.

8.7 Queries

Thus far, constraints are maintained and managed within a constraint store, but
they do not affect the behaviour of the agent. This is achieved through queries.
During the runtime of the agent, behaviours, and potentially other components can
query the constraint store.

160 8 Generalising ALICA

We distinguish two kinds of queries, existential ones, which only require proof
of the existence of a solution, and concrete ones, which demand a concrete solu-
tion. Although, as discussed earlier, these problems are equally complex, once we
turn to constraint optimisation in Section 9.6 this is no longer the case, hence the
distinction.

Under the strong guarding interpretation (see Definition 8.11), operational rules
issue existential queries when evaluating plan-conditions.

Definition 8.17. A query q is a tuple (c,�v,φ), consisting of a context c, which is
either a plan or a behaviour, in which the query is posed, a list of variables �v, for
which values are to be calculated, and a constraint formula φ with free variables
only among�v.

In order to answer a query, a corresponding constraint satisfaction problem is
constructed with respect to the current agent configuration (B,ϒ,E,R,G). Intui-
tively, this is done by traversing the plan-tree upwards from the context in which
the query was posed towards the top-level plan and collecting all active constraints
and bindings on the way. Constraints active in the context of children or siblings
are not considered, following the locality principle. Thus, a query posed in the
context of plan p might be more specific than the same query posed in the context
of the parent plan of p.

The upwards traversing of the plan-tree is captured by the recursive function
t in Figure 8.4. The first case captures the termination condition, when the top-
level plan is reached. The second case is relevant if the context c is a behaviour
or a plantype. It then applies the parent state’s bindings θ(z) and adds any active
constraints associated with the corresponding parent plan p. The last case handles
plans, and applies the bindings of the respective plantype P.

In this way, the traversal t(c,�v,φ , /0,ϒ,G) for the query (c,�v,φ) yields the tuple
(ψ,θ), consisting of the CSP ψ to be solved, and a substitution θ , i.e., the com-
position of all collected bindings. The CSP is constructed as the conjunction of φ
and all relevant active constraints from the constraint store G.

The substitution θ captures the relationship between the queried variables and
the context. Each variable is mapped by θ to the one occurring highest in the
plan-tree, due to the transitive application of the state and plantype bindings. This
substitution will play an important role for solution tracking and coordination, as
we will discuss in Section 9.5.

Subsequently, an agent can proof B �η ψ to answer the query. In case of a
concrete query,�vθη is the resulting solution vector.

Example 8.2. In a simple strategy for attacking in the RoboCup scenario, the ball
possessing robot drives towards a position from which it can score. A second robot

8.7 Queries 161

t(c,X ,φ ,θ ,ϒ,G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(φ ,θ) if c = p0

t(p,X ′,φ ′,θ ′,ϒ,G) if (p,τ,z) ∈ ϒ∧ (c ∈ Behaviours(z)

∨c ∈ PlanTypes(z))

where

• X ′ = Xθ(z)
• φ ′ = φθ(z)∧∧

(∃P,v)(P,ψ)∈G∧ p∈P∧v∈vars(ψ)∩X ′ ψ
• θ ′ = θ ◦θ(z)

t(P,X ′,φ ′,θ ′,ϒ,G) if (c,τ,z′) ∈ ϒ∧P ∈ PlanTypes(z)∧
c ∈ P

where

• X ′ = Xθ(P)
• φ ′ = φθ(P)
• θ ′ = θ ◦θ(P)

Figure 8.4: CSP Construction: Upwards Traversal of the Plan-Tree

tries to hinder opponent players from reaching the ball, and the two remaining
robots are positioned close to the own goal, such that they are able to defend
should an opponent obtain the ball. Figure 8.5 depicts a corresponding ALICA
plan.

The plan consists of the three respective tasks and is successfully completed once
the Attacker kicks the ball towards the opponent goal (whether it scores or not).
The detailed behaviour of the other robots is hidden at this level and encapsulated
by the plantypes Protect(x) and DefendGoal, respectively.

The plan’s semantic is largely dominated by its runtime condition φ , which
could be defined as:

φ = φ ′� ψ =((∃a,z) In(a,Attack,Attacker,z)∧HasBall(a))�
Γ(ScorePosition(x)∧ ((∀a) In(a,Attack,Defender,Z4)→

(∃defPos)TargetPos(a,defPos)∧
Between(OwnGoal,Ball,defPos)))

162 8 Generalising ALICA

Hence, the plan must be aborted, if there is no robot in ball possession
(HasBall(a)), which can take on the task Attacker. Further, the plan variable
x, which is free in φ , is meant to indicate the position towards which the attacking
robot dribbles. x is constrained by the macro ScorePosition(x), whose details are
not of any importance here, but it likely takes the position of the opponents and
the physical limitations of the robot’s kicking device into account. Additionally,
φ constraints the functional agent fluent TargetPos of all defending robots to be
between the ball and the goal. Further details about the positions of the blocker
and the defenders are left open.

DribbleTo(x), executed by the attacker will issue a query (DribbleTo,(x),�)
every iteration in order to obtain a destination, which in turn is translated into a
movement command. Traversing over the plan-tree yields the CSP �∧ψ , which
does not contain any constraints from the plantypes Protect(x) or DefendGoal.
Intuitively, the details are not relevant for the attacker, it suffices to know that the
defenders are positioned behind it.

A blocker on the other hand, executes the plantype Protect(x), whose realis-
ing plan would constraint the blocker’s position in relation to the attacker’s tar-
get position x, and by traversing, the constraint of φ is appended to any query
about the blocker’s position from within Protect(x). Similarly, there exists another
set of constraints within the plantype DefendGoal, which defines the positions of
the defenders. CSPs constructed from queries about their positions from within
DefendGoal will include ψ , since ψ states requirements about them, i.e., shares
variables with the query due to the functional agent fluent TargetPos.

It is important to note the difference between the actual position of an agent and
its constrained target position. The actual position is, for a given moment in time,
fixed and cannot be changed, while the target position, reflected by the agent fluent
TargetPos(a, p), can be subject to arbitrary constraints.

8.8 Summary

Motivated by the fact that many problems cannot easily be expressed using propo-
sitional ALICA, we extended this basic language with variables for plans, plan-
types, behaviours, and agents. This allows for constraints to be integrated into
the language as part of conditions. We discussed two different semantics of the
resulting guarded constraints, namely the weak guarding and the strong guarding
semantics. Weak guarding should be chosen whenever the corresponding solver is
incomplete or needs a significant amount of time to prove the existence of a solu-
tion. Strong guarding requires that a constraint has a solution before it is activated.

8.8 Summary 163

Attack Run: φ

Attacker

1..1

Z0

DribbleTo(x)

Z1

Kick

Zt
InPosition Kicked

Blocker

0..1

Z3

Protect(x)

Defender

0..2

Z4

DefendGoal

Figure 8.5: Example Plan: A Strategy for an Attack in RoboCup

The operational semantics of pALICA was lifted to this more expressive case
by the integration of a constraint store into the agent configuration. The constraint
store maintains the set of active constraints with respect to the plans in execution.
Finally, we presented how components can query variables for values given a plan
or a behaviour as context of the query. The next chapter is concerned with solving
the resulting constraint satisfaction problems.

9 Solving Constraint Problems

So far we discussed how constraints are managed by an ALICA agent. The way
constraints are managed and updated does not place any restriction on the solver
used. It can be chosen according to the class of constraint problems formulated.
However, discussing solvers for all possible, or even reasonable problem classes
is out of scope of this work. In the following, we will focus on a specific class
of constraint satisfaction problems, which is sufficiently expressible for a wide
range of robotic problems. Firstly, we investigate the expressive need of some
example domains, focussing on robotic scenarios. Based on these examples, we
formally define a suitable class of constraint problems geared towards robotic and
multi-robotic scenarios. Afterwards, we present a solver for this problem class and
discuss extensions to it that allow for solving of constraint optimisation problems,
tracking of solutions over time, and coordination of solutions within the team.

9.1 Exemplary Constraint Satisfaction Problems

Let us again consider standard situations in the robotic soccer domain. In a stan-
dard situation, the positions of up to four robots on the field need to be determined,
given the ball’s location and any perceived opponent position. At most, such a
problem has 12 dimensions (three per robot, as a position is described by a two
dimensional point and an orientation). Compared to typical constraint satisfaction
problems appearing in industrial domains, that is very small.1 However, solutions
need to be found fast, under soft real-time conditions, as we will discuss in Sec-
tion 9.4. Furthermore, the domain is dynamic, and hence solutions change over
time.

The specific constraints needed to describe behaviour during a standard situation
typically fall into one of the following categories:

linear: Enforcing robots to stay within or outside of rectangular regions,

quadratic: When distances between robots and objects are involved,

1 Compare, for instance, benchmark problems used during the Satisfiability Modulo Theories Com-
petition (SMT-COMP).

H. Skubch, Modelling and Controlling of Behaviour for Autonomous Mobile Robots,
DOI 10.1007/978-3-658-00811-6_9, © Springer Fachmedien Wiesbaden 2013

166 9 Solving Constraint Problems

polynomial: When more complex geometric relationships are used, such as cir-
cumference tests.

Additionally, these constraint problems are not purely conjunctive, since mul-
tiple distinct solutions can be described. As an example, consider the standard
situation free-kick, in which the position of two robots are constrained, such that
one receives a pass (p1), and another (p2) tries to prevent opponents from inter-
cepting the pass. An intuitive instruction for the team could be phrased as: “If
there is an opponent able to intercept the pass, it should be blocked by p2.” For
better readability we denote the position of an object o by two variables ox and oy.
In the following, the ball is denoted by b.

We assume an opponent o can intercept the pass vector, if it is closer to the pass
vector �d = p1 −b than the ball is to the interception point. Given

�c = (o−b)

�v =
1
|d|

(
cxdx + cydy

cxdy − cydx

)

This is expressed by:

φ = vx > 0∧ vx < 1∧ v2
x > v2

y

Therefore, if φ holds for an opponent, the blocker should be positioned in front
of it:

ψ = |p2 − vy�d⊥+o|< 0.05

Where �d⊥ denotes the vector orthogonal to �d. Since there are multiple opponents,
a variant of φ → ψ is conjunctively added to the problem for every perceived
opponent.

One approach to tackling such constraint satisfaction problems is to discretize
the domain of each variable to a suitable grid (e.g., 1cm width) and solve the re-
sulting finite domain problem. However, this yields a very large solution space,
especially when multiple robot positions are considered. In this specific case,
the resulting space would have about 4.7·1012 elements (2.2·1025 in case of four
robots).

Such an exponential effect can easily negate any advantage finite domain solvers
have over continuous domain solvers. Moreover, discretization can potentially
cause numerical problems with respect to specific constraints due to aliasing and
other effects. Therefore, we argue that Boolean combinations of rational inequal-
ities over the real numbers constitute the most suitable constraint system for this
scenario.

9.2 Non-Linear Continuous Constraint Satisfaction Problems 167

In another scenario, suppose a mobile robot is tasked with fetching an item, for
instance a cup of coffee from the kitchen. It is equipped with a robotic arm, whose
end-effector can grab cup-sized objects. In order to accomplish its task, the robot
has four behaviours available, namely DriveTo(�x), PositionGripper(�y), Grab, and
Release. The behaviour DriveTo(�x) is able to navigate the building in order to
reach a position described by �x, consisting of the Cartesian coordinates x and y,
and an orientation α . The behaviour PositionGripper(�y) controls the robotic arm,
such that the end-effector reaches a position described by the three-dimensional
vector�y. For simplicity, we omit specifying the end-effector’s orientation. Further,
suppose the robotic arm originates at the robot’s centre, and has five revolute joints.
Let Mi denote the matrix which describes the transformation of the i-th joint with
respect to its angular configuration βi, the position of the end-effector in the world
coordinate system can be calculated as

�y = M5M4M3M2M1M0(x,y,0,1)T

where M0 describes the rotation resulting from the robot’s orientation.
Additionally to the standard situation scenario, this inverse kinematics problem

requires trigonometric functions, such as sine and cosine. In the next section, we
formulate a problem class suitable to express both problems.

The resulting equation has eleven variables, one for each degree of freedom, plus
the end effector’s position and the robot’s position. Thereby, the two problems of
finding�x and�y are related. Together with appropriate information about the cup’s
location in the kitchen and the layout of the kitchen, a simple constraint problem
can be formulated, such that both behaviours interact in a way, that the robot moves
to a suitable position from where it can grab the cup.

9.2 Non-Linear Continuous Constraint Satisfaction

Problems

In [155], we discussed the problem class of non-linear continuous constraint satis-
faction problems given in the following way:

Definition 9.1. A continuous non-linear constraint satisfaction problem
(CNLCSP) is a triple (φ ,X ,C) consisting of:

• a propositional formula φ with variables P,

• a set of n variables X each ranging over R,

168 9 Solving Constraint Problems

• Every pi ∈ P identifies a constraint ci ∈C such that ci = fi(�x)◦i 0, where
◦i ∈ {<,>,≤,≥,=, �=},�x ⊆ X , and all fi are arbitrary functions Rk 	→ R.

An interpretation of a CNLCSP is a valuation function v : X 	→ R, which is ex-
tended to P 	→ {�,⊥} by

v(pi) =

{
� if v(fi(�x))◦i 0)

⊥ otherwise

The interpretation v is a solution for formula φ if and only if φ , in which all vari-
ables pi are replaced by their interpretation v(pi), evaluates to � under classical
propositional interpretation.

Furthermore, in [155], we evaluated solvers tackling this problem class stem-
ming from completely different fields of research, such as interval propagation
and splitting ([2, 171]), satisfiability modulo theories ([6, 48]), and local numerical
searches over a landscape defined by the constraint satisfaction problem. Satisfia-
bility modulo theories (SMT) is a relatively new approach to solving problems of
various different theories by combining a theory specific solver with a solver for
Boolean Satisfiability (SAT). Thereby, such a solver transfers some of the speed of
recent SAT solvers (e.g., [102]) to more expressive problem classes.

However, in our evaluation, local numerical searches outperformed all others
in terms of speed on the benchmark problems, which were drawn from robotic
scenarios, such as inverse kinematics of two robotic arms, path-planning, standard
situations in RoboCup, and swarm behaviour. We argue that this is due to the
relative simple Boolean structure of the problems evaluated, such that SMT solvers
could not exploit the strengths of their SAT solving component. We will return to
this hypothesis in Section 9.3.

The local searches evaluated were based on the evolutionary strategy CMA-ES
(Covariance Matrix Adaptation Evolutionary Strategy) by Hansen and Ostermeier
[66] and resilient propagation (Rprop) by Riedmiller and Braun [136] combined
with automatic differentiation. On the implementation level, the automatic differ-
entiation is done by a modified version of AutoDiff by Shtof [153]. The Rprop-
based search performed slightly better than the evolutionary strategy.

In order to solve a CSP using only a numerical local search, a transformation
needs to be applied, which produces a single function to be optimised. For this,
the input formula is transformed such that negations only occur in front of atoms
by subsequently applying de Morgan’s law and double negation elimination. Af-
terwards the resulting formula is mapped to a function by a transformation T . Out
of the four transformation functions tested in [155], the following performed best:

9.2 Non-Linear Continuous Constraint Satisfaction Problems 169

Definition 9.2. Formula transformation:

T (φ ∧ψ) = Σ∧(T (φ),T (ψ)), T (φ ∨ψ) = max(T (φ),T (ψ)),

T (a < b) =<*(a,b), T (a > b) =<*(b,a),

T (¬(a < b)) =≤*(b,a), T (¬(a > b)) =≤*(a,b),

T (¬(a ≤ b)) =<*(b,a), T (¬(a ≥ b)) =<*(a,b)

T (a = b) = T (a ≥ b− ε ∧a ≤ b+ ε), T (a �= b) = T (a < b− ε ∨a > b+ ε)

where

Σ∧(a,b) =

{
1 if a = 1∧b = 1

min(0,a)+min(0,b) otherwise

δ
δxi

Σ∧(a,b) =
δ

δxi
(a+b)

<*(a,b) =

{
1 if a−b < 0

b−a otherwise

δ
δxi

<*(a,b) =

{
0 if a−b < 0

δ
δxi

(b−a) otherwise

δ
δxi

max(a,b) =

{
δ

δxi
a if a ≥ b

δ
δxi

b otherwise

The function ≤* is defined analogously to <*.

This way, a result of 1 resembles a satisfied constraint, while infeasible points
are mapped onto values below or equal to 0. The gradient of the resulting func-
tion encodes information about unsatisfied constraints, pointing towards poten-
tially feasible regions. This transformation together with a gradient method such
as Rprop with auto-differentiation allows a wide variety of problems to be tackled
in soft real-time as shown in [155]. Figure 9.1 illustrates the resulting functions.

In realistic scenarios, bounds for every variable involved are known. For exam-
ple, positions in robotic soccer cannot be arbitrarily far away from the playing field
and angles range between −π and π . Thus, for every variable in a CNLCSP, we
can assume a suitable interval, which contains all relevant solutions. These bounds
can either be given as annotations to constraints or be derived from constraints
using interval propagation. Listing 9.1 shows the pseudo-code of a basic solver

170 9 Solving Constraint Problems

x > 0 x < 1 x > 0∧ x < 1 x < 0∨ x > 1

Figure 9.1: Exemplary Transformed Constraints

following the principles discussed so far. The solver performs local searches ini-
tialised with different random points until either an upper limit of trials (maxTries)
is reached or a solution is found (f (p)> 0). The listing also shows default values
for the relevant parameters of the search, namely sinit, the initial step size relative
to the size of each domain, inc, the factor increasing the step-size in case the sign
of the gradient stays the same, dec, the factor decreasing the step-size in case the
sign of the gradient changes, and minV and maxV , the minimal and maximal step
size, respectively.

However, the major drawback of applying local searches to CSPs is the inherent
incompleteness. Even if the presented problem is decidable, a local search may
not find a solution. More importantly, a local search cannot deduce unsatisfiability
of a problem. Therefore, this solver should be used in conjunction with the weak
guarding interpretation discussed earlier. In the light that these solvers are to be
employed under soft-realtime conditions, this issue becomes less important. If a
solution cannot be found within a certain time frame, the existence of one becomes
almost irrelevant. We will discuss this topic in more detail in Section 9.4.

9.3 SMT-Solvers Revisited

Earlier, we claimed that while SMT-solvers were outperformed by local search
methods on problems relevant in robotic scenarios, they should come out on top,
given a sufficiently complex Boolean structure of the underlying problem. We
evaluate this hypothesis using the following problem generator based on the sine
generator discussed in [155], which in turn is based on the generator proposed
by Shang et al. [152]:

g(n, l,d) = (φ ,X ,C)

such that

• X contains d variables ranging over the reals,

9.3 SMT-Solvers Revisited 171

Solve(csp) {
// parameters : sinit = 10−3, inc=1.2, dec=0.5;
// minV = 10−12, maxV = 1010

f := transform(csp); // transform the problem into a function
let pmin and pmax be the vectors of the lower (upper) bounds, respectively;
d := number of dimensions of the csp;
i := 0;
while(++i < maxTries) {

p := random point ∈ [pmin
1 , pmax

1]× . . .× [pmin
d , pmax

d];
j := 0;
let s and h be vectors with d elements;
set all sk := sinit ·(pmax

k − pmin
k);

set all hk := 0;
while(++j < maxIterations) {

if (f (p)> 0) return p;
g := ∇ f (p);
for (k:=0; k<d; k++) {

if (gk ·hk > 0) sk := sk · inc;
if (gk ·hk < 0) sk := sk ·dec;
sk := min(max(sk,minV),maxV);
pk := pk + sgn(gk) ·sk;
pk := min(max(pk, pmin

k), pmax
k);

}
h := g;

}
}
return FAILURE;

}

Listing 9.1: Rprop-Based Local Search

• C contains l inequalities of the form

kΣ3
i=1Π3

j=1ai j sin(2πxi j + ci j)< θ

where k = 1
Σ3

i=1Π3
j=1ai j

, all ai j are uniformly distributed random values in

[−1,1], all bi j are uniformly distributed random values in [−2π,2π], all xi j
are randomly chosen variables in X , and θ is a threshold value, such that the
feasible region of the constraint is approximately half the size of the whole
domain, measured by random sampling. This resembles the ratio by which
the solution space in pure SAT problems is divided by a single propositional
variable.

• φ is a random 3-SAT formula containing n clauses, whose propositional
variables P each uniquely identify a constraint in C.

172 9 Solving Constraint Problems

• Satisfiability of the CSP is guaranteed in the following way: Let �s be a
random point in R

d , acting as valuation function v for X . Let P′ be the set of
propositional variables valuated to � by the extension of v. Then, for every
clause in φ , pick a random literal and set its sign to positive (negative) if its
propositional variable is in P′ (is not in P′).

The SMT-solvers evaluated in [155] are not suitable for this kind of constraint
system. ABsolver [6] cannot deal with trigonometric functions (which we deem
important in robotic scenarios), and iSAT [48] performs poorly on this benchmark.
We presume this is due to a shortcoming in its parser, which probably does not
recognize reoccurring terms. However, since iSAT’s source code is closed, this is
pure conjecture.

Instead, we evaluate a naive SMT-solver which uses the DPLL-algorithm Chaff
by Moskewicz et al. [102] to produce an assignment for the propositional variables
P. Given this assignment, a purely conjunctive constraint system is constructed
and solved using the local search discussed in the previous section. The local seach
is restarted exactly one time. In case this does not suffice to find a solution, Chaff is
called to produce the next propositional model, and the process is repeated. In case
all propositional models are tried, both solvers are reset and the process starts from
the beginning. In the following, we refer to this solver as Chaff+Rprop(Σ∧,max),
indicating the algorithms and the transformation function used.

While this combination of SAT solver and local search forces the latter to solve
a harder problem, since the conjunctive problem is a specialisation of the origi-
nal problem, the approach can quickly pay off in two ways. Firstly, the resulting
formula, which is used to evaluate individual points in the solution space, is sim-
plified. Secondly, the local search does not have to deal with disjunctions, which
can cause a misleading landscape, as discussed in [155]. Of course, in this naive
approach, the two solvers are kept quite separate and there is little information
exchanged between them. A more sophisticated SMT solver should be able to
exchange more information, such as conflict-explanations.

Figure 9.2 shows the result for constraint satisfaction problems generated by
g(n,50,25) for varying n. The timeout for solving was set to 30 min. Constraint
ratio refers to the ratio between number of clauses and literals, in this case n

50 .
Each point in the graph is averaged over 100 trials. All experiments were carried
out single-threaded on an Intel® Core™ i7 930 CPU (2.8GHz) running Linux
2.6.38.

Firstly, the performance of the Rprop-based search (Rprop(Σ∧,max)) and the
CMA-ES-based search (ES(Σ∧,max)) follow the results shown in [155], although
the problem here is slightly harder. Secondly, local searches outperform the SMT

9.3 SMT-Solvers Revisited 173

10−3

10−2

10−1

100

101

102

103

0 2 4 6 8 10

A
ve

ra
ge

tim
e

(s
)

Constraint Ratio

Rprop(Σ∧,max)
Chaff+Rprop(Σ∧,max)

ES(Σ∧,max)
iSat

Figure 9.2: Performance of Local Searches and SMT Solvers in the 3-SAT-Sine Test Case

solver iSAT [48], evaluated here for comparison, even though the set of distinct
literals is constant. Our naive SMT solver performs worse than the pure local
searches for constraint ratios lower than 1, while starting to outperform the lo-
cal searches at an constraint ratio of about 2. Afterwards, the performance of
Chaff+Rrop(Σ∧,max) is almost constant with respect to the constraint ratio.

We can conclude that the SAT-solving time, which should peak around a con-
straint ratio of 4.24 [30, 154]1, is insignificant compared to the time for processing
the non-linear constraints. Secondly, for very low ratios, the SMT approach suffers
from producing a harder problem for the local search than the original.

Of course, this is a highly artificial test case, which is geared towards show-
ing the potential of SMT solving. Still, this test shows great potential if one
can succeed at transferring some of this performance to real-world problems.
Herein, however, lies the catch. Figure 9.3 shows the number of local search
runs done by each solver in this experiment. The number of runs done by

1 after Russell and Norvig [139]

174 9 Solving Constraint Problems

100

101

102

103

104

0 2 4 6 8 10

A
ve

ra
ge

#
of

R
un

s

Constraint Ratio

Rprop(Σ∧,max)
Chaff+Rprop(Σ∧,max)

ES(Σ∧,max)

Figure 9.3: Number of (Re-)starts Performed in the 3-SAT-Sine Test Case

Chaff+Rprop(Σ∧,max) reaches 12.5 at a constraint ratio of around 2 and stays
constant afterwards. This means that in average, only 6 to 7 propositional models
were produced until a solution was found. Given that the total number of propo-
sitional models should be much higher for a constraint ratio between 2 and 4, this
indicates that for any combination of sine-based literals as generated by g(n, l,d),
there is a high probability that a solution exists.

In more practical scenarios, this might not be the case, and, if the Boolean struc-
ture has many models, this naive SMT approach can quickly become infeasible.
Such a scenario is sketched in the following example.

Example 9.1. In robotic soccer, a suitable strategy for countering an opponent
free-kick which uses four robots can be roughly formulated as:

• All robots stay inside the field.

• All robots stay outside the opponent’s penalty area.

9.4 Realtime Considerations 175

• Each robot stays outside a 3m radius around the ball or is within the own
penalty area.

• If one robot is within the own penalty area, it is the only one.

• No opponent may be blocked by more than one robot.

• Each robot must block one of the four opponents by positioning in between
it and the ball, unless that is not possible with respect to the other rules.

• One robot must watch the ball, i.e., position itself so that it can observe a
line from the ball to the opponent second closest to the ball.

• Robots can form a defensive line in front of the own goal.

• Robots must observe a minimal distance to each other.

The corresponding constraint system is very lengthy, thus we omit it here, however
in conjunctive normal form, it consists of over 90 distinct atoms, occurring over
2000 times in about 220 clauses. Rprop(Σ∧,max) solves this problem in roughly
30ms, while Chaff+Rprop(Σ∧,max) runs until aborted after 5min.

The key to solving such problems efficiently is to propagate information back
from the local search to the SAT-solver. This line of thought was established by
Ganzinger et al. as DPLL(T) approach [53], where a Davis–Putnam–Logemann–
Loveland algorithm [36] is combined with a solver for a theory T , which is able
to solve incrementally, backtrack, and provide explanations for inconsistencies.
However, to our knowledge, iSAT is currently the only SMT solver able to deal
with continuous non-linear constraints which involve transcendental functions. We
leave this problem open for future work. However, in the following sections we
will consider SMT solving techniques when introducing additional solver features
such as solution tracking and coordination with other robots’ solvers.

9.4 Realtime Considerations

In realtime scenarios, the utility of obtaining a result to a constraint query is de-
teriorating with time. At some point t +Δt1 the result to a query posted at time
t becomes useless. Further, at t +Δt2, a new query is posted, and the algorithm
should ideally no longer be occupied with trying to solve the first query. However,
in many cases, the new query is very similar to the previous, since the underlying
problem changes rarely, only the sensory data involved is updated with small con-
secutive changes, yielding small changes in the constants of the constraint query.

176 9 Solving Constraint Problems

t

U

φ φ |ε φ |ε ψ ψ|ε

Figure 9.4: Utility of Solutions to Queries over Time – Three ε-equivalent formulae are
queried followed by a new formula.

Figure 9.4 illustrates this effect on the utility of solutions to consecutively posted
queries.

Definition 9.3. We say that two CSPs (φ ,�x,C) and (φ ′,�x′,C′) are ε-equivalent if
and only if�x=�x′, φ = φ ′ and C′ can be obtained from C by replacing each constant
k with another k′ such that |k−k′| ≤ ε . By φ |ε we denote any formula ε-equivalent
to φ , i.e., the ε-neighbourhood of φ .

Example 9.2. In the soccer domain, behaviours often run with a frequency of
30Hz, as this is a common frequency of the most important sensor, the camera.
Thus behaviours also post queries every 33ms. Changes in the plan-tree, which
potentially can cause the relevant constraint satisfaction problem to change sig-
nificantly are much rarer. During RoboCup 2009, such changes were recorded in
average every 3.5s [157]. Let us assume a free-kick situation, in which one robot is
positioning itself to receive a pass. In this case, a constraint describing the target
position is queried in every iteration. After a few seconds, the referee signals the
game to begin and the pass is played. Only then, the constraint problem changes
significantly, as the robot now tries to obtain the ball as quickly as possible. Once
it received the pass, the constraint problem changes again, this time to describe,
say, a position to score a goal from.

Although the constraint systems are non-linear, one can argue that if �p is a
solution to a constraint, then a solution to any ε-equivalent constraint problem can
probably be found in the vicinity of �p. We refer to the ability of exploiting this
relationship as tracking.

Tracking not only greatly reduces the time it takes to solve a query, but it also
stabilises solutions over time. This is a highly important feature. Since the so-

9.4 Realtime Considerations 177

lutions to queries are typically used to obtain actuation commands, (e.g., when
driving towards a constrained position), solutions should be as stable as possible
to allow for smooth and efficient execution. Even when given noisy sensory data,
solutions should not oscillate over time.

Dynamic constraint satisfaction problems, i.e., problems that change over time
were discussed in depth by Brown and Miguel [16], who focused on the concept
of local repair, where a solution in the vicinity of the old solution is sought. Addi-
tionally, they discussed the possibility of adding an oracle [172], which guides the
search based on recorded information. However, they focussed on discrete con-
straint systems, while we deal mostly with continuous constraints. Nguyen and
Yao [110] recently discussed genetic algorithms geared towards continuous dy-
namic constrained optimisation problems. They introduced a method of tracking
feasible regions through a reference population whose members attract individuals
outside of feasible regions. This approach is geared towards genetic algorithms
and cannot be easily adapted to other approaches.

Various solvers can be enabled to track solutions through time. For local
searches, which are initialised with a starting point, this can be done in a straight
forward fashion. The first starting point is simply set to the previously solution.
The local search will then ideally find a solution within only a few steps.

An SMT solver such as Chaff+Rprop(Σ∧,max) can also be extended to track
solutions in one of the following ways:

• Cache both the propositional model that led to the last solution together with
the last solution. In the next step, check if the cached interpretation is still
a model. If so, use that model together with the cached solution to solve
the non-linear problem. Intuitively, this approach has the advantage that
the propositional interpretation tends to stay the same over time, hence the
behaviour emerging from the constraint satisfaction problem can potentially
be more coherent. It is however difficult, and in some cases impossible to
match literals from one query to the next when the structure of the problem
changes.

• Alternatively, one can cache the solution and simply omit the SAT-solving
step altogether for the first run of the local search, and only employ SAT-
solving once that fails. This avoids the problem of changed formulae struc-
ture, but does not guarantee stability of the propositional interpretation.

• Finally, one can cache the solution and, when confronted with a new query,
firstly calculate an interpretation based on the solution, and use it to initialise
a local search for a propositional model. Thereby, the problem of identifying

178 9 Solving Constraint Problems

literals from different queries is circumvented. The local search employed
can then try to minimise the necessary changes to arrive at a model. A
possible algorithm, named Local Changes was presented by Verfaillie and
Schiex [173].

Thus, whether or not a SMT-based solver is used, only the solution needs to be
stored to enable tracking. Since all variables of a constraint satisfaction problem
can be uniquely identified, as they are either plan variables or correspond to agent
fluents, we can even do better by caching variable-value tuples. This allows track-
ing even when some problem dimensions change. For each new dimension (i.e.,
variable) in a posed query, a random value can be attached to the cached solution,
similarly to the case where no solution can be found based on the cached solution
and a fresh starting point is chosen.

Since queries can be posed from any part of the plan-tree, in order to relate
variables as much as possible, caching is done at the highest level with respect to
the bindings provided by states and plantypes. The function traversing the plan-
tree constructing a query presented in Section 8.7 already substitutes variables for
their higher level counterparts if applicable. Therefore, caching can work straight-
forward using the variables of the CSP and their calculated values.

Extending the algorithm in Listing 9.1 correspondingly is trivial. Before the
first run of the local search, instead of initialising the search with a random point,
the cache is queried for a value for every variable of the problem. If no value can
be found, i.e., a cache miss occurred, a random value is used. After a solution has
been found, the corresponding values are stored in the cache. In the next section,
we will discuss how the notion of a cache can be extended to provide a degree of
coordination in a multi-agent context.

9.5 Coordination

In pALICA, coherent beliefs about the allocations within each plan were sufficient
to achieve coherent execution. In the presence of constraint satisfaction problems,
this is no longer the case. As multiple agents execute a plan, each agent indi-
vidually solves a CSP periodically. Since the behaviour of an individual agent
depends on the solution of this CSP, solutions should be equivalent or at least sim-
ilar throughout the team such that the team executes the program in a coherent
fashion. However, solutions can deviate within the team for several reasons:

Many Solutions – Typical continuous constrained problems have many solu-
tions, often even infinitely many. If there is no metric which gives pref-

9.5 Coordination 179

erence to a specific one, agents can arrive at completely different solutions.
Objective functions can be added to the satisfaction problem, yielding a con-
strained optimisation problem, in order to circumvent this problem. We will
discuss this problem class in more detail in Section 9.6. However, constraint
optimisation can be much harder than constraint satisfaction. Therefore an
alternative, less computational expensive way to guarantee coherence would
be beneficial.

Symmetry – One specific source for the many solutions problem is symmetry.
For instance, if two robots a and b in the robotic soccer scenario are sup-
posed to block opponents c and d, without further restriction, a could come
to the conclusion that it should block opponent c and b should block d, while
b calculates that a blocks d and b blocks c. This is an instance of the task
allocation problem, however this time integrated into a CSP. While again,
objective functions can be used to break symmetry, other, less expensive
symmetry breaking methods that achieve coherence are preferable.

Sensor Noise – Since sensory information are noisy, each robot has a slightly
different view on the world, thus the set of possible solutions differs within
the team. However, unless the beliefs of the agents diverge, the intersection
of these sets is non-empty, thus the existence of a solution upon which the
whole team can agree can be hypothesised. A coordination approach should
select such a solution, if it exists.

Intersecting CSPs – In ALICA, each agent maintains its own constraint store,
which depends on the plans the agent inhabits and the transitions it traversed.
Moreover, agents may query different variables. Thus, the set of queried
CSPs within the team, although connected by some variables may vary
greatly in dimensionality and clauses. Should the intersection of the corre-
sponding feasible regions be significantly smaller than the union, achieving
coherence becomes difficult. Obviously, if the intersection is empty coher-
ence cannot be established.

Before we discuss possible solutions for these issues, we establish some terms
with respect to the relation of constraint satisfaction problems to each other.

Definition 9.4. Given two CSPs c1 = (φ ,X ,C) and c2 = (φ ′,X ′,C′) we say that

• c1 and c2 are independent iff X ∩X ′ = /0,

• c1 and c2 are compatible iff there is a solution η for c1 and a solution η ′ for
c2 such that (X ∩X ′)η = (X ∩X ′)η ′

180 9 Solving Constraint Problems

• c1 subsumes c2, written c1 � c2 iff for all solutions η ′ for c2 there is a
solution η for c1 such that (X ∩X ′)η = (X ∩X ′)η ′.

• c1 and c2 are equivalent iff c1 � c2 and c2 � c1.

Trivially, all independent CSPs are equivalent, and all independent feasible
CSPs are compatible. Moreover, infeasible CSPs are subsumed by any CSP, and
if a feasible CSP is subsumed by another CSP, they are compatible.

Let C = {(φ1,X1,C1), . . . ,(φn,Xn,Cn)} be a set of CSPs considered by a team of
agent. A simple way of dealing with this set and the arising problems, is to con-
struct the intersection Φ = (

∧
φi,

⋃
Xi,

⋃
Ci), solve it centrally and distribute the

solution. Obviously, the intersection is subsumed by each individual CSP. This,
however, introduces a bottleneck and — at least temporarily — a single point of
failure. Moreover, in dynamic environments, it might be impossible to communi-
cate the individual CSPs in time before new sensory information is available, and
the global CSP is outdated before it can be solved.

Alternatively, similarly to the pALICA approach in task allocation, each indi-
vidual agent can broadcast its solution periodically. Received solutions can then
be integrated as variable-value tuples into the cache. Thereby, the cache accumu-
lates solutions calculated by all robots involved. Depending on the CSPs and the
belief bases involved, these can be tightly clustered or scattered within the solution
space. Since the situation changes dynamically, an agent can never blindly trust
a received solution, but should always check it against its current constraint store
before usage, however, it is likely that a solution is nearby, assuming the CSPs do
not vary greatly within the team. This suggests that received values can be used to
derive initial points from which a local search can start to look for a solution.

Using each received solution as an individual starting point leads to poor per-
formance in cases where these solutions are close to each other, since the same
part of the search space would be investigated multiple times. On the other hand,
merging all cached values into a single starting point is bound to overgeneralise
in cases where the solutions are scattered across the problem landscape. Hence,
solutions should be clustered using a dynamic number of clusters. Many initial
points should be used when the solutions are scattered and hence the degree of
conflict within the team is high, thereby allowing each agent to evaluate many or
all solutions provided by the team and compare them locally. In cases where the
solutions already converged to some small areas, fewer initial points are needed.

There are many possible clustering algorithms which can achieve this behaviour,
such as hierarchical clustering based on the work of Ward [176], or sequential
clustering with Bayesian filtering as proposed by Schubert and Sidenbladh [146].
In this case, the resulting cluster centres are used as starting points for a local

9.5 Coordination 181

search, hence the quality of the clustering result is less important than the time
efficiency of the algorithm. Moreover, the results should be identical over the
set of agents involved. Therefore, we employ a simple distance-based clustering,
which may result in too many cluster centres. However, as this effect will only
lead to a region being searched multiple times, it should not degrade the overall
performance significantly.

We assume that the cache stores for each agent and for each variable the last
received value, and the last computed value of the local agent. Listing 9.2 depicts
a simple, but fast clustering in pseudocode. We use the following notational con-
ventions: C denotes the cache and C(a,x) denotes the cached value calculated by
agent a for variable x. Finally, C(a,x) =⊥ denotes that no such value exists in the
cache, i.e., no value for x has been received from a.

While the depicted algorithm cannot compete with established clustering ap-
proaches in terms of accuracy, it is fast and suffices to cluster points close to each
other in the solution space, moreover, it can deal with partial solutions, i.e., solu-
tions to CSPs, which do not include all variables queried. Such situations can arise
when two agents solve intersecting CSPs, or one agent extends the CSP it consid-
ers with additional variables. The algorithm is not commutative, i.e., the sequence
in which points are presented matters. Hence, the list of solution vectors, M, is
uniquely ordered such that every agent is processing solutions in the same order.

The result is an ordered set of vectors in (R∪{⊥})n, where ⊥ indicates that no
suitable value could be obtained from the cache. In order to obtain initial points for
the local search, these values are replaced with random numbers. The set is sorted
such that clusters with a higher number of supporters occur before clusters with
a lower number. This results in a behaviour similar to a majority vote, such that
each agent tends to prefer solutions calculated by many other agents. On the basis
of this clustering we can extend the local search from Listing 9.1, which yields the
algorithm in Listing 9.3.

This algorithm obtains the clustered results from the cache and iterates through
them until the local search can obtain a solution. Should it run out of initial points
it continues with random ones. The process is aborted once a timeout is reached,
in which case solutions become irrelevant, and the CSP can be treated as if it was
infeasible, according to the real-time considerations in Section 9.4. However, the
algorithm performs at least one run of the local search for the first cached value
and at least one run based on a random point, if no solution could be obtained
so far. This guarantees that the most relevant (i.e., first) solution is tracked and
that at least some exploration is performed in each cycle, until a solution is found.
Thereby, the algorithm is allowed to violate the soft realtime constraint defined by
the timeout in order to explore the search space.

182 9 Solving Constraint Problems

InitialPoints (�v) {
//�v is the ordered list of queried variables
Let �r denote the size the domains of �v.
Let θ be a fixed threshold , i .e ., 10−3.
R := /0;

Let M be a list containing for all agents a ∈A:
�c := (C(a,v1), . . . ,C(a,vdim(�v)));

Let M be uniquely ordered according to an ordering over A.

remove all (⊥, . . . ,⊥) from M;

while(M �= /0) {
�s := (⊥, . . . ,⊥);
�k := (0, . . . ,0);
foreach (�c ∈ M) {

d := 0;
t := 0;
foreach (i ∈ [1,dim(�v)]) {

if (ci �=⊥∧ si �=⊥) {
d := d + ci−si

ri

2
;

t := t +1;
}

}
if (t = 0∨d/t < θ) {

foreach (i ∈ [1,dim(�v)]) {
if (ci �=⊥) {

if (si =⊥) {
ki := 1;
si := ci;

} else {
si := kisi+ci

ki+1 ;
ki := ki +1;

}
}

}
remove�c from M;

}
}
if ((∃si ∈�si)si �=⊥) R := R∪{(Σki,�s)};

}
Sort R descending by first tuple element;
return R;

}

Listing 9.2: Clustering of Cached Solutions

9.5 Coordination 183

Solve(csp) {
// parameters : sinit = 10−3, inc = 1.2, dec = 0.5
// minV = 10−12, maxV = 1010

begin := now;
f := transform(csp); // transform the problem into a function
let pmin and pmax be the vectors of the lower (upper) bounds, respectively;
d := number of dimensions of the csp;
i := 1;
M := InitialPoints (vars(csp));
while(true) {

p := (⊥, . . . ,⊥);
if (i ≤ |M|) {

p := Mi;
}
foreach (pi ∈ p) {

if (pi =⊥)
pi := random value ∈ [pmin

i , pmax
i];

}
j := 0;
let s and h be vectors with d elements;
set all sk := sinit ·(pmax

k − pmin
k);

set all hk := 0;
while(++j < maxIterations) {

if (f (p)> 0) {
insert p into cache;
return p;

}
g := ∇ f (p);
for (k=0; k<d; k++) {

if (gk ·hk > 0) sk := sk · inc;
if (gk ·hk < 0) sk := sk ·dec;
sk := min(max(sk,minV),maxV);
pk := pk + sgn(gk) ·sk;
pk := min(max(pk, pmin

k), pmax
k);

}
h := g;

}
if (time since begin > timeout) {

if (i = 1) i := |M|+1; // do at least one free exploration
else return FAILURE;

}
i := i+1;

}
}

Listing 9.3: Local Search with Coordination through Caching

184 9 Solving Constraint Problems

Due to the iteration over the clustered solutions, preference is given to solutions
according to the total order over agents. This order determines the precedence
among agents and could, in principle, be dynamically calculated according to the
quality and relevance of their sensory information. However, it is most important
that the order is known throughout the team. Here, we refrain from discussing how
such dynamic orderings can be achieved and assume a simple, static ordering, e.g.,
based on unique ids.

This algorithm solves the problems of symmetric solutions, many solutions,
and counteracts noise, as we will show in Section 10.3. Moreover, it utilises the
distributed computing power of the team to search for solutions, effectively solving
hard CSPs, which cannot be solved in one cycle, in a distributed manner. In this
case, agents will explore the search space using random starting points, until one
agent finds a feasible point, which is then distributed.

However, the algorithm does not address the problem of intersecting CSPs.
While it can deal with CSPs that have different, but intersecting sets of variables,
it does not guarantee convergence of the team when the feasible regions are differ-
ent. This is a hard problem, that cannot be solved this easily (otherwise, the CSPs
would be tractable). In other words, if a method existed that solves the intersecting
CSP problem, which is more efficient than just constructing the intersection and
solve it locally, than that method would be a more efficient solver in itself.

It is easy to see that no better approach can exist that does not sacrifice re-
activity, given communication latencies, non-linearity, and incompleteness of the
employed solver. Due to incompleteness, a solver cannot deduce infeasibility of
a CSP. Basically, it can only test whether a given assignment constitutes a solu-
tion. Furthermore, an agent cannot know whether an interpretation is a solution
to a CSP another agent considers as active without either knowing the CSP and
testing the point locally or querying the other agent. Querying takes time due to
latency and therefore risks that the problem changes in the meantime. If, on the
other hand, the CSP is known by the querying agent, it could as well solve the
intersection of the two CSPs. This is more efficient than considering the two CSPs
separately, otherwise a better solver could be constructed by problem decompo-
sition. Note that if one can assume that the communication latency is low with
respect to the dynamics of the environment, messages can be used to implement
distributed solving and optimisation techniques as discussed by Petcu [121].

Another possible approach to this type of coordination problem would detect
a lingering conflict stemming from intersecting CSPs by monitoring the cache,
and, should one occur, switch the decision protocol to another that sacrifices some
reactivity in order to resolve the conflict. For instance, an agent can be appointed to
construct the intersection, solve it, and broadcast the solution, similarly to the local

9.6 Constraint Optimisation 185

leader protocol discussed in Chapter 6. Alternatively, each agent could assume
explicit control of a part of the CSP and exchange its solutions with the team,
similar to the DCOP approach discussed in [121]. We deem such a treatment of
intersecting CSPs as future work.

9.6 Constraint Optimisation

In the previous sections, we focussed on constraint satisfaction problems, where
the agents’ behaviour is determined by the set of possible solutions to these CSPs.
In many scenarios, however, one might not only want to describe a set of solutions,
but also select the best among them according to some criteria. While this can still
be represented as a constraint satisfaction problem by allowing for quantifiers, a
formulation as a constrained optimisation problem is often much easier to solve.

Quantified CSP (QCSP) over Boolean domains are PSPACE complete [31]. To
our knowledge, there is currently no algorithm able to tackle QCSPs over contin-
uous domains effectively enough to be used by teams of agents acting in dynamic
domains, especially in the presence of non-linear and transcendental functions.
Recent work on solvers for QCSPs over continuous domains was done for instance
by Goldsztejn et al. [60, 59].

Instead of following the QCSP line of thought, we allow for an optimisation
criterion to be formulated together with a CSP, yielding a constrained optimisation
problem (COP).

Definition 9.5. If P = (�x,φ ,C) is a CSP, f a function mapping members of the
domain of �x to R then P′ = (P, f) is a COP. Any solution s to P is also a solution
to P′. An optimal solution s to P′ is a solution to P such that for all solutions s′ to
P, f (s)≥ f (s′). f is called the objective function.

In this work, we limit ourselves to the case of a single objective function, thus
this definition excludes multi-objective optimisation.

Extending the local search from Listing 9.1 to handle optimisation problems
is straight-forward. Essentially, instead terminating upon identifying a feasible
point, the algorithm follows the gradient of the objective function inside feasible
regions. The downside is that this does not yield a suitable termination criteria pure
satisfaction problems have, and indeed, if the objective function is unbound within
the search space, the algorithm cannot guarantee that it found a global optimum
due to its incompleteness.

However, for many problems, an upper bound for the objective function is
known in advance, or can be computed by interval propagation. Furthermore,

186 9 Solving Constraint Problems

for many scenarios finding the optimal solution is not necessary, but finding one
sufficiently close to it is acceptable, especially when tight realtime constraints are
given. We therefore assume that for any objective function f , there is a limit fmax,
which denotes a sufficiency threshold, such that for any COP with objective func-
tion f a solution x such that f (x)> fmax denotes a solution sufficiently close to the
optimum that the search can be terminated. Of course, fmax may equal ∞, in which
case the search will not terminate before a timeout is reached.

Example 9.3. For a CSP, which constraints goal positions of a set of n
robots, a suitable objective function minimises the sum of the squared dis-
tances from the robots’ current positions to their goal positions: f (�x) =
−∑n

i=1 Dist(Goal(i),Pos(i))2.
This way, the robots minimise the distance they need to travel, allowing them

to reach the described goal state swifter. Since the minimal distance between any
two points is 0, the global optimum of f (�x) is 0, although this point is only feasible
when the robots already reached feasible positions. Furthermore, due to sensor
noise and accuracy limitations of the actuators, a robot cannot position itself ar-
bitrarily precise. Therefore, a sufficiency limit of, e.g., fmax = −0.1 ·n may be
sensible, depending on the domain.

Optimisation also requires a slightly more complex treatment of exchanged or
cached solutions, since solutions obtained from different initial points can now be
compared with respect to their objective value. The exchange of solutions allows
the team to distributively explore the search space, and obtain an optimal or near
optimal solution quicker than a single agent can.

Thus, an agent should adapt the solution with the best objective value. However,
to stabilise results over time and within the team, a certain preference should be
given to solutions calculated earlier or by multiple other agents. In the case of
satisfaction problems, this was achieved by the preference ordering over clustered
solutions. This introduces two optimisation criteria, namely the given objective
function, and coherence over time and within the team. Due to the dynamics of
the domain, the two criteria can be in conflict.

We tackle this issue in the following way:

• Firstly, preference is given to the highest objective value, allowing for highly
reactive behaviour.

• Secondly, the first run of the local solver, which is initialised by the cluster
centre with the highest number of votes, is executed with a different parame-
ter set, i.e., with a lower minimal step size and a higher number of iterations.
This increases the chance of tracking an optimum.

9.7 Constraints and Task Allocation 187

• Thirdly, solutions stemming from the first run are given a slight preference,
such that other solutions must be at least a certain threshold better than the
one found during the first run. This hysteresis dampens oscillation.

• Finally, in the presence of an objective function, the unconstrained problem
is optimised once and the resulting interpretation is used as an initial point
for the constraint case. Thereby, the algorithm specifically searches for a
feasible region near an optimum of the objective function.

These measures avoid the complications of solving a multi-objective optimisa-
tion problem which changes quickly over time and allow for quick reaction in case
the objective landscape changes. In Section 10.3, we will evaluate this technique.

Listing 9.4 depicts the complete algorithm. The inner optimisation loop is
shown in Listing 9.5. Note that the parameters for precise and less precise search
are example values chosen ad hoc. The single optimisation run of the uncon-
strained problem is debatable, as it can constitute an improvement as well as an
impairment (see [180] for a discussion on the underlying problem). However, it
guarantees that in each iteration, time constraints permitting, a region with a high
objective value is searched. We deem this beneficial to the overall problem.

While extending the SMT-based approach to optimisation is out of scope of this
thesis, we like to mention some possibilities to deal with optimisation. Firstly, an
SMT solver can iterate over all propositional models and compare the resulting
solutions. This becomes quickly infeasible as the number of models increases.
Secondly, an optimisation of the unconstrained objective function can be used to
compute a propositional assignment as starting point for a local search iterating
over the propositional neighbourhood. Finally, branch-and-bound techniques [32]
can be used to narrow the propositional search space by iteratively asserting addi-
tional constraints whenever a solution is found.

9.7 Constraints and Task Allocation

The presence of CSPs and COPs in ALICA allows for powerful first-order deci-
sions to be formulated in a concise way. Moreover, these can be solved efficiently.
However, during plan execution agents are now confronted with two separate, but
interleaving problems, namely finding an assignment to the queried variables and
finding a task allocation mapping agents onto tasks. The solutions to both have a
major impact on the resulting behaviour the agents exhibit. Typically, CSPs refer
to dynamic properties of agents allocated to certain tasks, such as their positions
within the environment, their remaining battery power, or the current configuration

188 9 Solving Constraint Problems

Solve(satisfaction problem csp, objective function o, objective threshold ot) {
// parameters : significance threshold st = 10−22

begin := now;
f := transform(csp); // transform the problem into a function
let pmin and pmax be the vectors of the lower (upper) bounds, respectively;
d := number of dimensions of the csp;
i := 1;
M := InitialPoints (vars(csp));
pbest := FAILURE;
while(true) {

p := (⊥, . . . ,⊥);
if (i ≤ |M|) {

p := Mi;
}
foreach (pi ∈ p) {

if (pi =⊥)
pi := random value ∈ [pmin

i , pmax
i];

}
if (time since begin < timeout ∧ i = |M|+1) { //do one unconstrained optimisation

p := Rprop(p,1,o,⊥);
}
p := Rprop(p,f ,o, i =1);
if (p �= FAILURE∧ (pbest = FAILURE∨o(p)> o(pbest)+ st) {

pbest := p;
if (o is constant ∨o(pbest)> ot) {

insert pbest into cache;
return pbest;

}
}
if (time since begin > timeout) {

if (i < |M| + 1) i := |M|+1; // do at least one free exploration
else {

insert pbest into cache;
return pbest;

}
}
i := i+1;

}
}

Listing 9.4: Local Search with Optimisation and Coordination

of some of their joints. Hence, task allocation potentially influences the feasible
regions of a CSP and has an effect on the optimal solution to a COP. This relation-
ship is determined by the unfolding step (see Definition 8.8).

9.7 Constraints and Task Allocation 189

Rprop(p,c ,o, precise) {
// arguments: p − the initial point , c − the transformed csp , o − the objective function ,
// precise − indicating which parameter set should be used
// parameters : inc=1.2, dec=0.5, sinit = 10−3, maxV = 1010

if (precise) {
maxIterations := 110, minV := 10−15

} else {
maxIterations := 60, minV := 10−11

}
let pmin and pmax be the vectors of the lower (upper) bounds, respectively;
d := number of dimensions of the csp;
let s and h be vectors with d elements;
set all sk := sinit ·(pmax

k − pmin
k);

set all hk := 0;
pbest := p;
i := 0;
while(++i < maxIterations) {

if (c(p)≤ 0) {
g := ∇c(p);

}
else {

if (o is constant) return p;
g := ∇o(p);
if (c(pbest)≤ 0∨o(p)> o(pbest))

pbest = p;
}
for (k:=0; k<d; k++) {

if (gk ·hk > 0) sk := sk · inc;
if (gk ·hk < 0) sk := sk ·dec;
sk := min(max(sk,minV),maxV);
pk := pk + sgn(gk) ·sk;
pk := min(max(pk, pmin

k), pmax
k);

}
h := g;
}

}
if (c(pbest)≤ 0) return FAILURE;
return pbest ;

}

Listing 9.5: Single Optimisation Run

Ideally, these two problems would be unified. The resulting problem statement
would be to maximise an objective function which depends on the task of each
agent as well as a set of continuous variables, such that a Boolean combination of
constraints is satisfied.

190 9 Solving Constraint Problems

A naive approach to combining the two problems would be: Iterate over all
task allocations allowed by the cardinalities, and among the ones whose CSP is
satisfied, take the one with the highest utility. However, this approach quickly
becomes computationally infeasible. Moreover, if the global optimum is not found
in the first iteration by the methods presented so far, one can expect a higher rate
of task reallocations from this approach, degrading the performance of the team.

In principle, this problem can be treated as a mixed integer non-linear program-
ming problem. Techniques tackling such problems have recently been improved
by Nema et al. [107]. However, identifying a suitable solver for this kind of prob-
lem, which is able to perform well under tight time constraints (e.g., solve standard
situation problems in less than 30ms) is future work. Empirical results presented
by Nema [108] seem to indicate that these solvers are not suitable for such soft
realtime scenarios.

It is possible to interleave the A∗ search for a task allocation with constraint
solving such that large portions of the search tree can potentially be pruned early.
However, from another perspective, a unification of these two central problems
has a major drawback. The task allocation algorithm presented in Section 5.12 is
sound and complete. A combination with an incomplete algorithm, such as a local
search for non-linear constraint satisfaction problems, can lead to an incomplete
task allocation, which we deem highly undesirable.

The disjoint treatment of task allocation and constraint optimisation leads to
an optimal solution whenever the best valid task allocation yields a feasible COP
whose global optimum is at least as good as any global optimum of any COP
yielded by any valid task allocation. Currently, this property can only be achieved
by careful formulation of the runtime conditions and utility functions involved.

9.8 Summary

In this chapter, we introduced an anytime solver for a rich class of problems,
namely Boolean combinations of non-linear constraints over continuous domains
featuring rational and transcendental functions. We deem this problem class suit-
able for a large variety of problems occurring in multi-robotic domains. The solver
is based on a local search combined with auto-differentiation, which provides a
gradient at each considered point in linear time. We showed how solutions can be
tracked over time using a cache and extended this caching method towards a coor-
dination approach by integrating a clustering algorithm, which provides a majority
vote over potential solutions. Afterwards, we discussed the relevance of constraint
optimisation problems, and consequently extended our algorithm to this problem

9.8 Summary 191

class as well. The solver is integrated into the reference implementation discussed
in Chapter 7. Moreover, we discussed the potential of SMT solving techniques
in this scenario based on a motivating benchmark test. Finally, we identified task
allocation and CSP solving as two related problems which should be viewed from
a unified perspective.

Part IV

Assessment

10 Evaluation

In the previous chapters, we presented the multi-robot programming language AL-
ICA, starting with a basic propositional variant in Part II, which we then extended
with constraints over continuous values in Part III. Here, we pick up the design
goals introduced in Chapter 1 and present corresponding evaluation results.

Firstly, in Section 10.1, we present experiences in modelling team behaviours,
which were gained by the Carpe Noctem team while using the presented approach.
These experiences led to some design patterns which proved to be robust and
reusable. Section 10.2 focuses on robustness given unreliable network conditions.
We present simulation results in the robotic soccer domain with different degrees
of packet loss and packet delay. We also show the effect of conflict detection and
resolution under these circumstances. In Section 10.3, the robustness of our con-
straint solving and optimisation technique is assessed. We evaluate the noise over
time and the coherence within a team of agents solving problems with different de-
grees of sensory noise. Section 10.4 shows a sketch of how to apply ALICA in an
extraterrestrial exploration scenario. Moreover, we present a method to formulate
dynamic formations with which multiple robots can explore an area in a coordi-
nated fashion. Finally in Section 10.5, we employ ALICA in a scenario drawn
from the rescue domain. ALICA is used to coordinate and control a team of fire
brigades in order to fight multiple fires within a city. We compare the performance
of ALICA with a set of established methods for the task assignment problem and
assess the scalability of ALICA with respect to the number of participating agents.

10.1 Modelling in RoboCup

ALICA has been successfully used since 2009 by the Carpe Noctem Robotic Soc-
cer Team of the University of Kassel1. This allowed developers to gain experi-
ence in implementing plans and strategies using ALICA. These experiences cul-
minated in certain design patterns which proved to be useful, reusable, and robust
against the features of the domain, namely noise, unreliable communication, and
agents breaking down. They also illustrate the expressiveness of ALICA. In the

1 http://das-lab.net

H. Skubch, Modelling and Controlling of Behaviour for Autonomous Mobile Robots,
DOI 10.1007/978-3-658-00811-6_10, © Springer Fachmedien Wiesbaden 2013

196 10 Evaluation

Sync

Task1

1..1

Task2
1..1

Z0

SubPlanType1

Z1

SubPlanType2

Z2

SubPlanType3

φ1

Z4

SubPlanType4
φ2

S1

Figure 10.1: Strong Synchronisation in ALICA

following, we describe domain-specific formulae in a pseudo-formal manner, since
domain-specific descriptions are not part of this work and a more formal presenta-
tion would not contribute to the given examples.

10.1.1 Strong and Weak Synchronisation

As mentioned earlier in Section 5.13, ALICA allows for strong synchronisation
by employing explicit language elements, as well as weak synchronisation using
conditions referring to the belief of the participating agents. Figure 10.1 depicts
the usage of a synchronisation element to enforce strong synchronisation, such that
agent will only move together from state Z0 to Z2 and Z1 to Z3, respectively. Agents
will only move along these transitions if they have established mutual belief that
φ1 and φ2 hold.

Strong synchronisation is rarely used in RoboCup due to the communication
overhead. Weak synchronisation, on the other hand, is used frequently, for instance
for when describing a pass. Figure 10.2 depicts the analogous pattern. Here, the
agent executing Task1 moves first along the transition, while the one executing
Task2 waits until it is notified that the first agent inhabits state Z2. This kind of
coordination requires only a single message. On the other hand, it does not truly
synchronise the transition, since the second robot will always move after the first.
This is acceptable in many scenarios. Weak synchronisation is also more suscep-
tible to error, e.g., in cases where the second agent does not receive the plan-tree

10.1 Modelling in RoboCup 197

Sync

Task1

1..1

Task2
1..1

Z0

SubPlanType1

Z1

SubPlanType2

Z2

SubPlanType3

φ1 ∧φ2

Z4

SubPlanType4

(∃a) In(a,Synch,Task1,Z2)

Figure 10.2: Weak Synchronisation in ALICA

message from the first. The periodic broadcast employed by ALICA alleviates this
problem to a certain degree.

10.1.2 Finite State Machines and Dynamic Task Allocation

At the core of ALICA’s modelling semantics are three diametrical concepts,
namely finite state machines, dynamic task allocation, and constraint satisfaction
and optimisation problems. The ability to combine these concepts arbitrarily is
one of ALICA’s strong points from a modelling perspective. Figure 10.3 shows a
RoboCup strategy formulated using only dynamic reallocation. The correspond-
ing utility function, U(121Play), minimises the attacker’s distance to the ball and
the defender’s distance to the own goal, thereby also prioritising the task Defend
above the task AttackSupport. In contrast, the plan Attack depicted in Figure 10.4
is a pure finite state machine. This plan controls the robot’s action given the per-
ceived positions of the ball and the opponents.

These two instances show how both concepts, finite state machines and dynamic
task allocation, are successfully used together within the same ALICA program.
The two concepts can even be combined within the same plan, as shown in Fig-
ure 10.5. Here, two robots stay close to the dribbling robot and protect it against
approaching defenders. The task allocation dynamically assigns agents to the three
tasks depending on the situation, while transitions are used to switch the protecting
robots between following and blocking.

198 10 Evaluation

121Play

Attack

1..1

AttackSupport

0..2

Defend
0..1

Z0

Attack

Z1

MidFieldDefense

Z2

Defend

Figure 10.3: RoboCup Strategy 1-2-1

10.1.3 Select and Commit

The combination of finite state machines and dynamic allocation and decision
making led to another design pattern, which we like to coin “Select and Com-
mit”. Here, the team executes a plantype and dynamically switches plans until a
certain condition is met and the team moves to a state selected depending on the
currently executed plantype, thereby committing to the dynamically made decision
at the time the condition became true. Figure 10.6 illustrates this using an ALICA
specification for a throw-in in robotic soccer.

The plan ThrowIn allocates one robot to the task Keeper and the rest to the task
FieldPlay. While the keeper independently guards the goal, the field players either
move towards their positions in state Z1 or search for the ball in state Z2 in case its
location is not known. In this simplified example, the plantype ThrowInPosition
contains four different plans, each meant for a different situation. The team selects
one of them based on the ball’s position, the behaviour of the opponent, and the
current score of the game. As long as the game is in this positioning phase, the
team can switch between these plans dynamically. The conditions φ1 to φ4 have
the form

Situation(Start)∧ ((∀a,x,y) In(a,ThrowIn,FieldPlay,Z1)↔ In(a, pi,x,y))

10.2 Unreliable Communication 199

Attack

FieldPlay

1..1

Z0

BallIntercept

ActuatorGrab

Z1

Dribble

ActuatorCtrl

SelectHighKick

HaveBall

¬HaveBall

Z2

MoveBehindBall

ActuatorGrab

Near(Ball,Border) ¬Near(Ball,Border)

Z3

BallIntercept

ActuatorGrab

Success(MoveBehindBall)

HaveBall
¬Near(Ball,Border)

Z4

Duel
Near(Ball,Opponent)

¬Near(Ball,Opponent)∨¬HaveBall

Figure 10.4: RoboCup Plan for Attacking Robot

where pi refers to a specific plan in the plantype ThrowInPosition. Thus, upon
reception of the start signal from the referee, the team will move to a subsequent
state which is determined by the currently executed plan, provided that they be-
lieve to be in an agreement. If a conflict is known, the conflict is firstly resolved,
and afterwards the field players move on to the execution phase. Note that this
construct does not violate the locality principle, since the conditions appear on
transitions. A similar construct within a precondition would violate plan locality.

The examples presented in this section illustrate the ease of modelling within
ALICA as well as its expressive power. Due to the experience gathered by the
RoboCup team, we see some design patterns emerging, similar to patterns in pro-
gramming languages.

10.2 Unreliable Communication

We reported first evaluation results of pALICA without conflict detection and reso-
lution in [157], focussing on the performance under poor network conditions. The

200 10 Evaluation

31Play

Attack
1..1

AttackSupport

0..2

Defend
0..1

Z0

Dribble

Z1

Follow

Z3

Block

Opponent close

No opponent close

Z2

Defend

Figure 10.5: RoboCup Strategy 3-1

results showed stability under poor network conditions such as a uniformly dis-
tributed packet loss of up to 50% or packet delay of 600ms. The simulated results
for packet delay were confirmed under real-world conditions during the RoboCup
World Championship 2009 [157].

One of the major changes within the ALICA framework since then were the
addition of explicit conflict detection and resolution. Conflict detection and res-
olution in ALICA was first discussed in [158] and used since the beginning of
2011 within the Carpe Noctem RoboCup team. We could show that conflicts due
to static error, i.e., inconsistent configurations can be reliably detected and solved
by the resolution scheme presented in Chapter 6. Furthermore, the approach is
also able to compensate conflicts due to systematic sensor errors, such as robots
underestimating small distances to perceived objects.

In the following, we present an evaluation of ALICA’s performance in unreli-
able network conditions with and without conflict resolution. In each experiment,
we simulate four robots playing soccer for five minutes under different network
conditions and measure the time from an event triggering a dynamic reallocation
until the team achieves a coherent view on the task allocation. We refer to this
time as time to coordinate (TTC). This measure is similar to ATA (Average time
to agreement) used by Kaminka and Tambe [82]. However, ATA is measured in

10.2 Unreliable Communication 201

ThrowIn

FieldPlay

2..∞

Keeper

0..1

Z1

Z3

DefendGoal

ThrowInPosition

Z2

ball lostball found

SearchBall

Z4

TI-Short

Z5

TI-Long

Z5

TI-Corner

Z6

TI-Bounce

S

φ1

φ2

φ3

φ4

Figure 10.6: RoboCup Plan for Throw-In Situations

abstract time units called “ticks” introduced by the respective simulation, which
also synchronises the deliberation cycles of the agents involved. TTC is measured
in seconds. Furthermore, our simulation does not artificially synchronise actions
or sensory information of the agents involved.

Additionally, we measured the average number of different belief states present
within the team, called Belief Count (BC), which can range from one (total agree-
ment) to four (all agents have a different view). This measure indicates the amount
of disagreement in the team. The more dynamic an environment is, the higher the
average belief count should be, as agents cannot agree faster than they can make
decisions and further, sensory information about the dynamically changing ele-
ments of the environment needs to be communicated to agents that cannot observe
them directly. In robotic soccer, such elements include the ball, the opponents, and
the positions of team members.

202 10 Evaluation

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
C

T
T

C
(s

)

Packet Loss

BC
TTC

BC w. conflict resolution
TTC w. conflict resolution

Figure 10.7: Time To Coordinate and Number of Belief States under Simulated Package
Loss.

In the following experiments, the deliberation frequency of each agent is set
to 30Hz, the maximal communication frequency (fmax) to 15Hz and the minimal
communication frequency (fmin) to 5Hz. For experiments with conflict resolution,
the number of subsequent cycles triggering it is set to 4, and the authoritative time
interval is bounded between tmin = 0.8s and tmax = 5s. In order to introduce further
dynamics to the experiment, the simulator repositions the ball randomly every five
seconds.

In the first experiment, the simulator emulates perfect sensors, i.e., no noise
or errors were added to the observations. Figure 10.7 depicts the results under
package loss and Figure 10.8 shows the results for artificially created packet delay.
Each data point represents 45min simulation.

We can draw the following conclusions from Figure 10.7: Firstly, we see that
without conflict resolution under perfect network conditions, the TTC is about
100ms with a BC of 1.04. Hence, on average, the robots achieve an agreement
after one communication cycle and three deliberation cycles. Due to lack of per-

10.2 Unreliable Communication 203

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
C

T
T

C
(s

)

Packet Delay (s)

BC
TTC

BC w. conflict resolution
TTC w. conflict resolution

Figure 10.8: Time To Coordinate and Number of Belief States under Simulated Package
Delay.

sistent conflicts in this setting, task allocation with conflict resolution shows the
same performance. This is comparable to the ATA obtained by Kaminka and
Tambe [82], 3.65 ticks, although in their experiments, team members were able
to communicate in every deliberation cycle.

Secondly, the BC using task allocation with and without conflict resolution in-
creases very slowly until a packet loss of 50% is reached, at which point it starts
to grow exponentially. The same holds for the TTC value. Note that the higher
packet loss, the more likely it is that an agent incorrectly assumes that others broke
down due to lack of message reception (see Section 7.5.2). This effect appears to
become dominant in this case at a packet loss ratio of about 60% to 70%.

In contrast to packet loss, introducing packet delay into the system has a com-
pletely different effect, as shown by Figure 10.8. Without conflict resolution, the
team is much more resilient to packet delay than to packet loss. This is to be ex-
pected, as the robots mostly base their decisions on perfect local data provided
by the simulator and thus arrive at the same conclusions. Therefore, the indica-

204 10 Evaluation

tors only increase slightly with packet delay. However, when conflict resolution is
used, packet delay has a significant impact on the time to coordinate. There are
two reasons which in combination cause this effect:

• Packet delay introduces cycles in the task allocation history, since agents
receive messages referring to past events and subsequently revert the corre-
sponding update by dynamic reallocation. Therefore, packet delay triggers
the conflict resolution protocol. This effect could be countered by taking ad-
vantage of synchronised clocks (i.e., by using the NTP protocol [101]) and
discarding or modifying messages older than a certain age, thus improving
performance in terms of team coherence.

• Conflict resolution relies heavily on communication. During authoritative
mode, the task allocation problem is solved by a single robot which broad-
casts its results. The delay of these authoritative messages has a high impact
on the team’s coherence. Every time the elected leader makes a decision,
it is in disagreement with the rest of the team until the team receives and
reacts on the respective message, a process that takes about 50ms in addi-
tion to packet delay. In normal mode, agents can simultaneously react to the
environment.

For the next experiment, we modify the simulator to add systematic error to the
perceived ball position. Each robot perceives the ball 30cm closer than it actually
is. This systematic error roughly emulates real conditions, where the image pro-
cessing overcompensates for poor lighting conditions. Under conditions with very
little ambient or diffuse light and a high amount of direct light, the ball’s lower
half appears black and is no longer recognisable as part of the ball, which leads
to an overestimation of the distance to the ball. In practice, this effect is often
countered by heuristics, which in turn overcompensate the effect, making the ball
appear closer than it actually is.

Figure 10.9 shows the resulting coordination under packet loss and Figure 10.10
shows the same for packet delay. The data clearly shows that conflict resolution is
advantageous in cases where the beliefs within the team diverge, e.g., due to sys-
tematic sensory errors. Under perfect network conditions, the average number of
belief states within the team is 1.2, almost 20% worse than in the previous scenario
without systematic errors. Using conflict resolution, the BC is reduced to 1.08.
The difference between the two coordination schemes is even more apparent in
the TTC, where conflict resolution achieves agreement under perfect network con-
ditions in 150ms in average, while conflicts persist for 450ms otherwise. Conflict
resolution cannot achieve results as good as when perfect sensory data is available,

10.2 Unreliable Communication 205

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
C

T
T

C
(s

)

Packet Loss

BC
TTC

BC w. conflict resolution
TTC w. conflict resolution

Figure 10.9: Coordination under Packet Loss with Systematic Errors

since conflicts first need to be detected and then communicated about before they
are resolved.

Conflict resolution improves performance until a packet loss of 60%, at which
point lost authoritative messages start to cause more conflicts than can be resolved.
A similar trend can be observed for packet delay (Figure 10.10), where conflict res-
olution improves coordination up until at 300ms delay, at which point, the team
starts to perform better without conflict resolution, due to its reliance on commu-
nication.

Interestingly, the TTC without conflict resolution actually improves with packet
delay in this experiment. This is the result of a fairly complex interrelation between
sensor fusion and packet delay. Packet delay increases the distance between the lo-
cal observations and remote observations with respect to moving objects. At some
point, the different observations are not merged any longer and are considered as
two different objects by the sensor fusion algorithm. A dribbling robot is therefore
perceived by its team members as an opponent dribbling, since they do match the
remote localisation information with the local obstacle information. Since there

206 10 Evaluation

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
C

T
T

C
(s

)

Packet Delay (s)

BC
TTC

BC w. conflict resolution
TTC w. conflict resolution

Figure 10.10: Coordination under Packet Delay with Systematic Errors

is exactly one ball in the game, the robots have to select one hypothesis. The
precise calculations are based on the Dempster-Shafer theory of evidence [149]
(see [131] for details regarding this scenario). In this situation, they favour the
observation of the robot closest to the ball, i.e., the dribbling robot, since it has
the highest confidence. Thus, other robots will rely on the delayed information
sent by the dribbling robot instead of their own sensory information, provided that
the distance to the ball, the delay, and the velocity of the dribbling robot are large
enough. Thus, packet delay partially increases the level of coherence among the
belief bases in the team.

We do not present results for scenarios with sensory noise. In our experiments,
sensory noise caused the performance to degrade slightly, which is to be expected.
Apart from that, the overall behaviour of the TTC and the BC resemble the case
with perfect data.

In summary, with disagreement periods of 100ms under perfect conditions, 230
to 250ms under 50% packet loss, and 110 to 270ms under 200ms delay, we can
state that the agents not only react quickly to changes in the environment but also

10.3 Constraint Solving and Optimisation 207

achieve agreement about the task allocation quickly and hence act and cooperate
according to the modelled plans. Moreover, systematic sensor error can be ef-
fectively countered by conflict resolution, given the network is not degraded too
much.

In realistic scenarios, network quality cannot be regarded as constant as it was
in these experiments. Instead, the network is subject to bursts of errors, which
affect packet loss and delay for a short period of time. Under these circumstances,
the performance of the team should quickly degrade in the same fashion as in the
presented experiments if the burst is long enough. Short bursts are compensated
for, since each agent computes team-level decisions in which it is involved individ-
ually and maintains its beliefs about them until notified of conflicting information
or until it deems other robots to be out of order due to lack of messages for a longer
period of time.

The degree of achievable coherence depends on the dynamic of the domain, the
reliability of the network, and the coherence of the sensor information. In settings
where all three factors are extremely demanding, every coordination approach will
eventually fail. However, one can tackle extreme scenarios using additional means
of coordination, such as action recognition or using the environment to commu-
nicate. Integrating action recognition along the lines of the work of Huber and
Durfee [75] is future work.

10.3 Constraint Solving and Optimisation

One of the main features that distinguishes ALICA from other approaches to multi-
agent coordination is the integration of constraint satisfaction and optimisation
problems. In Definition 9.1, we proposed a problem class that suits a variety of
robotic and multi-robotic problems, namely non-linear continuous constraint sat-
isfaction problems (CNLCSP). Subsequently, we described a solver that can tackle
this problem class in real-time scenarios and coordinate the results within the team.
The solver as well as the problem class are meant to be exchangeable and appropri-
ate interfaces are provided, so that for different domains, different problem classes
can be used to describe team behaviour. However, the described algorithm is inte-
grated into the ALICA reference implementation. In [155], we presented a detailed
evaluation of the performance of this and other solvers using problems drawn from
robotic domains. The solver discussed in Chapter 9 showed the best performance
in these experiments, and was able to solve most of the benchmark problems in a
time acceptable for near realtime reasoning.

208 10 Evaluation

The following series of experiments evaluates the stability against noise as well
as the degree of coordination achieved by our distributed constraint satisfaction
and optimisation approach. In each experiment, a team of agents solves a satisfac-
tion or optimisation problem similar to those occurring in robotic scenarios. Each
participating agent is individually affected by Gaussian noise. Similarly to real-
world scenarios, each agent solves the problem in each deliberation cycle. After
500 iterations, the agents terminate.

We measure the standard deviation of each agent’s solution over time and the
standard deviation within the team at any point in time.

10.3.1 The Ring Problem

Firstly, we evaluate our approach on a simple constrained quadratic optimisation
problem:

Let c be a fixed random point in [−104,104]2, find p ∈ [−104,104]2 such that

o(p) = 4·104 −|c− p|

is maximised subject to
|c− p| ≥ 2·103

The set of optimal solutions is a circle with a radius of 2 ·103 around c. All
points outside that circle are solutions. Note that the constants in this and the
following objective functions are used to guarantee that the functions map to values
larger than 1. This is due to an implementation detail in the solver, which simplifies
the necessary computations by a small margin and has no other consequence. In
the experiment, each participant sensed the point p under isotropic Gaussian noise
with deviation σin.

Figure 10.11 depicts the resulting average standard deviation per agent over
time. Note that in cases with one or two agents, this output noise increases dras-
tically at high noise levels. At high noise levels, one or two agents are not able to
reliably track previous solutions. However, with an increasing number of partic-
ipating agents, the noise levels decrease drastically. This effect is most apparent
when adding the third agent and afterwards shows diminishing returns. This be-
haviour is as expected, the exchange of solutions used as starting points for the
local search and the majority vote over solutions stabilises the result as soon as
a majority can exist. Increasing the number of available votes has less and less
impact on the result.

Figure 10.12 shows average standard deviation within the team at any point
in time, it is a measure for the team’s level of coherence. The higher this noise

10.3 Constraint Solving and Optimisation 209

0
100

200
300

400
500

12345678910

0
200
400
600
800

1000
1200
1400
1600
1800

σout

σin

of Agents

σout

0
200
400
600
800
1000
1200
1400
1600
1800

Figure 10.11: Resulting Noise Levels over Time in the Ring Problem

0
100

200
300

400
500

2345678910

0
100
200
300
400
500
600

σout

σin

of Agents

σout

0
200
400
600
800
1000
1200
1400
1600
1800

Figure 10.12: Resulting Noise Levels within the Team in the Ring Problem

measurement, the less coherent the team can act. Comparison between the two
measurements reveals that the noise within the team is consistently lower than the
noise over time. Therefore, even though the team as a whole is still susceptible to

210 10 Evaluation

300

400

500

600

700

800

900

1000

1100

1 2 3 4 5 6 7 8 9 10

σ o
ut

of Agents

Noise over Time
Noise within the Team

Figure 10.13: Resulting Noise Levels for σin = 400 in the Ring Problem

the sensory noise, it reacts coherently to it. Indeed, the noise within the team is
only slightly higher than the input noise.

Figure 10.13 shows a 2D view on the two curves at an input noise level of
σin = 400. It depicts the drastic reduction in noise over time when adding the third
agent and the diminishing return for additional agents more clearly. Moreover,
we only see a slight increase in the noise within the team as agents are added to
it. This increase reflects the distribution of solutions due to the distribution of the
input point c.

10.3.2 Blockers

As a second experiment, we use a simplified problem from the robotic soccer
domain. Given the positions of four opponent robots and of the ball, the task is to
find three positions on the field, which are at least two meters from the ball, at least
one meter away from each other, and 0.7m from away from one opponent along

10.3 Constraint Solving and Optimisation 211

0
100

200
300

400
500

12345678910

0
1000
2000
3000
4000
5000
6000

σout

σin

of Agents

σout

0
1000
2000
3000
4000
5000
6000

Figure 10.14: Resulting Noise Levels over Time in the Blocker Problem

the vector towards the ball. This is a disjunctive satisfaction problem without an
objective function.

Formally, find p1, p2, p3 ∈ [−104 mm,104 mm]2, given b, a fixed random point in
[−103 mm,103 mm]2, and o1,o2,o3,o4 uniformly distributed fixed points between
2.5m and 8m away from b. The solution must satisfy:

((∀i)|pi −b| ≥ 2m)∧ (10.1)

|p1 − p2| ≥ 1m∧|p1 − p3| ≥ 1m∧|p2 − p3| ≥ 1m∧ (10.2)(
(∀i)(∃ j)

∣∣∣∣pi −o j +
0.7m·(b−o j)

|b−o j|

∣∣∣∣< 0.01m
)

(10.3)

The quantifications in the last line over the indices i and j are used to abbreviate
the corresponding conjunction and disjunction, respectively. Thus, the solution is
constrained to be any combination of points in front of the four opponents with a
precision of 1cm. Typically, one would add an objective function to this scenario
in order to minimise the distance each robot has to travel to arrive at the target
positions. Here, we omit this to maintain a pure satisfaction problem and to avoid
the noise inhibition such an objective function would entail. All observations, the
ball as well as the opponents, are subject to isotropic Gaussian noise with deviation
σin, measured in mm.

212 10 Evaluation

0
100

200
300

400
500

2345678910

0
400
800

1200
1600
2000

σout

σin

of Agents

σout

0
1000
2000
3000
4000
5000
6000

Figure 10.15: Resulting Noise Levels within the Team in the Blocker Problem

Figure 10.14 shows the resulting noise over time, which features the same
characteristics as the simpler conjunctive optimisation problem in Section 10.3.1.
However, the resulting noise level is much higher. This is to be expected since
instead of a single noisy point in the equation, there are now five and each poten-
tial target position depends on two noisy points. Moreover, whenever the agents
lose track of the solution, they may switch to a completely different one, i.e., a
different case in the disjunction, thus inducing a large variance. In some instances,
this is even required to maintain a solution, due to the second constrain requiring
a minimal distance between the target positions. In some cases, the CSP can even
become infeasible, namely, if the opponents appear too close to each other or to
the ball. This happened in 0.042% of the cases, i.e., once every 45s.

Similarly, Figure 10.15 shows the same trend as in the previous example. The
noise within the team is consistently lower than the noise over time, thus the robots
are coordinated even when they lose track of a solution. Figure 10.16 is a 2D
projection of the noise over time with one to five agents. It shows again the sudden
drop in noise once three agents participate in this problem and the diminishing
return for every additional agent.

10.3 Constraint Solving and Optimisation 213

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500

σ o
ut

σin

1 Agent
2 Agents
3 Agents
4 Agents
5 Agents

Figure 10.16: Resulting Noise Levels over Time in the Blocker Problem

10.3.3 Inverse Kinematics

As a last experiment, we use an inverse kinematics problem. Here, the goal is to
position the end-effector of a Jaco™ robotic arm by Kinova. The arm features six
degrees of freedom. The position of the endeffector corresponds to the point p in
homogeneous coordinates:

p = M1 ·M2 ·M3 ·M4 ·M5 ·M6 ·(0,0,0,1)T

where Mi is a matrix representing the transformation by the i-th joint of the arm.
Each transformation depends on one degree of freedom. The orientation of the
end-effector is defined by the transformation matrix M = M1 ·M2 ·M3 ·M4 ·M5 ·M6
with elements mi j. Given the target point g and target rotation matrix R with ele-
ments ri j, the objective function is:

U = 1000−|g− p|−∑
i

∑
j
(mi j − ri j)

2

214 10 Evaluation

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4 0.5

σ o
ut
(r

ad
)

σin((m, rad))

1 Agent
2 Agents
3 Agents
4 Agents
5 Agents

Figure 10.17: Resulting Noise Levels over Time in the Inverse Kinematics Problem

we do not add any constraints, thus evaluate a completely unconstrained optimi-
sation problem. In the experiment, each individual dimension of both the target
point and the target orientation is subject to Gaussian noise σin.

Figure 10.17 shows the resulting noise level over time with different numbers of
agents. Note that the arm has a maximal range of about 1.5m, so an input noise of
0.1 is already quite significant compared to the arm’s operating range. Therefore,
the resulting high noise levels are not surprising. However, we can see the decrease
in output noise due to multiple agents solving the problem. Moreover, in line with
the previous experiments, the diminishing return is clearly visible.

For comparison, Figure 10.18 depicts the noise levels within the team versus
the noise level over time for the case of five agents. While both measurements
react similar to input noise, noise within the team is lower than noise over time.
Therefore, the team also coordinates in this unconstrained scenario.

10.3 Constraint Solving and Optimisation 215

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4 0.5

σ o
ut
(r

ad
)

σin(m, rad)

Team
Time

Figure 10.18: Resulting Noise Levels for 5 Agents in the Inverse Kinematics Problem

10.3.4 Summary

Summarising, we can state that the proposed algorithm coordinates the team, as
evident by the experiments, in pure satisfaction problems, pure optimisation prob-
lems, and mixed problems. Individual decisions are still susceptible to noise to
a degree that depends on the specific problem. Due to the trade-off between re-
activity and robustness against noise, it seems unlikely that better results can be
achieved without sacrificing reactivity to a certain degree. In all experiments, each
agent solved the given problem with respect to its local, noisy sensory data. In
other words, this approach focuses on reactivity. Note that this algorithm can triv-
ially be combined with a smoothing or sensor fusion preprocessing step. We deem
such a combination mandatory for all real-world scenarios.

216 10 Evaluation

10.4 Case Study: Exploration

In Section 1.3.2, we discussed extraterrestrial exploration as a possible target sce-
nario for ALICA. Since such scenarios typically require highly specialised equip-
ment for equally specific tasks, one can expect that any robotic team would be
heterogeneous. That is, the team consists of different robots, each with a set of
different abilities and actuators.

Representation and reasoning about heterogeneous teams is straight-forward in
ALICA, since it allows the definition of roles based on required capabilities, and
then matches these roles to tasks within plans that ought to be executed.

Consider the following lunar scenario: A small team of robots is tasked with
finding and retrieving components of a communication station. The components
are distributed in an unknown environment. The team consists of four small robots,
equipped with various sensors for exploration, and two larger robots, which are
equipped with arms, so they can grab and carry the components once found.

To distinguish between the two kinds of robots, one can introduce the following
capabilities

• Speed : {�,⊥}

• CanGrab : {�,⊥}

• CanCarry : {�,⊥}

based on these capabilities, one then defines roles within the team:

R= {Scout,Transporter}

The role Scout requires robots to be fast, while the role Transporter requires robots
to grab and carry objects. Role allocation will then match the smaller robots onto
the role Scout and the larger robots onto the role Transporter. Note that this ex-
ample is slightly simplistic, it is easy to envision a more heterogeneous team com-
position, where some robots are able to grab objects, but cannot carry them over
longer distances. In this case, the role Transporter could be split into Transporter
and Loader.

Figure 10.19 depicts how the problem can be represented as an ALICA plan on
the highest level. Scouting robots would take on the task Scouting, while trans-
porters would take on the task Retrieving. Both decisions are made based on pref-
erences between roles and tasks, which encode whether or not a certain role can
take on a certain task and how well it can potentially perform.

Scouts will execute the plantype Search until all components are found and then
return to base. Transporters will idle in state Z2 until a component is discovered, in

10.4 Case Study: Exploration 217

Retrieve

Scouting

0..∞

Retrieving

0..∞

Z1

Z2

Search

Z3

Return

All components located

S1

At base

Z4

RetrieveObject

any known object not at target

Sub-task successful

S2

all objects retrieved

all objects retrieved

Figure 10.19: Plan for Search & Retrieval

which case they start to execute RetrieveObject. Whenever a task in RetrieveObject
is completed, the corresponding robot will go back to the idling state Z2. Once all
objects are retrieved, all transporters successfully terminate this task.

The two plantypes RetrieveObject and Search are interesting examples illustrat-
ing the capabilities of ALICA further. We will firstly discuss RetrieveObject. As
indicated by the cardinalities of the plan Retrieve, this plantype should work with
any number of robots and objects.

10.4.1 Retrieving

In the remainder we assume the presence of the following domain predicates:

• Distance(a,b,d) – d is the distance between positions a and b.

• ComponentsLocated(n) – n is the number of located components, that are
not yet transported.

218 10 Evaluation

RetrieveObjImpl

Retrieving

0..∞

Idling

0..∞

Z1

Z2

Z3

MoveToGoal

�� ψ
Z4

GrabObject

Position

Success(MoveToGoal)

Z5

MoveToBase

Z6

Unload

S1

Success(GrabObject)

At Base

Success(Unload)

Figure 10.20: Plan for Retrieval

• Position(a, p) – Agent a is at position p.

• Near(p,o) – Position p is near object o.

• Component(o) – o is a component located that is not yet transported.

Figure 10.20 shows a possible realisation of RetrieveObject: RetrieveObjImpl.
It features two tasks, Retrieving and Idling. The intuition is that surplus trans-
porters should idle until more components have been found by the scouts. This is
achieved by a combination of runtime condition and utility function:

10.4 Case Study: Exploration 219

Run(RetrieveObjImpl) = ComponentsLocated(n)

∧|{a | In(a,RetrieveObjImpl,Retrieving,z)}| ≤ n

U(RetrieveObjImpl) = pri(RetrieveObjImpl)

+
|{a | In(a,RetrieveObjImpl,Retrieving,z)}|

|{a | In(a,RetrieveObjImpl,τ,z)}|

Note that depending on the task allocation algorithm, implicit idling can already
achieve the desired behaviour. Here, we use an explicit idling task so that the effect
becomes more apparent.

Each transporter that executes the task Retrieving should move to a specific
object, pick it up and move back to the base with it. This assignment of robots to
available objects is done by a constraint system, denoted by ψ .

ψ =(∀a)(∃g)((∃z) In(a,RetrieveObjImpl,Retrieving,z))→ Position(a, p)∧
GoalPosition(a,g)∧Component(o)∧Near(g,o)∧Distance(p,o,d)

(∀a′)((∃z) In(a′,RetrieveObjImpl,Retrieving,z)∧a �= a′)→ Position(a′, p′)

∧Distance(p′,o,d′)∧d < d′

where GoalPosition(a,g) is a functional agent fluent. ψ constraints the goal po-
sition of an transporter to be close to a component that needs transporting. Fur-
thermore, it constraints the distance to the selected component to be smaller than
the distance from any other available transporter to that component. The unfolding
step introduced in Definition 8.8 will remove all quantifiers over agents and make
the formula applicable for constraint solving.

Thus the behaviour MoveToGoal can query for an appropriate position to move
to. Once the robots has reached its goal position, it moves onto the state Z4,
in which the two behaviours GrabObject and Position cooperate to pick up the
component. Such a cooperation is achieved by relating the goal position Posi-
tion moves towards with the inverse kinematics problem with which GrabObject
is confronted. Thereby, Position will move towards a position from which the
component is graspable.

We omit a detailed description of these behaviours, as their implementation is
highly domain-specific and out of scope of this work. The important result here
is that the simultaneous collection of objects by multiple robots can easily be de-
scribed in ALICA. Surplus agents will idle until they can participate. Finally,
behaviours controlling different actuators can be combined by relating the corre-
sponding variables using constraints.

220 10 Evaluation

(a) Rectangular Pattern (b) Spiral Pattern

Figure 10.21: Search Patterns

10.4.2 Exploration

Besides the retrieval of located components, the second important task in this sce-
nario is the search for the components. Cooperative exploration has been exten-
sively researched in the past (e.g., [18]). Efficient cooperative exploration relies on
the exchange and merging of data structures representing the environment. This
is not a topic covered by ALICA. Any realisation of the plantype Search therefore
strongly relies on an external domain-specific data representation. Here, we do not
go into detail about such representations. Instead, we focus on how constraints can
be used to coordinate the movement of multiple robots in order to sweep an area.

Whenever a specific object is searched for, there might be some prior knowledge
available indicating where that object is likely to be located. Such prior knowledge
might be represented as a probability function or a belief function in the Dempster-
Shafer theory [131, 149]. The search pattern used by a team of robots to sweep
an area can accommodate for the specifics of such a function. If there is little
information available, the probability function approaches a uniform distribution.
In this case, a search pattern as depicted in 10.21(a) may be a reasonable choice.
If, one the other hand, the probability function is denser in a certain region, e.g., if
modelled by a normal distribution, a spiral pattern (10.21(b)) starting at the centre
of the normal distribution would be more appropriate.

Following such a search pattern in a formation can be formulated in a simple ex-
tension of ALICA constraint systems, namely by connecting subsequent constraint

10.4 Case Study: Exploration 221

Solver

Pattern Generator

Behaviour

New Control Point

SolutionQuery

Resulting Control Point

Actuation Command

Sensory Input

Figure 10.22: Closed Loop Controlling a Formation

problems with a state-full feedback. Here, the formation, such as a line, is de-
scribed using a point and an angle. The point is used to update a controller, which
implements a search pattern. In subsequent problems, the controller provides the
corresponding next point, thus enforcing movement along the implemented path.

The proposed architecture is depicted in Figure 10.22. The behaviour queries
the solver for a solution to its variables, issues actuator commands and updates the
pattern generator with the new control point. The pattern generator fits the control
point to its pattern, and presents a new control point, updated by a small interval to
the constraint solver for the next iteration. The constraint problem that implements
the coordinated movement is defined by the following macro:

222 10 Evaluation

Line(r,x,y,α, p,τ,cx,cy,β)
de f
=

√
(cx − x)2 +(cy − y)2 < told∧√

(cos(β)− cos(α))2 +(sin(β)− sin(α))2 < tola∧

n = |{a | In(a, p,τ,z)}|∧ len = 2·r ·n∧
(∀a)(∃z) In(a, p,τ,z)→ (GoalPosition(a,g)∧

|(gx − cx)cos(β)+(gy − cy)sin(β)|< ε∧

|g− c| ≤ len
2

∧

(∀a′)(∃z) In(a′, p,τ,z)a �= a′ →(
GoalPosition(a′,g′) ∧|g−g′| ≥ len

n−1
− ε

))

Where cx, cy, and β are constrained variables. Line(n,r,x,y,α, p,τ,cx,cy,β) en-
forces the goal positions of all robots executing task τ in plan p to be equally
distributed on a line of length 2 ·r ·n, where n is the number of robots involved
and r their observation radius. The line’s position and orientation is specified by
the coordinates x and y and the angle α , to which it is orthogonally aligned. The
parameters p and τ refer to the agents’ plan and task, respectively. Note that this
constraint makes use of non-linear and transcendental functions to position the line
with respect to the control point (x,y,α).

The constants tola, told , and ε implement tolerances. These tolerance provide
the necessary leeway to coordinate the CSP without any central control. In order
to stabilise positions within the line and to incorporate feedback from the actual
positions of the robots, we extend the CSP with an objective function:

o(p,τ) =|{a | In(a, p,τ,z)}| ·1012

− ∑
a : (∃z) In(a,p,τ,z)

|GoalPosition(a)−Position(a)|2

o(p,τ) reflects the cost to move to the goal position as sum of the squared dis-
tances.

The solution to this constraint optimisation problem is two-fold, firstly it con-
tains the target positions of all robots involved, and secondly it contains a derived
control point given by cx, cy, and β , which deviates from the input control point at
most as far as the tolerance levels allow.

Figure 10.23 shows the resulting paths of four simulated robots following a
rectangular pattern (10.23(a)) and a spiral search pattern (10.23(b)). The robots

10.4 Case Study: Exploration 223

(a) Rectangular Pattern (b) Spiral Pattern

Figure 10.23: Robots Following Search Patterns

are able to coordinate their movements to consistently form a search line. Note
that no additional coordination metaphors are used. The initial state of the pattern
generator is determined by the initial solution to the constraint problem. However,
the resulting movement is not perfect, the graphs show some noise and in case of
the spiral pattern, the robots occasionally switch positions within the formation.

Although these results are not ideal, we could show that formations such as
sweep lines along a given pattern can be formulated and coordinated using con-
straint optimisation problems in ALICA together with a feedback system which
generates the search pattern. This approach works only as a proof of concept and
needs further study. However, such an analysis is out of scope of this work. The
advantages of this approach are clear:

• It directly integrates with other language elements. Thus, one can for in-
stance switch back and forth between different behaviours using transitions
or exchange tasks using dynamic reallocation.

• It allows for automatic reformation in case a robot breaks down, in which
case the sweep line automatically shrinks, such that no gaps appear in the
swept area.

• Finally, the approach has a clear mathematical foundation upon which an
analyses can be performed.

224 10 Evaluation

10.4.3 Summary

In this section, we used ALICA to model the behaviour of a team of robots which
search an unknown area for specific objects, and transport these objects back to a
base. We showed how the different modelling elements of ALICA can be com-
bined to form a concise and robust description of the intended team behaviour.
This modelling approach is already being used in the DLR-coordinated project
IMPERA.

Finally, we sketched how behaviour descriptions based on constraint optimisa-
tion can be extended to describe a dynamic system of robots. While the results
for the latter are promising, further research in this area is needed, mapping these
descriptions onto a theory.

10.5 Rescue Simulation

As a final evaluation scenario, we turn to the rescue domain. The purpose of the
following experiments is to

• show that ALICA is usable in other problem domains,

• assess its competitiveness with respect to other techniques,

• evaluate the scalability of ALICA with respect to the number of agents in a
team.

In the following, we use RMASBENCH by Kleiner et al. [86], an open-source
simulator based on the RoboCup Rescue Simulation Project1. In our experiments,
a catastrophic event is simulated. Multiple fires are ignited within a city, spread
from building to building and threaten to destroy the whole city. The agents in this
scenario are fire brigades able to move about and extinguish fires. Figure 10.24
shows a screenshot of the simulation.

One of the main problems the agents are confronted with is to decide which
agent is extinguishing which fire. The domain is dynamic, so as the fires spread and
are extinguished, the agents need to continuously update their decisions. RMAS-
BENCH features some integrated techniques targeting this problem:

• SampleAgents – This strategy acts as a baseline. Each agent greedily selects
a nearby target based on the utility function. Since agents make decisions
on their own, it can be considered as a simple distributed method.

1 http://www.robocuprescue.org

10.5 Rescue Simulation 225

Figure 10.24: RMASBENCH Screenshot – Red dots denote fire brigades, fire of different
levels are indicated by yellow, orange, and red buildings. Extinguished buildings are blue
and purple. Black buildings are destroyed.

• Hungarian Assignment [90] is a central algorithm for optimising the assign-
ment of n agents to m tasks. It assigns at most one agent per task, and thus
will not find the optimal solution in many cases.

• DSA – Distributed Stochastic Algorithm [185] is a decentralized method for
distributed constraint optimisation. Each agent calculates the best possible
improvement for its own assignment given its current beliefs about the other
agents and applies it with a fixed probability (of 0.5 in our experiments). If
an agent changes its assignment, it broadcasts the result to the team.

Besides the algorithm to solve this assignment problem, the representation of
the problem has a major impact on the performance of the team. The default
problem representation used in RMASBENCH associates a utility value with every
agent-fire pair:

226 10 Evaluation

U(a, f) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if the number of agents assigned to f exceeds

a building specific value n(f)
1010

d(a, f) if the fire is still in early stages
103

d(a, f) if the fire burns very strongly
107

d(a, f) otherwise

where d(a, f) denotes the distance between agent a and fire f . This utility puts
a strong on fires in early stages, which are easier to extinguish and are typically
found on the fringe of larger fires. The resulting matrix, which contains one row
per agent and one column per fire is normalised and used as input for the assign-
ment algorithms mentioned above.

In order to compare ALICA with these approaches, we want to transform this
utility function into a suitable ALICA concept. However, tasks in ALICA are
static, that is, a given plan has a fixed set of tasks, while the number of fires changes
dynamically over time. Without an additional generative algorithm, the problem is
not expressible as an ALICA task allocation. Instead, the problem can be formu-
lated using constraints and objective functions. The problem class we considered
so far uses continuous values, while the problem here is formulated discretely.
We therefore transform the given discrete problem into a continuous optimisation
problem. The basic idea is to optimise the target positions of the agents. If the
distance between a target position and a fire is below a small threshold, the cor-
responding agent is considered to be assigned to the fire. For this problem, we
again use a functional agent fluent for the goal position of an agent, similar to the
experiment in Section 10.4.

Let F be the set of fires burning and let Us(a, f) be the original utility function
U(a, f) without the case for too many agents:

Us(a, f) =

⎧⎪⎪⎨
⎪⎪⎩

1010

d(a, f) if f is still in early stages
103

d(a, f) if f burns very strongly
107

d(a, f) otherwise

Then we can formulate a continuous objective function o(p,τ):

o(p,τ) = ∑
a:In(a,p,τ,z)

∑
f∈F

(dg(a, f)< ε?Us(a, f) : 0)

where

10.5 Rescue Simulation 227

• dg(a, f) denotes the distance between the constrained goal position of agent
a and fire f as opposed to the actual distance between a and f , d(a, f).

• The ternary operator ? is used to reify constraints:

(φ?a : b)
de f
=

{
a if T (φ)> 0

b otherwise

δ
δx

(φ?a : b)
de f
=

{
−(a−b) δ

δx T (¬φ) if T (φ)> 0

(a−b) δ
δx T (φ) otherwise

Reification of constraints is a common constraint programming method to avoid
combinatorial explosions in constraints. Here, we defined a special gradient, such
that the solver is not confronted with a flat landscape.

The requirement that only a limited number of agents is assigned to each fire
can be expressed with the constraint ψ:

ψ =
n∧

i=0

(
∑

a:In(a,p,τ,z)
(dg(a, fi)< ε?1 : 0)

)
≤ n(fi)

We do not impose a constraint that requires all agents to be assigned to a fire,
since this would lead to an unsatisfiable problem in cases with few fires burning.
With the constraint ψ and the objective function o(p,τ), we have a close approx-
imation of the original assignment problem in a continuous space. Each agent’s
goal position is a two-dimensional vector in Cartesian space. Suitable bounds for
these positions can be derived from the size of the city.

An ALICA behaviour can now query for its goal position, and issue a command
to the simulator to move towards and extinguish the fire closest to this position.

The resulting ALICA plan is fairly simple. All agents execute the same task and
inhabit the same state. For the purpose of this evaluation, we coin this strategy
GlobalCOP. The size of the formulae in the COP central to this strategy scales
linear with both the number of fires and the number agents. Additionally, the size
of the search space grows exponentially with the number of agents. We therefore
expect this strategy to fail to scale above a certain amount of agents. However, AL-
ICA has a strong emphasis towards problem decomposition. Exploiting this, we
will evaluate a second strategy, called RegionCOP. RegionCOP divides the team
using four tasks, one for each quadrant of the map. Within each task, the agents
solve a COP similar to the one above, but limited to the agents in the correspond-
ing task and the fires in the corresponding quadrant. For task allocation, we use
the following utility summand:

228 10 Evaluation

f (B) =
i=4

∑
i=1

Pi

(
0.9+

0.1
|A| ∑

a:In(a,p,τi,z)

(
1−d(a,ci)

2/maxDist2))

where

• Pi = min(1,1−Fi +
{a|In(a,p,τi,z)}|

|A|)

• Fi =
∑ f∈Mi w(f)
∑ f∈F w(f)

• w(f) =

⎧⎪⎪⎨
⎪⎪⎩

9 if f is still in early stages

1 if f burns very strongly

4 otherwise

• Mi refers to the set of fires in quadrant i.

• d(p,q) is the usual distance function,

• ci denotes the centre of quadrant i.

• τi is the task associated with quadrant i.

Intuitively, f (B) measures the weighted distribution of fires in the four quadrants
and prefers similar distribution of agents. Additionally, agents have a preference
towards close quadrants. Due to the large search space, e.g., for four quadrants
and 50 agents, 450 possibilities, 550 if idling is allowed, the heuristic has to be very
precise. We use a simplification based on a greedy assignment to calculate the
heuristic of f (B).

The strategy RegionCOP uses a flat task hierarchy to simplify the constraint
optimisation problem. It also forces the agents to work on multiple fire sources at
once. In the following experiment we will use it to examine the scalability of task
allocation within ALICA.

All experiments use the same scenario: in the city depicted in Figure 10.24, fires
are initiated at three different locations. In each experiment, we vary the number
of agents available and the time at which the agents are allowed to start. The later
the agents are allowed to start, the more difficult it is for them to extinguish all
fire sources, since the fires had time to spread. Therefore, we set the start time to
max(100,2n+ 1), where n is the number of agents available. Thus, larger teams
are confronted with harder problems. The start time is capped at 100, so that parts
of the city still remain before the agents start to act. Additionally, this fixed start

10.5 Rescue Simulation 229

value allows us to evaluate how the different strategies utilise additional agents to
solve the same problem.

In each time tick of the simulation, each agent makes a single deliberation cycle
consisting of the following steps:

• Information from the simulator are integrated into the world model. This
information consists of the agent’s position and the state of all fires in the
city.

• Information about the agent’s internal state and its own position is sent to
the team.

• An ALICA rule application step takes place, all applicable rules are exe-
cuted.

• The behaviour queries for the constrained goal position and issues a corre-
sponding command to the simulator.

The time the constraint solver can consume in each tick is set to 600ms. Recall that
this is a soft constraint, the solver will always do at least one run starting from the
preferred cluster centre and one exploratory run starting from a random point. The
experiments were conducted using nine Intel® Core™i7 CPUs (2.8GHz) running
Linux 3.0.0.

Figure 10.25 shows the experimental results in terms of burned buildings at the
end of the simulation, i.e., after all fires are extinguished, or a limit of 300 ticks
passed. Each point in the plot is averaged over ten experiments. Note that the per-
formance of GlobalCOP is equivalent to the DSA algorithm up until 40 agents, at
which point GlobalCOP starts to perform worse than DSA. The strategy modifica-
tion RegionCOP performs best in this scenario, although there is little difference
to DSA at higher agents numbers. The other assignment strategies perform much
worse.

Furthermore, we see that the number of burned buildings increase for all strate-
gies up until 50 agents due to the delayed start of the agents. However, for the
experiments with fixed start time, with 50 agents and above, additional agents
only improve the performance slightly, regardless of the algorithm.

We conclude that the continuous version of the original assignment problem to-
gether with the ALICA solver leads to a comparable performance. Note however,
that the DSA approach is much less computational expensive than the continuous
solver in ALICA. ALICA agents always consider the whole constraint problem,
while DSA controlled agents only consider the choices the local agent has. More-
over, the search space presented to the ALICA solver is much larger, due to the

230 10 Evaluation

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90 100

#
B

ur
ne

d
B

ui
ld

in
gs

Agents

GlobalCOP
RegionCOP

DSA
Hungarian

Sample Agents

Figure 10.25: Performance in the Fire Extinguish Scenario: Burned Buildings vs. Number
of Agents

mapping to a continuous problem. Our approach is geared towards such continu-
ous domains, and should be more flexible with respect to the problem if continuous
values are essential.

The scalability of the COP solver can be assessed based on Figure 10.26. It
shows the average number of function evaluations done by each agent in each tick
for world states with 60 to 80 fires on a logarithmic scale. The number of evalua-
tions decreases drastically with the number of agents. This is due to the size of the
formulae increasing, the dimensionality of the problem increasing, and the num-
ber of simulated agents increasing, which have to share the available computing
power. At higher agent numbers, the solvers often violate the soft constraint of
600ms solving time, thus the number of function evaluations levels out. The fig-
ure also shows that the problem decomposition achieved by RegionCOP allows for
an order of magnitude more function evaluations per tick, enabling the agents to
search the smaller search spaces more thoroughly. Note that the number of func-

10.5 Rescue Simulation 231

10

100

1000

10000

10 20 30 40 50 60 70 80 90 100

#
Fu

nc
tio

n
E

va
lu

at
io

ns
pe

rT
ic

k

Agents

GlobalCOP
RegionCOP

Figure 10.26: Function Evaluations for 60 to 80 Fires

tion evaluations in Figure 10.26 only reflects the number of calculations within
the allotted time, not the number of calculations till an assignment was found. The
solver spends all available time trying to find a better solution, oblivious to whether
or not one exists.

Of course, the improvement in solving speed by RegionCOP does not come for
free. It requires the agents to be allocated to four tasks. Figure 10.27 illustrates
how this algorithm scales. It shows the number of performed expansion steps by
the A* search algorithm. While the average case grows almost linear with the
number of agents, the worst case number of steps is exponential in the number of
agents involved. This is not surprising, the problem is NP-hard afterall. However,
with an average of approximately 200 expansion steps in order to allocate 100
agents, the algorithm scales rather well. This performance highly depends on the
specified heuristic.

Note that the performance of the tested approaches differs with the scenario.
As an example, Figure 10.28 shows the performance of the different algorithms

232 10 Evaluation

1

10

100

1000

10000

100000

0 10 20 30 40 50 60 70 80 90 100

#
E

xp
an

si
on

St
ep

s
pe

rA
llo

ca
tio

n

Agents

average
worst case
worst 5%

Figure 10.27: Task Allocation Expansion Steps

from the previous experiment in a different scenario. The data is averaged over ten
experiments. While RegionCOP exhibits consistently good results, GlobalCOP
struggles to keep the fire under control. It was able to contain the fire in four out
of ten experiments. All other strategies consistently failed to extinguish all fires
by the end of the experiment, i.e., after 300 ticks. Interestingly, the naive Sam-
pleAgents strategy achieved better results than DSA in this specific experiment,
illustrating the impact of the scenario.

In summary, we presented an evaluation in the rescue domain, and were able
to coordinate up to 100 agents using ALICA. We transferred a discrete optimisa-
tion problem into a continuous domain and showed that the resulting problem can
be solved using the approach presented in this work. Moreover, the corresponding
strategy is strikingly similar in performance to the original problem formulation to-
gether with the Distributed Stochastic Algorithm up until 40 agents, at which point
ALICA performed slightly worse. Finally, we showed that a fairly simple problem
decomposition can be implemented using ALICA language elements such as tasks

10.5 Rescue Simulation 233

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300

#
B

ur
ne

d
B

ui
ld

in
gs

Time

RegionCOP
GlobalCOP

DSA
Sample Agents

Hungarian

Figure 10.28: Exemplary Fire Fighting Performance with 18 Agents

and utility functions, and we showed that the resulting strategy outperformed the
original one.

11 Conclusion

In this thesis, we presented a comprehensive solution for modelling the behaviour
of a team of autonomous robots. This solution is geared towards dynamic domains,
in which the robots have to exhibit a high degree of reactivity, while acting in a
coherent fashion.

The main contribution of this thesis constitutes a language, in which team be-
haviour can be described from a global perspective. The semantics of this language
define an execution layer, which is described in detail. The language abstracts
away from concrete robots or agents by using capabilities to map them onto roles.
Roles are then used to allocate robots dynamically to tasks within plans. These
plans are at the core of the language. Using hierarchies of finite state machines,
they describe strategies or recipes to tackle problems. The execution layer fea-
tures an efficient recursive task allocation algorithm, which is used by each agent
to locally compute relevant task allocations. Conflicts are reliably detected and
resolved by adaptively switching the decision protocol temporarily and locally to
a central assignment algorithm. Incapacitated robots are seamlessly compensated
for by the team.

This core language is extended in the third part of this dissertation with the
ability to express complex intentions using non-linear constraint satisfaction and
optimisation problems over continuous domains. These problems are solved dur-
ing runtime by the participating robots using cooperating anytime solvers. The
cooperation between these solvers emphasizes reactivity of the individual robot,
but provides coherence under sensory noise.

The resulting framework is completely distributed and constitutes a novel com-
bination of finite state machines, utility-based decision making, and constraint
programming. This combination yields a very powerful modelling language ac-
cessible to system designers as well as generative algorithms, such as planners.

On the theoretical level, we obtained results for hierarchical task allocation,
which yielded provable conditions that plans have to satisfy in order to allow for
conflict free allocations. We provide two different task allocation algorithms with
different requirements, one allowing for agents to passively participate in a plan
and one which requires all agents to actively commit to a task at all times.

H. Skubch, Modelling and Controlling of Behaviour for Autonomous Mobile Robots,
DOI 10.1007/978-3-658-00811-6_11, © Springer Fachmedien Wiesbaden 2013

236 11 Conclusion

A reference implementation is open source and successfully used by the
RoboCup team Carpe Noctem. Furthermore, it is also used in the context of the
DLR-coordinated project IMPERA.

The evaluation in the previous chapter showed that ALICA is able to success-
fully control and coordinate robots in various domains, such as robotic soccer,
rescue, and exploration. Furthermore, the experiments demonstrate robustness
against sensory noise and unreliable communication. Finally, results drawn from
the rescue domain show that the integrated algorithms are competitive with state-
of-the-art approaches to task assignment and that ALICA is able to control and
coordinate larger teams.

This scalability is achieved by the hierarchical structure of ALICA programs
together with the locality principle, the cooperation between the anytime solvers of
the agents, and the heuristic functions used to guide the task allocation algorithm.
However, for very large sets of agents, additional paradigms might be needed to
support concise modelling, such as social laws or norms. The provided constraint-
based modelling approach is a promising foundation for an integration of such
organisational paradigms.

11.1 Requirements Revisited

In Section 1.2, we introduced a set of challenging domain requirements the pre-
sented approach should be able to cope with. Here, we summarise how these are
solved.

Continuously Changing Environment Each agent in ALICA acts upon local
decisions, and does not require any prior communication, thus it can react
directly to any unforeseen changes. Dynamic reallocation allows the agents
to switch tasks or even complete plans in order to adapt to such changes.
Moreover, the constraint solver always considers the current situation by
solving an on-demand constructed problem, thereby emphasising reactivity.
On the implementation level this is supported by the rule application com-
ponent, which performs updates anywhere in the program hierarchy without
additional latencies due to synchronisation between threads.

Noisy Sensors While ALICA does not come with a perception or sensor fusion
component and should be used in conjunction with corresponding compo-
nents, it provides features that counteract noise while retaining a certain
level of reactivity. Firstly, thresholds and similarity values can be used to
stabilise task allocations in the presence of noise. Secondly, the team is able

11.2 Outlook and Future Work 237

to stabilise solutions to constraint problems without any loss of reactivity for
the individual agent, as shown in Section 10.3.

Partially Observable Environment As an execution and coordination layer,
ALICA does not directly tackle this issue. A solution to this problem is
part of the representation of the environment, which ALICA does not incor-
porate, in order to maintain domain independence. However, since ALICA
agents are exchanging information about what they are doing, the overall
behaviour is less dependent on an individual’s beliefs. This is most appar-
ently reflected in the locality principle ALICA follows, which entails that
an agent does not concern itself with problems or plans it is not actively or
passively participating in. Local information is therefore sufficient for an
agent to fulfil its part within the team.

Unreliable Communication Robustness under bad network quality was evalu-
ated in detail in Section 10.2. The results show a high degree of coherence
even under high packet loss or delay.

Failing Team Members Incapacitated robots are compensated for on the fly by
dynamic reallocation. Should the currently executed plan no longer be ex-
ecutable due to missing capabilities or robots, an alternative is selected, if
one exists. Otherwise, a failure is raised and propagated through the pro-
gram hierarchy until it can be resolved.

11.2 Outlook and Future Work

The work presented in this thesis constitutes a comprehensive solution to mod-
elling and coordinating the behaviour of a team of autonomous mobile robots.
Still there are some open questions left. Furthermore, ALICA is meant to be ex-
tensible such that future components can be integrated easily. In the following we
summarise the most important questions and possible extensions.

Integration of Planning ALICA does not feature a planning component in the
classical sense. However, the language is designed with planning in mind.
Therefore, post conditions can be defined for the appropriate language el-
ements such as terminal states and behaviours. These are not used during
runtime, but play a pivotal role during planning. Integration of planning is
investigated within the research project IMPERA.

238 11 Conclusion

SMT-Based Constraint Solving and Optimisation In Chapter 8, we advo-
cated the use of SMT solvers within ALICA and sketched possible ap-
proaches to extend such solvers with the ability to track and coordinate so-
lutions. To the best of our knowledge, currently no SMT solver exists that is
competitive with the solver discussed in this work. However, the experiment
in Section 9.3 suggests that SMT-based techniques can lead to a tremendous
gain in performance.

Merging Task Allocation and Constraint Solving As mentioned in Sec-
tion 9.7, ALICA agents are confronted with two potentially computational
expensive problems during runtime. The first is task (re-)allocation, the sec-
ond constraint solving. Integrating the two could lead to even more concise
descriptions of behaviours and better performance of the team, by allowing
tasks to be allocated with respect to constraint problems. This is currently
only possible in a limited fashion, namely by referring to the current so-
lutions from within conditions or utility functions. How to deal with the
resulting complexity is an open question.

Modelling Dynamic Behaviour using Differential Constraint Problems
The provided methodology to formulate behaviour using constraint prob-
lems can easily be extended to incorporate a feedback, essentially yielding
constraint problems that feature differential equations over time. In Sec-
tion 10.4, we discussed how this can be used to express dynamic forma-
tions without the use of a central component or the specification of an initial
state. A theory is still missing that entails how the different properties of
such a system such as the velocity of the robots and the degree of coher-
ence can be controlled. Investigating these systems and relating them to
other approaches such as the Dual Dynamics design scheme by Jaeger and
Christaller [77] is an exciting topic for future work.

Conflict Resolution for CSPs Our approach to provide coherent solutions to
the constraint problems currently does not extend to the case where the in-
dividual constraint problems each robot considers are significantly different
but related through some variables. Tackling this problem requires addi-
tional messages to be passed by the solvers involved along the lines of DCOP
solvers as discussed by Petcu [121]. The additional challenges introduced by
the combination of non-linear constraints, continuous domains, the dynamic
environment, and unreliable communication still need to be addressed.

Bibliography

[1] Till Amma, Philipp Baer, Kai Baumgart, Philipp Burghardt, Kurt Geihs,
Janosch Henze, Stephan Opfer, Stefan Niemczyk, Roland Reichle, Daniel
Saur, Andreas Scharf, Jens Schreiber, Martin Segatz, Florian Seute, Hen-
drik Skubch, Stefan Triller, Michael Wagner, and Andreas Witsch. Carpe
Noctem 2009. In RoboCup 2009 International Symposium, Graz, June
2009. TU Graz.

[2] Krzysztof R. Apt and Mark Wallace. Constraint Logic Programming using
Eclipse. Cambridge University Press, New York, NY, USA, 2007. ISBN
0521866286.

[3] Matthew Arnold, Stephen J. Fink, David Grove, Michael Hind, and
Peter F. Sweeney. A survey of adaptive optimization in virtual ma-
chines. In Proceedings of the IEEE Special Issue on Program Gener-
ation, Optimization, and Adaptation, volume 93, pages 449–466, 2005.
doi:10.1109/JPROC.2004.840305.

[4] John Aycock. A brief history of just-in-time. ACM Comput. Surv., 35(2):
97–113, 2003. doi:10.1145/857076.857077.

[5] Philipp A. Baer. Platform-Independent Development of Robot Communi-
cation Software. Phd thesis, University of Kassel, Kassel, 2008. URL
http://www.upress.uni-kassel.de/publi/abstract.php?978-3-89958-644-2.

[6] Andreas Bauer, Markus Pister, and Michael Tautschnig. Tool-support for
the analysis of hybrid systems and models. In Design, Automation and Test
in Europe (DATE), pages 924–929, 2007.

[7] W. Beaton and J. d. Rivieres. Eclipse Platform Technical Overview. Tech-
nical report, The Eclipse Foundation, 2006.

[8] R. E. Bellman. Dynamic Programming. Princeton University Press, Prince-
ton, N.J., 1957.

H. Skubch, Modelling and Controlling of Behaviour for Autonomous Mobile Robots,
DOI 10.1007/978-3-658-00811-6, © Springer Fachmedien Wiesbaden 2013

240 Bibliography

[9] Roger Bemelmans, Gert Jan Gelderblom, Pieter Jonker, and Luc De Witte.
Socially assistive robots in elderly care: A systematic review into ef-
fects and effectiveness. Gerontechnology Journal, 8(2):94–103, 2010.
doi:10.1016/j.jamda.2010.10.002.

[10] Frédéric Benhamou and Laurent Granvilliers. Continuous and Interval
Constraints. In Francesca Rossi, Peter van Beek, and Toby Walsh, edi-
tors, Handbook of Constraint Programming, pages 571–603. Elsevier, 2006.
ISBN 978-0-444-52726-4.

[11] J. Bohren and S. Cousins. The smach high-level executive. Robotics
Automation Magazine, IEEE, 17(4):18–20, dec 2010. ISSN 1070-9932.
doi:10.1109/MRA.2010.938836.

[12] Michael Bratman. Intentions, Plans, and Practical Reason. Harvard Uni-
versity Press, 1987.

[13] Michael Brenner. A multiagent planning language. In Workshop on ICAPS,
May 2003.

[14] Gerhard Brewka, Ilkka Niemelä, and Miroslaw Truszczynski. Preferences
and nonmonotonic reasoning. AI Magazine, 4:69–78, 2008.

[15] Susan S. Brilliant and Timothy R. Wiseman. The first programming
paradigm and language dilemma. In Proceedings of the twenty-seventh
SIGCSE technical symposium on Computer science education, SIGCSE
’96, pages 338–342, New York, NY, USA, 1996. ACM. ISBN 0-89791-
757-X. doi:10.1145/236452.236572.

[16] Kenneth N. Brown and Ian Miguel. Uncertainty and Change. In Francesca
Rossi, Peter van Beek, and Toby Walsh, editors, Handbook of Constraint
Programming, pages 731–760. Elsevier, 2006. ISBN 978-0-444-52726-4.

[17] Wray Buntine. Generalized subsumption and its applications to induction
and redundancy. Artificial Intelligence, 36:149–176, September 1988. ISSN
0004-3702. doi:10.1016/0004-3702(88)90001-X.

[18] Wolfram Burgard, Mark Moors, Cyrill Stachniss, and Frank E Schneider.
Coordinated multi-robot exploration. IEEE Transactions on Robotics, 21
(3):376–386, 2005. doi:10.1.1.59.4390.

Bibliography 241

[19] Carlos Caleiro and Ricardo Gonçalves. On the algebraization of many-
sorted logics. In Recent Trends in Algebraic Development Techniques -
Selected Papers, pages 21–36. Springer-Verlag, 2007.

[20] Adam Campbell and Annie S. Wu. Task and role allocation within multi-
agent and robotics research. Technical Report 05, UCF, 2007.

[21] Adam Campbell and Annie S. Wu. Multi-agent role allocation: issues, ap-
proaches, and multiple perspectives. Autonomous Agents and Multi-Agent
Systems, 22(2):317–355, 2011. doi:10.1007/s10458-010-9127-4.

[22] D. Challet and Y.-C. Zhang. Emergence of cooperation and organization
in an evolutionary game. Physica A: Statistical Mechanics and its Appli-
cations, 246(3–4):407–418, 1997. ISSN 0378-4371. doi:10.1016/S0378-
4371(97)00419-6.

[23] Stuart Chalmers and Peter M.D. Gray. BDI agents and constraint logic.
AISB Journal Special Issue on Agent Technology, 1(1):21–40, 2001.

[24] Shyamal Suhana Chandra and Kailash Chandra. A comparison of Java
and C#. Journal of Computing Sciences in Colleges, 20:238–254, Febru-
ary 2005. ISSN 1937-4771.

[25] Antonio Chella, Massimo Cossentino, Roberto Pirrone, and Andrea Ruisi.
Modeling ontologies for robotic environments. In Proceeding of the 14th
International Conference on Software Engineering and Knowledge Engi-
neering, pages 15–19, 2002.

[26] Xinguang Chen and Peter van Beek. Conflict-directed backjumping revis-
ited. Journal of Artificial Intelligence Research (JAIR), 14:53–81, 2001.
doi:10.1613/jair.788.

[27] David Cohen and Peter Jeavons. The Complexity of Constraint Languages.
In Francesca Rossi, Peter van Beek, and Toby Walsh, editors, Handbook
of Constraint Programming, pages 245–280. Elsevier, 2006. ISBN 978-0-
444-52726-4.

[28] Philip R. Cohen and Hector J. Levesque. Intention is choice with com-
mitment. Artificial Intelligence, 42(2-3):213–261, 1990. ISSN 0004-3702.
doi:10.1016/0004-3702(90)90055-5.

242 Bibliography

[29] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the third annual ACM symposium on Theory of com-
puting, STOC ’71, pages 151–158, New York, NY, USA, 1971. ACM.
doi:10.1145/800157.805047.

[30] James M. Crawford and Larry D. Auton. Experimental results on the
crossover point in random 3-sat. Artificial Intelligence, 81(1-2):31–57,
1996.

[31] Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity classifi-
cations of boolean constraint satisfaction problems. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2001. ISBN 0-89871-
479-6.

[32] Robert J. Dakin. A tree-search algorithm for mixed integer programming
problems. The Computer Journal, 8(3):250–255, March 1965. ISSN 1460-
2067. doi:10.1093/comjnl/8.3.250.

[33] Aniruddha Dasgupta and Aditya K. Ghose. CASO: A Framework for deal-
ing with objectives in a constraint-based extension to AgentSpeak(L). In
Vladimir Estivill-Castro and Gillian Dobbie, editors, Twenty-Ninth Aus-
tralasian Computer Science Conference (ACSC 2006), volume 48 of CR-
PIT, pages 121–126, Hobart, Australia, 2006. ACS.

[34] Mehdi Dastani, M. Birna, Riemsdijk Frank Dignum, and John-Jules Ch.
Meyer. A programming language for cognitive agents: Goal directed 3APL.
In Programming Multi-Agent Systems, First International Workshop, PRO-
MAS 2003, Melbourne, Australia, pages 111–130. Springer, July 2003.

[35] Mehdi Dastani, Dirk Hobo, and John-Jules Ch. Meyer. Practical extensions
in agent programming languages. In AAMAS ’07: Proceedings of the 6th in-
ternational joint conference on Autonomous agents and multiagent systems,
pages 1–3, New York, NY, USA, 2007. ACM. ISBN 978-81-904262-7-5.

[36] Martin Davis and Hilary Putnam. A computing procedure for quantifica-
tion theory. Journal of the ACM, 7:201–215, July 1960. ISSN 0004-5411.
doi:10.1145/321033.321034.

[37] Giuseppe de Giacomo, Yves Lespérance, and Hector J. Levesque. Con-
golog, a concurrent programming language based on the situation calculus.
Artificial Intelligence, 121(1-2):109–169, August 2000. ISSN 0004-3702.
doi:10.1016/S0004-3702(00)00031-X.

Bibliography 243

[38] Joris De Schutter, Tinne De Laet, Johan Rutgeerts, Wilm Decré,
Ruben Smits, Erwin Aertbeliën, Kasper Claes, and Herman Bruyninckx.
Constraint-based task specification and estimation for sensor-based robot
systems in the presence of geometric uncertainty. International Jour-
nal of Robotics Research, 26:433–455, May 2007. ISSN 0278-3649.
doi:10.1177/027836490707809107.

[39] Wilm Decré, Ruben Smits, Herman Bruyninckx, and Joris De Schutter. Ex-
tending iTaSC to support inequality constraints and non-instantaneous task
specification. In Proceedings of the 2009 IEEE International Conference on
Robotics and Automation, ICRA’09, pages 964–971, Piscataway, NJ, USA,
2009. IEEE Press. ISBN 978-1-4244-2788-8.

[40] Gilles Dowek, César Muñoz, and Corina Păsăreanu. A small-step semantics
of PLEXIL. Technical Report 2008-11, National Institute of Aerospace,
Hampton, VA, 2008.

[41] Markus Eich and Frank Kirchner. Reasoning about geometry: An approach
using spatial-descriptive ontologies. In Workshop AILog 19th European
Conference on Artificial Intelligence ECAI10, Lisbon, 2010.

[42] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Rea-
soning About Knowledge. MIT Press, 1995. ISBN 0262061627.

[43] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone
monadic snp and constraint satisfaction: A study through datalog and group
theory. SIAM J. Comput., 28(1):57–104, February 1999. ISSN 0097-5397.
doi:10.1137/S0097539794266766.

[44] K. Feher. Telecommunications Measurements, Analysis, and Instrumen-
tation. Noble Publishing classic series. Noble Publishing, 1996. ISBN
9781884932038.

[45] Richard Fikes and Nils J. Nilsson. Strips: A new approach to the application
of theorem proving to problem solving. In Proceedings of the 2nd Interna-
tional Joint Conference on Artificial intelligence (IJCAI), pages 608–620,
San Francisco, CA, USA, 1971. Morgan Kaufmann Publishers Inc.

[46] FIPA. FIPA ACL Message Structure Specification. FIPA, 2001. URL http:
//www.fipa.org/specs/fipa00061/. (accessed 2012-05-23).

[47] FIPA. FIPA Communicative Act Library Specification. FIPA, December
2002. URL http://www.fipa.org/specs/fipa00037/. (accessed 2012-05-23).

244 Bibliography

[48] Martin Fränzle, Christian Herde, Tino Teige, Stefan Ratschan, and Tobias
Schubert. Efficient solving of large non-linear arithmetic constraint systems
with complex boolean structure. Journal on Satisfiability, Boolean Model-
ing and Computation, 1:209–236, 2007.

[49] Thom Frühwirth. Introducing simplification rules. Technical Report ECRC-
LP-63, European Computer-Industry Research Centre, München, Germany,
October 1991. Presented at the Workshop Logisches Programmieren,
Goosen/Berlin, Germany, and the Workshop on Rewriting and Constraints,
Dagstuhl, Germany,.

[50] Thom Frühwirth. Theory and practice of constraint handling rules. The
Journal of Logic Programming, 37(1–3):95–138, 1998. ISSN 0743-1066.
doi:10.1016/S0743-1066(98)10005-5. URL http://www.sciencedirect.com/
science/article/pii/S0743106698100055.

[51] D. Gale. The Theory of Linear Economic Models. Economics / mathe-
matics. University of Chicago Press, 1989. ISBN 9780226278841. URL
http://books.google.de/books?id=3t3F9rLAZnYC.

[52] J. H. Gallier. Logic for Computer Science: Foundations of Automatic
Theorem Proving, chapter 10. Many-Sorted First-Order Logic. Harper &
Row Publishers, Inc., 1985. Out of print, available via www.cis.upenn.edu/
~cis610/logic.pdf.gz (last accessed 10-12-2011).

[53] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras,
and Cesare Tinelli. Dpll(t): Fast decision procedures. In Rajeev Alur and
Doron Peled, editors, Computer Aided Verification, 16th International Con-
ference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceedings, vol-
ume 3114 of Lecture Notes in Computer Science, pages 175–188. Springer,
2004. ISBN 3-540-22342-8. doi:10.1007/978-3-540-27813-9_14.

[54] H. Garcia-Molina. Elections in a distributed computing system. IEEE
Transactions on Computers, 31:48–59, January 1982. ISSN 0018-9340.
doi:10.1109/TC.1982.1675885.

[55] Brian P Gerkey. A formal analysis and taxonomy of task allocation in multi-
robot systems. The International Journal of Robotics Research, 23(9):939–
954, 2004. doi:10.1177/0278364904045564.

[56] Jens Gerlach and Joachim Kneis. Generic Programming for Scientific
Computing in C++, Java™ and C#. In Xingming Zhou, Ming Xu, Ste-
fan Jähnichen, and Jiannong Cao, editors, Advanced Parallel Processing

Bibliography 245

Technologies, volume 2834 of Lecture Notes in Computer Science, pages
301–310. Springer Berlin / Heidelberg, 2003. ISBN 978-3-540-20054-3.
doi:10.1007/978-3-540-39425-9_37.

[57] Giuseppe Giacomo, Yves Lespérance, Hector J. Levesque, and Sebastian
Sardina. IndiGolog: A High-Level Programming Language for Embedded
Reasoning Agents. In Amal El Fallah Seghrouchni, Jürgen Dix, Mehdi Das-
tani, and Rafael H. Bordini, editors, Multi-Agent Programming Languages,
Tools and Applications, volume 1, chapter 2, pages 31–72. Springer, 2009.
doi:10.1007/978-0-387-89299-3_2.

[58] Piotr J. Gmytrasiewicz and Edmund H. Durfee. Decision-theoretic recur-
sive modeling and the coordinated attack problem. In Proceedings of the
first international conference on Artificial intelligence planning systems,
pages 88–95, San Francisco, CA, USA, 1992. Morgan Kaufmann Pub-
lishers Inc. ISBN 1-55860-250-X. URL http://dl.acm.org/citation.cfm?id=
139492.139503.

[59] Alexandre Goldsztejn, Claude Michel, and Michel Rueher. An efficient al-
gorithm for a sharp approximation of universally quantified inequalities. In
Roger L. Wainwright and Hisham Haddad, editors, Proceedings of the 2008
ACM Symposium on Applied Computing (SAC), Fortaleza, Ceara, Brazil,
March 16-20, 2008, pages 134–139. ACM, 2008. ISBN 978-1-59593-753-
7. doi:10.1145/1363686.1363724.

[60] Alexandre Goldsztejn, Claude Michel, and Michel Rueher. Efficient han-
dling of universally quantified inequalities. Constraints, 14:117–135,
March 2009. ISSN 1383-7133. doi:10.1007/s10601-008-9053-0.

[61] Robin Gras, Didier Devaurs, Adrianna Wozniak, and Adam Aspinall. An
individual-based evolving predator-prey ecosystem simulation using a fuzzy
cognitive map as the behavior model. Artificial Life, 15(4):423–463, 2009.
doi:10.1162/artl.2009.Gras.012.

[62] Jim Gray. Notes on data base operating systems. In Operating Sys-
tems, An Advanced Course, pages 393–481, London, UK, 1978. Springer-
Verlag. ISBN 3-540-08755-9. URL http://dl.acm.org/citation.cfm?id=
647433.723863.

[63] Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex group
action. Artificial Intelligence, 86:269–357, 1996.

246 Bibliography

[64] Barbara J. Grosz and Candace L. Sidner. Plans for discourse. In P. R.
Cohen, J. Morgan, and M. E. Pollack, editors, Intentions in Communication,
chapter 20, pages 417–444. MIT Press, Cambridge, MA, 1990.

[65] Object Management Group. Data distribution service (dds) specification
v1.2. http://www.omg.org/spec/DDS/1.2/ (accessed 2012-05-22), 2007.

[66] Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal muta-
tion distributions in evolution strategies: The covariance matrix adaptation.
In International Conference on Evolutionary Computation, pages 312–317,
1996.

[67] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic de-
termination of minimum cost paths. Systems Science and Cybernetics, IEEE
Transactions on, 4(2):100–107, 1968. doi:10.1109/TSSC.1968.300136.

[68] W. K. Hartmann. PLANETARY SCIENCE: The Shape of Kleopatra. Sci-
ence, 288:820–821, 2000. doi:10.1126/science.288.5467.820.

[69] Koen Hindriks, Frank S. De Boer, Wiebe Van Der Hoek, and John jules
Ch. Meyer. A Formal Embedding of AgentSpeak(L) in 3APL. Technical
report, Advanced Topics in Artificial Intelligence, Springer Verlag LNAI
1502, 1998.

[70] Koen V. Hindriks and John-Jules Ch. Meyer. Agent Logics as Program Log-
ics: Grounding KARO. In Christian Freksa, Michael Kohlhase, and Kerstin
Schill, editors, KI, volume 4314 of Lecture Notes in Computer Science,
pages 404–418. Springer, 2006.

[71] Koen V. Hindriks, Frank S. De Boer, Wiebe Van Der Hoek, and John-
Jules Ch. Meyer. Agent programming in 3APL. Autonomous Agents and
Multi-Agent Systems, 2(4):357–401, 1999. ISSN 1387-2532.

[72] Steffen Hölldobler and Josef Schneeberger. A new deductive ap-
proach to planning. New Generation Computing, 8(3):225–244, 1990.
doi:10.1007/BF03037518.

[73] Bryan Horling and Victor Lesser. A Survey of Multi-Agent Organizational
Paradigms. The Knowledge Engineering Review, 19(4):281–316, 2005.
URL http://mas.cs.umass.edu/paper/366.

Bibliography 247

[74] Bryan Horling, Victor Lesser, Regis Vincent, Tom Wagner, Anita Raja,
Shelley Zhang, Keith Decker, and Alan Garvey. The TAEMS White Pa-
per, 1999. URL http://mas.cs.umass.edu/paper/182.

[75] Marcus Huber and Edmund H. Durfee. On acting together: Without com-
munication. In Working Notes of the AAAI Spring Symposium on Repre-
senting Mental States and Mechanisms, pages 60–71, 1995.

[76] Information technology - XML Metadata Interchange (XMI) – ISO/IEC
19503:2005-11. International Organization for Standardization, 2005.

[77] Herbert Jaeger and Thomas Christaller. Dual Dynamics: Designing Behav-
ior Systems for Autonomous Robots. Artificial Life and Robotics, 2:76–79,
1998.

[78] Nicholas R. Jennings. Controlling cooperative problem solving in industrial
multi-agent systems using joint intentions. Artificial Intelligence, 75(2):
195–240, 1995.

[79] Richard E. Jones and Rafael Dueire Lins. Garbage Collection: Algorithms
for Automatic Dynamic Memory Management. John Wiley, 1996. ISBN
0-471-94148-4.

[80] Ari K. Jónsson and Jeremy Frank. A framework for dynamic constraint rea-
soning using procedural constraints. In Werner Horn, editor, ECAI 2000,
Proceedings of the 14th European Conference on Artificial Intelligence,
Berlin, Germany, August 20-25, 2000, pages 93–97. IOS Press, 2000.

[81] Gal A. Kaminka and Inna Frenkel. Flexible teamwork in behavior-based
robots. In Manuela M. Veloso and Subbarao Kambhampati, editors, Pro-
ceedings of The Twentieth National Conference on Artificial Intelligence
and the Seventeenth Innovative Applications of Artificial Intelligence Con-
ference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA, pages 108–113.
AAAI Press / The MIT Press, 2005. ISBN 1-57735-236-X.

[82] Gal A. Kaminka and Milind Tambe. Robust agent teams via socially-
attentive monitoring. Journal of Artificial Intelligence Reasearch, 12:105–
147, 2000. doi:10.1613/jair.682.

[83] Hirofumi Katsuno and Alberto O. Mendelzon. On the difference between
updating a knowledge base and revising it. In Proceedings of the Second
International Conference on the Principles of Knowledge Representation
and Reasoning (KR91), pages 387–394. Morgan Kaufmann, 1991.

248 Bibliography

[84] Kristian Kersting, Martijn Van Otterlo, and Luc De Raedt. Bellman goes
relational. In International Conference on Machine Learning, pages 465–
472. ACM, 2004.

[85] David Kinny, Magnus Ljungberg, Anand S. Rao, Liz Sonenberg, Gil Tidhar,
and Eric Werner. Planned team activity. In Cristiano Castelfranchi and
Eric Werner, editors, Artificial Social Systems, 4th European Workshop on
Modelling Autonomous Agents in a Multi-Agent World, MAAMAW ’92, S.
Martino al Cimino, Italy, July 29-31, 1992, Selected Papers, volume 830 of
Lecture Notes in Computer Science, pages 227–256. Springer, 1992. ISBN
3-540-58266-5. doi:10.1007/3-540-58266-5_13.

[86] Alexander Kleiner, Christian Dornhege, and Andreas Hertle. RMASBENCH

– rescue multi-agent benchmarking. http://kaspar.informatik.uni-freiburg.
de/~rslb (accessed 2012-05-12).

[87] C. E. Koksal and H. Balakrishnan. Quality-Aware Routing Metrics for
Time-Varying Wireless Mesh Networks. IEEE Journal on Selected Areas
in Communications, 24(11):1984–1994, November 2006. ISSN 0733-8716.
doi:10.1109/JSAC.2006.881637.

[88] Robert A. Kowalski and Marek J. Sergot. A logic-based calculus of events.
New Generation Computing, 4(1):67–95, January 1986. ISSN 0288-3635.
doi:10.1007/BF03037383.

[89] M. R. Krom. The decision problem for a class of first-order formulas in
which all disjunctions are binary. Mathematical Logic Quarterly, 13(1-2):
15–20, 1967. ISSN 1521-3870. doi:10.1002/malq.19670130104.

[90] H. W. Kuhn. The Hungarian method for the assignment problem. Naval
Research Logistic Quarterly, 2:83–97, 1955.

[91] Thomas H. Labella, Marco Dorigo, and Jean-Louis Deneubourg. Divi-
sion of labor in a group of robots inspired by ants’ foraging behavior.
ACM Transactions on Autonomous and Adaptive Systems (TAAS), 1:4–25,
September 2006. ISSN 1556-4665. doi:10.1145/1152934.1152936.

[92] Jérôme Lang. Belief update revisited. In Proceedings of the 20th inter-
national joint conference on Artifical intelligence, pages 2517–2522, San
Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

Bibliography 249

[93] Nuno Lau, Luis Seabra Lopes, Gustavo Corrente, Nelson Filipe, and Ri-
cardo Sequeira. Robot team coordination using dynamic role and posi-
tioning assignment and role based setplays. Mechatronics, 21(2):445–454,
2011. ISSN 0957-4158. doi:10.1016/j.mechatronics.2010.05.010. Special
Issue on Advances in intelligent robot design for the Robocup Middle Size
League.

[94] Kristina Lerman, Chris Jones, Aram Galstyan, and Maja J Mataríc. Anal-
ysis of dynamic task allocation in multi-robot systems. The International
Journal of Robotics Research, 25:225–241, March 2006. ISSN 0278-3649.
doi:10.1177/0278364906063426.

[95] V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling,
D. Neiman, R. Podorozhny, M. Nagendra Prasad, A. Raja, R. Vin-
cent, P. Xuan, and X. Q. Zhang. Evolution of the GPGP/TÆMS
Domain-Independent Coordination Framework. Autonomous Agents and
Multi-Agent Systems, 9(1-2):87–143, July 2004. ISSN 1387-2532.
doi:10.1023/B:AGNT.0000019690.28073.04.

[96] Hector J. Levesque. Planning with Loops. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 509–515,
2005.

[97] Hector J. Levesque, Philip R. Cohen, and José H. T. Nunes. On Acting
Together. In Proceedings of AAAI-90, pages 94–99, Boston, MA, 1990.

[98] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin,
and Richard B. Scherl. Golog: A logic programming language for dy-
namic domains. Journal of Logic Programming, 31(1–3):59–83, 1997.
doi:10.1016/S0743-1066(96)00121-5.

[99] Martin Lötzsch, Max Risler, and Matthias Jüngel. XABSL - A pragmatic
approach to behavior engineering. In Proceedings of IEEE/RSJ Interna-
tional Conference of Intelligent Robots and Systems (IROS), pages 5124–
5129, Beijing, China, 2006.

[100] John McCarthy and Patrick J. Hayes. Some Philosophical Problems from
the Standpoint of Artificial Intelligence. In B. Meltzer and D. Michie, ed-
itors, Machine Intelligence 4, pages 463–502. Edinburgh University Press,
1969.

250 Bibliography

[101] D Mills, J Martin, J Burbank, and W Kasch. Rfc 5905 - network time
protocol. Internet Engineering Task Force IETF, pages 1–111, 2010. URL
http://www.rfc-editor.org/info/rfc5905.

[102] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an efficient sat solver. In Annual ACM
IEEE Design and Automation Conference, pages 530–535. ACM, 2001.

[103] Sreerama K. Murthy. Automatic construction of decision trees from data:
A multi-disciplinary survey. Data Mining and Knowledge Discovery, 2:
345–389, 1997.

[104] Ranjit Nair, Milind Tambe, and Stacy Marsella. Role allocation and reallo-
cation in multiagent teams: towards a practical analysis. In Proceedings of
the second international joint conference on Autonomous agents and mul-
tiagent systems, AAMAS ’03, pages 552–559, New York, NY, USA, 2003.
ACM. ISBN 1-58113-683-8. doi:10.1145/860575.860664.

[105] Alexander Nareyek. Constraint-Based Agents, volume 2062 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2001. ISBN
978-3-540-42258-7. doi:10.1007/3-540-45746-1.

[106] Dana Nau, Okhtay Ilghami, Ugur Kuter, J. William Murdock, Dan Wu,
and Fusun Yaman. Shop2: An htn planning system. Journal of Artificial
Intelligence Research, 20:379–404, 2003.

[107] S. Nema, John Yannis Goulermas, G. Sparrow, and Phil Cook. A hybrid
particle swarm branch-and-bound (hpb) optimizer for mixed discrete non-
linear programming. IEEE Transactions on Systems, Man, and Cybernetics,
Part A, 38(6):1, 2008. doi:10.1109/TSMCA.2008.2003536.

[108] Salam Nema. Hybrid evolutionary techniques for constrained optimisation
design. PhD thesis, University of Liverpool, 2010.

[109] J. Neyman. On a New Class of Contagious Distributions, Applicable in
Entomology and Bacteriology. The Annals of Mathematival Statistics, 10:
35–57, 1939.

[110] Trung Thanh Nguyen and Xin Yao. Benchmarking and solving dynamic
constrained problems. In Proceedings of the IEEE Congress on Evolution-
ary Computation, CEC’09, pages 690–697, Piscataway, NJ, USA, 2009.
IEEE Press. ISBN 978-1-4244-2958-5. doi:10.1109/CEC.2009.4983012.

Bibliography 251

[111] Shan-Hwei Nienhuys-Cheng and Ronald de Wolf. Foundations of Inductive
Logic Programming. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1997. ISBN 3540629270.

[112] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT
and SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–
Loveland procedure to DPLL(T). J. ACM, 53:937–977, November 2006.
ISSN 0004-5411. doi:10.1145/1217856.1217859.

[113] N. J. Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann, San
Francisco, CA, USA, 1980.

[114] Thomas Nitsche and Thomas Fuhrmann. A tool for raytracing based radio
channel simulation. In Proceedings of the 4th International ICST Confer-
ence on Simulation Tools and Technique, March 2011.

[115] Hyacinth S. Nwana. Software agents: An overview. Knowledge Engineer-
ing Review, 11:205–244, 1996.

[116] Object Management Group. OMG Unified Modeling Language™ (OMG
UML), Superstructure, May 2010. URL http://www.omg.org/spec/UML/2.
3/Superstructure/PDF/. OMG Document Number: formal/2010-05-05.

[117] Boon Hua Ooi and Aditya K. Ghose. Constraint-based agent specification
for a multi-agent stock brokering system. In Proceedings of the 12th inter-
national conference on Industrial and engineering applications of artificial
intelligence and expert systems: multiple approaches to intelligent systems,
IEA/AIE ’99, pages 409–419, Secaucus, NJ, USA, 1999. Springer-Verlag
New York, Inc. ISBN 3-540-66076-3. URL http://dl.acm.org/citation.cfm?
id=341506.341611.

[118] Lynne E. Parker. Alliance: An architecture for fault tolerant multi-robot
cooperation. IEEE Transactions on Robotics and Automation, 14:220–240,
1998.

[119] David Payton, Mike Daily, Regina Estowski, Mike Howard, and Craig Lee.
Pheromone robotics. Autonomous Robots, 11:319–324, 2001. ISSN 0929-
5593. doi:10.1023/A:1012411712038.

[120] Judea Pearl. Heuristics – intelligent search strategies for computer problem
solving. Addison-Wesley series in artificial intelligence. Addison-Wesley,
1984. ISBN 978-0-201-05594-8.

252 Bibliography

[121] Adrian Petcu. A Class of Algorithms for Distributed Constraint Opti-
mization. Phd. thesis no. 3942, Swiss Federal Institute of Technology
(EPFL), Lausanne (Switzerland), October 2007. URL http://liawww.epfl.
ch/Publications/Archive/Petcu2007thesis.pdf.

[122] G. D. Plotkin. A Structural Approach to Operational Semantics. Technical
Report DAIMI FN-19, University of Aarhus, University of Aarhus, 1981.

[123] Armand E. Prieditis. Machine discovery of effective admissible heuristics.
In Machine Learning, pages 117–141, 1993.

[124] Patrick Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem.
Computational Intelligence, 9:268–299, 1993.

[125] D. Pynadath and M. Tambe. Multiagent teamwork: Analyzing the optimal-
ity and complexity of key theories and models. In Proceedings of the 1st
conference of autonomous agents and multiagent systems (AAMAS-2002),
2002. URL http://citeseer.ist.psu.edu/article/pynadath02multiagent.html.

[126] David V. Pynadath, Milind Tambe, and Nicolas Chauvat. Toward team-
oriented programming. In Intelligent Agents VI: Agent Theories, Architec-
tures, and Languages, pages 233–247, 1999.

[127] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an open-source robot
operating system. In ICRA Workshop on Open Source Software, 2009.

[128] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106,
March 1986. ISSN 0885-6125. doi:10.1023/A:1022643204877.

[129] Anand S. Rao. AgentSpeak(L): BDI agents speak out in a logical com-
putable language. In MAAMAW ’96: Proceedings of the 7th European
workshop on Modelling autonomous agents in a multi-agent world : agents
breaking away, pages 42–55, Secaucus, NJ, USA, 1996. Springer-Verlag
New York, Inc. ISBN 3-540-60852-4.

[130] Anand S. Rao, Michael P. Georgeff, and E. A. Sonenberg. Social plans:
A preliminary report. In E. Werner and Y. Demazeau, editors, Decentral-
ized AI 3 — Proceedings of the Third European Workshop on Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW-91), pages 57–76,
Kaiserslautern, Germany, 1992. Elsevier Science B.V.: Amsterdam, Nether-
land. URL http://citeseer.ist.psu.edu/rao92social.html.

Bibliography 253

[131] Roland Reichle. Information Exchange and Fusion in Heterogeneous Dis-
tributed Environments. Phd thesis, University of Kassel, Kassel, 2010.

[132] Luís Paulo Reis, Nuno Lau, and Eugenio Oliveira. Situation based strategic
positioning for coordinating a team of homogeneous agents. In Balancing
Reactivity and Social Deliberation in Multi-Agent Systems, From RoboCup
to Real-World Applications (selected papers from the ECAI 2000 Work-
shop and additional contributions), pages 175–197, London, UK, 2001.
Springer-Verlag. ISBN 3-540-42327-3. URL http://dl.acm.org/citation.
cfm?id=646142.681100.

[133] Raymond Reiter. The frame problem in the situation calculus: A simple
solution (sometimes) and a completeness result for goal regression. In
Vladimir Lifschitz, editor, Artificial Intelligence and Mathematical Theory
of Computation: Papers in Honor of John McCarthy, pages 359–380. Aca-
demic Press, San Diego, CA, 1991.

[134] Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying
and Implementing Dynamical Systems. The MIT Press, Massachusetts, MA,
2001. ISBN 0262182181.

[135] David Richardson. Some Unsolvable Problems Involving Elementary Func-
tions of a Real Variable. Journal of Symbolic Logic, 33:5114–520, 1968.

[136] Martin Riedmiller and Heinrich Braun. Rprop - a fast adaptive learning al-
gorithm. International Symposium on Computer and Information Sciences
- ISCIS, 1992.

[137] RoboCup. RoboCup Foundation. http://www.robocup.org/ (accessed 2012-
04-10).

[138] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint
Programming (Foundations of Artificial Intelligence). Elsevier Science Inc.,
New York, NY, USA, 2006. ISBN 0444527265.

[139] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Pearson Eduction International, 2nd edition, 2003. ISBN 0-13-
080302-2.

[140] Earl D. Sacerdoti. A structure for plans and behavior. Technical Report
109, AI Center, SRI International, 333 Ravenswood Ave., Menlo Park, CA
94025, August 1975.

254 Bibliography

[141] Sebastian Sardina and Lin Padgham. Goals in the context of BDI plan
failure and planning. In Proceedings of the 6th International Joint Confer-
ence on Autonomous Agents and Multiagent systems, AAMAS ’07, pages
7:1–7:8, New York, NY, USA, 2007. ACM. ISBN 978-81-904262-7-5.
doi:10.1145/1329125.1329134.

[142] Paul Scerri, David V. Pynadath, Nathan Schurr, Alessandro Farinelli,
Sudeep Gandhe, and Milind Tambe. Team oriented programming and proxy
agents: The next generation. In Mehdi Dastani, Juergen Dix, and Amal El
Fallah-Seghrouchni, editors, PROMAS, volume 3067 of Lecture Notes in
Computer Science, pages 131–148. Springer, 2003. ISBN 3-540-22180-8.

[143] Thomas J. Schaefer. The complexity of satisfiability problems. In
Proceedings of the tenth annual ACM Symposium on Theory of Com-
puting, STOC ’78, pages 216–226, New York, NY, USA, 1978. ACM.
doi:10.1145/800133.804350.

[144] Andreas Scharf. Grafische Verhaltensmodellierung kooperativer autonomer
Robotersysteme. Bachelor thesis, University of Kassel, Germany, 2008.

[145] Arne Schmitz and Leif Kobbelt. Wave propagation using the photon path
map. In Proceedings of the 3rd ACM international workshop on Perfor-
mance evaluation of wireless ad hoc, sensor and ubiquitous networks, PE-
WASUN ’06, pages 158–161, New York, NY, USA, 2006. ACM. ISBN
1-59593-487-1. doi:10.1145/1163610.1163638.

[146] J. Schubert and H. Sidenbladh. Sequential clustering with particle fil-
ters – estimating the number of clusters from data. In 8th International
Conference on Information Fusion, volume 1, pages 1–8. ISIF, July 2005.
doi:10.1109/ICIF.2005.1591845.

[147] Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strategies for im-
proving local search. In Proceedings of the Eleventh National Conference
on Artificial Intelligence (AAAI-94), pages 337–343, 1994.

[148] M. Senel, K. Chintalapudi, Dhananjay Lal, A. Keshavarzian, and E. J.
Coyle. A Kalman Filter Based Link Quality Estimation Scheme for Wire-
less Sensor Networks. In Global Telecommunications Conference, 2007.
GLOBECOM ’07. IEEE, pages 875–880. IEEE, November 2007. ISBN
978-1-4244-1043-9. doi:10.1109/GLOCOM.2007.169.

Bibliography 255

[149] Glenn Shafer. A Mathematical Theory of Evidence. Princeton University
Press, Princeton, 1976.

[150] Murray Shanahan. Solving the Frame Problem: A Mathematical Investiga-
tion of the Common Sense Law of Inertia. MIT Press, 1997.

[151] Murray Shanahan. The event calculus explained. In Artificial Intelligence
Today: Recent Trends and Developments, volume 1600 of Lecture Notes in
Computer Science, pages 409–430. Springer, 1999.

[152] Yi Shang, Markus P.J. Fromherz, and Lara Crawford. A new constraint test-
case generator and the importance of hybrid optimizers. European Journal
of Operational Research, 173(2):419–443, September 2006.

[153] Alex Shtof. Autodiff – high-performance and high-accuracy automatic
function-differentiation library suitable for optimization and numeric com-
puting. http://autodiff.codeplex.com/ (accessed 2012-05-21).

[154] J.C. Simon and O. Dubois. Number of solutions to satisfiability instances –
applications to knowledge base. International Journal of Pattern Recogni-
tion and Artificial Intelligence, 3:53–65, 1989.

[155] Hendrik Skubch. Solving non-linear arithmetic constraints in soft realtime
environments. In 27th Symposium On Applied Computing, volume 1, pages
67–75. ACM, 2012.

[156] Hendrik Skubch and Michael Thielscher. Strategy learning for reasoning
agents. In João Gama, Rui Camacho, Pavel Brazdil, Alípio Jorge, and Luís
Torgo, editors, Machine Learning: ECML 2005, 16th European Confer-
ence on Machine Learning, Porto, Portugal, October 3-7, 2005, Proceed-
ings, volume 3720 of Lecture Notes in Computer Science, pages 733–740.
Springer, 2005. ISBN 3-540-29243-8. doi:10.1007/11564096_75.

[157] Hendrik Skubch, Michael Wagner, Roland Reichle, Stefan Triller, and Kurt
Geihs. Towards a comprehensive teamwork model for highly dynamic do-
mains. In Joaquim Filipe, Ana L. N. Fred, and Bernadette Sharp, editors,
ICAART 2010 - Proceedings of the International Conference on Agents and
Artificial Intelligence, Volume 2 - Agents, Valencia, Spain, January 22-24,
2010, pages 121–127. INSTICC Press, 2010. ISBN 978-989-674-022-1.

256 Bibliography

[158] Hendrik Skubch, Daniel Saur, and Kurt Geihs. Resolving conflicts in
highly reactive teams. In Norbert Luttenberger and Hagen Peters, ed-
itors, 17th GI/ITG Conference on Communication in Distributed Sys-
tems, KiVS, volume 17 of OASICS, pages 170–175. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, Germany, 2011. ISBN 978-3-939897-27-
9. doi:10.4230/OASIcs.KiVS.2011.170.

[159] Hendrik Skubch, Michael Wagner, Roland Reichle, and Kurt Geihs. A mod-
elling language for cooperative plans in highly dynamic domains. Mecha-
tronics, 21(2):423–433, 2011. Special Issue on Advances in intelligent
robot design for the Robocup Middle Size League.

[160] Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power
and complexity of constraint handling rules. ACM Trans. Program. Lang.
Syst., 31(2):8:1–8:42, February 2009. doi:10.1145/1462166.1462169.

[161] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework 2.0. Addison-Wesley Professional,
2009. ISBN 0321331885.

[162] Jayoung Sung, Henrik I. Christensen, and Rebecca E. Grinter. Sketching
the Future: Assessing User Needs for Domestic Robots. In The 18th IEEE
International Symposium on Robot and Human Interactive Communication,
pages 153–158, 2009. doi:10.1109/ROMAN.2009.5326289.

[163] Milind Tambe. Towards flexible teamwork. Journal of Artificial Intelligence
Research, 7:83–124, 1997. URL http://citeseer.ist.psu.edu/tambe97towards.
html.

[164] Milind Tambe, David V. Pynadath, and Nicolas Chauvat. Building dynamic
agent organizations in cyberspace. IEEE Internet Computing, 4:65–73,
March 2000. ISSN 1089-7801. doi:10.1109/4236.832948.

[165] Russell Taylor and Leo Joskowicz. Computer-integrated surgery and medi-
cal robotics. The Hand, 2002:1199–1222, 2008.

[166] Michael Thielscher. Introduction to the fluent calculus. Electronic Trans-
actions on Artificial Intelligence, 2:179–192, 1998. URL http://www.ep.liu.
se/ej/etai/1998/006/.

[167] Michael Thielscher. Flux: A logic programming method for reasoning
agents. Theory and Practice of Logic Programming, 5:533–565, July 2005.
ISSN 1471-0684. doi:10.1017/S1471068405002358.

Bibliography 257

[168] Michael Thielscher. Reasoning robots: the art and science of programming
robotic agents. Applied logic series. Springer, 2005.

[169] Marc Toussaint, Nils Plath, Tobias Lang, and Nikolay Jetchev. Integrated
motor control, planning, grasping and high-level reasoning in a blocks
world using probabilistic inference. In IEEE International Conference on
Robotics and Automation (ICRA), 2010.

[170] Douglas Vail and Manuela Veloso. Dynamic multi-robot coordination. In
Multi-Robot Systems: From Swarms to Intelligent Automata, Volume II,
pages 87–100. Kluwer Academic Publishers, 2003.

[171] Pascal Van Hentenryck. Numerica: a modeling language for global op-
timization. In Proceedings of the Fifteenth international joint conference
on Artifical intelligence - Volume 2, pages 1642–1647, San Francisco, CA,
USA, 1997. Morgan Kaufmann Publishers Inc. ISBN 1-555860-480-4.
URL http://dl.acm.org/citation.cfm?id=1622270.1622392.

[172] Pascal Van Hentenryck and Thierry Le Provost. Incremental search in con-
straint logic programming. New Generation Computing, 9:257–275, 1991.
ISSN 0288-3635. doi:10.1007/BF03037165.

[173] Gérard Verfaillie and Thomas Schiex. Solution reuse in dynamic constraint
satisfaction problems. In Proceedings of the twelfth national conference
on Artificial intelligence (vol. 1), AAAI ’94, pages 307–312, Menlo Park,
CA, USA, 1994. American Association for Artificial Intelligence. ISBN
0-262-61102-3. URL http://dl.acm.org/citation.cfm?id=199288.178066.

[174] Felix von Leitner. The Dark Side of C++. http://www.fefe.de/c++/c%2B%
2B-talk.pdf (accessed 2012-05-22), 2007. Presented at Chaos Communica-
tion Camp, Berlin, 2007.

[175] Tingting Wang, Jiming Liu, and Xiaolong Jin. Minority game strategies
in dynamic multi-agent role assignment. In Proc. of the IEEE/WIC/ACM
International Conference on Intelligent Agent Technology, pages 316–322,
Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2101-
0. doi:10.1109/IAT.2004.79.

[176] J. H. Ward. Hierarchical Grouping to Optimize an Objective Function. Jour-
nal of the American Statistical Association, 58(301):236–244, March 1963.
ISSN 01621459. doi:10.2307/2282967.

258 Bibliography

[177] Jörg Weber and Franz Wotawa. Combining runtime diagnosis and ai-
planning in a mobile autonomous robot to achieve a graceful degradation
after software failures. In Joaquim Filipe, Ana L. N. Fred, and Bernadette
Sharp, editors, ICAART 2010 - Proceedings of the International Conference
on Agents and Artificial Intelligence, Volume 1 - Artificial Intelligence, Va-
lencia, Spain, January 22-24, 2010, pages 127–134. INSTICC Press, 2010.
ISBN 978-989-674-021-4.

[178] T. Weigel, J.-S. Gutmann, M. Dietl, A. Kleiner, and B. Nebel. CS Freiburg:
Coordinating robots for successful soccer playing. IEEE Transactions on
Robotics and Automation, 18(5):685–699, 2002.

[179] Terry Winograd. Understanding Natural Language. Academic Press, New
York, 1972. doi:10.1002/bs.3830180608.

[180] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimiza-
tion. Evolutionary Computation, IEEE Transactions on, 1(1):67–82, April
1997. ISSN 1089-778X. doi:10.1109/4235.585893.

[181] Michael Wooldridge. An Introduction to MultiAgent Systems. Wiley Pub-
lishing, 2nd edition, 2009. ISBN 0470519460, 9780470519462.

[182] Michael Wooldridge, Nicholas Jennings, and David Kinny. A methodology
for agent-oriented analysis and design. Journal of Autonomous Agents and
Multi-Agent Systems, 3:285–312, 1999.

[183] John Yen, Jianwen Yin, Thomas R. Ioerger, Michael S. Miller, Dianxiang
Xu, and Richard A. Volz. Cast: Collaborative agents for simulating team-
work. In Proceedings of the 17th International Joint Conference on Arti-
ficial intelligence - Volume 2, IJCAI’01, pages 1135–1142, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1-55860-812-5,
978-1-558-60812-2.

[184] Jianwen Yin, Michael S. Miller, Thomas R. Ioerger, John Yen, and
Richard A. Volz. A knowledge-based approach for designing intelligent
team training systems. In Carles Sierra, Maria Gini, and Jeffrey S. Rosen-
schein, editors, Proceedings of the Fourth International Conference on Au-
tonomous Agents, pages 427–434, Barcelona, Catalonia, Spain, 2000. ACM
Press. doi:10.1145/336595.337560.

[185] Weixiong Zhang, Guandong Wang, Zhao Xing, and Lars Wittenburg. Dis-
tributed stochastic search and distributed breakout: properties, comparison

Bibliography 259

and applications to constraint optimization problems in sensor networks.
Artificial Intelligence, 161(1-2):55–87, January 2005. ISSN 0004-3702.
doi:10.1016/j.artint.2004.10.004.

[186] H.-J. Zimmermann. Fuzzy set theory—and its applications (3rd ed.).
Kluwer Academic Publishers, Norwell, MA, USA, 1996. ISBN 0-7923-
9624-3.

[187] Oliver Zweigle, Reinhard Lafrenz, Thorsten Buchheim, Uwe-Philipp Käp-
peler, Hamid Rajaie, Frank Schreiber, and Paul Levi. Cooperative agent
behavior based on special interaction nets. In Tamio Arai, Rolf Pfeifer,
Tucker R. Balch, and Hiroshi Yokoi, editors, Proceedings of the 9th Inter-
national Conference on Intelligent Autonomous Systems - IAS, University
of Tokyo, Tokyo, Japan, March 7-9, 2006, pages 651–659. IOS Press, 2006.
ISBN 1-58603-595-9.

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Part I Preliminaries
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Scenarios
	1.3.1 RoboCup
	1.3.2 Exploration
	1.3.3 Rescue

	1.4 Approach
	1.5 Contributions
	1.6 Structure of this Work
	1.7 Conventions

	2 Foundations
	2.1 Agents
	2.2 Multi-Agent Systems
	2.3 Teamwork
	2.4 Constraint Programming

	3 Related Work
	3.1 Action Calculi
	3.2 BDI Languages
	3.3 Plan Execution Languages
	3.4 Teamwork
	3.5 Task and Role Allocation
	3.6 Estimating Agreement and Conflict Resolution
	3.7 Task Models
	3.8 Constraint-Based Modelling

	Part II Propositional ALICA
	4 Syntax
	4.1 Behaviours
	4.2 Plans
	4.3 Synchronisations
	4.4 Roles
	4.5 Well-Formedness
	4.6 Overview of the Syntactic Elements in pALICA

	5 Semantics
	5.1 Fundamental Principles
	5.2 Agent Model
	5.2.1 Plan Base
	5.2.2 Belief Base
	5.2.3 Belief Update
	5.2.4 Execution Set
	5.2.5 Role Set

	5.3 Locality
	5.4 Team Configuration
	5.5 Success Semantics
	5.6 Role Allocation
	5.7 Canonical Behaviour Plans
	5.8 Task Allocation
	5.9 Recursive Task Allocation
	5.10 Optimal Task Allocation
	5.11 Utility Functions
	5.12 Task Allocation Algorithm
	5.13 Rules
	5.13.1 Operational Rules
	5.13.2 Repair Rules

	5.14 Agent Configuration Consistency
	5.15 Summary

	6 Conflict Detection and Resolution
	6.1 Conflict Detection
	6.2 Conflict Resolution

	7 Software Architecture
	7.1 Modelling Tools and Exchange Format
	7.2 Engine Layout
	7.3 Agent Software Architecture
	7.4 Implementation Details
	7.5 Communication
	7.5.1 Information Exchange
	7.5.2 Estimating the Current Team

	7.6 Summary

	Part III General ALICA
	8 Generalising ALICA
	8.1 Introduction
	8.1.1 Standard Situations
	8.1.2 Blocks World

	8.2 Behaviour Parameters and Plan Variables
	8.3 Agent Variables
	8.4 Constraints in ALICA
	8.5 Constraint Store
	8.6 Rules
	8.6.1 Lifting Propositional ALICA Rules
	8.6.2 Constraint Handling Rules

	8.7 Queries
	8.8 Summary

	9 Solving Constraint Problems
	9.1 Exemplary Constraint Satisfaction Problems
	9.2 Non-Linear Continuous Constraint Satisfaction Problems
	9.3 SMT-Solvers Revisited
	9.4 Realtime Considerations
	9.5 Coordination
	9.6 Constraint Optimisation
	9.7 Constraints and Task Allocation
	9.8 Summary

	Part IV Assessment
	10 Evaluation
	10.1 Modelling in RoboCup
	10.1.1 Strong and Weak Synchronisation
	10.1.2 Finite State Machines and Dynamic Task Allocation
	10.1.3 Select and Commit

	10.2 Unreliable Communication
	10.3 Constraint Solving and Optimisation
	10.3.1 The Ring Problem
	10.3.2 Blockers
	10.3.3 Inverse Kinematics
	10.3.4 Summary

	10.4 Case Study: Exploration
	10.4.1 Retrieving
	10.4.2 Exploration
	10.4.3 Summary

	10.5 Rescue Simulation

	11 Conclusion
	11.1 Requirements Revisited
	11.2 Outlook and Future Work

	Bibliography

