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Preface 

“Vision Based Autonomous Robot Navigation: Algorithms and Implementations” 
is devoted to the theory and development of autonomous navigation of mobile 
robots using computer vision based sensing mechanism. The conventional robot 
navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser 
sensors etc., suffer several drawbacks related to either the physical limitations of 
the sensor or incur high cost. Vision sensing has emerged as a popular alternative 
where cameras can be used to reduce the overall cost, maintaining high degree of 
intelligence, flexibility and robustness. 

The introductory chapter details the basic concepts of autonomous navigation 
of mobile robots and the utility of using vision as the sensing mechanism in this 
context is highlighted. Here a broad categorization of research activities pertaining 
to vision-based navigation in indoor and outdoor environments is presented. This 
is followed by an introduction of different broad modalities of obstacle detection 
and avoidance. In the next chapter, the book discusses how real-life interfacing of 
external peripherals with a readymade mobile robot can be successfully achieved. 
Here a detail description of interfacing of such peripherals with the KOALA robot 
using serial communication in interrupt driven mode is provided. In the next 
chapter, a vision based robot navigation strategy is detailed, where a subgoal 
based scheme is employed to follow the shortest path to reach the final goal and 
also simultaneously achieve the desired obstacle avoidance. This strategy employs 
a two layer architecture where vision sensor operates in layer 1 and IR sensor 
based obstacle avoidance scheme operates in layer 2. 

The next chapter discusses how a low-cost robot can be indigenously developed 
in the laboratory with special functionalities. Special emphasis is put on 
development of two microcontroller based sensor systems for the robot in this 
regard: (i) an IR range finder system that can be developed with dynamic range 
enhancement capability and (ii) an optical proximity detector system developed 
utilizing the principle of switching mode synchronous detection technique. This is 
followed by the next chapter which presents, in a step-by-step manner, gradually 
progressing from easier modules to more complex modules, how vision-based 
navigation subroutines can be actually implemented in real-life, under 32-bit 
Windows environment.  

The next two chapters deal with incorporation of fuzzy logic in the context  
of mobile robot navigation. Among these, the first one discusses how a vision 
based navigation scheme can be developed for indoor path/line tracking. Here 
fuzzy vision-based navigation is hybridized with a fuzzy IR-based obstacle 
avoidance mechanism. The next chapter first introduces the concept of EKF-based 
SLAM for mobile robots. Then it discusses a more complex scenario where fuzzy 
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or neuro-fuzzy supervision can be effectively utilized to improve performance for 
EKF based SLAM in presence of incorrect or uncertain knowledge of sensor 
statistics. The last chapter discusses how a two camera based vision system can be 
implemented in reality for SLAM in an indoor environment.  
 
 
Kolkata, West Bengal, India Amitava Chatterjee 
September 2012 Anjan Rakshit 
 N. Nirmal Singh 
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Chapter 1 
Mobile Robot Navigation 

Abstract. This chapter introduces the basic concepts of autonomous navigation of 
mobile robots and the utility of using vision as the sensing mechanism in 
achieving the desired objectives. The chapter discusses the broad categories of 
vision-based navigation in indoor and outdoor environments. Different prominent 
directions of research in this context are introduced and also different broad 
modalities of obstacle detection and avoidance are presented.  

1.1   Autonomous Mobile Robot Navigation 

Advances in recent technologies in the area of robotics have made enormous 
contributions in many industrial and social domains in recent times. Nowadays 
numerous applications of robotic systems can be found in factory automation, 
surveillance systems, quality control systems, AGVs (autonomous guided 
vehicles), disaster fighting, medical assistance etc. More and more robotic 
applications are now aimed at improving our day-to-day lives, and robots are now 
caught in sight more often than ever before performing various tasks in disguise 
[1]. For many such applications, autonomous mobility of robots is a mandatory 
key issue [100]. Autonomous mobile robots are robots which can perform desired 
tasks in structured or unstructured environments without continuous human 
guidance. A fully autonomous mobile robot has the ability to: 

• Gain information about the environment. 
• Work for an extended period without human intervention. 
• Move either all or part of itself throughout its operating environment without 

human assistance. 
• Avoid situations that are harmful to people, property, or itself, unless those 

are part of its design specifications. 

An autonomous mobile robot may also learn or gain new capabilities like adjusting 
strategies for accomplishing its task(s) or adapting to changing surroundings. 

1.2   Why Vision in Navigation? 

Vision is the sense that enables us, humans, to extract information about the 
physical world, and, appropriately, it is the sense that humans rely on the most. In 
recent past, computer vision techniques capable of extracting such information are 
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continuously being developed and refined. Vision processing is computationally 
intensive, but as faster and lower priced processors being developed, the 
development of real-time vision-based navigation systems for mobile robots is 
becoming a reality for a variety of complicated jobs and more research works are 
being focused in this domain now, than ever before [100]. 

The other sensors that are used for navigation include infrared sensors, sonar 
sensors, laser range finders, the position sensing device (PSD) sensors and inertial 
sensors. Infrared sensors have limited usage; they are very often used as proximity 
detectors and the main shortcoming of using them as range finders lies in their 
limited range and their susceptibility to ambient light interference. IR sensors are 
also known for their non-linear behavior and their reflectance dependency on the 
surface of a target [2]. Sonar sensors are computationally affordable and their data 
are simple to read, but the reliability of their data is low due to the environmental 
disturbances. The sonar range finder measures the distance to an object, but has 
poor angular resolution due to its wide beam width [3]. Laser range finders 
provide better reliability, instantaneous measurement, superior range accuracy, 
and precise angular resolution than sonar, with finer directional resolution, but at 
much higher cost. Laser-based sensors can extract information more than distance 
only. For example, laser scanners are often used to extract topological information 
making the best use of its ability to identify the textures of an object’s surface and 
its precise range approximation. The laser range finder has a disadvantage that the 
scan may be prone to missing transparent objects, such as glasses and windows. 
Inertial navigation sensors such as accelerometers and gyroscopes provide 
orientation and trajectory measurements of the moving vehicles, but provide no 
information about the obstacles in the environment that the vehicle is traversing. 
GPS is one of the most popular aiding tools in navigation systems in use today. 
GPS provides real time absolute or relative position data, but the accuracy and 
bandwidth are limited compared to the typical requirements of relative proximity 
operation. The performance of GPS can suffer by occlusion of line-of-sight to 
satellites and their accuracy and update rate may be slow [4]. These range-based 
sensors have difficulties in detecting small or flat objects on the ground. These 
sensors are also unable to distinguish between difference types of ground surfaces. 
While small objects and different types of grounds are difficult to detect with 
range-based sensors, they can in many cases be easily detected with a passive 
sensor, like camera. A vision system is considered as a passive sensor and has the 
fundamental advantages over the active sensors that are considered as active 
sensors such as infrared, laser, and sonar sensors [5]. Passive sensors such as 
cameras do not alter the environment by emitting lights or waves in acquiring 
data, and also the obtained image contains more information (i.e. substantial, 
spatial and temporal information) than active sensors. All these sensors acquire 
less information about the physical environment than a camera can potentially, 
and with the continued growth of faster and cheaper computing power, that 
potential is now being tapped for designing real-world vision based navigational 
systems. Cameras are cheap to purchase, with even the most expensive cameras 
being relatively affordable. Hence vision as a sensing mechanism for mobile 
robots offers very attractive potential for solution. 
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1.3   Vision-Based Navigation 

Vision based robot navigation is defined as the technique that guides a mobile 
robot to a desired destination, or along a desired path in an environment, by 
avoiding static (and may be dynamic) obstacles, primarily using vision sensor 
[100]. In general, vision-based robots have a vision system that perceives the 
external environments. Traditionally there are five main components in a vision 
system of an autonomous vision-based robot [6]. 

1. Maps. The system requires some internal representation or knowledge of the 
external environment in order to perform goal driven tasks. 

2. Data Acquisition. The system collects images from a camera. 
3. Feature Extraction. The feature extraction stage extracts significant features 

from input images such as edge, texture and colour. 
4. Landmark Recognition. The system searches for possible matches between 

the features in the observed images and the expected landmarks pre-stored in 
memory with respect to some preset criteria. 

5. Self-Localisation. The self-localisation stage calculates the robot’s current 
position as a function of detected landmarks and its previous position. The 
system then derives the path for the robot to traverse. This traversal can be 
reactive to avoid obstacles only and/or it can be goal driven. 

The navigation problem of a mobile robot can be, most often, divided into four 
subproblems [7]: 

1. World perception. It senses the world, symbolizing it into features. 
2. Path planning. It uses the features to create an ordered sequence of objective 

points that the robot must attain. 
3. Path generation. Then the goal is to obtain a path through the sequence of 

objective points. 
4. Path tracking. It is the responsibility of the controller so that the mobile robot 

can follow the intended path. 

Generally, vision-based robotic systems with the ability of obstacle detection and 
avoidance are relatively complicated to develop, since extracting information from 
a stream of the images of the site, consisting of the robot and the obstacles, can be 
a complex task to achieve desired real-time performance, with as little computing 
processing as possible. The problem of moving a robot through an unknown 
environment has attracted much attention over the past two decades.  A robot may 
encounter obstacles of all forms that must be bypassed in an intelligent manner. 
Accordingly, a substantial research effort focuses on the use of computer vision to 
achieve vision-based autonomous mobile robotic systems capable of navigation by 
logically acting on the sensed data to avoid such obstacles. The primary aim of 
most of these research efforts is to locate hindering obstacles, both stationary and 
movable, so that the suitable robot path can be planned to bypass these objects 
and, finally, to act according to the resultant plan. Navigation in both indoor and 
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outdoor environments using vision sensing has evolved as two major research 
areas in the mobile robotics community.  

1.3.1   Vision Based Indoor Navigation 

The vision based indoor navigation schemes can be broadly classified into three 
groups: i) map-based navigation, ii) map-building based navigation, and iii) 
mapless navigation [6].  

1.3.1.1   Map-Based Navigation 

In map-based navigation, the system has an a priori knowledge about the 
environment and the navigation system works with the knowledge of this map. 
These environment maps are provided in form of geometric models, topological 
maps, or sequence of images [8, 9, 10]. Early methods containing these maps had 
several degrees of details regarding the environment and were provided in form of 
“occupancy map”, “virtual force fields”, or “S-map” [11]. These methods were 
very prone to sensor errors and this problem was later addressed in the works of 
[12]. They made the very important suggestion to consider a tolerance about the 
uncertainties in sensor measurement [12]. These methods were called “absolute 
localization” and these research problems were later modified to solve for 
“incremental localization”. Here it is assumed that an approximate knowledge 
about the location of the robot is available and it is incrementally refined during 
navigation process, as observations are made with the vision tool, and necessary 
actions are taken for subsequent navigation. The FINALE [13] system is based on 
this concept where a geometrical representation of space and a statistical 
uncertainty model for the location of the robot is used and a Kalman-filter based 
approach is employed to update the mean and the covariance matrix of the robot 
position, when a landmark is matched with an image feature. Another class of 
approach was based on topological representation of space where one can employ 
bank of neural networks, as in NEURO-NAV [14], or a more sophisticated version 
of NEURO-NAV employing supervisory fuzzy controller, called FUZZY-NAV 
[15]. However, map-based navigation methods suffer from the disadvantage that it 
is not easy to generate a model or map, specially metric maps, of the environment. 

1.3.1.2   Map-Building-Based Navigation 

Map-building based navigation procedures attempt to take care of this problem 
where the robots start with no a priori information about the environment, they 
explore the environment at first and build an internal description and then they 
proceed with the task of navigation, using that internal description. Most of the 
works in this domain utilize approaches based on topological representation of 
space, e.g. [16] and [17], and address several issues like how to construct a node 
in a graph-based description of space, how to distinguish between several 
neighboring nodes, how to consider the effect of sensor uncertainty etc. However, 
a chief drawback of these methods is the difficulty in recognizing those nodes, 
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which were previously visited. Other approaches in this domain include the works 
involving occupancy-grid-based representation [18, 19], works employing 
panoramic view [20], and works which try to incorporate both the good features of 
occupancy-grid-based and topology-based approaches [21]. There are some other 
types of map-building navigation systems also described in literature, for example 
visual sonar [22] or local map-based system [23]. These systems collect data of 
the environment as they navigate and build a local map that is used as a support 
for on-line safe navigation. This local map includes information about specific 
obstacles and free space data of a reduced portion of the environment, which is 
usually a function of the camera field-of-view. 

1.3.1.3   Mapless Navigation 

Mapless navigation approaches fall in an even more ambitious category, where the 
navigation process starts and continues without any map. These kind of navigation 
procedures may also be called reactive navigation where important information 
about the environment are extracted online through observation, feature or 
landmark identification (usually in form of natural objects like walls, desks, 
doorways, corners etc.) and feature tracking and the navigation algorithm takes its 
decision as a “reaction” to these relevant, meaningful information extracted. Some 
of the traditionally popular approaches among these techniques employ optical-
flow based techniques [24] and appearance-based techniques [25], [26]. Optical-
flow based methods mimic the visual behavior of bees where the motion of the 
robot is determined on the basis of the difference in velocity between the image 
seen with left eye of the robot and the image seen with the right eye of the robot. 
The robot moves toward the side whose image changes with smaller velocity. 
Further modifications of the basic method in [24] have shown development of 
optical flow based navigation systems utilizing depth information and also more 
sophisticated systems employing stereo heads with pan, tilt and vergence control. 
Some authors have proved that the combination of stereo vision, to obtain accurate 
depth information, and optical flow analysis, provides better navigation results 
[27, 28]. In [29], stereo information is combined with the optical flow from one of 
the stereo images, to build an occupancy grid and perform a real time navigation 
strategy for ground vehicles. On the other hand, appearance-based methods thrive 
on memorizing the environment by storing a series of images, usually created 
from subwindows extracted from down-sampled camera images, and then, at any 
given time, an image taken is scanned across all these templates to find out 
whether the image matches with any of the stored ones. If the match is found, then 
a corresponding control action is taken for suitable navigation. The main focus 
here is on improving the way the images are recorded in the training phase, as well 
as on the subsequent image matching process. There are two main approaches for 
environment recognition without using a map [30]: 

(i) model based approaches which utilize pre-defined object models to 
recognize features in complicated environments and self-localize in it, and 
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(ii) view-based approaches where no features are extracted from the pre-
recorded images. The self-localization is performed using image matching 
algorithms. 

1.3.2   Vision Based Outdoor Navigation 

These are systems that use no explicit representation at all about the space in 
which navigation is to take place, but rather resort to recognizing objects found in 
the environment or to tracking those objects by generating motions based on 
visual observations. The outdoor navigation fall in two sub groups based on the 
level of structure of the environment: (i) outdoor navigation in structured 
environment, and (ii) outdoor navigation in unstructured environment. In many 
cases, mapping representations adapted in the indoor navigation are not much 
reliable for outdoor navigation, as they include large scenarios, with enormous 
physical area, and hence the amount of information to represent the environment 
increases immeasurably. The outdoor navigation in structured environments refers 
to road following which has the ability to detect the lines of the road and navigate 
consistently. In contrast with the structured indoor spaces, outdoors are in most 
cases, composed of gravel, gardens, walkways and streets. Most of these elements 
present different colors and textures and it is convenient to use these features for 
outdoor navigation. The first step to identify navigation regions is classifying 
portions of the terrains into classes, according to the visual information. One of 
the most outstanding efforts in road following, reported till now, is the NAVLAB 
project [31, 32]. The NAVLAB road following algorithm has three phases: in the 
first phase, a combination of color and texture pixel classification is performed by 
utilizing a Gaussian distribution for each road and non-road pixels; in the second 
phase, a Hough transform and a subsequent voting process is applied to road 
pixels, to obtain the road vanishing point and orientation parameters; finally, 
pixels are classified again according to the determined road edges. This 
classification procedure is repeated for the next image in order to have a system 
adaptable to changing road conditions. Many works have been reported with 
related concept for road detection and following in structured environment [33-
36]. Supporting vision information with GPS data in outdoor environments is 
another possibility of increasing reliability in position estimation [37]. In recent 
works, authors have also proposed to combine the concept of feature tracking with 
stereo 3D environment reconstruction. In [38], stereo vision is used in a novel 
navigation strategy applicable to unstructured outdoor environments. This system 
is based on a new, faster and more accurate corner detector method. In this 
method, detected features are 3D positioned and tracked using normalized mean-
squared differences and correlation measurements.  

1.4   State of the Art 

Numerous research works have been conducted in the field of vision based mobile 
robotics, till now, and most studies are concerned with detecting obstacles, 
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mapping a surrounding environment, planning safe routes, and navigating a 
doorway. In this section some of the different navigation approaches that have so 
far been used in vision based navigation, with and without a priori environmental 
information, based on visual information provided by the camera, are outlined.  

The “Stanford Cart” is one of the well known vision-based mobile robot 
projects [39], implemented quite some time back. The system utilized a video 
camera mounted on a mobile platform, the video signal was broadcast to a remote 
computer which then processed and controlled the motion of the robot via radio 
signals. The system used a planner for obstacle avoidance and path determination. 
Once images of the complete scene of the environment were received, the system 
could process them. The processing time was reported to be as long as 1-2 hours. 
Once the image processing was completed, a planned path was produced which 
guided the robot around obstacles. The problems encountered by this system were 
largely due to the length of time the system spent processing the information. For 
example, the shadows moved, causing the robot to make errors in its maps. These 
drawbacks were later addressed, by incorporating the idea of using image 
segmentation, using an interest-operator, to detect distinctive features in an 
environment [40]. 

In early 1990’s, Horswill developed a robot called POLLY [41, 42], which 
navigated using monochrome vision and was operated in a restricted environment 
with constant color. POLLY used a topology-like map in its navigation, which 
comprised a set of landmarks, that it used to localise itself. The landmarks were a 
set of individual snapshots taken from a particular location in the office 
environment. Landmark or place recognition was carried out by matching every 
landmark with live video data, in order to determine where the robot was currently 
located. In this work, it was suggested that this was, in effect, a local navigation 
strategy, equivalent to the method of artificial potential fields. Therefore, the robot 
was prone to be trapped in local minima. The approach utilized in this work 
mainly involved four steps: (i) smooth the image, (ii) Determine the average pixel 
value from a foreground trapezium, (iii) use this as floor and then label every pixel 
by starting from the bottom of the image and scanning up each column until there 
is a mismatch, (iv) the height of columns indicates the distance to obstacles, 
referred as the Radial Depth Map. The main problem with this methodology was 
that at times it misinterpreted shadows as obstacles. This was mainly due to the 
simple nature of the robot’s vision processing system. The processing was based 
on a simple extraction of textureless floor in an image, determining the available 
free space to travel. In later years, researchers have also proposed mobile robot 
navigation schemes with only one camera [43, 44]. Research work employing 
occupancy gird based map building framework and a feature position detection 
algorithm, that processes the colour RGB image sequence on-line from a single 
camera, has also been proposed [45]. This system, instead of implementing 
matching approaches, computes probabilities of finding objects at every location. 
The algorithm starts with detecting the edges of objects boundaries in the current 
frame using the Harris edge and corner detectors. In the beginning of the image 
sequence, the edge features are added to the occupancy grid map, which are 
scanned to determine the peaks. The detected features are back projected from the 
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2D image plane, considering all the potential locations at any depth. The 
positioning module of the system computes the position of the robot using 
odometry data combined with image feature extraction. Color or gradient from 
edges and features from past images help to increase the confidence one can have 
in the presence of an object in a certain location. The size of the grid cells was set 
to 25 × 25 mm for experiments carried out in indoor environments. The robot was 
allowed to move 100 mm between consecutive images. Using a single camera, 
only forward information was acquired, and this amount of information was found 
sufficient for indoor navigation purpose and was found very cost effective. 
Majority of the other works using single camera, for indoor unknown 
environment, have focused on the center following and wall following methods 
[46]. A corridor center method for wheel chair mobile robot navigation using a 
single USB camera and a laptop is reported recently [47]. In this work, the size of 
the acquired image is 320 x 240 pixels, the frontal field-of-view is 60 cm at the 
bottom and 20 m at the top, with a moving speed of 0.823 Km/h. This method also 
used Hough transform to detect the boundary lines of the corridor and the walls. 
The robot moves at the center of the corridor when there is no obstacles in the 
corridor. The obstacle detection used here is based on an improved version of 
Ulrich’s method [95]. The improvements incorporated are to omit the false 
detection of obstacles, caused by the influence of the lighting. In [47], if any 
obstacle is detected, then the obstacle avoidance or stop movement is decided 
based on the size of the obstacle, distance of the mobile robot from the obstacle, 
and the width of the corridor, which is determined from the 2D position in the real 
space and the arbitrary position in the image. Another work has been reported 
based on qualitative approach, which uses a single off-the-shelf, forward looking 
camera with no calibration, which can perform both indoor and outdoor navigation 
[1]. In this work the approach is based on teach-replay method, where, during the 
teaching phase, a human guides the robot along the path which it should traverse, 
manually. During the teaching phase, the robot selects and tracks the feature 
points using Kanade-Lucas-Tomasi (KLT) feature tracker [48] and stores then in  
a database. During the replay phase, an attempt is made to establish a 
correspondence between the feature point coordinates of the current image, with 
those of the first image taken during the teaching phase, based on which the 
turning commands are determined. A similar type of human experience based 
navigation algorithm using teaching-replay technique has also been developed 
using stereo vision [49]. 

In stereo vision, one can measure distance information with two or more 
cameras, as well as using ultrasonic sensor. However the processing cost becomes 
complex when two or more cameras are used. Several works in mobile robot 
navigation have so far been reported by using two or more cameras [50-54]. To 
obtain the depth information by the use of two cameras, it is necessary to have 
some data about the geometry of the camera and the head used. To obtain depth 
information in stereo vision, it is required that the two lines of sight for the two 
cameras intersect at the scene point P for which the depth information is to be 
processed. Stereo camera based systems are useful for feature identification, 
tracking of features and the distance calculation of 3D feature points in real time, 
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for the purpose of navigation. The concept relies heavily on selection/extraction of 
image points/features from a snap acquired and subsequently tracking of it (them) 
in subsequent snaps for the same scene, acquired from a different location and/or 
with a different orientation. No feature based vision system can work unless good 
features can be identified and tracked [55]. It is very important to obtain the 3D 
coordinates of image features which can facilitate the calculation of distance 
between the selected feature(s) in the image plane and the focal point of the 
camera in the field of robotics. This is very important for robot localization and 
scene interpretation. Recently, some methods to measure the distance between the 
feature or object and a camera have been developed using a fisheye stereo vision 
[56], monocular camera [57], the integration of vision and ultrasonic sensors [58], 
biologically inspired saliency Maps (SMs) [59] that receive preprocessed input 
from feature Detectors (FDs) etc. In [59], the interaction between the FDs of both 
cameras and SMs support the detection of corresponding landmarks in both 
images and allow the estimation of their direction and distance. A neural network 
maps the seven given identifiers (the X and Y positions of the landmark in both 
images, two camera pan angles and one common camera tilt angle) to the direction 
and distance of the landmark. A grid-based map building method, by using stereo 
vision, was developed for LAGR robot for outdoor navigation [60]. In addition to 
the vision sensor, inertial navigation unit, GPS receiver, and front bump switch 
were incorporated for sensing purpose. Here the map-building method mainly 
involves the following steps: 

1. Grab the images using a pair of color camera. 
2. 3D representation is determined by matching patches in the two images from 

the relative geometry of the camera. 
3. Each coordinate point is transformed to find the instantaneous pitch and roll 

of the robot, as estimated by the robots inertial navigation and yaw from the 
local frame into the global frame. 

4. A derivative operation is applied to the terrain map to find the abrupt changes 
in the slope. 

5. The global map is updated with new measurement including the terrain and 
derivative estimates. 

Recently, a successful stereo vision based algorithm was developed for NASA’s 
Mars Exploration Rover, for autonomous navigation in potentially hazards terrain 
[61]. The processing steps involved in this project are: (i) the image received from 
the camera is down sampled to 256 x 256 pixels for reducing the computation 
time, (ii) then the pair of image is processed by projection of epipolar line of an 
object in the first image to the same object on the other image horizontally, (iii) 
then the laplacian of the two images were computed, and, were correlated to select 
the potential match within a disparity range and the procedure was repeated for all 
the pixels in the images, so that if the estimate of these pixels fails in matching, it 
will be discarded, and (iv) finally, each disparity value can be mapped to a 3D 
representation using the geometric camera model.  
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Utilization of Omni-directional vision is also an important part in developing 
vision-based mobile robot navigation strategies. It can provide a 3600 view of the 
environment, in image form, for any arbitrary position of the robot. This vision 
system uses fish eye cameras and panoramic cameras. They have the advantage of 
possessing the full field-of-view but the associated disadvantage of incurring high 
cost and the complexity in the development of vision algorithms, based on the 
geometry of the particular type of the camera chosen. Several works have also 
been reported using omni-directional vision for navigation [62-65], mostly using 
the optical flow based navigation techniques. 

Optical flow is the measure of visual motion induced by the movement of 
surfaces in a scene with respect to the camera. Computationally, the most common 
representation of optical flow is a 2D vector field in the image space, where each 
vector describes the motion of a point in one image to its location in the next. In a 
vision-guided robot, optical flow is largely induced by the motion of the camera as 
the robot moves. Many of the works in optical flow methods are corridor centering 
approaches, based on the observation in flying honey bees, as mentioned earlier. It 
was observed that the direction and speed of the flight of the honey bees is directly 
coupled with the visual motion induced by its motion relative to the environment 
[66, 67]. The corridor navigation of mobile robots, based on optical flow, is 
achieved using different types of cameras with different placement. For example, 
in [68], a wide angle, forward-facing active camera was used to achieve corridor 
centering. Here optical flow was computed in the left and right peripheral thirds of 
the image. By balancing the maximal flow in both thirds, the robot attempted to 
maintain a centered path between walls and obstacles. Here the camera gaze 
direction was used to counter the rotation of the robot during directional 
adjustments. In [69, 70], different methodologies were utilized to compute the 
difference of the average horizontal optical flow from two cameras placed at 900 
to the heading direction, on either side of the robot. In this method, in contrast to 
[68], no compensatory measures were taken to counter rotational flow. Instead, 
restrictions on steering keep the induced rotational effects to a minimum. To cope 
with absence of texture (e.g. a doorway or no wall), a unilateral sustaining 
behavior is used to maintain a constant distance from the side wall, which can still 
provide sufficient texture from which optical flow can be estimated. 

Optical flow using correlation-based techniques is similar in nature to disparity 
mapping using stereo vision. The difference is that in optical flow the images are 
separated temporally, whereas, for stereo vision, they are separated spatially. 
Unfortunately, the task of correlating images for optical flow gets complicated by 
the fact that robots in real world are may be subject to vibrations. This means that, 
unlike stereo vision, the search for corresponding image patches cannot be 
restricted to the same horizontal scan line [71, 72]. Other flow techniques for 
robot navigation with continuous motion have also been proposed using gradient-
based methods [73-75]. 

Visual navigation techniques based on optical flow have proved to be 
especially useful for unmanned aerial vehicles because optical flow gives the 
scene qualitative characteristics that cannot be extracted in detail from a single 
low quality image. Within this research framework, a significant effort has been 



1.4   State of the Art 11
 

devoted to imitate animal behavior, as far as the use and processing of apparent 
motion is concerned. Unmanned aerial vehicles with camera eye consisted of an 
array of photoreceptors, each one connected to an electronic Elementary Motion 
Detector (EMD), which was able to calculate the local optical flow at its particular 
position [76]. Contrast on optical flow calculations determined the presence of 
obstacles, while identifying the EMD polar coordinates, that produced the changes 
in optical flow measures, permitted to construct a local map with the location of 
the obstacles. In [77], an unmanned aerial vehicle was also implemented with a 
camera eye, assembled with an array of photosensors and their corresponding 
EMDs. The information obtained from the set of EMDs, was used to determine 
the presence of obstacles. Furthermore, when the unmanned aerial vehicle flew at 
a constant speed and altitude, a reference optical flow distribution was calculated 
from the equation that models the velocity of the artificial retina. To follow the 
terrain, the system varied thrust and rudders positions to adjust the online 
computed optical flow with the optical flow reference. 

Line navigation is another type of landmark based navigation that has been 
widely used in the industries. Line navigation can be thought of as a continuous 
following of a landmark, although in most cases the sensor used in this system 
needs to be very close to the line, so that the range of the vehicle is limited to the 
immediate vicinity of the line. These techniques can be popularly employed for 
industrial automation tasks and vehicles using them are generally called 
Automatic Guided Vehicles (AGVs). An automated guided vehicle can navigate 
in prespecified paths where the work is monotonous such as in factory, hospital, 
and office building [78]. In earlier times, cable magnetic tape guidance was the 
preferred choice for line navigation. But the main disadvantage of this method was 
the cost involved and the difficulty in relocating the paths which leads navigation 
using line recognition. One of the successful early approaches of vision based line 
following navigations is based on image processing by extracting a white line 
from the background of the image acquired and it varies with respect to the 
vehicles movement [79]. In this work, a TV camera was used for acquiring the 
environmental information. The position of the vehicle is determined by 
correlating the field pattern changes while in movement with the predetermined 
path in the path planner accordingly providing the steering command to the robot 
motor. Similarly vehicle navigation based on preexisting landmarks with signs and 
lines were reported in [80, 81].  

Another area, which has attracted significant research attention, is simultaneous 
localization and mapping (SLAM), also known as concurrent mapping and 
localization (CML), where a mobile robot can build a map of an environment and 
at the same time use this map to deduce its location. Initially, both the map and the 
vehicle position are not known, the vehicle has a known kinematic model and it is 
moving through the unknown environment, which is populated with artificial or 
natural landmarks. A simultaneous estimation of both robot and landmark 
locations is carried out based on observation of landmarks. The SLAM problem 
involves finding appropriate representation for both the observation and the 
motion models [82]. Most of the SLAM approaches are oriented towards indoor, 
well structured and static environment [83-87] and give metric information 
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regarding the position of the mobile robot and of the landmarks. A few works 
have also been attempted for dynamic scenarios and for outdoor environments [88, 
89].  In the earlier stages of mapping algorithms using sonar and vision sensors on 
large experimental areas, it was noticed that there were storage problems for 
specifically e.g. long straight walls. As a mobile robot moves, errors in the 
odometry information arising from wheel slippage, non-uniform floor surface, and 
poorly calibrated tick-information causes the position information provided by the 
odometry to increasingly deviate from its true position. Features detected from 
these positions would be built into the map relative to the position of the robot, 
hence the positions of features would also drift away from their true positions. 
Algorithms have been developed to correct for this motion drift such as [90] and 
[91] who proposed to store correlations between each feature and robot position. 
One of the first vision based solution for SLAM problems was proposed in [90] 
which employed an extended Kalman filter (EKF)-based approach. Although 
EKF-based approaches are more common for these problems, they are based on 
the basic assumption that the sensor and process uncertainties can be modeled as 
Gaussian distributions. However, physical systems can have significant departure 
from these assumptions. One of the main drawbacks of the EKF and the KF 
implementations is the fact that for long duration missions, the number of 
landmarks will increase and, eventually, computer resources will not be sufficient 
to update the map in real-time. This scaling problem arises because each landmark 
is correlated to all other landmarks. The Compressed Extended Kalman Filter 
(CEKF) [87] algorithm significantly reduces the computational requirement 
without introducing any penalties in the accuracy of the results. A CEKF stores 
and maintains all the information gathered in a local area with a cost proportional 
to the square of the number of landmarks in the area. This information is then 
transferred to the rest of the global map with a cost that is similar to full SLAM 
but in only one iteration. To overcome these problems, recently some efforts in the 
area of vision-based SLAM are directed in utilizing particle filtering based 
approaches [92, 93]. However, particle filtering is essentially a slow process and 
hence its real-time implementation can cause significant problems.  

1.5   Obstacle Detection and Avoidance 

Obstacle avoidance is one of the important steps in the role of most mobile robot 
navigation, schemes. Obstacle detection is the process of discriminating between 
the floor (also called the ground plane) and an object resting on the floor, i.e. 
separating the floor pixels from the obstacle pixels in the camera image. Collision 
avoidance is a steering behavior that enables a robot to roam around without 
colliding with obstacles. As the present book is based on vision-based navigation, 
the discussions here will be restricted to those works where the steering decisions 
are made based on computer vision. Many works described before have the ability 
of obstacle avoidance with the support of other conventional sensors. There are 
also several methods adapted for obstacle avoidance with monocular image 
features, stereo vision based detection, optical flow method, and vision based 
potential field method. In [94], an autonomous obstacle detection method for 
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mobile robots, using single monocular camera image, has been proposed. This 
system basically comprises three vision modules for obstacle detection. The three 
modules of vision processing are based on brightness gradients, RGB, and HSV 
and they generate a coarse image-based representation, called obstacle boundary. 
The outputs of these three modules were combined into a single obstacle boundary 
and this information is utilized to generate the turning commands. The purpose of 
utilizing three modules is that at any circumstances, two of the modules will  
be suitable for detecting the boundary. This method has been tested for two 
simulated Mars environments at JPL (Jet Propulsion Laboratory). However, the 
disadvantage of this system is that it failed when the obstacles were outside the 
field-of- view of the camera.  

Another strategy for obstacle avoidance is based on appearance based method 
for structured environments [95]. This system is based on three assumptions: (i) 
the obstacles differ in appearance from the ground, (ii) the ground is relatively 
flat, and (iii) all the obstacles should be in touch with the ground. The system uses 
an image resolution of 320 x 260 pixels in colour. The main process comprises 
four steps: 

1. Filter the colour image using a 5 x 5 gaussian, mask. 
2. Transform the filtered colour image to HIS colour space. 
3. The pixels inside the trapezoidal area are histogrammed for hue and 

intensity. 
4. All pixels of the filtered image are compared to the hue and intensity 

histograms. If the histogram’s bin value at the pixel’s hue and pixel’s 
intensity value is below the threshold, then it is classified as obstacle. 

This system has three operating modes: regular, adaptive and assistive. Each of 
these modes is well suited for a specific situation. In adaptive mode, the system 
can cope up with the changes in the illumination and in the assistive mode, the 
robot is equipped for tele operation. 

Another method of obstacle detection and avoidance, by using visual sonar, is 
proposed in [96]. In this method, a single camera is mounted on the robot and each 
camera image pixel is classified into floor pixels, other known objects or unknown 
objects, based on their colour classes. The image is scanned with reference to the 
robot with a linear spacing of 50. An object is identified if there exists a 
continuous set of pixels in a scan which corresponds to the same colour class. The 
unknown obstacle is detected when unknown colour classes occur together. The 
distance between the robot and the image is calculated using the difference in the 
colour class value at the nearest intersecting pixel point of the object and the floor 
colour. A local map is created with the distance of objects from the robot, with the 
limited field-of-view of the camera. The new visual information is updated every 
time a new object information appears in the field-of-view of the camera. This 
vision algorithm is implemented in the AIBO robot. Another method of obstacle 
detection and avoidance with the combination of single camera and ultrasonic 
sensor is reported in [97]. In this work, the obstacle detection is carried out using 
canny edge detection method in vision, and the obstacle avoidance is carried out 
using limit-cycle and nearness diagram navigation method. 
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In stereo vision based obstacle detection methods, the main idea lies in 
capturing two images of the environment at the same time. The position of an 
obstacle can be determined by inverse perspective mapping [98]. In inverse 
perspective mapping, the pixels of the two images are mapped to the ground 
plane, as if they all represented points on the ground. The obstacle positions are 
calculated using the difference of two images, because the difference signifies the 
presence of an obstacle. The drawback of this method is that it is essentially a 
computation heavy procedure. Obstacle detection and avoidance for outdoor 
environments, based on the computation of disparity from the two images of a 
stereo pair of calibrated cameras, was also reported in [99]. In this work, the 
system assumed that objects protrude high from the ground, and the surface 
should be flat, distinguishable from the background in the intensity image. Every 
point above the ground is configured as a potential object and projected onto the 
ground plane, in a local occupancy grid, called instantaneous obstacle map (IOM). 
The commands to steer the robot are generated according to the positions of 
obstacles in this instantaneous obstacle map computed.  

1.6   Summary 

This chapter has introduced the fundamental concepts of autonomous mobile robot 
navigation using vision. Different broad categories of vision-based navigation are 
discussed and the research efforts worldwide, in the present day context, in these 
fields, are summarized.  
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Chapter 2 
Interfacing External Peripherals with a Mobile 
Robot* 

Abstract. This chapter discusses how real-life interfacing of external peripherals 
with a ready-made mobile robot can be successfully achieved. Such a system is 
hoped to be useful for those research scenarios where, many-a-time, because of the 
fund constraints, a complete robot system cannot be procured with all its accessories 
and sensor systems. This chapter discusses how such interfacing can be achieved for 
the KOALA robot using serial communication in interrupt driven mode.  

2.1   Introduction 

Real-life mobile robots, nowadays, come equipped with several sensors and other 
accessories which add sophistication and flexibility and help in developing overall 
capability and intelligence of the system. On many occasions, incorporation of 
more degrees of automation requires interfacing add-on peripheral devices, which 
are required to be driven in real life. The robot issues commands for these sensors 
and accessories time-to-time and these peripheral devices are required to serve the 
robot’s requests, conforming to the demands of a real-time system. Hence a 
successful development of an integrated system, utilizing the robot core with the 
add-on components, requires the development of sophisticated interrupt-driven 
software routines. At present several robotic platforms are available at the disposal 
of the researchers of the robotic community all over the world, with different 
degrees of automation. Almost all of them are equipped with several sensors and 
other accessories with the necessary software support for their intra/inter-
communication in real-time. However, these robotic platforms are not that user-
friendly, if the user wishes to connect add-on sensors or other accessories as 
peripheral devices, those are not supported/marketed by the same manufacturing 
company. Usually the technical knowhow of interfacing such external devices 
with the mobile robots are also not available, as these details are not provided by 
the manufacturers, even for those add-on sensors which come along with their 
robot packages. 
                                                           
* This chapter is based on: “A PIC Microcontroller system for Real-Life Interfacing of 

External Peripherals with a Mobile Robot,” by N. Nirmal Singh, Amitava Chatterjee,  
and Anjan Rakshit, published in International Journal of Electronics, vol. 97, issue 2, pp. 
139-161, 2010. Reprinted by permission of the publisher (Taylor & Francis Ltd, 
http://www.tandf.co.uk/journals). 
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In recent times, PIC microcontroller based systems have found popular real-life 
applications in several research domains e.g. hardware implementation of the 
artificial neural network (ANN) model of varicap diode [1], Petri-net based 
distributed systems for process and condition monitoring [2], development of a 
double beam modulation system popularly employed in atomic collision 
experiments [3], hardware implementation of a recurrent neural network model 
[4], reactive power control of a fuzzy controlled synchronous motor [5] etc. The 
architecture of PIC microcontrollers is based on a modified Harvard RISC 
instruction set [6], [1]. These are getting popular day-by-day as they can provide 
excellent low-cost solutions with state-of-the-art performance. They can provide 
satisfactory performance because the transfer of data and instruction takes place 
on separate buses. These processors are also capable of providing increased 
software code efficiency and simultaneous execution of current instruction with 
fetching of the next instruction [1]. In this chapter, we shall discuss in detail the 
development of a PIC microcontroller based system to interface external 
peripherals with a popular mobile robot available for the research community in 
the market [10], [11]. The mobile robot under consideration will be KOALA robot 
from K-team S.A., Switzerland. The KOALA robot procured in our Electrical 
Measurement and Instrumentation laboratory of the Electrical Engineering 
Department, Jadavpur University, Kolkata, India, was equipped with incremental 
encorders, ultrasonic sensors and IR sensors only. However, as our main objective 
is to use vision sensing for navigation of the KOALA mobile robot, the need was 
felt to develop and externally integrate and interface a vision sensing system with 
the robot. Hence the initial research effort was directed to add both stereo-vision 
facility (comprising two cameras) and mono-vision facility (comprising a single 
camera) separately with the KOALA robot. This equips the robot with the 
flexibility of incorporating a two-camera based system or a mono-camera based 
system for navigation. In this chapter we discuss the addition of stereo-vision 
facility where four degrees of freedom (DOFs) are added for a vision-system, 
integrated from outside, with the KOALA robot. The PIC microcontroller based 
system is developed for pan-control, tilt-control, left-vergence control and right-
vergence control of the robot system. The software, developed in interrupt driven 
mode, is described in detail, which should help other users to develop similar 
integrated systems. This concept can help to keep complete flexibility at the 
researcher’s/developer’s disposal and, at the same time, cost incurred can get 
drastically reduced. In fact, the main motivation of this research effort was that we 
could not afford to buy the KOALA robot package with complete integrated 
vision system due to budgetary constraint and hence the integration of vision 
system with the KOALA robot was performed by ourselves, in our laboratory. It is 
sincerely hoped that this effort should encourage other researchers within the 
robotics community to develop such interrupt-driven systems themselves, which 
they can utilize to interface stand-alone peripheral devices with other robotic 
packages as well. This should help in developing low-cost robotic platform with 
high degrees of sophistication and, although the present system interfaces four 
peripheral devices (namely four RC servo motors for the four DOFs), the logic can 
be extended for many more such peripheral devices.  
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2.2   PIC Microcontroller Based System for Interfacing a Vision 
System with a Ready-Made Robot 

2.2   PIC Microcontroller Based System for Interfacing a Vis ion System  

The proposed system employs a PIC 16F876A microcontroller for interfacing the 
KOALA robot, in real time, with a vision system. The objective here is to 
interface four RC servomotors [7] with the KOALA mobile robot in real life 
which can add four degrees of freedom (DOFs) to the vision system, integrated in-
house with the KOALA robot. Figure 2.1 shows the complete system where the 
vision system is integrated with the KOALA robot in our laboratory. It contains 
the basic KOALA robot with in-built sensors, like infra red sensors and 
incremental encoder. To increase the capability of the robot system, two ultrasonic 
sensors and two cameras are additionally integrated to provide the capability of 
stereo vision. However, as mentioned earlier, the vision-based navigation system 
developed using KOALA robot is also separately equipped with the capability of 
mono-camera vision. There is only one significant difference between the system 
developed using stereo-vision and the system developed using mono-vision. In the 
case of mono-vision, there is only one camera placed at the center of the active 
head system and the system utilizes only two DOFs, for pan-control and tilt 
control. The integrated vision system is so developed that it has the flexibility of 
controlling four DOFs for stereo vision and two DOFs for mono-vision. Hence, to 
add extensive flexibility to the vision system, a pan-tilt system is integrated with 
four servomotors. Figure 2.2 shows the schematic diagram of PIC microcontroller 
board used to drive four servomotors [7]. 

 

Fig. 2.1. Complete vision system with KOALA robot 
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Fig. 2.2. Schematic diagram of the PIC 16F876A based board for interfacing KOALA 
robot with four servomotors (Y: Yellow; R: Red; B: Black) 

 

Fig. 2.3. Actual photograph of the PIC microcontroller board employed 
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These four RC servomotors are employed for pan and tilt control of the 
complete vision system and individual vergence control for each of left camera 
and right camera. The PIC 16F876A microcontroller receives signal from the 

Motorola 68331 processor at three input pins, selectതതതതതതതത, clock and data. The 68331 
works in SPI master mode and the PIC 16F876A works in SPI slave mode. Figure 
2.3 shows the actual photograph of the PIC microcontroller board employed. It is 
placed in a vertical position against the support of the pan-tilt system, to make the 
integrated system rugged enough.  

As mentioned earlier, this system is employed with PIC 16F876A 
microcontroller, which is a 28 pin plastic dual-in-line package (PDIP). The key 
features of the PIC 16F876A microcontroller include [6] 8k flash program 
memory, 368 bytes data memory and 256 bytes of EEPROM data memory. The 
operating frequency can vary from DC to 20 MHz and there are provisions for 14 
interrupts. PIC 16F876A contains three I/O ports (namely A, B, C), three timers, 
two analog comparators and five input channels for 10-bit A/D mode. The serial  
 

 
Fig. 2.4. Pin diagram of the 28-pin PDIP PIC 16F876A microcontroller [6] 
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communications can take place using MSSP and USART. Figure 2.4 shows the 
pin diagram of the 28-pin PDIP PIC 16F876A microcontroller. 

Algorithm 2.1 describes the algorithm for the main PIC microcontroller based 
program for interfacing external peripherals for real life operation (RC 
servomotors of the vision system, in this case) with the KOALA robot. This algo. 
2.1 describes how the data direction register of PORTB, A/D control register,  
MSSP control register, INTCON register, PIE1 register and PIR1 registers should 
be programmed and in which sequence. The system is always initialized so that 
each RC servo motor is kept initialized at its neutral position and it waits for a 
suitable input drive command. The system then enables synchronous serial port 
interrupt and for the PIC microcontroller, the SPI is set in slave mode. Then, 
depending on interrupt-service-flag content, the corresponding RC servo motor is 
driven for the specified command. Then the interrupt-service-flag is reset so that it 
can be made set next time a new interrupt request is placed. Key technical features 
of the KOALA mobile robot include [8] Motorola 68331 processor with an 
operating frequency of 22 MHz. The RAM capability of the robot is one Mbyte 
and the flash capability is one Mbyte. The robot is not equipped with any ROM. 
KOALA robot is equipped with DC motors with incremental encoders for its 
motion. A DC motor coupled with the wheel through a 58.5:1 reduction gear is 
responsible for movement of every wheel. The main processor of the KOALA 
robot is equipped with the facility of direct control on the motor power supply. 
The pulses of the incremental encoder can be read by this processor. The RS232 
serial link communication is always set at 8 bit, 1 start bit, 2 stop bits and no 
parity mode. Baud rate can be changed from 9600 baud to 115200 baud. The robot 
is equipped with 12 digital inputs, 4 CMOS/TTL digital outputs, 8 power digital 
outputs and 6 analog inputs. The basic module of the robot is equipped with 16 
infra-red (IR) proximity and light sensors. These IR sensors embed an IR LED and 
a receiver. They are manufactured by Texas Instruments (type TSL252) and they 
can be used for ambient light measurements and reflected light measurements. The 
output is obtained as an analog value which is converted by a 10 bit ADC. Hence, 
with this basic arrangement of the KOALA robot, the vision system is integrated, 
utilizing two cameras, a pan-tilt system, four RC servo motors and the PIC 
microcontroller based board, used to build the modified robot. 

The Motorola MC68331 is a 32-bit microcontroller, equipped with high data-
manipulation capabilities with external peripherals [9]. This microcontroller 
contains a 32-bit CPU, a system integration module, a general-purpose timer 
(GPT) and a queued serial module (QSM). An important advantage of this 
MC68331 unit is that it has low power consumption. The CPU is based on the 
industry-standard MC68000 processor, incorporating many features of MC68010 
and MC68020 processors, with so added unique capabilities of high-performance 
controller applications. A moderate level of CPU control can be achieved utilizing 
the 11-channel GPT. These GPT pins can also be configured for general-purpose 
I/O. The QSM comprises two serial interfaces: (i) the queued serial peripheral 
interface (QSPI) and (ii) the serial communication interface (SCI). The QSPI 
provides easy peripheral expansion or interprocessor communication. 
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1. Initialize PORT B. 
2. Set data direction register corresponding to PORTB such that pin 4-pin 7 

of PORTB are configured as digital output. 
3. Set the content of A/D control register 1 such that all pins of the A/D port 

are configured as digital I/Os.    
4. Set angular position commands to keep each RC servo motor in neutral 

position i.e. 00  position. 
5. Set the content of Master Synchronous Serial Port (MSSP) control register 

1 (in SPI mode) such that (i) synchronous serial port is enabled and SCK, 
SDO, SDI, and ܵܵതതത are configured as serial port pins and (ii) SPI is set in 
Slave mode with ܵܵതതത pin control enabled. 

6. Set the content of MSSP status register (in SPI mode) such that the SPI 
clock select bit is set. 

7. Set the content of peripheral interrupt enable register 1 such that 
synchronous serial port (SSP) interrupt is enabled. 

8. Set the content of INTCON register to enable all unmasked peripheral 
interrupts and globally all unmasked interrupts.  

9. Reset the SSP interrupt flag bit of PIR1 register to signify that no SSP 
interrupt condition has occurred initially.  

10. IF interrupt_service_flag is set, 
 

THEN 
 

Check the RC servo motor ID for which interrupt occurred.  
Combine contents of 8-bit registers, data-hi and data-lo, to 
prepare 16-bit angular position command for that servo motor. 
Reset the interrupt_service_flag. 
 

ENDIF 
 

11. Set j=1. 
12. FOR j=1 to 4, 

 
Make the corresponding RBx pin of PORTB high, which 
provides command to RC servo motor (j). 
Keep this RBx pin high for a duration of time, calculated as a 
function of its corresponding angular position command.  

       Then set this RBx pin low. 
ENDFOR 

13.      Keep each of RB4-RB7 pins low, for a duration of 20 ms. 
14.      Clear CPU watchdog. 
15.      Go to step 10. 

 
Algo. 2.1. Algorithm for the main PIC microcontroller based program for interfacing 
external peripherals, in real life 
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The algo. 2.1 runs in conjunction with the algo. 2.2, an algorithm developed for 
synchronous serial interrupt routine. This is a complex and highly sophisticated 
procedure followed for external peripheral applications in real life. Here the 
algorithm states how the input drive command is read to perform the specified 
drive command. The angular position command is composed of two bytes and the 
high-byte and the low-byte information are transmitted in serial fashion. In fact 
the first information sent is the RC servo motor id which is required to be driven 
and this is followed serially by the high-byte and the low-byte of the position 
command, specifying by how much the RC servo motor should rotate.  Figure 2.2 
shows that PIC 16F876A uses an external clock of 20MHz frequency. This is the 
maximum allowable operating frequency for PIC 16F876A processor and the 
highest permissible value has been utilized to achieve satisfactory performance in 
this specific application. The PIC processor utilizes three input signals, selectതതതതതതതത (for 
triggering), clock (for clock signal) and data (for input data waveform to 
determine a motor drive and its corresponding angular position drive). The PIC 
processor output is taken from the four pins of the PORTB, which individually 
produce angular position commands for each RC servomotor. 

 
1. IF count_flag=0, 

THEN 
Read the content of the SSP receive/transmit buffer 
register as the RC servo motor id. 

ENDIF 
2. IF count_flag=1, 

THEN 
Read the content of the SSP receive/transmit buffer 
register as ‘data hi’, the high byte of the angular 
position command.   

ENDIF 
3. IF count_flag=2, 

THEN 
Read the content of the SSP receive/transmit buffer 
register as ‘data lo’, the low byte of the angular 
position command. 

ENDIF 
4. Increment count_flag by 1. 
5. IF count_flag >2, 

THEN 
Reset count_flag as 0. 
Set the interrupt_service_flag. 

ENDIF 
6. Reset the SSP interrupt flag bit of PIR1 register. 

 
Algo. 2.2. Algorithm for synchronous serial interrupt service routine 
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In algo. 2.1, steps 1-9 are employed, for initialization purpose. In the beginning 
the PORTB is initialized, which is a bidirectional port, of 8 bit width [6].The 
corresponding data direction register for PORTB is called TRISB. Now, by 
properly setting the bits of the TRISB register, one can make each corresponding 
Port B pin, a pin for digital input or digital output. In this work, PORTB is so 
programmed that its higher four pins, i.e. pin 4 – pin 7 (called RB4-RB7), are 
configured as digital output. These four pins are used to produce angular position 
commands for the four servomotors.  

Another important module for PIC microcontrollers is the Analog-to-Digital 
(A/D) converter module. For PIC 16F876A, this module has 5 inputs. Here, this 
module produces a 10-bit digital number as output for a given analog input signal. 
This A/D module has four registers i) A/D result high register (ADRESH), ii) A/D 
result low register (ADRESL), iii) A/D control register 0 (ADCON0) and iv) A/D 
control register 1 (ADCON1). The ADCON1 register can be used to configure the 
port pins as analog inputs or as digital I/O. Figure 2.5 shows the description of the 
ADCON1 register [6]. For the system developed, A/D port configuration control 
bits are so programmed that these port pins are all configured as digital I/O.  

In PIC 16F876A, the serial communication with other peripheral or 
microcontroller devices is handled by the Master Synchronous Serial Port (MSSP) 
module. This MSSP is a serial interface which can communicate with serial 
EEPROMs, ADCs, shift registers etc. The MSSP can operate either in the Serial 
Peripheral Interface (SPI) mode or Inter-integrated Circuit (I2C) mode. In this 
work, the system is developed in SPI mode, where 8 bits of data can be 
transmitted and received simultaneously in a synchronous manner. The MSSP 
module uses a status register (SSPSTAT) and two control registers (SSPCON and 
SSPCON2), in SPI mode of operation. There are two other registers in SPI mode 
of operation, namely, serial receive/transmit buffer register (SSPBUF) and MSSP 
shift register (SSPSR). Among these registers, SSPSR is not directly accessible 
and can only be accessed by addressing the SSPBUF register. In this system, the 
PIC 16F876A processor works in slave mode and the Motorola 68331 processor in 
KOALA robot acts in master mode. Figure 2.6(a) and fig. 2.6(b) show the details 
of the SSPSTAT and SSPCON register. Typically, three pins are utilized for 
communication: i) Serial Data Out (SDO), ii) Serial Data In (SDI) and iii) serial 
Clock (SCK). When SPI slave mode of operation is active, a fourth pin, slave 
select (ܵܵതതത ) is also used. In the SPI mode of operation, SSPCON register is so 
programmed that the SSPEN bit is made high, which enables the serial port and 
configures SCK, SDO, SDI and (ܵܵതതത ) pins as serial port pins. Similarly 
SSPM3:SSPM0 bits are so programmed that the PIC processor is configured in 
SPI slave mode, with its clock being assigned to the SCK pin. Hence, in Fig. 2.2, selectതതതതതതതത corresponds to the ܵܵതതത  pin, clock signal arrives at SCK pin and data arrives 
at SDI pin. The SSPSTAT register is so programmed that the CKE bit is made 
high. This ensures that the transmission of data occurs on transition from active to 
idle clock state. Figure 2.7 shows the SPI Master/Slave connection programmed  
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in this system to interface the Motorola processor with the PIC processor. As the 
PIC processor is programmed in slave mode, in receive operations, SSPSR and 
SSPBUF together create a double-buffered receiver. Here SSPSR shift register is 
used to shift data in or out (MSB first) and SSPBUF is the buffer register in which 
data bytes are either written or data bytes are read from it. 

 
ADFM ADCS2    -   - PCFG3 PCFG2 PCFG1 PCFG0 

bit 7              bit 0 
bit 7   : ADFM (A/D Result Format Select Bit) 
bit 6   : ADCS2 (A/D Conversion Clock Select Bit) 
bit 5-4 : Unimplemented 
bit 3-0 : PCFG3-PCFG0 (A/D Port Configuration Control Bit) 

Fig. 2.5. The description of the ADCON1 register [6] 

SMP CKE D/Aഥ   P S R/Wഥ  UA BF 

bit 7                          bit 0 
bit 7 :  SMP (Sample bit) 
bit 6 : CKE (SPI Clock select bit) 
bit 5 : D/Aഥ (Data/Addressതതതതതതതതതതത bit) 
bit 4 : P (Stop bit) 
bit 3 : S (Start bit) 
bit 2 : R/Wഥ  (Read/Wrıteതതതതതതത bit information) 
bit 1 : UA (Update Address bit) 
bit 0 : BF (Buffer Full status bit) 

        (Receive mode only) 

Fig. 2.6 (a). 

WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 

bit 7                                             bit 0 
bit 7 : WCOL (Write collision detect bit) 
   (Transmit mode only) 
bit 6 : SSPOV (Receive overflow indicator bit) 
bit 5 : SSPEN (Synchronous serial port enable bit) 
bit 4 : CKP (clock polarity select bit) 
bit 3 : SSPM3-SSPM0 (Synchronous serial port mode select bits) 

Fig. 2.6(b). 

Fig. 2.6(a) & (b). The details of the SSPSTAT and SSPCON register (SPI mode) [6] 
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Fig. 2.7. SPI Master/Slave connection programmed in our system 

PSPIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 

bit 7                 bit 0 
bit 7 : PSPIE (Parallel slave port read/write interrupt enable bit) 
bit 6 : ADIE (A/D converter interrupt enable bit) 
bit 5 : RCIE (USART Receive interrupt enable bit) 
bit 4 : TXIE (USART Transmit interrupt enable bit) 
bit 3 : SSPIE (SSP interrupt enable bit) 
bit 2 : CCP1IE (Interrupt enable bit) 
bit 1 : TMR2IE (TMR2 to PR2 match interrupt enable bit) 
bit 0 : TMR1IE (TMR1 overflow interrupt enable bit) 

Fig. 2.8(a) 

GIE PEIE TMROIE INTE RBIE TMROIF INTF RBIF 
bit 7               bit 0 
bit 7 : GIE (Global interrupt enable bit) 
bit 6 : PEIE (Peripheral interrupt enable bit) 
bit 5 : TMR0IE (TMR0 overflow interrupt enable bit) 
bit 4 : INTE (RB0/INT External interrupt enable bit) 
bit 3 : RBIE (RB Port change interrupt enable bit) 
bit 2 : TMR0IF (TMR0 overflow interrupt flag bit) 
bit 1 : INTF (RB0/INT External interrupt flag bit) 
bit 0 : RBIF (RB Port change interrupt flag bit) 

Fig. 2.8(b) 

Fig. 2.8(a) & (b). Details of PIE1 and INTCON register respectively 
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Next, the SSPIE bit of the PIE1 register is made high to enable synchronous 
serial port (SSP) interrupt. The PIE1 register contains the individual enable bits 
for the peripheral interrupts. Here it should be kept in mind that the PEIE bit of the 
INTCON register must be set to enable any unmasked peripheral interrupt. This 
INTCON register is very important from the user program point of view, because 
it contains several enable and flag bits for TMR0 register overflow, RB port 
change and external RB0/INT pin interrupts. Figure 2.8(a) and Fig. 2.8(b) present 
detail descriptions of PIE1 and INTCON registers. In the program, both PEIE and 
GIE bits of the INTCON register are kept set. It should be kept in mind that 
irrespective of the states of the GIE bit and the corresponding enable bit, interrupts 
flag bits are set when an interrupt condition occurs. Hence it is the responsibility 
of the developer, while writing the user software, that the appropriate interrupt 
flag bits must be reset before an interrupt is enabled. Hence initially the SSPIF bit 
of the PIR1 register is reset to signify that no SSP interrupt condition has occurred 
and the system is kept ready to enable the SSP interrupt. The PIR1 register is a 
special register that contains the individual flag bits for the peripheral interrupts. 
Hence, the user software must be so written that, before enabling a specific 
interrupt, the corresponding flag bit in the PIR1 register must be reset. Figure 2.9 
shows the details of the PIR1 register. 

Once the initialization phase is completed, steps 10-15 in the main program, 
described in algo. 2.1, execute an infinite loop, in conjunction with the serial 
interrupt service routine, given in algo. 2.2. Within the interrupt routine, the PIC 
processor waits for data written/transmitted by the Motorola processor in SPI 
master mode. Figure 2.10 shows the form of SPI write received. The waveforms 
show data write of one byte and this process is repeated for each byte written i.e. 
each byte received by the PIC processor. The system is so programmed that each 
data bit can be latched either on rising edge or falling edge of the clock signal. The 
data transfer is always initiated by the Motorola processor in master mode, by 
sending the SCK signal. When the ܵܵതതത pin of the PIC processor is low, then 
transmit and receive operations are enabled. Then, in the slave mode, the SPI 
module will be reset if the ܵܵതതത pin is set high, or by clearing the SSPEN bit. In our 
system, this SPI module is reset by forcing ܵܵതതത pin to high. The SSPBUF holds the 
data that was written to the SSPSR until the received data is ready. As mentioned  

 
PSPIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 

bit 7                bit 0 
bit 7 : PSPIF (Parallel slave port read/write interrupt flag bit) 
bit 6 : ADIF (A/D Converter interrupt flag bit) 
bit 5 : RCIF (USART Receive interrupt flag bit) 
bit 4 : TXIF (USART Transmit interrupt flag bit) 
bit 3 : SSPIF (Synchronous serial port (SSP) interrupt flag bit) 
bit 2 : CCP1IF (CCP1 interrupt flag bit) 
bit 1 : TMR2IF (TMR2 to PR2 match interrupt flag bit) 
bit 0 : TMR1IF (TMR1 overflow interrupt flag bit) 

Fig. 2.9. Details of the PIR1 registe 
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Fig. 2.10. SPI Mode waveform (slave mode) 

earlier, data is received byte by byte, and, for each byte received, once the eight 
bits of the data have been received, that byte is moved to the SSPBUF register. 
This operation is marked by making the buffer full detect bit (BF) and the 
interrupt flag bit (SSPIF) high. Hence this double buffering scheme enables to 
start receiving new data byte before completely reading the data byte that was just 
received. The sequence of data bytes transmitted by the Motorola processor and 
hence received, in this serial interrupt mode, by the PIC processor, is programmed 
as: 

a) Send data byte with RC servomotor ID (between 1 and 4). 
b) Allow a delay of 10 ms. 
c) Send the high data byte corresponding to the angular position command 

for that specific RC servomotor ID. 
d) Allow a delay of 10 ms. 
e) Send the low data byte corresponding to the angular position command 

for the same RC servo motor.  

In each of steps (a), (c) and (e), the content of SSPBUF register is read in different 
temporary variables. When a sequence of (a) to (e) is completed, a complete 
information transmission cycle takes place. This is marked by setting a temporary 
flag variable (interrupt_service_flag) in the software. The user program must also 
reset the SSP interrupt flag bit (SSPIF) of the PIR1 register before returning from 
the Interrupt Service Routine. Once this interrupt_service_flag is set in the main 
program, the high byte and the low byte of the RC servo motor position command 
are combined to create an appropriate position command and a corresponding 
drive command is sent to the RC servo motor. For each RC servo motor, this 
digital drive is given by driving the corresponding pin signal high for a certain 
period and then forcing the same pin signal low for a certain period. The high 
signal period of 1.5 ms corresponds to an angular command of 00, 1 ms 
corresponds to -900 and 2 ms to +900. For all intermediate angle commands, a 
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proportional timing signal of high duration is sent. This high signal is always 
followed by a low signal of a fixed duration of 20 ms. Figure 2.11 shows the 
output waveform generated at each of RB4, RB5,RB6 and RB7 pins of the PIC 
16F876A processor. 

 

Fig. 2.11. Output waveform generated at RB4, RB5, RB6 and RB7 pins of the PIC 
16F876A processor 

As mentioned, in this implementation the SPI mode is utilized and not I2C 
mode for serial communication. It is well known that I2C mode is more flexible 
with the facility of multi-drop bus type architecture but the system becomes more 
complicated with higher degree of sophistication involved. On the other hand, SPI 
mode is suited for only single drop, point-to-point architecture and the system is 
less complicated. The SPI mode is more suitable for the system developed here as 
a point-to-point communication with the KOALA robot is needed only and it 
helps to keep the system less complicated, specially for real-life communication. 

2.3   The Integrated System Employing KOALA Robot with a 
PC and a Vision System 

Figure 2.12 shows the complete integrated system with a PC-based KOALA robot 
that communicates with the RC servo motors of the vision system, through  
the PIC 16F876A microcontroller based board. The PIC microcontroller 
communicates with four external peripherals, those are four servomotors of the 
vision system. These four servomotors are employed for pan control, tilt control, 
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vergence control of the left camera and vergence control of the right camera of the 
vision system. The addition of these four degrees of freedom (DOFs) to the vision 
system and their efficient control adds flexibility and high degree of automation to 
the entire integrated system. 

A PC based system is also developed for communication with the KOALA 
mobile robot. This is a GUI based system developed that communicates with the 
robot by sending ASCII strings of commands and it can also accept sensor 
readings returned from the robot. Figure 2.13 shows a snapshot of the form 
developed that interacts with the user. The user is provided with the provision of 
keying in the driving command which is sent in serial mode of transmission. The 
GUI based system transmits the ASCII string typed, in serial mode, when the 
‘Send’ button is clicked. The system can also display whatever data is received 
from the robot in a different display box. This display box can help us to check 
whether the system under control is performing the commanded task in a desired 
manner. 

For the KOALA robot end, another C program is developed and its cross-
compiled version (with .s37 extension) is downloaded in the Motorola processor. 
This .s37 program also communicates with the VB program in the PC end in the 
interrupt mode where it always expects a driving command, sent in form of an 
ASCII message and serves this driving command in a highly sophisticated 
manner. For this serial communication mode, the host PC plays the role of the 
master and the KOALA robot plays the role of the slave. Every interaction 
between the host PC and the KOALA, which is configured as a remote terminal 
unit (RTU), takes place in the following manner [8]: 

• A user defined ASCII string, terminated by a carriage return (CR), is sent by 
the host PC to the robot. 

• If the host PC command the robot to acquire and send some sensor readings 
(e.g. IR sensors, ultrasonic sensors etc), the KOALA robot responds by 
sending back the sensor readings in form of an ASCII message, terminated by 
a carriage return (CR). 

 

Figure 2.14 shows a simple example of a .c example program written for the 
KOALA robot to turn around. Figure 2.15 shows the sequence to be followed so 
that this program, developed in PC, can be cross compiled to generate an .s37 file 
and can be downloaded in the Motorola processor of the KOALA robot. 

The KOALA robot, in its basic package, already supports a pool of tools and 
protocol commands, where one can open a terminal emulator in the host PC, with 
the serial communication protocol set, and one can execute the protocol 
commands. These protocol commands include very useful commands like set 
speed (‘D’), read speed (‘E’), read A/D input (‘I’), read management sensors 
(‘M’), read proximity sensors (‘N’) etc. However, in addition to these KOALA 
supported commands, other protocol commands are also created to communicate 
with peripherals integrated additionally. Hence, a whole pool of protocol 
commands is created, to bring uniformity in the way the robot is going to be 
commanded from the host PC. These commands include some commands which  
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Fig. 2.12. The integrated system employing KOALA Robot with a PC and a vision system 

 

Fig. 2.13. Snapshot of the form developed that interacts with the user 
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Fig. 2.15. A block diagram
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Table 2.1. Command protocol for serial communication between host PC and KOALA 
Robot 

Nature of command Command Protocol (ASCII Message 
string) 

 Command class 

Set KOALA Motor Speed <D><s><ddd><s><ddd><CR> KOALA Equivalent 
command 

Set KOALA position 
reached 

<C><s><ddddd><s><ddddd><CR> - do - 

Request IR proximity 
sensor data 

<N><CR>  

Request IR ambient light 
sensor data 

<O><CR> - do - 

Request ultrasonic sensor 
data 

<I><CR> - do - 

Request the speed of the 
motors 

<E><CR> - do - 

Set the position of the  
motor 

<G><CR> - do - 

Request the position of the 
motor 

<H><CR> - do - 

Set RC Servo motor 
position command 

<Z><i><s><dd><CR> Add-on Peripheral 
Interface Command 

 
are equivalent versions of KOALA supported commands and the remaining 
commands are created additionally within the scope of this work, to communicate 
with the add-on peripherals. Another important point to be kept in mind is that 
when the KOALA supported commands are executed from the terminal emulator 
in PC, it goes to the monitor program module in the robot processor and performs 
its designated function. However, when a .s37 program is downloaded in the 
Motorola processor to communicate with the PC side and also the PIC 
microcontroller side, then it will not be possible to activate the monitor program 
from the terminal emulator. Hence it is very important to bring all robot protocol 
commands under one roof (i.e. activated from the VB program and executed by 
the .s37 program). Hence the C program written for the KOALA robot had to 
include actions for all such ASCII request messages, sent from the PC end. The 
sample list of commands and their formats of ASCII messages sent by the host are 
presented in Table 2.1. 



2.4   Real-Life Performance Evaluation 39
 

In this Table 2.1, e.g., to set KOALA motor speed, one can start with the 
identifier character ‘D’, followed by speed of each motor, set as a three digit 
number (KOALA is a differential drive system). The speed command for ‘motor 
0’ is followed by the speed command of ‘motor 1’. As the polarity of speed of 
each individual motor in the KOALA robot can be set separately for forward 
motion or backward motion, each speed information for individual motor is 
preceded by a sign, shown as <s> in the command protocol. This is set as ‘+’ for 
forward motion of the motor and as ‘-’ for backward motion of the motor. When 
the Motorola processor receives this ASCII message string, the .s37 program 
developed performs a suitable decoding of the string and executes the command 
by driving each motor of the KOALA robot according to the protocol command. 
Similar actions are performed for each KOALA equivalent command, issued from 
the PC end, as an ASCII message string. 

However, when the Motorola processor receives the ASCII message string 
corresponding to the add-on Peripheral Interface Command, it suitably decodes 
the protocol command and sends appropriate drive command to the PIC processor. 
In this situation, the Motorola processor acts in master mode and the PIC 
processor acts in slave mode, as shown previously in Fig. 2.7. The message string 
for this action, sent from the PC end, comprise ‘Z’ as the identifier character, 
followed by <i>, which corresponds to the servomotor id for which position 
command is prepared (i can vary from 1 to 4), followed by the sign, given in <s>, 
for position command (‘+’ or ‘-’) and then the two digit actual position command, 
in degree (this can vary from -900 to +900). Every ASCII message string is 
terminated, as usual, by using carriage return, <CR>. Once this string is received 
by the Motorola processor, it decodes the string to produce a byte information for 
motor id and a word information for the corresponding angular position command 
(1500 μs for 00; 1000 μs for -900; 2000 μs for +900; proportional interpolated 
timing values for each intermediate angular command). This word information is 
then decomposed to separately produce corresponding high byte information and 
low byte information. 

2.4   Real-Life Performance Evaluation 

The performance evaluation has been carried out for all the protocol commands by 
experimentally issuing ASCII message commands from the host PC terminal (i.e. 
from the VB end) to the KOALA robot through serial communication. Before 
starting the experimental evaluation, the calibration of each RC servo motor is 
separately individually tested and software corrections are introduced for each of 
them to take care of small offsets. A series of experiments has been carried out to 
test that the integrated robotic system actually performs the task commanded by 
the ASCII message string. Some of these sample experimental cases are described 
below. 
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In one sample case, for testing the driving motion, the robot was commanded to 
move in forward direction with a small uniform speed for both robots. Figure 2.16 
shows the snapshot of the GUI-based system at the PC end where we issued the 
ASCII message string “D+002+002”. It was found that the robot moved in 
conformity with the command issued. Similarly these commands were tested with 
higher motor speed commands, with negative motion commands for reverse 
movement and with differential drive commands for each motor. It was found that 
the integrated robotic system showed ordered behavior in accordance with each 
command issued.  

Another set of case studies was performed, where the two-way serial 
communication between the host PC and the KOALA robot was tested. In these 
experiments, the robot was commanded to acquire sensor readings and then return 
them to the host PC end. The ASCII command ‘N’ was issued from the PC end to 
acquire the readings of all the sixteen infrared proximity sensors, placed around 
the robot. The infrared sensors are used for a range of 5 cm. to 20 cm. The output 
of each measurement given by an infrared sensor is an analog value, which is 
digitized by a 10 bit ADC.  An obstacle of 5 cm. width was placed in front of the 
IR sensors L0 and R0 (the two IR sensors which are directly at the axial heading 
positions of the robot) at two different distances of 5 cm. and 20 cm. respectively. 
In conformity with the actual situation, the sensor readings returned gave higher 
values for smaller distances. When the distance was only 5 cm. the reading 
returned by both L0 and R0 are 1023, the maximum possible value. The readings 
of the other IR sensors are also obtained in form of a string and displayed at the 
host PC end, as shown in Fig. 2.17(a). It can be seen that for the other IR sensors, 
for this given position of the obstacle, the readings obtained were smaller as the 
distance between each sensor and the obstacle was more than the distance of  
the obstacle from each of L0 and R0. When the distance between the obstacle and 
the heading direction of the robot was increased to 20 cm., the readings obtained 
from L0 and R0 were 253 and 348, as is shown in Fig. 2.17(b), and accordingly, 
the readings obtained from other sensors were also significantly reduced in values. 
Similarly, the readings of the two ultrasonic sensors were obtained by issuing 
ASCII ‘I’ command from the PC end. These sensors can be used for obstacle 
detection over a range of 15 cm. to 300 cm. The corresponding analog output of 
the sonar sensor varies in the range 0 volt to 4.096 volts. A corresponding 
mapping in the digital form is carried out in the range 0-1023 where the zero 
corresponds to 0 volts (minimum distance) and 1023 correspond to 4.096 volts 
(maximum distance). The readings obtained for two sample case studies, where 
the robot was placed in front of a wall at a distance of 100 cm. and 200cm. 
respectively, are shown in Fig. 2.18(a) and Fig. 2.18(b) respectively. When the 
wall was at a distance of 100 cm, the values of the sonar sensors returned were 
403 and 417. Similarly, when the wall was at a distance of 200 cm, the values of 
the sonar sensors returned were much higher, found to be 885 and 895. 
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Fig. 2.16. Snapshot of the GUI based system, when the integrated robotic system is 
commanded for a driving motion in forward direction 

 

Fig. 2.17(a). 

Fig. 2.17(a) & (b). Snapshot of the GUI based system, when the integrated robotic system 
is commanded to acquire IR sensor values, at a distance of 5 cm. and 20 cm. respectively, 
from an obstacle of 5 cm. width 
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Fig. 2.17(b). 

Fig. 2.17(a) & (b). (continued) 

Another very important set of experimentations carried out was for the add-on 
peripheral interface command, where the serial command issued from the host PC 
end (acting in master mode) starts with the ASCII character identifier ‘Z’. This 
command is received by the Motorola processor of the KOALA robot in slave 
mode and subsequently the Motorola processor (now acting in master mode) 
commands each servomotor, initiating serial communication through the PIC 
microcontroller board, where PIC 16F876A processor acts in slave mode. Figure 
2.19(a) shows the initial condition, where each servomotor is at its neutral 
position. Then four commands, ‘Z1+45’, ‘Z2+45’, ‘Z3+45’, and ‘Z4+45’, were 
issued, separately, sequentially, so that each servomotor for vergence control of 
left camera, vergence control of right camera, pan control, and tilt control, is 
commanded to rotate by an angle of 45°, in a sequence. Fig. 2.19(b)-2.19(e) show 
the snapshots of the system acquired after issuing each such command from the 
host PC end. These experimentations show that these add-on peripherals, 
integrated with the KOALA robot, are successfully interfaced for real life 
applications and could be suitably commanded from the host PC end, as desired. 
Table 2.2 shows the time delay in issuing a command from the PC-end (where the 
user issues the command) and each RC servo-motor performing its function  
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Fig. 2.18(a). 

 

 
Fig. 2.18(b). 

Fig. 2.18(a) & (b). Snapshot of the GUI based system, when the integrated robotic system 
is commanded to acquire ultrasonic sensor values, at a distance of 100 cm. and 200 cm. 
respectively, from the wall 
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(a) 

 
(b) 

 
(c)

 
(d) 

 

 
(e) 

Fig. 2.19(a). Snapshot of the system configuration under initialized condition i.e. each of 
the four servomotors is at 00 angular position (called the neutral position) 

Fig. 2.19(b)-2.19(e). Snapshots of the system position for angular commands of 450 given 
to each of the RC servomotors for vergence control of left camera, vergence control of right 
camera, pan control and tilt control, each command issued from the PC end sequentially 

Table 2.2. Sensing and reacting delay time for RC servo motors 

Degrees of 
freedom 

Angular 
command 
issued 
(degree)  

Sensing and 
Reacting delay 
time (seconds) 

Left vergence axis 
 

90 0.433 

45 0.200 

Right vergence 
axis 

90 0.433 

45 0.200 

Pan axis 
90 0.633 

45 0.333 

Tilt axis 
90 0.400 

45 0.300 

 
completely as commanded. The experimentations were carried out for each RC 
servo motor with two angular commands i.e. 45o and 90o. It can be seen that the 
left vergence, right vergence and tilt axis showed very similar sensing and reacting 
delays. The pan axis showed a little more delay in real life compared to the other 
three degrees of freedom. 
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2.5   Summary 

In this chapter, we discussed and demonstrated in detail how a PIC 
microcontroller based system can be developed for real-life interfacing of external 
peripherals with a ready-made mobile robot, in this case the KOALA robot. For 
the system described here, the serial communication is developed in interrupt 
driven mode, where the KOALA processor acts in master mode and the PIC 
processor acts in slave mode. A complete integrated system is developed in house 
in our laboratory employing a PC, the KOALA robot, the PIC microcontroller 
based board and a two-camera based vision system. Here the PIC microcontroller 
based system serves four external peripherals, i.e. four RC servomotors, included 
to control four degrees of freedom of the vision system. The complete system 
works under the control of a PC-based GUI system, where the system at PC end 
acts in master mode and performs serial communication, under interrupt driven 
mode, with the Motorola processor in KOALA robot, acting in slave mode. 

The developed system demonstrated how real-life add-on peripherals can be 
integrated from outside with a basic robotic platform to enhance capability and 
sophistication of the integrated system, developed at a much lesser cost. The 
concept presented here can be extended for adding many other external 
peripherals and the concept should also be useful for other real mobile robots. It is 
also hoped that a detailed discussion on development of such systems, as 
presented in this chapter should help other researchers in Robotics community to 
develop similar integrated systems. This should be quite useful in the research 
domain, as usually these technical knowhow of integrating sensors and other 
components within an integrated robotic platform remains with the manufacturer 
and usually it is not available in public domain. It should also be mentioned that 
although all experimentations shown here are carried out for two-camera based 
system, the system is equally applicable for a mono-camera based system, where 
the camera can be placed at the center of the active head and, in that case, 
controlling only two DOFs (for pan and tilt only) will be enough.  
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Chapter 3  
Vision-Based Mobile Robot Navigation Using 
Subgoals* 

Abstract. This chapter discusses how a vision based robot navigation scheme can 
be developed, in a two-layered architecture, in collaboration with IR sensors. The 
algorithm employs a subgoal based scheme where the attempt is made to follow 
the shortest path to reach the final goal and also simultaneously achieve the 
desired obstacle avoidance. The algorithm operates in an iterative fashion with the 
objective of creating the next subgoal and navigating upto this point in a single 
iteration such that the final goal is reached in minimum number of iterations, as 
far as practicable.  

3.1   Introduction 

Recent advances in technologies in the area of robotics have made enormous 
contributions in many industrial and social domains. Nowadays numerous 
applications of robotic systems can be found in factory automation, surveillance 
systems, quality control systems, AGVs (autonomous guided vehicles), disaster 
fighting, medical assistance etc. More and more robotic applications are now 
aimed at improving our day-to-day lives, and robots can be seen more often than 
ever before performing various tasks in disguise [1]. For many such applications, 
autonomous mobility of robots is a mandatory key issue. Many modern robotic 
applications now employ computer vision as the primary sensing mechanism. As 
mentioned earlier in this book, vision system is considered as a passive sensor and 
possesses some fundamental advantages over the active sensors such as infrared, 
laser, and sonar sensors. Passive sensors such as cameras do not alter the 
environment by emitting lights or waves in the process of acquiring data, and also 
the obtained image contains more information (i.e. substantial, spatial and 
temporal information) than active sensors [2]. Vision is the sense that enables 
humans to extract relevant information about the physical world, and 
appropriately it is the sense that we, the humans, rely on most. Computer vision 

                                                           
* This chapter is adopted from Measurement, vol. 44, issue 4, May 2011, N. Nirmal Singh, 

Avishek Chatterjee, Amitava Chatterjee, and Anjan Rakshit, “A two-layered subgoal 
based mobile robot navigation algorithm with vision system and IR sensors,” pp. 620-
641, ©  2011, with permission from Elsevier. 
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techniques capable of extracting such information are continuously being 
developed and more and more real-time vision-based navigation systems for 
mobile robots are being implemented now.  

Vision based Robot navigation is defined as the technique that guides a mobile 
robot to a desired destination, or along a desired path in an environment, by 
avoiding static (and may be dynamic) obstacles primarily using vision sensor [3], 
[4]. In this chapter, we describe the real-life implementation of a mobile robot 
navigation scheme, where vision sensing is employed as primary sensor for path 
planning and IR sensors are employed as secondary sensors for actual navigation 
of the mobile robot with obstacle avoidance capability in a static or dynamic 
indoor environment. As described previously, the popular choices for the creation 
of the environment maps can be grid-based [5, 6, 7], topological map [8, 9], 
hybrid map [10] etc. The mapless navigation systems are those that use no explicit 
representation at all of the space in which navigation is to take place and they 
rather resort to recognizing objects found in the environment or to tracking or 
avoiding those objects by generating motion commands based on visual 
observations [11, 12].  Several research works have so far been reported to acquire 
knowledge about the environment using camera(s) in stereo vision [13, 14], 
trinocular vision [15], omni-directional or panoramic vision [16, 17], and 
monocular vision [18, 19]. Each such solution in mobile robot navigation has its 
own advantages and disadvantages. In those situations where the knowledge of the 
map is available, an important problem in navigation is the path planning for 
intelligent control or guidance of the mobile robot. The popular general 
approaches for path planning can be based on roadmap, cell decomposition, 
potential field etc. [20]. They differ in how the connectivity graphs are constructed 
and their representations. Obviously, without any a priori knowledge of an 
environment, it is almost impossible to determine the true shortest path for 
navigation, among all possible paths. It is potentially possible to determine such 
paths by employing standard graph-search techniques, such as Dijkstra’s 
algorithm [21] and A* algorithm [22]. 

As mentioned earlier, in this chapter we describe a goal driven approach for 
mobile robot navigation, using vision based sensing and IR sensor based 
navigation [28, 29]. This two-layer based approach attempts to determine the 
shortest path of navigation between the start point and the known goal point, given 
a static or dynamic environment, in presence of obstacles. In the first layer, vision 
acts as the primary sensing system to acquire image of the environment, for 
subsequent path planning. A series of image processing operations is performed 
on the acquired image and then a gradient descent based algorithm is employed to 
compute the shortest path between the present position of the robot and the goal, 
avoiding obstacles [26]. This shortest path is employed to generate a subgoal and 
this information is then locally utilized to navigate the robot, utilizing IR sensor 
based guidance. This second layer of IR sensor based robot navigation attempts to 
guide the robot to the subgoal, even if the environment changes dynamically. 
Once the robot reaches the subgoal, the two-layer based algorithm is again 
activated to generate a new subgoal and to navigate the robot till this new subgoal  
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is reached. This process is repeated iteratively until the final goal is reached. This 
method simultaneously attempts to attain two objectives. Based on vision sensing, 
it attempts to implement a shortest path planning algorithm in a bid to reach the 
goal, avoiding obstacles, as fast as it can. Then, if the environment undergoes a 
change during navigation and obstacle information gets updated, then IR sensor 
based guidance equips the robot with the capability of handling the changed 
environment so that the robot can still navigate safely. The periodic usage of 
vision based updating of the environment, subsequent path planning and then IR 
based actual navigation helps to guide the robot to adapt its navigation temporally 
with dynamic variations in the environment and still attempt to reach the goal in 
shortest time, as quickly as practicable. This algorithm was implemented in  
our laboratory, for the KOALA robot [23], creating several real-life like 
environments. The results showed the usefulness of the proposed algorithm. The 
algorithm is described in detail in subsequent sections of this chapter. 

3.2   The Hardware Setup 

The KOALA robot was described in detail in the previous chapter. Still we 
recapitulate salient features of the KOALA robot to provide a brief introduction of 
the hardware setup utilized for this real-life implementation carried out. KOALA 
is a small (32 cm x 32 cm) six wheeled, differential drive vehicle manufactured by 
K-team, Switzerland [23]. The KOALA robot used in our laboratory is equipped 
with 16-proximity/ambient IR sensors, four ultrasonic sensors and wheel 
encoders. We have integrated two complete vision systems along with the 
KOALA robot in our Electrical Measurement and Instrumentation Laboratory, 
Electrical Engineering Department, Jadavpur University, Kolkata. The vision 
system is so developed that it can work either with a stereo vision system 
employing two cameras (as described in the previous chapter) or it can employ a 
single camera based system. The algorithm that we describe now is based on 
employing a single wireless camera for monocular vision. In KOALA, the 
hardware control is performed by an on- board microprocessor (Motorola 68331@ 
operating frequency 22MHz) [23]. Figure 3.1(a) shows a snapshot of the mobile 
robot with four ultrasonic sensors and the vision system, integrated in our 
laboratory, employing a single vision sensor. The ultrasonic sensors can detect 
obstacles over a wide range from 15 cm to 300 cm, and the IR sensors will 
provide a range of measurements from 5 cm to 20 cm. Our system utilizes single 
vision sensor comprising a JMK wireless camera (WS-309AS) with A/V receiver 
and a Frontech USB (TV Box) frame grabber, which is used for acquiring a 
running video stream. Figure 3.1(b) shows the vision system in schematic form. 
The entire system is developed with an objective of providing a low-cost solution 
which should prove attractive for the industrial community. This monocular vision 
system is developed with two degrees of freedom to provide pan control and tilt 
control. To add two degrees of freedom (DOFs) for this vision-system, a PIC 
(16F876A) microcontroller based system is developed in our laboratory for  
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pan-control and tilt-control of the single-camera based robot system [24]. Here, 
the main onboard Motorola microcontroller acts as the master and the  
PIC microcontroller acts as a slave. The software, developed in interrupt driven 
mode, communicates with the mobile robot through the RS232C port. Figure 3.2 
shows a snapshot of the user-interface developed in the PC side that can  
interact with the user. The main serial mode of communication is handled by 
passing ASCII message strings between the PC and the Motorola processor in the 
robot. 

 

 

Fig. 3.1(a). The KOALA robot, equipped with sonar and IR sensors and integrated with a 
single camera based vision system  

The RS 232C serial link set-up between the PC and the robot is always set at 8 
bit data, 1 start bit, 2 stop bits and no parity mode. To give an example, the 
message string for RC servo action to provide pan or tilt control, sent from the  
PC end, comprise ‘Z’ as the identifier character, followed by <i>, which 
corresponds to the servomotor id for which position command is prepared (i = 1, 
2), followed by the sign, given in <s>, for position command (‘+’ or ‘-’) and then 
the two digit actual position command, in degree (this can vary from -900 to +900). 
Every ASCII message string is terminated, as usual, by using carriage return, 
<CR>.  
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Fig. 3.1(b). The block diagram of the vision system 

 

 

Fig. 3.2. Snapshot of the user-interface developed, that can interact with the user 
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3.3   A Two-Layer, Goal Oriented Navigation Scheme 

Figure 3.3 shows the complete proposed navigation algorithm in a flow chart 
form. A wireless camera, as shown in Fig. 3.1(a), is used to capture a running 
video stream of the environment in front of the KOALA robot. An image frame 
can be acquired from this video stream for further processing at any point of  
time. This acquired image frame is first processed to make the image suitable for 
further processing, by employing a series of image processing operations like 
image filtering, edge detection and image segmentation. Then the shortest path  

 

 
Fig. 3.3. Flow chart for the proposed navigation algorithm 
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generation algorithm is employed for this processed image, using the goal 
information, available a priori. Next the shortest path generated is utilized to 
determine the next subgoal. This entire procedure constitutes layer 1 of the 
algorithm and is implemented in high level in a PC using Visual Basic (VB) 
platform. This subgoal information is next transferred to layer 2 where the 
KOALA robot is actually navigated towards the subgoal using obstacle avoidance 
capability so that the robot can be useful even in a dynamically changing 
environment. The navigation in layer 2 is performed using several IR sensors, 
connected at the front face and side faces of the KOALA robot. Once the subgoal 
is reached, the control is transferred back to layer 1 so that the next subgoal can be 
generated and actual navigation can be performed in layer 2. This process of local 
path planning, followed by actual navigation, is continued in an iterative fashion, 
until the final goal is reached. The algorithm in layer 2 for actual navigation is 
implemented by developing a C program whose cross-compiled version (a .s37 
file) is downloaded in the Motorola processor of the KOALA robot. This .s37 
program communicates with the VB program in the PC end, in the interrupt driven 
mode, in real life. The .s37 program generated from the C program written, is also 
equipped with the facility of providing support from VB based PC end for a pool 
of protocol commands for commanding the KOALA robot. These commands are 
originally only available for execution from a terminal emulator available with the 
KOALA robot package. We developed a system where all the KOALA robot 
protocol commands and our additional navigation algorithms are supported by the 
C program developed, so that the entire system can be completely controlled from 
the VB platform in the PC end. 

3.4   Image Processing Based Exploration of the Environment in 
Layer 1 

Image processing is a form of signal processing where the input signals are images 
and the output could be a transformed version of the input. The proposed system 
employs a map building method based on image segmentation, for vision based 
navigation for mobile robot in an indoor environment, with the assumption that 
the surface is uniform. The following steps are implemented as follows [27]: 

A. Acquire the image from the wireless camera 
The camera, mounted at the center of the pan-tilt system of the robot, keeps 
acquiring a running video stream of the environment ahead of it. From this video 
stream, an image frame can be acquired for further processing. Figure 3.4(a) 
shows such an acquired image. 

 
B. Employ low-pass filtering on the acquired image 
The acquired image is then low pass filtered to reduce noise. This causes a 
smoothing or blurring effect on the neighboring pixels. The system is developed 
using the popular arithmetic mean filter to perform low pass filtering. This 
arithmetic mean filter is utilized using a 5×5 matrix, centered on each pixel, whose 
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intensity is computed as the average value of the pixels under the influence of the 
filter matrix. 

 
C. Detect edges in the filtered image by Canny edge detection 
An edge physically signifies a boundary between two regions with relatively 
distinct gray-level properties. The technique of edge-based segmentation signifies 
isolation of desired objects from a scene using different types of gradient 
operators. Edges of the image in our work are detected by using canny edge 
detection method.  Figure 3.4(b) shows the edge image of the processed filtered 
version of the acquired image. 

 
D. Process the edge image to thicken and link the edges 
The edge image contains many small broken edges. To make any edge image a 
meaningful one, one needs to link nearby edges to bridge gaps and they can be 
thickened to make their presence distinct. Thickening can be performed by a 
morphological operation called dilation by a structuring element that is used to 
grow selected regions of foreground pixels in images. Dilation is normally applied 
to binary images, and it produces another binary image as output. This dilation 
operation “thickens” or “grows” objects in a binary image and the shape of 
thickening can be controlled by a suitable choice of the structuring element shape, 
used to perform dilation of the image. The concept of linking edges and thickening 
them by dilation in an edge image can also be performed by a suitable low pass 
filtering scheme with a suitable choice of the filter mask. This operation is carried 
out in this work by using geometric mean filtering. The geometric mean filter is 
member of a set of nonlinear mean filters, which are efficient in removing 
Gaussian type noise and preserving edge features than the arithmetic mean filter. 
Figure 3.4(c) shows the edge linked and thickened image. 

 
E. Perform region growing segmentation on the thickened edge image 
Once the thickening is done, the image is segregated into regions. To find the 
obstructed zone and unobstructed zone in the image, region growing based 
segmentation is performed on the thickened image. Region growing is a simple 
but efficient region-based image segmentation method and it is classified as one of 
the pixel-based image segmentation schemes which involves the selection of 
initial seed points. This approach to segmentation examines the neighboring pixels 
of the initial “seed points” and determines if the pixel should be added to the seed 
point or not. Region growing is done by examining properties of each such block 
created and merging them with adjacent blocks that satisfy some criteria (similar 
gray-level pixel values, texture etc). The seed point needed for performing region 
growing is chosen near the bottom center of the image. This point ‘S’ is shown in 
Fig. 3.4(c). Now the image is scanned along all the vertical lines from bottom to 
top. The point at which the floor area ends is regarded as the obstacle. All regions 
before the obstacles are free zone. All regions beyond the obstacles are termed the 
hidden zone. Figure 3.4(d) shows the unobstructed zone (free space) with green 
color and the hidden zone with yellow color. Next the obstructed zone is marked 
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in red and Fig. 3.4(e) shows all these three regions. This entire process is 
continuous and the obstacle information gets continuously updated. 

 
F. Transform the region grown image to the floor region 
The entire grown up region updated with obstacle information is now transformed 
from image plane to floor region. In order to calculate a distance in the 3D 
coordinates using single camera, we assume that all the objects have contact at the 
bottom and interpret it in two dimensional coordinates. Figure 3.5 shows the 
relationship that, given the elevation of the camera and the elevation angle, how 
any point on the image plane can be directly mapped on the floor, relative to the 
position of the camera [25]. Here the robot/camera 3D coordinate frame is 
assumed with the corresponding notations shown in Fig. 3.5. This coordinate 
frame is assumed attached to present pose of the robot/camera, at any instant of 
time. This coordinate transformation mechanism allows one to determine the free 
points and the obstructed points in the world coordinate system (WCS) from the 
image acquired by the camera. Hence, with reference to Fig. 3.5, any point with 
coordinates ( vu, ) in the image plane can be transformed to the coordinates in the 

two dimensions ),( yx cc
 in the robot/camera coordinate frame as:  
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Once this transformation is employed, one can obtain the actual position of a point 
( )yx ,  on the floor, given this ),( yx cc  and the present pose of the 

robot ( )φ
RRR yx ,, . Figure 3.4(f) shows the floor with obstacle information. The 

transformed floor region is in trapezoidal form. Then this floor plane image is 
copied to the 500 pixel x 500 pixel map which is 20m x 20m as a working space 
for the robot. Figure 3.6(a) shows a snapshot of the map created and Fig. 3.6(b) 
shows a snapshot with the floor image in the grid map. In Fig. 3.6(b), the  
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trapezoidal floor region is shown in green color and the obstacle information is 
shown in red color. The above process of transformation is continuous even when 
the robot is in motion and it updates the new obstacle information in the map 
when it is in motion. 

 

   
      (a)              (b) 

    
     (c)             (d) 

   

(e)             (f) 

Fig. 3.4. (a) Image acquired by the wireless camera, (b) detected edge image, (c) thickened 
image, (d) region grown image, (e) image with the obstacle information, and (f) trapezoidal 
floor image  
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Fig. 3.5. Relationship between the image coordinate and the mobile robot coordinate 

 

Fig. 3.6(a). A snapshot of the software developed for creating map 
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Fig. 3.6(b). A snapshot of the map updated with obstacle information 

3.5   Shortest Path Computation and Subgoal Generation 

In mobile robot navigation it should be an important objective to determine the 
optimum path between the present robot location and the goal point, so that the 
robot can reach the destination in minimum time, avoiding obstacles, as far as 
practicable. The present work employs a heuristic gradient based method which is 
based on grid-map for finding the shortest path [26]. Algorithm 3.1 shows this 
algorithm in detail. The initial and the final positions of the robot are known a 
priori with the obstacle information determined from the previous steps. Now the 
coordinates along the shortest path are determined by using steepest descent 
method. The steepest decent algorithm uses the gradient function to determine the 
direction in which a function is decreasing most rapidly. Each successive iteration 
of the algorithm moves along this direction for a specified step size and then 
recomputes the gradient to determine the new direction of travel. This heuristic 
approach employed here can be easily understood if a land is considered with 
known obstacles and the initial point and final point on it. The land surface is 
assumed frictionless such that, say, at the starting point, if we start pouring sand 
on the ground, it spreads towards all possible paths, similar to dispersion of  a 
fluid in all possible directions. It is obvious that one cannot pass through the 
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obstacles. In each iteration, we assume that a fixed amount of sand is poured and 
we let it spread. We set a time index to every point on the ground, equal to the 
iteration number, when the sand reaches a pre-assumed height. So the earlier the 
height is reached, the smaller is this index. Such a pre assumed height and a fixed 
amount of sand dispersed are chosen so as to avoid saturation in value within any 
finite considerable region. Hence a travel time matrix (H) can be calculated 
employing the finite element diffusion method and this H matrix is iteratively 
updated, until a termination criterion is met. At the end of this procedure, those 
entries in H which still contain zeros correspond to the obstacle cells. Next, the 
gradient descent based procedure is employed to determine the coordinates of the 
points on the shortest path by starting from the goal point and finally arriving at 
the present robot location. For this, the gradient matrices of H in x- and  
y-directions, i.e. Hx and Hy, are calculated and based on them the new co-

ordinates of the next point on the shortest path are computed, utilizing the last 
point obtained on the shortest path. The algorithm always proceeds backwards 
starting from the goal point. This method is an efficient one and it operates in an 
iterative fashion. Figure 3.7 shows a sample environment where the shortest path 
is computed between the initial and the goal point in the map.  
 
 
BEGIN 
1. Obtain the Occupancy grid matrix (M), the start point (x_start, y_start), and the 

goal point (x_goal, y_goal). ( )ji,M = 0 denotes a free cell and ( )ji,M  = 1 

denotes an obstacle cell. 
2. Create diffusion matrix (W) and Travel Time Matrix (H) and make them of 
same size as M.     Initialize W0 = H0 = 0.  
3. Set W0 (x_start, y_start) = 1. 
4. Set diffusion constant ( )diffconst and maximum number of iterations without 

updates ( )maxupdateno __ . Initialize number of iterations ( )countiter _  

and number of iterations without updates ( )countiterupdateno ___ . 

5. WHILE ( )maxupdatenocountiterupdateno _____ <  

 5.1. 1__ += countitercountiter . 

 5.2. Diffuse cells downwards: 
 Witer_count(i,j) = Witer_count(i,j) + diffconst * Witer_count(i+1,j) 
       i = 1,2,…,(W_ROWS –1); j = 1,2,…,W_COLS;    
  5.3. Diffuse cells upwards:  
  Witer_count(i,j) = Witer_count(i,j) + diffconst * Witer_count(i-1,j) 
        i = 2,3,…,W_ROWS; j = 1,2,…,W_COLS;    
   5.4. Diffuse cells towards right: 
   Witer_count(i,j) = Witer_count(i,j) + diffconst * Witer_count(i,j+1) 
        i = 1,2,…,W_ROWS; j = 1,2,…,(W_COLS-1);    
   5.5. Diffuse cells towards left:  
   Witer_count(i,j) = Witer_count(i,j) + diffconst * Witer_count(i,j-1) 
        i = 1,2,…,W_ROWS; j = 2,3,…,W_COLS;    
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5.6. Make Witer_count(i,j) = 0, if M(i,j) = 1;  
i = 1,2,…,W_ROWS; j = 1,2,…,W_COLS;    

5.7. If any Witer_count(i,j) becomes greater than the height for the first time, then 
make corresponding Hiter_count(i,j) = iter_count.  

5.8. Count sum_countiter_count as the sum of those entries in W matrix at present 
with value > 1. 

5.9. IF 
1 

  11

+=

<− −

count_iter_update_nocount_iter_update_no

count_sumcount_sum )count_iter(count_iter THEN  

 ENDIF 
ENDWHILE 

6. All ( )ji,H  point still equal to zero are the obstacle points. Set these points to a 

high value i.e. one more than their adjacent neighbor which one have the highest 
value (steep gradient for    obstacle occupied points). 
7. Create shortest path coordinate vectors ord_rowsh_path_co  and 

ord_colsh_path_co and initialize the first point: 

( ) ;_1 goalx=ord_rowsh_path_co ( ) goaly _1 =ord_colsh_path_co . 

Set µ . 
8. Compute gradient matrices of H matrix in x-direction (∇Hx) and y- direction 
(∇Hy). 
9. ∇Hx = -∇Hx; ∇Hy = -∇Hy; path_index =1; path_flag =1; 
10. WHILE (path_flag =1)  

10.1. Compute del_row by interpolation using the ∇Hy matrix. 
10.2. Compute del_col by interpolation using the ∇Hx  matrix. 
10.3. Compute the coordinates of the next point on the shortest path: 

( ) ( )

col_delrow_del

row_del
*

index_pathindex_path

22

1

+
μ

+=+ ord_rowsh_path_coord_rowsh_path_co
 

( ) ( )

col_delrow_del

col_del
*

index_pathindex_path

22

1

+
μ

+=+ ord_colsh_path_coord_colsh_path_co
 

10.4. IF (initial point is reached) THEN 
   path_flag = 0; 
            ENDIF 
ENDWHILE 

11. Reverse vectors ord_rowsh_path_co and ord_col.sh_path_co   

END 
 
 

Algorithm 3.1. The shortest path generation algorithm employing obstacle avoidance 
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Fig. 3.7. A sample shortest path computed for an environment 

Once the shortest path is determined, we need to find the corner points nearer to 
an obstacle. To find the corner points, we take three consecutive points on the path 
and find the cosine of the angle between the two line segments joining the first 
two and last two points. If this value falls below a given threshold, then the middle 
of these three points is considered as a corner point, otherwise we move to the 
next subsequent point and again compute the cosine of the new angle. This 
process is continued until the suitable corner point is obtained. This corner point is 
stored as the next subgoal point for navigation. For example, in Fig. 3.7, when A1, 
A2, A3 are the three points under consideration, then the cosine of the angle 
between the line segments 21 AA  and 32 AA  is very high (above the chosen 
threshold). So A2 is not considered as a corner point. In this process, we keep 
moving forward, and when we reach the three consecutive points B1, B2, B3, the 
angle between the line segments 21 BB  and 32 BB  is large enough so that 
the cosine of the angle is below the chosen threshold. Then B2 is considered as a 
corner point. 
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3.6   IR Based Navigation in Layer 2 

Once the subgoal point is determined, the control will be passed from layer 1 to 
layer 2. As soon as the new subgoal information is passed, the robot updates its 
present pose ( )φ

RRR yx ,, , based on incremental wheel encoder information, 

and determines the new steering angle, based on its present pose and the subgoal 
information. Ideally this is the angle by which the robot should turn and proceed at 
a constant speed to reach the subgoal, in a static scenario. This is because the 
subgoal belongs to the set of points which were generated from the shortest path 
generation algorithm, employing obstacle avoidance. However, in a dynamic  
 

 
(a) 

 
(b) 

Fig. 3.8(a). IR sensor arrangements of the KOALA robot [23] 
Fig. 3.8(b). Measured values of the IR sensor readings, by placing a 1.5 cm wide obstacle 
in front of sensor (R0) at a distance of 10 cm. 
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scenario, after the last time the vision based mapping subroutine was activated, a 
new obstacle may have arrived or an old obstacle’s position may have been 
changed. This may result in obstruction along the ideal path of travel between the 
robot and the subgoal. To cope with this dynamic environment, the navigation is 
guided by 16 IR sensors, mounted symmetrically along the periphery of the 
KOALA robot.  

These IR sensors are densely populated in front and sparsely populated at the 
two sides of the robots.  Figure 3.8(a) shows the sensor arrangement of the mobile 
robot and Fig. 3.8(b) shows a typical situation for the measured values of the 
sensors, by placing a 1.5 cm wide obstacle in front of the front sensor (R0) at a 
distance of 10 cm from the robot front face. For navigation, these 16 IR sensors 
scan the environment. Depending on these sensor readings, the system calculates 
the obstacle regions and free regions ahead of the robot. From these calculations 
the traversable area is determined. For determining the traversable area, separate 
thresholds are set for each of the 16 sensors, with the maximum priority given to 
the front sensors (R0 – R3, L0 – L3). For each sensor, if its reading exceeds its 
threshold, it means the direction ahead of it is obstructed, else the direction ahead 
is considered free for traversal. Now, depending on these readings, there can be 
traversable areas both to the left and to the right of the present pose of the robot. 
The decision of whether the robot should turn left or right is taken based on which 
direction will mean that the robot has to undertake the shorter detour with respect 
to its ideal direction of travel. Once the detour direction is determined, the speed 
of the robot is determined based on the IR sensor readings in that direction. When 
the robot travels a predetermined distance, the entire IR based scanning and 
determination of the new detour direction of traversal is reactivated and this 
procedure is continued until the robot reaches the subgoal or its closest vicinity. 
Then the robot stops and the control is transferred back to layer 1. 

3.7   Real-Life Performance Evaluation 

The performance evaluation has been carried out, for vision based navigation, in 
our laboratory, utilizing several environments. Here we present the results for four 
such experiments, two each in static and dynamic environments. 

Case Study – I 
The initial pose of the robot is (0, 0, 0) and the goal point is (2, 0). There lies an 
object between the robot and the goal position. It should be mentioned here that 
for the robot system which is equipped with a pan-tilt mechanism with its 
corresponding degrees of freedom, in this work, the pan angle and the tilt angle 
are suitably initialized for a particular environment and then they are kept fixed, 
for all subsequent experiments. Initially these two angles are so chosen for the 
robot system developed so that the monocular camera, in each frame, covers a 
reasonably large floor and environment area. The system is hence equipped  
with the flexibility where these angles can be suitably initialized depending  
on the environment where this navigation system is going to be implemented. 
Figure 3.9(a) shows the image frame acquired from the video stream of the camera  
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(a)                                                                      (b) 

    
                         (c)                                                                      (d) 

   
                         (e)                                                                      (f) 

Fig. 3.9. (a): The image acquired, (b)-(f): sequence of image processing caried out in layer 
1. (b): edge image; (c): thickened edge image; (d): region grown image; (e): image with 
free, obstacle, and hidden regions and (f): trapezoidal floor image. 
 

 
and Figs. 3.9(b)–3.9(f) show the sequence of image processing steps, when the 
robot is in initial position. The edge of the face of the obstacle on the ground, 
viewed by the robot in  front of it when the robot is at its initial pose, actually 
extends from (0.9, 0.3) to (0.9, -0.85). Figure 3.10 shows the snapshot of the grid  
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Fig. 3.10. The initial grid map 

map with the obstacle information and free region. Here the shortest path is 
calculated and the layer 2 of the robot navigation algorithm is updated with the 
subgoal information. The algorithm calculates the subgoal 1 as (0.81, 0.33). When 
the control is transferred to layer 2, the robot navigates using IR sensor based 
guidance, upto subgoal 1. The robot actually stops at (0.819, 0.332) which has 
very small discrepancy with the calculated subgoal. Figure 3.11 shows the 
snapshot of the grid map when the robot reaches the first subgoal point. This grid 
map is developed when the control is transferred back to layer 1 and vision based 
processing is carried out once more. Figures 3.12(a)-3.12(d) show the results of 
image processing steps, when the robot is at the first subgoal point. These results 
are used for IR based navigation once more. This sequential process is continued 
to reach the final goal point. Figure 3.13 shows the grid map when the robot  
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reached the destination. The robot finally stops at (1.963, 0.024) which is 
extremely close to the specified goal (2,0). Figure 3.14 shows the complete 
navigation path traversed by the robot, starting from the initial point and reaching 
the goal point, in presence of the obstacle, following the shortest possible path. 
Figure 3.15(a) shows the response of IR sensors on the right side of the robot (R0, 
R3) during navigation and fig. 15(b) shows the corresponding responses for the IR 
sensors on the left side of the robot (L0, L3). It can be seen that the reading of the 
R3 sensor reaches a high value when the robot is in the vicinity of the obstacle. As 
the robot crosses the obstacle and proceeds towards the goal point, the reading of 
the R3 sensor gradually decreases. 

 

 

Fig. 3.11. The grid map, when the robot reaches the first subgoal 
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        (a)                                                                 (b) 

   
                         (c)                                                                 (d) 

Fig. 3.12. (a)-(d). Results of image processing at subgoal 1. (a): the acquired image; (b): 
edge image; (c): thickened edge image, and (d): image with three distinct regions. 

Case Study – I1 
Here again the initial pose of the robot is (0, 0, 0) and the new goal point is (3, 0). 
Now two objects are introduced between the robot and the goal position. Figure 
3.16(a) shows the image frame acquired at the initial position of the robot and 
Figs. 3.16(b)–3.16(f) show the results of subsequent image processing steps in 
layer 1. Figure 3.17 shows the snapshot of the initial grid map with the obstacle 
information and free region. Next the shortest path is calculated and the layer 2 of 
the robot navigation algorithm is implemented with this subgoal information. 
Figure 3.18 shows the snapshot of the grid map when the robot reaches the first 
subgoal point. When the robot reaches subgoal 1, the control is transferred back to 
layer 1. The system again performs the vision based processing, as shown in Fig. 
3.19 and Fig. 3.20 shows the grid map when the robot reaches subgoal 2, using IR  
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Fig. 3.13. The grid map, when the robot reaches the final goal point 
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Fig. 3.14. The robot navigation path traversed 
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Fig. 3.15. Variation of (a) response of L0 & L3 IR sensors with time and (b) response of R0 
& R3 IR sensors with time, for case study I 
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(a)             (b) 

     
(c)             (d) 

 

   
     (e)             (f) 

Fig. 3.16. (a): The image acquired, (b)-(f): results of image processing steps in layer 1. (b): 
edge image; (c): thickened edge image; (d): region grown image; (e): image with free, 
obstacle and hidden regions and (f): trapezoidal floor  image. 
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Fig. 3.17. The initial grid map 

 
Fig. 3.18. The grid map, when the robot reaches the first subgoal 
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based navigation in layer 2. This iterative process is continued until the robot 
reaches the final goal. Figure 3.21 shows the grid map when the robot reaches the 
final goal point. Figure 3.22 shows the complete path of traversal of the robot for 
this static environment and shows that the robot reaches the goal satisfactorily. 
Figure 3.23 shows the variations of four IR sensors, R0, R3, L0, and L3, readings 
when the robot navigates towards its destination. 

 
 

    

     (a)                      (b) 

     

     (c)                      (d) 

Fig. 3.19 (a)-(d). Results of image processing at subgoal 1. (a): the captured image; (b): 
edge image; (c): thickened edge image, and (d): image with three distinct regions. 
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Fig. 3.20. The grid map, when the robot reaches the second subgoal 

 
Fig. 3.21. The grid map, when the robot reaches the final goal point  
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Fig. 3.22. The robot navigation path traversed, in case study I 

 
Case Study – III 
In the next two case studies, we demonstrate the utility of the proposed system in 
case of a dynamically changing environment. Here, for an environment similar to 
that considered in case study I, the robot starts from an initial pose (0, 0, 0), with a 
bid to reach the goal point (2,0), in presence of an obstacle between the robot and 
the goal position. However, after the robot starts its IR based navigation towards 
subgoal 1, determined using vision based image processing in layer 1 at the initial 
position of the robot, followed by the determination of the subgoal 1 utilizing the 
shortest path algorithm, the position of obstacle 1 is shifted. The new position of 
the obstacle is now shown in Fig. 3.24 where it is moved nearer to the robot and it 
is shifted towards the left of the robot, with reference to its initial pose. Because of 
this dynamic variation in the environment, the robot takes a detour towards its left 
but was still able to avoid the obstacle and reach its subgoal. The subsequent 
activations of the iterative algorithm show that the robot reaches its final goal 
almost perfectly, once more. Figure 3.24 shows this navigation of the robot in the 
dynamic environment. Figure 3.25(a) and Fig. 3.25(b) show the IR sensor 
readings, in front of the robot. It can be seen that the reading of R0 and L0 receive 
a sudden kick when the obstacle is moved in the dynamic environment.  
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Fig. 3.23. Variation of (a) response of R0 and R3 IR sensors and (b) response of L0 and L3 
IR sensors during navigation, for case study II 

 

(a) 

(b) 
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Here it should be mentioned that if there arises an exceptional situation where 
the dynamically changing object arrives exactly on a subgoal, then, according to 
the algorithm, the IR-sensor based actual navigation guidance mechanism will 
ensure that the robot will stop at the shortest distance from the subgoal, satisfying 
obstacle avoidance or collision requirement. 
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Fig. 3.24. The robot navigation path traversed in a dynamic environment 

Case Study – IV 
This situation is similar to case study II, but with both obstacles being made 
dynamic in nature. Here also, after the robot start traversing towards subgoal 1, 
avoiding obstacle 1 whose position was determined from the vision based image 
processing in layer 1, the position of the obstacle 1 was suddenly changed. It was 
brought closer to the robot and more towards its left, making partial dynamic 
blockage of the free region of traversal. Similarly, when the robot was attempting 
to traverse a shortest path avoiding obstacle 2, suddenly the position of the 
obstacle 2 was changed by bringing it closer to the robot. However the robot was 
able to undertake the required detour in its IR based navigation in each such 
situation and was able to reach the final goal satisfactorily, as shown in Fig. 3.26.  
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Fig. 3.25. Variation of (a) response of R0 and R3 IR sensors and (b) response of L0 and L3 
IR sensors during navigation in the dynamic environment, for case study III 
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Figure 3.27(a) and 3.27(b) show the readings of the IR sensors R0, R3, L0, and 
L3. It can be seen that here also the readings of L0 and R0 receive two sudden 
kicks, when the two obstacle positions are changed.  
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Fig. 3.26. The robot navigation path traversed in a dynamic environment 
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Fig. 3.27. Variation of (a) response of R0 and R3 IR sensors and (b) response of L0 and L3 
IR sensors during navigation in the dynamic environment, for case study IV 
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3.8   Summary 

In this chapter we described how a two-layered, goal oriented, vision based robot 
navigation scheme can be developed. The system employs vision based analysis of 
the environment in layer 1, which employs several image processing functions and 
a shortest path generation algorithm, to determine the next subgoal for navigation, 
with the objective of reaching the final destination as fast as possible, avoiding 
obstacles. This subgoal information is utilized by the robot in layer 2 to navigate 
in dynamic environments, utilizing a set of IR sensors, avoiding obstacles, to 
reach the subgoal or its closest vicinity. This two-layered algorithm is utilized 
iteratively to create the next subgoal and navigate upto it, so that the final goal is 
reached sufficiently quickly. This chapter has showed a successful implementation 
of how to hybridize the shortest path algorithm with camera based image 
processing to enhance the quality of vision based navigation of mobile robots in 
the real world, so that, the robot can reach its goal (known a priori), following the 
shortest practical path, avoiding obstacles. The robustness of the system is further 
ensured by the IR-sensor guided navigation, which helps the robot to adapt its 
navigation, based on any possible change in obstacle positions in a dynamic 
environment. This algorithm is implemented for several environments created for 
indoor navigation in our laboratory. It has been demonstrated that the KOALA 
robot could achieve its task, each time, satisfactorily, for both static environments 
and dynamic environments.  

The developed programs comprise high-end programs developed in VB 
platform which communicate, in real-time, with the processor of the robot system, 
where cross-compiled versions of custom-designed C programs are downloaded. 
However, in the real implementation phase, the entire system is run from the high-
end VB platform in a PC through a user-friendly GUI developed, so that it can be 
easily utilized by some common users. 

For high illumination situations the algorithm is expected and has been 
demonstrated to provide satisfactory performance. However, for low illumination 
situations, the reflections of the obstacles on the floor may look dark enough (as is 
shown in the case of Figs. 3.4(a)-3.4(e)) so that the edge image may contain some 
edges corresponding to reflections on the floor. Hence these reflections may be 
interpreted as obstacle and this reduces the free zone computed. However, 
according to the algorithm, in these exceptional cases, the shortest path computed 
may be a little longer than the true shortest path but still safe and robust navigation 
of the robot avoiding obstacles towards the goal will be ensured. 

The present system is developed where the robot pose in real environment is 
estimated by odometry using only incremental wheel encoder information. This 
suffices well for indoor applications with uniform floors, for which the system is 
primarily developed. The experiments conducted sufficiently demonstrate that the 
robot reaches the goal in real world, under these conditions, for a variety of 
environmental configurations. However, the accuracy of this system may suffer in 
outdoor environments due to problems like wheel slippage etc. One can undertake 
such future works into consideration which will attempt to adapt this system  
for outdoor environments too and this may be accomplished by additionally 
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integrating e.g. extended Kalman filter based algorithms for robot localization, 
along with the current system developed. 
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Chapter 4 
Indigenous Development of Vision-Based 
Mobile Robots 

Abstract. In this chapter we shall discuss how a low-cost robot can be 
indigenously developed in the laboratory with special functionalities. Especially, 
the development of two types of PIC microcontroller based sensor systems that 
can be integrated with a robot will be discussed in detail in this regard. One of 
them will be the development of an IR range finder system that can be developed 
with dynamic range enhancement capability. The second one will be the 
development of an optical proximity detector system which utilizes the principle 
of switching mode synchronous detection technique.   

4.1   Introduction 

In the phase of implementing the vision based algorithms with the KOALA robot 
(the version of KOALA that was procured by us), it was found that the KOALA 
robot operates under certain constraints, as given below: 

• The communication between PC/Laptop and KOALA robot takes place by 
means of RS232. However, most of the present day PCs/Laptops do not have 
any serial interface and hence they require a separate USB-to-serial converter, 
to operate in conjunction with the KOALA robot. 

• For a PC-KOALA combination, high-speed data transfer is not possible. 
• KOALA I/O interface is limited. 
• KOALA does not have any provision for USB interface. 
• Low-cost USB webcam cannot be connected to KOALA directly. 
• Image processing cannot be accomplished with KOALA’s low-end processor. 

This requires a separate on-board Laptop or a PC with wireless camera 
interface. This makes the arrangement become complex and bulky. 

Hence, a robot is developed indigenously in our laboratory, with an aim to 
overcome the above drawbacks and the functionalities and capabilities of this 
robot are described in detail in this chapter.  
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4.2   Development of a Low-Cost Vision Based Mobile Robot 

As described in the beginning of this chapter, a mobile robot setup is indigenously 
developed, with an aim to provide a low-cost solution to the industrial community 
[14]. Figure 4.1 shows the actual robot in its front view and bottom view. Figure 
4.2 shows the block diagram representation of the robot. The robot developed is a 
two-wheeled, differential drive system. The robot is equipped with six IR 
proximity sensors, one IR range sensor system, and a laptop. The proximity 
sensors provide Boolean signals, where each sensor gets activated if the robot is 
sufficiently close to an obstacle, or remains deactivated otherwise. The IR sensor 
based system adds a degree of freedom to the system as its angular position is 
controlled by a servo motor. This enables the IR sensor to scan the front and the 
side of the robot environment at eleven angular positions, from left to right. A 
laptop is mounted on the robot system so that the robot becomes a stand-alone, 
self-sufficient system. The laptop comprises 4GB solid-state HD, 1GB RAM, with 
Windows XP SP2 operating system. The laptop is free from any moving parts and 
it communicates with the robot base through a USB link. The robot base is 
energized (5V, 1A) from the laptop through two USB cables and no separate 
power source is needed for the mobile robot operation. All the RC servos 
employed are power controlled for energy saving. The left and right wheel 
encoders (4-pulses/rotation) are developed using hall-effect switches. The laptop 
camera with auto-focus serves as the mono-vision sensor of the robot system. The 
robot uses the webcam of the laptop as its mono-vision sensor. The IR range 
sensor system is specially developed for obstacle detection and avoidance, which 
employs a microcontroller (PIC 12F683) based system, also indigenously 
developed, with an aim to enhance the dynamic range of the range finder system. 
The system employs a Visual Basic based robot control program and navigation is 
performed using vision and IR range sensors. The system is also equipped with a 
Wi-fi link for wireless remote monitoring and supervision. 
 

(a)  
(b) 

Fig. 4.1. The mobile robot, developed indigenously, in its (a) front view and (b) bottom 
view 
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Fig. 4.2. The schematic diagram of the mobile robot 

4.3   Development of Microcontroller Based Sensor Systems for 
Such Robots 

This robot developed is made equipped with three special functionalities. The 
robot comprises two special types of sensor systems developed with indigenous 
concepts: (a) infrared (IR) sensors with the capability of dynamic range 
enhancement [2] and (b) optical proximity detectors using switching-mode 
synchronous detection technique [15]. These sensor systems are developed using 
PIC microcontrollers. In addition to this, the robot system is equipped with a 
sophisticated capability of intranet-connectivity where the laptop mounted on the 
robot, acting in a slave mode, can be suitably commanded by a PC, acting in the 
master mode, situated in a remote end. 

4.3.1   IR Range Finder System with Dynamic Enhancement1 

The robot system developed is equipped with an indigenously developed PIC 
Microcontroller based IR range finder system, with dynamic range enhancement 
capability [2]. Infrared (IR) range finders are overwhelmingly employed in robots 
for range measurement because of small size, ease of use, low-cost, and low-
power consumption. In its conventional form, the Sharp make IR range finder 

                                                           
1 Section 4.3.1 is based on “A microcontroller based IR range finder system with dynamic 

range enhancement”, by Anjan Rakshit and Amitava Chatterjee, which appeared in IEEE 
Sensors Journal, vol. 10, no. 10, pp. 1635-1636, October 2010. © 2010 IEEE. 
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finds extensive real-life use, which uses the method of triangulation [1]. Here, the 
angle of light reflected from the object depends on the object range. In our robot, 
the IR range finder system employed is developed using scattered radiation-based 
sensing, which attempts to reduce the influence of orientation of the plane of the 
object on the sensor reading obtained, as is the case in traditional triangulation-
based approach. Usually the output voltage from an IR range finder system 
increases with decrease in range of the object, i.e. for a nearer object. However, 
the system can only be used beyond a dead zone because, for any range value 
within this dead zone, the voltage starts decreasing again, instead of increasing 
[1]. This is because, within the dead zone, probability of the narrow IR beam 
missing the sensor becomes significant. To increase the sensitivity of the IR 
sensor based obstacle avoidance scheme, the robot system, instead of utilizing a 
simple IR range sensor, is built with the PIC microcontroller based IR range finder 
system, developed in-house [2]. The system developed here utilizes an array-based 
approach where the burst frequency and duration of IR energy transmitted are 
progressively reduced. The objective is to reduce the dead zone, by utilizing the  
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Fig. 4.3. The PIC 12F683 microprocessor based IR range finder system developed, for 
dynamic range enhancement (Reproduced from [2] with permission from the IEEE. ©2010 
IEEE). 
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output from the IR sensor system to adaptively switch an IR LED ON/OFF. The 
system employs two IR sources on two sides of the IR sensor whose spatial 
separation helps to achieve the range enhancement. 

Figure 4.3 shows the hardware system developed, in its schematic form, 
utilizing a PIC12F683 microcontroller [3]. The IR energy transmitted by two high 
intensity infrared LEDs (IR_LED1 and IR_LED2) is received by a SHARP-make 
IR sensor system (IS 1U60), called IR_Sensor in Fig. 4.3. The internal block 
diagram of the IS 1U60 system [4] shows that, when this receiver receives IR 
energy input, the sensor output goes low and vice versa. The center frequency of 
the bandpass filter is f0 = 38 kHz. The relative sensitivity is maximum around the 
carrier frequency of 38 kHz [4], utilized for frequency modulation purpose. In the 
nominal case, burst wave signals of 38 kHz frequency, with a 50% duty cycle, are 
transmitted, for a duration of 600 μs [4].  

Algo. 4.1 shows the main routine implemented in the PIC microcontroller. 
Algo. 4.2 shows the real-time interrupt routine developed, enabled on Timer1 
overflow, that works in conjunction with the main routine. We introduce two 
arrays: (i) the Burst_Freq_Array for controlling the carrier or burst frequency of 
IR_LEDs and (ii) the Integral_Cycle_Array which determines how long the 
IR_LEDs should transmit in one sweep. In conventional systems, the burst 
frequency is 38 kHz, with a 50% duty cycle, the transmission duration is 600 μs, 
and the sensors produce sensitive results for a narrow width of relatively large 
ranges. We intentionally manipulate these two variables so that the IR_SENSOR 
receive some amount of IR light energy, reflected back from the object, for several 
or a few of these burst frequency durations during one sweep, depending on the 
distance. This information (Range_Count) is exponentially averaged to prepare a 
steady PWM signal. For a reasonable sensor speed, we can only build these arrays 
of finite lengths, that gives rise to “range quantization” or finite resolution of the 
system developed.  
 
BEGIN 

1. Initialize IR_LED1 and IR_LED2 in OFF mode. 
2. Prepare Burst_Freq_Array and Integral_Cycle_Array.  
3. Prepare Timer1 register pair for Timer1 interrupt. 
4. Program suitable PWM carrier frequency. 
5. Receive Range_Count info. from interrupt routine. 
6. Scale this info. suitably for PWM generation. 
7. Generate PWM signal using exponential averaging. 
8. Go to step 5. 

END 

Algo. 4.1. Main routine in PIC microcontroller 
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BEGIN 
1. Prepare for interrupt using Burst_Freq_Array[i]. 
2. Set Count1_max = Internal_Cycle_Array[i].     
3. IF (Count1 > Count1_max), 

Toggle Burst_Duration_flag and Reset Count1. 
IF (Burst_Duration_flag == 0), 
 Increment i by 1.    
 IF (SIGIN == 0), 
  Increment j by 1. 
 ENDIF 
ENDIF 
IF (i reach last entry in Burst_Freq_Array), 
 Range_Count =j; Reset i and j; 
ENDIF 

  ENDIF 
4. IF (Burst_Duration_flag == 1), 

Put IR_LED1 ON if Burst_Freq_flag = 0. 
Put IR_LED2 ON if both  Burst_Freq_flag  = 0 and SIGIN = 0. 

   ELSE 
    Put both IR_LED1 and IR_LED2 OFF. 
   ENDIF 
5. Toggle Burst_Freq_flag. 
6. Clear Interrupt_flag. 

END 

Algo. 4.2. Interrupt routine 

4.3.1.1   The Dynamic Range Enhancement Algorithm 

The objective of dynamic range enhancement is achieved by utilizing the output 
from the IR_SENSOR as a feedback signal (SIGIN) to the microcontroller, which 
adaptively turns IR_LED2 ON/OFF. Algo. 4.2 shows that the blinking of 
IR_LED2 is controlled by the states of both Burst_Freq_flag and SIGIN. In a 
conventional IR range finder, within the dead zone, most IR energy reflected back 
from the object cannot be sensed by the IR_SENSOR. In our system, for distant 
objects, mostly only IR_LED1 blinks.  As we approach the dead zone gradually, 
IR_LED2 starts getting activated often, as there is a higher probability of SIGIN 
being low. This intelligent scheme adaptively puts IR_LED2 ON more often with 
decreasing range, in an intelligent manner, which helps to reduce the length of the 
dead zone and achieves the required dynamic range enhancement. This is in stark 
contrast with the working principle of a conventional IR range finder, where, 
within the dead zone, most of the IR energy reflected back from the object cannot 
be sensed by the IR_Sensor.   
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4.3.1.2   Experimental Results 

We carried out an experiment in our laboratory, where, for the system without 
range enhancement, we do not utilize the feedback signal SIGIN to control 
IR_LED2 in our interrupt routine. Figure 4.4 shows the output voltage vs. range 
variations for these two cases. For each range/distance, the output voltage 
computed is the average of ten readings taken, for both with and without range 
enhancement case. For the system without dynamic range enhancement, the usable 
range is 25-50 cm and below 25 cm the dead zone arrives. It can be seen that our 
proposed system could reduce this dead zone and the dynamic range was 
enhanced with the usable range being 10-50 cm.  

Fig. 4.4. Output voltage vs. range curve for IR sensor system. (Reproduced from [2] with 
permission from the IEEE. ©2010 IEEE.). 

4.3.2   Optical Proximity Detectors Using Switching-Mode 
Synchronous Detection Technique2 

The indigenously developed robot system is also equipped with optical proximity 
detectors which are developed utilizing the theory of switching-mode synchronous 
detection in a PIC microcontroller based application [15]. Microcontroller based 
systems have been widely used, in recent times, to develop such low cost robotic 

                                                           
2 Section 4.3.2 is based on “A microcontroller based compensated optical proximity 

detector employing switching-mode synchronous detection technique”, by Anjan Rakshit 
and Amitava Chatterjee which appeared in  Measurement Science and Technology, vol. 
23, no. 3, March 2012. Reproduced with kind permission of IOP Publishing Ltd. 
[Online]: http://m.iopscience.iop.org/0957-0233/23/3/035102 
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sensors systems [2] and also several intelligent instrumentation systems [5-7]. In 
this section we describe the development of a PIC microcontroller [3] based 
optical proximity detection sensor system which is developed using switching 
mode synchronous detection technique, an efficient strategy used to extract 
fundamental component of a signal heavily corrupted with noise. Such 
synchronous detection techniques have been popularly employed in AM radio 
receivers, in ac-biased strain-gauge bridge circuits, in pyrometer systems [8], in 
mechanical vibration measurement [9], in synchronous phase to voltage converters 
[10], in fiber optic sensor-based measurements [11], etc. The objective here is to 
develop a low cost yet powerful robot sensor that can provide accurate proximity 
indication of obstacles, even with a wide variation of ambient illumination 
conditions. This system is developed using two white LEDs which emit light to 
determine proximity of an obstacle. An electronic circuit using a light dependent 
resistance (LDR) [12] in conjunction with a transistor determines whether an 
obstacle is in close enough proximity or not. The system is developed with 
external threshold variation flexibility so that the maximum obstacle distance 
causing activation of the sensor can be suitably varied for different working 
conditions. The sensor system developed has an additional important merit that it 
has dynamic compensation capability so that the sensor performance is designed 
to be almost independent of ambient illumination conditions. 

There are some important factors that influence the performances of such 
proximity sensors. The detection of an object will essentially depend on the 
detection of the radiation reflected back from the surface of the object and, hence, 
for the same closeness or proximity of an object from the sensor, the amount of 
radiation reflected back will depend on the reflectivity of the object. The 
reflectivity of the object varies between 0 and 1. A highly reflecting object will 
have a reflectivity close to unity and vice versa. Another important factor of 
influence is the condition of the surface i.e. how smooth (or rough) the surface of 
the object is on which the light energy from the white LED sources are incident. It 
is known that, if the reflecting surface is large enough to encompass the entire 
spatial distribution of the light emitted by the two LEDs, then, for dull objects, the 
sensor’s analog signal can be used to determine the proximity distance, if the 
surface reflectivity is known. However, in most practical situations, the robot 
sensor does not know the type of object it is going to encounter during its 
navigation, and hence, the numerical values of their reflectivities will not be 
known a priori. To consider such situations, we have conducted experiments for a 
set of objects having wide variations in reflectivities and hence the suitability of 
the sensor developed is extensively tested and verified.     

4.3.2.1   PIC Microcontroller Based Optical Proximity Detector 

Figure 4.5 shows the PIC 12F675 microcontroller based system developed. This 
system has two digital outputs (pin 3 and 5) connected to two white LED drives 
(LED1 and LED2), two analog inputs (pin 6 and 7) and one digital output (pin 2) 
to turn an LED (named PXD_LED) ON/OFF. The pin 7 input is obtained from the 
collector of a P-N-P transistor whose emitter circuit contains a light dependent  
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resistor (LDR) [12], whose resistance varies with the illumination. The system is 
designed with an external preset potentiometer at input pin 6, to adjust a threshold 
voltage (THLD_val), essential for preventing any spurious activation of 
PXD_LED. Each white LED is driven by an identical rectangular pulse, turning 
them simultaneously ON/OFF for a chosen time duration.  

Algo. 4.3 shows the main routine implemented in the PIC 12F675 
microcontroller. Algo. 4.4 shows the real-time interrupt routine developed in 
conjunction with the main routine and it is enabled on Timer1 overflow. The 
system is so designed that each time interrupt is generated at an interval of 1 ms.  
At each such interrupt generation, the value of a counter, named as count1, is 
incremented by 1. According to the design philosophy chosen, the ON and OFF 
durations of the rectangular pulse driving each white LED are unequal and the ON 
time duration, in each cycle, is controlled by a designer chosen parameter, 
Count1_on_max, and the OFF time duration, in each cycle, is controlled by a 
designer chosen parameter, Count1_off_max. In each cycle, as long as the value of 
count1 remains within Count1_on_max, both LED1 and LED2 remain ON. For 
the time duration when the value of count1 remain within the band 
[Count1_on_max, Count1_off_max] both LED1 and LED2 remain OFF. When 
both these LEDs are ON, they emit optical radiation. The proximity of an object is 
determined on the basis of the amount of optical radiation reflected back from a 
nearby object and this is determined in terms of the voltage signal received at 
input pin 7, from the output of the LDR-transistor combination. For each such 
acquisition of an input signal, it is always carried out towards the end of the 
duration of an ON/OFF time period. This is done to allow analog signal 
stabilization before any measurement is actually carried out. Hence any such 
signal acquisition is carried out at those instants when (Count1 == 
(Count1_on_max-2)) or (Count1 == (Count1_off_max-2)).  

Each such signal acquired is subjected to three-point median filtering to 
eliminate any spurious high frequency component, especially impulse natured 
signals, which may have contaminated the original signal. The signal acquired at 
pin 7 and then median filtered is called LDR_on_val, when this is acquired during 
ON time of the white LEDs. The identically acquired and processed signal is 
called LDR_off_val, when this is acquired during OFF time of the white LEDs. 
One can easily appreciate that, if there is a sufficiently close object/obstacle, then 
LDR_on_val will be significantly higher than the LDR_off_val.  Hence, ideally 
speaking, a higher value of (LDR_on_val - LDR_off_val) means a closer object 
and if this (LDR_on_val - LDR_off_val) exceed a threshold value then the output 
PXD_LED will be turned ON, indicating the activation of proximity detection 
sensor. However, depending on different environments, there are possibilities that, 
if this threshold value is made a fixed one, then, in certain situations, PXD_LED 
may get turned ON, even when the object is not in near proximity. Hence, to avoid 
such spurious activations, the user is given the flexibility where they can 
externally set a POT using which they can regulate the threshold value chosen  
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Fig. 4.5. The optical proximity detector system developed: (a) the hardware system and (b) 
the schematic diagram 

(acquired, processed by median filtering and named as THLD_val). From Algo. 
4.3, if (LDR_on_val - LDR_off_val) exceed THLD_val, then one can conclude that 
the proximity sensor is close to an obstacle and the output PXD_LED will be 
turned ON, otherwise it will be OFF. 

The developed system also employs a smart compensation scheme that can 
dynamically cope with ambient illumination variations. The design of the LDR-
transistor combination circuit has been so carried out that the transistor always 
maintains almost constant voltage across the LDR to ensure same signal level, 
independent of different ambient illumination conditions. Hence an approximately  
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constant signal level is ensured for the two extreme cases of both weak and strong 
ambient illuminations. This ensures almost linear sensitivity of the sensor i.e. an 
almost constant ratio of incremental variation in output voltage (i.e. input voltage 
at pin 7) to the incremental variation in the relative distance between the optical 
sensor and the obstacle i.e. (ΔV/ Δx) value. This directly translates into a very 
important property of any sensor system designed i.e. provision for almost 
constant detector output voltage variation with the same change in primary 
measurand (in this case, distance between the sensor and the obstacle), in spite of 
variation in other secondary factors (in this case, ambient illumination). 

 
BEGIN 

1. Prepare Timer1 for 1 ms Timer1 interrupt. 
2. IF (Count1 == (Count1_on_max-2)), 

Accept the input signal from LDR-transistor combination circuit at 
pin 7.   

ENDIF 
3. IF (Count1 == (Count1_on_max-1)), 

Median filter the 10-bit ADC converted analog signal in PIN 7 and store 
it as LDR_on_val. 

ENDIF 
4. IF ((Count1 >= Count1_on_max) & (Count1 < Count2_on_max)), 

Accept the THLD set as an input signal at pin 6. 
Median filter the 10-bit ADC converted analog signal in PIN 6 and store 
it as THLD_val.   

ENDIF 
5. IF (Count1 == (Count1_off_max-2)), 

Accept the input signal from LDR-transistor combination circuit at pin 7.  
ENDIF 

6. IF (Count1 == (Count1_off_max-1)), 
Median filter the 10-bit ADC converted analog signal in PIN 7 and store 
it as LDR_off_val. 

ENDIF 
7. IF ((LDR_on_val-LDR_off_val) > THLD_val), 

IF (Count2 == Count2_max), 
        Reset Count2 to 0. 

           ENDIF 
IF ((Count2 > (Count2_max-10)) & (Count2 < Count2_max)), 

Turn PXD_LED on. 
ENDIF 

ENDIF 
END 

Algo. 4.3. Main routine in PIC microcontroller 
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BEGIN 
1. Prepare for 1 ms timer interrupt. 
2. Increment Count1 by 1. 
3. IF (Count2 < Count2_max), 

     Increment Count2 by 1. 
ENDIF 

4. IF (Count1 > Count1_on_max), 
               Turn both LED1 and LED2 off. 

ENDIF 
5. IF (Count1 > Count1_of_max), 

                Reset Count1 to 0. 
                Turn both LED1 and LED2 on. 
           ENDIF 

END 

Algo. 4.4. Interrupt routine 

4.3.2.2   Switching Mode Synchronous Detection (SMSD) Technique  

The synchronous detection is a popular signal processing technique used to extract 
fundamental component of a weak signal, embedded within a strong noisy 
counterpart. This technique is popularly employed in radio communication, in 
industrial scenario (where there is strong possibilities of encountering heavily 
noise contaminated or disturbed signals) etc. and this technique requires a 
reference signal with known frequency and phase [8]. A very popular application 
of synchronous detection technique includes design of superheterodyne receivers 
for AM radio. In traditional synchronous detection method, the reference signal 
employed is a pure sinusoidal signal or a harmonic signal. In a popular variation 
of this traditional technique, switching mode synchronous detection technique 
employs a square/rectangular wave as a reference signal. The core of a switching 
mode synchronous detector employs a phase sensitive detector. In SMSD 
technique [13], a periodic rectangular pulse train is employed as a reference r(t) 
which is used to sample the noisy signal x(t) and the output of the detector xm(t) is 
low pass filtered to recover the fundamental of x(t), i.e. xf(t). In our scheme, we 
employ a modified switching mode synchronous detection technique, as shown in 
Fig. 4.6. Here, the rectangular reference r(t) is used to sample the noisy signal x(t) 
and this produces the output of the detector xm(t), identical to a conventional 
SMSD scheme. Then the output xm(t) is used to cause an activation of the output 
LED only when this xm(t) produces a high signal for a consistently long, 
continuous duration of time. This is similar to a conditional sample and hold 
operation and can be visualized equivalent to a low pass filtering action, because it 
avoids any spurious activation of the proximity detector caused by any high input 
impulse signal or a short duration input signal, acquired at input pin 7 of the 
microcontroller, which may have arose because of some unwanted, external 
interference. If this signal produces a high value for a continuously long time then  
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Fig. 4.7. (a) A sample real input signal x(t) and (b) the reference signal r(t) 
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we can infer that it is definitely because of the presence of an object in proximity 
of the sensor and not because of any noisy signal acquired. Figure 4.7 shows a 
sample real situation for a given condition of an object in the proximity of the 
sensor. The input signal acquired at pin 7 of the microcontroller is shown as input 
x(t) and the reference signal is shown as r(t). It should be borne in mind that, in 
switching mode synchronous detection technique, the relative phase of the signal 
under consideration and the reference signal plays an important role [8]. For those 
frequencies in the signal whose phase do not match with the reference, the output 
reduces and a given frequency has zero contribution in the output of the switching 
mode detector, if its phase is at a 90° deviation from the reference signal. In our 
scheme, the transistor emitter signal output read at pin 7 is the signal x(t) and the 
white LEDs produce the reference signal r(t). In case of sufficient proximity of an 
object, the low pass filter produces a high output and for distant objects the output 
is low. The THLD signal is utilized on whose basis the proximity of an object is 
determined as a Boolean signal. 

4.3.2.3   Experimental Results 

The optical proximity detector designed is implemented in real life for detection of 
nearby objects under several case study conditions. Each time the sensor system 
showed satisfactory performance with a Boolean output i.e. the output LED (i.e. 
PXD_LED is turned ON for sufficient proximity of an object or, otherwise, turned 
OFF). However, as remarked earlier, if the relative distance between the sensor 
and a distant object keeps reducing, then the exact minimum distance of an object 
at which this change in Boolean output takes place, from OFF condition to ON 
condition, depends on various factors. Figure 4.8 shows the experimental results 
obtained in testing the effect of variation in the minimum distance of an object 
required to activate the proximity detector as a function of the threshold voltage 
(THLD_val), adjusted externally using a POT. As expected, with an increase in 
the threshold, the detector gets activated for a smaller minimum proximity, in 
general. For higher thresholds set, the system shows a near saturation effect, 
which indicates that there is an effective dead zone for minimum distance to 
activate the detector.  

The experimental results are given for three types of objects in Fig. 4.8: (a) 
with moderately high reflectivity (p = 33%), (b) with medium reflectivity (p = 
16%), and (c) with low reflectivity (p = 7.8%). These reflectivity values are 
obtained for wavelengths centered at 550 nm. The experimental determination of 
the reflectivity of each object used is carried out using KYORITSU make Model 
5200 Illuminometer. These experimental results are obtained by maintaining the 
reflecting surface of each object normal to the optical axes of the emitting LEDs.  
It can be seen that, for highly reflecting objects, for a given threshold voltage set, 
the proximity detector gets activated at relatively larger distances. For same 
threshold voltage chosen, if this object is replaced by other objects with lower and 
lower reflectivities, then the proximity sensor gets activated at closer and closer 
proximities i.e. the minimum distance of separation required to cause activation of 
the proximity output LED will get smaller and smaller. For objects with small 
reflectivities, these proximity distances are quite small and the sensor reaches its 
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dead band very fast, even for small values of threshold voltages chosen. For 
example, in our experiments, for object (c), this dead band is reached for a 
threshold voltage of 0.6 V and for a further increase in this voltage, the system 
cannot be effectively used for proximity detection. Hence, for effective utilization 
of this proximity sensor for robot navigation, the objects should be at least having 
medium or low-medium reflectivites so that the robot can safely avoid them, 
based on this sensor activation. Our experimentations have also revealed that the 
sensor system developed can be effectively utilized to detect objects of a 
minimum dimension of 6 cm × 8 cm or of bigger dimensions.  

 

 

Fig. 4.8. The proximity detector performance curve for objects with (a) reflectivity p = 
33%, (b) reflectivity p = 16%, and (c) reflectivity p = 7.8% 

4.4   The Intranet-Connectivity for Client-Server Operation 

In addition to the two special types of sensor systems, the indigenously developed 
robot is also equipped with intranet-connectivity where data communication and 
control command exchange can take place between the laptop mounted on the 
robot and a remote end PC. In this client-server mode of operation, the robot acts 
as the server and the remote-end user acts as the client and the communication 
takes place using Windows based socket programming in TCP/IP protocol.  
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Fig. 4.9(a) & (b). The GUI-based view from the client-end, at a sample instant, during the 
robot navigation 
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The client end can select the robot functionalities like (i) whether the proximity 
sensors should be used in navigation or not and (ii) whether search mode should 
be ON or OFF. If the search mode is on, then the stored information for possible 
steering angle detour is used to guide the robot back to the path, in case the robot 
leaves the path/line. If the search mode is deselected from the client end, then the 
robot stops once it leaves the path/line. One can include more such functionalities 
to add more control flexibilities in remote operation, if it is so desired. The server 
end can also send both text and image data on receiving “data send_request” from 
the client. Usually image data is voluminous, and, on receiving a request, the 
server end first creates an array of all pixel values of an image matrix for 
transmission. However the entire array of data is not transmitted in a contiguous 
manner but it is sent in a series of data packets, managed by a low-end device 
driver. The client end system is also programmed in such a manner that they keep 
receiving the data packets until a complete image data array is received and then 
reconstruct the image for display at the client end. The system is developed with 
an interlocking feature so that the client is not allowed to send a new request, 
when it is in the process of receiving data packets corresponding to an earlier 
request. Figure 4.9(a) and Fig. 4.9(b) show an user interface developed in the 
client end, which show a captured frame and the path/line extracted from this 
frame, at the server end. As the GUI shows and as mentioned before, the system 
has the flexibility that, from the client end, one can activate or deactivate the IR 
proximity sensors, by clicking the button “Proximity on/off”. Also one can click 
the button “Search on/off” which will signify, when the path vanishes from  
the field-of-view of the robot, whether the robot will continue to take turns in 
iterative fashion to re-localize itself on the path/line, or will it simply stop further 
navigation.  

4.5   Summary 

This chapter described how a low-cost robot can be indigenously developed in the 
laboratory with special functionalities. The robot system consists of two specially 
developed microcontroller based sensor systems and also the flexibility of intranet 
connectivity. Among the two specially developed sensor systems, a PIC 
microcontroller based IR range finder system is developed where dynamic range 
enhancement is achieved by adaptively utilizing the IR sensor output to switch one 
IR LED ON/OFF.  This system utilizes an array-based approach to manipulate the 
burst frequency and duration of IR energy transmission, to enhance accuracy of 
range finding. Another microcontroller based sensor system designed comprises 
an optical proximity detection sensor system using white LEDs, an LDR-transistor 
based electronic circuit and an output LED for Boolean indication of ON/OFF. 
The scheme is developed using switching mode synchronous detection technique 
and to facilitate reliable functioning of this circuit under different working 
conditions, the system is equipped with an external threshold adjustment facility, 
which an user can advantageously use for fine tuning the performance of the 
system. Finally the robot is equipped with intranet connectivity for client server  
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operation where the laptop on the robot acts in the slave mode and a remote end 
PC, in master mode, can command the robot from a remote location for suitable 
operations. 
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Chapter 5 
Sample Implementations of Vision-Based 
Mobile Robot Algorithms 

Abstract. This chapter presents a detailed, step-by-step demonstration of how 
vision-based navigation modules can be actually implemented in real life, under 
32-bit Windows environment. These lessons start with a simple development of 
capturing image frames from a running video and then gradually proceeds to more 
complex tasks of incorporating image processing capabilities e.g. filtering 
techniques, contrast enhancement, adaptive thresholding  etc. Then the lessons 
demonstrate how to extract path for the robot from such images and how a rule-
based approach can be utilized to determine left and right wheel speed settings of 
a differential drive system. 

5.1   Introduction 

In this chapter Visual Basic based software programming is presented in a step-
by-step fashion. Ten lessons are developed for PC based vision-based navigation 
programming. Low-cost webcam is used for capturing streaming video. 

Visual Basic version 6 (VB6) [1-2] is used for windows based programming. 
The first lesson ‘Lesson 1’ demonstrates how to capture image frames from 

streaming video from a low-cost webcam and examine pixel (picture element) 
values with the help of mouse pointer. RGB (Red-Green-Blue) to gray-scale 
conversion is also done in a pixel-by-pixel manner. A ‘Format’ menu is provided 
for selecting the image frame size to 160x120. Windows 32-bit API (Application 
Programming Interface) calls [3] are adopted for faster processing. 

The second lesson ‘Lesson 2’ demonstrates how to process captured image 
frames from streaming video. Options are provided for RGB to gray-scale 
conversion and subsequent low-pass filtering [4]. 

The third lesson ‘Lesson 3’ shows the method of contrast enhancement by 
histogram stretching technique [4] under poor lighting conditions. 

The fourth lesson ‘Lesson 4’ introduces geometric-mean filter [4] to smooth 
and suppress image detail to simplify the extraction of required white path for 
navigation. 

The fifth lesson ‘Lesson 5’ applies an adaptive threshold operation to extract 
white path under varying illumination conditions. A selectable reference pixel 
determines the centre of path to be extracted. 
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The sixth lesson ‘Lesson 6’ introduces a cleaning operation to remove 
unwanted objects detected during threshold operation. 

The next lesson ‘Lesson 7’ introduces an option for selection of path color 
white or black. For black path color option, the gray-scale image frame is first 
converted to negative image, so that black objects become white and then 
processed as usual as discussed in ‘Lesson 6’. 

The eighth lesson ‘Lesson 8’ is targeted for white or black path finding for 
navigation with a fixed reference pixel. 

The next lesson ‘Lesson 9’ introduces a rule-based approach to determine left 
and right wheel speed settings of a differential drive system for navigation. 
Pictorial representation of navigation direction is done with appropriate image file. 

Finally in the last lesson ‘Lesson 10’ sound output is added to draw attention 
during navigation. 

Source codes are available for Visual Basic version 6 and Visual Basic dot net 
version 2010 compiler from ‘http://extras.springer.com’. 

Executable codes are also provided for testing the performance of programs 
when compilers are not available with the reader. Only run-time executables are 
needed which are freely available from Microsoft. 

5.2   Lesson 1 

Objective: To develop a VB6 program to capture webcam streaming video. 
Following steps summarize the program development. 

1. All necessary Application Programming Interface (API) calls are declared in 
‘Webcam1.bas’ module. It is necessary to include this module in ‘Form1’ of 
the VB6 program. 

2. AVICAP32.DLL is used to capture webcam streaming video through proper 
API call. The webcam video format should be either RGB24 or YUY2. 

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to preview 
streaming video at 30 frames per second and ‘Picture2’ to capture image from 
streaming video as clipboard data at a regular interval of 10mS with the help 
of ‘Timer1’ control. 

4. Two command buttons, namely, ‘Capture’ and ‘Close’ are added under 
‘Form1’ to control image capturing process. The command button names are 
‘cmdCapture’ and ‘cmdClose’ respectively. 

5. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120 
pixels. 

6. Any captured pixel may be examined with the mouse pointer over ‘picture2’ 
image. The mouse cursor is changed to ‘cross’ to facilitate pixel examination. 

7. Pixel color is obtained through the ‘GetPixel’ API call. 
8. Red (R), Green (G) and Blue (B) vales are obtained from ‘Color’ by calling 

three functions ‘GetRed’, ‘GetGreen’ and ‘GetBlue’ functions as follows:  
GetRed = Color And 255, GetGreen = (Color And 65280) \ 256 and GetBlue 
= (Color And 16711680) \ 65535. 

9. Three text boxes, namely, ‘Text1’, ‘Text2’ and ‘Text3’ are added to examine 
8-bit Red (R), Green (G) and Blue (B) values of the selected pixel. 
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10. Two text boxes, namely, ‘Text4’ and ‘Text5’, are incorporated to monitor ‘X’ 
and ‘Y’ coordinates of the selected pixel. 

11. A text box ‘Text6’ is added to view 8-bit gray value of the selected pixel from 
its RGB values according to the formula: gray = 0.2125 * red + 0.7154 * 
green + 0.0721 * blue. 

12. A second timer ‘Timer2’ control is added to remove textbox data within 
10mS when the mouse pointer is not positioned over ‘Picture2’ picture box. 

 
Following text shows the listing of ‘Webcam1.bas’ module. 

 
Global Const WS_CHILD As Long = &H40000000 
Global Const WS_VISIBLE As Long = &H10000000 
Global Const WM_USER = 1024 
Global Const WM_CAP_DRIVER_CONNECT = WM_USER + 10 
Global Const WM_CAP_SET_PREVIEW = WM_USER + 50 
Global Const WM_CAP_SET_PREVIEWRATE = WM_USER + 52 
Global Const WM_CAP_DRIVER_DISCONNECT As Long = WM_USER + 11 
Global Const WM_CAP_DLG_VIDEOFORMAT As Long = WM_USER + 41 
Global Const WM_CAP_GET_FRAME As Long = 1084 
Global Const WM_CAP_COPY As Long = 1054 
Global Const WM_CAP_SET_SCALE As Integer = WM_USER + 53 
Global Const SWP_NOMOVE As Integer = 2 
Global Const SWP_NOZORDER As Integer = 4 
Global Const HWND_BOTTOM As Integer = 1 

 
Declare Function SendMessage Lib "user32" Alias "SendMessageA" _ 
       (ByVal hwnd As Long, ByVal wMsg As Long, ByVal wParam As _ 
        Long, ByVal lParam As Long) As Long 
Declare Function capCreateCaptureWindow Lib "avicap32.dll" Alias _ 

"capCreateCaptureWindowA" (ByVal a As String, ByVal b As Long, _ 
ByVal c As Integer, ByVal d As Integer, ByVal e As Integer, _ 
ByVal f As Integer, ByVal g As Long, ByVal h As Integer) As Long 

Declare Function SetWindowPos Lib "user32" (ByVal hwnd As Long, _ 
ByVal hWndInsertAfter As Long, ByVal x As Long, ByVal y As Long, _ 
ByVal cx As Long, ByVal cy As Long, ByVal wFlags As Long) As Long 

Declare Function GetPixel Lib "gdi32" (ByVal hdc As Long, _ 
      ByVal x As Long, ByVal y As Long) As Long 
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Following figure shows the ‘Form1’ layout. 
 

 
Following text shows the listing of ‘Form1’ code. 
 

Dim hwdc As Long 
Dim startcap As Boolean 
Dim mflag As Boolean 

 

Private Sub cmdCapture_Click() 
    hwdc = capCreateCaptureWindow("Webcam Vision System", WS_CHILD _ 
Or WS_VISIBLE, 0, 0, 160, 120, Picture1.hwnd, 0) 
   If (hwdc <> 0) Then 
       Clipboard.Clear 
       If SendMessage(hwdc, WM_CAP_DRIVER_CONNECT, 0, 0) Then 
           SendMessage hwdc, WM_CAP_SET_SCALE, True, 0 
           SendMessage hwdc, WM_CAP_SET_PREVIEWRATE, 30, 0 
           SendMessage hwdc, WM_CAP_SET_PREVIEW, 1, 0 
           SetWindowPos hwdc, HWND_BOTTOM, 0, 0, 160, 120, SWP_NOMOVE _ 

             Or SWP_NOZORDER 
 startcap = True 
 cmdCapture.Enabled = False 
 cmdClose.Enabled = True 
 Timer1.Enabled = True 
 Menu1.Enabled = True 
 Picture2.Visible = True 
 Label1.Visible = True 
 Label2.Visible = True 
 Label3.Visible = True 
 Label4.Visible = True 
 Label5.Visible = True 
 Label6.Visible = True 
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  Label7.Visible = True 
  Label9.Visible = True 
  Label11.Visible = True 
  Text1.Visible = True 
  Text2.Visible = True 
  Text3.Visible = True 
  Text4.Visible = True 
  Text5.Visible = True 
  Text6.Visible = True 

Else 
  MsgBox ("No Webcam found!") 
  startcap = False 

End If 
End If 

End Sub 
 

Private Sub cmdClose_Click() 
    If startcap = True Then 
        SendMessage hwdc, WM_CAP_DRIVER_DISCONNECT, 0, 0 
        startcap = False 
        cmdCapture.Enabled = True 
        cmdClose.Enabled = False 
        Timer1.Enabled = False 
        Menu1.Enabled = False 
        Picture2.Visible = False 
        Label1.Visible = False 
        Label2.Visible = False 
        Label3.Visible = False 
        Label4.Visible = False 
        Label5.Visible = False 
        Label6.Visible = False 
        Label7.Visible = False 
        Label9.Visible = False 
        Label11.Visible = False 
        Text1.Visible = False 
        Text2.Visible = False 
        Text3.Visible = False 
        Text4.Visible = False 
        Text5.Visible = False 
        Text6.Visible = False 
    End If 
End Sub 
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Private Sub Form_Load() 
     If App.PrevInstance = True Then End      ' multiple instances are not allowed 
     cmdCapture.Enabled = True 
     cmdClose.Enabled = False 
     Picture1.AutoSize = True 
     Picture2.AutoSize = True 
     Timer1.Interval = 10 
     Timer2.Interval = 10 
     Menu1.Enabled = False 
     mflag = False 
     Picture2.Visible = False 
     Picture2.MousePointer = 2                          ' cross cursor 
     Label1.Visible = False 
     Label2.Visible = False 
     Label3.Visible = False 
     Label4.Visible = False 
     Label5.Visible = False 
     Label6.Visible = False 
     Label7.Visible = False 
     Label9.Visible = False 
     Label11.Visible = False 
     Text1.Visible = False 
     Text2.Visible = False 
     Text3.Visible = False 
     Text4.Visible = False 
     Text5.Visible = False 
     Text6.Visible = False 
End Sub 
 
Private Function GetRed(ByVal Color As Long) 
    GetRed = Color And 255 
End Function 

 
Private Function GetGreen(ByVal Color As Long) 
    GetGreen = (Color And 65280) \ 256 
End Function 

 
Private Function GetBlue(ByVal Color As Long) 
    GetBlue = (Color And 16711680) \ 65535 
End Function 

 
Private Sub Form_MouseMove(Button As Integer, Shift As Integer, _ 
     x As Single, y As Single) 
     mflag = False                        ' mouse pointer in form but not in picture box 
End Sub 
Private Sub Menu1_Click() 
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    If startcap = True Then 
        SendMessage hwdc, WM_CAP_DLG_VIDEOFORMAT, 0, 0 
    End If 
End Sub 

 
Private Sub Picture2_MouseMove(Button As Integer, Shift As Integer, _ 
    x As Single, y As Single) 
    Dim Color As Long 
    Dim red As Byte 
    Dim blue As Byte 
    Dim green As Byte 
    Dim gray As Byte 
    Dim xp As Long 
    Dim yp As Long 
     
    xp = x / Screen.TwipsPerPixelX 
    yp = y / Screen.TwipsPerPixelY 
    Color = GetPixel(Picture2.hdc, xp, yp) 
    red = GetRed(Color) 
    green = GetGreen(Color) 
    blue = GetBlue(Color) 
    gray = 0.2125 * red + 0.7154 * green + 0.0721 * blue 
    Text1.Text = red 
    Text2.Text = green 
    Text3.Text = blue 
    Text4.Text = xp 
    Text5.Text = yp 
    Text6.Text = gray 
    mflag = True                                           ' mouse pointer in picture box 
End Sub 
 
Private Sub Timer1_Timer() 
    SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0 
    SendMessage hwdc, WM_CAP_COPY, 0, 0 
    Picture2.Picture = Clipboard.GetData 
    SendMessage hwdc, WM_CAP_SET_PREVIEW, 1, 0 
End Sub 
 
Private Sub Timer2_Timer() 
    If mflag = False Then                             ' no mouse pointer in picture box 
        Text1.Text = "" 
        Text2.Text = "" 
        Text3.Text = "" 
        Text4.Text = "" 
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        Text5.Text = "" 
        Text6.Text = "" 
    End If 
End Sub 

 
To execute the program the capture button has to be pressed. If any webcam is 

available then preview is available in picture box ‘Picture1’. If the size of the 
captured image does not fit in the picture box ‘Picture2’ then the image size has to 
be changed to 160x120 by activating the ‘Format’ menu. 

If no webcam is available then a message box will appear with a message “No 
webcam found!” 

5.3   Lesson 2 

Objective: To develop a VB6 program to capture and process webcam streaming 
video for conversion to gray scale image and subsequent low-pass image filtering. 

Following steps summarize the program development. 

1. All necessary API calls are declared in ‘Webcam2.bas’ module. It is 
necessary to include this module in ‘Form1’ of the VB6 program. 

2. AVICAP32.DLL is used to capture webcam streaming video through proper 
API call. The webcam video format should be either RGB24 or YUY2. 

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture 
image as clipboard data  from streaming video at a regular interval of 10mS 
and ‘Picture2’ to process image from captured image at the same rate with 
the help of ‘Timer1’ control. 

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120 
pixels. 

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’ 
API call. 

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through 
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’ 
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue. 

7. Pixel array is processed according to option controls ‘Option1’ or ‘Option2’. 
8. If ‘Option1’ is selected then pixel array is processed as gray scale image 

with the help of procedure ‘Gray’ and displayed in picture box ‘Picture2’ 
through ‘SetBitmapBits’ API call. 

9. If ‘Option2’ is selected then pixel array is processed first to gray scale image 
as in step 8 and then low-pass filtered with the help of procedure ‘Lowpass’ 
and then displayed in ‘Picture2’. 
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     Option1                                  Option2 

 
                      Gray                            Gray + low-pass 

 
Following text shows the listing of ‘Webcam2.bas’ module. 

Global Const WS_CHILD As Long = &H40000000 
Global Const WS_VISIBLE As Long = &H10000000 
Global Const WM_USER = 1024 
Global Const WM_CAP_DRIVER_CONNECT = WM_USER + 10 
Global Const WM_CAP_SET_PREVIEW = WM_USER + 50 
Global Const WM_CAP_SET_PREVIEWRATE = WM_USER + 52 
Global Const WM_CAP_DRIVER_DISCONNECT As Long = WM_USER + 11 
Global Const WM_CAP_DLG_VIDEOFORMAT As Long = WM_USER + 41 
Global Const WM_CAP_GET_FRAME As Long = 1084 
Global Const WM_CAP_COPY As Long = 1054 
Global Const WM_CAP_SET_SCALE As Integer = WM_USER + 53 
Global Const SWP_NOMOVE As Integer = 2 
Global Const SWP_NOZORDER As Integer = 4 
Global Const HWND_BOTTOM As Integer = 1 

 
Declare Function SendMessage Lib "user32" Alias "SendMessageA" (ByVal hwnd _ 

As Long, ByVal wMsg As Long, ByVal wParam As Long, ByVal lParam As_ 
Long) As Long Declare Function capCreateCaptureWindow Lib _ 
"avicap32.dll" Alias "capCreateCaptureWindowA" (ByVal nWindowName _ 
As String, ByVal nStyle As Long, ByVal nx As Integer, ByVal ny As Integer, _ 
ByVal nWidth As Integer, ByVal nHeight As Integer, ByVal nHwnd As Long, _ 
ByVal nId As Integer) As Long 

Declare Function SetWindowPos Lib "user32" (ByVal hwnd As Long, _ 
ByVal hWndInsertAfter As Long, ByVal x As Long, ByVal y As Long, _ 
ByVal cx As Long, ByVal cy As Long, ByVal wFlags As Long) As Long 

Declare Function GetObject Lib "gdi32" Alias "GetObjectA" (ByVal hObject _ 
      As Long, ByVal nCount As Long, lpObject As Any) As Long 
Declare Function GetBitmapBits Lib "gdi32" (ByVal hBitmap As Long, _ 
      ByVal dwCount As Long, lpBits As Any) As Long  
Declare Function SetBitmapBits Lib "gdi32" (ByVal hBitmap As Long, _ 
      ByVal dwCount As Long, lpBits As Any) As Long 
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Following figure shows the ‘Form1’ layout. 

 
Following text shows the listing of ‘Form1’ code. 

Dim hwdc As Long 
Dim startcap As Boolean 
Private Type Bitmap 
    bmType As Long 
    bmWidth As Long 
    bmHeight As Long 
    bmWidthBytes As Long 
    bmPlanes As Integer 
    bmBitsPixel As Integer 
    bmBits As Long 

End Type 
Dim Pbytes() As Byte, Pinfo As Bitmap 
Dim x As Long, y As Long 
 

Private Sub Form_Load() 
   If App.PrevInstance = True Then End 
   Picture1.AutoSize = True 
   Picture2.AutoSize = True 
   Picture1.ScaleMode = vbPixels 
   Picture2.ScaleMode = vbPixels 
   Timer1.Interval = 10 
    
hwdc = capCreateCaptureWindow("Webcam Vision System", WS_CHILD _ 

Or WS_VISIBLE, 0, 0, 160, 120, Picture1.hwnd, 0) 
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If (hwdc <> 0) Then 
    Clipboard.Clear 
    If SendMessage(hwdc, WM_CAP_DRIVER_CONNECT, 0, 0) Then 
     SendMessage hwdc, WM_CAP_SET_SCALE, 1, 0 
     SendMessage hwdc, WM_CAP_SET_PREVIEWRATE, 30, 0 
     SendMessage hwdc, WM_CAP_SET_PREVIEW, 1, 0 
     SetWindowPos hwdc, HWND_BOTTOM, 0, 0, 160, 120, _ 
     SWP_NOMOVE Or SWP_NOZORDER 
     SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0 
     SendMessage hwdc, WM_CAP_COPY, 0, 0 
     Picture1.Picture = Clipboard.GetData 
     GetObject Picture1.Picture, Len(Pinfo), Pinfo 
     ReDim Pbytes(0 To (Pinfo.bmBitsPixel \ 8) - 1, 0 To Pinfo.bmWidth - 1, _ 
     0 To Pinfo.bmHeight - 1) 
     Picture2.height = Picture1.height 
     Picture2.width = Picture1.width 
     Timer1.Enabled = True 
     startcap = True 
Else 
    MsgBox "No Webcam found!", OK, "" 
    startcap = False 
    Unload Me 
End If 

Else 
Unload Me 

End If 
End Sub 

 
Private Sub Gray(width As Long, height As Long) 

 Dim G As Byte 
 For x = 0 To width - 1 
   For y = 0 To height - 1 
       G = 0.2125 * CDbl(Pbytes(2, x, y)) + 0.7154 * CDbl(Pbytes(1, x, y)) + _ 
             0.0721 * CDbl(Pbytes(0, x, y)) 
         Pbytes(2, x, y) = G                      'Red 
         Pbytes(1, x, y) = G                      'Green 
         Pbytes(0, x, y) = G                      'Blue 
     Next y 
Next x 

End Sub 
 

Private Sub Lowpass(width As Long, height As Long) 
  Dim R As Long 
  Dim c, d, e, f As Long 
  For x = 0 To width - 1 
      For y = 0 To height - 1 
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          c = x - 1 
          d = x + 1 
          e = y - 1 
          f = y + 1 
          If c < 0 Then c = width - 1 
          If d = width Then d = 0 
          If e < 0 Then e = height - 1 
          If f = height Then f = 0 
          R = Pbytes(2, x, e) 
          R = R + CLng(Pbytes(2, c, y)) 
          R = R + 2 * CLng(Pbytes(2, x, y)) 
          R = R + CLng(Pbytes(2, d, y)) 
          R = R + CLng(Pbytes(2, x, f)) 
          R = R / 6                                      '3x3 low pass 
          Pbytes(2, x, y) = R 
          Pbytes(1, x, y) = R 
          Pbytes(0, x, y) = R 
      Next y 
Next x 

End Sub 
 

Private Sub Form_Terminate() 
If startcap = True Then 
    SendMessage hwdc, WM_CAP_DRIVER_DISCONNECT, 0, 0 
    startcap = False 
    Timer1.Enabled = False 
End If 

End Sub 
 

Private Sub Form_Unload(Cancel As Integer) 
If startcap = True Then 
    SendMessage hwdc, WM_CAP_DRIVER_DISCONNECT, 0, 0 
    startcap = False 
    Timer1.Enabled = False 
End If 

End Sub 
 

Private Sub Menu_Click() 
If startcap = True Then 
    SendMessage hwdc, WM_CAP_DLG_VIDEOFORMAT, 0, 0 
End If 

End Sub 
 

Private Sub Timer1_Timer() 
Timer1.Enabled = False 
SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0 
SendMessage hwdc, WM_CAP_COPY, 0, 0 
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Picture1.Picture = Clipboard.GetData 
GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _ 

  Pbytes(0, 0, 0) 
If Option1.Value = True Then Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
If Option2.Value = True Then 
      Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
      Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
End If 
SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _ 
    Pbytes(0, 0, 0) 
Picture2.Refresh 
Picture2.Picture = Picture2.Image 
Timer1.Enabled = True 

End Sub 
 

Low-pass filtering is performed with a 2-D FIR filer mask of size 3x3 as stated 
below: 

 
Circular 2-D convolution is performed with the above mask to preserve the image 
size before and after filtering with minimum amount of distortion. 

If the size of the captured image does not fit in the picture box then the image 
size has to be changed to 160x120 by activating the ‘Format’ menu.  If no webcam 
is available then a message box will appear with a message “No webcam found!” 

5.4   Lesson 3 

Objective: To develop a VB6 program to capture and process webcam streaming 
video for conversion to gray scale image, low-pass image filtering and contrast 
enhancement. 

Following steps summarize the program development. 

1. All necessary API calls are declared in ‘Webcam3.bas’ module, same as 
‘Webcam2.bas’, as mentioned in Lesson 2. It is necessary to include this 
module in ‘Form1’ of the VB6 program. 

2. AVICAP32.DLL is used to capture webcam streaming video through proper 
API call. The webcam video format should be either RGB24 or YUY2. 

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture 
image as clipboard data  from streaming video at a regular interval of 10mS 
and ‘Picture2’ to process image from captured image at the same rate with the 
help of ‘Timer1’ control. 

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120 
pixels. 
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5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’ 
API call. 

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through 
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’ 
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue. 

7. Pixel array is processed according to option controls ‘Option1’, ‘Option2’ or 
‘Option3’. 

8. If ‘Option1’ is selected then pixel array is processed as gray scale image with 
the help of procedure ‘Gray’ and displayed in picture box ‘Picture2’ through 
‘SetBitmapBits’ API call. 

9. If ‘Option2’ is selected then pixel array is processed first to gray scale image 
as in step 8 and then low-pass filtered with the help of procedure ‘Lowpass’ 
and then displayed in ‘Picture2’. 

10. If ‘Option3’ is selected then array is low-pass filtered as in step 9 and then 
processed for contrast enhancement using histogram stretching technique with 
the help of procedure ‘Contrast’ and then displayed in ‘Picture2’. 

 
Option1     Option2      Option3 

 
Gray          Gray + low-pass           Gray + low-pass + contrast 

 

Following figure shows the ‘Form1’ layout. 
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Following text shows the listing of ‘Contrast’ and ‘Timer1’ procedure code. 
For rest of the code refer to Lesson 2. 

 
Private Sub Contrast(width As Long, height As Long) 

    Dim R As Long                                          'histogram stretching 
    Dim pmax, pmin As Long 
    pmax = 0 
    pmin = 255 
    For x = 0 To width - 1 
        For y = 0 To height - 1 
            If pmax <= CLng(Pbytes(2, x, y)) Then pmax = Pbytes(2, x, y) 
            If pmin >= CLng(Pbytes(2, x, y)) Then pmin = Pbytes(2, x, y) 
        Next y 
    Next x 
    For x = 0 To width - 1 
       For y = 0 To height - 1 
           R = Pbytes(2, x, y) 
           If pmax > pmin Then R = (((R - pmin) * 255) / (pmax - pmin)) + pmin / 4 
           If R < 0 Then R = 0 
           If R > 255 Then R = 255 
           Pbytes(2, x, y) = R 
           Pbytes(1, x, y) = R 
           Pbytes(0, x, y) = R 
       Next y 
   Next x 

End Sub 
 

Private Sub Timer1_Timer() 
    Timer1.Enabled = False 
    SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0 
    SendMessage hwdc, WM_CAP_COPY, 0, 0 
    Picture1.Picture = Clipboard.GetData 
    GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _ 
        Pbytes(0, 0, 0) 
    If Option1.Value = True Then Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
    If Option2.Value = True Then 
        Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
        Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
    End If 
    If Option3.Value = True Then 
        Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
        Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
        Contrast Picture1.ScaleWidth, Picture1.ScaleHeight 
    End If 
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    SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _ 
        Pbytes(0, 0, 0) 
    Picture2.Refresh 
    Picture2.Picture = Picture2.Image 
    Timer1.Enabled = True 
End Sub 
 

If the size of the captured image does not fit in the picture box then the image size 
has to be changed to 160x120 by activating the ‘Format’ menu.  If no webcam is 
available then a message box will appear with a message “No webcam found!” 

5.5   Lesson 4 

Objective: To develop a VB6 program to capture and process webcam streaming 
video for conversion to gray scale image, low-pass filtering, contrast enhancement 
and geometric-mean filtering. 

Following steps summarize the program development. 

1. All necessary API calls are declared in ‘Webcam4.bas’ module, same as 
‘Webcam3.bas’, as mentioned in Lesson 3. It is necessary to include this 
module in ‘Form1’ of the VB6 program. 

2. AVICAP32.DLL is used to capture webcam streaming video through proper 
API call. The webcam video format should be either RGB24 or YUY2. 

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture 
image as clipboard data  from streaming video at a regular interval of 10mS 
and ‘Picture2’ to process image from captured image at the same rate with the 
help of ‘Timer1’ control. 

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120 
pixels. 

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’ 
API call. 

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through 
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’ 
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue. 

7. Pixel array is processed according to option controls ‘Option1’, ‘Option2, 
‘Option3’ or ‘Option4’. 

8. If ‘Option1’ is selected then pixel array is processed as gray scale image with 
the help of procedure ‘Gray’ and displayed in picture box ‘Picture2’ through 
‘SetBitmapBits’ API call. 

9. If ‘Option2’ is selected then pixel array is processed first to gray scale image 
as in step 8 and then low-pass filtered with the help of procedure ‘Lowpass’ 
and then displayed in ‘Picture2’. 



5.5   Lesson 4 117
 

10. If ‘Option3’ is selected then array is low-pass filtered as in step 9 and then 
processed for contrast enhancement using histogram stretching technique with 
the help of procedure ‘Contrast’ and then displayed in ‘Picture2’.  

11. If ‘Option4’ is selected then array is processed for contrast enhancement as in 
step 10 and then processed for geometric-mean filtering with the help of 
procedure ‘Geometricmean’ and then displayed in ‘Picture2’. Options are 
provided for increasing the number of cascaded Geometric-mean filters and 
the size of mask for each filter. 

 
Option1      Option2      Option3 

 
Gray           Gray + low-pass          Gray + low-pass + contrast 

 
Option4 

 
Gray + low-pass + contrast + geometric-mean 

 
Following figure shows the ‘Form1’ layout. 
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Following text shows the listing of ‘Geometricmean’ and ‘Timer1’ procedure 
code. For rest of the code refer to Lesson 3. 

 
Private Sub Geometricmean(width As Long, height As Long, Size As Long) 

    Dim R, S As Long 
    Dim i, j As Long 
    Dim c, d As Long 
    Dim w1, h1 As Long 
    If Size < 3 Then Size = 3 
    If Size > 7 Then Size = 7 
    If (Size And 1) = 0 Then Size = Size + 1        'even to odd conversion 
    S = Size * Size 
    w1 = width - 1 
    h1 = height - 1 
    For x = 0 To w1 
        For y = 0 To h1 
            R = 1 
            For i = 0 To Size - 1 
                For j = 0 To Size - 1 
                    c = x + i - ((Size - 1) / 2) 
                    If c < 0 Then c = width + c 
                    If c > w1 Then c = c - w1 
                    d = y + j - ((Size - 1) / 2) 
                    If d < 0 Then d = height + d 
                    If d > h1 Then d = d - h1 
                    R = R * CLng(Pbytes(2, c, d)) 
                Next j 
            Next i 
            R = R ^ (1# / S) 
            If R > 255 Then R = 255 
            Pbytes(2, x, y) = R 
            Pbytes(1, x, y) = R 
            Pbytes(0, x, y) = R 
        Next y 
    Next x 
End Sub 

 
Private Sub Timer1_Timer() 
   Timer1.Enabled = False 
   SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0 
   SendMessage hwdc, WM_CAP_COPY, 0, 0 
   Picture1.Picture = Clipboard.GetData 
   GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _ 
       Pbytes(0, 0, 0) 
    If Option1.Value = True Then Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
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    If Option2.Value = True Then 
        Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
        Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
    End If 
    If Option3.Value = True Then 
        Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
        Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
        Contrast Picture1.ScaleWidth, Picture1.ScaleHeight 
    End If 
    If Option4.Value = True Then 
        Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
        Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
        Contrast Picture1.ScaleWidth, Picture1.ScaleHeight 
        For i = 1 To Val(Text4.Text) 
            Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms 
        Next i 
    End If 
    SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _ 
        Pbytes(0, 0, 0) 
    Picture2.Refresh 
    Picture2.Picture = Picture2.Image 
    Timer1.Enabled = True 
End Sub 
 

If the size of the captured image does not fit in the picture box then the image size 
has to be changed to 160x120 by activating the ‘Format’ menu.  If no webcam is 
available then a message box will appear with a message “No webcam found!” 

5.6   Lesson 5 

Objective: To develop a VB6 program to capture and process webcam streaming 
video for conversion to gray scale image, low-pass filtering, contrast 
enhancement, geometric-mean filtering and an adaptive threshold operation to 
extract white path from the captured image under varying illumination conditions. 

Following steps summarize the program development. 

1. All necessary API calls are declared in ‘Webcam5.bas’ module, same as 
‘Webcam4.bas’, as mentioned in Lesson 4. It is necessary to include this 
module in ‘Form1’ of the VB6 program. 

2. AVICAP32.DLL is used to capture webcam streaming video through proper 
API call. The webcam video format should be either RGB24 or YUY2. 

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture 
image as clipboard data  from streaming video at a regular interval of 10mS 
and ‘Picture2’ to process image from captured image at the same rate with the 
help of ‘Timer1’ control. 



120 5   Sample Implementations of Vision-Based Mobile Robot Algorithms
 

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120 
pixels. 

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’ 
API call. 

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through 
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’ 
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue. 

7. Pixel array is processed according to option controls ‘Option1’, ‘Option2, 
‘Option3’, ‘Option4’ or ‘Option5’. 

8. If ‘Option1’ is selected then pixel array is processed as gray scale image with 
the help of procedure ‘Gray’ and displayed in picture box ‘Picture2’ through 
‘SetBitmapBits’ API call. 

9. If ‘Option2’ is selected then pixel array is processed first to gray scale image 
as in step 8 and then low-pass filtered with the help of procedure ‘Lowpass’ 
and then displayed in ‘Picture2’. 

10. If ‘Option3’ is selected then array is low-pass filtered as in step 9 and then 
processed for contrast enhancement using histogram stretching technique with 
the help of procedure ‘Contrast’ and then displayed in ‘Picture2’.  

11. If ‘Option4’ is selected then array is processed for contrast enhancement as in 
step 10 and then processed for geometric-mean filtering with the help of 
procedure ‘Geometricmean’ and then displayed in ‘Picture2’. Options are 
provided for increasing the number of cascaded Geometric-mean filters and 
the size of mask for each filter. 

12. If ‘Option5’ is selected then an adaptive threshold operation is performed 
with the help of the procedure ‘Adaptive Threshold’ and then displayed in 
‘Picture2’. First the white line width around a reference pixel [at the nominal 
position (80,110)] is determined with the procedure ‘WhiteLineWidth’. If 
both left and right path width around the reference pixel are found be less 
than ‘MIN_PATH_WIDTH’ value then a parameter ‘delta’ is adjusted to 
increase the path width by decreasing the threshold value within a range 
‘delta_max’. Then the procedure ‘Threshold’ computes new image and the 
above sequence of operations repeats until a valid white path is obtained. 

 
Option5 

 
Gray + low-pass + contrast + geometric-mean + threshold 
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Following figure shows the ‘Form1’ layout. 
 

 
 

Following text shows the listing of ‘AdaptiveThreshold’,  ‘WhiteLineWidth’,  
‘Threshold’ and ‘Timer1’ procedure code. For rest of the code refer to Lesson 4. 

 
Private Sub AdaptiveThreshold(width As Long, xr As Long, yr As Long) 
    Dim i As Integer 
    WhiteLineWidth width, xr, yr 

If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight < _ 
    MIN_PATH_WIDTH Then 

         delta = delta + 0.2 
         If delta > delta_max Then 
             delta = delta_max 
        Else 
             GoTo atc 
        End If 
         If delta < 1# Then delta = 1# 
    End If 
     delta = delta - 0.5 
atc: 
    i = Pbytes(2, xr, yr) 
    If i > (255 - (2 * delta)) Then 
        If i > (255 - delta) Then i = (255 - delta) 
        Threshold Picture1.ScaleWidth, Picture1.ScaleHeight, i - CInt(delta), _ 
             i + CInt(delta) 
    Else 
        Threshold Picture1.ScaleWidth, Picture1.ScaleHeight, 255, 255 
    End If 

End Sub 
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Private Sub WhiteLineWidth(width As Long, xr As Long, yr As Long) 
    Dim pcl1, pcl2, pcl3, pcr1, pcr2, pcr3 As Integer 
    PixelCountLeft = 0: PixelCountRight = 0 
    y = yr 
     pcl1 = 0: pcr1 = 0 
     For x = xr To 0 Step -1 
         If Pbytes(2, x, y) > 250 Then 
              pcl1 = pcl1 + 1 
         End If 
     Next x 
     For x = (xr + 1) To (width - 1) 
         If Pbytes(2, x, y) > 250 Then 
              pcr1 = pcr1 + 1 
         End If 
     Next x 
     y = yr - 1 
     pcl2 = 0: pcr2 = 0 
     For x = xr To 0 Step -1 
         If Pbytes(2, x, y) > 250 Then 
              pcl2 = pcl2 + 1 
         End If 
     Next x 
     For x = (xr + 1) To (width - 1) 
         If Pbytes(2, x, y) > 250 Then 
              pcr2 = pcr2 + 1 
         End If 
     Next x 
     y = yr + 1 
     pcl3 = 0: pcr3 = 0 
     For x = xr To 0 Step -1 
         If Pbytes(2, x, y) > 250 Then 
              pcl3 = pcl3 + 1 
         End If 
     Next x 
     For x = (xr + 1) To (width - 1) 
         If Pbytes(2, x, y) > 250 Then 
              pcr3 = pcr3 + 1 
         End If 
     Next x 
        
     PixelCountLeft = (pcl1 + pcl2 + pcl3) / 3 
     PixelCountRight = (pcr1 + pcr2 + pcr3) / 3 
End Sub 
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Private Sub Threshold(width As Long, height As Long, lv As Long, hv As Long) 
    Dim R As Long 
    For x = 0 To width - 1 
        For y = 0 To height - 1 
            R = Pbytes(2, x, y) 
            If R < lv Then R = 0 
            If R >= hv Then R = 255 
            Pbytes(2, x, y) = R 
            Pbytes(1, x, y) = R 
            Pbytes(0, x, y) = R 
        Next y 
    Next x 

End Sub 
 

Private Sub Timer1_Timer() 
    Timer1.Enabled = False 
    SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0 
    SendMessage hwdc, WM_CAP_COPY, 0, 0 
    Picture1.Picture = Clipboard.GetData 
    GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _ 
        Pbytes(0, 0, 0) 
    If Option1.Value = True Then Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
    If Option2.Value = True Then 
        Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
        Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
    End If 
    If Option3.Value = True Then 
        Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
        Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
        Contrast Picture1.ScaleWidth, Picture1.ScaleHeight 
    End If 
    If Option4.Value = True Then 
        Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
        Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
        Contrast Picture1.ScaleWidth, Picture1.ScaleHeight 
        For i = 1 To Val(Text4.Text) 
            Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms 
        Next i 
    End If 
    If Option5.Value = True Then 
        Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
        Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
        Contrast Picture1.ScaleWidth, Picture1.ScaleHeight 
        For i = 1 To Val(Text4.Text) 
            Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms 
       Next i 
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       AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text) 
   End If 
   SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _ 
       Pbytes(0, 0, 0) 
   Picture2.Refresh 
   Picture2.Picture = Picture2.Image 
   Picture2.Line (Val(Text2.Text) - 2, Val(Text3.Text) - 2)-(Val(Text2.Text) + 2, _ 
      Val(Text3.Text) + 2), RGB(255, 0, 0), B 
    Timer1.Enabled = True 

End Sub 
 

If the size of the captured image does not fit in the picture box then the image size 
has to be changed to 160x120 by activating the ‘Format’ menu.  If no webcam is 
available then a message box will appear with a message “No webcam found!” 

5.7   Lesson 6 

Objective: To develop a VB6 program to capture and process webcam streaming 
video for conversion to gray scale image, low-pass filtering, contrast 
enhancement, geometric-mean filtering, adaptive threshold and a cleaning 
operation to extract white path and remove unwanted objects from the captured 
image under varying illumination conditions. 

Following steps summarize the program development. 

1. All necessary API calls are declared in ‘Webcam6.bas’ module, same as 
‘Webcam5.bas’, as mentioned in Lesson 5. It is necessary to include this 
module in ‘Form1’ of the VB6 program. 

2. AVICAP32.DLL is used to capture webcam streaming video through proper 
API call. The webcam video format should be either RGB24 or YUY2. 

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture 
image as clipboard data  from streaming video at a regular interval of 10mS 
and ‘Picture2’ to process image from captured image at the same rate with the 
help of ‘Timer1’ control. 

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120 
pixels. 

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’ 
API call. 

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through 
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’ 
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue. 

7. Pixel array is processed according to option controls ‘Option1’, ‘Option2, 
‘Option3’, ‘Option4’, ‘Option5’ or ‘Option6’. 
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8. If ‘Option1’ is selected then pixel array is processed as gray scale image with 
the help of procedure ‘Gray’ and displayed in picture box ‘Picture2’ through 
‘SetBitmapBits’ API call. 

9. If ‘Option2’ is selected then pixel array is processed first to gray scale image 
as in step 8 and then low-pass filtered with the help of procedure ‘Lowpass’ 
and then displayed in ‘Picture2’. 

10. If ‘Option3’ is selected then array is low-pass filtered as in step 9 and then 
processed for contrast enhancement using histogram stretching technique with 
the help of procedure ‘Contrast’ and then displayed in ‘Picture2’.  

11. If ‘Option4’ is selected then array is processed for contrast enhancement as in 
step 10 and then processed for geometric-mean filtering with the help of 
procedure ‘Geometricmean’ and then displayed in ‘Picture2’. Options are 
provided for increasing the number of cascaded Geometric-mean filters and 
the size of mask for each filter. 

12. If ‘Option5’ is selected then an adaptive threshold operation is performed 
with the help of the procedure ‘Adaptive Threshold’ and then displayed in 
‘Picture2’. First the white line width around a reference pixel [at the nominal 
position (80,110)] is determined with the procedure ‘WhiteLineWidth’. If 
both left and right path width around the reference pixel are found be less 
than ‘MIN_PATH_WIDTH’ value then a parameter ‘delta’ is adjusted to 
increase the path width by decreasing the threshold value within a range 
‘delta_max’. Then the procedure ‘Threshold’ computes new image and the 
above sequence of operations repeats until a valid white path is obtained. 

13. If ‘Option6’ is selected then an additional cleaning operation is performed to  
remove unwanted objects with the help of the procedure ‘Clean’ and then 
displayed in ‘Picture2’. 

 
Option6 

 
 

Gray + low-pass + contrast + geometric-mean + threshold + clean 
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Following figure shows the ‘Form1’ layout. 
 

 
 
Following text shows the listing of ‘Clean’ and ‘Timer1’ procedure code. For 

rest of the code refer to Lesson 5. 
 

Private Sub Clean(width As Long, height As Long, yr As Long) 
    Dim R, xr, xref, xwidth As Long 
    Dim PB As Long 
    Dim bl_flag As Boolean 
    bl_flag = False 
    xref = 0 
    xwidth = 0 
    If PixelCountLeft >= MIN_PATH_WIDTH Or PixelCountRight >= _ 
        MIN_PATH_WIDTH Then 
        For x = 0 To width - 1 
            R = Pbytes(2, x, yr) 
            If R > 240 Then 
                If xref = 0 Then xref = x 
            End If 
            If R > 240 And xref > 0 Then xwidth = xwidth + 1 
        Next x 
        xr = xref + (xwidth / 2) 
        For y = height - 1 To (yr + 1) Step -1 
            For x = 0 To width - 1 
                Pbytes(2, x, y) = 0 
                Pbytes(1, x, y) = 0 
                Pbytes(0, x, y) = 0 
            Next x 
        Next y 
        For y = yr To 0 Step -1 
            For x = xr To 0 Step -1 
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                R = Pbytes(2, x, y) 
                If bl_flag = True Then GoTo m1 
                If R < 240 Then 
                    PB = x 
                    If PB = xr Then bl_flag = True 
                    GoTo m1 
                End If 
            Next x 
m1: 
            For x = PB To 0 Step -1 
                Pbytes(2, x, y) = 0 
                Pbytes(1, x, y) = 0 
                Pbytes(0, x, y) = 0 
            Next x 
             
            For x = (xr + 1) To width - 1 
                R = Pbytes(2, x, y) 
                If bl_flag = True Then GoTo m2 
                If R < 240 Then 
                    PB = x 
                    If PB = (xr + 1) Then bl_flag = True 
                    GoTo m2 
                End If 
            Next x 
m2: 
            For x = PB To width - 1 
                Pbytes(2, x, y) = 0 
                Pbytes(1, x, y) = 0 
                Pbytes(0, x, y) = 0 
            Next x 
         
            xref = 0 
            xwidth = 0 
            For x = 0 To width - 1 
                R = Pbytes(2, x, y) 
                If R > 240 Then 
                    If xref = 0 Then xref = x 
                End If 
                If R > 240 And xref > 0 Then xwidth = xwidth + 1 
            Next x 
            If xwidth = 0 Then bl_flag = True 
            For x = 0 To width - 1 
                If bl_flag = True Then 
                    Pbytes(2, x, y) = 0 
                    Pbytes(1, x, y) = 0 
                    Pbytes(0, x, y) = 0 
                End If 
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            Next x 
        Next y 
    End If 
End Sub 
 
Private Sub Timer1_Timer() 
    Timer1.Enabled = False 
    SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0 
    SendMessage hwdc, WM_CAP_COPY, 0, 0 
    Picture1.Picture = Clipboard.GetData 
    GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _ 
        Pbytes(0, 0, 0) 
    If Option1.Value = True Then Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
    If Option2.Value = True Then 
        Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
        Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
    End If 
    If Option3.Value = True Then 
        Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
        Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
        Contrast Picture1.ScaleWidth, Picture1.ScaleHeight 
    End If 
    If Option4.Value = True Then 
        Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
        Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
        Contrast Picture1.ScaleWidth, Picture1.ScaleHeight 
        For i = 1 To Val(Text4.Text) 
            Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms 
        Next i 
    End If 
    If Option5.Value = True Then 
        Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
        Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
        Contrast Picture1.ScaleWidth, Picture1.ScaleHeight 
        For i = 1 To Val(Text4.Text) 
            Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms 
        Next i 
        AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text) 
    End If 
    If Option6.Value = True Then 
        Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
        Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
        Contrast Picture1.ScaleWidth, Picture1.ScaleHeight 
        For i = 1 To Val(Text4.Text) 
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            Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms 
        Next i 
        AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), 
             Val(Text3.Text) 
        Clean Picture1.ScaleWidth, Picture1.ScaleHeight, Val(Text3.Text) 
    End If 
    SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _ 
        Pbytes(0, 0, 0) 
    Picture2.Refresh 
    Picture2.Picture = Picture2.Image 
    Picture2.Line (Val(Text2.Text) - 2, Val(Text3.Text) - 2)-(Val(Text2.Text) _ 
        + 2, Val(Text3.Text) + 2), RGB(255, 0, 0), B 
    Timer1.Enabled = True 
End Sub 

 
If the size of the captured image does not fit in the picture box then the image size 
has to be changed to 160x120 by activating the ‘Format’ menu.  If no webcam is 
available then a message box will appear with a message “No webcam found!” 

5.8   Lesson 7 

Objective: To develop a VB6 program to capture and process webcam streaming 
video for conversion to gray scale image, low-pass filtering, contrast 
enhancement, geometric-mean filtering, adaptive threshold and clean operations 
along with a selection of white/black path color for vision based navigation. 

Following steps summarize the program development. 

1. All necessary API calls are declared in ‘Webcam7.bas’ module, same as 
‘Webcam6.bas’, as mentioned in Lesson 6. It is necessary to include this 
module in ‘Form1’ of the VB6 program. 

2. AVICAP32.DLL is used to capture webcam streaming video through proper 
API call. The webcam video format should be either RGB24 or YUY2. 

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture 
image as clipboard data  from streaming video at a regular interval of 10mS 
and ‘Picture2’ to process image from captured image at the same rate with the 
help of ‘Timer1’ control. 

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120 
pixels. 

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’ 
API call. 

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through 
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’ 
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue. 
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7. ‘Shape1’ displays the color of the path (white or black) as selected with the 
‘cmdWhiteBlack’ button. 

8. Captured image is converted to negative with the help of procedure ‘Negative’ 
if black path is selected according to step 7. Then this image is processed 
according to the option selection (‘Option1’ to ‘Option6’) as described in 
lesson 6. 

 

Following figure shows the ‘Form1’ layout. 
 

 
 

Following text shows the listing of ‘cmdWhiteBlack’, ‘Negative’ and ‘Timer1’ 
procedure code. For rest of the code refer to Lesson 6. 

Private Sub cmdWhiteBlack_Click() 
    If sflag = False Then 
        sflag = True 
    Else 
        sflag = False 
    End If 
    If sflag = False Then Shape1.FillColor = vbWhite 
    If sflag = True Then Shape1.FillColor = vbBlack 
End Sub 
 

Private Sub Negative(width As Long, height As Long) 
    Dim R As Long 
    For x = 0 To width - 1 
        For y = 0 To height - 1 
            R = 255 - Pbytes(2, x, y)    'Invert 
            Pbytes(2, x, y) = R 
            Pbytes(1, x, y) = R 
            Pbytes(0, x, y) = R 
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        Next y 
    Next x 
End Sub  
 
Private Sub Timer1_Timer() 
    Timer1.Enabled = False 
    SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0 
    SendMessage hwdc, WM_CAP_COPY, 0, 0 
    Picture1.Picture = Clipboard.GetData 
    GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _ 
        Pbytes(0, 0, 0) 
    If Option1.Value = True Then 
        Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
        If sflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight 
    End If 
    If Option2.Value = True Then 
        Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
        If sflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight 
        Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
    End If 
    If Option3.Value = True Then 
        Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
        If sflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight 
        Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
        Contrast Picture1.ScaleWidth, Picture1.ScaleHeight 
    End If 
    If Option4.Value = True Then 
        Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
        If sflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight 
        Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
        Contrast Picture1.ScaleWidth, Picture1.ScaleHeight 
        For i = 1 To Val(Text4.Text) 
            Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms 
        Next i 
    End If 
    If Option5.Value = True Then 
        Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
        If sflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight 
        Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
        Contrast Picture1.ScaleWidth, Picture1.ScaleHeight 
        For i = 1 To Val(Text4.Text) 
            Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms 
        Next i 
        AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text) 
    End If 
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    If Option6.Value = True Then 
        Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
        If sflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight 
        Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
        Contrast Picture1.ScaleWidth, Picture1.ScaleHeight 
        For i = 1 To Val(Text4.Text) 
            Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms 
        Next i 
        AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), _ 
             Val(Text3.Text) 
        Clean Picture1.ScaleWidth, Picture1.ScaleHeight, Val(Text3.Text) 
    End If 
    SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _ 
        Pbytes(0, 0, 0) 
    Picture2.Refresh 
    Picture2.Picture = Picture2.Image 
    Picture2.Line (Val(Text2.Text) - 2, Val(Text3.Text) - 2) _ 
       - (Val(Text2.Text) + 2, Val(Text3.Text) + 2), RGB(255, 0, 0), B 
    Timer1.Enabled = True 
End Sub 

 
If the size of the captured image does not fit in the picture box then the image size 
has to be changed to 160x120 by activating the ‘Format’ menu.  If no webcam is 
available then a message box will appear with a message “No webcam found!” 

5.9   Lesson 8 

Objective: To develop a VB6 program to capture and process webcam streaming 
video for vision based navigation along with a selection of white/black path color. 
Inference is drawn on whether path is available or not. 

Following steps summarize the program development. 

1. All necessary API calls are declared in ‘Webcam8.bas’ module, same as 
‘Webcam7.bas’, as mentioned in Lesson 7. It is necessary to include this 
module in ‘Form1’ of the VB6 program. 

2. AVICAP32.DLL is used to capture webcam streaming video through proper 
API call. The webcam video format should be either RGB24 or YUY2. 

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture 
image as clipboard data  from streaming video at a regular interval of 10mS 
and ‘Picture2’ to process image from the captured image at the same rate with 
the help of ‘Timer1’ control. 

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120 
pixels. 
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5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’ 
API call. 

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through 
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’ 
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue. 

7. ‘Shape1’ displays the color of the path (white or black) as selected with the 
‘cmdWhiteBlack’ button. 

8. Captured image is converted to negative with the help of procedure ‘Negative’ 
if black path is selected according to step 7. Then this image is processed 
according to the option 6 of Lesson 7. 

9. Then white line width around a fixed reference pixel [at position (80,110)] is 
determined with the procedure ‘WhiteLineWidth’. If both left and right path 
width around the reference pixel are found be less than 
‘MIN_PATH_WIDTH’ value then ‘No path’ inference is drawn, otherwise 
‘Path found’ inference is drawn and shown in a text box. 

 
Following figure shows the ‘Form1’ layout. 
 

 
 
Following text shows the listing of ‘Timer1’ procedure code. For rest of the 

code refer to Lesson 7. 

Private Sub Timer1_Timer() 
    Timer1.Enabled = False 
    SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0 
    SendMessage hwdc, WM_CAP_COPY, 0, 0 
    Picture1.Picture = Clipboard.GetData 
    GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _ 
        Pbytes(0, 0, 0) 
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    Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
    If sflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight 
    Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
    Contrast Picture1.ScaleWidth, Picture1.ScaleHeight 
    For i = 1 To Val(Text4.Text) 
        Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms 
    Next i 
    AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text) 
    Clean Picture1.ScaleWidth, Picture1.ScaleHeight, Val(Text3.Text) 
    WhiteLineWidth Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text) 
    SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _ 
        Pbytes(0, 0, 0) 
    Picture2.Refresh 
    Picture2.Picture = Picture2.Image 
    Picture2.Line (Val(Text2.Text) - 2, Val(Text3.Text) - 2)-(Val(Text2.Text) _ 
       + 2, Val(Text3.Text) + 2), RGB(255, 0, 0), B 
    If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight < _ 
        MIN_PATH_WIDTH Then 
        Text5.Text = "No path" 
    Else 
        Text5.Text = "Path found" 
    End If 
    Timer1.Enabled = True 
End Sub 
 

If the size of the captured image does not fit in the picture box then the image size 
has to be changed to 160x120 by activating the ‘Format’ menu.  If no webcam is 
available then a message box will appear with a message “No webcam found!” 

5.10   Lesson 9 

Objective: To develop a VB6 program to capture and process webcam streaming 
video for vision based navigation along with a selection of white/black path color. 
Inference is drawn on whether path is available or not. Appropriate rules are 
applied to determine different navigational directions and speed parameters for 
differential drive. 

Following steps summarize the program development. 

1. All necessary API calls are declared in ‘Webcam9.bas’ module, same as 
‘Webcam8.bas’, as mentioned in Lesson 8. It is necessary to include this 
module in ‘Form1’ of the VB6 program. 

2. AVICAP32.DLL is used to capture webcam streaming video through proper 
API call. The webcam video format should be either RGB24 or YUY2. 
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3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture 
image as clipboard data  from streaming video at a regular interval of 10mS 
and ‘Picture2’ to process image from the captured image at the same rate with 
the help of ‘Timer1’ control. 

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120 
pixels. 

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’ 
API call. 

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through 
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’ 
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue. 

7. ‘Shape1’ displays the color of the path (white or black) as selected with the 
‘cmdWhiteBlack’ button. 

8. Captured image is processed according to Lesson 8. If path is found then 
appropriate navigational direction (‘forward’ or ‘turn-left’ or ‘turn-right’) and 
the corresponding speed parameters for differential drive are determined with 
three rules. A picture box shows the direction of navigation. 

 
Following figure shows the ‘Form1’ layout. 

 
 
Following text shows the listing of ‘Timer1’ procedure code. For rest of the 

code refer to Lesson 8. 

Private Sub Timer1_Timer() 
    Timer1.Enabled = False 
    SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0 
    SendMessage hwdc, WM_CAP_COPY, 0, 0 
    Picture1.Picture = Clipboard.GetData 
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    GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _ 
        Pbytes(0, 0, 0) 
    Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
    If blkflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight 
    Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
    Contrast Picture1.ScaleWidth, Picture1.ScaleHeight 
    For i = 1 To Val(Text4.Text) 
        Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms 
    Next i 
    AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text) 
    Clean Picture1.ScaleWidth, Picture1.ScaleHeight, Val(Text3.Text) 
    WhiteLineWidth Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text) 
    SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _ 
       Pbytes(0, 0, 0) 
    Picture2.Refresh 
    Picture2.Picture = Picture2.Image 
    Picture2.Line (Val(Text2.Text) - 2, Val(Text3.Text) - 2)-(Val(Text2.Text) _ 
       + 2, Val(Text3.Text) + 2), RGB(255, 0, 0), B 
     
   If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight < _ 
       MIN_PATH_WIDTH Then 

        Text5.Text = "No path" 
    Else 
        Text5.Text = "Path found" 
    End If 
    If PixelCountLeft >= MIN_PATH_WIDTH And PixelCountRight < _ 
        MIN_PATH_WIDTH Then 
        Text6.Text = 0: Text7.Text = 50         'turn left 
        Text8.Text = "Turn left" 
        Picture3.Picture = LoadPicture("turn_left.jpg") 
    End If 
    If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight >= _ 
        MIN_PATH_WIDTH Then 
        Text6.Text = 50: Text7.Text = 0         'turn right 
        Text8.Text = "Turn right" 
        Picture3.Picture = LoadPicture("turn_right.jpg") 
    End If 
    If PixelCountLeft >= MIN_PATH_WIDTH And PixelCountRight >= _ 
        MIN_PATH_WIDTH Then 
        Text6.Text = 100: Text7.Text = 100      'forward 
        Text8.Text = "Forward" 
        Picture3.Picture = LoadPicture("forward.jpg") 
    End If 
 
 



5.11   Lesson 10 137
 

    If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight < _ 
        MIN_PATH_WIDTH Then 
        Text6.Text = 0: Text7.Text = 0      'no path - idle 
        Text8.Text = "" 
        Picture3.Picture = LoadPicture("blank.jpg") 
    End If 
    Timer1.Enabled = True 
End Sub 
 
Following image files are used to indicate direction of navigation. 

                                        
      Forward.jpg  turn_left.jpg  turn_right.jpg 
 
If the size of the captured image does not fit in the picture box then the image 

size has to be changed to 160x120 by activating the ‘Format’ menu.  If no webcam 
is available then a message box will appear with a message “No webcam found!” 

5.11   Lesson 10 

Objective: To develop a VB6 program to capture and process webcam streaming 
video for vision based navigation along with a selection of white/black path color. 
Inference is drawn on whether path is available or not. Appropriate rules are 
applied to determine different navigational directions and speed parameters for 
differential drive. Sound output is added to draw attention. 

Following steps summarize the program development. 

1. All necessary API calls are declared in ‘Webcam10.bas’ module. It is 
necessary to include this module in ‘Form1’ of the VB6 program. 

2. AVICAP32.DLL is used to capture webcam streaming video through proper 
API call. The webcam video format should be either RGB24 or YUY2. 

3. Under Form1 two ‘Picture Box’ controls are added, ‘Picture1’ to capture 
image as clipboard data  from streaming video at a regular interval of 10mS 
and ‘Picture2’ to process image from the captured image at the same rate with 
the help of ‘Timer1’ control. 

4. A menu item ‘Format’ is added in ‘Form1’ to set the image size to 160x120 
pixels. 

5. From ‘Picture1’ image pixel data information is obtained through ‘GetObject’ 
API call. 

6. Pixel array ‘Pbytes(c, x, y)’, an 8-bit array, is obtained through 
‘GetBitmapBits’ API call under ‘Timer1’ control. Each element of ‘Pbytes’ 
contains 8-bit RGB color information of each pixel at ‘x’ and ‘y’ image co-
ordinate. ‘c’ stands for color; c:2 for red, c:1 for green and c:0 for blue. 
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7. ‘Shape1’ displays the color of the path (white or black) as selected with the 
‘cmdWhiteBlack’ button. 

8. Captured image is processed according to Lesson 9. If path is found then 
appropriate navigational direction (‘forward’ or ‘turn-left’ or ‘turn-right’) and 
the corresponding speed parameters for differential drive are determined with 
three rules. A picture box shows the direction of navigation. 

9. Sound output is activated through ‘sndPlaySound’ API call with appropriate 
‘wave’ file. 

 
Following text shows the listing of ‘Webcam10.bas’ module. 

Global Const WS_CHILD As Long = &H40000000 
Global Const WS_VISIBLE As Long = &H10000000 
Global Const WM_USER = 1024 
Global Const WM_CAP_DRIVER_CONNECT = WM_USER + 10 
Global Const WM_CAP_SET_PREVIEW = WM_USER + 50 
Global Const WM_CAP_SET_PREVIEWRATE = WM_USER + 52 
Global Const WM_CAP_DRIVER_DISCONNECT As Long = WM_USER + 11 
Global Const WM_CAP_DLG_VIDEOFORMAT As Long = WM_USER + 41 
Global Const WM_CAP_DLG_VIDEOCOMPRESSION As Long = _ 
    WM_USER + 46 
Global Const WM_CAP_DLG_VIDEODISPLAY As Long = WM_USER + 43 
Global Const WM_CAP_DLG_VIDEOSOURCE As Long = WM_USER + 42 
Global Const WM_CAP_GET_FRAME As Long = 1084 
Global Const WM_CAP_COPY As Long = 1054 
Global Const WM_CAP_SET_SCALE As Integer = WM_USER + 53 
Global Const SWP_NOMOVE As Integer = 2 
Global Const SWP_NOZORDER As Integer = 4 
Global Const HWND_BOTTOM As Integer = 1 
Global Const SND_ASYNC = 1 
Global Const SND_LOOP = 8 
Global Const SND_NODEFAULT = 2 
Global Const SND_SYNC = 0 
Global Const SND_NOSTOP = 16 
Global Const SND_MEMORY = 4 

 
Declare Function SendMessage Lib "user32" Alias "SendMessageA" (ByVal hwnd _ 

As Long, ByVal wMsg As Long, ByVal wParam As Long, ByVal lParam As Long) _ 
As Long Declare Function capCreateCaptureWindow Lib "avicap32.dll" Alias _ 
"capCreateCaptureWindowA" (ByVal nWindowName As String, ByVal nStyle _ 
As Long, ByVal nx As Integer, ByVal ny As Integer, ByVal nWidth As Integer, _ 
ByVal nHeight As Integer, ByVal nHwnd As Long, ByVal nId As Integer) As Long 

Declare Function SetWindowPos Lib "user32" (ByVal hwnd As Long, _ 
ByVal hWndInsertAfter As Long, ByVal x As Long, ByVal y As Long, _ 
ByVal cx As Long, ByVal cy As Long, ByVal wFlags As Long) As Long 
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Declare Function GetObject Lib "gdi32" Alias "GetObjectA" (ByVal hObject As Long, _ 
ByVal nCount As Long, lpObject As Any) As Long 

Declare Function GetBitmapBits Lib "gdi32" (ByVal hBitmap As Long, ByVal dwCount _ 
As Long, lpBits As Any) As Long 

Declare Function SetBitmapBits Lib "gdi32" (ByVal hBitmap As Long, ByVal dwCount _ 
As Long, lpBits As Any) As Long 

Declare Function sndPlaySound Lib "winmm.dll" Alias "sndPlaySoundA" _ 
(ByVal lpszSoundName As String, ByVal uFlags As Long) As Long 
 

Following figure shows the ‘Form1’ layout. 

 
 

Following text shows the listing of ‘Timer1’ procedure code. For rest of the 
code refer to Lesson 9. 

Private Sub Timer1_Timer() 
    Timer1.Enabled = False 
    SendMessage hwdc, WM_CAP_GET_FRAME, 0, 0 
    SendMessage hwdc, WM_CAP_COPY, 0, 0 
    Picture1.Picture = Clipboard.GetData 
    GetBitmapBits Picture1.Picture, Pinfo.bmWidthBytes * Pinfo.bmHeight, _ 
        Pbytes(0, 0, 0) 
         
    Gray Picture1.ScaleWidth, Picture1.ScaleHeight 
    If blkflag = True Then Negative Picture1.ScaleWidth, Picture1.ScaleHeight 
    Lowpass Picture1.ScaleWidth, Picture1.ScaleHeight 
    Contrast Picture1.ScaleWidth, Picture1.ScaleHeight 
    For i = 1 To Val(Text4.Text) 
        Geometricmean Picture1.ScaleWidth, Picture1.ScaleHeight, gms 
    Next i 
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    AdaptiveThreshold Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text) 
    Clean Picture1.ScaleWidth, Picture1.ScaleHeight, Val(Text3.Text) 
    WhiteLineWidth Picture1.ScaleWidth, Val(Text2.Text), Val(Text3.Text) 
     
    SetBitmapBits Picture2.Image, Pinfo.bmWidthBytes * Pinfo.bmHeight, _ 
        Pbytes(0, 0, 0) 
    Picture2.Refresh 
    Picture2.Picture = Picture2.Image 
    Picture2.Line (Val(Text2.Text) - 2, Val(Text3.Text) - 2)-(Val(Text2.Text) _ 
      + 2, Val(Text3.Text) + 2), RGB(255, 0, 0), B 
     
    If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight < _ 
        MIN_PATH_WIDTH Then 

If Text5.Text <> "No path" Then sndPlaySound "No path.wav", _ 
SND_ASYNC Or SND_NODEFAULT 

        Text5.Text = "No path" 
    Else 

If Text5.Text <> "Path found" Then sndPlaySound "Path found.wav", _ 
    SND_ASYNC Or SND_NODEFAULT 

        Text5.Text = "Path found" 
    End If 

 
    If PixelCountLeft >= MIN_PATH_WIDTH And PixelCountRight < _ 
        MIN_PATH_WIDTH Then 
        Text6.Text = 0: Text7.Text = 50         'turn left 
        Text8.Text = "Turn left" 
        Picture3.Picture = LoadPicture("turn_left.jpg") 
    End If 
    If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight >= _ 
        MIN_PATH_WIDTH Then 
        Text6.Text = 50: Text7.Text = 0         'turn right 
        Text8.Text = "Turn right" 
        Picture3.Picture = LoadPicture("turn_right.jpg") 
    End If 
    If PixelCountLeft >= MIN_PATH_WIDTH And PixelCountRight >= _ 
        MIN_PATH_WIDTH Then 
        Text6.Text = 100: Text7.Text = 100      'forward 
        Text8.Text = "Forward" 
        Picture3.Picture = LoadPicture("forward.jpg") 
    End If 
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    If PixelCountLeft < MIN_PATH_WIDTH And PixelCountRight < _ 
        MIN_PATH_WIDTH Then 
        Text6.Text = 0: Text7.Text = 0      'no path - idle 
        Text8.Text = "" 
        Picture3.Picture = LoadPicture("blank.jpg") 
    End If 
    Timer1.Enabled = True 
End Sub 
 

Two pre-recorded wave files ‘Nopath.wav’ and ‘Pathfound.wav’ are used to play 
when needed through PC sound card interface. The PC sound recorder program 
may be used to create these wave files. 

If the size of the captured image does not fit in the picture box then the image 
size has to be changed to 160x120 by activating the ‘Format’ menu.  If no webcam 
is available then a message box will appear with a message “No webcam found!” 

5.12   Summary 

Ten lessons are presented in a step-by-step manner to develop programming skill 
for implementing vision-based navigation applications under 32-bit Windows 
environment. 

Lesson 1: This demonstrates how to capture image frames from streaming video 
from a low-cost webcam and examine pixel values with the help of mouse pointer. 

Lesson 2: This demonstrates how to process captured image frames from 
streaming video with two processing options covering color to gray-scale 
conversion and low-pass filtering. 

Lesson 3: The method of contrast enhancement by histogram stretching technique 
is added to improve contrast under poor lighting conditions. 

Lesson 4: The geometric-mean filter is added to smooth and suppress image 
detail. 

Lesson 5: An adaptive threshold operation in introduced to extract white path 
under varying illumination conditions. 

Lesson 6: A cleaning operation is provided to remove unwanted objects detected. 

Lesson 7: Here an option is added for selection of path color white or black. 

Lesson 8: Modified for white or black path searching for navigation with 
reference to a fixed pixel. 

Lesson 9: Introduces a rule-based approach to determine left and right wheel 
speed settings of a differential drive system for navigation. 

Lesson 10: Here sound output is added to draw attention during navigation. 
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Chapter 6 
Vision Based Mobile Robot Path/Line Tracking 

Abstract. In this chapter we discuss how a vision based navigation scheme can be 
developed for indoor path/line tracking, so that the robot is equipped to follow a 
narrow line or to travel along a wide path. The scheme utilizes fuzzy logic to 
achieve the desired objective. The scheme is so developed that, in case of absence 
of obstacles in front, it will guide the robot to navigate using fuzzy vision-based 
navigation. The scheme also employs a fuzzy IR-based obstacle avoidance 
strategy which becomes active on detection of any obstacle.   

6.1   Introduction 

In this chapter we shall describe a vision-based navigation algorithm implemented 
in conjunction with the robot indigenously developed in our laboratory, which 
utilizes fuzzy logic for path/line tracking, in presence or in absence of obstacle 
[10]. Fuzzy logic has been widely accepted as a possible means in mobile robot 
navigation for quite some time now. In [1], an earliest fuzzy controller was 
developed for obstacle avoidance. In that work the controller used a vision based 
algorithm to obtain information about occupied and free areas in front of the robot 
from a video camera and the rules were derived with the help of a simulator. 
Another similar work for corridor navigation, by a fuzzy controller, using video 
images, which was implemented in vehicle ATHENE, was reported in [2]. Fuzzy 
logic approaches have been widely utilized in navigation systems for mobile 
robots over a decade. A method of path planning and execution, using fuzzy logic, 
for mobile robot control, was proposed in [3]. Almost during similar time, a 
successful application of fuzzy logic for vision based mobile robot navigation, 
considering the aspects of collision avoidance and obstacle avoidance, was 
reported in [4]. In [5], a new approach based on forecast learning fuzzy control, 
where the environmental information is acquired by a CCD camera, was proposed. 
In this work the image acquired is classified into several characteristic patterns 
and the robot is programmed with sets of control rules for each pattern, set a 
priori. The robot combines these sets into a single set by matching the patterns. 
Several works have also been reported with stereo vision system, coupled with the 
support of conventional sensors, for robot navigation, using fuzzy controllers [6], 
[7]. A detailed and comprehensive study of several fuzzy based mobile robot 
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navigation techniques was presented in [8]. In recent times, a new fuzzy based 
approach called rule-based fuzzy traversability index approach is used for outdoor 
navigation of mobile robots, where imagery data is used to classify different 
characteristics like terrain roughness, terrain slope, terrain discontinuity, terrain 
hardness etc. [9]. Once these characteristics from the viewable scene are extracted, 
then the fuzzy rules for traversablility index are developed for smooth navigation 
of the mobile robot. 

Utilizing the indigenous robot developed in our laboratory as described in the 
previous chapter, a new fuzzy based mobile robot navigation scheme is developed 
which attempts to track the middle of a narrow line or a broad path, both in 
presence or absence of obstacle. This system utilizes a vision-based fuzzy module 
for navigation when there is no obstacle in front of the robot. As soon as the robot 
senses an obstacle in front, it deactivates the vision-based fuzzy module and 
activates an IR-based fuzzy obstacle avoidance module, so that the robot attempts 
to safely avoid the obstacle and re-localize itself on the middle of the path/line. If 
this objective is satisfied, then the IR-based fuzzy module is deactivated and 
vision-based fuzzy module is re-activated and the robot continues with its line 
tracking activity. The robot system utilizes the capability of intranet-connectivity, 
suitable for client/server operation, as described in the previous chapter, so that the 
robot functionalities can be suitably chosen and the robot can be suitably 
commanded from a remote end client PC.  

6.2   A Preview of the Proposed Scheme 

Figure 6.1 shows the complete scheme developed in this work. Let the pose of the 
differential drive robot system, at the present given instant, be ( )φ

RRR yx ,, . 

Depending on the environment ahead of it, a new navigation command is issued 
for the robot that comprises the linear velocity command (v) and the steering angle 
command (θ). The steering angle command can be any value between (00-1800), 
counted in a counter-clockwise sense, with reference to the present pose of the 
robot. This is shown in Fig. 6.2 where the World Coordinate System is denoted by 
XWY and the mobile robot coordinate system is denoted by xoy, o being the center 
of the robot. The new direction of the robot navigation is along op in Fig. 6.2. At 
any given position, the robot scans the front of it, using the IR sensor at positions 
4, 5, and 6, to determine whether the front region is free from obstacle or it 
contains an obstacle. If the presence of an obstacle is detected, it will first produce 
a voice message that there is an obstacle in front, hoping that somebody has 
wrongly left an obstacle in its path and will remove it, hearing the robot speak. If 
this does not happen, the robot will perform the obstacle avoidance using the IR 
sensor readings in eleven scan positions. The obstacle avoidance routine will be so 
performed that the robot will attempt to take a short detour in its original path and, 
after avoiding the obstacle, it will attempt to come back to its original, ideal path.  
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Once the robot re-detects that there is no obstacle in front, the system will return 
the control to its vision-based navigation scheme. The system developed employs 
one fuzzy based navigation algorithm each, for both vision-based navigation and 
IR-based obstacle avoidance. The basic philosophy of the navigation scheme is 
that the robot should track the center of a path towards its goal, whether in 
presence or in absence of any obstacle in its path. For a wide path, the robot 
always attempts to navigate through the middle of the path. Similarly, for a narrow 
path or line, whose width is smaller than the width of the robot, the navigation 
algorithm attempts to track the center of the line. 

 

 

Fig. 6.1. The navigation strategy for the mobile robot 
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Fig. 6.2. The robot co-ordinate system 

6.3   A Fuzzy System for Vision Based Robot Navigation 

If the robot find that its front region is free of obstacle, the robot will undertake 
vision based navigation. The scheme employs the following image processing 
steps: 

a. Capture a frame from the video stream recorded by the webcam 
When the IR scanning system infers that the front region of the robot is a free 
region, a frame is captured from the continuously running video stream available 
from the webcam of the laptop, mounted on the robot. This frame gives the visual 
information of the environment ahead of the robot. This frame is further processed 
to extract meaningful information from it, by first converting the colour image to 
its corresponding gray image and performing image processing steps on this gray 
image. 

b. Process the gray image of the environment to extract the path/line 
The next step is carried out to segment the image so that the path/line is extracted 
from its surroundings. For this the image is first de-speckled to perform low pass 
filtering, to eliminate noises. Then the image is auto corrected for its brightness, so 
that, if the image looks unsatisfactorily dark, because of dim illumination, the 
overall brightness of the processed image can be enhanced by changing the 
dynamic range of the intensity values. This brightness corrected image is then 
processed so that the isolated bright spots get connected and thickened, in an 
operation very similar to dilation by a structuring element. This linking and  



6.3   A Fuzzy System for Vision Based Robot Navigation 147
 

thickening operation can be performed by employing a geometric mean filtering 
technique. 

This thickened image is finally segmented by performing thresholding. The 
intensity threshold is chosen as a very high value in a bid to extract only the 
path/line from its surrounding. Figure 6.3 and Fig. 6.4 show a sample environment 
with the output of each image processing step described above, without 
incorporating the geometric mean filtering step and with incorporation of the 
geometric mean filtering step. Figure 6.5 and Fig. 6.6 show the similar situations 
in an environment where there is an interfering object apart from the actual 
path/line, in the captured image. Figure 6.6 shows how the geometric mean 
filtering process helps to remove that interfering object through the segmentation 
process and can clearly extract the path, which was not possible in Fig. 6.5. 

c. Employ the fuzzy system for vision-based navigation 
The fuzzy-based system is developed based on the thresholded image obtained in 
the previous step. In this case the image is of size 160 x 120 where the top left 
corner pixel is assigned the coordinate (0, 0) and the bottom right corner pixel is 
assigned the coordinate (159, 119). Then a seed point S is chosen on the mid-
vertical line on the image, more towards the bottom of the image i.e. 
corresponding to a real-world point closer to the robot, in its present position. In 
image pixel coordinates this seed point is chosen as (80, 110). At this position a 
horizontal line is drawn on the image. From the seed point S, one can travel along 
this scan line, once towards left and once towards right, to compute the number of 
pixels (both to the left and to the right of S) with bright intensity, in a bid to  

 

 
(a) (b) 

 
(c) 

 
(d) 

 

 

 
(e) 

 
Fig. 6.3. The results of the image processing steps for a sample environment: (a) the 
original image captured, (b) the corresponding gray image, (c) de-speckled image, (d) auto-
brightness corrected image, and (e) final processed image after thresholding 



148 6   Vision Based Mobile Robot Path/Line Tracking
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
Fig. 6.4. The results of the image processing steps for the sample environment in Fig. 6.3: 
(a) the original image captured, (b) the corresponding gray image, (c) de-speckled image, 
(d) auto-brightness corrected image, (e) isolated point linked and thickened image 
employing geometric mean, and (e) final processed image after thresholding 

 
 

(a) (b) (c) 

 
(d) 

 
 

 
(e) 

Fig. 6.5. The results of the image processing steps for a sample environment with an 
interfering object: (a) the original image captured, (b) the corresponding gray image, (c) de-
speckled image, (d) auto-brightness corrected image, and (e) final processed image after 
thresholding 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 6.6. The results of the image processing steps for a sample environment with an 
interfering object: (a) the original image captured, (b) the corresponding gray image, (c) de-
speckled image, (d) auto-brightness corrected image, (e) isolated point linked and thickened 
image employing geometric mean, and (e) final processed image after thresholding 

determine the width of the path towards the left and towards the right of the robot. 
If these two pixel counts are same, one can infer that the robot is positioned 
approximately in the middle of the road or the line. On the other hand, if the left 
pixel count is higher than the right pixel count, it indicates that the robot position 
is more skewed towards the right of the path and the fuzzy inference system 
should try to direct it towards the middle of the road. If the right pixel count is 
higher than the left pixel count, it indicates that the robot is more towards the left 
side of the road and the fuzzy guidance should again provide a different command 
to bring the robot back to the middle of the road. This fuzzy-logic based vision-
aided navigation system is developed as a two-input-two-output system, where the 
two input variables are PixelCountLeft and PixelCountRight and the two output 
variables are the linear velocity command (v) and the steering angle command (θ). 
The fuzzy system is developed as a zero-order Takagi-Sugano (TS) system. To 
make the fuzzy system a robust one, the pixel counts to the left and to the right of 
the seed point are taken for three consecutive horizontal lines drawn at three seed 
points ( S1≡ (80, 109), S2≡ (80, 110), and S3≡ (80, 111)) and then an average count 
is used as: 
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where 
pcli = pixel count to the left along the scan line for seed point Si and 
pcri = pixel count to the right along the scan line for seed point Si. 

 

 
(a) 

 
(b) 

Fig. 6.7. Membership functions for (a) PixelCountLeft and (b) PixelCountRight 

Figure 6.7 shows the input membership functions (MFs) for fuzzification, 
where each input variable is fuzzified using three MFs: small (S), medium (M), 
and large (L). The fuzzy sets or MFs for the input variables are described as: 
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The outputs are represented by singletons, for each output variable. The fuzzy rule 
base consists of a collection of fuzzy IF-THEN rules. A model rule i can be given 
as: 
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Table 6.1. Fuzzy rule base for the vision system 

 
Rule No. 

Antecedent Parts 
(IF clauses) 

Consequence Parts 
(THEN Parts) 

PixelCountLeft PixelCountRight vvis (in p.u.) θvis (in 
degree) 

1 Small Small 0.9 90 
2 Small Medium 0.5 67 
3 Small Large 0.1 45 
4 Medium Small 0.5 112 
5 Medium Medium 0.9 90 
6 Medium Large 0.5 67 
7 Large Small 0.1 135 
8 Large Medium 0.5 112 
9 Large Large 0.9 90 

 
N is the total number of rules in the fuzzy rule base. This fuzzy rule base 

constructed is given in Table 6.1. The fuzzy output for linear velocity is generated 
in p.u., which is multiplied by a suitable gain (Kvel_vis). The defuzzification is 
carried out by employing weighted average method. Then the output crisp linear 
velocity command (vvis) and the output steering angle command (θvis) are 
computed as:  
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(d) Store the possible steering angle detour, if the robot leave the line  
The robot navigation system is equipped with an additional module to take care of 
an excigency situation. Let us consider that, under some circumstances, the robot 
leaves the path and, from the processed image output, the PixelCountLeft and 
PixelCountRight variables are both computed as zero. In this situation the robot is 
given small steering angle detour commands (with linear velocity chosen as zero), 
in an iterative fashion, until at least one of the variables PixelCountLeft and 
PixelCountRight gives a non-zero count. Then one can infer that the robot has 
been oriented back to the original path and hence the subsequent activation of the 
vision-based navigation algorithm will attempt to bring the robot back on the 
middle of the path/line. Now, whether the robot detour should be activated in 
clockwise or counter-clockwise direction, can be determined on the basis of 
whether the robot was moving more towards its left or more towards its right in its 
previous iterations. This can help in reducing the time to be spent in the detour 
phase and also to restore the original direction of navigation. 

Fig. 6.8 shows the algorithm for storing information for possible steering angle 
detour. At each sampling instant (k), calculate the number of pixels to the left 
(pclk) and to the right (pcrk) of a seed point by making a horizontal scan, to 
determine the number of bright pixels. To determine a proper trend of robot 
orientation, this process is repeated for a number of rows (N_rows) to determine 
the cumulative values at the sampling instant k as cum_pclk and cum_pcrk. This 
process is repeated for each processed image frame in vision-based navigation to 
determine final stored values of these two corresponding quantities at instant k. 
However, while storing these values, the highest priority is given to the present 
instant and as we go back to the past instants, the priority gradually reduces. This 
can be formulated as: 

* *_ _ _store pcl cum pcl store pclk kk k k= + −1 2 1    (6.7) 

* *_ _ _store pcr cum pcr store pcrk kk k k= + −1 2 1  (6.8) 

In this system, the forgetting factor is so chosen that k1 = 0.25 and k2 = 0.75. When 
the vision-based navigation algorithm is working satisfactorily, the storage 
continues. However these stored values only become functional when, due to 
some reason, the robot leaves the path/line and both the PixelCountLeft and 
PixelCountRight variables become zero. Then, depending on the polarity of 
(store_pclk - store_pcrk), the steering detour direction to be effected is chosen. 
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Fig. 6.8. The information storage for possible steering angle detour module 

If this quantity is positive, the detour direction is chosen counter-clockwise, 
otherwise clockwise. Once the detour direction is fixed, an iterative procedure is 
implemented, where, with zero linear velocity, the robot turns by a fixed angle of 
100, an image frame is captured and the image processing steps discussed in the 
previous section are implemented, to determine the new values of the variables 
PixelCountLeft and PixelCountRight. If at least one of these values is non-zero, 
the vision-based navigation algorithm is reactivated. Otherwise, the next iteration 
of turning the robot by 100 and implementing subsequent steps is carried out  
and this process continues, until the vision-based navigation algorithm gets 
reactivated. 
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6.4   The IR-Sensor Based Obstacle Avoidance by Employing a 
Fuzzy Algorithm 

The IR-sensor based obstacle avoidance module will be activated if the system 
detects an obstacle in front and then the vision system will be deactivated. A  
fuzzy based IR-obstacle-avoidance scheme will attempt that the robot should go 
around the obstacle and then continue along its original path. Once the  
robot avoids the obstacle, then the vision-based algorithm will be reactivated. This 
will automatically bring the robot back to the middle of the path. For  
the development of the IR-based fuzzy system, the lone IR-sensor is scanned in 
eleven angular positions 11,,2,1 =l  to produce eleven IR sensor readings, 

( )lvalSensorIR __ , given in terms of voltage ( )V . These eleven readings are 

grouped into three sensor groups _ _ , , , .IR Group val p p 
 
 
 

=12 3  This is done with an 

aim to reduce the input dimension for the fuzzy system developed. In each IR 
sensor group, the maximum sensor scan reading is chosen as the representative 
reading for the group. This is because a higher reading indicates presence of a 
nearer obstacle. Hence these analog group readings are given as: 

( ) ( )( )4 ,3 ,2 ,1  __max1__ == llvalSensorIRvalGroupIR                (6.9) 

( ) ( )( )7,6 ,5  __max2__ == llvalSensorIRvalGroupIR           (6.10) 

( ) ( )( )11 ,10 ,9 ,8  __max3__ == llvalSensorIRvalGroupIR   (6.11) 

Then a three-input-two-output fuzzy obstacle avoidance system is developed with 
( ) ,3,2,1,__ =ppvalGroupIR  as the three inputs and (v, θ) as the two outputs. 

Here also a zero- order Takagi-Sugeno (TS) fuzzy system is developed. Figure 6.9 
shows the MFs chosen for each input variable. Each input is fuzzified using three 
MFs: far (FR), intermediate (IM), and near (NR). The corresponding MFs can be 
given as: 
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(a) 

 
(b) 

 
(c) 

Fig. 6.9. Membership functions for (a) IR_Group_val(1), (b) IR_Group_val(2), and (c) 
IR_Group_val(3) 
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Each fuzzy rule i can be given as: 
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Table 6.2. Fuzzy rule base for obstacle avoidance 

Rule 
No. 

Antecedent Parts  
(IF clauses) 

Consequence Parts 
(THEN parts) 

IR_Group_val(1) IR_Group_val(2) IR_Group_val(3) vobs (in 
p.u.) 

θobs (in 
degree) 

1 FR FR FR 0.8 0 
2 FR FR IM 0.8 90 
3 FR FR NR 0.7 90 
4 FR IM FR 0.5 135 
5 FR IM IM 0.7 135 
6 FR IM NR 0.6 150 
7 FR NR FR 0.3 135 
8 FR NR IM 0.5 135 
9 FR NR NR 0.4 160 
10 IM FR FR 0.9 90 
11 IM FR IM 0.8 90 
12 IM FR NR 0.6 90 
13 IM IM FR 0.7 50 
14 IM IM IM 0.3 90 
15 IM IM NR 0.2 105 
16 IM NR FR 0.5 35 
17 IM NR IM 0.2 105 
18 IM NR NR 0.1 150 
19 NR FR FR 0.8 90 
20 NR FR IM 0.7 90 
21 NR FR NR 0.6 90 
22 NR IM FR 0.5 40 
23 NR IM IM 0.2 25 
24 NR IM NR 0.1 90 
25 NR NR FR 0.4 30 
26 NR NR IM 0.1 15 
27 NR NR NR 0 90 
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L is the total number of rules for the fuzzy system and Table 4.2 shows the entire 
fuzzy rule base created for obstacle avoidance. Let Kvel_obs be the scaling gain for 
the linear velocity. Then the output crisp linear velocity command (vobs) and the 
output steering angle command (θobs) are computed as: 
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6.5   Real-Life Performance Evaluation 

Several experiments were conducted using the proposed system in real-life indoor 
environments. Four example case studies are reported here. 

Case-Study I 
In this study, the robot is commanded to follow a curved line. The width of the 
line is chosen smaller than the width of the robot. Figure 6.10 shows the sequence 
of images where the robot performs this commanded task. Figure 6.10(a) to  
Fig. 6.10(f) show a sequence of images when the robot is attempting to follow the 
middle of the line. For all the case studies, the navigation utilizes vision and IR  
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range sensing and hence the proximity sensors are turned off from the client side. 
Figure 6.11 shows the complete path of traversal in red colour. The ideal path of 
traversal for the robot is shown by the blue dotted line that goes through the 
middle of the line. It can be seen that the actual path traversed by the robot is in 
close agreement with the ideal path. At the corners, the actual path deviated a little 
more from the ideal path. This is understandable because a practical robot is 
expected to follow a smooth steering angle transition, when a fuzzy based 
navigation algorithm is employed.  
 
Case-Study II 

In this study, the robot is commanded to follow a bended line, take almost a U-
turn when the path finishes, and trace the path back so that it can come back to its 
original starting position. Figure 6.12 shows the sequence of images where the 
robot performs this commanded task. This case study demonstrates the situation 
where the robot was commanded from the remote client to utilize the stored 
possible steering angle detour information to automatically turn, when the path in 
the forward direction finished, and attempt to come back on the line to trace its 
path back. Hence the robot did not stop when the path ended and both the 
PixelCountLeft and PixelCountRight computations produced zero values. Instead, 
it kept taking turns, in an iterative fashion, until it was able to retrace the path. 
Figure 6.12(a) to Fig. 6.12(f) show a sequence of images when the robot is in 
forward motion, attempting to follow the middle of the line. 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 6.10. Robot path traversed in case-study I 
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Fig. 6.11. The complete path of traversal for case study I 
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Fig. 6.12. Robot path traversed in case-study II 
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Fig. 6.12. (continued) 
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Fig. 6.13. The complete path of traversal for case study II for forward and reverse direction 

Figure 6.12(g) to Fig. 6.12(k) show the sequence of images when the robot is 
performing the turning operation, in an iterative fashion, so that it can re-position 
itself on the line. Figure 6.12(l) to Fig. 6.12(o) show the next sequence of images 
when the robot was able to retrace that path and could come back following the 
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line to its original starting point. A selection of “Search ON” option from the 
client end enabled the robot to attempt this retracing of path, even when the path 
disappeared from the field-of-view of its vision sensor. Figure 6.13 shows the 
forward path of traversal in red. The ideal path for the robot is shown by the blue 
dotted line that goes through the middle of the line. It can be seen that here also 
the actual path traversed by the robot is in close agreement with the ideal path and, 
at the corners, the actual path deviated a little more from the ideal path. It can also 
be seen that after taking almost a U-turn, the path traversed by the robot shown in 
green, had small deviations from the path traversed in the forward direction, 
shown in red. This shows a satisfactory performance for the robot, both while 
going up and then coming back. 
 
Case-Study III 
In this case study, the robot is commanded to follow the center of a path, which is 
of bigger width than the robot, as far as practicable, and there is an obstacle on the 
path which the robot needs to avoid. Figure 6.14 shows a sequence of images of 
how the robot performs its commanded task. In this experiment, the robot was 
commanded from the client end to navigate with “Search OFF” option. Hence the 
robot stopped after safely avoiding the obstacle and when it reached at the end of 
its path. As commanded, it did not attempt to re-localize itself on the path, when 
the path vanished from the field-of-view of the camera sensor. Figure 6.15 shows 
the complete path of traversal in red. This shows how the robot, at first, continued 
to travel along the middle of the road using vision sensing, and then, when it 
sensed the obstacle, took a left turn using IR based obstacle avoidance, safely 
avoided it by almost moving parallel to the obstacle, and then, when it crossed the 
obstacle, attempted to re-localize itself along the middle of the wide road, using 
vision sensing. 
 
Case-Study IV 
In this case study, the robot is commanded to perform a more difficult task, where 
the robot has to follow, on its way, two exactly perpendicular turns, and it is yet 
required to follow the middle of the line. In this case study the robot was 
commanded from the client end to navigate with “Search OFF” option. Figure 
6.16 shows a sequence of images, when the robot performs this navigation task. It 
can be seen from these images that, in spite of these perpendicular turns, the robot 
was able to re-localize itself at the middle of the line, after each turn, and could 
follow the path commanded, in a satisfactory fashion. This can also be seen in  
Fig. 6.17 which shows the complete path of traversal. It can be seen that even  
after crossing the two perpendicular corners, the robot was able to quickly re-
localize itself on the middle of the path and the deviation of the actual robot path 
from the ideal robot path is satisfactorily small. The deviations are a little more at 
the two perpendicular corners, which are again justifiable from the logic presented 
before. 
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Fig. 6.14. Robot path traversed in case-study III 
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Fig. 6.15. The complete path of traversal for case study III 
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Fig. 6.16. Robot path traversed in case-study IV 
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Fig. 6.17. The complete path of traversal for case study IV 
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6.6   Summary 

This chapter discussed how a simple yet effective fuzzy based path/line tracking 
scheme can be implemented in indoor environments. The implementation is 
carried out for an indigenously developed mobile robot in our laboratory. The 
scheme employs fuzzy vision-based navigation, when the front of the robot is free 
of obstacles. When any obstacle is detected, a fuzzy IR-based obstacle avoidance 
scheme gets activated and the vision based scheme is deactivated. Once the 
obstacle is avoided, the IR-based scheme is deactivated and the vision based 
navigation takes over. The scheme always attempts to guide the robot along the 
middle of the path/line, whether the objective is to follow a narrow line or to travel 
along a wide path. The system has been implemented for navigation both in 
presence and in absence of obstacles and it has also been experimented 
successfully with intranet-connectivity functionality. This mobile robot path 
tracker system, implemented in conjunction with the indigenously developed 
robotic platform, has been experimented for several real-life indoor environments. 
Four such real-life case studies are discussed here to demonstrate the usefulness 
and effectiveness of the system developed. 
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Chapter 7 
Simultaneous Localization and Mapping 
(SLAM) in Mobile Robots* 

Abstract. This chapter first introduces the concept of SLAM for navigation of 
mobile robots and then describes the extended Kalman filter (EKF) based SLAM 
algorithms in detail. Next we consider a more complex scenario where this EKF 
based SLAM algorithm is implemented in presence of incorrect knowledge of 
sensor statistics and discuss how fuzzy or neuro-fuzzy supervision can help in 
improving the estimation performance in such situations. In this context, we  
also discuss how evolutionary optimization strategies can be employed to 
automatically learn the free parameters of such neuro-fuzzy supervisors.  

7.1   Introduction 

The simultaneous localization and mapping (SLAM) problem has attracted 
significant attention from the research communities of the autonomous vehicles 
and mobile robots in the past two decades. The SLAM problem, essentially, 
consists of estimating the unknown motion of a moving platform iteratively, in an 
unknown environment and, hence, determining the map of the environment 
consisting of features (also known as landmarks) and the absolute location of the 
moving platform on the basis of each other’s information [1]. This is known as a 
very complex problem as there is always the possibility that both the vehicle’s 
pose estimate and its associated map estimates become increasingly inaccurate in 
absence of any global position information [2]. This situation arises when a 
vehicle does not have access to a global positioning system (GPS). Hence the 
complexity of the SLAM problem is manifold and requires a solution in a high 
dimensional space due to the mutual dependence of vehicle pose and the map 
estimates [3]. 

                                                           
* This chapter is based on: 

  1) “A neuro-fuzzy assisted extended Kalman filter-based approach for Simultaneous 
Localization and Mapping (SLAM) problems,” by Amitava Chatterjee and Fumitoshi 
Matsuno, which appeared in  IEEE Transactions on Fuzzy Systems, vol. 15, issue 5, pp. 
984-997, October 2007. © 2007 IEEE and 

  2) Amitava Chatterjee, “Differential evolution tuned fuzzy supervisor adapted extended 
kalman filtering for SLAM problems in mobile robots,” Robotica, vol. 27, issue 3, pp. 
411-423, May 2009, reproduced with permission from Cambridge University Press. 
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One of the oldest and popular approaches to solve the SLAM problem employs 
Kalman filter based techniques. Until now extensive research works have been 
reported employing EKF to address several aspects of the SLAM problem [1], [4-
12]. Several successful applications of SLAM algorithms have been developed for 
indoor applications [13, 14], outdoor applications [7], underwater applications 
[15], underground applications [16] etc. An EKF based approach estimates and 
stores the robot pose and the feature positions within the map of the environment 
in the form of a complete state-vector and the uncertainties in these estimates are 
stored in the form of error covariance matrices. These covariance matrices also 
include cross-correlation terms signifying cross-correlation among feature/ 
landmark estimates. However, one of the well-known problems with the classical 
full EKF-based SLAM approach is that the computational burden becomes 
significantly high in the presence of a large number of features, because both the 
total state vector and the total covariance matrix become large in size. The later 
variations of researches on EKF based SLAMs have identified this problem as a 
key area and several improvements have so far been proposed [7, 9, 17-19]. 
Another key problem associated with EKF-based SLAM is the data association 
problem, which arises because several landmarks in the map may look similar. In 
those situations, different data association hypotheses can give rise to multiple, 
distinct looking maps and Gaussian distribution cannot be employed to represent 
such multi-modal distributions. This problem is usually solved by restricting the 
algorithm to associate the most likely data association, given the current robot 
map, on the basis of single measurement [1] or on the basis of multiple 
measurements [20]. The method of utilizing multiple measurements is a more 
robust method. Although several other data association algorithms have so far 
been developed, e.g. those in [21, 22], these algorithms have less significance as 
they cannot be implemented in real-time.   

Some alternative approaches to solve SLAM problems have also been proposed 
which intend to implement some numerical algorithms, rather than employing the 
rigorous statistical methods as in EKF. Some of these schemes are based on the 
Bayesian approaches which can dispense with the important assumption in EKF 
(i.e. the uncertainties should be modeled by Gaussian distributions). Several such 
algorithms have been developed employing Sequential Monte Carlo (SMC) 
methods that employ the essence of particle filtering [2], [3], [23], [24]. Particle 
filtering technique can do away with a basic restriction of EKF algorithm that 
introduces an additional uncertainty by performing linearization of nonlinear 
models. However, in particle filtering based methods, it is expected that one 
should employ large number of particles so that it can contain a particle that can 
very closely resemble the true pose of the vehicle/robot at each sampling time 
instant [25]. How to develop an efficient SLAM algorithm, employing particle 
filtering with small enough number of particles, constitutes an important area of 
modern-day research. A significant leap in this direction is taken by the 
FastSLAM1.0 and FASTSLAM2.0 algorithms, which have successfully solved 
the issue of dimensionality for particle filter based SLAM problems [26]. Several 
other SLAM algorithms have also been successfully developed employing scan-
matching technique where the map can efficiently be built by a graph of spatial 
relations amongst reference frames [7], [27]. 
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It has been shown previously that the performance of an EKF process depends 
largely on the accuracy of the knowledge of process covariance matrix (Q) and 
measurement noise covariance matrix (R).  An incorrect a priori knowledge of Q 
and R may lead to performance degradation [28] and it can even lead to practical 
divergence [29]. Hence adaptive estimation of these matrices becomes very 
important for online deployment. In [28], Mehra has reported a pioneering work 
on adaptive estimation of noise covariance matrices Q and R for Kalman filtering 
algorithm, based on correlation-innovations method, that can provide 
asymptotically normal, unbiased and consistent estimates of Q and R [35]. This 
algorithm is based on the assumption that noise statistics is stationary and the 
model under consideration is a time invariant one. Later several research works 
have been reported in the same direction, employing classical approaches, which 
have attempted adaptive estimation of Q and R [30-35]. In [30], a combination of 
an iterative algorithm and a stochastic approximation algorithm has been proposed 
to estimate Q and R. In [32] and [33], the problem domain has been expanded to 
allow time-variance in estimation of Q and R. A wonderful practical application 
of [28] has been reported in [34].  

In the last ten years or so, there have also been several adaptive Kalman 
filtering algorithms proposed which employ fuzzy or neuro-fuzzy based 
techniques [36]-[39]. In [38], an input-output mapping problem, where output is 
corrupted by measurement noise, is solved by employing a neuro-fuzzy network to 
determine AR parameters of each operating point dependant ARMA model and 
then employing Kalman filter for the equivalent state-space representation of the 
system. In [36], fuzzy logic has been employed for simultaneous adaptive 
estimations of Q and R and in [37], fuzzy logic is employed to adapt the R matrix 
only, for a Kalman filter algorithm. In real world situations, it is quite perceptible 
that these information matrices, in the form of Q and R, may not be accurately 
known. Then the performance of the SLAM problem may get affected 
significantly.  

The present chapter will first introduce the EKF-based stochastic SLAM 
algorithm in detail. Then the chapter will explore those situations for SLAM 
problems where the noise statistics information for the sensor is not known 
accurately. In those situations, we shall describe how neuro-fuzzy assisted EKF 
based SLAM algorithms can be effectively utilized [44, 45]. This will detail how a 
neuro-fuzzy model can be employed to assist the EKF-based SLAM algorithm to 
estimate R adaptively in each iteration. The chapter will also discuss how the free 
parameters of the neuro-fuzzy model can be learned using popular evolutionary 
optimization algorithms, for example, particle swarm optimization (PSO) [40] and 
differential evolution. The fuzzy adapted Kalman filter algorithms discussed in 
this chapter essentially implement a much complicated and sophisticated system 
compared to its predecessors mainly in two aspects:  

i) For the SLAM problem, the situation is essentially very complex as the 
sizes of the state vector and hence the covariance matrix are time varying in 
nature. This is because, during the process of navigation, new landmarks are 
initialized in the state vector at different time instants (and, under some 
specific conditions, some existing landmarks may even be deleted) and 
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hence these vector and matrix sizes will keep changing. The sizes of these 
matrices usually grow.   

ii) The approaches discussed in this chapter uses a generalized method of 
learning the neuro-fuzzy model automatically. This is in stark contrast with 
previously developed systems which use carefully, manually chosen 
parameters for the fuzzy system(s) under consideration.  

The chapter concludes with a detail, in-depth analysis of these SLAM algorithms 
where the results are presented for a variety of environmental situations i.e.  with 
varying number of feature/landmark points and with several incorrectly known 
measurement noise statistics values.  

7.2   Extended Kalman Filter (EKF) Based Stochastic SLAM 
Algorithm 

A. Hypotheses 

• The features under consideration are assumed to be 2-D point features 
• The features are assumed to remain static i.e. they do not change their 

positions with time, in the map built 
• There are uncertainties in control inputs, the steering angle command (s) and 

the velocity at which the rear wheel is driven (w), and these uncertainties are 
modeled using Gaussian distributions 

• It is assumed that there is no uncertainty in the starting pose of the robot 
• The incremental movement of the robot, between two successive sampling 

instants, is assumed to be linear in nature 
• There are uncertainties in the range (r) and bearing (θ) measurements, and 

these uncertainties are modeled using Gaussian distributions 
• The features are only characterized by their 2-D positions and no other 

characteristics, e.g. shape etc., is considered in this work 

B. The Algorithm 
An overview of the feature-map based SLAM employing EKF algorithm is 
presented now. An excellent description of the algorithm can also be obtained in 
[6], [7]. An EKF is employed for state estimation in those situations where the 
process is governed by nonlinear dynamics and/or involves nonlinear 
measurement relationships. The method employs linearization about the filter’s 
estimated trajectory, which is continuously updated in accordance with the state 
estimates obtained from the measurements [43]. The state transition can be 
modeled by a nonlinear function f(•) and the observation or measurement of the 
state can be modeled by a nonlinear function h(•), given as: 

kkkk quxfx +=+ ),(1                                         (7.1)  

and 

111 )( +++ += kkk rxhz                                      (7.2) 
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where xk is the (n × 1) process state vector at sampling instant k, zk is the (m × 1) 
measurement vector at sampling instant k and uk is the control input. The random 
variables qk and rk represent Gaussian white process noise and measurement noise 
respectively and Pk, Qk and Rk represent the covariance matrices for xk, qk and rk 
respectively.   

In case of the SLAM problem, the state vector x is composed of the vehicle 
states xv and the landmarks’ states xm. Hence the estimates of the total state vector 
x, maintained in the form of its mean vector x̂ and the corresponding total error 

covariance matrix P, is given as: 
TT
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where vx̂ = the mean estimate of the robot/vehicle states (represented by its pose), 

Pv = error covariance matrix associated with vx̂ , 

mx̂ = mean estimate of the feature positions and 

Pm = error covariance matrix associated with mx̂ . 

The robot/vehicle pose is defined with respect to an arbitrary base Cartesian 
coordinate frame. The features or landmarks are considered to be 2-D point 
features. It is assumed that there are n such static, point features observed in the 
map. Then, 
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The map is defined in terms of the position estimates of these static features and 
Pvm in (7.4) maintains the robot-map correlation. The off-diagonal elements of Pm 
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signify the cross-correlation and hence interdependence of information among the 
features themselves. The system is initialized assuming that there is no observed 
feature as yet, the base Cartesian coordinate frame is aligned with the robot’s 
starting pose and there is no uncertainty in the starting pose of the robot. 
Mathematically speaking, 0xx == vˆˆ  and P = Pv = 0.  

As the robot starts moving, vx̂ and Pv become non-zero values. In subsequent 

iterations, when the first observation is carried out, new features are expected to 
be initialized and mx̂ and Pm appear for the first time. This increases the size of x̂ 

and P and the entries of x̂  vector and P matrix are re-calculated. This process is 
continued iteratively. 

i) Time Update (“Predict”) Step 
Here, it is assumed that the control input vector u, under the influence of which 
the robot moves, is constituted of two control inputs, the steering angle command 

(s) and the velocity at which the rear wheel is driven (w). Hence, Tsw ][   u = . So 

the state estimates can be obtained by employing wheel encoder odometry and the 
robot kinematic model. The control inputs w and s must be considered with their 
uncertainties involved (e.g. uncertainties due to wheel slippage, incorrect 
calibration of vehicle controller) and these are modeled as Gaussian variations in 
w and s from their nominal values.  Hence, the prediction step calculates the 
projections of the state estimates and the error covariance estimates from sampling 
instant k to (k+1), given as: 
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where fv estimates the robot pose on the basis of the motion model and the control 
inputs. Based on the odometric equation of the mobile robot under consideration 
here, which assumes that the incremental movement of the robot is linear in 
nature, fv can be represented as [42]: 
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where, WB represents the wheelbase of the robot and Δt is the sampling time.  The 
Jacobians and Uk, the covariance matrix of u are given as: 
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Here, mx̂ and Pm in (7.9) and (7.10) remain constant with time, as the features are 

assumed to remain stationary with time. 

ii) Measurement Update (“Correct”) Step 
Let us assume that we observe a feature, which already exists in the feature map, 

whose position is denoted by that of the ith feature i.e. )ˆ ,ˆ ( ii yx . For the system 

under consideration [7], [42], it is assumed that the feature observation is carried 
out using 2-D scanning range laser (SICK PLS), a range-bearing sensor, which 
nowadays is very popular in mobile robot navigation, for distance measurement. It 
is assumed that the laser range scanner is mounted on the front bumper of the 
vehicle and the laser returns a 180° planar sweep of range measurements in 0.5° 
intervals. The range resolution of such a popular sensor is usually about ±50 mm. 
In this context, it should be mentioned that the vehicle is also assumed to be 
equipped with wheel and steering encoders. The distance measured, in polar form, 
gives the relative distance between each feature and the scanner (and hence the 
vehicle). Let this feature be measured in terms of its range (r) and bearing (θ) 
relative to the observer, given as: 

Tr ]   [ θ=z     (7.15) 

The uncertainties in these observations are again modeled by Gaussian variations 
and let R be the corresponding observation/measurement noise covariance matrix 
given as: 
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where we assume that there is no cross-correlation between the range and bearing 
measurements. In the context of the map, the measurements can be given as: 
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Now the Kalman gain Wi can be calculated assuming that there is correct 

landmark association between z and )ˆ ,ˆ ( ii yx and the following computations can 

be resorted to: 
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where iν denotes the innovation of the observation for this ith landmark and Si the 

associated innovation covariance matrix. The Jacobian 
1+

∇
k

xh is given as: 

 
−

+
∂

∂
=

+
∇

1
ˆ1

k
k

i

k x
x

h

xh    (7.21) 

Hence, the a posterior augmented state estimate and the corresponding covariance 
matrix are updated as: 
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Here it should be remembered that in addition to the process and measurement 
uncertainties, there is an additional uncertainty due to linearization involved in the 
formulation of an EKF. The “time update” and “measurement update” equations 
are obtained by employing linearization of nonlinear functions f(•) and h(•) about 
the point of the state mean. This linearization is obtained by employing a Taylor 
series like expansion and neglecting all terms which are of higher order than the 
first order term in the series. This manner of approximating a nonlinear system by 
a first order derivative introduces this additional source of uncertainty in EKF 
algorithm. In fact, for highly nonlinear functions, these linearized transformations 
cannot sufficiently accurately approximate correct covariance transformations and 
this may lead to highly inconsistent uncertainty estimate. Under those situations 
unscented transform may provide more accurate results. 

iii) Initialization of a new feature and deletion of an old feature 
During this iterative procedure of performing prediction and update steps 
recursively, it is very likely that observations of new features are made time to 
time. Then these new features should be initialized into the system by 
incorporating their 2-D position coordinates in the augmented state vector and 
accordingly modifying the covariance matrix. These features, identified by the 



7.2   Extended Kalman Filter (EKF) Based Stochastic SLAM Algorithm 175
 

LRS, may correspond to points, lines, corners, edges etc. In this work, we have 
considered that the features are point like features, each representing a unique 
distinct point in the two-dimensional map of the environment. Resorting to the 
mathematical computations as shown in [7], these new +

kx̂  and +
kP can be 

calculated as: 
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Here ),ˆ( zxf vf is employed to convert the polar observation z to the base 

Cartesian coordinate frame. The Jacobians are calculated as: 
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The deletion of unreliable features is a relatively simple matter. We only need to 
delete the relevant row entries from the state vector and the relevant row and 
column entries from the covariance matrix. 

Now, it is quite common that when an observation step is carried out, there will 
be multiple number of landmarks visible at the same time and hence, several 
independent observations will be carried out. In our system, we have assumed that 

a batch of such observations is available at once (i.e. T
nnrr ] , [ ,1,1 θθ =z ) 

and updates are carried out in batches. This is in conformation with the arguments 
placed in [7] which indicate that an EKF algorithm tends to perform better update 
steps for SLAM algorithms, if the innovation vector ν consists of multiple 
observations simultaneously. Hence, in the context of this batch mode of 
observation and update procedure, the corresponding SLAM algorithm is based on 
composite ν, S and W vectors/matrices and the sizes of these vectors/matrices 
keep changing with time because at any instant of observation, the total number of 
visible landmarks keep changing. 
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7.3   Neuro-fuzzy Assistance for EKF Based SLAM 

Most of the works reported in the area of adaptive Kalman filters have so far 
concentrated on utilizing new statistical information from innovation sequence to 
correct the estimation of the states. Our approach for adapting the EKF is based on 
the innovation adaptive estimation (IAE) approach, which was originally proposed 
in [28] and later utilized in combination with fuzzy logic in [37]. The basic 
concept relies on determining the discrepancy between a new measurement zk and 

its corresponding predicted estimation kẑ , at any arbitrary kth instant, and 

utilizing this new information to correct the estimations/predictions already made. 
The adaptation strategy is based on the objective of reducing mismatch between 
the theoretical covariance of the innovation sequences (Sk) and the corresponding 

actual covariance of the innovation sequences ( InnkĈ ). In our SLAM algorithm, 

Sk is calculated using (7.19) where the right hand side of the equation is made 

consistent with the concept of batch mode of observation and update. InnkĈ  can 

be calculated as: 

 InnkĈ = νk νk
T     (7.27) 

where νk denotes the augmented innovation sequence, made consistent with the 
batch mode. According to [37], this covariance should be calculated on the basis of 
a moving average of νk νk

T over an appropriate moving estimation window of size 
M. However, for the SLAM problem, the size of the augmented νk keeps changing 
from time to time. This is because it is dependent on the number of landmarks 
observed in any given observation and update step, which were all observed at 

least once before. Hence we employ (7.27) to calculate InnkĈ  rather than using a 

moving average. Therefore, the mismatch at the kth instant, is given as: 

kInnkInnk SCC −=Δ ˆˆ    (7.28) 

Our objective is to minimize this mismatch employing fuzzy logic. This is carried 
out, by employing a one-input-one-output neuro-fuzzy system for each diagonal 

element of the InnkĈΔ  matrix. These fuzzy rules are employed to adapt the R 

matrix, so that the sensor statistics is adapted for subsequent reduction in 

mismatch InnkĈΔ . The complete EKF-based SLAM algorithm, employing the 

neuro-fuzzy assistance, is presented in algo. 7.1. The system is designed with a 
sampling time of 25 msec. between successive control input signals. 
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1. IF All waypoints are traversed, THEN Stop ENDIF. 
2. Compute distance of the robot from the current waypoint.  

     IF (distance < minimum distance allowed from any waypoint), 
          THEN switch to next waypoint as the current waypoint ENDIF. 

3. Compute change in steering angle (Δs) to point towards the current waypoint 
and then, new value of steering angle (s) (satisfying the constraints of max. rate of 
steering change (Δsmax) and max. steering angle (smax)). 
4. Move the robot and determine its actual pose. 
5. Perform EKF prediction step, in accordance with (7.7) to (7.10). 
6. IF (Time_for_Observation is TRUE), THEN go to step 7. ELSE go to step 1. 
ENDIF. 
7. Determine the set of visible landmarks from the current actual robot position. 
Compute actual range-bearing observation for each of them. Separate those 
observations based on already observed landmarks and newly observed landmarks 
(if any). 
8. Predict range-bearing observations, for already observed landmarks in step 7, 
on the basis of augmented total state vector, predicted in step 5. 
9. Compute augmented innovation sequence (ν) for already observed landmarks, 
on the basis of actual and predicted observations, employing (7.14), adapted for 
batch-mode situations.  
10. Compute corresponding augmented measurement noise covariance matrix R 
(utilizing the original [2 × 2] R matrix) and augmented linearized observation 
model h, adapted for batch-mode situations. 
11. Compute augmented S, on the basis of the augmented R and h and employing 
(7.15), adapted for batch-mode situations. 
12. Update the a posterior state estimate vector and error covariance matrix, 
according to (7.18) and (7.19). 

13. Compute InnkĈ  and InnkĈΔ , according to (7.23) and (7.24) respectively, 

and determine the size of InnkĈΔ , i.e. ]ˆˆ[ , colsrows CC ΔΔ . 

14. Determine the absolute maximum value of mismatch among the range 

observations ( mismatchrangeInnk __ĈΔ ) and the bearing observations 

( mismatchbearingInnk __ĈΔ ) separately from the corresponding diagonal entries of 

the InnkĈΔ  matrix. 

15. FOR  j = 1 to rowsĈΔ ,  

Normalize the corresponding diagonal entry ),(ˆ jjInnkCΔ  by the 

appropriate 

mismatchrangeInnk __ĈΔ  or mismatchbearingInnk __ĈΔ . 
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Determine the corresponding ),( jjRΔ  output from the NFS, with the 

normalized ),(ˆ jjInnkCΔ  input to it. 

ENDFOR 

16. Determine 2
rσΔ  as a mean of those ),( jjRΔ entries, which correspond to 

range measurements. 

17. Determine 2
θσΔ  as a mean of those ),( jjRΔ entries, which correspond to 

bearing measurements. 

18. Adapt the original 2×2 R matrix as: Rk = Rk-1 + 








Δ
Δ

2

2

0

0

θσ
σ r . 

19. IF (new feature(s) observed in step 7),  
THEN augment state vector and error covariance matrix, according to (7.20), 

(7.21) and (7.22). 
ENDIF 

20. Go to step 1. 
 

Algo. 7.1. The neuro-fuzzy assisted EKF based SLAM algorithm 

From algo. 7.1, it can be seen that each Neuro-Fuzzy System (NFS) employs a 
nonlinear mapping of the form: )),((),( ˆ jjfjj InnkNFS CR Δ=Δ  where ),( jjRΔ  

corresponds to an adaptation recommended for the corresponding diagonal 
element of the augmented measurement noise covariance matrix R matrix, 
computed according to the batch-mode situation. This augmented matrix is 
calculated each time an iteration enters into the observe and update step and its 
size is determined on the basis of the total landmarks visible in the observe step. 
To make it consistent with the batch of observed landmarks that were already 
visited at least once earlier, the size of this augmented R is [2zf × 2zf] where zf is 
the number of landmarks observed in that iteration, which were also observed 
earlier. This augmented R is formed utilizing the original [2 × 2] R matrix and this 
is formulated as: 
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Here, 2
rσ  and 

2
θσ  correspond to the sensor statistics computed for that iteration. 

It can be seen that the augmented R matrix comprises of diagonal elements only 
and all the off-diagonal elements are considered to be zero. This is in 
conformation with our assumptions presented beforehand, in section 7.2, that the 
range and the bearing measurements are independent of each other and there is no 
cross-correlation between these measurements.  The size of this augmented R 
matrix keeps changing in different iterations, as the number of already visited 
landmarks observed again in a given iteration keeps varying from iteration to 

iteration. The size of this augmented R is consistent with that of the InnkĈ  and 

hence, InnkĈΔ . 

With the idea of implementing the same NFS for each and every diagonal 
element of the augmented R matrix, we employ normalized input for each NFS. 
The NFS practically employs three fuzzy IF-THEN rules of the form: 

 IF ),(ˆ jjInnkCΔ  is N  THEN ),( jjRΔ  = w1,             

IF ),(ˆ jjInnkCΔ is Z  THEN ),( jjRΔ = w2    and 

IF ),(ˆ jjInnkCΔ is P  THEN ),( jjRΔ  = w3.    

w1, w2 and w3 indicate the amount of fuzzy adaptation recommended in form of a 
diagonal element of the ΔR matrix, depending on the nature of the fuzzified 
mismatch in the corresponding diagonal element of the InnkĈΔ  matrix. 

However, the order of mismatch may be different for range and bearing 
observations and this may depend on how poorly (or accurately) the sensor 
statistics for range and bearing observations are individually known. Hence we 
employ normalized inputs corresponding to range and bearing observations 

separately, on the basis of appropriate computations of mismatchrangeInnk __ĈΔ  

and mismatchbearingInnk __ĈΔ , as given in algo. 7.1. Then with these normalized 

inputs, the NFS enables us to compute ),( jjRΔ  for each diagonal entry. Finally 

we compute the adaptations i.e. 2
rσΔ  and 2

θσΔ  required for the original [2 × 2] 

R matrix on the basis of appropriate means, separately computed from the arrays 
of ),( jjRΔ  entries for range and bearing observations. This adapted original [2 

× 2] R matrix is kept ready for the next appropriate iteration, when EKF will enter 
the observation and update step, and will be utilized for subsequent formation of 
augmented R matrix and so on. Then, each observation and update step is 
concluded by augmenting the state vector and the corresponding covariance 
matrix, by employing (7.24)-(7.26), if there are new feature(s) observed during 
this observation step. 
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7.4   The Neuro-fuzzy Architecture and Its Training 
Methodology Employing Particle Swarm Optimization 
(PSO) 

7.4   The Neuro-fuzzy Architecture and Its Training  Methodology  

7.4.1   Architecture of the Neuro-fuzzy Model 

The neuro-fuzzy model has been developed as a one-input-one-output system. The 
four-layer architecture is shown in Fig. 7.1. Let ui

l and Oi
l respectively denote the 

input to and output from the ith node of the lth layer.  

1w

Σ
3w

2w

N

Z

P

K

Π ΔRk(j,j)ΔCInnk(j,j)

 

Fig. 7.1. Four-layer architecture of the proposed neuro-fuzzy system. (Reproduced from 
[44] with permission from the IEEE. ©2007 IEEE.). 

1) Layer 1: Input Layer 
This layer comprises a single node, signifying the single input variable. The input-
output relation of this node is: 

O1 = u1 = ),(ˆ jjInnkCΔ                                             (7.30) 

2) Layer 2: Membership Function Layer 
Here, the input variable is fuzzified employing three Membership Functions 
(MFs), negative (N), zero (Z) and positive (P). Figure 7.2 shows these MFs where 
Nv and Nb respectively denote the right vertex and right base points of the MF N, 
Zbl, Zvl, Zvr and Zbr respectively denote the left base, left vertex, right vertex and 
right base points of the MF Z and  Pb and Pv respectively denote the left base and 
left vertex points of the MF P. The output of the ith MF is given as:  

Oi
2 = μi(u

1) = μi( ),(ˆ jjInnkCΔ )                              (7.31) 

3) Layer 3: Defuzzification layer 
This layer performs defuzzification where the defuzzified output is calculated as 
an weighted average of all its inputs. Hence the output from the solitary node in 
this layer can be calculated as: 
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0

 
Fig. 7.2. Membership functions employed in Fig. 7.1. (Reproduced from [44] with 
permission from the IEEE. ©2007 IEEE.). 

4) Layer 4: Output Layer 
This layer performs a suitable scaling for the defuzzified output. The input-output 
relationship of the node in this layer is given as: 

344 OKuKO ∗=∗=             (7.33) 

7.4.2   Training the Neuro-fuzzy Model Employing PSO 

This neuro-fuzzy model is trained to determine the suitable free parameters of the 
system i.e. the parameters of the MFs, the output consequence singletons and the 
output gain. However, the training cannot be accomplished in the conventional 
supervised mode, as the exact desired output, for a given input, is not quantitatively 
known. Hence, normal backpropagation kind of training methodology cannot be 
resorted to and it is suitable to apply stochastic global optimization algorithms for 
such systems in an unsupervised manner. There are several such candidate 
algorithms available now. In this section we describe how PSO can be suitably 
employed for this purpose. PSO is a relatively new algorithm [40], [41], that is 
based on the swarm behaviors of birds or fishes. The training of the neuro-fuzzy 
system is accomplished as a high-dimensional metaheuristic optimization problem, 
where the objective is to optimize a fitness function ),,( 21 nfit xxxf   on the 

basis of the values of the variables nxxx ,, 21 .  

In a PSO problem, several such candidate solutions of nxxx ,, 21  are 
created in a multi-dimensional space (called “particles”) and the suitability of each 
of them is evaluated in each iteration. For the problem under consideration here, 
each such potential “particle” is formed as a 12-dimensional vector x = 

[ 1221   xxx  ]T, as shown in Fig. 7.3. Each “particle” i is characterized by the 

vectors denoting its position (xi) and its velocity (vi) at the current time step. In 
order to pursue the optimum of the fitness function (ffit), velocity vi and hence 
position xi of each particle is adjusted in each time step. The updated velocity  
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in each time step vinew is a function of three major components: the old velocity 
vector of the same particle (viold), difference of the ith particle’s best position 
found so far (called pi) and the current position (xi) (called the “cognitive” 
component) and difference of the best position of any particle within the context 
of the topological neighborhood of ith particle found so far (called pg) and current 
position of the ith particle (xi) (called the “social” component) [40, 41]. Each of 
the last two components is stochastically weighted so that the updating in the 
velocity of each particle will cause enough oscillations, allowing each particle to 
search for a better pattern within the problem space. Hence, the velocity and 
position update relations, in the dth dimension, are given as:  

vidnew =     vidold + ϕi(pid – xid) + ϕg(pgd – xgd)                       

          IF (vidnew > vdmax) THEN vidnew = vdmax  ENDIF                                                   

IF (vidnew < -vdmax) THEN vidnew = -vdmax  ENDIF                                                  

         xidnew = xidold + vidnew                                                                              

         vidold = vidnew                                                                                           

         xidold = xidnew                                                                                         (7.34) 

ϕi and ϕg are responsible for introducing stochastic weighting and they are given 
as ϕi = ci*rand1( ) and ϕg = cg*rand2( ). rand1( ) and rand2( ) are two random 
functions in [0, 1] and ci and cg are positive constants. A popular choice for ci and 
cg is ci = cg = 2. This traditional PSO model shows quick, aggressive convergence 
during the early phase but often encounters problem in fine tuning the search to 
determine the supreme solution. Hence, in our algorithm we have employed an 
improved version of this PSO algorithm that utilizes a judicious mix of aggressive, 
coarse updating during early iterations and fine updating during later iterations 
[40]. Hence the velocity update rule is given as 

vidnew = witer (vidold) + ϕi(pid – xid) + ϕg(pgd – xid)        (7.35) 

with the position update rule remaining unchanged as given before. w is called the 
inertia weight which is initially kept high and then gradually decreased over the 
iterations so that it can initially introduce coarse adjustment in velocity updating 
and gradually fine changes in velocity updating takes over. In our algorithm, we 
have utilized linearly adaptable inertia weight and witer gives the value of the 
inertia weight at that given iteration. The iterative process is continued until the 
optimization process yields a satisfactory result. This is evaluated on the basis of 
whether the value of ffit falls below the specified maximum allowable value or 
whether the maximum number of iterations has been reached.  A detailed 
description of the PSO algorithm is available in [40, 41].  
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Nv Nb Zbl Zvl Zvr Zbr Pb Pv w1 w2 w3 K
 

Fig. 7.3. Detailed configuration of each 12-dimensional “particle” employed by PSO. 
(Reproduced from [44] with permission from the IEEE. ©2007 IEEE.). 

In our approach, the objective of the neuro-fuzzy assistance to the EKF based 
SLAM is to improve the estimation performance as much as possible. This means 
we should try and minimize the discrepancy between actual covariance and the 
theoretical covariance of the innovation sequence over the entire set of 
observation instants, during the movement of the vehicle/robot, as much as 
possible. Hence the fitness function is formulated on the basis of: a) computing 
the mean-square value of all the diagonal entries of the ΔCInnk matrix at any given 
observation instant, b) storing such mean-square values for each observation 
instant during an on-going iteration and c) computing a mean of all such mean-
square values for all observation instants at the end of a complete iteration. 
Mathematically this can be shown as: 
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where Nobs denotes the total number of observation instants in a given iteration and 
JC_nobs denotes the total number of diagonal elements of ΔCInnk matrix when the 
nobsth observation is made.  

In the context of adapting a meaningful NFS, the positions of each “particle”, at 
the end of each iteration, are subjected to several constraints. Most of these 
constraints are implemented to maintain specific shapes chosen for the MFs 
(usually trapezoidal, which as a special case can become triangular) and also to 
ensure that there is some overlapping between the stretches of consecutive MFs. 
Another constraint included is that, for each MF, its control points (starting from 
left to right) should be chosen in a monotonically nondecreasing fashion. This will 
ensure that all regions, within the universe of discourse of the input for the NFS, 
will remain covered by at least one MF. These constraints are implemented as: 

 IF ( Nb < Nv) THEN  Nb = Nv ENDIF 
  IF ( Zvl < Zbl) THEN  Zvl = Zbl ENDIF 
  IF ( Zvr < Zvl) THEN  Zvr = Zvl ENDIF 
  IF ( Zbr < Zvr) THEN  Zbr = Zvr ENDIF 
  IF (Pv < Pb) THEN  Pv = Pb ENDIF 

  IF ( Nb < Zbl) THEN  Nb = Zbl ENDIF 
 IF ( Zbr < Pb) THEN  Zbr = Pb ENDIF          (7.37) 
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Another constraint is implemented to signify that the scaling employed in the 
output layer of the NFS is employed for magnitude scaling only, and hence it 
cannot be employed for changing polarity. It means that K cannot become 
negative. 

7.4.3   Performance Evaluation 

To evaluate the performance of the proposed system, we have considered various 
environments, which are available in [42]. In fact the packages available in [42] 
should serve as an excellent platform for learning and analysis of existing Kalman 
filter and particle filter based SLAM algorithms. Researchers can develop their 
own algorithms and can compare their performance vis-à-vis these algorithms. 
Several benchmark environments are available there and we have tested our 
algorithm in these simulated environments with their associated given vehicle 
motion model. The environment is usually specified in such a manner where a 
vehicle/robot is supposed to navigate through some waypoints and in the process 
should be able to acquire the map of the environment with several configurations 
of feature/landmark points. In the present scheme, we consider three such 
environments as specified in [42]. In each case we have the identical scene of 
ideal robot movement where the robot path is specified by 17 waypoints. 
However, each environment consists of varied number of landmarks to impose 
several degrees of complexities and the three environments under consideration 
consist of 35, 135 and 497 landmarks respectively. The uncertainties in control 
inputs are specified as: σw = 0.3 m/sec. and σs = 3 deg. An observation step and 
the associated update step is carried out after eight consecutive prediction steps, 
identical with the EKF based algorithm in [42]. This follows a popular notion in 
EKF-based SLAM community, where instead of employing an observation and 
update step after each prediction step, one computes several consecutive 
prediction steps, and then takes corrective action by one observation and update 
step. This helps in reducing the computational burden of the SLAM algorithm. In 
algo. 7.1, this is indicated by the Time_for_Observation flag, which is set TRUE 
for one iteration, after each 8 successive iterations. 

The performance of the proposed system is compared with a conventional 
EKF-based SLAM system where the Q and R matrices are kept static throughout 
the experiment. The proposed algorithm starts with the same Q and R matrices, 
but it keeps adapting the R matrix according to the proposed scheme. According 
to the data available from [42], the EKF based algorithm works perfectly when 
sensor statistics are known as: 1.0=rσ  m. and 1=θσ deg. First we consider 

the situation where the sensor statistics are wrongly considered as: 0.2=rσ  m. 
and 1.0=θσ deg. In each figure, the firm lines shown in green, depict the actual 

path traversed by the robot, while the firm lines shown in black, depict the SLAM 
estimated path traversed based on estimated states of robot poses in each sampling  
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instant or iteration. The stars (∗) depict the actual landmark positions, which are 
stationary in the environment. The crosses (+) depict the positions of these 
landmarks estimated at the end of the test run. Obviously, the performance of the 
system will be superior, if the estimated robot path and actual path match as far as 
possible and the estimated landmark positions and their actual positions coincide 
as far as possible. Figure 7.4(a) to Fig. 7.4(c) shows the performance of the 
conventional EKF-based SLAM for three different environment situations. It can 
be seen that the performance is acceptable when there are small number of 
landmarks in the environment. However, the performance became really bad when 
the landmarks became denser and both the estimations of the robot pose at 
different instants and the map acquired degraded significantly as the EKF 
estimations are quite distant from the original robot positions and the map 
situation. Figure 7.5(a) to Fig. 7.5(c) show the situations when the neuro-fuzzy 
assisted EKF-based SLAM is employed for identical environments. It can be seen 
that the neuro-fuzzy assistance could improve the situation dramatically and the 
estimates of the robot states as well as acquisition of the map was quite stable for 
all three different environments with varied number of landmarks. In all these 
environments, the robot position estimates follow the actual robot positions 
closely and the estimation of the stationary landmark positions also closely 
matches with their actual positions in the environments. 

The scheme was further tested for another situation where the sensor statistics 
are wrongly considered in opposite directions and they are considered as 

01.0=rσ  m. and 0.3=θσ deg. Then the same set of algorithms was employed 

for identical set of environments. Figure 7.6(a) to Fig. 7.6(c) show the 
performances of the conventional EKF-based SLAM and Fig. 7.7(a) to Fig. 7.7(c) 
show the corresponding performances of the neuro-fuzzy assisted EKF-based 
SLAM algorithms. In these case studies, the EKF-based SLAM shows a different 
trend in performance. As we can see, the estimation performance is worst for the 
environment containing small number of landmarks. However, with increase in 
landmarks, the estimations became more accurate and for the situation with 497 
landmarks, the performance of the EKF-based SLAM was quite satisfactory. On 
the other hand, the neuro-fuzzy assisted EKF showed uniformly stable 
performance for each environment with quite accurate estimations of robot poses 
and feature positions for each environment situation. Each result, shown in Fig. 
7.5(a) to Fig. 7.5(c) and Fig. 7.7(a) to Fig. 7.7(c), for the neuro-fuzzy assisted EKF 
based SLAM depicts one sample run conducted. For each of these six specific 
situations of two case studies, we conducted 10 individual runs. It was found that, 
for each given situation, results obtained with each of 10 individual runs, were 
very close to each other. These case studies further prove that the neuro-fuzzy 
assistance can vastly improve the degrading performance of the traditional EKF 
algorithm in several situations, when the sensor statistics are wrongly known. In 
these situations, the performance of the conventional EKF becomes highly 
unreliable. However, presence of neuro-fuzzy assistance can help the EKF to  
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maintain a stable performance and this performance has been shown robust 
enough over several environment situations, with several wrong knowledge of 
sensor statistics. 

For the neuro-fuzzy assisted EKF based SLAM, the training of the neuro-fuzzy 
system, for each case study as described before, was carried out in offline situation 
on the basis of the data gathered by the robot for a given environment situation. 
For our experimentation, we implemented the training procedure, for each case 
study, for the environment containing 135 landmarks. Once the training of the 
neuro-fuzzy system was completed (on the basis of a given configuration of  
the landmarks) and the free parameters of the NFS were suitably determined, the 
trained NFS-based EKF was implemented for robot navigation through the 
waypoints for several configuration of landmarks as described before (i.e. 
environments with 35, 135 and 497 landmarks). Table 7.1 details these parameters 
employed for the PSO algorithm employed for training the NFS. Here, the 
dimensions of each particle, which are employed to learn the control points of the 
MFs of the NFS (i.e. [ 821   xxx  ]), are all initialized with their positions within 

the range [-1, 1]. This is done in conformation with the normalization procedure 
that works in conjunction with the NFS. The prospective weights associated with 
the layer 3 of the NFS (denoted by the dimensions x9, x10 and x11 of the PSO 
algorithm) are all initialized with their positions within the range [-2, 2]. The 
prospective gain K associated with the layer 4 of the NFS (denoted by  
the dimension x12 of the PSO algorithm) is initialized with its position within the 
range [0, 2], because it is assumed that K is a non-negative quantity. Each time, 
the termination criterion for the PSO algorithm was set for a maximum number of 
iterations (maxiter) of 20. For the case study with initial sensor information 

0.2=rσ  m. and 1.0=θσ deg, the learned parameters of the NFS at the 

completion of the training procedure are: 

[ 1221   xxx  ] = [-0.2008 –0.0626 –0.0626 –0.0626 0.0820 0.5961 0.3224 

0.4002 –0.0086 1.5801 –0.9729 0.0011] 

and for the case study with initial sensor information 01.0=rσ  m. and 

0.3=θσ  deg., the learned parameters of the NFS are: 

[ 1221   xxx  ] = [-0.4570 0.5242 0.4805 0.9741 0.9741 0.9741 –0.4290 

0.2413 –0.0024 –0.8762 1.3561 0.2907].  

In each case, it can be seen that these learned parameters satisfied those 
constraints presented in (7.37).  
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Fig. 7.4. Conventional EKF-based SLAM performance for case study I ( 0.2=rσ  m. 

and 1.0=bσ deg.) with (a) 35, (b) 135 and (c) 497 features/landmarks in the 

environment. (Reproduced from [44] with permission from the IEEE. ©2007 IEEE.). 
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Fig. 7.4. (continued) 
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(a) 

Fig. 7.5. Neuro-fuzzy assisted EKF-based SLAM performance for case study I 
( 0.2=rσ  m. and 1.0=bσ deg.) with (a) 35, (b) 135 and (c) 497 features/landmarks 

in the environment. (Reproduced from [44] with permission from the IEEE. ©2007 IEEE.). 
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Fig. 7.5. (continued) 
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(b) 

Fig. 7.6. Conventional EKF-based SLAM performance for case study II ( 01.0=rσ  m. 

and 0.3=bσ deg.) with (a) 35, (b) 135 and (c) 497 features/landmarks in the 
environment. (Reproduced from [44] with permission from the IEEE. ©2007 IEEE.). 
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Fig. 7.6. (continued) 

-100 -50 0 50 100

-80

-60

-40

-20

0

20

40

60

80

metres

m
et

re
s

 
(a) 

Fig. 7.7. Neuro-fuzzy assisted EKF-based SLAM performance for case study II 
( 01.0=rσ m. and 0.3=bσ deg.) with (a) 35, (b) 135 and (c) 497 features/landmarks 

in the environment. (Reproduced from [44] with permission from the IEEE. ©2007 IEEE.). 
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Fig. 7.7. (continued) 
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Table 7.1. The PSO parameters employed 

Sl. No. Parameter descriptions Parameter values for 
case study (i) 

Parameter values for 
case study (ii) 

1 No. of particles (N) 40 40 
2 No. of dimensions (D) 12 12 
3 Initial inertia weight (Winitial) 0.9 0.9 
4 Slope of inertia weight (ΔW) 2.5e-4 2.5e-4 
5 Initialization range for MFs (x1, 

x2, … x8) 
[-1, 1] [-1, 1] 

6 Initialization range for weight 
factors (x9, x10, x11) 

[-2, 2] [-2, 2] 

7 Initialization range for gain (x12) [0, 2] [0, 2] 
8 Maximum permissible velocity 

for MFs  
(v1max, v2max, … v8max) 

0.3 0.1 

9 Maximum permissible velocity 
for weight factors (v9max, v10max, 
v11max) 

1.0 0.5 

10 Maximum permissible velocity 
for gain (v12max) 

1.0 0.5 

7.5   Training a Fuzzy Supervisor Employing Differential 
Evolution (DE) Based Optimization 

7.5   Training a Fuzzy Supervisor Employing Differential Evolution  

In the previous section we demonstrated how PSO can be utilized to train a 
fuzzy/neuro-fuzzy supervisor for successful supervision of an EKF based SLAM 
system. Logically speaking, the idea can be extended to employ other evolutionary 
algorithms too for similar fuzzy/neuro-fuzzy based supervision purpose. Hence we 
implemented a similar fuzzy supervisor employing differential evolution (DE), 
another popular evolutionary algorithm known, for similar types of problems [45]. 
In DE, like many other population based global optimization methods, several 
candidate solutions, each containing a possible solution vector for the optimization 
problem under consideration, are created simultaneously in the multi-dimensional 
search space and each one of them is individually evaluated in terms of its fitness 
function, which indicates the degree of suitability of that particular candidate 
solution to evolve as the best possible solution. This process is continued in an 
iterative fashion, where new vectors, i.e. possible candidate solutions, are created 
from the candidate solutions in the previous generation, in quest for generation of 
better and better solutions, which can be quantitatively evaluated by fitter and fitter 
fitness function values. Several mathematical strategies can be employed to create 
new candidate vectors for the current generation, based on the old candidate vectors 
of the previous generation. At the end of each generation, the candidate solution 
providing the fittest fitness function value (usually the minimum value) emerges as 
the best possible solution. This iterative process continues until the fittest fitness 
function value (usually the minimum value) for the best solution vector in a 
generation falls below the maximum permitted fitness function value for that 
optimization process or when the maximum number of generations is reached.  

Let us consider that, in the basic variant of DE, utilized for minimizing a cost 
function f(x) on the basis of D-dimensional x, NP number of such candidate 
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solutions of ( )Dxxx ,, 21  are created in the D-dimensional space and the 

suitability of each of them is evaluated in each generation G. The initial 
population is generated in a random fashion and the objective is that the generated 
vectors should try to cover the entire search space as far as practicable. Each ith 
vector for the (G+1)th generation is created by adding the weighted difference 
between two population vectors to a third vector, all these three vectors pertaining 
to the Gth generation. This can be shown by the following formula [46],[47]: 

, , , ,( )i G r G r G r Gν x F x x+ = + −
1 2 31                        (7.38) 

where NPi ,,2,1 = . Here [ ]NPrrr ,1,, 321 ∈  and they are all mutually 

different. F is a constant weighting factor and usually [ ]2,0∈F . This factor 

influences the amplification of the difference )( ,, 32 GrGr xx − .  

To increase diversity in the newly generated vector, the method of crossover is 
introduced. This crossover operation generates a new vector ui,G+1, from the newly 
generated perturbed vector νi,G+1 and the old vector xi,G. In the basic variant of DE, 
this new vector is generated as [11,12]: 

( )1,1,21,11, ,, ++++ = GDiGiGiGi uuuu   with 

[ ]
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ν      (7.39) 

Here, n is a randomly chosen integer, [ ]Dn ,1∈ , and it determines the starting 

index for the crossover. The length or duration of crossover, in this basic variant 
of DE, is also an integer drawn from the interval [1,D], and is based on the chosen 
crossover probability, [ ]1,0∈CR . These n and L values are chosen afresh for 

each ui,G+1. 
Now, if the new vector ui,G+1 can yield a smaller value for the fitness function, 

then this vector becomes the new xi,G+1 for the (G+1)th generation. Otherwise we 
keep xi,G+1= xi,G. 

7.5.1   Performance Evaluation 

The performance of DE optimized fuzzy supervisor based solution for the SLAM 
problems has also been tested by creating an environment in simulation, utilizing 
the package available in [42], as done in our previous set of case studies. For the 
new set of case studies, we consider a different environment and two sets of 
incorrect knowledge of sensor statistics as: (a) 01.0=rσ  m. and 

0.10=bσ deg. and (b) 01.0=rσ  m. and 0.15=bσ deg. For these situations, 
the performances exhibited by the conventional EKF-based SLAM [42] are shown 
in Fig. 7.8(a) and Fig. 7.8(b). It can be seen that the estimated robot path deviates 
a lot from the ideal path and also the estimated positions of many landmarks are 
quite far away from their actual positions. However, when our DE-optimized 
fuzzy supervisor based system was employed for each of these two case studies, 
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the fuzzy supervision could improve the performance quite markedly, in each 
case, as depicted in Fig. 7.9(a) and Fig. 7.9(b). For the fuzzy supervised algorithm, 
the estimated robot paths deviated much less from the ideal robot paths. In this 
scheme, the free parameters of the fuzzy supervisor are learnt by implementing 
differential evolution with D = 11 and employing binomial crossover. The variety 
of the DE algorithm employed is a popular variant, known as the “DE/rand/1” 
scheme [46], [47]. However, this variant differs slightly from the original 
“DE/rand/1” scheme, because here the random selection of vectors is performed 
by shuffling the array containing the population so that a given vector does not get 
chosen twice in the same term contained in the perturbation expression [48]. It can 
also be seen that, for each case study, the estimated positions of the landmarks are 
in closer agreement with their actual positions, than the systems utilizing 
conventional EKF-based SLAM algorithms.  

The results shown in Fig. 7.9 are obtained in the implementation phase, using 
the fuzzy supervisors trained by the DE algorithm, with the chosen control 
parameters NP = 20, F = 0.1, CR = 0.5. Like most other stochastic global 
optimization methods, the performance of the differential evolution strategy too 
varies with the choice of these free parameters. Hence proper choice or fitting of 
these parameters is crucial. According to the general guidelines proposed in [46], 
for many applications, choices of NP = 10*D, F ∈ [0.5, 1] and CR ∈ [0, 1] but 
much lower than 1, are considered to be good choices. Among these factors, F is 
considered to be the most crucial control parameter and NP and CR are considered 
less crucial ones. Hence, in order to find the best performance of DE, it was 
considered to carry out simulations for various values of these control parameters 
and to observe their corresponding performances, for the case study with sensor 
statistics ( 01.0=rσ  m. and 0.15=bσ deg.). At first, NP and CR are kept 
fixed at 20 and 0.5 respectively and varied F for a number of values in the range 0 
to 1 and for each case the fuzzy supervisor was trained separately.  Although, 
according to the general guideline NP should have been chosen as 10*11=110, 
this would have increased the computational burden of the training procedure 
enormously. Hence, with the objective of keeping the computational burden 
reasonably low, the optimization procedure was attempted with an NP value of 20.  
Here when F was varied, it was found that better and better performance of the 
overall system could be achieved in the implementation phase if we use smaller 
values of F. It was found that the best performance was achieved with F = 0.1 and 
with lower values of F the performance degraded a little while with higher values 
of F the degradation was significant. Figure 7.10(a) to Fig. 7.10(c) show the 
corresponding performances of the system in the implementation phase with  
the trained fuzzy supervision for F = 0.05, F = 0.1 and F = 0.5. Figure 7.11 shows 
the RMS errors in estimating x̂ , in the implementation phase, at each sampling 
instant with an incremental movement of the robot, for this series of case studies 
with five representative values of F. It can be easily concluded that the training 
process conducted with F = 0.1 produced the best result for these 
experimentations. 

With this value of F, then one can proceed to determine the most suitable 
values of NP and CR. Keeping F = 0.1 and CR = 0.5, we varied NP for a series of 
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values. The objective was to obtain a reasonable performance with as small a 
value of NP as practicable, so that the computational burden is kept minimum. 
Figure 7.12 shows the RMS errors in estimating x̂ , in the implementation phase, 
at each sampling instant with an incremental movement of the robot, for this series 
of case studies with three representative values of NP = 15, 20 and 25. It was 
found that the best performance is obtained with NP = 20 and the performance 
degrades if we either increase or decrease the value of NP. Hence a value of NP = 
20 was chosen for the training procedure. Next keeping F = 0.1 and NP = 20, CR 
was varied for a series of values. It was found that the variation of CR was not that 
critical in varying the training performance of the scheme. Figure 7.13 shows the 
similar plotting of RMS errors in estimating x̂ , for this series of case studies with 
three representative values of CR = 0.4, 0.5 and 0.6. It was found that the best 
performance was obtained with CR = 0.5 although performances for other values 
of CR were quite similar in nature. Hence it could be concluded that the best set of 
control parameters of the DE for the training procedure of the fuzzy supervisor is 
obtained as NP = 20, F = 0.1 and CR = 0.5. Hence, using these parameters the 
fuzzy supervisor was trained for each case study of sensor statistics i.e. (a) with 
( 01.0=rσ  m. and 0.10=bσ deg.) and (b) with ( 01.0=rσ  m. and 

0.15=bσ deg.). Figure 7.9(a) and Fig. 7.9(b) showed the performances of those 

case studies, in the implementation phase. 
In the next phase, we present a performance comparison between the fuzzy 

supervisor tuned by DE and the fuzzy supervisor tuned by PSO. The performance 
comparison is demonstrated for the sample case study with sensor statistics 
( 01.0=rσ  m. and 0.15=bσ deg.). The popular version of PSO, employed 

using linearly decreasing inertia weight, as described in (7.35), is used for this 
purpose. To make as uniform comparison between the DE based and the PSO 
based tuning algorithms for our problem as practicable, the following factors are 
taken into consideration: (i) identical number of candidate solutions or particles 
for each algorithm (i.e. 20), (ii) identical value of maximum number of iterations 
or generations for which the optimization algorithm is run each time (taken as 10 
in this work) and (iii) identical range of initialization of each corresponding 
dimension of the initial population for each optimization algorithm. The PSO with 
inertia weight variation is normally known to perform well for benchmark 
optimization functions with initial inertia weight, Winitial, of 0.9 and slope of 
inertial weight of 2.5e-4. For our case study, we implemented PSO with Winitial = 
0.9 and employed a series of both slow decrease and aggressive decrease in inertia 
weight. Figure 7.14 shows the corresponding performance of the PSO algorithm in 
terms of the RMS errors in estimating x̂ , in the implementation phase, at each 
sampling instant with an incremental movement of the robot, for this series of case 
studies when the PSO-based training procedure was conducted with slope of 
inertia weight having values 2.0e-4, 2.5e-4, 5.0e-4, 4e-2 and 5e-2. It was found 
that the best performance was indeed obtained with the universally known 
superior value of 2.5e-4. Figure 7.15 shows a similar comparison of estimation 
performance for the best PSO-tuned and best DE-tuned fuzzy supervisors for the  
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(b) 

Fig. 7.8. Performance of the conventional EKF-based SLAM under incorrect knowledge of 
sensor statistics: (a) with ( 01.0=rσ  m. and 0.10=bσ deg.) and (b) with 

( 01.0=rσ  m. and 0.15=bσ deg.) 
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Fig. 7.9. Performance of the Fuzzy supervised EKF-based SLAM, in implementation 
phase, under incorrect knowledge of sensor statistics: (a) with ( 01.0=rσ  m. and 

0.10=bσ deg.) and (b) with ( 01.0=rσ  m. and 0.15=bσ deg.) 
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Fig. 7.10. The implementation performance of the fuzzy supervised EKF-based SLAM, 
when the DE-based training was carried out with NP = 20, CR = 0.5, and (a) F = 0.05, (b) F 
= 0.1, and (c) F = 0.5 
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Fig. 7.10. (continued) 
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Fig. 7.11. The estimation performance of the fuzzy supervised EKF-based SLAM, in the 
implementation phase, when the DE-based training was carried out with NP = 20, CR = 0.5, 
and (a) F = 0.05, (b) F = 0.08, (c) F = 0.1, (d) F = 0.15, and (c) F = 0.5 
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Fig. 7.12. The estimation performance of the fuzzy supervised EKF-based SLAM, in the 
implementation phase, when the DE-based training was carried out with F = 0.1, CR = 0.5, 
and (a) NP = 15, (b) NP = 20, and (c) NP = 25 
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Fig. 7.13. The estimation performance of the fuzzy supervised EKF-based SLAM, in the 
implementation phase, when the DE-based training was carried out with F = 0.1, NP = 20, 
and (a) CR = 0.4, (b) CR = 0.5, and (c) CR = 0.6 
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Fig. 7.14. The estimation performance of the fuzzy supervised EKF-based SLAM, in the 
implementation phase, when the PSO-based training was carried out with the slope of 
inertia weight chosen as (a) 2.0e-4, (b) 2.5e-4, (c) 5.0e-4, (d) 4e-2, and (e) 5e-2 
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Fig. 7.15. Comparison of the estimation performance of the fuzzy supervised EKF-based 
SLAM, in the implementation phase, when the fuzzy supervisor is trained by (a) DE 
algorithm and (b) PSO algorithm 
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adaptive EKF based SLAM algorithm, for the case study under consideration. It 
can be seen that the performance of the DE tuned algorithm gave less RMS errors 
in estimation, at most of the sampling instants. This procedure helps us 
demonstrating the usefulness of employing a DE-tuned fuzzy supervision for EKF 
based SLAM problems. However we would like to generally remark that this 
performance may vary depending on the environment chosen and the sensor 
statistics considered. 

7.6   Summary 

The present chapter discussed the importance of SLAM in the context of mobile 
robot navigation and, at first, described the extended Kalman filter based SLAM 
algorithms in detail. Next we considered the degradation in system performance 
when a priori knowledge of the sensor statistics is incorrect and showed how 
fuzzy/neuro-fuzzy assistance or supervision can significantly improve the 
performance of the algorithm. Usually, EKF is known as a good choice for SLAM 
algorithms when the associated statistical models are well known. However, the 
performance can become significantly unpredictable and degrading when the 
knowledge of such statistics is inappropriate. The fuzzy/neuro-fuzzy supervisor 
based system proposes to start the system with the wrongly known statistics and 
then adapt the R matrix, online, on the basis of a fuzzy/neuro-fuzzy system that 
attempts to minimize the mismatch between the theoretical and the actual values 
of the innovation sequence. The free parameters of the neuro-fuzzy system are 
automatically learned employing an evolutionary optimization based training 
procedure. The chapter showed how two popular contemporary evolutionary 
optimization techniques, namely, PSO and DE, can be utilized successfully for 
this purpose. The performance evaluation is carried out for several benchmark 
environment situations with several wrong knowledge of sensor statistics. While 
the conventional EKF based SLAM showed unreliable performance with 
significant degradation in many situations, the fuzzy/neuro-fuzzy assistance could 
improve this EKF’s performance significantly and could provide robust, accurate 
performance in each sample situation in each case study. 
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Chapter 8 
Vision Based SLAM in Mobile Robots* 

Abstract. This chapter is an extension of the previous chapter and it discusses 
how the previously discussed concept of SLAM for mobile robots can be actually 
implemented in real-life in an indoor environment. The system developed employs 
a two camera based vision system which successfully performs image feature 
identification and tracking.  

8.1   Introduction 

As mentioned in the previous chapter, the extended Kalman filter (EKF) based 
approach has been widely regarded as probably the most suitable approach for 
solving the simultaneous localization and mapping (SLAM) problem for mobile 
robots [1-7]. The basic strength of EKF in solving the SLAM problem lies in its 
iterative approach of determining the estimation and hence building of an 
augmented map of its surrounding environment through which the robot is 
directed to navigate through some waypoints. Here we assume that both the initial 
localization of the robot pose and the map to be built is unknown to us and we 
gradually build the map by considering it as an augmentation of estimated states, 
which are nothing but a collection of the positions of the features or landmarks in 
the environment, along with the robot’s pose. The estimations of these states are 
integrally associated with some uncertainties in these estimates and they are stored 
in the form of error covariance matrices. This EKF based SLAM algorithm has 
been discussed in detail in the previous chapter. In this chapter we shall now 
discuss how SLAM can be implemented in mobile robots employing vision based 
sensing.  

It is also well regarded that the real implementation of SLAM algorithm for 
practical environments to build meaningful maps is a difficult task. The accuracy 
of such a system largely depends on the sensors employed. As we already know, 
the wheel sensors suffer from wheel-slippage, sonar sensors are low resolution, 
not highly accurate systems, which also suffer from environmental disturbances, 

                                                           
* This chapter is adopted from Expert Systems with Applications, vol. 38, issue 7, July 2011, 

Avishek Chatterjee, Olive Ray, Amitava Chatterjee, and Anjan Rakshit, “Development of a 
Real-Life EKF based SLAM System for Mobile Robots employing Vision Sensing,” pp. 
8266-8274, ©  2011, with permission from Elsevier. 
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infra red sensors can only be employed for short distances, laser range finders are 
expensive and slow in operation due to low update rate and the performance of 
GPS can suffer due to occlusion of line-of-sight to satellites and their accuracy 
and update rate may be slow. Hence, solid-state cameras and computers have 
emerged in recent times as an attractive, feasible, real-time solution for building 
such robot localization systems [3, 5]. They can also provide comparatively 
cheaper solution and they can provide great flexibility in interpreting the 
environment through which a robotic platform is needed to navigate. However, till 
date, not many works have been reported utilizing vision sensing based SLAM 
algorithms. The primary reason for that can be that the development of such 
systems and to make them meaningfully accurate in real-life is essentially a 
difficult task. 

The present chapter will give a detail description of a successful real-life 
implementation of SLAM algorithm for map development in an indoor 
environment [15], utilizing a popular differential drive mobile robot, called 
KOALA robot, which has also been described in previous chapters. An important 
highlighting feature of the developed scheme is that this stand-alone system 
utilizes a computer vision based sensing system for building the map. A two-
camera based vision system is utilized to perform feature identification, in frames 
grabbed, and track these features in subsequent frames. Such a system is essential 
for scene identification and obstacle recognition for a vision-based system that 
helps in developing suitable navigational algorithms, performing obstacle 
avoidance and/or developing a map of the environment where the robot is 
intended to carry out the navigation job. The feature tracking approach is based on 
minimization of the sum of squared intensity differences between the past and the 
current window, which determines whether a current window is a warped version 
of the past window. The system is also equipped with the 3D distance calculation 
module of the landmarks from the robot frame, which enables to determine the 
map of the location, storing current localization of the robot along with the co-
ordinates of the landmarks in the map. The system has been implemented in real-
life in our laboratory for waypoint-directed map development and the system 
could demonstrate high accuracy in map development in such indoor 
environments. 

8.2   The Dynamic State Model for the Differential Drive Koala 
Robot 

The details of the EKF based SLAM algorithm were already presented in section 
7.2. Now, to adapt this theory in the context of the KOALA robot, at first, the 
dynamic model is developed for the differential-drive based KOALA robot in this 
section. This can also be logically extended to other similar types of mobile robots 
too. Here, there are two independent variables governing motion of the vehicle  
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i.e. rotation of the left wheel of the motor and rotation of the right wheel of the 
motor. However, we consider two derived variables as primary variables and these 
are (i) linear translation of the geometric center of the robot and (ii) its rotation 
around the vertical axis through the geometric center. The rationale behind this 
domain changeover is because of the reason that an error is introduced if we 
choose ‘rotation’ as a variable, because of the severe deformation of tier during 
rotation. Such a problem will not arise in case of linear, translational motion, 
where the sources of errors or uncertainties are different e.g. incorrect calibration 
of wheel encoder, small slippage in wheel rotation etc. Here we assume that the 
robot will never be subjected to simultaneous commands of rotational motion and 
translational motion.  

Fig. 8.1. Schematic of the KOALA robot movement 

While developing the model, we should keep in mind that the robot always 
moves along a circular arc. The curvature is zero for linear, translational motion 
and the radius of curvature is zero for pure rotation. Figure 8.1 shows the 
schematic of a robot movement. Here 

sCBA =


                                                (8.1) 

r

s=θ  = K1 (Rotation of right wheel – Rotation of left wheel)         (8.2) 

s = (K2/2) (Rotation of right wheel + Rotation of left wheel)              (8.3) 
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(8.2) and (8.3) enable us to obtain s and θ directly from the readings of the wheel 

encoders. Hence we obtain, 
θ

= s
r  and 

2
2

θ= sinrAC . Then AC can be 

decomposed into its x- and y-components, when the initial pose φ of the robot is 
known. Therefore we have: 
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The development of such a model gives rise to a logical problem under those 

situations when θ → 0°, because then ∞→
θ

= s
r . Hence, for θ < 5°, it is 

assumed that sAC = . Now, for D amount of linear displacement and θ amount 
of rotation of the KOALA robot, the dynamic model can be finalized using the 
following formulae: 
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Hence the Jacobians and the covariance matrix will be calculated as: 
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8.3   Vis ion Sensing Based Image Feature Ide ntification, Feature Trac king  

In our SLAM algorithm, the “observe” step is carried out using vision sensing. 
The basic version of the KOALA robot is originally procured with some built-in 
sensors, e.g. incremental wheel encoders and infrared (IR) sensors, and it has been 
later integrated with several accessories e.g. ultrasonic sensors, wireless radio 
modem, sensor scanning-tilt-pan system, vision system, servo motors for 
controlling four degrees of freedom, computing platform etc. All the integrations 
have been carried out in-house in our laboratory. Figure 8.2 shows the KOALA 
robot in its integrated form, used specifically for the purpose of performing vision 
based SLAM. 

         (a)                                                                 (b) 

Fig. 8.2. KOALA mobile robot, original procured with some built-in sensors, and later 
integrated in our laboratory with several accessories 

The vision-based sensing employs two webcams, as shown in Fig. 8.2(a), for 
real-life implementation, where the main objective is to implement a two camera 
based vision system for image feature selection, tracking of the selected features 
and the calculation of 3D distance of the selected features [16]. This feature 
identification is based on selection of suitable, candidate image patches or 
windows in captured frames from running videos acquired from each camera, that 
have high potential of tracking in subsequent frames. In real life, image patches 
having high edge information content are better candidates for tracking and hence 
such patches (considered as static in our system) are considered the best candidate 
landmarks for developing subsequent maps. The computation of correspondences 
between features in different views (for our system, the left snap and the right 
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snap i.e. the frames grabbed from the left camera and the right camera) is a 
necessary precondition to obtain depth information. The system first performs a 
feature identification algorithm in the frame grabbed from the left camera to 
identify some suitable rectangular patches or windows that are most suitable as 
trackable features (patches with sufficient texture) and then it attempts to track 
them in the frame grabbed from the right camera. The inspiration for developing 
such a image tracking system is obtained from the Kanade-Lucas-Tomasi (KLT) 
Tracker [10, 13]. It is always preferable to track a window or patch of image 
pixels instead of a single pixel because it is almost impossible to track a single 
pixel, unless it has a very distinctive brightness with respect to all its neighbors. At 
the same time the result can be confusing, because the intensity value of the pixel 
can also change due to noise. Hence N number of feature windows is selected, 
based on the intensity profile, by maintaining a minimum distance between the 
features in an image frame. For an image f(x, y), a two dimensional function, its 
gradient is a vector and the gradient of each window G is calculated along x-
direction and y-direction as:  
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The suitability of the choice of a window as a feature window is evaluated by 
computing the eigenvalues λ1 and λ2 of its G matrix and a feature window is 
accepted if 

 min (λ1, λ2) > λ                                            (8.9) 

where λ is a predefined threshold [14]. Two small eigenvalues mean a roughly 
constant intensity profile within the window. A large and a small eigenvalue 
correspond to a unidirectional texture pattern. On the other hand two large 
eigenvalues represent the corners or salt and pepper type texture [11][16].  

Once the features are selected, the next job is to follow or track these features 
from one frame to another frame in an image sequence [11-13]. Similar to [11], 
we compute the displacement dp = [dxp dyp]T of the center of a feature window 
that minimizes the sum of the squared difference in image intensities  between the 
windows of the two image frames under consideration. In case of the small inter-
frame motion, the motion of the features within two image frames can be 
approximated sufficiently accurately by a pure translation model. However, for 
bigger inter-frame motions, an affine model, comprising linear warping combined 
with pure translation, is known to provide better models. Here, the quality of the 
feature monitored during tracking is better with a dissimilarity measure that 
includes a deformation matrix that represents the linear warping based affine 
motion model as well as translations of feature within the frame. The point motion 
in the image can be described by 

 J(Axp + dp) = I(xp)                                          (8.10) 



8.3   Vision Sensing Based Image Feature Identification, Feature Tracking 213
 

where, J is the current image, I is the original image, A = 1+D (1 is a 2x2 identity 
matrix and D is the deformation matrix) and dp is the translation vector.  Hence 
the dissimilarity can be computed utilizing w(xp), a weighting function (popularly 
chosen as unity or a  Gaussian function to emphasize the central portion of the 
window) as [11] 

 ε = 
W

[J(Axp + dp) – I(xp)]2 w(xp)dxp                            (8.11) 

The Newton-Raphson minimization between image intensities of two windows is 
employed to search for the new position of the center point of a feature window in 
a new frame in an iterative manner. The following system is needed to be solved 
to obtain dp: 

 Gdp=e                                                         (8.12) 

where ( )= dawTggG  ; G = second order weighted coefficient matrix (2×2),  

e = weighted intensity error vector (2×1)  ( e = (
W

(I – J) gwda), dp = displacement 

vector (2×1) (dp = [dxp dyp]T), and g = Gradient vector (2×1)  
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This iterative algorithm solves (8.12) by solving, in each iteration, for 
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and calculating the new window center in the 

image, where we are trying to perform the tracking, in that iteration, as xp_tracked = 
xp_tracked + dxp;   yp_tracked = yp_tracked + dyp.  

The 3D distance of the tracked landmarks can be obtained on the basis of data 
available about the geometry of the camera and the head used [3], [9], [14]. To get 
depth information in stereo vision, it is required that two lines of sight for the two 
cameras intersect at a scene point P and from this information the three-
dimensional coordinates of the observed scene point in the world co-ordinate 
system (WCS) can be obtained. Our distance calculation module is based on the 
pin-hole camera model used in Andrew J. Davison’s work [3]. It makes use of the 
well known camera calibration matrix and perspective projection equation and 
utilizes the “Midpoint of Closest Approach”. Figure 8.3 shows a front view of the 
active head designed and implemented in our laboratory where H = the vertical 
distance of the head center above the ground plane, I = the horizontal distance 
between the left and the right vergence axes, and c = the offset along either 
vergence axis between the intersections with the elevation axis and the camera 
optic axis. 
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Fig. 8.3. Front view of the active head designed in our laboratory with sensor-scanning-
pan-tilt system, two webcams and four servo motors for individual control of four degrees 
of freedom (pan control, tilt control, left vergence control and right vergence control) 

Once new landmarks or image patches are identified and tracked between left 
and right camera images they can be initialized in the map utilizing the usual 
procedure of new landmark initialization in our EKF-based SLAM algorithm. 
Similarly, identification and tracking of image patch(es) in left and right camera 
images, which was(were) also previously identified in images acquired for a past 
position of the robot, will constitute the re-observation step of our EKF-based 
SLAM algorithm. In this step, where the estimated position of this landmark is 
calculated according to the usual “Predict” step of the Kalman filter, it is further 
refined by performing the corresponding “Observe and Update” step of the 
Kalman filter algorithm.   

The steps followed for this vision-sensing based real-life implementation of 
EKF-SLAM algorithm is shown in Algo. 8.1. Here it can be seen that the robot is 
asked to move through some waypoints and it is directed to build a map of its 
surrounding. To perform this function, the robot is moved by a specified distance 
and it grabs several image frames to perform landmark observation as well as its 
own localization simultaneously. To build a map for both environment ahead of 
the robot, environment to its left and environment to its right, it is taking image 
shots both for 0° angular position of the pan-angle, for +θ° angular position of 
pan-angle and for -θ° angular position of pan-angle. Hence during the “observe” 
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step of the EKF the robot identifies and acquires feature(s)/landmarks(s) from 
environment straight ahead of it, from environment to its left and from 
environment to its right. This procedure of moving the robot ahead, performing 
the “predict” step, using vision sensors in several pan directions to acquire and 
track landmarks, and to perform “correct and update” step of EKF algorithm is 
performed in an iterative fashion, until the last waypoint is reached. The map built 
in the last iteration is utilized as the final map built by the robot, to be used for 
some future tasks in the same environment. 

 

Step 1. Specify the waypoints through which the robot should navigate and 
initialize the robot pose. 

Step 2. Move the robot by a specified amount and perform the “predict” step of 
EKF. 

Step 3. Grab image frames from continuously running video sequences in left and 
right camera, for 0° angular position of the pan-angle, and perform 
feature identification, tracking and distance calculation of the tracked 
feature(s) from the robot. 

Step 4.  Repeat Step 3 for +θ° angular position of pan-angle. 
Step 5. Repeat Step 3 for -θ° angular position of pan-angle. 
Step 6. For new feature(s)/landmark(s) observed in step 3 - step 5, initialize them 

in the map. 
Step 7. For those feature(s)/landmark(s) observed in step 3 - step 5, which were 

observed earlier, perform the usual “observe and update” step of EKF, to 
refine the map already built. 

Step 8. Perform step 2 – step 7 until the robot reaches the last waypoint specified.  
Step 9. Store the last map built by the robot as the final map built for the 

environment. 

Algo. 8.1. The Real EKF-based SLAM algorithm implemented for the KOALA robot, 
using vision sensors, in an indoor environment (in our laboratory) 

8.4   Real-Life Performance Evaluation 

As we have mentioned previously, the KOALA robot is a 32 cm x 32 cm, six 
wheeled, and differential drive vehicle manufactured by K-team, Switzerland. It 
has already been mentioned that in KOALA, the hardware control is performed by 
an on- board microprocessor (16MHz Motorola 68331@ 22MHz) [8]. To add the 
four degrees of freedom to the robot system for pan, tilt, left vergence and right 
vergence control, we have developed a PIC 16F876A micro-controller based 
system that, in interrupt-driven mode, works in conjunction with the Motorola 
processor of the KOALA robot, in master-slave configuration. The development 
of such a PIC micro-controller based system for interfacing external add-on 
peripherals with a real mobile robot, is really helpful for adding flexibility for real 
life applications and this development was discussed in detail in chapter 2.  
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Fig. 8.4. The environment created through which the robot navigates and performs EKF-
SLAM algorithm 

Figure 8.4 shows the indoor environment created through which the robot is 
asked to navigate through several specified waypoints and build a map performing 
vision-based SLAM algorithm. To judge the performance of the system, a grid 
containing 100 squares was drawn on the maze with each square having a 
dimension of 20 cm × 20 cm i.e. a navigation domain of dimension 2 m × 2 m was 
explored. 

Figure 8.5 shows the GUI-based software developed in our laboratory for real-
life execution of the EKF-SLAM algorithm. Different frames in Fig. 8.5 show the 
landmarks identified during several iterations for incremental map building 
employing the EKF-SLAM algorithm and incorporation of these landmarks in the 
stored map. The “green line” shows the ideal path joining the waypoints through 
which the robot is asked to navigate. The “light blue triangle” represents the 
initial, starting pose of the robot and, as can be seen in Fig. 8.4, this initial pose for 
our implementation is considered as: ( ) ( )TT

xz 00100 ,,,, −=φ . For this real-

life implementation here, the notations z, x and φ are chosen in conformation with 
the notations used in [3] and hence the z-direction and x-direction correspond to 
the x-direction and y-direction respectively, as specified in our theories before. 
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During its navigation, the robot identifies landmarks in its surrounding 
environment and initializes their positions or refines their positions in the map. As 
the robot keeps moving forward, the number of landmarks identified, and hence, 
the size of the map, increases. The “red crosses” in the map show the 2D positions 
of the landmarks identified. Figure 8.5(d) shows the final map constructed at the 
end of the test-run of the KOALA robot.  

 
 
 
 
 
 

 

 
 

                              (a)                                                                 (b) 
 
 

 

 

 

 

                             (c)                                                                  (d) 

Fig. 8.5. Real-life landmark identification for map building in different steps of EKF-
SLAM algorithm 

Figure 8.6 shows the GUI-based form developed for capturing image frames in 
real-life, for some representative positions of the KOALA robot and 
demonstrating the performance of feature extraction and tracking algorithm, for 
meaningful identification of landmarks. The image patches identified in “red 
squares” are identified as new potential landmarks and the image patches 
identified in “green squares” are identified as re-observed landmarks. The form 
also displays the 3D distance calculated for each landmark tracked, from the robot.  
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               (c)                                                                    (d) 

Fig. 8.6. Sample examples of results of feature extraction, feature tracking and 3D distance 
calculation of the tracked features from the robot, for some representative positions of the 
KOALA robot, during its test run in the environment 
 

 
Figure 8.7 shows three sample situations of identifying and tracking 

features/landmarks in real environments. The “green line” on the maze and in 
vertical direction and the “red dots” help in pointing the actual landmark in the 
environment and in obtaining its true position. The hollow circle drawn in “light 
blue” shows the actual object corresponding to an image patch identified in the 
environment. The estimated positions of these landmarks in the map built, shown 
earlier in Fig. 8.5, show that there are small discrepancies between the true 2D 
positions and the estimated 2D positions for most of the landmarks in the map. 
However this is always understandable and can be appreciated for real-life 
experimentations. Table 8.1 shows these true and estimated positions, for the three 
sample landmarks under consideration, as shown in Fig. 8.7. 
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                     (c)                                                                (d) 

Fig. 8.7. Three sample situations of identifying and tracking landmarks in real 
environments 
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                          (e)                                                                (f) 

Fig. 8.7. (continued) 

Table 8.1. Performance comparison of the EKF-SLAM algorithm employing vision 
sensing, for three sample real-life landmarks, as shown in Fig. 8.7 

Sl. 
No. 

Landmark 
Description 

Estimated Position 
(cm) 

 True Position (cm)  

  z-coordinate x- coordinate z-coordinate x- coordinate 
1. Landmark in Fig. 

8.6(a) and Fig. 8.6(b) 
(bottom left corner of 
the keyboard image) 

-43 -26 -47 -27 

2. Landmark in Fig. 
8.6(c) and Fig 8.6(d) 
(corner of the letter 
‘A’ in UMAX box) 

-18 -18 -10 -23 

3. Landmark in Fig. 
8.6(e) and Fig. 8.6(f) 
(top right corner of 
the thick red line in 

the FOXIN box) 

4 70 2 74 

8.5   Summary 

In this chapter we described the theories of and successfully demonstrated a real-life 
implementation of the simultaneous localization and mapping problem (SLAM) of 
mobile robots for indoor environments, utilizing two web-cam based stereo-vision 
sensing mechanism. The system showed a successful implementation of an 
algorithm for image feature identification in frames grabbed from continuously 
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running videos on two cameras, installed on the active head integrated in-house with 
KOALA mobile robot, tracking of features/landmarks identified in a frame in 
subsequent frames and incorporation of these landmarks in the map created, 
utilizing a 3D distance calculation module implemented in real-life for calculation 
of co-ordinates of landmarks in WCS on the basis of the distances calculated of 
the landmarks from  the robot frames. The system could be successfully test-run in 
laboratory environments where our experimentations showed that there are very 
small deviations of the estimated landmark positions determined in the map from 
the actual positions of these landmarks in real-life. It is hoped that such successful 
implementations will inspire many readers to implement similar meaningful map 
building systems for more complex environments and also in outdoor situations.     
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