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Chapter 1

Introduction

Almost all of us have watched plenty of sci-fi movies that revolve around the same

theme: scientists develop a robot that has true consciousness, observes the envi-

ronment around it and realizes that human beings are an unnecessary part of the

equation. Half an hour into the movie and we have an army of intelligent robots that

are hell-bent on destroying the human civilization and the protagonist manages to

explode a central server or insert a virus into it, deactivating all the robots and

saving our civilization. In spite of all this, most of us would like robots to perform

various day-to-day activities that we hate doing, freeing up our time for activities

that we enjoy a lot more. The commercial success of Roomba is proof that

consumers are willing to pay for personal assistants and more importantly, that

they do not have a deep mistrust for robots. Perhaps the form factor of a Roomba

might be crucial for people to think that in case of a robot uprising, there isn’t much

to worry about from a Roomba!

Hearing the word “robot” instantly brings images of ferocious metal creatures

that possess some of the most dangerous weapons known to us. To encapsulate,

Hollywood isn’t exactly the best PR agent for the field of robotics! Technically

speaking, there is no particular form factor for a robot. It can be any shape and size,

and can possess a variety of tools or just a single tool, based on its intended function

(Spong et al. 2006). For instance, most people will agree that a robotic arm with a

three-pronged claw that moves boxes from one point to another is a robot. It just

seems right because it tallies with what we consider to be the image of a quintes-

sential industrial robot. However, would you consider a conveyor belt as a robot? It

too performs the task of moving an object from one place to another, and is also

controlled by electronic control systems and computers. The truth is that the term

“robot” is actually very broad and encompasses a lot of beautifully designed

machines.

Another field that is very closely related to the field of robotics is the field of

artificial intelligence. So closely related are the two fields that the general popula-

tion considers one term to imply the other. Broadly speaking, artificial intelligence

is the study and design of agents that seem to behave in an intelligent manner

(Russell and Norvig 2010). The agent can be virtual or physical, and by intelligent

V. Nath and S.E. Levinson, Autonomous Robotics and Deep Learning, SpringerBriefs
in Computer Science, DOI 10.1007/978-3-319-05603-6_1, © The Author(s) 2014

1



behavior we mean the ability to perceive its immediate surroundings and maximize

its utility and odds of survival. Maximizing the odds of survival is the primordial

instinct of all life forms and the ability to detect threats and take appropriate action

is a measure of intelligence. As a simpler way of understanding, consider the field

of robotics to deal with the human body while the field of artificial intelligence to

deal with the human mind. They are both separate entities but each requires the

other to be able to do anything. Artificial intelligence deals with algorithms that

have inputs and outputs. If these inputs are from the physical realm, robots have

transducers to convert the physical stimuli into a form that can be understood by the

AI algorithms, and convert the output from the AI algorithms to have a physical

impact on the environment. As a result, AI algorithms are highly modular and

versatile, they can work across a wide variety of scenarios.

The field of artificial intelligence is divided into two camps—strong AI and

weak AI. The camp of weak AI say that the field of artificial intelligence will only

be able to produce agents that seem to behave intelligently. These agents would

forever be simply following the algorithm and have no understanding of what they

are doing, and will operate in a non-terminating loop. Advocates of the strong AI

camp say that artificial intelligence would be able to do everything that weak AI can

do and develop consciousness. They advocate that the AI agents will be self-aware

and aware of their surroundings and will be able to “think” just like humans do

(Russell and Norvig 2010). The vast majority of practical applications that AI is

able to perform today comes under the domain of the weak AI camp. These are

specific applications that the agent is programmed to do and it performs the best

possible action based on the information available at the time. Strong AI is a

research subject with thousands of computer scientists working in the hope of

being able to create a mind or develop consciousness for a non-living entity.

However, the possibility and negative ramifications of strong AI is a favorite for

all the science fiction writers (refer to near apocalypse scenario at the beginning of

this chapter!) (Asimov 2008). The closest we have to strong AI is the development

of a sub-category of artificial intelligence called Machine Learning.

Machine learning attempts to “learn” from available date. The available data is

given as training data and the machine learning algorithm forms a representation on

this basis. Once the training is completed, a new unseen data point is presented to

the algorithm and it should be able to classify this point, with reasonable accuracy

and confidence, based on previous data. A common example of such a system in our

day-to-day lives is the email spam detector. The way the detector works is by

providing it a bunch of spam emails that have been explicitly labeled as spam. Also,

provide it with a bunch of regular emails that have been labeled as non-spam. Now,

when a new email arrives, the detector is able to classify it as spam or non-spam

(Michalski and Mitchell 1983). Of course, even the best of these systems make

mistakes and are in a state of constant improvisation.

In this book, we make an attempt to bridge the gap between weak AI and

strong AI through the use of a robotic platform. We programmed a humanoid

robot to be able to solve a 3D maze using a ball as a visual indicator. The only

thing that was pre-programmed was to look for the start and end points of the maze.

2 1 Introduction



The robot would have to determine the shortest path between the two points, if it

existed, and rotate the board on which the maze was built so that the ball can roll

over to the intended spot. Multiple iterations had to be performed over various maze

layouts so that the robot can understand its goal and the actions that are available to

it to achieve the goal. Of tremendous importance is the fact that the robot can realize

its actions have an influence on the environment, a small step in the direction of

strong AI. The various components of the entire system that have made this project

a reality are discussed in subsequent chapters of this book.
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Chapter 2

Overview of Probability and Statistics

Abstract This chapter talks about the elementary concepts of probability and

statistics that are needed to better comprehend this book. This appendix covers

topics like basic probability, conditional probability, Bayes’ Theorem and various

distributions like normal distribution (also called Gaussian distribution), Bernoulli

distribution, Poisson distribution and binomial distribution.

2.1 Probability

2.1.1 Introduction

The world that we observe is a very complex one, with an infinite number of events

taking place all the time, some of which are interdependent/related and some of

which are independent of certain events. These events can be divided into two

categories—(1) Deterministic and (2) Probabilistic. Deterministic events are those

events that we are sure will happen, given the right conditions. It is the notion of

cause-and-effect, in that an event A will lead to event B, when the right conditions

are applied to event A. Strictly speaking, deterministic events are usually consid-

ered more of a philosophical concept than a practical one since it is impossible to

predict an event with complete accuracy and confidence. There are too many

variables at play in the interaction of even two systems, let alone several hundreds

or thousands of them, and it would be impossible to predict the relationship between

every single one of them.

However, it is important to note that the choice of granularity would depend on

the event and the level of detail that the system being analyzed warrants. For

example, it would be quite pointless to include calculations of atomic vibrations

while flipping a biased coin, one that has heads on both sides. In this scenario, the

V. Nath and S.E. Levinson, Autonomous Robotics and Deep Learning, SpringerBriefs
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event that the coin will result in heads can be considered a deterministic event, since

we are absolutely sure that the coin will result in a heads.

The other event category are the probabilistic events. These events describe real-

life scenarios more accurately because they mention the probability that an event

will occur. The probability of likely events will be higher than those of unlikely

events, and this variation is the measure of probability. The measure of probability

is bounded by the (2.1).

0 � P Xð Þ � 1 ð2:1Þ

The “X” in (2.1) refers to any event X. P(X) is the notation to indicate the

probability of an event “X”. Equation (2.1) indicates that the minimum value of

probability of any event is 0, while the maximum probability of an event is 1. This

means that if an event is deemed impossible, its probability is 0, while the

probability of an event that has no way of failing will be a 1.

So, what is probability? Generally speaking, probability can be thought of as the

likelihood of a particular event happening. Most of us have a model of probability

affecting our daily lives. For instance, we tend to look at the probability that it

would rain today before deciding on taking an umbrella or not. We also use

probability in a lot of trading places like the stock market. Also, the period of

warranty that manufacturers indicate for a new product is an indication of the

probability that the device would function for a particular duration. The probability

of the device failing within the warranty period is low, and that is why the

manufacturer decided to cover only up to a certain period and not for an

indefinite period.

Now that we have an understanding of what is probability, let us discuss how to

mathematically determine the probability of a particular event. To do this, consider

one of the most widely used objects to teach probability—the board games’ die.

When we roll a die, there are only six numbers that can be obtained, namely 1, 2,

3, 4, 5 and 6. Representing them as a set would result in the set {1, 2, 3, 4, 5, 6}.

Such a set that contains all the possible results of a particular event is called a

power set. Thus, the set {1, 2, 3, 4, 5, 6} is the power set of the event of rolling a

fair die. As an example, to determine the probability of rolling a 4 on a die can be

determined as follows:

P Að Þ ¼ 4f g
1; 2; 3; 4; 5; 6f g ¼ 1

6

Basically, we need to have the events in the numerator and the total number of

events in the denominator. As can be seen from the above equation, the probability

of the die landing a 4 is 1/6. As you might have figured out by now, the probability

of any number landing when a fair die is thrown is the same, i.e. 1/6. This means

that when you throw a fair die, you are equally likely to get any of the six numbers

marked on it.

6 2 Overview of Probability and Statistics



As another commonly cited example, let us consider an ordinary coin. This coin

will have two sides—a heads and a tails. What is the probability that the coin will

yield heads when it is tossed? The power set of coin toss is {H, T}, where H denotes

heads and T denotes tails. In this scenario,

P Að Þ ¼ Hf g
H; Tf g ¼ 1

2

where A is the event that the coin toss will yield a heads. By a similar analysis, we

can determine that the probability of a coin toss yielding a tails would also be 1/2. In

other words, both the outcomes have an equal probability. Another crucial

observation that can be made from both examples is that the sum of the probabilities

of all the events must equal 1. This is a rule in probability and can be observed

from the coin toss experiment mentioned above. The sum of both probabilities is

1/2 + 1/2 ¼ 1. The same can be observed from the die experiment. The mathemat-

ical notation of this rule is given by (2.2) below.

X
i
P xið Þ ¼ 1 ð2:2Þ

In (2.2) above, i refers to the individual events, i.e. subsets of the power set. The

summation of all the individual elements would result in the power set for the event.

On a related note, there is another concept called complementary events that are

a direct result of (2.2). A complementary event is an event wherein its negative will

take place. For example, if an event A is defined as landing a 4 on a die roll, it’s

complementary event, A0, would be NOT landing a 4 on a die roll. Since the sum of

all the probability events must be 1, from (2.2),

P A
0

� �
¼ 1� P Að Þ ¼ 1� 1=6 ¼ 5=6

That is, there is a 5 in 6 chance that the number obtained would not be a 4. This is

in agreement with simple observation since the resultant set is {1, 2, 3, 5, 6}.

2.1.2 Conditional Probability and Bayes’ Theorem

Now that we know the basics of probability, let’s take a look at the topic conditional

probability. Basically, conditional probability is the probability of an event when

another related event has taken place. This knowledge of another related event

taking place will affect our probability of the first event, and this concept is called

conditional probability, in that it is the probability given a particular condition.

Let us consider the example of the die once again. The power set for an ordinary

die is {1, 2, 3, 4, 5, 6} and the probability of getting any number from 1 to 6 on a

single throw is the same 1/6. However, what if I were to tell you that the die has

2.1 Probability 7



been tampered with and that this die now contains only even numbers on it? With

this new information, wouldn’t the probabilities change? It surely does! In this new

scenario, the power set of the die is {2, 4, 6}. Therefore, the probability of getting a

1, 3 or 5 is 0. The probability of getting a 2, 4, or 6 is 1/3. The notation for

representing conditional probability is given by P(A|B) and is read as “probability

of A given B”. So, if we were to formalize the example we just discussed, it would

be as follows:

A: Getting a 2 on a die roll

B: The die contains only even numbers

Therefore, P(AjB) ¼ 1/3. While this approach of counting the events that satisfy

a particular condition and are members of the power set might work for events with

a limited number of outcomes, this approach would quickly get out of hand when

we have to deal with a large number of events. It is here that the formula for

conditional probability comes in handy. The formula for computing the conditional

probability is given below as (2.3).

P A
��B� � ¼ P A \ Bð Þ

P Bð Þ ð2:3Þ

To demonstrate the usage of (2.3) for determining conditional probability, let us

use an example of an octahedron. An octahedron differs from a regular die in only a

very small way, a regular die has six sides, while an octahedron has eight sides. So,

the numbers marked on an octahedron range from 1 to 8, as opposed to 1–6 on a

regular die.

Now, let us define the two events A and B as follows:

A: Getting an even number on a roll

B: Getting a number greater than 6, non-inclusive

The power set of all the rolls from an octahedron is {1, 2, 3, 4, 5, 6, 7, 8}. The

probability of A ¼ 1/2, since there is an equal chance of the roll landing in an odd

or even number (the reader can also confirm this by listing all the even numbers and

the power set). The set of outcomes that satisfy event B is {7, 8}. This means that

the probability of B is 2/8 ¼ 1/4. The intersection of events A and B leads to the

resultant set {8}. This set satisfies both events A and B. The probability of A \ B

¼ 1/8. Thus, the application of (2.3) results in the following:

P A
��B� � ¼ P A \ Bð Þ

P Bð Þ ¼ 1=8

2=8
¼ 1

2

In this example, it so happened that P(A|B) ¼ P(A). But this is not always

necessarily true. Similarly, in this example, P(B|A) ¼ P(B) as well. When such a

condition occurs, we say that the two events A and B are statistically independent
of each other. This means that the probability of occurrence of one event is

completely independent of the probability of occurrence of another. This should
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make intuitive sense because when you roll an octahedron, getting an odd/even

number and a number greater than 6 should not have any relationship with each

other. The above equations mathematically prove this idea. Furthermore, when two

events are independent, their joint probability is the product of their individual

probabilities. This is shown in (2.4) below.

P A \ Bð Þ ¼ P Að Þ � P Bð Þ ð2:4Þ

Conditional probability is a widely used concept in several experiments, espe-

cially because several events are related to each other in one way or the other. This

concept of conditional probability and the Bayes’ Theorem (which we will discuss

next) is of tremendous importance to the field of artificial intelligence and is used

widely in the algorithms being described in this book.

Conditional probability gives rise to another very important theorem in the field

of probability, the Bayes’ Theorem. The Bayes’ theorem is widely used to flip the

events whose probabilities are being computed, so that they can computed much

more easily, and in some cases the only way they can be computed. The formula for

Bayes’ theorem is given by (2.5) below.

P A
��B� � ¼ P B

��A� �� P Að Þ
P Bð Þ ð2:5Þ

As can be seen from (2.5), in the original problem we tried to compute the

probability of A given B. Bayes’ theorem allows us to compute this by first

computing the probability of B given A, along with the individual probabilities of

A and B. The Bayes’ theorem of (2.5) has another form, which is given by (2.6)

below.

P A
��B� � ¼ P B

��A� �� P Að Þ
P Bð Þ ¼ P B

��A� �� P Að Þ
P B

��A� �� P Að Þ þ P B
��A0� �� P A

0� � ð2:6Þ

Equation (2.6) is obtained from (2.5) by the expansion of P(B) in the denomi-

nator. This takes place because the probability of an event needs to account for the

conditional probabilities of the event occurring as well as the event not occurring

(complementary events). The Bayes’ theorem is one of the most important theo-

rems being used in the field of artificial intelligence, since almost all of AI deals

with probabilistic events, and not deterministic events.

2.1 Probability 9



2.2 Probability Distributions

In this section, we will be discussing the most commonly used probability

distributions. The distributions that we will discuss are Gaussian distribution,

binomial distribution, Bernoulli distribution and Poisson distribution. Of course,

there are various other distributions, but they are not required for an understanding

of the work presented in this book and have been ignored.

Before we proceed with the distributions, there are two concepts that need to be

explained to the reader to better understand the material. The first concept is that of

probability mass function (PMF), while the second is called the cumulative distri-

bution function (CDF).

PMF is a function which maps a discrete random variable as input to its

corresponding probability as an output. This function is used when the inputs are

purely discrete in nature (Weisstein, “Distribution Function”). For example, the

ordinary 6-sided die that we discussed about has an input that is discrete in nature,

i.e. it is guaranteed to be a natural number between 1 and 6. As shown previously,

the probability of each of the inputs being obtained for a fair die is equal, which is

1/6. Thus, if one were to plot the pmf of the inputs of a die, it would be six equal line

segments that represent a value of 1/6 each. Similarly, for a single fair coin toss, the

only two outcomes would be heads and tails. Therefore, if we were to obtain the

pmf of this event, it would be two equal line segments that represent a value of

1/2 each.

CDF is a similar function as PMF, with the difference that this function gives the

sum of all the possible probabilities until that event has been reached. For contin-

uous functions, the CDF would range from negative infinity to the point where the

current event of interest has been obtained/plotted on the graph (Weisstein). Both

the PMF and CDF have been shown in the distributions being discussed for certain

cases, as an example.

2.2.1 Gaussian Distribution

The Gaussian distribution is one of the most commonly used probability distribu-

tion function, and is also called the normal distribution. The Gaussian distribution is

also referred to as the bell curve because of the shape of the PMF function of the

normal distribution (the bell curve has a lot of applications while grading tests since

professors tend to “curve” the grades based on overall class performance). The

Gaussian distribution has a number of parameters that are needed to accurately

model it. The first one is μ, which is also called the mean of the distribution. The

mean is the sum of all the random variables in the distribution times the probability

of each of the random variables. This can be represented in equation form below, as

(2.7) (Weisstein, “Normal Distribution”).
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μ ¼
X

x
x P xð Þ ð2:7Þ

The other parameter is σ, the standard deviation of the distribution. Standard

deviation is a measure of the variation of the members of the distribution from the

mean (Weisstein, “Normal Distribution”) and is given by (2.8).

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
xi � μð Þ2

r
ð2:8Þ

In (2.8), each value of x is a member of the distribution. σ2 is also called the

variance of the distribution.
Now that we have the required parameters to accurately represent the Gaussian

distribution, the PMF of a Gaussian distribution is given by (2.9), while the CDF is

given by (2.10) below (Weisstein).

PMF ¼ 1

σ
ffiffiffiffiffi
2π

p e
� x�μð Þ2

2σ2 ð2:9Þ

CDF ¼ 1

2
1þ erf

x� μffiffiffiffiffiffiffi
2σ2

p
� 	
 �

ð2:10Þ

Figures 2.1 and 2.2 show the PMF and CDF of a Gaussian distribution.

One last thing before concluding the section on Gaussian distribution, when

μ ¼ 0 and σ ¼ 1, the distribution can also be called the standard normal
distribution.
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Fig. 2.1 PMF of Gaussian distribution
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2.2.2 Binomial Distribution

The binomial distribution is another type of distribution that is very commonly

encountered when the same experiment is repeated several times. The experiment is

of the pass/fail or yes/no type, where the probability of success is denoted by a

parameter, say “p”. Since the outcome of these experiments is comprised of two

possibilities, the probability of failure would be 1 � p. This is because of the

complementary nature of the success and failure of the events.

The binomial distribution is the distribution used to model the repeated tossing

of a coin, rolling a die, or any other such experiment, where it would be extremely

hard to model the event using other models. The PMF of a binomial distribution is

given by (2.11) below (Weisstein, “Binomial Distribution”).

PMF ¼ n
sCps 1� pð Þn�s ð2:11Þ

In (2.11), s is the number of successes that the experiment yielded, or we would

like to yield. Since the total number of iterations of the experiment is n, the number

of failures of the experiment has to be (n � s). This is the term that is the super-

script of the term (1 � p), in (2.11), since (1 � p) denotes the probability of failure.

Lastly, if X is a random variable, then the expected value of X is given by (2.12)

and its variance is given by (2.13) below (Weisstein).

E X½ � ¼ np ð2:12Þ

Var Xð Þ ¼ np 1� pð Þ ð2:13Þ

As an example, assume a fair coin is tossed 100 times. The definition of a fair

coin, as discussed previously, is a coin that has an equal probability of yielding a
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Fig. 2.2 CDF of Gaussian distribution
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heads or a tails when tossed, with the probability being 1/2. Figures 2.3 and 2.4

above show the PMF and CDF of this binomial distribution experiment.

2.2.3 Bernoulli Distribution

The Bernoulli distribution is a special case of the binomial distribution. In the

binomial distribution, when n ¼ 1, it is the Bernoulli distribution. The pmf of the

Bernoulli distribution is given by (2.14) below (Weisstein, “Bernoulli Distribution”).

PMF ¼ ps 1� pð Þn�s ð2:14Þ
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Fig. 2.3 PMF of binomial distribution of a fair coin for 100 times
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Fig. 2.4 CDF of binomial distribution of a fair coin for 100 times
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The parameters p, s and n are the same as that of the binomial distribution, which

is probability of success, number of successful iteration yielded/desired and the

total number of experimental iterations performed. If X is a random variable, then

the expected value of X is given by (2.15) and its variance is given by (2.16) below

(Weisstein).

E X½ � ¼ p ð2:15Þ

Var Xð Þ ¼ p 1� pð Þ ð2:16Þ

2.2.4 Poisson Distribution

The Poisson distribution is the last distribution that we will discuss in this chapter.

As mentioned previously, the discussion of all types of probability distributions is

beyond the scope of this book.

The Poisson distribution is one of the most versatile types of distributions that

we are available. It is this distribution that can be used to model the probability of

events occurring in an interval of time, given that we are aware of the average rate.

For instance, Poisson distribution can be used to model the average number of

phone calls a person makes on a particular day of the month. The person might

make an average of seven calls a day. However, it is possible that he/she might

make 10 or even 15 calls on a particular day, and on another day might not make

any calls at all. Yet, using Poisson distribution, one is able to predict the number of

phone calls that the person will make on a particular day in the future, with

reasonably high accuracy.

The Poisson distribution has a parameter, λ, which is also the mean of the

distribution. The distribution can be denoted by Pois (λ). Another parameter, k, is

the iteration count of the experiment. These two parameters are all that are required

to denote the PMF of the Poisson function. Equation (2.17) below gives the PMF of

the Poisson function (Weisstein, “Poisson Distribution”).

PMF ¼ e�λλk

k!
ð2:17Þ

If X is a random variable, then the expected value of X is given by (2.18) and its

variance is given by (2.19) below (Weisstein, “Poisson Distribution”).

E X½ � ¼ λ ð2:18Þ

Var Xð Þ ¼ λ ð2:19Þ

Figures 2.5 and 2.6 below show the PMF and CDF of a Poisson distribution with

λ ¼ 7.5.
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Chapter 3

Primer on Matrices and Determinants

Abstract In this chapter, we will be covering the basic concepts of matrices,

determinants and, eigenvalues and eigenvectors in this chapter. If the reader is

familiar with these concepts, then the reader can skip ahead to the next chapter

without any loss of continuity.

3.1 Matrices

Matrices can be thought of as a collection of numbers, or a group of numbers, or

even expressions, arranged in rows and columns. Matrices are usually rectangular

in shape, although at times they can also be square in shape. Matrices are a very

common way of representing a group of related numbers together, as a measure-

ment, or to express relationships between measurements.

Each individual number or expression in a matrix is called an element. We just

mentioned that a matrix contains rows and columns. If a matrix contains m rows

and n columns, we say that the matrix has an order of m by n. The order of a matrix

is of crucial importance in matrix operations since the size and shape of a matrix is

described by the order. Furthermore, it is very important to remember that a matrix

of order m by n is completely different from a matrix of order n by m. Lastly,

matrices are bound by squares, but some people prefer parentheses. It doesn’t

matter which style the reader chooses, it is more a matter of aesthetics and not a

matter of importance.

The matrix
1 2 3
4

7

5 6

8 9

2
4

3
5 has three rows and three columns, and therefore has an

order of 3 by 3. On the other hand, the matrix
1 2

3 4

� �
has two rows and two

V. Nath and S.E. Levinson, Autonomous Robotics and Deep Learning, SpringerBriefs
in Computer Science, DOI 10.1007/978-3-319-05603-6_3, © The Author(s) 2014
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columns, and therefore has an order of 2 by 2. Each element in the matrix can be

uniquely identified and referenced to.

The following chart shows the arrangement of elements in a 3 by 3 matrix—

a11 a12 a13
a21
a31

a22 a23
a32 a33

2
4

3
5. As can be seen, the subscript denotes the position of the

element that is being referenced, with the first number referring to the row position

while the second number refers to the column position. For instance, a32 refers to

the third row and second column, while a13 refers to the first row and the third

column. Thus, in the aforementioned example, for the 3 by 3 matrix, a11 ¼ 1,

a13 ¼ 3, a22 ¼ 5, a31 ¼ 7 and a33 ¼ 9. In this way, every single element of any

matrix can be determined and referenced without any confusion.

There are certain types of special matrices, special with regards to their size.

Some matrices can have any number of rows, but only one column. They have an

order of n by 1, and are called column vectors since they consist of only a single

column. An example of a column vector is the matrix

10

20

30

2
4

3
5. Some matrices can

have any number of columns, but only one row. These matrices have an order of

1 by n, and are called row vectors since they consist of just one row. An example of

a row matrix is 25 30 32½ �. Just to reiterate, the number of columns in a column

vector and the number of rows in a row vector is unbounded, i.e. can be as large as

required. There are certain matrices that have the same number of rows and

columns. Such matrices have an order of n by n, and are also called square matrices,

since they resemble the shape of a square with equal length and breadth. The matrix

that was discussed previously,
1 2 3
4

7

5 6

8 9

2
4

3
5, is an example of a square matrix.

Of course, even here, the number of rows and columns don’t have a maximum

number. The matrix,

15 16 �2 45

0 99 56 7

3 21 78 �13

�1 17 81 22

2
664

3
775, with an order of 4 by 4, also fits the

definition and is a square matrix.

In order to perform certain matrix operations, the order of the matrices involved

are important, like addition and multiplication. In order to perform matrix addition

between matrices, it is a requirement that both matrices must have the same order.

So, in order for a matrix to be added to another matrix of order 3 by 2, the first

matrix must also have an order of 3 by 2. If the order of the two matrices are the

same, then it is simply a matter of addition of elements having the same position
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in the two matrices. The following examples should make matrix addition clear to

the reader.

1.
1 2 3
4

7

5 6

8 9

2
4

3
5þ

10 3 0
�2

19

9 1

16 3

2
4

3
5 ¼

11 5 3

2 14 7

26 24 12

2
4

3
5

2. 1 2

3 4

� �
þ 9 3

4 �1

� �
¼ 10 5

7 3

� �

3. 15 16 �2 45

0 99 56 7

3 21 78 �13

�1 17 81 22

2
664

3
775þ

1 2 3
4

7

5 6

8 9

2
4

3
5

¼ NOT POSSIBLE ORDER MISMATCHð Þ

Hopefully, the reader is now clear about matrix addition. The next operation

is that of scalar multiplication of a matrix. The scalar multiplication of a matrix is

the operation wherein a matrix is multiplied with a number. The resultant matrix is

obtained when each element of the matrix is multiplied by the scalar. The following

examples should hopefully throw some light on this topic for the reader.

1. 3�
1 2 3
4

7

5 6

8 9

2
4

3
5 ¼

3� 1 3� 2 3� 3
3� 4

3� 7

3� 5 3� 6

3� 8 3� 9

2
4

3
5 ¼

3 6 9
12

21

15 18

24 27

2
4

3
5

2. �2� 9 3

4 �1

� �
¼ �2� 9 �2� 3

�2� 4 �2��1

� �
¼ �18 �6

�8 2

� �

Another major operation that needs to be discussed is the determination of

the transpose of a matrix. The transpose of a matrix A is denoted by AT. The

transpose of a m by n matrix would result in a matrix with order n by m and

the resultant matrix is obtained by turning all the rows of matrix A into the columns

of the transpose matrix and turning all the columns of matrix A into the rows of

the transpose matrix. As the keen reader would have observed by now, the transpose

of a square matrix would result in a matrix with the same order as the original

matrix.
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1. 1 2 3
4

7

5 6

8 9

2
4

3
5
T

¼
1 4 7

2 5 8

3 6 9

2
4

3
5

2. 9 3

4 �1

� �T
¼ 9 4

3 �1

� �

3. 15 16 �2 45

0 99 56 7

3 21 78 �13

�1 17 81 22

2
664

3
775
T

¼
15 0 3 �1

16 99 21 17

�2 56 78 81

45 7 �13 22

2
664

3
775

Another major matrix operation that we would discuss in this chapter is that of

matrix multiplication. Matrix multiplication has a unique requirement that is different

from the requirements of any of the previous requirements. The requirement is that

the number of columns of the first matrix must be equal to the number of rows of the

second matrix. In other words, if the order of the first matrix is m by n, then the order

of the second matrix would be n by x, where x could or could not be equal to x.When

these matrices are multiplied together, the resultant matrix would lead to a matrix of

order m by x. In order to make things simple, the reader can imagine the two n’s

cancelling each other out when the two orders are being multiplied.

Once the requirements for the matrix multiplication have been satisfied, we can

proceed with the actual multiplication. Basically, the first element of the resultant

matrix is obtained by the piecewise multiplication of the first row of the first matrix

with the left-most column of the second matrix. The second element on the first row is

obtained by the multiplication of the first row of the first matrix with the second left-

most columnof the secondmatrix.This same scaling is alsoneeded for the rows aswell.

In this manner, each element of the resultant matrix needs to be computed. The

following examples would help the reader understand the concept of matrix multipli-

cation better.

1. 1 2 3
4

7

5 6

8 9

2
4

3
5 �

1 4 7
2

3

5 8

6 9

2
4

3
5

¼
1� 1þ 2� 2þ 3� 3 1� 4þ 2� 5þ 3� 6 1� 7þ 2� 8þ 3� 9

4� 1þ 5� 2þ 6� 3 4� 4þ 5� 5þ 6� 6 4� 7þ 5� 8þ 6� 9

7� 1þ 8� 2þ 9� 3 7� 4þ 8� 5þ 9� 6 7� 7þ 8� 8þ 9� 9

2
4

3
5

¼
1þ 4þ 9 4þ 10þ 18 7þ 16þ 27

4þ 10þ 18 16þ 25þ 36 28þ 40þ 54

7þ 16þ 27 28þ 40þ 54 49þ 64þ 81

2
4

3
5

¼
14 32 50

32 77 122

50 122 194

2
4

3
5
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2. 9 3

4 �1

� �
� 1 2

3 4

� �
¼ 9� 1þ 3� 3 9� 2þ 3� 4

4� 1þ�1� 3 4� 2þ�1� 4

� �

¼ 9þ 9 18þ 12

4� 3 8� 4

� �
¼ 18 30

1 4

� �

3. 1 4 7

2 5 8

3 6 9

2
4

3
5�

10

20

30

2
4

3
5 ¼

1� 10þ 4� 20þ 7� 30

2� 10þ 5� 20þ 8� 30

3� 10þ 6� 20þ 9� 30

2
4

3
5

¼
10þ 80þ 210

20þ 100þ 240

30þ 120þ 270

2
4

3
5 ¼

300

360

420

2
4

3
5

4. 15 16 �2 45

0 99 56 7

3 21 78 �13

�1 17 81 22

2
664

3
775�

1 4 7

2 5 8

3 6 9

2
4

3
5

¼ NOT POSSIBLE ORDER MISMATCHð Þ

With these examples, we conclude the section on matrix multiplication. The last

major matrix operation that we would discuss in this chapter is that of finding the

inverse of a matrix.

For a square matrix A, the following (3.1) needs to be followed, to determine its

inverse (Weisstein).

AA�1 ¼ A�1A ¼ I ð3:1Þ

The inverse of a matrix A is denoted by A�1. The I seen in (3.1) is the identity

matrix, a square matrix whose elements are all 1 on the main diagonal and

0 everywhere else. For example, the 3 � 3 identity matrix is given below.

1 0 0

0 1 0

0 0 1

2
4

3
5

For a 2 � 2 matrix
a b
c d

� �
, in order to determine its inverse, we use (3.1) and

end up with (3.2) (Weisstein).

a b
c d

� ��1

¼ 1

ad � bc

d �b
�c a

� �
ð3:2Þ

3.1 Matrices 21



As an example, we will compute the inverse of the matrix
1 2

3 4

� �
.

1 2

3 4

" #�1

¼ 1

1� 4� 2� 3

4 �2

�3 1

" #
¼ 1

4� 6

4 �2

�3 1

" #

¼ 1

�2

4 �2

�3 1

" #
¼ �2 1

3=2 �1=2

" #

For 3 � 3 matrices and other matrices of greater orders, the process of comput-

ing the inverse of a matrix would still require the satisfaction of (3.1). However, it

would be quite cumbersome to determine the inverse this way. Fortunately, there

are other ways to determine the inverse using methods like the Gauss-Jordan

method, or using minors, cofactors, etc. (Weisstein). The discussion of these topics

is beyond the scope of this book and is not covered here.

3.2 Determinants

For a given square matrix A, the determinant is the volume of the transformation of

the matrix A. This means that we take a hypercube of unit volume and map each

vertex under the transformation, and the volume of the resultant object is defined as

a determinant (Barber 2012). Thus, the determinant of

1 4 7

2 5 8

3 6 9

2
4

3
5 can be

computed because it is a square matrix, while the determinant of

10

20

30

2
4

3
5 cannot

be computed because it is not a square matrix.

Let us assume a generic 3 � 3 matrix

a b c
d e f
g h i

2
4

3
5 and we shall determine its

determinant. The determinant of this square matrix is written as

a b c
d e f
g h i

2
4

3
5,

i.e. with vertical bars to denote that we are trying to determine the determinant of

the matrix. The determinant of a matrix A is denoted by det(A) or also |A|. The
determinant of this matrix is given by the following equation.

a e� i� f � hð Þ � b d � i� f � gð Þ þ c d � h� e� gð Þ
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One thing to point out here is that the signs keep altering for alternating

elements. The following examples would help the reader better understand the

concept of determining the determinant of a matrix.

1.
1 4 7

2 5 8

3 6 9

������
������

¼ 1 5� 9� 8� 6ð Þ� 4 2� 9� 8� 3ð Þþ 7 2� 6� 5� 3ð Þ
¼ 1 45� 48ð Þ� 4 18� 24ð Þþ 7 12� 15ð Þ ¼ 1� �3ð Þþ�4� �6ð Þþ 7� �3ð Þ
¼ �3þ 24� 21¼ 0

2.
1 0 0

0 1 0

0 0 1

2
4

3
5

¼ 1 1� 1� 0� 0ð Þ� 0 0� 1� 0� 0ð Þþ 0 0� 0� 1� 0ð Þ
¼ 1� 0þ 0

¼ 1

Of interest to note is that det(AT) ¼ det(A). Also, if two square matrices A and

B are of equal dimensions, then det(AB) ¼ det(A) � det(B). This section con-

cludes a brief overview of determinants. The last section of this chapter deals with

eigenvalues and eigenvectors.

3.3 Eigenvalues and Eigenvectors

The eigenvectors of a given matrix A correspond to a coordinate system in which

the geometric transformation represented by A is best understood. Geometrically

speaking, the eigenvectors are special directions such that the effect of the trans-

formation A along a direction e would be to scale e (Barber 2012). For a square

matrix a of order n by n, e is an eigenvector of a with eigenvalue λ if (3.3) is

satisfied.

ae ¼ λe ð3:3Þ

Equation (3.3) can be re-written as (a � λ � I)e ¼ 0. This equation would have
a solution if e ¼ 0, i.e. (a � λ � I) is invertible. In this form, the solution is trivial.

There is another possibility wherein (a � λ � I) is non-invertible i.e. has a

non-zero determinant. Therefore, λ becomes an eigenvalue of a if:

��a� λ� I
�� ¼ 0 ð3:4Þ
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Equation (3.4) is also known as the characteristic equation. A deeper discussion

of eigenvalues and eigenvectors is not required for the understanding of the material

presented in this book and is being omitted here for the sake of brevity.
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Chapter 4

Robot Kinematics

Abstract The robotic platform is the physical hardware on which the experiments

have been conducted. All algorithms, by definition, should be replicable on any

physical machine, irrespective of the individual hardware components. However,

all other things being constant, there is no denying that algorithms perform better on

more capable hardware. In this chapter, we provide an introduction to the physical

characteristics of the iCub robot platform that was used to perform the experiments

and benchmark it using parameters that are relevant to the domain of robotics.

4.1 iCub Physical Description

The iCub robot is a humanoid robot that is the result of RobotCub, a collaborative

project funded by the European Commission under the sixth framework programme

(FP6) by Unit E5: Cognitive Systems, Interaction and Robotics. While creating an

open hardware and software platform in humanoid robotics is one of the goals of the

RobotCub, the primary goal of the RobotCub project is to advance the current

understanding of natural and artificial cognitive systems (Metta et al. 2008).

Standing at 1.04 m (3.41 ft) tall, the iCub is the size of a three and half year old

child. The iCub is able to perform a variety of physical feats like crawling on all

fours, grasp small objects like balls, etc. (Nath and Levinson 2013a, b). RobotCub’s

stance on cognition is that manipulation of objects by an agent plays a fundamental

role in the development of its cognitive ability (Metta et al. 2008). However, most

of such basic skills, many of which we take for granted, are not present at birth, but

rather developed through ontogenesis (Metta et al. 2008). Ideally speaking, the

iCub robot would push the boundaries of human understanding of cognitive devel-

opment, and the primary method of doing so would be to get the iCub to interact

with objects around it.
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The iCub has a total of 53 degrees of freedom (DOF), of which 30 DOF are

present in the torso region. Each hand has 9 DOF with three independent fingers,

and the fourth and fifth fingers have 1 DOF each since they are to be used only for

providing additional stability and support. Each leg has 6 DOF and are strong

enough to allow bipedal locomotion. The iCub also has a wide array of force and

torque sensors, digital cameras, gyroscopes and accelerometers present inside. The

low-level control loop is handled by a set of DSP-based control cards, and they all

have the ability to perform full-duplex communication with each other using the

CAN protocol. All the sensory and motor information is processed using an

embedded Pentium-based PC104 controller. For the resource intensive operations,

the computation is performed on an external cluster of machines that is connected to

the iCub using a gigabit (1 Gb ¼ 109 bits, i.e. a billion bits) Ethernet connection

(Metta et al. 2008).

4.2 DH Parameters of the iCub

A frame of reference is required to describe any physical system. One of the most

commonly used convention for selecting frames of reference in robots is the

Denavit-Hartenberg convention, also called the DH convention. The DH conven-

tion involves four parameters—α, θ, a and d. The names of the parameters are given

below:

1. α—Link twist

2. θ—Joint angle

3. a—Link length

4. d—Link Offset

The four parameters are associated with a particular link and a particular joint.

The parameter “d” is for prismatic joints, while the parameter “θ” is for revolute

joints (Spong et al. 2006). The iCub documentation provides the DH parameters for

the right hand of the iCub robot. They have been reproduced in Table 4.1 below.

Table 4.1 DH parameters of

the right arm of the iCub

(Nath and Levinson 2013a, b)

Link a d α θ
1 32 0 π/2 0

2 0 �5.5 π/2 �π/2
3 �23.467 �143.3 π/2 �π/2
4 0 �107.74 π/2 �π/2
5 0 0 �π/2 �π/2
6 �15 �152.28 �π/2 �π/2
7 15 0 π/2 π/2
8 0 �137.3 π/2 �π/2
9 0 0 π/2 π/2
10 62.5 16 0 π
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These parameters are all components of every homogenous transformation,

denoted by A. The homogenous transformation is represented as the product of

four transformations, and is explained below (Spong et al. 2006).

Ai ¼ Rotz,θiTransz,diTransx,αiRotx,αi

¼
cθi �sθi 0 0

sθi cθi 0 0

0 0 1 0

0 0 0 1

2
664

3
775

1 0 0 0

0 1 0 0

0 0 1 di
0 0 0 1

2
664

3
775

1 0 0 ai
0 1 0 0

0 0 1 0

0 0 0 1

2
664

3
775

1 0 0 0

0 cαi �sαi 0

0 sαi cαi 0

0 0 0 1

2
664

3
775

¼
cθi �sθicαi sθisαi cθi
sθi cθicαi �cθisαi aisθi
0 sαi cαi di
0 0 0 1

2
664

3
775

ð4:1Þ

The homogenous transformation matrix that expresses the position and orienta-

tion of a set of coordinate frames with that of another set of coordinate frames is

called the transformation matrix (Spong et al. 2006). If the transformation matrix

expresses the set of coordinate frames j with the set i, the transformation matrix can

be denoted as Tij, wherein

T i
j ¼ Aiþ1Aiþ2 . . . , if i < j

¼ I, if i ¼ j

¼ T i
j

� ��1

, if j > i

ð4:2Þ

The origin of the frame of the frame of reference for the iCub robot is at the

intersection point of the torso and the legs of the robot (Sandini et al. 2007).

Furthermore, the iCub needs to hold out its right hand so that it can begin to

solve the maze. Based on the schematics and information that were provided in

the iCub documentation, we determined that the transformation matrices for ten

links would be needed, i.e. the computation of T010 is needed. The computation was

done in accordance with (4.1) and (4.2) and the results are given below.

T0
1 ¼

0 0 �1 32

0 �1 0 5:5
�1 0 0 0

0 0 0 1

��������

��������

T0
2 ¼

0 �1 0 175:3
1 0 0 �17:967
0 0 1 0

0 0 0 1

��������

��������
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T0
3 ¼

1 0 0 175:3
0 0 �1 �17:967
0 1 0 �107:74
0 0 0 1

��������

��������

T0
4 ¼

0 0 1 175:3
0 1 0 �17:967
�1 0 0 �107:74
0 0 0 1

��������

��������

T0
5 ¼

0 �1 0 175:3
�1 0 0 �17:967
0 0 �1 �107:74
0 0 0 1

��������

��������

T0
6 ¼

1 0 0 160:3
0 0 �1 �17:967
0 1 0 44:54
0 0 0 1

��������

��������

T0
7 ¼

0 0 1 160:3
0 �1 0 �17:967
1 0 0 59:54
0 0 0 1

��������

��������

T0
8 ¼

0 1 0 23

1 0 0 �17:967
0 0 �1 59:54
0 0 0 1

��������

��������

T0
9 ¼

1 0 0 23

0 0 1 �17:967
0 �1 0 59:54
0 0 0 1

��������

��������

T0
10 ¼

�1 0 0 �39:5
0 0 1 �1:967
0 1 0 59:54
0 0 0 1

��������

��������
By using these transformation matrices, along with the DH parameters of the

right arm, we have all the information that is needed to get the right arm up to

slightly less than the shoulder level, getting it to the ideal level for solving

the maze.
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In order to ensure that all the calculations have been performed accurately, we

entered all the transformation matrices into a MATLAB simulator to observe the

force vectors on the right arm. In Fig. 4.1, we observe the force vectors at the instant

the right arm is at the initial phase, i.e. hanging by the torso from the shoulder at the

home position. In Fig. 4.2, we observe the force vectors of all the joints at the instant

the right arm is at the final position i.e. outstretched so that the maze is in full view

of the iCub. In both figures, the x axis is shown in red, the y axis is shown in green

and the z axis is shown in blue.

An analysis of all the position vectors of the joints in Fig. 4.2 provides us proof

that the calculation of the transformation matrices are accurate. It needs to be

pointed out that, at this stage, the system is only in an initial stage. In order to

solve the maze, the parameters of the joints need to be altered. This aspect of the

problem would be taken care of by the core algorithm itself.
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Chapter 5

Computer Vision

Abstract In this chapter, we present the various components of the computer

vision algorithms that were used for the various aspects of the project. Initially,

the chapter discusses the underlying algorithms of computer vision from a mathe-

matical standpoint. Once this aspect has been completed, the next step would be to

demonstrate to the reader how we incorporated the algorithms to fir the specific

problem that the research project intended to solve.

5.1 Inverse Homography

As part of the training process, every maze needs to be studied in order to develop a

control policy. In an ideal scenario, a perfect orthographic view of the maze would

be difficult to obtain at all times. This is especially true when the maze is tilted away

from the robot along the axis of viewing. As a result, an inverse homography of the

maze must be performed. In order to do so, identification of features with known

geometric relationships to each other is the first step. At least four such features

must be identified to determine the inverse homography of the maze. We felt that

the easiest way to do this was to place high contrast color markers at the four

corners of the maze board. The color red was used as the four color markers and we

agreed not to use the color red anywhere else on the maze. The only other red

colored object was the ball that was used to solve the maze.

All point coordinates on the maze are represented in a 2-dimensional form, i.e. as

(x, y). However, in order for inverse homography to be performed, we require

homogenous image coordinates.

The conversion of image coordinates to homogenous image coordinates is a

fairly straightforward process and is shown by (5.1) below (Lazebnik 2013).
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x; yð Þ ¼>
x
y
1

2
4

3
5 ð5:1Þ

Given the homogenous coordinate, the equation for homography is given below

as (5.2) and (5.3) (Lazebnik 2013).

λx
0
i ¼ Hxi ð5:2Þ

x
0
i � Hxi ¼ 0 ð5:3Þ

Equations (5.2) and (5.3) can be expanded as follows:

λ
xi

0

yi
0

1

2
4

3
5 ¼

h11 h12 h13
h21 h22 h23
h31 h32 h33

2
4

3
5

xi
yi
1

2
4

3
5 ð5:4Þ

xi
0

yi
0

1

2
64

3
75�

hT
1 xi

hT
2 xi

hT
3 xi

2
64

3
75 ¼

y
0
ih

T
3 xi � hT

2 xi

hT
1 xi � xi

0
hT
3 xi

x
0
ih

T
2 xi � yi

0
hT
1 xi

2
64

3
75 ð5:5Þ

Equation (5.5) can re-written as (5.6) given below (Lazebnik 2013).

0T �xTi yi
0
xTi

xTi 0T �xi
0
xTi

�yi
0
xTi xi

0
xTi 0T

2
64

3
75

h1

h2

h3

2
64

3
75 ¼ 0 ð5:6Þ

Equation (5.6) has three equations, of which only two are linearly independent.

Furthermore, (5.6) is of the form

Ah ¼ 0

H can be determined by using homogenous least squares, i.e. by minimizing

kAhk2. Figure 5.1 shows the abstraction of the maze with markers while Fig. 5.2

shows the unprojected coordinates of the maze after inverse homography.

Fig. 5.1 Abstraction

of maze with markers

(Nath and Levinson 2014)
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5.2 Offline Analysis of the Maze

At this stage, the inverse homography has been completed and an orthographic

view of the maze board is expected at all times as visual input for the iCub. The next

step would be to threshold the orthographic view to determine the layout of the

maze. Thresholding by color would result in a binary image indicating the regions

where a high concentration of red is present. In order to determine that this is indeed

a good approach, we decided to determine the RGB values of various points in the

image. The results are shown in Fig. 5.3.

Figure 5.3 is the image before any color correction or HSV mapping was

applied. The unmapped RGB values are seen to have a very wide variation in

value indicating that the raw RGB values are not good for thresholding. As a result,

the approach to use RGB values to perform an image threshold was cancelled. The

other approach was to use HSV mapping instead and this approach yielded much

better results. For the sake of continuity, the results of the HSV mapping are

examined in detail in Chap. 7. As a result, we decided to proceed with the HSV

values instead.

A segmentation algorithm like RasterScan can be used to label contiguous

regions and sort them by size (Buşoniu et al. 2010). In the processed image, the

four largest regions are expected to be the four corner markers. The rest of the

surrounding border content is cropped off in order to conserve the computational

resources of the iCub, since video processing is a computationally intensive pro-

cess. After the cropping has taken place, what is left are the maze walls and the open

path. Once again, a RasterScan will provide the open contiguous path of the maze.

Once a complete path is obtained, it can be discretized yet again into an n � n grid.

Figure 5.4 shows the resultant image at this stage, after performing the second

RasterScan operation.

Fig. 5.2 Unprojected

coordinates of the maze

after inverse homography

(Nath and Levinson 2014)
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Another important thing that deserves mention is the start and end points of the

maze. They need to be tagged so that the iCub can determine the start and end

points. While it might seem like a trivial problem, it is actually quite hard to

determine the two positions for extremely complicated mazes. As a result, the

maze board itself contains two labels that have been manually placed on the

board that denote the start and end points. Figure 5.5 shows how this seems to the

resultant path that has been generated. Once a start and end point are associated

with this path, reinforcement learning can begin. The reinforcement learning

simulates trial and error runs of a simulated maze environment. The control actions

involve course wrist motion with long pauses. After each action, the ball will come

Fig. 5.3 RGB values at various points in the maze (Nath and Levinson 2014)
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to rest at one of the corners of the maze. After a sufficiently long run, time value

iteration converges and an optimal policy is obtained. Filtering of the optimal

policy provides more general control domains. The final filtered control policy

corresponding to the n � n is then saved for online control.

Fig. 5.4 Resultant path

after Raster Scan applied

(Nath and Levinson 2014)

Fig. 5.5 Labelled start

and end points (Nath

and Levinson 2014)
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5.3 Selection of the Grid Size

Figure 5.4 shows the resultant path after the second round of RasterScan, along with

a grid. The grid is necessary for the online analysis of any given maze because it

helps to derive the optimum rules for controlling the motion of the ball, and can be

localized on a regional basis. However, it is extremely crucial to determine the ideal

resolution for sampling the video feed. Sampling below the video feed would cause

degradation in the maze and may result in open segments of the maze, when there

might be none in reality. As a result, the learned control policy is bound to fail.

On the other hand, sampling at a level much higher than the threshold would

produce an extremely fine resolution, which would cause a tremendous increase in

the time taken by the learning algorithm to converge upon a solution. This is

because the processing of video sequences at a high resolution is a computationally

intensive process. This issue is often referred to as the “curse of dimensionality” in

various research literature (Forsyth and Ponce 2011).

We felt that the only way we can determine the ideal resolution would be using a

trial-and-error method. In order to do this, we experimented with several resolu-

tions and eventually narrowed the possible choices down to three resolutions. They

are 16 � 16, 32 � 32 and 50 � 50. The result of the application of these resolu-

tions on the maze and the resultant path is shown in Fig. 5.6 below respectively.

As can be seen from Fig. 5.6, the application of the 16 � 16 grid would result in

insufficient information about the maze and more importantly, when the ball is at

those regions of the maze. This would result in the robot behaving in a random and

unexpected manner and is not a desirable action. Therefore, this resolution was also

discarded from the pile of possible candidates. The next resolution that was tested

was the 50 � 50 resolution. In this case, the robot would definitely be able to

determine the location of the ball with respect to the maze. By visually observing

the rightmost image of Fig. 5.6, it can easily be seen that the entire maze path is

present and the granularity of the grid is extremely fine. Upon testing the robot

to solve the maze using this resolution, it was determined that this results in
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an unacceptably long time duration. The duration to constantly locate the ball

with respect to its surroundings is very crucial since the maze solving has to take

place online.

The last resolution that is left is the one of grid size 32 � 32. This resolution

strikes a compromise between the two other resolutions. As can be visually seen

from the middle image in Fig. 5.6, the 32 � 32 resolution would be able to

determine the location of the ball with respect to the maze. For the purposes of

this experiment, there is no anticipated loss of information by using this resolution.

Upon testing the robot to solve the maze using the 32 � 32 resolution, it was

determined that the robot was able to solve the maze online. As a result, it was

decided to use a grid of size 32 � 32 to handle the video feed for online analysis.

5.4 Online Analysis

Once the optimal control policy has been obtained with the offline analysis of

multiple mazes, as part of the training set, the iCub can solve any maze given to

it. The test maze is vied from a projected perspective. Even in the online analysis of

the maze, HSV color thresholding is performed so that a binary image indicating the

high concentrations of red are obtained. This image shows the location of the ball

and the four markers at the edge of the maze board. The iCub then applies the

optimal control policy that has been learnt through all the training iterations that it

went through. This would result in the iCub orienting the board along one of the

three possible axes and wait for a period of time, to allow the ball to roll and stop at

a corner, before levelling the board once again. The experimental run of the maze,

being performed online, is examined in detail in Chap. 7.
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Chapter 6

Machine Learning

Abstract Whenever a problem seems extremely open ended with a large variety of

random variables that have an effect on the process, it is impossible for a human

programmer to be able to account for every single case. The number of cases

increases dramatically with an additional parameter. In such scenarios, probabilistic

algorithms have the greatest applicability. The algorithms need to be given a couple

of examples of scenarios it might come across and the algorithm would be able to

handle a new scenario with reasonable accuracy. The key word in the previous

statement is “reasonable”. There is no probabilistic algorithm that will always

return the optimum result with a probability of 1. That would make it a determin-

istic algorithm which, as has just been discussed, cannot handle every potential

case. In this chapter, we discuss the algorithms that were employed to successfully

complete the experiment.

6.1 Overview of Machine Learning

Machine learning can be broadly thought of as the programming of an algorithm to

constantly improvise itself, based on available data. However, the type of learning

to be used depends a lot on the type of data being dealt with, i.e. there isn’t any one

size fits all policy that can be run. It is important to remember that machine learning

has a probabilistic approach, i.e. it might be possible to use ML techniques to come

really close to solving a problem, but it would never be able to do the task with

absolute certainty. If a graph were plotted on the accuracy of machine learning

based algorithms, even the best algorithms would only asymptotically approach

100 %, but never quite get there. On the other hand, if the programmer is aware of

all the possible scenarios and if it is humanely possible to address all of them, then

the usual programming model is recommended, wherein each individual case/state

is addressed. However, we find such simple scenarios are few in number, and that
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scenarios that model real life would have a vast number of variables that would be

too complicated to model using a computer program. It is here that the programmer

needs to use machine learning techniques in order to develop an approach that

would return reasonably accurate solutions.

As previously mentioned, the type of learning algorithm to be used depends on

the type of the data. If the data is unlabeled, i.e. if each row of data doesn’t contain

any associated label with it, the data is called unlabeled data. If the data is labeled,

then the data is called labeled data. For example, the weather yesterday could be

represented by the vector <1, 0, 1, 0, 1, 1, 1, 0>, where each digit represents a

feature that is of interest. While the features have been represented, the data has not

been labeled, i.e. whether this data represents a sunny or rainy or windy day. On the

other hand, consider another vector <0, 1, 1, 1, 0, 0, 0, “snow”> contains a label

that mentions that the data represents, which is also the desired output for any

algorithm. In the former case, the data is called unlabeled data, while in the latter,

the data is called labeled data.

In the case of unlabeled data, usually clustering takes place, i.e. elements or data

points that are similar to each other tend to group together because of their common

characteristics. When this takes place, the algorithm would be good at matching a

new input to one of the existing clusters, although it would have no understanding

whatsoever of what the data represents; the matching is based on how close the data

seem to be with each clusters and then picks the closest one (Russell and Norvig

2010). Of course, it is possible for the algorithm to go wrong, and there would no

way for the algorithm to detect that it was a mistake and take corrective action. This

is why the training data is very important for unlabeled data. In such a case, when

there is no feedback about the accuracy of the data, the type of learning is called

unsupervised learning (Russell and Norvig 2010).

In the case of labeled data, the desired output is already present as part of the data

itself. Therefore, it would be possible to determine a mapping function from the

input to the output, based on the data provided. In this case, the algorithm would

initially form a function based on the first few training examples it has seen. As it

progresses through the training data, mistakes would be made and corrective action

would be taken so that the mapping function can map from input to output in the

best possible way. Once a function has been trained “enough”, it should be able to

accurately classify an unseen data point, from the test data. In reality, a function

might not be able to get every single test data point accurately, and will have an

error function associated with it. This method of learning is called supervised
learning (Russell and Norvig 2010).

There is another type of learning which seems to resemble real life much closer

than the previous two types of learning that has been discussed. In the case of

reinforcement learning, the agent learns from reinforcements that are present in the

data. The goal of the agent is to achieve the stated objective, which carries the highest

reward (Russell and Norvig 2010). Paths that seem beneficial are assigned a positive

reward score, while paths deemed detrimental are assigned a negative score.
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The agent attempts to find the path with the highest overall reward, while trying

to minimize the punishment/negative reward. An interesting thing is that the

optimum path might contain negative paths, or lower positive rewards than other

comparable intermediate paths. Yet, the agent would attempt to try for the overall

highest reward. This is very similar to our day to day lives. For instance, a lot of

children might not like going to school. To them, there is no immediate benefit in

attending school. On the contrary, they might consider it a punishment. However,

hardly anyone of us would argue about the value of education. In the long run, a

person who went to school is more likely to do well than someone who did not go to

school. Therefore, although it might seem like a negative reward, children need to

attend school. Similarly, plenty of people eat healthy, avoid processed and

unhealthy food and exercise regularly. In the immediate short term, indulging in

processed food might seem better because of the pleasant taste. People who

exercise regularly might not necessarily see its benefits right away. However, in

the long term, taking care of one’s body is very important and achieving this might

seem wasting a lot of short term happiness. We also coined a phrase “looking at the

big picture” to reflect this way of thinking. All this can be mathematically modelled

as reinforcement learning, and is used a lot in this book as one of the preferred

machine learning algorithms. The reinforcement learning algorithms being used

in this book are Q-learning and SARSA, both of which are discussed in detail

in Sect. 4.2.

As aforementioned, unsupervised learning primarily includes clustering because

of the lack of any labels in the data. There are other methods that also employ

unsupervised learning like hidden Markov models. A detailed discussion of these

topics is beyond the scope of this book and is not discussed.

Supervised learning, on the other hand, creates a mapping function from input to

output that is constantly being improvised by the labeled training data. Supervised

learning has a lot of applications in classification and in regression applications.

One of the simplest and most commonly used classifier is the perceptron, which is a
binary linear classifier. The perceptron converts an input, x, to an output f(x) that is

either 0 or 1, based on the threshold function (Russell and Norvig 2010). The

perceptron can be trained online. A perceptron would contain a weight vector, w,
which determines the weightage of the corresponding feature that it represents.

Furthermore, the perceptron has a threshold function which is given by

Threshold (w.x), where

Threshold að Þ ¼ 1 if a � 1, and0 otherwise

Although the feature vector, x, cannot be changed, the weight vector certainly

can and is dynamic in nature. As the perceptron iterates through training examples,

the weight vectors converge to a solution, one that classifies the data in a linear

fashion. The update equation of the weight vector is given by (6.1) below, which is

also called the perceptron learning rule (Russell and Norvig 2010).
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wi  wi þ α y� threshold xð Þð Þ � xi ð6:1Þ

Another common classifier that is based on supervised learning is the support
vector machine (SVM). It is a non-parametric method, i.e. the SVM would have to

retain all the training examples. However, in practice, they might retain only a small

fraction of the number of examples. SVMs construct a maximum margin separator,
which is a decision boundary with the largest possible distance to example points.

As a result, the generalization process can take place well. Furthermore, what is of

great importance of SVMs is the fact that SVMs can use a kernel function to project
points to a higher dimensional space in order to make them linearly separable

(Russell and Norvig 2010). This is a key difference from the perceptron which

assumes that all the data points are linearly separable.

There are several other types of classifiers that are based on supervised learning.

One of the other common ones are the neural networks. The neural networks are

composed of nodes that are connected by links. A link from one node to the next is

to propagate the activation from node 1 to node 2, and a weight w that is associated

with the weightage given to that link. Each node’s input is taken as the weighted

sum of all its inputs. The output of the node is based on an activation functionwhich
could be a hard threshold or a logistic function. If it is a hard threshold, the node is

called perceptron (discussed above) and if it is a logistic function, then the node is

called sigmoid perceptron (Russell and Norvig 2010). Other types of classifiers

include Naı̈ve Bayes’, decision trees, linear regression and logistic regression.

A detailed discussion of these classifiers, as well as other machine learning con-

cepts, is beyond the scope of this book. Interested readers are encouraged to read the

books mentioned in the References section for detailed information about machine

learning concepts.

6.2 Learning Algorithm

The most robust learning algorithm that is resilient to noise is the Q-learning

algorithm, belonging to the category reinforcement learning (Russell and Norvig

2010). In order to apply the Q-learning algorithm, we set a penalty at the start and a

penalty for the total time taken, with a reward at the goal state or making sure that

the ball reaches the end position.

The update equation for temporal difference Q-learning is given by (6.2) below

(Russell and Norvig 2010).

Q s; að Þ  Q s; að Þ þ α R sð Þ þ γmaxa0Q s
0
; a
0

� �
� Q s; að Þ

� �
ð6:2Þ

where α is the learning rate and γ is the discount factor.
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Upon closer examination of (6.2), we observe that Q-learning backs up the best

Q-value from the state that was reached in the observed transition. In other words,

Q-learning does not pay any attention to the actual policy being followed. There-

fore, it is also called an off-policy algorithm and so it would not generate a policy

that would maximize the probability of solving the maze (Russell and Norvig

2010). However, there is clearly a need to maximize this probability and an

on-policy algorithm is required. The SARSA algorithm seemed like a good choice

since it was very similar to the Q-learning algorithm, but was an on-policy

algorithm. The update equation for SARSA is given by (6.3) below (Russell and

Norvig 2010).

Q s; að Þ  Q s; að Þ þ α R sð Þ þ γ Q s
0
; a
0

� �
� Q s; að Þ

� �
ð6:3Þ

While the difference between (6.2) and (6.3) may seem very subtle at first, there

is a pretty significant difference between Q-learning and the SARSA algorithm. The

SARSA algorithm actually waits until an action is taken and then updates the

Q-value for that action. Simply put, if a greedy agent that always takes the action

with the best Q-value is required, Q-learning is the algorithm to use. However, if

exploration of the state space is required, SARSA is the algorithm that offers a lot

more advantages. For the purposes of this experiment, an exploratory algorithm is

required to maximize the probability of solving the maze correctly in the shortest

time possible. The optimum policy for the SARSA is given by (6.4) below (Russell

and Norvig 2010).

π� ¼ argmaxπ
X

h
P hjeð Þuπ

h ð6:4Þ

In (6.4), the posterior probability P(h|e) is obtained by using the Bayes’ rule and

applying it to the observations that have been obtained.

The learning for this experiment was done with value iterations of a discrete

state-action space. The algorithm used a sample based quality space (Sutton and

Barto 1998). The specific algorithm used is from (Buşoniu et al. 2010) and is given

below. Here, φ is an index of discretized space and θ is the value at that index. The
control space is U ¼ {0, 1, 2, 3, 4}, where 0 is a random action and {1, 2, 3, 4} is a

wrist tilt in the direction {North East, North West, South West, South East}

respectively.

The state space corresponds to the location in the 32 � 32 discretized path space

of the maze. The value of α and γ were set to 0.99 and an exploration function of

ε ¼ Q�0:01visist was used.

The pseudo-code of the algorithm is given below.

6.2 Learning Algorithm 43



References

Barber, D. (2012). Bayesian Reasoning and Machine Learning. Cambridge: University Press.

Breazeal, C., Wang, A., & Picard, R. (2007). Experiments with a Robotic Computer: Body, Affect

and Cognition Interactions. HRI’07 (pp. 153–160). Arlington, Virginia: ACM.
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Chapter 7

Experimental Results

Abstract In this chapter, we discuss the results that were obtained while trying to

solve an unknown maze by the iCub using the algorithm discussed in Chap. 6.

7.1 Open Loop Test

The first test performed was to test the hardware capability of the iCub, along with

the durability of the maze board and the ability of the iCub to navigate the ball

through all possible corners. In order to prove this, we programmed the iCub to

solve a particular maze in an open loop i.e. the robot was pre-programmed to solve a

maze of a particular arrangement. This first step allowed us to explore the basic

command interface for the task, as well as address issues surrounding grasping and

the field of view of the entire maze. The successful execution of this task would

result in greater for the entire experiment. Figures 7.1 and 7.2 show the iCub

working through the maze in this open loop test.

The iCub managed to complete the entire maze, from start to finish, successfully.

The successful completion of the open loop test gave us great confidence that the

iCub would be able to learn an optimum control policy and solve any given

maze to it.

7.2 Closed Loop Test

Now that the open loop test was successfully completed, the next step was to

perform a closed loop test on a maze that the robot has never seen before. However,

it is imperative that the optimum control policy has been obtained by the learning

algorithm employed by the iCub. Therefore, we trained the iCub on 23 different
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Fig. 7.1 The iCub while

working through the open

loop test

Fig. 7.2 Next action

of the iCub while

working through

the open loop test
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mazes, as part of the training set. Once this was done, we tested the iCub on

11 different mazes. The iCub successfully solved every single maze configuration,

giving it an accuracy of 100 %. This section will walk you through all the parts of

the experiment while solving a particular test maze.

The first step is to identify the corners of the maze board and then perform an

inverse homography on the resulting image feed. Figures 7.3 shows the successful

detection of the corners while Fig. 7.4 shows the resultant inverse homography.

Fig. 7.3 Detection of the corners of the maze (Nath and Levinson 2014)

Fig. 7.4 Resultant Inverse Homography (Nath and Levinson 2014)
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Once the inverse homography has been obtained, the next step is to apply the

HSV mapping to facilitate the detection of the features of the maze. Figure 7.5

shows the resultant HSV mapping applied to a particular maze configuration.

The RGB image of the maze that resulted from inverse homography after the

application of the 32 � 32 grid is shown in Fig. 7.6.

The path that resulted from the application of Raster Scan and the labelling of the

start and end points have already been shown as Figs. 5.4 and 5.5 respectively. Once

this point is done, reinforcement learning is performed on the resultant maze with a

penalty at the start, a reward at the goal and a running time penalty. This results in a

motivation for the algorithm to determine a path from the start to the end point in

optimal time. The value function of this approach is shown in Fig. 7.7 below.

The optimal control policy is then computed from the quality space. For control

values that have the same numerical value, one of them is chosen at random. The

resulting control policy is shown in Fig. 7.8 below.

As can be seen from Fig. 7.8, the control policy is scattered across various

neighboring points. This would result in an unstable motion of the robot’s hand

while solving the maze, making it susceptible to increased hardware wear and tear.

A filter can then be applied to the control policy to obtain a smoothed out policy for

the maze. The resultant optimal control policy for the maze is shown in Fig. 7.9

below. It is this output that is being used for the online maze solving by the

iCub robot.

Fig. 7.5 Maze after HSV application (Nath and Levinson 2014)
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Fig. 7.6 RGB version of

the maze after inverse

homography and grid

application

Fig. 7.7 Normalized log value function for the maze
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Fig. 7.8 Resultant control policy

Fig. 7.9 Optimal control policy after smoothing
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The following set of figures show the entire actual sequence of solving this

particular maze as seen from the iCub’s right eye, in RGB view. Each sequence

consists of the current maze in RGB form, the Raster Scan visualization of the

position of the ball with respect to the four corners, and lastly the position of the ball

in the maze with respect to the grid with the next direction to be applied indicated

by the arrow inside the circle.
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This sequence of images showed the entire sequence of events that took place

from the iCub’s perspective to solve the given maze from start to finish. Hopefully,

this sequence gave the reader an idea about the sequence of events that need to take

place in order to accomplish the complete solving of a 3-dimensional maze using

machine learning.
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Chapter 8

Future Direction

A simple literature review will reveal a plethora of maze solving algorithms.

However, merely executing an algorithm in a sequence of steps is not worthy of

present day research, simply because there is nothing to differentiate it from the

millions of sequential executions taking place in an ordinary CPU. Furthermore, if

the system finds itself in an unknown state, most algorithms do not have a fallback

mechanism built into the algorithm. Engineers will have to add some sort of safety

check just to get the system back to a known condition. There are times when even

this is not sufficient since the exact sequence of states and timing is crucial for the

successful termination of the algorithm.

In this book, we have presented a unique way to solve any given 3-dimensional

maze. The method is unique because of the learning component that has been added

into the process, making it a truly generic algorithm that is resilient to environmen-

tal changes and landing in unexpected states. Of critical research importance is the

understanding of the evolving model that the iCub is formulating as it keeps going

through the training examples and sees more test cases. It is also very interesting to

understand how the iCub, or any intelligent agent for that matter, applies the model

to solve a problem it hasn’t seen before. This understanding is crucial because it

takes us one step closer to attaining strong AI, wherein robots can “realize” that

they are agents that have the potential to influence and alter the environment around

them through actions that they perform. This approach is very similar to the

cognitive development of human infants. Initially, they simply wave their arms

and legs randomly. This is very similar to the approach of motor babbling in the

domain of robotics, wherein a robot would be able to autonomously develop an

internal model of its own body and its immediate environment. In the case of the

human infant, as it ages, more neuron connections are being made in its brain. Soon

enough, the infant is able to make a connection that by shaking the rattle in its hand,

it can produce some noise. In purely technical terms, a feedback loop has just been

completed.

We believe that the iCub platform and the community of AI researchers are

currently at this stage. The iCub has “realized” that by altering the orientation of the

board, it can cause the ball to roll in a particular direction. Figure 7.9 in Sect. 7.2
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shows the regions of the maze after the optimum control policy has been smoothed

out. All that the iCub needs to do at this point is to ensure that the generated

optimum control policy is being followed. If not, corrective action would be taken

also based on the control policy. In a way, this approach can be considered to be a

Mealy state machine, with each action changing the state and bringing the system to

a new state. This happens in an iterative manner, just like traversing a state machine

is. Therefore, while strong AI has definitely not been attained so far, we believe that

fringing the boundary has begun to occur, at least in terms of observable behavior.

While we aren’t there yet, we believe that strong AI is indeed a possibility, at least

in terms of observable behavior that rivals that of an average human. Hopefully, the

goal of developing a truly conscious entity will become a reality very soon.
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