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Foreword

Robotics is undergoing a major transformation in scope and dimension. From a
largely dominant industrial focus, robotics is rapidly expanding into human
environments and vigorously engaged in its new challenges. Interacting with,
assisting, serving, and exploring with humans, the emerging robots will increas-
ingly touch people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has
produced and is revealing a much wider range of applications reaching across
diverse research areas and scientific disciplines, such as biomechanics, haptics,
neurosciences, virtual simulation, animation, surgery, and sensor networks among
others. In return, the challenges of the new emerging areas are proving an abundant
source of stimulation and insights for the field of robotics. It is indeed at the
intersection of disciplines that the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the
research community the latest advances in the robotics field on the basis of their
significance and quality. Through a wide and timely dissemination of critical
research developments in robotics, our objective with this series is to promote
more exchanges and collaborations among the researchers in the community and
contribute to further advancements in this rapidly growing field.

This monograph by Giacomo Marani and Junku Yuh provides an extensive tract
on sensory-based autonomous manipulation for intervention tasks in unstructured
environments. After presenting the theoretical foundations for kinematic and
dynamic modeling as well as task-priority-based kinematic control of multibody
systems, the work is focused on one of the most advanced underwater vehicle-
manipulator system, SAUVIM. Solutions to the problem of target identification
and localization are proposed, and a number of significant case studies are
discussed.

Rich of practical examples and experimental/simulation results, this volume is
the third contribution on underwater robots to the series and constitutes a fine
addition to STAR!

Naples, Italy, January 2014 Bruno Siciliano
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Preface

Autonomous manipulation, a challenging technology milestone, refers to the
capability of a robot system that performs intervention tasks requiring physical
contacts with unstructured environments without continuous human supervision.
Such a robot system underlies several emerging markets and applications,
including security and rescue operations, space and underwater applications,
military applications, and the health-care industry.

A workshop on autonomous mobile manipulation, sponsored by NSF and
NASA, was held in Houston, Texas on March 10–11, 2005, and the workshop
report recognized that it is imperative to develop autonomous mobile manipulation
that will instigate significant scientific, economical, and societal impact. An
autonomous mobile manipulation system could be considered as an integrated
system of autonomous mobility and autonomous manipulation. Robotic vehicles at
a recent DARPA Grand Challenge and humanoid robots have demonstrated a
certain level of autonomous mobility as technologies for mapping and navigation
get matured. A certain level of dexterous manipulability has been also demon-
strated in structured environments, such as industrial settings. However, autono-
mous manipulation based on the sensory information in unstructured environments
still represents challenging research issues. This book is an introduction to this
indispensable technology to the development of autonomous robots for interven-
tion tasks.

Today’s intervention tasks in general are performed with extensive human
supervision, requiring high-bandwidth communication links, or in structured
environments, which result in limited applications. Autonomous manipulation
systems will make it possible to sense and perform mechanical work in areas that
are hazardous to humans or where humans cannot go, such as natural or man-made
disastrous regions, and deep-ocean, under-ice, and planetary explorations.

Autonomous manipulation systems, unlike teleoperated manipulation systems
that are controlled by human operators with the aid of visual and other sensory
feedback, must be capable of assessing a situation, including self-calibration based
on sensory information, and executing or revising a course of manipulating action
without continuous human intervention. It is sensible to consider the development
of autonomous manipulation as a gradual passage from human teleoperated
manipulation.
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Within this passage, the most noticeable aspect is the increase of the level of
information exchanged between the system and the human supervisor. In teleop-
eration mode, the user sends and receives low-level information in order to set the
position of the manipulator with the aid of visual and other sensory feedback. As
the system becomes more autonomous, the user may provide only few higher level
decisional commands; the management of lower level functions (i.e., driving the
motors to achieve a particular task) is left to the onboard system. The level of
autonomy is related to the level of information needed by the system in performing
the particular intervention. At the task execution level, the system must be capable
of acting and reacting to the environment with the extensive use of sensor data
processing.

This book deals with some important issues involved in the above scenario for
autonomous manipulation and includes various pragmatic examples obtained
during the course of a research project, SAUVIM, being jointly developed by the
Autonomous Systems Laboratory (ASL) of the University of Hawaii, M.A.S.E.,
Inc. in Hawaii, and Naval Undersea Warfare Center (NUWC) in Rhode Island.
SAUVIM represents one of the most advanced underwater robots in the world for
its unique capabilities. It is a six degrees-of-freedom autonomous underwater
vehicle (AUV) for 6,000 m depth, equipped with a seven degrees-of-freedom
electric motor-driven robotic manipulator, eight brushless thrusters, six CPUs, and
an extensive set of sensors such as imaging sonar, cameras, ultrasonic tracker, and
laser ranging systems.

Chapter 2 describes modeling of mobile robots with manipulators as a mul-
tibody system. As a large body of literature exists for modeling multibody systems,
this chapter presents essential elements with references, avoiding rigorous math-
ematics, for readers to help understanding materials in the following chapters.

Chapter 3 focuses on the manipulator control system. In autonomous systems, it
must ensure a reliable behavior within the workspace, avoiding collisions, system
instabilities, and unwanted motions while completing the required task, when it is
theoretically executable. The control system must also address other general
manipulation issues, such as task-space oriented, task priority assignment, and
dynamic priority changes during the interaction with the environment.

Chapter 4 presents the full implementation of the vehicle-manipulator system.
Based on the theoretical analysis introduced in the previous chapters, we introduce
an innovative solution for workspace optimization in mobile manipulation, suc-
cessfully implemented and tested on SAVUIM. Chapter 4 also presents our
solution for optimal configuration in hovering, a critical part of an autonomous
underwater intervention task. Detailed and unique experimental results for both
workspace and hovering optimization are here provided.

Another important topic in autonomous manipulation is the target localization.
The robot should have sensing capability to localize the target for autonomous
manipulation. It can be achieved using different technologies, such as video/image
processing, laser or ultrasonic 3D scanners, motion trackers (ultrasonic, magnetic,
or inertial), and shape tape. Within the interaction between the robot and the
environment, the automatic self-calibration is crucial. Chapter 5 describes our
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techniques for target localization using the DIDSON sonar (mid-range) and optical
systems (short-range).

Chapter 6, as a conclusion of our work, presents the SAUVIM main software
framework that allowed us to run all the presented solutions. Developing the
SAUVIM software framework required a considerable effort in integrating toge-
ther all the components of the system. On the top of the control system, a
semi-autonomous decisional layer is proposed to perform the intervention tasks. It
is supported by a communication interface (client–server architecture), a pro-
gramming environment for the task execution, and a user interface environment. In
this chapter we are also summarizing all the remaining technical solutions not
covered by the previous ones, such as motor drivers and path planning.

Honolulu, Hawaii, March 2014 Giacomo Marani
Junku Yuh
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Abstract

‘‘Autonomous manipulation’’ is a challenge in robotic technologies. It refers to the
capability of a mobile robot system with one or more manipulators that performs
intervention tasks requiring physical contacts in unstructured environments and
without continuous human supervision. Achieving autonomous manipulation
capability is a quantum leap in robotic technologies as it is currently beyond the
state of the art in robotics.

Such robotic systems will have a real impact on our society from societal and
economic points of view. This advancement will allow robots to reach new heights
as they will be able to complete even more complex tasks of various applications
such as security and rescue operations, space and underwater applications, military
applications, flexible manufacturing, automated supply chain management, and the
health care industry. Therefore, autonomous manipulation or autonomous robotic
manipulation is generating an increasing interest among the entire robotics
community.

Autonomous underwater manipulation is the primary research objective of the
SAUVIM (Semi-Autonomous Underwater Vehicle for Intervention Missions)
research group. SAUVIM (1997–2009), funded by the U.S. Office of Naval
Research, was jointly developed by the Autonomous Systems Laboratory of the
University of Hawaii, Marine Autonomous Systems Engineering, Inc. in Hawaii,
and Naval Undersea Warfare Center Division Newport in Rhode Island.

By presenting the full research path beyond the SAUVIM program, this book
addresses issues with the complexity of the problems encountered in autonomous
manipulation including representation and modeling of robotic structures, kine-
matic and dynamic robotic control, kinematic and algorithmic singularity avoid-
ance, dynamic task priority, workspace optimization, and environment perception.
Further development in autonomous manipulation should be able to provide robust
improvements of the solutions for all of the above issues.

It is hoped that this book including the findings and implications of SAUVIM
would inspire the robot research community to further investigate critical issues in
autonomous manipulation and to develop robot systems that can profoundly
impact our society for the better.

xvii



Chapter 1
Introduction

Autonomous manipulation on a moving base, such as underwater robotic vehicles,
is a very challenging task in the area of robotics, especially when accomplishing
tasks in unstructured environments. This chapter presents a general introduction to
the challenges of autonomous manipulation, followed by a description of the exper-
imental platform we used in our case study: the SAUVIM autonomous underwater
vehicle.

1.1 Autonomous Manipulation

Today’s underwater intervention tasks are mostly performed with extensive human
supervision, requiring high-bandwidth communication link, or in structured environ-
ments, which results in limited applications. Autonomous manipulation systems will
make it possible to sense and perform mechanical work in areas that are hazardous to
humans or where humans cannot go, such as natural or man-made disastrous regions,
deep-ocean, and under-ice.

Autonomous manipulation systems, unlike teleoperated manipulation systems
that are controlled by human operators with the aid of visual and other sensory
feedback, must be capable of assessing a situation, including self-calibration based
on sensory information, and executing or revising a course of manipulating action
without continuous human intervention. It is sensible to consider the development
of autonomous manipulation as a gradual passage from human teleoperated manip-
ulation. Within this passage, the most noticeable aspect is the increase of the level
of information exchanged between the system and the human supervisor.

In teleoperation with ROVs, the user sends and receives low level information in
order to directly set the position of the manipulator with the aid of a visual feedback.
As the system becomes more autonomous, the user may provide only a few higher
level decisional commands, interacting with the task description layer. The manage-
ment of lower level functions (i.e. driving the motors to achieve a particular task) is

G. Marani and J. Yuh, Introduction to Autonomous Manipulation, 1
Springer Tracts in Advanced Robotics 102, DOI: 10.1007/978-3-642-54613-6_1,
© Springer-Verlag Berlin Heidelberg 2014



2 1 Introduction

left to the onboard system. The level of autonomy is related to the level of information
needed by the system in performing the particular intervention. At the task execution
level, the system must be capable of acting and reacting to the environment with the
extensive use of sensor data processing.

The user may provide, instead of directly operating the manipulator, higher level
commands during a particular mission, such as “unplug the connector”. In this
approach, the function of the operator is to decide, after an analysis of the data,
which particular task the vehicle is ready to execute and successively to send the deci-
sion command. The low-level control commands are provided by a pre-programmed
onboard subsystem, while the virtual reality model in the local zone uses only the
few symbolic information received through the low bandwidth channel in order to
reproduce the actual behavior of the system.

The main approach is layered into different levels, where different behaviors take
place: a low-level layer which interacts with the robot hardware, a medium-level
layer for describing the control algorithms and finally a high-level layer where the
task description is performed. Within this configuration, the control system for the
manipulator (medium layer) must ensure a reliable behavior within the workspace,
avoiding collisions, system instabilities and unwanted motions while completing
the required task, when it is theoretically executable. The control system must also
address other general manipulation issues, such as task-space oriented, task priority
assignment, and dynamic priority changes.

AUV development is still mostly directed toward a survey-oriented vehicles. In lit-
erature there are only a few examples of Intervention AUVs. These example include
the OTTER I-AUV by the Stanford Aerospace Robotics Lab. OTTER, developed
back in 1996, is a hover capable underwater vehicle which operates in a test tank at
the Monterey Bay Aquarium Research Institute (MBARI). Current and past research
includes texture-based vision processing for feedback control and real-time mosaick-
ing, autonomous intervention missions, and hydrodynamic modeling of underwater
manipulators. A study on automatic objects retrieval was done in [1].

Another Intervention AUV, ALIVE, was developed in 2003 by Cybernetix. The
aim of the EU-funded ALIVE project was to develop an Intervention-AUV capable
of docking to a subsea structure which was not specifically modified for AUV use.
A description of the ALIVE vehicle was given in [2].

One of the most recent research in Underwater Autonomous Manipulation is the
TRIDENT project. This project proposes a new methodology to provide multipur-
pose dexterous manipulation capabilities for intervention operations in unknown,
unstructured underwater environments. In the TRIDENT project, a multipurpose
generic intervention is composed of two phases:

• PHASE I (Survey). The Autonomous Surface Craft (ASC) is launched to carry
the Intervention Autonomous Underwater Vehicle (I-AUV) towards the area to be
surveyed. Then, the I-AUV is deployed (1) and both vehicles start a coordinated
survey path (2) to explore the area. The ASC/I-AUV team gathers navigation data
for geo-referencing the measurements (seafloor images and multibeam bathymetry
profiles). Finally, the I-AUV surfaces (3) and contacts to the end user to set-up
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and acoustic/optical map of the surveyed area. Using this map, the user selects a
target object (an object of interest) as well as a suitable intervention task (grasping,
hooking, etc...).

• PHASE II (Intervention). After selecting the target, the ASC/I-AUV team navigates
towards the target position. Then, the ASC performs dynamic position (4) while
keeping the I-AUV inside the USBL cone of coverage. Then, the I-AUV performs
a search (5) looking for the Target of Interest (ToI). When the object appears in the
robot field of view, it is identified and the I-AUV switches to free floating mode
using its robotic arm as well as the dexterous hand to do the manipulation (6).
Finally (7), the I-AUV docks to the ASC before recovery.

In this book, we present the latest achievements with the SAUVIM AUV. SAUVIM
(Fig. 1.1) was jointly developed by the Autonomous Systems Laboratory (ASL) of
the University of Hawaii, Marine Autonomous Systems Engineering (MASE), Inc.
in Hawaii, and Naval Undersea Warfare Center Division Newport (NUWC) in Rhode
Island.

1.2 State of the Art: SAUVIM for Autonomous
Intervention Missions

SAUVIM (Semi Autonomous Underwater Vehicle for Intervention Missions, [3–5],
Fig. 1.1) involves the design and fabrication of an underwater vehicle that it is capable
of autonomous interventions on the subsea installations, a task usually carried out by
ROVs or human divers. The vehicle is built around an open-framed structure enclosed
by a flooded composite fairing. Its movement is controlled by eight thrusters located
around the center of mass. The four vertical thrusters move the vehicle in the Z-axis
(heave); the two, internally mounted, horizontal thrusters move the vehicle in the
Y-axis (sway); and the two, externally-mounted, horizontal thrusters move the vehicle
in the X-axis (surge). The lower frame houses only the NI-MH battery pack, while
the upper frame hosts all the essential electronics, visual hardware, navigation and
mission sensors in six cylindrical pressure vessels.

The proper subsea navigation and positioning accuracy is achieved with a Photonic
Inertial Navigation System (PHINS) unit from IXSEA. This INS outputs position,
heading, roll, pitch, depth, velocity, and heave. Its high accuracy inertial measurement
capability is based on Fiber Optic Gyroscope technology coupled with an embedded
digital signal processor that runs an advanced Kalman filter. This INS is aided by a
differential GPS, a Doppler Velocity Log (DVL) other than the classical depth sensor,
in order to improve the absolute measurement of the vehicle position.

This navigation sensor system is capable of providing a stable and precise feedback
of the vehicle position, velocity and acceleration on all the 6 DOF. In one of our
experiments, we tested the stability and precision of the vehicle during station keeping
with a generalized PID controller active on all 6 axis. The INS was aided only by the
DVL, since the GPS was, in this case, submerged. The vehicle was able to maintain the
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Fig. 1.1 The SAUVIM autonomous underwater vehicle

target position with a sub-inch accuracy for the translational part. This was confirmed
by the manipulator camera output, which was looking toward an earth-fixed target.
This position was maintained for over 15 m without any relevant change in the x and
y axis positions. We only noticed a slow change in the Z position, which was due to
the tide activity. As a matter of fact, while the target was fixed with respect to the
earth, the INS uses a depth sensor to correct the z-coordinate. A video recording of
the above experiment can be downloaded from the Autonomous Systems Laboratory
web sites.1

To achieve the intervention capabilities, SAUVIM is equipped with a 7 degrees-
of-freedom robotic manipulator (MARIS 7080, Fig. 1.2). The arm, unlike the clas-
sical hydraulic arm in use for ROVs, is actuated by electromechanical components,
in order to meet the low-power requirements and higher accuracy in manipulation
tasks. Each degree of freedom is actuated by a brushless motor with a reduction unit
(harmonic drive). The accuracy of the angular measurement is guaranteed by the
combination of two resolvers, mounted respectively before and after the reduction
unit. This configuration allows a sub-millimeter positioning of the manipulator’s
end-effector, an important requirement when dealing with a large class of underwa-
ter intervention. A force/torque sensor, installed between the last degree of freedom
of the wrist and the gripper, senses the amount of the force and torque acting on
the gripper. Designed for underwater applications at extreme depths, it is internally
compensated with appropriate oil.

The sensor devices of SAUVIM are the most critical components of a generic
intervention mission, since at the task execution level the system must be capable
of acting and reacting to the environment with the extensive use of sensor data

1 http://gmarani.org/sauvim

http://gmarani.org/sauvim
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Fig. 1.2 MARIS 7080 under-
water manipulator

processing. SAUVIM is equipped with a Dual Frequency Identification Sonar
(DIDSON2), a Digital Multi-Frequency Scanning Sonar, several video camera with
Image Processing computational unit and a special ultrasonic device for tracking the
position of a generic target in 6 degrees-of-freedom.

Finally, the hardware architecture is composed of several computers and periph-
erals for sensor data acquisition. Two VME-based single board computers host the
distributed control system for the vehicle and manipulator, and 3 PC-104 units provide
the necessary computation power for sensor data processing, including a dedicated
system for optical vision.
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Chapter 2
Geometry, Kinematics and Dynamics
of Multi-body Systems

The search for a mathematical model to accurately represent the physical behavior
of a generic mechanical system is the most important step in the development of
simulation, identification and control.

With the constant growth of the capabilities of modern computing systems, the
limit of the complexity of a mathematical model can be increased to describe a larger
category of structures, yet maintaining the possibility of performing simulation, iden-
tification and/or control in real time.

Moreover, the availability of powerful tools for symbolic computation enables the
possibility of automating the entire process that, starting from a structure description,
performs all elaborations necessary to compute the model. This concept requires the
introduction of models built in a way that is independent on the particular structure
to which they refers.

This approach is particularly useful when dealing with mobile manipulation.
Conventionally, mobile manipulation systems have been often regarded as composi-
tion of two or more (possibly coupled) structures: the robotic arm(s) and the vehicle.
By introducing the generalization of a mechanical joint with variable degrees of free-
dom, it is possible to regard the entire system as an unique “robot”, in general with
a multi-branch topology, and made of different types of joints. Within this approach
concepts like manipulability can easily be applied to the whole vehicle-manipulator
system and, as introduced later in the book, can be particularly useful in solving
important problems in autonomous manipulation like the workspace optimization.

This chapter serves as an introduction to general notions and concepts on geome-
try, kinematics and dynamics of multi-body system. As a large body of literature exists
for modeling multi-body systems, this chapter presents only the essential elements
to understand our approach in modeling the mobile vehicle-manipulation system as
a generalized multi-body structure.

G. Marani and J. Yuh, Introduction to Autonomous Manipulation, 7
Springer Tracts in Advanced Robotics 102, DOI: 10.1007/978-3-642-54613-6_2,
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2.1 Geometry

This section focuses on basic geometrical concepts applied to multi-body systems.
We will introduce the concepts of reference system transformation, to prepare a
background necessary to describe a generic robotic structure.

2.1.1 Vector Operations

In this section we assume that the reader is familiar with basic analytic geometry
concepts, such as free and oriented vectors.

2.1.1.1 Scalar Product

Consider two generic free geometric vectors v1 and v2. The scalar product (dot
product) is represented and defined as:

v1 · v2 = |v1| |v2| cos(θ) (2.1)

with θ the minimum angle between the two vectors. Assuming v = [ v1 v2 v3
]T

and w = [w1 w2 w3
]T . Equation (2.1) results in the following matrix form:

v · w = vT w = [ v1 v2 v3
]
⎡

⎣
w1
w2
w3

⎤

⎦ = v1 w1 + v2 w2 + v3 w3 (2.2)

The dot product is commutative:

v1 · v2 = v2 · v1 (2.3)

and distributive with respect to the addition:

w · (v1 + v2) = w · v1 + w · v2. (2.4)

2.1.1.2 Cross Product

Given two generic free vectors v1 and v2, the cross product is defined as (Fig. 2.1):

v1 × v2 = |v1| |v2| sin (θ) n (2.5)
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Fig. 2.1 Cross product v1 × v2

v1

v2

n

θ

where θ is the the measure of the smaller angle between v1 and v2 and n is an unit
vector perpendicular to the plane containing v1 and v2, with the direction given by
the right-hand rule. Important properties of the cross product are the following:

• v1 × v2 = −v2 × v1 (anticommutative)
• v1 × (v2 + v3) = v1 × v2 + v1 × v3 (distributive over addition).

2.1.2 Reference Systems

In robotics, besides an absolute Cartesian coordinate system (main frame), it is nec-
essary to distribute local reference frames, integral on each link of the manipulator.
The position of each frame with respect to the main frame must be described by
specifying the origin and direction of the coordinate axes (Fig. 2.2):

〈a〉 ≡ {Oa, ia, ja, ka
}

〈b〉 ≡ {Ob, ib, jb, kb
}

Any vector can be uniquely expressed w.r.t. either 〈a〉 or 〈b〉 frame:

v = c1ia + c2 ja + c3ka (2.6)

v = h1ia + h2 ja + h3ka . (2.7)
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O0

i0

< 0 >

j0

k0

Ob

ib

< b >

jb

kb

Oa

ia
< a >

ja

ka

Fig. 2.2 Reference frames

2.1.2.1 Orthogonal Reference Frames

The frame 〈a〉 ≡ {Oa, ia, ja, ka
}

is right-handed if:

{
ka = ia × ja
ia · ja = 0

(2.8)

Similarly, the frame 〈a〉 ≡ {Oa, ia, ja, ka
}

is left-handed if:

{
ka = −ia × ja
ia · ja = 0

. (2.9)

2.1.2.2 Algebraic Vectors

The concept of geometric vector can be defined algebraically by placing the vector
in a rectangular coordinate system. The components of v w.r.t. a reference frame can
be organized in a 3 × 1 matrix known as algebraic vector. Thus, in case of Eq. (2.6),
the equivalent algebraic vector is given by:

av =
⎡

⎣
c1
c2
c3

⎤

⎦ ∈ �3 (2.10)

Vector av is the projection of v on the frame 〈a〉. Similarly we have:

bv =
⎡

⎣
h1
h2
h3

⎤

⎦ ∈ �3 (2.11)
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where bv is the projection of v on the frame 〈b〉.
The vector operations introduced in Sect. 2.1.1 apply also to the algebraic vectors,

in the same reference frame. In case the reference frame is orthonormal we have:

• dot product:

v · w = avT aw (2.12)

• cross product in right-handed frame:

a(v × w) = ⌊av×⌋ aw (2.13)

• cross product in left-handed frame:

a(v × w) = −⌊av×⌋ aw (2.14)

where �av×� is the the skew-symmetric matrix operator, defined as (considering
Eq. (2.6)):

⌊av×⌋ =
⎡

⎣
0 −c3 c2
c3 0 −c1

−c2 c1 0

⎤

⎦ . (2.15)

2.1.2.3 Rotation Matrix

The relative orientation of two reference frames can be described with the concept
of rotation matrix. Given two reference systems 〈a〉 ≡ {Oa, ia, ja, ka

}
and 〈b〉 ≡{

Ob, ib, jb, kb
}
, the rotation matrix of the frame 〈b〉 w.r.t. the frame 〈a〉 is the 3×3

matrix defined as:

a
b R =̂ [ a ib a jb

akb
] ∈ �3×3 (2.16)

Assuming that both 〈a〉 and 〈b〉 are orthonormal, the rotation matrix has the following
properties:

⎧
⎨

⎩

a ib · a jb = 0
a jb · akb = 0
akb · a ib = 0

(2.17)

⎧
⎨

⎩

a ib · a ib = 1
a jb · a jb = 1
akb · akb = 1

(2.18)

a
b R−1 = a

b RT (2.19)
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det
(a

b R
) = ±1 (2.20)

Note that the sign in Eq. (2.20) is positive in case both 〈a〉 and 〈b〉 frames are right-
handed or left-handed, and negative if they are opposite (one left-handed and the
other right-handed).

2.1.2.4 Change of Reference System

Given a geometric free vector v, whose projection bv on the frame 〈b〉 is known,
the problem in changing reference system consist in finding the projection av of the
same vector on the frame 〈a〉. Considering the geometric vector

v = xbib + ybjb + zbkb (2.21)

its projection on the frame 〈a〉 is:

av = xb
a ib + yb

a jb + zb
akb (2.22)

Considering Eq. (2.16), the above projection becomes:

av = a
b R bv (2.23)

Similarly we have:
bv = b

a R av (2.24)

that, considering Eqs. (2.19) and (2.23), leads to:

b
a R = a

b RT (2.25)

This means that, while the columns of the rotation matrix a
b R are the unit vector axes

of 〈b〉 projected onto 〈a〉, its rows are the unit vector axes of 〈a〉 projected onto 〈b〉.

2.1.2.5 Change of Reference System for the Skew Symmetric Operator

Let’s consider now how the skew symmetric matrix operator introduced in Eq. (2.15)
changes with the reference frame. Given two vectors v and w, their cross product
projected on the frame 〈a〉 is given by:

a(v × w) = ⌊av×⌋ aw (2.26)

Similarly, the cross product projected on a different frame 〈b〉 is given by:
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b(v × w) =
⌊

bv×
⌋

bw (2.27)

Projecting the left hand side of Eq. (2.27) on the frame 〈a〉, and considering
Eq. (2.26) we obtain:

a
(

b (v × w)
)

= a
b R b (v × w)

= a
b R
⌊

bv×
⌋

bw

= a
b R
⌊

bv×
⌋

a
b RT aw (2.28)

from which, for the arbitrariness of w, we obtain:

⌊av×⌋ = a
b R
⌊

bv×
⌋

a
b RT . (2.29)

2.1.2.6 Concatenation of Rotation Matrices

Given a certain number of reference frames (see Fig. 2.3), let’s now determine the
rotation matrix h

k R of the generic frame 〈k〉 w.r.t. the frame 〈h〉, i.e. the matrix such
as:

hv = h
k R kv (2.30)

At this aim let’s consider a path, starting on frame 〈k〉 and possibly without loops,
that connects the two frames. Along the path, let’s project the vector kv on each
successive frame, by pre-multiplying by each rotation matrix. With reference to the
path k-h in Fig. 2.3, we obtain:

hv = h
j R j

i R i
k R kv (2.31)

from which:
h
k R = h

j R j
i R i

k R. (2.32)

2.1.2.7 Representation of the Rotation Matrix

Because the 6 constraints introduced in Eqs. (2.17) and (2.18), the nine-elements
rotation matrix can be represented with a minimum of 3 parameters. In literature there
are several methodologies to represent a rotation matrix; here, we are introducing
only the representations used on our work.
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Exponential representation

The frame 〈b〉, initially coincident with 〈a〉, is being rotated of an angle θ around the
unity vector v passing through the origin (Fig. 2.4). The rotation matrix a

b R of the
frame 〈b〉 w.r.t. 〈a〉 can be expressed as:

a
b R = R (v, θ) = e�v×�θ (2.33)

with �v×� defined as in Eq. (2.15). Expanding the matrix exponential we obtain:

e�v×�θ =
⎡

⎣
vxvx pθ + cθ vxvy pθ − vzsθ vxvz pθ + vysθ

vxvy pθ + vzsθ vyvy pθ + cθ vyvz pθ − vx sθ
vxvz pθ − vysθ vyvz pθ + vx sθ vzvz pθ + cθ

⎤

⎦ (2.34)
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where cθ =̂ cos(θ), sθ =̂ sin(θ) and pθ =̂ 1−cos(θ). The exponential representation
(2.33) has the following properties:

1. Symmetry:

R (v, θ) = R (−v, θ) (2.35)

2. Periodicity:

R (v, θ) = R (v, θ ± 2kπ) (2.36)

3. Identity:

R (v, 2kπ) = I ∀v (2.37)

The rotation matrix is thus fully determined by the unity vector v and the angle θ
(see Fig. 2.4). Proofs of Eqs. (2.33) and (2.34) are out of the scope of this book and
hence omitted.

Examples

• v = i

R (i, θ) =
⎡

⎣
1 0 0
0 cos (θ) − sin (θ)
0 sin (θ) cos (θ)

⎤

⎦ (2.38)

• v = j

R( j, θ) =
⎡

⎣
cos (θ) 0 sin (θ)

0 1 0
− sin (θ) 0 cos (θ)

⎤

⎦ (2.39)

• v = k

R (k, θ) =
⎡

⎣
cos (θ) − sin (θ) 0
sin (θ) cos (θ) 0

0 0 1

⎤

⎦ (2.40)

Euler roll-pitch-yaw representation

Let’s consider two frames 〈a〉 and 〈b〉 and two auxiliary frames 〈b1〉 and 〈b2〉, all
initially coincident with 〈a〉 (see Fig. 2.5). The final placement of 〈b〉 w.r.t. 〈a〉 is
obtained through the following steps:

1. Rotate the frame 〈b1〉 w.r.t. 〈a〉 of the angle α (yaw) around its own axis k1. Frame
〈b1〉, during its rotation, carries the frames 〈b2〉 and 〈b〉.

2. Rotate the frame 〈b2〉 w.r.t. 〈b1〉 of the angle β (pitch) around its own axis j2.
Frame 〈b2〉, during its rotation, carries the frame 〈b〉.

3. Rotate the frame 〈b〉 w.r.t. 〈b2〉 of the angle γ (roll) around its own axis i3.
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Fig. 2.5 Euler angles: case of α = 20◦, β = 20◦ and γ = 20◦

The final rotation matrix becomes:

a
b R = R(k,α)R( j,β)R(i, γ)

= e�k×�αe� j×�βe�i×�γ (2.41)

Expanding Eq. (2.41) we obtain:

⎡

⎢
⎢
⎣

cos (β) cos (α) − cos (γ) sin (α) + sin (γ) sin (β) cos (α) sin (γ) sin (α) + cos (γ) sin (β) cos (α)

cos (β) sin (α) cos (γ) cos (α) + sin (γ) sin (β) sin (α) − sin (γ) cos (α) + cos (γ) sin (β) sin (α)

− sin (β) sin (γ) cos (β) cos (γ) cos (β)

⎤

⎥
⎥
⎦

(2.42)

The inverse problem, i.e. finding the Euler angles α, β and γ from a rotation matrix,
is not unique. We utilize the following algorithm:
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1. γ (roll).
Note that:

i2 = i3 (2.43)

which implies that j2 is orthogonal to i3. Similarly, j2 = j1 implies that j2 is
orthogonal to k0. Hence, if k0 and i3 are not parallel, we have:

j2 = ± k0 × i3
|k0 × i3| (2.44)

k2 can then be determined from Eqs. (2.44) and (2.43):

k2 = i2 × j2 (2.45)

The roll angle γ can be now easily computed from the relationships:

cos (γ) = j3 · j2 (2.46)

and
sin (γ) = j3 · k2 (2.47)

obtaining:
γ = arg

[(
j3 · k2
)
,
(

j3 · j2
)]

(2.48)

2. β (pitch)
Considering that the axes of the frame 〈b1〉 have the following properties:

j1 = j2

k1 = k0

i1 = j1 × k1 = j2 × k0

we can determine the pitch angle as following:

cos (β) = k2 · k1

sin (β) = k2 · i1

and finally:
β = arg [(k2 · i1) , (k2 · k1)] (2.49)

3. α (yaw)
Since:

cos (α) = i1 · i0
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sin (α) = i1 · j0

we simply have:
α = arg

[(
i1 · j0
)
, (i1 · i0)

]
(2.50)

The angles obtained with the positive sign in Eq. (2.44) are the ones shown in Fig. 2.5.
In the above procedure we have assumed that k0 and i3 are not parallel. In case they
are parallel (easy to verify), the procedure changes by noting that:

β = ±π

2
(2.51)

For the remaining angles, there is an infinity of solutions that satisfy the relationship:

α + γ = ξ (2.52)

where ξ is a constant. The latter is obtained by considering that:

cos (ξ) = k3 · i0

sin (ξ) = k3 · j0

hence:
ξ = arg

[(
k3 · j0
)
, (k3 · i0)

]
. (2.53)

2.1.2.8 The Transformation Matrix

After considering the transformation of free geometric vectors, let’s now introduce
the change of reference system for points in the Euclidian space.

Given a point P , its projection on the frames 〈a〉 and 〈b〉, visualized in Fig. 2.6,
is:

aP = a(P − Oa)

bP = b(P − Ob)

In general, unlike the free geometric vectors, we have:

a
(

bP
)

�= aP (2.54)

and also:
a
(

bP
)

= a
(

b(P − Ob)
)

= a(P − Ob) (2.55)

The relationship between a P and b P is:
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Fig. 2.6 Point transformation

a P = aOb + b
a RbP (2.56)

Equation (2.56) can be expressed in a compact form by introducing the following
notation. Given a generic point P , represented in the reference frame 〈b〉 by the
algebraic vector:

b p =
⎡

⎣
xb

yb

zb

⎤

⎦

The same can be represented also with the form:

b p =

⎡

⎢⎢
⎣

xb

yb

zb

1

⎤

⎥⎥
⎦ (2.57)

Equation (2.57) is the representation of P in homogeneous coordinates. Equation
(2.56) can thus be rewritten in the following matrix form:

a p = a
b T b p (2.58)

where the 4 × 4 matrix:

a
b T =

⎡

⎢
⎢
⎣

a
b R aOb

0 0 0 1

⎤

⎥
⎥
⎦ (2.59)

is the transformation matrix, containing all the information about the reference sys-
tem (orientation and origin position).

Similarly, the following relationship holds:
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Fig. 2.7 Kinematic chain:
joint, link and frame enumer-
ation

b p = b
a T a p (2.60)

Comparing Eqs. (2.58) and (2.60) we obtain:

b
a T = a

b T−1 (2.61)

In a multi-frame structure, the computation of the transformation matrix between two
generic frames 〈k〉 and 〈h〉 can be done in the same fashion described in Sect. 2.1.2.6
for the rotation matrix.

2.1.3 Geometry of Robotics Structures

The robotics structure here considered is defined as a collection of rigid bodies (links)
connected by mechanical devices (joints) having the purpose of limiting the degrees
of freedom between adjacent links (Fig. 2.7). Such structures are known as kinematic
chain and can be classified as:

• Open chain with serial (linear) topology
• Open chain with ramified topology
• Closed chain

In this work we will be considering only open chains.
The most common joints encountered in robotics are rotational and translational.

The former allow only rotation around one fixed axis, while the latter permit the
translation along one fixed direction.

Sometime it is possible to find joints with three degrees of freedom, for example
when the joint must allow every orientation in the space. Multi degrees of freedom
joints can be made up of a sequence of three rotational joints, each one allowing a
rotation around a predefined axis (as for example the k, j and i axis sequence). This
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kind of compound joint, despite its simplicity, may present singular configurations,
such as the well known gimbal lock. The singularity issue does not exist in the
spherical joint. Even though it may be of difficult practical realization, the spherical
joint can be used to simulate floating structures.

The kinematics of joints will be considered more thoroughly in the next section.

2.1.3.1 Description of a Robotic Structure

In the past robotic literature, one of the main effort in describing a generic robotic
structure was to produce certain regularity in the matrix forms. The Denavit-
Hartenberg [1] is, for example, a very common parameterization, whose main advan-
tage is that the configuration matrices have a specified form. This was relevant when
involving hand-calculations. With the introduction of the modern numeric and sym-
bolic computation, this is no more a concern, and an increased simplicity and flexibil-
ity in the descriptive language may supersede the constraints of the old computational
difficulties.

Through the introduction of the joint matrix (described in Sect. 2.2.2), the posi-
tion and orientation of the link frames are no more constrained by some particular
requirements, like for example having the motion direction along the same axis. In
our parameterization, the motion directions are completely specified within the joint
matrix, and the frame placement across the structure can be done using the following
methodology.

As noted above, we are considering open chains with ramified topology; we must
divide the structure in several linear kinematic chains and enumerate each link with a
notation that considers also the chain (branch) to which it belongs. The most important
steps in positioning the link frames are hence the following (see also Fig. 2.8):

1. Define first the main base frame (environment). The main frame will be indicated
with the index pair 〈1, 0〉.

2. Decompose the structure in a certain number of linear chains (branch); at least
one chain will have a link connected to the environment frame through a joint:
this branch will be indicated with the branch number 1.

3. Select a branch of the remaining structure connected to the branch 1: this will be
the branch number 2.

4. Move forward until all the branches are selected.
5. For each branch, enumerate progressively its links, starting from the link that

connects the branch to the remaining of the structure; with this notation, a generic
link is described by an index pair (i, j), where i is the branch number and j is
the link number within the same branch.

6. Enumerate the joints by assigning to each one the same index pair of the link they
are preceding.

7. Apply to each link a frame, with orientation parallel to the main frame, and with
the origin coinciding with the point where the preceding joint is attached to the
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Fig. 2.8 Open kinematic chain with ramified topology

previous link; the frame will be identified by the same index pair 〈i, j〉 of the link,
with i is the branch number and j the link number within the same branch.

8. Optionally, apply another frame to the last link of each branch, with orientation
originally parallel to the main frame and the origin coinciding with the end-
effector; the frame will be identified by the index pair 〈i, ni + 1〉, where i is the
branch number and ni is the number of links of the same branch.

Figure 2.8 shows an application example of this methodology. It is important to
observe the previous sequence: in particular, a branch cannot be connected to another
having a greater index, otherwise the path toward the main frame would be lost. This
is important when searching the shortest path between two links of different branches,
during the computation of the transformation matrices.

In summary, to completely describe a generic open kinematic chain with branch
topology we must specify:

1. number of branches
2. number of links per branch
3. point of connection of the joint 1 of each branch

and, for each link:

1. type of associated joint
2. point where the successive (outboard) joint is connected (end-effector in case of

the last link)
3. dynamic parameters (mass, center of mass, inertia matrix).
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2.2 Kinematics

This section introduces the fundamental concepts for the study of the motion (kine-
matics) of robots. In the following kinematic analysis the constrained motion intro-
duced by the joints will be generalized in order to embrace a larger class of mechanical
systems. A free body, for example, will be considered as a particular case of con-
straint, thus allowing an easy and intuitive approach to describe a generic mechanical
system. After a summary of the necessary theoretical background, the section intro-
duces the approach for describing a generic joint, and terminates with the solution
of the direct kinematic problem (Jacobian).

2.2.1 Introduction to General Kinematics

Within this introduction to general kinematics we would like to make the reader
familiar with the concepts used in our treatise. A complete review of general kine-
matics is outside the scope of this book and can be extensively found in the literature
(as for example in McCarthy [2] or Goldstein [3]).

2.2.1.1 Vector Derivatives

The time derivative of the geometrical vector ρ, computed with respect to the frame
〈a〉, is defined as the following geometrical vector:

da

dt
ρ

∧= ia ẋa + ja ẏa + ka ża (2.62)

Similarly, for the same vector but in another frame 〈b〉 we have:

db

dt
ρ

∧= ib ẋb + jb ẏb + kbżb (2.63)

Let’s now find the relation between Eqs. (2.62) and (2.63):

da

dt
ρ

∧= da

dt

(
ibxb + jb yb + kbzb

)

= ib ẋb + jb ẏb + kbżb +
(

da

dt
ib

)
xb +
(

da

dt
jb

)
yb +
(

da

dt
kb

)
zb (2.64)

Note that, in general, projecting the (2.62) on the frame 〈b〉, we have:

b
(

da

dt
ρ

)
�= da

dt
bρ = d

dt
bρ. (2.65)
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Fig. 2.9 Frames in relative
motion
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2.2.1.2 Angular Velocity

Let’s consider two frames in relative motion as in Fig. 2.9. Since the matrix a
b R (t)

is time-dependent, it is possible to define as angular velocity of the frame 〈b〉 w.r.t.
the frame 〈a〉 the vector ωb/a , which, at any instant in time, provides the following
information:

(a) the versor of ωb/a indicates the axis around which, at any instant, an observer
sitting in 〈a〉 sees 〈b〉 rotating (w.r.t. 〈a〉);

(b) the component along its versor indicates the effective instantaneous angular
velocity (measured in rad/s)

The angular velocity vector can be associated with the following differential form:

dθb/a = ωb/adt (2.66)

Equation (2.66), however, does not coincide in general with any exact differential.1

It is possible to rewrite Eq. (2.64) by using the vector ωb/a ; at this aim we need
the Poisson formulas (for its proof, see Goldstein [3]):

⎧
⎪⎪⎨

⎪⎪⎩

da
dt ib = ωb/a × ib
da
dt jb = ωb/a × jb

da
dt kb = ωb/a × kb

(2.67)

Hence, Eq. (2.64) becomes:

da

dt
ρ = db

dt
ρ + ωb/a × ρ (2.68)

1 A differential dQ is said to be exact, as contrasted with an inexact differential, if the differentiable
function Q exists.
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Fig. 2.10 Composition of angular velocities across different frames

Note that, if the module of the vector ρ is constant and ρ is integral with 〈b〉, Eq. (2.68)
becomes:

da

dt
ρ = ωb/a × ρ (2.69)

The above relation is particularly useful in case of rigid bodies.
Some important properties of the angular velocity vector are the following:

1. ωb/a = −ωa/b

2. Given n frames, the angular velocity ωk/h of the a generic frame 〈k〉 with respect
to any other frame 〈h〉 can be obtained by adding (vector sum) the successive
angular velocities encountered in any path between k and h.

In the example of Fig. 2.10 we have:

ω(2,2)/(1,3) = ω(2,2)/(2,1) + ω(2,1)/(1,2) − ω(1,3)/(1,2). (2.70)

2.2.1.3 Time Derivatives for Points in Space

Let’s consider now two reference systems 〈a〉 and 〈b〉, with the latter moving rel-
atively to the former, with any general (either rotational and translational) motion.
We define velocity of one point P (see Fig. 2.11), computed with respect to the frame
〈a〉, the geometric vector:

v p/a = da

dt
(P − Oa) = ia ẋ p/a + ja ẏp/a + ka ż p/a (2.71)
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Fig. 2.11 Reference frames in relative motion with a generic point

Similarly:

v p/b = db

dt
(P − Ob) = ib ẋ p/b + jb ẏp/b + kbż p/b (2.72)

Let’s now find the relationship between Eqs. (2.71) and (2.72):

v p/a = da

dt
(P − Oa) = da

dt
(Ob − Oa) + da

dt
(P − Ob) (2.73)

Indicating with vb/a the velocity of the origin of the frame 〈b〉 with respect to the
frame 〈a〉, the previous relation becomes:

v p/a = vb/a + da

dt
(P − Ob) (2.74)

and, using Eq. (2.68) (with the opportune indices):

v p/a = vb/a + db

dt
(P − Ob) + ωb/a × (P − Ob) (2.75)

that is:

v p/a = vb/a + vP/b + ωb/a × (P − Ob) (2.76)

In the common case where P is integral with 〈b〉, it happens to be vP/b = 0. Hence:

v p/a = vb/a + ωb/a × (P − Ob) . (2.77)
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Fig. 2.12 Reference frames in relative motion

2.2.1.4 Generalized Velocity

In order to completely describe the relative motion between two reference frames
(see Fig. 2.12), it is possible to organize in one vector the angular velocity and the
velocity of the origin of the second frame with respect to the first. For example, in
order to specify how the frame 〈b〉 moves with respect to 〈a〉, let’s introduce the
vector:

Ẋb/a
∧=
[

ωb/a

vb/a

]
(2.78)

where vb/a is the velocity of the origin of the frame 〈b〉 with respect to 〈a〉 (velocity
of the vector Ob − Oa). The vector Ẋb/a is named generalized velocity of the frame
〈b〉 with respect to the frame 〈a〉. It can be projected on any frame. For example,
projecting on the base frame 〈0〉, we have:

0 Ẋb/a
∧=
[

0ωb/a
0vb/a

]
(2.79)

Of course, the above relation holds even for a generic point integral with the frame
〈b〉. Let P be a point belonging to 〈b〉; we define generalized velocity of P with
respect to 〈a〉 the quantity:

Ẋ P/a
∧=
[

ωb/a

vP/a

]
(2.80)

with vP/a defined by Eq. (2.77).

2.2.1.5 Derivative of the Rotation Matrix

With respect to Fig. 2.4, we now want to find a relationship between the derivative a
b Ṙ

of the orientation matrix and the angular velocity vector ωb/a . Recalling the (2.16):
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a
b R = [ a ib a jb

akb
]

(2.81)

and deriving with respect to time we have:

a
b Ṙ = [ d

dt
a ib d

dt
a jb

d
dt

akb
]

=
[

a
(

da
dt ib
)

a
(

da
dt jb

)
a
(

da
dt kb

)]

= [ a (ωb/a × ib
)

a
(
ωb/a × jb

)
a
(
ωb/a × kb

) ]

= [ ⌊aωb/a×⌋ a ib
⌊

aωb/a×⌋ a jb

⌊
aωb/a×⌋ akb

]

= ⌊aωb/a×⌋ [ a ib a jb
akb
]

(2.82)

that is:
a
b Ṙ = ⌊aωb/a×⌋ a

b R (2.83)

Substituting Eq. (2.29) within the previous Eq. (2.83) we obtain a dual formula:

a
b Ṙ = a

b R
⌊

bωb/a×
⌋

(2.84)

Equations (2.83) and (2.84) are often employed for numerically evaluating the time
evolution of a

b R; more precisely:

a
b R (t + dt) = a

b R (t) + a
b Ṙdt. (2.85)

2.2.2 Joint Kinematics

In general, the set of all the relative movements between two unconstrained rigid
bodies forms a group, G, consisting of all rotations and translations of �3 [4]. A
generic element of G may be represented by a matrix (see Fig. 2.12):

a
b T =
[ a

b R L
0 1

]
∈ G, a

b R ∈ SO (3) , L ∈ �3 (2.86)

where SO (3) is the group of the rotation matrices.
The group G is also said Special Euclidean group SE (3). Its tangent space is

isomorphic to G × g, where g is the space of the generalized velocities (Lie algebra).
A generic element belonging to g can be formally represented using Eq. (2.84):

bX̃b/a = a
b T−1a

b Ṫ =
[

a
b RT −L

0 1

] [
a
b Ṙ L̇
0 0

]
=
[

a
b RT a

b Ṙ a
b RT L̇

0 0

]
=
[ ⌊

bωb/a×⌋ bvb/a

0 0

]

(2.87)
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The element b X̃b/a is the re-organization of the generalized velocity b Ẋb/a into
a particular matrix form.

A generic joint, already introduced in Sect. 2.1.3, can be represented by a con-
straint relation in the tangent space G × g, involving the generalized velocity of the
frame 〈b〉 with respect to 〈a〉:

A (q) b Ẋb/a = 0 (2.88)

where q is the configuration. Joints of this type are known as kinematic, since they
constrain the relative velocity.

Equation (2.88) means that b Ẋb/a belongs to the kernel of A (q):

b Ẋb/a ∈ Δ(q) = ker
[

A (q)
]

(2.89)

and, if the distribution Δ(q) is integrable, the constraint introduced by the joint is
known as Holonomic.

In case the reference frame is integral with at least one of the two bodies, the
matrix Δ(q) = A is constant (independent of the configuration). This class of joints
is called Simple Kinematic Joints. For this class, let’s introduce a matrix H , whose
columns form a basis of the kernel of A. All the solutions of Eq. (2.88) are:

b Ẋb/a = Hp, p ∈ �r (2.90)

with r = dim (ker [A]), degrees of freedom of the joint. H is the Joint Matrix
[5], while p is often named quasi-velocity. Table 2.1 shows some examples of joint
matrices associated to commonly used joints.

2.2.2.1 Parameterization of Simple Kinematic Joints

The configuration of the joint is, in general, defined by the differential equation (2.87):

a
b Ṫ = a

b T b X̃b/a (2.91)

By using Eq. (2.90), the last can be re-written in the following form:

a
b Ṫ = a

b T
[ �H1p×� H2p

0 0

]
(2.92)

where H1 contains the first three rows of H and H2 the last three. Once the quasi-
velocities p are known, Eq. (2.92) can be integrated to compute the time evolution
of the transformation matrix T (t). However, Eq. (2.92) gives more information than
necessary, since the movement is constrained to lie on a subgroup of G. For example,
let’s consider an one degree of freedom joint (r = 1). In this case the joint matrix
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Table 2.1 Matrices for commonly used joints
⎡

⎢
⎢
⎢⎢
⎢⎢
⎣

0
0
1
0
0
0

⎤

⎥
⎥
⎥⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢⎢
⎢⎢
⎣

0
0
0
1
0
0

⎤

⎥
⎥
⎥⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢⎢
⎢⎢
⎣

0
0
1
0
0
k

⎤

⎥
⎥
⎥⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢⎢
⎢⎢
⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

⎤

⎥
⎥
⎥⎥
⎥⎥
⎦

1 DOF 1 DOF 1 DOF 3 DOF
Revolute joint Prismatic joint Screw joint Spherical
(body z-axis) (body x-axis) (body z-axis) joint

H = h ∈ �6 is made of only one column and the transformation matrix a
b T can be

parameterized using one parameter q1:

a
b T (q1) =

[
R (q1) L (q1)

0 1

]
(2.93)

where:
R (q1) = e�h1×�q1 (2.94)

L (q1) =
q1∫

0

e�h1×�σh2dσ (2.95)

with h =
[

h1
h2

]
.

Equation (2.94) can be easily derived by considering that vector h1 represents the
direction of the rotation axis of the joint in the frame 〈b〉 and recalling the exponential
representation of rotations (2.33).

Similarly, h2 is the direction of the translation axis of the joint in the reference
frame 〈b〉. Therefore we can write:

d L
dq1

= R (q1) h2 (2.96)

Equation (2.96), once integrated, results in Eq. (2.95).
In case H is made of r > 1 columns, if the joint is holonomic (and only in this

case) its parameterization can be derived with the following procedure:

1. Associate with every column i a joint variable qi

2. Compute the transformation matrix T i for each column according to Eqs. (2.93),
(2.94) and (2.95)

3. Compute the final transformation matrix by multiplying the r matrices as follows:
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Fig. 2.13 Kinematics of a
spherical joint

T (q) = T r (qr ) . . . T 2 (q2) T 1 (q1) . (2.97)

2.2.2.2 Example: Spherical Joint

The spherical joint (Fig. 2.13), also known as ball-socket joint, is characterized by a
three-column joint matrix:

Hsp =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

⎤

⎥⎥⎥
⎥⎥⎥
⎦

(2.98)

Let p = [ px py pz
]T . From Eq. (2.90) we have:

b Ẋb/a = Hp =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

px

py

pz

0
0
0

⎤

⎥
⎥⎥⎥⎥⎥
⎦

(2.99)

This means that the frame 〈b〉 can move relatively to 〈a〉 with any rotation around its
coordinate axis.

The parameterization can be obtained by first applying Eqs. (2.94) and (2.95) to
every column:
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R1 (q1) = e

⎢
⎢
⎢
⎢⎢
⎣

⎡

⎢⎢
⎣

1
0
0

⎤

⎥⎥
⎦×

⎥
⎥
⎥
⎥⎥
⎦q1

=
⎡

⎣
1 0 0
0 cos (q1) − sin (q1)

0 sin (q1) cos (q1)

⎤

⎦ (2.100)

L1 (q1) =
⎡

⎣
0
0
0

⎤

⎦ (2.101)

R2 (q2) = e

⎢
⎢
⎢⎢
⎢
⎣

⎡

⎢
⎢
⎣

0
1
0

⎤

⎥
⎥
⎦×

⎥
⎥
⎥⎥
⎥
⎦q2

=
⎡

⎣
cos (q2) 0 sin (q2)

0 1 0
− sin (q2) 0 cos (q2)

⎤

⎦ (2.102)

L2 (q2) =
⎡

⎣
0
0
0

⎤

⎦ (2.103)

R3 (q3) = e

⎢
⎢⎢
⎢
⎢
⎣

⎡

⎢
⎢
⎣

0
0
1

⎤

⎥
⎥
⎦×

⎥
⎥⎥
⎥
⎥
⎦q3

=
⎡

⎣
cos (q3) − sin (q3) 0
sin (q3) cos (q3) 0

0 0 1

⎤

⎦ (2.104)

L3 (q3) =
⎡

⎣
0
0
0

⎤

⎦ (2.105)

Finally, the transformation (configuration) matrix of the joint can be computed using
Eq. (2.97) (see also Fig. 2.13):

a
b T (q) = T3 (q3) T2 (q2) T1 (q1)

=

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

cos (q3) cos (q2) − sin (q3) cos (q1) + cos (q3) sin (q2) sin (q1) sin (q3) sin (q1) + cos (q3) sin (q2) cos (q1) 0

sin (q3) cos (q2) cos (q3) cos (q1) + sin (q3) sin (q2) sin (q1) − cos (q3) sin (q1) + sin (q3) sin (q2) cos (q1) 0

− sin (q2) cos (q2) sin (q1) cos (q2) cos (q1) 0

0 0 0 1

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

(2.106)

Note that the rotational part of Eq. (2.106) coincides with Eq. (2.42). As a matter
of fact, with this choice, the parameters representing the joint are the Roll, Pitch and
Yaw angles.
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2.2.2.3 Example: Screw Joint

Within the joint matrix, it is possible to specify both a rotational and translational
axis for the same joint variable (the same degree of freedom). Let’s consider, for
example, a joint matrix H like the following:

Hsc =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

1
0
0
1
0
0

⎤

⎥
⎥⎥⎥⎥⎥
⎦

(2.107)

A variation of q1 results in a rotation around the iaxis and, in the same time, a
translation along the same axis, similarly to the movement of a screw. The associated
matrices are:

R1 (q1) = e

⎢⎢
⎢
⎢
⎢
⎣

⎡

⎢
⎢
⎣

1
0
0

⎤

⎥
⎥
⎦×

⎥⎥
⎥
⎥
⎥
⎦q1

=
⎡

⎣
1 0 0
0 cos (q1) − sin (q1)

0 sin (q1) cos (q1)

⎤

⎦ (2.108)

Lsc (q1) =
q1∫

0

Rsc (σ)

⎡

⎣
1
0
0

⎤

⎦ dσ =
q1∫

0

⎡

⎣
1
0
0

⎤

⎦ dσ =
⎡

⎣
q1
0
0

⎤

⎦ (2.109)

Hence:

T sc (q1) =

⎡

⎢⎢
⎣

1 0 0 q1
0 cos (q1) − sin (q1) 0
0 sin (q1) cos (q1) 0
0 0 0 1

⎤

⎥⎥
⎦ . (2.110)

2.2.2.4 Kinematic Equation of Simple Joints

The goal is now to find a relation between the quasi-velocities and the time derivative
of the variables used to parameterize the joint. At this aim, let’s consider a simple
joint described by the matrix:

H =
[

h1 1 · · · h1 r

h2 1 · · · h2 r

]
∈ �6×r (2.111)
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parameterized as in Sect. 2.2.2.1. We define kinematic equation the following
relation:

q̇ = Γ (q) p (2.112)

where the matrix Γ (q) is defined with the following recursive algorithm:

1. For j = 1 . . . r let the matrices R j and L j be defined as:

R j
(
q j . . . q1

) = R j
(
q j
)

R j−1
(
q j−1 . . . q1

)
, R (0) = I (2.113)

L j
(
q j . . . q1

) = R j
(
q j
)

L j−1
(
q j−1 . . . q1

)+ L j
(
q j
)
, L (0) = I (2.114)

with R j
(
q j
)

given by Eq. (2.94).
2. Let B be defined as:

B (q) =
[

b1 1 · · · b1 r

b2 1 . . . b2 r

]
(2.115)

where:
�b1i×� = RT

i−1 �h1i×� Ri−1 (2.116)

b2i = RT
i−1 �h1i×� Li−1 + Ri−1h2i (2.117)

3. Compute Γ (q) as:

Γ (q) = B∗ (q) H (2.118)

where B∗ (q) denotes a right-inverse of B (q).

Proof.
Let’s compute the derivative of the transformation matrix as a function of the deriv-
atives q̇:

a
b Ṫ =

r∑

i=1

∂ a
b T (q)

∂ q1
q̇1

=
r∑

i=1

[
T r (qr ) . . . T i+1 (qi+1)

∂ T i (qi )

∂ qi
T i−1 (qi−1) . . . T 1 (q1)

]
q̇i

(2.119)

Pre-multiplying by a
b T (q)−1 = {T r (qr ) . . . T 2 (q2) T 1 (q1)}−1 and considering

the Eq. (2.87) we obtain:
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a
b T (q)

−1 a
b Ṫ = b X̃b/a

=
r∑

i=1

T 1(q1)
−1 T 2(q2)

−1 . . . T r (qr )
−1

[
T r (qr ) . . . T i+1 (qi+1)

∂ T i (qi )

∂ qi
T i−1 (qi−1) . . . T 1 (q1)

]
q̇i

=
r∑

i=1

[
T 1(q1)

−1 T 2(q2)
−1 . . . T i (qi )

−1 ∂ T i (qi )

∂ qi
T i−1 (qi−1) . . . T 1 (q1)

]
q̇i

=
r∑

i=1

[
T i−1 (qi−1) . . . T 1 (q1)

]−1T i (qi )
−1 ∂ T i (qi )

∂ qi
T i−1 (qi−1) . . . T 1 (q1) q̇i

(2.120)

From Eq. (2.92) it is possible to show that:

T i (qi )
−1 ∂ T i (qi )

∂ qi
=
[ �h1 i×� h2 i

0 0

]
(2.121)

Then, defining the matrix

U j (q j . . . q1) = T j (q j ) . . . T 1(q1) (2.122)

the (2.120) becomes:

b X̃b/a =
r∑

i=1

U−1
i−1

[ �h1 i×� h2 i

0 0

]
U i−1 q̇i (2.123)

It is easy to show that the matrix U j has the form:

U j =
[

R j
(
q j . . . q1

)
L j
(
q j . . . q1

)

0 1

]
(2.124)

with R and L defined as in Eqs. (2.113) and (2.114). Hence, Eq. (2.123) becomes:

X̃ =
r∑

i=1

[
RT

i−1 �h1i×� Ri−1 RT
i−1 �h1i×� Li−1 + Ri−1h2i

0 0

]
q̇i (2.125)

As already seen in Eq. (2.29), the matrix RT
i−1

⌊
hi j×
⌋

Ri−1 is still anti-symmetric.
Is then possible to define a vector b1i ∈ �3 such as:

�b1i×� = RT
i−1 �h1i×� Ri−1 (2.126)
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Let’s define also the vector:

b1 j = RT
i−1 �h1i×� Li−1 + RT

i−1h2i (2.127)

so that Eq. (2.125) finally becomes:

b X̃b/a =
r∑

i=1

[ �b1i×� b2 i

0 0

]
q̇i (2.128)

It is possible to reorganize Eq. (2.128) in a compact form, substituting the anti-
symmetric matrices with the relative vectors:

b Ẋb/a =
r∑

i=1

[
b1 i

b2 i

]
q̇i = B (q) q̇ (2.129)

with B (q) defined as in Eqs. (2.115), (2.116) and (2.117). Recalling Eq. (2.90) we
then have:

B (q) q̇ = Hp (2.130)

and:
Γ (q) = B∗ (q) H . (2.131)

2.2.2.5 Compound Joints

Not all the joints can be considered simple. In several cases, its action must be
regarded as a sequence of simple joints, as for example the joint with roll-pitch-yaw
angles of Fig. 2.14. Joints of this model will be named compound.

In a more general view, a compound joint can be characterized by the relative
motion of a sequence of k frames such as the relative motion between frames is
constrained by a simple joint. Each of the k simple joints is characterized by:

• a joint matrix H i having ri columns2;
• a vector of parameters qi of dimension ri ;
• a quasivelocity vector pi of dimension ri ;
• a kinematic matrix Γ i of dimension ri × ri

With the aforementioned description, the compound joint can be considered as one
unique device having:

2 we will consider only the case ri = 1, that is only compound joints made of successions of one
DOF simple joints can be described.
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• a configuration vector:

q =
⎡

⎢
⎣

q1
...

qk

⎤

⎥
⎦

• a quasivelocity vector:

p =
⎡

⎢
⎣

p1
...

pk

⎤

⎥
⎦

• a kinematic matrix such as:

q̇ =

⎡

⎢
⎢⎢
⎣

Γ 1
(
q1
)

0 · · · 0
0 Γ 2

(
q2
) · · · 0

...
...

. . .
...

0 0 · · · Γ k
(
qk

)

⎤

⎥
⎥⎥
⎦

p

• a configuration matrix:

T (q) = T k
(
qi

)
T k−1
(
qk−1
)
. . . T 1
(
q1
)

where we assume that the (simple) joins number 1 is the outer one.

In order to compute the global joint matrix, let’s consider the simplified case
with ri = 1, ∀i . We can then determine the global joint matrix with the following
recursive procedure, similar to the one used for computing the kinematic matrix of
the simple joints.

Let’s consider a compound joint made of k simple joints, each one of one degree
of freedom and having a joint matrix hi = [h1i h21

]T . Then, the global joint matrix
H is given by:

H (q) =
[

h1 1 · · · h1 r

h2 1 · · · h2 r

]
(2.132)

where:
�h1i×� = RT

i−1 �h1i×� Ri−1 (2.133)

h21 = RT
i−1 �h1i×� Li−1 + RT

i−1h2i (2.134)

and:
R j
(
q j . . . q1

) = R j
(
q j
)

R j−1
(
q j−1 . . . q1

)
, R (0) = I (2.135)
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L j
(
q j . . . q1

) = R j
(
q j
)

L j−1
(
q j−1 . . . q1

)+ L j
(
q j
)
, L (0) = I (2.136)

The proof will not be reported.
In conclusion, similarly to the simple joints, a compound joint can be described

by a joint matrix H such as Eq. (2.90) still holds:

b Ẋb/a = Hp, p ∈ �r (2.137)

In this case (and in the hypothesis that ri = 1, ∀i) the quasi-velocities coincide with
the derivatives of the joint variables, and the matrix H performs a projection, in the
outer frame, of the velocities at the single component joints.

2.2.2.6 Example: Compound Joint with Roll-Pitch-Yaw Angles

Let’s consider a joint made of a succession of three one-DOF rotational simple joints,
having the rotational directions along, respectively, the axis i, j and k (starting from
the outer frame, see Fig. 2.14). Organizing the joint matrices into a unique matrix we
have:

H = [h1 h2 h3
] =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

⎤

⎥⎥⎥⎥⎥
⎥
⎦

(2.138)

The computation of H using Eqs. (2.132) through (2.136) gives the following result:

H =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

1 0 −sin (q2)

0 cos (q1) sin (q1) cos (q2)

0 −sin (q1) cos (q1) cos (q2)

0 0 0
0 0 0
0 0 0

⎤

⎥⎥
⎥⎥⎥⎥
⎦

(2.139)

while the configuration matrix is still given by Eq. (2.106).
The application of Eq. (2.138) gives:

b Ẋb/a = H

⎡

⎣
p1
p2
p3

⎤

⎦ =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

p1
p2 cos (q1) + p3sin (q1) cos (q2)

−p2sin (q1) + p3 cos (q1) cos (q2)

0
0
0

⎤

⎥⎥⎥⎥
⎥⎥
⎦

(2.140)
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Fig. 2.14 Example of com-
pound roll-pith-yaw joint

It is easy to verify that the first half of the matrix is the sum of the projections of the
three angular velocities on the outer frame 〈b〉.

2.2.3 Kinematics of Robotic Systems

In the previous sections we have introduced the necessary background to solve the
direct kinematic problem, i.e. to compute the generalized velocity of every point of
the structure for a particular value of the quasi-velocity vector p.

To simplify the study let’s consider first a linear chain (one branch only, indicating
with 〈0〉 the base frame), made of k links e k joints, each one characterized by:

• ri degrees of freedom
• joint matrix H i ∈ �6×ri

• configuration vector qi ∈ �ri

• quasivelocity vector pi ∈ �ri

Let ci be a point of a generic link i and i Ẋi/0 its generalized velocity w.r.t. the base
frame as defined in Eq. (2.78), projected on the frame of the same link; relatively to
the generalized velocity of the origin Oi of the frame 〈i〉 we have:

i Ẋci /0 =
[

iωci /0
ivci /0

]
=
[

iωi/0
ivi/0 + iωi/0 × i r Oi ci

]

=
[

I 0
− ⌊i r Oi ci ×

⌋
I

] [
iωi/0
ivi/0

]
= φ
(

i r Oi ci

)
i Ẋ i/0 (2.141)
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where:

φ (r) =
[

I 0
−�r×� I

]
(2.142)

i r Oi ci = Oi ci (2.143)

Similarly, for the properties of the cross product, we have:

i Ẋ
T
ci /0 = i Ẋ

T
i/0φ

∗ (i r Oi ci

)
(2.144)

with:

φ∗ (r) =
[

I �r×�
0 I

]
(2.145)

It is then possible to express, recursively, the generalized velocity of the frame integral
with the generic link i with the relation:

i Ẋ i/0 =
[ i

i−1 R 0
0 i

i−1 R

]
φ
(

i−1r
oj
i−1

)
i−1 Ẋ i−1/0 + H i pi (2.146)

where roj
i−1 is the vector joining the origin of frame 〈i − 1〉 with the connection point

of the joint i (Fig. 2.15) and pi is the associated quasi-velocity vector. Note that the
quantity H i pi gives, according to Eq. (2.90), the generalized velocity introduced by
the joint and expressed in the “exit” frame.3 Introducing the matrix:

i
i−1θ (r) =

[ i
i−1 R 0

0 i
i−1 R

]
φ (r) (2.147)

Eq. (2.146) becomes:

i Ẋ i/0 = i
i−1θ
(

i−1r
oj
i−1

)
i−1 Ẋ i−1/0 + H i pi (2.148)

Note that i
i−1θ (r) is the matrix that transforms the generalized velocity of the

frame 〈i − 1〉 (expressed in the same frame 〈i − 1〉) into the generalized velocity
of the point integral with the frame 〈i − 1〉 and specified by r (the last velocity is
expressed in the frame 〈i〉).

3 For example, with reference to Fig. 2.13, this quantity represents the generalized velocity of the
frame 〈b〉 w.r.t. 〈a〉, expressed in the frame 〈b〉.
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Fig. 2.15 Outboard joint

Equation (2.148) is already sufficient to recursively express all the different gen-
eralized velocities Ẋi/0 of every frame of the robot. However, it is convenient to
expand the recursive process into a unique global form. At this aim, let’s introduce
the following vectors:

V0 =

⎡

⎢⎢⎢
⎣

1Ẋ1/0
2Ẋ2/0

...
kẊk/0

⎤

⎥⎥⎥
⎦

, p =

⎡

⎢⎢⎢
⎣

p1
p2
...

pk

⎤

⎥⎥⎥
⎦

(2.149)

and the matrix:

H =

⎡

⎢
⎢⎢
⎣

H1 0 · · · 0
0 H2 · · · 0
...

...
. . .

...

0 0 · · · Hk

⎤

⎥
⎥⎥
⎦

(2.150)

From Eq. (2.148) it’s easy to verify that:

V0 = Φl H p (2.151)

where:

Φl =

⎡

⎢⎢⎢
⎣

I 0 · · · 0
2
1θ I · · · 0
...

...
. . . 0

n
1θ n

2θ · · · I

⎤

⎥⎥⎥
⎦

, i
jθ = i

i−1θ . . .
j+1

jθ, i = 2 . . . n, j = 1 . . . n − 1

(2.152)
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The dimension of the matrix Φl H in Eq. (2.151) is 6n × n. It can be partitioned
into k blocks such as:

V0 =

⎡

⎢⎢⎢⎢
⎣

1 Ẋ1/0
2 Ẋ2/0

...
k Ẋk/0

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

1 J1/0 (O1)
2 J2/0 (O2)

...
k Jk/0 (Ok)

⎤

⎥⎥⎥
⎦

p (2.153)

where:
i Ẋ P/0 = i J j/0

(
j P
)

p (2.154)

The matrix i J j/0

(
j P
)

is known as the Jacobian of the structure. Similarly, the matrix
Φl H of Eq. (2.151) can be regarded as the global Jacobian of the robot.

2.2.3.1 Extension to Robotic Chains with Ramified Topology

The matrix Φl of Eq. (2.152) has been computed in case of linear chains. Let’s now
generalize its computation in presence of a kinematic chain with a ramified topology.

Let’s consider a generic structure described as in Sect. 2.1.3 and having B
branches, with each branch i made of a linear sequence of ki links. Each link of
the structure can be identified with the index pair (i, j), with 1 ≤ i ≤ B and
1 ≤ j ≤ ki . The joint associated with the aforementioned link (i, j) will have the
following specifications:

• ri, j degrees of freedom
• joint matrix H i, j ∈ �6×ri, j

• configuration vector qi, j ∈ �ri, j

• quasivelocity vector pi, j ∈ �ri, j

The global configuration vector is then defined as:

q
∧= [q1,1

T · · · q1,k1
T q2,1

T · · · q2,k2
T · · · qB,1

T · · · qB,kB
T
]T

(2.155)

Similarly, the global quasivelocity vector of the structure is defined as:

p
∧= [p1,1

T · · · p1,k1
T p2,1

T · · · p2,k2
T · · · pB,1

T · · · pB,kB
T
]T

(2.156)

Finally, after defining the two matrices H and V0 as:

H
∧= diag

[
H1,1

T · · · H1,k1
T H2,1

T · · · H2,k2
T · · · H B,1

T · · · H B,kB
T
]T

(2.157)



2.2 Kinematics 43

V0
∧=

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

(1,1)Ẋ(1,1)/0
...

(1,k1)Ẋ(1,k1)/0
(2,1)Ẋ(2,1)/0

...
(2,k2)Ẋ(2,k2)/0

...
(B,1)Ẋ(B,1)/0

...
(B,kB )Ẋ(B,kB )/0

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

(2.158)

our goal is to find a representation of the global generalized velocity vector v0 with
a relationship similar to Eq. (2.151), that is:

V0 = Φl Hp (2.159)

The recursive formula (2.146) is still valid, provided that it will be evaluated on the
unique path that, beginning from the link in consideration, ends to the base frame.

To better understand the recursive process, lets compute the generalized velocity
of the frame 〈2, 3〉 of Fig. 2.16. We obtain the following recursion:

(1,1) Ẋ(1,1)/(1,0) = H(1,1)p(1,1)

(1,2) Ẋ (1,2)/(1,0) =
[

(1,2)
(1,1) R 0

0 (1,2)
(1,1) R

]

φ
(

(1,1)roj
(1,1)

)
(1,1) Ẋ(1,1)/(1,0) + H(1,2)p(1,2)

(1,3) Ẋ(1,3)/(1,0) =
[

(1,3)
(1,2) R 0

0 (1,3)
(1,2) R

]

φ
(

(2,2)roj
(2,2)

)
(1,2) Ẋ(1,2)/(1,0) + H(1,3)p(1,3)

(2,1) Ẋ (2,1)/(1,0) =
[

(2,1)
(1,3) R 0

0 (2,1)
(1,3) R

]

φ
(

(1,3)roj
(1,3)

)
(1,3) Ẋ(1,3)/(1,0) + H(2,1)p(2,1)

(2,2) Ẋ(2,2)/(1,0) =
[

(2,2)
(2,1) R 0

0 (2,2)
(2,1) R

]

φ
(

(2,1)roj
(2,1)

)
(2,1) Ẋ(2,1)/(1,0) + H(2,2)p(2,2)

(2,3) Ẋ (2,3)/(1,0) =
[

(2,3)
(2,2) R 0

0 (2,3)
(2,2) R

]

φ
(

(2,2)roj
(2,2)

)
(2,2) Ẋ (2,2)/(1,0) + H(2,3)p(2,3) (2.160)

Similarly to the case of one linear chain, it is convenient to express the whole
process in a global form. Let the matrix Φ be the following:
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Fig. 2.16 Jacobian in a ramified chain: computation example

Φ =

⎡

⎢
⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎣

I 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
(1,2)
(1,1)

ψ I · · · 0 0 0 · · · 0 · · · 0 0 · · · 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.(
1,k1
)

(1,1)
ψ

(
1,k1
)

(1,2)
ψ · · · I 0 0 · · · 0 · · · 0 0 · · · 0

(2,1)
(1,1)

ψ
(2,1)
(1,2)

ψ · · · (2,1)(
1,k1
)ψ I 0 · · · 0 · · · 0 0 · · · 0

(2,2)
(1,1)

ψ
(2,2)
(1,2)

ψ · · · (2,2)(
1,k1
)ψ (2,2)

(2,1)
ψ I · · · 0 · · · 0 0 · · · 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.(
2,k2
)

(1,1)
ψ

(
2,k2
)

(1,2)
ψ · · ·

(
2,k2
)

(
1,k1
)ψ

(
2,k2
)

(2,1)
ψ

(
2,k2
)

(2,2)
ψ · · · I · · · 0 0 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
(B,1)
(1,1)

ψ
(B,1)
(1,2)

ψ · · · (B,1)(
1,k1
)ψ (B,1)

(2,1)
ψ

(B,1)
(2,2)

ψ · · · (B,1)(
2,k2
)ψ · · · I 0 · · · 0

(B,2)
(1,1)

ψ
(B,2)
(1,2)

ψ · · · (B,2)(
1,k1
)ψ (B,2)

(2,1)
ψ

(B,2)
(2,2)

ψ · · · (B,2)(
2,k2
)ψ · · · (B,2)

(B,1)
ψ I · · · 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.(
B,kB
)

(1,1)
ψ

(
B,kB
)

(1,2)
ψ · · ·

(
B,kB
)

(
1,k1
) ψ

(
B,kB
)

(2,1)
ψ

(
B,kB
)

(2,2)
ψ · · ·

(
B,kB
)

(
2,k2
) ψ · · ·

(
B,kB
)

(B,1)
ψ

(
B,kB
)

(B,2)
ψ · · · I

⎤

⎥
⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎦

(2.161)

Despite the apparent complexity due to a massive presence of indexes, the matrix
(r,s)
(i, j)ψ can be obtained through a simple recursive algorithm, obtained extrapolating
the previous example. We have:
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(r,s)
(i, j)ψ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

06×6 r < i
06×6 s < j r = i
I6×6 s = j r = i[

(r,s)
(r,s−1)

R 0

0 (r,s)
(r,s−1)

R

]

φ
(
(r,s−1)roj

(r,s−1)

)
(r,s)

(i,s−1)
ψ s > j r = i

[
(r,1)

(Br ,Lr )
R 0

0 (r,1)
(Br ,Lr )

R

]

φ
(
(Br ,Lr )r Br

(Br ,Lr )

)
(r,1)

(Br ,Lr )
ψ s = 1 r > i

[
(r,s)

(r,s−1)
R 0

0 (r,s)
(r,s−1)

R

]

φ
(
(r,s−1)roj

(r,s−1)

)
(r,s)

(r,s−1)
ψ s = 1 r > i

(2.162)

where, as usual, (r,s−1)roj
(r,s−1) is the free vector indicating the connection point of the

outboard joint s of the branch r , expressed in the frame 〈r, s−1〉, while (Br ,Lr )r Br
(Br ,Lr )

indicates the connection point of the outboard joint 1 of the branch r , expressed
in the frame 〈Br , Lr 〉 (the branch r is connected to the link Lr , belonging to the
branch Br ).

With this formulation Eq. (2.159) holds and, similarly to the case of linear chains,
the product ΦH is the global Jacobian of the robot. It can be partitioned into k blocks
such as:

v0 =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

(1,1) Ẋ(1,1)/(1,0)

...
(1,k1) Ẋ(1,k1)/(1,0)
(2,1) Ẋ(2,1)/(1,0)

...
(2,k2) Ẋ(2,k2)/(1,0)

...
(B,1) Ẋ(B,1)/(1,0)

...
(B,kB ) Ẋ(B,kB )/(1,0)

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

(1,1) J (1,1)/(1,0)

...
(1,k1) J (1,k1)/(1,0)
(2,1) J (2,1)/(1,0)

...
(2,k2) J (2,k2)/(1,0)

...
(B,1) J (B,1)/(1,0)

...
(B,kB ) J (B,kB )/(1,0)

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

p (2.163)

where the matrix (r,s) J (i, j)/(1,0)

(
(i, j) P
)

is the Jacobian of the structure.
In other words, given a generic point (i, j) P integral to the frame 〈i, j〉, the Jacobian

transforms the global quasivelocity vector into the generalized velocity of the point P:

(r,s) Ẋ P/(1,0) = (r,s) J (i, j)/(1,0)

(
(i, j) P
)

p. (2.164)

2.3 Dynamics

This section faces the problem of searching a mathematical model that fully describes
the dynamics of the manipulation system, made of open (and possibly organized with
a ramified topology) chains.
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Fig. 2.17 Open kinematic chain with multiple branch topology

Similarly to many solutions proposed in literature [3, 6], the study is based on
the Lagrange equations. We’ll compute the Lagrange equations in terms of the robot
descriptive language introduced in the previous sections and, after some algebraic
manipulations, they will be reduced to the typical differential equations system that
describes the behavior of a mechanical system.

2.3.1 Equilibrium of a Manipulation Structure

As described in Sect. 2.1.3, we will consider only open chains with ramified topology.
Figure 2.17 shows an example of such a multi-body system. For each rigid body
constituting the structure, the equilibrium conditions are [6]:

{
Ri = 0
Mi = 0

(2.165)

where Ri is the resultant of all the external forces acting on the body and Mi is the
resultant of all the external momentums.

By applying the virtual work principle [6] we obtain:

{
Ri · ∂Pi = 0
Mi · ∂θi = 0

(2.166)
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being Pi the point of application of Ri . Extending to the whole structure we have:

B∑

b=1

kb∑

i=1

R(b,i) · ∂P(b,i) +
B∑

b=1

kb∑

i=1

M(b,i) · ∂θ(b,i) = 0 (2.167)

where B is the number of branches of the structure and kb is the number of links of
the branch b.

Considering the joints ideally smooth, the virtual work produced by the internal
joint reaction is globally null and Eq. (2.166) becomes:

B∑

b=1

kb∑

i=1

R(a)
(b,i) · ∂P(b,i) +

B∑

b=1

kb∑

i=1

M(a)
(b,i) · ∂θ(b,i) = 0 (2.168)

where R(a)
(b,i) and M(a)

(b,i) are the resultants of the active forces and torques.
The left-hand side of Eq. (2.168) represents the virtual work of the actuation

actions m and of the external forces. After some algebraic manipulations we obtain:

m + (1,0) J T
(h,k)/(1,0)

[
(1,0) M(h,k)
(1,0) R(h,k)

]
= 0 (2.169)

where the expression (1,0) J T
(h,k)/(1,0)

[
(1,0) M(h,k)
(1,0) R(h,k)

]
represents the projection of the

external forces in the joint space.

2.3.2 The Lagrange Equation

In its typical form, the Lagrange equation of motion is given by [3, 6]:

d

dt

∂T (q, q̇)

∂q̇
− ∂T (q, q̇)

∂q
= μ (2.170)

where:

q global configuration vector (joint coordinates)
T (q, q̇) kinetic energy of the structure

μ projection of the external actions to the joint space

Considering that the joints may have more than one degree of freedom (as for example
in the case of spherical joints), it may be convenient to formulate the motion equations
in terms of variable different from the derivative of the configuration vector q̇. Those
variables cannot be regarded as any exact differential and, as introduced in Sect. 2.2.2
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(see Eq. 2.90), they are often known as quasi-velocities [6]. They may represent, for
example, the angular velocities of the bodies constituting the links.

Objective of the following sections is to express the kinetic energy in those terms.

2.3.2.1 Kinetic Energy

In general, regardless of the chosen description, the kinetic energy is the sum of the
energies of the links constituting the manipulator:

T = 1

2

B∑

b=1

kb∑

i=1

m(b,i)
(k, j)vT

c(b,i)
(k, j)vc(b,i)

+ (k, j)ωT
(b,i)

[
(k, j)
(b,i) R(b,i) I (b,i)

(k, j)
(b,i) RT

]
(k, j)ω(b,i)

(2.171)
where:

B number of branches
kb number of links of the branch b

m(b,i) mass of the link i of the branch b
(k, j)ω(b,i) angular velocity of the frame 〈b, i〉 projected on 〈k, j〉
(k, j)vc(b,i)

cartesian velocity of the center of mass of the link (b, i) projected on the
frame 〈k, j〉

(k, j)
(b,i) R rotation matrix of the frame 〈b, i〉 w.r.t 〈k, j〉

(b,i) I (b,i) inertia tensor of the link (b, i) computed w.r.t. a frame parallel to 〈b, i〉
and with the origin placed in the center of mass c(b,i) of the same link

Being the terms of the sum all scalars, all the quantities in Eq. (2.171) can be
projected on any frame (per given sum element). Here, the choice is to evaluate
all the velocities on the same frame to which they belong, with the advantage of a
simplified recursive algorithm and the elimination of the transformation of the inertia
tensor.

Let’s define a spatial inertia tensor as:

M(b,i) =
[

(b,i) I (b,i) 0
0 m(b,i) I3

]
(2.172)

with I3 being the 3 × 3 identity matrix. Assuming (k, j) = (b, i), Eq. (2.171)
becomes:

T = 1

2

B∑

b=1

kb∑

i=1

m(b,i)
(b,i)vT

c(b,i)
(b,i)vc(b,i)

+ (b,i)ωT
(b,i)

(b,i) I (b,i)
(b,i)ω(b,i)

= 1

2

B∑

b=1

kb∑

i=1

(b,i) ẊT
c(b,i)

M(b,i)
(b,i) Ẋc(b,i)

= VT
cm McmVcm (2.173)
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where:

Vcm =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

(1,1) Ẋc(1,1)/(1,0)

...
(1,k1) Ẋc(1,k1)

/(1,0)

(2,1) Ẋc(2,1)/(1,0)

...
(2,k2) Ẋc(2,k2)

/(1,0)

...
(B,1) Ẋc(B,1)/(1,0)

...
(B,1) Ẋc(B,kB )/(1,0)

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

(2.174)

Mcm = diag
[

M(1,1) · · · M(1,k) M(2,1) · · · M(2,k2) · · · M(B,1) · · · M(B,kB )

]

(2.175)
Recalling Eqs. (2.141) and (2.142), the global generalized velocity of the center of
mass (2.174) becomes:

Vcm =

⎡

⎢⎢⎢
⎣

φ
(

(1,1)rcm
(1,1)

)
· · · 0

...
. . .

...

0 · · · φ
(

(B,kB )rcm
(B,kb)

)

⎤

⎥⎥⎥
⎦

v0 (2.176)

with V0 defined from Eq. (2.158). Substituting Eq. (2.176) into (2.173) we obtain:

T = 1

2
VT

0

⎡

⎢⎢
⎢
⎢⎢
⎣

φ∗ ((1,1) rcm
(1,1)

)
· · · 0

.

.

.
. . .

.

.

.

0 · · · φ∗
((

B,kB
)
rcm(

B,kB
)
)

⎤

⎥⎥
⎥
⎥⎥
⎦

Mcm

⎡

⎢⎢
⎢
⎢⎢
⎣

φ
(
(1,1) rcm

(1,1)

)
· · · 0

.

.

.
. . .

.

.

.

0 · · · φ

((
B,kB
)
rcm(

B,kB
)
)

⎤

⎥⎥
⎥
⎥⎥
⎦

v0

= 1

2
pT HT ΦT

⎡

⎢⎢
⎢⎢
⎣

φ∗ ((1,1) rcm
(1,1)

)
· · · 0

.

.

.
. . .

.

.

.

0 · · · φ∗ ((B,kB ) rcm
(B,kB )

)

⎤

⎥⎥
⎥⎥
⎦

Mcm

⎡

⎢⎢
⎢⎢
⎣

φ
(

(1,1) rcm
(1,1)

)
· · · 0

.

.

.
. . .

.

.

.

0 · · · φ
(

(B,kB ) rcm
(B,kB )

)

⎤

⎥⎥
⎥⎥
⎦

Φ Hp

= 1

2
pT H T ΦT MΦ Hp = 1

2
pT Ap (2.177)

Hence:

T = 1

2
pT HT ΦT MΦ Hp = 1

2
pT Ap (2.178)
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where:

M =

⎡

⎢
⎢⎢
⎣

φ∗ ((1,1)rcm
(1,1)

)
M(1,1)φ

(
(1,1)rcm

(1,1)

)
· · · 0

.

.

.
. . .

.

.

.

0 · · · φ∗ ((B,kB )rcm
(B,kB )

)
M(B,kB )φ

(
(B,kB )rcm

(B,kB )

)

⎤

⎥
⎥⎥
⎦

(2.179)
The matrix

A = HT ΦT MΦ H (2.180)

is known as the inertia matrix of the structure.
We have hence expressed the kinetic energy T in terms of the vectors q and p in

a compact matrix form. This form is particularly convenient when using symbolic
processors, allowing also a certain level of optimization in case of a reasonable
number of degrees of freedom.

2.3.2.2 The Lagrange Equation for Quasi-Coordinates

We have just expressed the kinetic energy as a function T (q, p) in place of
T (q, q̇). The next step is to evaluate the consequent transformation of the Lagrange
equation.

As already seen in Eq. (2.112), the relationship between p and q̇ has the form:

q̇ = Vp (2.181)

or, equivalently:
p = αq̇ (2.182)

with α = V−1. With this substitution the derivatives ∂T
∂q̇k

becomes:

∂T

∂q̇k
=

n∑

i=1

∂T

∂ pi

∂ pi

∂q̇k
(2.183)

Equation (2.170) then becomes:

d

dt

{
∂T (p, q)

∂p

}

+αT [β − γ]

{
∂T (p, q)

∂p

}

−αT

{
∂T (p, q)

∂q

}

= VT μ (2.184)

where:

βi, j = pT αT

{
∂
(
α−T
)

i, j

∂q

}

(2.185)



2.3 Dynamics 51

γ =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

pT αT ∂
(
α−T
)

∂q1

pT αT ∂
(
α−T
)

∂q2

...

pT αT ∂
(
α−T
)

∂qn

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

(2.186)

From the expression of the kinetic energy of Eq. (2.178) we have:

∂T ( p, q)

∂p
= Ap (2.187)

and:

d

dt

{
∂T ( p, q)

∂p

}

= d

dt
Ap = Aṗ + Ȧp = Aṗ +

[
∂ Ap
∂q

]
αp (2.188)

∂T ( p, q)

∂q
= 1

2

[
∂ Ap
∂q

]T
p (2.189)

Finally, Eq. (2.184) assumes the form:

A (q) ṗ + B (q, p) p + VT C (q) = VT μe (2.190)

where:

B (q, p) =
[
∂ Ap
∂q

]
V−T − 1

2
V−T
[
∂ Ap
∂q

]T
+ V−T [β − γ] A (2.191)

Equation (2.190) is known as the Lagrange equation for quasi-coordinates (see also
Meirovitch [6]).

Note that the quantity VT C (q) represents the projection in the joint velocity space
of the gravitational forces, while VT μe is the projection in the joint velocity space
of all the other external forces (for example the actuator forces).

2.3.2.3 Example: Spherical Joint

Let’s focus now on the computation of some quantities appearing within the Lagrange
equation for quasi-coordinates (2.190) in case of a spherical joint. The latter can be
seen as a one link system, connected to the main frame with a 3 DOF joint described
by the joint matrix (2.98). Its parameterization in the variables q1, q2 and q3 has
been already computed in Sect. 2.2.2.2.
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The matrix V of Eq. (2.181) can be computed with the process introduced in
Sect. 2.2.2.4, that gives the following result:

V =

⎡

⎢⎢
⎢
⎣

1 sin(q1) sin(q2)
cos(q2)

cos(q1) sin(q2)
cos(q2)

0 cos (q1) − sin (q1)

0 sin(q1)
cos(q2)

cos(q1)
cos(q2)

⎤

⎥⎥
⎥
⎦

(2.192)

where q1, q2 and q3 are the joint variables (see Equations (2.100) through (2.106)).
The computation of B (q, p) by using Eq. (2.191) gives:

B (q, p) = V−T [β − γ] A =
⎡

⎣
0 −p3 p2
p3 0 −p1

−p2 p1 0

⎤

⎦ A (2.193)

being A constant. Equation (2.193) shows the absence of discontinuities appearing
within the matrix V of Eq. (2.192). This is one of the most noticeable advantages of
the Lagrange equation for quasi-coordinates. In case of spherical joints parameterized
with Euler angles, it holds also where the matrix V of Eq. (2.181) is non-invertible.
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Chapter 3
Kinematic Control

The primary purpose of an autonomous manipulation system is to perform interven-
tion tasks with a limited exchange of information between the manipulator and the
human supervisor. The information passed to the main control system is often only
a high level decision command, and the controller must be capable of following the
command by providing reliable control references to the actuators.

The main issue in designing and implementing a control system for autonomous
manipulation is ensuring a reliable behavior within the workspace. A reliable behav-
ior means also avoiding singularities, collisions, system instabilities and unwanted
motions while performing the required task is theoretically executable.

The control system must also address some general manipulation issues, such
as being task-space oriented, with task priority assignments and dynamic priority
changes.

The third layer of the main control diagram of Fig. 3.1 is the Medium Level
Controller of the system and it is the layer where the above issues are addressed.
This Chapter describes some possible solutions to the inherent kinematical problems
in a control system for autonomous manipulation. We chose a “task reconstruction”
approach in order to automatically correct the required task according to the priority
of the situation. For example, when approaching a singularity, in order to prevent
unwanted motions and system instabilities the priority of the control system becomes
maintaining the distance from the singularity over a predefined threshold, rather than
following the input task. This approach is extendible to several other issues, such
as collision avoidance, and ensures a reliable execution of the input task when it
is theoretically feasible. If, for any reason, the input task cannot be executed, the
control system must inform the above layer of the execution error, together with the
nature of the problem (i.e. approaching a singularity).

G. Marani and J. Yuh, Introduction to Autonomous Manipulation, 53
Springer Tracts in Advanced Robotics 102, DOI: 10.1007/978-3-642-54613-6_3,
© Springer-Verlag Berlin Heidelberg 2014
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Fig. 3.1 Control system

3.1 Generation of the Velocity Reference

In this chapter we are not considering the inherent problem in the dynamic control
of the manipulator. In our treatise, the arm together with its dynamic controller
is considered as a separate subsystem, as shown in Fig. 3.2. The function of the
kinematic controller described here is to generate an appropriate velocity profile for
the actuators.

This approach is appropriate for a large class of electromechanical manipulators.
As a matter of fact, the dynamic control is often performed by sophisticated hardware
PID controllers, which are able to limit the tracking errors to acceptable values. This
is especially true when the joints are decoupled from the motors by a high gear ratio
that helps further reducing the joint velocity error.

In the control scheme of Fig. 3.2, the block named Robot HW Controller represents
the physical manipulator equipped with its joint drives, each one implementing a
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Fig. 3.2 Control scheme

closed loop velocity control at the corresponding joint. Using this control scheme,
the robot can be regarded as a black-box, receiving the vector of the reference joint
velocities as input, and giving the vector of the corresponding joint positions as
output. The last substantially coincides with the time integral of q, provided that
sufficiently high bandwidth loops are guaranteed by the hardware controller itself.

For completeness, a detailed description of some motion control algorithms for
the control scheme in Fig. 3.2 was presented in [1].

3.1.1 Closing the Feedback Loop

Let’s consider a schematic representation of a generic manipulator and its workspace
as shown in Fig. 3.3. Here, Te is the transformation matrix of the end-effector frame
〈e〉 with respect to the base frame 〈o〉, T is the (constant) transformation matrix of
the tool center frame 〈t〉 with respect to 〈e〉, while T≡, generally time varying, is
the transformation matrix of the reference frame 〈g〉 with respect to the base frame
〈o〉. The reference frame 〈g〉 is usually integral with the target, while the base frame
〈o〉 is integral with the vehicle. In the general case, both the above frames are time-
dependent and moving with respect to the earth-fixed frame (not shown in Fig. 3.3).

The general goal is to track the reference frame 〈g〉 by the tool frame 〈t〉. At this
aim, the global error e is automatically defined by the vector:

e =̇ [rgt,ρgt
]T (3.1)

where vectors rgt and ρgt (both projected on the base frame 〈o〉) represent the dis-
tance and the misalignment (equivalent rotation vector) of the reference frame 〈g〉
with respect to 〈t〉. The objective of the control scheme is to make the global error
e asymptotically converging toward zero or, alternatively, asymptotically confined
within acceptable norm bounds. This goal could be achieved with the closed loop
scheme shown in Fig. 3.2.
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Fig. 3.3 Schematic representation of a 7 DOF robotic arm and its workspace

3.1.1.1 Medium Level Control Loop

The remaining part of the control system represents the Medium Level Control
(MLC) loop of the arm. The joint velocity reference signals ˙̄q are appropriately
generated as real-time outputs, such that the global error e converges toward the
specified bounds. The reference transformation matrix T≡ is compared with the actual
tool frame transformation matrix T t via the processing block P, which is used for
evaluating the global error e in real time by solving, for the rotational error part ρgt
only, the well known Versor Lemma equations [2], given by:

⎡
it ∈ i≡ + jt ∈ j≡ + kt ∈ k≡ = 1

2 z sin θ

iTt · i≡ + jT
t · j≡ + kT

t · k≡ = 1 + cos θ
(3.2)

where we assumed ρ =̇ zθ, with z a unitary vector and θ an angular quantity, and
where Rt =̇ [

it, jt, kt
]

and R≡ =̇ [
i≡, j≡, k≡] are the rotation matrices contained inside

the transformation matrices T t and T≡ respectively. The notation a ∈ b is used for
indicating the cross product of two generic three dimensional vectors a and b. Proof
of the Versor Lemma is given in Appendix A.1.

The linear part rgt of the global error is easily obtained as difference between the
first three elements of the last columns of T≡ and those of T t . The global error e is
then multiplied by a suitable gain matrix πI. The result is the generalized Cartesian

velocity ˙̂X =̇ [
ω̂, v̂

]T ∈ �6 (projected on 〈o〉), where ω̂ ∈ �3 and v̂ ∈ �3 are
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the angular and linear velocity, respectively, which are assigned to the tool frame
〈Tt〉 such that e converges within the specified bounds. At this stage, the additional
Cartesian velocity input Ẋ

≡
allows a direct control of the end-effector velocity, which

is needed for example for force-feedback control.

The generalized velocity control input ˙̂X is then translated into the one-to-one

related velocity ˙̄X˙ = [ω̄, v̄] to be assigned to the end-effector frame 〈e〉. The velocity
translation is performed by the block S, using the well-known rigid body velocity
relationships: ⎡

ω̄ = ω̂
v̄ = v̂ + [s∈] ω̂

(3.3)

where s is the vector distance (projected on 〈o〉) of the frame 〈t〉 with respect to 〈e〉,
which is real time evaluated by the functional block H via the well known projection
relationship:

s = Re (q) t (3.4)

where Re (q) is the rotation matrix part of the end effector frame transformation
matrix Te (q), while t is the same (constant) distance vector projected on the end
effector frame 〈e〉 (i.e. the first three components of the last column of the constant
transformation matrix T).

The end-effector Cartesian velocity control signal ˙̄X is transformed into a corre-
sponding set of joint velocity reference input vector ˙̄q by the functional block Q.

3.2 Inverse Kinematics

The interface block Q of the control scheme of Fig. 3.2 generates the velocity ref-
erences for the joint actuators from a given task velocity reference input. Within
this operation, addressed as kinematic inversion, we must consider all the previously
mentioned issues such as task priority, singularities avoidance, joint limit and colli-
sion avoidance and task optimization. They are extensively described in this section
as they are critically important for the overall system.

3.2.1 Resolved Motion Rate Control

The kinematic output of a generic robotic manipulator is usually represented by a
manipulation variable, r ∈ �m. A manipulation variable may be, for example, the
position and orientation of the end-effector, the measure of manipulability, and any
other functions of the joint variable, q:

r = f (q) . (3.5)
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Considering small variations, the relationship between αr and αq is given by:

αr = βf

βq
αq = J (q) αq (3.6)

where J (q) ∈ �m×n is the Jacobian matrix of the manipulation variable, r. In resolved
motion rate control [3], we compute αq for a given αr and q by solving the linear
system, Eq. (4.28). In the general case, this is done by using the least-square solution,
which is αq that minimizes the error norm:

min‖αr − J (q) αq‖ (3.7)

The solution of Eq. (3.7) is given in the general form by [4]:

αq = J+ (q) αr + ⎣
In − J+ (q) J (q)

⎤
y (3.8)

where J+(q) ∈ �n×m is the Moore-Penrose pseudo-inverse of J(q), y ∈ �n is an
arbitrary vector and In ∈ �n×n indicates an identity matrix.

The least-square solution is not necessarily unique. This happens when the
manipulator possesses more degrees of freedom than the dimension of m of
the manipulation variable r. In this case, the manipulator may be considered kine-
matically redundant with respect to the particular task defined by Eq. (3.5), and every
solution is obtained with different values of y in Eq. (3.8). Among all its solutions,
the one that also minimizes the norm ‖αq‖ is obtained with y = 0:

αq = J+ (q) αr (3.9)

When there is no interest in using the redundancy for attaining secondary goals, this
is usually the solution preferred because it minimizes the joint velocity.

If the kinematic equation describes a non-redundant case (m = n), J+ (q) is equal
to J−1 (q) and

⎣
I − J+ (q) J (q)

⎤
becomes 0.

Note that, in general, the first and second terms of Eq. (3.8) are orthogonal:

⎣
J+αr

⎤T ⎣In − J+J
⎤

y = αrT ⎣J+⎤T ⎣In − J+J
⎤

y

= αrT [⎣In − J+J
⎤

J+]T y (3.10)

= 0

where the symmetry of In −J+J and the Penrose condition J+JJ+ = J+ have been
used [5].

http://dx.doi.org/10.1007/978-3-642-54613-6_4
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3.2.1.1 Kinematic Singularities

A kinematic singularity is defined as the joint configuration vector value q≡ such
that J (q≡) does not have full rank. Its pseudo-inverse, J+ (q≡), is not defined at such
a configuration. Physically, in the neighborhood of a singular configuration, even
a small change in αr requires an enormous change in αq, which is not practically
feasible in real manipulators and also dangerous for the structure.

The damped least-squares method [6] is a classical and simple way to overcome
this drawback. It consists in adding a regularization term acting in the neighborhood
of the singularities:

J+
DLS = JT

⎦
JJT + γI

)−1
. (3.11)

Consequently, the damped least square solution of Eq. (4.28) is:

αqDLS = J+
DLSαr + [

In − J+
DLS (q) J (q)

]
y (3.12)

However, the main disadvantage for this approach is a loss of performance and an
increased tracking error [7]. The choice of the damping terms must balance the
required performance with the error allowed. To overcome those defects, Nakamura
[8] introduced a variable damping factor (singularity-robust inverse), with the regu-
larization terms acting only in proximity of the singular points. Chiaverini also pro-
posed a modified inverse, adding only the damping parameter to the lowest singular
values [7]. These approaches are considerably better than the damped least-squares
method. However all the above solutions present the common problem of tuning
parameters, and more important in autonomous manipulation, there is a certain level
of unpredictability in the movements when the manipulator falls within a singular
configuration.

3.2.2 Task-Priority-Based Decomposition

In autonomous robotic systems, the subtask decomposition between position and
orientation is advantageous, because it will enlarge the reachable workspace of the
first-priority manipulation variable (usually position) by allowing incompleteness for
the second priority subtask. The concept of task priority was introduced by Nakamura
[4] into the inverse kinematics of manipulators. Let the manipulation variable r1 ∈
�m1 be our first priority task:

r1 = f1 (q) , (3.13)

where q ∈ �n is the robot configuration vector and r1 can be, for example, the
position of the end-effector. The differential relationship of (3.13) is:

αr1 = J1 (q) αq (3.14)

http://dx.doi.org/10.1007/978-3-642-54613-6_4
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where J1 (q) ∈ �m1×n is the Jacobian matrix of the first manipulation variable, r1.
Likewise, if we have additional degrees of freedom, let the manipulation variable
r2 ∈ �m2 be our secondary task:

r2 = f2 (q) (3.15)

αr2 = J2 (q) αq (3.16)

where J2 (q) ∈ �m2×n is the Jacobian matrix of the secondary task, r2. Equation (3.14)
has an infinite variety of solutions for αq, whose general solution is obtained using
the pseudoinverse solution of the Jacobian matrix:

αq = J1
+ (q) αr1 + [

In − J1
+ (q) J1 (q)

]
y (3.17)

where J1
+ (q) ∈ �n×m1 is the pseudoinverse of J1 (q), y ∈ �n is an arbitrary vector

and In ∈ �n×n indicates an identity matrix. Substituting Eq. (3.17) into Eq. (3.16),
we obtain:

J2
⎣
In − J1

+J1
⎤

y = αr2 − J2J1
+αr1. (3.18)

If the exact solution of y exists, Eq. (3.18) implies that the second manipulation
variable can be realized. Generally, the exact solution does not exist, however, we
can obtain y that minimizes

∥
∥αr2 − J2J1

+αr1
∥
∥ in the least square sense by using

again the pseudo-inverse:

y = Ĵ
+
2

⎣
αr2 − J2J1

+αr1
⎤+

⎦
In − Ĵ

+
2 Ĵ2

)
z, (3.19)

Ĵ2 = J2
⎣
In − J1

+J1
⎤
. (3.20)

where z ∈ �n is an arbitrary vector.
Finally, substituting Eq. (3.19) into Eq. (3.17), we obtain:

αq = J1
+αr1 + Ĵ

+
2

⎣
αr2 − J2J1

+αr1
⎤+ ⎣

In − J1
+J1

⎤ ⎦
In − Ĵ

+
2 Ĵ2

)
z. (3.21)

If we still have remaining redundancy, let now introduce a third manipulation
variable r3 ∈ �m3 :

r3 = f3 (q) , (3.22)

αr3 = J3 (q) αq. (3.23)

Using again the above procedure, we obtain:

αq = J1
+αr1 + Ĵ

+
2

⎣
αr2 − J2αq1

⎤+ Ĵ
+
3

[
αr3 − J3

⎣
αq1 + αq2

⎤]
(3.24)

where:
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Ĵ2 = J2
⎣
In − J+

1 J1
⎤
, (3.25)

Ĵ3 = J3

⎦
In − J+

1 J1 − Ĵ
+
2 Ĵ2

)
. (3.26)

Equation (3.24) suggests the recursive idea:




⎧

αqi = αqi−1 + Ĵ
+
i

⎣
αri − Jiαqi−1

⎤

Ĵi = JiJi
n

Ji
n = Ji−1

n − Ĵ
+
i−1Ĵi−1

,




⎧

αq0 = 0
J0 = 0
J0

n = In

(3.27)

also addressed in [9, 10].

3.2.2.1 Algorithmic Singularities

In the task decomposition approach, the occurrence of algorithmic singularities arises
from conflicts between the different tasks, when the correspondent non-prioritized
task is not feasible. Mathematically, in case of two manipulation variables, algorith-
mic singularities are configurations at which the matrix Ĵ2 in Eq. (3.25) loses rank
with J1 and J2 of full rank.

Only a few attempts have been made for the avoidance of algorithmic singularities
as shown in [7, 11, 12]. Chiaverini’s optimization method [7] is free from the algo-
rithmic singularity, at the expenses of an increased secondary task error. To increase
task performance, the Bordered Grammian method was proposed in [12]. However,
this method introduces another kind of singularity and its performance is somewhat
limited.

The Task Reconstruction for singularity avoidance [13–16] presented in the fol-
lowing section, provides a valid solution to avoid both kinematic and algorithmic
singularities, and by our experiments was proved to be the most effective approach
in case of autonomous manipulation.

3.2.3 Measure of Manipulability

The main requirement in a singularity avoidance approach is the localization of a
singular configuration within the joint space. Yoshikawa [17] proposed a continuous
measure that evaluates the kinematic quality of robot mechanism:

μ (J) =
⎨

det
⎣
JJT

⎤
. (3.28)

μ (J) takes a continuous non-negative scalar value and becomes equal to zero only
when the Jacobian matrix is not full rank.

Let’s consider the singular value decomposition of the Jacobian matrix J:
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J (q) = UΣVT , (3.29)

where U and V are orthogonal matrixes and Σ is a diagonal matrix whose diagonal
elements are the ordered singular values of J:

Σ =




⎧

⎩
diag (ξ1, . . . ,ξm) | 0,

]
, (m ◦ n),

[
diag (ξ1, . . . ,ξn)

0

]

, (m > n).

(3.30)

Substituting Eq. (3.29) into Eq. (3.28) results in:

μ =
⎨

det
⎣
UΣVT VΣT UT

⎤

=
⎨

det
⎣
ΣΣT

⎤ =
n∏

i=1

|ξi| . (3.31)

Equation (3.31) shows that μ (J) is exactly the product of the singular values of
J and can be regarded as a distance from singularity.

3.2.3.1 Derivative of Measure of Manipulability

One advantage of this choice as a distance from singularity is that we can find its
derivative with respect to the joint configuration vector q, which is needed for the
controller. Indicating with j (i, j) the element (i, j) of the Jacobian matrix J, the
derivative of μ (J) with respect to the i-th component of q is given by:

βμ (J)
βqk

=
∑

i,j

βμ (J)
βj (i, j)

βj (i, j)

βqk
=
∑

i,j

[
βμ (J)

βJ

⎢

(i,j)

βj (i, j)

βqk
(3.32)

where βf
βX is a matrix whose (i, j) element is βf

βxi,j
. Thus:

βμ (J)
βqk

=
∑

i,j

⎥

 1

2
⎨

det
⎣
JJT

⎤
β det

⎣
JJT

⎤

βJT



⎪

T

(i,j)

βj (i, j)

βqk

=
∑

i,j

⎥

 1

2
⎨

det
⎣
JJT

⎤2 det
⎦

JJT
)

JT
⎦

JJT
)−1



⎪

T

(i,j)

βj (i, j)

βqk
(3.33)

where the relation:
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d

dX

⎦
det
⎦

XT X
))

= 2 det
⎦

XT X
)

· X
⎦

XT X
)−1

(3.34)

has been used. Assuming that J is of full rank we have:

βmom (J)
βqk

=
∑

i,j

[⎨
det
⎣
JJT

⎤
J+
⎢T

(i,j)

βj (i, j)

βqk
(3.35)

Finally:
βμ (J)
βqk

= μ (J)
∑

i,j

⎩
J+T

]

(i,j)

[
βJ
βqk

⎢

(i,j)
(3.36)

βμ (J)
βqk

= μ (J) · trace

⎡
βJ
βqk

J+
}
. (3.37)

Equation (3.37) shows that we can express the derivative of measure of manipula-
bility with respect to some already known quantities, as μ (J) itself and the pseudo-
inverse of Jacobian matrix, J+. The derivative of each element of J with respect to
qk may be easily computed symbolically. The cost of its numerical computation is
lower than the one for the Jacobian itself, and is the only one added for computing
βμ(J)
βqk

. The above formulation has been also discussed in [18].

3.3 Task Reconstruction for Singularity Avoidance

For a given manipulation variable, usually a singularity-free motion path may be
achieved with an off-line path planning. However, this approach requires preliminary
knowledge of all the singular configurations of the manipulator, which is not always
possible for large DOF systems.

The proposed method, based on a real-time evaluation of the measure of manipu-
lability, allows moving along a singularity-free path for a generic manipulator whose
singular configurations are not known in advance. The basic idea is to reconstruct
the main task when approaching to a singular configuration, in order to move along a
path where the distance from the singularity point is maintained constant (or at least
not decreasing). This approach is particularly suitable in autonomous manipulation
because it releases the task generator (the higher layer in the main control system)
from keeping into account the singularity problem.

3.3.1 Task Reconstruction: Single Manipulation Variable

The concept of task reconstruction has been introduced in [14, 15, 19, 20] and
successively generalized in [13].
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Fig. 3.4 Conceptual diagram of the task reconstruction method

Figure 3.4 shows the main idea, which consists basically in modifying the main
task in order to move along the path where the distance from singularity (mom) is
maintained over a predefined value.

Let’s consider again the solution of inverse kinematics in case of one manipulation
variable (3.8):

αq = J+ (q) αr + ⎣
In − J+ (q) J (q)

⎤
y (3.38)

In the above equation, let’s consider y = 0 (absence of null motion):

αq = J+ (q) αr (3.39)

In the following treatise we can assume that J (q) is always of full rank. As a matter
of fact, this is the goal of our singularity avoidance approach.

Let’s introduce now a function m (q) of the configuration vector q that represents
the measure of the distance of the system from a singular configuration. In our
approach, we chose the measure of manipulability introduced in Eq. (3.28):

m (q) = mom (q) (3.40)

The small variation of the measure m(q) is given by:

αm (q) = βm (q)
βq

αq = βm (q)
βq

J+αr. (3.41)

In order to have αm (q) = 0, Eq. 3.41 implies that the given task must be orthogonal
to the vector:

βm (q)
βq

J+ (3.42)

or, equivalently, that αr must lie on the surface defined by:
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⎡
x ∈ �m :

(
βm (q)

βq
J+
)

· x = 0

}
(3.43)

Let nm be the unitary vector orthogonal to the surface defined by Eq. 3.43:

nm =
⎦

βm(q)
βq J+

)T

∥∥∥βm(q)
βq J+

∥∥∥
(3.44)

Consequently, the projection of the given task on the surface is:

αrp = αr − (αr · nm) nm

= αr −
⎦

nmnm
T
)

αr (3.45)

=
⎦

Im − nmnm
T
)

αr.

This projection eliminates the components of the task that may drive the system
toward the singular configuration.1 This action may occur only when the distance
from singularity is less than or equal to a predefined value. At that aim, it is necessary
to introduce a weight into Eq. (3.45) as follows:

αrp =
⎦

Im − nmnm
T km (m,m,ξ)

)
αr, (3.46)

where km (m,m,ξ) is a positive and well-shaped function, which is equal to 1 for
values of m (q) smaller than the boundary of the singular region, m, and equal to
zero for values of m (q) greater than the boundary m plus a transitional zone ξ (with
continuous first derivative). The shape function is defined as:

km (m,m,ξ) =




⎧

1. m ◦ m

2
⎣m−m

ξ

⎤3 − 3
⎣m−m

ξ

⎤2 + 1, m < m ◦ m + ξ

0, m + ξ < m

(3.47)

Figure 3.5 shows an example of Eq. (3.47) for m = ξ = 0.02. The continuity of
the first derivative allows to progressively lay down the task solution, αr, on the
surface where m (q) is constant, without introducing instabilities to the controller
when closing the loop.

In addition, we must ensure to leave from the surface by acting the task correction
in Eq. (3.46) only when the scalar product αr · nm is negative, that is when the
singularity measure m (q) is decreasing:

1 In case that
∥∥
∥ βm(q)

βq J+
∥∥
∥ = 0, the normal (3.44) is not defined. However this means that, locally,

αm (q) = 0 in every direction, thus the value of nm is not important.
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αrp =
(

Im − 1 − sign (αr · nm)

2

⎦
nmnm

T
)

km (m,m,ξ)

)
αr,

=
⎦

Im − k1

⎦
nmnm

T
))

αr, (3.48)

where k1 = 1
2 (1 − sign (αr · nm)) km (m,m,ξ). When m (q) is already smaller than

the value on the surface, Eq. (3.48) does not guarantee to escape from the enclosed
volume. Furthermore, numerical errors may introduce a small drift term driving
the task below the surface. To avoid the above drawbacks, one additional term is
introduced into Eq. (3.48):

αrp =
⎦

Im − k1nmnm
T
)

αr + k2nm, (3.49)

k2(m) = Krkm

(
m,

m

2
,

m

2

)
(3.50)

where Kr is a scalar gain. With the above choice of m and ξ, k2 is different from zero
only for m (q) < m. The effect is a recalling action toward the surface, starting when
αrp has no more components along the gradient. Figure 3.6 shows the geometric
interpretation of the TR method.

In our implementation chose ξ = m. Thus the only tunable parameters are Kr

and the minimum allowed distance from singularity m. The last parameter, m, is
responsible for the performance of the system when working close to a singularity.
A small value is preferable; however getting too close to the singularity may be
dangerous for the presence of numerical errors and noise.

The above reconstructed task αrp is used in Eq. (3.39) in place of the original task
αr, guaranteeing a total singularity-free motion path within the arm workspace. Thus,
with the above choice, we have:
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Fig. 3.6 Geometric interpre-
tation of the task reconstruc-
tion concept
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αq = J+ (q) TR (J,m (q) , αr) (3.51)

where:

TR (J,m (q) , αr) =
⎦

Im − k1nmnm
T
)

αr + k2nm

nm =
⎦

βm(q)
βq J+

)T

∥∥∥βm(q)
βq J+

∥∥∥

k1 = 1 − sign (αr · nm)

2
km (m,m,m) (3.52)

k2 = Krkm

(
m,

m

2
,

m

2

)

Equation (3.52) represents the general form of our task reconstruction process, indi-
cated for simplicity as a function TR (J,m (q) , αr) of the Jacobian J, the measure
m (q) and the variation of the manipulation variable αr.

3.3.2 Task Reconstruction: Case of Two Tasks with Order
of Priority

Let’s consider the case of two subtasks with absence of null motion. The inverse
kinematics taking into account of the order of priority is given by Eq. (3.21) for
z = 0:

αq = J1
+αr1 + Ĵ

+
2 αr̂2 (3.53)

with:

αr̂2 = αr2 − J2J+
1 αr1 (3.54)

Ĵ2 = J2
⎣
In − J1

+J1
⎤
. (3.55)
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In this case, the system may also be affected by algorithmic singularities. As seen
before, they are configurations at which the matrix Ĵ2 in Eq. (3.55) loses rank with

J1 and J2 of full rank. A loss of rank of Ĵ2 implies, from Eq. (3.31), that μ
⎦

Ĵ2

)
= 0.

Avoiding such configuration will result in avoiding also algorithmic singularities.
In our approach, we apply the task reconstruction process (3.52) to the modified

secondary task αr̂2 in order to prevent Ĵ2 to lose rank. This is done after applying the
TR process (3.52) to the first task in order to prevent kinematic singularities. Thus
we simply have:

αq = J1
+αr1p + Ĵ

+
2 αr̂2p (3.56)

where:
r1p = TR (J1,m1 (q) , αr1) (3.57)

r2p = TR
⎦

Ĵ2,m2 (q) , αr2 − J2J+
1 αr1p

)
(3.58)

The measures of the distance from singularity m1 (q) and m2 (q) are given by
Eq. (3.28):

m1 (q) = μ (J1) (3.59)

m2 (q) = μ
⎦

Ĵ2

)
(3.60)

In the above formulation, while βm(q)
βq can be easily computed in case of the first

task using the Eq. (3.37), in case of the secondary task the computation of
βμ
⎦

Ĵ2

)

βq is
not immediate.

At this aim let’s consider the product of the measure of manipulability of J1 and
Ĵ2. From Eq. (3.31) we have:

μ (J1) · μ
⎦

Ĵ2

)
=
√

det
⎣
J1J1

T
⎤ · det

⎦
Ĵ2Ĵ

T
2

)
. (3.61)

From Eq. (3.20) we have:

det
⎦

Ĵ2Ĵ
T
2

)
= det

⎦
J2
⎣
In − J1

+J1
⎤ ⎣

In − J1
+J1

⎤T J2
T
)

= det
⎦

J2J2
T − J2J1

+J1J2
T
)

(3.62)

= det

(
J2J2

T − J2J1
T
⎦

J1J1
T
)−1

J1J2
T
)

using the idempotency of
⎣
In − J1

+J1
⎤
. Recalling the determinant formula for the

2-by-2 block matrix:
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det

([
A B
C D

⎢)
= det (A) · det

⎦
D − CA−1B

)
(3.63)

we obtain [21]:

μ (J1) · μ
⎦

Ĵ2

)
=
√

det

([
J1J1

T J1J2
T

J2J1
T J2J2

T

⎢)

= μ

([
J1
J2

⎢)
(3.64)

or, equivalently:

⎨
det
⎣
J1J1

T
⎤ ·
√

det
⎦

Ĵ2Ĵ
T
2

)
=
⎨

det
⎣
JJT

⎤
(3.65)

where:

J =
[

J1
J2

⎢
(3.66)

is the matrix obtained by stacking J1 and J2. Equation (3.65) means that algorithmic
singularities in the inverse kinematics taking account of the priority of the subtasks
will not occur when the Jacobian of the corresponding task-space augmentation
approach:

αr =
[

αr1
αr2

⎢
=
[

J1 (q)
J2 (q)

⎢
αq (3.67)

is not singular. More precisely [21], a singular configuration in the augmented
Jacobian (3.67) occurs when J1 or J2 are rank deficient or the primary and sec-
ondary task are incompatible.

In order to compute the derivative of m2 (q) with respect the configuration vector
q, we can use Eq. (3.64):

μ (J) = μ (J1) · μ
⎦

Ĵ2

)
(3.68)

Deriving both sides of Eq. (3.68) we obtain:

dμ (J)
dq

= dμ (J1)

dq
μ
⎦

Ĵ2

)
+

dμ
⎦

Ĵ2

)

dq
μ (J1) (3.69)

that can be solved with respect to
dμ
⎦

Ĵ2

)

dq :

dm2 (q)
dq

=
dμ
⎦

Ĵ2

)

dq
= 1

μ (J1)

(
dμ (J)

dq
− dμ (J1)

dq
μ
⎦

Ĵ2

))
(3.70)
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The only unknown in Eq. (3.70) is the derivative of the measure of manipulability
of the augmented Jacobian dμ(J)

dq , which can be easily computed in closed symbolic
form using again the Eq. (3.37).

An alternative approach to algorithmic singularities avoidance, in the case of
two tasks with order of priority, has been presented in [22] and tested on the
SAUVIM manipulator. However, despite the results were comparable, Eq. (3.56)
allows an easier generalization in case of more than 2 subtasks, as shown in the
Sect. 3.3.3.

3.3.3 Generalization of Task Reconstruction to Multiple Subtasks

The general case of inverse kinematics in presence of multiple tasks has been
addressed in Eq. (3.27):

αq =
k∑

i=1

Ĵ
+
i αr̂i (3.71)

where k the number of subtasks and Ĵi, αr̂i defined by the recursion:




⎧

αqi = αqi−1 + Ĵ
+
i αr̂i

αr̂i = αri − Jiαqi−1

Ni = Ni−1 − Ĵ
+
i Ĵi

Ĵi = JiNi−1

,




⎧

αq0 = 0
J0 = 0
N0 = In

, (3.72)

The task reconstruction in case of multiple tasks prevents every matrix Ĵi in Eq. (3.72)
from losing rank. We apply the TR process (3.52) to the modified i-th task αr̂i in
order to prevent the associated Ĵi from losing rank. Similarly to Sect. 3.3.2 this is
done after applying the TR process (3.52) to the previous (highest priority) tasks.
Thus we simply have:

αq =
k∑

i=1

Ĵ
+
i αr̂ip (3.73)

with: 


⎧

αqi = αqi−1 + Ĵ
+
i αr̂ip

αr̂i = αri − Jiαqi−1

Ni = Ni−1 − Ĵ
+
i Ĵi

Ĵi = JiNi−1

,




⎧

αq0 = 0
J0 = 0
N0 = In

, (3.74)
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and: 


⎧

αr̂ip = TR
⎦

Ĵi,mi (q) , αr̂i

)

mi (q) = μ
⎦

Ĵi

)
=
√

det
⎦

ĴiĴ
T
i

) (3.75)

In the above formulation, the computation of βmi(q)
βq is not immediate. However, it is

possible to show that:

j∏

i=1

√

det
⎦

ĴiĴ
T
i

)
=
⎨

det
⎣
SjSj

T ⎤, j = 1 . . . k. (3.76)

where

Sj =

⎥




J1
J2
...

Jj




⎪

(3.77)

is the matrix obtained by stacking the Jacobians Ji, i = 1 . . . j.
Equation (3.76) allows computing the derivative of mi (q) of Eq. (3.75) with

respect q, using a procedure similar to the two tasks case (Sect. 3.3.2). Let’s write
the products of Eq. (3.76) in a different form:

μ
⎦

Ĵj

) j−1∏

i=1

μ
⎦

Ĵi

)
= μ

⎣
Sj
⎤
, j = 1 . . . k (3.78)

μ
⎦

Ĵj

)
μ
⎣
Sj−1

⎤ = μ
⎣
Sj
⎤
, j = 1 . . . k. (3.79)

Deriving with respect to the configuration vector q we have:

dμ
⎦

Ĵj

)

dq
= 1

μ
⎣
Sj−1

⎤

(
dμ
⎣
Sj
⎤

dq
− dμ

⎣
Sj−1

⎤

dq
μ
⎦

Ĵj

)
)

(3.80)

The derivative of the measure of manipulability of the augmented Jacobian
dμ(Sj)

dq
can be easily computed in closed symbolic form using again Eq. (3.37).

This solution allows avoiding all kinds of singularities (kinematic and algorithmic)
in task-priority based kinematic controllers. The main advantage is a better tracking
error in proximity of singular configurations, with respect to the order of priority
of the tasks. Because the rank of the different Jacobian matrices is never zero, the
presented algorithm uses the exact pseudo-inversion and the resulting task errors
depend only on the choice of the lower limit of the distance from singularity.
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This approach is suitable for autonomous systems because it ensures avoiding
every kind of singularity regardless of the input task. If, for example, the task planner
requires the arm to reach a particular configuration close to or in a singular point,
the manipulator will execute the task with an error as small as possible, avoiding
the singular point. The path planner could be informed of this error and then would
make an appropriate action.

3.3.4 Experimental Results

This section presents some experimental results of the TR algorithm, used in the
control system for the underwater manipulator of SAUVIM. The experiments were
conducted for the following cases:

A. Single task with kinematic singularity
B. Two tasks with algorithmic singularity

In any of the above cases, the results with the task reconstruction algorithm were
compared with the results obtained using the damped least-squares inverse with
numerical filtering (DLS method, [7]) which is widely used for avoiding the kinematic
singularity. Its formulation is:

J+
DLS = JT

⎦
JJT + γ2umuT

m

)−1
, (3.81)

γ2 =
{

0, ξm ∀ σ⎦
1 − ⎣ξm

σ

⎤2)
γ2

max, ξm < σ
(3.82)

where ξm is the lowest singular value of J and um is the corresponding output singular
vector.

3.3.4.1 MARIS 7080 Manipulator

The following experiments have been conducted with the SAUVIM manipulator
MARIS 7080 (Fig. 3.7), already introduced in Sect. 1.2. Some details about MARIS
7080 have been presented also in [23–26].

3.3.4.2 Case I: Single Task with Kinematic Singularity

For the first experiment the desired task is a circular trajectory on the X − Z plane,
with a radius of 0.3 m, centered in:

http://dx.doi.org/10.1007/978-3-642-54613-6_1
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Fig. 3.7 The 7-DOF SAUVIM manipulator MARIS 7080 and its kinematics

x0 =
⎥


0.5
0

−1



⎪ . (3.83)

The manipulation variable in Eq. (3.51) is the position x (t) ∈ �3. With this con-
figuration, a part of the desired task lies outside of the workspace: this causes the
manipulator to encounter a kinematic singularity. The parameters are set as follows:

• TR Method (Eq. 3.52): m = 0.05, Kr = 0.5.
• DLS Method (Eq. 3.81): σ = 0.2, γmax = 0.1

For the closed-loop controller of Fig. (3.2), the controller gain is π = 10, tuned for
the best task performance and stability.

The results are shown in Fig. 3.8. With the TR method, the singularity measure is
clamped over m = 0.05 (Fig. 3.8b), while using the DLS the measure goes close to
zero (Fig. 3.8d). In this situation, a high gain or a large task error may easily result
in instability of the system.

Figure 3.8e shows finally the task error comparison. While the TR algorithm has
a clean and predictable behavior, the DLS method shows an overshoot upon exiting
from the singular region. This is due to the errors introduced by the damping term γ
of Eq. (3.81).
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Fig. 3.8 Experimental results (Case I): a task in the x-z plane (TR-method), b task in the x-z plane
(DLS method), c singularity measure (TR-method), d singularity measure (DLS method), e norm
of task errors

3.3.4.3 Case II: Two Tasks with Algorithmic Singularity

For the second experiment, we have two subtasks (position and orientation) with the
order of priority (position and then orientation). The desired first task (position) is a
circular trajectory on the X − Z plane, with a radius of 0.2 m, centered in:
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x0 =
⎥


0.55

0
−1



⎪ . (3.84)

The secondary task is simply a constant RPY angle, (∂, 0,−∂/2). In this case, the
TR algorithm is given by Eq. (3.56). With this configuration, there is no kinematic
singularity associated to the primary task. However, some part of the desired sec-
ondary task is conflicting with the primary: this causes the manipulator to encounter
an algorithmic singularity.

The results are compared with those of the Chiaverini’s algorithmic singularity
avoidance method [7],

αq = J1
+αr1 + ⎣

I − J+
1 J1

⎤
J+

2 αr2.. (3.85)

The pseudo-inversions of J1 and Ĵ2 are still performed using Eq. (3.81). The para-
meters are set as follows:

• TR Method (Eq. 3.56): m1 = 0.05, m2 = 0.075, Kr1 = Kr2 = 0.5.
• DLS Method (Eq. 3.81): σ = 0.2, γmax = 0.1

The task controller gains are the same as used in Case I, for both methods.
Figure 3.9 shows the results of this case. The primary tasks are well performed

in both methods. Instead, for the secondary task, with the TR-method (Fig. 3.9c) the
singularity measure is maintained above 0.075 as our desire. Therefore, there are no
secondary task singularities.

Figure 3.9e shows the comparison of the norm of the secondary task errors. The
larger error present when using Chiaverini’s method is intrinsic in the nature of
Eq. (3.85). As noted in [7], when an algorithmic singularity is approached, the solu-
tion of Eq. (3.85) progressively reduces the null-space velocity associated to the
component of the secondary task that is close to become infeasible. The TR method,
conversely, does not introduce any changes into the original task solution (3.21)
outside of the threshold area. When an algorithmic singularity is approached, the
above solution of Eq. (3.21) increases the null-space velocity to preserve accurate
tracking of the secondary task close to become unfeasible. Just before approaching
the singularity, the task reconstruction intervenes, modifying the trajectory in order
to maintain the singularity measure above the predefined threshold, as shown in
Fig. 3.9c.

This aspect also justifies why there is an inversion of behaviors in the configuration
close to the center of the error peak in Fig. 3.9e. Here, the Chiaverini method tends
to asymptotically reduce the error, even if with slower dynamics, pushing the overall
configuration closer to the singularity. With the TR method, this is not allowed, and
the larger error is necessary in order to maintain the distance from singularity over
the predefined threshold.
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Fig. 3.9 Experimental results (Case II): a task in the x-z plane (TR-method), b task in the x-z
plane (Chiaverini), c 2nd task singularity measure (TR-method), d 2nd task singularity measure
(Chiaverini), e norm of the 2nd task errors

In conclusion, the TR-method can prevent the algorithmic singularity, with a clean
behavior and a smaller error in the area close to the singularity. The predictability of
its behavior makes the Task Reconstruction algorithm more suitable for autonomous
manipulation.
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Chapter 4
The SAUVIM Underwater
Vehicle-Manipulator System

In the previous chapters we presented a methodology for describing generalized
robotic structures, including their representation (Sect. 2.1.3), forward kinematics
computation (Sect. 2.2), full system dynamics (Sect. 2.3) and resolution of inverse
kinematics (Chap. 3).

The inverse kinematic problem will now be applied to the entire SAUVIM vehicle,
modeled as a 13 degrees-of-freedom multi-body system by using the previous results.

By applying the Task Reconstruction to the whole structure, we will show how
it is possible to autonomously optimize the placement of the vehicle and arm with
respect to the target. It is often regarded in literature as workspace optimization.

4.1 Modeling the SAUVIM Vehicle-Manipulator System

SAUVIM, as introduced in Sect. 1.2 (Fig. 1.1), was built around an open-frame struc-
ture, enclosed by a flooded composite fairing. Navigation and hovering movements
are precisely actuated with eight thrusters located around the center of mass.

To achieve the intervention capabilities, SAUVIM is equipped with a seven
degrees-of-freedom robotic manipulator, MARIS 7080 (Fig. 3.7, see Sect. 1.2).

With the considerations introduced in Sect. 2.1.3, this platform can be regarded as
a linear chain of 8 joints, with the first joint having 6 DOF. Figure 4.1 schematizes this
concept. As usual, we will be numbering the frame sequence from 1 to 8, indicating
with 〈0〉 the base frame. Note that our choice was to make the link-1 frame coincident
with the center of mass frame, as shown in Fig. 4.2. Instead, the link-2 frame of the
underwater vehicle-manipulator system (UVMS) coincides with the link-1 frame of
the manipulator (see Fig. 4.3).

By following the procedure of Sect. 2.2.2, each joint is being represented by an
associated joint matrix, listed in Tables 4.1 and 4.2.

The configuration vector of the structure is hence defined as:

q = [q1 q2 . . . q13
]T (4.1)
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and the quasivelocity vector is:

p = [p1 p2 . . . p13
]T (4.2)

The physical meanings of q and p will be more clear in the following paragraphs.
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Fig. 4.3 Kinematics of the 7
DOF SAUVIM manipulator
MARIS 7080

Joint 1

The first kinematic linkage of the system is modeled as a 6 DOF simple joint. Its joint
matrix is listed in Table 4.1 and is simply the 6 × 6 identity matrix. This joint matrix
simply represents a free body, i.e. the link is capable of performing any rotation and
translation in the Cartesian space.

By following the procedure indicated in Sect. 2.2.2.1 we obtain the transformation
matrix:

0
1T =

⎡

⎣
⎣
⎤

cos (q3) cos (q2) − sin (q3) cos (q1) + cos (q3) sin (q2) sin (q1) sin (q3) sin (q1) + cos (q3) sin (q2) cos (q1) q4
sin (q3) cos (q2) cos (q3) cos (q1) + sin (q3) sin (q2) sin (q1) − cos (q3) sin (q1) + sin (q3) sin (q2) cos (q1) q5

− sin (q2) cos (q2) sin (q1) cos (q2) cos (q1) q6
0 0 0 1

⎦





(4.3)

In Eq. (4.3) the configuration variables q1 through q6 represent respectively the three
Euler angles (roll, pitch and yaw) and the Cartesian coordinates of the origin of the
frame 〈1〉, located at the center of mass of the vehicle (see Fig. 4.2).

Computing the Jacobian of the origin of frame 〈1〉, with the procedure in
Sect. 2.2.3, gives the following result:

http://dx.doi.org/10.1007/978-3-642-54613-6_2
http://dx.doi.org/10.1007/978-3-642-54613-6_2
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Table 4.1 SAUVIM UVMS description (joints 1–4)

Joint number Joint matrix Outboard joint Local frame rotation

Joint 1

⎡

⎣
⎣⎣
⎣⎣
⎣
⎤

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎦







⎡

⎤
xM1

yM1

zM1

⎦



⎡

⎤
1 0 0
0 1 0
0 0 1

⎦



Joint 2

⎡

⎣
⎣⎣
⎣⎣
⎣
⎤

0
0
1
0
0
0

⎦







⎡

⎤
0.2235

0
0

⎦



⎡

⎤
1 0 0
0 1 0
0 0 1

⎦



Joint 3

⎡

⎣
⎣⎣
⎣⎣
⎣
⎤

0
0
1
0
0
0

⎦







⎡

⎤
0
0
0

⎦



⎡

⎤
0 0 −1
0 1 0
1 0 0

⎦



Joint 4

⎡

⎣
⎣⎣
⎣⎣
⎣
⎤

0
0
1
0
0
0

⎦







⎡

⎤
−0.4

0
0

⎦



⎡

⎤
1 0 0
0 0 1
0 −1 0

⎦



1J1/0 (O1) =

⎡

⎣
⎣⎣⎣⎣⎣
⎤

1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0

⎦





(4.4)

As noted in Eq. (2.154), the above Jacobian figures in the computation of the gener-
alized velocity of the origin of the frame 〈1〉 projected in the same frame 〈1〉:

1XO1/0 = 1J1/0 (O1) p =

⎡

⎣⎣
⎣⎣⎣⎣
⎤

p1
p2
p3
p4
p5
p6

⎦





(4.5)

http://dx.doi.org/10.1007/978-3-642-54613-6_2
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Table 4.2 SAUVIM UVMS description (joints 5–8)

Joint number Joint matrix Outboard joint Local frame rotation

Joint 5

⎡

⎣
⎣⎣
⎣⎣
⎣
⎤

0
0
1
0
0
0

⎦







⎡

⎤
−0.4

0
0

⎦



⎡

⎤
1 0 0
0 −1 0
0 0 −1

⎦



Joint 6

⎡

⎣
⎣⎣
⎣⎣
⎣
⎤

0
0
1
0
0
0

⎦







⎡

⎤
0
0
0

⎦



⎡

⎤
0 0 1
0 1 0

−1 0 0

⎦



Joint 7

⎡

⎣
⎣⎣
⎣⎣
⎣
⎤

0
0
1
0
0
0

⎦







⎡

⎤
0
0
0

⎦



⎡

⎤
0 0 −1
0 1 0
1 0 0

⎦



Joint 8

⎡

⎣
⎣⎣
⎣⎣
⎣
⎤

0
0
1
0
0
0

⎦







⎡

⎤
0
0

0.414

⎦



⎡

⎤
0 0 −1
0 1 0
1 0 0

⎦



Equation (4.5) shows that the quasi-velocities p1, p2, p3 represent the angular veloc-
ities around the three coordinate axis i, j and k respectively, while p4, p5 and p6 are
the Cartesian velocities (all projected in the frame 〈1〉).

Note that the coordinates of the outboard joint in Table 4.1 are simply the geometric
vector connecting the origin of the first joint frame of the Maris manipulator to the
center of mass of the vehicle. The origin of the first joint frame is shown in Fig. 4.3.

Joint 2 through 8

Joints 2 through 8 of the UVMS correspond to the joints 1 through 7 of the MARIS
7080 manipulator. For consistency with the Denavit-Hartenberg representation, the
local link frames have been oriented so that the z axis coincides with the rotational
motion axis. This results in the same joint matrix for all the manipulator joints,
as shown in Tables 4.1 and 4.2. Note that the configuration variables q7 through q13
represent the joint angles of the robot, while the quasi-velocities variables p7 through
p13 are the joint angular velocities.

By following again the procedure in Sect. 2.2.2.1 we obtain the following trans-
formation matrices:

http://dx.doi.org/10.1007/978-3-642-54613-6_2
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1
2T =

⎡

⎣⎣
⎤

cos (q7) − sin (q7) 0 xM1

sin (q7) cos (q7) 0 yM1

0 0 1 zM1

0 0 0 1

⎦


 (4.6)

2
3T =

⎡

⎣⎣
⎤

0.0 0.0 −1 0.2235
sin (q8) cos (q8) 0 0
cos (q8) − sin (q8) 0 0

0 0 0 1

⎦


 (4.7)

3
4T =

⎡

⎣⎣
⎤

cos (q9) − sin (q9) 0 0
0 0 1 0

− sin (q9) − cos (q9) 0 0
0 0 0 1

⎦


 (4.8)

4
5T =

⎡

⎣⎣
⎤

cos (q10) − sin (q10) 0 −0.4
− sin (q10) − cos (q10) 0 0

0 0 −1 0
0 0 0 1

⎦


 (4.9)

5
6T =

⎡

⎣⎣
⎤

0 0 1 −0.4
sin (q11) cos (q11) 0 0

− cos (q11) sin (q11) 0 0
0 0 0 1

⎦


 (4.10)

6
7T =

⎡

⎣⎣
⎤

0 0 −1 0
sin (q12) cos (q12) 0 0
cos (q12) − sin (q12) 0 0

0 0 0 1

⎦


 (4.11)

7
8T =

⎡

⎣
⎣
⎤

0 0 −1 0
sin (q13) cos (q13) 0 0
cos (q13) − sin (q13) 0 0

0 0 0 1

⎦



 (4.12)

Similarly, after applying the procedure in Sect. 2.2.3, the computation of the Jacobian
of the origin of frames 2 through 8 gives the following results:

2J2/0 (O2)

=

⎡

⎣⎣⎣⎣⎣⎣
⎤

cos (q7 ) sin (q7 ) 0 0 0 0 0 0 0 0 0 0 0
− sin (q7 ) cos (q7 ) 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0
− sin (q7 ) zM1 cos (q7 ) zM1 − cos (q7 ) yM1 + sin (q7 ) xM1 cos (q7 ) sin (q7 ) 0 0 0 0 0 0 0 0
− cos (q7 ) zM1 − sin (q7 ) zM1 sin (q7 ) yM1 + cos (q7 ) xM1 − sin (q7 ) cos (q7 ) 0 0 0 0 0 0 0 0

yM1 −xM1 0 0 0 1 0 0 0 0 0 0 0

⎦




(4.13)

http://dx.doi.org/10.1007/978-3-642-54613-6_2
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3J3/0 (O3)

=

⎡

⎣⎣
⎣⎣⎣
⎣
⎤

− sin (q8) sin (q7)

− cos (q8) sin (q7)

−1.0 cos (q7)

0.2235 cos(q8) sin (q7) − sin (q8) cos (q7) zM1 + cos (q8) yM1

−0.2235 sin (q8) sin (q7) − cos (q8) cos (q7) zM1 − sin (q8) yM1

1.0 sin (q7) zM1

sin (q8) cos (q7)

cos (q8) cos (q7)

−1.0 sin (q7)

× − 0.2235 cos (q8) cos (q7) − sin (q8) sin (q7) zM1 − cos (q8) xM1

0.2235 sin (q8) cos (q7) − cos (q8) sin (q7) zM1 + sin (q8) xM1

−1.0 cos (q7) zM1

cos (q8)

− sin (q8)

−0.0
× 0.2235 sin (q8) + sin (q8) (sin (q7) yM1 + cos (q7) xM1)

0.2235 cos (q8) + cos (q8) (sin (q7) yM1 + cos (q7) xM1)

1.0 cos (q7) yM1 − 1.0 sin (q7) xM1

×

0.0 0.0 0.0 cos (q8) 0 0 0 0 0 0
0.0 0.0 0.0 − sin (q8) 0 0 0 0 0 0

−0.0 −0.0 −0.0 −0.0 1 0 0 0 0 0
− sin (q8) sin (q7) sin (q8) cos (q7) cos (q8) 0.2235 sin (q8) 0 0 0 0 0 0
− cos (q8) sin (q7) cos (q8) cos (q7) − sin (q8) 0.2235 cos (q8) 0 0 0 0 0 0

−1.0 cos (q7) −1.0 sin (q7) 0.0 0.0 0 0 0 0 0 0

⎦






(4.14)

The increased complexity of the successive Jacobians does not allow to show
them here.

As a matter of fact, the description introduced in Chap. 2 has been formulated
for simplifying the automated generation of the equations from the description. The
entire process has been implemented as a set of procedures within a symbolic-math
processor software. With the only input of the data of Tables 4.1 and 4.2, the sym-
bolic model generator provides all the kinematic quantities optimized for real-time
implementation. Large problems like the present 13 DOF model of the UVMS would
be extremely complex to solve without such an automated procedure.

4.2 Workspace Optimization with Task Reconstruction

In Sect. 3.3 we have introduced the concept of task reconstruction. The TR method
was applied to the MARIS 7080 manipulator to show its effectiveness in maintaining
the measure of manipulability confined within reasonable values.

The TR still holds in case of multi-body systems with joints with more than
one degree of freedom as, for example, the 13 DOF UVMS system presented in the
previous section. The idea in workspace optimization is to apply the TR methodology
to the whole 13 DOF chain, with the same goal of confining the manipulability of

http://dx.doi.org/10.1007/978-3-642-54613-6_3
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the manipulator within reasonable thresholds. Unlike the examples in Sect. 3.3.4,
the entire structure (hence including navigation thrusters) is now considered for the
optimization of the manipulability.

4.2.1 Task Formulation for Workspace Optimization

The goal of a generic intervention mission is usually achieved by performing
Cartesian relative motion between the end-effector and the target. In order to avoid
mission aborts the target must be optimally positioned within the dexterous arm
workspace.

This concept can be better illustrated by introducing the following manipulator
variables (already defined in Sect. 3.2.1):

Task r1 (3 DOF): Cartesian position of Link 8 (the end-effector)
Task r2 (3 DOF): Orientation of Link 8 (the end-effector)
Task r3 (3 DOF): Position (x and y) and orientation (around z) of the vehicle.

The order of priority is decreasing, i.e. r1 has higher priority than r2 and r3. The
manipulation variables r1 and r2 must track respectively the required tool position
and orientation. Instead, the manipulation variable r3 is necessary to set the hovering
condition. In our implementation, the latter is achieved by setting to zero the time
derivative of the third manipulation variable, i.e. of the following velocities:

• Angular velocity around z
• Linear velocity along x
• Linear velocity along y.

In fact, roll and pitch velocities are set independently, as described later, for aligning
the center of buoyancy over the center of mass, and the vertical velocity is used to
maintain the depth at a fixed distance from the bottom.

By applying directly the procedure in Sect. 3.3.3 to the whole 13 DOF UVMS,
the interesting effect is that the vehicle position is autonomously changed only when
it is needed, to increase the manipulability of the arm. In general, setting ṙ3 to zero
means that the vehicle is stationary. However, when the arm reaches the workspace
limit (due to for example slow position drifts), the position of the vehicle (task r3) is
modified by the TR process in order to avoid further reduction of the manipulability.

4.2.1.1 Application Example: The SAUVIM Recovery Task

Let’s examine in detail the application of the task reconstruction to the full 13 DOF
SAUVIM model described in Sect. 4.1.

Let our first manipulation variable r1 ≡ ∈3 be the cartesian position of the end-
effector w.r.t. the main frame 〈0〉. Its time derivative, expressed as a function of the
global quasivelocity vector p, is:

http://dx.doi.org/10.1007/978-3-642-54613-6_3
http://dx.doi.org/10.1007/978-3-642-54613-6_3
http://dx.doi.org/10.1007/978-3-642-54613-6_3
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ṙ1 = J1p (4.15)

where J1 ≡ ∈3 × 13 is Jacobian of the task r1.
In SAUVIM, the end-effector frame is defined w.r.t. the last link frame 〈8〉 by the

following transformation matrix:

8
ET =

⎡

⎣
⎣
⎤

1 0 0 0
0 1 0 0
0 0 1 0.414
0 0 0 1

⎦



 (4.16)

In other words, the frame 〈E〉 is obtained by simply translating the last link frame
〈8〉 of 0.414 m along the k axis. The generalized velocity of the origin OE of the
end-effector frame 〈E〉 w.r.t. the main frame 〈0〉 and projected on the end-effector
frame 〈E〉 can be expressed according to Eq. (2.154):

EẊE/0 = EJE/0 (OE) p (4.17)

with OE = [0 0 0
]T and p ≡ ∈13 being the quasi-velocity vector of SAUVIM. The

Jacobian EJE/0 (OE) can be easily computed from the Jacobian of frame 〈8〉 by using
Eq. (2.141):

8ẊOE/0 = φ (Oe)
8ẊE/0 =

⎡

⎣⎣
⎣⎣⎣⎣
⎤

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0.414 0 1 0 0

−0.414 0 0 0 1 0
0 0 0 0 0 1

⎦





8ẊE/0 (4.18)

and hence:
EJE/0 = 8JE/0 = φ (Oe)

8J8/0 (4.19)

being 8
ER = I.

The Jacobian J1 ≡ ∈3 × 13 of the first manipulation variable r1 is then made of
the last three rows of EJE/0:

J1 =
⎡

⎤
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎦

 EJE/0 (4.20)

Let now our second manipulation variable r2 ≡ ∈3 be the orientation of the end-
effector w.r.t. the main frame 〈0〉. Its time derivative, expressed as a function of the
global quasivelocity vector p, is:

ṙ2 = J2p (4.21)

http://dx.doi.org/10.1007/978-3-642-54613-6_2
http://dx.doi.org/10.1007/978-3-642-54613-6_2
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where J2 ≡ ∈3 × 13 is Jacobian of the task r2.
Following the same considerations for the first manipulation variable, the Jacobian

J2 ≡ ∈3 × 13 of the second manipulation variable r2 is made of the first three rows
of EJE/0:

J2 =
⎡

⎤
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎦

 EJE/0 (4.22)

Note that, as noted for Eq. (2.66), ṙ2 cannot be regarded as any exact differential. For
this reason the task r2 is only defined by its time derivative.

Finally, let our third manipulation variable r3 ≡ ∈3 be such as its time derivative
is represented by the two planar velocities of the vehicle and its angular velocity
around the vertical axis. They are identified as the components 4, 5 and 3 of the
global quasivelocity vector:

ṙ3 = J3p =
⎡

⎤
p4
p5
p3

⎦

 (4.23)

Hence:

J3 =
⎡

⎤
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0

⎦

 (4.24)

Even in this case, ṙ3 cannot be regarded as any exact differential (at least its third
component), and the task r3 is only defined by its time derivative.

Note that, while closing the kinematic loop, the hovering condition is achieved
by constantly setting the derivative of the third manipulation variable to zero:

ṙ3 = 0. (4.25)

4.2.1.2 Experimental Data from the SAUVIM Recovery Task

The procedure described in Sect. 4.2.1.1 has been implemented and tested with the
actual SAUVIM vehicle during a simulated recovery task. The experiment was car-
ried out in the ocean at Snug Harbor, Honolulu, Hawaii (Fig. 4.4). The target shown
in Fig. 4.5 was placed at a fixed underwater location. The experiment consisted in
the following phases:

1. Navigate the vehicle in proximity of the target.
The initial navigation was preformed manually, with the only goal of moving the
vehicle to the target area.

2. Place the vehicle in hovering just in front of the target.
The hovering configuration was chosen manually with the target at approxima-
tively 2 m from the SAUVIM nose. The goal was to have the dipole at the border of

http://dx.doi.org/10.1007/978-3-642-54613-6_2


4.2 Workspace Optimization with Task Reconstruction 89

Fig. 4.4 SAUVIM navigating the water surrounding the area of the University of Hawaii Marine
Center at Snug Harbor, Pier 45, Honolulu, Hawaii

Fig. 4.5 The visual-servoing target

the arm workspace, to allow the arm to reach a low manipulability configuration
while visual-servoing to it.

3. Extract the arm.
The arm was carrying the optical camera, capable of 6 DOF target pose detection.

4. Start sweeping in search of the target.
5. Engage visual servoing.

After a successful lock, the visual servoing controller of the arm was set to main-
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tain a fixed position and orientation of the end-effector w.r.t. the target, without
performing any actual work. The visual servoing controller was the full 13 DOF
kinematic controller described in Sect. 4.2.1.1.

In phase 5, the position of the target at the border of the workspace forced the
controller to stretch the arm toward a low manipulability configuration, as shown in
Fig. 4.6b.

Figure 4.7 show the measure of manipulability during the initial 50 s. In Fig. 4.7a,
the augmented Jacobian is defined as:

Ja =
⎡

⎤
J1
J2
J3

⎦

 (4.26)

with J1, J2 and J3 defined as in Eqs. (4.20), (4.22) and (4.24) respectively. It is
noticeable at t = 22 s the acquisition of a stable lock of the target and the engagement
of the visual servoing. As the arm reaches the target, the measure of manipulability
decreases until its minimum for t = 28 s. From there, the task reconstruction tries
to increase the manipulability by using the low 8 DOF (thrusters), which results
in bringing the vehicle closer to the target, hence restoring the manipulability to
acceptable values. This is also evidenced in Fig. 4.6c (a snapshot taken at t = 50 s),
where the arm is in a better (less ‘stretched’) configuration compared to t = 28 s
(Fig. 4.6b).

4.3 The SAUVIM Dynamic Control System

In the formulation of the workspace optimization we implicitly assumed that the
SAUVIM control system provides a velocity input for each of its 8 joints schema-
tized in Fig. 4.1. As shown in Sect. 3.1, the robotic arm electronic hardware already
implements a closed loop velocity control at the corresponding joint (joints 2 through
8 of our UVMS model).

Instead, the necessary velocity input of the 6 DOF joint 1 is implemented within
a dedicated dynamic controller, described in the following sections.

4.3.1 Vehicle Dynamics

In our study, the vehicle dynamics was modeled as described in Sect. 2.3. Here we
are considering only the dynamics of the vehicle, assuming that the manipulator,
during its operations, acts as a disturbance to the vehicle system. This is a rea-
sonable assumption since the manipulator mass is only 1/100 of the vehicle mass.
With this assumption, the Lagrange equation for the quasi-coordinates introduced in

http://dx.doi.org/10.1007/978-3-642-54613-6_3
http://dx.doi.org/10.1007/978-3-642-54613-6_2
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Fig. 4.6 SAUVIM configurations from experimental data results at a t = 17 s, b t = 28 s and
c t = 50 s



92 4 The SAUVIM Underwater Vehicle-Manipulator System

Fig. 4.7 Measure of manipu-
lability of a Jaugmented , b J1
(linear) and c J2 (angular),
from experimental data
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Eq. (2.190) becomes:
A (qs) ṗs + B (qs, ps) ps = μe (4.27)

where:

qs is the vehicle configuration vector:

qs = [q1,..., q6
]T = [ roll pitch yaw xcm ycm zcm

]T

with q1 through q6 defined in Eq. (4.1);
p is the system quasivelocity vector;

ps = [p1,..., p6
]T = [ cmωx

cmωy
cmωz

cmvx
cmvy

cmvz
]T

with p1 through p6 defined in Eq. (4.2);
A (qs) is the inertia matrix of the structure defined as in Eq. (2.180), and com-

prehensive of the added mass and added inertia;
B (qs, ps) is the is the matrix of Coriolis and centrifugal forces defined in Eq. (2.191)

(also comprehensive of the added mass and added inertia);
μe represents the projection in the space of the joint velocities (i.e. body

axis in our case) of the external generalized forces.

The external generalized force vector μe can be computed by recalling Eq. (2.169).
Let Js (qs, x) be the Jacobian of SAUVIM, such as:

ẊP = Js (qs, x) ps (4.28)

where ẊP is the generalized velocity (in the main frame) of the point P of coor-
dinates x (expressed in the center of mass frame 〈cm〉). With this assumption,
the projection in the space of the joint velocities of a generalized extern action
WP = [MPx MPy MPz FPx FPy FPz

]T applied on P of coordinates x is given by:

μP = JT
x (qs, x) WP (4.29)

With this formalism, the generalized restoring force acting on the vehicle is
given by:

μr = JT
s

(
qs,

cmxcb
)

⎡

⎣⎣⎣⎣
⎣⎣
⎤

0
0
0
0
0

Fb

⎦





+ JT
s (qs, 0)

⎡

⎣⎣⎣⎣
⎣⎣
⎤

0
0
0
0
0

g · mS

⎦





(4.30)

http://dx.doi.org/10.1007/978-3-642-54613-6_2
http://dx.doi.org/10.1007/978-3-642-54613-6_2
http://dx.doi.org/10.1007/978-3-642-54613-6_2
http://dx.doi.org/10.1007/978-3-642-54613-6_2
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where cmxcb are the coordinates of the center of buoyancy projected in the center of
mass frame 〈cm〉, g is the gravity acceleration, Fb is the resultant of the buoyancy
force (applied to the COB) and mS is the mass of SAUVIM.

In modeling our vehicle, since we consider the vehicle stationary in a hovering
configuration, the external action is composed by the restoring force, linear damping
actions and thruster forces. This leads to the final form of Eq. (4.27):

A (qs) ṗs + B (qs, ps) ps = D · ps + TCM · τ T + μr (4.31)

where D is a diagonal matrix associated with the linear damping term of the drag
force, τ T ≡ ∈8 is the thrust vector and TCM ≡ ∈6 × 8 is the thruster control matrix:

TCM =

⎡

⎣⎣⎣⎣
⎣⎣⎣⎣⎣⎣
⎤

0.7489 − cmy 1.537 + cmx 0 0 0 1
−0.7489 − cmy 1.537 + cmx 0 0 0 1
0.7489 − cmy 4.458 + cmx 0 0 0 1

−0.7489 − cmy 4.458 + cmx 0 0 0 1
0 −0.4826 − cmz −1.311 + cmy 1 0 0
0 −0.4826 − cmz 1.311 + cmy 1 0 0

0.2413 + cmz 0 −1.908 − cmx 0 1 0
0.2413 + cmz 0 −5.153 − cmx 0 1 0

⎦





T

(4.32)

In the above matrix cmx , cmy and cmz are the coordinates of the center of mass in
the SAUVIM frame 〈S〉, parallel to the center of mass frame 〈Cm〉 and translated to
the tip of the forward nose.

4.3.1.1 SAUVIM Dynamic Control

During a generic autonomous manipulation task the vehicle controller has the main
responsibility of maintaining the vehicle in the desired configuration. For example,
often the vehicle must be actively stabilized in a hovering configuration, while the
manipulator performs its task. Among the hydrodynamic effects acting on a rigid
body moving in a fluid, the restoring generalized forces (gravity plus buoyancy)
and the ocean current are of major concern in designing a motion controller for
intervention AUVs. In literature, several works [1–6] have been presented assessing
the problem of 6 DOF control of AUVs. The effectiveness of the above works in
compensating for the persistent dynamic effects, e.g., the restoring forces and the
ocean current, was analyzed in [7].

The full 6 DOF SAUVIM control system was implemented using the control loop
scheme introduced in Sect. 3.1.1, and illustrated in Fig. 3.2. In this case, the block
named Robot HW Controller represents the dynamic control system of SAUVIM
with generalized velocity input. It was implemented by using the standard computed
torque controller.

Let’s first define the auxiliary control input as:

http://dx.doi.org/10.1007/978-3-642-54613-6_3
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aci = ṗs−des + Kv (ps−des − ps) + Kp (qs−des − qs) (4.33)

where:

ṗs−des is the desired derivative of the quasivelocity vector (angular and linear accel-
eration s)

ps−des is the desired quasivelocity vector
qs−des is the desired configuration vector

Kv is the derivative matrix gain
Kp is the proportional matrix gain.

The computed torque, from Eq. (4.31), becomes:

τ c = TCM · τ T = A · aci + B · ps − D · ps − μr (4.34)

By substituting Eq. (4.34) into Eq. (4.31) we can compute the dynamics of the error:

ṗs − ṗs−des + Kv (ps−des − ps) + Kp (qs−des − qs) = 0 (4.35)

Note that, in general, in all the case where p = q̇ (for example in case of 1 DOF
rotational joints), Eq. (4.35) describes a second order stable dynamics, with real
eigenvalues (the eigenvalues of Kp and Kv).

The SAUVIM kinematic controller is then derived by Eqs. (4.33) and (4.34) by
simply putting qs−des − qs = 0 and computing ṗs−des by numerical derivation of
ps−des. This operation makes Eq. (4.35) stable even if p �= q̇, which is the case being
here considered.

4.4 Identification of Dynamic Parameters

As it appears evident within its formulation, the computed torque controller needs
the knowledge of the system dynamic parameters. In particular we need:

• Mass
• Center of Mass location
• Inertia tensor
• Center of buoyancy
• Added mass.

In general, one of the main problems is the lack of knowledge of the restoring-
related dynamic parameters, especially in case of heavy vehicles. The location of
the center of buoyancy (COB) with respect to the center of mass (COM) plays a
fundamental role in the performance of the dynamic control. The importance of its
knowledge is also related to the problem of power optimization, since very often a
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working orientation of the vehicle does not have strict constrains, being the manipu-
lator more capable of realizing specific orientations than the vehicle. Thus a working
vehicle orientation could be simply chosen as the one which aligns the COB above
the COM, minimizing the power requirement for maintaining the vehicle in hovering.

In SAUVIM we have developed a methodology for identifying the relative position
of the COB with respect to the center of mass. This approach is based on the use of
an Extended Kalman Filter (EKF), and being suitable of real-time implementation,
it responds to any change in the vehicle configuration (i.e. ballast operations or
manipulator dynamics).

This algorithm was successfully tested first in a simulation environment and then
on the actual vehicle with the model-based dynamic control presented in Sect. 4.3.1.1.

4.4.1 COB Identification with Extended Kalman Filter

The state space model of our Extended Kalman Filter must contains information
on the vehicle dynamics. Equation (4.31) describes the evolution of the generalized
position, velocity and acceleration of the vehicle through time. It can be solved with
respect to the derivative of the quasi-velocity vector as:

ṗ = A (q)−1 (−B (q, p) p + D · p + TCM · τ + μr) (4.36)

The space equations of the EKF are then augmented with 4 more equations,
describing the evolution of the three coordinates of the center of buoyancy and the
buoyancy force. Since the ballast movements are much slower than the dynamics of
the vehicle, their evolution is simply given by (see Eq. 4.30):

{ cmẋcb = 0
Ḟb = 0

(4.37)

We also need to add the evolution of the generalized position of the vehicle. This
is easily done by integrating the derivative of the rotation matrix 0

cm Ṙ of the center
of mass frame 〈cm〉 w.r.t. the main frame 〈0〉:

0
cm Ṙ = 0

cm R

⎡

⎤
0 −p3 p2
p3 0 −p1

−p2 p1 0

⎦

 (4.38)

and the linear velocity of the center of mass 0ẋcm = [ ẋcm ẏcm żcm
]T projected in the

main frame 〈0〉:
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0ẋcm = 0
cm R

⎡

⎤
p4
p5
p6

⎦

 (4.39)

where we assumed that ps = [p1 p2 p3 p4 p5 p6
]T .

4.4.1.1 Process Equations

The complete non-linear process can be described by joining together Eqs. (4.36),
(4.37), (4.38) and (4.39), and adding the appropriate noise.

In the formulation of the vehicle dynamic model (4.31) we have implicitly
assumed that the center of mass is fixed w.r.t. the vehicle body. This may not be
necessarily true, especially during ballast operations, and its variation (despite small)
may affect the computation of the inertia tensor and the thruster control matrix TCM.
This issue, together with the fact that several dynamic parameters are known approx-
imatively, is considered in our formulation by introducing appropriate noise terms
wi to the following variables:

• Total mass:
m̄t = mt + wmt (4.40)

• Total inertia tensor:

Īt = It +
⎡

⎤
wi11 wi12 wi13
wi12 wi22 wi23
wi13 wi23 wi33

⎦

 (4.41)

• Location of the center of mass Sxcm projected in the main SAUVIM frame 〈S〉 (for
the computation of the TCM):

S x̄cm = Sxcm + [wcmx, wcmy, wcmz
]T (4.42)

• Thrust vector (considering that our vehicle has 8 thrusters):

τ̄ = τ + [wt1, ..., wt8]T (4.43)

• Damping coefficients (with kd an estimated constant):

D̄ = diag (kd + wkd) (4.44)

With these assumptions, after discretizing the system Eqs. (4.36) and (4.37), the
non-linear stochastic difference equation of the extended Kalman filter becomes:
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xk =

⎡

⎣⎣⎣⎣
⎤

pk

(cmxcb)k
(Fb)k(

0
cm R
)

k(
0xcm
)

k

⎦




=

⎡

⎣
⎣⎣⎣⎣⎣
⎣⎣⎣
⎤

pk−1 + Ā
−1 (−B̄pk−1 + D̄pk−1 + ¯TCMτ̄ + μr

)
ΔT

(cmxcb)k−1 + (wcb)k−1
(Fb)k−1 + (wFb)k−1

(
0

cm R
)

k−1 + ( 0
cm R
)

k−1

⎡

⎤
0 −p3 p2
p3 0 −p1

−p2 p1 0

⎦



k−1

ΔT

(
0xcm
)

k−1 + ( 0
cm R
)

k−1

⎧[
p4 p5 p6

]T⎨

k−1
ΔT

⎦






(4.45)

where ΔT is the sample time. Note that many noise variables are encapsulated
within Ā, B̄, ¯TCM and τ̄ . The last, vector of the thrust forces, is the process input.
The dimension on the state vector is thus 22.

4.4.1.2 Measurement Equations

As mentioned in Sect. 1.2, the SAUVIM navigation sensor system includes a Photonic
Inertial Navigation System (PHINS) unit from IXSEA (Fig. 4.8). This INS unit
produces a full set of position, orientation, linear and angular velocities, linear and
angular accelerations. Its high accuracy of inertial measurement capability is based
on Fiber Optic Gyroscope technology and an embedded digital signal processor that
runs an Extended Kalman Filter (EKF). In order to improve the accuracy of the
vehicle position, further measurement inputs are provided to the EKF of the PHINS
by a set of external sensors: a differential GPS, a Doppler Velocity Log (DVL) and
the classical depth sensor. The outputs of the PHINS are the following:

0
Ph T generalized position of the PHINS w.r.t. the main frame 〈0〉;
0vPh linear velocity of the PHINS projected on the main frame 〈0〉;

PhωPh angular velocity of the PHINS projected on the PHINS frame 〈Ph〉;
PhaPh linear acceleration the PHINS projected on the PHINS frame 〈Ph〉;

The above outputs represent the measurement inputs of our SAUVIM EKF. The
measurement equations are more complex than the process evolution: this is due
to the fact that the PHINS is physically mounted with an offset, transitional and
rotational, w.r.t. the center of mass (see Fig. 4.9).

In order to integrate them in the EKF it is necessary to express the quasi-velocity
vector and its derivative in term of the PHINS outputs.

The transformation matrix 0
Ph T of the PHINS frame w.r.t. the main frame can be

easily expressed as follows:
0

Ph T = 0
cm T · cm

PhT (4.46)

http://dx.doi.org/10.1007/978-3-642-54613-6_1
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Fig. 4.8 The Photonic Inertial Navigation System PHINS (courtesy by IXSEA)
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< Ph >

< cm >

< 0 >

cmT

Fig. 4.9 Placement of the INS in SAUVIM

which is a function of the transformation matrix of the center of mass, the state
variables 0

cm R, 0xcm and of the known generalized offset cm
PhT (see Fig. 4.9). The

reorganization of the transformation matrix 0
Ph T into a 12 element vector represents

the first set of measurement equations.
The linear velocity of the PHINS, projected on the main frame 〈0〉, can be com-

puted from the quasi-velocity vectors making use of the linear part of the Jacobian
(i.e. the bottom-half of the matrix) of Eq. (4.28):

0vPh = 0JLin (qs, rPh) ps (4.47)
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where rPh is the location of the origin PHINS frame 〈Ph〉 w.r.t. the main frame 〈0〉.
The angular velocity of the PHINS, projected on the PHINS frame 〈P〉, is simply

given by:
PhωPh = Ph

cmR · cmωcm = Ph
cmR
[

p1 p2 p3
]T (4.48)

Finally, it is necessary to express the linear acceleration of the PHINS in terms of
derivative of the quasivelocity vector. This can be done by considering the relationship
between the derivative of the configuration vector qs and the quasi-velocity ps:

d

dt

⎩
dqs

dt

)
= d

dt
(Vps) = dV

dt
ps + V

dps

dt

=
(

6∑

i=1

∂V
∂qi

[
Vps
]

i

)

ps + V
dps

dt
(4.49)

where V (qs) is the transformation matrix between the ps space and the q̇s space,
such as q̇s = Vps (see Eq. 2.192).

The last three elements of the vector (4.49) represent the linear acceleration 0acm

of the center of mass projected on the main frame 〈0〉. This is related to the linear
acceleration 0aPh of the PHINS frame, projected on the main frame, by the following
relation:

0aPh = 0acm + 0vcm × 0rPh + 0
cm R
[

ṗ1 ṗ2 ṗ3
]T × 0rPh (4.50)

where the operator × is used to represent the cross product between two vectors.
The linear acceleration (4.50) must be finally projected to the PHINS frame 〈Ph〉:

PhaPh = Ph
0 R0aPh (4.51)

Note that the quantity dps
dt can be easily computed from the first 6 state Eq. (4.36).

Finally, combining together Eqs. (4.46), (4.47), (4.48) and (4.50) we obtain a set
of 21 equations which represent the measurement equations of the extended Kalman
filter:

zk =

⎡

⎣⎣⎣⎣
⎤

(
Ph
0 T1..3

)
k + νTk

(
0vPh
)

k + νvk
(

PhωPh
)

k + νωk
(

PhaPh
)

k + νak

⎦




(4.52)

The vectors νTk , νvk , νωk and νak represent the measure noise, associated with the
PHINS unit and comprehensive of the uncertainty of the location of the center of
mass w.r.t. the PHINS unit (the generalized offset cm

PhT in Eq. 4.46).

http://dx.doi.org/10.1007/978-3-642-54613-6_2
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4.4.2 Optimal Configuration for Hovering

The importance of the knowledge of the center of buoyancy is also related to the prob-
lem of power optimization. During an autonomous manipulation task, the working
orientation of the vehicle does not have strict constraints, being the manipulator
more capable of realizing specific orientations than the vehicle. Thus a working
vehicle orientation could be simply chosen as the one that aligns the COB above the
COM, minimizing the power requirement for maintaining the vehicle in hovering.
The equilibrium target rotation is thus computed with the following considerations.

Let the rotation matrix of the equilibrium configuration be:

0
eR = [ 0ie 0je

0ke
]

(4.53)

To reach our goal, the axis 0ke is chosen to be parallel to the COM-COB segment:

0ke =
0xcb∣∣0xcb
∣∣ (4.54)

The axis 0ie is instead chosen as the orthogonal to the plane formed by 0ke and the
axis
[

0 1 0
]T :

0ie =
[

0 1 0
]T × 0ke∣∣∣

[
0 1 0
]T × 0ke

∣∣∣
(4.55)

Finally, the 0je axis is simply computed as the cross product:

0je = 0ke × 0ie (4.56)

The matrix (4.53) is then transformed in roll, pitch and yaw angles and the first two
replace the target values of the navigation controller.

4.4.3 Implementation

The complex nature of the EKF described above is the main obstacle to its practical
implementation. In SAUVIM, this was overcomed by first creating a set of automated
tools for code generation. The computation of the partial derivatives of Eqs. (4.45)
and (4.52), necessary for the implementation of the extended Kalman filter, was done
using symbolic computation packages. The symbolic processor was then used for
generating the 5,000+ lines of C++ code necessary to import the EKF in our hardware
system.
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Fig. 4.10 Output of the EKF during random navigation over 70 s. a x-coordinate of the center of
buoyancy, b y-coordinate of the center of buoyancy, c z-coordinate of the center of buoyancy

Despite the complexity and length, with the optimization introduced by the code
generation process, the release version of the EKF runs at the sampling rate of about
50 ms, hence perfectly suitable to an online implementation in the vast majority of
navigation controllers.

4.4.4 Simulation Results

The initial results of the EKF for COB identification have been validated using the
SAUVIM simulator. The simulator implements the Lagrange equation for quasi-
coordinates (4.31), inclusive of the drag, restoring force and added mass.
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Fig. 4.11 SAUVIM during hovering

The first simulation consisted in performing simple open-loop oscillations around
the three center of mass axis, in order to assess the performance of the EKF. Results are
shown in Fig. 4.10. Here, the three coordinates of the center of buoyancy successfully
converge toward the values of the model (x = −10 mm, y = −5 mm and z =
200 mm). The accuracy, in this case, is in the order of fraction of a millimeter.

4.4.5 Experimental Results

The feasibility of the EKF for COB identification was experimentally confirmed with
the SAUVIM vehicle. In this case the vehicle is set to maintain a hovering position in
shallow water, with the roll and pitch that were chosen such that the COB is aligned
over the COM. Figure 4.11 is a snapshot taken during the experiment with a remotely
operated underwater camera, showing the bottom frame of SAUVIM hovering above
its docking platform (the metallic structure at the bottom of Fig. 4.11).

In this experiment the dynamic vehicle controller is the one presented in Sect. 4.3.
Figure 4.12a and b show the outputs of the EKF for the x and y coordinates.

During this experiment, the COB location was moved at t = 10 s, by filling the
front ballast and emptying the rear one of approximately the same mass of water,
while the global buoyancy was set to neutral. The location of the COB is visibly
shifted forward along x, while it is almost unchanged along y. As seen in Fig. 4.13,
the forward drift of the center of buoyancy created a large restoring torque that the
position controller tried to compensate for by increasing the thrust action. After the
Kalman filter converged toward the new estimate of the COB, the global module of
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Fig. 4.12 Output of the EKF during hovering
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Fig. 4.13 Module of the thrust vector during hovering

the thrust vector successively converged toward zero, thus confirming that the newly
computed working pitch angle was such that the COB was perfectly aligned over
the COM. Figure 4.14 shows the change in roll and pitch introduced by the position
controller and computed as explained in Sect. 4.4.2.

In order to compute the estimate of thruster force we used an approach based on
simultaneous measurement of voltage, current and velocity, as described in [8].
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Fig. 4.14 Roll and pitch angles of SAUVIM during hovering

Note that, with this vehicle, even a small fraction of degree in the target orien-
tation would generate a compensation thrust of several kilograms, given the mass
of 3,660 kg and 90 mm of distance between the COB and COM of the vehicle. This
is clearly confirmed by the previous plots, where a shift of about 3 mm of the x
coordinate of the COB generated about 70 newtons of total force in the thrusters for
compensating for the restoring force.
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Chapter 5
Target Localization

This Chapter focuses on the methodology for locating the underwater target, driving
the vehicle toward it and performing autonomous manipulation. Our approach inves-
tigates the feasibility of medium-range target identification using the DIDSON sonar,
which was demonstrated during one of the first experiments that used the DIDSON
for autonomous real-time target detection. Current results represent an important pas-
sage toward the development of a higher level of autonomy for intervention AUVs,
providing advanced engineering solution to many new underwater tasks and appli-
cations that the fly-by type AUVs have not been able to handle.

5.1 Target Identification and Localization

One of the most difficult aspects of autonomous intervention missions is the identifi-
cation and localization of the target. The localization subsystem for the autonomous
manipulation of SAUVIM, employs different technologies (acoustical and optical) to
guarantee a suitable, range dependent level of reliability, precision and accuracy. The
SAUVIM system relies on three main sensing methods in order to acquire reliable
data. As shown in Fig. 5.1, different sensor technologies were used, depending on
the required range and accuracy.

For long range distance (over 30 m), SAUVIM utilizes the 375 kHz image sonars
for searching an object and directing the vehicle toward the target zone.

For mid-range distance (2–40 m), the DIDSON sonar (Fig. 5.2) is used for a more
accurate recognition and localization of the target. This is the phase where the vehicle
has to position itself to have the target confined within the manipulation workspace.

Finally, when the target is within the manipulator workspace, short range and
high accuracy sensors are used to perform the actual intervention task. This goal
is achieved with the combined use of underwater video cameras and an ultrasonic
motion tracker to retrieve the real-time six DOF position of the target during the
manipulation tasks as reported in the literature [1] and [2].

G. Marani and J. Yuh, Introduction to Autonomous Manipulation, 107
Springer Tracts in Advanced Robotics 102, DOI: 10.1007/978-3-642-54613-6_5,
© Springer-Verlag Berlin Heidelberg 2014
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Fig. 5.1 The phases involved in a search for the target

Fig. 5.2 The DIDSON sonar (courtesy Sound Metrics Corp.)

A related work was presented in [3]. However, they assumed a structured envi-
ronment and used self-similar landmarks (SSL, see [4]) as a robust, color, scale, and
rotational invariant means of target identification from which the information could
be used to guide an AUV for short-range homing and docking operations.
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5.2 Mid-Range Object Identification with DIDSON Sonar

The DIDSON (Dual frequency IDentification SONar, Fig. 5.2) is a sonar with
acoustic lenses, which operates at two frequencies, 1 and 1.8 MHz, with an oper-
ative range up to 40 m [5]. The medium range target localization using the DIDSON
sonar is still a challenging task under development. Few works have been presented
in literature on target identification and localization with the DIDSON. A prelimi-
nary study on target identification was presented in [6, 7], while a possible use of
the DIDSON imagery for SLAM was investigated in [8].

The display method of the DIDSON sonar differs substantially from the optical
camera. In general, a point in the space can be expressed in either Cartesian or
spherical coordinates, (x, y, z) and (ρ, θ,ϕ) respectively. Indicating with Φ = π

2 −ϕ
the elevation, the two coordinate systems are related by (Fig. 5.3):




x
y
z

⎡

⎣ =



ρ cos (Φ) cos (θ)
ρ cos (Φ) sin (θ)

ρ sin (Φ)

⎡

⎣ (5.1)

The image in optical cameras follows projective geometry principles, and any point
along the ray going through the optical center projects to the same image point. A
generic 3D point (x, y, z) maps to the point (xc, yc) of the camera image and the
information about the distance from the camera origin is lost.

The DIDSON, instead, records the acoustic refractance from an azimuth direction
θ with a range measurement ρ. Hence, the generic 3D point in spherical coordi-
nates (ρ, θ,ϕ) maps to the 2D point (ρd , θd). In this case, the information ϕ is lost.
In every vertical plane passing through the center of the DIDSON, a point in the
space at the same distance from the origin maps to the same point in the image plane.

In other terms, the relationship between the 3D Cartesian space and the 2D DID-
SON image is given by solving Eq. (5.1):

⎤
ρd

θd

⎦
=
⎤√

x2 + y2 + z2

arctan (y, x)

⎦
(5.2)

where (x, y, z) are the Cartesian coordinates of a generic point in 3D space and
(ρd , θd) are the coordinate in the 2D DIDSON image. Another geometrical interpre-
tation of Eq. (5.2) is given in [6]. In our experiment, the target was set as the platform
in Fig. 5.4. The raw polar image acquired by the DIDSON is shown in Fig. 5.5a.
Sometime it is preferable to display the image in terms of rectangular coordinates:

(xs, ys) = (ρd sin θd , ρd cos θd) (5.3)

Figure 5.5b shows the same image of Fig. 5.5a after the transformation in rectan-
gular coordinates.
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Fig. 5.3 Schematic representation of the DIDSON field of view

Fig. 5.4 The target in our search (dimensions are here given in feet)

Since the acquired image is extremely noisy, a feature extraction employing stan-
dard techniques like edge detection is rather problematic. In order to maximize the
signal-noise ratio, we used a multi-dimensional matching filter to estimate the posi-
tion of the target in the acquired image. The target identification and localization
process is performed by iterating the steps described in the following sections.

5.2.1 Model Building

This phase involves the creation of the model of the target, as ideally seen from the
DIDSON. Supposed that the generalized relative position (orientation and transla-
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Fig. 5.5 Images from the DIDSON of the target platform, and relative computed model. a The
target in raw polar coordinates, b The target in rectangular coordinates, c The generated model
image in Cartesian space
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tion) of the target frame w.r.t. the DIDSON is known, the model can be built using
simple ray-tracing techniques, with maximum reflectivity (white) in correspondence
of the surface and zero (grey) outside, with a shadow (black) area of few pixels added
around the contour. Figure 5.5c shows an example model of the target, computed for
the particular relative positions of the vehicle and platform for the observation shown
in Fig. 5.5b. Also, since the shape of the generated model depends (even if slightly)
on the position of the target with respect to the DIDSON, it is assumed that at the
initial step the target is located at the center of its viewing area. As described below,
the overall procedure of model building has to be refreshed in real-time with the
updated vehicle positions.

5.2.2 Image Acquisition and Filtering

The DIDSON image is being captured and processed via OpenCV [9], in order
to reduce some amount of noise. This is accomplished by a convolution with the
Gaussian kernel.

5.2.3 Matched Filter

The model built from the previous step is searched within the processed DIDSON
image using a matched filter. The latter is the optimal linear filter for maximizing
the signal to noise ratio (SNR) in the presence of additive stochastic noise. Its high
rejection to the noise makes it well suitable to operate with the noisy DIDSON
image. Design of multidimensional matched filters was discussed, for example, in
[10]. Similarly to the 1-D case, the multidimensional matched filter impulse response
is found to be identical with the reflected and delayed multidimensional input signal,
and is the classical problem of maximizing the SNR.

The matching filtering is the most time consuming step of the entire process. It is
performed using the Intel Math Kernel Library [11], a highly optimized, extensively
threaded math routines for scientific, engineering, and financial applications that
require maximum performance.

Since the target is a submerged platform in a fixed-Earth position, we assumed
to have a-priori knowledge about its orientation with respect to the Earth. With this
hypothesis, the filtering operation involves a bi-dimensional convolution:

C (i, j) =
Ma−1∑

m=0

Na−1∑

n=0

A (m, n) B (i − m, j − n)

0 ≤ i ≤ Ma + Mb − 1
0 ≤ j ≤ Na + Nb − 1

(5.4)
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Table 5.1 Benchmarks of the matching filter

Dimension Image size Model size Time (s)

2 512×96 64×120 0.67
2 512×48 162×110 1.50
3 512×96 64×120 9.00

where A and B are, respectively, the acquired image and the generated image of the
target (the model); M and N are the numbers of rows and columns, respectively;
and C (i, j) is the resulting convolutions. Both the sonar and the model images used
in the convolution are mapped in Cartesian coordinates using Eq. (5.3), since in this
representation the model size and shape are less dependent on the distance from the
sonar.

For a polar image of 512×48 pixels (DIDSON in low-frequency mode) and a
model of 162×110, the computation time was about 1500 m s, on an Intel Pentium-M
1.8 GHz architecture entirely dedicated to execute this algorithm only. This computa-
tion time was sufficient to perform an on-line search of the platform during a vehicle
sweep. A video of this search experiment is archived on the SAUVIM web site1

(SD029).
We also tested the case when the orientation of the platform is unknown, by

adding another dimension to the convolution. The use of the MKL made it possible
to perform this operation in about 9 s. Table 5.1 shows a summary of some of our
benchmarks. While the computation times of the bi-dimensional cases (at different
DIDSON resolutions) are acceptable to perform online searches (see previously cited
video), a matching filter in three dimensions is a bit too heavy for the actual hardware
platform. However, it can be considered for off-line algorithms or slow-moving scans.

5.2.4 Localization and Iteration

If a match of the model is found in the current sonar image, the actual location of
the target can be computed using the following iterative procedure. Indicating 0

S T k
the transformation matrix of the vehicle frame 〈S≡ w.r.t. the main frame 〈0≡ and
S
D T k the transformation matrix of the DIDSON frame 〈D≡ w.r.t. the vehicle frame,
the Cartesian position of the platform at the generic iteration k in the main frame is
computed as: 




0x pk
0 ypk
0z pk

1

⎡


⎣ = 0

S T k
S
D T k






xck

yck
Dzk−1

1

⎡


⎣ (5.5)

1 http://gmarani.org/sauvim

http://gmarani.org/sauvim
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where xck and yck are the coordinates of the location of the model in the sonar image
resulting from the convolution process of Eq. (5.4) and Dzk−1 is computed from:


⎧⎧⎧⎧⎨

⎧⎧⎧⎧⎩

Dzk = 0 k = 0




Dx pk
D ypk
Dz pk

1

⎡


⎣ = D

S T k+1
S
0 T k+1






0x pk
0 ypk
0z pk

1

⎡


⎣ k > 0

(5.6)

Note that, for k = 0, the initial location of the target is being approximate as if it lies
on the plane identified by the axis xd and yd of the DIDSON (Fig. 5.3). Instead, for
any subsequent instant in time, the new location of the target is computed by using
the projection of the target elevation 0z p, computed at the previous time step, on the
DIDSON frame.

The generic transformation matrix of the target frame 〈P≡ at the generic instant
k can be now built by combining together the known parameters (Euler angles) and
the computed coordinates:

0
P T k =






0x pk
0
P R
(
φp, θp,ψp

)
0 ypk
0z pk

0 0 0 1

⎡


⎣ (5.7)

where
(
φp, θp,ψp

)
are respectively the roll, pitch and yaw angles of the platform

frame 〈P≡, which are known a-priori. This information can be available in case of
search for Earth-fixed and known objects. The transformation matrix 0

P T k is then
used back in the first step (A, Model Building) to compute a new model of the target,
and to be used in a new convolution process. By performing, during the iterations,
some movements around the target (maintaining it confined within the field of view
of the DIDSON), Eq. (5.5) converges toward the absolute Cartesian position of the
platform (including the unknown elevation).

The result of the matched filter in presence of the target platform is given in
Fig. 5.6. The higher peak corresponds to the location of the platform. This location is
given in term of 2D coordinates of the DIDSON image. Considering the size of the
DIDSON image 48×512 pixels (in low frequency), the size of the area of the block
associated to a single pixel at a distance of 10 m is approximately 0.1×0.02 m.
This can be computed with simple geometrical considerations in Fig. 5.3. The
actual uncertainty associated with the computed location of the peak is closely
related to this limit. Also, results are subject to the quality of the DIDON image.
In our attempts, the output of the DIDSON was consistently clear and similar to the
one shown in Fig. 5.5, regardless of the condition of the surface of the platform (sand,
dirt, etc.).

In order to practically quantify the standard deviation of the position error we
repeated several times a pre-defined experiment. For each time, the vehicle was
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Fig. 5.6 3-dimensional plot of the convolution result

positioned in the same hovering configuration above the platform. In this experiment,
the relative Cartesian coordinates of the platform with respect to the vehicle were
given by Eq. (5.5), with xck and yck computed using DIDSON imagery taken at a
distance of 10 m from the target. The bottom facing video camera of SAUVIM was
sending back images of a known dimension feature, shown in Fig. 5.7, where the
reference red line is 75 mm in length.

Figure 5.7 shows two different final configurations, with only a small difference
in the final hovering positions. Considering that the navigation from the area where
the DIDSON images were taken to the hovering configuration was done in dead
reckoning (thus introducing some extra errors), this experiment confirms an excellent
repeatability and, with the successive trials, the global standard deviation of the
position error in the order of a few centimeters.

Finally, this information is made available to the whole system including the
navigation controller and the main graphical interface (SAUVIM Explorer) located in
the ground mission control environment. Figure 5.8 depicts a snapshot of the mission
interface during a search test of the submerged platform. The red rectangle is the
result, in real time, of the iteration process. For the SAUVIM missions, the platform
represents a submerged docking area of the vehicle, and the precise knowledge of
its location is fundamental to the autonomous landing procedure.

The SAUVIM Explorer interface also shows the map of the DIDSON image
overlapped to the terrain profile. In case of general imagery, since the DIDSON does
not disambiguate the elevation of the target, this operation may lead to approximate
results (see also the discussion in [12]). In our case, since we acquire elevation maps
of the seafloor with other sensors, the sonar image can unambiguously be mapped
to the Cartesian space.
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Fig. 5.7 Repeatability of the platform approaching based on the position measurement with the
matching filter. The red mark is 7.5 cm in length

5.3 Underwater Short-Range Target Localization

At the final stage, when the target is confined within the arm workspace, the localiza-
tion must be computed with the accuracy necessary to perform the task, for example
within a millimeter in case of plugging a connector.

Some sensors, for example video processing and laser or ultrasonic 3D scanners,
provide an absolute measurement, even if usually at a low sampling rate and high
computational cost. Video processing, however, may present some drawbacks in
the ocean depths. The need of a constant light source during the manipulation task
may considerably degrade the autonomy of the vehicle. Moreover, the poor visibility
in some environments could introduce difficulties in the target detection/recognition
process. On the other hand, motion trackers can provide reliable and high sample rate
information, but the measurement is relative to the position of the tracking probe. This
means that the system must know exactly the relative, generalized position (rotation
and orientation) of the probe with respect to the target. However, the sensor probe
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Fig. 5.8 The Sauvim Explorer mission control interface

application/localization has to be done only once and can be achieved substantially
in one of the following ways:

• Operator assisted. In the case of having a sufficiently reliable link, the application
of the sensor probe to the target can be executed by the operator using teleop-
eration and/or teleprogramming mode [13–15]. This is sometime referred as a
semi-autonomous modality of execution of the task.

• Autonomous mode. The target localization and sensor probe application are exe-
cuted in fully autonomous mode with the aid of the above mentioned absolute
measurement 3D sensors (camera, scanners, etc.).

After this phase, the manipulation task can be executed using only the information
of the motion tracker. The motion tracker-aided manipulation is conceptually similar
to the use of a passive arm measurement devices. The main advantage of the motion
tracker is the absence of a mechanical link between the target and the AUV, as it uses
a simple wire or wireless sensors.

The commercially available motion trackers are mostly developed for virtual
reality purposes (for instance in capturing the body movements) or medical use
(i.e. for tracking the position of probes).

To validate the feasibility of the ultrasonic tracking during autonomous manipu-
lation, a commercial unit developed for air was modified to work with the robotic
manipulator of SAUVIM. This experiment consisted of pouring the content of a test-
tube into a container. The system (test-tube seat and container, Fig. 5.9) was prepared
with a moving base, whose position and orientation were tracked by the ultrasonic
sensor. In Figure 5.9, the little white triangle on the back of the moving base is
the ultrasonic tracking sensor. The control software knows the relative generalized
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Fig. 5.9 Manipulation with
moving target using the ultra-
sonic tracker

(6 DOF) position of the various objects with respect to the application coordinates,
which is sufficient for executing the task.

An underwater version of the 6 DOF tracker was under study, and a prelimi-
nary work was presented in [2]. In order to cope with the precision requirements
of a generic autonomous underwater manipulation task, it is expected to have the
sub-millimeter accuracy, as proven in the preliminary experiments. The underwater
tracking technology can also be used in different situations, for example in vehicle
docking/undocking procedures [16].
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Fig. 5.10 Schematic representation of the arm workcell with camera and target

5.3.1 Localization Using Video Processing

Pose estimation using computer vision is a vast and well established topic. Within
SAUVIM, the goal was only to provide the simplest solution for accomplishing the
underwater tasks, most importantly enabling workspace optimization introduced in
Sect. 4.2.

This goal is achieved using a video camera located on the wrist of the manipulator
and a dedicated video processing system [1]. In our task, the target is the dipole as
shown in Fig. 4.5. The two spheres composing the dipole are of known diameter and,
because its geometrical configuration, it is possible to determine the exact position
and orientation with only one camera.

In Fig. 5.10, a sphere is represented schematically with the associated frame 〈t≡.
The transformation matrix 0

t T of the target frame 〈t≡ with respect to the base frame
〈0≡ is given by:

0
t T = 0

c T c
t T (5.8)

where 0
c T is the transformation matrix of the camera frame 〈c≡ with respect to the

base frame 〈0≡ and c
t T is the transformation matrix of the target frame 〈t≡ with

respect to the camera. The placement of the camera 0
c T is easily computed using

the joint position information of the arm and the relative position of the camera with
respect to the joint on which it is mechanically mounted. This relative position could
be precisely computed using a set of predefined movement of the joint hosting the
camera along the main axes.

The placement of each sphere location c
t T with respect to the camera is obtained

using video processing of the acquired image. As a matter of fact, the problem may
be seen as a 2D localization of a circle within the acquired image. Upon camera
calibration, the Cartesian 3D position (xs, ys, zs) of the center of the sphere in the
space may be easily computed from the center and the diameter of the 2D circle,

http://dx.doi.org/10.1007/978-3-642-54613-6_4
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Fig. 5.11 Result of video processing: the circle extraction

using the following relationships:

zs = Kz
rs
rp

xs = Kx zs
(
x p − x p0

)

ys = Kyzs
(
yp − yp0

)
(5.9)

where rs is the actual radius of the sphere, rp is the measured radius in pixels, x p and
yp are the position of the center of the circle within the acquired image (in pixels),
x p0 and yp0 are a translation factor depending on the size of the image (in pixels).

The constants Kz , Kx and Ky are the calibration parameters and depend mainly
on the focal length of the camera and the physical dimension of the pixels. Their
values are computed directly in the water, with the aid of the robotic arm that makes
possible the acquisition of a fixed optical pattern from different angles and distances.

The localization of the circle within the image is done using the following sequence
of steps:

• Image filtering
• Edge extraction using Canny filter applied to the color image and using the color

contrast gradient
• Fast Circle extraction using the line segments found in digital images [17].

This combination of algorithms showed the best performance and robustness with
respect to false or missed detections in an underwater environment. Figure 5.11 shows
the result of the above sequence of steps applied to a single frame. In our actual
implementation, the system is capable of processing about 10 frames per second,
which is sufficiently high enough to lock and follow the target when the target moves.
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Fig. 5.12 Underwater scenes of the cutting operation

5.3.2 The Cable-Cutting Demo

To examine the effectiveness of the solution presented in Sect. 5.3.1, we considered an
underwater mission of locating and cutting a cable by using a special tool integrated
with the gripper. The cable passes through a sphere of 10 cm in diameter, which
simplifies its localization in the space, and its one end attaches to a floating device.
Figure 5.12 shows few snapshots of the operation. The mission was carried out by
performing the following tasks in sequence:

• Navigate to the target site.
• Extract the arm and perform a visual scan of the surrounding space, using the

attached camera.
• During the scan, try to locate the target (Fig. 5.11).
• Once the target is detected, the arm enters into a tracking state, in order to place the

gripper to a constant relative position with respect to the sphere by visual servoing.
• After the tracking system detects no movements of the target for a sufficient amount

of time, the arm initiates the cutting task (Fig. 5.12), which is performed in about
2 s with the aid of a special cutting tool integrated into the gripper. During the time
frame of the cutting operation, a small movement of the target with respect to the
arm may still be corrected using the video feedback.

The only required human intervention is the decision on when to start the visual
scan. Once the vehicle reaches the target site, the supervisor confirms that the target
is the correct one and then decides to start the autonomous operation. If any error
occurs during the above autonomous steps (for example no target was detected during
the scan), the arm returns in its initial parking position and the mission is aborted. A
mission log allows the operator to verify later the cause of the failure.
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Chapter 6
Case Study

Chapters 2 through 5 have introduced all the mathematical details beyond the
autonomous manipulation concepts of SAUVIM. This last chapter, as a conclusion
of our work, presents the SAUVIM main software framework that allowed us to run
all the presented solutions.

Developing the SAUVIM software framework required a considerable effort in
integrating together all the components of the system.

In this chapter we also summarize all the remaining technical issues not addressed
in the previous chapters, such as motor drivers and path planning.

6.1 The Real-Time Architecture of SAUVIM

The hardware and software architecture of SAUVIM was developed with particular
attention to autonomy and global information sharing. It has several similarities
to the backseat driver paradigm [1], implemented on a number of platforms (e.g.,
Bluefin, Hydroid, and Ocean Server). The paradigm refers to a division between
“low-level” control and “high-level” control on the vehicle, with most likely the
former residing on the vehicle’s main computer and the latter on a computer located
within a payload section, that can be physically swapped out of the vehicle. The
low-level control and the high-level control are also referred to as “vehicle control”
and “mission control” respectively. Here, the architecture that coordinates a set of
software modules collectively comprising the ‘backseat-driver’ system running in
the payload was implemented by using MOOS (see Newman [2]).

SAUVIM has a precise role separation between high-level (or mission control, in
the ‘backseat’) and low-level (or vehicle control, in the ‘front-seat’). This separation
was implemented with a dedicated software environment for autonomous systems.
The mission control system (backseat) is essentially a software-emulated CPU run-
ning a custom programming language, specifically created to simplify high-level
operations and algebraic manipulations at the same time. The hardware resides within

G. Marani and J. Yuh, Introduction to Autonomous Manipulation, 123
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© Springer-Verlag Berlin Heidelberg 2014
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an abstraction layer w.r.t. the mission control level. Given a precise and standard spec-
ification for the hardware interfaces, this environment can be easily re-adapted to a
different hardware layer.

The overall architecture, comprehensive of the above concepts, was structured
into a set of layers as schematized in Fig. 6.1. The problem of structuring control
functions in a multilayer structure has been studied by others [3, 4]. In the NASREM
architecture developed by Albus [3], a theoretical model was proposed consisting of
six basic elements: actuators, sensors, sensory processing, world modeling, behavior
generation, and value judgment. These elements are integrated into a hierarchical
system architecture. Following the same concepts of NASREM, the control system
architecture for SAUVIM consists of a set of standard modules and interfaces which
facilitates software design, development, validation and test.

The first layer, the Very Low Level Controller, is essentially the hardware level.
The second one hosts all the software drivers necessary for acquiring the sensor

data and sending references to the actuator servo drives.
The third layer, the Medium Level Controller, contains the coded algorithms for

solving the direct and inverse kinematic problems, as presented in Chap. 3: Resolved
Motion Rate Controller, task prioritization, singularities avoidance, collision avoid-
ance and manipulability optimization.

All the input and output of the above algorithms, along with the sensor data from
the layer 2, are directly accessible through the FastBus from the fourth layer, the
High Level Controller. The latter contains our SAUVIM Programming Language
(SPL) server, which is in turn connected with the communication layer that allows
exchanging its data with the SPL clients (e.g. loading executables). The FastBus,
similarly to the global memory in the NASREM model, is responsible for sharing of
information between all the layers.

All input and output quantities are accessible from all the modules at all levels and,
through the xBus. This facilitates the interaction with the user and allows debugging
the system.

The following subsections describe in detail the layers of the SAUVIM software
and hardware architecture, shown in Figs. 6.1 and 6.2.

6.1.1 Layer 0: The Hardware

The hardware architecture of SAUVIM is a multi-processor system based on a 6U
VME bus and the VxWorks real-time operating system. Currently the system consists
of:

• Two VME-based computers, hosting the navigation and the manipulator control
systems

• Two PC104+ computers dedicated to sensor data acquisition, processing and
sharing
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Fig. 6.1 Schematization of the SAUVIM real-time architecture

• One PC104+ hosting the video processing algorithms for the target detection and
tracking system

• One PC104+ for the ultrasonic tracker (in development)

The navigation control system includes one main VME CPU board (Motorola),
a VME digital/analog I/O board. The two Intel-based PC104+ supplemental boards
provide assistance in sensor data processing and collision avoidance computation.
All the boards share data through Ethernet-based custom protocols. The navigation
control system handles the communication, supervision, planning, low-level control,
self-diagnostics, video imaging, etc.

The manipulator control system shown in Fig. 6.3 hosts the second VME-based
computer (Motorola) and several hardware-dedicated I/O board. One PC104 board
(shown in Fig. 6.2) aids the manipulator control system in the video processing oper-
ation necessary to detect and track the target. Data resulting from the video process-
ing subsystem are shared with the whole SAUVIM system (including the SAUVIM
Explorer interface), using the same Ethernet protocol (Fig. 6.2).

6.1.2 Layer 1 and 2: Low Level Interface for Robotic Actuators

Many commercial manipulator systems are today equipped with their own complete
control system, usually capable of performing tele-operated and programmed tra-
jectories in both the joint and Cartesian spaces. Often, the control system is also
accessible via different interfaces (CANopen, EtherCAT, StarFabric, etc.) that allow
setting in real time the controller reference input (position and velocity being the most
common). In the general control scheme of Fig. 3.2, the above proprietary control
system would be enclosed in the Robot HW Controller block.
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Fig. 6.2 Particular of the manipulator subsystem architecture

As noted in Sect. 3.1, the joint-level control is often realized by dedicated PID
control loops, tuned for a wide case of scenarios, and implemented into the Servo
Drive module. On top of this joint controller, the manufacturer usually implements its
own subsystem that may act as a more complex controller (i.e. position, velocity). The
latter may not be the best solution when dealing with custom implementations like
SAUVIM. Also, the presence of an intermediate control layer introduces inevitably
a delay that can be extremely negative in case of compliance (force) control.

When the user is responsible for developing the control strategy, like SAUVIM,
it is preferred accessing the actuator in its most natural form. In case of an electri-
cal servo motor driving the robot joint, the natural input is torque. This is a direct
consequence of the operating principle of an electric motor, where there is a direct
relationship between the input current and the generated torque: the latter can hence
be generated without a control loop. Controlling velocity or position at the joint

http://dx.doi.org/10.1007/978-3-642-54613-6_3
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Fig. 6.3 The hardware architecture of the manipulator MARIS 7080

level, instead, is generally achieved by closing the loop with other sensors, and it
is realized at the hardware level via PID controller, tuned by the manufacturer for
standard conditions or delivered with auto-tuning capabilities.

With the torque servo drive, another important advantage is the considerable
reduction of delay. For example, many modern servo drives allow implementing
a torque loop sampling rate of several kilohertz. On the contrary, a fully featured
manufacturer-supplied control system may introduce delays up to tenth of millisec-
onds, making the implementation of compliance control with external loops truly
problematic.

With a direct access to the servo drive torque input, it is then possible to use
Eq. (2.190) to realize a dynamic controller. For example, the control input defined
in Eq. (4.33) realizes a well known computed torque controller. The latter sets the
dynamics of the position and velocity errors, assuming that the dynamic parameters
of the manipulator are known. Within the Lagrange model, it is easy to adapt in
real-time to different working conditions, like gravity forces plus buoyancy in water
or payloads on the end-effector. Instead, a pre-tuned PID loop in the servo drive
may respond differently, depending on the working conditions. Note that many of
the above considerations may not be an issue for industrial manipulators, whose
working conditions are always same.

The SAUVIM manipulator concept follows the above considerations. The only
difference is that, at this stage, we use the internal PID velocity loop of the MARIS

http://dx.doi.org/10.1007/978-3-642-54613-6_2
http://dx.doi.org/10.1007/978-3-642-54613-6_4
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Fig. 6.4 Block diagram of the motors driver module ( joint section)

servo drives, by entering the servo drives with a velocity reference (the “Commands”
signal line in Fig. 6.3). As noted in Sect. 3.1, this approach provided acceptable
performances for testing the task reconstruction algorithm.

The layer 1 in Fig. 6.1 must hence translate the velocity reference into a proper
signal for the servo drive module. This was accomplished by pushing the reference
through a sequence of signal conditioning blocks in the Motors driver module.

The motors driver module, in general, allows driving each actuator according to
the relation:

ωi (rad/s) = kv ωiref (6.1)

where ωi is the actual angular velocity of the i-th joint and kv is a constant velocity
(typically unitary). Relation (6.1) is valid for each joint except the gripper.

As shown in Fig. 6.4, the Motors Driver module consists of three main blocks:

1. The Mechanical Limit Guard, a software protection for each joint in order to
avoid any possible collision against the mechanical stop.

2. The Velocity Constants Estimator, which allows to estimate the velocity constant
of each motor controller in order to realize Eq. (6.1).

3. The Saturation Guard, necessary to maintain the required linearity when a motor
is approaching its saturation limit.

These blocks are described in the following subsections.

6.1.2.1 Mechanical Limit Guard

This block is responsible for scaling the whole velocity reference vector when a joint
approaches its mechanical limit. Internally, the block estimates the time of impact
and tries to avoid it. If tti, the time-to-impact, is less than a predefined value tmax, the
vector of velocities is scaled by a function of the same tti. Analytically we have:

vi out =
{

0 qi /∈ [qi min, qi max
⎡

vi corr qi ∈ [qi min, qi max
⎡ (6.2)

http://dx.doi.org/10.1007/978-3-642-54613-6_3
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where:

vi corr =
{⎣

tti
tmax

⎤2 ⎣
3 − 2 tti

tmax

⎤
vi in tti < tmax

vi in tti ≥ tmax

(6.3)

The time-to-impact is estimated as follows:

tti = min
i

Δqi

vi in
(6.4)

with:

Δqi =
⎦

qi min − qi vi in < 0
qi max − qi vi in ≥ 0

(6.5)

The vectors:
qmin = [q1 min, q2 min . . . q7 min

⎡T

and
qmax = [q1 max, q2 max . . . q7 max

⎡T

include the values of the minimum and maximum joints mechanical limits.

6.1.2.2 Velocity Constants Estimator

As noted earlier, the servo drives implement a hardware velocity loop PID controller.
The angular velocity of each motor is related to the board control input voltage Viref :

ωi (t) (rad/s) = kvi (t) Viref (t) (6.6)

where kvi is the board velocity constant. Note that the main difference from Eq. (6.1)
is that the velocity constant is different for each board and can be slowly time-
variant. Actually it depends mainly on the gear ratio and on the tunable constants of
the hardware PID controller.

In order to have a linear behavior as in Eq. (6.1), we first need to estimate all the
constants. At the given time instant k, from Eq. (6.6) we have:

(ki)k = (ωi)k(
Viref
)

k

∼= (qi)k+1 − (qi)k

Δt

1
(
Viref
)

k

[rad/ (s · V)] (6.7)

or, similarly:

(ki)k−1 = (ωi)k−1(
Viref
)

k−1

∼= (qi)k − (qi)k−1

Δt

1
(
Viref
)

k−1

[rad/ (s · V)] (6.8)



130 6 Case Study

Taking a mean value over a window of n samples, we have:

ki =
n∑

j=1

(ki)k−j (6.9)

Thus, from Eq. (6.1), we have:

Viref = kv

ki
ωiref (6.10)

In other words, given a reference value ωiref , to have the actual angular velocity of
the joint as shown in Eq. (6.1), the voltage reference input to the i-th servo drive must
be as shown in Eq. (6.10), and this is the correction performed by the block Velocity
Constants Estimator.

In the actual implementation, to compute the mean value in Eq. (6.9), only the
samples included in a predefined range are considered. Values not satisfying the
following condition: ∣∣∣ki − ki

∣∣∣ ≤ k̃i (6.11)

are discarded.
k̃i is the (fixed) nominal mean value of the i-th board-joint pair. Note that Eq. (6.11)

allows to consider the value 0 as a valid sample, reflecting a failure of the motor. In
this case, Eq. (6.10) cannot be used to compute the voltage reference. Instead, if a
motor breaks down, we use the a-priori known mean value constant k̃i as the current
one:

ki =

⎧
⎨⎨⎩

⎨⎨

n∑

j=1
(ki)k−j

n∑

j=1
(ki)k−j > k̃i

2

k̃i

n∑

j=1
(ki)k−j ≤ k̃i

2

(6.12)

With this formulation, it is assumed that a motor breaks down when the absolute
value of its integrative constant is lower than the threshold k̃i

2 .

6.1.2.3 DA Driver

This block maps the input integer(s), between 0 and 4095, to the output voltage(s)
(between −10 and 9.9951171875 V) of the DAC board:

Vout = 20
D − 2048

4096
, 0 ≤ D ≤ 4095. (6.13)
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6.1.2.4 Motor Saturation

The motor velocity is limited by the value corresponding to the maximum input
voltage allowed by the servo drive board. Because this saturation may affect each
joint in a different way, the manipulator may fail to track a reference velocity input.
The SatGuard blocks ensures a correct tracking by attenuating, proportionally, all the
joint velocities when one is approaching its saturation value. Let q̇max , the maximum
absolute values of the reference components q̇i, be:

q̇max = max
i

|qi| (6.14)

The normalized value of each component is given by:

q̇in =
{

q̇i q̇max ≤ q̇lim

q̇i
q̇lim
q̇max

q̇max > q̇lim
(6.15)

where q̇lim is the maximum value allowed for q̇.

6.1.3 Layer 3: Medium Level Controller

The third layer, the Medium Level Controller, is a key component of the system and
implements all the mathematical solutions:

• Kinematics (Resolved motion rate controller)
• Task priority (Position prior orientation)
• Singularities avoidance
• Collision avoidance
• Manipulability optimization
• Trajectory planner
• Workspace optimization

As introduced in Sect. 1.1, developing autonomous manipulation increases the level
of information exchanged between the system and the human supervisor. In this
view, the interface between the task execution layer (layer 4, see Sect. 6.1.4) and the
motion controller should be designed to be as simple as possible, for decoupling any
low-level controlling issue from the higher level task execution layer.

For example, a simple movement of the end-effector within the arm workspace is
executed with the simple grammar:

MoveTo(TargetPosition);

where TargetPosition is a 6-by-1 matrix vector containing the generalized tar-
get position (the three Euler angles roll, pitch, yaw and the Cartesian positions x, y, z.

http://dx.doi.org/10.1007/978-3-642-54613-6_1
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Fig. 6.5 Trajectory generator: trapezoidal velocity profile

The simplicity of the above grammar represents a considerable increase of the
level of information exchanged with the robot. The medium level controller is now
responsible for ensuring a reliable behavior within the workspace by addressing all
the problems mentioned above.

6.1.3.1 Trajectory Planner: A Task-Space Smooth Path Generation

When issuing a simple command like MoveTo(TargetPosition), the medium
level controller is also responsible for the computation of the manipulator trajectory.

In general, one of the operation modes of the SAUVIM control software is
Tracking, which allows driving the end-effector through a predefined path. The path
is defined by a succession of points Xi, each one representing a generalized position
in the task space:

Xei = [ rolli pitchi yawi xi yi zi
⎡T (6.16)

The rotation parameters indicate the orientation of the end-effector with respect the
robot main frame. The trajectory between Xi and Xi+1 is planned for preserving the
continuity of the task velocity and avoiding excessive stress to the arm structure.

Figure 6.5 illustrates a one-dimensional velocity profile that accomplishes the
above requirements.

Given the input data for the profile as s0 (the initial position), sf (final position),
Vs0 (initial velocity), Vm (maximum velocity), Kv (acceleration) and t0, the output
trajectory is:

s (t) =

⎧
⎨⎨⎨⎨⎨⎩

⎨⎨⎨⎨⎨

s0 t = t0
s0 + ∫ t

t0
V0 + Kv · (t − t0)dt t0 ≤ t < t1

s1 + ∫ t
t1

Vmdt t1 ≤ t < t2
s2 + ∫ t

t2
VM − Kv(t − t2)dt t2 ≤ t < tf

sf t ≥ tf

(6.17)
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where:

s1 = s0 +
∫ t1

t0
V0 + Kv · (t − t0)dt (6.18)

s2 = s1 +
∫ t2

t1
Vmdt (6.19)

sf = s2 +
∫ tf

t2
VM − Kv(t − t2)dt (6.20)

Expanding above integrals we have:

s (t) =

⎧
⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎩

⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨

s0 t = t0

s0 + 1

2
Kv ·
⎣

t2 − t2
0

⎤
+ V0 · (t − t0) − Kvt0 · (t − t0) t0 ≤ t < t1

s0 + 1

2
Kv ·
⎣

t2 − t2
0

⎤
+ V0 · (t1 − t0) − Kvt0 · (t1 − t0)

+ Vm · (t − t1)
t1 ≤ t < t2

s0 + 1

2
Kv ·
⎣

t2
1 − t2

0

⎤
V0 · (t1 − t0) − Kvt0 · (t1 − t0)

+ Vm · (t2 − t1) − 1

2
Kv ·
⎣

t2 − t2
2

⎤
+ Vm · (t − t2)

+ Kvt2 · (t − t2)

t2 ≤ t < tf

sf t ≥ tf

(6.21)
where:

t1 = t0 + Vm − Vo

Kv

(6.22)

t2 = tf − Vm

Kv

(6.23)

tf = 2sf Kv − 2s0Kv + 2t0KvVm + 2V 2
m − 2VmV0 + V 2

0

2KvVm
(6.24)

With a particular set of input parameters, it is possible that t2 ≤ t1. In this case,
the trapezoidal profile of Fig. 6.5 degenerates into the triangular profile of Fig. 6.6,
because the above condition ensures that maximum velocity will be smaller than Vm.

In this case we have:

Vse =
(
tf − t0
)

Kv + Vs0

2
(6.25)

te = tf + t0
2

− Vs0

2Kv

(6.26)
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Fig. 6.6 Trajectory generator: triangular velocity profile

Fig. 6.7 Trajectory generator example: position s (t), velocity v (t) and acceleration a (t) in the
triangular case, with t0 = 1, s0 = 0.25, sf = 1, Vs0 = 0.75 and Kv = 0.5

tf = −Vs0 + t0Kv +√2Vs0 + 4sf Kv − 4s0Kv

Kv

(6.27)

Figures 6.7 and 6.8 show two numerical examples, for one-dimensional case.
The extension to the multidimensional vector (6.16) is done with the following

considerations.
Let R0 be the initial rotation matrix of the end-effector with respect the main frame.

Likewise, let Rf be the final posture. It is possible to find a direction ri around which
R0 must be rotated of θ radians to obtain Rf . Thus we can define the four-element
vector as:
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Fig. 6.8 Trajectory generator
example: position s (t), veloc-
ity v (t) and acceleration a (t)
in the trapezoidal case, with
t0 = 1, s0 = 0.25, sf = 3,
Vs0 = 0.75 and Kv = 0.5

AB0 =



⎢⎢
⎥

x0
y0
z0
0




⎪ , ABf =



⎢⎢
⎥

xf
yf
zf
θ




⎪ , (6.28)

and the parameter:
sf = ∣∣ABf − AB0

∣
∣ (6.29)

obtaining:

AB (t) = AB0 + (ABf − AB0
) s (t)

sf
(6.30)

where s (t) is obtained by integrating the trapezoidal or triangular profile as above.
The rotation matrix R (t) can be computed from the fourth component of AB (t), say
θ (t), by rotating R0 around ri of θ (t) radians.

Finally, for generating a path different from a straight line (i.e. circles, etc.), the
solution is to represent the multi-dimensional curve with parametric equations, and
use the trapezoidal profile for generating the evolution of the mono-dimensional
curve parameter.

Please note that the relationship between the task acceleration and joint accelera-
tion has not been derived. As a precaution, in order to physically limit the acceleration
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on each joint, especially during the turn-on and turn-off stages, the velocity control
signal is filtered by a rate limiter. The upper limit of the joint velocity rate is high
enough not to interfere with the task linearity, yet avoiding dangerous joint acceler-
ations.

The same path generation algorithm is applied to the navigation controller. In this
case, the maximum accelerations are chosen within the limits imposed by the vehicle
thrusters.

6.1.4 Layer 4: High-Level Robot Programming Language

The choice of an appropriate programming language must address a wide range of
issues. Many autonomous systems operate in an unstructured and dynamic environ-
ment. Here, the language must have the necessary flexibility to react to that world
using sensor information and the available actuators. The unpredictability of events
requires that a generic control algorithm may be interrupted at any time, in order to
face inconsistent or incomprehensible inputs and preserve the safety of the system.

A generic language must have the capability of interacting with the hardware
via an abstraction layer. For example, a robot drawing on a white board should
accept inputs like pick-the-pen, find-the-board, draw-letter, erase-the-board and so
on. Because each of the above operations requires complex low-level behaviors,
a good robot programming language should span different layers. The interaction
between the hardware and the programming language is one of the major problems
in attempting to universally unify a generic robot programming system. Many com-
panies developed their own language suitable for a particular system, hence the fact
that no uniform consensus has been given to a particular language, is not surprising.

Another very important issue that a robot programming language must address
is the time interaction. A generic control system is usually hosted by a real-time
operating system, spawning several periodic tasks running at a fixed sampling time.
A precise real-time interaction with the low level control system enables the high
level programming language to correctly quantify discrete-time algorithms (e.g. inte-
grators, derivators, etc.) or to perform additional high-level operation like real-time
tracking of time-dependent trajectories. The layer of the language where part of the
control algorithm resides must have the capability of synchronizing with the above
sampling time, monitoring the execution length to avoid exceeding the time-limit.

Finally, for a large class of autonomous systems like underwater robots, it is
necessary to organize the language subsystems in a client-server architecture, in
order to separate the human interface from the execution layer. In fact, they may
have to reside in separate environments (e.g. the vehicle and the ground station).

Within the SAUVIM project, we introduced a new robot programming language,
developed with a careful consideration of all the above issues. The SAUVIM Pro-
gramming Language (SPL) is completely math-oriented and includes a flexible hard-
ware abstraction layer, capable of interfacing with a variety of sensors and actuators.
SPL uses a client/server model, and can be manipulated on any computer with net-
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work connectivity to the robot. In addition, SPL supports multiple concurrent client
connections to devices, creating new possibilities for distributed and collaborative
sensing and control.

6.1.4.1 Summary of Robot Developing Environments

Text-based control-specific languages are the most common method of controlling
industrial robots. An extensive review and classification has been done as shown in
[5–7]. Most of these programming languages are very simple with a BASIC-like
syntax and simple commands for controlling robot behaviors. Their biggest problem
is the lack of a universal standard from robot manufacturer. Often robot manufacturers
also provide a simulation environment.

The recent works in text-based systems have diverged from these robot-specific
languages to develop more general purpose high-level programming languages suit-
able for any robot. Typically, this involves extending existing languages such as C++
[8], Java [9, 10], and Haskell [11].

Among the newest robot software frameworks, two of considerable attention are
OROCOS [12–15] and ROS [16].

Open Robot Control Software (OROCOS)

The Open Robot Control Software (OROCOS) project uses both the component-
based and object-oriented reusability strategies. The project has yielded four C++
libraries, two geared toward each strategy. The Real-Time Toolkit (RTT) and ORO-
COS Component Library (OCL) establish a component-based infrastructure and a
library of ready-to-use components, providing the high level management of inter-
actions within an application. Components exchange information primarily through
abstracted Data-Flow Ports, an anonymous publish-subscribe system in which a
component does not know where its inputs are originating or where its outputs are
being utilized. These Data-Flow Ports may be either buffered, in which case mes-
sages are stored in a single queue per link, or unbuffered, in which case only the
most recent message is available to be read by any subscribers. This decomposi-
tion and isolation of the components enables easier specification of the interactions
taking place within the software and easier validation of individual components,
because this organization is conducive to generating test inputs and examining the
resulting outputs. OROCOS includes a scripting language that allows users to write
programs and state machines controlling the system in a user-friendly realtime script
language. The advantage of scripting is that it is easily extendible and does not need
recompilation of the main program. OROCOS is probably one of the most complete
robot software frameworks, implementing the majority of the issues discussed above.
The only drawback is the difficulty to port the framework to embedded system like
the hardware of SAUVIM. For this reason, and for the fact that SAUVIM began
before OROCOS was available, our choice was toward supporting the development
of a custom framework.
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Robot Operating System (ROS)

ROS is an open source robot software platform designed with the primary goal of
enabling software reuse. It is intended to be a thin architecture, providing sufficiently
a few constraints as to be integrable with software written for other platforms, such
as the aforementioned OROCOS and Player [17]. Like OROCOS, it employs both
the component-based and object-oriented reusability strategies. ROS provides the
infrastructure for writing software components, called nodes, and for exchanging
information between these nodes via an anonymous publish-subscribe model.

6.1.4.2 SAUVIM Programming Language

The SAUVIM distributed programming environment for autonomous systems is writ-
ten in ANSI-compliant C and C++, and can be cross-complied for different platforms
(VxWorks, Linux, Unix, Mac OS-X, Windows). This capability enables breaking the
environment into separate parts, the software-emulated CPU and the code generator
(“complier”): the execution CPU can run inside the real-time controller (for instance
running a VxWorks operating system) while the compiler may reside on a remote
platform such as Windows or Unix, linked via the communication system. Figure 6.1
shows the case where the remote client is a personal computer residing externally
(at least when the communication link with the vehicle is available).

This configuration is duplicated for the manipulator and linked together with the
SAUVIM navigation system through the main communication layer xBus (Fig. 6.1).

The reliability of the above modularization was confirmed by a successful remote
operation of SAUVIM, carried out in year 2010, when the manipulator was instructed
to perform a simple task from West Virginia, with the vehicle standing in the water
of the Hawaiian ocean.

Overview of SPL

The SAUVIM Programming Language subsystem was developed using the well-
known tools Lex [18] and Yacc [19], a lexical analyzer and parser generator. Like C,
Fortran, Pascal, Basic, and so on, SPL is a procedural language, in the sense that it
consists of a sequence of commands, which are executed strictly one after another.
Similarly to other procedural languages, the code may be organized into procedures
and libraries, which simplifies the separation of the high level (task oriented) layer
from the mid-level layer. As a matter of fact, the latter consists of a set of procedures
for attaining particular behaviors.

SPL is not strongly typed like C and Pascal and no declarations are required. It is
more like Basic and Lisp in this respect. However types exist: type checking is done
at run time and must be programmed explicitly.

The programming language, although pseudo-compiled, is in turn interpreted by
a software-emulated CPU. For this reason it is not suitable for running numerically
intensive programs because of the virtual CPU overhead. Therefore, the most com-
putationally expensive algorithms have been implemented in a different layer (the
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MLC in Fig. 6.1) and are accessible via the SPL abstraction layer, as better explained
in Sect. 6.1.4.2.

Another important feature of the SAUVIM Programming Language is the par-
allelization of servers. This option allows spawning different “processes” running
simultaneously with the possibility of mutual interruption in case of particular events.
The parallelization is very important when running, for example, health-monitoring
procedures or for handling any kind of exceptions.

Finally the language is math-oriented and offers the possibility of symbolic manip-
ulation of expressions, arrays and/or matrices.

Programming in SPL

The SPL syntax for the assignment is taken from Algol 60. The assignment statement
looks like:

name := expr;

where expr is any expression and name is a variable name. The main difference
between SPL and traditional programming languages is that the generic identifier
is generally an entity that, if not assigned, stands for itself. In other words it is a
symbol. Symbols are used to represent unknowns in equations, variables, indices,
etc. Consider the assignment statement:

P := xˆ2 + 4*x + 4;

Here the identifier P has been assigned the formula xˆ2 + 4x + 4. The identifier
x has not been assigned a value: it is just a symbol, an unknown. This assignment
automatically sets the type of P to expression. The identifier P is now like a pro-
gramming variable, and its value can be used in subsequent calculations just like a
normal programming variable.

The conditional statement has the following syntax:

if expr then statseq
[ else statseq ]
end if

where statseq is a sequence of statements separated by semi-colons and [...]
denotes an optional part. A typical if statement would be:

if x < 0 then -1; else 1; end if

The for statement has the following syntax:

for name from expr to expr do
statseq

end do

Finally a conditional loop can be constructed according to the following syntax:

while expr do
statseq

end do
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Table 6.1 SPL data types

null numeric name matrix
intvector + * ˆ
builtinfcn function exprseq stmtseq
executable coeffterm unknown repeat
integer list indexed if
ifelse bool asm lrstack1
while for procedure nameseq
string uneval eval range
< and = not
or

The loop is executed while the condition expr evaluates to true.

Data Types

Although it is not necessary to declare the type, a generic variable belongs to the
class type corresponding to its content. Many pre-defined types exist in SPL: a type
can be any one listed in Table 6.1. Type-checking can be realized at run-time. For
instance, the expressions:

type(x+y,"+");
type(1.2345,"string");

return respectively true and false. Types can be structured together in lists,
similarly to the struct of C language. The resulting list object is a single entity
composed of sub-objects of different types. This is necessary when working, for
example, with map, search and map theory.

The most relevant is probably the matrix type. A matrix is a generic 2-D array,
which in SPL can be constructed with the following syntax:

M := matrix(nRows, nCols,[[R1],[R2],...]);

where nRows and nCols are the dimensions of the array and Ri, the i-th row, is
a sequence of entries separated by commas. For example, a generic column vector
can be defined as:

q := matrix(3,1,[[q1],[q2],[q3]]);

SPL Procedures

The capabilities of SPL can be customized and extended by using procedures. In
general, a SPL procedure has the following syntax:

proc (NameSequence)
[local nameseq;]
[global nameseq;]
statseq

end
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where nameseq is a sequence of symbols separated by commas, and statseq is
a sequence of statements separated by colons or semicolons. The scope of visibility
of local variables is within the procedure, while global variable are visible within the
main workspace and within all the procedures in all the instantiated parallel servers.
This makes possible exchanging data across all the spawned processes.

A procedure definition is a valid expression that can be assigned to a name. As
an example, the command below assigns to the symbol f an user-defined procedure
that adds two arguments x and y:

f := proc(x, y)
x + y;

end proc;

This procedure has two parametersx andy, no local variables and only one statement.
The value returned by the procedure is x+y. In general, the value returned by a
procedure is the last value computed. The following procedure call evaluates f with
the arguments 3 and 5:

f(3, 5);

SPL allows symbolic manipulation of variable. For example, f can be invoked with
symbolic input:

f(Joint1, Joint2);

The Hardware Abstraction Layer

The interaction between the hardware and the programming language is performed
by a subset of built-in SPL procedures, fully user-defined in order to meet the require-
ments of the hardware device drivers.

A built-in procedure for accessing the hardware level is essentially an interface
between SPL and any custom C/C++ code. It must be defined within the SPL source
code before compiling the programming language system. Currently there are more
than 100 built-in procedures and most of them perform some specific action like
enabling the motors, getting the sensor information data, sending the motor velocity
reference, etc. For example, the following syntax can be used in order to assign the
variable q with the values of the joint angles:

q := GetJointAngles();

which returns a 7-by-1 matrix containing the seven joint angles of the manipulator
(in radians). Internally, the above procedure executes the following steps:

1. Creates an empty 7-by-1 matrix.
2. Reads the IP-quadrature board via the device driver.
3. Fills up the 7 elements of the matrix with the above values.
4. Returns the matrix.
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Fig. 6.9 Internal representation of objects: the syntax tree

The internal C++ interface of SPL simplifies the writing process of built-in functions
with a large amount of classes, member functions and operators.

Memory Management

Internally, a generic object is represented by a syntax tree of nodes (see Fig. 6.9). Each
node has an assigned type, a data field and a list of operands. Data are interpreted
according to the type of the node, and internally are stored in a special array with
dynamic length and type. For example, the data field of a node of type numeric
contains the numeric value of the node (in double-precision), while the operands
field is empty. Conversely, a node of type function contains no data and a variable
number of operands (the function arguments). A function can be for example the
addition operator: in this case the operands are the addends. Each addend can be, in
turn, any generic node. This allows the easy handling of expressions in a symbolic
form. The C++ interface provides all the necessary support for creating the generic
node and manipulating its type, data and operand fields. The creation/destruction
process is assisted by a management algorithm which allows optimizing the allocated
memory and avoiding memory leaks. Inside SPL, each node is stored in a dynamic
array called memory in Fig. 6.10. Each node is referenced by a special class that
keeps track of the number of references to the node itself. When the node has no
more references, it is marked as free and can be used for new contests. This allows
the efficient reuse of the already allocated nodes, keeping the size of the dynamic
memory to the indispensable minimum. This is very important when the server is
running in embedded systems with limited amount of resources. Figure 6.10 also
shows the basic concept that SPL uses for the execution phase. A software-emulated
virtual CPU is responsible to fetch and execute the SPL statements according to the
following steps:
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Fig. 6.10 Internal architecture: execution of statements via the software-emulated CPU

1. The executable, consisting of an op-code table and a tree of data nodes, is loaded
into the state machine system of Fig. 6.10. More precisely, the op-code table is
stored in the executable table while a set of data nodes is loaded into the memory.

2. The virtual CPU fetches the next available op-code from the current op-code
table.

3. The required arguments involved in the execution of the current statement are
pushed from the memory to the stack.

4. The CPU executes the current op-code, popping the arguments and pushing the
result on the stack.

The above concept is replicated in parallel for each instantiated server. At the end of
execution, after the last op-code, the CPU enters an idle status.

Client-Server Architecture

As earlier noted, the architecture of SPL is client-server oriented: the human interface
(workspace input) and the execution layer reside in separate environments, communi-
cating via a special protocol over TCP-IP (Fig. 6.11). This allows the accomplishment
of one of the main requirements of the NASREM model: with a workspace input,
the human operator can take over any layer at any time.

The client is generally a command-line input interface enabling loading libraries,
executing statements and/or controlling the execution of the server. Figure 6.12 shows
a snapshot of our console implementation.

The operations involved on the client-side are the followings:

1. Preprocess the source code
2. Compile and create the executable
3. Encode the executable
4. Send the encoded executable via TCP-IP to the SPL server
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Fig. 6.11 The client-server architecture

Fig. 6.12 The SPL client console

On the server-side, once the encoded executable has been received, the following
operations take place:

1. Decode the executable
2. Load the executable in the virtual CPU
3. Execute
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One important feature of the overall programming language system is the possibility
of using more than a single client. This is important for monitoring from a secondary
client the overall behavior of the primary client, which may reside inside a separate
autonomous system. For example, in our autonomous underwater vehicle, the pri-
mary client is inside the vehicle CPU, delivering the operation commands to the arm.
On the ground side, the user can monitor, with a secondary client, the behavior of
the arm and eventually take control over the main CPU.

6.1.5 Layer 5: The Communication Layer

The fifth layer implements a TCP-IP based client-server communication system. The
server can handle multiple clients using a robust communication protocol capable
of auto-reconnection in case of a temporary network failure. This is important in
a hostile environment, where the communication media does not allow safe and
durable connections (like acoustic modems).

Internally, the server is a meta-state machine, or a set of finite state machines.
These machines, one for each client connection, are sequentially called so that each
one can request a different command execution to the parser. It is a matter of the
parser allowing or not the execution of each command, according to its priority with
respect to the already running ones.

An internal timer generates an error if any reading or writing operation cannot be
executed within a certain amount of time. The error results in a forced disconnection
followed by a reconnection attempt by the client. Upon any disconnection (graceful
or forced), the correspondent server state machine is destroyed and removed from the
machine list. Forced disconnections may happen even for other kind of socket errors
(for example when losing the carrier of the acoustic modem during a mission), and
are always followed by a reconnection attempt. For example, during the execution
of any task, it is possible to unplug and successively re-plug the network cable: the
only consequence is the loss of control by the client during the time that the cable is
disconnected.

The kernels of both server and client are written in Ansi-C language, including its
vectorial state machine. This facilitates building the system directly from the source
code on a different platform, such as Windows (for the client or a generic simulation
server) or VxWorks (the actual arm controller).

6.2 Application Example

In conclusion of our work, we would like to present the SAUVIM final demonstra-
tion conducted on January 20, 2010, at Snug Harbor in Honolulu, Hawaii, at the
end of the project. The goal of the SAUVIM final demonstration was to demon-
strate the capabilities of the overall system, with particular attention to the autonomy
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Fig. 6.13 The underwater docking platform

aspect, and including repeatability. This live demonstration confirmed a technologi-
cal breakthrough in the field, as the autonomous manipulation had been a bottleneck
for underwater intervention missions.

A video of the following demonstration is available on the main page of the
SAUVIM website.1

The demonstration was about an underwater object recovery mission, organized
into of the following 6 phases:

• Phase 1: Undock from the pier and navigate to a search area
• Phase 2: Search for the submerged platform
• Phase 3: Navigate and dive toward the platform
• Phase 4: Hover (station keeping)
• Phase 5: Hook a recovery tool to the target object (autonomous manipulation)
• Phase 6: Return to the pier

Each phase was executed with no human intervention. Only the following information
was known in advance and given to the SAUVIM computers:

1. Shape of the platform (Fig. 6.13)
2. Shape of the target for recovery (Fig. 6.14)
3. Search area for the platform (Fig. 6.15)
4. Directional information about the target location w.r.t. the platform (frontal area

of the platform)

The beginning of the mission consists in launching, from the remote SPL client, the
“start-mission” command. This is so far the only human intervention necessary.

Of course, according to the considerations in Sect. 6.1.4.2, it was possible to
interrupt the system and gain manual control of the mission at any time, with the
ground mission control client.

1 http://gmarani.org/sauvim

http://gmarani.org/sauvim
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Fig. 6.14 The target to recover

Fig. 6.15 Satellite image of the demonstration area (Snug Harbor, Honolulu, Hawaii). Courtesy:
Google

The high-level description of all the subsequent phases was completely coded
in SPL, and the excellent flexibility of the programming language in describing an
autonomous mission was demonstrated.

6.2.1 Phase 1: Undock from the Pier and Navigate to a Search Area

Figure 6.15 shows a satellite view of the demonstration area. The vehicle is initially
docked at the upper-left corner of the area, at top side of the red path.
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Fig. 6.16 The beginning of undocking phase

After issuing the “start-mission” command, SAUVIM is programmed to perform
surface navigation, aided by the DGPS, and consisting in the following two simple
phases:

• Maneuver to undock from the pier
• Reach the center of the harbor

Figure 6.16 shows the vehicle at the beginning of the undocking phase, trying to
make its way toward the center of the harbor.

During this phase the arm is inactive, while the vehicle dynamic controller
(Sect. 4.3.1.1) is acting in 3 DOF only (surface navigation). In this phase, the PHINS
uses the DGPS for its positional measurement input, resulting in an accuracy of about
2-3 meters. This accuracy is sufficient for moving the vehicle to a search area (Fig.
6.15).

6.2.2 Phase 2: Search for the Submerged Platform

After arriving at the search area, SAUVIM begins the maneuvers for locating the
platform. The search for the platform is executed with the aid of the DIDSON sonar,
following the procedure described in Sect. 5.2.

The vehicle performs a circular scan of the ocean bottom at the maximum SONAR
range (40 m), keeping the platform pose identification algorithm active, described in
the above cited section. The depth of the ocean in this area is about 10 m, making it
possible to collect a detailed scan of the sea bottom. Figure 6.17 shows the output of
SAUVIM Eplorer, which reports the real time mapping of the sea floor.

The scan terminates once the platform has been detected by the pose estimation
algorithm. From then, the vehicle enters a tracking mode by performing position
adjustments until it reaches a predefined relative position with respect to the platform.

http://dx.doi.org/10.1007/978-3-642-54613-6_4
http://dx.doi.org/10.1007/978-3-642-54613-6_5
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Fig. 6.17 Searching for the platform: mapping the ocean floor with the DIDSON sonar

6.2.3 Phase 3: Navigate and Dive Toward the Platform

Phase 3 includes the necessary operations to autonomously dock SAUVIM to the
underwater platform.

During this phase the navigation controller uses the PHINS along with the DVL,
and performs dead reckoning until the vehicle is positioned just 30 cm above the
platform. The autonomous underwater docking is performed in 2 phases:

1. Surface navigation to bring the vehicle vertically over the platform
2. Vertical dive over the platform

During the vertical dive the vehicle dynamic controller operates in full 6 DOF
mode, enabling the center of buoyancy identification when beyond a depth of 1 m.,
and with the pitch and roll optimization algorithm presented in Sect. 4.4.2.

The phase 3 is considered concluded once the DVL measures a stable distance
from the platform (30 cm) for a sufficient period of time. Figure 6.18 is a snapshot of
a video captured by an underwater camera during hovering. View from four cameras
on SAUVIM are also shown in Fig. 6.19. Note, in particular, the upper-left view, taken
from the bottom-facing camera: the vertical and horizontal reference bars mounted
on the platform serve as an approximate evaluation of the position error at the end of
the dead-reckoning navigation from the surface to the hovering configuration. The
full navigation experiment (from the docking pier to the hovering configuration) was
successfully repeated for many times.

http://dx.doi.org/10.1007/978-3-642-54613-6_4
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Fig. 6.18 Autonomous docking to the underwater platftorm: view from the mini-ROV camera

Fig. 6.19 Autonomous docking to the underwater platftorm: view from the four SAUVIM cameras
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Fig. 6.20 The robotic arm docked in the SAUVIM frontal bay

6.2.4 Phase 4: Hover (Station Keeping)

Phase 3 terminates with SAUVIM in hovering configuration 30 cm above the plat-
form. This configuration is maintained for some time, which is necessary to prepare
the manipulator for the next phase.

During navigation, the arm is safely docked into the front bay as shown in Fig.
6.20. The preparation consists of the following steps:

• Undock the arm
• Take the recovery tool stowed in the tool area
• Reach a forward configuration
• Activate the short-range vision system

The arm is now extracted as shown in Fig. 6.21 and ready to begin the short-range
search.

6.2.5 Phase 5: Hook a Recovery Tool to the Target Object
(Autonomous Manipulation)

After reaching the forward configuration with the recovery tool secured by the end-
effector, the manipulator starts searching for the target object by using its optical
camera, running the algorithms described in Sect. 5.3.1. Once the target object and
its location (6 DOF) are detected, the arm enters a tracking mode, visual-servoing at
a fixed relative position w.r.t. the target. The visual-servo target position, shown in
Fig. 6.22, is computed by placing the hook at about 5 cm over the target rod, centered
between the two spheres.

http://dx.doi.org/10.1007/978-3-642-54613-6_5
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Fig. 6.21 Autonomous manipulation with workspace optimization: real time view from Sauvim
Explorer

Fig. 6.22 The recovery device

The action of connecting the carabiner is triggered by simply evaluating in real-
time the visual servoing error: once the error is confined within a predefined limit
for a sufficient amount of time (about 5 s), MARIS physically connects the recovery
tool to the target object. Figure 6.22 shows the recovery device during one of our dry
tests. It consists of an inflatable buoyancy bag connected to a CO2 cartridge. The gas
flow is automatically triggered by the action of pulling a cable, rolled into the red
spool, and connected to the handle.

One important feature during this phase is the workspace optimization, described
in Sect. 4.2. As noted there, the vehicle is set to adjust its position in real-time for

http://dx.doi.org/10.1007/978-3-642-54613-6_4
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optimizing the manipulation. It is worthwhile to note that errors of the dead-reckoning
navigation sensor (PHINS+DVL) were sometimes too large due to various reasons
(for example, fishes swimming under the transducer) and corrections were needed.
The translational difference of the two frames shown in Fig. 6.21 is an example of a
typical correction.

6.2.6 Phase 6: Return to the Pier

After accomplishing the mission, SAUVIM is set to return to the docking pier.
Similarly to the initial phase, docking is performed mainly via surface navigation,

but with an important enhancement: feature-based position correction. In fact, the
accuracy of the DGPS would be insufficient for precise docking to the initial location
(see Fig. 6.16). Precise docking is helped by “measuring” the position of a known
underwater object close to the docking area, and then performing dead reckoning to
the docked configuration.

For simplicity, we used the submerged platform as a known underwater object.
Steps to perform the re-entry are hence the following:

• Surfacing. This operation is a simple vertical navigation from the hovering position
to the surface.

• Navigate to the platform search area. Similarly to the initial phase, the navigation
to the center of the harbor is a 3 DOF surface navigation, with roll, pitch and depth
control inactive. The DGPS delivers the necessary measurement updates to the
PHINS, with an accuracy error of about 2 m.

• Search for the platform. The vehicle performs again a circular scan of the ocean
bottom at the maximum sonar range (40 m), keeping the platform pose identifica-
tion algorithm active. The scan terminates once the platform has been detected by
the pose estimation algorithm. From then, the vehicle enters a tracking mode by
performing position adjustments until it reaches the predefined relative position
with the platform.

• Dead-reckoning navigation to the docking area. By acquiring the 6 DOF pose of
the platform, SAUVIM is now able to compute the relative path to the docking
pier and engage it through dead-reckoning navigation.

The surface navigation of the last phase is performed by removing the DGPS
position measurements from the PHINS, to avoid polluting the precise correction.
The PHINS, however, still benefits from DVL velocity measurements. The measured
standard deviation of the final position, despite the dead-reckoning navigation, is
about 10 cm that is accurate enough for precise parking maneuvers and aligning the
vehicle to the pier.
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6.3 Conclusions

In this book we presented the full research path beyond the U.S. Navy funded under-
water vehicle, SAUVIM project.

Autonomous manipulation, the key technology in underwater intervention per-
formed with autonomous vehicles, is generating an increasing interest among not
only the underwater community, but also the entire field of robotics.

SAUVIM has experimentally demonstrated autonomous manipulation. Following
its success, more underwater vehicles having the capability of autonomous manipu-
lation are expected to develop in the near future.

Across this monograph we have implicitly identified the complexity of problems
encountered in autonomous underwater interventions. Among those, the following
are most noticeable:

• Target area navigation. One of the most important aspects in autonomy is the
environment perception. Without the help of advanced underwater imaging tech-
nology, it would have been impossible to autonomously locate and navigate toward
the target area. Our presented approach is one of the first attempt to use the DID-
SON sonar as multi-DOF pose sensor to guide autonomous navigation. To ensure
a high success rate, it is indispensable to enhance the sensing technology and the
capability of precisely assessing position measurements of various targets.

• Vehicle positioning. For ROVs it is the responsibility of the operator to position
the vehicle in the target area. However, for AUVs the vehicle must be capable
of performing workspace optimization by itself. For SAUVIM, a large effort has
been devoted to develop automatic optimization algorithms capable (as seen in
phase 5) of precisely correcting the hovering position for maximizing the manipu-
lability of the arm during its operations. This important aspect is not only encoun-
tered in underwater intervention, but also in any instance of autonomous mobile
manipulation.

• Arm control system. Many problems commonly seen in robotics such as kine-
matic singularities, collisions, and joint limit and motor saturation, are no longer
handled by the robot operator. An autonomous robotic control system must be able
to intelligently assess all the above situations and successfully carry out the given
mission when it is, at least theoretically, possible. This is another area to which
SAUVIM research has contributed.

Future development in autonomous manipulation should be able to provide robust
improvements to all the issues above. This is important in increasing the effectiveness
of an autonomous system in general and hence in increasing the confidence of all
the organizations toward autonomous intervention vehicles.

NASA is one of the first organizations who have already initiated active research
toward autonomous robotics in space. The Satellite Servicing Capabilities Office
(SSCO2) is advancing the state of robotic servicing technology for regularly servicing

2 http://ssco.gsfc.nasa.gov

http://ssco.gsfc.nasa.gov
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satellites that were not designed with servicing in mind. Many similarities exist
between underwater robotic intervention and space servicing: in fact, the research
on motion control software at SSCO is based on the work presented in Chap. 3 (see
Pellegrino and Roberts [20]).

In conclusion, it is our hope that this book including the findings and implications
of SAUVIM would inspire the robot research community to further investigate critical
issues in autonomous manipulation and to develop robot systems that can profoundly
impact our society for the better.
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Appendix A
Mathematical Supplement

A.1 Versor Lemma

Given two frames 〈a〉 and 〈b〉 (Fig. A.1), with the latter rotated with respect to the
former of an angle θ around the versor v, the following relations hold:

(ia × ib) + (
ja × jb

) + (ka × kb) = 2v sin(θ) (A.1)

(ia · ib) + (
ja · jb

) + (ka · kb) = 1 + 2 cos(θ). (A.2)

A.1.1 Algorithm

It is possible to compute v and θ ≡ (−π,π) in the following way:

1. Compute first the left-hand side of Eq. (A.2) and solve Eq. (A.2) for δ = cos (θ)
2. If δ = 1 then we can assume

(v, θ) = (∈, 0) (A.3)

3. If |δ| < 1 compute the left-hand side of Eq. (A.1) and solve Eq. (A.1) for

σ
Δ= 2v sin (θ); our solution is hence:

(v, θ) = ±
[

σ

|σ| ; tan−1
( |σ|

2
, δ

)]
(A.4)

4. If δ = −1 we have:
(v, θ) = ± (v0,±π) (A.5)
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Fig. A.1 Versor Lemma:
frame 〈b〉 is obtained by rotat-
ing frame 〈a〉 of 15 ◦ around
vector v = [ 0.54 0.54 0.65]T

v

Oa ≡ Ob

ia

< a > ja

ka

ib

< b >

jb

kb

θ

Fig. A.2 Versor Lemma: case
of θ = ±π

v

ia ib

π

where:

v0
Δ= (ia + ib) + (

ja + jb

) + (ka + kb)∣∣(ia + ib) + (
ja + jb

) + (ka + kb)
∣∣ . (A.6)

A.1.2 Proof of Eq. (A.6)

The algorithm is easy to understand, except for Eq. (A.6) that needs a few more
considerations.

In case of δ = −1, obviously the rotation angle can be only θ = ±π, and the

vector σ
Δ= 2v sin (θ) is zero. Thus it is impossible to use Eq. (A.4).

However, we can note that, when θ = ±π, every pair of corresponding frame axis
(of the two frames) is necessarily placed over a diameter of a circle bisected by the
axis v (see Fig. A.2).



Appendix A: Mathematical Supplement 159

Fig. A.3 Versor Lemma:
general case

v

ia

ib

aa

ab

θ

α

Equation (A.5) immediately follows for geometric construction.
In Eq. (A.6) we have chosen to add and normalize all the vectors. This is more

efficient of using the sum of only a pair of axis, which can be zero in case that the
axis of rotation v coincides with one of the axis of the frame.

A.1.3 Proof of Eq. (A.1)

Consider the revolution of the versor ib for moving from its initial position (coincident
with ia) to the final (Fig. A.3). We have:

aa × ab = v sin (α) sin (α) sin (θ) (A.7)

Similarly:
ba × bb = v sin (β) sin (β) sin (θ) (A.8)

ca × cb = v sin (γ) sin (γ) sin (θ) (A.9)

aa × ab + ba × bb + ca × cb

= v sin (θ)
(

sin2 (α) + sin2 (β) + sin2 (γ)
)

= v sin (θ)
(

3 − cos2 (α) + cos2 (β) + cos2 (γ)
)

(A.10)

= 2v sin (θ)

since cos2 (α) + cos2 (β) + cos2 (γ) = 1, because it is the modulus of v. In fact, the
quantity |v| cos (α) = cos (α) is the projection of v onto ia , and so on.
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