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Gyroscope Calibration and Dead Reckoning for an Autonomous
Underwater Vehicle

Aaron J Kapaldo

ABSTRACT

Autonomous Underwater Vehicles (AUVs) are currently being used for many underwater
tasks such as mapping underwater terrain, detection of underwater objects, and assessment
of water quality. Possible uses continue to grow as the vehicles become smaller, more agile,
and less expensive to operate. However, trade-offs exist between making less expensive,
miniature AUVs and the quality at which they perform. One area affected by cost and size
is the onboard navigation system. To achieve the challenges of low-cost rate sensors, this
thesis examines calibration methods that are suitable for identifying calibration coefficients
in low-cost MEMS gyros.

A brief introduction to underwater navigation is presented and is followed by the devel-
opment of a model to describe the operation of a rate gyro. The model uses the integral
relationship between angular rate and angular position measurements. A compass and two
tilt sensors provide calibrated angular position data against which the three single axis gy-
ros are compared to obtain an error signal describing errors present in the angular rate
measurements.

A calibration routine that adaptively identifies error parameters in the gyros is developed.
Update laws are chosen to recursively apply estimated error parameters to minimize the
system error signal. Finally, this calibration method is applied to a simple dead reckoning
algorithm in an attempt to measure the improvements calibration provides.
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Chapter 1

Introduction

1.1 Motivation

Autonomous Underwater Vehicles (AUVs) are devices that perform tasks with little or no

human interaction. In general, these tasks, a predefined set of commands, achieve a desired

mission goal when completed. By operating autonomously, outside control is removed from

the control loop and the AUV monitors and processes its own onboard sensors to determine

the efficiency with which each command is being accomplished. Decisions by the AUV are

made based on operating guidelines that have been programmed into the vehicle control

system.

Currently, AUV technology is being utilized by the military to perform operations that

are too dangerous for direct human interaction, such as the detection of mine-like objects.

Scientists also have a vested interest in AUV development to perform ecological studies and

to map lakes, rivers, and oceans, among many other applications, [6]. The development of

AUVs for aquatic research is a growing field with platforms generally being developed for one

1



CHAPTER 1. INTRODUCTION 2

of two categories. The first category involves developing an AUV capable of performing long

range missions for large scale mapping and monitoring. The second category involves the

development of smaller or miniature AUVs to monitor and measure more localized processes

with a higher resolution than can be obtained by a larger AUV.

AUVs must possess capabilities to follow a desired course accurately. For most missions, the

vehicle position must be known at all times to georeference data collected by the AUV. One

example of such a mission is the tracking and mapping of a fresh water outflow entering a

coastal environment via a drainage pipe from shore using inertial navigation. Assume that

the AUV has knowledge of its initial attitude and position in the navigation frame. Assume

also that there exists a constant offset, ψ, in the heading sensor measurement. This offset

error will be present throughout the entire run causing the vehicle trajectory to be rotated

about the initial position by an angle of ψ. The scenario is further complicated by the

introduction of time-varying measurement drift commonly seen in navigation sensors. The

longer the AUV runs, the greater the difference between the measured and true positions.

This example illustrates the need to keep all navigation sensors properly calibrated.

1.2 Review of Dead Reckoning

When navigating underwater, GPS is not available and the absolute position of the vehicle

is unknown. Dead reckoning, a method of navigation that uses on-board sensors to measure

speed and heading based on the last known position to estimate its current position, [2],

becomes important. The last GPS fix received before the AUV dives becomes the initial

condition for a dead reckoning algorithm. Onboard sensors, gyroscopes and a compass,

provide vehicle attitude and orientation information. Speed is either measured in real time

or is determined empirically through testing. When accelerometers are available onboard,

a more advanced form of dead reckoning known as inertial navigation is possible. Inertial
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navigation integrates accelerations and rotation rates of a body in time to determine attitude

and heading. Since the ASCL AUV does not have onboard accelerometers, this form of dead

reckoning will not be examined in this thesis.

Errors in dead reckoning result from many sources, including inaccurate knowledge of the

vehicle’s starting position, a misalignment of the heading sensor, and the time-varying effects

of the sensors. Any errors present in the initial conditions will be propagated throughout

the vehicle run. Similarly, a misaligned compass causes a constant offset in all measurements

and translates over time into an estimated heading trajectory that deviates from the actual

vehicle trajectory. Finally, the constant drift in gyroscopes becomes significant with time.

1.3 Previous Work

Research has shown that with accurate pre-flight calibration, dead reckoning is able to ac-

curately calculate vehicle position for short periods of time, [9]. While the vehicle is at

rest, biases in accelerometers and gyroscopes can be obtained using measurements from the

inertial measurement unit as well as tilt and heading sensors. Once initial biases are known,

inertial navigation is possible for short periods of time before absolute positioning is required

to reset system error near zero.

When longer mission times are required, the drift characteristics of the sensors make it

necessary for position corrections to be introduced into the system from external sensors

such as GPS when on the surface or from an acoustic positioning system when underwater.

In [3], the authors showed this when they implemented an online extended Kalman filter

(EKF) that fused data from a low-frequency long-base-line acoustic positioning system and

a Doppler sonar system with a gyroscope and compass error model. Corrections from the

low-frequency sensors allowed the EKF to recursively estimate the bias parameters of the
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gyroscopes and compass.

The authors in [5], show that when space allows, larger sensors such as highly accurate

precision gyrocompasses and bottom lock Doppler sonar can be installed. The calibration

question then becomes how to align these sensors to correlate their measurements not only

with the vehicle frame but also with each other. The authors proposed a least-squares al-

gorithm to estimate the rotational misalignment between the sensors. The method utilized

singular value decomposition methods to calculate the rotation matrices. Navigation perfor-

mance was shown to be greatly improved with the accurate knowledge of sensor placements

in the AUV.

1.4 The ASCL AUV

The ASCL AUV’s inertial measurement unit (IMU) uses a commercial compass and a

custom-made sensor board. Three single axis gyroscopes are mounted on a circuit board

that aligns each gyro with an axis of rotation. A three-axis magnetometer and dual-axis

electrolytic inclinometer are part of the commercial-off-the-shelf (COTS) magnetic compass

made by True North Technologies (TNT). Table 1.1 gives specific information regarding the

performance of each sensor. Also available when the AUV is on the surface is a GPS receiver

for absolute position measurements.

1.5 Thesis Outline

This thesis examines in detail the steps required to calibrate and maintain gyro measure-

ments. The TNT compass comes with a calibration routine that can be performed before
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Table 1.1: Specifications of the ASCL AUV IMU

Angular Rate Performance: ±150 ◦/sec

Resolution: 0.005 ◦/sec

Magnetic Heading Accuracy: < 0.5◦

Pitch and Roll Performance ±40◦

Tilt Acc.: < 0.2◦

Absolute Position Accuracy: < 10meters

operating the vehicle. Therefore, this thesis assumes that the compass is calibrated and

all measurements are reliable. In Chapter 2, a system model will be developed to describe

the operation of the gyroscopes. Errors specific to gyro operation will also be modeled. In

Chapter 3, the developed model will be used to derive an online calibration algorithm to

identify and correct for errors in the gyro output. The algorithm is tested on simulated and

real data to analyze its performance. Once the data from the AUV is calibrated, Chapter 4

presents a Kalman Filter based dead reckoning algorithm, which is used to further explore

the benefits of calibrated gyro measurements. Finally, Chapter 5 will conclude the thesis

with observations on the performance of the dead reckoning algorithm and propose key steps

to be taken to further develop the inertial navigation system for the ASCL AUV.



Chapter 2

Rate Gyroscope

The rate gyroscope is a key element of a dead reckoning system. The integral relationship

between angular rate and angular position forms the basic building block upon which a dead

reckoning algorithm estimates vehicle position. This chapter examines the basic operation of

a rate gyro and derives a system model based on the integral relationship between compass

and gyro to characterize its performance errors.

2.1 Gyroscope Operation

The ASCL AUV is equipped with three strap-down, single-axis resonator gyroscopes from

Analog Devices. Resonating or vibratory gyroscopes are characterized by their quick reaction

times and, due to the few moving parts, are generally referred to as solid-state sensors. In

place of a spinning mass common in many gyros, vibratory gyroscopes operate using two

electrostatically driven resonating structures. The velocity created by the vibrating frames

allows a Coriolis force to be induced in the presence of an angular velocity, which is then

6
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sensed and converted to an output voltage proportional to the angular velocity, [1].

2.2 Modeling Gyroscope Performance

2.2.1 Identifying Gyroscope Errors

The output signal of a gyro is written as

ωm(t) = (1 + a)ω(t) + b (2.1)

where the measured angular rate, ωm(t), is expressed in terms of the true angular rate,

ω(t), and two unknown constants, a and b, which represent a scaling and a biasing of the

output, respectively. In the measured output, bias is caused by changes in temperature,

magnetic fields, and also by residual moments in the sensor itself. The level of excitation or

acceleration of the sensor does not affect the bias, however. Scaling results from changes in

temperature, and non-linearities affecting the ratio of output force to input force.

In addition to these error sources, there are also errors that must be modeled stochastically

as a zero-mean random bias caused by instabilities in the sensor performance. Variations in

sensor movements such as jitter in the sensor or vehicle frame can cause the output reading

to randomly drift with time. Since this error is not constant, it is very difficult to calibrate

out, [14]. For simplicity, all errors in bias and scaling are lumped together into two separate

error parameters. Rewriting (2.1) in terms of the measured angular rate is more convenient.

ω(t) = āωm(t) + b̄ (2.2)

with

ā =
1

1 + a
, and b̄ =

−b
1 + a

.
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Using (2.2) to express the gyroscope errors for the roll, pitch, and yaw body-coordinate axis,

φ, θ, ψ, respectively, yields a set of equations describing the gyroscope system as a whole.
ωφ(t)

ωθ(t)

ωψ(t)

 =


āφ 0 0

0 āθ 0

0 0 āψ



ωφ,m(t)

ωθ,m(t)

ωψ,m(t)

 +


b̄φ

b̄θ

b̄ψ

 (2.3)

2.2.2 Defining Coordinate Mappings

Figure (2.1) shows a diagram of the AUV body-fixed coordinate system, which will be used

to describe localized angular movements of the vehicle. A second coordinate frame, referred

Figure 2.1: Body fixed coordinate system used to describe angular motion in the body

frame,[7].

to here as the local-level or navigation frame, has its origin coincident to the body-fixed

frame: the positive z-axis points in the direction of the gravity vector and the x- and y-

axes point North and East, respectively. A frame in this orientation is often referred to

as the North-East-Down (NED) coordinate system. The angular position of the AUV is

measured using Euler angles referenced to the local-level coordinate system. Figure (2.2)

gives an illustration of these angles. Since the compass and gyros output measurements

are referenced to different coordinate frames, the model derived relating gyro and compass

measurements must include a transformation from the body-frame to the navigation-frame.
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Figure 2.2: Angular position represented in local-level frame,[7].

2.2.3 Derivation of Gyroscope Model

A compass exhibits long-term measurement stability, while a gyro is accurate over short time

periods. By comparing the two measurements in time, the error between them will in some

form describe the scale and bias errors inherent to the angular rate measurements.

The angular displacement of a rigid body with respect to the navigation-frame is expressed

using the Euler angles, φ, θ, ψ, representing roll, pitch, and yaw, respectively. To simplify

the notation, we will denote the vector of Euler angles by

η = [φ, θ, ψ]T ∈ R3 (2.4)

Body-fixed angular rates of a rigid body AUV, as measured by the gyros, are expressed as

ω(t) = [ωφ(t), ωθ(t), ωψ(t)]T ∈ R3. (2.5)

Integration of these angular rates does not yield physically meaningful angular displacements

since they cannot be directly compared to navigation-frame Euler angles. This issue can

be resolved by applying a mapping from body-fixed coordinates to navigation coordinates

defined by the proper rotation matrix, R(η(t)) : R3 → SO(3) where R(η(t)) is defined by

the product of three successive rotations, [13].

RN
B (η(t)) = Rx(φ(t))Ry(θ(t))Rz(ψ(t)), (2.6)



CHAPTER 2. RATE GYROSCOPE 10

where

Rx(φ(t)) =


1 0 0

0 cosφ(t) sinφ(t)

0 − sinφ(t) cosφ(t)

 (2.7)

Ry(θ(t)) =


cos θ(t) 0 − sin θ(t)

0 1 0

sin θ(t) 0 cos θ(t)

 (2.8)

Rz(ψ(t)) =


cosψ(t) sinψ(t) 0

− sinψ(t) cosψ(t) 0

0 0 1

 (2.9)

and Rx(φ(t)) ∈ SO(3) is the rotation about the x-axis by φ(t), Ry(θ(t)) ∈ SO(3) is the

rotation about the y-axis by θ(t), and Rz(ψ(t)) ∈ SO(3) is the rotation about the z-axis

by ψ(t). The superscript, N , and subscript, B in (2.6) signify the transformation from the

navigation coordinate frame to the body-fixed coordinate frame. The time derivative of (2.6)

is taken,

Ṙ(η(t)) = S(ω(t))R(η(t)), (2.10)

where S(ω(t)) : R3 → SS(3) is the skew symmetric matrix function.

S(ω(t)) =


0 −ωψ(t) ωθ(t)

ωψ(t) 0 −ωφ(t)

−ωθ(t) ωφ(t) 0

 (2.11)

The time derivative of the rotation matrix, (2.10), gives an implicit relationship between the

Euler angles measured by the compass and the angular rates measured by the gyros. Making

this relationship explicit by taking the time-derivative of (2.6) and solving for the angular

rates will achieve the goal of deriving a system model that relates gyro data to compass data.
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Alternately, (2.10) may also be expressed with respect to (2.7), (2.8), and (2.9) as

Ṙx(φ(t)) =
dR

dφ

dφ

dt
= φ̇S(i)Rx(φ(t))

Ṙy(θ(t)) =
dR

dθ

dθ

dt
= θ̇S(j)Ry(θ(t))

Ṙz(ψ(t)) =
dR

dψ

dψ

dt
= ψ̇S(k)Rz(ψ(t)),

(2.12)

where

i =


1

0

0

, j =


0

1

0

, and k =


0

0

1

 (2.13)

are unit vectors pointing in the x, y, z directions, respectively. Furthermore, two other prop-

erties are useful.

R(η(t))RT (η(t)) = RT (η(t))R(η(t)) = I and (2.14)

R(η(t))S(ω(t))RT (η(t)) = S(R(η(t))ω(t)). (2.15)

The time derivative, ṘN
B (η(t)), of (2.6) can now be easily calculated using the relationships,

(2.12), (2.14), and (2.15). Note that time dependence notation is suppressed for simplicity.

ṘN
B (η) =

d

dφ
(Rx(φ))Ry(θ)Rz(ψ)φ̇+Rx(φ)

d

dθ
(Ry(θ))Rz(ψ)θ̇ +Rx(φ)Ry(θ)

d

dψ
(Rz(ψ)) ψ̇

= S(i)Rx(φ)Ry(θ)Rz(ψ)φ̇+Rx(φ)S(j)Ry(θ)Rz(ψ)θ̇ +Rx(φ)Ry(θ)S(k)Rz(ψ)ψ̇

= S(i)Rx(φ)Ry(θ)Rz(ψ)φ̇+
(
Rx(φ)S(j)RT

x (φ)
)
Rx(φ)Ry(θ)Rz(ψ)θ̇

+
(
Rx(φ)

(
Ry(θ)S(k)RT

y (θ)
)
RT
x (φ)

)
Rx(φ)Ry(θ)Rz(ψ)ψ̇

= S(i)RN
B (η)φ̇+ S(Rx(φ)j)RN

B (η)θ̇ + S(Rx(φ)Ry(θ)k)R
N
B (η)ψ̇

(2.16)

Setting this expression equal to the right-hand side of (2.10) and taking advantage of the

linearity of a skew symmetric matrix function yields

S(ω(t)) = S(iφ̇+Rx(φ)jθ̇ +Rx(φ)Ry(θ)kψ̇), (2.17)
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which is simplified by taking the vector equivalent of the skew-symmetric matrices.
ωφ(t)

ωθ(t)

ωψ(t)

 =


φ̇(t)

0

0

 +Rx(φ)


0

θ̇(t)

0

 +Rx(φ)Ry(θ)


0

0

ψ̇(t)

 (2.18)

Expressing (2.18) in matrix notation gives an explicit expression for body-fixed angular rates

in terms of Euler angular rates.
ωφ(t)

ωθ(t)

ωψ(t)

 =


1 0 − sin θ(t)

0 cosφ(t) cos θ(t) sinφ(t)

0 − sinφ(t) cos θ(t) cosφ(t)



φ̇(t)

θ̇(t)

ψ̇(t)

 (2.19)

Inverting the coefficient matrix in (2.19) yields the desired mapping. The inversion is defined

only when θ(t) 6= ±nπ/2 for n = 1, 2, 3, ..., which corresponds to the vehicle’s nose not

pointing straight up or down.
φ̇(t)

θ̇(t)

ψ̇(t)

 =


1 sinφ(t) tan θ(t) cosφ(t) tan θ(t)

0 cosφ(t) − sinφ(t)

0 sinφ(t)
cos θ(t)

cosφ(t)
cos θ(t)



ωφ(t)

ωθ(t)

ωψ(t)

 (2.20)

Correcting for scale and bias errors in (2.20) with (2.3) accurately relates measured gyroscope

rates to the Euler rates.
φ̇(t)

θ̇(t)

ψ̇(t)

 =


1 sinφ(t) tan θ(t) cosφ(t) tan θ(t)

0 cosφ(t) − sinφ(t)

0 sinφ(t)
cos θ(t)

cosφ(t)
cos θ(t)





āφ 0 0

0 āθ 0

0 0 āψ



ωφ,m(t)

ωθ,m(t)

ωψ,m(t)

 +


b̄φ

b̄θ

b̄ψ


 (2.21)

y(t) =


1 0 0

0 1 0

0 0 1



φ(t)

θ(t)

ψ(t)


Throughout the remainder of this paper, (2.21) will be referred to as the system or plant

model.



Chapter 3

Gyroscope Calibration

When designing autonomous vehicles, it is desirable to minimize the amount of user interac-

tion. Calibration routines vary from look-up tables, [3], to real-time parameter identification,

[12]. The method chosen for a particular application will depend on the onboard processing

power available as well as the ease with which the system can be modeled. A look-up table

is an ideal solution for sensors that have predictable performance. Sensors with time-varying

errors are difficult to model and tend to require a more flexible calibration routine, which

will require more processing power.

3.1 Motivation

As mentioned in Chapter 2, the unknown parameters present in gyro performance vary

based on a number of factors that are difficult to model. Therefore, a real time parameter

identification algorithm is desirable. With the goal of autonomous operation, an adaptive

approach will be examined.

13



CHAPTER 3. GYROSCOPE CALIBRATION 14

Typically, when a system has a set of unknown parameters, a Kalman filter is applied to

the system after it has been augmented with unknown parameter states. This approach

was examined as a possible solution to the gyro parameter estimation problem. When

the parameters of the gyro are augmented in the state, the system is locally unobservable.

A Kalman filter requires that the system be locally observable to estimate the unknown

parameters accurately. Therefore, this approach could not be implemented. This section

presents the observability analysis of the system and shows why the system fails to be

observable.

A linear system,

ẋ(t) = A(t)x(t), x(t0) = x0

y(t) = C(t)x(t)
(3.1)

is called observable on a finite interval, [t0, tf ] if the initial state, x(t0) = x0, is uniquely

determined by the corresponding output y(t) for t ∈ [t0, tf ], [10]. That is, by using the

system output and the known system model, the initial state can be determined.

To test observability on the gyro model, (2.21), unknown states are first augmented into the
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system to generate a state vector, z(t) ∈ R9x1.

φ̇

˙̄aφ

˙̄bφ

θ̇

˙̄aθ

˙̄bθ

ψ̇

˙̄aψ

˙̄bψ



=



(āφωφ + b̄φ) + sinφ tan θ(āθωθ + b̄θ) + cosφ tan θ(āψωψ + b̄ψ)

0

0

cos(φ)(āθωθ + b̄θ)− sinφ(āψωψ + b̄ψ)

0

0

sinφ
cos θ

(āθωθ + b̄θ) + cosφ
cos θ

(āψωψ + b̄ψ)

0

0



y(t) =


1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0



(3.2)

The system (3.2) is linearized about an arbitrary trajectory by taking the Jacobian of state

and measurement equations

Ā(t) =
∂

∂z
f(z̄(t), ū(t), t)

B̄(t) =
∂

∂u
f(z̄(t), ū(t), t)

C̄(t) =
∂

∂z
h(z̄(t), ū(t), t)

(3.3)

where z̄(t) and ū(t) represent the nominal trajectory. Note that this system already has a

linear C matrix. The resulting system is

żδ(t) = Ā(t)zδ(t) + B̄(t)uδ(t), zδ(0) = zδ0

yδ(t) = C̄(t)zδ(t)
(3.4)

where Ā(t) ∈ R9x9, B̄(t) ∈ R9x3, and C̄(t) ∈ R3x9 for t ∈ [t0, tf ]. Observability is verified by

testing for invertibility of the observability Gramian,

M(t0, tf ) =

∫ tf

t0

ΦT (σ, t0)C̃
T (σ)C̃(σ)Φ(σ, t0)dσ (3.5)
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where ΦT (t, t0) is the transition matrix of the linearized system. Due to the complexity of

this system, solving for the transition matrix directly is particularly difficult. Therefore,

(3.5) is rewritten in differential form,

Ṁ(t, tf ) = −AT (t)M(t, tf )−M(t, tf )A(t)− CT (t)C(t), M(t0, tf ) = 0. (3.6)

The solution of (3.6) is computed numerically. Using numerical data collected during three

different vehicle actions: diving, steady-state straight-line trajectories, and turning, specific

instances of system stability can be examined.

Diving: [φ, θ, ψ, ωφ, ωθ, ωψ] = [15, -15, 90, 12, 10, 5]

Straight-Line: [φ, θ, ψ, ωφ, ωθ, ωψ] = [5, 5, 90, 4, 4, 4]

Turning: [φ, θ, ψ, ωφ, ωθ, ωψ] = [10, 5, 45, 10, 5, 15]

In each case, the yaw angle is arbitrary, as it does not appear in the system model. Gyroscope

error parameters are set to nominal values (āη = 1, b̄η = 0) because the system must be

observable when the error is assumed not to exist. In all cases, the rank(M) = 6 < 9

which means that the Gramian is not invertible. Therefore, the system cannot be observable

for any t ∈ [t0, tf ]. While observability may exist for some set of input and state values,

conditional observability of a system under normal operating conditions is not acceptable.

Therefore, a Kalman filter approach to the system identification is not feasible.

Another method must therefore be utilized to solve for the unknown parameters. By applying

an adaptive identifier algorithm, the nonlinear system can be used entirely to estimate true

parameter values. The goal of an adaptive identifier algorithm is to identify all unknown

system parameters by comparing estimated state values to a reference signal and recursively

adjusting the parameters to bring the error between estimated and reference (true) signals

to zero. At the same time, the algorithm keeps all signals bounded. Parameter values



CHAPTER 3. GYROSCOPE CALIBRATION 17

will be shown to converge under sufficient persistence of excitation. Applied to the gyro

system, excitation means that each axis senses sufficient angular rates over time such that

the identifier is able to converge upon the correct identifier values. When this condition is

not met, the parameters may converge to an incorrect value.

3.2 Adaptive Parameter Identification

We consider the class of systems with the state structure,

ẋ(t) = fT (t)β (3.7)

where fT (t) describes the system’s dynamics and β is a lumped vector of unknown parame-

ters. The output of the system is compared to a reference signal or system. The resulting

error signal forms the input to a set of parameter and state estimation update laws, which

adjust the system parameter values based on the magnitude of the error signal.

The gyro model is first rewritten in the desired system state structure before applying the

adaptive identifier. The following vectors are defined

fφ(t) =

ωφ,m(t)

1

 , fθ(t) =

ωθ,m(t)

1

 , fψ(t) =

ωψ,m(t)

1

 (3.8)

and

βφ =

āφ
b̄φ

 , βθ =

āθ
b̄θ

 , βψ =

āψ
b̄ψ

 . (3.9)

It will become useful to combine (3.9) into one vector

βη =


βφ

βθ

βψ

 (3.10)
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The vectors, (3.8) and (3.9), allow for the following substitution from (2.3),
āφ 0 0

0 āθ 0

0 0 āψ



ωφ,m(t)

ωθ,m(t)

ωψ,m(t)

 +


b̄φ

b̄θ

b̄ψ

 =


fTφ (t)βφ

fTθ (t)βθ

fTψ (t)βψ

 (3.11)

which is then substituted into (2.21).
φ̇(t)

θ̇(t)

ψ̇(t)

 =


1 sinφ(t) tan θ(t) cosφ(t) tan θ(t)

0 cosφ(t) − sinφ(t)

0 sinφ(t)
cos θ(t)

cosφ(t)
cos θ(t)



fTφ (t)βφ

fTθ (t)βθ

fTψ (t)βψ

 (3.12)

The trigonometric elements of the matrix of coefficients in (3.12) are replaced with the terms,

γi to allow for better readability.

γ1(φ(t), θ(t)) = sinφ(t) tan θ(t)

γ2(φ(t), θ(t)) = cosφ(t) tan θ(t)

γ3(φ(t)) = cosφ(t)

γ4(φ(t)) = − sinφ(t)

γ5(φ(t), θ(t)) =
sinφ(t)

cos θ(t)

γ6(φ(t), θ(t)) =
cosφ(t)

cos θ(t)

Finally, the vectors fTφ (t), fTθ (t), fTψ (t) are moved into the coefficient matrix to isolate the

unknown parameters.
φ̇(t)

θ̇(t)

ψ̇(t)

 =


fTφ (t) γ1(φ(t), θ(t))fTθ (t) γ2(φ(t), θ(t))fTψ (t)

0 γ3(φ(t))fTθ (t) γ4(φ(t))fTψ (t)

0 γ5(φ(t), θ(t))fTθ (t) γ6(φ(t), θ(t))fTψ (t)



βφ

βθ

βψ

 (3.13)

The gyroscope model is now in the form, η̇ = F T (t)βη where F T (t) is the system dynamics,

and βη is the vector of unknown parameters.
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3.2.1 Defining Parameter Update Functions

Upon the system structure, (3.7), the identifier is designed. Error equations for the state

and parameters are defined as

η̃(t) = η(t)− η̂(t) (3.14)

˙̃η(t) = η̇(t)− ˙̂η(t) (3.15)

β̃η(t) = βη − β̂η(t) (3.16)

˙̃βη(t) = − ˙̂
βη(t). (3.17)

where

η(t) =
[
φ(t) θ(t) ψ(t)

]T
and βη =

[
βφ βθ βψ

]T
(3.18)

are the previously defined measurements,

η̂(t) =
[
φ̂(t) θ̂(t) ψ̂(t)

]T
and β̂η(t) =

[
β̂φ(t) β̂θ(t) β̂ψ(t)

]T
(3.19)

are corresponding estimates, and

η̃(t) =
[
φ̃(t) θ̃(t) ψ̃(t)

]T
and β̃η(t) =

[
β̃φ(t) β̃θ(t) β̃ψ(t)

]T
(3.20)

are the errors between measurements and estimates. Note that β̇η = 0 since the true para-

meter error is a constant. Based on these error equations, a Lyapunov function candidate is

defined as

V (η̃, β̃η) =
1

2
η̃T (t)η̃(t) +

1

2
β̃Tη (t)Λ−1β̃η(t)

=
1

2
φ̃T (t)φ̃(t) +

1

2
θ̃T (t)θ̃(t) +

1

2
ψ̃T (t)ψ̃(t)

+
1

2
β̃Tφ (t)Λ−1

φ β̃φ(t) +
1

2
β̃Tθ (t)Λ−1

θ β̃θ(t)

+
1

2
β̃Tψ (t)Λ−1

ψ β̃ψ(t).

(3.21)

such that V (η̃, β̃η) > 0 and Λ ∈ R6×6 is a tuning matrix

Λ =


Λφ 0 0

0 Λθ 0

0 0 Λψ

 (3.22)
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with

Λφ =

λ1 0

0 λ2

 Λθ =

λ3 0

0 λ4

 Λφ =

λ5 0

0 λ6

 (3.23)

for λi > 0. The corresponding time derivative is

V̇ (η̃, β̃η) = φ̃T (t) ˙̃φ(t) + θ̃T (t) ˙̃θ(t) + ψ̃T (t) ˙̃ψ(t)

− β̃Tφ (t)Λ−1
φ

˙̂
βφ(t)− β̃Tθ (t)Λ−1

θ
˙̂
βθ(t)

− β̃Tψ (t)Λ−1
ψ

˙̂
βψ(t)

(3.24)

where the relationship from (3.17) has been used. We choose update laws

˙̂η(t) = −Kηη̃(t) + F T (t)β̂η(t) and (3.25)

˙̂
βη(t) = ΛF (t)η̃(t) (3.26)

such that V̇ becomes negative semi-definite. The matrix

Kη =


Kφ 0 0

0 Kθ 0

0 0 Kψ

 (3.27)

represents the scalar gains for each axis to control the rate of update. Equations (3.14) and

(3.15) are used to rewrite (3.25) in terms of ˙̃η(t).

˙̃η(t) = η̇(t)− ˙̂η(t)

= F T (t)βη +Kηη̃(t)− F T (t)β̂η(t)

= Kηη̃(t) + F T (t)β̃η(t)

(3.28)

Writing (3.26) and (3.28) explicitly in terms of each axis gives the six update equations.

˙̃φ(t) = Kφφ̃(t) + fTφ (t)β̃φ(t)

+ γ1(φ(t), θ(t))fTθ (t)β̃θ(t)

+ γ2(φ(t), θ(t))fTψ (t)β̃ψ(t)

(3.29)
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˙̃θ(t) = Kθθ̃(t)

+ γ3(φ(t))fTθ (t)β̃θ(t)

+ γ4(φ(t))fTψ (t)β̃ψ(t)

(3.30)

˙̃ψ(t) = Kψψ̃(t)

+ γ5(φ(t), θ(t))fTθ (t)β̃θ(t)

+ γ6(φ(t), θ(t))fTψ (t)β̃ψ(t)

(3.31)

and

˙̂
βφ(t) = Λφfφ(t)φ̃(t) (3.32)

˙̂
βθ(t) = γ1(φ(t), θ(t))Λθfθ(t)φ̃(t)

+γ3(φ(t))Λθfθ(t)θ̃(t) (3.33)

+γ5(φ(t), θ(t))Λθfθ(t)ψ̃(t)

˙̂
βψ(t) = γ2(φ(t), θ(t))Λψfψ(t)φ̃(t)

+ γ4(φ(t))Λψfψ(t)θ̃(t)

+ γ6(φ(t), θ(t))Λψfψ(t)ψ̃(t)

(3.34)
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3.2.2 Lyapunov Stability Analysis

The negative semi-definiteness of the Lyapunov candidate can now be verified using the

update laws. Note that time dependence notation is suppressed for simplicity.

V̇ (η̃, β̃η) = φ̃TKφφ̃+ θ̃TKθθ̃ + ψ̃TKψψ̃

+ φ̃TfTφ β̃φ + γ1φ̃
TfTθ β̃θ + γ2φ̃

TfTψ β̃ψ

+ γ3θ̃
TfTθ β̃θ + γ4θ̃

TfTψ β̃ψ + γ5ψ̃
TfTθ β̃θ

+ γ6ψ̃
TfTψ β̃ψ (3.35)

− β̃Tφ fφφ̃− γ1β̃
T
θ fθφ̃− γ2β̃

T
ψ fψφ̃

− γ3β̃
T
θ fθθ̃ − γ4β̃

T
ψ fψθ̃ − γ5β̃

T
θ fθψ̃

− γ6β̃
T
ψ fψψ̃

= φ̃T (t)Kφφ̃(t) + θ̃T (t)Kθθ̃(t)

+ ψ̃T (t)Kψψ̃(t)

= η̃T (t)Kηη̃(t) (3.36)

The final equation is obtained by observing that the terms in (3.35) are scalars. By requiring

that Kη < 0, it is apparent that V̇ (η̃, β̃η) is negative semi-definite. Barbalat’s Lemma is

used to state the convergence of the state estimation errors.

Lemma 3.2.1 (Barbalat’s Lemma) Let φ : R → R be a uniformly continuous function

on [0,∞). Suppose that limt→∞
∫ t

0
φ(τ)dτ exists and is finite. Then,

φ(t)→ 0 as t→∞

To assess boundedness and convergence, we note the following

1. η̃(t) and β̃η(t) are bounded since the time derivative of the Lyapunov function (3.36)

is negative semi-definite.



CHAPTER 3. GYROSCOPE CALIBRATION 23

2. By design of the physical AUV, η(t) and ω(t) are bounded. Therefore, since βη is a

constant, η̇(t) is also bounded from (3.13).

3. Using points 1) and 2), η̂(t) is bounded from (3.14) and β̂η(t) is bounded from (3.16).

4. ˙̂η(t) is bounded since the terms on the right-hand side of (3.25) are bounded.

5. ˙̃η(t) is bounded from (3.15) and points 2) and 4).

6. From (3.36), we conclude that V (η̃, β̃η) is bounded and continuous and from points

1) and 5), V̈ (η̃, β̃η) = ˙̃ηT (t)Kηη̃(t) + η̃T (t)Kη
˙̃η(t) is bounded. Therefore, V̇ (η̃, β̃η) is

continuous. Using Barbalat’s Lemma we can conclude that limt→∞ V̇ (η̃, β̃η) = 0 which

implies that η̃(t)→ 0 as t→∞, [4].

7. From point 6) and the parameter update law, (3.26), it follows that limt→∞
˙̃βη(t) = 0.

Therefore, all state variables and parameters are bounded. The state identification error,

η̃(t), and the derivative of the parameter estimation error, ˙̃βη(t) both asymptotically ap-

proach zero. Parameter estimation is only shown to be bounded here and it cannot be

concluded that the parameter error will asymptotically converge to zero. However, the gen-

eral system used in this derivation is well known to have parameter convergence in practice,

[11], [12], as it will be shown here as well.

3.2.3 Simulation of Adaptive Identifier

To measure the algorithm’s performance, test data is generated with a 6 DOF Matlab-based

program created by Daniel H. Harris at the University of Maryland. Vehicle dynamics are

simulated using hydrodynamic information tailored for a vehicle similar in size to the ASCL

AUV. Attitude and angular rates are simulated for 8 different trajectories. The output

angular rate data from the simulator is scaled and biased with gyroscope errors before the
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adaptive identifier algorithm is applied to estimate these scale and bias errors. The discrete

time versions of the state and parameter update equations are used in the algorithm,

η̂(k) = η̂(k − 1) + h[−Kηη̃(k) + F T (k)β̂η(k)] (3.37)

β̂η(k) = β̂η(k − 1) + h[ΛF (k)η̃(k)] (3.38)

where h is the sample period and k ≥ 0. The initial state estimates are set to the initial

angular orientation measurements and the initial parameter estimates are set to āi = 1 and

b̄i = 0 for i = φ, θ, ψ. Selecting the elements of Kη and Λ in (3.37) and (3.38) to provide

acceptable convergence is mostly a trial and error process, [12]. However, after choosing a

few different values and adjusting them based on convergence preferences, it was found that

setting the constants to

Kφ = Kθ = Kψ = −0.75

and

Λφ = Λθ = Λψ =

2 0

0 0.2


provides acceptable estimation error. For all simulations, the gyroscope scale and bias factors

are set to the values located in Table 3.1. Figure (3.1) contains the vehicle trajectories for

Table 3.1: Simulation settings.

Axis a b ā b̄

x 0.1 -0.1 0.9091 0.0909

y 0.1 0.1 0.9091 -0.0909

z -0.1 0.1 1.1111 -0.1111

four of the eight simulated paths, while Figures (3.2) through (3.5) show the calibration

results from four of the simulated paths. Finally, the parameter convergence is shown for

each path in Figures (3.6) through (3.9). In order to obtain a more reasonable simulation,

zero mean, Gaussian noise is added to the simulated compass and gyro data.
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(a) Path 2 (b) Path 3

(c) Path 5 (d) Path 7

Figure 3.1: Path trajectories for simulation of gyroscope calibration.
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(a) Roll gyroscope response. (b) Roll gyroscope response error.

(c) Pitch gyroscope response. (d) Pitch gyroscope response error.

(e) Yaw gyroscope response. (f) Yaw gyroscope response error.

Figure 3.2: Adaptive identifier simulation, path 2.
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(a) Roll gyroscope response. (b) Roll gyroscope response error.

(c) Pitch gyroscope response. (d) Pitch gyroscope response error.

(e) Yaw gyroscope response. (f) Yaw gyroscope response error.

Figure 3.3: Adaptive identifier simulation, path 3.
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(a) Roll gyroscope response. (b) Roll gyroscope response error.

(c) Pitch gyroscope response. (d) Pitch gyroscope response error.

(e) Yaw gyroscope response. (f) Yaw gyroscope response error.

Figure 3.4: Adaptive identifier simulation, path 5.
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(a) Roll gyroscope response. (b) Roll gyroscope response error.

(c) Pitch gyroscope response. (d) Pitch gyroscope response error.

(e) Yaw gyroscope response. (f) Yaw gyroscope response error.

Figure 3.5: Adaptive identifier simulation, path 7.
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(a) Roll parameter convergence, path 2.

(b) Pitch parameter convergence, path 2.

(c) Yaw parameter convergence, path 2.

Figure 3.6: Adaptive identifier simulation, path 2 convergence.
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(d) Roll parameter convergence, path 3.

(e) Pitch parameter convergence, path 3.

(f) Yaw parameter convergence, path 3.

Figure 3.7: Adaptive identifier simulation, path 3 convergence.
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(a) Roll parameter convergence, path 5.

(b) Pitch parameter convergence, path 5.

(c) Yaw parameter convergence, path 5.

Figure 3.8: Adaptive identifier simulation, path 5 convergence.
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(d) Roll parameter convergence, path 7.

(e) Pitch parameter convergence, path 7.

(f) Yaw parameter convergence, path 7.

Figure 3.9: Adaptive identifier simulation, path 7 convergence.
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Figures (3.6) through (3.9) illustrate that the parameters converge. Tables 3.2 through 3.4

contain the coefficient estimations generated by the adaptive identifier algorithm for the eight

different AUV trajectories. The paths with the lowest level of gyroscope excitation resulted in

the worst coefficient estimations, whereas the paths with higher levels of excitation produced

better estimates.

Table 3.2: Adaptive identifier simulation results, X gyroscope.

Path Coef. Estimate % Error

ā b̄ ā b̄

1 0.9192 0.0919 1.12% 1.04%

2 0.9109 0.0911 0.19% 0.16%

3 0.9112 0.0911 0.23% 0.16%

4 0.9137 0.0913 0.51% 0.47%

5 0.9025 0.0906 0.73% 0.35%

6 0.9097 0.0913 0.07% 0.40%

7 0.9933 0.0927 9.26% 1.93%

8 0.9109 0.0911 0.20% 0.21%

The simulation results conclusively indicate that the adaptive algorithm is a promising so-

lution to real-time parameter identification of gyro errors. Convergence to the correct error

values is largely dependent on the excitation of the particular axis. When applying this

algorithm to real data, the vehicle run will have to have sufficient excitation to cause the

parameters to converge to true values.
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Table 3.3: Adaptive identifier simulation results, Y gyroscope.

Path Coef. Estimate % Error

ā b̄ ā b̄

1 0.9058 -0.0905 0.36% -0.42%

2 0.9096 -0.0910 0.06% -0.05%

3 0.9098 -0.0912 0.08% -0.27%

4 0.9103 -0.0907 0.13% -0.25%

5 0.9103 -0.0922 0.13% -1.41%

6 0.9100 -0.0919 0.09% -1.13%

7 0.8717 -0.0838 4.11% -7.84%

8 0.9087 -0.0909 0.04% -0.04%

Table 3.4: Adaptive identifier simulation results, Z gyroscope.

Path Coef. Estimate % Error

ā b̄ ā b̄

1 0.9223 -0.0330 17.00% -70.34%

2 1.0904 -0.1089 1.86% -2.03%

3 1.0933 -0.1086 1.61% -2.29%

4 1.0983 -0.1125 1.15% -1.25%

5 1.0824 -0.1080 2.58% -2.81%

6 1.0809 -0.1079 2.72% -2.88%

7 0.9737 -0.0067 12.37% -93.96%

8 0.8913 -0.0623 19.78% -43.89%
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3.3 Adaptive Identifier Performance on Real Data

Using data recorded by the ASCL AUV during test runs in Claytor Lake, VA, the adaptive

algorithm performance is tested again. One question to be answered with real data is whether

the tuning constants, Kη, and Λ must be adjusted depending on the surrounding water

dynamics. Performance, such as speed of convergence and damping, will depend largely on

the conditions of the environment through which the AUV is running. Claytor Lake has

relatively calm water under the surface with slow and constant water currents in a SSW

direction.

Two runs are shown here, the first is a straight-line trajectory heading south and the second

is a square trajectory. Information regarding each leg of the runs is located in Tables 3.5

and 3.6.

Table 3.5: Commands for straight-line trajectory.

Leg Heading (deg) Time(sec) Depth (m) Speed (rpm)

1 180 30 0 1200

2 180 120 0.7 1200

3 180 30 0 1200

Figures (3.10) and (3.12) show actual data recorded by the AUV while Figures (3.11) and

(3.13) display the scale and bias parameter convergence on each axis. From the plots (b),

(d), and (f) in Figures (3.10) and (3.12), one can see the difference in driving on the surface

from driving underwater. The large oscillations in surface sensor data is due to surface chop

and boat wake. For this reason, the adaptive algorithm is not turned on until the AUV

enters the underwater portion of the trajectory.
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(a) Roll angle data. (b) Roll gyroscope data.

(c) Pitch angle data. (d) Pitch gyroscope data.

(e) Yaw angle data. (f) Yaw gyroscope data.

Figure 3.10: Straight-line trajectory sensor data.
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(a) Roll parameter convergence. (b) Roll error, φ̂(t).

(c) Pitch parameter convergence. (d) Pitch error, θ̂(t).

(e) Yaw parameter convergence. (f) Yaw error, ψ̂(t).

Figure 3.11: Straight-line parameter convergence.
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(a) Roll angle data. (b) Roll gyroscope data.

(c) Pitch angle data. (d) Pitch gyroscope data.

(e) Yaw angle data. (f) Yaw gyroscope data.

Figure 3.12: Square trajectory sensor data.
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(a) Roll parameter convergence. (b) Roll error, φ̂(t).

(c) Pitch parameter convergence. (d) Pitch error, θ̂(t).

(e) Yaw parameter convergence. (f) Yaw error, ψ̂(t).

Figure 3.13: Square parameter convergence.
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Table 3.6: Commands for square trajectory.

Leg Heading (deg) Time(sec) Depth (m) Speed (rpm)

1 90 30 0 1200

2 90 60 0.7 1200

3 0 60 0.7 1200

4 270 60 0.7 1200

5 180 60 0.7 1200

6 180 30 0 1200

3.3.1 Calibration Considerations

Unlike simulated data where parameter convergence occurs for nearly all reasonable choices

for tuning gains, real data is less clean and requires extensive tuning to achieve desired con-

vergence behaviors. Experience has shown that parameter convergence is not only dependent

on the tuning gains but also on the initial conditions in the system. With careful tuning,

it has been observed that this dependence can be decreased significantly but not entirely

removed.

Through a trial and error approach, the tuning gains are set to

Λ =



0.6 0 0 0 0 0

0 0.55 0 0 0 0

0 0 5.0 0 0 0

0 0 0 0.6 0 0

0 0 0 0 0.7 0

0 0 0 0 0 0.6


(3.39)

and Kφ = −1, Kθ = −1, and Kψ = −1. While the ideal solution is to tune specifically for

each vehicle run, the time commitment required makes this option not feasible. Referring to
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Figure (3.13c) we can see that the parameters did not converge immediately, which illustrates

the lack of optimality of the gain values chosen.

Figure (3.13e) shows the convergence of the yaw rate gyro parameters. After each turn, the

parameters converged to different values. This observation shows that this axis does not

have sufficient persistence of excitation to converge at once. Only in the turns is this axis

excited enough to converge but during the straight portions of the trajectory the parameters

cannot converge. In general, the pitch and roll axes do not experience this problem since the

AUV rolls and pitches a few degrees consistently throughout the vehicle run. To remedy the

lack of excitation on the yaw axis, a specific vehicle trajectory needs to be designed which

will guarantee excitation on the yaw axis to allow for accurate parameter convergence. Such

a trajectory will give confidence that all parameters have converged to their true values.



Chapter 4

Dead Reckoning

The Extended Kalman Filter (EKF) provides a solution for handling noisy measurements

in a noisy system. It provides a unique method that is particularly useful in navigation

algorithms to take advantage of the gyroscope’s short-term stability and the compass and

tilt sensors’ long-term reliability. By taking two sensors and fusing their data by means of

a Kalman filter, one can obtain the optimal mixing between measurements. Data mixing

is also useful when intermittent GPS is available to provide occasional ground truth to the

estimated position.

4.1 Extended Kalman Filter

4.1.1 Problem Setup

A detailed description of the EKF is given in [8] and [15]. A brief overview is provided here.

The EKF is a means of estimating the state vector, x ∈ Rn, of a nonlinear system governed

43
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by the following nonlinear difference equation

xk = f(xk−1, uk−1, wk−1) (4.1)

with a measurement vector, zk ∈ Rm, described by

zk = h(xk, vk) (4.2)

where uk−1 is the system input vector and wk and vk are process and measurement noise

with covariances, Qk and Rk, respectively. The system must be linearized by taking the

jacobian of the state and measurement equations,

Ak =
∂f

∂x
(x̂k−1, uk−1, 0) (4.3)

Bk =
∂f

∂u
(x̂k−1, uk−1, 0) (4.4)

Hk =
∂h

∂x
(x̂k, 0) (4.5)

where x̂k is an estimation of the state vector. Using the linearized system, the EKF is

implemented in a recursive two-step process

Prediction Stage

x̂k|k−1 = f(x̂k−1, uk−1, 0) (4.6)

Pk|k−1 = AkPk−1A
T
k +BkΓk−1B

T
k +Qk−1 (4.7)

Correction Stage

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1 (4.8)

x̂k = x̂k|k−1 +Kk(zk − h(x̂k|k−1, 0)) (4.9)
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Pk = (I −KkHk)Pk|k−1 (4.10)

where Γk is the noise covariance associated with the input vector and Kk is the Kalman gain

matrix. One must keep in mind that global system properties such as observability are lost

in the linearized system estimation.

4.2 Applying the Extended Kalman Filter

Applying the EKF to the ASCL AUV system dynamics is a straightforward application of

the vehicle’s kinematic model for angular position and the gyro plant model for angular

velocity. Inputs into the system are GPS and angular rates. The state vector, sk is defined

as

sk =
[
xk yk zk φk θk ψk

]T
(4.11)

and the input vector is

uk =
[
ωφ,k ωθ,k ωψ,k

]T
. (4.12)

The states are updated, when available, with x and y measurements from GPS, z from the

depth sensor, and the roll, pitch, and yaw angles measured by the compass. In discrete time,

the kinematic and gyro plant models describing the state space system is.



xk

yk

zk

φk

θk

ψk


=



xk−1

yk−1

zk−1

φk−1

θk−1

ψk−1


+ h



V cosψk−1 cos θk−1

V sinψk−1 cos θk−1

−V sin θk−1

ωx,k−1 + sinφk−1 tan θk−1ωy,k−1 + cosφk−1 tan θk−1ωz,k−1

cosφk−1ωy,k−1 − sinφk−1ωz,k−1

sinφk−1

cos θk−1
ωy,k−1 + cosφk−1

cos θk−1
ωz,k−1


(4.13)
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Here, V represents the linear velocity of the AUV in the body-fixed positive x-direction,

which is experimentally determined from field experiments. Before the algorithm is applied,

A, B, and H, are calculated from (4.3) and (4.4). Since the system model does not change

during operation, the linearized system matrices are used directly in the EKF.

The covariance matrices, Q and R, are determined by a method similar to the tuning of the

adaptive filter gains. For this system, the value of R is tuned such that when the AUV is on

the surface of the water, GPS is trusted almost exclusively. When the AUV dives below the

surface, the inertial measurements are trusted exclusively. Thus, during underwater travel

the states, x and y, are only estimations of the vehicle position since GPS is not available

for the correction stage.

Since the model used to describe the motion of the AUV is kinematic, vehicle dynamics

are ignored. During complex turning maneuvers such as diving, rising, and turning, this

approximation is especially poor, generating large errors in the estimated position. Increasing

Q to add system noise provides enough error to estimate the errors caused by the angle of

attack.

4.3 Results

The 6 six state EKF from section 4.2 is applied to the straight-line and the square trajectories

analyzed in Chapter 3. Figure (4.1) shows that the EKF does an excellent job estimating

the basic shape of the trajectories. It becomes clear that there is an error in the heading

measurements though. The compass is known to have an offset. Also, the heading control on

the AUV is only a proportional controller making convergence to the commanded heading

difficult. Further, the kinematic model does not account for the effects of currents in the

water. All these error sources contribute to the error between dead reckoning and GPS
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(a) Straight-line trajectory position estimation.

(b) Square trajectory position estimation.

Figure 4.1: Dead Reckoning of the straight-line and square trajectories.
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positioning. With these observations in mind, the effects of gyro calibration are examined.

4.4 Gyro Calibration Effects on Dead Reckoning

We are interested in knowing the benefits that calibrated gyro readings have on the dead

reckoning algorithm. Therefore, the EKF is applied to the selected trajectories using both

calibrated and uncalibrated gyro data. The resulting position estimations are shown in

figures (4.2) and (4.3). The axes have been stretched to make plot details more visible.

Figure 4.2: Comparison of calibrated vs. uncalibrated gyro on the dead reckoned position

for straight-line trajectory.
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Figure 4.3: Comparison of calibrated vs. uncalibrated gyro on the dead reckoned position

for square trajectory.

The errors resulting from an uncalibrated gyro are small as is expected on the straight-line

trajectory since the error is small, (µ = .25◦). However, using the calibrated data, the dead

reckoned position estimation moves closer to the GPS signal received upon rising to the

surface. The square trajectory is a relatively short run with each leg lasting only 60 seconds.

It is therefore, difficult to make any conclusions about the effects of the gyro calibration.

Unfortunately, not many conclusions can be made about gyro calibration effects on dead

reckoning without ground truth position data to give insight into the specific sources of dead
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reckoning error. When the ASCL receives a Doppler velocity log (DVL) more conclusive

results can be presented.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

A real time parameter estimation algorithm as a method to stabilize the dead reckoned

position has shown very promising results. The algorithm’s ability to adapt to the changing

parameter values as the time interval increases is an integral feature that enhances the

capabilities of the AUV. Missions with longer bottom times are now a possibility. A greater

confidence can be placed in the precision of the gyros, paving the way for more complex

trajectories that include a greater variety of maneuvering patterns instead of straight leg

patterns with minimal turning.

The dead reckoning routine has shown estimating a vehicle’s position with minimal onboard

sensors is a possibility. Given the tolerances on the sensors installed on the ASCL AUV,

significant room for improvements in the accuracy and confidence of position estimation

are still possible and well within reach with minimal support equipment such as external

positioning systems.
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5.2 Future Work

While the calibration of the gyros has shown excellent results, there is still much room for

improvements. Theory to support the convergence of parameter values would assist in the

understanding of the algorithm’s performance. A method with which to dynamically adjust

the tuning matrices based on estimation error will give more freedom to the AUV allowing

for calibration in rougher environments.

Position estimation does have a long way to go before becoming a mature and trustworthy

algorithm. Many external factors are ignored in the current version of the dead reckoning

EKF. Merging position estimation with water current estimation is a first step. Known

currents can be added into the state estimator to adjust the position of the AUV at each

time step. Further, the EKF can be used to determine offsets in the compass reading based

on GPS points before and after straight-line underwater trajectories. By taking numerous

heading measurements with this method in varying directions, a least squares approach can

be applied to develop a heading offset table to be included as a variable in the EKF. Much

testing will be needed to further analyze the many details involved. The work presented in

this thesis forms the foundation for vehicle navigation.
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