

University of Southern Queensland

Faculty of Engineering and Surveying

The Autonomous Unmanned Aerial Surveillance
Vehicle

Navigation and User Interface

A dissertation submitted by

Soz Deja Knox

in fulfilment of the requirements of

Courses ENG4111 and ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Electrical and Electronic)

Submitted: October, 2005

Abstract

There has been a steep growth, throughout the World, in civilian UAV applications.

UAVs offer cost effective alternatives for many applications, as they enable objectives

be carried out without the risk to pilots. In terms of crop surveillance, they offer a cheap

alternative to satellite and manned aerial imagery. These current techniques are limited

due to cloud cover, and poor image capture resolution. By flying a UAV at low

altitudes, these limitations may be greatly reduced. With the recent financial

commitment from the Queensland State Government, to the funding of a UAV research

and development facility, the future of UAV technology and its potential market is

being recognized. Current UAV navigation and guidance packages on the market are

prohibitively expensive. This paper describes the design and implementation of a cheap

navigation and user interface for the specific purpose of carrying out surveillance over a

pre-determined flight path in a UAV. The system has been designed assuming a suitable

automatic flight control system is available, for receipt of the guidance outputs.

By using a HC12 microprocessor, GPS, compass and transceivers, in conjunction with a

navigation algorithm, guidance of the UAV is made possible by producing heading

error and altitude to feed to the automatic flight control system of a UAV. A digital

camera and electronic trigger unit are used for taking surveillance photos over the pre-

determined path. A user interface has been designed for the entering of four waypoints

(desired path) and includes a telemetry downlink for real time visual indication of UAV

status, including desired heading, current heading, altitude, position, GPS link status,

downlink communication status, and raw data. A prototype of the system is designed,

implemented and built, with appropriate risk control measures applied as identified in

the project Risk Assessment.

The prototype system described in this dissertation successfully carries out navigation,

guidance and surveillance over a pre-determined flight path. Simulated testing using a

trolley guided by hand, communicating wirelessly to a ground control station with user

interface, has proven the successful design, implementation and final integration of the

individual elements.

Improvements and modifications are suggested that may enhance the current features of

this system, however, successful implementation of the prototype system in this project

has proven that UAV surveillance can be carried out, using cheap but effective methods.

UNIVERSITY OF SOUTHERN QUEENSLAND

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and

Surveying, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk

of the Council of the University of Southern Queensland, its Faculty of Engineering and

Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to

contribute to the overall education within the student’s chosen degree program. This

document, the associated hardware, software, drawings, and other material set out in the

associated appendices should not be used for any other purpose: if they are so used, it is

entirely at the risk of the user.

Prof G Baker

Dean

Faculty of Engineering and Surveying

DISCLAIMER PAGE

Certification

I certify that the ideas, designs and experimental work, results, analyses and conclusions
set out in this dissertation are entirely my own effort, except where otherwise indicated
and acknowledged.

I further certify that the work is original and has not been previously submitted for
assessment in any other course or institution, except where specifically stated.

Soz Deja Knox

Student Number: 0039911442

 Signature

 Date

Acknowledgements

I would like to thank the following people and organisations who have made completion

of this project possible.

• My supervisors, Mark Phythian and LEUT Kathryn Burr who managed to

answer my questions or point me in the right direction over and over again

throughout the year,

• Terry Byrne for his technical expertise, enthusiasm and for the excellent idea in

the first place,

• The Royal Australian Navy who sponsored me financially in the past three

years. I would not have been able to focus so much of my energy into this

project, thereby gaining as much as I have through this process, without the

freedom provided me.

• Craig Littleton, Dean Thompson and Michael Costa for putting up with me

everyday, and

• My two beautiful dogs- Rooster and Dex.

Soz Knox

University of Southern Queensland

October 2005

vii

Table of Contents

Abstract ii

Certification v

Acknowledgements vi

Table of Contents vii

Chapter 1 Introduction 17

1.1 History of UAV Development 18

1.2 Project Background 19

1.3 Project Aim 20

1.3.1 Operational Requirements 20

1.3.2 Performance Requirements 20

1.3.3 Constraints 21

1.4 Project Objectives 21

1.5 Project Methodology 22

1.6 Aspects of Ethical Responsibility 25

1.7 Dissertation Structure 25

Chapter 2 Navigation and guidance 28

2.1 GPS 30

viii

2.2 Compass 31

2.3 Navigation Strategy 32

Chapter 3 Image Capture and User Interface 34

3.1 Image Capture 34

3.2 User Interface and Communications 36

Chapter 4 System Architecture 38

4.1 Original Concept 38

4.2 Resource Analysis 40

Chapter 5 Risk Assessment 43

5.1 Identifying Risks 44

5.2 Evaluating Risks 45

5.3 Risk Control 46

Chapter 6 Navigation System Hardware Design and Implementation 49

6.1 Flight Computer 49

6.1.1 SPI 52

6.1.2 SCI 54

6.1.3 CAN 56

6.2 Development Tools 57

6.2.1 TwinPEEKs Monitor Program 58

6.2.2 ImageCraft ICC12 V6 59

6.3 Sensors 59

6.3.1 GPS 60

6.3.1.1 GPS Testing 62

6.3.2 Compass 62

6.3.2.1 Compass Calibration 65

ix

6.3.2.2 Compass Testing 66

6.3.2.3 Mitigation of Incorrect Heading Provision Risk 66

Chapter 7 Image Capture and User Interface Implementation 68

7.1 Ground Control Station 68

7.1.1 Data link 69

7.1.1.1 Transceiver Testing 70

7.2 Image Capture System 71

7.2.1 Image Capture System Test 71

7.3 Hardware Integration 72

Chapter 8 Software Design and Implementation 73

8.1 Navigation Algorithm 73

8.2 GPS Message Holder 75

8.3 Compass Interface 75

8.4 Camera Trigger Module 77

8.5 User Interface (GUI) 77

8.5.1 GUI Behaviour 81

8.6 Inter-Processor Communications 82

8.7 Validation and Testing 83

8.7.1 Navigation 83

8.7.2 User Interface 84

Chapter 9 System Validation and Testing 85

9.1 First System Test Method 85

9.2 Results 87

9.3 Discussion 88

9.3.1 Problem Rectification 88

x

9.4 Second System Test Method 89

9.5 Results 91

Chapter 10 System Performance Discussion 93

Chapter 11 Conclusions and Recommendations 95

11.1 Overall Performance 95

11.2 Recommendations for Further Work 97

References 99

Appendix A- Project Specification 102

Appendix B- 68HC(9)12D60 Block Diagram 104

Appendix C- Card12 Schematic 106

Appendix D- NMEA Transmitted Sentences GPS 35LP 107

Appendix E- GPS Communications Assembly Language Program 113

Appendix F- Raw Captured GPS Data 117

Appendix G- HC12 Source Code 119

G.1 navigationalgorithm.c 121

G.2 hc12.h 127

G.3 GPSMessageHolder.h 130

G.4 GPSMessageHolder.c 131

G.5 compass.h 134

G.6 compass.c 135

G.7 can.h 137

xi

G.8 can.c 138

Appendix H- User Interface Source Code 139

H.1 Main.java 141

H.2 GCSFrame.java 142

H.3 WaypointPanel.java 144

H.4 SerialConnection.java 148

H.5 SerialParameters.java 153

H.6 SerialConnectionException.java 159

H.7 UAVStatusPanel.java 160

H.8 TelemetryPane.java 162

H.9 SevenSegment.java 166

Appendix I- Gantt Chart 168

xii

List of Figures

Figure 1- System Development Methodology 24

Figure 2- UAV heading and bearing 32

Figure 3- Great Circle Distance 33

Figure 4- System Block Diagram 39

Figure 5- Risk Management Process Overview 44

Figure 6- Card 12 50

Figure 7- HC12 Port S 51

Figure 8- DDRA and PORTA 51

Figure 9- HC12 SPI configuration 52

Figure 10- Typical GPS 35-HVS Application Architecture 61

Figure 11- Vector 2x Compass Module 63

Figure 12- V2X Compass Board Layout 64

Figure 13- Data Clock Timing Diagram 65

Figure 14- 9XStream 900 MHz Wireless Module 70

Figure 15- Integrated Hardware Wiring Diagram 72

Figure 16- Navigation System Flow Diagram 74

Figure 17- GCS GUI Logic Scenario Diagram 79

Figure 18- Ground Control Station User Interface 81

Figure 19- First System Test Trolley and Components side view 86

Figure 20- First System Test Trolley front view 86

Figure 21- System Test Path 1 87

Figure 22- Navigation Circuit 90

Figure 23- Navigation System (in protective housing) 90

Figure 24- Second System Test Ground Control Station 91

Figure 25- System Test Path 2 91

Figure 26- Distance Measurements Test 2 92

xiii

List of Tables and Equations

Table 1- Hardware Resources Used 40

Table 2- Software Resource Used 41

Table 3- GW/SLOWSTICK aircraft 41

Table 4- Likelihood Rating Criteria 45

Table 5- Consequence Rating Criteria 45

Table 6- Risk Level Matrix 46

Table 7- Risk Assessment 47

Table 8- HC12 SPI registers 53

Table 9- SPI clock rate selection 54

Table 10- Baud Rate Generation 55

Table 11- 68HC(9)12D60 Memory Map 58

Table 12- V2X Compass Pin Connections 64

Equation 1- Great Circle Distance Formula 33

Equation 2- Bearing 33

Equation 3- Baud Rate Calculation 55

Equation 4- Heading Error Scaling 76

Equation 5- Great Circle Distance Equivalent 88

xiv

Nomenclature

ABR Australian Book of Reference

ABS Acrylonitrile Butadiene Styrene

A/D Analogue to digital

Algorithm Step by step procedure for solving a problem

ANSI C American National Standards Institute for C programming language

ASCII American Standard Code for Information Interchange

Assembler Translator from assembly language to machine language

AS/NZS Australian New Zealand Standard

Autonomous Self governing; self controlling; self contained

Avionics Aviation electronics

Baud rate The rate at which data flows

BCD Binary Coded Decimal

Binary Number system consisting of zeros and ones only

Bit Binary Digit- smallest unit of storage in a computer

Byte A group of eight data bits

C Standardised programming language

CAN Controller Area Network

CASA Civil Aviation Safety Authority

CASR Civil Aviation Safety Regulations

Compiler Translates a high level language into machine language

CR Carriage Return

C++ An extension of the C programming language (object oriented)

DDR Data Direction Register

DGPS Differential Global Positioning System

DME Distance Measurement Equipment

EEPROM Electrically Erasable Programmable Read Only Memory

EMI Electromagnetic Interference

xv

Flash Non-volatile memory

ft Foot

GCS Ground Control Station

GIS Geographical Information System

GND Ground potential

GPS Global Positioning System

GUI Graphical User Interface

ha Hectare

HC12 16 bit microprocessor

Hz Hertz

IBM International Business Machines Corporation

ICC12 ImageCraft Integrated Development Environment (Compiler)

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronic Engineers

Java Object oriented programming language

KB Kilo Byte

LAN Local Area Network

LF Line Feed

LORAN Long Range Navigation system

LSBF Least Significant Bit First

Mbits/s Mega bits per second

MHz Mega Hertz

MISO Master In Slave Out

MOSI Master Out Slave In

NASA National Aeronautics and Space Administration

NDB Non-directional beacon

NMEA- 0183 National Maritime Electronic Association standard

OEM Original Equipment Manufacturer

Payload Instruments or equipment carried by an aircraft

PC Personal Computer (usually IBM compatible)

Pseudorange Distance measurement based on correlation

RAM Random Access Memory

RF Radio Frequency

RMC Recommended Minimum Sentence (GPS)

RPV Remote Piloted Vehicle

RS232 Electrical signal specification

xvi

RTS/CTS Request to send/ clear to send

SCI Asynchronous Serial Communications Interface

SCLK Clock signal

Servo Electro-mechanical device that moves control surfaces

SLAM Simultaneous Localisation and Mapping

SPI Serial Peripheral Interface

Telemetry Data stream of measured values

UAV Unmanned Aerial Vehicle

USQ University of Southern Queensland

UTC Universal Time Coordinated

VDC Direct Current Voltage

Vin Input Voltage

VOR VHF omnidirectional range

V2X Compass Module

Waypoint A specific location defined by GPS coordinates

xxxBR Baud Rate Register

$GPGGA Global Positioning System fixed data sentence

1λ Longitude of initial position

2λ Longitude of desired position

1Φ Latitude of initial position

2Φ Latitude of desired position

Chapter 1 17

Chapter 1

Introduction

An Unmanned Aerial Vehicle (UAV) is a powered aerial vehicle sustained in flight by

aerodynamic lift and guided without an onboard crew. It may be expendable or

recoverable and can fly autonomously or be piloted remotely.

Autonomous UAVs require systems that enable them to maintain a stable attitude and

the ability to follow desired trajectories. These avionic systems require continuous

gathering of data from sensors (and human inputs), and the ability to process this

information to guide and control the UAV through the generation of actuator

commands. The avionics package necessary to carry out these functions includes a

processor, sensors, software and data link hardware (Dittrich 2002).

Navigation and guidance of a UAV over a pre-determined path assumes that the

existing system is capable of carrying out autonomous straight and level flight. The

existing avionics package is then supplemented with extra sensors and software to

include navigation and guidance capability.

Surveillance and user interface capabilities of a UAV require the addition of camera

technology as well as data link hardware connected to some form of user enterable

information platform. This allows for the inclusion of telemetry downlink of data

regarding UAV status as well as a platform for viewing the images taken during flight.

Chapter 1 18

1.1 History of UAV Development

Unmanned Aerial Vehicles have been around since the dawn of aviation, and Australia

has been developing some form of UAV since the late 1940s including the highly

successful GAF Jindivik target drone (Wong & Bil 2003). Remotely Piloted Vehicles

(RPVs) have been used in niche military applications, and whilst many believed they

would take over various roles of piloted aircraft, the fact that they require a skilled pilot

on the ground has limited their growth (Wong & Bil 2003). Current UAV technology

however, allows for fully autonomous systems to be employed. It has been the

development of lightweight, inexpensive and compact sensors and microprocessors as

well as a fast growing world-wide UAV knowledge base to which Wong and Bil (2003)

attribute the steep growth in the market for civilian UAV applications. UAVs have

unmatched qualities that often make them cost effective methods of carrying out

objectives that may be either highly risky to pilots or where their presence isn’t

necessary.

Recently, the Queensland State Government committed financial assistance to aid in a

UAV research and development facility in Brisbane. As stated by Premier Beattie

(Dept. of State Development, Trade and Innovation. 2005):

“UAVs comprise a significant aerospace research and development

 opportunity that is not being pursued by any other State.”

This commitment from the State Government proves the relevance and value of the

project represented by this dissertation, and endorses the University of Southern

Queensland’s promotion of UAV development as an ongoing project.

Regardless of the application, any UAV developed needs to operate in non-segregated

civilian airspace (McManus 2004). As a consequence, regulators are presently working

on policy to enable integration of UAVs into civilian airspace. In the Civil Aviation

Safety Authority (CASA) Regulation (1998), it is stated that:

Chapter 1 19

• UAV certification is not required for those weighing less than 150kg and flying

below 400ft (approx. 1312 m). This is considered a ‘small’ UAV.

• If flying outside these parameters then certification is required and continuous

communications are necessary.

The CASA regulation does not specify a certification process. In fact, there is presently

no guidance on how to carry out certification in spite of its requirement under the

conditions listed above.

‘Small’ UAVs have no restrictions imposed upon their operation. The operator of the

UAV is responsible for ensuring that the UAV is operated safely and remains clear of

potential low level traffic, structures, powerlines etc (CASA 1998).

1.2 Project Background

The Autonomous Unmanned Aerial Surveillance Vehicle – Navigation and User

Interface is a follow-on project initiated by Michelle Keefe (2003). The primary

requirement for this project was to develop a functional prototype of an autonomous

radio-controlled aircraft for the purpose of conducting aerial surveillance over a pre-

determined path. This project was carried out up to the point of semi-autonomous flight

(straight and level), remote direction controlled by the user.

As a consequence, the Autonomous Unmanned Aerial Surveillance Vehicle –

Navigation and User Interface project was proposed to provide the navigation solutions

for full autonomous flight, integration of an image capture system and a ground control

station with a graphical user interface (GUI) for entering flight path data and display of

telemetry information during flight. The emphasis is on low cost to enable the prototype

to be a viable alternative to current satellite surveillance of crops. This project has been

carried out in conjunction with ‘The Autonomous Unmanned Aerial Surveillance

Vehicle- Autonomous Control and Flight Dynamics’ (Littleton 2005).

Chapter 1 20

1.3 Project Aim

The aim of this project was to develop a navigation algorithm, image capture system

and user interface to integrate into a fully functional prototype of an autonomous

Unmanned Aerial Vehicle (UAV) capable of carrying out surveillance over a pre-

determined flight path.

1.3.1 Operational Requirements

The overall requirements of the system were as follows:

• The system shall provide a user interface to allow entering of waypoints to

determine a flight path.

• The system shall provide navigational guidance information to allow

autonomous flight over this pre-determined flight path.

• The system shall allow capturing of image information over pre-determined

points on the flight path.

• The system shall be integrated into a fully functional prototype UAV.

1.3.2 Performance Requirements

For the purpose of this project, certain assumptions were made regarding the scope of

the UAV’s performance. These assumptions were:

• The aircraft will be remotely controlled by a user during take-off and landing.

• The distance that the aircraft is expected to fly during the autonomous control

phase will be no more than 500m from the Ground Control Station (GCS)

laptop.

Chapter 1 21

• The UAV will not be flown over 400ft (1312m) and will not weigh more than

150kg.

• The camera chosen for surveillance will be limited to a finite number of pictures

based on its current memory capability and resolution.

The flight path chosen includes no more than four waypoints as a means of ensuring

that the distance from the GCS mentioned above is not exceeded.

1.3.3 Constraints

As this was a University of Southern Queensland Faculty-sponsored project, resources

and costs associated are limited by those available to the faculty. As such, every effort

was made during the system design phase to utilise available hardware and software.

Where possible, the off the shelf solutions chosen, balance low cost with acceptable

quality.

The payload limitation of the remote controlled aircraft chosen for this project

represented the primary design and performance constraint. The model aircraft to be

used originally did not have a very large payload capability. The cost of these aircraft is

proportional to the payload capabilities. As a consequence, all hardware for the project

was chosen to be as small and light as possible to achieve acceptable levels of

performance.

1.4 Project Objectives

The objectives of this project in accordance with the specification, as included in

Appendix A, were as follows:

1. Research information for the design and implementation of common Unmanned

Aerial Vehicle (UAV) GPS guided navigation algorithms and user interfaces.

Chapter 1 22

2. Research requirements for the design and implementation of an image capture

system including hardware, interfacing requirements and payload limitations.

3. Research communication alternatives to interface Ground Station (user

interface) with UAV for uplink of navigation algorithm and downlink of UAV

telemetry.

4. Design, develop and test individual systems, i.e. navigation algorithm, image

capture system and user interface.

5. Design interface for the individual systems and integrate to enable surveillance

over a pre-determined path with non real-time entering of flight path and real-

time telemetry downlink.

6. Construct prototype UAV (using a model aircraft) and integrate systems with

‘Autonomous Control and Flight Dynamics’ project being carried out by Craig

Littleton.

1.5 Project Methodology

The methodology adopted in this project is shown in Figure 1. In this methodology the

overall UAV system requirements are analysed and allocated to software and hardware

sub-system design stages. The requirements for each sub-system were analysed,

designed, built and tested in stages. By using a staged approach, the project could be

systematically carried out and appropriately documented to enable review between

stages and thorough evaluation during the testing phases. When problems were

identified during the development and testing phases of each stage, redesign and further

testing was carried out. When the hardware and software sub-systems development

proved successful, integration and testing the system as a whole was confidently carried

out. The original project timeline is included in Appendix I for reference. This includes

a Gantt Chart of all the project activities and the times anticipated for implementation.

Chapter 1 23

Once analysis of the UAV system level requirements was performed, hardware

selection for the UAV was carried out. Hardware selection in a UAV environment

requires that the sensors, microprocessor and data link hardware be chosen with the

specific operational requirements in mind. The selection of this hardware and its

integration into the final system is discussed in Chapters 6 and 7.

Similarly, once the UAV system requirements were allocated to the software sub-

system, design and development of both a navigation algorithm and user interface were

carried out. Sensor data was integrated into the navigation solution through the use of

algorithms implemented in software and programmed into the navigation UAV

microprocessor. The implementation of the navigation algorithm as well as the

development of the Ground Control Station and user interface is discussed in Chapter 8.

A hardware and software test plan was developed during the sub-system design phases.

It was crucial that any existing faults be found prior to integration of the whole system

to enable systematic fault analysis be carried out with as few dependencies as possible.

Also, once the overall system was integrated, a thorough test procedure was executed to

ensure the system was sufficiently mature for integration into a prototype UAV. This

testing was carried out by simulating the UAV flight path using a trolley that could be

manoeuvred by hand. The specific details of this testing is given in Chapter 9.

Chapter 1 24

SYSTEM
DESIGN

INTEGRATE

SYSTEM
REQUIREMENTS

TEST

HARDWARE

HARDWARE
REQUIREMENTS

HARDWARE
DESIGN

BUILD

TESTTEST

BUILD

SOFTWARE
DESIGN

SOFTWARE
REQUIREMENTS

SOFTWARE

Figure 1- System Development Methodology

Chapter 1 25

1.6 Aspects of Ethical Responsibility

The development of a cheap, fully autonomous UAV capable of carrying out

surveillance over a pre-determined flight path may offer an affordable and sustainable

alternative to current means of crop surveillance. If used, it will alleviate the safety

issues inherent in human-flown aircraft used for this purpose. It is a technical task that

has the potential to endanger the public if the technology is used for the wrong

purposes. The ease and low cost may allow the technology to be used by those with less

innocuous objectives. The UAV has the potential to be used as an autonomous weapon

or for intrusive surveillance. Also, by its nature, the UAV is an aircraft operating in

domestic airspace and as such, there exists a legal responsibility to ensure it is operated

safely and effectively within that airspace.

The performance requirements for this project do not exceed the height or weight

restrictions imposed on UAVs by the CASA 1998 regulation, and as such, operation of

the UAV will not require certification. This does not mean that the prototype UAV will

not be capable of flying at those altitudes and as such, it is important that the prototype

UAV be considered potentially dangerous and only be operated by engineering staff/

students under strict supervision and in a safe environment.

The prototype UAV is not a toy and should not be treated as such. Any possible future

marketing of the product to the government or to farmers would need to include

thorough warnings associated with the above-mentioned concerns and educational

materials outlining regulatory issues as well as detailed instructions on its use.

1.7 Dissertation Structure

This dissertation is organised as follows:

Chapter 2 covers the main findings of a literature review carried out on the current state

of navigation and guidance methods used within the aviation industry. It discusses and

investigates viable methods to achieve guidance of a UAV over a pre-determined path.

Chapter 1 26

Chapter 3 includes the literature review carried out on the image capture system and

user interface. It discusses the efficacy of using UAVs for crop surveillance, and some

of the methods available to implement an image capture system. The purpose and

function of the user interface is discussed, along with the benefits of the chosen

Programming language. The Ground Control Station hardware requirements necessary

to implement the user interface is described.

Chapter 4 gives a description of the system architecture design concept as decided upon,

based on the literature review carried out. The chapter also presents a resource analysis

carried out based on the conceptual design.

Chapter 5 is a risk assessment carried out on the project and its activities. An evaluation

of these risks and the necessary control measures is tabulated.

Chapter 6 describes in detail the navigation and guidance system hardware used, and

how it was developed. The development tools used to aid in the implementation of the

hardware are described, and individual testing of the components is discussed.

Chapter 7 explains the selection and implementation of the image capture and user

interface hardware used in this project. Testing of each of these components is

discussed, and an integrated system hardware wiring diagram is provided.

Chapter 8 describes the system software design and implementation carried out. The

chapter documents each of the programs necessary to carry out the navigation algorithm

and hardware interfacing. The user interface design is described and final

implementation shown. Testing of the individual functions is discussed.

Chapter 9 outlines the integrated system test methods, results and discussion necessary

for system verification. Where required, options for problem rectification are canvassed,

and subsequently implemented.

Chapter 10 analyses the results of the final system tests in relation to the project

specification, aim and objectives.

Chapter 1 27

Chapter 11 begins by revisiting the relevance of this area of research and development

in the current market. The overall performance of the system is discussed with reference

to the preceding chapters. Recommendations are made for future improvements and/or

possible modifications to the final system.

Chapter 2 28

Chapter 2

Navigation and guidance

Navigation is the determination of the position and velocity of a moving vehicle

(Kayton & Fried 1997). Guidance refers to the act of steering toward a destination of

known position from the aircraft’s present position. Therefore, navigation is a necessary

step towards aircraft guidance. Navigation systems can be categorised as either

positioning or dead-reckoning where positioning systems measure the state vector (the

three components of position and the three components of velocity make up a six-

component state vector) without regard to the path travelled by the aircraft in the past.

Dead-reckoning navigation systems derive their state vector from a continuous series of

measurements relative to an initial position. The guidance loop for any UAV is

required to generate guidance commands from the UAV states and the desired waypoint

information. These commands are passed to the flight control loop which is then

responsible for controlling the actuators and servos of the UAV control surfaces.

Fully functional navigational and guidance packages are currently on the market. They

are capable of carrying out waypoint navigation along a pre-determined path and

include the hardware and software interfaces. The Pegasus Advanced Precision Aerial

Delivery System includes a digital flight computer which processes information from

the GPS receiver, air speed sensor and compass. These sensors provide the inputs to a

guidance algorithm that provide the signals to the servo actuators to enable interception

of a pre-programmed flight path (FXC Corporation 2005). This system, like many

UAVs already on the market, are prohibitively expensive for use in civilian surveillance

applications (Schulze, Abramson & Rogan 2004). Cornell University undergraduate

Chapter 2 29

students developed a UAV package for use in local research activities. The development

saw a modern cost-saving approach to developing a UAV and its subsystems. Their

budget, however, was US $15 000. According to the Department of Defence (2005), the

Avatar UAV and ground station cost US $40 000. The Cornell University packge,

whilst a vast improvement on the previous cost of UAVs, still represents a large

investment. They use a GPS receiver and pressure sensors to detect position and

velocity state, and an autopilot system capable of flying a series of GPS coordinates.

Their autopilot includes a powerful onboard computer running Windows XP. This, in

addition to the sensor and communication hardware, represents a large payload and as a

consequence, the use of a large heavily modified remote controlled aircraft.

Clearly, there is a lack of low cost navigational and guidance packages on the market

that can be integrated into small scale aircraft such as UAVs.

Radio-based navigation methods used in manned aviation are usually based on

terrestrial non- and omni-directional beacons (NDB, VOR) and/or measurement of

distances (DME, LORAN) (Dittrich 2002). It is the high accuracy, simplicity and

availability of GPS that Dittrich (2002) suggests is the reason GPS has become the

standard positioning system for unmanned aircraft. The question then becomes whether

to use single point GPS which is subject to atmospheric errors, or differential GPS

(DGPS) which uses a second stationary GPS receiver to correct these errors. The

accuracy of single point GPS is within 10 to 30 metres (Stefan 2000). The accuracy of

DGPS is within 10 metres. DGPS requires a reference station at a known location that

receives the same signals as the GPS receiver being used. This reference station

processes its GPS measurements, deriving pseudorange and pseudorange-rate errors

with respect to its accurately known location, and then transmits these corrections to the

user who is then able to apply these corrections to their measurements. The decision to

use DGPS then, will depend on the application and the need for precise location

information. If it is only necessary to come within 10 to 30 metres of a given waypoint,

then single-point GPS is sufficient and provides a lower cost solution, as it not only

avoids the necessity for a reference station, but also the hardware necessary to

communicate error data from one GPS to the other.

Chapter 2 30

2.1 GPS

The fully operational GPS satellite constellation comprises 24 satellites as described in

the American Federal Radio Navigation Plan (1996). GPS receivers use ranging code

from at least four GPS satellites to calculate their instantaneous position and velocity.

Most GPS receivers output their data in NMEA- 0183 format. This format includes a

variety of transmitted sentences/ messages that provide data for navigational purposes.

These sentences are transmitted in ASCII code, each beginning with a dollar sign ($)

and ending with a carriage return and linefeed (<CR><LF>). Data is comma delimited.

The sentence extracted for use depends on the required application with the

recommended minimum sentence being the RMC message (Stefan 2000). The RMC

message provides the following information:

• Universal Time Coordinated (UTC),

• GPS status (indicating whether the incoming GPS data is valid),

• Latitude, Northern or Southern hemisphere,

• Longitude, East or West indicator,

• Speed (From 0000.0 to 1851.8 knots),

• Course over ground (000.0 to 259.9 degrees),

• Date, and

• Magnetic Variation (000.0 to 180 degrees).

The following is an example of a GPS transmitted RMC message:

$GPRMC,1030804.374,A,0411.8650,N,10326.3480,E,0.00,3.85,010304,,*03

The majority of GPS receivers update their data every second with a 4800 bps baud rate.

This sampling rate represents a significant limitation. If an aircraft is travelling at

45km/h and the GPS receiver is updating every second (1 Hz) then the aircraft will

travel 12.5 metres between position measurements. Integrated inertial sensors are often

combined with GPS as they offer high frequency information with short term accuracy.

As GPS provides low frequency information with long term accuracy, the sensors can

be used to complement each other. A widely used technique to integrate inertial sensors

(such as Gyros) and GPS, is the use of a Kalman Filter. A Kalman Filter is an error

estimator that is used to control complex dynamic systems. It effectively predicts, filters

Chapter 2 31

and smooths the data from the available sensors to correct for their inherent errors

(Merminod 1989). Kalman Filtering techniques are used by military aircraft (Royal

Australian Navy S-70B-2 helicopters) to ensure accurate position information over long

distances. These systems are useful for long range flying, but are not considered

necessary for short flights where errors in the inertial sensors and low frequency

updating of GPS are not considered critical. Unfortunately, whilst GPS can provide long

term stability and accuracy, its reliability is not guaranteed as it relies on a clear line of

sight from the receiver to at least four satellites to guarantee a position fix. This is

another reason why many UAV applications see the use of GPS complementing inertial

navigation systems; ensuring availability of position information regardless of the

weather or environmental conditions. When designing UAVs with high manoeuvrability

which may impede the GPS receiver to satellite signals, it is possible to add a second

redundant GPS receiver to ensure that position information is possible regardless of

whether the UAV is upright or not.

2.2 Compass

When using GPS to provide heading information, there is a necessity for an extra sensor

to provide attitude information. The GPS provides heading information but only at a

1Hz rate. A faster update rate can be found using a compass, which can be used to

supplement the GPS with a higher heading sampling rate.

A popular compass on the market is the HMR3000 Digital Compass Module. This

compass provides heading, pitch and roll for use in navigation and guidance systems

and is recommended for use in unmanned vehicles (Honeywell Sensor Products n.d.).

The HMR3000 costs $675 and therefore, was not considered a viable option for this

project.

New Mexico Tech students used a Vector 2X compass in designing their Golfing Robot

(2002). They incorporated the compass into their project as a means of providing

heading information to supplement their GPS. The Vector 2X- Compass Module is a

low cost, light weight 2-axis compass and magnetic sensor module. As the application

notes suggest (1998), GPS system backup azimuth data is a possible application of the

Vector 2X. The compass uses a synchronous serial port for communications with the

Chapter 2 32

host device .This is compatible with Motorola Serial Peripheral Interface (SPI)

capabilities. The output of the Vector compass is accurate to 2° with a resolution of 1°.

The format of the heading output can either be Binary Coded Decimal (BCD) or Binary

(Precision Navigation Inc 1998). The sample rate in low resolution mode is between 5

and 10 Hz. This sampling rate will enable the navigation algorithm designed for this

project to make heading error calculations between GPS position fixes. i.e. heading

error = desired heading – current heading. Refer to Figure 2 for pictorial representation.

Figure 2- UAV heading and bearing

2.3 Navigation Strategy

Guidance systems for UAVs require commands be sent to servos to enable steering

towards a destination. The destination can be provided to the system as a set of

waypoints, i.e latitude and longitude of each waypoint. This information is used in this

project in conjunction with the GPS measurements of current position to determine a

path towards the next waypoint. Dead reckoning calculations will not be used as they

assume flat-Earth approximations (Kayton & Fried 1997). Therefore, distance is

calculated using the Great Circle Navigation formulae (Williams n.d.). Since the Earth

is a sphere, the shortest path between two points is calculated using the great circle

distance, which corresponds to an arc linking two points on a sphere.

Chapter 2 33

() (){ }

() (){ }

() () () () ()()

1 1 2 2

1 2 2

1 2 1 2 1 2

The great circle distance d between two points with coordinates , and

1 , is given by:

 acos sin x sin cos x cos x cos

lat lat

lon lon

d

λ λ

λ λ

Φ Φ

= Φ Φ + Φ Φ −

Equation 1- Great Circle Distance Formula

The initial true course or bearing calculation tells the UAV which way to go. It is

defined as the angle measured horizontally from north to the current direction of travel

(Stefan 2000). With the great circle distance calculated as in Equation 1, the bearing c

is:

() () ()

() ()
2 1

1

sin sin x cos
 acos

cos x sin

d
c

d

 Φ − Φ
= Φ

Equation 2- Bearing

The result of this bearing calculation must be qualified by testing whether or not

()2 1sin λ λ− is negative. If negative, the true course is determined by c
o −360 .

Otherwise, the UAV will end up at the waypoint but it will take the long way round the

globe.

Figure 3- Great Circle Distance

Chapter 3 34

Chapter 3

Image Capture and User Interface

Wong and Bil (2003) believe that UAVs developed for crop monitoring (surveillance

capabilities) represent 80% of the market potential for UAV civilian applications within

Australia. Presently only 10% of crops are monitored per annum by manned aircraft. A

project carried out by Jensen, Apan, Young, Zeller and Cleminson (2003) in the

Toowoomba area identified the feasibility of carrying out crop observations with the use

of a remote controlled aircraft. They recognised that previous research on crop

observations using satellites and aerial imagery presented limitations including

repeatability, cloud cover, cost and poor spatial resolution. By using a radio controlled

aircraft capable of flying at low altitudes, these limitations are greatly reduced.

3.1 Image Capture

UAVs have been used for surveillance and crop monitoring throughout the world. In

2002, NASA’s solar powered UAV was used to conduct a proof-of-concept mission

above the 1500 ha plantation of the Kauai Coffee Company in Hawaii. High resolution

colour and multi-spectral imaging payloads were used in conjunction with a local area

network (LAN) using unlicensed radio frequency for camera control and imagery

downlink. The colour images collected were useful for mapping invasive weed

outbreaks and for revealing irrigation and fertilisation anomalies (Herwitz et al. 2003).

The Swedish Defence Research Agency has conducted extensive research into military

UAV surveillance applications including navigation-aided image processing, such as

Chapter 3 35

Simultaneous Localisation and Mapping (SLAM), target tracking, and detection of

moving objects (Nygards, Skoglar & Ulvklo 2003). Clearly there is an identifiable

market for UAV surveillance and image processing capabilities. The challenge is to set

up surveillance capabilities with appropriately high resolution while keeping costs to a

minimum.

The first step in ensuring cost is kept to a minimum is to avoid the use of real time

image processing. Real time image processing requires the image capture system on

board the UAV be capable of sending its images directly (via LAN or RF) to the ground

control station laptop. This relies not only on a reliable data link between the UAV and

ground control station, but also a data link with a high enough bandwidth to enable

image transfer with the required resolution. The bandwidth requirements for digital

images and compressed video range in transmission rate from 1 to 10 Mbits/s (Sheldon

2001). This is due to Hartley’s law that states that the greater the bandwidth, the greater

the information that can be transferred from source to destination (Beasley & Miller

2005). Unfortunately, the larger bandwidth required means a greater cost of the

transceivers, so it wasn’t possible to include real time control capabilities in this project.

The simplest method to incorporate an image capture system is to include a light weight

digital camera on-board the UAV. The digital camera requires high enough resolution to

enable image capturing of crop details as well as zoom capability to ensure that the

altitude of the UAV does not adversely affect the picture quality. The next issue of

concern is how to trigger the camera while in flight. This can be done through

mechanical or electrical triggering. i.e. servos can be used to manually press the shutter

button, or the camera can be modified to include an electrical trigger unit that bypasses

the shutter button. An electrical trigger unit was considered preferable as it avoids

unnecessary vibration caused by mechanically moving parts, and also any

electromagnetic interference (EMI) that may be caused by the servos. A digital camera

without automatic shut off capability is also desirable as this can cause the camera to

switch itself off after a certain amount of time and as such, would require the use of a

more complex bypass circuit be used.

The memory capability of the camera is a limiting factor in the number of images taken

during flight. A program is included in the navigation microprocessor to trigger the

camera to take photos at some predetermined location or time, i.e. to take a photo either

Chapter 3 36

at certain time intervals, or at waypoint locations. In this case, the system will take

photos at pre-determined positions. The images can be downloaded to the laptop once

the UAV has landed. A laptop can be used to view the images taken during flight.

3.2 User Interface and Communications

The purpose of the human-UAV interface is to provide a familiar platform for the user

to enter flight path waypoints, as well as providing a visual indication of real-time UAV

status during flight. Images captured during flight can be viewed via an appropriate

interface. A laptop is an obvious choice for use as part of the Ground Control Station

(GCS) due to its portability. The interface must be easy to use and provide adequate

information without overwhelming the user. Whilst there are impressive user interfaces

being used with UAVs that include real-time control of the UAV and the capability to

view images taken during flight while the UAV is still in the air, it was decided that the

most basic level of control would be implemented. That is, the GCS is used as a receiver

of telemetry once the UAV is in the air with no capability of varying the flight path

during any surveillance mission. This ensures that the UAV’s flight path activity does

not rely on the integrity of the communications link to carry out any given mission. The

user interface is designed to ensure that the user is not required to have any level of

UAV technical expertise to understand the functions and status indications. As such, a

dial compass and heading error indicator have been included for ease of reading the

incoming data, and as a way of emulating the aircraft cockpit in an attempt to add an

instinctive feel to the viewing of UAV status.

The programming language used to design the graphic user interface (GUI) is Java. C++

was considered as an option but it was the re-usability and cross platform compatibility

of Java that made it the best choice. Future improvements could see the inclusion of

third party Geographical Information System (GIS) software that may provide real-time

monitoring of geographical areas if used in conjunction with real-time imagery and map

viewing capability. The GCS allows the user to enter the required flight path waypoint

information as well as keep abreast of GPS status, UAV position, communication link

status, UAV heading error, altitude and current heading.

Chapter 3 37

The communications downlink to the GCS must be capable of reliably transmitting

UAV telemetry. Real- time images taken during flight could be transmitted to the GCS

but this was considered beyond the scope of this project due to the large communication

bandwidth required to transmit and receive good quality, high resolution digital images.

As such, image viewing is not included in the GUI design.

Chapter 4 38

Chapter 4

System Architecture

Based on the literature review carried out, the hardware available and the project

specification, the chapter presents the overall system design concept and architecture as

shown at the highest level in the system development methodology of Chapter 1. A

block diagram of the system is shown in Figure 4. The details of the design and testing

of these systems is discussed in depth in the following chapters.

4.1 Original Concept

Before UAV takeoff, the Ground Control Station (GCS), consisting of a laptop PC (Dell

Inspiron 510m), GUI and XStream 900MHz Transceiver will be connected to the UAV

via a RS232 wireless link. Once connected, flight path information consisting of four

latitude and longitude waypoints will be entered into the GUI, where they will be sent to

the ‘Navigation HC12’ on the UAV. The ‘Navigation HC12’ microprocessor is

connected to the Garmin GPS 35 LP TracPak™ antenna/receiver, the V2X 2-axis

compass module, an electronic trigger unit and Minicam TDC-32 camera and XStream

900 MHz Transmitter.

Programmed into EEPROM of the ‘Navigation HC12’ is the ‘Waypoint Path Planner

Algorithm’, which uses the user-inputted waypoints, GPS and compass signals to

determine the distance and heading error to the next waypoint. This information is then

ready to pass to the Automatic Flight Control HC12 (Littleton 2005).

Chapter 4 39

The UAV is controlled by a user during takeoff, on a separate radio-controlled

communications channel. Once in the air, the UAV is switched to autonomous flight at

which time the ‘Navigation HC12’ commences provision of heading error information

from current position to the first waypoint. The 900MHz transceiver connected to the

HC12 will downlink telemetry information to the GUI including latitude, longitude,

altitude, satellite and receiver status, heading error and compass heading information.

The camera is electronically triggered once over every waypoint by the ‘Camera Trigger

Program Module’ programmed into the ‘Navigation HC12’ EEPROM. Once all four

waypoints have been passed within a five metre radius, the UAV control is switched

back to remote-control by the user, where it can then be landed. Surveillance photos can

then be accessed on the GCS (serial cable connection).

GPS
Receiver

Compass

Trigger
Unit

Camera

NAVIGATION
HC12

Microprocessor

900 MHz
Transmitter

900 MHz
Receiver

GUI

UAV
(Control System components not shown)

Ground Control Station

Figure 4- System Block Diagram

Chapter 4 40

4.2 Resource Analysis

To build a prototype autonomous UAV navigation and user interface, there are many

components and resources required to fulfil the objectives up to and including the final

UAV system integration. The resources used include supporting personnel: my

supervisors and Engineering faculty technical staff. The university provided a room and

equipment to carry out all testing and the provision of miscellaneous parts: soldering

equipment, power supplies, cables, passive components, oscilloscope and multimeters.

The library, Institute of Electrical and Electronics Engineers (IEEE) and Engineers

Australia have provided invaluable educational resources. The hardware resources

selected for use in this project are shown in Table 1. The prices for components that

were not bought specifically for this project have not been included.

Table 1- Hardware Resources Used

Ease of UseBrandComponent

GPS 35- HVS Garmin TrakPak

Compass $155

Microcontroller

Vector 2X

M68HC12D60

Laptop

Digital camera

Electronic Trigger Unit

Transceivers XStream 900MHz

Dell Inspiron 510m

USQ

USQ

Price or
Provider

Soz

Custom Built

$510

Excellent

Good

Average

Poor

Bad

Minicam TDC-32 USQ

USQ

The software resources selected for use in this project are shown in Table 2.

Chapter 4 41

Table 2- Software Resource Used

Ease of UseLanguage

C Microsoft Visual C++

JAVA

Package

C compiler Imagecraft ICC12

Card 12 Assembler TwinPEEKs Monitor

Price or
Provider

Soz

Soz

Demo

USQ

NetBeans

The total cost of resources bought specifically for this project was $665. A test trolley

was manufactured out of recycled materials. The model aircraft currently available for

use is the GW/SlowStick. The specifications for this remote controlled aircraft are

shown in Table 3. This aircraft was used in Michelle Keeffe’s project in 2003. It was

chosen because of its simplicity, low cost and ease of use. Whilst it is an inherently

stable aircraft, its payload capabilities have meant that the complete navigation and

guidance system has not been installed on the UAV. Model aircraft alternatives were

investigated but it became clear that the cost of a new aircraft with higher payload

capabilities was not feasible this year. All other resources required were available from

early on in the life of the project.

Table 3- GW/SLOWSTICK aircraft

Characteristic Value

Length

Wing Span

Wing Area

Flying Weight

Wing Loading

Battery Required

Power System

Radio Required

954 mm

1176 mm

32.64 dm
2

405~440 g

12.4~13.5 g/dm
2

2~4 Channel Radio

11.1 V lithium polymer

brushless motor 1200mAh

Full integration of the system into a UAV requires appropriately stable, non-vibrating

platforms for the protection of the avionics equipment. These resources were not fully

Chapter 4 42

investigated as they depended very much on the UAV for which the system would be

integrated. A suitable remote control aircraft was not available, so these types of

protection were not designed. A custom made test trolley was manufactured to carry out

testing of the Navigation and User Interface system. This trolley is a basically a plank of

wood with four wheels, a GPS tower and a broom like handle for pushing. The final

navigation circuit was placed in a protective housing to keep it free from dust.

The need for an experienced remote control aircraft pilot was identified during the risk

assessment carried out in Chapter 5. Any risk to personnel and equipment due to

inexperience was considered unacceptable. Therefore, any final prototype testing of the

system in a UAV was to be carried out by an experienced pilot for take-off and landing,

and that the pilot be available in case automatic control needed to be switched back to

manual control during flight.

Chapter 5 43

Chapter 5

Risk Assessment

Aviation activities are inherently dangerous. Whilst UAVs offer a safe alternative to

piloted aircraft by avoiding the necessity for personnel to be exposed to the risk of

flying, they then require completely reliable autonomous and/or remote control to

ensure the UAV does not represent a risk to people, equipment or structures on the

ground. The risk of aircraft failure in a general sense is not acceptable due to the severe

consequences. For this reason, all general aircraft are designed with redundant flight

critical systems. This ensures that if a system required for safe flight fails, a back-up

system will take over with no reduction in performance. This enables the mission to be

completed or safe landing of the aircraft and as such, safe return to ground of all

personnel and equipment. This project has been carried out with safety as a major

priority, and a risk management plan was implemented early on to ensure all risks were

mitigated where necessary.

The risk management process adopted by this project follows the methodology outlined

in AS/NZS 4360:2004. Its main elements are shown in Figure 5 below. The project

context has been outlined in Chapter 1.

Chapter 5 44

Figure 5- Risk Management Process Overview

5.1 Identifying Risks

Risk identification is concerned with ‘What can happen and how?’. Once identified,

risks can be actively managed by the risk management process. Like all risk

management activities, risk identification was ongoing during the life of the project and

was not limited to those identified early in the project life.

Chapter 5 45

5.2 Evaluating Risks

A qualitative method for evaluating the level of risk posed by an event has been adopted

for this project. The risk analysis consists of first assessing the likelihood of the event

happening and the potential consequences should that event occur. Criteria for grading

likelihood and consequences are provided in Table 4 and Table 5, respectively.

Table 4- Likelihood Rating Criteria

LIKELIHOOD RATING DESCRIPTION

Rare May occur only in exceptional circumstances

Unlikely Could occur at some time

Moderate Might occur at some time

Likely Will probably occur in most circumstances

Almost Certain Expected to occur in most circumstances

Table 5- Consequence Rating Criteria

CONSEQUENCE RATING DESCRIPTION

Insignificant Inconvenience. Minimal or no impact.

Minor

• Small but acceptable degradation in performance..

• Unable to meet an intermediate milestone but able to meet
all major milestone dates.

Moderate
• Tolerable but significant degradation in performance.
• Unable to achieve one major milestone date.

Major

• Significantly degraded performance to the point where
project success is questionable.

• Unable to achieve more than one major milestone date.

Severe
• Unacceptable performance resulting in project failure.
• Unable to achieve acceptance milestone date.

The likelihood and consequence grading are combined to form a single risk level matrix

shown in Table 6. This matrix has been taken from the RAN Aviation Safety Manual

(ABR 5147 Annex C), and is the standard Department of Defence risk matrix. The risk

levels have been categorised as:

LOW. The risk event, were it to occur, may have some minor undesirable consequences

for the project, but little effect on its perceived or actual overall success;

Chapter 5 46

MEDIUM. The risk event, were it to occur, would be likely to have some undesirable

consequences for the project, but would be unlikely to cause it to fail;

HIGH. The risk event, were it to occur, would have a significant impact on the

perceived or actual success of project, and could even cause the project to fail; and

EXTREME. The risk event, were it to occur, would probably cause the project to fail,

or give rise to unacceptable circumstances (such as frequent adverse user acceptance

and operational failure) attributable to the project.

Table 6- Risk Level Matrix

Consequence

Likelihood
Insignificant Minor Moderate Major Severe

Almost Certain Medium Medium High High Extreme

Likely Medium Medium Medium High Extreme

Moderate Low Medium Medium High High

Unlikely Low Low Medium Medium High

Rare Low Low Low Medium Medium

5.3 Risk Control

By analysing the risks identified in accordance with the above mentioned matrix,

applicable measures of control have been designed and implemented where possible. A

full risk assessment is included in Table 7. The risk assessment includes sources of risk,

their potential consequences and the likelihood that those consequences will occur. Risk

control measures are included. These risks have been monitored and reviewed through

the life of the project.

Chapter 5 47

Table 7- Risk Assessment

Risk Description Likelihood Consequence Risk Level
Risk Control
Measure

Risks to Project Completion

Limited access to resources Moderate Major High

Assess resource
requirements
early to ensure
availability

Breach timeline, schedule or major milestones Moderate Major High
Allocate extra
time for all
activities

Risks to Personnel and Equipment

Provision of incorrect heading information Moderate Severe High

Provide
adequate
shielding to the
compass to
prevent
magnetic
anomalies

GPS satellite information drops out Likely Major High

Ensure all flights
are carried out in
an area clear of
obstruction and
on a clear day-
design an
emergency
back-up system
to inform of
satellite drop-out
and allow UAV
control to be
taken over by
remote control
user

Loss of telemetry downlink signal Moderate Moderate Medium

Ensure the UAV
is flown within
the range of the
transceivers

Incorrect entering of waypoints Moderate Moderate Medium

Repeat user-
entered
information to
the user and
verify the latitude
and longitude
points

Power failure , i.e GPS and compass data lost-
loss of camera function, loss of HC12 function-

Moderate Moderate Low

Check all power
supplies are fully
charged and
serviceable prior
to flight- perhaps
include backup

Power failure , i.e laptop GCS Unlikely Insignificant High

Ensure the
laptop battery is
fully charged
prior to any flight

Collision with person Moderate Major High

Ensure all flights
are carried out in
areas clear of
any unnecessary
persons

UAV gets in the wrong hands and is used as a
weapon

Rare Severe Medium

Ensure the UAV
is only used by
those involved in
the project and
for the purposes
outlined in the
objectives

Chapter 5 48

Unskilled pilot used for take-off landing and for
emergency control of UAV

Likely Moderate Medium

Ensure any pilot
is experienced
and that all
CASA guidelines
are followed

UAV is flown above 400ft Moderate Moderate Medium

Ensure the
operator of the
UAV is aware of
the CASA
regulations that
limit altitude.

Chapter 6 49

Chapter 6

Navigation System Hardware Design and

Implementation

This chapter describes the selected navigation and guidance system hardware and how it

was developed. The components selected for use are those shown in the system

architecture block diagram in Chapter 4. They are now discussed in detail. The

requirements and limitations as outlined in Chapter 1 have been analysed to ensure any

design falls within these guidelines. Development tools employed throughout the

project for successful design and implementation of components is detailed. The testing

of each of the components is described along with any interface considerations

necessary for successful integration.

6.1 Flight Computer

The brain of the Navigation and User Interface system is the 68HC(9)12D60

microcontroller unit. It is a 16 bit member of Freescale’s HC12 Microcontroller family

and offers additional features that aid in the development process. In particular, the

microcontroller card is equipped with the TwinPEEKS monitor program which allows

easy download and programming of Flash and EEPROM memory, without the need for

any additional hardware tools (Elektronikladen 2005). Other features include:

• 60 KB Flash

Chapter 6 50

• 1 KB EEPROM

• 2 KB RAM

• SPI, 2 x SCI

• Enhanced Capture Timer

• 4 Channel Pulse Width Modulator

• 16 Channel 10 bit A/D Converter

• 8 MHz operation at 5V

• CAN 2.0A/B bus interface with CAN driver

Appendices B and C show the block diagram and schematic of the 68HC(9)12D60. The

HC12 has been labelled ‘Navigation HC12’ to differentiate it from the HC12 used in the

Automatic Flight Control portion of the prototype UAV (Littleton 2005) The

68HC(9)12D60 is shown in Figure 6.

Figure 6- Card 12

The port used for the majority of the hardware interfacing is Port S. The Navigation

HC12 uses its two asynchronous serial communication interfaces (SCIs) and one

synchronous peripheral interface (SPI) as shown in Figure 7.

Chapter 6 51

Figure 7- HC12 Port S

The GPS is connected to SCI1 and the compass is connected to the SPI. The Ground

Control Station laptop is connected via SCI0 through the 900 MHz transceiver used for

uploading the initial user-selected waypoints and then for telemetry downlink of UAV

status whilst in flight. The CAN bus has been set up to send data from the Navigation

HC12 to the Automatic Flight Control HC12. The input/output ports A and B are used

for controlling the compass and camera trigger module where necessary. These ports are

controlled by assigning them either an input or output by writing a 1 (HIGH) or a 0

(LOW) to the corresponding bit of the data direction register (DDRA/B). On reset,

DDRA and DDRB are set to $00 which means they are inputs by default. For example,

to make bits 3-0 of PORTA inputs, and bits 7-4 outputs, it is necessary to write 0x0f to

DDRA. Then, to send data to the output pins, it is as simple as writing directly to

PORTA. When reading from PORTA, input pins will return the value of the signals on

them (0 = 0V, 1 = 5V); output pins will return the value written to them. A block

representation of PORTA and its data direction register are shown in Figure 8.

Figure 8- DDRA and PORTA

Chapter 6 52

The HC12 has capabilities above and beyond the necessities of this project, but its ease

of use and processing power offer a platform for a reliable embedded navigation system

for the prototype UAV. The navigation and guidance ‘Waypoint Path Planner

Algorithm’ and ‘Camera Trigger Module’ are programmed into the EEPROM and the

user-entered waypoints are stored into RAM for every mission to be carried out. The

‘navigation HC12’ is programmed using C language for two reasons. Firstly, a suitable

HC12 C-compiler demo was available for use, and secondly, C is an easy and simple

programming language to carry out the tasks required. Assembly language

programming was not considered viable due to the complexity of the trigonometric

functions to be used in the navigation algorithm. Details of program implementation are

discussed in Chapter 8.

6.1.1 SPI

The Serial Peripheral Interface (SPI) is used primarily for synchronous serial

communication between a host microprocessor and peripherals. It can also be used to

connect two HC12 microprocessors together, but this feature has not been used in this

project. A data byte can be shifted in and/or out one bit at a time. The SPI in the HC12

contains the four necessary signals for SPI communication. Two SPI modules connected

in a generic Master-Slave configuration are shown in Figure 9.

Figure 9- HC12 SPI configuration

Chapter 6 53

In the master SPI, the bits are sent out of the MOSI pin and received in the MISO pin.

The bits are shifted out and stored in the SPI data register, SP0DR, and are sent out

most significant bit first (bit 7). When bit 7 of the master is shifted out through the

MOSI pin, a bit from bit 7 of the slave is being shifted into bit 0 of the master via the

MISO pin. After 8 clock pulses or shifts, this bit will end up in bit 7 of the master. In the

HC12 the least significant bit is sent out first by setting the LSBF bit to 1 in the SPI

Control Register. The clock which controls how fast the bits are shifted out and into the

SP0DR, is the signal SCLK at PS6. The frequency of this clock is controlled by the SPI

baud rate register, SP0BR. The SS pin must be low to select a slave. This signal can

come from any pin on the master, including its SS pin when it is configured as an

output. The SPI registers in the HC12 are shown in Table 8.

Table 8- HC12 SPI registers

Name Register Address Description

SP0CR1 00D0 SPI Control Register 1

SP0CR2 00D1 SPI Control Register 2

SP0BR 00D2 SPI Baud Rate Register

SP0SR 00D3 SPI Status Register

SP0DR 00D5 SPI Data Register

SPI transmission is always initiated by the master with the applicable peripheral device

referred to as the slave. SCLK has eight different frequencies that can be selected

depending on the application and the timing requirements of the slave peripheral. These

frequencies are selected with bits SPR2: SPR0, as indicated in Table 9.

Chapter 6 54

Table 9- SPI clock rate selection

SPR[2:0] Divisor Frequency

000 2 4.0 MHz

001 4 2.0 MHz

010 8 1.0 MHz

011 16 500 KHz

100 32 250 KHz

101 64 125 KHz

110 128 62.5 KHz

111 256 31.25 KHz

The details of SPI communication implementation are discussed in Chapter 8, which

describes the program necessary to initiate SPI communication with the compass.

6.1.2 SCI

The 68HC12 has two Serial Communication Interfaces, each providing a Transmit Data

and a Receive Data signal suitable for a RS232 interface. Each SCI can be configured

for eight or nine data bits, the most significant can be configured as an even or odd

parity bit which is generated automatically on transmission and checked on reception.

There is always a single stop bit. Transmission data rates can be selected independently

for each SCI, however, the transmit and receive rate for a single SCI must be the same

(Almy 2004). The SCI1 connection to the GPS is configured for reception of data only.

The SCI0 connection to the Ground Control Station is set up for reception of data to

allow for the user-entered waypoints to be downloaded to RAM on start up. The SCI0

connection is then configured (via software) for transmission of data to enable telemetry

downlink to the Ground Control Station. Whether transmitting or receiving, the

following process must be used to initialise communications with the SCI and its

peripherals:

1. The baud rate must be set. If the HC12 SCI baud rate is not selected to match

the baud rate of the peripheral it is connected to, the transmission and reception

of data will not be reliable if it in fact works at all. SCIxBDH and SCIxBDL are

Chapter 6 55

two 8-bit registers considered together as a 16-bit baud rate control register.

Table 10 details the necessary values to be set in the SCI Baud Rate Control

Register. This table follows the following formula for calculating the necessary

enterable Baud Rate (BR).

16 x

MCLK
BR

SCI Baud Rate
=

Equation 3- Baud Rate Calculation

BR is then the value written to bits [12:0] of SCIBDH.

Table 10- Baud Rate Generation

Desired SCI Baud
Rate

BR Divisor for
MCLK = 8 MHz

110 4545

300 2273

600 833

1200 417

2400 208

4800 104

9600 52

14400 35

19200 26

38400 13

The GPS defaults to 4800 baud. This means that to receive data from the GPS,

the SCIBDH gets set to 104 decimal. The Ground Control Station can

communicate at a variety of baud rates as dictated by the laptop PC. The baud

rate selected and set on both the laptop and SCI0 is 9600 baud and as such, the

SCIBDH is set to 52 decimal.

2. The next step is to configure the SCI control registers for the desired SCI

parameters, i.e. transmission or reception or both. In each SCI connection,

SCxCR1 has been set to all zeros. This sets up the SCI to transmit and receive

normally with both high and low drive capability and a character format mode

Chapter 6 56

of one start, eight data and one stop bit. SCxCR2 is set to 12 decimal to enable

transmit and receive anytime.

3. The next step requires the SCI status register be polled to check for either a

Transmit Data Register Empty Flag (TDRE = 1) or a Receive Data Register Full

Flag (RDRF = 1). When transmitting data, once TDRE = 1, the SC0DRH and

SC0DRL data registers may be written to for sending data to the applicable

peripheral (in this case the Ground Control Station). When receiving data, once

RDRF = 1, the SC1DRH and SC1DRL may be read from.

6.1.3 CAN

The Controllable Area Network (CAN) is a serial communication protocol that supports

distributed real-time control applications. The bus in this project is used as the

connection between the ‘Navigation HC12’ and the ‘Automatic Flight Control HC12’

for the transmission of heading error and altitude.

Though conceived and defined by BOSCH in Germany for automotive applications,

CAN is not restricted to that industry. The CAN protocol fulfills the communication

needs of a wide range of applications, from high-speed networks to low cost multiplex

wiring (Huang 2003).

The Freescale Scalable CAN module (MSCAN) is an advanced communications

controller, implementing the CAN protocol, with these features as described in the

Motorola Advanced Information Booklet (2000):

• Implementation of CAN version 2 parts A and B

• Standard (11-bit) and extended (29-bit) data frames

• 0 to 8 bytes data length

• Programmable bit rate up to 1 Mbps

• Support for remote frames

• Double buffered receive

• Triple buffered transmit with internal prioritization using a "local priority"

concept

Chapter 6 57

• Flexible maskable identifier filter supports alternatively two full size

extended identifier filter, four 16-bit filters, or eight 8-bit filters

• Programmable wakeup functionality with integrated low-pass filter

• Programmable loopback mode supports self-test

• Separate signaling and interrupt capabilities for all CAN receiver and

transmitter error states (warning, error passive, bus-off)

• Programmable MSCAN clock source (either the CPU bus clock or the

crystal oscillator output). Low-power sleep mode.

CAN is divided into data link and physical layers. The physical layer defines how the

signals are actually transmitted; bit timing, bit encoding and synchronization.

Information on the CAN bus is sent in fixed formats of different but limited lengths.

When the bus is free, any connected node may start to transmit a new message. For the

application required in this project, the only nodes connected will be the automatic

flight control system and the Navigation and User Interface systems. The Navigation

and User Interface system will transmit heading error and altitude in the required format

(as a character array) onto the CAN bus so that the Flight Control System can access it

when ready. The CAN system does not specify node addresses in a message. Instead, it

uses an identifier to describe the content of the message. The identifier does not indicate

the destination of the message; instead, the meaning of the data is described. The nodes

connected to the bus network are able to decide by message-filtering whether the data is

to be read by them or not. This feature is not required in this application as the

Automatic flight control system will always be the recipient of the transmitted messages

and as such, these filters have been disabled in the software implementation described in

Chapter 8.

6.2 Development Tools

The development tools that were paramount for the successful implementation, testing

and debugging of the system were the TwinPEEKS monitor program and ImageCraft’s

ICC12 integrated development environment.

Chapter 6 58

6.2.1 TwinPEEKs Monitor Program

The TwinPEEKs monitor program is a ROM Monitor utility which supports uploading

of user program code to the on-chip EEPROM of the HC12. The Monitor Program is

able to display and modify the memory contents of the HC12 and can also be used to

commence execution of the user program in real-time.

The Monitor occupies 2 KB of EEPROM Code space leaving 2 KB for user program

code. The Monitor is pre-programmed into the EEPROM of the 68HC(9)12D60

development board so the Monitor Program can communicate with the Monitor when

the board is powered up.

TwinPEEKs allowed the programming of the final navigation solution to be uploaded to

the HC12 EEPROM in assembly language source file code, as is produced by the

ImageCraft compiler discussed below. The memory map of the 68HC(9)12D60 is

shown in Table 11.

Table 11- 68HC(9)12D60 Memory Map

$0000 - $01FF MCU Control Registers

$0200 - $07FF 2 KB RAM

$0C00 - $0FFF 1 KB EEPROM

$1000 - $7FFF 28 KB (lower) Flash Memory Array

$8000 - FFFF 32 KB (upper) Flash Memory Array

Boot Block (containing Monitor code):

$E000 - $FFFF

As shown in Table 11 the Monitor code resides in memory address $E000 - $FFFF.

After reset the Monitor checks whether pins PH6 and PH7 on the HC12 are connected

or not. Without a connection (default setting), the Monitor jumps to the address of the

Monitor code mentioned above. If there is a connection, the Monitor jumps to address

Chapter 6 59

$8000. In this way it is possible to automatically start a user program without changing

the Reset Vector, which resides in the write-protected Boot Block area.

6.2.2 ImageCraft ICC12 V6

The ImageCraft C ICC12 Development Environment is a program for developing HC12

microcontroller applications using the ANSI standard C language. Its main features are:

• An intuitive Windows 95/NT native Integrated Development Environment (IDE)

with integrated editor and project manager. Source files are organized into

projects. Editing and building can be done wholly within the environment.

Compile time errors are displayed in the status window, and with a click of the

mouse button, you can jump to the lines that cause the errors in the editor

window. The integrated project manager generates a standard makefile that you

can view and use directly if desired.

• The IDE drives an ANSI C command line compiler that is normally transparent

in operation. However, if you wish, you can interact with the compiler directly

using the command prompt program. The compiler is a set of native 32-bit

programs and understands long file names.

ICC12 enables the development, compilation, linking and debugging of C source code

and produces an assembly language source file version of the C source code that is

executable on the HC12 microprocessor. The benefits of this software cannot be

overstated. The amount of time and effort required in algorithm implementation and

hardware integration has been greatly reduced by avoiding the need to develop

assembly language source files from scratch.

6.3 Sensors

The navigation algorithm uses the Great Circle Distance formula to calculate the

distance and bearing to the next waypoint. It requires current position information and

Chapter 6 60

current heading information to then calculate the heading error (and thus amount of turn

required) in order to ensure the UAV heads towards the next waypoint. The hardware

design and integration issues of these sensors are now discussed with the software

implementation discussed in Chapter 8.

6.3.1 GPS

The GPS used in this project is the GARMIN GPS 35 LP TracPakTM, model GPS35-

HVS. This product is a receiver with an embedded antenna that provides one second

navigation updates and low power consumption. This GPS offers two RS-232

compatible full duplex communication channels and user-selected baud rates that allow

maximum interface capability and flexibility. The GPS GGA message is used to provide

position information to the system as well as telemetric information; altitude and GPS

status to the Ground Control Station GUI. Data parsed from the GPS to the

microprocessor is GPS status, time, latitude, longitude, and altitude. The altitude

measurements are passed directly to the control system microcontroller without any

manipulation. The GPS status is used to indicate to the Ground Control Station any loss

in quality of the received GPS message. By including this feature, the high level risk

identified in the risk assessment shown in Chapter 5 is mitigated. The user is informed

of a loss of GPS signal quality, in which case the UAV control can be handed back to

manual remote control for safe landing of the UAV. Whilst the GPS receiver offers

reliable long term position information, its susceptibility to environmental interference

means that the reliability of the GPS can only really be guaranteed on non-cloudy days

away from any physical obstructions that may impose a shadow on the GPS receiver/

antenna. An extract from the GPS35-HVS specification detailing the NMEA sentences

received is included in Appendix D. The following is a summary of the more pertinent

features:

• Full navigation accuracy provided by the Standard Positioning Service (SPS),

• Compact design ideal for applications with minimal space,

• High performance receiver tracks up to 12 satellites while providing fast first fix

and low power consumption,

Chapter 6 61

• Internal clock and memory are sustained by a rechargeable memory backup

battery. The battery recharges during normal operation. This redundant feature

ensures the reliability of data received from the GPS.

• User initialisation is not required ensuring ease of use and an ‘off the shelf’ like

solution.

• Two communication channels and user selectable baud rates allow for maximum

interface capability and flexibility, and

• Flexible input voltage levels of +6.0 VDC to 40 VDC unregulated supply.

The GPS unit weighs 124.5 grams (GARMIN Corporation 2000). This represents a

major drawback for integration of the final system into a prototype UAV because of the

payload limitations imposed by the smaller, less powerful remote control aircraft

available. The GPS unit represents the majority of the weight of the final Navigation

and User Interface system.

Interfacing the GPS with the HC12 required a surprisingly small amount of effort. The

35-HVS comes as a complete GPS receiver and antenna in a waterproof packaged unit.

Typical application architecture as outlined in the technical specification is shown in

Figure 10.

Figure 10- Typical GPS 35-HVS Application Architecture

The only wire used to connect the GPS to the HC12 is TXD1. The other wires

connected to the system are the GND and Vin pins which are connected to a common

ground and 12 VDC supply respectively. Fifteen seconds after power up, the GPS

Chapter 6 62

begins data acquisition and this data is then sent to the HC12 SCI1, as discussed in

section 6.1.2 of this chapter. The software implementation details are shown in the

Navigation Algorithm code included in Appendix G.

6.3.1.1 GPS Testing

After analysis and high-level design of the hardware, testing of the individual

components and their integration with the rest of the system was carried out. The

functionality of the GPS and its interface with the HC12 was first tested by developing a

small assembly language program to initialise SCI communications with the GPS.

Through the TwinPEEKS monitor program running on a laptop, GPS sentences were

captured into a text file, and the first successful interface verified. The assembly

language program and raw captured GPS data are included in Appendices E and F.

6.3.2 Compass

The V2X Compass Module is used in this project to provide an increased update

frequency of heading calculations, enabling the provision of heading error to the

Automatic flight control system at a faster rate than is possible with only GPS. The

V2X is a 2-axis magnetometer that measures the magnetic field in a single plane. This

plane is the plane created by its two sensors, which are perpendicular to each other on

the board (shown in red in Figure 11). The heading is calculated with respect to the

front of the board. One limitation of the V2X is that the compass must measure the

Earth’s field in a plane that is level. This level is analogous to the plane parallel to the

surface of a glass of water, i.e. when the glass of water tilts, the water’s surface will

remain level (PNI Corporation 1998). This means that if the compass is not level, the

calculated heading will have errors related to the tilt of the board from level.

Unfortunately, in a UAV application, there are times when the aircraft will tilt.

Specifically, when the rudder of an aircraft is moved causing the aircraft to yaw, one

wing will advance and the other will retreat. The faster moving wing produces more lift

than the other which will cause a roll in the same direction as the yaw. This will mean

that during any turn, there will be slight errors in the calculated heading. For the

Chapter 6 63

purposes of the Navigation and User Interface system prototype, this error is not critical.

In future prototypes, a gimballed compass could be used which will eliminate this tilt

error.

Figure 11- Vector 2x Compass Module

The V2X requires SPI communications and can operate in three different operating

modes. These are master mode, slave mode or raw mode. For the purpose of the

navigation algorithm application, the V2X is operated in slave mode to operate

effectively with the HC12 in a master-slave relationship as outlined in section 6.1.1. In

slave mode, the HC12 must clock the data out of the V2X and as such, must provide the

clock (SCLK) as an input to the compass. The maximum rate of clocking out data is 1

MHz for reliable data acquisition. The output data format can be chosen to be in binary

coded decimal (BCD), binary or raw output. BCD output format was chosen for this

project. The algorithm for interpreting the data is shown in the compass.c program in

Appendix G. The pin outs on the V2X are shown in Figure 12.

Chapter 6 64

Figure 12- V2X Compass Board Layout

The functions of the pins used to interface the V2X to the navigation system are shown

in Table 12.

Table 12- V2X Compass Pin Connections

Pin Name Function Setting

SCLK Serial Clock Input

SDO Serial Data Output Output

SS Slave Select Input

P/C Poll/ Continuous Input

CAL Calibration Input

RES Resolution Input- Low for low resolution

M/S Master enable/Slave enable Input- High for slave operation up

BCD/Bin Data output format selection Input- High for binary

Y FLIP Flips the Y axis Input- Low for normal setting

CI Calibration Indicator Output

EOC End of calculation indicator Output

VCC Power Connected to a common +5 V

GND Ground Connected to a common ground

Chapter 6 65

The timing diagram that was followed to ensure successful data acquisition is shown in

Figure 13.

Figure 13- Data Clock Timing Diagram

This diagram shows the order of precedence in which signals must be controlled, and

the necessary timing to ensure reliable data acquisition from the compass.

6.3.2.1 Compass Calibration

Due to the fact that the compass determines heading by sensing the Earth’s magnetic

field, external magnetic fields can become a source of disruption for the compass and

therefore, produce incorrect heading data. By calibrating the V2X, the static magnetic

fields in the UAV can be compensated for. This calibration is limited, in that it is not

capable of compensating for any dynamic magnetic fields, but is useful for ensuring

initially stable and reliable heading data.

The Calibration pin (CAL) is used to calibrate the V2X. The steps carried out in order

to calibrate the V2X as outlined in the Application Notes (PNI Corporation 1998) are:

• P/C must be high,

• Point the host system with V2X mounted in any direction,

Chapter 6 66

• Toggle CAL low for 1 ms (must be high when not in calibration mode),

• Toggle CAL high again,

• Rotate the host system 0180 ,

• Toggle CAL low for a minimum of 10 ms, and

• Toggle CAL high again (to remain there during normal operation) to complete

calibration.

The V2X only has volatile memory and as such, when the power is removed, the

calibration settings are lost. In order to ensure the settings are not forgotten, the host

system can calculate and save the calibration settings. This feature was not used in this

project because a permanent platform for the Navigation and User Interface system was

not established. Calibration of the compass is, therefore, carried out after power up and

prior to normal operation.

6.3.2.2 Compass Testing

Testing of the compass was carried out in conjunction with the software used to parse

the data coming from the compass. This interface software is described in Chapter 8.

The compass, HC12 and laptop were connected so that the output of the compass could

be monitored. The compass was first placed in the 00 position (north facing). This

position was confirmed by a handheld compass placed next to the V2X compass. By

moving the V2X left and right, the changes in the compass readings were compared to

those of the handheld compass. The readings were within 01 of the handheld compass.

This result was better than the expected 02 of accuracy as outlined in the specification.

The readings frequencies were as expected, with no sudden changes or lag in heading

updates.

6.3.2.3 Mitigation of Incorrect Heading Provision Risk

The provision of incorrect heading information was identified as a risk in the risk

assessment carried out in Chapter 5. The control measure identified at the time was to

Chapter 6 67

provide adequate shielding to the compass to prevent magnetic anomalies. The best way

to avoid magnetic anomalies in the compass is to make sure it is as far away from any

power wires or motor leads that may induce electromagnetic fields. The compass

placement in the final Navigation and User Interface prototype was made with these

considerations in mind. A sealed acrylonitrile-butadiene styrene (ABS) case is used for

housing the final circuit, because its non-magnetic properties make it useful for

magnetic compass housings. Carrying out calibration of the compass alleviates the static

magnetic anomalies caused by the surrounding system components and platform.

Chapter 7 68

Chapter 7

Image Capture and User Interface

Implementation

This chapter describes the hardware used to implement the image capture system to

enable surveillance over the pre-determined path and the platform used as the basis of

the user interface. The chapter details the Ground Control Station as laid out in the

system architecture design of Chapter 4, then the final system integration as discussed in

the overall hardware system design is shown.

7.1 Ground Control Station

The Ground Control Station (GCS) as the name suggests, is the part of the system that

remains on the ground when the UAV is flown on a surveillance mission along a

predetermined path. The GCS consists of a laptop, a transceiver and a Graphical User

Interface (GUI). The transceiver was originally intended to be used as only a receiver

with the downlink of waypoints to occur on the ground with a direct wire connection

from the laptop to the HC12. The receiver was then going to be connected to the laptop

and accompanying transmitter connected to the HC12 for downlink of telemetry data

during flight. However, the need for connection and disconnection of the transceivers is

negated by using the GCS transceiver as a transmitter while the UAV is on the ground

for downloading the user-entered waypoints, and then using it as a receiver once the

UAV is in the air. This reduces the amount of set up time for any given surveillance

Chapter 7 69

flight and ensures that any possible hardware connection errors due to system

configuration changes are avoided.

The laptop used for the GCS in this project is an IBM compatible Dell Inspiron 510m.

This laptop was used due to its availability but because the GUI design has been

implemented in Java, the GCS can be implemented on any computer that has the Java

runtime environment. The only necessary requirements for the computer selected is that

it has a nine pin RS-232 serial connection and that it be portable enough to carry to the

site where the surveillance mission is to be carried out.

7.1.1 Data link

To enable communications between the in-flight navigation system and the GCS, a pair

of wireless transceivers is used to download the user-entered waypoints from the GCS

to the HC12. Once this is done, the GCS transceiver is used as a receiver for the down

link telemetry. Conversely, the transceiver attached to the navigation HC12 is used as a

transmitter.

The transceivers chosen are the MaxStream 9XStream 900 MHz Wireless OEM

Modules. They use an RS-232 interface to communicate with the host system. Each

transceiver has a transmission power output of 140 mW and operates at long ranges (11

km with a dipole antenna), due to their excellent receiver sensitivity of –110 dBm.

Additionally, the 9XStream uses proprietary filtering technology to provide interference

immunity, including 70 dB of cell phone and pager rejection (10 million times

attenuation) (MaxStream 2005).

The simplicity of these transceivers makes them a perfect solution for the UAV wireless

needs. They are a light weight, ‘plug and play’ solution with no configuration required.

Whilst small modifications were required to enable the connection of power leads to the

batteries used for testing, the transceivers interfaced perfectly with the system as though

a direct wired link were being used. The transmitter is connected to SCI0 of the HC12

and the receiver is connected to the laptop RS-232 connection on the laptop (GCS). The

relative size of one of the modules is shown in Figure 14 (MaxStream 2005).

Chapter 7 70

Figure 14- 9XStream 900 MHz Wireless Module

7.1.1.1 Transceiver Testing

The transceivers were tested to ensure that the range required, as laid out in the

performance requirements of Chapter 1, could be met. Specifically, the transceivers

were required to have a range of 500m as the UAV was to be flown no more than 500m

from the GCS. This range falls within the expected 11km as detailed in the transceiver

specification. The validation of the transceivers’ transmission was considered necessary

in spite of the requirements falling well within the published limits, to ensure the safety

of equipment and personnel during any surveillance mission.

The GCS was set up with one of the transceivers and a power supply. The laptop was

equipped with the X-CTU software provided with the transceivers. This software is a

basic terminal program with the ability to carry out range testing. A null modem adapter

was connected to the other transceiver which was powered by a portable battery. The

null modem adapter allows loop-back testing to be carried out on the transceivers

without the need to interface with any other components.

The transceiver connected to the null modem adapter was progressively moved away

from the GCS transceiver, initially in increments of 10m and then, once 100m was

reached, in increments of 50m. The X-CTU software indicated 100% data packet receipt

along the test path. There were no signs of this deteriorating beyond the 500m range

necessary. The test was carried out in a park where there were trees and hills that would

sometimes mean that the GCS was out of the line of sight of the moving transceiver.

These environmental changes had no effect on the performance of the transceivers and

therefore, the transceiver testing proved successful. Based on the results of this test, the

Chapter 7 71

risk of telemetry downlink loss, as identified in Chapter 5, is a low probability of

occurring within the 500m limit.

7.2 Image Capture System

The Image Capture System designed for carrying out surveillance over the pre-

determined flight path includes a MinCam TDC-32 digital camera and electronic trigger

unit. The camera is a very light 55 grams including battery. It is small in size with

dimensions 65 x 53 x 21 mm. Its size and weight make it ideal for use in this project. It

is capable of taking 26 shots at a maximum resolution of 640 x 480 pixels.

Unfortunately this camera includes automatic shut down after 15 seconds to conserve

power. This was overcome by modifying the camera so that an electronic trigger unit

consisting of a PICAXE-18 microcontroller is in control of turning the camera on and

taking a photo. A simple logic low on the input of the PICAXE will trigger the camera

to take a photo. The electronic trigger unit has been designed and built by Terry Byrne

of the faculty.

The connection of the trigger unit to the navigation HC12 is through PORTB. A logic

low is sent to the trigger unit every time a photo needs to be taken. The timing of

surveillance photos has been set up in software so that a photo is taken whenever a

desired waypoint is reached within 5 metres. Therefore, whenever the distance to the

next waypoint is less than or equal to 5 metres, a low is sent to the trigger unit and a

photo is taken and saved in the MiniCam digital camera. Viewing of the surveillance

photos can be carried out once the surveillance flight is complete by connecting the

camera to the GCS laptop and viewing the photos using the Ulead Photo Express

software that accompanies the camera.

7.2.1 Image Capture System Test

Initial testing of the camera comprised of simple logic levels being applied to the

camera without the electronic trigger unit connected. Photos were taken and

downloaded to the laptop for viewing. Next, the camera was connected to the trigger

Chapter 7 72

unit and power applied. A low simulated by 0 volts was given as an input to the trigger

unit. The trigger unit successfully triggered the camera with a delay of a second or so.

Final testing of the image capture system was carried out in conjunction with the

software used to send the low from the HC12 to the trigger unit. Distances of less than 5

metres were simulated and the program was run to check that the trigger unit and

camera were being triggered. Testing proved successful with the only concern being the

quality of the photos taken. It is anticipated that photos taken from high altitudes will

not have the required resolution for effective crop surveillance.

7.3 Hardware Integration

Integration of the navigation and image capture hardware designed for the UAV is

shown in Figure 15. The hardware connections for the GCS are not shown. The

implementation of the design discussed in this Chapter and Chapter 6 are shown. The

connections between the compass and the HC12 have been implemented using ribbon

cable and connectors to reduce the size of the prototype system. The system includes a

casing for protection of the circuit and a power switch for easy disconnection and

reconnection of batteries during testing.

Figure 15- Integrated Hardware Wiring Diagram

Chapter 8 73

Chapter 8

Software Design and Implementation

The operational and performance requirements detailed in Chapter 1 were used as a

guide in determining the behaviour of the software, and as a means of qualifying and

quantifying the system goals. In order to analyse the system in terms of software

requirements, it was necessary to define the software structure, layout, functionality and

interconnections at a high level. The programming of the individual functions was then

carried out with an understanding of the specific responsibilities and interconnections of

each. The final C programmed source code for the HC12 is included in Appendix G,

and the Java source code for the User Interface is included in Appendix H.

8.1 Navigation Algorithm

The purpose of the Waypoint Path Planner Algorithm is to calculate the desired heading

and distance to the next waypoint. The method used is the Great Circle Navigation

formula described in the Navigation Strategy in Chapter 2. The inputs required for the

distance formula are current position (latitude and longitude) and desired position. The

current position is taken from the GPS and the desired position is taken from the user-

entered waypoints. The distance calculation corresponds to an arc linking two points on

a sphere. Using this distance, the bearing is calculated providing an angle measured

horizontally from north to the next waypoint. The heading error is calculated by

measuring the current heading from the compass and subtracting the previously

calculated bearing away from it. This heading error is then scaled and transmitted to the

Chapter 8 74

CAN so that it can be used by the flight control system. The flow diagram for the

system is shown in Figure 16.

Figure 16- Navigation System Flow Diagram

Chapter 8 75

8.2 GPS Message Holder

The purpose of the GPS message holder program is to read the incoming NMEA data

from the GPS, and separate and extract the data required for the Waypoint Path Planner

algorithm, the GCS and the flight control system. The $GPGGA message is the one that

the function looks for as this holds the GPS status indication, UTC time, current latitude

and longitude and antenna height (altitude) required by the system. As the GPS sends

out many different messages one after another, the $GPGGA message is found by

waiting for the SCI1 receive register to be full, searching for the dollar sign which

precedes every message and then checking that it has the ‘G’ ‘G’ ‘A’ portion which will

always be the third, fourth and fifth characters following on from the dollar sign. Each

$GPGGA message has delimiting commas so that each section of data can be found and

separated just by knowing the length of the data. Indexing through the message and

saving the relevant data to a defined structure allows these variables to be used within

the rest of the navigation algorithm.

The GCS waypoint reader function is a slightly modified version of the GPS message

holder function. The GCS waypoint reader’s purpose is to receive the data coming in

from the GCS (user-entered waypoints) and save them into the applicable variables for

use by the Waypoint Path Planner Algorithm. The GCS waypoint reader returns a ‘!’ to

the GCS user interface, to confirm receipt of the four waypoints.

8.3 Compass Interface

The compass interface function is designed to initialise SPI communication with the

compass, and to return the current heading. This data is used for the calculation of

heading error, using the desired heading from the Waypoint Path Planner Algorithm,

and subtracting the current heading from the compass. These calculations are carried out

four times for every GPS position and bearing calculation and as such, the resolution of

the heading error is an improvement upon what would be possible with low update rates

of 1 Hz.

Chapter 8 76

The steps involved in SPI initialisation, compass power up, calibration and

interpretation of data have been carried out in accordance with the hardware design as

described in Chapter 6. Specifically, the sequence of events carried out in the SPI

initialisation for the compass interface program included in Appendix G is as follows:

1. Set PORT A on the HC12 for PA0, PA1, PA2 and PA3 outputs. The rest set to

inputs.

2. Set / , , and P C SS CAL RESET high.

3. Enable SPI, master mode, clock idle high, phase high, normal (non-

bidirectional) mode.

4. SPI clock set to 1 MHz.

5. SCLK and MISO set as outputs.

6. Set RESET low. Delay 100 ms. Set RESET high. Delay 750 ms. (Power Up

procedure).

The sequences of events carried out for data retrieval are:

1. Set /P C low. Delay 10 ms.

2. Wait for EOC to go low.

3. Set /P C high. Wait for EOC to go high.

4. Delay 10 ms. Lower SS .

5. Then initialise transfer and interpret binary data.

The steps carried out for compass calibration are described in Chapter 6, and are

implemented in software according to these steps. The heading error sent to the

automatic flight control system has been scaled according to the requirements of that

system. The following equation was used for scaling and implemented prior to

transmission onto the CAN bus:

12000 (1146 /180)x heading error+

Equation 4- Heading Error Scaling

Chapter 8 77

8.4 Camera Trigger Module

The camera trigger module is a simple function that sends a low to the electronic trigger

unit, to enable surveillance photos be taken above waypoints during flight. The function

sets PORT B’s PB0 as an output. PB0 is set high normally, and then when the system is

within 5 metres of a waypoint (based on distance calculations carried out in Waypoint

Path Planner Algorithm), PB0 is set low, triggering the camera to take a photo. The

output is then set high again until the next waypoint is reached within 5 metres.

8.5 User Interface (GUI)

As initially discussed in Chapter 3, the purpose of the user interface is to provide a

familiar platform for the user to enter flight path waypoints as well as providing a visual

indication of real-time UAV status during flight. The interface must be easy to use and

provide adequate information without overwhelming the user. It is assumed that the user

has only the most basic level of UAV technical understanding so that any status

indications and/ or functions of the GUI must be easily understood.

The design of the user-interface began with an analysis of the requirements of the

system, in conjunction with an evaluation of the software design tools and the integrated

development environments (IDEs) available. The Java programming language was

chosen due to its cross platform compatibility. After evaluating Borland JBuilder, GEL

and NetBeans IDEs, NetBeans was chosen because it was found to be more user

friendly than GEL, and less complex than Borland JBuilder. Once this decision was

made, the functional design of the GUI was carried out. To aid in the design process, a

Use Case model was developed. A Use Case model describes what the system will do at

a high level with a user focus. Hence, it aids in scoping the GUI and giving the

application some structure. From this model, a logic scenario diagram was developed as

shown in Figure 17. The steps used to develop the ‘use cases’ for the GUI were:

1. Identification of ‘who’ is going to be using the system directly, e.g. farmer.

Chapter 8 78

2. Define what this user wants to do with the system. Each of the things the user

wants to do becomes a ‘use case’. This included the entering of desired waypoint

flight path and up-linking these to the UAV navigation system. Passively the

user wants to receive UAV status; heading and altitude, datalink loss warning,

‘no GPS capture’ warning and notification of when each waypoint has been

passed. These passive requirements are included in the window design of the

GUI and not in the Use Case model.

3. The most usual sequence of user/system interaction is defined. This is the basic

sequence and only includes what normally happens.

4. The basic sequence is described (shown in logic scenario diagram), i.e. “the user

does something…..the system does something”.

5. Once the basic sequence and descriptions were complete, the alternate paths

were considered and added as extending use cases. An example of this is the

inclusion of waypoint-entered data, repeated back to the user for verification.

This function has been added to mitigate the risk of entering incorrect waypoints

as identified in the Risk Assessment in Chapter 5.

6. Usually the next step would be to repeat this Use Case analysis for each possible

user of the system. It was not necessary to repeat the cycle for this system

because it is only designed to carry out UAV crop surveillance applications.

Therefore, the only user considered is the farmer.

Chapter 8 79

Figure 17- GCS GUI Logic Scenario Diagram

The initial GUI layout was designed by following the use cases identified in the logic

scenario diagram. The passive use cases were added in this layout. The UAV status

panel includes a datalink loss warning and GPS fix indication which provides important

safety features. If these status’ are undesirable, i.e. datalink drop out or no GPS position

fix, then the UAV may be switched to manual control for safe landing. These features

enhance the risk control measures outlined in the Risk Assessment for datalink failure

and GPS signal loss. The GUI also includes an indication of battery voltage levels

which, whilst not functional at this time, provides a layout for future inclusion of a low

battery voltage detection circuit to add another safety feature to the system. At this stage

the only mitigation of the risk of low power is to ensure that all batteries are sufficiently

charged prior to any surveillance mission.

The compass and desired heading dials were not designed from scratch. These gauges

come from freeware Java classes called ElegantJGauges and are available from

Hallogram Publishing (2004). The seven segment class used for displaying the altitude

was written so as to emulate the look of a LCD or seven segment display. The waypoint

data panel includes all the functions outlined in the logic scenario diagram and a raw

Chapter 8 80

telemetry text area has been added to the UAV status panel to aid in the testing of the

final integrated Navigation and User Interface system.

 The next step was to link the GUI with the navigation system to initially allow for

uplink of entered waypoints and then the downlink of telemetry information. The Java

SDK standard addition does not come with serial communication support. For this

reason, an additional package, javax.comm (Sun Microsystems n.d), was downloaded

to provide a number of Java classes that support serial communications protocol. This

download comes with a number of example programs. Sun Microsystems permits reuse

of this code and as such, slightly modified versions of the examples are integrated into

the GUI. Once serial communications between the GUI and HC12 tested successfully

(described in Section 7.6 of this Chapter), the functionality for the formatting of user-

entered waypoints for transmission to the HC12 navigation algorithm was added.

Following this, the program required for reception of telemetry data from the HC12 was

coded. Minor revisions to the code from the initial design include the addition of a

message “Waypoint Data Received” when the HC12 has successfully received and

saved the user-entered waypoints. The source code written for the implementation of the

GCS GUI is included in Appendix H. A captured screen view of the GUI running, after

having passed the first waypoint, is shown in Figure 18.

Chapter 8 81

Figure 18- Ground Control Station User Interface

8.5.1 GUI Behaviour

During a typical UAV surveillance mission, the GUI behaves as follows:

• User selects ‘Enter Waypoints’ button to enable editing of the waypoint text

fields. The user enters the desired flight path as four waypoints (latitudes and

longitudes).

• The user selects ‘Uplink Data to UAV’. The GUI ensures that there are enough

waypoints entered and in the correct format. If not, an error message is displayed

“Incorrect Waypoint Format” or “Please enter four waypoints” and the GUI

allows re-entering of the waypoints.

• Once the data is entered in the correct format, the GUI displays the message

“Are you sure?” along with the waypoints to be transmitted, to enable the user to

change the waypoints if they have accidentally pressed ‘Uplink Data to UAV’

without correctly entering the waypoints. The GUI then opens the serial port and

Chapter 8 82

sends the waypoint data to the HC12. The user is informed if there are any

connection issues with the serial port communication and if not, a message is

displayed to verify the reception of the data from the HC12, i.e. “Waypoint

Received”.

• The GUI then disables all user interaction and is used as a status panel for UAV

telemetry.

• The navigation HC12 sends a string containing telemetry data delimited by ‘/’.

The GUI separates this string into individual elements and displays them in the

appropriate area of the GUI. The information displayed as shown in Figure 18 is

current heading, desired heading, altitude, current position, distance from

waypoint in metres, and raw telemetry data.

• Once the first waypoint is passed (within 5 metres), the Waypoint Path Planner

Algorithm sends a character to the GUI which changes the red light next to

‘Waypoint Reached’ in the waypoint data panel to green. Once all waypoints are

passed, all the applicable lights will be green and the raw telemetry panel will

display “All four waypoints passed” to indicate to the user that the UAV is ready

for manual take-over for landing.

8.6 Inter-Processor Communications

The CAN bus described in Chapter 6 is used for communicating between the

‘Navigation HC12’ and the ‘Automatic Flight Control HC12’. It is used to send the

heading error and altitude required by the Automatic flight control system to enable

movement of the servos according to the desired flight path. Due to the simplistic nature

of the network connected to the bus, all the filters in the CAN are set to ‘don’t care’.

This is because the purpose of message filtering is to control which nodes can receive

the messages that are sent. In this case, all messages are to be received by the only other

node connected to the bus, i.e. the Automatic flight control system. The steps carried out

in the source code for CAN bus initialisation and transmissions were:

Chapter 8 83

1. Place CAN in reset during initialisation,

2. Set the CAN bit timing. In this case, 500 kbps, 16 MHz oscillations,

3. Transmit heading error in string format by passing a pointer to the data buffer to

be transmitted, and then,

4. Clear the corresponding transmit buffer empty flag.

Once the data is on the CAN bus it is ready for the Automatic flight control system to

read accordingly. It is imperative that the timing set up in each system corresponds to

the other to ensure error free data sharing.

8.7 Validation and Testing

The testing of each individual program written in C initially involved simple

compilation and running with simulated values from the Visual C++ IDE. This testing

proved the functionality of the Waypoint Path Planner Algorithm as this program does

not rely on an interface with any external component. The distance and bearing

calculations were compared to those produced by a handheld Magellan GPS, thereby

verifying the accuracy of the algorithm. The precision of the handheld Magellan was

only to one decimal place, whereas the Waypoint Path Planner algorithm produces

results in the order of six decimal places. The GPS itself is only accurate to within 10 to

30 metres, and so this precision is a little bit of overkill. Considering the processing

power of the HC12, it was not necessary to reduce this precision. If the speed or

memory size of the calculations had been a concern, this precision would have been

modified.

8.7.1 Navigation

Testing and debugging the GPS Message Holder was achieved by comparing the stored

data with the actual data as given in the raw messages displayed when the GPS message

Chapter 8 84

was captured using an assembly language program. Using the TwinPEEKS monitor

program, the raw input from the GPS was captured and saved to a word document. The

GPS Message Holder was then run and the stored values printed to the screen. By

ensuring that both sets of values were exactly the same, the data stored by the GPS

Message Holder was verified. This testing, along with the testing of the compass

interface and Camera Trigger Module, was conducted once the relevant hardware

interface and testing had been carried out, to ensure the validity of the data coming from

the sensors. The compass interface testing proved successful data acquisition. The

camera trigger module was tested directly and photos were taken as expected. The

compass and navigation algorithm code were tested together once both functions proved

successful. This testing included the simulation of position data and then verification of

distance and heading error calculations.

8.7.2 User Interface

The initial functionality of the GUI that required testing was the serial communications.

This test used a laptop and a desktop PC with the laptop running the GCS and the PC

running the serial demo program that comes with the javax.comms package. This

verified that the GUI was capable of outputting correctly formatted waypoint data

through the serial port. However, this test proved incomplete as the serial demo program

was not set up to correctly emulate the serial communication parameters of the HC12.

The HC12 requires hardware flow control to be used for incoming serial

communications whereas this initial testing was conducted with no flow control. This

problem was rectified by setting the flow control parameters in the GUI to RTS/CTS.

Testing communications between the GUI and the HC12 showed that the HC12 could

correctly receive transmissions from the GUI, but the GUI could not receive

transmissions from the HC12. Eventually, it was determined that the correct flow

control setting for the serial port on the GUI were to have RTS/CTS flow control on the

output from the GUI, and no flow control on the inputs to the GUI. Troubleshooting this

problem took many hours of testing between the laptop, PC and HC12.

Chapter 9 85

Chapter 9

System Validation and Testing

Once the Navigation and User Interface hardware and software systems were fully

integrated, validation and testing was carried out. The tests’ success was measured in

terms of the operational requirements outlined in Chapter 1. As the Navigation and User

Interface system is designed to work in conjunction with an automatic flight control

system for implementation into a UAV, the system was tested in a simulated

environment on the ground. Two system tests were carried out. This chapter details the

method, results, discussion and necessary improvements determined from the first

system test, as well as the second and final system test method and results.

9.1 First System Test Method

The first integrated system testing was carried out on the USQ soccer field. A test

trolley was manufactured to enable simulated UAV movement over a pre-determined

user-selected path. The first system test did not include the transceivers, nor the

eventual circuit casing. The soccer field co-ordinates were mapped with a handheld

Magellan GPS. Although the handheld GPS and the GPS used in the system are

susceptible to 10- 30m of error, the Magellan handheld allowed a known path to be

followed, and readings of sensor and navigation algorithm outputs to be analysed. The

distance calculations, current heading, desired heading, heading error and current

position were all saved to a text file during the test to enable collation of the data

collected during analysis, into more meaningful representations such as a graph. The

original idea was to follow the heading error given and attempt to correct along the path

Chapter 9 86

accordingly. The first system test trolley without transceivers or protective casing for

the circuit is shown in Figures 19 and 20. The GPS is shown mounted on the pole to

prevent inadvertent shadowing, and the camera is mounted half way down.

Figure 19- First System Test Trolley and Components side view

Figure 20- First System Test Trolley front view

Chapter 9 87

9.2 Results

The first system test path is shown in Figure 21. The pink line shows the desired path

(as designated by the handheld Magellan GPS) whilst the blue line shows the path that

the saved text data indicated was actually carried out.

System Test Path 1

15155.9

15155.91

15155.92

15155.93

15155.94

15155.95

15155.96

15155.97

15155.98

15155.99

2736.28 2736.29 2736.3 2736.31 2736.32 2736.33 2736.34 2736.35 2736.36 2736.37

Latitude (ddmm.mm)

L
o

n
g

it
u

d
e

 (
d

d
d

m
m

.m
m

)

Path Taken

Desired Path

Figure 21- System Test Path 1

Unfortunately, it was evident early on in the test that the desired heading and distance to

next waypoint were incorrect, and that surveillance pictures over the waypoints were

not being taken along the way. Also, the calculation and subsequent printing to screen

of the information was stopping (hanging) randomly along the path. By resetting the

HC12 whenever this happened the test path was able to be completely followed. As a

consequence, the path was followed with minor variations to check the differences in

position information between the desired path and path taken.

The system outputted desired heading to the first waypoint along the whole route and

was unable to change to the second, third and fourth waypoints. The reason for this was

that the only way that the algorithm determines when to take a photo and when to

Chapter 9 88

change to the next saved waypoint is when the distance to the current waypoint becomes

less than 5m. The distance in metres being calculated by the navigation algorithm was

in the order of 5000m even when the test trolley was exactly on the desired waypoint. In

spite of this, the test path shows that the GPS position information and current heading

from the compass were working, even if intermittently.

9.3 Discussion

Considering the inherent error of both GPS receivers as mentioned above, the desired

path looks to be close to the path taken. The reasons for some of the variations on the

path were that the test trolley was moved from side to side some of the way along, to

check the heading error changes. Disturbingly though, the distance measurements were

wrong and as such, the whole navigation algorithm was useless in terms of guidance

along a pre-determined path. Also, problems with the compass ‘hanging’ intermittently

needed to be rectified. Clearly further analysis and serious fault finding was required to

determine the cause of these errors.

9.3.1 Problem Rectification

The distance calculation was again tested on its own by running the navigation

algorithm function on Visual C++ and hard coding in four waypoints. The values were

still found to be wrong and so redefinition of the Great Circle Distance was included. A

mathematically equivalent formula to the one discussed in Chapter 2 but which is less

subject to rounding errors for short distances (Williams n.d) is:

()
() ()

()
2 2

1 2 1 2
1 2

sin sin
 2 asin cos cos

2 2
d

λ λ Φ − Φ −
= + Φ Φ

Equation 5- Great Circle Distance Equivalent

1 2 1 2where Lat1, Lat2, Lon1 and Lon2λ λΦ = Φ = = = .

Previous modular testing was not carried out using short distances between the

waypoints and this explains why the problem was not identified earlier.

Chapter 9 89

Changing the formula proved successful and the distance calculations worked once

again using simulated values in the integrated development environment.

The compass hanging problem proved to be more of a mystery. After many hours of

rewriting the compass interface function, it turned out that the problem lay in the set-up

of the HC12. The Slave Select Output Enable (SSOE) pin on the HC12 is enabled only

in the Master mode by asserting SSOE and DDS7 high. The reason these parameters

were not originally set was because the compass Slave Select (SS) pin was designed to

connect to PA1 of the HC12 instead of the corresponding SS of the HC12, so that the

interface function could have more control over timing issues. Unfortunately, by not

setting the HC12 SSOE, the MODF bit of SP0SR (status register) kept getting set. The

MODF bit is set automatically by SPI hardware if the MSTR control bit is set and the

SS input pin becomes zero. This condition is not permitted in normal operation

(Motorola Inc. 2000). Once SSOE and DDS7 were asserted high, the compass hanging

problem was resolved. This fault was not evident in the original compass interface

testing because the function was not run long enough to encounter a problem.

9.4 Second System Test Method

The second and final system test was carried out using the same desired path as mapped

out in the first system test. This time, the Ground Control Station was set up away from

the path as would be the case when used in an actual surveillance UAV application (see

Figure 24). The transceivers were connected and the navigation circuit placed in a

casing for protection as shown in Figures 22 and 23. An on/off switch was installed to

ensure easy connection and disconnection of the batteries.

The desired waypoints, as mapped out on the soccer field, were entered into the GCS

GUI. Once received by the navigation system, the trolley was guided by adjusting its

bearing according to the heading error output on the GCS. This test was carried out with

two people. One person sat at the GCS to relay heading error (via mobile phone) to the

other person pushing and adjusting the path of the trolley/ navigation system. Once

Chapter 9 90

again, the data from the test was saved in a text file for import into MS Excel to enable

analysis and comparison.

Figure 22- Navigation Circuit

Figure 23- Navigation System (in protective housing)

Chapter 9 91

Figure 24- Second System Test Ground Control Station

9.5 Results

The results of the second and final system testing were very pleasing. The distance to

the next waypoint, heading error and altitude were all in the ranges expected. Once

again, the path taken was graphed against the desired path as shown in Figure 25.

System Test Path 2

15155.9

15155.91

15155.92

15155.93

15155.94

15155.95

15155.96

15155.97

15155.98

15155.99

2736.28 2736.29 2736.3 2736.31 2736.32 2736.33 2736.34 2736.35 2736.36 2736.37

Latitude (ddmm.mmmm)

L
o

n
g

it
u

d
e

(d
d

d
m

m
.m

m
m

m
)

Path Taken

Desired Path

Figure 25- System Test Path 2

Chapter 9 92

The path taken is within a few metres of the desired path at all times. The graph of

Figure 26 represents the distance data recorded for the duration of the test path. As

shown in this graph, each waypoint gets passed within 5 metres. The navigation

algorithm successfully switched to the next waypoint when the trolley was within 5

metres of each desired waypoint. The camera trigger module triggered the camera once

at each waypoint, and the user interface successfully displayed the telemetry data as

expected.

Distance to Waypoints Test 2

0

15

30

45

60

75

90

105

120

135

Time

D
is

ta
n

c
e
 (

m
)

Figure 26- Distance Measurements Test 2

Chapter 10 93

Chapter 10

System Performance Discussion

The integrated system tests carried out in the previous chapter have been analysed in

relation to the project objectives. Importantly, the success of this project has been

qualified in terms of the project specification included in Appendix A and the specific

operational and performance requirements of Chapter 1.

Considering the error inherent in both the handheld GPS used for referencing and the

GPS connected to the system, the results of the second and final test discussed in

Chapter 9 illustrate that the system guided path is impressively accurate. Also, when

you consider the fact that a real surveillance UAV would be covering a larger area than

a soccer field and at much higher altitudes, the path taken as shown in the final system

test of Figure 25 would be more than sufficient to ensure photos be taken of the area

required. Another consideration is that a UAV Flight Control System would have a

much faster and more accurate response to the heading error provided than a person

does, and this would inevitably improve the response time, and consequently the

accuracy of the path taken.

The success of the system can be qualified by revisiting the aim of the project and the

specification details as outlined in Appendix A. As stated in the Specification, the aim

of the project was to “develop a navigation algorithm, image capture system and user

interface to integrate into a fully functional prototype of an autonomous Unmanned

Aerial Vehicle (UAV) capable of carrying out surveillance over a pre-determined flight

path.” In general terms, the aim of the project has been fulfilled without actual

Chapter 10 94

integration and testing of the Navigation and User Interface system in a fully functional

prototype UAV. Financial limitations imposed on this project have meant that a suitable

remote control aircraft capable of the necessary payload was not available this year.

Whilst the integration into a fully functional UAV has not been implemented, the

simulated testing carried out has successfully proven the Navigation and User Interface

system is capable of fulfilling its operational requirements. Addressing these

requirements specifically, the results of the final testing prove the following:

• The system provides a user interface to allow for entering of waypoints to

determine a flight path. This user interface includes error handling to mitigate

the risk of incorrect waypoints entered by the user. It also provides visual

indication of communication link status and GPS fix status to provide the

necessary safety features required to mitigate those risks identified in the risk

assessment of Chapter 5. The number of waypoints required by the system and

user interface is four, allowing a square or rectangular path to be followed in

accordance with the performance requirements originally identified during

objective analysis.

• The system provides navigational guidance information to allow for

autonomous flight over this pre-determined path. This system provides heading

error and altitude to the CAN bus at a rate of 5 per second. The mitigation of

incorrect heading error has been addressed in this system by minor shielding of

the circuit and by including a compass calibration function.

• The system allows for capturing of image information over pre-determined

points on the flight path. The system triggers the camera within five metres of

each waypoint to ensure complete surveillance coverage of the area of interest.

• The system has not been integrated into a fully functional prototype UAV due

to the financial limitations mentioned above.

Chapter 11 95

Chapter 11

Conclusions and Recommendations

The recent commitment from the Queensland State Government to provide funding for

research and development of UAVs, as well as the need for alternative means of crop

surveillance, make this project a relevant step towards the University of Southern

Queensland being part of a growing area of interest. As suggested by Premier Beattie in

June of this year (Dept. of State Development, Trade and Innovation 2005):

“Globally, this market is recognised to be the next revolution in aviation as

information technology matures in the aerospace sector.”

The navigation and user interface suites currently on the market are prohibitively

expensive. This project has sought to prove that a cheap alternative is possible, without

sacrificing quality.

11.1 Overall Performance

The prototype navigation, image capture system and user interface design has been

achieved through the structured implementation as outlined in the development

methodology in Chapter 1. In order to achieve the objectives of the project, common

UAV GPS guided navigation algorithms and user interfaces were extensively

researched. The details of this research and the research into the requirements for the

Chapter 11 96

design and implementation of an image capture system are described in Chapters 2 and

3 of this document. Chapter 3 details the background information necessary for

selection of the communications datalink chosen for downlink of telemetry, and uplink

of user-entered waypoints. The literature review provided an important basis for the

selection of components and methods used for the design and implementation of the

whole system. Based on the literature review and the resources available, the initial high

level system architecture design was established as detailed in Chapter 4. The

background literature review also highlighted the need to carry out a Risk Assessment

early on in the design phase. This, whilst important in all projects, was considered

paramount due to the fact that aviation activities are inherently dangerous. As such, the

mitigation of risks identified in Chapter 5 was a major focus throughout the design and

implementation phases.

Chapters 6 and 7 give detailed descriptions of the hardware, development tools and

interfacing considerations for the sensors connected to the microprocessor used to

implement the Navigation and User Interface. The testing of each of the individual

components is discussed as part of the staged approach planned in the design

development methodology of section 1.5.

Chapter 8 gives a detailed description of the design process and implementation of the

software required to carry out navigation and guidance, image capture over a pre-

determined flight path, and the user interface for entering waypoints and real-time

telemetry indication.

The integrated system testing is detailed in Chapter 9 with the appropriate method and

results discussed. Necessary fault finding and improvements carried out in response to

unforeseen problems identified in the first system test are highlighted. The second and

final system testing is discussed, and the results of this test are analysed in Chapter 10

with reference to the specification, objectives and operational requirements of the

system.

Overall, the system has performed well. The majority of unanticipated hurdles were

overcome, with the exception of final integration of the system into a remote control

aircraft. The project timeline in the Gantt chart included in Appendix I was followed

within a week either side of anticipated timings, and this along with the project design

Chapter 11 97

methodology ensured that the risk of breaching the schedule (as identified in the Risk

Assessment) was averted.

11.2 Recommendations for Further Work

The most obvious improvement that can be made to this system is to implement it into a

remote control aircraft with an Automatic Flight System. Whilst this is not technically

an improvement to the system, it would certainly give the Navigation and User Interface

a purpose and practicable functionality. Once implemented in a UAV, extensive testing

would be required to assess the ability of the system to withstand the noisy environment

created by the servos and engines. Unfortunately the simulated UAV testing carried out

thus far has not been able to emulate this kind of electromagnetic interference and

therefore, it is unknown whether the system will function reliably in that environment.

The results of this testing would enable analysis of the current shielding, and identify

the need or otherwise of further measures.

In terms of the system specifically, there is room for improvement and areas where

further work could enhance the current features of the system. Some recommendations

include:

• A gimballed compass to eliminate tilt error induced by rolling of the UAV.

• Reduce the current prototype circuit size by designing a printed circuit board

that includes the HC12, compass and trigger unit in one.

• Design and build an anti-vibration platform for the avionics to ensure protection

and durability of the components.

• Design a low battery detection circuit to interface with the low battery voltage

panel on the user interface GUI for enhanced safety.

• Include real-time monitoring of images and the ability to provide updated flight

path information during flight.

Chapter 11 98

• Include mapping of surveillance flights on the user interface GUI by

incorporating GIS type software.

The recommendations for further work listed above indicate that this project offers a

platform for future students to improve and build upon. UAV technology is an exciting

area of growth. This dissertation describes a cost effective navigation and user interface

for any ongoing projects in this field. With the current world wide interest in civilian

UAV applications and the Queensland State Government’s financial commitment to

their development, the Navigation and User Interface here described is a relevant

contribution, as it offers a cheap alternative to current packages on the market.

References

References

Almy, T 2004, ‘Designing with Microcontrollers- The 68HC12’, viewed 18 April 2005,
http://hc12text.com

Beasley, JS & Miller, GM 2005, ‘Modern Electronic Communication’, 8th edn, Pearson
Education, Inc., Upper Saddle River, New Jersey.

Civil Aviation Safety Authority 1998, ‘CASR 1998’, Australian Government, viewed 12
March 2005, http://www.casa.gov.au/rules/1998casr/.

Department of Defence 2005, ‘UAV (Avatar uninhabited aerial vehicle)’, Defence
Material Organisation, Australian Government Canberra, viewed 06 April 2005,
http://www.defence.gov.au/dmo/teamaustralia/indexc143.html.

Department of Defense & Department of Transportation 1996, ‘Federal Radio

Navigation Plan’, National Technical Information Service, Springfield Virginia

Department of State Development, Trade and Innovation 2005, ‘Queensland to be a

World Centre for RD of Unmanned Aircraft’, Queensland Government, viewed 09 Sep
2005,
http://www.sdi.qld.gov.au/dsdweb/v3/guis/templates/content/gui_cue_cntnhtml.cfm?id=
20859

Dittrich, JS 2002, ‘Design and Integration of an Unmanned Aerial Vehicle Navigation

System’, School of Aerospace Engineering, Georgia Institute of Technology, viewed 28
January 2005, http://controls.ae.gatech.edu/papers/dittrich_msthesis.pdf .

Elektronikladen 2005, ‘Card 12’, viewed 12 March 2005,
http://elmicro.com/en/card12.php

England, B, Garcia, A, Herlugson, K & Montano, C 2002, ‘Golfing Robot- Team B

Navigation’, New Mexico Technology, viewed 06 April 2005,
http://www.ee.nmt.edu/~wedeward/EE382/SP02/Nav_B.pdf.

FXC Corporation 2005, ‘The Airborne Guidance Unit’, FXC Corporation, Santa Anna,
California, viewed 15 March 2005, http://www.pia.com/fxc/apadsagu.htm.

Garmin Corporation 2000, ‘GPS 35 LP TracPakTM’, Olathe Kansas.

References

Hallogram Publishing 2004, ‘ElegantJGauges’, viewed 10 March 2005,
http://www.hallogram.com/elegantjgauges/

Herwitz, SR, Johnson, LF, Dunagan, SE, Higgins, RG, Sullivan, DB, Zheng, J, Lobitz,
BM, Leung, JG, Gallmeyer, BA, Aoyagi, M, Slye, RE & Brass JA, 2003, ‘Imaging from

an unmanned aerial vehicle: agricultural surveillance and decision support’,
Computers and Electronics in Agriculture, 2004, viewed 20 March 2005,
http://www.sciencedirect.com.

Honeywell Sensor Products n.d., ‘Digital Compass Module HMR3000’, Solid State
Electronics Center, Plymouth, MN, viewed 12 March 2005,
http://www.ssec.honeywell.com/magnetic/datasheets/hmr3000.pdf.

Huang, HW 2003, ‘MC68HC12: An Introduction Software and Hardware Interfacing’,
Delmar Learning, Clifton Park, NY.

Jensen, T, Apan, A, Young, F, Zeller, L & Cleminson K 2003, ‘Assessing grain crop

attributes using digital imagery acquired from a low-altitude remote controlled

aircraft’, Spatial Sciences 2003, viewed 06 April 2005,
Http://www.usq.edu.au/users/apana/JENSEN,%20TROY.pdf.

Kayton, M & Fried, WR 1997, ‘Avionics Navigation Systems’, 2nd Edn, John Wiley &
Sons, Inc, Canada.

Keeffe, M 2003, ‘The Autonomous Scale Model Surveillance Aircraft’, Faculty of
Engineering and Surveying, University of Southern Queensland.

Littleton, C 2005, ‘Autonomous Unmanned Aerial Surveillance Vehicle- Autonomous

Control and Flight Dynamics’, Faculty of Engineering and Surveying, University of
Southern Queenslnd.

MaxStream 2005, ‘XStreamTM OEM RF Modules’ MaxStream, Inc, Lindon, UT, viewed
11 March 2005,
http://www.maxstream.net/products/xstream/module/datasheet_XStream_OEM-RF-
Module.pdf.

McManus, IA 2004, ‘Intelligent Agent Based Avionics for Low Cost Uninhabited

Aircraft Operations in Civilian Airspace’ Cooperative Research Centre for Satellite
Systems, viewed 15 March 2005,
http://www.bee.qut.edu.au/projects/quav/Postgraduate/Research/Mission%20Planning/
mainpage.php.

Merminod, B 1989, ‘The Use of Kalman Filters in GPS Navigation’ University of New
South Wales, Sydney.

Motorola Inc 2000, ‘68HC912D60 Advance Information’ Rev 2.0.

Nygards, J, Skoglar, P & Ulvklo, M 2003, ‘Navigation Aided Image Processing in UAV

Surveillance’, Journal of Robotic Systems, 21(2), 63-72 2004, viewed 26 April 2005,
http://www.interscience.wiley.com.

References

PNI Corporation 1998, ‘Vector 2X User Manual’, Version 1.08, viewed 17 Mar 2005,
http://pnicorp.com/tecnical-information/pdf/vector-2x.pdf.

Royal Australian Navy 2000, ‘Aviation Safety Manual’, ABR 5147 Annex C, Ch. 4.

Standards Australia 2004, ‘Risk Management’, AS/NZS 4360:2004, viewed 18 Mar
2005, http://www.standards.com.au

Schulze, K, Abramson, A & Rogan B 2004, ‘An Economical Approach to Autopilot

Development and Integration’ 3rd AIAA, viewed 2 March 2005,
http://pdf.aiaa.org/MUAV2004_1007/PV2004_6572.pdf.

Sheldon, T 2001, ‘Tom Sheldon’s Linktionary’ Big Sur Multimedia, Viewed 26 April
2005, http://www.linktionary.com/b/bandwidth.html.

Stefan, J 2000, ‘Navigating with GPS’, Circuit Cellar, October 2000, Issue 123, viewed
05 February 2005,
http://www.circuitcellar.com/library/print/1000/Stefan123/Stefan123.pdf.

Sun Microsystems n.d., ‘Java Communications API’, viewed 02 June 2005,
http://java.sun.com/products/javacomm/downloads/

Valvano, JW 2000, ‘Embedded Microcomputer Systems: Real Time Interfacing’,
Brooks-Cole, United States.

Williams, E n.d., ‘Aviation Formulary V1.42’ viewed 16 March 2005,
http://williams.best.vwh.net/avform.htm.

Wong, KC & Bil, C 2003, ‘UAVs Over Australia’, University of Sydney, viewed 20
February 2005,
http://www.aeromech.usyd.edu.au/wwwdocs/uavs_over_australia_0398.pdf.

Appendix A

Appendix A- Project Specification

Appendix A

University of Southern Queensland
FACULTY OF ENGINEERING AND SURVEYING

ENG4111/4112 Research Project
PROJECT SPECIFICATION

FOR: Soz Deja KNOX

TOPIC: AUTONOMOUS UNMANNED AERIAL SURVEILANCE
VEHICLE- NAVIGATION AND USER INTERFACE

SUPERVISORS: Mr. Mark Phythian
LEUT Kathryn Burr, Royal Australian Navy, Res

ENROLMENT: ENG4111 – S1, D, 2005
ENG4112 – S2, D, 2005

PROJECT AIM: This project seeks to develop a navigation algorithm, image
capture system and user interface to integrate into a fully
functional prototype of an autonomous Unmanned Aerial Vehicle
(UAV) capable of carrying out surveillance over a pre-
determined flight path

PROGRAMME: Issue A, 21 March 2005

1. Research information for the design and implementation of common Unmanned
Aerial Vehicle (UAV) GPS guided navigation algorithms and user interfaces.

2. Research requirements for the design and implementation of an image capture
system including hardware, interfacing requirements and payload limitations.

3. Research communication alternatives to interface Ground Station (user interface)
with UAV for uplink of navigation algorithm and downlink of UAV telemetry.

4. Design, develop and test individual systems, i.e navigation algorithm, image capture
system and user interface.

5. Design interface for the individual systems and integrate to enable surveillance over
a pre-determined path with non real-time entering of flight path and real-time
telemetry downlink.

6. Construct prototype UAV (using a model aircraft) and integrate systems with
‘Autonomous Control and Flight Dynamics’ project being carried out by Craig
Littleton.

As time permits:

1. Design real-time monitoring of images and the ability to provide updated flight path
information during flight.

AGREED:

_________________ (Student) _________________ , _________________ (Supervisors)

__ / __ /2005 __ / __ /2005 __ / __ /2005

Appendix B

Appendix B- 68HC(9)12D60 Block Diagram

Appendix B

Appendix C

Appendix C- Card12 Schematic

Appendix C

Appendix D

Appendix D- NMEA Transmitted Sentences GPS 35LP

Appendix D

Appendix D

Appendix D

Appendix D

Appendix D

Appendix E

Appendix E- GPS Communications Assembly

Language Program

Appendix E

 CPU 68HC12
PADDING OFF

PORTA equ $00 ;Port A Data
PORTB equ $01 ;Port B Data
DDRA equ $02 ;Port A Data Direction
DDRB equ $03 ;Port B Data Direction
SC0BDH equ $C0 ;SCI 0 Baud Rate
SC0BDL equ $C1 ;SCI 0 Baud Rate Low Byte
SC0CR1 equ $C2 ;SCI 0 Control 1
SC0CR2 equ $C3 ;SCI 0 Control 2
SC0SR1 equ $C4 ;SCI 0 Status 1
SC0SR2 equ $C5 ;SCI 0 Status 2
SC0DRH equ $C6 ;SCI 0 Data
SC0DRL equ $C7 ;SCI 0 Data Low Byte
SC1BDH equ $C8 ;SCI 1 Baud Rate
SC1BDL equ $C9 ;SCI 1 Baud Rate Low Byte
SC1CR1 equ $CA ;SCI 1 Control 1
SC1CR2 equ $CB ;SCI 1 Control 2
SC1SR1 equ $CC ;SCI 1 Status 1
SC1SR2 equ $CD ;SCI 1 Status 2
SC1DRH equ $CE ;SCI 1 Data
SC1DRL equ $CF ;SCI 1 Data Low Byte
PORTS equ $D6 ;Port S Data
DDRS equ $D7 ;Port S Data Direction
PURDS equ $D9 ;
RDRF equ $20
RAMTOP equ $0600 ;Top of usable RAM
RAMTOPMON equ $07FF ;Top of RAM used by monitor
CODE equ $8000

ORG $0200

TABLE RMB 1 ;ALWAYS LAST IN LIST

;==
; START OF MAIN PROGRAMME

ORG CODE

main lds #RAMTOP ;Stack Pointer
clr COPCTL ;Disable Computer Operating

Properly Watchdog

jsr serial_init ; Setup serial port
jsr spi_init
ldaa #23
jsr txbyte

Appendix E

jsr gps_serial_init ; Setup serial port for GPS
comms

MAINTEST
ldaa #96
jsr txbyte
jsr get_gps_data
bra MAINTEST

;***
;Print a space

PRINT_SPACE
ldaa #' '
jsr txbyte
rts

;**
; To use the serial port, one must set the baud rate. Set
; it to 19200 baud. The value here is a 16 bit divisor.

serial_init
ldd #26 ; Value from Baud Rate Generation Table

 std SC0BDH
ldaa #$0C ; Enable transceiver
staa SC0CR2
rts

;**
; To use gps serial port, one must set the baud rate. Set
; it to 4800 baud. The value here is a 16 bit divisor.

gps_serial_init
ldd #104 ; Value from Baud Rate Generation Table
std SC1BDH
ldaa #$0C ; Enable transceiver
staa SC1CR2
rts

;**
; Set up the SPI to talk to the compass

spi_init
ldaa #$E0 ; Value from Baud Rate Generation Table
std DDRS
ldaa #$5C ; Enable transceiver
staa SP0CR1
ldaa #$00
staa SP0CR2
ldaa #$02
staa SP0BR

Appendix E

rts

;**
; Send a carriage return and line feed to screen
write_newline

ldaa #$0D ;Load Carriage return ASCII
jsr txbyte
ldaa #$0A ;Load Line Feed ASCII
jsr txbyte
rts

;**
get_gps_data

clra
SCI_WAIT

brclr SC1SR1, RDRF, SCI_WAIT
ldaa SC1DRL
JSR txbyte
ldaa #96
jsr txbyte
JSR print_space
rts

;***
; Transmit a character which is in A
txbyte

brclr SC0SR1, #$80 txbyte
staa SC0DRL
rts

END main

Appendix F

Appendix F- Raw Captured GPS Data

Appendix F

--- Start of recording: 28/03/2005 4:51:27 PM ---
 ` `$` `G` `P` `R` `M` `C` `,` `0` `6` `5` `1` `2` `9` `,` `A` `,` `2` `7` `3`
 `3` `.` `0` `3` `9` `0` `,` `S` `,` `1` `5` `1` `5` `7` `.` `6` `4` `2` `6` `,`
 `E` `,` `0` `0` `0` `.` `0` `,` `0` `0` `0` `.` `0` `,` `2` `8` `0` `3` `0` `5`
` `` `0` `1` `1` `.` `0` `,` `E` `*` `6` `0` `
 ` `$` `G` `P` `G` `G` `A` `,` `0` `6` `5` `1` `2` `9` `,` `2` `7` `3` `3` `.`
 `0` `3` `9` `0` `,` `S` `,` `1` `5` `1` `5` `7` `.` `6` `4` `2` `6` `,` `E` `,`
 `6` `,` `0` `3` `,` `4` `.` `8` `,` `2` `6` `0` `.` `8` `,` `M` `,` `3` `9` `.`
` `` `,` `M` `,` `,` `*` `5` `4` `
 ` `$` `G` `P` `G` `S` `A` `,` `A` `,` `2` `,` `,` `0` `7` `,` `,` `2` `4` `,`
 `,` `2` `8` `,` `,` `,` `,` `,` `,` `,` `4` `.` `8` `,` `4` `.` `8` `,` `*` `1`
` `` `
 ` `$` `G` `P` `G` `S` `V` `,` `2` `,` `1` `,` `0` `6` `,` `0` `2` `,` `1` `3`
 `,` `3` `5` `0` `,` `,` `0` `7` `,` `6` `3` `,` `1` `6` `3` `,` `4` `9` `,` `0`
 `9` `,` `1` `7` `,` `2` `2` `0` `,` `,` `2` `4` `,` `4` `4` `,` `0` `8` `8` `,`
` `` `2` `*` `7` `E` `
 ` `$` `G` `P` `G` `S` `V` `,` `2` `,` `2` `,` `0` `6` `,` `2` `6` `,` `3` `0`
 `,` `2` `7` `6` `,` `4` `5` `,` `2` `8` `,` `3` `8` `,` `1` `1` `6` `,` `3` `7`
` `` `,` `,` `,` `,` `,` `,` `,` `*` `7` `9` `
 ` `$` `G` `P` `R` `M` `C` `,` `0` `6` `5` `1` `3` `0` `,` `A` `,` `2` `7` `3`
 `3` `.` `0` `3` `9` `0` `,` `S` `,` `1` `5` `1` `5` `7` `.` `6` `4` `2` `6` `,`
 `E` `,` `0` `0` `0` `.` `0` `,` `0` `0` `0` `.` `0` `,` `2` `8` `0` `3` `0` `5`
` `` `0` `1` `1` `.` `0` `,` `E` `*` `6` `8` `
 ` `$` `G` `P` `G` `G` `A` `,` `0` `6` `5` `1` `3` `0` `,` `2` `7` `3` `3` `.`
 `0` `3` `9` `0` `,` `S` `,` `1` `5` `1` `5` `7` `.` `6` `4` `2` `6` `,` `E` `,`
 `6` `,` `0` `3` `,` `4` `.` `8` `,` `2` `6` `0` `.` `8` `,` `M` `,` `3` `9` `.`
` `` `,` `M` `,` `,` `*` `5` `C` `
 ` `$` `G` `P` `G` `S` `A` `,` `A` `,` `2` `,` `,` `0` `7` `,` `,` `2` `4` `,`
 `,` `2` `8` `,` `,` `,` `,` `,` `,` `,` `4` `.` `8` `,` `4` `.` `8` `,` `*` `1`
` `` `
 ` `$` `G` `P` `G` `S` `V` `,` `2` `,` `1` `,` `0` `6` `,` `0` `2` `,` `1` `3`
 `,` `3` `5` `0` `,` `,` `0` `7` `,` `6` `3` `,` `1` `6` `3` `,` `4` `8` `,` `0`
 `9` `,` `1` `7` `,` `2` `2` `0` `,` `,` `2` `4` `,` `4` `4` `,` `0` `8` `8` `,`
` `` `1` `*` `7` `C` `
 ` `$` `G` `P` `G` `S` `V` `,` `2` `,` `2` `,` `0` `6` `,` `2` `6` `,` `3` `0`
 `,` `2` `7` `6` `,` `4` `4` `,` `2` `8` `,` `3` `8` `,` `1` `1` `6` `,` `3` `6`
` `` `,` `,` `,` `,` `,` `,` `,` `*` `7` `9` `
TwinPEEKs V1.6a for Card12.D60A
(C)1996-2001 by MCT Elektronikladen GbR
The makers of fine HC12/11/08 stuff!
http://www.elektronikladen.de/mct
mailto:leipzig@elektronikladen.de
;->
--- End of recording: 28/03/2005 4:53:23 PM ---

Appendix G

Appendix G- HC12 Source Code

Appendix G

G.1 navigationalgorithm.c

G.2 hc12.h

G.3 GPSMessageHolder.h

G.4 GPSMessageHolder.c

G.5 compass.h

G.6 compass.c

G.7 can.h

G.8 can.c

//---
// Author: Soz Knox 0039911442
// Title: Navigation Algorithm for UAV
/* Purpose: Calculates distance in metres and desired heading in degrees
 from current position to next waypoint. Also calculates heading
 error for Flight Control System (rudder control).
*/
// Last updated: 20/09/05

//---
// Included Libraries

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include "hc12.h"
#include "GPSMessageHolder.h"
#include "compass.h"
#include "can.h"

//---
//Global variables
#define TRUE 1
#define FALSE 0

// Math constants

gpsData data;
double M_PI = 3.14159;
double actualHeading;
double distanceToWaypointRad;
double desiredHeadingRad;
double desiredHeadingDeg;
double distanceToWaypointNM;
double distanceToWaypointMetres;
double headingError;
double destLat1; //These are the waypoints we get from the Control Station
double destLon1;
double destLat2;
double destLon2;
double destLat3;
double destLon3;
double destLat4;
double destLon4;
double curWptLat;//Actual latitude of waypoint, UAV is heading to
double curWptLon;// Actual longitude of waypoint, UAV is heading to
int curWpt;// Between 1 and 4 depending on which waypoint UAV is up to
int craigHead;
//--
// Function prototypes

void calculateBearingAndDistance();
void checkDistance();
void sendDataToGCS();
double greatCircleDistance(double lat1, double lat2, double lon1,
 double lon2);
double radBearing(double lat1, double lat2, double lon1, double lon2,
 double distance);
double deg2Rad(double coOrd);
void calculateHeadingError();
void getWaypointsFromGCS();
void currentWaypoint();
void trigger();

//--

void main(void) {
 int numWpts = 4;

 //Settings for comms with GCS
 SC0CR1 = 0x00;
 SC0CR2 = 0x0C;
 SC0BDH = 0x00;
 SC0BDL = 0x34;
 DDRB = 0x01; //sets PB0 an output with a high

 PORTB = 0x01;//set PB0 high

1

 curWpt = 1;

 compass_power_up();//Initialises compass
 CANInit();

 compassCal();

 getWaypointsFromGCS();

 currentWaypoint();//which point is the UAV heading towards?

 //This loop will run until we pass the final waypoint
 while (curWpt <= numWpts) {
 //get data from the GPS
 data = acquireGpsData();
 //Work out how far we are from the waypoint and what
 //direction we need to go to get there
 calculateBearingAndDistance();
 //Work out where we are heading currently then calculate
 //heading error
 calculateHeadingError();
 //Check how far we are away from the waypoint
 //if < 5 increment the waypoint, and take a photo
 checkDistance();
 //send current telemetry data to the GCS
 sendDataToGCS();
 }
}

//--
// Functions

void calculateBearingAndDistance() {
 double lat1Rad;
 double lon1Rad;
 double lat2Rad;
 double lon2Rad;

 lat1Rad = deg2Rad(data.lat); //current lat from the GPS
 lon1Rad = deg2Rad(data.lon); //current lon from the GPS
 lat2Rad = deg2Rad(curWptLat); //current waypoint lat
 lon2Rad = deg2Rad(curWptLon); //current waypoint lon

 distanceToWaypointRad = greatCircleDistance(lat1Rad, lat2Rad,
 lon1Rad, lon2Rad);
 desiredHeadingRad = radBearing(lat1Rad, lat2Rad, lon1Rad,
 lon2Rad, distanceToWaypointRad);
 desiredHeadingDeg = (180/M_PI) * desiredHeadingRad;
 distanceToWaypointNM = ((180*60)/M_PI)*distanceToWaypointRad;
 distanceToWaypointMetres = distanceToWaypointNM*1852;
}

//Function to calculate when to take a photo and when to start heading to
//next waypoint (increment curWpt)
void checkDistance() {
 if (distanceToWaypointMetres <= 5) {
 trigger();
 putchar('*');
 curWpt++;
 currentWaypoint();
 }
}

//Telemetry to Ground Control Station
void sendDataToGCS() {
 printf("%f\\%f\\%f\\%f\\%f\\%f\\%s", data.lat, data.lon,
 data.antHeight, desiredHeadingDeg,actualHeading,
 distanceToWaypointMetres,data.UTC);
}

double greatCircleDistance(double lat1, double lat2, double lon1,
 double lon2) {
 double radDist;
 double t1 = pow(sin((lat1-lat2)/2),2);
 double t2 = pow(sin((lon1-lon2)/2),2);
 radDist = 2*asin(sqrt(t1 + cos(lat1)*cos(lat2)*t2));

2

 return radDist;
}

double radBearing(double lat1, double lat2, double lon1, double lon2,
 double distance) {
 double rad_Bearing;

 if (sin(lon2-lon1) < 0.0)
 {
 rad_Bearing = acos((sin(lat2)-sin(lat1)*cos(distance))/
 (sin(distance)*cos(lat1)));
 }
 else
 {
 rad_Bearing = 2*M_PI-acos((sin(lat2)-sin(lat1)*cos(distance))/
 (sin(distance)*cos(lat1)));
 }

 return rad_Bearing;
}

double deg2Rad(double coOrd) {
 int dd = (int)coOrd/100;
 double ee = dd*100;
 double mm = coOrd-ee;
 double oDDD = mm/60;
 double ddDDDD = oDDD+dd;

 double coOrdRad = ddDDDD/57.2957;
 return coOrdRad;
}

void calculateHeadingError() {
 int j;
 unsigned char *s;

 for (j = 0; j<4; j++) {
 actualHeading = compass();
 headingError = desiredHeadingDeg - actualHeading;
 if (headingError < -180)
 headingError += 360;

 if (headingError > 180)
 headingError -= 360;

 //scale heading before sending to Craig
 craigHead = 12000 + (1146/180*(int)headingError);
 itoa(s, craigHead, 10);
 //put the heading onto the CAN bus
 tx_can(s);
 }
}

void getWaypointsFromGCS() {
 unsigned char inputQueue[MAX_SIZE]= {"\0"};
 unsigned char bufferString[100]= {"\0"};
 unsigned char latitudeString[10]= {"\0"};
 unsigned char longitudeString[11]= {"\0"};
 unsigned char *locptr;
 unsigned char *s; //local buffer pointer
 unsigned char comPortChar;

 int i = 0;
 int flag = 1;
 int index = 0;
 unsigned int x = 0, k = 0;

 do
 {
 //Wait for Receive register full flag to be set
 while((SC0SR1 & 0x20) == 0);
 comPortChar = SC0DRL;

 i = 0;
 inputQueue[i]=comPortChar;
 flag = 0;

3

 do
 {
 //Wait for Receive register full flag to be set
 while((SC0SR1 & 0x20) == 0);

 comPortChar = SC0DRL;
 i++;
 inputQueue[i]=comPortChar;
 flag = 0;
 //Termination string for Wpt data from the GCS
 } while ((comPortChar != '!'));

 } while(flag);

 //points locptr to the same location that inputQueue points to
 locptr = inputQueue;

 while (*(locptr+x)!= 0x2C) // not equal to a comma
 {
 latitudeString[k] = *(locptr + x);
 x++;
 k++;
 }

 latitudeString[k] = '\0';
 s = latitudeString;
 destLat1 = atof(s);

 locptr = inputQueue;

 x+=1;
 k=0;
 while(*(locptr+x) != 0x2C)
 {
 longitudeString[k] = *(locptr + x);
 x++;
 k++;
 }

 longitudeString[k] = '\0';
 s = longitudeString;

 destLat2 = atof(s);

 locptr = inputQueue;
 x+=1;
 k=0;

 while (*(locptr+x)!= 0x2C) // not equal to a comma
 {
 latitudeString[k] = *(locptr + x);
 x++;
 k++;
 }

 latitudeString[k] = '\0';
 s = latitudeString;
 destLat3 = atof(s);

 locptr = inputQueue;

 x+=1;
 k=0;
 while(*(locptr+x) != 0x2C)
 {
 longitudeString[k] = *(locptr + x);
 x++;
 k++;
 }

 longitudeString[k] = '\0';
 s = longitudeString;

 destLat4 = atof(s);

 locptr = inputQueue;
 x+=1;

4

 k=0;
 while (*(locptr+x)!= 0x2C) // not equal to a comma
 {
 latitudeString[k] = *(locptr + x);
 x++;
 k++;
 }

 latitudeString[k] = '\0';
 s = latitudeString;
 destLon1 = atof(s);

 locptr = inputQueue;

 x+=1;
 k=0;
 while(*(locptr+x) != 0x2C)
 {
 longitudeString[k] = *(locptr + x);
 x++;
 k++;
 }

 longitudeString[k] = '\0';
 s = longitudeString;

 destLon2 = atof(s);

 locptr = inputQueue;
 x+=1;
 k=0;
 while (*(locptr+x)!= 0x2C) // not equal to a comma
 {
 latitudeString[k] = *(locptr + x);
 x++;
 k++;
 }

 latitudeString[k] = '\0';
 s = latitudeString;
 destLon3 = atof(s);

 locptr = inputQueue;

 x+=1;
 k=0;
 while(*(locptr+x) != 0x2C)
 {
 longitudeString[k] = *(locptr + x);
 x++;
 k++;
 }

 longitudeString[k] = '\0';
 s = longitudeString;

 destLon4 = atof(s);
 putchar('!');
}

void currentWaypoint () {
 //switch case to decide which lat is current one
 switch (curWpt) {
 case 1:

 curWptLat = destLat1;
 curWptLon = destLon1;

 break;

 case 2:

 curWptLat = destLat2;
 curWptLon = destLon2;

 break;

5

 case 3:

 curWptLat = destLat3;
 curWptLon = destLon3;

 break;

 case 4:

 curWptLat = destLat4;
 curWptLon = destLon4;

 break;

 default:
 printf("Houston we have a problem!!\n");
 }
}

void trigger() {
 //send a low to take a photo
 PORTB = 0x00;
 delay(2000);

 PORTB = 0x01;
}

//---

6

// filename ******* HC12.H **************
// Header file for 6812 I/O ports
// This example accompanies the book
// "Embedded Microcomputer Systems: Real Time Interfacing", Brooks-Cole,
// copyright (c) 2000,
// Jonathan W. Valvano 5/4/99
// msCAN port addresses added 08/09/05 by Soz Knox

#ifndef __HC12_H
#define __HC12_H 1

/* base address of register block, change this if you relocate the register
 * block. This is for 812A4, 912B32 contains a subset.
 */
#define _IO_BASE 0
#define _P(off) *(unsigned char volatile *)(_IO_BASE + off)
#define _LP(off) *(unsigned short volatile *)(_IO_BASE + off)
#define PORTA _P(0x00)
#define PORTB _P(0x01)
#define DDRA _P(0x02)
#define DDRB _P(0x03)
#define PORTC _P(0x04)
#define PORTD _P(0x05)
#define DDRC _P(0x06)
#define DDRD _P(0x07)
#define PORTE _P(0x08)
#define DDRE _P(0x09)
#define PEAR _P(0x0A)
#define MODE _P(0x0B)
#define PUCR _P(0x0C)
#define RDRIV _P(0x0D)
#define INITRM _P(0x10)
#define INITRG _P(0x11)
#define INITEE _P(0x12)
#define MISC _P(0x13)
#define RTICTL _P(0x14)
#define RTIFLG _P(0x15)
#define COPCTL _P(0x16)
#define COPRST _P(0x17)
#define ITST0 _P(0x18)
#define ITST1 _P(0x19)
#define ITST2 _P(0x1A)
#define ITST3 _P(0x1B)
#define INTCR _P(0x1E)
#define HPRIO _P(0x1F)
#define KWIED _P(0x20)
#define KWIFD _P(0x21)
#define PORTH _P(0x24)
#define DDRH _P(0x25)
#define KWIEH _P(0x26)
#define KWIFH _P(0x27)
#define PORTJ _P(0x28)
#define DDRJ _P(0x29)
#define KWIEJ _P(0x2A)
#define KWIFJ _P(0x2B)
#define KPOLJ _P(0x2C)
#define PUPSJ _P(0x2D)
#define PULEJ _P(0x2E)
#define PORTF _P(0x30)
#define PORTG _P(0x31)
#define DDRF _P(0x32)
#define DDRG _P(0x33)
#define DPAGE _P(0x34)
#define PPAGE _P(0x35)
#define EPAGE _P(0x36)
#define WINDEF _P(0x37)
#define MXAR _P(0x38)
#define CSCTL0 _P(0x3C)
#define CSCTL1 _P(0x3D)
#define CSSTR0 _P(0x3E)
#define CSSTR1 _P(0x3F)
#define LDV _LP(0x40)
#define RDV _LP(0x42)
#define CLKCTL _P(0x47)
#define ATDCTL0 _P(0x60)
#define ATDCTL1 _P(0x61)
#define ATDCTL2 _P(0x62)

1

#define ATDCTL3 _P(0x63)
#define ATDCTL4 _P(0x64)
#define ATDCTL5 _P(0x65)
#define ATDSTAT _LP(0x66)
#define ATDTEST _LP(0x68)
#define PORTAD _P(0x6F)
#define ADR0H _P(0x70)
#define ADR1H _P(0x72)
#define ADR2H _P(0x74)
#define ADR3H _P(0x76)
#define ADR4H _P(0x78)
#define ADR5H _P(0x7A)
#define ADR6H _P(0x7C)
#define ADR7H _P(0x7E)
#define TIOS _P(0x80)
#define CFORC _P(0x81)
#define OC7M _P(0x82)
#define OC7D _P(0x83)
#define TCNT _LP(0x84)
#define TSCR _P(0x86)
#define TQCR _P(0x87)
#define TCTL1 _P(0x88)
#define TCTL2 _P(0x89)
#define TCTL3 _P(0x8A)
#define TCTL4 _P(0x8B)
#define TMSK1 _P(0x8C)
#define TMSK2 _P(0x8D)
#define TFLG1 _P(0x8E)
#define TFLG2 _P(0x8F)
#define TC0 _LP(0x90)
#define TC1 _LP(0x92)
#define TC2 _LP(0x94)
#define TC3 _LP(0x96)
#define TC4 _LP(0x98)
#define TC5 _LP(0x9A)
#define TC6 _LP(0x9C)
#define TC7 _LP(0x9E)
#define PACTL _P(0xA0)
#define PAFLG _P(0xA1)
#define PACNT _LP(0xA2)
#define TIMTST _P(0xAD)
#define PORTT _P(0xAE)
#define DDRT _P(0xAF)
#define SC0BD _LP(0xC0)
#define SC0BDH _P(0xC0)
#define SC0BDL _P(0xC1)
#define SC0CR1 _P(0xC2)
#define SC0CR2 _P(0xC3)
#define SC0SR1 _P(0xC4)
#define SC0SR2 _P(0xC5)
#define SC0DRH _P(0xC6)
#define SC0DRL _P(0xC7)
#define SC1BD _LP(0xC8)
#define SC1BDH _P(0xC8)
#define SC1BDL _P(0xC9)
#define SC1CR1 _P(0xCA)
#define SC1CR2 _P(0xCB)
#define SC1SR1 _P(0xCC)
#define SC1SR2 _P(0xCD)
#define SC1DRH _P(0xCE)
#define SC1DRL _P(0xCF)
#define SP0CR1 _P(0xD0)
#define SP0CR2 _P(0xD1)
#define SP0BR _P(0xD2)
#define SP0SR _P(0xD3)
#define SP0DR _P(0xD5)
#define PORTS _P(0xD6)
#define DDRS _P(0xD7)
#define EEMCR _P(0xF0)
#define EEPROT _P(0xF1)
#define EETST _P(0xF2)
#define EEPROG _P(0xF3)
#define CMCR0 _P(0x0100)
#define CMCR1 _P(0x0101)
#define CBTR0 _P(0x0102)
#define CBTR1 _P(0x0103)
#define CRFLG _P(0x0104)

2

#define CRIER _P(0x0105)
#define CTFLG _P(0x0106)
#define CTCR _P(0x0107)
#define CIDAC _P(0x0108)
#define CRXERR _P(0x010E)
#define CTXERR _P(0x010F)
#define CIDAR0 _P(0x0110)
#define CIDAR1 _P(0x0111)
#define CIDAR2 _P(0x0112)
#define CIDAR3 _P(0x0113)
#define CIDMR0 _P(0x0114)
#define CIDMR1 _P(0x0115)
#define CIDMR2 _P(0x0116)
#define CIDMR3 _P(0x0117)
#define CIDAR4 _P(0x0118)
#define CIDAR5 _P(0x0119)
#define CIDAR6 _P(0x011A)
#define CIDAR7 _P(0x011B)
#define CIDMR4 _P(0x011C)
#define CIDMR5 _P(0x011D)
#define CIDMR6 _P(0x011E)
#define CIDMR7 _P(0x011F)
#define PCTLCAN _P(0x013D)
#define PORTCAN _P(0x013E)
#define DDRCAN _P(0x013F)
#define RxFG _P(0x0140)
#define Tx0 _P(0x0150)
#define Tx1 _P(0x0160)
#define Tx2 _P(0x0170)

/* These values are for a 8Mhz clock
 */
typedef enum {
 BAUD38K = 13, BAUD19K = 26, BAUD14K = 35,
 BAUD9600 = 52, BAUD4800 = 104, BAUD2400 = 208,
 BAUD1200 = 417, BAUD600 = 833, BAUD300 = 2273
 } BaudRate;

void setbaud(BaudRate);

#ifndef INTR_ON
#define INTR_ON() asm("cli")
#define INTR_OFF() asm("sei")
#endif

#ifndef bit
#define bit(x) (1 << (x))
#endif

#ifdef _SCI
/* SCI bits */
#define TE bit(3)
#define RE bit(2)
#define TDRE bit(7)
#define TC bit(6)
#define RDRF bit(5)
#define T8 bit(6)
#define R8 bit(7)
#endif

#ifdef _SPI
/* SPI bits */
#define MSTR bit(4)
#define SPE bit(6)
#define SPIF bit(7)
#endif

#ifdef _EEPROM
/* EEPROM */
#define EEPGM bit(0)
#define EELAT bit(1)
#endif

#endif

3

#ifndef _GPSMESSAGEHOLDER_

#include "hc12.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <math.h>

#define MAX_SIZE 100

typedef struct
 {
 char UTC[10];
 double lat;
 char NS;
 double lon;
 char EW;
 int fixIndication;
 double antHeight;
 } gpsData;

gpsData acquireGpsData();
int putchar(char x);
void SCI_Output(char data);

#endif

1

//---
// Author: Soz Knox 0039911442
// Title: GPS message Holder
/* Purpose: Reads in NMEA data from GPS and extracts required $GPGGA
 message
*/
// Last updated: 29/05/05

//---
// Included Libraries

#include "GPSMessageHolder.h"
#define STRING10 10
#define STRING7 7

gpsData GPRMC;

//--
// Functions

gpsData acquireGpsData() {
 unsigned char inputQueue[MAX_SIZE]= {"\0"};
 unsigned char bufferString[MAX_SIZE]= {"\0"};
 unsigned char latitudeString[10]= {"\0"};
 unsigned char longitudeString[11]= {"\0"};
 unsigned char fixString[2] = {"\0"};
 unsigned char dateString[7] = {"\0"};
 unsigned char antHeightString[8] = {"\0"};

 unsigned char *locptr;
 unsigned char *s; //local buffer pointer
 unsigned char comPortChar;

 int flag = 1;

 int i = 0;
 int index = 0;
 unsigned int x = 0, k = 0;

 SC1BDH = 0x00; //set SCI baud to 4800 bps
 SC1BDL = 0x68;
 SC1CR2 = 0x0C;

 do
 {
 //Wait for Receive reg full flag to be set
 while((SC1SR1 & 0x20) == 0);
 comPortChar = SC1DRL;

 if(comPortChar == '$') //if character is '$', then store in array
 {
 i = 0;
 inputQueue[i]=comPortChar;

 do
 {
 //Wait for Receive reg full flag to be set
 while((SC1SR1 & 0x20) == 0);
 comPortChar = SC1DRL;
 i++;
 inputQueue[i]=comPortChar;
 } while ((comPortChar != '\r') && (comPortChar != '\n'));

 inputQueue[i+1]='\0';
 // Analyse the string to see if it is $GPGGA
 x = 0;
 locptr = inputQueue;//points locptr to inputQueue data

 while (*(locptr+x)!= 0x2C) // not equal to a comma
 {
 bufferString[x] = *(locptr + x);
 x++;
 }
 bufferString[x] = '\0';
 // now check to see if string is the $GPGGA message

 if (bufferString[3] == 'G' && bufferString[4] == 'G' &&

1

 bufferString[5] == 'A')
 {
 locptr = inputQueue;
 //Get UTC time
 x = 7; // beginning of UTC field
 k = 0;
 while (*(locptr+x) != 0x2C)
 {
 bufferString[k] = *(locptr + x);
 x++;
 k++;
 }
 bufferString[k]='\0';
 for (index = 0; index <= k; index++)
 {
 GPRMC.UTC[index]=bufferString[index];
 }

 locptr = inputQueue;

 // get Latitude
 x+=1;
 k=0;
 while(*(locptr+x) != 0x2C)
 {
 latitudeString[k] = *(locptr + x);
 x++;
 k++;
 }

 latitudeString[k] = '\0';
 s = latitudeString;

 GPRMC.lat = atof(s);

 locptr = inputQueue;

 //get Latitude Hemisphere
 x+=1;
 k = 0;
 while (*(locptr+x) != 0x2C)
 {
 bufferString[k] = *(locptr + x);
 x++;
 k++;
 }
 GPRMC.NS = bufferString[k-1];

 locptr = inputQueue;

 //get Longitude

 x+=1;
 k=0;
 while(*(locptr+x) != 0x2C)
 {
 longitudeString[k] = *(locptr + x);
 x++;
 k++;
 }

 longitudeString[k] = '\0';
 s = longitudeString;

 GPRMC.lon = atof(s);

 locptr = inputQueue;

 // Get longitude hemisphere
 x+=1;
 k = 0;
 while (*(locptr+x) != 0x2C)
 {
 bufferString[k] = *(locptr + x);
 x++;
 k++;
 }

2

 GPRMC.EW = bufferString[k-1];

 locptr = inputQueue;

 //Get fix quality indication
 x+=1;
 k=0;
 while(*(locptr+x) != 0x2C)
 {
 fixString[k] = *(locptr + x);
 x++;
 k++;
 }
 fixString[k] = '\0';
 s = fixString;

 GPRMC.fixIndication = atoi(s);
 locptr = inputQueue;

 //Get height above ground
 x=23;
 k=0;
 while(*(locptr+x) != 0x2C)
 {
 antHeightString[k] = *(locptr + x);
 x++;
 k++;
 }
 antHeightString[k] = '\0';
 s = antHeightString;

 GPRMC.antHeight = atof(s);

 locptr = inputQueue;

 flag = 0;

 }//if statement
 }//Another if statement
 } while (flag);
 return GPRMC;
}

int putchar(char x) {
 while((SC0SR1&0x80)==0);

 SC0DRL=x;

 if(x=='\n') {
 while((SC0SR1&0x80)==0);
 SC0DRL='\r';
 }
}

//---

3

#ifndef _COMPASS_

#include "hc12.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <math.h>

double compass();
void compass_power_up();
void delay(unsigned int ms);
void compassCal();

#endif

1

//---
// Author: Soz Knox 0039911442
// Title: Compass Interface
/* Purpose: Initialises SPI for compass readings and returns current
 Heading
*/
// Last updated: 16/08/05

//---
// Included Libraries

#include "compass.h"
//---
//Global variables

//Defining a constant to use in the delay function
const int DELAYCONST=(8000/4);

//--
// Function prototypes
void delay(unsigned int ms);

//--

void compass_power_up() {
 DDRA = 0x0F; //sets port A for: PA0-3 to outputs and the rest inputs

 PORTA = 0x0F; //sets /RESET, /CAL, /SS and /P/C high for power up

 //SPI setup in HC12
 SP0CR1 = 0x5E; //SPI enable, Master mode, clock idle HIGH, Phase Hi,
 //Data is transferred MSB first. Also. SS is high to enable an output.

 SP0CR2 = 0x00; //Not bidirectional, normal mode

 SP0BR = 0x02; //SPI clock set to 1 MHz

 DDRS = 0xD0; // SCLK, MISO outputs.

 //Power Up.
 PORTA = 0x07; //set RESET low while keeping /P/C, /SS and /CAL high.
 delay(100); //delay 100ms
 PORTA = 0x0F; //toggle RESET high again
 delay(750); //delay 750ms
}

double compass() {
 unsigned int head = 0x0000;
 unsigned int temp = 0x0000;
 unsigned char heading[2];

 //Power Up.
 PORTA = 0x07; //set RESET low keeping /P/C, /SS and /CAL high.
 delay(16); //delay 10ms
 PORTA = 0x0F; //toggle RESET high again
 delay(16); //delay 10ms

 //retrieve data
 PORTA &= 0x0E; //Set /P/C low
 delay(10); //delay 10 ms to keep /P/C low for 10ms

 while ((PORTA & 0x40) == 0x01);//wait for EOC to go low.

 PORTA |= 0x01; //Set /P/C high

 while ((PORTA & 0x40) == 0x00);//wait for EOC to go HIGH

 delay(10);

 PORTA &= 0x0D; //lower /SS

 delay(10);

 SP0DR = 0xFF; //Initialise transfer

 //wait for register to fill
 while((SP0SR & 0x80)==0);

1

 heading[0] = SP0DR; //fill heading array
 delay(5);
 SP0DR = 0xFF; //initialise second transfer

 //wait for register to fill
 while((SP0SR & 0x80) == 0);

 heading[1] = SP0DR;
 if (heading[0] & 0x01) {
 head = 256 + heading[1];
 }
 else {
 head = heading[1];
 }

 PORTA |= 0x02;// raise /SS
 return (double)head;
}

//Delay function
void delay(unsigned int ms) {
 int i;
 while (ms > 0) {
 i=DELAYCONST;
 while(i > 0) {
 i--;
 }
 ms--;
 }
}

void compassCal() {

 PORTA = 0x0B; // sets CAL low and leaves the others high
 delay(1); //delay 100ms
 PORTA = 0x0F; //toggle CAL high again
 putchar('S');
 delay(10000); // to allow time to rotate the system 180 degrees
 PORTA = 0x0B; // toggle CAL low again
 delay(15); //hold for a minimum of 10ms
 PORTA = 0x0F; //toggle CAL high again
}

//---

2

#ifndef _CAN_

#include "hc12.h"

void CANInit(void);
void tx_can(char *ptr);

#endif

1

//---
// Author: Soz Knox 0039911442
// Title: CAN inter-processor set up
/* Purpose: Sets up the CAN bus for transmission of heading error in
 format required by Autmatic Flight Control System
*/
// Last updated: 20/09/05
//---
// Included Libraries
#include "can.h"
//---

void tx_can(char *ptr) //ptr to data buffer to be transmitted
{
 unsigned char test, mask, i, k;
 unsigned volatile char *pt;

 test=0;
 while(!test) {
 //depending on the transmit buffer free, the char string gets put
 //into the appropriate transmit buffer
 if(CTFLG & 0x01) {
 pt = &Tx0;
 mask = 0x01;
 test = 1;
 }
 else if(CTFLG & 0x02) {
 pt = &Tx1;
 mask = 0x02;
 test = 1;
 }
 else if(CTFLG & 0x04) {
 pt = &Tx2;
 mask = 0x04;
 test = 1;
 }
 else
 test = 0;
 }
 //assigning values to the other bit settings required in msCAN
 for(i = 0;i<4;i++)
 *pt++ = *ptr++;

 *(pt+8) = *(ptr+8);
 k = *(ptr+8);
 *(pt+9) = *(ptr+9);
 if (k) {
 for (i=0;i<k;i++)
 *pt++ = *ptr++;
 }
 //clear the transmit enable flag
 CTFLG = mask;
}

void CANInit(void)
{
 CMCR0 |=1; // set SFTRES to place CAN module in reset
 CBTR0=0xC1;
 CBTR1=0xB3; //timing for 500 kbps 16 MHz oscillation
 CTCR =0x00; //disables transmit interrupts

 //setting the identifier filters so that all messages will be received
 CIDMR0=0xFF;
 CIDMR1=0xFF;
 CIDMR2=0xFF;
 CIDMR3=0xFF;
 CIDMR4=0xFF;
 CIDMR5=0xFF;
 CIDMR6=0xFF;
 CIDMR7=0xFF;

 CMCR0 &=~1; // clear SFTRES to take CAN out of reset
 while (!(CMCR0 & 0x10)); // synch to CAN bus
}
//---

1

Appendix H

Appendix H- User Interface Source Code

Appendix H

H.1 Main.java

H.2 GCSFrame.java

H.3 WaypointPanel.java

H.4 SerialConnection.java

H.5 SerialParameters.java

H.6 SerialConnectionException.java

H.7 UAVStatusPanel.java

H.8 TelemetryPane.java

H.9 SevenSegment.java

Appendix I

Appendix I- Gantt Chart

Appendix I

Appendix I

Appendix I

