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Abstract

Computer vision and robotics su�er from not having good tools for manipulat�
ing three�dimensional objects� Vectors� coordinate geometry� and trigonometry
all have de	ciencies� Quaternions can be used to solve many of these prob�
lems� Many properties of quaternions that are relevant to computer visions and
robotics are developed� Examples are given showing how quaternions can be
used to simplify derivations in computer vision and robotics�
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�� Introduction

In computer vision and robotics� the nature of the mathematical tools available
makes a large di�erence in the kind of things that can be done� both in theory
and in practice� In deriving any relationship in computer vision� the researcher
is often daunted if a large system of equations develops� and sometimes gives up�
Formulation of equations is important in practice also� for example� in simulat�
ing the motion of a robot arm for the purpose of prediction� the complexity of
the equations has a large in�uence on how fast the simulation can be done� So
any tool which reduces the complexity of equations in a derivation or simulation
must be seen as useful�

Several di�erent systems have been used to describe positions and motions
in space in computer vision and robotics� they are three�dimensional vectors�
three�dimenstional coordinates� and trigonometry� Each of these has particu�
lar advantages and disadvantages� Vectors are the most elegant system� but
unfortunately they are incomplete� certain operations� e�g�� rotation� are not
easily represented using vectors� Three�dimensional coordinates are complete�
but often lead to lengthy and messy derivations� with many repetitive terms�
Trigonometry is often quite useful in illuminating an otherwise di�cult to see
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relationship 
for example� Kanade�s derivation of the �skewed symmetry con�
straint� ���� but here the derivations can be even messier� requiring clever use
of half�angle relationships�

What is needed is a tool which is as powerful as vector notation� but which
allows the representation of operations not directly representable with vectors�
such as rotations� The mathematical object called �quaternion� is such a tool�

Quaternions were invented by Hamilton in the early �����s ���� They were
the result of an attempt by Hamilton to resolve the question� What is the result
of dividing one 
three�dimensional� vector by another� The story ��� goes that
Hamilton thought about this question for some time� then while walking across
a bridge he saw the answer� and carved in the stone the formula that was the
basis for quaternions�

i� � j� � k� � ijk � �� 
��

This formula gives the rule for multiplying two quaternions� What Hamil�
ton had discovered is that while it is not possible to create a three�dimensional
system 
i�e�� one consisting only of three�vectors� that enjoys a reasonable num�
ber of properties of the real and complex numbers� in four dimensions this is
possible� in quaternions� all properties of the real and complex numbers are
preserved except for commutativity of multiplication� Moreover� quaternions
can be used to represent many operations in three�dimensional space� including
rotations� a�ne transformations� and projections�

There are several equivalent ways of writing quaternions in terms of their
four components� one way that is particularly useful is what Hamilton called
Standard Quadrinomial Form�

Q � f�� �i� �j� �k � �� �� �� � realg�

In this system� Equation � gives the rule for multiplications� so that ij �
k but ji � �k� 
Obviously multiplication is not commutative here�� These
properties of complex and real numbers hold for the set of all quaternions Q as
well�

�� Addition�
a� Closure� if P�Q � Q then P �Q � Q
b� Commutativity� P � Q � Q� P for all P�Q � Q
c� Associativity� 
P �Q� � R � P � 
Q� R� for all P�Q�R � Q
d� Identity� There is a � � Q such that � � P � P � � � P

e� Inverse� For any P � Q there exists a 
�P � � Q such that P � 
�P � �

�P � � P � �

Multiplication�
a� Closure� if P�Q � Q then PQ � Q
b� Associativity� 
PQ�R � P 
QR� for all P�Q�R � Q
c� Identity� There is a � � Q such that �P � P� � P

d� Inverse� If P �� �� then there is a P�� such that PP�� � P��P � �
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�� Distributivity� P �Q � R� � PQ � PR and �Q � R�P � QP � RP for
every P�Q�R � Q�

�� No zero divisors� If PQ � �	 then either P � � or Q � ��

�� Vectors as Quaternions

The fact that the symbols i� j� and k are commonly used in vector analysis to
represent elements of an orthonormal basis suggests that quaternions of the
form �i � �j � �k might be interpreted as vectors	 and this is in fact the case�
Moreover if two vectors

u � uxi� uyj� uzk�

v � vxi� vyj� vzk

are multiplied as quaternions	 the product is

uv � ��uxvx � uyvy � uzvz�

� �uyvz � uzvy� i

� �uzvx � uxvz� j

� �uxvy � uyvx�k

� ��u � v� � �u� v�

���

where u � v and u � v are the familiar 
dot product� and 
cross product�
of vector theory� Thus	 dot and cross products	 rather than being two separate
forms of multiplication	 are actually components of a single form of multiplica�
tion� quaternion multiplication�

Since vu � �v � u � v � u	 dot� and cross� products can be isolated as
follows�

�uv � vu

�
� u � v ���

uv � vu

�
� u� v �
�

We also obtain the length of a vector	

jjvjj � p
v � v � ��vv � vv

�
�
���

�
p
�v� ���

Thus	 if v is a vector	 then v�
p�v� is a unit vector	 and n is a unit vector

if and only if n� � ���
�Editor�s note� If P � p��p andQ � q��q� then de�neP � � p��p and P �Q � p�q��p�q�

Then P �Q � Scalar�PQ�� � �PQ� � �PQ�������
�Editor�s note� Using the notation of the previous footnote� p� q � �PQ�QP ��� 	 i
e


formula ��� ignores the scalar parts of P�Q�
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�� Vector and Scalar Triple Products

Using the equality �u� v��w � �v �w�u� �u �w�v and expansion � from the
previous section	 one can obtain the expansion

uvw � ���u � v� � �u� v��w

� ��u � v�w � �u� v� �w � �u� v��w

� ��uvw�� �v �w�u� �u �w�v � �u � v�w
where �uvw� represents the 
scalar triple product�� �u�v��w � u��v�w��
By considering di�erent permutations of u�v� and w	 one can isolate the

scalar triple product� and vector triple product as follows�

�uvw� �
�wvu� uvw�

�

�u� v� �w �
�uvw �wuv�

�

u� �v �w� �
�uvw � vwu�

�

���

Thus	 using quaternion notation	 triple products are really no more di�cult
to represent than dot or cross products�

�� Representation of Rotation

The greatest strength of quaternions is their ability to represent rotation� In
vector analysis	 a rotation of angle � about an axis n is represented by some
matrix� for example	 the rotation matrix for rotation by an angle � around the
x�axis is�

�aij� �

�
�
� � �
� cos � � sin �
� sin � cos �

�
�

�Editor�s note� �uvw
 �

�����
u� u� u�
v� v� v�
w� w� w�

����� �
�Editor�s note� �uvw
 � �Scalar�uvw� � ��uvw � �uvw������ Following the previous

footnotes� the notation �pq r
 can be extended to include quaternions as follows�

�P QR
 � �p� q� � r �

�
PQ�QP

�

�
�R � Scalar

�
�PQ�QP �R�

�

�
�

Then triple products like the following make sense�

�P iQiRi
 �

�����
p� p� p�
q� q� q�
r� r� r�

����� �
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and the e�ect of applying this rotation to a vector v is given by matrix
multiplication of �aij� by v� The general matrix is very complicated and is
given in books on computer graphics �
	��� The matrix �aij� must be a 
unitary
matrix�	 which means that its columns	 treated as vectors	 are orthogonal and
of unit length� Finding n and � from �aij� involves �nding the eigenvalues and
eigenvectors of �aij� and can be rather awkward�

By contrast	 in quaternion notation	 the same rotation angle � about axis n
is represented by

v � RvR��

where

R � �cos
�

�
� � �sin

�

�
�n� ���

The derivation of R	 the explanation for the appearance of half�angles	 and
the proof that RvR�� really is a vector can be found in many places ��	��� It
should be noted that�

�� It is much easier to retrieve the values of � and n	 given R	 than it is
given the matrix �aij��

�� The vector v and the rotation R are represented by the same kind of

object	 namely quaternions� In vector theory	 rotations are represented by ma�
trices	 a much di�erent object than a vector� In quaternion theory	 rotations
themselves can be rotated�

�� Democracy of Unit Vectors� and Consequences

One of the most important features of quaternions is the fact that if n is a unit
vector	 then

f�� �n � �� � realg
is isomorphic to the complex numbers� �This follows from the fact that

n� � ���� This means that no unit vector is really any more important than
any other unit vector� In a sense	 the choice of i� j� and k as coordinate bases
is arbitrary� any mutually perpendicular �anti�commuting� unit vectors will do
as well� This concept will be referred to as the 
principle of democracy�� This
principle will be used to extend many concepts in complex numbers to apply to
quaternions as well� In the following i is the imaginary number

p���
One immediate consequence of this democracy is that any two quaternions of

the forms ���n and ���n will commute under multiplication �after all	 ���i
and � � �i commute�� Thus	 although quaternions in general do not commute	
certain classes of quaternions do� �Note that commutativity of multiplication is
an equivalence relation among non�real quaternions��



Quaternions in Computer Vision and Robotics�DRAFT �

Another very important result is the following generalization of DeMoivres
theorem�

De�nition �� e�n � �cos �� � �sin ��n
Thus� a rotation of angle � about axis n can also be represented as

R � e�n�� ���

In the same way� we can de�ne trigonmetric and hyperbolic functions of
quaternions in the same way as for complex numbers �e	g	� since cos �i � cosh ��
we have by democracy cos �n � cosh �� for any angle � and unit vector n	�

Furthermore� since

ln
er�cos � � i sin ��� � r � �i

then we should have

De�nition �� ln
er�cos � � n sin ��� � r � �n

Here we should be careful in two respects� �rst we should always keep � in
the interval ���� �� to avoid ambiguity� and� secondly and more importantly�
we must leave ln� unde�ned for all � � �	 After all� since e�n � �
 for every
n� every unit vector has a claim to the value of ln��
�� so ln��
� will just have
to stay unde�ned	

In any case� if P and Q commute� we can de�ne

De�nition �� PQ � exp
Q lnP �
Note that P and Q commute i� �lnP � and Q commute	
The following three relations hold for manipulating powers of quaternions�

	 �PQ��� � Q��P���

�	 Q��� � Q�Q��

�	 Q�� � �Q��� for jjQjj � 
 but in general� eP�Q �� eP eQ and ePQ ��
�eP �Q	

Actually� eP�Q � eP eQ i� P and Q commute	
�	 ePQ � �eP �Q if P and Q commute	

�� The Rotation
p
�vu

Let u and v be unit vectors separated by an angle �	 Let g be the great circle
containing u and v� and let n be the pole of g� as shown in Figure �	

Then�

�vu � v � u� v � u

� u � v � u� v

� cos � � n sin �

� en��

So
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v

θ

g

Figure �� u is rotated into v along the great circle passing through them

p�vu � e�n�� ���

But e�n�� is just the rotation with pole n that maps u into v	 Thus�

Theorem �� If we want to rotate a sphere so that a unit vector u is shifted
along a great circle until it reaches unit vector v� the proper rotation is

p�vu	

�� The Rotation ��wv � vw��wu� uw�������

Suppose now that we wanted to rotate the unit sphere in such a way that u
gets mapped onto v� but a third point w gets mapped onto itself� as shown in
Figure �	 What rotation should be used now� Well� if g is the great circle with
pole w then w � u and w � v will both lie on g� and w � u will be mapped
onto w � v	 Thus� the appropriate rotation is
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Figure �� u rotates into v� while w is �xed


��w � v��w � u����� � 
�w � v��w � u�������

� 
�
�wv � vw�

�
��
�wu � uw�

�
�������

� 
�wv � vw��wu � uw�������

�� Re�ections and Projections

We turn our attention now to re�ections about� and projections onto� a line or
plane	 Let n be a unit vector	 Then we can speak of

De�nition �� Line�n� � fv � nv � vng
De�nition �� Plane�n� � fv � nv � �vng

which are� respectively� the line passing through � and n� and the plane
passing through � perpendicular to n	

Re�ecting a vector across Line�n� is the same as 
��� rotation around the
n�axis� which is accomplished by
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Figure �� Relationship between v� its projection� and its re�ection

�cos

���

�
� � �sin


���

�
�n � n� �see Equation ��

Thus a vector v would be mapped onto the point nvn�� � �nvn	 If we
consider Figure � we see that

Theorem 	� If v is a vector and n is a unit vector� then

	 The projection of v onto Plane�n� is v�nvn

�
	

�	 The projection of v onto Line�n� is v�nvn

�
	

�	 The re�ection of v across Plane�n� is nvn	
�	 The re�ection of v across Line�n� is �nvn	
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�� A�ne Transformations

This section will describe two ways of representing a�ne transformations� The
�rst method involves the formulas for representing re�ections from Section �� If
n is a unit vector� then the mapping

v �
�� 	 �
v 	 ��� �
nvn

�
���


�stretches
 everything in the n directions by a factor of �� as shown in Figure
�� This can be seen by the fact that the right side of Equation �� is a linear
combination of v and �nvn� made in such a way that if � � � then v is mapped
into v� and if � � �� then v gets re�ected into �nvn�

Another form of a�ne transformation is the rotation

v � RvR��

Presumably� every a�ne mapping should be expressible as the composition
of rotations and stretchings like Equation ��� but in practice� this could become
clumsy if too many of these rotations and stretchings are used in a row� There
is a much nicer and more general way�

Theorem �� The linear transformation with eigenvectors a�b� c and real eigen�
values �� �� �� is

v�
��vbc�a	 ��av c�b	 ��abv�c

�ab c�

Here �ab c� and the like stand for the scalar triple product in Equation ��
It is easy to see that a is mapped into �a� b into �b� and c into �c�� One can
also show that Equations � and �� are just special cases of Theorem ��

�Editor�s note� It is also easy to see that Theorem � is �Cramer�s Rule� in disguise �Hint�

consider the determinant interpretation of the scalar triple products��
Theorem � can be extended to �	dimensional transformations as follows� First
 de�ne

�P QRS
 �

������

p� p� p� p�
q� q� q� q�
r� r� r� r�
s� s� s� s�

������
� Then expanding by cofactors


�P QRS
 � P � ��QRS
� �QiRiSi
i � �QjRjSj
j � �QkRkSk
k�

� Scalar�P ��QRS
 � �QiRiSi
i� �QjRjSj
j � �QkRkSk
k���

Then the linear transformation with �eigenquaternions� A�B�C�D and real eigenvalues
���� �� � is

V �

��V BC D
A� ��AV C D
B � ��ABV D
C � ��ABC V 
D

�ABCD
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Figure �� v is stretched by � in the direction of n
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Figure ��� Parallel and central projection

��� Applications in computer vision

Most important computer vision functions can be represented simply using
quaternions� We have already seen how to represent general rotations and a�ne
transformations� This section develops expressions that are used exclusively in
computer vision�

We de�ne the image plane to be Plane�v
� the plane passing through the
origin with surface normal v� From Section � we may de�ne the �parallel or
orthogonal
 projection of a point p onto Plane�v
 to be

pr�p
 �
p	 vpv

�
�

�Note that this is also a special case of Equation �� with a � ��
 Similarly
we may de�ne the �central or perspective
 projection of a point p to be

PR�p
 � �

p	 vpv

vp 	 pv

�
v � �p� v


v � p
�

as shown in Figure ���
Spherical projection onto a unit sphere can also be de�ned�
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spr�p
 � p�
p
�p�

It was also mentioned in the last section that a general a�ne mapping can be
represented as the composition of stretchings and rotations� However� if we are
just studying a plane� all we nee are compositions of rotations and projections�
In particular� consider the mapping

v �
RvR�� 	 nRvR��n

�

where R is some rotation e�p� This mapping will have the e�ect of rotating
v by an angle � about the axis p� and then projecting it onto Plane�n
� If
we allow R to be any quaternion� and not just a unit quaternion �a rotation
�
we can represent any a�ne transformation in this way� and can think of R as
representing the a�ne transformation�

��� Describing the projection of the motion of a plane

Quaternions can be used to develop an interesting equation that relates motion
of a plane in space to motion as seen on the image plane� This relationship is
quite important in three�dimensional computer vision� since many objects are
planar� or nearly so� over small areas� The relationship developed here is similar
to the relationships developed by Kanade ��� using trigonometry� and Webb ���
using vectors and gradient space�

Consider a plane with surface normal n� Let the plane rotate by some
quaternion Q �we are ignoring the e�ects of translation here
� Assume parallel
projection� Under this assumption� the plane will be preserved to move by some
a�ne transformation� let this transformation be represented by the quaternion
A� Let the image plane be Plane�v
�

First consider the motion of the point in space� Let y be a point on the
plane� The position of y after rotation is QyQ��� The position of this point

on the image plane is QyQ���vQyQ��v

�
� Now consider the motion of the point

on the image plane� The position of y before the motionis y�vyv

�
� The a�ne

transformation moves this point to

AyA�� 	AvyvA�� 	 vAyA��v 	 vAvyvA��v

�
The observed image plane motion and the projection of the real motion must

be the same� so that

QyQ�� 	 vQyQ��v

�
�

AyA�� 	AvyvA�� 	 vAyA��v 	 vAvyvA��v

�

The variable y in this equation is restricted to lie on the plane normal to n�
This restriction can be incorporated into the equation by writing y � x�nxn

�
�
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Figure ��� Coordinate system of a robot arm

i�e�� by writing y as the projection of some arbitrary quaternion x� Once we do
this substitution� we have an equation which is true for all quaternions� This
equation can then be used to develop algorithms to determine motion in space
from the observed a�ne transformation associated with motion�

��� Representation of Robot Arms

Another �eld in which quaternions should come in handy is the study of robot
arm orientation� Traditionally a robot arm has been thought of as a series of
links� each with its own coordinate system� as shown in Figure ��� The relation
between successive links� coordinate systems is expressed in terms of a series of
angles �i and �i� and involves the rotation matrix

Ai
i�� �

�
�
cos �i � cos�i sin �i sin�i sin �i
sin �i cos�i cos �i � sin�i cos �i
� sin�i cos�i

�
�

But� recalling from Section � how much more elegantly rotations of coor�
dinate systems can be expressed as quaternions� one is led to suspect that a
quaternion representation of Ai

i�� should exist� In fact it is
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R
i
i�� � e

�ii��e
�ik��

These rotations are still composed

R
i
�
� R

�

�
R
�

�
���R

i
i��

The only important change is that if vi represents a vector in link i coordi�
nates� then its representation in link � coordinates is

v� � R
�

ivi�R
�

i �
��

� �Ri
�
���viR

i
�

instead of

v� � A
�

ivi

� �Ai
�
�T vi
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