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Abstract

Computer vision and robotics suffer from not having good tools for manipulat-
ing three-dimensional objects. Vectors, coordinate geometry, and trigonometry
all have deficiencies. Quaternions can be used to solve many of these prob-
lems. Many properties of quaternions that are relevant to computer visions and
robotics are developed. Examples are given showing how quaternions can be
used to simplify derivations in computer vision and robotics.
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1. Introduction

In computer vision and robotics, the nature of the mathematical tools available
makes a large difference in the kind of things that can be done, both in theory
and 1n practice. In deriving any relationship in computer vision, the researcher
is often daunted if a large system of equations develops, and sometimes gives up.
Formulation of equations is important in practice also: for example, in simulat-
ing the motion of a robot arm for the purpose of prediction, the complexity of
the equations has a large influence on how fast the simulation can be done. So
any tool which reduces the complexity of equations in a derivation or simulation
must be seen as useful.

Several different systems have been used to describe positions and motions
in space in computer vision and robotics: they are three-dimensional vectors,
three-dimenstional coordinates, and trigonometry. Each of these has particu-
lar advantages and disadvantages. Vectors are the most elegant system, but
unfortunately they are incomplete: certain operations, e.g., rotation, are not
easily represented using vectors. Three-dimensional coordinates are complete,
but often lead to lengthy and messy derivations, with many repetitive terms.
Trigonometry is often quite useful in illuminating an otherwise difficult to see
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relationship (for example, Kanade’s derivation of the “skewed symmetry con-
straint” [2]) but here the derivations can be even messier, requiring clever use
of half-angle relationships.

What is needed is a tool which is as powerful as vector notation, but which
allows the representation of operations not directly representable with vectors,
such as rotations. The mathematical object called “quaternion” is such a tool.

Quaternions were invented by Hamilton in the early 1840’s [1]. They were
the result of an attempt by Hamilton to resolve the question: What is the result
of dividing one (three-dimensional) vector by another? The story [3] goes that
Hamilton thought about this question for some time, then while walking across
a bridge he saw the answer, and carved in the stone the formula that was the
basis for quaternions:

iZ=j2=k*>=ijk= -1 (1)

This formula gives the rule for multiplying two quaternions. What Hamil-
ton had discovered is that while it is not possible to create a three-dimensional
system (i.e., one consisting only of three-vectors) that enjoys a reasonable num-
ber of properties of the real and complex numbers, in four dimensions this is
possible: in quaternions, all properties of the real and complex numbers are
preserved except for commutativity of multiplication. Moreover, quaternions
can be used to represent many operations in three-dimensional space, including
rotations, affine transformations, and projections.

There are several equivalent ways of writing quaternions in terms of their
four components; one way that i1s particularly useful is what Hamilton called
Standard Quadrinomial Form:

Q={a+Bi+~)+dk:a, b ~,dreal}.

In this system, Equation 1 gives the rule for multiplications, so that ij =
k but ji = —k. (Obviously multiplication is not commutative here.) These
properties of complex and real numbers hold for the set of all quaternions Q as
well:

1. Addition:

a. Closure: if P,Q € Q@ then P+ @ € Q

b. Commutativity: P+ Q = Q + P for all P,Q € Q

c. Associativity: (P+ Q)+ R=P+(Q+ R) forall P,Q,Re Q

d. Identity: Thereisa 0 € Q suchthat 0+ P=P+0=P

e. Inverse: For any P € Q there exists a (—P) € Q such that P+ (—P) =
(=P)+P=0

Multiplication:

a. Closure: if P,@Q € Q then PQ € Q

b. Associativity: (PQ)R = P(QR) for all P,Q,R€ Q

c. Identity: There is a 1 € Q such that 1P = P1 =P

d. Inverse: If P # 0, then there is a P~! such that PP~t = P=1P =1
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2. Distributivity: P(Q@ + R) = PQ+ PR and (Q + R)P = QP + RP for
every P,Q), R € Q.
3. No zero divisors: If PQ) = 0, then either P =0 or @ = 0.

2. Vectors as Quaternions

The fact that the symbols 1,j, and k are commonly used in vector analysis to
represent elements of an orthonormal basis suggests that quaternions of the
form fi 4+ 4j 4+ 6k might be interpreted as vectors, and this is in fact the case.
Moreover if two vectors

u=u,i+ uyj + uzka
v=vitvyj+v.k

are multiplied as quaternions, the product is

uv = (—uyvy — UV, — u,v;)
+ (uyv; —u,vy)i
+ (uzvy —upvy)j (2)
+ (upvy —uyvy )k
=—(u-v)+ (uxv)
where u - v and u x v are the familiar “dot product” and “cross product”
of vector theory. Thus, dot and cross products, rather than being two separate

forms of multiplication, are actually components of a single form of multiplica-
tion: quaternion multiplication.

Since vu = —v - u + v x u, dot? and cross® products can be isolated as
follows:
_uv—;—vu:u.V (3)
? —uxv (4)
We also obtain the length of a vector,
vv 4+ vv 1/2
M= vvv = (-2 T o /e o)

Thus, if v is a vector, then v/+/—v? is a unit vector, and n is a unit vector
if and only if n? = —1.

2Editor’s note: If P = po+p and Q = go+q, then define P* = pg—p and P-Q = pogo+p-q.
Then P - Q = Scalar(PQ*) = (PQ* + (PQ*)*)/2.

3Editor’s note: Using the notation of the previous footnote, p x q = (PQ — QP)/2 — i.e.
formula (4) ignores the scalar parts of P, Q.
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3. Vector and Scalar Triple Products

Using the equality (ux v) x w = (v -w)u+ (u-w)v and expansion 2 from the
previous section, one can obtain the expansion

uvw = [—(u-v)+ (ux v)]|w
=—(u-viw—(uxv)-w+(uxv)xw
=—[uvw]—(v-whu+ (u-w)v—(u-v)w
where [uv w] represents the “scalar triple product”® (uxv)-w = u- (v xw).

By considering different permutations of u,v, and w, one can isolate the
scalar triple product® and vector triple product as follows:

(wvu —uvw)

[uvw] = 5
(uxv)xw:(uVWQ;wuv) (6)
Wi (v w) = LWV

Thus, using quaternion notation, triple products are really no more difficult
to represent than dot or cross products.

4. Representation of Rotation

The greatest strength of quaternions is their ability to represent rotation. In
vector analysis, a rotation of angle § about an axis n is represented by some
matrix; for example, the rotation matrix for rotation by an angle § around the
x-axis 1s:

1 0 0
(a;;)= |0 cosf —sind
0 sinf# cosé

Uy u2 usz

1Editor’s note: [uvw] =|v; v wa
wy  wz w3
SR ditor’ * . .
Editor’s note: [uv w] = —Scalar(uvw) = —(uvw + (uvw)*)/2. Following the previous

footnotes, the notation [p qr] can be extended to include quaternions as follows:

M) - R = Scalar (W) ,

PQRI=(pxa)r= (22 :

Then triple products like the following make sense:
Po P2 P3

q0 92 93
0 2 r3

[PiQiRi] =
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and the effect of applying this rotation to a vector v is given by matrix
multiplication of (a;;) by v. The general matrix is very complicated and is
given in books on computer graphics [4,5]. The matrix (a;;) must be a “unitary
matrix”, which means that its columns, treated as vectors, are orthogonal and
of unit length. Finding n and @ from (a;;) involves finding the eigenvalues and
eigenvectors of (a;;) and can be rather awkward.

By contrast, in quaternion notation, the same rotation angle # about axis n
is represented by

v = RvR™!

where

R = (cos g) + (sin g) n. (7)

The derivation of R, the explanation for the appearance of half-angles, and
the proof that RvR™! really is a vector can be found in many places [3,1]. Tt
should be noted that:

1. It 1s much easier to retrieve the values of # and n, given R, than it is
given the matrix (a;;).

2. The vector v and the rotation R are represented by the same kind of
object, namely quaternions. In vector theory, rotations are represented by ma-
trices, a much different object than a vector. In quaternion theory, rotations
themselves can be rotated!

5. Democracy of Unit Vectors, and Consequences

One of the most important features of quaternions is the fact that if n is a unit
vector, then

{a+ fn: «, Breal}

is isomorphic to the complex numbers. (This follows from the fact that
n? = —1.) This means that no unit vector is really any more important than
any other unit vector. In a sense, the choice of i,j, and k as coordinate bases
is arbitrary; any mutually perpendicular (anti-commuting) unit vectors will do
as well. This concept will be referred to as the “principle of democracy”. This
principle will be used to extend many concepts in complex numbers to apply to
quaternions as well. In the following ¢ is the imaginary number /—1.

One immediate consequence of this democracy is that any two quaternions of
the forms o+ fn and v+ dn will commute under multiplication (after all, o+ 3i
and v 4 di commute.) Thus, although quaternions in general do not commute,
certain classes of quaternions do. (Note that commutativity of multiplication is
an equivalence relation among non-real quaternions.)
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Another very important result is the following generalization of DeMoivres
theorem:
Definition 1: ¢® = (cosf) + (sinf)n

Thus, a rotation of angle § about axis n can also be represented as

R = /2 (8)

In the same way, we can define trigonmetric and hyperbolic functions of
quaternions in the same way as for complex numbers (e.g., since cos §¢ = cosh 8,
we have by democracy cos fn = cosh 8, for any angle ¢ and unit vector n.)

Furthermore, since

In[e"(cos @ + isin )] = r + #i
then we should have

Definition 2: In[e"(cosf + nsinfd)] = v+ 6n

Here we should be careful in two respects: first we should always keep 6 in
the interval (—m, 7) to avoid ambiguity, and, secondly and more importantly,
we must leave In o undefined for all o < 0. After all, since €™ = —1 for every
n, every unit vector has a claim to the value of In(—1), so In(—1) will just have
to stay undefined.

In any case, if P and ) commute, we can define
Definition 3: P9 = exp[Q In P]

Note that P and Q commute iff (In P) and @ commute.

The following three relations hold for manipulating powers of quaternions:

1. (PQ)"t=QtP~L

2. QP = QQ°.

3. QY = (Q%)P for ||Q]] < 1 but in general, e+ #£ eFe@ and ¢ £
(e")9.
Actually, P19 = ¢Pe? iff P and Q commute.
4. ePQ = (F)? if P and @ commute.

6. The Rotation /—vu

Let u and v be unit vectors separated by an angle 8. Let g be the great circle
containing u and v, and let n be the pole of g, as shown in Figure 6.
Then,

—vu=v-u—vxu
=u-v4+uxv
=cosf +nsinf
:en€.

So
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Figure 6: u is rotated into v along the great circle passing through them

V=vu = /? (9)
But /2 is just the rotation with pole n that maps u into v. Thus,

Theorem 4: If we want to rotate a sphere so that a unit vector u is shifted
along a great circle until it reaches unit vector v, the proper rotation i1s v/—vu.

7. The Rotation [(wv — vw)(wu — uw)~']'/?

Suppose now that we wanted to rotate the unit sphere in such a way that u
gets mapped onto v, but a third point w gets mapped onto itself, as shown in
Figure 7. What rotation should be used now? Well, if g is the great circle with
pole w then w x u and w x v will both lie on ¢, and w x u will be mapped
onto w x v. Thus, the appropriate rotation is
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Figure 7: u rotates into v, while w is fixed

[—(w x v)(w x u)]"/? = [(w x v)(w x u)~!]}/?

_ [((wv ; VW))((WU ; uw))_l]l/2

= [(wv — vw)(wu — uw) ]

1/2

8. Reflections and Projections

We turn our attention now to reflections about, and projections onto, a line or
plane. Let n be a unit vector. Then we can speak of
Definition 5: Line(n) = {v:nv = vn}
Definition 6: Plane(n) = {v :nv = —vn}

which are, respectively, the line passing through 0 and n, and the plane
passing through 0 perpendicular to n.

Reflecting a vector across Line(n) is the same as 180° rotation around the
n-axis, which is accomplished by
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Plane(n)

v+nvn

nvn

Figure 8: Relationship between v, its projection, and its reflection

180°) (s 180°
sin
2 2

Thus a vector v would be mapped onto the point nvn~
consider Figure 8 we see that

(cos Jn=n. (see Equation 8)

L' = —_nvn. If we

Theorem 7: If v is a vector and n is a unit vector, then
1. The projection of v onto Plane(n) is ¥E2vn
2. The projection of v onto Line(n) is ¥*=2v&,
3. The reflection of v across Plane(n) is nvn.
4. The reflection of v across Line(n) is —nvn.
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9. Affine Transformations

This section will describe two ways of representing affine transformations. The
first method involves the formulas for representing reflections from Section 8. If
n is a unit vector, then the mapping

v (v (1= ajuvn (10)

“stretches” everything in the n directions by a factor of a, as shown in Figure
9. This can be seen by the fact that the right side of Equation 10 1s a linear
combination of v and —nvn, made in such a way that if & = 1 then v is mapped
into v, and if @« = —1 then v gets reflected into —nvn.

Another form of affine transformation is the rotation

v = RvR™!

Presumably, every affine mapping should be expressible as the composition
of rotations and stretchings like Equation 10, but in practice, this could become
clumsy if too many of these rotations and stretchings are used in a row. There
i1s a much nicer and more general way:

Theorem 8: The linear transformation with eigenvectors a, b, ¢ and real eigen-
values «, 3,7, 18

a[vbecla+ flavelb+ y[abv]e
[abc]

vV —

Here [ab¢] and the like stand for the scalar triple product in Equation 6.
It is easy to see that a is mapped into aa, b into #b, and ¢ into v¢.® One can
also show that Equations 8 and 10 are just special cases of Theorem 8.

SEditor’s note: It is also easy to see that Theorem 8 is “Cramer’s Rule” in disguise (Hint:
consider the determinant interpretation of the scalar triple products).
Theorem 8 can be extended to 4-dimensional transformations as follows. First, define

Po P1 P2 P3

[PQRS]= 32 31 32 gz . Then expanding by cofactors,

S0 51 52 83
[PQRS] = P (IQ RS] — [QiRisili — [Qj Rj Sjlj — [Qk Rk Sklk)
= Scalar(P ([Q R S] + [Qi Ri Sili + [Qj Rj Sjlj + [Qk Rk Sk]k)).
Then the linear transformation with “eigenquaternions” A, B,C,D and real eigenvalues
o, 57 Vs §is
alVBCD|A+ pB[AVCDIB+~[ABV D|C +§[ABCV]D

V —
[ABC D]
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1+a 1-a
n / Z
A%
-nvn v
*— — —9o— & —/o
\ | A
\ | |
\\ |1+2a v +1'2a nvn
Sl B v {
"N
lane(n) °

Figure 9: v is stretched by « in the direction of n
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Plane(n)

vn-nv n
vh +nv

Figure 10: Parallel and central projection

10. Applications in computer vision

Most important computer vision functions can be represented simply using
quaternions. We have already seen how to represent general rotations and affine
transformations. This section develops expressions that are used exclusively in
computer vision.

We define the image plane to be Plane(v), the plane passing through the
origin with surface normal v. From Section 8 we may define the (parallel or
orthogonal) projection of a point p onto Plane(v) to be

. P+ vpv
_72 .

(Note that this is also a special case of Equation 10 with a = 0.) Similarly
we may define the (central or perspective) projection of a point p to be

pr(p)

_PTVvpY
vp + pv
v X (pxv)

vV-p ’

PR(p) =

as shown in Figure 10.
Spherical projection onto a unit sphere can also be defined:
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spr(p) = p/v/—p?

It was also mentioned in the last section that a general affine mapping can be
represented as the composition of stretchings and rotations. However, if we are
just studying a plane, all we nee are compositions of rotations and projections.
In particular, consider the mapping

RvR™ '+ nRvR 'n
2

where R is some rotation e?P. This mapping will have the effect of rotating
v by an angle @ about the axis p, and then projecting it onto Plane(n). If
we allow R to be any quaternion, and not just a unit quaternion (a rotation),
we can represent any affine transformation in this way, and can think of R as
representing the affine transformation.

11. Describing the projection of the motion of a plane

Quaternions can be used to develop an interesting equation that relates motion
of a plane in space to motion as seen on the image plane. This relationship is
quite important in three-dimensional computer vision, since many objects are
planar, or nearly so, over small areas. The relationship developed here 1s similar
to the relationships developed by Kanade [2] using trigonometry, and Webb [6]
using vectors and gradient space.

Consider a plane with surface normal n. Let the plane rotate by some
quaternion ) (we are ignoring the effects of translation here). Assume parallel
projection. Under this assumption, the plane will be preserved to move by some
affine transformation; let this transformation be represented by the quaternion
A. Let the image plane be Plane(v).

First consider the motion of the point in space. Let y be a point on the
plane. The position of y after rotation is QyQ~'. The position of this point

w. Now consider the motion of the point

on the image plane is
on the image plane. The position of y before the motionis yzﬁ The affine

transformation moves this point to

AyA~ + AvyvA~ 4 vAYy A~ v + vAvyvATlv
4
The observed image plane motion and the projection of the real motion must
be the same, so that

QyQ™' +vQyQ~'v _ AyA~' 4 AvyvA~' +vAyA~'v +vAvyvATly

2 4

The variable y in this equation is restricted to lie on the plane normal to n.

. - . . . . i
This restriction can be incorporated into the equation by writing y = **5*%,
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Figure 12: Coordinate system of a robot arm

i.e., by writing y as the projection of some arbitrary quaternion x. Once we do
this substitution, we have an equation which is true for all quaternions. This
equation can then be used to develop algorithms to determine motion in space
from the observed affine transformation associated with motion.

12. Representation of Robot Arms

Another field in which quaternions should come in handy is the study of robot
arm orientation. Traditionally a robot arm has been thought of as a series of
links, each with its own coordinate system, as shown in Figure 12. The relation
between successive links’ coordinate systems is expressed in terms of a series of
angles «; and 8;, and involves the rotation matrix

cosf; —cosq;sinf;  sina;sinb;
1= |sinf; cosajcosf; —sinaq;cosb;
0 sin o CoS «;

But, recalling from Section 4 how much more elegantly rotations of coor-
dinate systems can be expressed as quaternions, one is led to suspect that a
quaternion representation of A}_; should exist. In fact it is
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2_1 — 6t9,1/26<)c,k/2

These rotations are still composed

R, = RLR?..R_,

The only important change is that if v; represents a vector in link i coordi-
nates, then its representation in link 0 coordinates is

vo = Rivi(R})™!
= (Ry)™'vilRy
instead of

vg = A?vi

= (4p) v
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