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A Complete  Generalized Solution to the 
Inverse  Kinematics of Robots 

ANDREW A. GOLDENBERG, MEMBER, IEEE, B. BENHABIB, AND ROBERT  G.  FENTON 

Abstract-The  kinematic transformation between  task  space  and joint 
configuration coordinates is nonlinear  and configuration dependent. A 
solution to the  inverse  kinematics is a  vector of joint configuration 
coordinates that  corresponds to a set of task  space coordinates. For a 
class of robots closed form solutions always exist, but  constraints on joint 
displacements cannot be systematically  incorporated  in  the  process of 
obtaining  a solution. An iterative solution is presented  that is suitable for 
any class of robots having  rotary or prismatic joints, with  any  arbitrary 
number of degrees of freedom, including both standard  and  kinematically 
redundant robots. The solution can be obtained subject to specified 
constraints and  based on certain  performance  criteria.  The solution is 
based on a  new  rapidly  convergent  constrained  nonlinear optimization 
algorithm  which  uses  a modified Newton-Raphson technique for solving 
a system nonlinear equations. The  algorithm is illustrated  using as an 
example  a  kinematically  redundant robot. 

I. INTRODUCTION 

F OR  ADVANCED  CONTROL  of  robot manipulators, 
necessary capabilities are offline programming  of the end 

effector path  and control in  terms of Cartesian coordinates. 
Although control of Cartesian trajectory of the end effector is  a 
basic requirement for many industrial applications, most robot 
manipulators  lack this ability. 

The  “inverse  kinematics” control of  a robot manipulator 
requires the transformation  of  end effector Cartesian task 
space coordinates into corresponding joint configuration space 
coordinates. The  common  approach for solving this problem is 
to obtain  a  closed-form solution to the inverse transformation 
[l]. However,  only certain classes of  robots (e.g., spherical 
wrist manipulators, such as the  PUMA  560 robot) allow 
closed-form inverse kinematics solutions. The problem be- 
comes  more critical for kinematically redundant robots, for 
which the number  of  degrees  of  freedom  (DOF)  exceeds the 
required six coordinates necessary to attain arbitrary locations 
in the three-dimensional  work  space  [2],  [4]. 

A  second  approach for solving the inverse transformation 
problem  of n DOF robots is based  on  the  use  of iterative 
procedures for solving a  system  of nonlinear equations [3], 
[4], [5 ] ,  [6]. Alternatively, the kinematics  model of the 
manipulator  can be divided into subsystems  such that an 
iterative procedure  can  be applied to determine  some  of  the 
joint variables, while the other variables are obtained  by  a 
closed-form solution [7 ] ,  [8]. The  method  presented herein 
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considers the kinematic  model as a  whole  and  determines  all 
joint variables using  a  rapidly  converging iterative procedure. 

In a three-dimensional space  a  manipulator  must  have at 
least six  DOF  in  order to be able to attain any arbitrary end 
effector position  and orientation. If the manipulator  has  six 
DOF, a  system  of  six nonlinear equations has to be  solved for 
the six joint variables. However,  if the manipulator  has  more 
than six DOF, the system  of six nonlinear equations is 
underdetermined. For such cases an optimization procedure 
may be used to determine the best set of solutions subject to a 
given objective function [4], [9]. 

A number  of iterative methods for the analysis of  spatial 
mechanisms  presented  in earlier works  use  matrix algebra to 
formulate the kinematic relations [ 1 11, [24]. 

In literature the most  common algorithms proposed to solve 
the nonlinear kinematic equations use  Newton’s  methods 
based  on  simultaneous successive linear interpolation of 
nonlinear equations [ 121, [ 131. Since  Newton-like algorithms 
are considered ‘ ‘local methods, ” which require an initial close 
estimate to the exact solution, a  proper step size control is 
necessary to avoid  divergence  due to a “bad” initial estimate 
~ 4 1 .  

This  work consists of five’ sections. Section 11 presents a 
general formulation  of the inverse kinematics  problem  of n 
DOF robot arms. A  review  of solutions of nonlinear equations 
is  presented  in Section 111. An efficient and general iterative 
technique  is  discussed in Section IV for both  kinematically 
determinate (standard) and  redundant robots. The  technique  is 
based  on  a  modified  Newton-Raphson  method for solving 
nonlinear equations. A  numerical  example  of  a  seven  degree 
of  freedom robot illustrates the method  in Section V. 

11. PROBLEM  FORMULATION 
The  motion  of  an articulated arm (robot) can  be  analysed  by 

assigning certain coordinate frames to each link [15],  in  order 
to obtain  a transformation that relates joint to task space 
coordinates. The task space coordinates are the position  and 
orientation of the end effector with respect to a reference 
(base)  frame. The relative position and orientation of two link 
coordinate frames are expressed  in  terms  of transformation 
matrices A i  E R 4 x 4  [ 13 defined as follows 

L O  0 0 

where ai, ai, di, Oi are the link length, twist, distance, and joint 
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variable, respectively. For simplicity  we  assume  that  only 
rotary joints are considered. Using ( l ) ,  the transformation T, 
representing the position  and  orientation of the  end  effector 
with  respect to the  base frame is 

where n,  o, a are the orientation vectors, p is  the  position 
vector, and q is the configuration  space  vector  consisting of 
joint variables Oi ,  q member R". 

The inverse kinematics  problem is the determination of a 
vector q* which corresponds to a given  end  effector  target 
transformation Tk.  The approach, first introduced  in [ 5 ] ,  is 
based  on a residual  vector  definition r member ' R 6  which 
represents the residual  position  and  orientation  between Tnf 
and  the  actual (present) end  effector  transformation Tna. 
Clearly r = r(q)  is defined  as  follows 

r=@Jyrzr,ror$) (3) 
where (rxryrz) and (r,ror,) represent the residual  position  and 
the residual orientation, respectively. The elements of residual 
position are defined  as [16] 

rx=na * @'-pa)  

ry=oa (p t -p?  

where p' and p a  are the position  vector of the  target  and  the 
actual frames  with  respect to  the base frame, respectively,  and 
(naoaau) are the orientation unit vectors of the actual  end 
effector frame with  respect to the  base  frame. 

For the elements  of the residual  orientation  vector  one  can 
use  any suitable set of rotation  angles  with a predefined 
sequence of rotations. For example, for Euler angles  the 
elements are defined  as 

' ,=a tan 2[(oa at) ,  (aa * a')] r,=r,+ 180" 

re=a tan 2[((na a') cos r,+ (oa * a') sin r,), 

(a" * a91 

r$=a tan 2[(-(na n f )  sin r,+(oa * n') cos r,), 

(- (na 0') sin r,+ (0" * ot) cos r,)] 

For  yaw-pitch-roll  angles the elements are' defined  as 

' ,=a  tan 2[(oa nt), (na nt)] r,=r,+ 180" 

re=a tan 2[-(aa * nt), 

((n" * n') cos r,+(oa * nt)  sin r,)] 

' $=a  tan 2[((na a') sin r,- (oa * a') cos r,), 

( - ( n a  0') sin r,+ (oa - 0') cos r,)] 

For a set of x - y - z rotation  axes the elements are 

r,= 1/2(a" o'-a' * 03 

re= 1/2(na * a t -n t  a3 

r$=1/2(oa * n f - o f  - n3 (7) 

The  solution to the target transformation q* is obtained 
when the actual  end effector transformation Tna is coincident 
with  the target transformation Tnf .  Such a solution exists if  and 
only  if q = q*,  i.e. 

r (4") = 0 (8) 

The  algorithm  presented herein generates q* such  that ( 8 )  
holds  with qa (actual  configuration)  being the initial estimate 
of q*.  

III. NUMERICAL  METHODS  FOR  NONLINEAR 
KINEMATIC  EQUATIONS 

A .  Determination of the  Jacobian 
The most  common  methods for solving  nonlinear  equations 

approximate the nonlinear  system by a linear one  such  as (8), 
then  solve the problem iteratively [17], [18],  [19]. For 
example,  the  Newton-Raphson  method [ 181 takes into account 
only the first order terms of the Taylor series expansion of 
r(q) in (3). A solution for this system of equations is 
determined  using,  in an iterative manner, the following 
approximation [ 121 

q(k+ 1) = q(k) + 6Ck) (9) 

where  solves  the linear system  and 

i= 1 

where Jji is defined  as 

J..( - [ arj/aqi],=,(k), i = l ,  n; j = l ,  6. (1  1) 

The  function rj is continuously differentiable and Jji is 
nonsingular  in  the  neighborhood  of the solution q = q*.  

The  manipulator  Jacobian matrix, which  is  required to solve 
(lo), has to be determined  analytically or numerically. 
Analytical  expressions for the Jacobian  matrix  corresponding 
to the  residual  vector r(q)  given  by (4) and (7) are shown  in 
Appendix I [ 101. Since the computations are lengthy, the user 
may decide either to compute  the  Jacobian  only after every m 
iterations, or approximate  it  using the following  function 
values [ 191 

[d (k+ 1) = [a ( 4  + [Dl (k) (12) 

where 

and  vector  which is chosen to be  orthogonal to 6(') - 6 
is determined  using the Gram-Schmidt  orthogonaliza- 

tion process, so that 
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[13](k)(6('))=0, l ~ k - i ~ n .  (14) 

Following the determination  of the Jacobian matrix, the next 
task is to invert it for solving (IO). 

B. Inverse of the  Jacobian 
Case I: For manipulator  arms  with n < 6 DOF, the (6 x 

n) Jacobian  matrix is nonsquare, so that an inverse can  be  only 
obtained  using generalized inverses [17] as follows 

G=[Jl+=([J1T[4)-1[Jl= (15) 

The inverse J +  is  unique,  minimizes  the  Euclidean norm of q 
and satisfies the following relations [I71 

J J +   J =   J  (164 

J +   J J f  = J +  ( 16b) 

( J +   J ) T =   J + J  ( 17a) 

( J J + ) T =   J J +  ( 17b) 

Case 2: For manipulator arms with n = 6 DOF, the 
Jacobian  matrix is square  and  it  can be inverted if it is 
nonsingular. Then J +  = J -  ' (the ordinary inverse) in (15). 

Case 3: For kinematically  redundant robots with n > 6 
DOF, the (6 x n) Jacobian  matrix is nonsquare  and its inverse 
can  be  obtained  using  pseudoinverses [4].  Although, the 
pseudoinverse  of the (6 x n) Jacobian matrix, n > 6, can 
easily be obtained, it can  only  be used if the objective function 
is the minimum  Euclidean  norm. For more general objective 
functions a new  type of Jacobian inversion technique is 
presented  in the next section. 

IV. SOLUTION TO THE INVERSE  KINEMATICS 
A .  The Modified Newton-Raphson Method for n > 6 
DOF 

The  purpose of this  method is to solve the nonlinear system 
of equations (8) subject to arbitrary objective functions 
(optimization criteria). Since n > 6 in (lo), the (6 X n) 
Jacobian  matrix  can  be partitioned into a (6 X 6 )  and  a (6 X 
(n - 6))  matrix as in [4], 

(r(q 'Q)) + [J"] ' Q ( 6 R )  (k )  + [J"] (k ) (bA) (k )  = 0 (1 8) 

where [JR]  is the (6 x 6) reduced Jacobian, evaluated at q = 
q(Q, [J"] is the (6 X (n - 6)) matrix  corresponding to (aA) 
obtained  by  excluding (n - 6) columns  from [4,(liR)ck) = 
(qR)@+ *) - (qR)(@ are the six joint correction variables, and 
(aA)@)  = (qA)(k+l )  - (qA)(@ are the (n - 6) free joint 
correction variables. 

The  only condition in  choosing the free variables 6" is to 
guarantee the invertibility of the reduced  Jacobian  matrix [ J R ]  
which  is  necessary to obtain the following equations, 

(6 R, = (a) - [bI@ A )  (19) 

where 

(a) = [JR] - l(r) 

[b] = [JR] - '[JA].   (20) 

Values  of S R  obtained from (19), corresponding to certain 
6" values, can  now  be substituted into any objective function 
of the form 

min Z =  f ( q )  (21) 

and  the  optimum  can  be  determined  using an (n - 6 )  
dimensional  optimization routine. 

B. Constraints 
The  system  of nonlinear equations (8), r = r (q) ,  is always 

subject to constraints imposed on the solution such as 

q ' s q s q u  (22) 

where q' and qu are the lower  and  upper limits on the joint 
variable displacements qi,  i = 1, n. 

In general, for Newton-Raphson  methods,  when the gener- 
alized inverse is used to obtain the inverse Jacobian matrix, no 
control is exercised on the computed correction vector at 
iteration step k. It is possible, that q(k+l) determined  from 
(9)  does  not satisfy (22) and the algorithm  converges to a 
(nonfeasible) solution outside the permissible joint ranges of 
the robot (outside the work space). Under  such  circumstances 
there may be  two strategies to prevent  convergence to a 
nonfeasible solution: 1)  Check the solution q(k+l)  against  the 
limits and correct those variable values to their nearest  limit 
which are out-of-range, or 2)  Reduce the step size of  Newton- 
Raphson iteration, I( 6 ~ ~ ( ~ ) l l ,  if a joint exceeds its limits. This 
strategy will  be discussed in detail in  Section  IV-C. 

For the modified  Newton's  method  presented  in Section IV- 
A, for n > 6 ,  joint limits on the free variables, are 
determined  from constraints equation (22) specified for all 
joints prior to every  algorithm step. Let qi@) be the current 
value  of the ith joint variable. Then,  using  (19)  and (22), the 
constraints become 

q ; ' - q ; ' k ' = ~ . ~ < ~ . ( k ) ~ ~ i u = q i U - q i ( k )  I -  I (23) 

and 

( 6 R ) ' r  [ - (a)(" - [b](Q(6A)(q I ( 6 R ) U .  (24) 

If the total  number  of variables is n = 7, the constraint 
equations will  simplify as follows, 

(6")L 5 (SA)(k) I  ( & A )  (25) 

where 

= max [ (aA)[ ,  (aj - (6iR)?/bj; j = 1, 61 

( ~ 5 ~ ) ~ = r n i n  [(dA), (aj-(SjR)")/bj; j =  1, 61 (26) 

where aj and bj are the elements  of (a)  and (b ) ,  respectively. 

C. Step  Size  Control 
The classical Newton-Raphson iteration often fails to 

converge  when the initial estimate q ( O )  is  not  sufficiently close, 
in the Euclidean sense, to the solution of the system (8). A 
number of useful modifications have  been  developed to 
Newton's  method,  which  provide reliable convergence,  even 
when  a close initial estimate is not available [ 171, [ 181, [ 191. In 
[ 181, Eq.  (9)  is replaced by  the  expression 
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q ' k + 1 ) = q ( k ) + X ( k ) 6 ( k )  (27) 

where X(") is a positive number  chosen to satisfy the following 
inequality, 

G(q(k+l))<G(q(k))   (28)  

where 

j =  I 

Equation (28) is expected to hold [18], since if [Jl (k) is 
nonsingular, then 

[ & G(q(" + 1 X = O  = - 2G(q("))< 0 

unless q(k) is already a solution of (8). 
A different modification to the classical Newton-Raphson 

iteration, which is known as the Levenberg-Marquardt itera- 
tion [20],  [21], replaces (9) by 

q (k+ 1) = q (k) + q (k) ( 3  1 )  

where TJ solves the linear system 

( [ J J T [ ~ + y ( k ) [ l l ) q ( k ) + [ J J T ( r ( q ( k ) ) ) = O  (32) 

where d k )  is  a positive number. 
A common strategy to both  methods  is to retain direction, 

but to restrict step length if necessary. If (28) is satisfied, the 
full Newton-Raphson correction 6NR(k) is maintained  by 
setting X(") = 1 in (27) and d k )  = 0 in (32). 

As  mentioned  in Section IV-B, step size control can  be 
effectively used to prevent nonfeasible solutions. If such  a 
situation is encountered  during  the iterative procedure, the 
step size is restricted using a new  algorithm  presented in 
Section IV-D . 

It is noticed that the iterative procedure  of the Levenberg- 
Marquardt  method (see Appendix 11) [20] is  a least squares 
solution, and  can  not  be easily applied for n > 6 DOF robots 
if the modified  Newton's  method  of Section IV-A is used. On 
the other hand, the step size restriction procedure  using (27), 
as it  will  be  explained  in Section IV-D,  is  more suitable for the 
new  algorithm  of Section IV-A, since the correction is 
restricted only after the full Newton-Raphson correction 
6NR(k) is  computed. 

D. Algorithm of the  Iterative  Procedure 
The  algorithm  proposed  in this paper seeks a solution q* to 

the problem  defined  by (8) subject to the constraints of (22). 
This  algorithm generalizes the algorithm  presented earlier for 
n > 6 DOF (redundant) robots [6 ] .  In Steps 1 and 2 the 
manipulator  Jacobian  matrix is computed  and inverted to 
obtain the full  Newton-Raphson correction vector 6NR(k). The 
user has the option to use either generalized inverses or the 
inversion procedure  described  in Section IV-A. In Steps 3-6 
the step length, defined as I16(k)ll, may  be restricted to prevent 
nonfeasible solutions. The constant in (27) is computed as 
a multiplier of the Newton-Raphson correction vector 
that was  determined  in the earlier steps. In Step 7 the value of 

G(@+l ) )  from (29) is compared  with  a specified threshold 
value E for convergence  check. The algorithm consists of the 
following step-by-step procedure. 

Step I :  Determine the Jacobian  matrix [Jl (see ( 1 1 ) )  

Step 2: Evaluate the full Newton-Raphson correction 6NR(k) 
corresponding to the residual vector r (see (3))  at q(k). 

as follows. 

Case I (for arbitrary n DOF): 
a) using generalized inverses (see (15)-(17)) obtain 

b)  determine the correction vector BNR(Q = 6(k) (see 
[Jl + 

(10)). 
Case 2 (for n > 6 DOF): 

a) partition the Jacobian  matrix into [ J R ]  and [ P I  (see 

b)  determine the constants (a )  and [b] (see (20)) 
c)  determine the feasible domain  of the free variables 

d) determine an optimal solution (aA)* for a  given 

e) determine the optimal correction vector tSNR@) (see 

( 18)) 

( W  (see (23)-(26)) 

objective function (see (21)) 

(19)). 

Step 3: Evaluate the gradient (g)@)  as follows [22], 

Step 4: Check  if the solution is converging to a local 
minimum  using 

G(q(k92tIlg'k'll  (34) 

where t: is usually set to  an overestimate  of the distance q ( O )  to 
the  solution q* [22]. If (34) holds, i.e., there is convergence to 
a local minimum,  then terminate the process, else proceed  to 
the next step. 

Step 5: Restrict the step size by the following  procedure, if 
necessary. 

1 )  If 

116NR(k)ll SACk) ( 3 5 )  

and 

then  set 

6 (k) f 6NR,(k) 

where A(") is the maximum  allowable step size initially 
set to AC0) = max  (DSTEP,  min  [DMAX, p11g111); and p 
= ~ ~ g ( " ) ~ ~ / ~ ~ J g ( k ) ~ /  2; DSTEP is chosen to avoid  computer 
roundoff errors. 

2) If equality (36) holds  and (35) does not, then 

6(k)=A(k)g(k) / l lg (k) l l  (37) 

3 )  If  both inequalities (35) and (36) do not hold, 
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6 (k) = (1 - y)pg (k) + y 6 N R  (k) (38) 

such that the positive number y satisfies 

Il(1 -y)pg(k)+y6NR(k)ll =A(k).  (39) 

Step 6: Verify  whether  both inequalities (23) and (28) hold 
(check (28) only if Case 2 of algorithm  Step 2 is used). 

1)  If  they do not hold, reduce A(" as follows and return to 
Step 5, 

ACk) = max  DSTEP)  (40) 

where 0.0 < 0 < 1.0. 
2) If  they hold, then set 

q ( k + l ) = q ( k ) + 6 ( k )  (9) 

Step 7: Verify the convergence to final solution as follows, 

G(q(k+l))<c, (41) 

where E > 0.0 is a threshold value supplied by the user. 

1) If (41) holds, then q* = q(k+l)  is the optimal solution of 

2) If (41) does  not hold, let k = k + 1 and return to 
(8) * 

algorithm  Step 1. 

The proofs of convergence of the algorithm  described  above 
can  be  found in [18]. 

V. A NUMERICAL  EXAMPLE 
A  seven DOF, all rotary joints, two  elbow  robot  with  a 

maximum  reach of 3.0 is given. The link lengths (defined 
according to [lo]) areal = 0, a2 = 1, a3 = 1, a4 = 1, as = 
0, a6 = 0, a7 = 0. The residual vector r(q),  expressed by  (4) 
and (7), and the corresponding  Jacobian  matrix  (using the 
formulation  given in Appendix I) are utilized in the algorithm 
described  in Section IV-D. 

The robot is positioned initially at eico) corresponding to task 
space T7(0), and it is required to relocate its end effector to a 
task space T7(I), where 

8i(O)=(0.2172, 0.3914, 0.1651, 0.4032, 1.0723, 

- 0.4137, 0.0601) (42) 

[ ] (43) 

] (44) 

0.522 -0.467 0.714 1.688 
-0.821 - 0.047 0.569 0.373 
-0.232 - 0.883 -0.408 2.347 

0.000 0.000 0.000 1.000 

0.943 0.207 0.261 2.231 

T7@) = 

-0.292 0.894 0.352 0.749 
-0.160 -0.395 0.899 1.923 

0.000 0.000 o.Oo0 1.000 

T7(') = 

The optimization criterion used in this example is a  weighted 
average of three criteria and it  is defined as 

min Z=0.5MI  +0.3M2+0.2M, (45) 

where 

MI = max [7;(Aei); i= 1, 71  (446) 

TABLE r 
KINEMATIC VARIABLES 

.- - 

Joint 1 2 3 4 5 6 7  
- 

Maximum  Velocity 

Maximum  Acceleration 

Lower  Limit 

Upper Limit 

Mid-Range 

(1 /s) 2 2 2 2 10 10 10 

(1/s2) 10 10 10 10 25 25 25 

(rad) --A --x --P --* --P --a  --a 

(rad) 

(rad) 0 0 0 0 0 0 0  

- P ? r - P - P - * - P - *  

7 

A42 = (AB;) (47) 
i= I 

7 

M~ = x. (e;-  eiM)2 (48) 
i= I 

where 7; is the motion  time  of ith joint, and BiM is the 
operational midrange  value  of  the joint angle of  the ith joint. 

The kinematic variables corresponding to each  of the joints 
are shown  in  Table I. The  optimal solution obtained for the 
objective function (45) is 

Oi(')=(O.3533, 0.2841, 0.9001, 0.0966, -0.8976, 

- 0.2368, 0.9067)  (49) 

where 

E =  1 x 10-10 p(O) = 0.5 

DSTEP = 0.00001  DMAX = 20.0 

A(o)= 0.9967 

and  the  number  of iterations required for this calculation was 
13. 

VI. CONCLUSIONS 

This  paper presents a  complete generalized solution to the 
inverse kinematics of robots with arbitrary number  of  degrees 
of  freedom  using the concept  of residuals. The solution is 
robot independent  and is obtained  using an iterative procedure. 

The  procedure is a  modified  Newton-Raphson  algorithm 
for which the step length is only restricted to avoid nonfeasible 
solutions. It is however  important to define a sufficiently large 
initial maximum  allowable step length A(o). The  procedure 
also considers constraints on the variables as well as an 
objective function to be  minimized.  The  procedure requires 
that the Jacobian  is either analytically or numerically  com- 
puted. In the case of analytically determined  Jacobian  the rate 
of convergence is considerably  improved. 
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APPENDIX  I 

THE MANIPULATOR  JACOBIAN 

Each  column  of the manipulator  Jacobian  matrix [q can  be 
obtained  from aT,/dO;. In order  to determine the columns of 
the (6 x n )  Jacobian  matrix  with respect to the end effector 
frame, the ;- T,, i = 1, n transformations have to be 
developed as follows 

i - l T n = ( A i A i + l  A,), j = l ,  , n  

where Ai are the (4 X 4) transformation matrices between 
frames (i - 1) and (i). 

The Jacobian  matrix  is  denoted as 

[.?I = 

6 j = n , i + o , j + a z k  

and if the joint is  prismaic 

d j = n z i + o z j + a z k  

6;=Oi+Oj+Ok 645) 

where n, 0 ,  a, and p are the column vectors of ;- T, . 
APPENDIX 11 

THE LEVENBERG-MARQUARDT  ITERATIVE 
PROCEDURE 

The algorithm  of the Levenberg-Marquardt  procedure 
given  by  (31)-(32) solves the nonlinear set of equations (3) 

r=  (rx, r,, r,, r,, re, r d = r ( q )  (3 ’) 

q‘k+ 1 )  = q‘k’ + t l ( k )  (3 1 ‘> 

( [ J 1 T [ J J + y ( k ) [ 1 1 ) r ] ( k ) + [ J J T ( r ( q ( k ) ) ) = O . O .  (32’) 

where r ]  solves the linear system 

The iterative procedure is as follows. 

computed at q = q(k), as 
1) Normalize the Jacobian  matrix [JJ and the gradient (g), 

gj = ( g j / G ) .  047) 

2) Determine d k )  as follows. 
Let > 1.0, and d k - ’ )  denote the value  of v from the 

previous iteration; initially let v(O) = 10 - 2. 

Compute G(k+ I ) ( Y ( ~ - ~ ) )  and G(k+l) (dk- l ) /& from  (29) as 
follows: 

a) If G(k+l)(y(k-I)/E) 5 G(k), let y(k)  = y ( k - l ) / t .  

b) If G(k+l)/(y(k-l)/E) > GW, and G(k+l)(y(k-l)) 5 
G(k), let y(k)  = y(k-1) .  

3)  Solve  (A8) for the normalized correction vector’ 8, 
([Jp+ h(k)[fl)($)W = (g)(k) .  (A81 

4) Solve  (A9) for correction vector 6, 

Sj = 6j/./sJ3, . (A9) 

The  constant d k )  is selected in  order to satisfy inequality (28). 
The  normalization  procedure is sometimes referred as “scal- 
ing”  and  widely  used  in linear least squares  problems as a  way 
of improving the performance  of an algorithm [20],  [23]. 
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