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Foreword

At the dawn of the new millennium, robotics is undergoing a major transformation
in scope and dimension. From a largely dominant industrial focus, robotics is rapidly
expanding into the challenges of unstructured environments. Interacting with, as-
sisting, serving, and exploring with humans, the emerging robots will increasingly
touch people and their lives.

The goal of the new series of Springer Tracts in Advanced Robotics (STAR) is to
bring, in a timely fashion, the latest advances and developments in robotics on the
basis of their significance and quality. It is our hope that the greater dissemination of
research developments will stimulate more exchanges and collaborations among the
research community and contribute to further advancement of this rapidly growing
field.

Advances in Control of Articulated and Mobile Robots edited by Bruno Siciliano,
Alessandro De Luca, Claudio Melchiorri, and Giuseppe Casalino provides a unique
collection of a sizable segment of the robotics research in Italy. It reports on contri-
butions from ten academic institutions brought together within MISTRAL, an Italian
project on robotics research.

This ten-chapter volume covers important research areas ranging from planning,
control, and actuation of articulated mechanisms to sensing, perception, navigation,
and real-time control architectures of mobile robots. The focus is on fundamental
issues related to robots subjected to nonholonomic constraints, time delays, actuator
saturation, or joint friction. The work also addresses other key issues concerned
with the localization and mapping in unknown or partially known environments,
the presence of moving objects, the use of multiple sensors, and the integration of
mobility and manipulation.

The thorough discussion, rigorous treatment, and wide span of the work unfold-
ing in these areas reveal the significant advances in the theoretical foundation and
technology basis of the robotics field. MISTRAL culminates with this important
reference to the world robotics community on the current developments and new
directions undertaken by this project’s Italian robotics team!

Stanford, California Oussama Khatib
November 2003 STAR Editor



Preface

Since the development of robotics for industrial and manufacturing applications in
structured environments, research in the field has been gradually seeking at providing
robotic systems with enhanced autonomy for operation in unstructured environments.
Significant examples include cooperating and assisting robots, haptic interfaces for
virtual reality and remote operation in hostile environments, mobile robots and au-
tonomous agent teams. The challenge presented by such themes demands advanced
control techniques and architectures to perform robotic tasks such as manipulation,
interaction, teleoperation, locomotion and cooperation.

This monograph stems from the research project MISTRAL (Methodologies and
Integration of Subsystems and Technologies for Anthropic Robotics and Locomo-
tion), funded in 2001–2002 by the Italian Ministry for Education, University and
Research (MIUR), involving a significant portion of the national academic robot con-
trol community; namely, the research groups at: University of Bologna, University
of Genoa, Polytechnical University of Marche, Polytechnic of Milan, University of
Naples, University of Pisa, University of Rome “La Sapienza”, University of Rome
“Tor Vergata”, Third University of Rome, Polytechnic of Turin. A complete descrip-
tion of the project is available at the web site http://www-lar.deis.unibo.it/mistral.

The aim of this monograph is to provide an updated source of information on
the state of the art in advanced control of articulated and mobile robots, along with
a taste of significance and impact of new research in the field. A number of relevant
problems have been selected dealing with enhanced actuation, motion planning
and control functions for articulated robots, as well as of sensory and autonomous
decision capabilities for mobile robots.

The material has been organized as follows. The first two chapters are devoted to
tutorial/survey presentations on two critical issues when controlling a robotic system:
planning motion in the presence of differential constraints, and copying with time
delay in remote operation, respectively. The remaining contents have been ordered
in a progressive way; the next four chapters deal with control of articulated robots,
whereas the final four chapters are focused on planning, localization and servoing
of mobile robots. A reading track along the various contributions of the ten chapters
of the volume is outlined in the following.

The volume starts with a comprehensive tutorial by De Luca et al. on mo-
tion planning for a class of robotic systems subject to nonholonomic differential
constraints. Of special concern is the problem of planning point-to-point motion
for systems subject to non-integrable first and second-order differential constraints.
The solutions outlined for both non-flat nonholonomic kinematic systems and flat
underactuated dynamic systems demonstrate the generality of the approach.

Teleoperation has historically been one of the pioneering areas in robotics.
The key problem from a control viewpoint has been to cope with time delay. The
chapter by Arcara and Melchiorri presents an extensive survey of the most adopted



X Preface

techniques for telemanipulation. Control schemes are critically compared in terms
of suitable criteria, and one type of passive controller is analyzed in detail for
performance enhancement purposes.

As outlined above, the issue of performance plays a crucial role in robot control.
The chapter by Morabito et al. concentrates on a specific phenomenon which may
deteriorate performance in a robot manipulator undergoing actuator torque satura-
tion. An effective anti-windup control law is proposed which is remarkably based
on simple and intuitive parameter tuning.

The following two chapters are devoted to the problem of modelling and com-
pensation of nonlinear friction in robot joint actuators, yet another effect which
must be properly taken into account when designing advanced control systems. The
chapter by Ferretti, Magnani and Rocco demonstrates how the use of high-resolution
encoders allows an accurate analysis of the dynamic behavior of friction forces in
the so-called presliding regime, and especially in the presence of hysteresis loops.

On the other hand, the treatment of nonlinear friction in the chapter by Bona,
Indri and Smaldone is framed into the context of rapid prototyping of model-based
robot controllers. General issues related to both hardware and software architectures
are critically surveyed with the goal of achieving fast and systematic interaction
between the algorithmic design phase and the experimental testing.

The use of visual sensors is argued to have high impact for operation in un-
structured environments, especially if the robot is visually servoed in a closed-loop
control fashion. The problem of visual tracking of 3D objects is treated in the chap-
ter by Caccavale et al., where a combined Extended Kalman Filter/Binary Space
Partition tree technique is developed to achieve real-time estimation of the position
and orientation of moving objects of known geometry using a fixed stereo camera
system.

The remaining four chapters deal with issues concerning mobile robots. The de-
velopment of a real-time control architecture for a prototype of differentially-driven
wheeled mobile robot is discussed in the chapter by Bellini et al.. The solution resorts
to RTLinux operating system which seems to gain increasing popularity within the
research community; the software architecture includes low level motor feedback,
high level trajectory loops, and communication protocols through an Ethernet radio
link.

The chapter by Casalino and Turetta addresses the problem of coordinating
the manoeuvring of a nonholonomic vehicle with the motion of a  supported ma-
nipulation system, composed either by a  single arm or by two arms. Kinematic
redundancy is suitable exploited to optimize a number of constraints according to
a systematic approach which ensures modularity and scalability within the overall
vehicle-manipulator robotic system.

Sensory data fusion is covered in the chapter by Bonci et al., where different
methods and algorithms are introduced for the accurate localization of mobile robots
on a given map, by integration of odometric, gyroscope, sonar and video camera mea-
sures using a Kalman filtering approach. On the other hand, different probabilistic
methods are employed for the exploration of unknown environments.
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The volume ends with the chapter by Bicchi et al. which considers three main
problems arising in the navigation of autonomous vehicles in partially or totally
unknown environments; namely, map building, localization, and motion servoing.
The result is a generalization of SLAM, which allows the localization and mapping
problems to be cast in a unified framework with the control problem.

The monograph is addressed to postgraduate students, researchers, scientists and
scholars who wish to broaden and strengthen their knowledge in control of robotic
systems.

Besides thanking all the Authors for their valuable contributions to this mono-
graph, we wish to extend our appreciation to all the participants to the MISTRAL
project who have produced significant research results during the latest two years.
Warmest thanks are also for Thomas Ditzinger at Springer-Verlag in Heidelberg. A
final word of thanks goes to Costanzo Manes for the pictorial illustration below.

Italy Bruno Siciliano
October 2003 Alessandro De Luca

Claudio Melchiorri
Giuseppe Casalino
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Planning Motions for Robotic Systems Subject to
Differential Constraints

Alessandro De Luca, Giuseppe Oriolo, Marilena Vendittelli, and Stefano Iannitti

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Eudossiana 18, 00184 Roma, Italy
<deluca,oriolo,vendittelli>@dis.uniroma1.it, stefano.iannitti@asi.it
http://labrob.ing.uniroma1.it

Abstract. We consider the problem of planning point-to-point motion for general robotic
systems subject to non-integrable differential constraints. The constraints may be of first order
(on velocities) or of second order (on accelerations). Various nonlinear control techniques,
including nilpotent approximations, iterative steering, and dynamic feedback linearization,
are illustrated with the aid of four case studies: the plate-ball manipulation system, the general
two-trailer mobile robot, a two-link robot with flexible forearm, and a planar robot with two
passive joints. The first two case studies are non-flat nonholonomic kinematic systems, while
the last two are flat underactuated dynamic systems.

1 Introduction

In this chapter, we consider the problem of planning admissible transfer motions
for robotic systems that are subject to nonintegrable differential constraints. Such
constraints on the motion of a robot may arise from the system mechanical structure
(perfect rolling of wheels, conservation of angular momentum) as well as from a
reduced control capability (passive degrees of freedom).

The differential constraints can be classified as first-order (i.e., involving veloc-
ities) or second-order (involving accelerations). Whenever these constraints are not
integrable (or, nonholonomic), the robot may reach a generic point of its state space
through suitable maneuvers that are compatible with the constraints. The planning
problem consists in generating algorithmically these maneuvers, possibly with a
given transfer time. In particular, for first-order kinematic systems we should find
a sequence of velocity input commands driving from a given initial configuration
to a desired configuration. For second-order dynamic systems, the problem is to
find a sequence of force/torque input commands that allow a desired state to be
reached from a given initial state, both typically equilibria. As will become clear
later in the chapter, the dynamic problem can be often solved by finding a sequence
of acceleration inputs on a feedback equivalent second-order (purely kinematic)
system.

In order to solve these planning problems, various model transformation tech-
niques can be used, mostly arising from the field of nonlinear control theory. In
particular, the possibility of transforming the robot model by means of nonlinear

B. Siciliano et al. (Eds.): Advances in Control of Articulated and Mobile Robots, STAR 10, pp. 1–38, 2004.
Springer-Verlag Berlin Heidelberg 2004



2 A. De Luca et al.

feedback laws and change of coordinates into a nilpotent system [25], a chained-
form system [32], or even a linear controllable system [23] has lead to the definition
of powerful planning algorithms.

In particular, we may be able to transform the original nonlinear system into a
set of decoupled chains of input-output integrators by means of a dynamic feedback
linearizing law [23]. This is possible whenever the state and the input of the system
can be expressed algebraically in terms of some output (vector) function and of its
derivatives up to a finite order, a strong property called flatness [19]. If a flat output
is known for a robot subject to differential constraints, the planning problem can be
considered as essentially solved (except for possible singularity issues). This is the
case of a large class of wheeled mobile robots (which are subject to nonholonomic
first-order kinematic constraints), see e.g. [18,35,47,36], and of robot manipulators
including joint elasticity (which are subject to nonholonomic second-order dynamic
constraints), see [14].

Therefore, one can basically use the presence or not of the flatness property in
order to assess the difficulty of the planning problem in the presence of differential
constraints. Necessary and sufficient conditions of flatness are available for nonlinear
driftless systems with two inputs [42]. For example, all nonholonomic first-order
kinematic systems with two inputs that can be transformed in chained form are
flat (and vice versa). However, even when a system is known to be flat but the
flat output is not provided, the search for such an output may be not trivial (as
in the case of a car towing only one off-hooked trailer [43] or of the bi-steerable
vehicle [44]). In addition, assuming that a flat output has been found, it should not be
overlooked that singularities may occur in the associated transformations, affecting
thus the global validity of the planning algorithm. Unfortunately, there exist no
necessary and sufficient conditions for flatness (equivalently, for dynamic feedback
linearization) in the case of general nonlinear systems with drift. For underactuated
robots, which are subject to nonholonomic second-order constraints, the problem is
emphasized by the higher complexity of the associated dynamic models.

In any case, the violation of the necessary conditions for flatness given in [42]
indicates that the planning problem is not an easy one: this is what happens in
the two kinematic case studies presented in this chapter. Moreover, even if some
underactuated robots are known to be flat (see, e.g., [1,17]), a deeper analysis of
specific planning solutions and of singularities are of interest in the dynamic case.
This is the subject of the two other case studies presented later on.

Indeed, there exist other algorithmic approaches to planning motion for systems
subject to differential constraints. We just mention here the recently introduced
kinematic reduction method for dynamic models of underactuated robots [9]. Based
on the concept of kinematic controllability, it is possible in some cases to backup a
dynamic motion planning problem into a sequence of elementary velocity commands
along so-called decoupling vector fields (see, e.g., [1] for the application to a planar
3R robot with the last passive joint).

The chapter is organized as follows. In Section 2, we review the modeling steps
and the properties of kinematic systems with first-order differential constraints, of
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dynamic systems with first-order differential constraints, and of dynamic systems
with second-order differential constraints. In doing so, we also set up the terminology.
In the remaining two sections, we address the planning problem for a number of
robotic examples that have not been treated extensively in the literature. In particular,
two non-flat nonholonomic first-order kinematic systems are considered in Section 3:
the plate-ball manipulation system and the general two-trailer wheeled mobile robot.
In Section 4, two flat underactuated second-order dynamic systems are presented: a
two-link robot with flexible forearm and a planar robot with two passive joints. The
presented planning algorithms are based on the use of general mathematical tools
investigated by our research group: nilpotent approximations, iterative steering, and
dynamic feedback linearization. These concepts will be briefly summarized along the
presentation. All case studies include numerical simulation results of the planning
of either configuration-to-configuration transfer tasks (in kinematic systems) or of
rest-to-rest state transfers (in dynamic systems). We also address robustness issues
of the iterative planner for the plate-ball system (Section 3.1) and present a simple
planner for the flexible robot in the case of multiple deformation modes (Section 4.1),
for which a flat output is not known.

2 Modeling

Let q = (q1, . . . , qn) be a set of n configuration variables of the robotic system. For
simplicity, we shall assume that the configuration space of the robot is IRn. More-
over, if there were some holonomic (geometric) constraints involving the system
coordinates, we suppose that such constraints have been already eliminated by suit-
ably reducing the dimension of the configuration space. Therefore, q are generalized
coordinates in the Lagrangian sense.

2.1 Kinematic Systems with First-Order Differential Constraints

Assume that a set of n−m ≥ 1 scalar differential constraints of the form

aT
i (q)q̇ = 0 i = 1, . . . , n−m, (1)

are imposed on the robot motion. The rows aT
i (q) can be reorganized into a matrix,

so that the constraints are rewritten in the compact form

AT (q)q̇ = 0. (2)

These homogeneous constraints are called Pfaffian, being linear in the generalized
velocities q̇. They may arise from several physical phenomena, most notably the
perfect rolling of robot wheels on the ground, the rolling of the fingers of a dextrous
robot hand in contact with an object, the conservation of zero angular momentum
in free-flying space robots. Under the hypothesis that the columns of matrix A are
linearly independent at every q, it follows from (2) that, at a given configuration q,
the set of admissible generalized velocities q̇ is restricted to a subspace of dimension
m < n of IRn.
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We are interested in the case where the set of constraints (2) is completely non-
holonomic1, i.e., when none of the single constraints (1) nor any combination of
them through functions γi(q) is integrable to a holonomic constraint h(q) = 0.
To check this, nonlinear controllability techniques can be used. The following con-
struction characterizes all feasible instantaneous motions allowed by the differential
constraints (2). Define an (n×m) matrix G(q) whose columns gi(q), i = 1, . . . ,m,
are independent vector fields at any q and such that

R (G(q)) = N (
AT (q)

)
, (3)

or AT (q)G(q) = 0, for all q ∈ IRn. Therefore, we can generate all instantaneous
feasible velocities q̇ as

q̇ = G(q)v =
m∑

i=1

gi(q)vi. (4)

Different choices can be made for defining a matrix G(q) that satisfies (3). Typically,
a good choice should be ‘physically’ motivated, in the sense that the weights vi,
i = 1, . . . ,m, represent identifiable (pseudo-)velocities in the robotic system. By
assuming that v ∈ IRm is the control input, we refer to (4) as the first-order kinematic
model of the robotic system subject to the first-order differential constraints (2). This
model is in the form of a nonlinear driftless control system. By Frobenius theorem
on integrability of differential forms, the complete nonholonomy of (2) is equivalent
to the accessibility of the whole configuration space IRn of control system (4).

We note also that, in spite of the ‘kinematic’ terminology, the differential con-
straints (2), and thus the control system (4), may contain dynamic parameters (i.e.,
related to the robot mass and inertia). For example, this happens when (2) stems
from conservation of generalized momenta.

2.2 Dynamic Systems with First-Order Differential Constraints

One can also take into account the dynamics of a robotic system in the presence of
the first-order differential constraints (2). In this case, the model explicitly contains
Lagrange multipliers λ ∈ IRn−m, representing the generalized constraint forces.
The dynamic model in the Lagrangian form is [20, p. 45]

B(q)q̈ + n(q, q̇) = A(q)λ + S(q)τ (5)

AT (q)q̇ = 0, (6)

with

n(q, q̇) = Ḃ(q)q̇ − 1
2

∂

∂q

(
q̇T B(q)q̇

)
+

∂U(q)
∂q

,

1 While each of the scalar differential constraints (1) may not be integrable, a subset of
p < n − m or the entire set of n − m differential constraints may still be integrable.
In the former case we have partially nonholonomic constraints, while in the latter we
obtain n − m holonomic constraints. In both cases, a reduction of the dimension of the
configuration space is induced.
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and where B(q) is the (n × n) symmetric positive definite inertia matrix (so that
1
2 q̇T B(q)q̇ is the system kinetic energy), U = U(q) is the system potential energy
(due, e.g., to gravity or elasticity), τ ∈ IRm is the force/torque control input, and
S(q) is an (n×m) input matrix which is assumed to be full (column) rank.

Under suitable hypotheses, it is possible to eliminate the Lagrange multipliers λ
and to reduce accordingly the set of dynamic equations [10]. Since GT (q)A(q) = 0,
premultiplying (5) by GT (q) leads to a reduced set of m second-order differential
equations

GT (q) (B(q)q̈ + n(q, q̇)) = GT (q)S(q)u. (7)

We can merge the kinematic model (4) (i.e., all generalized velocities q̇ satisfying (6))
into (7) so as to obtain

q̇ = G(q)v

M(q)v̇ + m(q, v) = GT (q)S(q)τ,
(8)

with

M(q) = GT (q)B(q)G(q) > 0

m(q, v) = GT (q)B(q)Ġ(q)v + GT (q) n(q, G(q)v)

and where the vector of pseudo-velocities v ∈ IRm is now part of the system state.
Note that the dimension of the state (q, v) has been reduced to n + m.

Assuming that ‘enough control’ is available, or

det
(
GT (q)S(q)

) ;= 0,

we can use a nonlinear static state feedback in order to further simplify (8). Define
the control input τ as

τ =
(
GT (q)S(q)

)−1
(
M(q)a + m(q, v)

)
, (9)

where a ∈ IRm is the vector of pseudo-accelerations. The resulting system is

q̇ = G(q)v

v̇ = a.
(10)

It is clear that the feedback law (9) leads to model equations that are simply an
extension (i.e., obtained by the addition of one integrator on each of the m scalar
inputs) of the first-order kinematic model (4). We shall thus refer to (10) as the
second-order kinematic model of the robotic system subject to the first-order differ-
ential constraints (2). This model is in the form of a nonlinear control system, with
the pseudo-acceleration vector a as input, and contains now a drift term of kinematic
nature.
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2.3 Dynamic Systems with Second-Order Differential Constraints

A different situation arises when there are no first-order differential constraints of
the type (1) but the dynamic system is underactuated, i.e., it has less control inputs
than degrees of freedom. Let p ∈ IRn be the generalized coordinates (the change of
notation will be clear in a moment) and τ ∈ IRm the available control forces/torques,
with m < n.

The Lagrangian dynamic equations are of the form

Bp(p)p̈ + np(p, ṗ) = S(p)τ (11)

with a similar notation as in (5) and the same assumption that the (n×m) input matrix
S(p) is full column rank. This model covers various interesting situations, such as for
example: a robot with n−m unactuated/failed (in any case, passive) joints; a robot
including transmission (joint) elasticity, for which n = 2m and p = (θ, φ), being
θ ∈ IRm and φ ∈ IRm, respectively, the positional coordinates of the motors and of
the driven links; a robot having flexible links, where p = (θ, δ), being θ ∈ IRm the
positions of the motors at the link bases and δ ∈ IRne the generalized coordinates
describing the deflection of the links, with n = m + ne.

Equation (11) can be elaborated in order to have a set of n−m intrinsic second-
order dynamic constraints appear more explicitly. Let Sl(p) be a left inverse of

the input matrix S(p) (e.g., the pseudoinverse S# =
(
ST S

)−1
ST ) and S⊥(p) an

((n−m)×n) matrix whose rows annihilate matrix S(p), or S⊥(p)S(p) = 0 for any
p ∈ IRn. Such two matrices can always be chosen so that a coordinate transformation
q = Q(p) exists whose Jacobian is (at least locally) nonsingular and equals

JQ(p) =
∂Q(p)

∂p
=

[
Sl(p)
S⊥(p)

]−T

.

From (11), one has

Bp(p)
[

Sl(p)
S⊥(p)

]T (
q̈ − d

dt

(
∂Q(p)

∂p

)
ṗ

)
+ np(p, ṗ) = S(p)τ.

This leads to new dynamic equations in the form

B(q)q̈ + n(q, q̇) =
[

Sl(p)
S⊥(p)

]
S(p)τ =

[
τ
0

]
, (12)

with

B(q) = J−T
Q (p)Bp(p)J−1

Q (p)
∣∣∣
p=Q−1(q)

n(q, q̇) = J−T
Q (p)

(
np(p, ṗ)−Bp(p)J−1

Q (p)J̇Q(p)ṗ
)∣∣∣

ṗ=J−1
Q

(p)q̇, p=Q−1(q)

At this stage, the new coordinates q can be partitioned as q = (qa, qu), with ac-
tuated coordinates qa ∈ IRm and unactuated coordinates qu ∈ IRn−m. Accordingly,
the dynamic model (12) becomes[

Baa(q) BT
ua(q)

Bua(q) Buu(q)

] [
q̈a

q̈u

]
+

[
na(q, q̇)
nu(q, q̇)

]
=

[
τ
0

]
, (13)
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with blocks of appropriate dimensions. In particular, the last n −m ≥ 1 equations
in (13) can be rewritten separately as

AT
u (q)q̈ + nu(q, q̇) = [Bua(q) Buu(q) ]

[
q̈a

q̈u

]
+ cu(q, q̇) + eu(q) = 0, (14)

where the vector nu(q, q̇) has been separated into the Coriolis and centrifugal terms
cu(q, q̇) and the potential terms eu(q) = (∂U/∂qu)T . Note that matrix AT

u (q) has
always full row rank, equal to n−m, at any q.

Equation (14) represents a set of n − m second-order (dynamic) differential
constraints that have to be satisfied by any admissible robot trajectory. The above
constraints are linear in the acceleration q̈. At a given state (q, q̇), the set of admissible
generalized accelerations q̈ is restricted to a linear subspace of dimension m. The
complete non-integrability of the set of constraints (14), in the sense of [37], indicates
that the underactuated robot can be considered as a mechanical system with second-
order nonholonomic constraints. As a particular case, it is immediate to see that,
whenever eu(q) ;≡ 0, the constraints AT

u (q)q̈ + nu(q, q̇) = 0 cannot be obtained
from the differentiation of Pfaffian constraints AT

u (q)q̇ = c (a state constraint that
would imply a reduction of the state space).

A convenient normal form for the underactuated dynamics (13) is obtained by
using again nonlinear static state feedback. Solving (14) for q̈u and substituting in
the first set of (13), one can verify that the (globally defined) control law

τ =
(
Baa(q)−BT

ua(q)B−1
uu (q)Bua(q)

)
a + na(q, q̇)−BT

ua(q)B−1
uu (q)nu(q, q̇)(15)

gives

q̈a = a

Buu(q) q̈u = −Bua(q) a− nu(q, q̇),
(16)

with the actuated coordinates now directly controlled by the generalized acceleration
input a ∈ IRm. The control (15) is commonly referred to as a partial feedback
linearization law. In the control system (16), it is clear that the inertial coupling
term Bua(q) between actuated and passive coordinates plays a decisive role in the
controllability properties of the system.

3 Planning for Non-Flat Kinematic Systems

With the aid of two case studies, we shall now illustrate a general technique which
achieves asymptotic (in a sense to be clarified below) planning for non-flat kinematic
systems subject to differential constraints. In particular, we will consider the plate-
ball manipulation system and a wheeled mobile robot, the so-called general two-
trailer system. The reader is referred to [48] and [38] for details.
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3.1 The Plate-Ball Manipulation System

Rolling manipulation has recently attracted the interest of robotic researchers as
a convenient way to achieve dexterity with a relatively simple mechanical design
(see [33,6,30] and the references therein). In fact, the nonholonomic nature of rolling
contacts between rigid bodies can guarantee the controllability of the manipulation
system (hand+manipulated object) with a reduced number of actuators. More in
general, this is another example of the minimalistic trend in the field of robotics,
aimed at designing devices of reduced complexity for performing complex tasks.

The archetype of rolling manipulation is the plate-ball system [31,27,24,8]:
the ball (the manipulated object) can be brought to any contact configuration by
maneuvering the upper plate (the first finger), while the lower plate (the second
finger) is fixed. Despite its mechanical simplicity, the planning and control problems
for this device already raise challenging theoretical issues. In fact, in addition to the
well-known limitations coming from its nonholonomic nature, the plate-ball system
is neither flat nor nilpotentizable; therefore the classical techniques for nonholonomic
motion planning cannot be applied.

To this date, the planning problem has been solved through the symbolic algo-
rithm of [27] and the numerical algorithm of [30]. These techniques, however, are
heavily dependent on the specific geometry of rolling surfaces and are not amenable
to any kind of generalization to systems of different nature. Our objective is instead
to show that asymptotic, robust planning for the plate-ball mechanism can be sim-
ply achieved through iterative application of an appropriate open-loop control law
designed for the nilpotent approximation of the system. This paradigm, based on
the theoretical results in [29], is general and applicable to a wide variety of non-flat
systems.

Kinematic model Consider the system shown in Fig. 1, consisting of a spheric ball
of radius ρ rolling between two horizontal plates. The lower plate is fixed, while the
upper is actuated and can translate horizontally. Denote by u and v the coordinates
(latitude and longitude, respectively) of the contact point on the sphere, by x, y the
Cartesian coordinates of the contact point on the lower plane, and by ψ the angle
between the x axis and the plane of the meridian through the contact point. We
assume −π/2 < u < π/2 and −π < v < π, so that the contact point belongs
always to the same coordinate patch for the sphere.

The manipulation system is completely described by the kinematics of contact
between the sphere and the lower plate [31]. Assume that wx and wy , the Cartesian
components of the translational velocity of the sphere, are directly controlled2. In
view of the nilpotent approximation procedure, it is convenient to triangularize the
system through the input transformation[

wx

wy

]
=

[− sin ψ cosu cosψ
− cos ψ cos u sin ψ

] [
w1

w2

]
.

2 Recall that the translational velocity of the sphere is half the translational velocity of the
upper plane.
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u

y

v

x

ψ

Fig. 1. The plate-ball system. The upper plate is not shown in the figure for the sake of clarity.

This transformation is always defined, except for u = ±π/2 which is however
outside our coordinate patch. We obtain

u̇
v̇

ψ̇
ẋ
ẏ

 =


0

1/ρ
− sin u/ρ
− sinψ cosu
− cos ψ cos u

 w1 +


1/ρ
0
0

cosψ
− sinψ

 w2. (17)

Nilpotent approximation Nilpotent approximations [21,4] of nonlinear systems are
high-order local approximations that are useful when tangent linearization does not
retain controllability, as in nonholonomic systems. In particular, the computation of
approximate steering controls for the original system can be performed symbolically,
thanks to the closed-form integrability of the nilpotent system, which is polynomial
and triangular by construction.

Thanks to the particular structure of our iterative steering strategy (see below),
it is sufficient to compute the nilpotent approximation at configurations of the form
q̄ = (0, 0, 0, x̄, ȳ). Applying the procedure given in [4] to system (17), one obtains
the so-called privileged coordinates by the following change of variables

z1 = ρ v

z2 = ρ u

z3 = ρ2ψ (18)

z4 = −ρ3u + ρ2(x− x̄)
z5 = ρ3v + ρ2(y − ȳ).

In particular, at q̄ one obtains z = 0. The transformation is globally valid due to the
fact that the degree of nonholonomy is 3 everywhere.
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The approximate system is then computed by differentiating eqs. (18) and ex-
panding the input vector fields in Taylor series up to a suitably defined order:

˙̂z1 = w1

˙̂z2 = w2

˙̂z3 = −ẑ2w1 (19)
˙̂z4 = −ẑ3w1

˙̂z5 =
1
2
ẑ2
2w1 − ẑ3w2.

The approximation is polynomial and triangular; in particular, the dynamics of ẑ1

and ẑ2 is exactly the same of z1 and z2.

Planning strategy Assume that we wish to transfer the plate-ball system from
q0 to qd, respectively the initial and desired contact configuration. Without loss
of generality, we assume that qd = (0, 0, 0, 0, 0); this can always be achieved by
properly defining the reference frames on the sphere and the lower plane.

Our objective is to devise an asymptotic planning strategy; if possible, we would
also like robustness with respect to the presence of model perturbations (e.g., on the
sphere radius ρ). To this end, it is necessary to embed some form of feedback into the
planning method. A natural way to realize this is represented by the iterative steering
(IS) paradigm [29]. The essential tool of this method is a contractive open-loop
control law, which can steer the system closer to the desired state qd in a finite time.
If such a control is Hölder-continuous with respect to the desired reconfiguration, its
iterated application (i.e., from the state reached at the end of the previous iteration),
guarantees exponential convergence of the state to qd. The overall input is a time-
varying law which depends on a sampled feedback action. A certain degree of
robustness is also achieved: a class of non-persistent perturbations is rejected, and
the error is ultimately bounded in the presence of persistent perturbations.

To comply with the IS paradigm outlined above, we must design an open-
loop control that steers system (17) from q0 to a point closer in norm to qd =
(0, 0, 0, 0, 0). Since the plate-ball manipulation system is controllable [27], such an
open-loop control certainly exists. However, the necessary and sufficient conditions
for flatness [19] are not satisfied; equivalently, the system cannot be put in chained
form, as already noticed in [30]. Therefore, we cannot use conventional techniques
for generating the required open-loop control. We therefore settle for an approximate
(but symbolic) solution; this is on the other hand consistent with the IS framework,
which only requires the error to contract at each iteration.

Our open-loop controller requires two phases:

I. Drive the first three variables u, v and ψ to zero. This amounts to steering the
ball to the desired contact configuration regardless of the variables x and y, i.e.,
of the Cartesian position of the contact point. Denote by qI = (0, 0, 0, xI , yI)
the contact configuration at the end of this phase.
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II. Bring x and y closer to xd and yd (in norm), while guaranteeing that u, v and ψ
return to their desired zero value.

Since the first three equations of (17) can be easily transformed in chained form,
phase I can be performed in a finite time T1 by choosing one of many available
steering controls for such systems (see [26]). However, the latter should comply
with the Hölder-continuity requirement with respect to the desired reconfiguration;
relevant examples are given in [29].

For the second phase, a possible choice is to perform a cyclic motion of period
T2 on u, v and ψ, giving final values x(T1 +T2) = xII and y(T1 +T2) = yII closer
to zero than x(T1) = xI , y(T1) = yI . To design a control law that produces such a
motion, we shall exploit the nilpotent approximation of the plate-ball system.

Consider the nilpotent dynamics (19) computed at the approximation point qI .
The synthesis of a control law that transfers in time T2 the state ẑ from zI = 0 to
zII (respectively, the images of qI and qII = (0, 0, 0, xII , yII), computed through
eqs. (18)) can be done as follows. Choose the open-loop control inputs as

w1 = a1 cos ωt + a2 cos 4ωt (20)

w2 = a3 cos 2ωt, (21)

with a1, a2, a3 ∈ IR and ω = 2π/T2.
Integration of Eqs. (19) shows that in order to obtain z4(T2) = zII

4 and z5(T2) =
zII
5 , coefficients a1 and a2 in (20), (21) must be chosen as

a1 =

√
zII
4

k1a3
a2 =

zII
5

k2a2
3

, (22)

having set k1 = −T 3
2 /32π2 and k2 = T 3

2 /128π2. The value of a3 is immaterial
as long as (i) a3 ;= 0 when zII

4 ;= 0 or zII
5 ;= 0, and (ii) sign(a3) = −sign(zII

4 ).
Therefore, denoting by || · || the Euclidean norm, we can let

a3 = −sign(zII
4 ) ·

∣∣∣∣∣∣∣∣[ zII
4

zII
5

]∣∣∣∣∣∣∣∣1/2r

r > 1, (23)

This choice guarantees for a1, a2 and a3 the Hölder-continuity property required by
the IS paradigm.

The other condition to be met by our two-phase open-loop control is contraction
of the original system (17) from q0 to qII in spite of (i) the drift of x and y to xI

and yI due to the first phase (ii) the approximation error3 induced on x and y by
the use of the nilpotent dynamics (19) for computing a steering control. It may be
shown (see [39] for details) that contraction is guaranteed provided that a suitable
definition of norm is used (to take care of the first-phase drift) and a sufficiently
small contraction is required from zI to zII (to reduce the approximation error
within admissible bounds).

3 Note that u, v and ψ return to zero under the proposed open-loop inputs, as verified by
integration of the first three equations of the original system (17). Thus, the open-loop
controls (20), (21) are exactly cyclic in u, v and ψ.



12 A. De Luca et al.

Iterative steering We now clarify the use of the proposed open-loop controller
within the IS framework to achieve an asymptotic planner.

Starting from the initial contact configuration, apply the open-loop control of
phase I for the required time T1. Using the values xI , yI at the end of this phase, the
desired zII

4 and zII
5 are generated as

zII
4 = β1z

d
4 zII

5 = β2z
d
5 , (24)

where β1 < 1, β2 < 1 are the chosen contraction rates and zd
4 , zd

5 are the images
of xd = 0, yd = 0 as given by (18), in which x̄ = xI , ȳ = yI . At this point,
Eqs. (22), (23) are used to compute coefficients ai, and the phase II open-loop
controls (20), (21) are applied to system (17). After T1 +T2 seconds from the initial
time, the system state is sampled and the two-phase control procedure is repeated.
In particular, the values of zII

4 and zII
5 are updated at each iteration using (24) (with

constant β1, β2). In fact, since transformation (18) depends on the approximation
point, the same is true for zd

4 , zd
5 . Note also that:

• Since all the conditions of the IS paradigm are satisfied for β1, β2 sufficiently
close to 1, it is guaranteed that the manipulation system state q exponentially
converges to the desired contact configuration qd.

• In the absence of perturbations, there is no need to repeat phase I after the first
iteration.

• In perturbed conditions, it is necessary to analyze the structure of the perturbation
itself. If certain requisites (see [29, Th. 2]) are met, the perturbation will be
rejected on the simple basis of the stable behavior of the nominal system.

We may therefore conclude that we have obtained asymptotic planning for the
plate-ball system, on the basis of the fact that the system variables q converge to the
desired configuration qd. In practice, one can stop the iterations when q is within a
prespecified distance of the destination; using the properties of IS, it is also possible
to predict the number of iterations needed to achieve a certain error tolerance. The
robustness with respect to perturbations is a consequence of the intrinsic sampled
feedback nature of the proposed planner.

Simulation results Two simulations are now presented to show the effectiveness
of the proposed planner: in the first, perfect knowledge of the system is assumed
(nominal case), while in the second we have included a perturbation on the ball
radius ρ (perturbed case).

In the first simulation, we assume that the radius ρ = 1 is exactly known
and phase I has already been executed. The initial and desired configurations are
q0 = (0, 0, 0, 0.5, 0.5) and qd = (0, 0, 0, 0, 0), respectively. In each iteration, the
open-loop control (20), (21) is applied with T2 = 1 sec, r = 1.5 in eq. (23), and
contraction rates β1 = β2 = 0.4 in (24).

Figure 2 illustrates the exponential convergence of the state variables along the
iterations. The Cartesian path of the contact point is shown in Fig. 3: note how the
path of the single iterations ‘shrinks’ with time.
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Fig. 2. Nominal simulation: Evolution of u (solid), v (dashed) and ψ (dotted) (left). Evolution
of x (solid) and y (dotted) (right).
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Fig. 3. Nominal simulation: Cartesian path of the contact point; the small circle indicates q0

(left). Cartesian paths of the contact point during the 1st, 4th, 7th and 10th iterations; the small
circle indicates the starting configuration of each iteration; notice the different scale in the
plots (right).

In the second simulation, q0, qd as well as the planner parameters are the same
of the previous simulation, but a 10% perturbation on the value of the ball radius has
been introduced; only its nominal value ρ = 1 is known and used for computing the
control law. The theoretical framework of the IS paradigm guarantees that this kind of
perturbation will be rejected by the iterative steering scheme. Figure 4 confirms that
exponential convergence is preserved despite the perturbation — only at a slightly
smaller rate. The Cartesian path of the contact point is very similar to the nominal
case, as shown in Fig. 5, although the paths in the single iterations are deformed.
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Fig. 5. Perturbed simulation: Cartesian path of the contact point; the small circle indicates
q0 (left). Cartesian paths of the contact point during the 1st, 4th, 7th and 10th iterations; the
small circle indicates the starting configuration of each iteration (right).

3.2 The General Two-Trailer Wheeled Mobile Robot

Another interesting example of non-nilpotentizable, non-flat nonholonomic robot
is the general N -trailer system, i.e., a vehicle in which N off-hooked trailers are
attached to a tractor. It is well known that this system is non-flat if N ≥ 2 (see [19]
for a proof in the case N = 2). The problem of controlling this system has only
been addressed so far in [28], where it is shown that at particular configurations the
system can be approximated by a chained form. However, the latter are not dense in
the state space, so that the method does not apply for generic configurations.

Below, we consider a particular case, i.e., the general two-trailer system, proving
that asymptotic planning can be achieved by means of the iterative steering technique
based on the nilpotent approximation of the system.
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Fig. 6. A general two-trailer system.

Kinematic model Consider the system shown in Fig. 6, consisting of a car towing
two identical trailers, each hooked at a distance d from the preceding wheel axle
(off-hooking). The distance between the hooking point and the wheel axle midpoint
of each trailer is Z. For simplicity, we assume d = 1 and Z = 1. However, a similar
analysis can be developed for the case d ;= Z.

With an eye to the nilpotent approximation procedure, it is convenient to choose
an appropriate set of generalized coordinates and control inputs. In particular, let
q = (x1, y1, θ1, φ1, φ2), where x1, y1 are the Cartesian coordinates of the first trailer
reference point, θ1 is the first trailer orientation with respect to the x axis, and φ1,
φ2 are the angles formed by the car and the first trailer respectively with the first and
the second trailer. Also, denote by v1 and ω1 the driving and steering velocities of
the first trailer, which are related to v0 and ω0, the driving and steering velocities of
the car (the actual inputs) by the input transformation

v0 = v1 cosφ1 + ω1 sin φ1

ω0 = v1 sinφ1 − ω1 cosφ1,

which is always defined. The kinematic model is then obtained as

ẋ1 = cos θ1 v1

ẏ1 = sin θ1 v1

θ̇1 = ω1 (25)

φ̇1 = s1v1 − (1 + c1)ω1

φ̇2 = −s2v1 + (1 + c2)ω1,

having set si = sin φi, ci = cosφi, sij = sin(φi − φj) and cij = cos(φi − φj) for
i, j = 1, 2. If φ1 = π or φ2 = π, the system is clearly not controllable. We consider
points of the state space defined as M = IR2 × S1 × (S1 − {π})2.

Denote by g1, g2 the input vector fields of system (25), and consider the first 6
elements of the P. Hall [25] family g1, g2, g3 = [g1, g2], g4 = [g1, [g1, g2]], g5 =
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[g2, [g1, g2]], g6 = [g1, [g1, [g1, g2]]]. Vector fields g1, g2, g3, g4, g5 span the tangent
space of M at points such that φ1 ;= φ2 (regular points), while g1, g2, g3, g4, g6

span the tangent space everywhere, including points such that φ1 = φ2 (singular
points). Hence, the system is controllable and the degree of nonholonomy is 3 at
regular points and 4 at singular points.

Nilpotent approximation In the presence of singular points, homogeneous nilpo-
tent approximations [4] do not provide globally valid representations. However, it has
been shown that nonhomogeneous nilpotent forms can be adopted to this end [49].
Applying the procedure therein proposed to system (25), we obtain the following
global nilpotent approximation

˙̂z1 = u1
˙̂z2 = u2
˙̂z3 = −ẑ2u1 (26)

˙̂z4 =
2∑

j=1

hj4(ẑ1, . . . , ẑ3)uj

˙̂z5 =
2∑

j=1

hj5(ẑ1, . . . , ẑ4)uj ,

in which

hj4(ẑ1, . . . , ẑ3) = a2
j4ẑ

2
1 + b2

j4ẑ1ẑ2 + c2
j4ẑ

2
2 + d2

j4ẑ3

h15(ẑ1, . . . , ẑ4) = c2
15ẑ

2
2 + a3

15ẑ
3
1 + b3

15ẑ1ẑ3 + c3
15ẑ

2
1 ẑ2

+ d3
15ẑ2ẑ3 + e3

15ẑ
3
2 + f3

15ẑ1ẑ
2
2 + g3

15ẑ4

h25(ẑ1, . . . , ẑ4) = d2
25ẑ3 + a3

25ẑ
3
1 + b3

25ẑ1ẑ3 + c3
25ẑ

2
1 ẑ2

+ d3
25ẑ2ẑ3 + e3

25ẑ
3
2 + f3

25ẑ1ẑ
2
2 + g3

25ẑ4.

The coefficients a2
j4, . . . , d

2
j4, c2

15, d
2
25 and a3

j5, . . . , g
3
j5 (j = 1, 2) are functions of

q̄ = (x̄1, . . . , φ̄2) around which the approximation is computed. Their expressions
are quite complicated and are omitted. However, they are not needed for implement-
ing the stabilization method, thanks to the structure of the chosen control input.

Planning strategy In order to transfer the general two-trailer system from an initial
point q0 to a desired point4 qd = (0, 0, 0, φd

1, φ
d
2), we adopt the same strategy of the

plate-ball system. To comply with the IS paradigm, we must design an open-loop
control that steers system (25) from q0 to a point closer in norm to qd.

As before, our open-loop controller requires two phases:

4 This particular choice of the destination does not imply any loss of generality, because it
can always be achieved by translating and rotating the world reference frame so as to align
with the desired configuration of the first trailer.
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I. Drive in finite time the first three variables x1, y1 and θ1 to zero. This amounts
to steering the first trailer to its desired configuration regardless of the variables
φ1 and φ2, which will converge to generic values φI

1, φI
2.

II. Bring φ1 and φ2 closer to φd
1 and φd

2 (in norm), while guaranteeing that x1, y1

and θ1 return to their desired zero value.

Similarly to the plate-ball system, the first three equations of (25) can be easily
transformed in chained form (they are, in fact, the equations of a unicycle). Hence,
phase I can be easily performed in a finite time T1 with Hölder-continuous steering
controls.

For the second phase, we use again the nilpotent approximation of the system
to perform a cyclic motion of period T2 on x1, y1 and θ1, giving final values
φ1(T1 + T2) = φII

1 , φ2(T1 + T2) = φII
2 closer to zero than φ1(T1) = φI

1, φ2(T1) =
φI

2. We emphasize that, in view of the globality of the representation (26), qI may
be a regular or singular point. The synthesis of a control law that transfers the state
of system (26) from zI = 0 (the image of qI ) exactly to zII (the image of qII ) is
relatively straightforward.

Consider the nilpotent approximation (26) at qI . Choose the open-loop control
inputs as

v1 = a1 cos ωt + a2 sin ωt (27)

ω1 = a3 cos 2ωt, (28)

with a1, a2, a3 ∈ IR, ω = 2π/T and T the duration of the control interval. Integration
of Eqs. (26) shows that in order to obtain z4(T ) = zII

4 and z5(T ) = zII
5 , parameters

a1 and a2 in (27–28) can be chosen as

a1 =

√
a2
2 +

zII
4

k1a3
a2 =

2π
T

zII
5

zII
4

(29)

having set k1 = −T 3/32π2 and k2 = −T 4/64π3, and provided that zII
4 ;= 0. The

value of a3 is immaterial for the steering task, as long as a3 ;= 0 and sign(a3) =
−sign(zII

4 ) (so that a1 is always well defined). In particular, we can let

a3 = −sign(zII
4 ) ·

∣∣∣∣∣∣∣∣[ zII
4

zII
5

]∣∣∣∣∣∣∣∣1/r

r > 1. (30)

This choice guarantees for a1, a2 and a3 the Hölder-continuity property5 required
by the IS paradigm. In particular:

5 A difficulty with the method so far outlined is that the steering controls (27), (28) are not
defined when zII

4 = 0. On the other hand, Equation (31) gives zII
4 = 0 if zd

4 = 0, i.e.,
if no reconfiguration is needed for the nilpotent approximation variable z4. To circumvent
this problem, it is relatively easy to work out a more general rule than (31) for generating
zII
4 and zII

5 . In practice, any contraction on the norm of the error (z4 − zd
4 z5 − zd

5) is
admissible as long as zII

4 %= 0.
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• According to (29), a2 is Hölder-continuous if zII
5 converges to zero faster than

zII
4 . To this end, one simply sets β1 < β2 in eq. (31).

• The first coefficient a1 given by eq. (29) is Hölder-continuous in view of the
choice (30) for a3.

As before, the other condition to be met by our two-phase open-loop control —
i.e., contraction of the actual system from q0 to qII — can be satisfied by suitably
choosing the norm and enforcing a sufficiently small contraction on the nilpotent
approximation.

Iterative steering Starting from the initial configuration, apply the open-loop con-
trol of phase I for the required time T1. Using the values φI

1, φI
2 at the end of this

phase, the images in privileged coordinates of the final goal values are computed
through the change of coordinates between q and z, evaluated on the manifold
defined by x1 = 0, y1 = 0, θ1 = 0:

zd
4 =

1
2

(
φd

2 − φ̄2

1 + cos φ̄2
− φd

1 − φ̄1

1 + cos φ̄1

)
zd
5 =

1
2

(
φd

2 − φ̄2

1 + cos φ̄2
+

φd
1 − φ̄1

1 + cos φ̄1

)

The desired zII
4 and zII

5 are now generated as

zII
4 = β1z

d
4 zII

5 = β2z
d
5 , (31)

where β1 < 1, β2 < 1 are the chosen contraction rates.
At this point, Equation (29) is used to compute the parameters ai, and the phase II

open-loop controls (27), (28) are applied to system (25). After T1 + T2 seconds, the
system state is sampled and the procedure is repeated. Since the conditions of the
IS paradigm have been satisfied, it is guaranteed that the state q of the general two-
trailer system exponentially converges to the desired configuration qd, and hence
asymptotic planning has been achieved. Again, in the absence of perturbations, there
is no need to repeat phase I after the first iteration, while in perturbed conditions it
is necessary to analyze the structure of the perturbation itself.

Simulation results We present two simulations of the proposed planning strategy.
In both cases, it is assumed that phase I has already been executed, so that the first
trailer is already at its desired configuration xd

1 = 0, yd
1 = 0, θd

1 = 0. Phase II is
executed by iterative application of the control inputs (27), (28), with T = 1 sec and
the coefficients ai (i = 1, . . . , 3) given by (29), (30), with r = 4. The contraction
rates in (31) have been chosen as β1 = 0.6 and β2 = 0.7.

In the first simulation, it is φI
1 = π/4 and φI

2 = −π/4, while the desired values
are φd

1 = 0 and φd
2 = 0 (a singular configuration). Figure 7 shows the cyclic evolution

of x1, y1, and θ1 as well as the trajectory of φ1 and φ2. The motion of the first trailer
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is shown in Fig. 8 (with different scale on the two axes), which also shows the vehicle
configurations at the beginning of phase II, at the end of the first and of the 15-th
iteration.

The second simulation starts from φI
1 = π/8, φI

2 = 0, with the desired config-
uration given as φd

1 = −π/4, φd
2 = π/3 (a regular point). Figure 9 shows the time

evolution of the state variables. Figure 10 reports the Cartesian motion of the first
trailer and the configurations of the vehicle at the beginning of phase II, at the end
of the first and of the 15-th iteration.
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Fig. 7. Simulation 1: Evolution of x1, y1 and θ1 (left). Evolution of φ1 and φ2 (right).
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Fig. 8. Simulation 1: Motion of the first trailer (left). Configuration of the vehicle at the
beginning of phase II (0) after one iteration (1) and after 15 iterations (right).
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Fig. 9. Simulation 2: Evolution of x1, y1 and θ1 (left). Evolution of φ1 and φ2 (right).
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Fig. 10. Simulation 2: Motion of the first trailer (left). Configuration of the vehicle at the
beginning of phase II (0) after one iteration (1) and after 15 iterations (right).

4 Planning for Flat Dynamic Systems

We present two representative case studies of robots with underactuated dynamics
for which one can define, under special assumptions, a flat output so that the planning
problem can be solved in a relatively easy way. The first system is a two-link planar
robot with a flexible forearm. The second system is a 4R planar robot having the last
two joints passive and a special hinging condition. For both robots, two actuating
inputs are available and motion occurs on a horizontal plane. The reader is referred
to [12] and to [22] for details.
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4.1 A Two-Link Robot with Flexible Forearm

For a multi-link robot displaying link flexibility, typically encountered in long reach
and slender/lightweight arm design [7], the planning of a prescribed reconfiguration
between two equilibrium states to be performed in fixed time (rest-to-rest maneuver)
is a very critical problem. In fact, large and simultaneous motion of the links will
induce oscillations that persist beyond the nominal final completion time.

For a single flexible link, characterized by a linear dynamics, there exist model-
based techniques, such as input shaping [46] or inverse dynamics trajectory de-
sign [3], that allows generating a torque command for rest-to-rest maneuvers. How-
ever, these approaches lead only to partial solutions, since motion time is not a design
parameter for the input shaping method, while motion completion at the given time is
only approximately realized within the non-causal inversion method of [3]. In [11],
the problem is tackled by finding the closed-form expression of a (scalar) system
output having maximum relative degree, i.e., such that no zeros appear in the transfer
function from the input torque to the defined output. As a matter of fact, this output is
a flat output for the system and the planning problem is solved by fitting to this output
a smooth interpolating polynomial between the start and final rest configurations.

A solution technique for the rest-to-rest problem is not yet available in the case
of a general multi-link flexible robot. However, if a flat output vector were found
(if one exists), the generalization to the nonlinear setting would be immediate. One
such situation occurs in the case of the FLEXARM, a two-link planar robot with
a flexible forearm currently available at the Department of Computer Science and
Automation of University of Rome Three, provided that flexibility of the forearm is
modeled by just one dominant deformation mode.

Dynamic model and partial feedback linearization The FLEXARM has a first
rigid link and a second link that can bend only in the horizontal plane. Due to its
mechanical construction, the forearm can be modeled as an Euler-Bernoulli beam
(with Young modulus E and cross section inertia I) undergoing small deformations.

Let θ1(t) be the angular position of the first link of length Z1 and inertia J1

(including the first actuator) with respect to the first joint axis. The actuator driving
the second link has mass m02 and inertia J02. The second flexible link of length Z2
is modeled as a beam of uniform density ρ, mass m2 = ρZ2, and equivalent rigid
inertia with respect to the second joint axis J2 = m2Z

2
2/3. A payload of mass mp

and inertia Jp can be added at the tip. Define θ2(t) as the angular position, with
respect to the orientation of the first link, of a line pointing from the second joint
axis to the instantaneous center of mass of the flexible forearm (pinned angle).

The transversal bending deformation w(x, t) at a point x ∈ [0, Z2] along the
second link is described, in the pinned frame, by separation of space and time as

w(x, t) =
ne∑
i=1

φi(x)δi(t),

where a finite number ne ≥ 1 of deformation mode shapes φi(x), with associated
deformation coordinates δi(t), have been used. The mode shapes φi(x), for i =
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1, . . . , ne, are eigenfunctions (with related angular eigenfrequencies ωi) associated
to the solutions of a fourth-order partial differential equation for w(x, t) subject to
suitable geometric/dynamic boundary conditions, and can be computed according
to [2,5].

Starting from this analysis, and using the Lagrange-Euler equations of motion,
the dynamic model is obtained as

B(q)q̈ + n(q, q̇) + Kq = Sτ, (32)

with generalized coordinates q = (θ, δ) = (θ1, θ2, δ1, . . . , δne
) ∈ IR2+ne . The

positive definite inertia matrix B(q) has the structure

B(q) =


b11(θ2, δ) b12(θ2, δ) b13(θ2) . . . b1,ne+2(θ2)

J2t 0 . . . 0

1
. . .

...

symm
.. . 0

1

 .

For later use, we define bδ = [ b13 . . . b1,ne+2 ]T . The nonlinear Coriolis and cen-
trifugal vector n(q, q̇), quadratic in q̇, has the structure

n(q, q̇) = [n1(θ2, δ, θ̇, δ̇) n2(θ2, δ, θ̇1) n3(θ2, θ̇1) . . . nne+2(θ2, θ̇1) ]T .

We define also the subvectors nθ = [ n1 n2 ]T and nδ = [n3 . . . nne+2 ]T . Finally,
the elasticity matrix K is

K = diag {0, 0,Kδ} = diag
{
0, 0, ω2

1 , . . . , ω
2
ne

}
,

while the input matrix S (transforming the motor torques τ = (τ1, τ2) into general-
ized forces performing work on q) takes on the form

S =

[
I2×2

01×ne

Φ′T(0)

]T

=
[

1 0 0 . . . 0
0 1 φ′1(0) . . . φ′ne

(0)

]T

.

It is apparent that the dynamic system (32) has degree of underactuation equal to
ne. As shown in Section 2.3, it is convenient to apply partial feedback linearization
in order to simplify the system equations of an underactuated robot. The dynamic
model (32) can be rewritten in block form as[

Bθθ Bθδ

BT
θδ I

] [
θ̈
δ̈

]
+

[
nθ

nδ

]
+

[
0

Kδδ

]
=

[
τ

Φ′(0)τ2

]
,

partitioned according to the dimensions of θ and δ. Solving for δ̈ from the second
block of equations, substituting into the first, and defining the global nonlinear
feedback law for τ as

τ =
[

1 bT
δ Φ′(0)

0 1

]([
b11 − bT

δ bδ b12

b12 J2t

] [
a1

a2

]
+

[
n1 − bT

δ (nδ + Kδδ)
n2

])
, (33)
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where a1 and a2 are new acceleration inputs, leads to an equivalent dynamic model
in the form:

θ̈1 = a1

θ̈2 = a2 (34)

δ̈ = −bδa1 − (nδ + Kδδ) + Φ′(0) (b12a1 + J2ta2 + n2) .

For convenience, we detail only the expressions of the terms b12, bδ , n2, and
nδ appearing in (34), referring the reader to [12] for the remaining dynamic terms
of (32). We have:

b12 = J2t + hne+1 cos θ2 −
ne∑
i=1

hiδi sin θ2

b1,i+2 = hi cos θ2 i = 1, . . . , ne

n2 =

(
hne+1 sin θ2 +

ne∑
i=1

hiδi cos θ2

)
θ̇2
1

ni+2 = hi sin θ2 θ̇2
1 i = 1, . . . , ne,

with J2t = J02 + J2 + Jp + mpZ
2
2 and the constant coefficients

hi =
[
ρ

∫ E2

0

φi(x) dx + mpφi(Z2)
]
Z1 i = 1, . . . , ne

hne+1 =
[
m2

Z2
2

+ mpZ2

]
Z1.

Planning strategy In a rest-to-rest task, the flexible robot should be moved from an
initial configuration qi = (θi, 0) at time ti = 0 to a final configuration qf = (θf , 0)
at time tf = T , both undeformed and with q̇(0) = q̇(T ) = 0. We are thus looking
for a vector of command torques τ(t) = (τ1(t), τ2(t)), defined in t ∈ [0, T ], that
steers the robot to the goal.

In order to solve this problem, we try to find a two-dimensional output y =
(y1, y2) having the flatness property. From an operative point of view, one can
select an output vector function and then use the dynamic feedback linearization
algorithm [23] as a computational tool. In particular, we should be able to differentiate
with respect to time the chosen output y a specific number of times until a two-
dimensional input appears in a nonsingular way. At some steps of the algorithm,
and possibly after a state-dependent change of coordinates in the input space, the
addition of integrators on one of the two input channels could be needed, so as to
avoid subsequent differentiation of the relative input. This extension process builds
up the state of a dynamic compensator. If the total number of output derivatives
performed until the input appears equals the number of states of the flexible robot
plus the number of added compensator states, then the system is flat, namely it has
no zero dynamics and can be transformed via a nonlinear dynamic feedback into two
independent chains of integrators from auxiliary inputs to the chosen flat outputs.
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We present the application of the dynamic feedback linearization algorithm to
the FLEXARM, by taking into account only the first dominant mode of flexible
forearm (ne = 1). Equations (34) become

θ̈1 = a1

θ̈2 = a2

δ̈1 = −ω2
1δ1 + φ′1(0)J2t(a1 + a2) + [ φ′1(0)h1δ1 γ1 ] R(θ2)

[
θ̇2
1

a1

]
,

having set

γ1 = φ′1(0)J2t − h1, R(θ2) =
[

cos θ2 − sin θ2

sin θ2 cos θ2

]
.

We choose as candidate flat output

y =
[

y1

y2

]
=

[
θ1

θ2 + c1δ1

]
, (35)

where c1 is a coefficient yet to be defined. Differentiating Eq. (35) twice gives

ÿ =

 a1

a2 + c1φ
′
1(0)J2t(a1 + a2)− c1ω

2
1δ1 + [ c1φ

′
1(0)h1δ1 c1γ1 ] R(θ2)

[
θ̇2
1

a1

].

Both acceleration inputs a1 and a2 appear at this level, but the total number of output
derivatives (2 + 2 = 4) does not yet cover the dimension 2(2 + ne) = 6 of the state
space. Therefore, in order to make the matrix weighting the inputs in ÿ singular, we
can choose the free coefficient c1 as

c1 = − 1
φ′1(0)J2t

, (36)

so that a2 disappears from the expression of ÿ2. In order to proceed with output
differentiation, we need then a dynamic extension on the first input channel (i.e.,
a1). In this case, we can directly add two integrators with states denoted by ξ1 and
ξ2

a1 = ξ1, ξ̇1 = ξ2, ξ̇2 = α1,
a2 = α2,

(37)

where α = (α1, α2) is the new input. As a result of (36) and (37), ÿ becomes
a function of θ2, θ̇1, δ1, and ξ1 only. The third derivative of the output is still
independent from α:

y[3] :=
d3y

dt3
=



ξ2

−ξ2 − c1ω
2
1 δ̇1 + [ c1φ

′
1(0)h1δ̇1 0 ]R(θ2)

[
θ̇2
1

ξ1

]
+ [ c1φ

′
1(0)h1δ1 c1γ1 ] R(θ2)

[
2θ̇1ξ1

ξ2

]
+ θ̇2 [ c1φ

′
1(0)h1δ1 c1γ1 ] dR

dθ2

[
θ̇2
1

ξ1

]


.
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Thus, through the above expressions of y and its derivatives, a transformation is
defined from the original state (θ1, θ2, δ1, θ̇1, θ̇2, δ̇1) and compensator state (ξ1, ξ2)
to the set of coordinates (y, ẏ, ÿ, y[3]) ∈ IR8.

By differentiating the output once more, we finally obtain

y[4] = A(θ2, δ1, θ̇1, ξ1)α + f(θ2, δ1, θ̇1, θ̇2, δ̇1, ξ1, ξ2),

where the so-called decoupling matrix A is

A =
[

1 0
a12 a22

]
,

with

a12 = −1 + [ c1φ
′
p1(0)h1δ1 c1γ1 ]R(θ2)

[
0
1

]
a22 = ω2

1 + [ (c1γ1 − φ′1(0)h1) −c1φ
′
1(0)h1δ1 ] R(θ2)

[
θ̇2
1

ξ1

]
.

The decoupling matrix A is nonsingular iff a22 ;= 0. Under this assumption (see [12]
for a detailed verification), the inversion-based control law defined by the static
feedback from the extended (robot + compensator) state

α = A−1(θ2, δ1, θ̇1, ξ1)
(
v − f(θ2, δ1, θ̇1, θ̇2, δ̇1, ξ1, ξ2)

)
(38)

transforms the extended dynamic system into a linear controllable one made by
two independent chains of four input-output integrators from the auxiliary input
v = (v1, v2) to the output y = (y1, y2), or

y[4] = v. (39)

Note that (39) represents the whole system, since the total number of output dif-
ferentiations (4 + 4 = 8) equals the number of states of the flexible robot (6 for
ne = 1) plus the number of added compensator states ξ (2 in this case). The dynamic
feedback linearizing compensator having as input vector v = (v1, v2) and as output
the torque vector τ = (τ1, τ2) has dimension ν = 2. The complete expression of
this compensator is obtained by merging (33), (37) and (38).

Rest-to-rest trajectory generation Given the initial state at t = 0

θ1(0) = θ1i, θ2(0) = θ2i, δ1(0) = 0, θ̇1(0) = θ̇2(0) = δ̇1(0) = 0

and the desired state at t = T

θ1(T ) = θ1f , θ2(T ) = θ2f , δ1(T ) =, θ̇1(T ) = θ̇2(T ) = δ̇1(T ) = 0,

by choosing ξ1(0) = ξ2(0) = ξ1(T ) = ξ2(T ) = 0, one can derive initial and final
boundary conditions for the reference output trajectory yd(t) = (y1d(t), y2d(t)) and
its derivatives up to the third order. These values can be interpolated by a polynomial
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trajectory of (at least) 7-th degree (one polynomial for each output) defined for
t ∈ [0, T ]. Higher-order polynomials can be used in order to achieve a smoother
torque profile at the boundaries.

From (38), (39), setting v = y
[4]
d , we have

αd = A−1(θ2d, δ1d, θ̇1d, ξ1d)
(
y
[4]
d − f(θ2d, δ1d, θ̇1d, θ̇2d, δ̇1d, ξ1d, ξ2d)

)
where the desired values of the extended state are obtained by inverting the linearizing
transformation, in which y ≡ yd(t) is used at each t ∈ [0, T ].

After substitutions, the nominal rest-to-rest torques are given by

τ1d =
(
b11,d − b2

13,d

)
ξ1d + b12,d α2d + n1,d − b13,d

(
n3,d + ω2

1δ1d

)
+ b13,d φ′1(0)

(
b12,d ξ1d + J2t α2d + n2,d

)
τ2d = b12,d ξ1,d + J2t α2d + n2,d,

where the added subscript d means that all dynamic model quantities are evaluated
along the nominal state trajectory.

Simulation results The FLEXARM is characterized by the following data:

J1 = 16.2 · 10−4 kg m2

Z1 = 0.3 m
EI = 2.4507 N m2

mp = Jp = 0

m02 = 3.118 kg
J02 = 6.35 · 10−4 kg m2

Z2 = 0.7 m
m2 = 1.853 kg
J2 = 0.1483 kg m2.

(40)

The resulting first eigenfrequency of the forearm is f1 = 3.7631 Hz (ω1 = 2πf1 =
23.6442 rad/s).

We have considered the following rest-to-rest motion task:

θ1i = θ2i = 0 θ1f = θ2f = 90◦ T = 2 s.

For each output component in eq. (35), an 11-th order polynomial, with zero sym-
metric boundary conditions on its derivatives up to the fifth one, has been selected
as desired trajectory. This guarantees also boundary continuity, at t = 0 and t = T ,
of the rest-to-rest torques and of their first time derivative.

The results in Figs. 11–13 indicate a natural behavior, with bounded deformation
in the linearity domain and maximum torques within the actuators capabilities. In
particular, two interesting variables for the flexible forearm are the clamped joint
angle θc2 = θ2+φ′1(0)δ1, which is the angular position that can be directly measured
by an encoder at the joint, and the tip angle yt2 = θ2 + (φ1(Z2)/Z2)δ1, which is the
angle between a line pointing at the forearm tip and the x-axis of the pinned frame. In
the first half of the motion the clamped angle leads over the second output reference
trajectory and the tip lags behind, while the situation is reversed in the second half.
The maximum transversal displacement at the forearm tip is about 12 cm.
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Fig. 11. Motion of first link variable θ1 (left) and of the clamped joint angle θc2 (—) and tip
angle yt2 (- -) of the flexible forearm (right).
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Fig. 12. Evolution of the deformation variable δ1(t) of the forearm (left) and computed rest-
to-rest torques τ1d (—) and τ2d (- -) (right).

An extension to the case of multiple modes The above analysis shows that the
output (35) (or its natural generalization with y2 = θ2+

∑ne

i=1 ciδi) cannot be flat for
the FLEXARM, when ne ≥ 2 deformation modes are considered. This is because
one can eventually solve (at least locally) for the auxiliary input α = (α1, α2) at
a differential order that is ‘too low’ for achieving linearization of the full state via
dynamic feedback. In fact, the existence of a flat output for ne ≥ 2 modes is still an
open problem. Nevertheless, it is still possible to design a simple planning algorithm
that solves the rest-to-rest motion problem using the following arguments.

The starting point is again the partially feedback linearized model (34), with a
generic number of ne ≥ 2 flexible modes. For a desired reconfiguration of the robot
in a fixed time T , one can split the task in two phases:

I. Move the first link (rigid variable θ1) to the goal position (with θ̇1 = 0) in
time T1 < T while keeping the θ2 variable at its initial rest value. This can
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Fig. 13. Stroboscopic view of the FLEXARM (with ne = 1 deformation mode) for a rest-to-
rest motion of T = 2 s.

be achieved, for instance, using a fifth-order polynomial for the acceleration
a1(t) and setting a2(t) = 0, for t ∈ [0, T1]. At the end of this first phase, the
deformation state of the forearm is denoted as (δI , δ̇I) ;= 0

II. In the second phase, of duration T2 = T − T1, we set a1(t) = 0. The dynamics
of the flexible robot (with the first link at rest) becomes linear,

θ̈2 = a2 δ̈ = −Kδδ + Φ′(0)J2t a2,

being nδ = 0 and n2 = 0 for θ̇1 = 0. This is the dynamics of a one-link flexible
arm, so that the method in [11] can be applied for planning the remaining state-
to-rest reconfiguration that completes the task. In particular, this is obtained by
using a polynomial function yII

2d(t) of sufficiently high order that interpolates
the proper boundary conditions, at t = T1 and t = T , for the scalar output

y2 = θ2 +
ne∑
i=1

ciδi ci = − 1
J2tφ′i(0)

ne∏
j=1

j -=i

ω2
j

ω2
j − ω2

i

,

which is in fact a flat output for the forearm subsystem.

Using the same data in (40) for the robot and taking into account ne = 3 flexible
modes, we have considered the following rest-to-rest motion task:

θ1i = θ2i = 0, θ1f = θ2f = 90◦, T = 5 s.

The switching time between the two phases is T1 = 3 s. In the obtained results of
Figs. 14–15, the two motion phases and the larger deformation occurring during the
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second phase are clearly shown. During phase II, the forearm overshoots and then
comes back to the desired position at the prescribed final time. Note that the second
torque in phase I keeps the rigid motion component of the second link at rest, while
the first torque in phase II keeps the first link at rest.
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Fig. 14. Variables θ1 (—) and θ2 (- -) (left) and deformations δi(t) of the forearm (right) for
a two-phase rest-to-rest motion with ne = 3 flexible modes.
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Fig. 15. Computed rest-to-rest torques τ1d (—) and τ2d (- -) (left) and stroboscopic view of
the FLEXARM (right) for a two-phase motion of T = 5 s with ne = 3 flexible modes.

4.2 A Planar Robot with Two Passive Joints

Robots with passive joints are purposely designed for saving the cost of actuating
each degree of freedom of the mechanical structure or are the result of the occurrence
of actuator total failures.
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For robots with just one active joint and one or more passive joints, planning
of a reconfiguration is in general still an open problem. Existing results are based
on the design of stabilizing nonlinear feedback control, thus achieving only an
asymptotic planning strategy for reaching the goal configuration (possibly, with
an exponential rate of convergence). Examples of this kind can be found in [15]
and [13], respectively, for a 2R and a PR robot with only the first (rotational or
prismatic) joint actuated.

When there are at least two actuated joints, more planning results are available.
A case study that obtained large attention is the planar 3R robot with the last passive
joint. The so-called center of percussion6 (CP) of the third (passive) link has been
used for solving rest-to-rest motion problems in [1] and in [16]. In particular, in [1]
the planning strategy consists of a sequence of translational and rotational (around
the CP point) motions of the third link, while [16] use the fact that the CP position is
a flat output for the system. Thanks to partial feedback linearization (see (15)), this
result applies whatever is the type of the first two actuated joints. More in general,
the CP position of the last link is a flat output for a planar robot with n links having
the first n− 1 > 2 joints actuated and a last passive rotational joint [17,41] (with or
without gravity).

There are few planning results for robots with passive joints having degree
of underactuation larger than one (i.e., with at least two passive joints). The only
sufficiently general case that has been tackled so far is that of a planar robot with
n ≥ 4 links having the first two joints actuated and the remaining n − 2 passive
rotational joints. Under a special hinging assumption, namely that each link has the
following passive joint axis located at its center of percussion, it has been shown that
the CP position of the last link is a flat output for the system [34]. The sequential
planning algorithm of [1] has been extended in [45] to this case, while the flatness
approach has been detailed in [22]. We summarize here the results of [22] for the case
n = 4, characterizing also potential dynamic singularities that should be avoided at
the planning stage.

Dynamic model and partial feedback linearization We consider the XYRR robot
in Fig. 16, a planar structure in the horizontal plane having the two joints proximal
to the base can be any combination of prismatic or rotational actuated joints while
the two distal joints are passive rotational joints. The degree of underactuation is
thus equal to two. It is assumed that the fourth link is hinged exactly at the center
of percussion (CP3) of the third link, which is the same special condition used
in [34,45].

The dynamic model of the robot can be derived using the standard Lagrangian
formulation. With reference to Fig. 16, and in view of the use of (15) before attacking
the planning problem, we shall define the generalized coordinates as q = (qa, qu) =
(x, y, q3, q4), where (x, y) are the Cartesian coordinates of the base of the third link
while q3 and q4 are the absolute orientations of the last two links with respect to the

6 The center of percussion of a uniform link of length l rotating around one of its end is
located at a distance 2l/3 from the axis of rotation.
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Fig. 16. A general underactuated XYRR robot.

x-axis. Denote by li and di, respectively, the length of the i-th link and the distance
between the i-th joint axis and the i-th link center of mass. Moreover, the distance
between the i-th joint axis and the center of percussion CPi of the i-th link is

ki =
Ii + mid

2
i

midi

where mi and Ii are, respectively, the mass and the centroidal moment of inertia of
the i-th link. In particular, because of the special hinging condition, we have k3 = l3.

After partial feedback linearization, the robot dynamic equations take on the
form

ẍ = ax

ÿ = ay

l3q̈3 + λ34c34q̈4 = s3ax − c3ay − λ34s34q̇
2
4

l3c34q̈3 + k4q̈4 = s4ax − c4ay + l3s34q̇
2
3 ,

(41)

where we have set for compactness si = sin qi, ci = cos qi, sij = sin(qi − qj),
cij = cos(qi − qj) (i, j = 3, 4) and λ34 = m4l3d4/(m3d3 + m4l3). Note also that
the last two equations have been conveniently scaled here by constant factors.

Planning strategy In a rest-to-rest task, the robot with passive joints should be
moved from an initial configuration qi = (xi, yi, q3i, q4i) at time ti = 0 to a
final configuration qf = (xf , yf , q3f , q4f ) at time tf = T , with q̇(0) = q̇(T ) =
0. Starting from the equivalent model (41), we are thus looking for a vector of
acceleration input commands a(t) = (ax(t), ay(t)), defined for t ∈ [0, T ], that
steers the robot to the goal.

In order to solve this problem, we use the known flatness property of system (41).
As mentioned above, the Cartesian position of CP4, the center of percussion of the
fourth link, is a two-dimensional flat output:[

y1

y2

]
=

[
x + l3c3 + k4c4

y + l3s3 + k4s4

]
. (42)
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Following the dynamic linearization algorithm, we need to differentiate six times the
output (42) before we can solve (at least locally) for an auxiliary two-dimensional
input. In doing so, a dynamic extension by one integrator and an additional static
feedback transformation is performed at each step, starting from the second order
of differentiation (acceleration level). The dynamic extension on a single channel
avoids, as usual, subsequent differentiation of the relative input, whereas the feedback
transformation is needed here because the intermediate (2× 2) decoupling matrices
are singular but have all non-zero entries (see [22] for further details).

The algorithm produces a total addition of four integrators, with states denoted as
ξ1, . . . , ξ4. We obtain then a dynamic linearizing compensator of dimension ν = 4,
with state equations

ξ̇1 = ξ2

ξ̇2 = ξ3 + q̇2
4 ξ1

ξ̇3 = ξ4 + 2q̇2
4 ξ2 − µ t34 q̇4 ξ1

ξ̇4 = u1 + φ q̇4 − ψ(q̇3 − q̇4)q̇4

(43)

and output equation[
ax

ay

]
= R(q3)

 1
c34

(
k4 − λ34 c34

k4 − λ34
ξ1 + k4 q̇2

4

)
+ l3 q̇2

3

u2

 , (44)

where R(q3) is a planar rotation matrix and we have set

t34 =
s34

c34
µ =

ξ1

k4 − λ34
+ q̇2

4

ψ =
µξ1

c2
34

φ = 2q̇3
4 ξ1 − 3t34 µ ξ2 + 3q̇4 ξ3 − t34 ξ1 µ̇.

The signals u1 and u2 are obtained by inverting, at the last step of the algorithm,
the expressions of the sixth-order output derivatives in terms of an auxiliary input
v = (v1, v2):

u1 = c4v1 + s4v2

u2 =
l3
ψ

(
c4v2 − s4v1 − q̇4 ξ4 + (q̇3 − q̇4)ψ̇ − φ̇ + ψδ

)
,

(45)

where

δ = t34

(
l3 + λ34 c34

l3(k4 − λ34)
ξ1 + q̇2

4

)
.

Under the action of the dynamic compensator (43), (45), the robot system has been
made equivalent to the linear and controllable form[

y
[6]
1

y
[6]
2

]
=

[
v1

v2

]
, (46)
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Fig. 17. Stroboscopic motion of the last two links (left) and of the whole 4R underactuated
robot (right).

i.e., two decoupled chains of six integrators each. The total number of output deriva-
tives (6 + 6 = 12) equals the dimension 2n + ν of the extended state space. The
linearizing algorithm defines also, in the intermediate steps, a transformation between
the robot and compensator states (q, q̇, ξ) ∈ IR12 and (y1, y2, ẏ1, ẏ2, . . . , y

[5]
1 , y

[5]
2 ) ∈

IR12. This transformation or, equivalently, the dynamic compensator (43), (45) in-
clude however some singularities.

Rest-to-rest trajectory generation Planning a feasible trajectory on the equivalent
representation (46) is a smooth interpolation problem for the flat output (y1, y2), the
position of the center of percussion of the fourth link, with appropriate boundary
conditions on the output derivatives up to the fifth order.

The above planning procedure is valid only if the following regularity conditions
(compare with the denominators in (43) and (45)) are satisfied throughout the motion:

c34 ;= 0 and ψ ;= 0.

These conditions can be given an interesting physical interpretation. In particular,
c34 ;= 0 means that the third and fourth link should never become orthogonal, while
ψ ;= 0 holds as long as ξ1, the acceleration of the CP4 point along the fourth link axis,
does not vanish during motion. Besides, since ξ2

1 = ÿ2
1 + ÿ2

2 , this regularity condition
can be checked directly from the planned trajectory for the linearizing outputs. In
order to avoid both types of dynamic singularities, the boundary conditions for the
compensator state (ξ1, ξ2, ξ3, ξ4) should be suitably selected at the planning stage.

Simulation results We have considered a 4R underactuated robot with the following
(purely kinematic) data for the last two links: l3 = k3 = 1 m, l4 = 1 m, k4 = 2/3 m,
and λ34 = 1/3 m. The first two links have length l1 = 3.5 m and l1 = 2.5 m. The
rest-to-rest motion task is defined by

qi = (xi, yi, q3i, q4i) = (1, 1, 0, π/8) [m,m,rad,rad],
qf = (xf , yf , q3f , q4f ) = (1, 2, 0, π/4) [m,m,rad,rad],
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Fig. 18. Evolution of the auxiliary inputs v1, v2 (left) and of the acceleration inputs ax, ay

(right).

with motion time T = 10 s. For each output component in (42), an 11-th order
polynomial trajectory has been chosen. The boundary conditions of the associated
interpolation problem are evaluated using the initial/final robot state and the ini-
tial/final dynamic compensator state. This second set has been chosen symmetrically
as

(ξ1i, ξ2i, ξ3i, ξ4i) = (ξ1f , ξ2f , ξ3f , ξ4f ) = (0.1, 0, 0, 0) [m/s2,m/s3,m/s4,m/s5].

The stroboscopic motion of the last two links and of the whole 4R robot are shown in
Fig. 17 (the third and fourth link are represented only until their center of percussion).
The two last links undergo a counterclockwise rotation of 360◦, while the first two
links never cross a stretched or folded kinematic singularity. The evolution of the
auxiliary input v = (v1, v2) (namely, the sixth-order time derivatives of the planned
output trajectory) and the robot acceleration input a = (ax, ay) are shown in Fig. 18.
Although dynamic singularities are avoided, the acceleration inputs undergo a sudden
amplification when ξ1 drops close to zero (its minimum positive value is about 0.05
just after t = 8 s).

5 Conclusion

In this chapter, two general robotic planning problems have been considered: (i)
planning a transfer motion between two given configurations for kinematic sys-
tems subject to first-order nonholonomic constraints, and (ii) planning a rest-to-rest
trajectory between two given equilibrium states for dynamic systems subject to
second-order nonholonomic constraints.

We have presented planning strategies that rely on two general nonlinear con-
trol tools: iterative steering (using nilpotent approximations) and dynamic feedback
linearization (or flatness). These solution approaches have been illustrated on non-
standard case studies, including two non-flat kinematic systems (the plate-ball ma-
nipulation system and the two-trailer mobile robot with non-zero hooking) and two
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flat dynamic systems (a two-link robot with flexible forearm and a planar underac-
tuated robot with two passive joints).

The proposed methods provide some further benefits from the control point of
view. Iterative steering has intrinsic properties of robustness against perturbations.
We have shown here that error contraction along the iterations can be enforced also
in the presence of uncertainty in the system parameters. The same is clearly true
when an exact planner is known for the nominal case (e.g., for a flat or chained-form
transformable system), but its iterative application is needed in order to robustify
the planner with respect to perturbations (see [40]). Dynamic feedback linearization
leads instead to a straightforward (linear) design of a trajectory tracking controller,
with global exponential convergence to the planned trajectory when starting with an
initial state error (see [17,22]).

From the application point of view, the presented case studies suggest several
extensions that need further research. One example is the inclusion of obstacles in a
kinematic setting (the complete motion planning problem). Noticeably, an advantage
of iterative steering is the possibility of shaping the system trajectory during the
generic iteration through the choice of an (overparametrized) open-loop command
that allows collision avoidance. As for dynamic underactuated robots, the planning
problem for systems with degree of underactuation greater than one is still open in
general. We have presented a possible two-stage solution for the two-link flexible
robot having multiple deformation modes (equal to the degree of underactuation) in
its forearm. Indeed, the search for a flat output (if one exists) is a challenging issue
in this case, as well as in more general instances of robots with multiple flexible
links. Similarly, the removal of the special hinging hypothesis for planar robots with
two or more passive joints is of interest. Furthermore, non-planar case studies of
underactuated robots are absent in the literature.

Various control theoretical aspects that deserve deeper analysis arise in connec-
tion with the presented planning methods for nonholonomically constrained robotic
systems: the handling of singularities in the dynamic feedback linearization ap-
proach, the use of global non-homogenous nilpotent system approximations, and
technical advances in the nilpotent approximation of systems with drift (see [15] for
some preliminary results).
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Abstract. In this chapter we provide a high performance solution to the anti-windup problem
for control systems of robot manipulators undergoing actuator torque saturation. Based on
the preliminary work of [10], we provide here improved anti-windup laws based on simple
and intuitive parameter tuning. Global asymptotic (and local exponential) stability of the
arising closed loops is formally proven for set-point regulation tasks and demonstrated on a
simulation example. The simulation examples also show dramatic improvements as compared
to previous results.

1 Introduction

Actuator saturation is one of the most common unmodeled phenomena in classical
control systems. One of the most studied fields where actuator saturation is involved
is that of linear control systems for linear plants. In particular, in the past years a
great deal of attention has been given to the study of the so-called “windup” problem
for linear plants, wherein a predesigned linear controller is known to work very
desirably when interconnected to the linear plant but unpredictable behavior and,
often, instability occurs if the input saturation effect is taken into account when
interconnecting the controller to the plant. For these windup-prone control systems,
“anti-windup design” denotes the synthesis of suitable (linear or nonlinear) filters
which augment the original linear controller with the goal of:

1. preserving the linear response prespecified by the linear closed loop as long as
the saturation limits are never reached by the actuators;

2. guaranteeing as much as possible the recovery of this linear closed-loop response
for all other trajectories.

Many useful constructions are nowadays available in the literature for linear anti-
windup designs (see, e.g., [4,8,3] for some recent surveys).

B. Siciliano et al. (Eds.): Advances in Control of Articulated and Mobile Robots, STAR 10, pp. 61–85, 2004.
Springer-Verlag Berlin Heidelberg 2004
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A parallel reasoning can be made when dealing with more complicated control
systems, such as a nonlinear controller interconnected to a robotic manipulator. In
this case, the plant without input saturation is already nonlinear but is characterized
by useful properties (such as feedback linearizability) which provide constructive
techniques for high performance nonlinear control laws. When saturation is taken
into account, these control laws exhibit a similar behavior to the windup phenomenon
widely studied in linear control systems. Indeed, the windup effects on nonlinear
saturated control systems is often even worse than the parallel effect in the linear
control setting. When dealing with nonlinear plants, we can no longer refer to
“desirable linear responses” and the two above mentioned anti-windup requirements
need to be rephrased as follows:

1. preserve the unconstrained response arising from the direct interconnection
between the nonlinear plant and the nonlinear controller (without saturation) as
long as the plant input does not exceed the saturation limits;

2. guarantee as much as possible the recovery of this unconstrained (nonlinear)
closed-loop response for all other trajectories.

In this chapter we address the anti-windup design problem for robotic manip-
ulators. In recent years, this problem has been indirectly tackled in the context
of anti-windup design for nonlinear plants. In the discrete-time setting, nonlinear
anti-windup design techniques have been applied to nonlinear systems in [2,1]. In-
teresting results related to the nonlinear anti-windup problem can also be found in
[12,5], where the attention is restricted to SISO nonlinear plants. MIMO nonlinear
plants are considered in [7,6]. However, only local stability results are proven in [6]
and restrictions on the local design are necessary in some cases. In [7], the open-
loop plant and other subsystems internal to the closed loop are constrained to be
asymptotically stable.

Differently from the papers listed above, we explicitly address the problem of
anti-windup design for saturated robotic manipulators here, with the goal in mind of
guaranteeing high-performance global results. In particular, we improve our work
recently appeared in [10], where the ideas of [11] were employed to provide explicit
anti-windup constructions for Euler-Lagrange systems.

The goal of this chapter is twofold. The first goal is to clarify the construction
suggested in [10] when applied to robotic manipulators (which is the main application
field for the theory in [10]). The second and main goal is to revisit and improve the
anti-windup laws of [10] to guarantee extreme performance levels on the saturated
closed-loop system with anti-windup augmentation. To provide compensation laws
that are simple to apply, we explain how the anti-windup gains should be selected and
tuned for achieving high performance compensation on generic robot manipulators.
Indeed, the parameter tuning boils down to the selection of a proportional and a
derivative gain for each degree of freedom of the robotic structure.

The chapter is structured as follows: in Section 2 we describe the anti-windup
problem and lay down some useful notation; in Section 3 we first report on the
results of [10] and then extend these result to allow for high-performance anti-
windup designs; in Section 4 we discuss useful characterizations of the anti-windup



Performance in Anti-Windup Laws for Robot Manipulators 63

performance and, based on these, we provide a simple selection strategy for the anti-
windup parameters. Finally, in Section 5 we show the performance of the proposed
anti-windup laws on several examples.

2 Problem Data

We will consider in this chapter rigid robot manipulators taking into account the
actuator limits affecting their input signals. Given a manipulator belonging to this
family, denoting by q ∈ IRn the n joint position variables and by q̇ ∈ IRn the cor-
responding velocity variables, it is well known that the manipulator can be modeled
by the following dynamic equations:

B(q)q̈ + C(q, q̇)q̇ + R(q)q̇ + h(q) = up, (1)

where B(q) is the generalized inertia matrix, C(q, q̇)q̇ represents the generalized
centrifugal and Coriolis terms, h(q) is the vector of gravitational forces, the function
R(q)q̇ represents the friction forces and up represents the external forces/torques
applied at the robot joints.

The following basic assumption on the regularity of the matrices characterizing
(1) will be necessary to prove the main results of this chapter. This assumption
derives from standard properties characterizing mechanical systems.

Assumption 1 The following properties hold:

1. the generalized inertia matrix q 8→ B(q) is continuously differentiable, symmet-
ric and there exist positive numbers λM and λm such that λmI ≤ B(q) ≤ λMI
for all q ∈ IRn (where I denotes the identity);

2. the matrix function (q, q̇) 8→ C(q, q̇) is continuous;
3. the vector of gravitational forces q 8→ h(q) is locally Lipschitz;
4. the dissipation matrix q 8→ R(q) is locally Lipschitz and positive semidefinite.

For the robotic manipulator (1), under Assumption 1, we will assume in this
chapter that a (nonlinear) controller, called unconstrained controller, henceforth,
has been designed such that, when connected in feedback with the robot without
input saturation, global asymptotic and local exponential stability of the arising
closed loop is guaranteed. One such controller is the following feedback linearizing
controller with PID action (also known as “computed torque” controller), which is
able to induce linear closed-loop behavior (therefore global exponential stability)
when saturation is not present and that will be used here to achieve linear decoupled
set-point regulation tasks:

ẋc = q − r

up = B(q)
(
−Kp(q − r)−Kdq̇ −Kixc

)
+C(q, q̇)(q̇) + R(q)(q̇) + h(q),

(2)
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where xc ∈ IRn is the state of the controller and Kp, Kd, Ki are suitable (typically
diagonal) square matrices chosen in such a way that the matrix 0 I 0

0 0 I
−Kp −Kd −Ki


describing the (linear) closed loop (1), (2), is Hurwitz. Based on the value of the
reference input r ∈ IRn, the controller (2) is able to globally asymptotically stabilize
the position (q, q̇) = (r, 0) when interconnected to the robot (1). Note that many
alternative controllers could be selected in place of the unconstrained controller
(2). Indeed, the only assumption that this needs to satisfy is that it induces global
asymptotic and local exponential stability on the closed-loop system with the uncon-
strained plant. Possible examples are the PD controllers with gravity compensation
(nonlinear gravity compensation or constant steady-state gravity compensation). In
particular, these last controllers may be more suitable for the set-point regulation
tasks that we consider in the rest of this chapter. Nevertheless, we select here a
feedback linearizing controller (computed torque) because it better illustrates the
desirable local properties of the anti-windup compensation law, where the linear de-
coupled behavior induced by the feedback linearizing action is preserved whenever
the controller output remains within the saturation limits and graceful performance
degradation is achieved otherwise.

In this chapter we will characterize the input nonlinearity of (1) as a symmetric
decentralized saturation function. This characterization aims at describing the pres-
ence of a pool of actuators, one at each joint of the robotic structure, each of them
associated with a maximum torque/force effort mi attainable from the related power
unit/motor combination. The saturation function sat(·) : IRn → IRn is therefore
defined as

sat(u) = [ σ1(u1) · · · σn(un) ]T

where

σi(ui) :=

 mi ui ≥ mi

−mi ui ≤ −mi

ui −mi < ui < mi.
(3)

The approach that we propose here could also be applied to non-symmetric satura-
tions, however for simplicity of notation we only consider the symmetric case.

Since the control input of the robotic system (1) is bounded by the presence
of the saturation nonlinearity, suitable lower bounds on the saturation levels mi,
i = 1, . . . , n need to be imposed to guarantee that the actuator has enough power to
sustain the robotic structure against the acceleration arising from the gravitational
effects. To this aim, we formalize in the following assumption the requirement that
the actuators are powerful enough to be able to compensate the gravitational forces
in any configuration of the robot (corresponding to a selection of q ∈ IRn) with zero
velocity.
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Assumption 2 Given the gravitational forces vector h(·) of the robotic system (1)
and the saturation limits mi, i = 1, . . . , n in (3), the following inequalities hold:

hMi := sup
q∈IRn

|h(q)| < mi, i = 1, · · · , n. (4)

The windup problem discussed in the Introduction arises when the controller
(2) is no longer interconnected to the plant without input saturation but saturation is
accounted for in the interconnection. The typical effects of saturation on the closed-
loop behavior are to preserve the desirable unconstrained behavior when signals are
small enough not to reach the saturation limits and to cause performance and (often)
stability loss when signals become large enough so that the saturation enforces
modifications at the plant control input.

3 A Nonlinear Anti-Windup Solution

3.1 Prior Work

In this section, we summarize the contribution of [10], when applied to robotic
manipulators (which can be described by equations of the type (1)). As shown in
Fig. 1, this anti-windup solution corresponds to the insertion of an “anti-windup
compensator” as an augmentation to the original control law (2).

++

+

+

Nonlinearity
Saturationyc x

v2

Compensator
Anti-windup

up

x

v1

Robot
r

Unconstrained
Controlleruc

Fig. 1. The anti-windup scheme for robot manipulators.

According to Fig. 1, in the following we will denote by x := (q, q̇) ∈ IR2n the
state of the robot, by yc ∈ IRn the controller output, by up = sat(u) ∈ IRn the
robot torque/force input and by uc = x + v2 ∈ IR2n the measurement input of the
controller. The anti-windup compensator has access to the plant’s state and input
and to the controller output. The authority of the anti-windup compensator, which
allows adding modifications to the original closed loop, consists in two compensation
signals v1 and v2 which are injected at the controller output and input, respectively.
Based on the general approach in [10], when considering robot manipulators, we
can provide simplified expressions of the compensation laws implemented in the
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“anti-windup compensator” block of Fig. 1. In particular, denoting the anti-windup
compensator’s state by xe := (qe, q̇e) ∈ IR2n, its dynamics can be written as

q̈e = B−1(q) (sat(yc + v1)− C(q, q̇)q̇ −R(q)q̇ − h(q))
− B−1(q − qe)(yc − C(q − qe, q̇ − q̇e)(q̇ − q̇e)

−R(q − qe)(q̇ − q̇e)− h(q − qe)).
(5)

The anti-windup compensator outputs v1 ∈ IRn and v2 ∈ IR2n correspond to

v1 = β(x, xe)
v2 = −xe = −(qe, q̇e),

(6)

where β(·, ·) : IR2n × IR2n → IRn is given by

v1 = β(x, xe) := h(q)− h(q − qe)−Kgsat(K−1
g qe)−K0q̇e. (7)

The two matrices K0 and Kg are positive definite diagonal and they represent the
“tuning” parameters of the anti-windup law. The diagonal elements κgi, i = 1, . . . , n
of Kg need to satisfy the following constraints:

hMi + κgimi < mi, i = 1, . . . , n. (8)

Note that by definition of hMi in (4), if Assumption 2 holds, there always exists a
positive definite diagonal matrix Kg fulfilling the constraints (8).

Given the construction above, we report in the following, for the sake of clarity,
the complete control scheme with anti-windup compensation built on top of the
computed torque controller (2):

ẋc = q − qe − r

yc = B(q − qe)
(
−Kp(q − qe − r)−Kd(q̇ − q̇e)−Kixc

)
+ C(q − qe, q̇ − q̇e)(q̇ − q̇e) + R(q − qe)(q̇ − q̇e) + h(q − qe),

q̈e = B−1(q) (up − C(q, q̇)q̇ −R(q)q̇ − h(q))
− B−1(q − qe)(yc − C(q − qe, q̇ − q̇e)(q̇ − q̇e)

−R(q − qe)(q̇ − q̇e)− h(q − qe))
up = sat(yc + v1),

(9)

where v1 is selected as in (7). If an alternative unconstrained controller was used,
then the first two equations above should be replaced by its dynamics.

The main result of [10] establishes useful properties of the trajectories of the anti-
windup closed-loop system (1), (9), (7) (whose state will be denoted by (x, xc, xe))
when compared to the (ideal) trajectories of the unconstrained closed-loop system
(1), (2) (whose state will be denoted using the subscript “Z”, namely (xE, xcE)). This
is formalized in the following theorem (reported here without proof).

Theorem 1. [10] Suppose that Assumptions 1 and 2 hold and the parameters of
the compensation law (7) satisfy (8). Given a constant reference signal r, denote by
(xE(t), xcE(t)) the response of the unconstrained closed-loop system (1), (2) starting
from the initial conditions ((xE(0), xcE(0)). Denote also by uE(t) the corresponding
controller output. Then the anti-windup closed-loop system (1), (9), (7) is such that
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1. if uE(t) = sat(uE(t)) for all times and (x(0), xc(0), xe(0)) = (xE(0), xcE(0), 0),
then (x(t), xc(t), xe(t)) = (xE(t), xcE(t), 0) for all times, namely the uncon-
strained response is retained;

2. defining x∗ := (r, 0), there exists a vector x∗c ∈ IRn such that the point
(x∗, x∗c , 0) is globally asymptotically stable and locally exponentially stable.

Theorem 1 establishes two important properties of the anti-windup closed-loop
system (1), (9), (7). The first one corresponds to the key constraint of anti-windup
construction discussed in the Introduction: the anti-windup compensation must pre-
serve the local response of the original (unconstrained) closed loop whenever the sat-
uration limits are not exceeded by the unconstrained trajectory. The second property
states that the closed loop with anti-windup augmentation is globally asymptotically
(and locally exponentially) stable, thus the instability effects often experienced when
control laws such as (2) reach the saturation limits (see Section 5 for a notable exam-
ple of this phenomenon) are eliminated by the proposed anti-windup augmentation
strategy.

3.2 A Generalized Result

If on one hand the result of the previous section guarantees important properties
of our anti-windup augmentation scheme, very little is established about the tran-
sient response of the anti-windup closed-loop system after the saturation limits are
reached by the actuators: in this case, the only property guaranteed by Theorem 1
(in particular, by item 2) is that the closed-loop trajectories converge to the desired
equilibrium point where q = r and q̇ = 0. Nothing can be concluded, however,
about the transient behavior of these trajectories. To allow for high performance
selections of the anti-windup compensator parameters (the selection method will be
clarified in the following section), we introduce in this section an extension of the
anti-windup law of [10] summarized above. In particular, we propose the following
generalization of the selection for v1 in (7):

v1 = sat(yc)− yc + h(q)− h(q − qe)−Kgsat(K−1
g Kqqe)−Kqd(qe, q̇e)q̇e, (10)

where Kg is a diagonal matrix whose elements still satisfy the constraints (8), Kq is
a diagonal positive definite matrix and Kqd(·, ·) is a decentralized diagonal matrix
function, constant in a neighborhood of the origin, with diagonal elements κqdi(·, ·),
i = 1, . . . , n such that the maps (qei, q̇ei) 8→ κqdi(qei, q̇ei)q̇ei, i = 1, . . . , n are
scalar locally Lipschitz functions and such that there exists a positive constant κqd

which satisfies

κqdi(qei, q̇ei) ≥ κqd, ∀qei, q̇ei ∈ IR, ∀i ∈ {1, . . . , n}. (11)

By suitably generalizing the proof of the main result of [10] (corresponding to
Theorem 1 above), the following parallel result can be established for the generalized
anti-windup closed-loop system arising from the interconnection between (1), (9)
and the new compensation signal (10). The proof of the following theorem is omitted
because of its similarity with Theorem 1 and due to space constraints.



68 F. Morabito et al.

Theorem 2. Suppose that Assumptions 1 and 2 hold and the parameters of the
compensation law (10) satisfy (8) and (11).

Then the anti-windup closed-loop system (1), (9), (10) satisfies the same anti-
windup properties established in Theorem 1.

Note that the compensation law (10) is a generalization of (7). This generalization
allows for significant performance improvements as compared to the results reported
in [10] (where the compensation law (7) was employed). To this aim, in the next
section we will first characterize mathematically the performance of the anti-windup
compensation scheme and then describe suitable selections of the parameters Kg, Kq

and Kqd(·, ·) in (10) that are especially effective at guaranteeing high performance
compensation.

4 Measuring and Improving the Anti-Windup Performance

Following the anti-windup qualitative goal of recovering as much as possible “what
the response without input saturation would be”, the quality of the closed-loop
response can be measured in terms of the deviation of the actual plant trajectory x
from the corresponding (ideal) unconstrained plant trajectory xE. In particular, we
are interested in the size of the signal x(t)− xE(t) for all positive times (and item 2
of Theorem 1 guarantees that, for any constant reference r, x(t) − xE(t) converge
to zero because both these signals converge to the equilibrium (r, 0)).

While item 1 of Theorem 1 guarantees that x(t) − xE(t) is identically zero
when uE(·) never exceeds the saturation limits, no information about the transient
behavior of x(t)− xE(t) is available from the theorem for all other trajectories. On
the other hand, based on continuity of trajectories with respect to initial conditions
on compact time intervals (this is a standard result of nonlinear systems analysis)
and on the global asymptotic stability property of item 1, it is reasonable to expect
that unconstrained trajectories corresponding to control inputs uE that spend little
time (and little energy) outside the saturation limits will correspond to trajectories
of the anti-windup closed-loop system such that x(t)− xE(t) is very small (in some
sense).

For all the remaining trajectories, not much can be concluded about their transient
behavior from Theorem 1. For these cases, the following result is a good starting
point to monitor and, possibly, make small the size of x(t)− xE(t).

Theorem 3. Regardless of the selection of v1 in (2), given any reference signal
r(t), t ≥ 0, denote by (xE(t), xcE(t)) the response of the unconstrained closed-loop
system (1), (2) starting from the initial conditions ((xE(0), xcE(0)) and denote by
(x(t), xc(t), xe(t)) the response of the anti-windup closed-loop system (1), (9), (7)
starting from the initial conditions (x(0), xc(0), xe(0)) = (xE(0), xcE(0), 0). Then

xe(t) = xE(t)− x(t), ∀t ≥ 0.
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Proof. Consider the closed loop (1), (9) and perform the change of coordinates
(x, xc, xe) → (x̃, xc, xe), where x̃ := x−xe. Then, defining (q̃, ˙̃q) := x̃, after some
computation, the following equations are obtained:

¨̃q = −B−1(q̃)
(
C(q̃, ˙̃q) ˙̃q + R(q̃) ˙̃q + h(q̃)− yc

)
ẋc = q̃ − r

yc = B(q̃)
(
−Kp(q̃ − r)−Kd

˙̃q −Kixc

)
+ C(q̃, ˙̃q) ˙̃q + R(q̃) ˙̃q + h(q̃),

(12)


q̈e = B−1(q̃ + qe)(up − C(q̃ + qe, ˙̃q + q̇e)( ˙̃q + q̇e)

−R(q̃ + qe)( ˙̃q + q̇e)− h(q̃ + qe))
+ B−1(q̃)

(
C(q̃, ˙̃q) ˙̃q + R(q̃) ˙̃q + h(q̃)− yc

)
up = sat(yc + v1).

(13)

The representation (12), (13) for the anti-windup closed-loop system is the cas-
cade of two subsystems. The first one (corresponding to (12)) of coordinates (x̃, xc)
driving a second one (corresponding to (13)) of coordinates xe. Note that the dynam-
ics (12) of the first subsystem are coincident with the unconstrained dynamics (1), (2)
and that, since xe(0) = 0, then (x̃(0), xc(0)) = (x(0), xc(0)). Consequently, since
the dynamics and the initial conditions are the same, (x̃(t), xc(t)) = (xE(t), xcE(t))
for all positive times. Therefore, by definition, xE(t) = x̃(t) = x(t) − xe(t) for all
positive times and the result follows.

From a performance perspective, the relevance of Theorem 3 stands in the fact
that it clarifies the impact of the selection of v1 on the error variables xe = x − x̃.
By virtue of the cascade structure (12), (13) pointed out in the proof of Theorem 3,
we can focus on the second dynamics (13) to study selections of v1 of the type (10)
that are particularly effective at keeping qe small, so that the actual trajectory q is
as close as possible to the (ideal) unconstrained trajectory q̃. Note, however, that
the global asymptotic (and local exponential) stability of (13) is already assured by
Theorem 2 for all selections of the parameters that satisfy (8) and (11), so we can
disregard the stability property (which has already been addressed and proven) and
concentrate on performance.

A first thing to point out is the fact that, according to the second equation in
(13), the term yc acts like a disturbance for the dynamics qe. This motivates the term
sat(yc) − yc in equation (10) which alone leads to highly improved responses (as
compared to (7)) in the first instants of the closed-loop response. Indeed, especially
in aggressive control systems, yc often presents very large peaks that result in
undesired undershoots at the beginning of the anti-windup closed-loop response.
Adding this extra term transforms the disturbance from yc into sat(yc), thus reducing
significantly its negative effects. 1

To understand the impact of the selection (10) on the error dynamics (13), it is
useful to substitute v1 and up in the first equation of (13). We are especially interested
in the dynamics of qe associated with times where the plant input is not anymore

1 One may think that the best strategy is to eliminate completely yc. However, it would not
be possible to guarantee item 1 of Theorem 2 in that case.
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saturated, so that full authority is available for the signal v1 to suitably drive the state
xe. Therefore, substituting up = yc + v1 in the first equation of (13) we get (recall
that q̃ = q − qe):

q̈e = B−1(q̃ + qe)
(−Kgsat(K−1

g Kqqe)−Kqd(qe)q̇e

)
+ B−1(q̃ + qe)(sat(yc)− C(q̃ + qe, ˙̃q + q̇e)( ˙̃q + q̇e)

−R(q̃ + qe)( ˙̃q + q̇e)− h(q̃))− ¨̃q

Interestingly, it follows that when (qe, q̇e) is small and sat(yc) = yc, by conti-
nuity, the second line of the above equation is almost zero and if the saturation on
the first line is not active we get

B(q)q̈e ≈ −Kgsat(K−1
g Kqqe)−Kqd(qe, q̇e)q̇e, (14)

which describes a dynamic system close to a double integrator controlled by a
saturated proportional action and by a derivative action, whose gains are associated
with the design parameters Kq and Kqd(·, ·) (recall that Kqd(·, ·) is diagonal and
strictly positive for all values of its arguments, by construction).

Let us denote by γE(qe) the equivalent gain associated with the saturation of
the proportional action, namely γE(·) is a diagonal matrix function which satisfies
Kgsat(K−1

g Kqqe) = γE(qe)Kqqe. Let us also denote by D(qe, q̇e) a diagonal
matrix whose diagonal elements di, i = 1, . . . , n are selected as follows:

di =
{

1, if qeiq̇ei ≥ 0
0, otherwise,

where qei and q̇ei, i = 1, . . . , n are the components of qe and q̇e, respectively. Then
given a positive definite diagonal matrix K0, we select the function Kqd(·, ·) so that

Kqd(qe, q̇e)q̇e :=
(
(1−D(qe, q̇e))γE(qe) + D(qe, q̇e)

)
K0q̇e. (15)

The selection (15) is easily explained by first noting that, with respect to each
component of qe (and q̇e), when qei and q̇ei have the same sign, so that both the pro-
portional and the derivative term have the same sign in (14), then Kqd(qe, q̇e) = K0,
regardless of the size of both qei and q̇ei. However, if qei and q̇ei have opposite
signs, so that the derivative term in (14) is exerting a breaking force/torque, then
Kqd(qe, q̇e) = γE(qe)K0, so that such a breaking action is modulated by the depth
into saturation of the proportional element. 2 This modulating action leads to signifi-
cant performance improvement when qe is very large and the saturated proportional
term in (14) becomes too small as compared to the breaking action arising from
the derivative term. Note that with the selection (10), (15), if qe is small enough
so that the second saturation function in (10) is not active, since γE(qe) = I , the
approximate dynamics (14) transform into the simple dynamics

B(q)q̈e ≈ −Kqqe −K0q̇e. (16)

2 Note that since the operating region of the robot is bounded, by the closed-loop stability
established in Theorem 2, also qe (consequently, γE(qe)) is bounded, and thus the selection
(15) satisfies the constraint (11).
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Based on this property, it is straightforward to show that the selection (15) is Lip-
schitz. Moreover, equation (16) suggest that the diagonal elements of Kq and K0

should be selected in an almost decoupled way (“almost” because of the presence
of B(q)), with the goal of improving the performance at each joint, following a
selection approach similar to the heuristic approach for the selection of linear PD
gains.

Summarizing the above, a successful strategy for the selection of v1 is (10),
(15), whose design parameters are three positive definite diagonal matrices Kg, Kq ,
K0. The first parameter, Kg, should always be chosen as large as possible within
the design constraints (8) to maximize the authority of the proportional gain in the
compensation law (note that Kg < I by definition). The parameters Kq and K0

should be tuned with the goal of improving the transients at each joint following a
quasi decoupled PD tuning strategy.

5 Anti-Windup Construction Examples

In this section we will consider three simulation examples to demonstrate the pro-
posed anti-windup construction. The first example will be useful to understand the
implications of the selection (15) on a linear decoupled mechanical system. The
second example shows the performance of the proposed construction on a simple
nonlinear robot arm. Finally, the construction is applied to the same model used
in [10], showing the dramatic performance improvement arising from the design
method proposed here.

To simplify the notational burden, throughout this section we will often denote
the components of a vector w by suitably adding subscripts to the vector name (so
that, e.g., yc1 , . . . , ycn may denote the components of the vector yc). Moreover, given
two vectors a, b, we will use (a, b) to denote the vector [aT bT ]T .

5.1 Planar Positioning System

In this example, we will show the impact of the anti-windup law on a linear and
decoupled robot, in which the input constraints lead to severe performance loss in
the saturated closed loop without anti-windup.

System model The positioning system is a two-link robot, with two prismatic
joints. The model is very simple: the robot is not subject to gravitational force, the
generalized inertia matrix is linear and decoupled and so is the matrix containing the
friction terms. A schematic diagram of the planar positioning system is reported in
Fig. 2.

The system model is expressed by the following equations

(M1 + M2)q̈1 + ρ1q̇1 = up1

M2q̈2 + ρ2q̇2 = up2

(17)
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Fig. 2. The planar positioning system.

where Mi is the total mass of each link (including the actuators‘ mass), ρi is the
friction coefficient of the i-th link, and upi is the actuator force.

The values of parameters are reported in Tab. 1, where mi is the saturation level
of each actuator.

Link Mi [kg] mi [N] ρi [Kg/s]
1 3 40 2

2 2 40 1

Unconstrained controller design The unconstrained control system is a "computed
torque" controller, which is able to induce global exponential stability when satu-
ration does not occur. The performance of the unconstrained controller is obtained
choosing suitable values for the diagonal matrices Kp, Kd, Ki. The equations of the
unconstrained controller are:

ẋc1 = q̃1 − r1

ẋc2 = q̃2 − r2

yc1 =
(
M1 + M2

)(− kp1(q̃1 − r1)− kd1
˙̃q1 − ki1xc1

)
+ ρ1

˙̃q1

yc2 = M2

(− kp2(q̃2 − r2)− kd2
˙̃q2 − ki2xc2

)
+ ρ2

˙̃q2

where (q̃, ˙̃q) = ([q̃1 q̃2]T , [ ˙̃q1
˙̃q2]T ) represents the controller input, so that the

unconstrained interconnection corresponds to

(q̃, ˙̃q) = (q, q̇), up = yc, (18)

Table 1. Parameters of the planar positioning system.
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the saturated interconnection (without anti-windup) corresponds to

(q̃, ˙̃q) = (q, q̇), up = sat(yc), (19)

and the anti-windup interconnection corresponds to

(q̃, ˙̃q) = (q − qe, q̇ − q̇e), up = sat(yc + v1), (20)

where (qe, q̇e) is the anti-windup compensator’s state. The proportional, integral and
derivative gains of the unconstrained controller have been selected as follows:

Kp = diag(360, 360)
Kd = diag(30, 30)
Ki = diag(8, 8).

Anti-windup design and tuning The anti-windup construction consists in writing
the anti-windup compensator dynamics and in choosing the parameters of the control
law (10). By substituting equations (17) in (5) we obtain:

q̈e1 = 1
M1+M2

(up1 − ρ1q̇1) + 1
M1+M2

(ρ1(q̇1 − q̇e1)− yc1)

q̈e2 = 1
M2

(up2 − ρ2q̇2) + 1
M2

(ρ2(q̇2 − q̇e1)− yc2)

where [ up1 up2 ]T contains the force input, which corresponds to:

up1 = σ1

(
σ1(yc1)− kg1σ1

(
kq1qe1

kg1

)
− kqd1(qe, q̇e)q̇e1

)
up2 = σ2

(
σ2(yc2)− kg2σ1

(
kq2qe2

kg2

)
− kqd2(qe, q̇e)q̇e2

)
,

where kqd1(·, ·) and kqd2(·, ·) are the diagonal elements of the matrix function
Kqd(·, ·) defined in (15).

As for the selection of the diagonal matrix gains Kg, Kq and K0, since there is
no gravity effect on this model, we can select Kg arbitrarily close to the identity,
e.g.,

Kg = diag(0.99, 0.99),

which satisfies the constraint (8). The remaining matrix gains Kq and K0 should be
selected with the goal of improving the performance of the anti-windup law during
the transient response. For each entry i = 1, 2, on the diagonal of Kq and K0,
we select the proportional term Kqi to guarantee a fast enough convergence of the
related component of qe to zero (namely, by Theorem 3, a fast enough convergence
of q to the unconstrained response qE), and the derivative term K0i to enforce suitable
damping on the terminal part of the trajectory, thus avoiding undesirable oscillations
of the anti-windup closed-loop response. Following this approach, the parameters
are easily tuned as:

K0 = diag(650, 250)
Kq = diag(2600, 1600).
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Simulation results We test by simulation our construction by selecting the reference
signal as the following step input:

r = (2.5, 2) [m], (21)

and initializing both the plant and the controller states at zero.
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Fig. 3. Planar positioning system: output responses to the reference (21) of the following
closed-loop systems: unconstrained (bold solid), saturated without anti-windup (dotted), and
anti-windup (thin solid).

The corresponding simulations are reported in Figs. 3 and 4. In Fig. 3, the bold
curves represent the unconstrained output responses. The output responses of the
anti-windup closed-loop system (thin solid) reach the reference positions in less
than one second, eliminating the undesired oscillations exhibited by the saturated
closed-loop system without anti-windup (dotted). Figure 4 represents the plant input
responses for the same three closed-loop systems. Note that the anti-windup action
exploits the full actuators power available to allow for the fast output responses of
Fig. 3. This fact becomes evident when noticing that the plant input signals become
saturated both during the acceleration and during the deceleration phases.

5.2 Two-Link Planar Robot

In this example, we consider the planar two-link robot arm represented in Fig. 5,
displaced on a vertical plane so that the gravitational vector is oriented as shown in
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Fig. 4. Planar positioning system: input responses to the reference (21) of the following
closed-loop systems: unconstrained (bold solid), saturated without anti-windup (dotted), and
anti-windup (thin solid).

the figure. Contrary to the previous example, the robot dynamics is nonlinear and
not decoupled, and the gravitational acceleration affects both links. The aim of this
example is to show the quasi-decoupled performance of the anti-windup closed-loop
system in the presence of input saturation and to illustrate the easy selection of the
anti-windup parameters.

System model The planar robot is a two-link robot arm, with two rotational joints,
subject to the gravitational force. A schematic representation of the robot is shown
in Fig. 5.

According to the notation used in equation (1), we report the generalized inertia
matrix B(q), the matrix C(q, q̇) containing the centrifugal and Coriolis terms and
the gravitational vector G(q). For simplicity, we select the friction forces to be zero.
The generalized inertia matrix B(q) corresponds to:

B(q) =
[

b11 b12

b12 b22

]
with

b11 = I1 + M1l
2
1 + I2 + M2(a2

1 + l22 + 2a1l2 cos(q2))
b12 = I2 + M2(l22 + a1l2 cos(q2))
b22 = I2 + M2l

2
2
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Fig. 5. The two-link planar robot.

where q  = [  q1 q2 ]T contains the two joint variables, (M1,M2) are the total
masses of the two links (including the actuators’ masses), (a1, a2) represent the link
lengths, (l1, l2) represent the distances of the center of mass of each link from the
preceding joint, and (I1, I2) represent the rotational inertias at the two joints. The
matrix C(q, q̇) can be written as follows:

C(q, q̇) =
[−M2a1l2 sin(q2)q̇2 −M2a1l2 sin(q2)(q̇1 + q̇2)

M2a1l2 sin(q2)q̇1 0

]
.

The gravitational vector is

h(q) =
[
g(M1l1 + M2a1) cos(q1) + gM2l2 cos(q1 + q2) gM2l2 cos(q1 + q2)

]T

where g is the gravitational acceleration value. The physical parameters have been
selected as shown in Tab. 2, where (m1,m2) represent the saturation levels for the
torques exerted at the two joints.

Link li [m] Mi [kg] Ii [kgm2] ai [m] mi [Nm]
1 0.5 6 0.2 1 138

2 0.25 5 0.1 0.5 40

Unconstrained controller design The unconstrained controller is once again se-
lected as a computed torque controller, which induces linear and decoupled closed-

Table 2. Parameters of the two-link planar robot.
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loop behavior before saturation is activated. The corresponding equations are:

ẋc1 = q̃1 − r1

ẋc2 = q̃2 − r2

yc1 =
(
I1 + M1l

2
1 + I2 + M2(a2

1 + l22 + 2a1l2 cos(q̃2)
)·(− kp1(q̃1 − r1)− kd1

˙̃q1 − ki1xc1

)
+

(
I2 + M2(l22 + a1l2 cos(q̃2)

)(− kp2(q̃2 − r2)− kd2
˙̃q2 − ki2xc2

)
−2M2a1l2 ˙̃q1

˙̃q2 sin(q̃2)−M2a1l2 ˙̃q
2

2 sin(q̃2)
+g(M1l1 + M2a1) cos(q̃1) + gM2l2 cos(q̃1 + q̃2)

yc2 =
(
I2 + M2(l22 + a1l2 cos(q̃2))

)(− kp1(q̃1 − r1)− kd1
˙̃q1 − ki1xc1

)
+

(
I2 + M2l

2
2

)(− kp2(q̃2 − r2)− kd2
˙̃q2 − ki2xc2

)
+M2a1l2 ˙̃q

2

1 sin(q2) + gM2l2 cos(q̃1 + q̃2)

where (q̃, ˙̃q) represents the controller input, so that, similar to the previous example,
the unconstrained interconnection corresponds to (18), the saturated interconnection
(without anti-windup) corresponds to (19) and the anti-windup interconnection cor-
responds to (20). The proportional, integral and derivative gains of the unconstrained
controller have been selected as follows:

Kp = diag(240, 255)
Kd = diag(45, 50)
Ki = diag(4, 4).

Anti-windup design and tuning Similar to the previous example, based on (5), the
anti-windup compensator dynamics can be written as:

q̈e = B−1(q)(up − C(q, q̇)(q, q̇)−G(q))
+B−1(q − qe)(C(q − qe, q̇ − q̇e)(q − qe, q̇ − q̇e) + G(q − qe)− yc)

up = sat(yc + v1)

where yc is the unconstrained controller output and v1 is the anti-windup control
law expressed by

v1 =
(
σ1(yc1)− yc1

)
+ g(M1l1 + M2a1) cos(q1) + gM2l2 cos(q1 + q2)

−g(M1l1 + M2a1) cos(q1 − qe1)− gM2l2 cos(q1 − qe1 + q2 − qe2)
−kg1σ1

(
kq1qe1

kg1

)
− kqd1(qe, q̇e)q̇e1

v2 =
(
σ2(yc2)− yc2

)
+ gM2l2 cos(q1 + q2)− gM2l2 cos(q1 − qe1 + q2 − qe2)

−kg2σ1

(
kq2qe2

kg2

)
− kqd2(qe, q̇e)q̇e2 ,

where kqd1(·, ·) and kqd2(·, ·) are the diagonal elements of the matrix function
Kqd(·, ·) defined in (15).

The diagonal elements of the matrix Kg have been chosen to satisfy he constraint
(8) as follows:

Kg = diag(0.29, 0.64).
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The diagonal elements of the matrices Kq , K0 have been selected once again fol-
lowing the approach outlined in Section 4. The resulting matrices are:

K0 = diag(150, 400)
Kq = diag(400, 400).

Simulation results Once again, the reference signal has been selected as a step
input assuming the following values:

r = (90,−45) [deg], (22)

and both the plant and the controller states have been initialized at zero.
The corresponding simulations are reported in Figs. 6 and 7. Once again, the

bold curves represent the unconstrained responses, the dotted curves represent the
saturated responses (without anti-windup) and the thin solid curves represent the
anti-windup responses. Observe that the undesired undershoot presented by the
saturated response is completely eliminated by the anti-windup action. Moreover,
the anti-windup compensation is able to almost fully preserve the linear performance
at the second joint. This is not the case in the first joint response, which exhibits an
inevitable response delay due to the input limitation.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

20

40

60

80

100

Jo
in

t P
os

iti
on

1
[d

eg
]

Time [s]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−50

0

50

100

Jo
in

t P
os

iti
on

  2
 [d

eg
]

Time [s]

Fig. 6. Two link planar robot: output responses to the reference (22) of the following closed-
loop systems: unconstrained (bold solid), saturated without anti-windup (dotted), and anti-
windup (thin solid).
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Fig. 7. Two link planar robot: input responses to the reference (22) of the following closed-loop
systems: unconstrained (bold solid), saturated without anti-windup (dotted), and anti-windup
(thin solid).

From the input responses reported in Fig. 7, it appears that the anti-windup com-
pensator makes large use of the available input effort. Nevertheless, the input signal
does not reach saturation other than a short time interval during the first 200 mil-
liseconds. This suggests that increasing the anti-windup gains Kq and K0 may lead
to a faster response. Additional simulations, which are not reported here, confirm
that increasing the anti-windup gains to the values K0 = diag(600, 400), Kq =
diag(4000, 400) allows reducing the recovery transient on the first joint from ap-
proximately 1.5 seconds to 1 second (the response on the second joint remains the
same).

5.3 SCARA Robot

In [10], the effectiveness of the proposed anti-windup law has been tested on a
SCARA robot (Selective Compliance Assembly Robot Arm). We use here the same
example to emphasize the performance improvement that can be guaranteed when
employing the improved anti-windup law given by (10), (15).

System model The SCARA robot has four links. The first two links correspond
to a planar robot on the horizontal plane. The third link corresponds to a prismatic
joint imposing the tilt of the end effector on the working surface and the last joint
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is a rotational joint corresponding to the end effector orientation with respect to the
vertical rotation axis. According to the notation in (1), we report in the following the
matrices associated to the robot model. The generalized inertia matrix B(q) is

B(q) =


b11 b12 b13 b14

b12 b22 b23 b24

b13 b23 b33 b34

b14 b24 b34 b44


with

b11 = I1 + I2 + I3 + I4 + M1l
2
c1

+ M2

(
l21 + l2c2

+ 2lc2 l1 cos(q2)
)

+(M3 + M4)
(
l21 + l22 + 2l1l2 cos(q2)

)
b12 = I2 + I3 + I4 + M2(l2c2

+ l1lc2 cos(q2)) + (M3 + M4)
(
l21 + l22 + l1l2 cos(q2)

)
b13 = 0
b14 = −I4

b22 = I2 + I3 + I4 + M2l
2
c2

+ M3l
2
2 + M4l

2
2

b23 = 0
b24 = −I4

b33 = M3 + M4

b34 = 0
b44 = I4

where li is the length of the i-th link, lci represents the distance between the center
of gravity of each link and the center of the preceding joint, Mi is the total mass of
the i-th link (including the actuators’ masses), Ii is the rotational inertia of the i-th
link and q = [ q1 q2 q3 q4 ]T contains the joint variables. Defining

γ := − (M2lc2 l1 sin(q2) + (M3 + M4)l1l2 sin(q2)) ,

the matrix C(q, q̇) can be written as follows:

C(q, q̇) =


γq̇2 γ(q̇1 + q̇2) 0 0
−γq̇1 0 0 0

0 0 0 0
0 0 0 0

 .

The gravitational vector is

G(q) =
[
0 0 −g(M3 + M4) 0

]T

where g is the gravitational acceleration.
In Tab. 3 we report the same parameters used in [10] for our simulations. These

parameters have been previously taken from [9]. In Tab. 3, mi denotes the saturation
level of the i-th actuator.
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Link li [m] lci [m] Mi [kg] Ii [kgm2] mi

1 0.6 0.3 12 0.36 55 Nm
2 0.4 0.2 6 0.08 60 Nm
3 1 q3

2
3 0.08 70 N

4 0 0 1 0.08 25 Nm

“Unconstrained controller design The unconstrained controller is a computed
tor ue”q controller of the type (2) whose equ tion ke
of

a s are not r rted here fo heepo r t sa,
brevity with the following selection for the pr ionoport al int ral nd de ieg a r vative

g
,

ains:

K = diag(121 5 30 150 150)d . , , ,

K = diag(17 79 8 25 24 75 20 13)p . . . ., , ,

K = diag(7 5 10 1 0 5)i . . ., , ,
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Fig. 8. SCARA robot: input responses to the reference (23) of the following closed-loop
systems: unconstrained (bold solid), saturated (dotted), anti-windup from [10] (dashed) and
new anti-windup law (thin solid).

Simulation results We report the simulations using two different anti-windup con-
structions. The first one is the original construction of [10], where the control law

Table 3. Parameters of the SCARA robot.
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Fig. 9. SCARA robot: output responses to the reference (23) of the following closed-loop
systems: unconstrained (bold solid), saturated (dotted), anti-windup from [10] (dashed) and
new anti-windup law (thin solid).

(7) is used with the selection

Kg = diag(0.9, 0.9, 0.4, 0.9)
K0 = diag(7.5, 4.5, 3.5, 2).

The second simulation corresponds to the new construction (10), (15) with the
following selection for the parameters, which have been selected following similar
procedures to those adopted in the previous two examples:

Kg = diag(0.9, 0.9, 0.4, 0.9)
K0 = diag(60, 40, 30, 20)
Kq = diag(280, 70, 70, 70).

In all the simulations both the plant and the controller states are initialized at zero.
We first reproduce the same simulation reported in [10], where the reference

signal has been selected as

r = (6,−4, 4, 4) [deg,deg,cm,deg]. (23)

and both the plant and the controller states have been initialized at zero.
The corresponding responses are reported in Figs. 8 and 9.
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Note that the new anti-windup law leads to extremely improved performance as
compared to the previous law. The corresponding output response is almost coin-
cident with the unconstrained trajectory thus providing almost full recovery of the
original linear response. The unpleasant undershoot characterizing the previous anti-
windup response from [10] has been completely eliminated and the unconstrained
response recovery time almost reduced to zero (the response from [10] requires ap-
proximately 25 seconds to recover the unconstrained response on the first joint). Note
also that for this simulation the saturated response leads to persistent oscillations
(this was already observed in [10]).
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Fig. 10. Input responses to the reference (24) of the following closed-loop systems: uncon-
strained (bold solid), saturated (dotted), anti-windup from [10] (dashed) and new anti-windup
law (thin solid).

Next, we report on a different experiment which is aimed at testing the reliability
of the anti-windup law when the external reference corresponds to the following
unreasonably high level:

r = (150,−100, 1, 200) [deg,deg,m,deg]. (24)

Note that in standard industrial manipulator controllers this set-point regulation task
would be accomplished by generating a smoothened reference via cubic interpolation
and verifying that the response does not exceed the saturation limits. However, we
want to emphasize here that the system with anti-windup compensation does not
require this particular action to take place and automatically exploits the full actuators
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Fig. 11. Output responses to the reference (24) of the following closed-loop systems: uncon-
strained (bold solid), saturated (dotted), anti-windup from [10] (dashed) and new anti-windup
law (thin solid).

power to guarantee a fast and graceful convergence to the desired set-point when
driven by a simple step reference, regardless of its size. The resulting trajectories
are reported in Figs. 10 and 11. In this case, as predictable, the saturated response
(dotted) oscillates in an unreasonable way. However, also the anti-windup technique
from [10] (dashed) provides poor performance, where the first three joints exhibit
unacceptable undershoots and are associated with extremely slow transients. The
new strategy (thin solid), instead, provides a response that almost coincides with
the unconstrained one in the last three joints, while it is associated with a very
fast transient on the first joint, requiring approximately 1.5 seconds to settle on the
desired steady state. It is important to emphasize that different transients on each
joint could be imposed by suitably adjusting the diagonal entries of the matrices Kq

and K0.

6 Conclusion

In this chapter we have proposed extensions of the anti-windup algorithm of [10],
which lead to radical performance improvements of the compensated closed-loop
behavior. Among other things, one advantage of the strategy here proposed is that the
transient response of the anti-windup closed-loop system can be tuned by acting on
simple decoupled proportional and derivative gains. The performance of the closed-
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loop system has been tested and verified by simulation on several examples. On the
other hand, one disadvantage of this scheme is that it requires a model of the robot
manipulator which must be inserted in the controller dynamics and may require a
significant amount of computational effort.

Future research may include alternative selections for the nonlinear compensa-
tion law within the family of compensators which are proven here to stabilize the
closed loop, as well as a formal proof which shows the ability of the anti-windup law
to recover trajectory tracking properties of the controller under suitable assumptions
on the trajectory to be tracked.

Acknowledgement

This work has been co-funded by AFOSR under grant F49620-03-1-0203 and NSF
under grant ECS-0324679.

References

1. D. Angeli and E. Mosca, “Command governors for constrained nonlinear systems,” IEEE
Trans. on Automatic Control, vol. 44, pp. 816–820, 1999.

2. A. Bemporad, “Reference governor for constrained nonlinear systems,” IEEE Trans. on
Automatic Control, vol. 43, pp. 415–419, 1998.

3. C. Edwards and I. Postlethwaite, “Anti-windup and bumpless-transfer schemes,” Auto-
matica, vol. 34, pp. 199–210, 1998.

4. R. Hanus, “Antiwindup and bumpless transfer: A survey,” Proc. of 12th IMACS World
Congress, vol. 2, pp. 59–65, 1988.

5. Q. Hu and G.P. Rangaiah, “Anti-windup schemes for uncertain nonlinear systems,” IEE
Proc. of Control Theory and Applications, vol. 147, pp. 321–329, 2000.

6. N. Kapoor and P. Daoutidis, “An observer-based anti-windup scheme for non-linear
systems with input constraints,” Int. J. of Control, vol. 72, pp. 18–29, 1999.

7. T.A. Kendi and F.J. Doyle, “An anti-windup scheme for multivariable nonlinear systems,”
J. of Process Control, vol. 7, pp. 329–343, 1997.

8. M.V. Kothare, P.J. Campo, M. Morari, and N. Nett, “A unified framework for the study
of anti-windup designs,” Automatica, vol. 30, pp. 1869–1883, 1994.

9. G. Mester, “Adaptive force and position control of rigid-link flexible-joint SCARA
robots,” Proc. of 20th IEEE Industrial Electronics Conference, pp. 1639–1644, 1994.

10. F. Morabito, A.R. Teel, and L. Zaccarian, “Anti-windup design for Euler-Lagrange sys-
tems,” Proc. of 2002 IEEE Int. Conf. on Robotics and Automation, pp. 3442–3447, 2002.

11. A.R. Teel and N. Kapoor, “Uniting local and global controllers,” Proc. of 4th European
Control Conf., 1997.

12. S. Valluri and M. Soroush, “Input constraint handling and windup compensation in
nonlinear control,” Proc. of 1997 American Control Conf., 1997.



Model-Based Friction Compensation

Gianni Ferretti, Gianantonio Magnani, and Paolo Rocco

Dipartimento di Elettronica e Informazione
Politecnico di Milano
Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
<ferretti,magnani,rocco>@elet.polimi.it
http://www.elet.polimi.it/upload/ferretti/metromod

Abstract. Compensation of nonlinear friction terms is a most challenging application of
high resolution encoders, which are nowadays getting available for common industrial mo-
tion control and robotic applications. In fact, use of a high resolution sensor allows a neat
analysis of the dynamic behavior of friction forces in the presliding regime, and especially of
hysteresis loops. Starting from a recently proposed friction model, defining more accurately
the presliding regime, a research is presented in this chapter, aimed at devising identification
and compensation procedures for friction.

1 Introduction

Friction appears in all mechanical systems and is a major source of control perfor-
mance degradation. Its worst effects are observed in the form of static errors, limit
cycles, stick-slip motions, as well as quadrant glitches [1,2,6].

Some of these effects have been eliminated by superimposing dither signals on
the commands generated by the controller, or by closing an acceleration feedback.
These techniques avoid the need of deriving a model of friction, generated by several
complicated physical mechanisms. On the contrary, the topic of this work is model-
based friction compensation, whose block diagram scheme is reported in Fig. 1.
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Fig. 1. Block diagram of the model-based friction compensation scheme.
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Fig. 2. Classical model.

force only for v ;= 0. In this case it is

ff = σ2v + fcsgn(v) (1)

where σ2 is the viscous friction coefficient and fc is the Coulomb friction.
When v = 0 the characteristics just establishes that ff < fs, with fs being the

stiction force. To precisely determine the friction force an additional variable has
therefore to be considered, the net active force fa, namely the algebraic sum of the
forces acting on the mobile body (assuming for simplicity that only one body is
mobile, the others being fixed) apart from friction. Thus, in rest conditions

ff = fa (2)

as shown in Fig. 3, where it is also pointed out that Eq. (2) holds for |fa| ≤ fs. Note
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" $
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Fig. 3 Friction force at rest. .

that Eq. (2) simply states dv/dt = 0.

The main problems with friction take place at velocity reversal where the clas-,
sical friction model considers a discontinuity in the friction force(tor ue)/velo iq c ty
characteristics shown in Fig. 2 (for the sake of simplicity a symmetric characteris-,
tics is assumed throughout the cha ter e en if gener ll ip v a fy r ction is different in the,
two directions of motion). This characteristics however defines uniquely the friction
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The correct implementation of the classical friction model is therefore much
more complicated than (1) and it is performed in [5] through a finite state machine,
distinguishing three states: motion, stiction and incipient motion. The model is aimed
at detecting precisely the instant of motion stop, overcoming the numerical problems
related to the well-known Karnopp model [15], which assigns a null value to the
sgn(v) function over a suitable short interval around zero.

More accurate friction models have been recently proposed in the literature,
introducing two different motion regimes, sliding and presliding, and overcoming
the discontinuity of the classical model by introducing a relation between friction
force and relative displacement in the presliding regime. These models account
for the microsliding displacements observed at motion start or reversal with high
resolution measurement systems. A comprehensive survey of friction models is
reported in [20], where an evolution from static to dynamic models is pointed out.

The first dynamic friction model has been proposed in [9], starting from the
stress-strain curve of classical solid mechanics, modeled by a differential equation:

dff

dx
= σ0

(
1− ff

fc
sgn(v)

)α

, (3)

where x is the relative displacement, σ0 is the stiffness coefficient, and α is a
parameter that determines the shape of the stress-strain curve. The behavior of the
so-called Dahl model can be visualized as in Fig. 4. The contact is modelled as

"

"

# #

Fig. 4. Dahl model.

occurring at some junctions, formed under the action of a normal load. For small
(micro) relative displacements between the two contacting surfaces these junctions
behave as linear springs, generating the friction force. When the friction force
reaches a maximum the spring breaks, and the sliding motion starts. Junctions form
instantaneously when the relative motion stops. The maximum value of the friction
force and the maximum displacement are also called respectively breakaway force
and displacement. Typical values of the breakaway displacements are in the order of
2 ÷ 5  µm for steel junctions [1]. A time domain model can be easily derived from
(3) as

dff

dt
= σ0

(
1− ff

fc
sgn(v)

)α

v ,
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which, for α = 1 reduces to

dz

dt
= v − |v|σ0z

fc
(4)

ff = σ0z , (5)

where the state variable z has been introduced. This state variable can be also
interpreted as the average deflection of elastic bristles, deflecting under the action
of a tangential force [13]. When a maximum deflection zss = fc/σ0 is reached,
corresponding to a maximum friction force ff = fc, the sliding motion starts.

The Dahl model describes properly the presliding regime, which macroscopically
appears as an abrupt start and stop of the relative motion, but does not account for
the behavior of friction during sliding. To this aim, a modification of the Dahl model
was proposed in [4] which, however, does not account explicitly for the relative
velocity. This appears to be essential, also considering the effect of lubrication [1].

Grease or oil lubrication has the main purpose of creating a fluid film between
the two contacting surfaces, avoiding solid-to-solid contact. Generally hydrodynamic
lubrication is performed, thus the lubricant is pushed into the contact zone by the
relative velocity. There are four regimes of lubrication (Fig. 5):

I. Static friction The static friction regime is well described by the Dahl model.
II. Boundary lubrication In the boundary lubrication regime the relative velocity

is not adequate to build a fluid film between the contacting surfaces. As such,
friction is generally higher than for fluid lubrication (regimes III and IV).

III. Partial fluid lubrication In the partial fluid lubrication regime some lubricant
is drawn into the contact zone and some is expelled by the load pressure; the
greater viscosity or motion velocity, the thicker the fluid film. In this regime
however the film is not sufficiently thick and some solid-to-solid contact still
holds.

IV. Full fluid lubrication When the film is sufficiently thick, the separation of the
surfaces is complete and the load is fully supported by the fluid. In this regime
the viscosity of the lubricant dominates and friction increases with velocity.

Particularly important, for its influence on the rising of stick-slip motions, is the so-
called Stribeck effect [22], namely the regime of decreasing friction with increasing
velocity at low velocity (negative viscous friction, between regime II and III in
Fig. 5). The dependence of the friction force from velocity, Stribeck effect included,
can be parameterized as follows:

ff = sgn(v)h(v) (6)

h(v) = fc + (fs − fc) exp
[
− (|v|/vs)

δ
]

, (7)

where vs is the Stribeck velocity and δ is a suitable parameter.
There are also two important temporal phenomena [21], not considered in this

work: a relation between the time spent in the stuck condition, or dwell time, and the
level of static friction, and a delay between a change in velocity and the corresponding
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Fig. 5. Lubrication regimes.

change in friction, or frictional lag. In [16] the following empirical model relating
static friction and dwell time has been proposed:

fs(t) = fs,∞ − (fs,∞ − fc,k) exp (−γtm)

where fs,∞ is the asymptotic static friction, fc,k is the Coulomb friction at the
moment of arrival in the stuck condition and γ, m are empirical parameters. The
frictional lag seems to be related to the time required to modify the lubricant film
thickness. Experimental data suggest a simple time delay as a model of this process
[14].

The first integrated model, accounting for both the sliding and presliding regime,
was proposed in [8], which combined the Dahl model (4,5) (with α = 1) with (6,7)
(with δ = 2) into the well known LuGre model:

dz

dt
= v − |v| σ0z

h(v)
(8)

h(v) = fc + (fs − fc) exp
[
− (v/vs)

2
]

(9)

ff = σ0z + σ1
dz

dt
+ σ2v . (10)

They also introduced a micro-viscous friction term, proportional to the time deriva-
tive of the state variable z through the coefficient σ1. Conditions for passivity of
the model have been discussed in [20] and in [3]. The LuGre model has been also
extended to model point contact in grasping tasks [12]. The model is local to the
point of contact and is applicable to an arbitrary number of contacts among fingers
and grasped object. The LuGre model is very elegant and easy to implement and
lends itself to use in adaptive friction compensation schemes [7].

Recently, however, the model has been shown to exhibit a nonphysical drift phe-
nomenon, which originates from modelling presliding as a combination of elastic
and plastic displacements [10]. Moreover, on the ground of experimental obser-
vations, the LuGre model has been subject to several criticisms in [23], mainly
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addressing the hysteresis behavior in presliding. In particular, it is remarked that
the LuGre model does not account for nonlocal memory and cannot accomodate
arbitrary displacement-force transition curves. A hysteresis behavior with nonlocal
memory is defined as an input-output relationship where the output not only de-
pends on the input and the output at some time instant in the past, but also on past
extremum values of the input or output as well [19]. A a new friction model, the
so-called Leuven model, has been proposed as

dz

dt
= v

(
1− sgn

(
fh(z)
s(v)

) ∣∣∣∣fh(z)
s(v)

∣∣∣∣n)
(11)

s(v) = sgn(v)h(v) (12)

ff = fh(z) + σ1
dz

dt
+ σ2v . (13)

where n is a coefficient used to shape the transition curves and fh is the hysteresis
force, i.e. the part of the friction force exhibiting hysteresis behavior with state
variable z as input. It consists of two parts

fh(z) = fb + fd(z) ,

where fd(z) is a point-symmetrical strictly increasing function of z, to be determined
experimentally, while fb is the value of fh(z) at the beginning of a transition curve.
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Fig. 6. Hysteresis loops.

The implementation of fh(z) requires two memory stacks, one for the minima
of fh (stack min) and one for the maxima (stack max), which grow and shrink
according to the following rules (Fig. 6):

I. Velocity reversal At velocity reversal a new transition curve is started and a new
extreme value of fh has to be added to one of the stacks.
1. The former value of fh(z) is placed on the stack max/min in the case of

going from positive/negative to negative/positive velocity and becomes the
new value of fb.

2. The state variable z is reset to 0.
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II. Closing an internal loop The closed hysteresis loop is removed from the hys-
teresis memory (wiping out).
1. The elements on the stacks associated with the internal loop are removed.
2. The new value of fb is the top value on the stack min/max for posi-

tive/negative velocity.
3. The value of z is recalculated such that a transition curve starts at the new

value of fb while maintaining the continuity of fh.
III. Transition from presliding to sliding The hysteresis model is reset for strictly

positive/negative velocities, when the hysteresis force reaches a maximum or a
minimum (fh ≈ ±fs).
1. The stacks are cleared out and their first elements are set to ±fs.
2. fb is set to −fs (fs) for positive (negative) velocities.
3. The value of z is recalculated so as to maintain the continuity of fh.

The Leuven model allows a very accurate modeling of friction, particularly in the
presliding regime, but the stacks mechanism is quite cumbersome to be implemented
in real time and may result in overflow. In fact, several velocity reversals may occur
without closing of inner loops, causing the growth of the stacks, whose size must be
chosen in advance.

The stack overflow problem has been overcome in a further refinement of the
Leuven model [18], by modeling the hysteresis force through the Maxwell slip model.
The model is defined by N massless elastoslide elements in parallel (Fig. 7(a)).
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Fig. 7. (a) Maxwell slip model (b) The characteristics of an element.

Each element i has one common input z and one output fi and is characterized by
a maximum force wi, a linear spring constant ki and a state variable ζi, describing
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the position of element i (Fig. 7(b)). The behavior of each element is described as
follows:

if |z − ζi| < wi

ki
then

{
fi = ki(z − ζi)
ζi = const

else

{
fi = sgn(z − ζi)wi

ζi = z − sgn(z − ζi)wi

ki

.

The hysteresis force is equal to the sum of hysteresis forces fi of each element:

fh =
N∑

i=1

fi .

The model works as follows. When the relative motion stops (v = 0) all elements
are sticking and the total stiffness will be the sum of the stiffnesses of all elements.
When the force fi reaches the saturation level wi, the i-th element starts to slip and
the total stiffness decreases with the stiffness of the spring element i.

The last version of the Leuven model has been considered in this chapter for
implementing model-based friction compensation. The model is first identified and
validated in Section 2 on an experimental setup, while some experimental results,
obtained with a feedforward compensation, are discussed in Section 3. Section 4
finally draws some conclusion and perspectives for future research.

2 Identification and Validation of the Model

The experimental test bed adopted is shown in Fig. 8. It is made up by a brushless
motor (Control Techniques UNIMOTOR), a harmonic drive gearbox (model HFUC
size 25), with a gear ratio n = 100 and a fully digital drive and actuation system
(Control Techniques). The motor angle is sampled at a frequency of 4 KHz, with
a resolution of 22 bits/round, namely more than 4 million pulses per revolution,
1.5 µrad or 8.6 × 10−5 deg. The velocity is estimated by numerical derivation.
The motor torque u is also not measured directly but is estimated from the current
setpoint Ī as u = KtĪ .

# / 2 0 ) + ( 0 0 , . 1 . /

$ % / , . - * & ' / * 3 (

Fig. 8. Experimental test bed.

The friction parameters relative to the sliding regime for the test bed adopted
were already identified in [11]. In this respect it must be pointed out that while a
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symmetric friction characteristics is assumed in (7), different values were identified
for positive and negative rotations. This fact is neglected in this chapter, where the
main focus is on the identification and compensation of friction at motion reversal,
i.e. of static friction, and a mean amplitude value for the sliding friction parameters
is assumed.

The identification of fh(z) has been performed as in [23], thus applying a slow
current ramp (in presliding regime) and considering the following relation:

dz

dt
= v

(
1−

(
fh

fs

)n)
, (14)

in order to calculate z, with n = 7. However, differently from [23], the dynamical
effects were taken into account for the calculation of fh. The friction torque was in
fact computed as

fh = KtĪ − Jv̇ . (15)

where J is the motor inertia.
As far as the identification of fh is concerned, it must be pointed out that choosing

the values of wi and ki in order to approximate the real hysteresis is a nonlinear
problem. If the maximum deflection of each element ∆i = wi/ki is pre-assigned, in
place of ki, the identification model can be rewritten as a nonlinear equation which
is linear in the unknown parameters wi:

fh(k) =
N∑

i=1

wiΦi(z(k), ξi(k), ∆i(k)) ,

and can be therefore identified using a least squares method [17].
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Fig. 9. Friction characteristics.

Figure 9 shows the characteristics fh(z), computed from (14) and (15) (thin line),
and the piecewise linear function implementing the Maxwell slip model (thick line)
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in this particular experiment. In fact, it is possible to figure out that the springs con-
tributing to the overall characteristics fh(z) break one at a time, after an elongation
∆i, exerting a constant force wi after breakdown. Accordingly, a piecewise linear
characteristics is obtained, whose slope ranges from a maximum value at motion
inversion, given by

∑N
i=1 ki, to a minimum value kN .

In order to determine the values of the spring constants ki, the estimated fh(z)
has been first averaged, so as to eliminate the fluctuations due to the acceleration
term in (15). Then, a number of N maximum elongations ∆i has been suitably
chosen and the values of ki have been calculated:

kN =
f̄h(∆N )− f̄h(∆N−1)

∆N −∆N−1

kN−i = −
N∑

j=N−i+1

kj +
f̄h(∆N−i)− f̄h(∆N−i−1)

∆N−i −∆N−i−1
i = 1, . . . , N − 1 .

With ∆0 = 0, fh(0) = 0, fh(∆N ) = fs. On-line, recursive identification of the
model has been proposed in [17].

Some experiments were afterwards performed in order to assess the validity of
the model, in particular in replicating the hysteresis cycles. Some results are shown
in Fig. 10.
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Fig. 10. Experimental (thin line) and simulated hysteresis cycles (thick line).

3 Friction Compensation: Experimental Results

A feedforward compensation has been applied (Fig. 11), considering three sinusoidal
velocity profiles v̄(t) = A0 + A1 sin(ωt).

In a first experiment the following values were chosen: A0 = 0 A1 = 180 rad/s,
ω = 3π/5 rad/s, J = 1.9×10−4 Kgm2 and the velocities obtained with and without
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Fig. 11. Block diagram of the feedforward friction compensation scheme.

compensation, together with the nominal velocity profile (dotted line), are reported
in Fig. 12. Note that the friction model did not take into account the sliding regime.

0 1 2 3 4 5 6 7 8 9 10
−200

−100

0

100

200

time (s)

ve
lo

ci
ty

 (r
ad

/s
)

0 1 2 3 4 5 6 7 8 9 10
−200

−100

0

100

200

time (s)

ve
lo

ci
ty

 (r
ad

/s
)

Fig. 12. Velocities without (top) and with (bottom) feedforward friction compensation.

In a second experiment a slower sinusoid was considered: ω = 3π/10 rad/s,
in order to emphasize the occurrence of stiction. In this case the effect of the
compensation is even more evident (Fig. 13).

It must be pointed out that in the above experiments the velocity changes sign
after stiction, as such fh(z) increases (decreases) monotonically from −fs (+fs)
to +fs (−fs) and no hysteresis cycle occurs. In order to evaluate the performance
of the compensation even when motion stops and restarts in the same direction an
experiment was performed with A0 = A1 = 108 rad/s, ω = 3π/5 rad/s. The effect
of the compensation is again evident (Fig. 14): no stiction occurs and the actual
velocity follows better the nominal velocity in case of compensation. Note however
that the feedforward model does not exactly predict the actual instant of vanishing
velocity, so that overcompensation occurs.



98 G. Ferretti, G. Magnani, and P. Rocco

0 1 2 3 4 5 6 7 8 9 10
−200

−100

0

100

200

time (s)

ve
lo

ci
ty

 (r
ad

/s
)

0 1 2 3 4 5 6 7 8 9 10
−200

−100

0

100

200

time (s)

ve
lo

ci
ty

 (r
ad

/s
)

Fig. 13. Velocities without (top) and with (bottom) feedforward friction compensation.
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Fig. 14. Velocities without (top) and with (bottom) feedforward friction compensation.

4 Conclusion

In this chapter, a recently proposed model of friction (the Leuven/Maxwell slip
model) is considered as the starting point for the investigation of friction compensa-
tion techniques. The model is particularly accurate in the presliding regime, where
the worst effects of friction take place. In particular, the model correctly predicts the
hysteresis cycles in the characteristics relating the friction force to the model state
variable, representative of the microsliding displacements.

In order to appropriately apply the model, however, a high resolution position
measurement is needed, here ensured by the adoption of a commercial encoder with
a resolution of 22 bit per turn.
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The Leuven/Maxwell slip model model has been identified and validated on an
experimental test bed and some promising results have been obtained with a feedfor-
ward compensation of friction. A first implementation of a feedback compensation
however failed because the computational burden entailed by the outlined model
was incompatible with the short sampling time (250 µs).

The next steps of research are the implementation of the feedback compensation,
which is expected to require some modifications of the model, mainly in order
to improve the computational efficiency, and the development of some adaptation
techniques, in order to deal with the variations of friction with load, time and
temperature.
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Abstract. Rapid Prototyping (RP) in control design can be defined as a computer-assisted
process aimed at recursively validating dynamic models of complex plants and mechatronic
systems and/or designing and testing digital control algorithms for real-time applications.
Rapid prototyping of digital control algorithms requires integrated hardware/software archi-
tectures, allowing fast and systematic interactions between the algorithmic design phase and
the experimental testing. The design phase is performed with the support of a computer-aided
control design environment, where simulations are performed on accurate models of the spe-
cific equipment under investigation; after that, a rapid transfer of the algorithm on the target
hardware is necessary to validate it experimentally. It is therefore necessary to have a com-
plete prototyping environment, where different controller blocks are readily available, with
structure and parameters easily modifiable to be tested on the simulated plant and downloaded
on the target hardware platform for real-time validation. The present chapter introduces the
state of the art on RP, critically surveys and discusses general issues related to both HW and
SW aspects that are at the basis of RP; furthermore it describes in some details the solution
implemented by the authors at the Experimental Robotics Laboratory of Politecnico di Torino.
A test case, devoted to the problem of modelling and compensation of nonlinear friction in
rotating robot arms is presented. Finally, a critical appraisal of the proposed solution, in the
light of the gained experience, is discussed and future developments are pointed out.

1 Introduction

Prototyping can be defined as: “A type of development in which emphasis is placed
on developing prototypes early in the development process to permit early feedback
and analysis in support of the development process” [4]. The implementation of
a prototype starts from an idea which is then developed in a project phase, where
several alternative solutions are considered to achieve the desired functionalities and
specifications. Design relies on technical competence and objectives; several tools
can help the designer to practice that competence and to define the objectives in
details. Using a Personal Computer (PC) in the prototyping phase as a replacement
of traditional technical tools is a common practice today. One of the most important
features of the PC is the possibility of virtualizing the objects and the procedures
to build them. For example, in architectural design, the computer graphics allows
visualizing the whole inhabited environment in some details and verifying the design

B. Siciliano et al. (Eds.): Advances in Control of Articulated and Mobile Robots, STAR 10, pp. 101–123, 2004.
Springer-Verlag Berlin Heidelberg 2004
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hypothesis formulated by the architect; mechanical engineers can try to combine
some graphical objects representing mechanical parts, starting from the drawings of
such parts, to test their functionalities.

A major interest in prototyping derives from the possibility of knowing the
influence of design solutions before the final production phase. In manufacturing,
where small technological objects are often produced in large quantities, prototyping
allows building the trial version in order to verify a subset of functionalities, before
the cost of possible design errors grows up due to the large number of manufactured
parts. In such a situation the PC can be useful as it automates the large number of
procedures involved in the construction of the prototype.

In more general terms, the prototyping process makes easier the application of
specific methodologies from different technological fields embedded into a real or
virtual instance of a product.

In the last few years these aspects are becoming one of the major issues in control
design for advanced mechatronic equipments and robotics [2,7,10].

In the field of industrial robotics there are several kinds of prototyping processes;
a manipulator embodies different technologies and competences: mechanical, elec-
tronic and electrical issues merge with automatic control and computer science
competencies for a satisfactory design of the whole machine.

In the present work we discuss prototyping issues and architectures for control
and supervision of industrial robots; the aim of prototyping is often the implementa-
tion of new control algorithms or architecture allowing better performances at lower
costs in well defined operating conditions.

An objective only partially reached today is the so-called rapid prototyping,
i.e. a methodology which allows going in a short time and with limited costs from
the general idea to the realizable solution. After the prototype design is tested on the
real equipment, one must be able to repeat cyclically the same procedure with only
a marginal additional effort.

The prototyping process consists of a set of phases, often technologically very
different; this fact complicates in a remarkable way the transmission of information,
especially when formalisms and techniques used before the PC advent are involved.
So, rapid prototyping must be based on a friendly and homogenous development
environment, which should allow the designer to concentrate on conceptual problems
freeing him/her from the tedious practical aspects involved in the progression from
the idea to the prototype.

The PC plays a major role hosting the interactive environment allowing to develop
many of the rapid prototyping process phases, such as for example:

• to model the controlled electromechanical parts,
• to design the control laws and the machine supervision software,
• to simulate the effects of the control algorithms,
• to automate the transition from the design formalism to the implementation and

adaptation to the machine execution,
• to manage the interaction between designer and test machine.
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The last point introduces a problem that is common to all the environments
where automatic controlled evolution of physical phenomena is needed, i.e. real-
time requirements.

Industrial robots are supplied with a controller cabinet containing hardware
and software systems for control and supervision. Due to industrial secrecy, safety
requirements or, sometimes, technological backwardness, these systems are closed
to modification by the customers. On the other hand a controller presents many
critical aspects due to the simultaneous presence of components with contrasting
real-time requirements.

The user of a prototyping system should have at least the possibility to interface
the original control environment, and in many cases partially or totally substitute
it; therefore it is necessary to pay attention to the real-time issues in order to avoid
interferences with the native architecture, especially when it is necessary to replace
important functionalities.

In the following section some concepts related to the real-time interaction be-
tween PC and controlled mechatronic equipments will be introduced; basic definition
will be briefly presented, and methodologies will be described. Particular attention
will be paid to the real-time requirements of rapid prototyping systems.

2 Rapid Prototyping

For each specific “product” the prototyping process requires a test platform, where it
is possible to investigate the characteristics and the potentiality of several alternative
solutions, before arriving to the final product release. In the field of control systems
for industrial robots, the product usually consists in control algorithms for robotic
axes or software for machine supervision and man-machine interface; at the same
time this platform allows dealing in an efficient manner with the plant modelling
too, using simple simulation and test procedures.

The electronics of a control system ready to be commercialized is the result
of optimization in workspace, performance, reliability and costs. It is advisable to
test the functionalities of the design ideas using standard and re-usable components;
on a single prototype costs are often greater than those of the final product, but the
possibility of searching a solution without worrying about non-functional constraints
(power consumptions, space, reliability, etc.) and the simplification of more complex
problems should be considered. Furthermore, the product will be often sold in
large quantities, making the prototype costs negligible. In other cases the costs
may be disregarded because the designer is interested only in a limited number of
performances with respect to those of the actual product.

The test platform usually consists of a software environment representing the
plant and the control components according to some conceptual metaphor, often a
graphical one. One of the main characteristics in this environment is the possibility
to simulate the functionalities of the system both on time basis and on logical basis.

Often the prototyping software is coupled with the real plant using configurable
electronic boards. The advantages of this methodology result from two fundamental
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factors: a) the extreme configurability of the software environment, which allows
modifying all the design parameters and to foresee the possible consequences; b)
the adaptability of the prototyping electronics composed by standard and modular
components.

The possibility of simulating the control algorithms avoids potentially dangerous
situations for the equipments, which, on the other end, may be inaccessible for the
tests. Indeed, the complexity of some plants requires a separation of the design
into subsystems, where each one needs to be tested independently from the others.
This procedure may be impossible for industrial manipulators with many degree of
freedom due to the highly coupled nature of the kinematic chain.

In industrial manipulator prototyping the possibility of simply formalizing the
mathematical models for kinematics and dynamics, which will be used in the simu-
lation software, is one of the more interesting features; in this manner all the control
algorithms can be tested and interfaced with these models. Models must be enough
refined to describe all the phenomena judged critical for control; for example, the
model can take into account joint frictions, disturbances and parameters uncertainty,
but not address the elasticity issues, if these are not critical.

When the robot is accessible and it is possible to interface it with prototyping
system, the test phase can be managed directly from the development and simulation
environment. The prototyping system is sometimes called Host and it is independent
from the constraints due to the plant interfacing, thanks to the presence of another
computer, the Target, which supervises to the interaction with the manipulator.
The Host interacts in asynchronous mode with the Target to set the test execution
modalities and to monitor its progression; the Target receives commands and data
from the Host and, through the interface electronics, controls the robot in real-time.
If the plant is particularly articulated, then a multi-Target system, possibly with each
Target synchronized with the others, can be necessary, whereas the Host can remain
unique. In some particular cases, a single system can be used as both development
and plant interaction environment.

The Host environment is often called a CAD system since it allows a “Computer
Aided Design”; in particular, for automatic controls it is named CACSD, from
“Computer Aided Control System Design”. The Target environment can have one of
the possible architectures suitable for real-time requirements; these architectures and
some basic concepts are presented in the following section, on the basis of quantity
and complexity of tasks concentrated on it.

2.1 Real-Time Systems

The key issue of real-time systems for automatic control is the proper interaction
with physical phenomena representing real processes.

Interaction, performed by a computer program, takes place through signals,
whose time history is characterised by a dominating time constant. Because of the
limits on the available resources, it is necessary to select the relevant time constants,
in order to update the knowledge of input signals, and to recompute the output
commands to control the process as requested.
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A real-time system uses software structures called Tasks to perform this kind of
interaction while complying with the assumed time constraints.

These Tasks are often characterized by different time constants and have to be
executed within the same time window by the same computer; for this reason the
software needs to share the calculus resources between all these activities.

A Task with hard real-time requirements must complete its job strictly inside
the time interval planned on the basis of the control criticalities, in order to avoid the
total failure of the process. So it is necessary to be certain, using some procedures
or exhaustive simulations, that the system will not infringe the time constraints of
that Task [9].

A Task with soft real-time requirements, instead, lacks the claim of never in-
fringe the time constraints, or warrants it in some statistical sense, e.g. in the “majority
of cases”: infringing the time constraints for the soft components is accepted as an
unsubstantial degradation of the system functionalities.

Both these kinds of Tasks can coexist in a robot control system; for example,
the closed loops of the control axis or the emergency procedures related to the limit
switches activation are hard real-time Tasks, whereas signaling non-critical anoma-
lies or refreshing the control workstation graphical user interface are considered soft
real-time Tasks.

In this context an implicit hypothesis is assumed: all Tasks are arranged on
a unique computer and the capacity of parallel execution of different connected
Tasks is called multitasking. The hard real-time requirements fulfillment can be
guaranteed avoiding to use hardware and software components which can bring to
non-deterministic behaviors; or, according to more refined techniques, dynamically
checking that each new Task will have the possibility, on the basis of the current
workload, of completing its jobs and respecting its time constraints.

2.2 Architectures, Characteristics and Requirements of Robot Prototyping
Systems

The hardware architecture of a simple Commercial-Off-The-Shelf (COTS) com-
puter is shown in Fig. 1.

RAM and CPU are the fundamental resources, and various Tasks use them
according to defined specifications and procedures, aimed to implement a correct
multitasking for real-time requirements. To allow the Task interaction with the
outer world and the physical phenomena under control, additional components,
called Input/Output devices, are needed. These components are essentially electronic
devices acting as bit converters to and from electrical external signals. A typical
example of I/O devices for automatic control systems are DACs, Digital-to-Analog
Converters, and ADCs, Analog-to-Digital Converters.

Communication between CPU, RAM and I/O devices is carried out through a
system Bus, which becomes a shared resource and, as such, requires a sharing mech-
anism. It should be noted that each time resources are shared, the time constraints
and the deterministic behavior dictated on the real-time system are threatened: if two
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Fig. 1. A very simple elaboration system.

real-time Tasks need the same data bus, the first which obtain it can delay or prevent
the other Task to complete its job in time.

When a Task sends a command to an I/O device, that device will spend some
time doing it. To optimize the CPU use for as many Tasks as possible, a Task freezing
technique is adopted when it starts an I/O procedure and is waiting data from the
device; this characteristics is called preemption. Preemption allows other Tasks in
ready status to use the CPU; when the device ends its job and data are ready to be
transferred, it notifies its state using a new signal called Interrupt [9,13,1,14].

The Interrupt is usually managed by an integrated circuit, which sends the
relevant information to the CPU. The Interrupt signals from each device are received
by some devoted pins of the CPU, the Interrupt request (or IRQ) pins; the CPU
decides which device to serve first on the basis of a priority mechanism and the
right Interrupt Service Routine (ISR) takes care of the event. Then the Task which
started the I/O procedure is waked up as soon as possible to complete its job and to
free the resources it is using.

This procedure is sketched in Fig. 2. TL is the Interrupt latency time; it is
an important parameter, since it allows evaluating the responsiveness of a real-time
system to an event.

Real-time software architectures can be divided according to the complexity and
the speed of response guaranteed to the Tasks. In the following sections a brief survey
of the two principal software architectures is presented; they both allow to manage
the interaction with I/O ports and with the user, showing the right compromise
between simplicity and adequacy of the components and real-time characteristics.

Round-robin with Interrupt The ISR of each I/O device takes part in the signal
and protocol handling and reserves the data exchange service; an infinite loop Task
looks after the requesting devices [13].
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Fig. 2. Interrupt mechanism.

Note that the failure in one of the devices could lock the Task for a long time.
Furthermore, the global variables accessible by the ISRs and by the Task must be
protected; in fact, the ISRs could modify these variables in any instant and could
give back to the Task a different environment without the Task knowing it.

Real-Time Operating System Maximum flexibility, but also maximum complexity,
can be obtained using a real-time operating system (RTOS). ISRs and Tasks can be
executed in parallel and according to fixed priorities; a software component called
scheduler intervenes when particular “events” occur in the system, to switch the
CPU control from a Task to a new one. This is the so-called processes model [14],
in which an ISR or a Task represents a process, with all its data, its executable
code and the system identification parameters. Each process carries out its own job
sequentially and, virtually, disposes of a dedicated CPU; whereas actually, the only
CPU in the system (in the mono-processor systems) is shared on time basis between
all processes in execution.

2.3 Prototyping Systems for Robotics

Robotic systems are composed by several mechanical parts moved by means of
electrical drives. In particular, a robot has several arms and joints arranged in a
complex kinematic chain; the entire structure is moved combining the motion of
each joint. A supervision/control system takes care of the activation “rules” for each
drive so that the articulated structure carries out the desired tasks [12].

Command signals from the computing system to the actuators are the result
of appropriate computation on data coming from sensors, the so-called feedback
control. This modality is critical from a computational point of view because it must
be characterized by a reasonable knowledge of execution times. In such cases the
real-time requirements play an important role.

In this chapter our interest will be concentrated on these real-time systems, which
represent a particularly complex branch of mechatronics, and on their prototyping.

The supervision of these systems requires the execution of several activities with
hard or soft real-time issues; a list of these activities can be the following:

• position control of single joints,
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• trajectory planning for coordinate movements,
• enabling phases and emergency control,
• man-machine interface.

At a higher task level, with respect to axis control, it is necessary to decide how
a desired tip movement in the working space can be obtained and to send correct
guidelines to each motor. Movements must take into consideration all the enabling
requirements of the individual components and the safety for the operators and the
machine. Anomalous behaviors, like unexpected collisions, motor current overloads
or joint limit switch activations, need to be detected as soon as possible.

The system could also provide some sort of man-machine interaction: the op-
erator may need a simple graphical interface to configure the functionalities of the
manipulator tasks or use some more complex integrated diagnostic tool.

Therefore there are many complex and concomitant Tasks to execute; a single
computer can manage all of them or it could be appropriate to devote a computer to
the low level machine handling, leaving the soft-real-time Tasks to a separate one.

In the following section such architectures are briefly described.

Hardware architectures When prototyping is concerned, i.e. when systems usually
do not work in “extreme” conditions and with heavy workloads, the set of available
hardware components can include general purpose devices. In the last years the trend
has been to use commercial-off-the-shelf (COTS) components due to their low costs
and tested reliability.

The Host PC must be able to run the development tools, and to perform simulation
processes of various kind, which is the most important assignment of a prototyping
system.

The Target machine is often less powerful, but equipped with I/O boards to inter-
act with the plant. Conversion speed of the on-board electronics, the communication
bus between CPU and boards and Interrupt latency are typical bottlenecks for the
Target.

Software architectures In the context of control for robotic systems, Tasks can
be classified as synchronous (or periodic) and asynchronous (or aperiodic). A
reliable internal mechanism to provide a timing base for synchronous events is
needed. The asynchronous events occuring during the normal activities are dealt
with in the spare time between the synchronous events.

Clock-driven architectures [9] are ideal candidates for this type of Tasks: the
presence of periodic Tasks Ti, having well defined real-time execution characteris-
tics is contemplated. An interrupt related to clock signals wakes up the scheduler
according to the period of each Task. A Task Ti is defined by two parameters: the
period Pi and the execution time ei; it is assumed that Ti finishes its job before the
end of its period, to guarantee the execution in the next period. The Pi can be differ-
ent if the arrangement of Ti is done according to an hyperperiod equal to the least
common multiple between all Pi. The Tasks scheduling must be arranged to allow
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the execution of all Tasks, according to their periods, into a unique hyper-period
which will be repeated indefinitely.

This type of scheduling gives origin to inactive intervals, during which the
aperiodic Tasks can be executed; these Tasks have soft-real-time characteristics and
can treat “normal” situations.

There are also sporadic Tasks, which are usually devoted to react to unexpected
events with hard real-time characteristics.

The clock-driven architecture can be implemented using both round-robin with
interrupt and RTOS.

2.4 Prototyping Tools

The CAD environment allows representing the manipulator kinematics and dynamics
by some sort of formalism. Simulink and Matlab from The Mathworks, Inc. are
CAD tools widely used in research and design of control systems. Simulink allows
assembling system parts according to a graphical block formalism. In Simulink
it is possible to include event-driven process logic using the Stateflow tool; this
instrument is based on finite state machine theory. A Stateflow diagram is composed
by blocks representing states, and the simulator passes from one to another when
some specified event happens. These events are associated to oriented edges linking
the state blocks and labels specifying conditions and, possibly, actions. Both Mealy
and Moore paradigms (actions associated to transitions and action associated to
states, respectively) are supported. A Stateflow diagram included in a Simulink
diagram can implement conditions and constraints on the execution of the overall
simulation.

Automatic code generation Crucial to prototyping is the implementation of control
and supervision algorithms on the actual controller: it is necessary to translate the
block formalism into a high level language, usually C or C++. In order to obtain
a Target processor executable it is necessary to perform program compilation by a
cross-compiler residing on the Host PC. The program is then transferred and run
on the Target PC using software tools resident on the Host, able to manage, monitor
and in case also debug the testing progression.

The real-time software architectures described above are the starting point for
building the control structure; to reduce the error possibilities and to cut the proto-
typing process time, automatic code generation can be used. This process is called
rapid prototyping: Real-Time Workshop (RTW) and Stateflow Coder are the tools
which translate each block and the finite state machines in a programming language
specified by the user, usually in C. There are also some rules to define how to code
block relations and organization.

This last characteristic is interesting for real-time programmers because it gives
the possibility to choose the resulting software architecture. Two architectural mod-
els, already described, are available:

• round-robin with Interrupt model,



110 B. Bona, M. Indri, and N. Smaldone

• processes model based on RTOS.

Both architectures can manage multitasking; in the following sections two im-
plementation example are described using pseudocode.

Round-robin with Interrupt

main() {
Initialization (including installation of rtISR as an interrupt
service routine, ISR, for a real-time clock)
While(time < final time)
Background task
EndWhile
Mask interrupts (Disable rtISR from executing)
Complete any background tasks
Shutdown
}

rtISR() {
Check for interrupt overflow
Enable "rtISR" interrupt
Update outputs and discrete states (tid=0) and log data
Update continuous states
For i=1:NumTasks
If (hit in task i)
Update outputs and discrete states (tid=i)
EndIf
EndFor
}

The rtISR procedure is executed when an Interrupt is generated by a clock, with
a cadence equal to the fastest sampling time present in the model. Its structure is sim-
ilar to the simulation mechanism: output update, discrete states update, continuous
states integration (if present, the ISR execution period equals the integration step).
Multitasking is built imposing multiple sampling times with respect to the basic Task
(tid=0), so that for each Interrupt cycle the states having the sampling time tick
in that instant are updated. During rtISR inactivity period a Background Task with
non-real-time jobs is executed. The whole mechanism is started by the main routine
which organizes the real-time clock, the ISR and the Background execution cycle;
the same routine ends the execution, masking the Interrupt signal and completing
the Background.

Multiprocess with RTOS primitives

main() {
Initialization
Start task "tBaseRate".
Start task "tSubRate".

Start clock that does a "semGive" on a clockSem semaphore.
Wait on "model-running" semaphore.
Shutdown
}

tSubRate(subTaskSem,i) {
Loop:
Wait on semaphore subTaskSem.
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Update outputs and discrete states (tid=i)
EndLoop
}
tBaseRate() {
MainLoop:
If clockSem already "given", then error out due to overflow.
Wait on clockSem
For i=1:NumTasks
If (hit in task i)
If task i is currently executing, then error out due to overflow.
Do a "semGive" on subTaskSem for task i.
EndIf
EndFor
Update outputs and discrete states (tid=0) and log data
Update continuous states
EndMainLoop
}

In this case the model is executed using some typical RTOS primitive: pro-
cesses creation and start with fixed priority, and Task synchronization by means of
semaphores. The main procedure creates a tBaseRate process having the highest
priority, i.e. waked up by the fastest clock period of the model. More tSubRate
processes with multiple sampling time with respect to tBaseRate are created, each
one with decreasing priority and a more relaxed sampling time. At each activation
tBaseRate checks and unlocks by means of semaphores the tSubRate, which must
be executed in the same sampling time. However, since tBaseRate has the highest
priority, it continues to execute its jobs, preventing other process executions and
completing the elaboration of the fastest part of the model. When it finishes, the
previously unlocked tSubRate procedures start to execute their jobs using the CPU
on the basis of their priorities.

It should be noted that one of the key concepts which grants the multitasking
execution with hard real-time requirements in these control software architectures
is the relation between the sampling times of each Task: the base sampling time is
decided on the basis of the requirements of the most critical Task, the other Tasks
being executed with multiple sampling times with respect to the base sampling time.

Host-Target communications The Host machine is usually supervised by a gen-
eral purpose operating system with graphical interfaces, allowing a simple and direct
interaction with the user in the design and development phases and for the manage-
ment of Target-plant interaction. No real-time requirements are necessary: the user
prepares its tasks off-line, sets the Target execution, and, at the end, analyzes the
obtained data.

Recent technologies allow data exchange between Host and Target using TCP/IP
on Ethernet or RS232 protocols. The Target machine is bounded by hard and soft
real-time requirements and cannot interrupt its Tasks in a given instant. The Host
requires asynchronous mode interaction and the Target reacts as soon as possible,
respecting the highest priorities of real-time Tasks. These facts motivate the two
fundamental techniques for data exchange:

• “on-the-fly” transfer, in which the Target tries to communicate with the Host
during the real-time Task execution,
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• transfer at the end of the current test session, in which, before the tests starts,
the Host asks the Target to collect data, the Target executes the test memorizing
relevant data, and when each real-time Task ends its jobs and frees the CPU, it
transfers the data to the Host.

The first technique does not guarantee that the Host receives all the data related to
the real-time signals: the Target could be in a busy state executing a real-time proce-
dure, and it could not manage the communication exchange. This fact can originate
an incorrect reconstruction of the observed signals due to data incompleteness.

When Round-robin with Interrupt is used, the transfer job can be executed as
a background Task when the ISR does not run; however the ISR can interrupt
the communication in any instant, provoking partially data losses. In the RTOS
architecture, data collection and transfer to the Host is usually executed by a low-
priority process, which is interrupted by the scheduler when a real-time process
has to be executed; obviously, data losses can occur in this case too. Actually this
low-priority process can be a web server, and it can manage queries coming from
clients all over the net.

The data transfer at the end of the test, according to the second technique, makes
possible a correct reconstruction of all signals. This job is not particularly expensive
in terms of CPU time for the real-time systems; the Task which manages data storage
uses the CPU for brief time intervals, and if the workload of the real-time system
is not critical, there is a high probability to complete the job in time. Unlike the
first technique, it is possible to correctly reconstruct the acquired signals, paying the
price of a retard in the data exchange with the Host, and of growing memory needs.

3 The Prototyping Environment

In this section, the software and hardware architecture of a fast prototyping environ-
ment developed at the Robotic Laboratory of Politecnico di Torino will be described.
It relies on a round-robin with Interrupt architecture and is implemented on a DSP
based controller, managed through a Matlab toolbox running on the Host PC.

In Section 4 some experiments and results obtained with this environment will
be illustrated.

3.1 The Robotic System

The experiments were performed on a double-arm planar manipulator with revolute
vertical axis joints, sketched in Fig. 3.

Two brushless NSK Megatorque direct-drive (i.e. without gearboxes) motors
move the joints. The maximum extension of the links (L1 + L2) is about 0.7 m, the
angular limits are ±2.15 rad for both joints, and the tip height moves parallel to the
horizontal plane at a distance of 0.45 m; joint angular positions are measured by
internal resolvers.

The two motors are actuated by power drives, which take care of the various
and complex functions of these motors and look after the signals coming from the



Architectures for Rapid Prototyping of Model-Based Robot Controllers 113

x

y

q2

q1

l1

l2

x

y

q2

q1

l1

l2

Fig. 3. Diagram of the double-link planar manipulator used for testing.

resolvers. The drive communication system deals, in particular, with some of the main
features that are basic for control, such as digital input/output signals interchange,
application of analog command inputs, and decoding of position information from
sensors.

The drive cabinets contain power electronics for the PWM of the motors, and a
card devoted to transform analog signals from resolver into digital signals of shaft
encoder type, based on a 16 bit microprocessor.

The analog signals coming from the controller are interpreted as torque or veloc-
ity reference commands to be applied to the motors, according to the two available
control modes: Torque Mode and Velocity Mode. On the basis of the resolver
signals, a current loop is closed to control the torque in the first case, whereas an
additional velocity loop is added in the second mode. The default mode used to test
different types of control algorithms is the Torque mode.

The inner current loop parameters are fixed, and the actuator model can be ap-
proximated by a simple proportional gain Kvτ between the input command voltage,
Vm, and the torque τm supplied by the motor

τm = KvτVm (1)

The optional Velocity Mode is useful in emergency situations, when the user
needs to instantly arrest the manipulator motion, pushing the STOP button: a digital
input linked to the button activates the velocity control loop, imposing zero velocity
reference. The stopping phase will be executed as specified by the internal velocity
control algorithm.

The overall plant and the controller can be modelled as in the diagram of Fig. 4,
that shows how the controller receives encoders signals and gives back voltage
signals in mV, proportional to required command torques.
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Fig. 4. IMI-ODSP model.

3.2 The Control System Architecture

The original control system has been replaced by a new one, in which the components
for real-time interaction are grouped in a modular industrial standard rack.

This control system environment, called OpenDSP, has been developed by the
Mechatronics Laboratory of the Politecnico di Torino and consists of a DSP board
and a programmable input/output board. A PLD (Programmable Logic Device) on
the latter board allows configuring via software the digital and analog inputs and
outputs, and preprocessing these signals in a customized way, before they reach the
converters or the DSP. Field interfacing is obtained by means of user customizable
boards, packaged with the I/O board and the DSP board in the same rack. The real-
time control requirements are guaranteed by the presence of a link between the I/O
and the DSP boards based on a proprietary bus (called the OpenDSP bus).

The system is linked via enhanced parallel port (EPP) protocol to a desktop PC,
working as a Host, and by connections to each axis interface.

A Matlab environment with Simulink runs on the Host PC. The OpenDSP
system includes a new toolbox for Matlab called MatDSP, which allows Matlab-
code interaction with the DSP. MatDSP too has been developed by the Mechatronics
Laboratory of the Politecnico di Torino.

MatDSP makes possible, among other functions, to read and/or change any
variable processed by the DSP. For example, the parameters of a control algorithm
can be changed “on fly” in a single sampling time in order to guarantee a coherent
switch to the new configuration (synchronous mode); or different variables, at user’s
choice, can be monitored without requiring a more stringent “sample by sample”
acquisition (asynchronous mode). It is possible to monitor the real-time variables
and the drives status flags, to scope and acquire signals and make any type of
mathematical operation on them. A control algorithm written in C can be compiled,
downloaded and started/paused on the DSP.
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Simple graphic user interfaces have been built in the Matlab environment using
the GUIDE tool, to simplify testing and management of signals exchanged with the
drives. The MatDSP commands have been hidden by a logic construction, grouping
the signals in high level functions rather than using them to perform single hardware
operations.

For example, a large number of cross-controls is needed to guarantee the correct
and safe sequence of operations to enable and start the control task; this would oblige
the user to read and change several variables using the primitive statements provided
by the MatDSP toolbox. On the contrary, hiding the MatDSP commands under these
GUIs allows the user to concentrate on new experiments. An example of one of these
GUIs is shown in Fig. 5.

Fig. 5. A GUI example for the double arm manipulator supervision.

Three tools are available to the user: the first one, called IMIConsole, is a GUI
panel to perform the homing procedure, to prepare and to enable a control algorithm
chosen from a list; it is the entry point for the normal interaction with the control
system.

The second tool, called IMIExecute, is a GUI panel that allows selecting and
executing, in single or cyclic mode, a previously planned trajectory and make a home
return to the zero position. This GUI shares the same data base of IMIConsole tool
to ensure appropriate and safe operations.

The third tool, called IMIReference, does not interact with the system as it is not
related to the MatDSP toolbox, unlike the IMIConsole and the IMIExecute GUIs. It



116 B. Bona, M. Indri, and N. Smaldone

is used to generate some simple, basic reference functions, such as joint or Cartesian
point-to-point moves or circular trajectories, and save them in a MAT file.

From the IMIConsole panel it is possible to open the IMIExecute or the IMIRefer-
ence GUIs and load a Simulink model of the robot to simulate the planned trajectories
before executing them on the real plant. The user can test and change the structure
or the parameters of a control algorithm until a satisfactory response is reached.

The designer can now translate the algorithm in C code, compile and download
it using the GUIs, impose the same trajectory used in simulation, and enable the
robot to execute it. If the experiment is satisfactory the prototyping session ends,
otherwise the procedure is repeated with a refined Simulink model or with a new
control algorithm.

3.3 The OpenDSP Software Architecture

The OpenDSP real-time software relies on a round-robin with Interrupt architecture.
When the system is initialized, a main function, Main.c, calls some sub-functions
which configure the system on the basis of a group of parameters, some of which fixed
and other ones assigned by the user. Then, in an infinite loop two other sub-functions
are called in turn: the first one, called Monitor, takes care of data exchange between
the Matlab environment and the DSP; the second one, called UserBackground,
allows executing a user code at a lower priority level, which interprets and executes
the Matlab commands and interacts with the drives’ logic. Both sub-functions have
no hard-real-time requirements and can be interrupted when the periodical axis
control function, written by the user, starts.

The whole user code is divided in sections and hosted in a file on the basis of a
C written template; no automatic code generation has yet been implemented in this
prototyping system. The initial section, the UserInit, contains the code to initialize
the customizable characteristics of the system and the starting settings of axis control
functions; it is executed one time, when the code downloaded to the DSP is launched.
The variables, which must be available in the Matlab workspace, are declared and
initialized within this function.

User writes in the subsequent UserISR INT2 section the control algorithm code
and all the functions useful to close the loop: sensors reading, position reference
management and command application. UserISR INT2 is executed every control
sampling time according to the following procedure:

• a timer sends a signal for Start Of Conversion (SOC) to the input and output
converters (ADCs and DACs);

• when the conversion ends, a signal for End Of Conversion (EOC) returns, and the
DSP stops the current job, i.e., one of the Monitor or UserBackground functions;
note that a sampling time delay is inserted by the system in the model of the
plant, since the DAC uses the command computed in the previous step;

• UserISR INT2 is executed, and afterwards the DSP returns to the suspended job.

The sequence assumes that the control algorithm computation ends before the
next EOC signal, to allow the execution of portions of non real-time jobs, too.
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The template is ended by the UserBackground function, that contains the code
executed by the DSP when the Monitor and UserISR INT2 functions are inactive.
As previously said, this code interprets the commands coming from Matlab and pass
them to the DSP environment by means of the Monitor function.

To summarize, the open architecture of this system has allowed to configure five
sections of the whole structure.

• The hardware interface toward the plant, using custom electronics built on a
standard development field module to be mechanically compliant with the rack
and the stackthrough structure.

• The logical interface between DSP and field modules, managed by the PLD
firmware. Starting from a general architecture, the PLD user part is initialized
with suitable logic circuits devoted to group and convert signals from and to the
field module in registers, or to close faster loops (in microseconds).

• The data base structure of the real-time signals, built in the form of registers and
channel manageable by suitable macros in a pre-structured C header file.

• The Background routine that manages the communication between Host and
DSP, and the ISR routine to control the axes, starting from a general and strongly
organized C template.

• The asynchronous communication between Matlab user and plant by means of
a graphic user interface giving a logical and easier interpretation of the plant
functionalities.

4 Description of a Test Case: Prototyping a Model-Based
Compensation of Nonlinear Joint Friction

The model of the manipulator under study [2], [3] can be described by the following
second-order nonlinear differential equation:

M(q)q̈ + C(q, q̇)q̇ + τ f (q, q̇) = τm (2)

where q, q̇, and q̈ are the vectors of joint angles, angular velocities and angular
accelerations, M(q) is the configuration-dependent inertia matrix, including both
links and motors inertia, Cq̇ is the term containing Coriolis and centrifugal torques,
τ f is the friction torque vector, and τm is the command torque vector. No gravity
term is present, since the manipulator moves in a horizontal plane. The electrical
time-constants of the motors are not considered, as the inner current loop guarantees
that they are much faster than the mechanical ones, and that, consequently, the
relationship between the input voltage and the output torque is simply given by a
known gain Kvτ .

The determination of a proper model to describe the friction phenomena, whose
effects are modelled in τ f , and the identification of its parameters values have been
performed by a series of appropriate tests, and executed by means of an appropriate
C-based DSP code, developed within fixed templates. In particular, two different
procedures have been applied to perform two different kinds of tests:
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• open-loop tests (to estimate stiction and friction at high velocity), with the joints
free to rotate;

• closed-loop tests (to estimate static friction at low velocity, and dynamic friction
in the presliding phase), with the manipulator in the controlled configuration.

In particular, starting from the acquired joint position samples and the corre-
sponding velocity values, computed using a simple digital filter, the friction torques
have been indirectly derived by considering:

• in the open-loop tests:

τm,k = τ f,k (3)

where τm,k and τ f,k are the k-th samples of the applied motor torques and of
the joint friction torques, respectively;

• in the closed-loop tests at low velocity:

τ f (q̇) + τ err = τm −M(q)q̈ −C(q, q̇) (4)

from the manipulator dynamic equation (2), where τ err is a torque vector that
represents all modelling errors and measurement disturbances; such a term has
been disregarded, repeating several times the same motion and filtering the
measured data to extract the mean values.

Stiction (i.e. friction at zero velocity) has been estimated by tests in which each
joint is set in a definite angular position, the drive is set in Torque Mode, and minimal
torque increments are supplied in both clockwise (CW) and counterclockwise (CCW)
directions. No joint motion is noticeable until the command torque reaches the
maximum static friction value. When the joint starts to rotate, the current torque value
is registered, and the procedure is repeated for various starting angular positions, to
test the stiction dependency on the angular position of the joint.

Tests are executed by means of a DSP code based on a fixed template, modified
just in the section relative to the control function, the UserISR INT2. The command
torque increments are supplied in open loop, directly from the user.

The test is executed in the Matlab environment using the IMIConsole GUI
to compile and download the real-time code and to enable the axis drives; run-
time changes of the command torque reference are allowed by the commands
MatDSPvariable(VarName, NewValue) and MatDSPupdate. In partic-
ular, the last command lets all the real-time variables, modified by the user with the
command MatDSPvariable, be refreshed in the same sampling time.

Finally, the mean stiction value is computed and used as the estimated stiction
value.

The contribution of viscous friction at high velocity has been evaluated letting the
joints rotate freely, and using the Torque Mode functionality to achieve a situation of
dynamic equilibrium at constant velocity, in which the inertial torque is zero, and the
friction torque can be assumed to be approximately equal to the command torque.

The DSP code necessary for these experiments is the same used to evaluate
stiction, with the addition of the position measurement by means of the macro
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IOGP_FU1_READ_ENC_CURRENT(Channel) and the acquisition data com-
mand, Acquire(), at the end of function UserISR INT2.

This functionality offered by the system is configurable at run-time by the Matlab
command MatDSPAcquireConfig(params), choosing: i) which data are to
be acquired, ii) data decimation parameters, and iii) the acquisition time interval. It is
not an invasive operation for the control function, i.e., it does not cause the violation
of the sampling time, because it is executed entirely in the DSP environment to
avoid a slow data exchange with the PC. The Monitor function returns acquired
data to Matlab environment, without real-time constraints, when the user invokes the
commandMatDSPAcquireLoad(). In the considered case, angular joint position
values are acquired for each torque increment. A waiting time interval allows the
end of the acceleration fluctuations, after which a two seconds acquisition is started.
Angular velocity data are computed from the measured positions, for each joint and
for each rotation direction, and for every velocity sample the corresponding friction
torque is assumed equal to the command torque τm. The velocity data obtained
have a lower bound value of about 2 rad/s, due to the sudden transition from stop to
motion and viceversa.

Joint friction at low velocity has been then investigated by an experimental
session performed with the manipulator in the controlled configuration. A simple PD
control law is used to assign to each joint the position/velocity profile defined by the
user, to properly collect data for the estimation of static friction at low velocity, and
dynamic friction in the presliding phase. More code is added at the UserISR INT2 to
supply a micro-interpolation mechanism for the user profile, together with a section
devoted to the position data processing needed by the PD algorithm. The IMIExecute
GUI is used, together with the IMIConsole, to transfer the reference position vector
to the DSP running code, which interpolates and executes the movement. The user
provides the reference vector and the data acquisition request by means of the
IMIExecute, and then, after a pre-positioning phase, the task is executed and a MAT
file containing the acquired data is saved in a predefined directory.

On the basis of the acquired data, the well-known LuGre model [6], [11] has been
considered to represent the friction torques on each joint of the manipulator. Such a
model includes both a steady-state (static) friction curve, and the dynamic friction
behavior during the presliding phase by means of a “bristle” model, according to the
following equations:

dzi

dt
= q̇i − |q̇i|

gi(q̇i)
σ0,izi (5)

τf,i = σ0,izi + σ1,i
dzi

dt
+ fi(q̇i) (6)

where zi is a state variable representing the average bristle deflection for joint i,
σ0,i and σ1,i are model parameters that are assumed to be constant, and functions
gi(q̇i) and fi(q̇i) model the Stribeck effect and the viscous friction, respectively. For
constant velocity, the steady-state friction torque is then given by:

τf,iss = gi(q̇i) sgn(q̇i) + fi(q̇i) (7)
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Among the different parameterizations that can be used to describe gi(q̇i) and fi(q̇i),
the following ones have been chosen because they fit well the acquired data:

gi(q̇i) = α0,i + α1,ie
− q̇i

q̇s1,i
sgn(q̇i)

+α2,i

(
1− e−

q̇i
q̇s2,i

sgn(q̇i)
)

(8)

f(q̇i) = α3,iq̇i + α4,iq̇
2
i (9)

The static parameters in (8) and (9) (i.e., the four αk,i’s for each joint, together
with q̇s1,i and q̇s2,i), have been estimated by considering tentative values between
0.1 and 0.3 rad/s for the exponential parameters q̇s1,i and q̇s2,i (on the basis of the
acquired data), and applying a least square algorithm to a linearized expression of
(7)-(9) to estimate the α’s parameters for each joint. By some iterations, the values
reported in Table 1 have been obtained.

Joint 1 Joint 1 Joint 2 Joint 2
ω > 0 ω < 0 ω > 0 ω < 0

α0 40.854 −46.473 17.837 3.408
α1 −32.454 53.873 −14.837 −0.408
α2 −31.233 55.738 −14.998 −0.635
α3 −0.760 −0.293 −0.156 −0.104
α4 −0.262 0.177 −0.050 0.036
q̇s1 0.19 0.14 0.2 0.3
q̇s2 0.17 0.15 0.19 0.1

Figure 6 shows the resulting steady-state friction torque together with the ac-
quired data for the first joint (for positive and negative velocities). Similar results
have been obtained for the second joint.

Fig. 6. Friction torque (Nm) on joint 1 for positive and negative velocities (rad/s).

Table 1. Estimated static parameters of the LuGre friction model.
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Following a procedure similar to the one proposed in [5], under some pre-sliding
assumptions, the dynamic friction parameters σ0,i and σ1,i have been estimated,
computing zi by integrating equation (5) from joint position measures, acquired
during an appropriate motion of each joint. In particular, a slowly growing torque
ramp has been applied to each joint to estimate σ0,i, and a torque step to estimate σ1,i

(see [5] for details). A good approximation of such parameters could be obtained
only starting from high precision joint position measurements. Since in our case the
encoder signal is decoded with a resolution of only 2π/76800 rad, a subsequent
model validation phase has been performed, by comparing the real robot behavior
with the results of some simulation tests, carried out by a Simulink model, which
can be directly run from the IMIConsole GUI. Some adjustments of the estimated
values of the dynamic friction parameters have been allowed by this procedure, but
some additional investigation will be necessary. The currently estimated values are
reported in Table 2.

Joint 1 Joint 1 Joint 2 Joint 2
ω > 0 ω < 0 ω > 0 ω < 0

σ0 55500 26000 12600 12600
σ1 1000 800 70 70

Preliminary tests have been performed to evaluate the improvements that can
be obtained from the control point of view by friction compensation. The applied
inverse dynamic control scheme, including only static friction compensation (as
the currently available dynamic friction estimation is not yet satisfactory), is of the
following type:

τm = M(q)(q̈r − vc) + C(q, q̇)q̇ + τ̂ f (q̇) (10)

where q̈r is the joint acceleration reference vector, τ̂ f (q̇) is the estimated friction
torque vector, and a PD control algorithm has been considered to define the outer
loop law vc. The corresponding DSP code is very similar to the one used in the low
velocity friction estimation tests; sub-sections, containing the robot inverse dynamics
and an high-order polynomial function, approximating the estimated static friction
model, have been simply added within the UserISR INT2.

Figure 7 shows the time history of the resulting position error of the first joint,
for a circular Cartesian reference trajectory, defined by means of the IMIReference
GUI, when τ̂ f (q̇) = 0 is considered, i.e. without any friction compensation, and
when τ̂ f (q̇) corresponds to the estimated steady-state friction curve. As Figure 7
shows, even though only static friction has been compensated, a significant error
reduction has been obtained; similar results have been achieved for the second joint,
too.

Table 2. Estimated dynamic parameters of the LuGre friction model.
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Fig. 7. Inverse dynamic control without and with friction compensation: position error on
joint 1.

5 Conclusion

Rapid prototyping systems are used to speed up the development of a final product.
In industrial robotics these systems have real-time requirements fulfilled by means
of architectures which allow the designer to concentrate his work on the prototype
development.

At the Politecnico di Torino a solution based on the well known round-robin
with Interrupt software architecture, the OpenDSP system, has been proposed. The
hardware architecture is based on a Host-Target solution, with the Host running
Matlab and a dedicated toolbox to manage the Target DSP board.

Some experiments devoted to model and control the friction phenomena have
been presented, demonstrating a right tradeoff between usability and efficiency of
the OpenDSP system.

In perspective, an advanced prototyping architecture based on standard real-time
operating systems will be investigated and implemented, aimed at providing an ex-
tended environment, with increased interaction capabilities between data acquisition,
model analysis and control design.

Particular attention will be devoted to integrate discrete state/event transitions and
continuous control, extended use of graphical modelling (under Simulink), automatic
code generation, vision and force sensors integration. From this point of view an
interesting real-time operating system is Linux with RTAI patch. RTAI (Real-Time
Application Interfaces) [15] provides Linux with real-time features (appropriate
syscalls, RT scheduling, reduced latency, etc.) and allows, in its present development
state, the automatic code generation from Matlab Real-Time Workshop.
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Abstract. The use of visual sensors may have high impact in applications where it is required
to measure the pose (position and orientation) and the visual features of objects moving in
unstructured environments. In robotics, the measurements provided by video cameras can be
directly used to perform closed-loop control of the robot end-effector pose. In this chapter
the problem of real-time estimation of the position and orientation of a moving object using
a fixed stereo camera system is considered. An approach based on the use of the Extended
Kalman Filter (EKF) combined with a 3D representation of the objects geometry based on
Binary Space Partition (BSP) trees is illustrated. The performance of the proposed visual
tracking algorithm is experimentally tested in the case of an object moving in the visible
space of a fixed stereo camera system.

1 Introduction

In the last decade, research on visual sensing has received a new impulse because
digital signal processing hardware with high computational capability is becoming
available at low cost. In fact, visual sensors offer the possibility to extract a great
variety of information from a scene in a noninvasive manner. This information can
be used by automatic systems either at high level, e.g., for inspection, recognition
and planning tasks, and at low-level, e.g., for autonomous guidance of vehicles,
real-time control in scarcely structured environments.

In robotics, the measurements provided by video cameras can be directly used
to perform closed-loop position/orientation control of the robot end effector, usually
denoted as visual servoing control [11]. In this framework, two different approaches
have been developed. The first approach is the position-based visual servoing, which
defines the tracking error in the Euclidean space and requires the estimation of the
position and orientation of a target object with respect to a reference frame [27]. The
second approach is the image-based visual servoing, which defines a tracking error
directly in the image space of the cameras, thus avoiding accurate calibration of the
vision system [5,10]. Hybrid methods using position-based visual servoing to control

B. Siciliano et al. (Eds.): Advances in Control of Articulated and Mobile Robots, STAR 10, pp. 125–151, 2004.
Springer-Verlag Berlin Heidelberg 2004



126 F. Caccavale et al.

certain degrees of freedom and image-based visual servoing to control the remaining
degrees of freedom can be adopted [7,19]. More recently, vision measurements have
been used in combination with force measurements to develop control strategies
aimed at improving the robot performance for the execution of tasks in scarcely
structured environments [2].

In the case of position-based visual servo, computationally efficient techniques
for visual tracking of the pose (position and orientation) of the target object must
be adopted. One of the major problems to cope with is represented by the noise and
disturbances affecting the visual measurements, due to temporal and spatial sampling
and quantization of the image signal, lens distortion, etc., which may produce large
pose estimation errors. The use of the Extended Kalman Filter (EKF) may improve
the accuracy and speed of the visual tracking algorithm [15,25,21,17].

In fact, Kalman filtering offers many advantages over other pose estimation
methods [1,9,28], e.g., implicit solution of photogrammetric equations with recursive
implementation, temporal filtering, ability to change the measurement set during the
operation. Moreover, the statistical properties of Kalman filter may be tuned to
those of the image measurements noise of the particular vision system. Last but not
least, the prediction capability of the filter allows setting up a dynamic windowing
technique of the image plane which may sensibly reduce image processing time.
Applications of Kalman filter in machine vision range from visual tracking of objects
with many internal degrees of freedom [20], to automatic grasp planning [13] as well
as pose and size parameters estimation of objects with partially known geometry [14].

A widely adopted strategy for object pose computation is based on the recognition
of some geometric features of the object, such as edges and corners, from a camera
image. In particular, the extraction of a suitable number of corners (feature points)
allows computing the pose by using a simple point CAD model of the object [27,13].
In principle, the accuracy of the estimate increases with the number of the available
feature points, at the expense of the computation time. However, when Kalman filter
is adopted, it has been shown that the best achievable accuracy that can be obtained
using all the available points is quite the same as that obtained using a number of
five or six feature points, if properly chosen [25].

The choice of the optimal feature points can be performed by using suitable
selection algorithms, whose complexity grows at factorial rate with the number of
the available points [6,12]. Hence, to reduce the computational burden in the presence
of a large number of feature points, it is crucial to perform a pre-selection, e.g., by
eliminating all the points that, in a given object pose, are occluded with respect to
the camera [24,8].

In this chapter, the EKF is adopted for real-time visual tracking of an object
in the Euclidean space. In order to reduce computational time, a new pre-selection
algorithm of the feature points is proposed, based on the selection of all the points
that are visible to the camera at a given sample time. This algorithm exhibits a
complexity which grows linearly, thanks to the use of Binary Space Partitioning
(BSP) tree for object geometric representation [4]. In detail, the prediction of the
object pose provided by the Kalman filter is used to drive a visit algorithm of the
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BSP tree which allows identifying all the feature points that are visible at the next
sample time. After the pre-selection, a dynamic windowing algorithm and an optimal
point selection algorithm are adopted to find the windows of the image plane to be
processed and input to the Kalman filter.

The proposed pre-selection algorithm can be used also in the case of objects
and obstacles with interposing parts. Differently from other algorithms (see [12] and
references therein), this method allows recognizing all the points of the surfaces of
the objects which are hidden to the camera or occluded by some other objects or
obstacles of known geometry [18].

The effectiveness of the proposed approach is tested in experimental case studies
where the position and orientation of an object carried by a robot manipulator is
tracked using both one fixed camera and a stereo system composed by two fixed
cameras.

The chapter is organized as follows. In Section 2 the pin-hole model of the
cameras is introduced and the photogrammetric equations are derived. The model
used for object motion and the equations of the EKF are presented in Section 3.
In Section 4 a BSP tree is derived form a CAD geometric model of an object.
Section 5 is devoted to illustrate the pre-selection algorithm and an optimal point
selection technique, based on dynamic windowing and quality indices. The whole
estimation procedure is analyzed in Section 6. Finally, the experimental set up and
the experimental tests are described in Section 7, while Section 8 presents some
concluding remarks and open problems. Details on the derivation of EKF equations
are reported in the Appendix.

2 Modelling

Consider system of n video cameras fixed with respect to a base coordinate frame
O–xyz and the pin-hole model of camera i (see Fig. 1). Let Oci–xciycizci be a frame
attached to the camera (camera frame), with the zci-axis aligned to the optical axis
and the origin in the optical center. In the following, a superscript will be used to
denote the reference frame of a variable, when different from the base frame.

For each camera, the sensor plane is parallel to the xciyci–plane at a distance
−f ci

e along the zci–axis, where f ci
e is the effective focal length of the camera lens,

which may be different from the nominal focal length f ci. The image plane is parallel
to the xciyci–plane at a distance f ci

e along the zci–axis. The intersection of the optical
axis with the image plane defines the principal optic point O′

ci, which is the origin
of the image frame O′

ci–ucivci whose axes uci and vci are taken parallel to the axes
xci and yci, respectively.

A point P with coordinates pci = [ xci yci zci ]T in the i-th camera frame
is projected onto the point of the image plane whose coordinates can be computed
with the equation[

uci

vci

]
=

f ci
e

zci

[
xci

yci

]
(1)
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Fig. 1. Reference frames for the i-th camera and the object using the pin-hole model.

which is known as perspective transformation. A spatial sampling can be applied to
the image plane by expressing the coordinates in terms of number of pixels as[

rci

cci

]
=

[
rci
0

cci
0

]
+

[
sci

u 0
0 sci

v

] [
uci

vci

]
(2)

being [ rci
0 cci

0 ]T the coordinates of the point O′
ci whereas sci

u and sci
v are the row

and column scaling factor, respectively, for the i-th camera.
Consider an object frame Oo–xoyozo attached to target object. The position and

orientation of the object frame with respect to the base frame can be expressed in
terms of the coordinate vector of the origin oo = [ xo yo zo ]T and of the rotation
matrix Ro(φo), where the components of φo = [ ϕo ϑo ψo ]T are the Roll, Pitch
and Yaw angles. The components of the vectors oo and φo are the six unknown
quantities to be estimated.

Consider m feature points of the object. The coordinate vector pci
j of the feature

point Pj (i = 1, . . . , n, j = 1, . . . ,m) can be expressed in the i-th camera frame as

pci
j = RT

ci(oo − oci + Ro(φo)p
o
j), (3)

where oci and Rci are, respectively, the position vector and the rotation matrix of
the i-th camera frame referred to the base frame, po

j is the coordinate vector of Pj

expressed in the object frame. Notice that po
j is a constant vector that is assumed to

be known, since it can be computed from a CAD model of the object or via a suitable
calibration procedure. Moreover, the quantities oci and Rci are constant, because
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each camera is assumed to be fixed to the workspace, and can be computed through
a suitable calibration procedure [26].

By folding the 3m equations (3) into the perspective transformation (1) of the
n cameras and into Eq. (2), a system of 2mn nonlinear equations is achieved. The
equations depend on the measurements of the m feature points in the image plane of
each cameras, while the six components of the vectors oo and φo are the unknown
variables. To solve these equations at least six independent equations are required.

The computation of the solution is nontrivial and for visual servoing applica-
tions it has to be repeated at a high sampling rate. The recursive Kalman filter
provides a computationally tractable solution, which can also incorporate redundant
measurement information.

3 Kalman Filtering

In order to estimate the pose of the object, a discrete time state space dynamic model
has to be considered, describing the object motion. The state vector of the dynamic
model is chosen as the (12× 1) vector

w = [ xo ẋo yo ẏo zo żo ϕo ϕ̇o ϑo ϑ̇o ψo ψ̇o ]T. (4)

For simplicity, the object velocity is assumed to be constant over one sample period
T . This approximation is reasonable in the hypothesis that T is sufficiently small. The
corresponding dynamic modelling error can be considered as an input disturbance
γ described by zero mean Gaussian noise with covariance given by the (12 × 12)
matrix Q. The discrete time dynamic model can be written as

wk = Awk−1 + γk (5)

where A is a (12× 12) block diagonal matrix of the form

A = diag
{[

1 T
0 1

]
, · · · ,

[
1 T
0 1

]}
.

The output of the Kalman filter, for each camera, is the vector of the normalized
coordinates of the m feature points in the image plane of the camera

ζk =
[

uc1
1

f c1
e

vc1
1

f c1
e

. . .
ucn

1

fcn
e

vcn
1

fcn
e

. . .
uc1

m

fc1
e

vc1
m

f c1
e

. . .
ucn

m

f cn
e

vcn
m

f cn
e

]T

k

. (6)

In view of (1), the corresponding output model can be written in the form

ζk = g(wk) + νk (7)

where νk is the measurement noise, which is assumed to be zero mean Gaussian
noise with covariance given by the (2m× 2m) matrix R, and the function g(wk) is

g(wk) =
[

xc1
1

zc1
1

yc1
1

zc1
1

. . .
xcn

1

zcn
1

ycn
1

zcn
1

. . .
xc1

m

zc1
m

yc1
m

zc1
m

. . .
xcn

m

zcn
m

ycn
m

zcn
m

]T

k

. (8)
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The coordinates of the feature points pci
j in (8) are computed from the state vector

wk via (3). Matrix R can be evaluated during the camera calibration procedure or
by means of specific experiments.

Since the output model is nonlinear in the system state, it is required to linearize
the output equations about the current state estimate at each sample time. This leads
to the so-called Extended Kalman Filter (EKF).

The first step of the EKF algorithm provides an optimal estimate of the state at
the next sample time according to the recursive equations

ŵk,k−1 = Aŵk−1,k−1 (9)

P k,k−1 = AP k−1,k−1A
T + Qk−1, (10)

where P k,k−1 is the (12×12) covariance matrix of the estimate state error. The sec-
ond step improves the previous estimate by using the input measurements according
to the equations

ŵk,k = ŵk,k−1 + Kk(ζk − g(ŵk,k−1)) (11)

P k,k = P k,k−1 −KkCkP k,k−1, (12)

where Kk is the (12× 2m) Kalman matrix gain

Kk = P k,k−1C
T
k (Rk + CkP k,k−1C

T
k )−1, (13)

being Ck the (2m× 12) Jacobian matrix of the output function

Ck =
∂g(w)

∂w

∣∣∣∣
w=ŵk,k−1

. (14)

The analytic expression of Ck can be found in the Appendix.

4 BSP Tree Geometric Modelling

The accuracy of the estimate provided by the Kalman filter depends on the number
of the available feature points. Inclusion of extra points will improve the estimation
accuracy but will increase the computational cost. It has been shown that a number
of five or six feature points, if properly chosen, may represent a good trade-off [25].
Selection algorithms have been developed to find the optimal feature points [12].
In order to increase the efficiency of the selection algorithms, it is advisable to
perform a pre-selection of the points that are visible to the camera at a given sample
time. The pre-selection technique proposed in this chapter is based on Binary Space
Partitioning (BSP) trees.

A BSP tree is a data structure representing a recursive and hierarchical partition
of a n-dimensional space into convex subspaces. It can be effectively adopted to
represent the 3D CAD geometry of an object [22].

In order to build the tree, each object has to be modelled as a set of planar
polygons; this means that the curved surfaces have to be approximated. Each polygon
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Fig. 2. Object and corresponding polygons.

is characterized by a set of feature points (the vertices of the polygon) and by the
vector normal to the plane leaving from the object. For each node of the tree, a
partition plane, characterized by its normal vector and a point, is chosen according
to a specific criterion; the node is defined as the set containing the partition plane
and all the polygons lying on it. The choice of the partition planes depends on
how the tree will be used. For the purpose of removing the hidden surfaces, it
is necessary to choose the partition planes in the set of the planes containing the
polygons corresponding to the object surfaces.

The first node of the tree can be arbitrarily chosen. Different choices determine
different trees. For the application considered here, the structure of the tree is not
important because the visit algorithm must consider all the nodes.

Each node is the root of two subtrees: the front subtree corresponding to the
subset of all the polygons lying entirely on the front side of the partition plane (i.e.
the side corresponding to the half-space containing the normal vector), and the back
subtree corresponding to the subset of all the polygons lying entirely on the back
side of the partition plane.

The construction procedure can be applied recursively to the two subsets by
choosing, for each node, a new partition plane among those corresponding to the
polygons contained in that subtree.

If a polygon intersects the partition plane, it can be split into two or more pieces
and the resulting parts are added to the corresponding subsets.

The construction ends when all the polygons and their parts are placed in a node
of the tree.

As an example, consider the object represented in Fig. 2, which contains ten
polygons. A possible BSP tree representation of the object is reported in Fig. 3, which
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Fig. 3. BSP tree of the object.

has been obtained considering as root node the partition plane containing polygon
number 10. A partition plane is represented by the vector π = [ a b  c d ]T of
the coefficients of the equation of the plane with respect to a base reference frame

ax + by + cz + d = 0,

where n = [ a  b  c  ]T is the unit vector normal to the plane. The root of the tree
contains the polygon number 10; the front subtree is empty while the back subtree
contains all the remaining polygons. The partition plane of the back subtree contains
the polygon number 1; the front subtree is empty while the back subtree contains the
polygons from number 2 to number 9. The construction ends when all the polygons
are added to the nodes of the tree. Remarkably, the partition plane containing the
polygon number 2 cuts polygons number 5 and 7 (notice that polygons number 9 and
10, which also intersect the partition plane, were already added to previous nodes of
the tree), and thus they have been split into two pieces each (see polygons number
5f, 5b, 7f, 7b in Fig. 4).

In most cases, however, it is possible to choose the partition planes so that
splitting of polygons is avoided. In this way the construction process of the tree and
the visit algorithm are faster. This solution has to be preferred when the BSP tree
must be built on line [18].
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5 Features Selection

5.1 Pre-Selection Algorithm

Once a BSP tree representation of an object is available, it is possible to select
the feature points of the object that are visible from a given camera position and
orientation, by implementing a suitable visit algorithm of the tree. The algorithm
can be applied recursively to all the nodes of the tree, starting from the root node as
showed in Fig. 5, by updating a current set of visible feature points as follows.

For the current node, classify the camera position with respect to the current
partition plane: Front side, Back side, On the plane. Hence:

• Front: Visit the back subtree; process the node; visit the front subtree.
• Back: Visit the front subtree; process the node; visit the back subtree.
• On: Visit the front subtree; visit the back subtree.

When the algorithm processes a node, the current set of projections of the visible
feature points on the image plane is updated by adding all the projections of the
feature points of the polygons of the current node and eliminating all the projections
of the feature points that are hidden by the projections of the polygons of the current
node.

If a polygon is hidden from the camera (i.e., the angle between the normal vector
to the polygon and the camera z-axis is not in the interval ]  − π/2, π/2[ or the
polygon is behind the camera), the corresponding feature points are not added to the
set.

At the end of the visit, the current set will contain all the projections of the feature
points visible from the camera, while all the hidden feature points will be discarded.
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Fig. 5. Recursive visit algorithm of the BSP tree for the selection of visible feature points.

Notice that the visit algorithm updates the set by ordering the polygons with respect
to the camera from the background to the foreground.

With reference to the BSP tree of Fig. 3, assuming that the camera is placed as
the observer of the image in Fig. 4, the sequence of the processed nodes is: 10, 8,
7b, 4, 5b, 3, 2, 7f, 6, 5f, 9, 1, where the polygons number 10, 8, 7b, 3, 7f turn out to
be hidden at the same time and will not be processed.

The technique described above can be suitably exploited to set up a real-time
pre-selection algorithm of the feature points on the camera image plane, using the
prediction of the estimated pose of the target object provided by the Kalman filter.

5.2 Selection Algorithm

The pre-selection technique recognizes all the feature points that are visible from
a camera view point. However, this does not ensure that all the visible points are
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Fig. 6. Examples of significant situations during windowing test

“well” localizable, i.e., their positions can be effectively measured with a given
accuracy. For instance, some points could be out of the field of view of the camera,
or they could be too close to each other to guarantee absence of ambiguity in the
localization. Moreover, the number of the well localizable feature points may be
larger than the optimal number of points ensuring the best pose estimation accuracy.

In the following, a windowing test is adopted to select the projections of the
feature points that can be well localized. Then, a selection algorithm is used to
choose an optimal subset of points to be considered for feature extraction.

Windowing test The measurements of the coordinates of the projections of the
feature points are obtained by considering suitable rectangular windows of the
image plane to be grabbed and processed. Each window must contain one feature
point. The windows are centered on the positions of the feature points on the image
plane so as predicted by the Kalman filter. Their semi-dimensions are dynamically
chosen in the interval [Wrmin,Wrmax] for the base (the side parallel to the row’s
direction) and in the interval [Wcmin,Wcmax] for the height (the side parallel to
the column’s direction). The minimum values are set so as to achieve a prescribed
accuracy and robustness in the feature extraction, while the maximum values are set
on the basis of the available memory and processing time.

A windowing test can be set up to select all the projections of the feature points
that can be “well” localized.

First, all the points that are out of the field of view of the camera, or too close
to the boundaries of the image plane, are discarded. This is achieved by eliminating
all the points whose projections, so as predicted by the Kalman filter, are out of a
central window of the image plane. The central window is obtained by reducing the
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height (base) of the whole image plane of the quantity Wrmin (Wcmin) from each
side, as shown in Fig. 6.

Then, all the feature points that are too close to each other are discarded. This
happens when the estimated distance between the projections of two or more points
is lower than Sf ·Wrmin (Sf ·Wcmin) along the row’s (column’s) direction; Sf > 1
is a suitable security factor.

All the remaining points are “well” localizable; the effective dimensions of the
corresponding windows are dynamically adapted to the maximum allowable semi-
dimension, so as to guarantee an assigned security distance from the other points
and from the boundaries of the image plane (see Fig. 6).

Optimal feature points selection The number of feature points after pre-selection
and windowing test is typically too high with respect to the minimum number
sufficient to achieve the best Kalman filter precision. It has been demonstrated that
an optimal set of five or six feature points guarantees about the same precision as
that of the case when an higher number of feature points is considered [27,25].

The optimality of a set Γ of feature points is valued through the composition of
suitably selected quality indexes into an optimal cost function. The quality indexes
must be able to provide accuracy, robustness and to minimize the oscillations in the
pose estimation variables. To achieve this goal it is necessary to ensure an optimal
spatial distribution of the projections of the feature points on the image plan and to
avoid chattering events between different optimal subsets of feature points chosen
during the object motion. Moreover, in order to exploit the potentialities of a multi-
camera system, it is important to achieve an optimal distribution of the feature points
among the different cameras.

Without loss of generality, the case of two identical cameras is considered.
A first quality index is the measure of spatial distribution of the predicted pro-

jections on the image planes of a subset of qi selected points for the i-th camera,
i = 1, 2:

Qsi =
1
qi

qi∑
k=1

min
j ∈ {1, . . . , qi}

j -= k

∥∥pj − pk

∥∥ .

Notice that q = q1 + q2 is chosen between 6 and 8 to handle fault cases.
A second quality index is the measure of angular distribution of the predicted

projections on the image planes of a subset of qi selected points for the i-th camera,
i = 1, 2:

Qai = 1−
qi∑

k=1

∣∣∣∣αk

2π
− 1

qi

∣∣∣∣
where αk is the angle between the vector pk+1−pCi and the vector pk−pCi, being
pCi the central gravity point of the whole subset of feature points, and the qi points
of the subset are considered in a counter-clockwise ordered sequence with respect
to pCi, with pqi+1 = p1.
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In order to avoid chattering phenomena, the following quality index, which
introduces hysteresis effects on the change of the optimal combination of points, is
considered for the i-th camera, i = 1, 2:

Qh =
{

1 + ε if Γ = Γopt

1 otherwise

where ε is a positive constant and Γopt is the optimal set of feature points at the
previous sample time.

In order to distribute the points among the two cameras, the following indexes
are considered:

Qe = 1 +
2
q

(
2
q
− 1

) ∣∣∣q1 − q

2

∣∣∣
Qd =

q1/d1 + q2/d2

q/ min{d1, d2}
where qi is the number of points assigned to the i-th camera, and di is the distance of

the i-th camera form the object, i = 1, 2. The first index ensures an equal distribution
of points among the cameras. The second index takes into account the distance of
the cameras from the object, and thus allows managing different resolution zones of
different cameras.

The proposed quality indexes represent only some of the possible choices, but
guarantee satisfactory performance when used with the pre-selection method and the
windowing test presented above, for the case of two fixed cameras. Other examples
of quality indexes have been proposed [12], and some of them can be added to the
indexes adopted here.

The cost function is chosen as

Q = Qh
QeQd

q

(
q1Qs1Qa1 + q2Qs2Qa2

)
and must be evaluated for all the possible combinations of the visible points on q
positions. In order to determine the optimal set at each sample time, the initial optimal
combination of points is first evaluated off line. Then, only the combinations that
modify at most one point for camera with respect to the current optimal combination
are tested on line, thus achieving a considerable reduction of processing time.

It should be pointed out that, in some cases, the number of points resulting at the
end of the pre-selection step may bee too high to perform the optimal selection in
a reasonable time. In such a cases, a computational cheaper solution, based on the
optimal set at the previous time-step, can be adopted to find a sub-optimal set. For
sufficiently small sampling time, the sub-optimal solution is very close or coincides
with the optimal one.
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Fig. 7. Functional chart of the estimation procedure.

6 Estimation Procedure

A functional chart of the estimation procedure is reported in Fig. 7. It is assumed
that a BSP tree representation of the object is built off-line from the CAD model.
A Kalman filter is used to estimate the corresponding pose with respect to the base
frame at the next sample time. The feature points selection and windows placing
operation can be detailed as follows.

• Step 1: The visit algorithm described in the previous section is applied to the
BSP tree of the object to find the set of all the feature points that are visible from
the camera.

• Step 2: The resulting set of visible points is input to the algorithm for the
selection of the optimal feature points.

• Step 3: The location of the optimal feature points in the image plane at the next
sample time is computed on the basis of the object pose estimation provided by
the Kalman filter.

• Step 4: A dynamic windowing algorithm is executed to select the parts of the
image plane to be input to the feature extraction algorithm.

At this point, all the image windows of the optimal selected points are elaborated
using a feature extraction algorithm. The computed coordinates of the points in the
image plane are input to the Kalman filter which provides the estimate of the actual
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Fig. 8. Robot COMAU SMART3-S and SONY 8500CE cameras.

object pose and the predicted pose at the next sample time used by the pre-selection
algorithm.

Notice that the procedure described above can be extended to the case of multiple
objects moving among obstacles of known geometry [18]; if the obstacles are moving
with respect to the base frame, the corresponding motion variables can be estimated
using Kalman filters.

7 Experiments

7.1 Experimental Set-Up

The experimental set-up is composed by a PC with Pentium IV 1.7GHz processor
equipped with two MATROX Genesis boards, two SONY 8500CE B/W cameras,
and a COMAU SMART3-S robot (see Fig 8). The MATROX boards are used as
frame grabber and for a partial image processing (e.g., windows extraction from the
image). The PC host is also used to realize the whole BSP structures management,
the pre-selection algorithm, windows processing, the selection algorithm and the
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Kalman filtering. Some steps of image processing have been parallelized on the
MATROX boards and on the PC, so as to reduce computational time. The robot is
used to move an object in the visual space of the camera; thus the object position
and orientation with respect to the base frame of the robot can be computed from
joint position measurements via the direct kinematic equation. In order to test the
accuracy of the estimation provided by the Kalman filter, the cameras were calibrated
with respect to the base frame of the robot using the calibration procedure presented
in [26], where the robot is exploited to place a calibration pattern in some known
pose of the visible space of the cameras. The cameras resolution is 576× 763 pixels
and the nominal focal length of the lenses is 16 mm, while the calibration parameters
for the two cameras are shown in Table 1. Notice that the parameters resulting from
the calibration procedure are slightly different for the two cameras, although their
nominal values are equal.

Table 1. Calibration parameters resulting from the calibration procedure.

Vector φci contains the Roll, Pitch and Yaw angles of the i-th camera frame
with respect to the base frame corresponding to the matrix Rci, while the vector
d = [ g1 g2 g3 g4 d1 ]T contains the parameters used for compensating the distortion
effects due to the imperfections of the lens profile and the alignment error of the
optical system, as described in [26]. The estimated value of the residual mean
triangulation error for the stereo camera system is 1.53 mm. The sampling time
used for estimation is limited by the camera frame rate, which is about 26 fps. No
particular illumination equipment has been used to test the robustness of the setup
in the case of noisy visual measurements.

All the algorithms for BSP structure management, image processing and pose
estimation have been implemented in ANSI C. The image features are the corners
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Fig. 9. Image seen by the camera with the windows selected for feature extraction. A point
close to the center of each window marks the measured position of the corresponding feature
point.

of the object, which can be extracted with high robustness in various environmental
conditions. The feature extraction algorithm is based on Canny’s method for edge
detection [3] and on a simple custom implementation of a corner detector. In partic-
ular, to locate the position of a corner in a small window, all the straight segments are
searched first, using an LSQ interpolator algorithm; then all the intersection points
of these segments into the window are evaluated. The intersection points closer than
a given threshold are considered as a unique average corner, due to the image noise.
All the corners that are at a distance from the center of the window (which corre-
sponds to the position of the corner so as predicted by the Kalman filter) greater than
a maximum distance, are considered as fault measurements and are discarded. The
maximum distance corresponds to the variance of the distance between the measured
corner positions and those predicted by the Kalman filter.

The object used in the experiment is shown in Fig. 9, so as seen from the camera
during the motion, as well as in Fig. 8, where the whole experimental setup is
presented. The coordinates of the 40 vertices of the object, used as feature points,
are reported in Table 2.

7.2 Experimental Results Using One Camera

Two different experiments have been realized for this case study. The first experiment
reflects a favorable situation where the object moves in the visible space of the camera
and most of the feature points that are visible at the initial time remain visible during
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o o o o o o# x z #y x y z

0 0.100 0.100 0 000 20 0 070 0 039 0 092-. . . .
1 0.100 0.100 0 000 21 0 070 0 070 0 092- -. . . .
2 0.100 0.100 0 000 22 0 029 -0 070 0 092- - . . . .
3 0.100 0.100 0 000 23 0 029 -0 039 0 092- . . . .
4 0.100 0.100 0 051 24 0 029 -0 038 0 051-. . . .
5 0.100 0.100 0 051 25 0 029 -0 069 0 051- -. . . .
6 0.100 0.100 0 051 26 0 070 0 070 0 051- - - -. . . .
7 0.100 0.100 0 051 27 0 070 0 039 0 051- - -. . . .
8 0 070 0 069 0 051 28 0 029 -0 038 0 092-. . . . . .
9 0 070 0 038 0 051 29 0 029 -0 069 0 092-. . . . . .

10 0 029 0 038 0 051 30 0 070 0 070 0 092- -. . . . . .
11 0 029 0 069 0 051 31 0 070 0 039 0 092- -. . . . . .
12 0 070 0 069 0 092 32 0 028 0 069 0 051-. . . . . .
13 0 070 0 038 0 092 33 0 028 0 038 0 051-. . . . . .
14 0 029 0 038 0 092 34 0 069 0 039 0 051-. . . . . .
15 0 029 0 069 0 092 35 0 069 0 069 0 051-. . . . . .
16 0 070 0 039 0 051 36 0 028 0 069 0 092- -. . . . . .
17 0 070 0 070 0 051 37 0 028 0 038 0 092- -. . . . . .
18 0 029 -0 070 0 051 38 0 069 0 039 0 092-. . . . . .
19 0 029 -0 039 0 051 39 0 069 0 069 0 092-. . . . . .

Table 2. Feature points coordinates with respect to the object frame, expressed in meters.

all the motion. The second experiment reflects an unfortunate situation where the
set of the visible points is very variable, and a large part of the object goes out of the
visible space of the camera during the motion.

The time history of the trajectory used for the first experiment is represented in
Fig. 10. The maximum linear velocity is about 3 cm/s and the maximum angular
velocity is about 3 deg/s.

The time history of the estimation errors is shown in Fig. 11. Noticeably, the
accuracy of the system reaches the limit allowed by camera calibration, for all
the components of the motion. As it was expected, the errors for some motion
components are larger than others because only 2D information is available in a
single camera system. In particular, the estimation accuracy is lower along zc axis
for the position, and about xc and yc axis for the orientation. Considering that in the
experiment the zc axis is almost aligned and opposed to the y axis of the base frame,
the estimation errors are larger for the y component of the position, as well as the
roll and yaw components of the orientation.

In Fig. 12 the output of the whole selection algorithm is reported. For each of
the 40 feature points, two horizontal lines are considered: a point of the bottom
line indicates that the feature point was classified as visible by the pre-selection
algorithm at a particular sample time; a point of the top line indicates that the visible
feature point was chosen by the selection algorithm. Notice that 8 feature points are
selected at each sample time, in order to guarantee at least five or six measurements
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Fig. 10. Object trajectory with respect to the base frame used in the first experiment: position
trajectory (left); orientation trajectory (right).
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Fig. 11. Time history of the estimation errors in the first experiment: position errors (top);
orientation errors (bottom).

in the case of fault of the extraction algorithm for some of the points. Also, some
feature points are hidden during all the motion, while point number1 is only visible
over some time intervals. Finally, no chattering phenomena are present.
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Fig. 12. Visible points and selected points in the first experiment. For each point, the bottom
line indicates when it is visible, the top line indicates when it is selected for feature extraction.
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Fig. 13. Object trajectory with respect to the base frame used in the second experiment:
position trajectory (left); orientation trajectory (right).

The time history of the trajectory used for the second experiment is represented
in Fig. 13. The maximum linear velocity is about 2 cm/s and the maximum angular
velocity is about 7 deg/s.
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Fig. 14. Time history of the estimation errors in the second experiment: position errors (top);
orientation errors (bottom).
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Fig. 15. Visible and selected points for the second experiment. For each point, the bottom line
indicates when it is visible, the top line indicates when it is selected for feature extraction.

The time history of the estimation error is shown in Fig. 14. It can be observed
that the error remains low but is greater than the estimation error of the previous
experiment. This is due to the fact that from t = 10 s to t = 60 s the object moves so
that it is partially out of the visible space of the camera; also, it rotates in such a way
that a side remains almost parallel to the image plane. In this situation, just a few
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Fig. 16. Time history of the estimation errors in the case of two cameras: position errors (top);
orientation errors (bottom).

feature points are visible; in addition, their projections on the image plane tend to be
close or aligned so that the points that can be well localizable is further reduced and/or
the spatial and angular distribution of the selected points is not optimal. This fact
penalizes the estimation accuracy and explains how the magnitude of the estimation
error components is one order greater than in the previous experiment, especially
for the y component for the position error and the“roll” and “yaw” components of
the orientation errors. The corresponding output of the pre-selection and selection
algorithms are reported in Fig. 15. It should be pointed out that the pre-selection
and selection algorithm are able to provide the optimal set of points independently
from the operating condition, although slight chattering phenomena appear in some
situation where the elements in set of localizable points is rapidly changing.

7.3 Experimental Results Using Two Cameras

The trajectory used for the experiment in the case of two cameras is the same rep-
resented in Fig. 10. The time history of the estimation errors is shown in Fig. 16.
Noticeably, the accuracy of the system reaches the limit allowed by cameras cali-
bration, for all the components of the motion, when the object does not move (about
5 · 10−3 m for the position and about 1 deg for the orientation); during the motion
the tracking errors grow but remain limited. As it was expected, the errors for the
motion components are of the same order of magnitude, thanks to the use of a stereo
camera system.

In Fig. 17 the output of the whole selection algorithm, for the two cameras, is
reported. For each of the 40 feature points, two horizontal lines are considered: a
point of the bottom line indicates that the feature point was classified as visible by the
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Fig. 17. Visible and selected points for Camera 1 (top) and Camera 2 (bottom), in the case of
two cameras. For each point, the bottom line indicates when it is visible, the top line indicates
when it is selected for feature extraction.

pre-selection algorithm at a particular sample time; a point of the top line indicates
that the visible feature point was chosen by the selection algorithm. Notice that 8
feature points are selected at each sample time in order to guarantee at least five or
six measurements in the case of fault of the extraction algorithm for some of the
points. Remarkably, 4 feature points for camera are chosen at each sampling time,
coherently with the almost symmetric disposition of the cameras with respect to the
object.



148 F. Caccavale et al.

8 Conclusion

The problem of real-time estimation of the pose (position and orientation) of a
moving object from visual measurements has been considered in this chapter. A
computationally efficient selection procedure has been presented, that allows eval-
uating the optimal set of feature points of the object to be used for image feature
extraction and pose estimation. The procedure can be applied to polyhedral objects
and is based on the representation of 3D objects by means of Binary Space Par-
titioning trees. The estimation technique fully exploits the noise rejection and the
prediction capabilities of the EKF. Experimental results have been reported, which
confirm the computational feasibility and the robustness of the presented visual
tracking scheme for the case of two cameras.

The algorithm presented in this chapter may represent a good starting point
to solve an important open issue for robotics applications: the visual tracking of
objects in an unstructured and dynamic environment. A typical application may be
the grasping of a moving object guided by a fixed visual system. In fact, for this
scenario, the end effector may be considered as a second object of known pose.
The proposed methodology may be used to develop a new strategy of automatic
detection of the occlusions that happen during the grasp execution, which can be
used to increase the task reliability. Similar problems may arise in cooperative robots
applications.
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Appendix

The computation of the (2mn× 12) Jacobian matrix Ck in (14) gives

Ck =
[

∂g

∂xo
0

∂g

∂yo
0

∂g

∂zo
0

∂g

∂ϕo
0

∂g

∂ϑo
0

∂g

∂ψo
0

]
k

(15)

where 0 is a null (2mn× 1) vector corresponding to the partial derivatives of g with
respect to the velocity variables, which are null because function g does not depend
on the velocity.

Taking into account the expression of g in (8), the non-null elements of the
Jacobian matrix (15) have the form:

∂
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(
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j

zc
j

)
=
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∂xc

j

∂α
zc
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j

∂zc
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j )
−2 (16)
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j

)
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∂α
zc
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j

∂zc
j

∂α

)
(zc

j )
−2 (17)

where α = xo, yo, zo, ϕo, ϑo, ψo, i = 1, . . . , n, j = 1, . . . ,m.
The partial derivatives on the right-hand side of (16) and (17) can be computed

as follows.
In view of (3), the partial derivatives with respect to the components of vector

oo = [ xo yo zo ]T are the elements of the Jacobian matrix

∂pc
j

∂oo
= RT

c .

In order to express in compact form the partial derivatives with respect to the
components of the vector φo = [ ϕo ϑo ψo ]T, it is useful to consider the follow-
ing equalities [23]

dRo(φo) = S(dωo)Ro(φo) = Ro(φo)S(RT
o (φo)dωo) (18)

dωo = T o(φo)dφo (19)

where S(·) is the skew-symmetric matrix operator, ωo is the angular velocity of the
object frame with respect to the base frame, and the matrices Ro and T o, in the case
of Roll, Pitch, Yaw angles, have the form

Ro(φo) =

 cϕocϑo cϕosϑosψo − sϕocψo cϕosϑocψo + sϕosψo

sϕocϑo sϕosϑosψo + cϕocψo sϕosϑocψo − cϕosψo

−sϑo cϑosψo cϑocψo



T o(φo) =

 0 −sϕo cϕocϑo

0 cϕo sϕocϑo

1 0 −sϑo

 ,
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with cα = cos α and sα = sin(α). By virtue of (18), (19), and the properties of the
skew-symmetric matrix operator, the following chain of equalities holds

d(Ro(φo)p
o
j) = d(Ro(φo))p

o
j = Ro(φo)S(RT

o (φo)T o(φo)dφo)p
o
j

= Ro(φo)S
T (po

j)R
T
o (φo)T o(φo)dφo

= ST (Ro(φo)p
o
j)T o(φo)dφo,

hence

∂Ro(φo)
∂φo

po
j = ST (Ro(φo)p

o
j)T o(φo). (20)

At this point, by virtue of (3) and (20), the following equality holds

∂pc
j

∂φo

= RT
c

∂Ro(φo)
∂φo

po
j = RT

c ST (Ro(φo)p
o
j)T o(φo).
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Abstract. In the last years a new way to implement Real Time control systems has been
opened, in connection with the diffusion of the open-source operating system Linux. There
are several proposals to force this system to become or, at least, to behave as a Real Time
one. Some of them are open source as the original operating system. The purpose of this
work is two-fold. First, to describe the mechanical structure and the electronics of the mobile
robot SuperMARIO (Mobile Autonomous Robot for Indoor Operations): this unit was built in
our laboratory about three years ago and the design was oriented to high precision trajectory
tracking and high dynamic performance. Second, to detail the software architecture based on
the RTLinux OS, including low level Real Time motor feedback, high level trajectory loops,
and communications protocols that, through an IEEE 802.11 radio link, allow the interaction
with remote computers as a part of our laboratory network.

1 Introduction

Often, in the field of mobile robotics, two different choices are at stakes: to buy a
ready-made unit or to build a dedicated prototype. This is in particular true when
the project includes the low level (motor) control. It is very difficult, indeed, to
gain access to this level in commercial systems that seem to be more oriented to
researches in the high level part of the control structure and in general do not provide
access to the source code.

The same happened to our group. We already had two commercial units, from
two different producers, but none of them is completely satisfactory from the control
point of view. Even the sensor sampling time cannot be modified, not to say the
motor controller parameters.

These considerations revamped an old project; namely, the SuperMARIO (Mo-
bile Autonomous Robot for Indoor Operations) which was first developed, at the
Robotics Laboratory of University of Rome ”La Sapienza” [7], mainly as a high
precision platform to test sophisticated control algorithms. Super was added to dif-
ferentiate this robot from a previous one named MARIO (see [8]) with a less precise

B. Siciliano et al. (Eds.): Advances in Control of Articulated and Mobile Robots, STAR 10, pp. 153–169, 2004.
Springer-Verlag Berlin Heidelberg 2004
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mechanical structure. The availability of powerful processors and mainly our inter-
est in testing new real-time operating systems, made the first SuperMARIO a good
platform to start with.

Aim of this chapter is to describe the overall structure of the new SuperMARIO
that shows substantial differences in both low-level motor control and software
architecture with respect to its predecessor, so that other groups may gain information
and understand about the pros and cons of undertaking such a work.

2 The New SuperMARIO Mobile Robot

2.1 Electro-Mechanical Structure

SuperMARIO is a two-wheel differentially driven robot. An aluminum chassis, two
actuated wheels on the rear axle and a front castor compose its mechanical structure.

The chassis is 3 mm thick and measures 45×32×32 cm. The chassis is composed
of two compartments. The lower contains the two motors, the rear axle and the
transmission elements, while the power supply system (i.e., two 12 V batteries and
some power supplies) takes place in the upper compartment together with the power
electronics. The front side of the chassis is equipped with an ISA backplane, in
which a single board computer Intel 486 DX/4 100MHz, a wireless Ethernet device
and the motor interface board are connected.

The actuated wheels have a radius r = 9.5 cm and were machined by a lathe
for maximum accuracy. A stiff O-ring is used to prevent slippage and ensure a small
contact surface with the ground. The wheels are actuated by two MCA permanent
magnet d.c. servo motors. This kind of actuator presents a good power/dimension
ratio with respect to the stepping motor and is easier to control than a brushless one.
Unfortunately, it is affected by torque ripple at low speeds and needs a velocity trans-
ducer; so each motor is equipped with an incremental encoder with 200 pulse/turn.
A syncroflex planetary gearbox with a reduction ratio 20:1 is used to reduce the
velocity and improve the odometric measures. In order to eliminate the disturbances
induced by reorientation of the castor, a spherical bearing is placed in front of the
vehicle.

3 The Motor Interface

To fully control a d.c. motor by a computer, some functions are necessary: in the
forward path we typically find a PWM modulator (that translates a value in a suitable
two-level waveform with the desired short term mean value) and a power amplifier.
On the feedback path we have a detector for the sign of the rotation and an up/down
counter to measure the axle angle variation in a sampling period. These functions
must be duplicated for both motors. Moreover, a connection is needed between these
functions and the computer.

The cards available from the market are typically very complex and have capabil-
ities far beyond those needed by our project, so their cost is rather high1. Therefore,

1 This is the result of a small Internet research with the constraint of Linux compatibility.
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we decided to design and build a card implementing just the above described func-
tions.

An important factor contributing to this choice was the availability of field
programmable devices that allow the implementation of complex digital networks.
They make a large part of the testing and debugging phase almost as easy as that of
a software routine. Indeed, the hardware part (whose errors can force to redesign the
whole card) is reduced to some supporting logic gates to interface the device to the
computer bus. In particular we decided to use an Altera FPGA (Field Programmable
Gate Array) MAX7128SLC84-10 that contains 128 logic cells.

It can be on-board reprogrammed by a dedicated programmer connected to the
serial port of the PC used to develop the project. The description of the circuit
can be entered in a sort of high level language —we used VHDL, in which more
independent "entities", i.e. subprojects, can be developed— that can be compiled
and downloaded into the FPGA. A simulator is available to check the design before
downloading the code.

The FPGA project is composed by three entities:

• encoders signal decoding,
• generation of modulated signals,
• ISA bus interfacing.
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Fig. 1. Structural logic scheme.

In Fig. 1 a scheme of the three entities developed is reported. Inputs, outputs
and blocks interconnections are shown. In particular, the ISA interface is connected
with the ISA bus and the two blocks for position decoding and PWM generation.
Moreover it provides the digital signals to enable the motor drivers (Enable) and to
select the direction of motor rotation (Dir R and Dir L).
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3.1 Position Decoding

Each encoder provides two channels (A and B). The two channels, at constant
speed, produce two square waves with a phase delay of π/2. Their frequency is
proportional to rotation speed and, if B channel has a time lag with respect to A
channel the encoder has a clockwise rotation. On the contrary, if time lag is in
A channel the encoder has a counterclockwise rotation. The logic implemented to
determine the number of impulses and the direction of rotation in a robust way is
shown in Tab. 1.
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Table 1. Determination of rotation direction.

Although this function can be implemented in an asynchronous way, the FPGA
has a synchronous behavior with an internal clock at 8 MHz. To cope with this
limitation four D-type flip-flops, a chain of two for each channel, have been used
to synchronize A and B signals and to make available their previous values. The
implemented logic is reported in Fig. 2.
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Fig. 2. Logic for a single encoder.
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Using an XOR between X and Xpre (being X any channel), a pulse is obtained
when a transition happens on a channel. An OR between the two XOR’s gives a
signal that has a pulse for each channel transition. This signal feeds the enable of an
up/down counter whose clock is connected to the falling edge of the FPGA clock.
We use the falling edge to give time all the FPGA transitions to be stabilized; this
happens on the rising edges of the clock. Instead of using the logic function described
in Tab. 1 to determine the rotation direction, we simply employed a three-input XOR,
observing that it is sufficient to determine on which channel there has been the last
transition and whether channels are on the same level or not after this event.

The decoding function is implemented two times for each encoder. Two addi-
tional 8 bit registers latch the values of the two counters at the same time; their values
are then transferred to the CPU via the ISA bus.

Reset
Clock

Ch B
Ch A

8
SENC Pos

Fig. 3. Single encoder entity.

3.2 Generation of PWM

The two DC motors are fed with a pulse wide modulation (PWM) signal. For each
motor the microcontroller sends to the FPGA card the sign of the supply voltage
and the duty cycle of the modulation. Duty cycle is given as an unsigned 8 bit
representation.

As shown in Fig. 4, the modulated signals PWMr and PWMl can be obtained
comparing the duty-cycle values with one linear ramp between 0 and 255. The output
will be high when the ramp is greater that this number.

Input l

Input r

PWMr

PWMl

Ramp

Fig. 4. PWM generation.

The clock of the counter is equal to 8 MHz resulting in a 31250 KHz modulation.
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3.3 ISA Bus Interfacing

Communications among the cards of the control computer is obtained through ISA
bus. Let us analyze shortly its protocol: an ISA bus is a cluster of three buses:

• an 8-bit data bus;
• a 20-bit address bus, where the first 12 are actually used with addresses ranging

from 000 to FFF;
• a 3-bit control bus (IOR, IOW e AEN).

The motherboard has always full control on the address bus and on signals IOR
and IOW (read and write). To read data, the CPU sets its address and force the IOR
bit to zero: a three-state register is enabled and a value is written on the data bus.
Viceversa, to write data, the CPU sets the address, writes the value on the data bus
and forces the IOW bit to zero. Bit AEN, involved in DMA operations, is always
zero. Each card on an ISA bus has a selectable base address (BA) that points to an
internal register that can be read or written; other registers are at addresses BA+1,
BA+2, etc. In our card, the BA is set by a DIP switch (SW1).

A simple discrete logic, shown in Fig. 5, performs the recognition of the base
address and alerts the FPGA zeroing the Outnand signal; then the FPGA decodes
the three less significative bits on the address bus to select a particular register. In
Tab. 2 the role of each register is reported:

Address Reading Writing

BA + 0 left motor position not used
BA + 1 right motor position not used
BA + 2 not used left motor PWM
BA + 3 not used right motor PWM
BA + 4 not used digital outputs
BA + 5 not used reset

Table 2. Role of registers for the FPGA.

To read left motor position is, for instance, sufficient to read the value of register
AB+0, and this can be easily done in C language with instructiondata=inportb(AB+0).
In the same way, to set duty cycle for right motor instructionoutportb(BA+3,data)
can be used. The digital output register is used in two ways: first to send direction and
enable bits to the motor drives, second to produce the latch signal that forces coun-
ters data to be synchronously memorized in registers BA+0 and BA+1. Afterwards,
these registers can be read.

Finally, the less significant bit of register BA+5 is used to reset the FPGA.
After an extended simulation of the VHDL software, the FPGA has been pro-

grammed and the board has been built. An 8MHz oscillator provides the clock signal.
In Fig. 6 the final board is shown.
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Fig. 5. Outnand generation.

Fig. 6. FPGA board.
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4 The Motor Control Algorithm

The mobile robot is driven by two small permanent magnet d.c. motors, each one
coupled to a wheel by a planetary gearbox (see Tab. 3 for the main parameters).
Designing a PI controller around the rotation speed is, in principle, an easy homework
for a first-level course in Automatic Control. However, when all the nonlinearities
are taken into account a more sophisticated algorithm is needed, in particular to
obtain a smooth run at low speeds.

Motor parameters

Km 0, 056 N m/A

R 2, 1 Ω

L 2, 6 mH

D 0, 00045 N m s/rad

J 0, 00015 N m

Table 3. Motor parameters.

The main nonlinearities affecting the system behavior and thus the controller
design are the discretization introduced by the encoder and the dry friction in the
gearbox.

The first can be modeled as shown in Fig. 7.

1
Measured
velocityZOH

z
1

1/Tc
1
z-1

1
Velocity

Fig. 7. Model of speed estimation.

As usual, the velocity is computed by the difference of two successive position
measures. An adaptive scheme has been proposed in [3], that at low speeds changes
its behavior to counting the clock pulses between two (or more) encoder pulses. It
is however too complex for the FPGA implementation we chose.

The discretization acts on the angle measures (that are obtained by integration
of the wheel speed) and its step is equal to 0.039mm. Clearly, the resolution of the
speed measurements is proportional to the sampling time. A higher time gives a
better resolution; however it also gives a worse dynamic behavior to the system. As
a tradeoff, a 5ms sampling time has been chosen, which is far within the capabilities
of the computer. With this choice, the velocity resolution turns out to be equal to
7.8 mm/s.
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An accurate simulation of the dry friction at the motor shaft is a difficult task
(e.g., [1]; here we used a simplified model that gave results sufficient for our design
purposes. It is shown in Fig. 8 as a Simulink scheme.
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Km1

Va

Fig. 8. Motor model including friction.

At very low speeds, the electromagnetic torque is fed into a deadzone, whose
band represents the stiction phenomenon. The linear parts have unitary slope. Until
the modulus of provided torque is lower than the stiction one, no mechanical torque
is applied to the load. When the velocity is different from zero, the selector moves
to the other input and a constant torque (with the proper sign) is subtracted from
the electromagnetic one. The hysteresis has a width equal to that of the deadzone to
guarantee continuity during the switching. The viscous part of the friction (that is
very little compared to the dry part) is modeled as D in the mechanical load (where
J represents the inertia).

The amplifier saturation and command discretization are also modeled in the
simulation. Both phenomena have minor effects in the low speed behavior of the
system.

Figure 9 shows the simulated speed obtained with the model including the
nonlinearities and a simple Proportional-Integral controller when the desired speed
is a step in t = 0 with an amplitude equal to 10 mm/s.

The initial lag is due to stiction, while the "noise" is actually the effect of the
speed discretization. Note that the latter phenomenon bans the use of a derivative
action in the controller.

To cope with the two described phenomena, two very simple, yet effective,
modifications have been applied to the basic controller. Both are feedforward term,
the first constant and not influenced (except for the sign) by the input value (Gain1),
the second proportional to the input itself. The overall scheme is given in Fig. 10.

As for the dry friction, a very simple feedforward has been applied. Its amplitude
is a little lower that the estimated stiction. This solution, in general, is not very
robust vs. parameter variations and adaptive scheme could be devised. However in
typical experimental conditions and rather repetitive environment temperature this
sophistication is not needed. Also a small linear feedforward is used to improve the
response speed of the system.

With this add-on, the response for the same input used for Fig. 10 becomes that
referred in Fig. 11, which shows a satisfactory initial transient.
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Fig. 9. Step response (10mm/s) with a simple controller.
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Fig. 10. Scheme with feedforward.

The quantization effects on the velocity measures have been treated as a noise.
As a matter of fact, the "quantization noise" is uncorrelated with the original signal.
Therefore, a second order filter has been designed with a natural frequency equal to
70 rad/s and a damping coefficient equal to 0.5.

With this last change, the response in the same test conditions is that shown in
Fig. 12. It can be seen that the effects of the quantization noise are greatly reduced,
but at the cost of an overshoot at the beginning of the transient. A different filter can
reduce this effect but would also slow the response (bandwidth) of the system; so
we decided to keep the chosen filter, as it gives a fast disturbance rejection, but we
designed the outer level so that the reference speed is smooth, thus avoiding high
overshoots [4] [6].
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Fig. 12. Step response with feedforward regulator with digital filtering.

5 The RTLinux Architecture

Operating systems normally used for office applications are not suitable to implement
control algorithms. Our interest has been concentrated on GNU/Linux operating
system which, compared to Microsoft systems, has the great advantage of being
completely Open source and being based on the Unix system. As all Unix systems,
Linux scheduler is preemptive, that means that a process can always loose the
processor utilization when another process has matured a greater priority. Most
recent versions of Linux kernel [2] introduce the possibility to place side by side a
static priority, definable from the user, and a dynamic priority, periodically calculated
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from the scheduler2. All normal processes have 0 as static priority; therefore a process
with a priority greater than zero will be favorite for the processor utilization. Kernel
processes remain however excluded from the normal priority mechanism, they can
always interrupt the other processes and temporary take the exclusive use of the
processor, inhibiting the possibility to have a context change. A scheduling algorithm
like the one described gives good results in the management of normal activities but
is not suitable for real-time applications. To be able to guarantee sufficiently precise
sampling times and to assure that the control related computations take a short time,
it is necessary that a process is able to obtain the exclusive utilization of processor
within a well-know time.

5.1 Real Time Linux

To overcome the limitations due to the use of the Unix scheduler, several techniques
are evolving that make Unix a system suitable to execute hard real-time applications3.
To improve the support to real-time applications, Linux, as many other Unix-based
systems, conforms, in part, to POSIX.1b-1993 standard. This standard introduces
a scheduler with user definable static priorities and the possibility to execute more
than one thread in a single process. Usually, only one program counter is used to
execute a block of instructions in a process; according to the POSIX standard it is
possible to run more than one block or instruction side by side in the same process.
Hence it is possible to design a cooperating threads architecture to optimize process
resource handling.

Unfortunately there are still some unsolved problems, such as:

1. not-preemptability of kernel processes,
2. low clock resolution,
3. high wait time for IRQ response.

Various techniques, based on that standard, have been developed to solve these
problems, permitting to execute hard real-time tasks in Unix-like systems. One of
these solutions, that has the characteristic of being completely free and Open source,
is called Real Time Linux [12,11,14,13,9,5]. The greater obstacle for the execution
of real-time tasks is the first listed point; kernel processes use specific processor
instructions (e.g., cli and sti for Intel family processors) to disable the interrupts.
In Real Time Linux a software layer has been inserted between the request to disable
interrupts and the effective call of cli and sti; this layer allows preventing the
interrupt of selected tasks from other processes [2].

2 In less recent versions, the scheduling algorithm, to optimize processor allocation, calculates
only the priority of active processes with a regular period; in this case we speak of dynamic
priority.

3 Two different Real Time applications can be defined: those that need more accurate sampling
times are called Hard Real Time applications, those that, instead, do not need particularly
stringent performances are called Soft Real Time applications[13].
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Regarding points 2 and 3, it has been possible to obtain for the IRQ response a
resolution of approximately 15µs in the worst case, taking advantage of the built-in
timer on Intel 8354 chip, present on all IBM compatible PC.

Through these tools, RTLinux provides some APIs that permit building real-time
applications with performances suitable for our application.

6 RTLinux Control Architecture and Communication Protocol

A typical control application in RTLinux environment is composed of a low level
layer and a high level one.

The lower level layer is implemented in a kernel module where the Real Time
threads run. Each thread consists in a set of instructions executed periodically; the
maximum time spent in order to execute an iteration of this cycle represents the
minimum sampling time definable for the corresponding control function. Among
the several functions of the RTLinux APIs, there are some that allow regulating the
iteration time with great precision, permitting the designer to choose the sampling
time he/she prefers. It is important to remark that, during the wait time between
two sampling intervals, the processor is free and it can, therefore, be used for other
applications.

The high level part, instead, consists of a process, running in user space, that
manages TCP socket connections with remote clients and sends commands, data and
references to the low-level part. This application can handle different connections
with some clients, each dedicated to one of a set of services with different complexity.
As all the operating system processes (e.g., user applications) become active only
when Real Time threads are in a wait state, the designer has to consider which
percentage of time is used for these operations and which is available for other
processes. Taking care of this percentage, it is possible to determine the complexity
of high level applications.

Figure 13 shows an outline of the software architecture for a typical RTLinux
application.

To allow communications between user processes and Real Time threads there
are appropriate structures named RT-FIFOs. These are seen from the kernel level
as queues where it is possible to read or write blocks of characters by the typical
operations rtf get and rtf put. Since an RT-FIFO structure is one way, in
order to obtain a bidirectional data flow it is necessary to instantiate two separate
structures. At the user level these are seen as character devices (/dev/rft* where
it is possible to read or write blocks of text by the standard library functions write
and read. Viewing a couple of FIFOs as a single FIFO at user level is possible
thanks to the rtf make user pair command.

Using Open source software, all the system source code is available. In RTLinux
it is possible to implement a scheduling algorithm, designed for a specific application,
simply loading the appropriate kernel extension module [13].

In the released RTLinux 3.0 version a very simple priority preemptive scheduler
is provided: a priority is statically assigned to every process, when more than one
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Fig. 13. Software architecture for an RTLinux application.

task is ready; the one with the greatest priority is executed. If a task with greater
priority becomes ready it immediately interrupts the task in execution; moreover
each task releases the CPU when the critical real-time block is terminated.

This scheduler supports periodic applications, and is possible to execute isolated
tasks defining an interrupt handler. Linux is, for this scheduler, the Real Time process
with lower priority; in this way the system is ready for other applications only when
no Real Time thread is in execution.

6.1 TCP Connection Manager

To manage connections with external processes, we implemented a TCP socket server
running in the user space. A parent process is always waiting for new connections on
a dedicated port. When a client tries to connect to SuperMARIO, the server identifies
the class of that client (e.g., "movement manager", "vision sensor" etc . . . ). If a client
of the same class is already connected the server closes the connection, otherwise
it creates a child to manage the connection. The parent keeps a list of all the
children created; in such a way it can kill all of them when the user decides to turn
off the server. Each child receives commands, data and references as a structured
message. The child elaborates the message and if necessary (it depends on the kind
of message) it sends it to the kernel module without modifying it. To do that it uses
the bidirectional RT-FIFO described before. When a child has to send a message to
the kernel module it is important to verify that no other child is using the FIFO. To
do that, there is a semaphore to indicate the state of the FIFO [10].

6.2 Threads Architecture

As reported above, our application is composed from a low-level and a high-level
layer. In the latter the Connection Manager is implemented to provide an interface
with external clients.
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Fig. 14. Low-level architecture.

Figure 14 details the architecture of the kernel module. There are two Real Time
threads running simultaneously two different tasks. One is the motor control algo-
rithm (CONTROLLER), the other provides the reference values to the controllers
(REFERENCE MANAGER), according to the kind of job specified by a suitable
"Movement Manager Client". Obviously the CONTROLLER priority is higher than
the REFERENCE MANAGER one. On the contrary, the Controller sampling time
is generally shorter than that of the Manager.

The global architecture for the Motor Controller is obtained implementing the
one previously described in Section 4. The sequence of operations described below
is executed in each control cycle:

1. encoder reading,
2. output of voltage values computed in the previous cycle,
3. computation of the next control action.

6.3 The Communication Protocol

We decided to use the same communication protocol at any control level: on the
client-server communications and on the server-kernel one. We used a structured
message where the first field is an integer value that specifies the command name.
The meaning of the other fields of the message depends on the value of the first field.
First of all, when a child receives a message it decodes the first field to understand
whether it has to do something or else it is only necessary to send the same message
to the kernel module without modifying it. For instance, when the Movement Client
sends the command "Stop Server", the receiving child forwards immediately the
same message to the kernel module and begin to stop itself and the other server
children. In some cases (i.e. for a position data request) the child is not to send
the message to the kernel module, and then it answers independently to the client.
Depending on the first field, the message can contain a data request, a simple order,
or a more complex mission request. The message is completely decoded from the
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RT-FIFO handler thread, that attempts to interpret the message and provides the data
contained to the mission manager.

7 Timing Accuracy Experiments

When using a Real Time Operating System, it is very important to measure the
accuracy of timing. We decided to make these measures via software building an
assembler macro to read clock cycles every time an interruption is called. Hence, it
was possible to obtain high-accuracy measures for sampling time and thread length,
without introducing disturbances in the system.

Fig. 15. Sampling time distribution with free and busy processor (properly scaled).

Figure 15 reports sampling time distributions obtained in two different condi-
tions; in the first one, only the control threads are running on the computer, in the
second one there are two programs performing complex mathematical tasks. As we
can see, accuracy on sampling time is very high in both situations; as expected,
covariance in the second one in higher than in the first one. Note that the introduc-
tion of a relative offset in the starting times of the different tasks is of paramount
importance to obtain good results.

8 Conclusion

Having to tackle real problems is always a great source of experience. From a
scientific point of view, the realization of the present version of SuperMARIO gave
us the opportunity to design and develop a real-time architecture, to analyse its
behavior and provide the lab with a really open set-up suitable for testing any kind
of control algorithm. The architecture includes perhaps all the primitives needed to
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build a control system. In particular, the real-time routines can use different sampling
time to optimize the CPU allocation, communication protocols have been defined
between the real-time parts and the "user" (non real time) parts as well as between
the latter and another computer. However, the greatest success was probably from an
educational standpoint. Indeed the students involved in this work had the opportunity
to follow a whole project from scratch. They learned a lot about designing cards,
interfacing, tailoring a small footprint operating system, shaping loops taking friction
into account and, most importantly, assembling all the parts together in one working
system.

On the other hand, the project required a lot of time, as can be easily understood.
The mechanical part had to be redesigned to get improved stiffness. The software
too underwent dramatic modifications with time: the first release was indeed written
under DOS. Also the interface card required a lot of study and subsequent attempts.
Viceversa, the cost of the prototype was low even when compared with the basic
commercial units. Obviously, our unit lacks range finders and high-level software;
the former ones can be added with a small expense, the latter is not required at the
moment and will be, in case, another opportunity of study.
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Abstract. This chapter deals with the problem of suitably coordinating the manoeuvring
of a nonholonomic vehicle and the motion of a supported manipulation system (composed
by one or two arms) when the overall system is commanded to execute a given grasping or
manipulation task. The goal is that of suitably exploiting the extra degrees of freedom offered
by the vehicle for better accomplishing the assigned task in a cooperative way.

1 Introduction

In the robotic literature, the field of mobile manipulators (i.e. a standard manipulator
mounted on a mobile base or vehicle) has received a certain amount of attention since
the beginning of the nineties, with the obvious objective of suitably exploiting the
extra degrees of freedom offered by the vehicle for accomplishing specific (typically
“long range”) manipulation tasks that otherwise could not be executed completely.

Preliminary works in the field first focused on off-line motion planning of the
overall structure [7,22,23], others focused on dynamic control with respect to pre-
planned overall motions [11,16,12,25,21], while some others focused on kinematic
and dynamic analysis only [26,24].

Moreover, within many of the early works, the manipulation and locomotion co-
ordination problem was approached by assuming sequential motions of the platform
and the manipulator (i.e. an approach phase performed via base motion only, then
manipulation performed by the arm only).

On the other hand, to the best of authors’ knowledge, one of the first papers
where the reactive simultaneous coordination of locomotion and manipulation was
proposed and preliminary developed dates to [27]. In this work a planar locomotion
platform (unicycle-like) and a 2-dof manipulation structure are considered, while
the concepts of manipulability ellipsoid and manipulability measure, see [30,31,29]
and [19]) was explicitly used for assigning to the manipulator a so called “preferred
posture”, corresponding to the maximum level of its manipulability measure (MM).
Then the manipulator was independently joint controlled, just in order to maintain
such posture. In this condition, an additional joint velocity command (translating a
desired absolute linear velocity for the end effector of the arm seen as a fixed-base
one) was superimposed at joint level, thus inducing the arm to go slightly out from

B. Siciliano et al. (Eds.): Advances in Control of Articulated and Mobile Robots, STAR 10, pp. 171–190, 2004.
Springer-Verlag Berlin Heidelberg 2004
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its controlled posture, and in turn resulting in a drop of its actual MM. Such MM
drop (or equivalently its corresponding posture mismatch) was finally compensated
via the addition, to the arm base located on the platform, of a suitably evaluated
linear velocity provided by the supporting vehicle itself.

Such scheme could work for both holonomic and nonholonomic vehicles (in the
latter case only provided that the arm base was not located at the vehicle rotation
pivot [27]) and clearly resulted in an overall structure where its composing entities
(vehicle and manipulator), though separately controlled, acted in a simultaneous
cooperative fashion.

A similar approach, extended to the case of multi-manipulator 3D systems,
even if mounted on planar holonomic vehicles, was later successfully proposed in
[20]. Following [27,20], many other works (see e.g. [2,4,3,28,5,6]) approached the
locomotion and manipulation (simultaneous) coordination problem by explicitly
keeping into account the Jacobian matrix of the overall structure, i.e. vehicle plus
manipulator seen as a unique enlarged robotic structure, and extending the concept
of manipulability ellipsoid and related MM. Then, the task-priority based control
technique (originally introduced in [19] for fixed-base manipulators) could in turn be
easily applied, in particular, by considering the singularity avoidance of the overall
structure as a secondary task [5] with respect to the primary task of tracking the
desired absolute end-effector motion.

Concerning successive approaches proposed in the literature —notwithstanding
their theoretical framework allowing mobile manipulators to be substantially treated
as analogous to fixed-base ones— it is the authors’ opinion that they suffer from some
drawbacks of both theoretical and practical nature. More specifically: a) such global
approaches cannot be easily extended to the case of multiple manipulators supported
by the same moving platform; b) they cannot easily respond to the increasing demand
for modularity (functional, algorithmic, and Hw/Sw) within scalable complex robotic
systems.

Motivated by the above considerations, but still inspired by the formerly men-
tioned work [27,20], the present work aims at proceeding further on the devel-
opment of a general coordination theory for independently controlled vehicle and
manipulators that naturally extends till the more complex cases of supported 3D
multi-manipulators and 3D nonholonomic vehicles too, while always preserving
modularity and scalability within the overall system.

The present chapter is organized as follows: in Section 2, the basic sub-problem
of controlling the end effector of a fixed-base single arm while also avoiding its
singularities is carefully reviewed, since it represents the fundamental basis for all
successive developments. In Section 3 the problem of coordinating locomotion and
manipulation for a single 3D arm and a 3D nonholonomic vehicle is developed
within a fairly more general framework than that considered within [27]. Then, in
Section 4, the previously obtained results are extended to the more general case of
still 3D and nonholonomic multiarm mobile systems, when performing grasping
and object manipulation tasks. Some conclusions and directions for future research
activities are given in a final section.
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2 Control of a Fixed-Base Single Arm with Singularity
Avoidance

Let us consider a redundant fixed-base single arm, i.e. with a number of degrees of
freedom (dof’s) greater than six. Without loss of generality, let us refer to the arm in
Fig. 1, where the wrist be constituted by a 3-dof rotational joint, typically of Euler
and/or Roll-Pitch-Yaw type.

Fig. 1. A common example of a redundant fixed-base single arm.

In the figure, frame < g > represents the “goal frame”, which has to be reached
(in position and orientation) by the “end-effector frame” < e > of the manipulator.
Let

e := [ ρT dT ]T (1)

be the collection of the misalignment error vector ρ and distance error vector d of
frame < e > with respect to <g>, when projected on world frame < 0 >. Also, let

ẋ := [ ΩT νT ]T (2)

be the collection of angular and linear velocities of < e >, still projected on < 0 >,
where a small abuse of notation has occurred as for the use of the derivative. Consider
the candidate Lyapunov function and its derivative

V :=
1
2

eT e ⇒ V̇ = −eT ẋ. (3)

It is easy to see that a choice of joint velocities satisfying at all times the condition

ẋ = ẋ := γe = Jq̇ γ > 0, (4)
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where the upper bar denotes the reference value and J(q) is the Jacobian matrix of
< e > with respect to < 0 >, would drive < e > toward < g > asymptotically.
As it is well known, Eq. (4) must be solved in real time for the joint velocities
via regularized Jacobian matrix pseudo-inversion (see e.g. the damped least-squares
inverse in [19]), in order to prevent joint velocities to grow toward infinity in the
vicinity of any Jacobian singularity that could be encountered during the arm motion.
The net effect of the regularization is that of progressively reducing to zero those
components of the joint velocity vector that otherwise would unacceptably grow to
infinity.

Despite such benefit, some drawbacks are implied by the regularization itself, e.g.
unpredictable motion perturbations generally occurring whenever crossing singular-
ities, or even possibilities of getting stuck in correspondence of certain configurations
with the need of complex manoeuvring for departing.

Therefore, in order to reduce the chances for such occurrences, a secondary
task, attempting to maintain the arm far from singularities while accomplishing
the primary task (4), should actually be introduced and executed by exploiting
redundancy of the arm. To this end, by referring to the so-called “manipulability
measure” (MM) [19,29], i.e. the scalar quantity

µ := det(JJT ) ≥ 0 (5)

and then considering its time derivative

µ̇ = pT q̇ ; p :=
∂µ

∂q
(6)

where the row vector pT (always non-zero in correspondence of any µ > 0) can be
efficiently evaluated in real time via the procedure developed in [18], we recognize
that a choice of the joint velocities aimed at satisfying also the condition

µ̇ = µ̇ := λµ λ > 0 (7)

would possibly and sensibly reduce the risk of singularity occurrence during motion,
provided that the starting position be far from singularities.

Conditions (4) and (7) respectively represent the so-called primary task (i.e. end-
effector reaching < g >) and secondary task (i.e. arm attempting to remain far from
singularities) which directly lead to the following expression for the joint velocities
[19]:

q̇ = J# ẋ + h(µ̇− kẋ) (8)

with

k := pJ# (9)

and

h :=
[
p (I − J#J)

]#
(10)

where all matrix pseudo-inversions are assumed to be performed in regularized form.
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The vector h in (10) is proved to belong to the null space of J (N(J)) in
correspondence of any arm posture such that µ ≥ µ∗, being µ∗ the a priori assigned
MM threshold below which the regularization embedded in the pseudo-inversion of
Jacobian matrix J is made active (see Appendix A).

Though the adoption of (8) reduces the chances for singularity occurrences,
while accomplishing the desired end-effector motion, such risk cannot be completely
avoided via the use of the sole solution (8). In fact (see Appendix B), such risk might
occur even for cases where the end-effector motions are required to completely lie
within the so called dexterous reachable workspace (DRW) (i.e. the simply connected
subset of the arm workspace where any end-effector attitude can be assigned via
arm postures admitting a non-empty subset such that µ > µ∗). On the other hand,
whenever the goal frame < g > is located outside the DRW, such risk obviously
becomes unavoidable (see Appendix B).

As a consequence, the need for exchanging (possibly in a smooth way) the
priority order between the two tasks naturally arises whenever an incoming risk of
singularity occurrence is foreseen. To this extent, a nice approach has been recently
proposed in [18], as an important extension of the works [8,9] on the subject. The
idea is quite simple: first of all a minimum value µ0 > µ∗ for MM is a priori
established, beyond which the actual µ is desired to stay, which in turn induces a
restriction on the originally defined DRW); then, during motion, µ is continuously
monitored and, if lower than µ0 in the form µ∗ ≤ µ < µ0 (then possibly also at the
starting configuration) the Cartesian velocity reference ẋ is corrected as

ẋ∗ = ẋ + ż (11)

where the additional signal ż has to be chosen (if possible) in such a way that

µ̇− kẋ− kż = 0 (12)

must hold.
It is easy to see that replacing ẋ with ẋ∗ in (11) and modifying q̇ in (8) accordingly,

condition (7) turns out to be exactly satisfied, which implies a progressive increase
of µ toward µ0 (regardless of being < g > located inside or outside DRW), while
also meaning an implicit exchange of priority order between the two tasks. Also
observe that, being (12) a scalar condition, it consequently admits ∞5 solutions in
the correction vector ż, among which the following (minimum norm) is certainly the
most suitable one for the case of a fixed-base single arm considered in this section,
i.e.

ż = k#(µ̇− kẋ) (13)

At this point, while referring to Appendix C for some additional comments con-
cerning condition (12) and related solution (13), we can conclude this section by
simply noting that, in order to be comprehensive of the overall cases µ∗ < µ < µ0

or µ∗ < µ > µ0, while also avoiding any possible chattering in the vicinity of the
threshold value µ0, it is actually always convenient to adopt the following expression
for ż:

ż = (αk)#(µ̇− kẋ) (14)
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being α(µ) a continuous scalar function of µ, which is unitary for µ ≤ µ0 and
bell-shaped, tending to zero within a finite support for µ > µ0. Obviously enough,
with such final adjustment, the smooth transition between the two different cases of
task priority turns out to be automatically guaranteed.

3 Control of a Single-Arm Nonholonomic Mobile Manipulator

The case of a redundant arm mounted on a 3D moving base as in Fig. 2 is now
considered. The vehicle is assumed to nonholonomic, in the sense that it allows
a linear velocity vector ν only directed along the principal vehicle axis, and an
angular velocity vector Ω only lying on a plane passing through a known point
of such principal axis, and orthogonal to it. The arm and the vehicle are regarded

Fig. 2. Single arm supported by a vehicle.

as two separate “basic robotic units”, whose motions however needs to be suitably
coordinated for the execution of a common task (i.e. making again < e > converge
toward < g >) to be realized in a cooperative way. In this context, the arm is assumed
to be separately controlled by a control law structurally identical to the one of the
previous section, with the noticeable addition of an external signal ζ̇ to be used by an
appropriate upper layer for coordination purposes. More specifically, this is achieved
by imposing the Cartesian velocity reference in (11) to attain the more general form

ẋ∗ = ˙̂x + ż (15)

with

˙̂x := ẋ + ζ̇ (16)

which in turn implies that ż is to match the new reference signal ˙̂x; hence, ż is chosen
so as to satisfy

µ̇− k ˙̂x− kż = 0 (17)

when µ ≤ µ0, or is set to zero otherwise.
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With the above considerations in mind, let us now approach the overall control
problem of having < e > converging to < g > by again considering the candidate
Lyapunov function (3). Its time derivative now takes on the form

V̇ = −eT (ẋ + Ẋ) (18)

being ẋ and Ẋ the contributions to the end-effector motion separately produced by
the arm and the vehicle, respectively, both projected on world frame <0>. More
specifically, for Ẋ we actually have

Ẋ = Sθ̇ (19)

where θ̇ is the three-dimensional vector resulting from the collection of the two
non-null components w of Ω and the sole non-null component u of ν , provided
that both Ω and ν are projected on the vehicle fixed frame < b > as indicated in
Fig. 2; that is

θ̇ = [ wT u ]T . (20)

Also in (19) the matrix

S = HQ (21)

where is a (6×6) matrix representing the instantaneous rigid-body velocity transfor-
mation from vehicle frame < b > to the end-effector frame < e > (input velocities
projected on < b >, output velocities projected on world frame < 0 >), while Q is
simply a full-rank (6× 3) selection matrix, suitably composed by 0 and 1 elements.
Notice that the (6× 3) matrix S is also full-rank.

Folding (19) into (18) gives

V̇ = −eT (ẋ + Sθ̇). (22)

At this point, by choosing the Cartesian reference velocity ẋ in (22) as in the form
(15) and (16) yields

V̇ = −eT ( ˙̂x + ż + Sθ̇) = −eT
[
(ẋ + ζ̇) + ż + Sθ̇

]
. (23)

Now, let us express the coordination signal ζ̇ in a form just opposite to (19); i.e.

ζ̇ = −Sθ̇ (24)

with θ̇ to be assigned also to the supporting vehicle. Further, let us choose ζ̇, if
possible, in such a way to satisfy a condition similar to (12), i.e.

µ̇− kẋ + kSθ̇ = 0 (25)

when µ ≤ µ0, to be zero otherwise. Then, under the above assumptions it is not
difficult to realize that the following two facts must necessarily hold.
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a) The internal signal ż turns out to be identically zero since its role is completely
accomplished by the coordinating signal ζ̇ itself.
In fact, when µ > µ0 both ż and θ̇ (and then also ζ̇) are chosen to be zero; while
for µ ≤ µ0, from (25) we have, also keeping into account (24) and (16),

µ̇− k ˙̂x = 0 (26)

thus implying the internal condition (17) to be naturally satisfied by ż = 0
b) Due to the specific structure (24) assigned to ζ̇, its contribution to the end-

effector motion is compensated by the opposite motion contribution provided
by the vehicle.

Then, as a consequence of the above two facts, it follows that expression (23)
actually takes on the form

V̇ = −eT ẋ < 0 (27)

which in fact guarantees the convergence of the end-effector frame < e > toward
the goal frame < g > without any restriction.

At this point, in order to satisfy condition (25) when µ ≤ µ0, we note that it
certainly admits∞2 solutions for θ̇, provided we do not fall within the very unlikely
singularity characterized by having vector kT orthogonal to the range space of S
(R(S)); for the time being a detailed analysis of such event is however out of the
scopes of this chapter. It follows that a suitable choice for θ̇ (i.e. the minimum norm
one, requiring a minimal vehicle motion when µ ≤ µ0) is

θ̇ = −(kS)#(µ̇− kẋ) (28)

Fig. 3. Relationship between α and α.

It should be emphasized how the p opor ssed oo dinopo c rdination law does not actually
r ˙eq iequ rre — a a ion ofpa art the ddi ion ofp ddit tthe external coordination command ζ an inint— y terven-
tion on the functional and algorithmic structure of the manipulator control system,
which remains the same as for the fixed-base case. Moreover note that ssince the,
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internal functionality concerning the generation of ż remains always active (though
producing a null signal), it naturally reduces to a sort of “safety functionality”: ready
to automatically come into play whenever any sort of coordination failure occurs.
Finally, in order to avoid any possible chattering around the manipulability threshold
µ0, we require that the signal ζ̇ should actually be generated via the smoothed form

θ̇ = −(αkS)#(µ̇− kẋ) (29)

where α(µ) is again a continuous scalar function of µ, which is unitary for µ ≤ µ0

and bell-shaped, tending to zero within a finite support for µ > µ0. Moreover note
that, in order to also avoid any possible interference between ζ̇ —now smoothly
generated via (29), (24) and ż which is maintained active via the smoothed form
(14))— we should furtherly shape α(µ), with respect to α(µ), in such a way as to
be certainly unitary within the whole finite support where α(µ) > 0 (see Fig. 3).

As it can be easily realized, with such a choice for α and α, signal ż is always
null, even during the smooth transition phase of θ̇ (and then ζ̇).

4 Control of a Dual-Arm Nonholonomic Mobile Manipulator

The results of the previous section are hereafter extended to the case of a dual-arm
nonholonomic mobile manipulator of the type of Fig. 4, when performing grasping
operations. As a matter of fact, a grasping operation to be performed by the overall
system simply corresponds to the global task of having the two end-effector frames
< e1 >, < e2 > asymptotically converging to the goal frames < g1 >, < g2 >
respectively (Fig. 4), while obviously maintaining the desired minimum level of
manipulability for each arm.

Fig. 4. Dual arm system supported by a vehicle.
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By still assuming each arm to be separately controlled, as done in the previous
section, let us start again by considering the following global candidate Lyapunov
function, with an obvious meaning of the introduced terms,

V :=
1
2

(eT
1 e1 + eT

2 e2) (30)

whose time derivative is

V̇ = −eT
1 (ẋ1 + Ẋ1)− eT

2 (ẋ2 + Ẋ2) := −eT (ẋ + Ẋ). (31)

Then, by performing the same analysis leading to (23) in the previous section, we
get

V̇ = −eT (ẋ∗ + Sθ̇) = −eT ( ˙̂x + ż + Sθ̇) = −eT
[
(ẋ + ζ̇) + ż + Sθ̇

]
(32)

where now

ẋ∗ := [ ẋ∗T1 ẋ∗T2 ]T

S := [ST
1 ST

2 ]T

˙̂x :=
[

˙̂x
T

1
˙̂x
T

2

]T

ż := [ żT
1 żT

2 ]T (33)

ẋ :=
[
ẋ

T
1 ẋ

T
2

]T

ζ̇ := [ ζ̇T
1 ζ̇T

2 ]T

The (12× 6) matrix S is still of full column rank type, and the overall coordination
signal ζ̇ is to be suitably chosen. To this end, on the basis of considerations analogous
to those in the previous section, provided we can still preserve MM for both arms
via the external coordination signal

ζ̇ = −Sθ̇ (34)

with θ̇ to be assigned to the vehicle too, we have then

ż = 0 (35)

V̇ = −eT ẋ < 0 (36)

guaranteeing the accomplishment of the assigned grasping task.
Then, in order to verify whether MM can be still maintained within the desired

levels via ζ̇, let us analyze the corresponding four possible cases:

a) µ1 > µ0 ; µ2 > µ0

In this case, since MM is adequate for both arms, we must obviously set

ζ̇ = 0 ⇒ θ̇ = 0 (37)
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b) µ1 > µ0 ; µ2 ≤ µ0

In this case, since MM must be recovered only for arm 1, this requires the
fulfillment of its relevant condition (25), i.e. by still looking for a minimum
norm solution in θ̇)

µ̇1 − k1ẋ1 + k1S1θ̇ = 0 ⇔ θ̇ = −(k1S1)#(µ̇1 − k1ẋ1) (38)

which unavoidably induces (though not necessary) a correction term also on
arm 2; i.e. the term

ζ̇2 = −S2θ̇ (39)

which can be anyhow accepted by arm 2 itself, since its MM is greater than the
minimum threshold µ0.

c) µ1 ≤ µ0 ; µ2 > µ0

This is simply the dual of the previous case, thus leading to

µ̇2 − k2ẋ2 + k2S2θ̇ = 0 ⇔ θ̇ = −(k2S2)#(µ̇2 − k2ẋ2) (40)

analogously implying, unavoidably but acceptably

ζ̇1 = −S1θ̇ (41)

d) µ1 ≤ µ0 ; µ2 ≤ µ0

In this case, since MM must be recovered for both arms, this requires the
contemporary fulfillment of condition (25), i.e.{

µ̇1 − k1ẋ1 + k1S1θ̇ = 0
µ̇2 − k2ẋ2 + k2S2θ̇ = 0

(42)

or in a more compact notation

µ̇−Kẋ + KSθ̇ = 0 (43)

where obviously

µ̇ :=
[
µ̇

T
1 µ̇

T
2

]T
(44)

K := diag (k1, k2) .

Then, by noting that (43) actually admits ∞1 solutions, provided that remains
full row rank, we can choose the minimum norm solution for θ̇, that is

θ̇ = −(KS)#(µ̇−Kẋ). (45)

Notice that, as it concerns the full rankness of matrix KS —notwithstanding
the fact a thorough analysis is outside of the scopes of the present work— we
can devise, according to intuition, at least one case where full rankness of KS
is certainly lost; this simply corresponds to the case where goal frames < g1 >,
< g2 > are located at the opposite edges of the vehicle, and quite far from it.
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Also notice that whenever the overall system is, for some reasons, made to tend

to such (unreasonable) configurations, then θ̇ in (45) naturally tends to zero
(and consequently ζ̇ too) due to the assumed embedded regularization within
the pseudoinversion of KS. This will consequently make the internal “safety”
correction term ż come into play for still separately guaranteeing manipulability
of each arm, while the vehicle will gradually stops its motion. Obviously enough,
the assigned grasping task (being an impossible one) will therefore not be at all
accomplished.
Finally notice that for the same reasons mentioned in the previous section, also
in this case θ̇ should be generated via the smooth form

θ̇ = −(αKS)#(µ̇−Kẋ) (46)

where now

α = diag (α1, α2) (47)

with α1, α2 having the same shape as α in Fig. 3.

5 Object Manipulation via Dual-Arm Nonholonomic Mobile
Manipulator

The results obtained in the previous section will be now easily extended to the case
of an object manipulated by a dual-arm mobile nonholonomic system, as depicted
in Fig. 5.

Fig. 5. Object manipulated by the system.

The manipulated (lightweight) object is assumed to be firmly grasped by the
end-effector of the dual-arm system. The object itself is characterized by its own
fixed body frame < l > which is required to be asymptotically convergent toward
an assigned goal frame < g >.
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By denoting with el the generalized error (position and orientation) of frame
< l > with respect to < g >, let us define as

ẋl := γel ; γ > 0 (48)

the velocity reference signal that, once applied to < l >, would guarantee < l >
itself to be asymptotically convergent to < g >. With this in mind, let us also assume
the commanded Cartesian velocity vector for the two end effectors to be now of the
form

ẋ∗ = ˙̂x + ż =
(
Pẋl + ζ̇

)
+ ż =

(
Pẋl − Sθ̇

)
+ ż (49)

where

P := [ PT
1 PT

2 ]T (50)

is the collection of the velocity rigid-body transformation matrices P1 e P2 from
frame < l > to < e1 > and < e2 >, respectively, while the other terms remain the
same as in the previous section. As a consequence, we have that signal θ̇, though
being now slightly modified (compare with (46)) as

θ̇ = −(αKS)#(µ̇−KPẋl) (51)

will again force the internal signal ż to satisfy the zeroing condition

ż = 0 (52)

At this point, by explicitly keeping (52) into account, we can consequently note the
full compatibility of the resulting ẋ∗ with the assumed grasping constraints, that is
the fulfilment of conditions

P−1
1

(
P1ẋl

)
= P−1

2

(
P2ẋl

)
= ẋl (53)

and

P−1
1

(
−S1θ̇

)
= P−1

2

(
−S2θ̇

)
:= −Sθ̇ ∀θ̇ (54)

being S the resulting overall rigid-body velocity transformation matrix from vehicle
frame < b > to object frame < l >.

Then we can conclude that the dual-arm velocity contribution ẋl takes on the
form

ẋl = ẋl − Sθ̇ (55)

which, upon addition of the velocity contribution Ẋ = Sθ̇ provided by the vehicle,
in turns leads to the following expression for the object overall absolute velocity(

ẋl + Ẋl

)
= ẋl. (56)

This obviously guarantees the desired asymptotic convergence of < l > toward
< g >.
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6 Simulation Results

In order to validate the proposed coordination method, some preliminary simulations
have been carried out, though they are referred to the intermediate case of a single
arm mounted on a nonholonomic vehicle. More specifically, a mobile manipulator
composed by a 7-dof arm mounted on a 3D nonholonomic base is considered. The
end effector of the arm is asked to reach a Cartesian position located sufficiently far
form the starting one, without changing its original orientation.

Fig. 6. First part of the system motion: only arm moving.

Figures 6, 7 refer to the initial part of the system motion, characterized by having
µ = 0.6 > µ0 = 0.4 at the initial time; note that the black box in Fig. 6 represents
the 3D mobile base. During this motion part, MM first increases under the action
of the secondary task, but then it starts to decrease, due to the persistency of the
primary task. During this period, the vehicle remains fixed in its original position,
while the ᾱ parameter obviously maintains its original null value.

Nevertheless, once MM crosses from above the established activation threshold
0.6 for the ᾱ parameter (remember Fig. 3 and see Fig. 7), ᾱ itself increases toward
unity (while µ reduces toward 0.4), thus causing the vehicle to move (in order to
compensate for the Cartesian extra command signal ζ̇ now added at the arm level)
whereas the end effector continues its unperturbed motion toward the requested
final position. Also notice how MM always remains above the minimal threshold
µ0 = 0.4 (still see Fig. 3) while starting again to increase when the task is almost
completed, thus causing ᾱ reducing again to zero while the vehicle ends its motion
too.
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Fig. 7. MM and α̇ parameter behaviors during the first part of motion.

Fig. 8. Second part of the system motion: both arm and vehicle moving.

7 Conclusion

This chapter has considered the problem of devising control strategies for the con-
tinuous (smooth) coordination of the motions of nonholonomic vehicles and ma-
nipulation structures, whenever the latter are mounted on the vehicle to the aim
of exploiting the overall resulting redundant structure for executing manipulation
tasks. Since the mounted arms, as well as the vehicle, have been regarded as a set of
independently controlled “basic robotic units”, the coordination problem has been
reduced to the real-time generation of the coordination signals for the underlying
structures, which in turn allows the coordinated smooth accomplishment of the over-
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Fig. 9. MM and α̇ parameter behaviors during the second part of motion.

all assigned task. To this end a fundamental role has been pla ed by the ofy concept
Manipulability Measure and the efficient techniques for controlling it.

Before concluding it is worth noticing that the pr sed tr ndopo con ol a coordination,
schemes fall within the so-called “resolved-rate” robot control techniques that is
t

,
he cat of r begory o ot control methods where a ure kinematip c nature is implicitly

assumed for the underlying robotic structure S h l
poin

s uc assumption from a ipract ca. ,
t of view simply translates into the assu tion of a femp per ct r t i-

pe
(o a least quas,

rfect) velocity control performed at the joint levels of the underlying structures via,
suitable (inner and local) joint velocity con of
e

trol loops; this is the case for instance, ,
xact or approximate computer torque me hod l in”

line
t s ibposs y coupled with “high ga,

ar control feedbacks.
As a matter of fact since all the dynamic control aspects actuall iny rema confined,

within each single loop associated with the corresponding robotic structure the,
adoption of such standpoint leads to an easier construction of modular control
architectures for scalable complex robotic systems.

As a counterpart to the above-mentioned “resolved rate” approach the full dy, -
namic approach pr sed in 15opo [ ] stands as a nice extension of the “operational
s ace” formul ion fo dp at r namic control ofy complex robotic systems [13 14] Within, .
such a roach a ion lpp rat a s ace d nami model i inedy c s fi b bn ope p rst o ta y projecting
the whole d n mics iny a the operational space while le of
d

aving the remaining part,
namiy cs within the null s ace a cip sso ated with the redundant mechanisms As a.

result such two d n mi model foy a c s turn out rming the basis fo he d di-
n

r t ynamic coor,
ation strategies considered in [13–15] A fpart rom apparent major implementation.

complexities involved in the operational s ace fo ionp rmulat n in, a vestigation aiming
at relating the two a ro hepp ac s (i.e. resolved rate vs. operational space) seems to
be still lacking et, constiy tuting a topic of further research; eliminpr ary att ts to
iden

emp
tif ch relationships can actuall be fo nd in [1y su u 10y ], .



Multiarm Nonholonomic Mobile Manipulators 187

Acknowledgement

This work has been co-funded by ASI, within a special project devoted to “functional
and algorithmic control architectures for space robots”.

References

1. M. Aicardi, G. Cannata, and G. Casalino, “Stability and robustness analysis of a two-
layered hierarchical architecture for the control of robots in the operational space,” 1995
IEEE Int. Conf. on Robotics and Automation, pp. 2771–2778, 1995.

2. G. Antonelli and S. Chiaverini, “Task-priority redundant resolution for underwater
vehicle-manipulator systems,” Proc. of 1998 IEEE Int. Conf. on Robotics and Automation,
pp. 768–773, 1998.

3. G. Antonelli and S. Chiaverini, “Fuzzy redundancy resolution and motion coordination
for underwater vehicle-manipulator systems,” IEEE Trans. on Fuzzy Systems, vol. 11,
pp. 109–120, 2003.

4. G. Antonelli and S. Chiaverini, “A fuzzy approach to redundancy resolution for under-
water vehicle-manipulator systems,” Control Engineering Practice, vol. 11, pp. 445-452,
2003.

5. B. Bayle, J.Y. Forquet, and M. Renaud, “Manipulability analysis for mobile manipu-
lators,” Proc. of 2001 IEEE Int. Conf. on Robotics and Automation, pp. 1251–1256,
2001.

6. B. Bayle, J.Y. Forquet, and M. Renaud, “Using manipulability with non-holonomic
mobile manipulators,” Int. Conf. on Field and Service Robotics, pp. 343–348, 2001.

7. W.F. Carriker, P.K. Khosla, and B.H. Krogh, “Path planning for mobile manipulators for
multiple task execution,” IEEE Trans. on Robotics and Automation, vol. 7, pp 403–408,
1991.

8. G. Casalino, D. Angeletti, T. Bozzo, and G. Cannata, “Strategies for control and coordina-
tion within multiarm systems,” in S. Nicosia, B. Siciliano, A. Bicchi, and P. Valigi (Eds.),
RAMSETE — Articulated and Mobile Robots for SErvices and TEchnology, pp. 1–26,
Springer Verlag, 2001.

9. G. Casalino, D. Angeletti, T. Bozzo, and G. Marani “Dexterous underwater object manip-
ulation via multirobot cooperating systems,” Proc. of 2001 IEEE Int. Conf. on Robotics
and Automation, pp. 3220–3225, 2001.

10. G. Casalino, G. Cannata, G. Panin, and A. Caffaz, “On a two-level hierarchical structure
for the dynamic control of multifingered manipulation,” Proc. of 2001 IEEE Int. Conf.
on Robotics and Automation, pp. 77–84, 2001.

11. S. Dubowsky and W.A.B. Tanner, “A study of the dynamics and control of mobile ma-
nipulators subjected to vehicle disturbances,” Proc. of 1987 IEEE Int. Conf. on Robotics
and Automation, pp. 111–117, 1987.

12. N.A.M. Hootsmans and S. Dubowsky, “Large motion control of mobile manipulators
including vehicle suspensions characteristics,” Proc. of 1991 IEEE Int. Conf. on Robotics
and Automation, pp. 2336–2341, 1991.

13. O. Khatib, “A unified approach to motion and force control of robot manipulators: The
operational space formulation,” IEEE J. of Robotics and Automation, vol. 3, pp. 43–53,
1987.

14. O. Khatib, “Inertial properties in robotics manipulation: An object-level framework,” Int.
J. of Robotics Research, vol. 14, pp. 19–36, 1995.



188 G. Casalino and A. Turetta

15. O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, and A. Casal, “Coordination
and decentralized cooperation of multiple mobile manipulators,” J. of Robotic Systems,
vol. 13, pp. 755–764, 1996.

16. K. Liu and F. Lewis, “Decentralized continuous robust controller for mobile robots,”
Proc. of 1990 IEEE Int. Conf. on Robotics and Automation, pp. 1822–1826, 1990.

17. A.A. Maciejewski and C.A. Klein, “Obstacle avoidance for kinematically redundant
manipulators in dynamically varying environments,” Int. J. of Robotics Research, vol. 4,
no. 3, pp. 109–117, 1985.

18. G. Marani, J. Kim, and J. Yuh, “A real-time approach for singularity avoidance in resolved
motion rate control of robotic manipulators,” Proc. of 2002 IEEE Int. Conf. on Robotics
and Automation, pp. 1973–1978, 2002.

19. Y. Nakamura, Advanced Robotics: Redundancy and Optimization, Addison Wesley, 1991.
20. U.M. Nassal, “Motion cooordination and reactive control of autonomous multi-

manipulator systems,” J. of Robotic Systems, vol. 13, pp. 737–754, 1996.
21. C. Perrier, L. Cellier, P. Dauchez, P. Fraisse, E. Degoulange, and F. Pierrot, “Position/force

control of a manipulator mounted on a vehicle,” J. of Robotic Systems, vol. 13, pp. 687–
698, 1996.

22. F.G. Pin and J.C. Culioli, “Multi-criteria position and configuration optimization for
redundant platform/manipulator systems,” Proc. of IEEE Work. on Intelligent Robots and
Systems, pp. 103–107, 1990.

23. F.G. Pin, K.A. Morgansen, F.A. Tulloc, C.J. Hacker, and K.B. Gower, “Motion planning
for mobile manipulators with a non-holonomic constraint using the FSP (Full Space
Parameterisation) method,” J. of Robotic Systems, vol. 13, pp. 723–736, 1996.

24. H. Seraji, “An on-line approach to coordinated mobility and manipulation,” Proc. of 1993
IEEE Int. Conf. on Robotics and Automation, vol. 1, pp.28–35, 1993.

25. K.A. Tahboub, “Robust control of mobile manipulators,” J. of Robotic Systems, vol. 13,
pp. 699–708, 1996.

26. Y. Yamamoto and X. Yun, “Coordinating locomotion and manipulation of a mobile
manipulator,” Proc. of 31st IEEE Conf. on Decision and Control, pp. 2643–2648, 1993.

27. Y. Yamamoto and X. Yun, “Coordinating locomotion and manipulation of a mobile
manipulator,” IEEE Trans. on Automatic Control, vol. 39, pp. 1326–1332, 1994.

28. Y. Yamamoto and X. Yun, “Unified analysis on mobility and manipulability of mobile
manipulators,” Proc. of 1999 IEEE Int. Conf. on Robotics and Automation, pp. 1200–
1206, 1999.

29. T. Yoshikawa, “Analysis and control of robot manipulators with redundancy,” in M. Brady
and R. Paul (Eds.), Robotics Research: The First International Symposium, pp. 735–747,
MIT Press, 1984.

30. T. Yoshikawa, “Manipulability of robotic mechanisms,” Int. J. of Robotics Research,
vol. 4, no. 1, pp. 3–9, 1985.

31. T. Yoshikawa, Foundations of Robotics: Analysis and Control, MIT Press, 1990.

Appendix A

Consider vector h by rewriting it in its expanded form, that is

h =
(
I − J#J

)
pT 1

(φ + ε)
(57)
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where for ease of notation we have let

φ = p
(
I − J#J

) (
I − J#J

)
pT (58)

and ε (φ) represents the regularization factor for the involved inversion, i.e. a bell-
shaped continuous scalar function of φ, attaining its (small) maximum ε0 in corre-
spondence of φ = 0 and tending to zero within an a priori finite support φ∗.

As it can be easily verified, under the assumption µ ≥ µ∗ (i.e. J full rank)
expression (57) consequently reduces to the projection of vector pT on N(J), simply
normalized by the always non-zero coefficient (φ + ε), with φ naturally coinciding
with the squared norm of the projection of pT itself on N(J).

Appendix B

First, let us consider any desired end-effector motion trajectory totally evolving
inside DRW (as it could be for instance the asymptotic goal reaching established by
ẋ = γe whenever both < e > at the starting point and < g > are located inside
DRW). By definition of DRW, the end-effector position/orientation corresponding to
any point along such motion trajectory could actually be obtained via a non-empty
compact set of underlying arm postures having µ ≥ µ∗. Then just assume µ ≥ µ∗ in
correspondence of the actual arm posture, and note from (8) that, after some simple
algebra, we have

ẋ = ẋ (59)

µ̇ =
[

φ

φ + ε

]
µ̇ +

[
ε

φ + ε

]
kẋ. (60)

This clearly shows that, while the arm will nearby maintain its motion along the de-
sired trajectory, the corresponding MM will unconditionally exhibit a non-decreasing
behavior (i.e. the arm will also attempt to maintain µ above the minimum value µ∗)
only if the current underlying posture (other than being such that µ ≥ µ∗) will also
continue to satisfy the condition φ ≥ φ∗ (i.e. until a non-negligible projection of pT

on N(J) exists, which implies ε = 0, and consequently µ̇ = µ̇), as desired).
In the opposite case (i.e. φ < φ∗, though still µ ≥ µ∗) the presence of the

generally non-null second term in (60) might instead act in such a way as to oppositely
mask the positive contribution given by the first term; thus possibly leading to a
decreasing behavior for MM which might become lower than µ∗, and thus pushing
toward singularities even in cases of desired end-effector motions totally evolving
inside DRW.

Naturally enough, according to intuition, the occurrence of singularities becomes
an unavoidable event whenever goal frame < g >, for some reasons, is located
outside DRW.
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Appendix C

Regarding the scalar condition (12), and related solution (13) under the assumed
inequality µ∗ ≤ µ < µ0, it should be explicitly noted how the unique situations
where it cannot be fulfilled actually occur only in correspondence of row vectors k
exhibiting negligible square norms λ, that is, from a practical point of view, such
that λ < λ∗, being λ∗ the small regularization threshold used within (13). In such
situation, however, a tendency of λ toward zero simply means a tendency of the
non-zero vector pT (non-zero since µ ≥ µ∗) to become orthogonal to R(J), as
established by (9). This in turn implies a tendency of pT itself to completely lie on
the orthogonal complement N(J); it is consequently clear how a suitable choice for
both regularization thresholds φ∗, λ∗ can actually be made so as to ensure, even for
λ < λ∗, an increasing behaviour of µ via again the same mechanism of Appendix
B, for φ ≥ φ∗.
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Abstract. A basic requirement for an autonomous mobile robot is to localize itself with
respect to a given coordinate system. In this regard two different operating conditions exist:
structured and unstructured environment. The relative methods and algorithms are strongly
influenced by the a priori knowledge on the environment where the robot operates. If the
environment is known, a proper multisensor system endowed with an efficient data fusion
algorithm may provide a very accurate localization. In this chapter the localization problem
is formulated in a stochastic setting and a Kalman filtering approach is proposed for the
integration of odometric, gyroscope, sonar and video camera measures. If the environment is
only partially known the localization algorithm needs a preliminary definition of a suitable
environment map. Different probabilistic methods for sensory data fusion aimed at increasing
the environment knowledge are proposed and discussed.

1 Introduction

To improve the performance of a mobile robot, a primary need is to increase its
autonomy by enhancing the capability of localization with respect to the surround-
ing environment. This gives rise to the so-called Pose Estimation Problem and Map
Building Problem. For their solution a growing interest in the study, development
and analysis of many different kinds of sensory devices and perception systems can
be recognized. In particular, research interests focused on multiple-sensor systems
because of the limitations inherent any single sensory device, that can only supply a
partial information on the environment, thus limiting the ability of the robot to local-
ize itself. When a multi-sensor information is used, different kinds of observations
are obtained. These observations are always affected by several kinds of uncertainties
and are often partial, sparse and incomplete. This explains the great deal of research
devoted to developing a methodology for an efficient integration of multiple-sensor
information. The methods and algorithms proposed in the literature differ according
to the a priori information on the environment, which may be almost known and
static, or almost unknown and dynamic.

Recently, the Simultaneous Localization And Map building problem (SLAM prob-
lem) has been also deeply investigated for increasing the autonomy of navigation of
mobile robots (see e.g. [68,24,62,69,70,22,71,18,23,35,36,16,3,25,30,48,54,55,67]).
The idea of developing a mobile robot that can build a map of its environment while

B. Siciliano et al. (Eds.): Advances in Control of Articulated and Mobile Robots, STAR 10, pp. 191–222, 2004.
Springer-Verlag Berlin Heidelberg 2004
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simultaneously using that map to localize itself promises to allow these vehicle to
operate autonomously for long period of time in unknown environments. Many con-
tributions have been focused on the use of stochastic estimation techniques to build
and maintain current estimates of vehicle position and of the environment map com-
prehending specific features location (frequently landmarks location). In particular,
the Extended Kalman Filter (EKF) has been proposed as a tool for consistent fusion
of the information acquired by the robot to yield estimates of vehicle and landmark lo-
cations by a recursive approach [22,25,68,24,71,35,36,3]. Another approach that has
received considerable interest in the literature is based on a probabilistic method. For
example in [70,62,69] an algorithm based on a rigorous statistical account of robot
motion and perception is proposed for landmark based map acquisition and con-
current localization. Besides these approaches based on the rigorous mathematical
models of the vehicle and sensing properties, different solutions have been proposed
using a more qualitative knowledge of the nature of the environment [14,48,55]. The
promising approach appears to be the one based on the use of stochastic estimation
techniques, where an EKF is used for calculating the current position and orientation
of the mobile robot which is subsequently fed to a map-building algorithm. To obtain
an efficient integration of map building and localization, the acquired knowledge on
the environment must be represented by parametric features with the associated
uncertainty. The aim is to integrate in the same filtering algorithm the robot pose
estimation and the environment features estimation. Moreover an adaptive algorithm
is necessary to cope with the uncertainties on the environment and on the sensor
readings.

Therefore two aspects are relevant for developing an efficient SLAM algorithm,
the robot pose estimation and the environment features extraction. Both these as-
pects are considered in this chapter. Indoor environments are considered and 2D
environment model is developed. Many real applications can be handled by this
solution as for example in the emerging area of assistive technologies where pow-
ered wheelchairs can be used to strengthen the residual abilities of users with motor
disabilities [58,32,12].

1.1 The Pose Estimation Problem

The pose estimation problem is to localize the robot with respect to an a priori known
environment. Indoor environments are considered and 2D models are used where
the known environment features are modeled by straight lines. Two different kinds
of robot localization exist: relative and absolute. The first one is realized through the
measures provided by sensors measuring variables internal to the vehicle (internal
sensors). Typical internal sensors are optical incremental encoders which are fixed
to the axis of the driving wheels or to the steering axis of the vehicle. At each
sampling time the position is estimated on the basis of the encoder increments along
the sampling interval. A drawback of this method is that the errors of each measure
are summed up as movement proceeds. This heavily degrades the position and ori-
entation estimates of the vehicle, in particular for long and winding trajectories [66].
In [10] practical methods are proposed to reduce odometry errors due to uncertainty
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about the effective wheelbase and unequal wheel diameter. Other typical internal
sensors are gyroscopes and accelerometers which provide angular rate information
and velocity rate information, respectively. The information provided by these iner-
tial sensors must be integrated to obtain absolute estimates of orientation, position
and velocity. Therefore, like for the odometers, even small errors in the individual
measures may give rise to unbounded errors in the absolute measure.

Absolute localization is performed by processing the data provided by a proper
set of external sensors measuring some parameters of the environment in which the
vehicle is operating. A set of sonars is generally used as external sensory device.
Sonars are fixed to the vehicle and measure the distance with respect to parts of
the known environment [26,20,51,52,39,21,65,17]. The characterization of sonar
measures and/or the rejection of unreliable sonar readings have been widely in-
vestigated [52,13,5,11]. Also a video camera can be used as external sensor. It is
fixed to the vehicle and provides information on the characteristics features of the
environment. Both sonars and video cameras are also widely utilized for the map
building as required in the guidance of autonomous vehicles with obstacle avoidance
in unknown environments [29,47,31,2,7].

The main drawback of absolute measures is their dependence on the characteris-
tics of the environment. Possible changes of environmental parameters may give rise
to erroneous interpretation of the measures provided by the localization algorithm.
The actual trend is to exploit the complementary nature of internal and external
sensors and to properly weight the relative data according to their reliability. For this
purpose Kalman filtering techniques represent a powerful tool [21,17,64,46,34].

In this approach the internal and external sensors readings are combined together
through an Extended Kalman Filter (EKF) providing on line estimates of robot
position.

The use of Kalman filtering techniques requires to derive a stochastic state-space
representation of the robot model and of the measure process. Formally this can be
readily performed by applying the kinematic model of the robot and the available
knowledge on measurement equipment. An interesting feature of the EKF here
proposed is its capability of adaptively estimating the state and measurement noise
covariance matrices.

1.2 The Map Building Problem

In this case the problem is to build a map (generally local) of the environment. Exter-
nal sensors can be also used for such a purpose [28,53,2]. The map building problem
has been addressed by many researchers and over the years two basic approaches to
environment representation have been developed: Grid-Based Modeling (GBM) and
Feature-Based Modeling (FBM). In these approaches the environment is unknown
and an accurate estimation of the robot pose is necessary. Range sensors are used for
acquiring environment data that are the distance readings between the selected envi-
ronment features and the robot. When dead-reckoning sensors are used for the pose
estimation a poor environment model is generally obtained for long trajectories. This
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requires the fusion of all sensors readings in an efficient algorithm to simultaneously
handle the map building and pose estimation as discussed in Section 5.

In the GBM approach the workspace of the robot is decomposed into square
areas denoted as cells. In each cell a value, that corresponds to the level of certainty
that an obstacle exists within the cell area, is stored (occupancy grid).

A characteristic of the structured environments is that objects tend to have
straight borders. Indoors environments can be represented by a collection of line
segments, representing the vertical surfaces of walls, doors, objects, etc. In the FBM
approach, line segments or surfaces are used for modeling indoor environment and
for improving the estimated position and orientation of the mobile robot (robot pose
estimation) as recalled in the previous section [59,3]. Line features can be also
detected in the occupancy grids as aligned cells of high probability of occupation.

The occupancy grid map is generally used for local path planning and reactive
navigation; it is implemented by a variety of algorithms. Its main drawbacks are
the difficulty in using grids to improve the robot pose estimation and the amount of
computer memory needed for representing large environments. On the other hand,
the FBM uses the parametric features for describing the boundaries of free-space in
terms of lines or surfaces defined by a list of parameters (geometric primitives). This
is useful for the local path planning and for the pose estimation. If sonar sensors
are used for acquiring environment information, the uncertainties of sensor readings
make unreliable the process of grouping (sonar) readings in geometric primitives; for
example, multiple reflections can make sonar measurements erroneous for mapping
corners in a square environments. In general, the integration with the readings of a
video camera reduces the problems of grouping adjacent sensor measurements for
obtaining more reliable environment features.

A method is here proposed for modeling the robot environment by extracting
parametric straight line features and the associated uncertainty level both from the
occupancy grid map and from the video data acquired by a CCD camera. The
environment model is a 2D map which represents the 3D environment of the robot
as a collection of line features estimating the boundaries of the environment.

1.3 Table of Contents

The possible integration of the pose estimation problem with the map building
problem is preliminarly analyzed. In the following section the considered set of
sensors will be presented. In Section 3 the algorithms developed for on line estimation
of robot position will be analyzed and experimental results will be presented and
discussed.

A multisensor fusion approach for improving the map-building capability of
a mobile robot will be presented in Section 4. A modelling technique for indoor
environments based on straight line features extraction from video data and sonar
readings will be analyzed. The Hough Transform (HT) is considered for extracting
straight lines from the occupancy grid map and from video data. In this section
experimental results will be presented and analyzed.
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These algorithms give good performance for the robot pose estimation and for
the environment features extraction in a rigorous mathematical unified framework.
Therefore these results are promising for the solution of the SLAM problem that
will be discussed in Section 5.

2 The Sensory Equipment

The methods and algorithms developed in this chapter refer to the vehicle of Fig. 1.
It is an unicycle-like mobile robot with two driving wheels, mounted on the left
and right sides of the robot, with their common axis passing through the geometrical
center of the robot (see Fig. 1). Localization of this mobile robot in a two-dimensional
space requires three free coordinates: coordinates x and y of the midpoint between
the two driving wheels and the angle θ between the main axis of the robot and the
x-direction. The kinematic model of the unicycle robot is described by the following
equations:

ẋ(t) = ν(t) cos θ(t) (1)

ẏ(t) = ν(t) sin θ(t) (2)

θ̇(t) = ω(t), (3)

where ν(t) and ω(t) are, respectively, the displacement and angular velocities of the
robot.

2.1 Odometric Measures

The encoders placed on the driving wheels provide a measure of the incremental
angles over a sampling period ∆tk := tk+1 − tk. The odometric measures are
used to obtain an estimate of the linear and angular velocities ν̄(tk) and ω̄(tk),
respectively, which are assumed to be constant over the sampling period. Numerical
integration of (1) and (2) based on ν̄(tk) and ω̄(tk) provides an estimate of the
position and orientation increments over each sampling period of the unicycle robot.
Such processing is generally performed by an odometric device connected with the
low level controller of the robot (imposing the desired ν(tk) and ω(tk)).

The encoders incremental errors heavily affect the estimate of the orientation θ;
this limits their applicability to short trajectories only. An analysis of the accuracy
of the estimation procedure implemented by an odometric equipment has been
developed in [66].

2.2 Fiber Optic Gyroscope Measures

The accuracy of the robot pose estimation can be greatly improved by the use of the
Fiber Optic Gyroscope (FOG), that provides very reliable measures of the orientation
θ.

The operation principle of a Fiber Optic Gyroscope (FOG) is based on the
Sagnac effect. The FOG is made of a fiber optic loop, fiber optic components, a
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Fig. 1. Scheme of the unicycle robot.

photo-detector and a semiconductor laser. The phase difference of two light beams
traveling in opposite directions around the fiber optic loop is proportional to the rate
of rotation of the loop. The rate information is internally integrated to provide the
absolute measurements of orientation. A FOG does not require frequent maintenance
and has a lifetime longer than the conventional mechanical gyroscopes. The drift is
also low. A careful analysis on the accuracy of this internal sensor has been developed
in [57].

2.3 Sonar Measures

The distance readings by sonar sensors are related to the indoor environment model
and to the configuration of the mobile robot.

Consider a planar distribution of ns sonar sensors. Denote with x′i, y
′
i, θ

′
i the posi-

tion of the i-th sonar, i = 1, 2, . . . , ns, referred to the coordinate system (O′, X ′, Y ′)
fixed to the mobile robot, as reported in Fig. 2.

The position xi, yi, θi at the sampling time tk of the i-th sonar referred to the
inertial coordinate system (O, X, Y ) have the following form:

xi(tk) = x(tk) + x′i sin θ(tk) + y′i cos θ(tk), (4)

yi(tk) = y(tk)− x′i cos θ(tk) + y′i sin θ(tk), (5)

θi(tk) = θ(tk) + θi. (6)

The walls and the obstacles in an indoor environment are represented by a proper
set of planes orthogonal to the plane XY of the inertial coordinate system. Each
plane P j , j = 1, 2, . . . , np (where np is the number of planes which describe the
indoor environment) is represented by the triplet P j

r , P j
n, P j

ν , where P j
r is the normal

distance of the plane from the origin O, P j
n is the angle between the normal line to the

plane and the x-direction and P j
ν is a binary variable, P j

ν ∈ {−1, 1}, which defines
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Fig. 2. Sonar displacement.

the face of the plane reflecting the sonar beam. In such a notation, the expectation
dj

i (tk) for the present distance of the sonar i from the plane P j has the following
expression (see Fig. 3):

dj
i (tk) = P j

ν (P j
r − xi(tk) cosP j

n − yi(tk) sin P j
n), (7)

if the P j
n ∈ [θi(tk) − δ/2, θi(tk) + δ/2], where δ is the beamwidth of the sonar

sensor. The vector composed of geometric parameters P j
r , P j

n, P j
ν , j = 1, 2, . . . , np,

is denoted by Π .

Fig. 3. Sonar measure.

To simplify the position estimation algorithm without appreciable reduction of
accuracy, the sonar echoes traveling along the cone edges have been omitted. In fact,



198 A. Bonci et al.

the measures along the cone edges require an a priori model of the environment
including the different roughness of the walls and are less accurate of the distance
measures given by (7).

2.4 Video Camera Measures

A video camera and related image processing procedures can be used for extracting
environment features that are related to the indoor environment model and to the
robot configuration.

Consider a CCD video camera installed on a mobile robot. For the image forma-
tion, reference is made to the pinhole model [4]. This is a simple video camera model,
which does not take into account some linear and nonlinear distortions phenomena
in the image formation process [60,33]. The main linear distortions are relative to
the image center displacement [50] and to the scale difference [63,38]. Taking these
phenomena into account, the CCD calibration equations defining the relationship
between the metric coordinates of a point pw with its pixel coordinates have the
following form:

u = u0 + sux
dx

= sux+cx

dx
,

v = v0 + y
dy

= y+cy
dy 

,
(8)

where su is the horizontal scale factor [63], dx := Sdx /Ndx is the center-to-center
distance between adjacent CCD sensor elements in the x direction (scan line), dy :=
Sdy /Ndy is the center-to-center distance between adjacent CCD sensor elements in
the y direction, Sdx 

, Sdy 
are the CCD sizes, Ndx 

, Ndy 
are the numbers of CCD

elements and cx, cy are the row and column indices of the center of the digital
image. Therefore the complete set of camera parameters that must be estimated are
the intrinsic parameters f , su, cx, cy , where f is the focal length, and the set of
extrinsic parameters that determine the position and orientation of the video camera
referred to the environment frame (see [7]). This model is appropriate for modern
solid-state cameras, especially in the context of mobile robotics [4].

Different camera calibration techniques are proposed into the literature (see
e.g. [50]). The algorithm recently proposed in [38] is here used for the estimation of
the video camera parameters.

To reduce the computation efforts, the “visible space” is introduced. In the
pinhole model, the viewing frustum of the video camera is the projection of the
image plane corners from the pinhole, that is located one focal length behind the
image plane [45]. Pointing the camera down in the forward direction of the robot,
the “visible space" on the ground plane is defined by the projection of the frustum
vertices on the floor plane (see Fig. 4).

Moreover, for improving the detection of environment’s features, the Hough
Transform (HT) is used [40,27,56].

In the HT the straight line equation, is expressed by:

ρ = u cosφ  + v  sinφ, (9)
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Fig. 4. Visible space of the CCD camera installed on the robot.

where ρ is the distance between the straight line and the origin of the coordinate
system in the image plane, φ is the orientation of the line and u,v are the coordinates
of whatever edge point belonging to the line. The HT requires an accumulator array
H(ρ,φ), called Hough space, to represent the possible values of (ρ,φ); it is generally
approximated by a discrete array. The edge points (u,v) are detected by means of an
orthogonal differential operator [37] (e.g., the Sobel operator [61]); for each detected
edge point the parameters (ρ,φ) are estimated and quantized, and the accumulator
array is increased accordingly. After this preliminary edge points processing, the
accumulator array is searched for peaks. The peaks identify the parameters of the
highest probability lines. In the standard HT the accumulator is increased by the
same quantity for each edge point, assuming that each of them contribute equally to
the line features.

3 Estimation of Robot Location by Kalman Filter

In this section an EKF is proposed for the on line estimation of robot location through
the fusion of internal and external sensors measures. The environment is assumed to
be a priori known.

3.1 Extended Kalman Filter

Denote with T the sampling period and let X(kT ) := [ x(kT ) y(kT ) θ(kT ) ]T

and Z(kT ) be the robot state and the measurement vector respectively at time kT .
Vectors Z(kT ) and X(kT ) can be related by a nonlinear measure equation of the
kind

Z(kT ) = G(X(kT ),Π) + v(kT ), (10)
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where G(X(kT ),Π) is a nonlinear function of the state and of the geometric param-
eter vector Π and v(kT ) is a white noise sequence∼ N(0, R(kT )). The dimension
pk of Z(kT ) is not constant, depending on the number of sensory measures that are
actually used at each time.

Let U(kT ) := [ ν(kT ), ω(kT ) ] be the robot control input at time kT and assume
U(t) = U(kT ) for t ∈ [kT, (k + 1)T ).

To obtain an EKF with an effective state prediction equation in a simple form,
model (1)–(3) has been linearized about the current state estimate X̂(kT, kT ) and
the control input U((k − 1)T ) applied until the linearization instant. Subsequent
discretization with period T of the linearized model gives the following EKF (where
explicit dependence on T has been dropped for simplicity of notation),

X̂(k + 1, k) = X̂(k, k) + L(k)X̂(k, k) (11)

P (k + 1, k) = Ad(k)P (k, k)AT
d (k) + Qd(k) (12)

K(k + 1) = P (k + 1, k)CT (k + 1) ·
[C(k + 1)P (k + 1, k)CT (k + 1) + R(k + 1)]−1 (13)

X̂(k + 1, k + 1) = X̂(k + 1, k) + K(k + 1) ·
[Z(k + 1)−G(X̂(k + 1, k),Π)] (14)

P (k + 1, k + 1) = [I −K(k + 1)C(k + 1)] ·
P (k + 1, k), (15)

where:

L(k) :=

 T cos θ(k) −0.5ν(k − 1)T 2 sin θ(k)
T sin θ(k) 0.5ν(k − 1)T 2 cos θ(k)

0 T

 , (16)

Ad(k) :=

 1 0 −ν(k − 1) sin θ(k)
0 1 ν(k − 1) cos θ(k)
0 0 1

 (17)

Qd(k) := σ2
η(k)Q̄(k) (18)

Q̄(k) :=

 T + ν(k − 1)2 T 3

3 sin2 θ(k)
−ν(k − 1)2 T 3

3 cos θ(k) sin θ(k)
−ν(k − 1)T 2

2 sin θ(k)

−ν(k − 1)2 T 3

3 cos θ(k) sin θ(k) −ν(k − 1)T 2

2 sin θ(k)
T + ν(k − 1)2 T 3

3 cos2 θ(k) ν(k − 1)T 2

2 cos θ(k)
ν(k − 1)T 2

2 cos θ(k) T

 , (19)

and C(k) is the (3×pk) matrix obtained by the linearization of the measure equation
(10).

The form of Qd(k) expressed by (18) derives by the hypothesis that model
(1)–(3) describes the true dynamics of the three state variables with nearly the same
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degree of approximation and with independent errors. The structure of R(k) depends
on the particular sensor equipment used.

In the next sections, the above general structure of the EKF will be particularized
according to the sensor equipment used.

3.2 Adaptive Estimation of Qd(k) and R(k)

The EKF can be implemented when estimates of Qd(k) and R(k) are available.
A considerable amount of research has been performed on the adaptive Kalman

filtering (see [1,41,15] and references therein), but in practice it is often necessary to
redesign the adaptive filtering scheme according to the particular characteristics of
the problem faced. The adaptive procedure here proposed refers to matrices Qd(k)
of the form (18) and R(k) = diag [σ2

v,i, i = 1, · · · , pk].
The following nearly time-invariance assumption is here made: the parameters

σ2
v,i(k), i = 1, . . . , pk, and σ2

η(k) are nearly constant over nv ≥ 2 and nη ≥ 2
samples respectively.

Define γi(k + 1) = zi(k + 1) − Gi(X̂(k + 1, k),Π), where zi(k + 1) and
Gi(X̂(k + 1, k),Π) are the i-th component of Z(k + 1) and G(X̂(k + 1, k),Π),
respectively. In analogy with the linear case, residuals γi(k + 1), i = 1, . . . , pk, are
named the innovation process samples and are assumed to be well described by a
white sequence∼ N(0, si(k +1)), where si(k +1), i = 1, . . . , pk can be expressed
as

si(k + 1) = Ci(k + 1)P (k + 1, k)CT
i (k + 1) + σ2

v,i(k + 1)

= Ci(k + 1)[Ad(k)P (k, k)AT
d (k) + σ2

η(k)Q̄(k)] ·
CT

i (k + 1) + σ2
v,i(k + 1), (20)

where Ci(·) is the i-th row of C(·).
This simplifying assumption is valid as long as discretization and linearization of

(1)–(3) and (10) is accurate and allows the extension of the methods of the adaptive
filtering theory developed for the linear case.

The two above assumptions will allow defining a simple and efficient estimation
algorithm based on the condition of consistency, at each step, between the observed
innovation process samples γi(k + 1), i = 1, . . . , pk and their predicted statistics
E{γ2

i (k + 1)} = si(k + 1). Imposing such a condition, one-stage estimates σ̂2
η(k)

and σ̂2
v,i(k+1), i = 1, . . . , pk, of σ2

η(k) and σ2
v,i(k+1), i = 1, . . . , pk, respectively,

are obtained at each step. To increase their statistical significance, the one-stage
estimates σ̂2

η(k) and σ̂2
v,i(k + 1), i = 1, . . . , pk, are averaged obtaining the relative

smoothed versions ¯̂σ2
η(k) and ¯̂σ2

v,i(k + 1), i = 1, . . . , pk.
After proper calculations (see [42] for details), the following recursive form of

estimates ¯̂σ2
η(k) and ¯̂σ2

v,i(k + 1), i = 1, . . . , pk, is found



202 A. Bonci et al.

¯̂σ2
η(k) = ¯̂σ2

η(k − 1) +

1
(lη + 1)pk

[
pk∑
i=1

(
σ̂2

η,i(k)− σ̂2
η,i(k − (lη + 1))

)]
(21)

¯̂σ2
v,i(k + 1) = ¯̂σ2

v,i(k) +
1

lv + 1
(σ̂2(k + 1)− σ̂2(k − lv)), (22)

where:

• σ̂2
η,i(k) = max

{
(Ci(k + 1)Q̄(k)CT

i (k + 1))−1[γi(k + 1)2−
Ci(k + 1)Ad(k)P (k, k)AT

d (k)CT
i (k + 1)− ¯̂σ2

v,i(k + 1)], 0
}

• σ̂2
v,i(k + 1) = max

{
γ2

i (k + 1)− [Ci(k + 1)Ad(k)P (k, k)·
AT

d (k)CT
i (k + 1) + Ci(k + 1)¯̂σ2

η,i(k)Q̄(k)CT
i (k + 1)], 0

}
,

• lη and lv are the number of one-stage estimates ¯̂σ2
η(k) and ¯̂σ2

v,i(k + 1) respec-
tively, yielding the smoothed estimates.

Parameters lη and lv of estimators (21) and (22) are chosen on the basis of two
antagonist considerations: low values would produce noise estimators which are not
statistically significant; large values would produce estimators which are scarcely
sensitive to possible rapid fluctuations of the true σ2

η(k) and σ2
v,i(k), i = 1, . . . , pk.

During filter initialization, the starting values (σ̂0
η)2 and (σ̂0

v,i)
2, i = 1, . . . , pk, of

σ̂2
η(k) and σ̂2

v,i(k) respectively, must be chosen on the basis of the a priori available
information. In case of lack of such information, a large value of P (0, 0) is useful
to prevent divergence.

With some formal variants, the above procedure can be extended to the case
where also the covariance matrix of the measurement noise is R(k) = σ2

v(k)R(k),
R(k) being a known matrix.

A recent alternative approach based on a fuzzy adaptation mechanism has been
proposed in [43].

3.3 Sensors Readings Selection

To reduce the probability of an inadequate interpretation of erroneous sensor data,
a method is proposed here to deal with the undesired interferences produced by the
presence of unknown obstacles on the environment or by incertitude on the sensor
readings. Notice that for the problem here handled both the above events are equally
distributed. A simple and efficient way to perform this preliminary measure selection
is to compare the actual sensor readings with their expected values. Measures are
discharged if the difference exceeds an adaptively time-varying threshold. This is
here done in the following way: at each step, for each measure zi(·) of an external
sensor, the residual γi(k + 1) = zi(k + 1) − Gi(X̂(k + 1, k),Π), represents the
difference between the actual sensor measure zi(k + 1) and its expected value
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Gi(X̂(k + 1, k),Π) which is computed on the basis of the estimated robot location
and on the a priori knowledge of the environment. As γi ∼ N(0, si(k + 1)), the
current value zi(k + 1) is accepted if |γi(k + 1)| ≤ 2

√
si(k + 1). Namely, the

variable threshold is chosen as two times the standard deviation of the innovation
process.

3.4 Pose Estimation by Fusion of Odometric and Inertial Measures

If only internal sensors are used, the measure Eq. (10) reduces to

Z((k + 1)T ) = X((k + 1)T ) + V (kT ), (23)

where Z(kT ) = [z1(kT ), z2(kT ), z3(kT )]T and V (kT ) = [v1(kT ), v2(kT ), v3(kT )]T

is a white sequence ∼ N(0, R(kT )). The elements of Z(kT ) are: z1((k + 1)T ) ≡
xd((k + 1)T ), z2((k + 1)T ) ≡ yd((k + 1)T ), z3((k + 1)T ) ≡ θg((k + 1)T ),
where xd((k + 1)T ) and yd((k + 1)T ) are computed through classical odometric
algorithms exploiting the angular measure θg((k + 1)T ) provided by the FOG.

The covariance matrix R(kT ) of V (kT ) has the following structure:

R(kT ) = block diag [σ2
o(kT )R(kT ), σ2

g ] (24)

where the scalar σ2
o(kT ) is the measurement noise variance depending on the odome-

ters; R(kT ) is a (2 × 2) matrix that can be composed through the equations of the
used odometric algorithm; σ2

g is the constant variance of the noise v3(kT ) affecting
θg(kT ). As the measures provided by the FOG are much more reliable than the other
ones, one has σ2

g 6 σ2
o and a nearly singular filtering problem is obtained.

In this case a lower order non-singular EKF can be derived assuming that the
original R(kT ) is actually singular [1].

The experimental tests performed with this set of sensors are discussed beneath. A
commercial powered wheelchair TGR Explorer has been used. This vehicle has been
developed to be used in the emerging area of assistive technologies where powered
wheelchairs can be used to strengthen the residual abilities of users with motor
disabilities. A control module in the guidance system is developed for translating
the commands generated by the navigation module or by the user in the driving
commands for the actuators of the wheelchair (see [32]).

The implementation of the navigation system for this mobile base was performed
on a PC 486DX2 with PC-104 bus installed on the rear side of the wheelchair (see
Fig. 5). The PC installed on the wheelchair also manages the sensory system and
the connection with the user interface. The sensory system is based on FOG sensor
and odometric sensors that allow the estimation of the mobile base position with
respect to a starting reference configuration. The odometric system has been simply
carried out by two incremental optical encoders aligned with the axes of the driving
wheels. The gyroscopic measures on the absolute orientation have been collected in
a digital form by a serial port on the computer. The fiber optic gyroscope HITACHI
mod. HOFG-1 was used for measuring the angle θ of the mobile robot.

The EKF has been implemented on a MS Windows PC by the development
environment described in [9]. In this development system, the planned trajectory
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Fig. 5. The PC-104 bus installed on the wheelchair with data acquisition system for the FOG
sensor and the incremental encoders.

has been computed considering the non-holonomic and environment constraints
according to the algorithm proposed in [19]. The system is connected directly with
the low level robot controller by standard serial protocol RS232. All the experiments
have been performed on closed trajectories making the robot track relatively long.
A sample of the performed experimental tests is shown in Fig. 6. Part (a) of this
figure shows the estimated trajectory with the localization algorithm based only
on odometric measures. A long trajectory of 108 meters has been considered to
verify the limitations intrinsic to the use of odometric measures. The plot clearly
evidences the unreliability of the estimated trajectory. Part (b) shows the same test
with the localization algorithm based on both odometric and inertial measures. The
plot clearly shows the improvement introduced: at the end of the test trajectory the
error on the pose estimation is of 16 cm.

3.5 Pose Estimation by Fusion of Odometric and Sonar Measures

In this case the measure vector Z(kT ) is composed of two subvectors Z1(kT ) =
[ z1(kT ) z2(kT ) z3(kT ) ]T and Z2(kT ) = [ z4(kT ) z5(kT ) ... z3+ns

(kT ) ]T ,
where z1((k + 1)T ) = xd((k + 1)T ), z2((k + 1)T ) = yd((k + 1)T ), z3((k +
1)T ) = θd((k + 1)T ) are the measures provided by the odometric device, and
z3+i((k + 1)T ) = dj

i ((k + 1)T ) + v3+i((k + 1)T ), i = 1, 2, . . . , ns, j ∈ [1, np],
with dj

i ((k + 1)T ) given by (7), is the distance measure provided by the i-th sonar
sensor from the P j plane with j ∈ [1, np]. The environment map provides the
information needed to detect which is the plane P j in front of the i-th sonar.

By definition of the measurement vector one has that the output function G(X((k+
1)T ),Π) has the following form:

G(X((k + 1)T ),Π) = [x((k + 1)T ) y((k + 1)T ) θ((k + 1)T )
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Fig. 6. Pose estimation by fusion of FOG and odometric measures. Part (a): estimated tra-
jectory with localization algorithm based on odometric measures only. Part (b): estimated
trajectory with localization algorithm based on FOG and odometric measures.

dj1
1 ((k + 1)T ) dj2

2 ((k + 1)T ) · · · d
jp̄k+1
p̄k+1

((k + 1)T )
]T

j1, j2, . . . , jp̄k+1 ∈ [1, np], (25)

where p̄k := pk−3. The number pk of measures may vary from the minimum value
3 to the maximum value ns + 3, where ns is the number of sonar sensors.

Matrix C(k) has the following form

C(k) := [ C1(k)T C2(k)T · · · Cpk
(k)T ]T , (26)
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where

[ C1(k)T C2(k)T C3(k)T ]T = I3,

Ci+3(k) = P j
ν (− cos P j

n − sin P j
n

+x′i cos(θ(k)− P j
n)− y′i sin(θ(k)− P j

n) )
i = 1, 2, . . . , p̄k, p̄k ≤ ns, j ∈ [1, np]. (27)

The measurement noise covariance matrix R(k) has the following structure: R(k) =
block diag [R1(k), R2(k)]. The block R1(k) is the (3× 3) matrix according to the
used odometric algorithm. The block R2(k) is a ((pk−3×pk−3)) matrix representing
the covariance matrix of the independent errors effecting the sonar measures.

A sample of the experimental tests performed with this set of sensors is reported
beneath. The experimental tests have been carried out on the LabMate mobile base in
an indoor environment with different geometries. This mobile robot is realized with
two driving wheels, as reported in Fig. 1, and the odometric data are the incremental
measures that, at each sampling interval, are provided by the encoders attached to the
right and left wheels of the robot. These measures are directly captured by the low
level controller of the mobile base. The sonar measures have been acquired by the
standard proximity system of the LabMate base composed by a set of nine Polaroid
sonar sensors. A picture of LabMate system with the sonar sensors placement is
reported in Fig. 7. A preliminary reduction of crosstalk has been obtained by a proper

Fig. 7. Indoor environment with the LabMate mobile vehicle.

distribution on the orientations of the sonar sensors. A significant reduction of the
wrong readings produced by unknown obstacles has been also realized following
the procedure described in Section 3.3.
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The localization algorithm has been tested with relatively long trajectories in an
indoor environment represented by a suitable set of planes orthogonal to the plane
XY of the inertial system.

Figure 8 illustrates the results of such an experiment. Part (a) of this figure
represents the trajectory with localization deduced by odometric measures only: the
pose estimation at the end of the considered trajectory is completely wrong and the
robot crash into the wall. In order to test the limitation of the odometric measures,
the planned trajectory is composed by a large set of orientation changes. The black
path is the actual trajectory with only odometric measures. In this case at the end
of the test the robot is out of the planned trajectory. Part (b) shows the same test
with localization based on the Adaptive Extended Kalman Filter (AEKF) described
in Section 3.2 and fed by odometric and sonar measures. The error on the pose
estimation at the end of the planned trajectory is of 1.5 cm and the robot is able to
go through the door. The values lη = lv = 2 have been chosen. The plot clearly
evidences the improvement introduced by the adaptation mechanism.

3.6 Pose Estimation by Odometric and Video Camera Measures

As mentioned previously, a video camera can be used for identifying features of the
environment. Detection of vertical straight lines features by HT has been considered.
Each line is characterized by a pair of parameters (ρi, φi) where ρi is the distance
between the line and the origin and φi specifies the orientation of the line. In this
case, for each detected vertical straight line, a pair of measures (ρi, φi), depending
on the state X̂(kT ), is produced. The output function G(X((k + 1)T ),Π) has the
following form:

G(X((k + 1)T ),Π) = [x((k + 1)T ) y((k + 1)T ) θ((k + 1)T )

ρ1((k + 1)T ) φ2((k + 1)T ) · · · ρ
pk

((k + 1)T ) φ
pk

((k + 1)T )
]T

, (28)

and the number of measures is pk = 3+2pk, where pk is the number of line features
detected at time (k + 1)T .

In this case the preliminary sensor reading selection described in Section 3.3
has been applied for a better exploitation of the measures which are related to the a
priori knowledge of the environment.

The experimental tests have been performed in an indoor environment with
different geometries. The same LabMate mobile base of Section 3.5 has been used;
therefore, as for the odometers, the same considerations of that section hold. The
video camera measures have been collected by a low cost CCD web-camera Philips
PCVC 675K installed in front of the vehicle.

The localization algorithm has been tested over relatively long trajectories in an
indoor environment represented by a suitable set of planes orthogonal to the plane
XY of the inertial system.

The planned trajectory of Fig. 9 from the start configuration S to the goal
configuration G is composed by a large set of orientation changes. If the localization
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(a)

(b)

Fig. 8. Dots path is the planned trajectory from the start configuration S to the goal configura-
tion G, the dark path is the realized trajectory: (a) localization with only odometric measures;
(b) localization with the AEKF where the gray dots are the actually used sonar measures.

is obtained only through odometric measures, the end trajectory errors are 31.3 and
94.8 cm along the X and Y directions respectively. Introducing the video camera
measures, a significant performance improvement has been obtained and the end
trajectory error is of 8.9 cm. Figure 9 shows some samples of the images acquired
along the considered trajectory and highlights the environment features used for the
video camera readings.
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G S

Fig. 9. Pose estimation by fusion of odometric and video camera measures.

4 Ultrasonic and Video Data Fusion for Map Building

The pose estimation described in the previous section assumes the a priori knowledge
of the environment where the robot moves. Unfortunately, this is not the most
frequent case. Therefore map building from sensory information collected by the
robot itself has to be reliably performed. This section presents results in this respect
following a multiple sensor approach. A structured environment has been assumed,
and as clarified in the previous section, it is characterized by walls, doors, objects, etc.
that are represented by straight lines. This section proposes a FBM of the environment
in which straight line segments are used for modeling indoor environment and for
improving the pose estimation of a mobile robot. This model keeps a selection of
sensor readings produced by external sensors like sonar(s) and video camera(s).

The problem of line feature extraction is faced for both kinds of sensory data
representations: occupancy grid, that is computed by probabilistic aggregation of
sonar readings, and video data. The initial state of the occupancy grid is completely
unknown because an a priori model of the environment is not provided. During the
robot navigation the sonar readings are integrated into the occupancy grid and, at
fixed time intervals, images of a part of the environment floor are acquired.
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The obstacle borders on the floor have a geometry which can be generally de-
scribed by straight lines. The proposed updating process makes use of a probabilistic
approach to the Hough Transform (HT) [40,37] for extracting line features and the
associated certainty values both from occupancy grid and from video data. Match-
ing between the lines extracted from the occupancy grid and from video data is
performed for obstacles belonging to the part of the floor visible from the CCD
camera (here called “visible space” as in Section 2.4). The proposed matching al-
gorithm is based on the combination of the lines probability encoded in both the
Hough accumulators.

4.1 Line Detection by Video Camera

The evaluation of the uncertainty of straight lines extracted from digital data is
relevant for building up the model.

Each line feature on the floor plane representing the i-th “wall” or “obstacle” of
the environment is represented by a vector defined as

wi := [ΘT
i P (Θi)]T (29)

where Θi = [ρi φi ]T is a vector representing the i-th line feature by means of
its polar coordinates: the orientation angle φi of the i-th line and the distance ρi

between the origin of the reference frame and the i-th line. P (Θi) is the probability
of existence of a line feature having parameters ρi and φi. In a recent contribution,
an algorithm has been introduced [44] for updating the accumulator of the HT
depending from the uncertainty of each edge point. This algorithm makes use of
image noise, edge orientation estimation and parametric line representation, for
computing the variance σ2

ρ, σ2
φ of the estimated line parameters φ̂ and ρ̂ for each

edge point. The line parameters uncertainty are used for evaluating the joint density
function p(Θ̂C |ΘC), that is the likelihood of the all possible quantized values ΘC =
[ ρ φ ]T , given the observed line parameters Θ̂C = [ ρ̂ φ̂ ]T . The assumption is
made that the variable Θ̂C is normally distributed as Θ̂C ∼ N(ΘC , ΣΘ̂C

), where

ΣΘ̂C
is the covariance matrix of Θ̂C

ΣΘ̂C
=

[
σ2

φ σρφ

σρφ σ2
ρ

]
. (30)

Under this assumption, Θ̂C has the following bivariate normal distribution

p(Θ̂C |ΘC) =
1
2π
|ΣΘ̂C

|− 1
2 exp

(
−1

2
(Θ̂C −ΘC)T Σ−1

Θ̂C
(Θ̂C −ΘC)

)
. (31)

The Hough accumulator is incremented by the log (p(Θ̂C |ΘC)) at each edge
point. The covariance matrix is singular (|ΣΘ̂C

| = 0), and thus Θ̂C is a singular or
degenerate bivariate normal distribution. This means that the probability density for
Θ̂C is always concentrated in a subspace whose dimension is smaller than that of the
space generated by Θ̂C ; hence the probability density distribution p(Θ̂C |ΘC) cannot



Methods and Algorithms for Sensor Data Fusion of a Mobile Robot 211

be directly computed. According to the properties of the bivariate joint distribution
recalled in [49], the line parameters distribution can be described as

p(Θ̂C |ΘC) = p(0, φ̂) =
1√

2πσφ

exp

(
−1

2

(
(φ̂− φ)2

σ2
φ

))
. (32)

This means that the bivariate joint distribution of the two correlated random
variables θ̂ and ρ̂ can be computed in a simple way as the normal distribution (32)
of only one of the two random variables. This variable is assumed to be θ̂. Therefore
the probability that an edge point (x, y) belongs to the line whose parameters are
ΘC , given the observation θ̂, is simply obtained by integrating (32) as follows:

P (Θ̂C |ΘC) =
1√

2πσφ

φ̂+#φ
2∫

φ̂−#φ
2

exp

(
−1

2

[
(φ̂− φ)2

σ2
φ

])
dφ, (33)

where @φ is the quantization step of φ in the Hough accumulator.
This result shows that the probability of a line does not depend on Θ̂C , but only

on the line orientation estimate φ̂. The computational effort needed for computing
P (Θ̂C |ΘC) is therefore significantly reduced.

To evaluate the probability value of a straight line feature (represented by the
coordinate of a cell in the Hough accumulator) the Bayesian approach is used. The
HT is implemented by creating the accumulator array HC(ρ,φ) (also called the
Hough space) to represent each possible quantized set (ρ,φ). For each edge points
(u,v) of the image, the line parameters (ρ̂,φ̂) are estimated and through (33) the
probability that this point belongs to the line whose parameters are ΘC = [ ρ φ ]T

is computed. The contribution of each edge point to all the possible image lines is
obtained by iterating the computation of the edge point probability (33) for each
possible set of (ρ,φ) in the discrete array. Each ΘC of the accumulator denotes the
hypothesis “there exists a line whose parameters are (ρ, φ)” and Θ̂Ci, i = 1, · · · , n
are conditional independent pieces of evidence concerning ΘC and n is the total
number of edge points. Hence Θ̂Ci is the event “the i-th edge point belong to the
line with parameters ΘC”, i = 1, ..., n. Therefore the “a posteriori probability” of
the line ΘC given the evidences Θ̂Ci, i = 1, ..., n is specified as follows:

P (ΘC |Θ̂C1, Θ̂C2, ..., Θ̂Cn) =

P (ΘC)
P (¬ΘC)

n∏
i=1

P (Θ̂Ci|ΘC)

P (Θ̂Ci|¬ΘC)

1 + P (ΘC)
P (¬ΘC)

n∏
i=1

P (Θ̂Ci|ΘC)

P (Θ̂Ci|¬ΘC)

, (34)

where P (ΘC) is the prior probability about ΘC , P (¬ΘC) := 1−P (ΘC), P (Θ̂Ci|ΘC)
is the probability given by (33) and P (Θ̂Ci|¬ΘC) can be deduced by the Bayes the-
orem

P (Θ̂Ci|¬ΘC) =
P (¬ΘC |Θ̂Ci)P (Θ̂Ci)

P (¬ΘC)
, (35)
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where P (¬ΘC |Θ̂Ci) = 1− P (ΘC |Θ̂Ci), with P (ΘC |Θ̂Ci) specified as follows:

P (ΘC |Θ̂Ci) =
P (Θ̂Ci|ΘC)P (ΘC)

P (Θ̂Ci)
. (36)

Substituting (36) in (35), the following relation is obtained

P (Θ̂Ci|¬ΘC) =
P (Θ̂Ci)− P (Θ̂Ci|ΘC)P (ΘC)

1− P (ΘC)
. (37)

Equations (34) and (37) allow us to compute the line probability for each bin
ΘC in the Hough accumulator.

After the edge points processing, the array is searched for peak elements. The
peaks are local maxima. They identify the parameters of the most likely lines and
their values exactly give the probability of these lines.

Note that, for each edge point, the updating of the probability value stored in the
cells of the accumulator is not accomplished for all the cells (as in the standard HT),
but only for those cells having line parameters linearly dependent. The complete
correlation between ρ and φ reduces the computational efforts. In fact, for each
detected edge point, the standard HT computes (31) for each ΘC = [ ρ φ ]T in
HC(ρ, φ).

4.2 Line Detection by Occupancy Grid

During the robot exploration, the value of the cells in the occupancy grid are up-
dated using the probabilistic signal level fusion of sonars readings proposed in [2].
Straight line segments can be found in the occupancy grid as aligned cells with high
probability of occupation. By interpreting a grid and its probabilities as an image
with different level of intensity (grey level), it is possible to apply the HT to detect
straight lines and to associate a probability at each detected line.

This probability is computed according to Bayesian and Soft Evidence theo-
ries [6]. Given a line with parameters vector ΘG = (ρ, φ)T , denote by n the number
of cells in the occupancy grid belonging to the line ΘG, by ci(ΘG), the event “the
i-th cell of the occupancy grid belonging to the line is occupied” and by ĉi(ΘG)
the unsure event “the i-th cell of the occupancy grid belonging to the line with
vector parameters ΘG is occupied with a proper uncertainty P (ci(ΘG)|ĉi(ΘG))”,
i = 1, · · · , n.

P (ci(ΘG)|ĉi(ΘG)) is the probability of event ci(ΘG) given the evidence ĉi(ΘG);
it is the probability estimated by the sonars readings at the i-th cell of the occupancy
grid and stored in the occupancy grid.

In the following, ci and ĉi are written without ΘG argument for simplicity of
notation.

Let P (ci) = P (¬ci) = 0.5 be the prior occupancy/non occupancy probability
of the i-th cell and denote with P (ΘG) the prior probability of a line feature having
parameters vector ΘG. The Hough space HG(ρ, θ) is used to store the existence
evidence of each detected line feature. This way allows to find all the lines from the
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grid map, and to store the i-th cell of the grid map belonging to the line, the map
coordinates and the probability P (ci|ĉi).

The existence evidence of a line feature depends on the evidence of all the cells
(ui,vi) satisfying Eq. (9), with u = ui and v = vi. Therefore the probability of each
line feature with parameter ΘG is the probability of the line conditioned to the events
ĉ1, ĉ2, ... ,ĉn; according to the Bayes theorem this probability has the form:

P (ΘG|ĉ1, ĉ2, ..., ĉn) =

P (ΘG)
P (¬ΘG)

n∏
i=1

P (ĉi|ΘG)
P (ĉi|¬ΘG)

1 + P (ΘG)
P (¬ΘG)

n∏
i=1

P (ĉi|ΘG)
P (ĉi|¬ΘG)

, (38)

where the terms P (ĉi|ΘG), P (ĉi|¬ΘG) are stated in [8].
Each cell of the Hough space HG(ρ,φ) is updated with the line probability

computed using equation (38). Therefore a line segment on the grid map, with
parameters ΘG, is a local maximum in the Hough space with the probability
P (ΘG|ĉ1, ĉ2, · · · , ĉn) greater than a probability threshold; in general the thresh-
old is 0.5.

4.3 Fusion of Occupancy Grid Line Features and Digital Images Line
Features

The proposed multisensor fusion process is defined as follows. All the lines detected
from the portion of the occupancy grid corresponding to the portion of floor falling
in the “visible space” are matched with the lines detected from the video image by
projecting the lines of the video image on the floor plane.

The existence probability of the lines is stored in both Hough accumulators:
HG(ρ,φ) for the lines detected from the occupancy grid and HC(ρ,φ) for the lines
of the video image projected on the floor.

The matching algorithm is based on the combination of the lines probability
encoded in both the Hough accumulators. A Bayesian estimator is developed. Each
j-th line feature, described by its vector of parameters Θj=(ρj , φj), has two proba-
bilistic estimates PG=P (ΘGj |Θj), stored in HG, and PC = P (ΘCj |Θj), stored in
HC , where ΘGj is the estimation of the line parameters Θj obtained by using the oc-
cupancy grid and ΘCj is the estimation of the line parameters Θj obtained by using
the video data. Using the Bayes theorem, the combined estimate P (Θj |ΘGj ∪ΘCj)
is given by

P (Θj |ΘGj ∪ΘCj) =
P (ΘCj |Θj)P (Θj |ΘGj)∑

Θ
j

P (ΘCj |Θj)P (Θj |ΘGj)
. (39)

By the Bayes theorem, P (Θj |ΘGj) is given as follows:

P (Θj |ΘGj) =
P (ΘGj |Θj)P (Θj)

P (ΘGj)
. (40)
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By substituting (40) in (39), the following combination formula for fusing the sonar
and video data is obtained:

P (Θj |ΘGj ∪ΘCj) =
PCPG

P (Θj)

PCPG

P (Θj)
+ (1−PC)(1−PG)

1−P (Θj)

, (41)

that is also known as the Independent Opinion Pool [6].

4.4 Experimental Results

The proposed approach has been tested in an indoor environment by using the
LabMate mobile base shown in Fig. 7. In this set of experiments the robot has
been equipped with a proximity system composed of a half ring of 13 Polaroid
ultrasonic sensors and with a low cost CCD web-camera Philips PCVC 675K. In
the preliminary experimentation, the robot pose estimation has been performed by a
simple odometric system. The camera for map building was installed in front of the
vehicle and pointed down in the left side. Different experiments have been carried
out, a sample of them is reported beneath.

Fig. 10. Initial configuration (each cell with probability of 0.5) of the grid map with real
obstacles (grey line), vehicle’s trajectory (white line) and starting position (white box).

Figure 10 shows the indoor environment, the robot and the vehicle’s starting
position. Figure 11 shows the robot position and the occupancy grid map of the
indoor environment during the robot movement, at a point belonging to the robot
trajectory. The gray rectangle indicates the camera visible space. The map uses a
grey scale, which goes from black (the null occupancy probability) to white (the
maximum occupancy probability). In the robot position shown in Fig. 11, the video
system acquires the image reported in Fig. 12, where the extracted line features are
also displayed.

The related lines probability, stored in the Hough space HC , are shown in Fig. 13.
In this configuration, the part of occupancy grid map considered for line fusion is
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Fig. 11. Occupancy grid of the indoor environment built during the robot motion.

Fig. 12. Acquired digital image and extracted line features.

Fig. 13. Hough accumulator HC of the acquired digital image shown in Fig. 12.
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Fig. 14. Occupancy grid falling into the visible space of the camera and extracted line features.

Fig. 15. Hough accumulator HG of the part of occupancy grid shown in Fig. 14.

shown in Fig. 14, where the extracted line features are also reported. The related
lines probability, stored in the Hough space HG, are displayed in Fig. 15.

As shown in Figs. 12 and 14, and verified in a large set of experiments, the
HT produces a high number of overlapping lines with a low probability values (see
Figs. 13 and 15). The fusion procedure of the sonar data with the video data is able
to extract only the significant lines.

The results of the fusion procedure (see Section 4.3) are reported in Fig. 16,
where the lines specify the shape of the obstacles (walls) having over threshold
probability. In this figure the dashed line represents the camera visible space. Finally,



Methods and Algorithms for Sensor Data Fusion of a Mobile Robot 217

Fig. 16. Extracted line features fusing probability stored in HC and HG.

Fig. 17. Line features extracted fusing probability stored in HC and HG.

Figure 17 shows the probability associated to the extracted lines. The experiment
shows the effectiveness of the proposed fusion technique for the straight line feature
extraction from a real environment. Notice that preliminary set of experiments the
robot pose estimation has been performed with a simple odometric system. This
unavoidably affects the accuracy of the subsequent procedure for the extraction of
the environment features. Future investigations will regard the integration of the
proposed map building procedure with pose estimation algorithms based on a more
accurate and complete sensor equipment. The expectation is a significantly improved
accuracy of the localization process.
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5 Conclusion

The use of a multiple sensor information introduces a significant improvement on
the localization performance of a mobile robot thus enhancing its autonomy. In
this chapter, different methods and techniques aimed at this purpose have been pre-
sented. The proposed methods have shown their ability in enhancing the localization
capability of the robot and its capability of building up a reliable environment map.
Different sensor equipments have been considered and a wide experimental valida-
tion has been performed. The proposed localization algorithms are based on the use
of a linearized Kalman filter endowed with an adaptive algorithm for the on-line
adjustment of the input and measurement noise covariance matrices.

The adaptation mechanism has been introduced to allow the filter to cope with
realistic operating conditions. If the planned trajectory is relatively simple and not
too long, some a priori engineered noise statistics may produce satisfactory results,
but filter divergence may occur over complex trajectories. In this latter case the
introduction of an adaptive algorithm seems to be the most effective and simple
remedy. The experiments reported in this chapter confirmed that high performance of
the localization algorithm is obtained in a wide range of real experimental situations.

The localization of a mobile robot requires some environment information, when
this knowledge is a priori missing, it must necessarily be deduced from the sensor
data. To this purpose, an algorithm has been proposed for the feature-based modeling
of the environment. The algorithm is based on the fusion of sonar and video data.
A probabilistic approach to the Hough Transform for extracting line features has
been developed, and a Bayesian estimator has been introduced for matching the
line features extracted by the video image with those extracted by the sonar image.
The proposed technique has been shown to be able to build up large environment
maps using line features. The resulting probabilistic model of the environment is
simple and accurate, with a reduced memory demand. Experimental validation of
the algorithm has been performed and satisfactory results have been obtained.

A very interesting and still open research field is the SLAM problem. It consists
in defining a map of the unknown environment and simultaneously using this map
to estimate the absolute location of the vehicle. An efficient solution of this problem
appears to be of paramount importance because it would definitely confer autonomy
to the vehicle. The most natural setting where this topic can be framed is the stochastic
context of the Kalman filtering theory. The appealing features of this approach are:

i) the possibility of collecting all the available information and uncertainties of a
different kind into a meaningful state-space representation,

ii) the recursive structure of the solution.

In this context, a natural way of dealing with the SLAM problem appears to be
the definition of a stochastic state-space model whose state vector contains both the
states of the vehicle model and the states of landmarks and map geometric features.

The work described in this chapter represents a solid basis of theoretical back-
ground and practical experience from which the numerous questions raised by this
stimulating problem can be addressed.
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Abstract. In this chapter, we consider three of the main problems that arise in the navigation
of autonomous vehicles in partially or totally unknown environments, i.e. building a map of
the environment, self-localizing, and servoing the robot so as to achieve given goals based
on sensorial information. As compared to most part of the existing literature on SLAM, we
privilege here a system-theoretic view of the problem, which allows the localization and
mapping problems to be cast in a unified framework with the control problem. The chapter is
an overview of existing results in this vein, and of some interesting directions for research in
the field.

1 Introduction

Autonomous vehicles have a wide range of applications, both in indoor and outdoor
environments, and represent one of the areas with largest potential for advanced
robotics. A very important trend in research related to mobile robots is concerned
with their sensorization, and in particular with the tradeoffs between effectiveness
and cost of different possible sensorial equipments.

Three of the main technical difficulties in applying mobile robots to partially or
totally unstructured environments are indeed sensor-related: the localization of the
vehicle with respect to the environment, the construction of a map of the environment
itself, and the control of the vehicle to desired postures relative to the environment.
Naturally, the three problems are closely interconnected. While the acronym SLAM
(Simultaneous Localization And Map building) has been gaining wide acceptance in
the robotics literature [5,28,40] to indicate the composition of the first two aspects,
the connection to control is less frequently addressed. Indeed, in the SLAM literature,
vehicles are often commanded in open loop. On the other hand, in the rather extensive
literature on control of autonomous robots, localization is often simply taken for
granted. Such is the case e.g. in many papers dealing with set-point stabilization of
wheeled vehicles, which assume full state information, viz. [6,7,13,44,33,8,12]. In
practical applications of automated vehicle control, however, one is confronted with
the problem of estimating the current position and orientation of the vehicle only
through indirect, noisy measurements by available sensors. Although much work has
been done on techniques for vehicle localization based on combinations of sensory
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information (odometry, laser range finders, cameras, etc.), very little is known about
the real-time connection of a localization algorithm and a feedback control law.

In this chapter, we consider the problem of simultaneous localization, mapping,
and servoing (SLAMS) from a unified system-theoretic viewpoint, and report on
work towards integrating solutions allowing an autonomous vehicle to navigate in
an unknown environment. The chapter is organized as follows: in Section 2  we
formulate the problem under consideration, and in Section 3  we provide a brief
survey of the state of the art. In Section 4 we discuss aspects related to the existence
of solutions to the SLAM problem, and to the choice of optimal exploratory paths
to elicit SLAM information. In Section 5 we report on the problem of simultaneous
localization and servoing, before concluding in Section 6.

2 Modeling of the SLAMS Problem

Let us consider a system comprised of a vehicle moving in an environment with the
aim of localizing itself and the environment features. For simplicity, we assume that
features are distinctive 3D points in the environment where the vehicle moves (more
general features are described e.g. in [38]). The vehicle is endowed with sensors,
such as a radial laser rangefinder or video cameras. Both the vehicle initial position
and orientation, and the feature positions, are unknown or, more generally, known
up to some a priori probability distribution. A particular pose of the vehicle, or set
of poses, is regarded as the goal. Sensor readings corresponding to the goal pose are
known (by e.g. recording them in a preliminary learning phase). Among the features
that the sensor head detects in the robot environment, we will distinguish between
those belonging to objects with unknown positions (which we shall call targets),
and those belonging to objects whose absolute position is known (which will be
referred to as markers). Indeed, as it can be argued, this distinction is only useful for
simplicity of description, as in general the case is that there exist features that are
more or less uncertain.

The vehicle dynamics are supposed to be slow enough to be neglected (dynamics
do not add much to the problem structure, while increasing formal complexity).
Kinematics of wheeled vehicles can usually be written as a nonlinear system of the
type ẋ = G(x)u, where x ∈ IRnv is the robot pose (typically, nv = 3 for a vehicle
moving in a plane with an orientation), and u ∈ IRm are the input velocities. It is
often the case where the system velocities are affected by disturbances µ (such as
slippage of the wheels), and the model is accordingly modified to include process
noise as ẋ = G(x)(u + µ).

Let the i–th target absolute coordinates be denoted by pi ∈ IRd, with d = 2
for planar features and d = 3 in case of 3D environments, and use p ∈ IRdnf to
denote the collection of all features. According to the sensor equipment specifics,
the relative position of the vehicle and of the features form sensor readings, or
observables, described by the map h : IRnv × IRdnf → IRq , (x, p) 8→ y = h(x, p).
Measurement noise ν adds to this as y = h(x, p) + ν.
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In system-theoretic terms, the three problems in SLAMS can be described by
referring to the input-state-output system[

ẋ
ṗ

]
= f(x, p, u, µ) =

[
G(x)

0

]
(u + µ)

y = h(x, p) + ν.
(1)

In this framework, localization and mapping are observability problems, dealing
with the reconstruction of the present pose x and feature map p, respectively, from
current and past observables, from model and input knowledge, and from statistics
on process noise µ and measurement noise ν. Servoing is a stabilization problem,
aiming at devising what inputs u are to be given to the system so as to reach the
desired pose, based on available data. Should the current pose x be known exactly
at all times, servoing would amount to find a state feedback law in the form u(x, t),
such that ẋ = G(x)u(x, t) asymptotically converged to the desired pose. However,
such knowledge is not available in general, because typically q < nv + dnf and,
even when this inequality would be reversed (such as when using absolute landmarks
and a trinocular stereo camera head), because of measurement noise. Servoing in
SLAMS should therefore be regarded in general as an output stabilization problem,
whereby a new dynamic system must be designed in the additional states w ∈ IRr as

ẇ = S(w, y)
u = F (w, y) (2)

such that, when connected to system (1), asymptotic stability of the compound
nv + dnf + r states can be achieved. It is often (but not always) the case that the
auxiliary system (2) includes an estimator of the system (1), i.e. its design is aimed
at achieving the convergence of w(t) to the pose x(t) (the prevailing design for
the estimator is based on Extended Kalman Filters, see below). According to this
approach, a design is often attempted for the control in the form of a state-feedback
stabilizer u(w, t), where w is used in place of x. Naturally, convergence of the
estimator and of the state-feedback law separately are only necessary conditions in
order for their composition to provide a stable and satisfactory behavior.

The model in (1) is sometimes referred to as world-centric. It is rather obvious
that, unless geographic markers or other equivalent information (from compass,
GPS, etc.) are present, reconstruction of absolute robot position and orientation
is impossible. A different description of the same problem can hence be given in
coordinates relative to the vehicle (a robot-centric model), which would be written
in the form

vṗ = Z(vp, u, µ)
y = ĥ(vp) + ν.

(3)

Such a model is applicable for instance to the case where a camera is mounted on
the vehicle, with the output map ĥ(·) representing the projection of 3D features to
the image plane of the camera. Output feedback control of (3) amounts then to what
is commonly referred to as image-based visual servoing of the vehicle. In this case,
explicit estimation of the robot pose is clearly unnecessary.
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In the rest of this chapter, we will discuss these different aspects of the SLAMS
problem in more detail, emphasizing the insight that an integrated system theoretic
approach can bring to the field.

3 Approaches to the SLAM Problem

As shown in the former section, the SLAM problem —also known in the literature
as CML (Concurrent Mapping and Localization)— is characterized by two sources
of uncertainty: the vehicle model (because of both uncertain parameters appearing
in the dynamics and process noise) and sensor noise.

Uncertainty can be dealt with in basically two ways, i.e. deterministically or by
using probabilistic models. The first approach assumes that all uncertainty sources
may generate errors that are unknown but bounded, and seeks for bounds on how
these error can propagate through the reconstruction process. Naturally, the problem
tends to be overly complex from the computational and memory-occupation view-
points; hence efficient algorithms to approximate the worst-case bounds are in order.
An application of this approach to robot localization is reported in [18], where an
efficient, recursive algorithm to approximate the set of robot poses compatible with
present and past measurements is presented.

Deterministic algorithms tend to suffer from excessive conservativeness, and are
typically not very suited to take into account the existence of large, sporadic errors
in sensor readings (outliers), which are common in some types of sensors used in
SLAMS (e.g. spurious reflections of lasers or sonars, feature mismatch, etc.). When
an excess of conservatism is not justified by particularly risk-sensitive applications,
it is often preferred to adopt probabilistic models of uncertainty.

The basis for virtually all probabilistic methods is Bayesian theory of inference,
which assumes that the statistical properties of the data space and of the model
space are well defined. These are the vector spaces, of suitable dimension, where
observables y and unknowns (and estimates thereof, denoted for brevity as x) take
their values, and where a probability density function (p.d.f.) is defined for the
variables of interest. The a priori state of information consists in a p.d.f. defined
over the model space X , fprior(x), which models any knowledge one may have on
the system model parameters independently from the present act of measurement,
due e.g. to physical insight or to independent measurements carried out previously.

In the formation of estimates, two information sources are to be considered, i.e.
the forward solution of the physical model, and the act of measuring itself. The
state of information on the experimental uncertainties in measurement outputs can
be modelled by means of a p.d.f. fexp(y) over the data space Y (this should be
provided by the instrument supplier), while modelling errors (due to imperfection
of (1), or to process noise) can be represented by a conditional p.d.f. fmod(y|x) in
the data space Y (or, more generally, by a joint p.d.f fmod(y, x) over X × Y ).
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Fig. 1. The process of Bayesian inference. A priori information on the model space, fprior(x),
and information on experimental data fexp(y) are independent (a), and combine in the joint
p.d.f. fjoint(y, x) (b). Information on modelling is represented by fmod(y, x) (c). The con-
junction of fjoint(y, x) and fmod(y, x) is fpost(y, x) (d). The marginal p.d.f.’s fpost(x) and
fpost(y) can be obtained directly from fpost(y, x). Different estimators can be applied to
these results, as illustrated in (e).

Fusing the different information in an estimate of x leads to a posterior p.d.f
over X , that is described by Bayes formula

fpost(x) = f(x|y) = αb fprior(x)
∫

Y

fexp(y)fmod(y|x)dy, (4)

where αb is a normalization factor such that
∫

X
fpost(x)dx = 1. The process of in-

formation fusion is described in Fig. 1 (adapted from [43]), with reference to the case
where the measurement equation forming observables y from unknowns x is nonlin-
ear (such as it actually is in SLAM). Although the posterior p.d.f. on the model space
represents the most complete description of the state of information on the quantity
to be measured one may wish, a final decision on what is the “best” estimate of x
needs usually be taken. Several possibilities arise in general, such as the maximum a
posteriori estimate (MAP), maximum likelyhood estimates (MLE, which coincides
with MAP if no priors are available), the minimum variance estimate (MVE) alias
minimum mean square (MMSE). Figure 1e illustrates these estimates. While very
little can be said in general about the performance of such estimators, well known
particularizations apply under certain assumptions on the prior distributions. Thus,
if a normal distribution (an order-2 Gaussian) can be assumed for all prior informa-
tion, the MAP estimate enjoys many useful properties; among them, perhaps most



228 A. Bicchi et al.

importantly for the problem at hand), since the convolution in (4) of two Gaussian
distributions is Gaussian, the modelling and experimental errors in measurements
simply combine by addition of the covariance matrices of experimental and mod-
elling errors, CY = Cexp +Cmod. Roughly speaking, errors in the model knowledge
(kinematic model of the systems and odometry errors) can be ignored, provided that
experimental measurement errors in y are suitably increased. This result holds for
nonlinear sensor models as well. For linearized measurement models (y = Hx),
the a posteriori p.d.f. would also be Gaussian, the MVE and MAP estimates would
coincide and can be evaluated as

x̂ = Cpost(HT C−1
Y y + C−1

priorxprior),
Cpost = (F + C−1

prior)
−1,

(5)

where F , the Fisher information matrix for the linear case at hand, is defined as

F = HT C−1
Y H. (6)

As a final remark, the Gauss-Markov theorem [37] ensures that the estimate (5) is
the Best Linear Unbiased Estimate (BLUE) in the minimum-variance sense even for
non-Gaussian a priori distributions. This result may seem to indicate some “absolute
optimality” of the least-squares estimate. However, the MVE of a non-Gaussian
distribution may not be a significant estimate, as apparent in Fig. 1e. This is the case
for instance when a few measurements are grossly in error (outliers): the MVE in
this case can provide meaningless results. This fact is sometimes used to point out
the lack of robustness of the MVE.

In the literature on mobile robot localization and mapping, methods to evaluate
an estimate of the posterior p.d.f. over the space of unknown robot poses and targets
have been studied extensively. While for an exhaustive review the reader is referred
to [40], we limit ourselves to point out that methods proposed so far can be roughly
classified in two main groups: batch and recursive.

Batch methods attempt as accurate a solution of the posterior as possible, by
taking into account that often in SLAM the posterior p.d.f. is a complex multimodal
distribution. To such complexity contribute different factors, among which the non-
linearity of dynamics and measurement equations (1), and the fact that measurement
noise in different measurements is statistically correlated, because errors in control
accumulate over time, and they affect how subsequent measurements are interpreted
([40]). A crucial aspect of SLAM is indeed that, when features are not distinctive,
multiple correspondences are possible, a problem also known as data association.
The correspondence problem, consisting in determining if sensor measurements
taken at different times correspond to the same physical object in the world, is very
hard to be tackled, since the number of possible hypotheses can grow exponentially
over time. A family of methods recently introduced to deal with these problems,
which is based on Dempster’s Expectation Maximization (EM) Algorithms [14,40],
represent the current state of the art in this regard. However, since EM have to process
data multiple times they are not suitable to real-time implementation, as needed e.g.
to interface with servoing algorithms.
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On the other hand, most often new updates of model estimates are needed
in real time, without referring to the whole history of sensed data. To cope with
this requirement, further simplifications are usually done: for instance, assuming a
Gaussian posterior distribution, the given record of data can be completely described
by the mean vector and the covariance matrix. When a new datum is available, all
prior information can be extracted from those statistics. A method that does not use
prior information explicitly, but through its statistics only, is called recursive. The
Kalman filter is one such recursive method, implementing the optimal minimum
variance observer for a linear system subject to uncorrelated, zero-mean, Gaussian
white noise disturbances.

Unfortunately, these assumptions are not fulfilled in SLAM applications. Hence,
different simplifying assumptions and approximations are employed. Filters result-
ing from repeated approximate linearization of (1) are commonly referred to Ex-
tended Kalman Filters (EKF). Although EKF’s for the SLAM problem do not guar-
antee any optimality property, they remain the most widely used filters in SLAM.
EKF maintain all information on the estimated posteriors in the vector of means and
in a covariance matrix, whose update at each step is a costly operation (quadratic
with the number of features). In practical implementations, a key limitation of EKF
is the low number of features it can deal with.

Algorithms have been recently proposed to overcome this limitation. The Fast-
Slam [32] algorithm is based on the assumption that the knowledge of the robot
path renders measurements of individual markers independent, so that the problem
of determining the position of K features could be decomposed into K estimation
problems, one for each feature [32]. Compressed EKF (CEKF), see [20], stores and
maintains all the information gathered in a local area with a cost proportional to
the square of the number of landmarks in the area. This information can then be
transferred to the rest of the global map with a cost that is similar to full SLAM,
but in only one iteration. Sparse Extended Information Filter (SEIF), see [42], is
an algorithm whose updates require constant time, independent of the number of
features in the map. It exploits the particular form of the information matrix, i.e. the
inverse of the covariance matrix. Since the information matrix is sparse, it possesses
a large number of elements whose values, when normalized, are near zero and can
be neglected in the updating process. Some algorithms, see [17,25], based on incre-
mental update of uncertain maps, use a fuzzy logic approach to manage uncertainty
on obstacle poses and successively implement obstacle avoidance strategies.

An interesting possibility in SLAM is the possibility of using multiple vehicles
in a cooperative way in order to perform tasks more quickly and robustly than a
single vehicle can do. In [15,41], the problem of performing concurrent mapping
and localization with a team of cooperating autonomous vehicles is considered, and
the advantages of such a multiagent cooperation are illustrated.

One of the most challenging topics in SLAM is the optimization of autonomous
robotic exploration. Indeed, it is often the case that robots have degrees of freedom in
the choice of the path to follow, which should be used to maximize the information
that the system can gather on the environment. The problem is clearly of great
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relevance to many tasks, such as surveillance or exploration. However, it is in general
a difficult problem, as several quantities have to be traded off, such as the expected
gain in map information, the time and energy it takes to gain this information,
the possible loss of pose information along the way, and so on. This problem is
considered in detail in the next section.

4 Solvability and Optimization of SLAM

As already mentioned, simultaneous localization and mapping amounts to estimat-
ing the state of system (1) through integration of input velocities (odometry) and
knowledge of the observations y. Input velocities and observables are affected by
process and measurement noise, respectively.

We start by observing that system (1) is nonlinear in an intrinsic way, in the sense
that approximating the system with a linear time-invariant model destroys the very
property of observability: this entails that elementary theory and results on linear
estimation do not hold in this case.

The intrinsic nonlinear nature of the problem can be illustrated directly by the
simple example in Fig. 2 of a planar vehicle (nv = 3) with M markers and N targets
(hence dnf = 2N ). Outputs in this examples would be the q = M + N angles

Fig. 2. A vehicle in an unknown environment with markers and targets.

formed by the rover fore axis with lines through the sensor head and the M markers
and N targets. The linear approximation of system (1) at any equilibrium x = x0,
p = p0, u = 0 would indeed have a null dynamic matrix

A =
∂f(·)
∂(x, p)

∣∣∣∣
eq.

= 0 ∈ IR(2N+3)×(2N+3)

and output matrix

C =
∂h(·)

∂ (x, p)

∣∣∣∣
eq.

∈ IR(M+N)×(2N+3).
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Hence, in any nontrivial case (i.e., whenever there is at least one target (N ;= 0)
or there are less than three known markers (M < 3)) the linearized system is
unobservable.

On the other hand, it is intuitively clear (and everyday’s experience in surveyors’
work) that simple triangulation calculations using two or more measurements from
different positions would allow the reconstruction of all the problem unknowns,
except at most for singular configurations. Analytically, complete observability of
system (1) can be checked, as an exercise in nonlinear system theory, by computing
the dimension of < f(·) | span {dh(·)} >, the smallest codistribution that contains
the output one-forms and is invariant under the control vector fields (see [2] for
details on calculations). By such nonlinear analysis, it is also possible to notice that
observability can be destroyed by choosing particular input functions, the so-called
“bad inputs”. A bad input for our example is the trivial input u = 0: the vehicle
cannot localize itself nor the targets without moving. Other bad inputs are illustrated
in Fig. 3.

Fig. 3. A vehicle triangulating with two markers cannot localize itself if the inputs are such
that it remains aligned with the markers; it cannot localize a target if it aims at the target
directly.

In order to drive a rover to explore its environment, it is clear that bad inputs
should be avoided. Indeed, the very fact that there exist bad inputs suggests that there
should also be “good”, and possibly optimal, inputs. To find such optimal exploratory
startegies, however, the differential geometric analysis tools such as those introduced
above are not well suited, as they only provide topological criteria for observability.
What is needed instead is a metric information on the “distance” of a system from
unobservability, and to how to maximize it. More generally, it is to be expected that
different trajectories will elicit different amounts of information: a complete SLAM
system should not only provide estimates of the vehicle and feature positions, but
also as precise as possible a description of the statistics of those estimates as random
variables, so as to allow evaluation of confidence intervals on possible decisions.
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To provide a better understanding of how two different states can be distinguished
via dynamic measurements, let us consider the output y(t) = h(x, p) = y(xo, u, t)
as a function of the initial conditions xo and of the inputs u. Let xo

o and x′o denote
two different initial conditions, with ‖xo

o − x′o‖ < ε, and let us consider

y(x′o, u, t)− y(xo
o, u, t) =

∂y

∂xo

∣∣∣∣
xo=xo

o

(x′o − xo
o) + O2(ε) (7)

i.e. a linear measurement equation of the form

ỹ(t) + δy = M(t)x̃ (8)

where x̃ = (x′o−xo
o) is unknown, ỹ comes from measurements, and the perturbation

term δy accounts for measurement noise and approximation errors. Notice explicitly

that the linear operator M = ∂y
∂xo

∣∣∣
xo=xo

o

F depends in general on applied inputs, as

only for very special systems (in particular, linear) superposition of effects of initial
states and inputs holds. By premultiplying both sides of (8) by MT W , with W > 0
a suitable positive definite matrix weighing accuracy of different sensors, and by
integrating from time 0 to T , we obtain

Y + ∆y = F x̃, (9)

where Y =
∫ T

0
MT (t)Wỹ(t)dt, and F =

∫ T

0
MT (t)WM(t)dt is the Fisher infor-

mation matrix for our system.
Singularity of F (for some input choice) clearly implies that distinct initial

values of the state exist which provide exactly the same measurements over the time
interval, hence is tantamount to unobservability of the system.

A different argument to support the same conclusion can be derived from Kalman
estimation theory. Indeed, in the linear case, for the covariance matrix P of a Kalman
filter, the Cramèr-Rao inequalities [37] hold:

[F +N−1]−1 ≤ P ≤ F−1 +N (10)

where F is the Fisher information matrix (defined in (9) in this framework), and
N , the covariance matrix of process noise, is assumed to be independent of the
trajectory. According to this, minimization of F−1 can be considered as a means
to minimize P . This is further justified by the fact that, in the absence of process
noise and of prior information, the Riccati equation solution for the filter is exactly
P (t) = F−1(t). Cramèr-Rao bounds can be extrapolated to estimate covariance
for nonlinear systems (see e.g. [26]) (although, in the context of nonlinear systems,
minimum-variance estimates do not enjoy the properties that make them desirable
for linear systems, and MVE-based optimal sensor design is often questionable [1]).

From the above considerations on state reconstruction and on Cramèr-Rao
inequalities, it is clear that the information matrix can provide the desired no-
tion of “distance” from unobservability, that is, a merit figure for different in-
puts (hence trajectories) of the exploring rover. Indeed, the smallest eigenvalue
E = λmin(F) = 1/‖F−1‖2, the determinant index D =(nv+dnf )

√
det F the
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trace index T = trace (F)
nv+dnf

, and the average-variance index A = nv+dnf

trace (F−1)
are

among the most often used such criteria (known as E– , D– , T–, and A–criterion,
respectively).

Notice that information-based criteria do not reflect any particular choice in the
estimator or filter adopted in the actual localization procedure, rather it is intrinsic
to the reconstructibility of the state from the given trajectory. This is a very useful
property, in view of the fact that several different estimators and filters can be applied
to the SLAM problem.

The problem of choosing exploratory paths of fixed length L to maximize SLAM
information can be formalized (in the E–criterion sense) as an optimal control
problem, i.e.

maximize J(u) = λmin (F) , (11)

subject to the constraints

L =
∫ T

0

√
(ẋ2

1 + ẋ2
2) dt

ẋ = G(x)u; x(0) = xo

y = h(x).

Solving this problem can be expected to be quite difficult in general. Using system–
theoretic tools, an analytic solution was given in [30] for the simplified case of an
omnidirectional vehicle moving in a planar environment with only two markers.
Extremal paths for the functional J were shown to be contained in the pencil of
curves spanned by the parameter α as

[
cos(α) sin(α)

] (
∂y

∂xo

T ∂y

∂xo
− ∂y

∂xo

∣∣∣∣T
x=xo

∂y

∂xo

∣∣∣∣
x=xo

)[
cos(α)
sin(α)

]
= 0, (12)

where the actual value of α depends on L. It can be easily seen that the obtained
pencil is a set of conics (some examples of optimal exploratory paths, for different
lengths, are represented in Fig. 4).

Extensions of the analytic solutions to nonholonomically constrained vehicles
with unknown target features are feasible (work in this direction is undergoing).
However, to obtain solutions in most general cases, efficient numerical methods are
in order. In a recent overview [40], where the importance of the SLAM optimization
problem is acknowledged, currently available solutions are reported to be mostly
limited to heuristic, greedy algorithms. Furthermore, most known methods often
disregard the nonlinear character of the SLAM problem, which on the contrary is of
large momentum, as we discussed.

The main limitation of gradient-descent methods in this framework is of course
the presence of local minima in the information return function: application of meth-
ods from receding-horizon optimal control theory in this context can be expected to
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Fig. 4. Optimal trajectories for three different path lengths T1 = 1 s, T2 = 2 s, and T3 = 3 s

offer a substantial edge. In the following, we illustrate application of such techniques
to a few examples of on-line, numeric SLAM trajectory optimization.

To apply numerical methods, continuous-time system equations (1) or (3) are
first discretized, so that the information matrix is rewritten as the sum of products

F =
k∑

i=0

∂y

∂xo

∣∣∣∣T
xi

∂y

∂xo

∣∣∣∣
xi

(13)

evaluated at each point of a candidate trajectory. Using techniques developed in [35],
we furthermore introduce a quantization of the input space (i.e., the set of possible
incremental moves of the vehicle), thus inducing a discretization of the configuration
space. It can be shown that, for vehicles with chained-form kinematics, the reachable
set is indeed a lattice in this case, which is a very convenient structure to apply
numerical search methods to.

If d is the cardinality of the input set, there are dk paths of length k stemming
from a generic configuration, for which the contribution to information is given by
(13). An exhaustive search of the most informative path is possible for moderate
values of d and k. The receding-horizon optimal control policy consists then in
applying only the first control of the locally optimizing sequence, to recompute the
next optimizing sequence, thus proceeding iteratively. The method can be easily
used in conjunction with other techniques for e.g. obstacle avoidance. How practical
the method depends very much on the affordable horizon length for which real-time
computations are feasible; hence choices concerning time and input quantization,
information representation, etc., are an important area of research.

Simulation results reported in Fig. 5 compare the performance of a greedy
algorithm with the receding–horizon method. Walls are considered here as pure
obstacles, i.e. they are detected if and only if the vehicle “bumps” into them, while
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information for self localization and mapping is only extracted from measurements
relative to two markers (black circles) and to four target features. Results show how
the receding-horizon methods collects richer information in this case.
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Fig. 5. Trajectory of a vehicle during the exploration of a rectangular environment with 2
markers and 4 target features, using gradient-descent (a) and a 3-steps receding horizon (b),
respectively. Time evolutions of the corresponding information return function E = λmin(F)
are reported in c) and d).

More simulation results relative to different environments are reported in Fig. 6.
While these results show how the method is quite versatile in navigating in a cluttered
environment fetching for information where that is available, it is of course an open
research issue to provide a provable, quantitative assessment of the advantages of
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this method with respect to others, and to design the numerous parameters that play
an important role in its implementation.

Fig. 6. Receding-horizon optimal trajectories in different environments, whereby the task of
maximizing the information return function leads the vehicle to cover target areas. Observe
how slightly different initial conditions may lead to completely different exploration strategies
(upper right and left), however with similar characteristics. More complex environments are
also dealt with satisfactorily (bottom left and right).

5 Simultaneous Localization and Servoing

As mentioned in the introduction, one of the consequences of the intrinsic nonlin-
earity of the SLAMS problem is that there exists no guarantee that, even assuming
that a converging estimator and a stabilizing state-feedback law are available, their
connection will provide an overall controller which behaves as expected.

Many different approaches can be taken to address this problem, depending on
the specifics of the task and of the models at hand. In this section, we will survey
two methods which differ in the generality they afford.
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5.1 Observer-Based SLAMS

A first approach to design simultaneous localization and servoing for system (1)
relies on techniques for output-feedback stabilization of nonlinear systems, based
on nonlinear observers and extensions of the separation principle. An observer
providing an estimate x̂ of the current state x is said to enjoy the separation property if,
whenever there exists a nominally stabilizing static state feedback u(x), application
of the control law u(x̂) permits to achieve (local) stability of the closed-loop system.

The widely used EKF (see e.g. [5,19,31]) lacks in general provable properties
of convergence and separation. Several authors underscored that application of EKF
to localization data is often troublesome. Indeed, the filter convergence properties
are very much prone to initialization of filter parameters (e.g., measurement and
process covariances). Several alternative schemes of nonlinear observers have been
proposed in the literature.

One way of designing an observer is to transform the original nonlinear system
into another one for which the design is known. Transformations, which have been
proposed in the literature, include system immersion [16], which permits obtaining
a bilinear system if the observation space is finite dimensional, and linearization
by means of output injection [21,27,29], which assumes that particular differential-
geometric conditions on the system vector fields are verified. A nonlinear observer
and its practical implementation have been presented in [9,4], in which the first step
is writing the input affine nonlinear system in a so-called normal observation form.
However, this form requires that the trivial input is an universal input [3] for the
system. In our problem, this condition is violated by the mobile robot kinematics.

An interesting possibility for an estimator for the localization problem is the
extension of the Luenberger filter in a nonlinear setting, by using the time derivatives
of the input [45,39]. In [10], a local nonlinear observer for mobile robot localization
was designed, based on the concept of Extended Output Jacobian (EOJ) matrix,
which is the collection of the covectors associated to the considered elements of
the observability space, i.e. the output and its derivative. Output derivatives are
estimated by using high-pass filters. Local practical stability of the observation error
dynamics is guaranteed since persistent perturbations introduced by filters can be
made arbitrarily small. A singularity-avoidance exploration task is also addressed
to deal with the singularity occurrences in the EOJ matrix. For such an observer
scheme, [10] showed a local separation property to hold.

Observer-based approaches are applicable to rather general models of vehicles
and sensorial equipment, but has correspondingly some weaknesses. In the first
place, convergence and separation can only be proven locally. While this is to be
expected with complex nonlinear systems such as those at hand, the drawback shown
by laboratory practice is that the large initial estimation errors or displacements from
the desired pose often prevent correct functioning of the system.

5.2 Visual Servoing

When the SLAMS problem is specialized for a particular class of sensors and vehi-
cles, more powerful techniques can usually be devised. In this paragraph, we report
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Fig. 7. Image grabbed from the robot camera at the target position, with four selected control
features.

on a particular but important case, where we assume that the sensorial information
consists of a video camera mounted on-board the vehicle.

Visual servoing techniques, which have been profitably used in recent years
mostly for the control of robot arms [23], use visual information either directly,
by the computation of an image error signal, or indirectly, by the evaluation of
the state of the system. These two approaches were classified by Weiss in 1984 as
Image Based Visual Servoing (IBVS) and Position Based Visual Servoing (PBVS),
respectively. Indeed, these two schemes should be regarded as the end points of a
range of different possibilities, whereby the raw sensorial information is gradually
abstracted away to a more structured representation using some knowledge of the
robot-environment model (a scheme which is roughly half-way between IBVS and
PBVS was used e.g. in [11]).

IBVS and other sensor-level control schemes have several advantages, such
as robustness (or even insensitivity) to modelling errors and hence suitability to
unstructured scenes and environments. On the other hand, PBVS and in general
higher-level control schemes also have important attractive features. Using the PBVS
approach, for instance, the control law can be synthesized in the usual working
coordinates for the robot, and thus usually a simpler synthesis is made possible.
Furthermore, abstracting sensor information to a higher level of representation allows
using different sensorial sources. In the example of a camera mounted on a mobile
robot, for instance, the synergistic use of odometry and visual feedback is only
possible if this information can be taken to some common denominator where they
can be fused coherently.

Early work on visual servoing of wheeled vehicles include those of [22] and
[11]. In the latter papers a feedback control law stabilizing the vehicle posture by
using visual information only was solved. More recently, the problem under the
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Fig. 8. External views (left column) and subjective images (right column) as taken from the
vehicle, in the initial configuration (top row) and in the final configuration (bottom row), after
reaching convergence under the visual feedback control scheme of [34]. The bottom right
image should be compared with the target image in Fig. 7.

practically most relevant constraint of keeping tracked features within sight of a
limited–aperture camera while the vehicle maneuvers to park has been considered
in [34]. The method proposed in [34] adopts a hybrid control law, that solves the
problem by switching among different stabilizing output-feedback laws, depending
on conditions triggered by events such as the approach of image boundaries by some
tracked features. It is to be noted that, although different sensors (such as some
models of laser range finders, or omnidirectional cameras, or pan-tilt heads) may not
be affected by view-angle limitations, these are typically some orders of magnitude
more expensive than the conventional cameras considered in [34], which are readily
available even in the consumer market. Implementation of the visual-servo method
of [34] is based on selecting a few target features from an image recorded at the
desired configuration, and by comparing their position in the image plane with that
obtained in real time from the robot camera. Some experimental results obtained by
application of this method are reported in Figs. 7 and 8.

6 Conclusion

In this chapter, we have considered the connection of three different problems, lo-
calization, map building, and servoing, of mobile vehicles moving in unstructured
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or partially structured environments. An effort has been paid at casting the three
problems within a unique framework, which is that provided by the theory of dy-
namical control systems with outputs. Although this approach is still to be validated
in large-scale applications, where the dimensionality of the space of unknowns and
the possible topological complexity of the environment can place formidable obsta-
cles, there seems to be some interesting avenue of development at the confluence of
classical computer-science and probabilistic approaches and system theory.
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