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This book has been written by friends, former students and close
collaborators of Suguru Arimoto on the occasion of his 70th birth-
day. It was an unforgettable memory and a great pleasure to co-
operate with him and, for some of us, work under his supervision.
In greatest respect to his strong and inquiring mind, his enthusi-
asm in the pursuit of the science, and his passion in education we
dedicate our book to him.



Preface

Robotics is still a young science, but we can already identify the people who
defined its primary course of development. Suguru Arimoto is one of them.
His early works laid the foundations of what nowadays is called modern robot
control, and we believe it is both appropriate and necessary to write a book
on recent advances in this field in the context of his scientific interests.

While presenting recent advances in robot control is the main intention
of this book, we also think it is appropriate to highlight Suguru Arimoto’s
research career, main scientific achievements, and his personality, too. This
can be very inspiring and instructive, especially for young researchers.

What are the most remarkable features of Suguru Arimoto? On the per-
sonal side, his vitality is striking. He is always focused on a research target,
and it is always a fun and a pleasure to discuss with him scientific prob-
lems and to learn from him. His passion to explain things that might not
appear obvious is endless. It is very encouraging to younger researchers that,
at this stage of his career, he is still a very active, approachable, and influen-
tial researcher, and a person who leads by example. On the scientific side, we
should stress his research philosophy. He believes that the final result should
be simple and have a clear physical (or physiological, in his recent research)
interpretation. This simplicity is always supported by rigorous mathematical
proofs. You can see this in all of his papers. He advocated and articulated this
approach throughout his influential career, and we have tried to adopt it for
this book.

The book begins with a welcome message—a short essay of Suguru Ari-
moto on his perception of human robotics. It clearly outlines two important
research problems: the physics-based robot control for coping with the so-
called everyday physics problems on one hand, and the challenge of repro-
ducing beautiful, human-like movements on the other hand. Attacking these
problems defined much of his research career, at least as far as robotics is
concerned, and not coincidentally we split the book into two corresponding
parts. Part I, stretching in the keyword space from everyday physics to robot
control, deals with the physics-based principles and control algorithms, while
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Part II links robot control with the control of biological machines. In particu-
lar, it is directed to the understanding of the control of the best manipulator
yet developed, the human arm, and the most versatile tool, the human hand.

Part I starts with a study on a natural motion of robotic manipulators.
Many great scientists tried to define natural motion in the realm of the analyti-
cal mechanics. This topic has a very rich history but still attracts the attention
due to its irresistible appeal which is only increased with the advent of control.
Surely, the pursuit to find out a definition of the natural motion will continue
for a long time. In this connection, Chapter 1 introduces a new viewpoint by
linking the definition to the singularity of the inverse kinematic solutions. The
problem is addressed here via a non-linear, differential-geometric approach. A
natural motion component is first identified at the kinematic level, and then
a dynamic analysis reveals the essence of this component as a nondissipative
motion along the prescribed end-effector path.

Chapters 2,3, and 4 are conceptually closely connected. They have grown
up from the original research of Suguru Arimoto on quasi-natural potential
feedback and model-based adaptive control. Chapter 2 introduces and ana-
lyzes several adaptive control laws for robot manipulators with uncertainties
in kinematics and dynamics. The main feature of the controllers proposed
is the use of approximate manipulator’s Jacobian and the analysis how the
approximation may affect the stability property. Chapter 3 extends the for-
mulation of the control task by addressing problems of visual servoing. Here,
the adaptive controllers utilize feedback signals from the camera image plane.
The key idea is the use of a depth-independent image Jacobian matrix, which
enables the unknown camera parameters to enter linearly the closed-loop dy-
namics and resolves the bottleneck problem of the conventional visual servoing
control techniques. This is supported by a rigorous proof of asymptotic con-
vergence of the image errors when the nonlinear dynamics of the robot are
fully taken into account, and confirmed by experiments. Chapter 4 addresses
the constrained manipulation and extends Arimoto’s orthogonalization con-
trol principle to the case of visual servoing. In the extended principle it is
possible to fuse the image coordinates into orthogonal complements of the
joint velocities and the contact forces. Based on this principle new adaptive
controllers, featuring exponential convergence for the position and force errors,
can be constructed.

Chapters 5 and 6 can be traced back to Arimoto’s notion of potential
energy shaping that was the precursor for the passivity-based control. Chap-
ter 5 treats the multi-agent networked coordination and control problem from
an input-output passivity perspective. This novel formulation unifies many re-
sults available in the literature, and offers constructive tools for solving a wide
variety of problems such as the open problem of exponential synchronization
of Kuramoto oscillators, the output synchronization of Lagrangian systems,
and the multi-robot coordination problem. Chapter 6 brings the idea of an
artificial potential into the realm of nonholonomically constrained mechanical
systems. This is done through the introduction of special navigation functions.
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Using these functions, one can address the control of nonholonomic systems
in dynamic settings by lifting conventional 1st order (gradient-based) hybrid
feedback controllers to their 2nd order dynamical counterparts.

Chapter 7 deals with the iterative learning control, another mainstream of
Arimoto’s research. The novel idea introduced in this chapter is the acquisition
of the input torque patterns by iterative learning with the use of non-linear
time scale transformations. This can be done without estimating the unknown
parameters of the robot and the environment. The effectiveness of this idea
is verified under experiments on control of a geometrically constrained robot
and an underwater manipulator.

Part II of the book starts with the expository Chapter 8 on what robotics
may learn from the brain. It considers functional modeling of the central
nervous system, stressing on its modular, feedback-based architecture. Using
nonlinear contraction theory, a comparatively recent analysis tool, this chapter
analyzes synchronization as a model of computations at different scales in the
brain and discuss its applications in robotics and system neuroscience.

Chapter 9 and 10 deal with the control of muscle-activated systems. Chap-
ter 9 establishes the mathematics of the force and stiffness analysis and com-
ment them in the context of human motor control. The key issues here are
the force-dependent stiffness and the stabilizing effect of muscle impedance.
This chapter presents many ideas about force production in the mammalian
biomechanical system that can be inspiring in designing new types of actua-
tors and control schemes. Chapter 10 analyzes dynamic control mechanisms
of human musculo-skeletal system using a Hill-like type muscle model. The
sensory-motor control strategy used here is an extension of the original Ari-
moto’s research on modeling of reaching movements and resolving Bernstein’s
problem of redundant degrees of freedom. The strategy is tested for a reaching
task, where it is shown it produces human-like reaching movements featured
by the bell-shaped velocity profiles, and for the task of pinching an object by
two fingers.

The following Chapter 11 shows that the principle of superposition, intro-
duced by Suguru Arimoto for the control of multi-fingered robotic hands, is
applicable to the control of prehensile actions by humans. This is a remark-
able example when progress in robotics proves to be fruitful for analysis of
human hand actions. As reported in this chapter, the principle of superposi-
tion holds with respect to reactions to expected and unexpected mechanical
perturbations applied to a hand-held object.

Chapter 12 deals with modeling of human-like reaching movements in the
manipulation of a multi-mass flexible object (underactuated system) with the
elimination of residual vibrations. This a complex, sport-like movement task
where the shape of the hand velocity profiles can be quite different from the
classical bell shape and may feature multiple phases. This chapter develops a
minimum hand jerk model that takes into account the dynamics of the flexible
object, and shows that it gives a satisfactory prediction of human movements.
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The concluding Chapters 13 and 14 are on the applied side of human robot-
ics. Chapter 13 directly connects the everyday physics with the human move-
ments. It reports the development of a robot force control application in or-
der to augment human haptic feedback during human-robot co-manipulation
tasks. The application features a push-poke theory of tool-environment inter-
action and an adaptive force scaling algorithm that estimates the environment
compliance on-line and provides asymptotically exact force scaling/reflection
for smooth time-varying user-applied forces. Shifting the focus from cooper-
ation to competition, Chapter 14 presents a table tennis robot that rallies
with a human being. Here, the challenge of hybrid control problems is met
by learning input-output maps, used for motion planning, by means of locally
weighted regression. The design also features a feed-forward control scheme
based on iterative learning.

The editors would like to express their sincere gratitude to everyone who
contributed to this book. We are also very grateful to Dr. Thomas Ditzinger
and Ms. Heather King of Springer-Verlag for their guidance and invaluable
help. It was a great pleasure to work with them and learn from them. We would
also like to thank Prof. Bruno Siciliano for his support and encouragement in
undertaking this wonderful project.

Kusatsu, Nagoya, Sadao Kawamura
August 2006 Mikhail Svinin



Curriculum Vitae: Suguru Arimoto

Suguru Arimoto was born on August 3, 1936 in Hiroshima, Japan. He re-
ceived the B.S. degree in mathematics from Kyoto University, Kyoto, Japan,
in 1959, and the Dr. Eng. degree in control engineering from the University of
Tokyo, Tokyo, Japan, in 1967. From 1959 to 1961, he was with Oki Electric
Industry Co. Ltd., Tokyo, Japan, as an Engineer in the Electric Computer
Department. From 1962 to 1967, he was Research Assistant, and from 1967
to 1968, Lecturer, in the Department of Mathematical Engineering and In-
formation Physics, University of Tokyo. In 1968, he joined the Faculty of
Engineering Science, Osaka University, Osaka, Japan, as Associate Professor,
and in 1973, he was promoted to Professor of Systems Engineering. In 1988, he
was invited to join the University of Tokyo as Professor of the Department of
Mathematical Engineering and Information Physics. In 1997, he retired from
the University of Tokyo and moved to Ritsumeikan University, Shiga, Japan,
where he contributed to the establishment of a new department. Since 1997,
he has been a Professor in the Department of Robotics. His research interests
are in information theory, control theory, cybernetics, robotics, and machine
intelligence.

Professional Activities

During his professional career Dr. Arimoto served in the Robotics Society
of Japan (AdCom Member, 1989-1991; Vice President, 1993-1995; President,
1995-1997), the Society of Instrument and Control Engineers (AdCom Mem-
ber, 1991-1993), the Institute of Electronics, Information and Communication
Engineers (Chairman of the Society for Fundamentals of Electronics, Commu-
nications and Computer Sciences, 1989-1991), the IEEE (Member of the Board
of Givernors of the IT Society, 1985-1989; Chairman of the Tokyo Chapter for
the IT Society, 1988-1990; Chairman of the Tokyo Chapter for the Robotics
and Automation Society, 1990-1992), the Institute of Systems, Control, and



XII Curriculum Vitae: Suguru Arimoto

Information Engineers (AdCom Member, 1978-1985), and the Society for In-
formation Theory and Its Applications (Vice President, 1992-1993; President
1994-1995).

He also served in the Science Council of Japan (the Professional Com-
mittee of Mechatronics; AdCom member, 1994-1997; Chairman, 1997-2000),
and in the Japanese University Accreditation Association (Member of the
Accreditation Committee, 1999-2005).

He was Program Chairman of the IEEE International Conference on In-
formation Theory, 1988, Kobe, Japan,the Japan-USA Symposium in Flexible
Automation, 1988, Minneapolis, Minnesota, and the IEEE International Con-
ference on Robotics and Automation, 1995, Nagoya, Japan.

He was on the editorial boards of the Robotica Journal (Deputy Editor,
1980-2005; Associate Editor, 2005-present time), the International Journal
of Robotics Research (Associate Editor, 1980-2002), Journal of Robotic Sys-
tems (Associate Editor, 1984-present time), IEEE Transactions on Robotics
and Automation (Associate Editor, 1996-1999), Autonomous Robots (Asso-
ciate Editor, 1994-present time), the International Journal of Intelligent Con-
trol and Systems (Associate Editor, 1997-present time), Journal of Circuits,
Systems and Computers (Associate Editor, 1991-2003), Systems and Control
Letters (Associate Editor, 1996-present time), Journal of Chinese Institute
of Engineers (Associate Editor, 1997-present time), Annals of the Institute
of Statistical Mathematics (Associate Editor, 1993-2000), International Jour-
nal of System Science (Associate Editor, 1973-1997), International Journal of
Adaptive Control and Signal Processing (Subject Editor, 2004-present time),
IEICE Transactions on Fundamentals (Editor-in-Chief, 1994-1996), and SICE
Transactions (Deputy Editor, 1991-1992; Editor-in-Chief, 1992-1993).

Awards and Honors

1967 The Yonezawa Promotion Award from the Institute of Electronics, In-
formation and Communications Engineers (IEICE)

1968 The Best Paper Award from the Society for Instrument and Control
Engineers (SICE)

1974 The Best Paper Award from the IEEE Information Theory Society
1976 The Best Paper Award from the SICE
1983 The IEEE Fellowship
1987 The Best Paper Award from the SICE
1987 The Sawaragi Memorial Award from the Institute of Systems, Control,

and Information Engineers (ISCIE)
1994 The Best Paper Award from the Robotics Society of Japan (RSJ)
1997 The Meritorious Award from the Japan Society of Mechanical Engineers

(JSME) on the 100th Anniversary of the JSME
1998 The Meritorious Award from the Robotics & Mechatronics Society of

the JSME
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2000 The IEICE Fellowship
2000 The IEEE Third Millennium Medal
2000 The Royal Medal with a Purple Ribbon from the Japanese Government
2002 The Russel Springer Professorship, University of California at Berkeley,

California, USA
2003 The Best Book Publication Award from the SICE
2003 The Best Paper Award, the Japan-USA Symposium on Flexible Au-

tomation
2003 The RSJ Fellowship
2005 The JSME Fellowship
2005 The Honorary Membership from the Society of Information Theory and

Its Applications (SITA)
2006 The Pioneer in Robotics and Automation Award from the IEEE Ro-

botics and Automation Society (RAS) for “his work on PD and PID
control, iterative learning control, and passivity-based control of nonlin-
ear mechanical systems, that represents a source of reference for virtually
any scientists dealing with complex robotic systems.”

List of Ph.D. Students

1. Youssef Gaafar, “Nonlinear control theory,” Osaka University, 1977.
2. Hikaru Shimizu, “Modeling of the total amount of water inflow to Lake

Biwa by nonlinear Kalman filtering,” Osaka University, 1977.
3. Takanori Minami, “Vibration suppression for automobiles,” Osaka Uni-

versity, 1979.
4. Yoshimi Monden, “Fast algorithms in signal processing,” Osaka Univer-

sity, 1980.
5. Takeshi Hashimoto, “Channel coding theorems for convolution coding,”

Osaka University, 1981.
6. Toshihiko Inoue, “Measurement and prediction of two-phase flow,” Osaka

University, 1981.
7. Morikazu Takegaki, “Nonlinear control theory of robot manipulators,”

Osaka University, 1981.
8. Fumio Miyazaki, “Hierarchical control for biped robots,” Osaka Univer-

sity, 1982.
9. Yasuo Tsukamoto, ‘Numerical methods in inverse problems,” Osaka Uni-

versity, 1983.
10. Hiroyoshi Morita, “Image data compression based on Shannon’s entropy,”

Osaka University, 1983.
11. Akira Kikuchi, “Design of digital filters,” Osaka University, 1984.
12. Sadao Kawamura, “Iterative learning control,” Osaka University, 1986,
13. Hiroshi Noborio, “Octrees approach for robot path planning,” Osaka Uni-

versity, 1987.
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14. Kouji Nagaoka, “Linear stochastic systems theory,” Osaka University,
1987.

15. Hisashi Suzuki, “Learning through self-organized and tree-structured data
base,” Osaka University, 1988.

16. Shiro Tamaki, “Optimal control algorithms for a class of linear discrete
time systems,” Osaka University, 1988.

17. Ho-Gil Lee, “Control of flexible robots,” Osaka University, 1989.
18. Takahiro Masuda, “Modeling of complex robot dynamics,” Osaka Univer-

sity, 1989.
19. Nobuo Ishimura, “Ship positioning by simulated rader analysis through

marine charts,” Osaka University, 1989.
20. Hiroshi Sugiyama, “Extension of Shannon’s sampling theorem,” The Uni-

versity of Tokyo, 1991.
21. Yun-Hui Liu, “Algorithmic study on path and motion planning of robots,”

The University of Tokyo, 1992.
22. Hajime Sato, “Zero-error problems in information theory,” The University

of Tokyo, 1993.
23. Tsutomu Kawabata, “Universal source coding,” The University of Tokyo,

1993.
24. Tomohide Naniwa, “Coordinated control of dual robot arms,” The Uni-

versity of Tokyo, 1994.
25. Vicente Parra-Vega, “Adaptive sliding mode control for robot manipula-

tors,” The University of Tokyo, 1994.
26. Hiroshi Koga, “Source coding with fidelity criterion,” The University of

Tokyo, 1995.
27. Hiroshi Kameyama, “Pattern recognition of hand-written letters based on

knowledge base,” The University of Tokyo, 1996.
28. Tetsuya Yuasa, “Image reconstruction for medical CT based on a novel

modality,” The University of Tokyo, 1997.
29. Kouzou Kawada, “Matched filters for pattern recognition,” The University

of Tokyo, 1997.
30. Yoshifumi Kawaguchi, “Development of a climbing robot for detection of

failures,” The University of Tokyo, 1997.
31. Soon-Yong Yang, “Development of stroke detection cylinders for construc-

tion machines,” The University of Tokyo, 1997.
32. Hiroyuki Ohnishi, “Pattern matching based on detection of rotation and

translation by using Hough and Fourier transforms,” Ritsumeikan Uni-
versity, 1999.

33. Anh Nguyen, “Dexterous manipulation of objects by single fingers and
pairs of fingers with soft-tips,” Ritsumeikan University, 2002.

34. Kenji Tahara, “Sensory feedback for dynamic stable pinching and orienta-
tion control of an object by means of a pair of robot fingers,” Ritsumeikan
University, 2003.

35. Ji-Hun Bae, “Object manipulation by a pair of robot fingers from the
bio-mimetic viewpoint,” Ritsumeikan University, 2004.
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36. Hiroe Hashiguchi, “A dynamic control method based on stability on a
manifold for a family of redundant robots and under-actuated robots,”
Ritsumeikan University, 2006.

37. Morio Yoshida, “2-D and 3-D object grasping and manipulation under
nonholonomic constraints,” Ritsumeikan University, in progress.

38. Masahiro Sekimoto, “The generation of human-like multi-joint reaching
movements under DOF redundancy,” Ritsumeikan University, in progress.



Main Scientific Contributions

1 Information Theory

People in the robotics research community are perhaps unfamiliar with the
fact that in the beginning of his research career Professor Arimoto was very
active in information theory. Here, one should mention the paper [1], where
a type of error-correcting code similar to the so-called Reed-Solomon code
was established, and an efficient decoding algorithm equivalent to Peterson’s
algorithm was found. The code is nowadays popular in IT technology. It is im-
plemented in VLSI-chips in compact disks and digital video disks. A summa-
rized paper was published lately in [2]. An efficient algorithm for computing a
channel capacity of any type of memoryless channels was proposed in [3]. This
algorithm was subsequently discovered also by R. Blahut in the same year,
so nowadays it is called the Arimoto-Blahut algorithm. The contribution [3]
received the Best Paper Award from the IEEE Information Theory Society.
Another paper [4] concerning the strong converse to the coding theorem be-
came fundamental and stimulated the derivation of new proofs of the channel
coding theorems. Also related to this direction are the papers [5, 6, 7, 8, 9, 10].

Selected Publications

1. Arimoto S (1961) Encoding and decoding of p-nary group codes and the cor-
rection systems. Information Processing 2(6):320–325

2. Arimoto S (1962) On a non-binary error-correcting code. Information Processing
in Japan 2:22–23

3. Arimoto S (1972) An algorithm for computing the capacity of arbitrary discrete
memoryless channels. IEEE Trans. on Information Theory 18(1):14–20

4. Arimoto S (1973) On the converse to the coding theorem for discrete memoryless
channels. IEEE Trans. on Information Theory 19(3):357–359

5. Arimoto S (1976) Computation of random coding exponent functions. IEEE
Trans. on Information Theory 22(6):665–671
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6. Hashimoto T, Arimoto S (1979) Computational moments for sequential decod-
ing of convolutional codes. IEEE Trans. on Information Theory 25(5):584–591

7. Hashimoto T, Arimoto S (1980) Universally optimum block codes and convolu-
tional codes with maximum likelihood decoding. IEEE Trans. on Information
Theory 26(3):272–277

8. Hashimoto T, Arimoto S (1980) On the rate-distortion function for the nonsta-
tionary gaussian autoregressive process. IEEE Trans. on Information Theory
26(4):478–480

9. Hashimoto T, Arimoto S (1981) A hierarchy of codes for memoryless channels.
IEEE Trans. on Information Theory 27(3):348–350

10. Morita H, Arimoto S (1983) SECT—a coding technique for black/white graph-
ics. IEEE Trans. on Information Theory 29(4):559–570

2 Signal Processing

A matrix extension of Rouche’s theorem to investigate the location of zeros
of polynomial matrices and its application to to multivariate autoregressions
was proposed in [1]. A fast algorithm for fitting ARX (m,n) models and de-
termining their orders from the covariance and cross-covariance information
of input and output processes was presented in [2]. Compared to the usual
Cholesky decomposition method, which requires a number of operations pro-
portional to O[(m+n)4], this algorithm reduces the computational complexity
to [O(m + n)2]. Next, a new method for statistical design of approximately
linear-phase autoregressive-moving average (ARMA) digital filters was intro-
duced in [3]. The key idea of this method is that a time-delayed ARMA filter
is used to approximate a high-order FIR filter that meets the prescribed am-
plitude spectrum sufficiently well.

Selected Publications

1. Monden Y, Arimoto S (1980) Generalized Rouche’s theorem and its application
to multivariate autoregressions. IEEE Trans. on Acoustics, Speech, and Signal
Processing 28(6):733–738

2. Monden Y, Yamada M, Arimoto S (1982) Fast algorithm for identification of an
ARX model and its order determination. IEEE Trans. on Acoustics, Speech, and
Signal Processing 30(3):390–399

3. Monden Y, Komatsu T, Arimoto S (1984) Statistical design of nearly linear-
phase ARMA filters. IEEE Trans. on Acoustics, Speech, and Signal Processing
32(5):1097–1100

3 General Control Theory

In 1964, prior to Potter’s publication in 1966, an efficient algorithm for com-
puting the unique positive definite matrix solution for a stationary matrix
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Riccati equation was established in [1]. The Arimoto-Potter algorithm is based
on the spectrum factorization of an extended Hamilton’s matrix. By using this
algorithm, optimal regulators as well as the Kalman filters, which are a class
of linear dynamical systems with gain matrices in the state feedback defined
as solutions to Riccati’s matrix equations, can be computed [2]. Note that
if the states are not accessible, it is normally recommended to use state ob-
servers for the state estimation. However, when calculating the optimal gain
matrix, the overall quadratic performance index deteriorates owing to the in-
corporation of the state observer. This problem of performance deterioration
was solved completely by the exact evaluation of the deterioration amount
for the case the Kalman filter as a state estimator [3] and for the case of a
minimum-dimension Luenberger’s observer [4].

Selected Publications

1. Arimoto S (1964) An analytical design method for multi-variable control systems.
In: Proc. Annual SICE Conf. Volume 1. 207–220

2. Arimoto S (1966) Optimal feedback control minimizing the effects of noise dis-
turbance. Trans. of SICE 2(1):1–7

3. Arimoto S, Porter B (1973) Performance deterioration of optimal regulators in-
corporating Kalman filters. International Journal of Systems Science 4(2):179–
184

4. Arimoto S, Hino H (1975) Performance deterioration of optimal regulators incor-
porating state estimators. International Journal of Control 19(6):1133–1142

4 Theory of Robot Control

4.1 PD Feedback for Robot Control by Means of Artificial
Potentials

This is perhaps the most well-known contribution of Professor S. Arimoto.
It was incubated in joint discussions with then Ph.D. student M. Takegaki
and Assistant Professor F. Miyazaki. The original idea of both joint-space
and task-space PD feedback schemes with damping shaping and gravity com-
pensation first appeared in [1]. The global asymptotic stability for set-point
position control by using PD feedback schemes was proved on the basis of
Lyapunov’s stability analysis. The use of Jacobian transpose associated with
the task-space feedback was also initiated in this paper. In early 1980s this
was truly a pioneering work in robot control. Nowadays, PD feedback with
damping shaping becomes standard and is implemented in many experimental
and industrial robotic systems. This control scheme is based upon the idea of
introduction of an artificial potential function [2]. The PD feedback scheme
was subsequently extended to a PID feedback control without compensating
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the gravity term [3], which assures asymptotic stability of the target equi-
librium state in a local sense. The global asymptotic stability of such a PID
feedback scheme for robotic arms was in the sequel established by introducing
a saturated position error term, which was called the SP-ID feedback scheme
[4]. The robustness of the task-space PD feedback control was formally estab-
lished in [5, 6, 7].

Selected Publications

1. Takegaki M, Arimoto S (1981) A new feedback method for dynamic control of
manipulators. Trans. ASME, Journal of Dynamic Systems, Measurement, and
Control 103(2):119–125

2. Miyazaki F, Arimoto S, Takegaki M, Maeda Y (1984) Sensory feedback based
on the artificial potential for robot manipulators. Proc. 9th IFAC Congress.
Volume 8. 27–32

3. Arimoto S, Miyazaki F (1984) Stability and robustness of PID feedback control
for robot manipulators of sensory capability. In Brady M, Paul R, eds.: Robotics
Research: First International Symposium. MIT Press 783–799

4. Arimoto S (1995) Fundamental problems of robot control: Part I. Innovations in
the realm of robot servo-loops. Robotica 13(1):19–27

5. Cheah C, Hirano M, Kawamura S, Arimoto S (2003) Approximate Jacobian con-
trol for robots with uncertain kinematics and dynamics. IEEE Trans. on Robotics
and Automation 19(4):692–702

6. Cheah C, Kawamura S, Arimoto S, Lee K (2001) H-∞ tuning for task-space feed-
back control of robot with uncertain Jacobian matrix. IEEE Trans. on Automatic
Control 46(8):1313–1318

7. Cheah C, Hirano M, Kawamura S, Arimoto S (2004) Approximate Jacobian con-
trol with task-space damping for robot manipulators. IEEE Trans. on Automatic
Control 49(5):752–757

4.2 Passivity-Based Control

It was observed in [1] that not only a conjugate input-output pair composed of
the torque control input vector and the joint angular velocity vector satisfies
passivity but also a pair of the torque input and a linear sum of a saturated
position error vector and the joint angular velocity vector satisfies passivity.
This idea played a key role in establishing a new control-theoretic approach
called “passivity-based control”, which is now admitted to be a very effective
tool for the control of nonlinear mechanical systems [2]. A nonlinear position-
dependent circuit theory for the mechanical systems was outlined in [3]. The
passivity-based approach was applied to the tracking control of robotic arms
[4], force control in geometrically constrained manipulations [5, 6], and to
the cooperative control of multiple robots carrying a common object [7, 8].
The basic ideas of this approach in the applications to robot control were
highlighted in the keynote talk [9] given at a special session, dedicated to the
passivity-based control, of the IEEE ICRA 2000 Conference.
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Selected Publications

1. Arimoto S (1994) A class of quasi-natural potentials and hyper-stable PID servo-
loops for nonlinear robotic systems. Trans. of SICE 30(9):1005–1012

2. Arimoto S (1996) Control Theory of Nonlinear Mechanical Systems: A Passivity-
Based and Circuit-Theoretic Approach. Oxford University Press, U.K.

3. Arimoto S, Nakayama T (1996) Another language for describing mo-
tions of mechatronics systems: a nonlinear position-dependent circuit theory.
IEEE/ASME Trans. on Mechatronics 1(2):168–180

4. Parra-Vega V, Arimoto S, Liu YH, Hirzinger G, Akella P (2003) Dynamic sliding
PID control for tracking of robot manipulators: theory and experiments. IEEE
Trans. on Robotics and Automation 19(6):967–976

5. Whitcomb L, Arimoto S, Naniwa T, Ozaki F (1997) Adaptive model-based hybrid
control of geometrically constrained robot arms. IEEE Trans. on Robotics and
Automation 13(1):105–116

6. Whitcomb L, Arimoto S, Naniwa T, Ozaki F (1996) Experiments in adaptive
model-based force control. IEEE Control Systems Magazine 16(1):49–57

7. Liu YH, Kitagaki K, Ogasawara T, Arimoto S (1999) Model-based adaptive hy-
brid control for manipulators under multiple geometric constraints. IEEE Trans.
on Control Systems Technology 7(1):97–109

8. Liu YH, Arimoto S (1996) Distributively controlling two robots handling an
object in the task space without any communication. IEEE Trans. on Automatic
Control 41(8):1193–1198

9. Arimoto S (2000) Passivity-based control. Proc. IEEE Int. Conf. on Robotics
and Automation, San Francisco, CA 227–232

4.3 Iterative Learning Control

In 1976 a simple but original idea of the effectiveness of learning of robotic
motion through repeated exercises was presented by M. Uchiyama, a Professor
of Tohoku University. Professor S. Arimoto and his colleagues reformulated
this idea into an axiomatic framework of iterative learning control (ILC) [1],
which gave rise to a new field of control theory. Initially, the framework was
based on a simple and effective sufficient condition for convergence of the iter-
ative control scheme [1, 2]. A more efficient iterative learning control scheme,
named P-type ILC, was subsequently proposed in [3]. Later on, a unified ap-
proach for not only the ILC but also for the repetitive (or periodic) control
was presented in [4, 5]. It is shown there that, as far as linear dynamical
systems are concerned, the ability of learning corresponds to the system char-
acteristics such as the output-dissipativity or the strict positive realness with
an extra condition. The application of the ILC to the control of geometrically
constrained robot arms was outlined in [6].
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dissipativity, and strict positive realness. International Journal of Control
73(10):824–831

5. Arimoto S, Naniwa T (2001) Corrections and further comments to “equivalence
relations between learnability, output-dissipativity and strict positive realness”.
International Journal of Control 74(14):1481–1482

6. Naniwa T, Arimoto S (1995) Learning control for robot tasks under geometric
endpoint constraints. IEEE Trans. on Robotics and Automation 11(3):432–441

4.4 Navigation of Autonomous Robot Vehicles

A new data-structure, named tangent graph, that can be effectively used
in navigation of autonomous robot vehicles was introduced in [1]. This data-
structure is computationally superior to the conventional data-structure based
on the visibility graphs because the total number of nodes can be drastically
reduced in comparison with the conventional data-structure [2]. The tan-
gent graph data-structure can be implemented in autonomous robotic vehicles
equipped with range sensors. Various path planning techniques exploiting this
data-structure were proposed in [3, 4].
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nal obstacles using a radius-independent graph. IEEE Trans. on Robotics and
Automation 11(5):682–691

4.5 Dynamic Bipedal Walking

In 1979 the research group at Osaka University, led by Professor S. Arimoto,
developed a biped robot, named “Idaten”, that could walk stably in a dynamic
sense with a regular human walking speed [1, 2]. The development was largely
based on the theoretical analysis of the dynamics of the biped walking in the
sagittal plane. To stabilize the robot motion, a hierarchical control system



Main Scientific Contributions XXIII

based on the singular-perturbation technique was proposed [1]. The use of an
early prototype of the iterative learning control scheme also contributed to
the success in the experiments.
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4.6 Intelligent Control of Multi-Fingered Robotic Hands

This research area was in the scope of the scientific interests of Professor
S. Arimoto starting from the early paper [1], where the basic modeling was
analyzed. The role of the sensory-motor coordination in the control of multi-
fingered hands was explored in [2, 3, 4, 5]. In [2, 3] it was shown that rolling
contacts produce constraint forces tangent to object surfaces, by which stable
pinching in a dynamic sense can be realized. Concepts of the stability on a
manifold and the transferability to a submanifold were introduced in [6] and
shown to be crucial in dealing with robot dynamics that are are nonlinear, re-
dundant and under-actuated. A single sensory-motor control signal for stable
pinching that needs neither parameters of the object kinematics nor the exter-
nal sensing was established in [7, 8]. This control scheme was extended for the
objects with non-parallel surfaces, and it was shown that a blind grasping can
be implemented in robotic hands in the same way as humans grasp an object
stably when they close eyes [9]. Note that the papers [7, 9, 11] were among the
three finalists for the IEEE ICRA Best Manipulation Paper Award in, respec-
tively, 2004, 2005, and 2006. Recently, it was shown that 3D-object grasping
and manipulation by two fingers are possible in a blind manner even when the
instantaneous axis of object rotation is changeable and yields non-holonomic
constraints [10]. In addition, a physically faithful modeling of 3-D object ma-
nipulation, taking into account the spinning motion around the opposition
axis, was established in [12, 13].
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4.7 Human-like Reaching Movements

Dealing with famous Bernstein’s problem of the coordination of multiple de-
grees of freedom in human movements, it was suggested [1] that a typical
problem of ill-posedness of the inverse kinematics for redundant robotic sys-
tems can be resolved in a natural way without introducing any artificial cost
function to determine the inverse or without calculating any pseudo inverse of
the Jacobian matrices. It was shown [2] that in the case of redundant multi-
joint reaching movements a task-space position feedback with a single stiff-
ness parameter together with damping shaping in the joint space can generate
human-like skilled reaching motions (the endpoint trajectory is quasi-linear,
the velocity profile is bell-shaped and the acceleration signals have double
peaks). Based on the mathematical analysis and physiological interpretations
of this fact, a Virtual Spring/Damper Hypothesis was introduced in [3, 4]. The
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hypothesis can successfully compete with various (and sometimes controver-
sial) reasonings proposed in physiology. A mathematical verification of the
effectiveness of the Virtual Spring/Damper Hypothesis on the basis of differ-
ential geometry is given in [5], and its neurophysiological meaning is discussed
in [6].
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Human Robotics: A Vision and A Dream

Suguru Arimoto1

Department of Robotics, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
arimoto@se.ritsumei.ac.jp

Summary. On the celebration of my seventieth birthday, I would like to ask you to
allow me to introduce my present dream: human robotics. Before explicating what
is human robotics, it is important for me to spell out why such dream has been
incubated in my mind during the past decade.

First, let me recollect the very beginning of my engagement in research. It
was in the spring of 1960, but I remember quite vividly the occasion when the
leader of our small group engaged in the development of an electric computer
requested me to quickly learn error-correcting codes and devise an operating
system that could protect stored programs in magnetic core memories from
bit errors. I graduated from the Department of Mathematics at Kyoto Univer-
sity in 1959, but I can not say that I learned very much about mathematics.
Nevertheless, I was fortunately able to quickly discover a special class of al-
gebraic codes together with a powerful decoding algorithm and succeeded in
implementing it in an error-protecting operation system. From then on I be-
gan to be confident of having some sort of talent necessary for engagement
in research and development even in the academic society. Since then I have
been always concerned with discovering something new and useful in both
the scientific and engineering areas of computing, information processing, and
control. During the first two decades of my academic career, Claude Elwood
Shannon and Alan Mathison Turing were my admiration.

When I was appointed a Professor of the 10th Chair of the Department
of Mechanical Engineering at Osaka University, I felt of some reluctance be-
cause I was not well qualified in the technical fields of mechanical engineering.
Notwithstanding it, I accepted this appointment in the sequel. The reason was
simple—Shannon was also interested in chess-playing robots, juggling robots,
and designed and made by himself a maze-solving machine (micro-mouse).
Thus, I have been infatuated with robotics for over three decades, beginning
from around 1976 and till now. A remarkable and memorable day happened in
November 1984 when Shannon was awarded the first Kyoto Prize in the area
of fundamental science. I was asked to organize a workshop on information
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theory celebrating his award and had a rare chance of watching Shannon’s
8mm film on the screen. I was amused at how swiftly his chess-playing robot
hand with three fingers picked and placed the chess pieces. The years center-
ing 1984 were perhaps the most productive and fruitful time in the robotics
research in my laboratory at Osaka University. Many ideas for the the physics-
based robot control were conceived, and the foundations of a control theory
of nonlinear mechanical systems [1] were laid and contoured during that time.

In 1988 when I came back to the University of Tokyo, I was implicated in
an artificial intelligence debate. Professors Hubert Dreyfus and Stuart Dreyfus
claimed in the book [2] that the progress of creating “artificial intelligence”
would be blocked by the commonsense knowledge problem including everyday
physics or commonsense physics. They expatiated on: “Can there be a theory
of the everyday world as rationalist philosophers have always held? Or is the
commonsense background rather a combination of skills, practices, discrimi-
nation, and so on, which are not intentional states and so, a fortiori do not
have any representational content to be explicated in terms of elements and
rules?” I thought that, differently from the commonsense reasoning that may
be crucial in AI, the commonsense physics can be spelt out in a set of facts
and rules. It should be a scientific domain called “everyday physics”.

In 1999, I published an article in the third millennium commemorative
issue of the International Journal of Robotics Research [3], where the term
“everyday physics” was used as a scientific domain related to accountability
of dexterous accomplishment of ordinary tasks we encounter in our everyday
life. In the article, three stages of research for the exploration of the everyday
physics were proposed. They are shown in Fig. 1.
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Fig. 1. Robotics research should evolve from precise modeling of a robot task to
explication of everyday physics.
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In preparation of the article I just started a new research project on control
of multi-fingered hands together with master-course students in Ritsumeikan
University which I had joined in the spring of 1997 after retirement from
the University of Tokyo in compliance with the age limit of 60 years old.
The memory of Shannon’s chess-playing robot with three fingers has always
encouraged me to tackle this challenging research subject through which I
believe we would be able to explore certain physical principles that may govern
the secret of dexterity of our hands. With doctor-course students we discovered
a crucial role of tangential forces arising from rolling constraints (Fig. 2) and
a principle of linear superposition of the feedback and feedforward signals for
the coordination control based upon the passivity relation. In 2006 we at last
succeeded in the derivation of a mathematical model, faithfully expressing the
dynamics of 3-D object grasping and manipulation under the gravity effect and
nonholonomic constraints. Now, we see that even a pair of 3-D robot fingers
can grasp a 3-D object stably without exactly knowing the object kinematics
and without using any external sensing. A robot hand can grasp an object in
a blind manner, just like a human does with his or her eyes closed.

y

x

z

q13

q12

q11

L

q20

q21

q22

O1 O2
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Fig. 2. Three-dimensional object grasping and manipulation.

During the process of exploring the dexterity of multi-fingered hands, I
recognized around 2003 that we were already solving the so-called Bernstein
problems[4], because the total number of degrees of freedom (DOF) of the
overall fingers-object system possibly becomes redundant in comparison with
the number of independent physical variables necessary for describing imposed
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tasks. In the same year a Japanese translation of Bernstein’s book [5] was
published; its original manuscript was written in Russian more than a half
century ago. Also in 2003, we theoretically proved, without considering the
DOF redundancy, the convergence of the grasping motion toward its state of
force/torque balance. This research introduced a new concept of the stability
on a constraint manifold and showed how it can be used in the verification of
the grasping stability understood in a dynamic sense.
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T
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Fig. 3. Spring/damper hypothesis for multi-joint reaching movements.

All these taken together coincidentally led me to challenging the Bernstein
problem of multi-joint reaching movements under redundant DOFs. Subse-
quently we found that a skilled human-like reaching movement can be realized
by a simple control scheme without solving inverse kinematics or dynamics.
From the Newtonian mechanics point of view, such a skilled motion can be
generated as if the endpoint of the whole arm is drawn by parallel connection
of a spring with a damper placed at the target point as shown in Fig. 3. This
means that the control is of the form: u = −C0q̇ − JT (cẋ + k∆x), where q
denotes the joint vector, ∆x = x− xd, J stands for the Jacobian matrix of x
in q, and C0 does for the joint damping matrix.

Having sketched the structure of the feedback control signal, one can pro-
ceed further and ask, what kind of neuro-motor signals does the central ner-
vous system (CNS) emanate in a feedforward manner and how do they excite
a set of muscles involved in the joint rotations leading to quasi-straight reach-
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ing movements? If −C0q̇ can be interpreted as passive damping at the joints,
then the signal −kJT ∆x corresponds to the generation of spring-like forces in-
duced from the muscle contractions. Then, where and how does the remaining
part, −JT (cẋ), come from in the case of human movements. My prediction is
that it may follow from co-contraction of antagonist muscles excited through
a spinal-reflex loop supervised by the cerebellum provided that it behaves
as a velocity observer for ẋ. As any prediction, it remains to be tested and
hopefully verified on the difficult road toward the creation of truly humanoid
robots.

In conclusion, I am still dreaming of “human robotics” that directs us to
the design of an artificial CNS that would cope with the everyday physics
just beautifully. Human robotics should be a core of robotics research that
attempts to unveil the mysteries of dexterity and versatility in human intel-
ligent behaviours seen in everyday life. To develop and systematize it, many
breakthroughs awaiting your exploration are indispensable. Sooner or later I
will step down and leave the playing list of active researchers, but I hope I
will be able to enjoy your challenges from the gallery.
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Summary. Numerous robotic tasks require the solution of the inverse problem,
known to be ill-conditioned in the neighborhood of kinematic singularities. The
problem is addressed here via a non-linear, differential-geometric approach. A “nat-
ural motion” component is identified thereby at the velocity level. Dynamic analysis
reveals that the essence of this component is nondissipative motion along the pre-
scribed end-effector path, with nonstationary initial condition. A kinematic feedback
controller and a dynamic feedback controller are introduced and shown to ensure
stable motion initialization from kinematic singularities, as well as tracking of pre-
scribed paths that pass through such singularities.

1 Introduction

Using visual feedback, humans are able to position their upper/lower limbs ap-
propriately to meet various task requirements. Robot application tasks quite
often also require the solution of the so-called inverse problem, in terms of
inverse kinematics or inverse dynamics in task coordinates [1]. The formal
solution to the problem is not as straightforward as might be expected.

For nonredundant structures, the inverse problem has been most often
tackled by employing the inverse of the Jacobian matrix. Though, as recog-
nized at an early stage [2], the ill-conditioning of the inverse problem at and
around kinematic singularities can destabilize the controls. Trying to avoid
such singularities, as proposed by some authors, is an oversimplified solution,
inconsistent with our everyday praxis. Just imagine what would it be if we
were not able to fully stretch an arm or a leg along a specific path.

One possible formalization of the inverse problem has been based on an
approximate “inverse” solution, obtained via the transpose of the Jacobian.
Satisfactory performance can be achieved then, provided simple position feed-
back control is present, as noted almost three decades ago in [3] (p.246). Ja-
cobian transpose based control schemes have been since widely discussed in
literature, see e.g. [4]–[6]. Very recently, attention is drawn again to the Ja-
cobian transpose in the hope that it may provide a “natural” solution to the
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inverse kinematic problem, for kinematically redundant structures inclusively
[7].

Another formalization, based on a different type of approximate inverse
kinematics solution, is the so-called “damped least-squares method” (DLS
method) [8], [9]. The essential mapping is again the Jacobian transpose, scaled,
however, by the inverse of a quadratic form containing a variable “damping
factor.” The latter is used to balance between the error and the infeasible
velocity norm resulting from the ill-conditioning of the inverse at and around
a kinematic singularity. The DLS method has been successfully tested ex-
perimentally [10], [11]. It must be pointed out, though, that the process of
determining the damping factor is not straightforward and may require the
evaluation of the singular values of the manipulator Jacobian [12]. Also, since
the error introduced by the method is along the singular direction, it is not
always possible to reach a kinematically singular configuration [13].

On the other hand, efforts have been made to approach the problem of
ill-conditioning of the inverse task from a nonlinear point of view. The possi-
bility to initialize a feasible motion along the singular direction at a kinematic
singularity has been pointed out in [14], see also [15]–[17] among others.

The nonlinear approach to the inverse kinematics problem has also proven
to be quite useful according to our own experience, while developing the
singularity-consistent method (SC method) [18]. The method has been tested
in practice with various mechanical structures, e.g. a serial six degree-of-
freedom (DOF) slave arm of a teleoperation system [19], [20], a six-DOF
parallel robot HEXA [21], [22], a seven-DOF serial arm [23] and very recently,
with a humanoid robot [24].

The aim of this work is to summarize results based on the singularity-
consistent method, with special emphasis on natural motion — a type of
motion obtained in a straightforward manner within the notation [25], [26].
By extending analysis to the level of dynamics and control law design, we show
also that our treatment of the inverse problem meets Koditschek’s expectation
that dynamical models “...which in some way match the internal dynamics of
the robot will afford more accurate performance with less effort” [27].

2 Singularity-Consistent Formulation of Inverse
Kinematics

Let us consider a serial-link robot with n joint variables. Each manipulator
configuration is defined as an n-tuple q = (q1, q2, ..., qn). The set of all possi-
ble manipulator configurations will be referred to as the configuration space
C. The end-effector position and orientation, related to a given manipulator
configuration via the direct kinematics, is expressed by a set of m independent
variables x = (x1, x2, ..., xm). In the general case, m = 6.

The velocity v of a characteristic point on the end-effector, and the angular
velocity ω of the end-effector are obtained from the well known relation:
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[
v
ω

]
= J(q)q̇, (1)

where J(q) is the manipulator Jacobian. The pair (v, ω) ≡ ν ∈ �6 denotes
the coordinates of the end-effector twist.

Consider now the following expansion of the Jacobian:

J(q) =
[
t1 t2 ... tn

]
, (2)

where ti(q) is the normalized end-effector twist obtained with unit-speed mo-
tion in joint i only: q̇i = 1 rad/s. For simplicity, we will assume that all joint
variables represent angles. The configuration space C, a subspace of �n, will
be then uniform in terms of physical units1. The usual vector norm ‖ ◦ ‖ can
be employed then.

The composite end-effector twist, due to motion in all joints, is then:

ν(q, q̇) =
n∑

k=1

tk q̇k. (3)

This equation solves the direct kinematics problem for the velocities.
Next, we focus on the inverse kinematics problem which is frequently used

in analysis and control. Assume the end-effector moves along a smooth para-
meterized path x(q∗), q∗ denoting the path parameter. The end-effector twist,
at a given point q∗, can be represented as

ν(q∗, q̇∗) = t∗(q∗)q̇∗ (4)

where t∗(q∗) is the normalized end-effector twist, obtained when the speed of
the parameter is one: q̇∗ = 1 rad/s. Equations (3) and (4) can be combined
as:

t∗q̇∗ =
n∑

k=1

tk q̇k (5)

which is just another representation of linear system (1).
Let us now rewrite the last equation as follows:

n∑
k=1

tkq̇k − t∗q̇∗ = 0. (6)

This is a closure equation for the kinematic chain. Its form gives us a hint:
it would be convenient to augment the configuration space with the path
parameter q∗. Doing so, we obtain the augmented configuration space C∗, a
subspace of �n+1, with elements q̄ ≡ (q, q∗). Equation (6) can be rewritten
in compact form, as:
1 In case of a mixed-joint structure (with rotational and translational joints), uni-

formity can be ensured with proper scaling.
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J(q̄) ˙̄q = 0 (7)

where
J(q̄) ≡

[
J(q) −t∗(q∗)

]
is called the column-augmented Jacobian. To ensure uniformity in terms of
physical units within C∗ space, the path parameter q∗ should be defined as
an angular variable. This implies also that the usual vector norm can be
employed.

It should be apparent that Eq. (7) is underdetermined, and hence, the num-
ber of solutions is infinite. But this is also a homogeneous equation. Therefore,
all the solutions must be in the kernel of matrix J . Let us assume now that the
manipulator is nonredundant: m = n. For a full-rank column-augmented Ja-
cobian, the kernel contains a single nonzero element then. The set of solutions
of Eq. (7) is:

˙̄q = bn̄(q̄) (8)

where b is an arbitrary scalar, and n̄(q̄) ∈ kerJ(q̄) ⊂ �n+1. A vector from
the kernel can be derived in analytical form with the help of the cofactors of
matrix J [28], [29]:

n̄(q̄) =
[
C1 C2 ... Cn+1

]T (9)

where Ci = (−1)i+1 detJ i is the i-th cofactor, and J i is obtained from matrix
J by removing the i-th column. The last expression can be rewritten as:

n̄(q̄) ≡
[
nT (q̄) det J(q)

]T (10)

where n(q̄) ≡ [adjJ(q)] t∗(q∗) , adj(◦) denoting the adjoint matrix [20]. Note
that n(q̄) maps vectors from the augmented configuration space to the tangent
space of C at q: {n(q̄) : C∗ ⊂ �n+1 → TCq ⊂ �n}.

Equation (8) can be split into two parts to obtain the joint motion differ-
ential

q̇ = bn(q̄) (11)

and the path parameter differential

q̇∗ = b det J(q). (12)

Usually, path parameter q∗ is considered an independent variable. Then, one
determines the scalar b from Eq. (12), and substitutes it back into Eq. (11)
to obtain the joint velocity. Note, however, that in the vicinity of kinematic
singularities this may lead to instability since the determinant of the Jacobian
is close to zero.

In fact, the above formulation of the inverse kinematics has been developed
to deal with motion control around and at kinematic singularities [18]. Note,
when the Jacobian is singular, and in addition, linear system (1) or (5) is
inconsistent, a nontrivial solution can be obtained only when the end-effector
is (instantly) at rest, i.e. the twist is set to zero. This condition must be
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satisfied in order to comply with the existing physical motion constraint at
the singularity [30]. This can be easily achieved with the above formulation,
by exchanging the roles of q∗ and b, such that b becomes the new independent
variable, while q∗ is regarded as the dependent one. Then, from Eq. (12) it is
evident that when b is constant, the end-effector twist magnitude q̇∗ will be
zero at a kinematic singularity, since the determinant is zero.

Note that the above procedure does not lead to path tracking error. Indeed,
we have

ν − Jq̇ = q̇∗t∗ − bJ(adjJ)t∗ (13)
= (q̇∗ − b det J)t∗.

Thus, the error is always along the normalized end-effector twist t∗ that repre-
sents the path tangent. In other words, via b, we can effectively reparameterize
the end-effector path x(q∗) in a way that any inconsistency with the singu-
larity motion constraint, mentioned above, will be avoided. Because of this
special property of the formulation, Eq. (11) has been called the singularity-
consistent inverse kinematic solution.

3 Natural Motion of a Manipulator

The trivial reparameterization, b being a nonzero constant, plays an impor-
tant role throughout this work. Note that when b is constant, Eq. (8) can be
regarded as an autonomous dynamical system. The flow of vector field n̄(q̄) is
represented then by a set of spatial curves in augmented configuration space
C∗. Motion along a specific curve (determined from the initial condition) can
be associated with the so called self-motion of a kinematically redundant ma-
nipulator obtained from the original manipulator by adding a virtual joint
with q∗ as the joint variable. The curve will be referred to as the self-motion
manifold [31].

We are interested in a positive definite metric on the self-motion manifold.
The candidate metric is 〈n̄, n̄〉 which is positive semidefinite, though. Hence,
stationary point analysis for the autonomous system is needed, to obtain
first the set where n̄(q̄) = 0. It is not difficult to recognize that this set is
composed of (i) kinematic singularities where the codimension is higher than
one (all n− 1×n− 1 minors are zero then), and (ii) kinematic singularities of
codimension one where the linear system (5) is consistent2. Henceforth, we will
refer to such singularities as stationary point singularities. We emphasize the
fact that those codimension-one kinematic singularities for which the linear
system is inconsistent, are regular points of the dynamical system3. Hence, it
would be straightforward to apply existing control laws in the neighborhood
2 A consistent linear system implies that t∗ is in the column-space of J , which

mapped by adjJ , becomes zero.
3 Such singularities have been named “ordinary singularities” by Kieffer [15].
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of, or even at such kinematic singularities. These singularities will be referred
to as regular point singularities.

Henceforth, the subdomain of regular points will be referred to as the
domain of complete integrability. The self-motion manifold can then be char-
acterized by the invariant arc lenght λ, called also natural parameter. λ is
determined uniquely up to an additive constant, via:

λ̇ = ‖n̄‖. (14)

λ̇ will be referred to as the natural speed along the self-motion manifold.
From Eq. (8) we obtain:

˙̄q = λ̇ˆ̄n(q̄) (15)
where ˆ̄n is the tangent vector of unit length at q̄, and the constant b has been
set to one, without loss of generality.

Definition (Natural motion)
Manipulator motion with generalized velocities in proportion to the nat-

ural speed λ̇ is called natural motion.

Corollary 1
Under natural motion, the magnitude of the end-effector twist is in pro-

portion to |det J |.
Proof: Follows directly from Eqs. (12) and (15).

Corollary 2
Natural motion requires nonzero initial conditions.
Proof: Since λ̇ 
= 0 everywhere within the domain of complete integrability.

Corollary 3
In the vicinity of stationary points, natural motion decays exponentially.
Proof: Follows from the solution type of the autonomous dynamical system.

4 Vector-Parameterization of Configuration Space

We are interested in the projection of vector field n̄(q̄) onto n-dimensional
C space. The projection, n(q̄) = [adjJ(q)] t∗(q∗), can be interpreted as a
parameterized vector field, t∗(q∗) playing the role of an n-parameter. Conse-
quently, Eq. (11) can be regarded as a parameterized autonomous dynamical
system [32]. Its domain will be referred to as the parameterized C-space. Any
point from the parameterized C-space is determined by the couple (q, t∗).
Note that from definition (10) it follows that, within the domain of complete
integrability, there is a one-to-one mapping between points (q, t∗) and n(q̄).

The vector-parameterization just introduced can be quite useful in such
applications as telerobotics [19], [20], or “hand-in-eye” systems [33] where no
a priori information about the path x(q∗) is available, and only the velocity
of the end-effector (i.e. the twist q̇∗t∗) is known.
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5 Second-Order Singularity-Consistent Inverse
Kinematics

Second-order kinematic relations play an important role for the dynamic
analysis to be presented in the following section. Two representations of joint
accelerations will be introduced. First, we refer to the underdetermined linear
system (7). Differentiating w.r.t. time, we obtain:

J(q̄)¨̄q + J̇(q̄) ˙̄q = 0. (16)

This equation admits the following solution:

¨̄q = βn̄(q̄)− J
+
(q̄)J̇(q̄) ˙̄q (17)

where β denotes an arbitrary small value, and (◦)+ stands for the pseudoin-
verse. The representation decomposes the joint acceleration into two orthog-
onal components. This is evident from the fact that the pseudoinverse com-
ponent is known to be orthogonal to the null space component.

The last equation can be split into two parts, to obtain second differentials
of joint motion and path motion, respectively:

q̈ = βn(q̄)− JT (q)J−1
∗ (q̄)J̇(q̄) ˙̄q (18)

and
q̈∗ = β det J(q) + tT

∗ (q∗)J−1
∗ (q̄)J̇(q̄) ˙̄q, (19)

where J∗(q̄) ≡ J(q)JT (q) + t∗(q∗)tT
∗ (q∗).

We pay special attention to matrix

J†(q̄) ≡ JT (q)J−1
∗ (q̄),

a generalized inverse of J(q). Note that the inverse in the above expression
exists for all nonsingular manipulator configurations and all regular point sin-
gularities. Thus, the joint accelerations in Eq. (18) are valid within the domain
of complete integrablity. We will refer to matrix J†(q̄) as the singularity-
consistent generalized inverse. The variable β can be determined from Eq.
(19), or, at a singularity where the determinant is zero, β will be properly
modified.

Another representation of joint acceleration is obtained by differentiating
the joint velocity in Eq. (8):

¨̄q = ḃn̄(q̄) + b2 ∂n̄(q̄)
∂q̄

n̄(q̄). (20)

This representation is helpful in analysis related to natural motion. When
b = const, the first term on the r.h.s obviously vanishes. The remaining ac-
celeration term b2 ∂n̄(q̄)

∂q̄ n̄(q̄) is an exact differential then. Henceforth, we will
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refer to it as the integrable joint acceleration component. Note that the cov-
ector mapping ∂n̄(q̄)

∂q̄ contains information about the curvatures.

On the other hand, the first component on the r.h.s. of Eq. (20), ḃn̄(q̄),
exists only when b 
= const. This component represents joint acceleration
along the vector field; it may never be an exact differential due to the ḃ.
We will call it therefore the nonintegrable joint acceleration component. The
component necessarily vanishes at stationary points of the dynamical system
(see Corollary 3 above). Note, however, that the integral curves of the vector
field (to be interpreted as velocity curves) are well defined in the neighborhood
of stationary points. Therefore, we can conclude that the nonintegrable joint
acceleration plays the important role of ensuring motion via stationary points.

The projection of Eq. (20) onto C-space is given by the following three
components:

q̈ = ḃn(q̄) + b2 ∂n(q̄)
∂q

n(q̄) + b2 ∂n(q̄)
∂q∗

det J(q). (21)

It is seen that the integrable joint acceleration consists of two terms. These
terms, ∂n(q̄)

∂q n(q̄) and ∂n(q̄)
∂q∗

det J(q), represent curvature-related joint accel-
eration due to the nonlinear manipulator kinematics and the nonlinearity of
the imposed end-effector path x(q∗), respectively. Note also that while the for-
mer term vanishes at stationary points, the latter one does so at any kinematic
singularity.

6 Dynamic Analysis

In this section, we first derive the singularity-consistent parameterized form
of the equation of motion, and thereafter discuss the dynamics of natural
motion.

6.1 Singularity-Consistent Parameterization of the Equation of
Motion

The equation of motion is:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τ e, (22)

where M(q) is the symmetric positive definite manipulator inertia matrix,
C(q, q̇)q̇ and g(q) denote Coriolis and centrifugal, and gravity forces, re-
spectively, τ stands for the driving joint torque and τ e denotes “distur-
bance” and/or external forces, e.g. friction in the joints etc. Making use of the
singularity-consistent notation (21), the equation of motion can be rewritten
as (

ḃM(q) + bA(q̄)
)

n(q̄) + g(q) = τ + τ e, (23)
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where

A(q̄) ≡ bM(q)
∂n(q̄)

∂q̄
+ C(q, q̇).

Two remarks are due. First, the above form of the equation of motion in-
corporates the imposed end-effector constraint. When compared to similar
formulations, Eq. (23) has the advantage that it can be applied in the vicinity
of any kinematic singularity and at all regular point singularities. Second, note
that force components due to the two terms of matrix A are usually treated
separately: M(q)∂n(q̄)

∂q̄ maps joint acceleration to inertial forces, while the
C(q, q̇) map generates centrifugal and Coriolis forces. The presence of the
curvature-related covector map ∂n(q̄)

∂q̄ in the former term, however, shows
that this term can be regarded as a nonlinear force generating term.

We are referring to Eq. (23) as the singularity-consistent parameterization
of the equation of motion [25].

Next, note that Eq. (23) represents a set of n = 6 equations. The dimension
can be reduced, if the dynamics are rewritten in terms of input power:

q̇T τ = bnT
(
ḃM + bA

)
n + bnT g − bnT τ e. (24)

For compactness, the functional dependence has been omitted in this notation.
Further on, note that matrix Ṁ − 2C is anti-symmetric [27], [34]:

nT (q̄)C(q, q̇)n(q̄) =
1
2
nT (q̄)

[
b
∂M(q)

∂q
n(q̄)

]
n(q̄). (25)

Hence, we have

nT (q̄)A(q̄)n(q̄) = bnT (q̄)D(q̄)n(q̄) (26)

where matrix D(q̄) is defined as

D(q̄) ≡M(q)
∂n(q̄)

∂q̄
+

1
2

∂M(q)
∂q

n(q̄).

The input power (24) can be then rewritten as:

q̇T τ = bḃnT Mn + b3nT Dn + bnT g − bnT τ e. (27)

Now, note that the kinetic energy is

T =
1
2
b2nT (q̄)M(q)n(q̄), (28)

and therefore,
d

dt
T = bḃnT Mn + b3nT Dn. (29)

With this, the input power is represented as:

q̇T τ =
d

dt
T − d

dt
U − bnT τ e, (30)

where U = U(q) is the gravity potential at q, such that gT (q) = −∂U(q)
∂q .
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6.2 Dynamic Analysis of Natural Motion

We consider again the special case of natural motion b = const4. Then, the
force component ḃM(q)n(q̄) becomes zero, and the equation of natural mo-
tion can be written as:

bA(q̄)n(q̄) + g(q) = τ + τ e. (31)

The force component ḃM(q)n(q̄) just removed is in the direction of gen-
eralized momentum. Note also that this force component results from the
nonintegrable joint acceleration.

The input power of natural motion is derived from Eq. (27) as:

q̇T τ = b3nT Dn + bnT g − bnT τ e (32)

=
d

dt
T − d

dt
U − bnT τ e, (33)

where the kinetic energy time differential

d

dt
T = b3nT Dn (34)

is now configuration-dependent only: P(q̄) ≡ d
dtT , P(q̄) denoting (instanta-

neous) mechanical power. But then, in the absence of external forces (τ e = 0),
we obtain a pure potential system:

q̇T τ =
d

dt
T (q̄)− d

dt
U(q). (35)

This means that the joint driving forces can be derived from a configuration-
dependent potential. Hence:

τi = − d

dqi
V(q̄), (i = 1, ..., n), (36)

where V(q) is the configuration-dependent potential. Plugging τ into Eq. (35)
and integrating, we obtain

−V = T − U + E (37)

where −E is a nonzero integration constant. We will refer to V as the internal
potential. The internal potential exists if and only if the motion is natural.
Thus, we have proven the following

Theorem: Natural motion conserves the energy of internal motion.

4 Here and henceforth we will use underline to denote a constant value.
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As noted, natural motion requires b to be a constant. Hence, the kinetic
energy at configuration q̄0 considered to be the initial configuration for natural
motion, will be

T (q̄0) =
1
2
b2nT (q̄0)M(q0)n(q̄0) 
= 0.

In addition, we may assume that V(q̄0) = U(q0). Then, the integration con-
stant is uniquely determined from Eq. (37) as:

E = −T (q̄0). (38)

It should be apparent now that natural motion of a manipulator with a
prescribed end-effector path is nothing else than nondissipative motion with
prespecified initial energy. Note also that energy conserving systems are called
natural [35]. Thus, the term natural motion, which was introduced in Section
3 to describe a pure geometrical phenomenon, is reaffirmed in a convincing
way also from the viewpoint of energy conservation. But this is not surpris-
ing: conservation of energy is related to Jacobi’s principle, which, in turn is
instructive in how to represent motion as a pure geometrical problem [36].

7 An Example

A simple planar 2R manipulator with its end-tip moving along a circular arc
will be used to demonstrate the relations derived above. The current point on
the arc is determined by the path parameter angle q∗ (see Fig. 1). The end-tip
position vector is then:

x =
[

xc

yc

]
− r

[
cos q∗
sin q∗

]
(39)

where xc, yc are the arc center coordinates, r is the arc radius. The end-tip
twist is:

t∗ = r

[
sin q∗

− cos q∗

]
. (40)

The vector field over the augmented configuration space is derived from the
null-space of the column-augmented Jacobian J(q̄) as:

n̄ =


 −rl2 sin(q1 + q2 − q∗)

r[l2 sin(q1 + q2 − q∗) + l1 sin(q1 − q∗)]
l1l2 sin q2


 (41)

where l1 and l2 are the link lengths. Kinematic singularities are defined by the
set {sin q2 = 0}. The stationary points of the vector field are those kinematic
singularities where q∗ = q1 ± 2kπ, k = 0, 1, 2, .... An example of a stationary
point singularity is the point where the circular arc is tangent to the workspace
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Fig. 1. Example of notations with a 2R manipulator.

boundary. An example of a regular point singularity is the point where the
circular arc intersects the workspace boundary.

Numerical simulation of motion based on velocity-level kinematics, as in
Eq. (11), will be demonstrated. Both link lengths are set to 1 m.

First, natural motion will be simulated to highlight behavior around a
regular point singularity and around a stationary point singularity. The initial
manipulator configuration is set to (−60, 120) deg, the respective initial end-
tip coordinates are (1.0, 0.0) m. Also, the initial path parameter value is set
to 180 deg. Natural motion is obtained with b = 1.0 rad/m2s. The arc radius
is set to 1.6 m, so that the arc becomes transversal to the outer workspace
boundary. The kinematic singularity at the intersection is a regular point
singularity. Simulation data are shown in Fig. 2. The x − y graph in the
lower left part of the figure shows the workspace boundary (the full circle)
and the path described by the end-tip (the circular arc). Note that the q∗
speed graph is actually the graph of determinant detJ . After about 3 s,
change of its sign is observed which indicates motion through the kinematic
singularity at the intersection point between workspace boundary and end-tip
arc. Thereby, the end-tip is reflected from the workspace boundary back along
the arc. Prolonging the simulation time to 12 s generates a circular arc that
intersects the workspace boundary at two points. A repeatable motion cycle is
then obtained. The respective selfmotion manifold in augmented configuration
space C∗ is shown in the lower right part of the figure.

Next, the arc radius is decreased to r = 1.5 m, so that the arc center
coordinates become (−0.5, 0.0) m. Note that the arc is then tangent to the
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Fig. 2. Natural motion through a regular point singularity.

outer workspace boundary at the west pole with coordinates (−2.0, 0.0) m
— a stationary point of the dynamical system. Simulation data are shown in
Fig. 3. The exponential decay of all vector field components is apparent from
the speed graphs.

We repeat the same simulation, but instead of natural motion, constant
twist magnitude is required (q̇∗ = 1 rad/s). The results are shown in Fig. 4.
It is seen that motion through the stationary point has been achieved. The
lower left plot shows the graphs of the three vector field components. The
stationary point, occurring when all graphs intersect the zero axis, is clearly
seen. Despite the (instantaneously) vanishing vector field, end-tip motion can
be maintained, as required. This is possible, because constant twist magni-
tude implies a determinant detJ (vector field component n3) appearing as
denominator in the scalar b (cf. Eq. (12)).

The next two simulations demonstrate the possibility to initialize motion
at a singularity. A simple way to achieve this is to choose input b as a linear
function of time: b = k1t, where k1 is an arbitrary constant and t denotes time.
Figure 5 shows the result of a simulation when motion was initialized at a
regular point singularity. The initial manipulator configuration and the initial
path parameter values have been set to (150, 0) deg and zero, respectively,
whereas k1 = 0.8 rad/(ms)2. From the graphs it is evident that motion can
be initialized without any instability.
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Fig. 3. Approach to a stationary point with natural motion.

On the other hand, it should be apparent that it is impossible to initial-
ize motion from a stationary point since no data for the direction of motion
is available. Motion can be initialized, though, from within an infinitesimal
vicinity of the stationary point. This is demonstrated with the following sim-
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Fig. 4. Motion through a stationary point with constant twist magnitude q̇∗.
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Fig. 5. Initializing motion at a regular point singularity.

ulation. The initial manipulator configuration has been set to (180, 0.01) deg,
b was chosen again to be a linear function of time, as above. The result of the
simulation is shown in Fig. 6. It is seen that motion can be initialized without
any instability. Note, however, that due to the weakness of the vector field
in the vicinity of the stationary point, with b being a linear function of time,
some time delay is observed before joint velocity builds up.

8 Singularity-Consistent Controllers

Two types of closed-loop controllers will be presented. First, a “kinematic”
closed-loop controller similar to the velocity-command generator-type con-
troller based on the Jacobian inverse [4], [5] or the Jacobian transpose [6] will
be introduced. Second, a dynamic closed-loop controller will be introduced.

8.1 Singularity-Consistent Kinematic Controller

In the presence of an unknown disturbance, the end-effector deviates from the
desired path. Denote the end-effector position/orientation error as e, see e.g.
[37]. With some abuse in the notation, widely done in the robotics literature,
we will use e(t) = xd(t) − x(t) where xd ≡ x(q∗(t)) and x(t) is the end-
effector position/orientation obtained from joint angle sensor data via the
direct kinematics. The error appears then in the kinematic closure equation
(7), which takes the form
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Fig. 6. Initializing motion very close to a stationary point singularity.

J(q̄) ˙̄q = Ke(t), (42)

K denoting a constant feedback gain matrix. This equation is still underdeter-
mined, but it is not anymore a homogeneous one. Hence, the set of solutions
is:

˙̄q = bn̄(q̄) + J
+

(q̄)Ke(t). (43)

Projecting it onto configuration space, we obtain the following kinematic feed-
back control law:

q̇sc = bn(q̄) + J†(q̄)Ke(t) (44)

together with the relation

q̇∗ = b det J(q)− tT
∗ J−1

∗ (q̄)Ke(t). (45)

As already explained, the roles of q̇∗ and b are interchangeable as control
inputs. It is easy to show that the above control law ensures the error dynamics
ė + Ke = 0, with b derived from Eq. (45). Or, alternatively, for any b, the
same error dynamics is obtained with ẋd = q̇∗t∗ where q̇∗ is derived from Eq.
(45).

The block scheme of the controller is shown in Fig. 7. Note that the null
space component bn(q̄) and the orthogonal component J†(q̄)Ke(t) of the
solution yield the feedforward and feedback controller actions, q̇ff and q̇fb,
respectively. Note also that the feedforward action does not depend upon a
generalized inverse, as in conventional schemes. Thus, instabilities related to
ill-conditioning can be alleviated. The controller will be referred to as the
singularity-consistent kinematic controller.
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Fig. 8. Natural motion through a regular point singularity, with joint friction and
kinematic closed-loop control.

Controller performance will be examined via simulations with the 2R ma-
nipulator introduced previously. The feedback gain matrix has been set to
K = diag{100, 100} (m rad)/s. The disturbance has the form of constant
joint friction −0.01q̇i, i = 1, 2. The first simulation demonstrates natural mo-
tion via a regular point singularity with initial data as those in Fig. 2. The
results are shown in Fig. 8. It becomes apparent that the singularity-consistent
kinematic controller performs as expected, without instability. In addition, we
also confirmed that motion initialization at the same type of singularity can
be achieved, without any instability, too.

In fact, stable performance of the singularity-consistent kinematic con-
troller is guaranteed within the domain of complete integrability. Stability is
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Fig. 9. Approaching a stationary point singularity, with constant twist magnitude,
joint friction and kinematic closed-loop control.

not guaranteed, though, at a stationary point singularity. We performed a
simulation of constant twist magnitude motion through a stationary point,
similar to that in Fig. 4. The results are shown in Fig. 9. It is apparent that
when the end-tip passes close by the singularity, an abrupt, inadmissible jump
in the velocity occurs.

8.2 Singularity-Consistent Dynamic Controller

Dynamic controller design is based on the singularity consistent parameteriza-
tion of the equation of motion (23). The structure of the proposed controller,
though, has not to be a completely new one. We will make use of the controller
structure proposed by Slotine and Li [38] which was found to be suitable for
velocity vector field tracking.

Define first the field tracking error as

ef (t) = q̇d(t)− q̇(t), (46)

where the desired joint velocity is obtained from the vector field projection:

q̇d(t) = bd(t)n(q̄d). (47)

Note that the above error is defined for the general case, i.e. b being time
varying. It is easy to show then that, under the following feedback control
law:
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τ sc = (ḃM + bA)n + g + KDef , (48)

the function
V (t) =

1
2
eT

f Mef (49)

is a Lyapunov function, and the above control law ensures that ef (t) → 0
as t → ∞ within the domain of complete integrability, and in the absence of
disturbances. KD in the above control law is a positive definite matrix that
may be chosen to be time varying. To ensure zero steady state position error,
ef is replaced by the following sliding surface:

s = ef + Λ(qd − q), (50)

Λ denoting a constant positive definite matrix [38].
Henceforth we refer to control law (48) as the singularity-consistent dy-

namic controller. The block scheme is shown in Fig. 10. The singularity-
consistent dynamic controller combines feedforward action with nonlinear
compensator within a single block: τ ff&nc = (ḃM + bA)n + g. Occasion-
ally, gravity compensation will be switched off to model external disturbance.
Note that the vector field projection appears also in the feedback component
τ fb = KDs through the desired quantities.
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Fig. 10. Singularity-consistent dynamic controller.

Controller performance will be examined with the help of numerical sim-
ulations. As a base for comparison, we will employ the resolved acceleration
controller [37]:

τ racc = MJ−1
(
ν̇d + Kd(νd − ν) + Kpe− J̇ q̇

)
+ Cq̇ + g, (51)

where e denotes end-effector position/orientation error, νd and ν stand for
desired and current end-effector twist, respectively, and Kp and Kd are con-
troller gain matrices.
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Fig. 11. Motion through a stationary point, with constant twist magnitude, gravity
disturbance and dynamic closed-loop control.

First, we redo the constant twist-magnitude simulation for motion through
a stationary point, which was done under kinematic feedback control, and
where an inadmissible velocity jump was observed (cf. Fig. 9). Initial con-
ditions are the same. We remove the gravity compensation capability from
control law (48), to model disturbance by gravity. The feedback gain matrices
are set to Λ = diag{400, 400} 1/s and KD = diag{100, 100} Nm s/rad. The
results are shown in Fig. 11. Note that no abrupt velocity jump is observed
now, and continuous joint angle motion is obtained. Local instability has ap-
peared around the stationary point singularity, though, as seen from the speed
and error plots. We made an analogous simulation with the resolved accelera-
tion controller (51), with feedback gains set to Kp = diag{10000, 10000} 1/s2

and Kd = diag{100, 100} 1/s. The controller failed abruptly.
To cope with the local instability problem in the last simulation, we in-

troduce a simple filter: set τ ff&nc = 0 when | sin q2| < k2, where k2 is a
small positive constant. Simulation data is shown in Fig. 12. The constant
was chosen as k2 = 0.1; note that this choice is not a critical one. Comparing
the resultant speed graphs and joint error graphs in Fig. 12 with those in Fig.
11, it is seen that the local instability at the singularity has been successfully
removed. The right part of Fig. 12 shows total joint torques (upper plot) and
two joint power components resulting from the integrable and nonintegrable
joint acceleration components (lower plot). The action of the filter is evident
from the latter.
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Next, we demonstrate motion initialization from within an infinitesimal
neighborhood of a stationary point singularity, similar to the simulation in
Fig. 6. The result of the simulation is shown in Fig. 13. The errors are due
to the gravity disturbance. It is confirmed that even in the presence of such
disturbance, motion can be initialized without instability.

The final simulation demonstrates how motion initialization from within
an infinitesimal neighborhood of a stationary point singularity can result in
a relatively complex motion. The singularity is achieved through an almost
folded-arm initial configuration of (90, 180.01) deg, and a reference circular
arc, tangent to the first link (see Fig. 14, lower-right part). b is determined
again as a linear function of time: b = 0.8t. The results of the simulation are
shown in Fig. 14. First, only joint one rotates, keeping the arm configuration
close to the singular one for about 2.7 s (stage 1 in the lower right figure).
Thereafter, the arm unfolds, the end-tip tracking thereby the reference circular
arc, as desired (stage 2, ibid.).

9 Conclusions

Until recently, not much attention has been paid to the useful role of kine-
matically singular configurations in motion tasks. The ill-conditioning of the
inverse problem around such configurations has been tackled mostly within
linear model frameworks. It has been shown here that a non-linear, differential-
geometric approach to kinematic inversion can lead to improved models. With
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Fig. 13. Motion initialization close to a stationary point under gravity disturbance.

these models, certain kinematic singularities (called regular point singulari-
ties), can be treated as regular points of the nonlinear system. Already at the
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Fig. 14. Motion initialization close to a stationary point under gravity disturbance,
resulting in two-stage motion.
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velocity level, it was possible to identify the so-called natural motion, which,
as shown by dynamic analysis, turns out to be nondissipative motion in a
closed system, without external forces, leading also to an (internal) potential-
type equation of motion. No ill-conditioning of the inverse problem occurs
when regular point singularities are approached with natural motion. Motion
initialization at and motion through such singularities is also possible. An-
other type of singularity, identified as stationary point singularity, requires
more attention due to the vanishing vector field under natural motion.

Further on, a kinematic feedback controller and a dynamic feedback con-
troller have been introduced and their performance examined via simulations.
Stable motion control at and around regular point singularities has been con-
firmed, even in the presence of an external disturbance. A local instability
problem, that occurred while moving through a stationary point singularity,
has been alleviated by introducing a simple filtering approach.
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11. Kirćanski M et al. (1994) An experimental study of resolved acceleration control
in singularities: damped least-squares approach. In: Proc. IEEE Int. Conf. on
Robotics and Automation, San Diego, California 2686–2691

12. Maciejewski A, Klein C (1988) Numerical filtering for the operation of robotic
manipulators through kinematically singular configurations. Journal of Robotic
Systems 5:527–552

13. Nenchev D, Tsumaki Y, Uchiyama M (2000) Singularity-consistent parameter-
ization of robot motion and control. The International Journal of Robotics
Research 19(2):159–182

14. Nielsen L, de Wit C, Hagander P (1991) Controllability issues of robots in
singular configurations. In: Proc. IEEE Int. Conf. Robotics and Automation,
Sacramento, California 2210–2215

15. Kieffer J (1994) Differential analysis of bifurcations and isolated singularities
for robots and mechanisms. IEEE Transactions on Robotics and Automation
10(1):1–10
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Summary. Most research so far in robot control has assumed either kinematics
or Jacobian matrix of the robots from joint space to task space is known exactly.
Unfortunately, no physical parameters can be derived exactly. In addition, when
the robot picks up objects of uncertain lengths, orientations or gripping points,
the kinematics and dynamics become uncertain and change according to different
tasks. This paper presents several approximate Jacobian control laws for robots
with uncertainties in kinematics and dynamics. Lyapunov functions are presented
for stability analysis of feedback control problems with uncertain kinematics. We
shall show that the end-effector’s position converges to a desired position even when
the kinematics and Jacobian matrix are uncertain.

1 Introduction

It is interesting to observe from human reaching movements that we do not
need an accurate knowledge of kinematics and dynamics of our arms. We
are also able to pick up a new tool or object and manipulate it skillfully to
accomplish a task, using only the approximate knowledge of the length, mass,
orientation and gripping point of the tool. Such basic ability of sensing and
responding to changes without an accurate knowledge of sensory-to-motor
transformation gives us a high degree of flexibility in dealing with unforseen
changes in the real world.

The kinematics and dynamics of robot manipulators are highly nonlinear.
By exploring physical properties of the robot system and using Lyapunov
method, Takegaki and Arimoto [1], Arimoto and Miyazaki [2] showed that
simple controllers such as the PD and PID feedback are effective for setpoint
control despite the nonlinearity and uncertainty of the robot dynamics. To deal
with trajectory-tracking control, Slotine and Li [3, 4] proposed an adaptive
control law for robotic manipulator using Lyapunov method. After more than
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two decades of research, much progress has been made in control of robots
with dynamic uncertainty [1]-[19].

However, most research on robot control has assumed that the exact kine-
matics and Jacobian matrix of the manipulator from joint space to Cartesian
space are known. In the presence of uncertainty in kinematics, it is impos-
sible to derive the desired joint angle from the desired end effector path by
solving the inverse kinematics problem. In addition, the Jacobian matrix of
the mapping from joint space to task space could not be exactly derived. This
assumption leads us to several problems in the development of robot control
laws today. In free motion [20], this implies that the exact lengths of the links,
joint offsets and the object which the robot is holding, must be known. Unfor-
tunately, no physical parameters could be derived exactly. In addition, when
the robot picks up objects or tools of different lengths, unknown orientations
and gripping points, the overall kinematics are changing and therefore diffi-
cult to derive exactly. Therefore, the robot is not able to manipulate the tool
to a desired position if the length or gripping point of the tool is uncertain.
Similarly, in hybrid position force control [21], the kinematics and constraint
Jacobian matrix are also uncertain in many applications. When the control
problem is extended to the control of multi-fingered robot hands [22], such
assumption also limits its potential applications because the kinematics is
usually uncertain in many applications of robot hands. For example, the con-
tact points of the robot fingers are usually uncertain and changing during
manipulation.

This paper presents the recent advances in control theory of robots with
uncertain kinematics and dynamics. Several approximate Jacobian controllers,
that do not require exact knowledge of either kinematics or dynamics of ro-
bots, are presented. The control problems are formulated based on Lyapunov
analysis. By using sensory feedback of the robot end effector position, it is
shown that the end effector is able to follow a desired motion with uncer-
tainties in kinematics and dynamics. This gives the robot a high degree of
flexibility in dealing with unforseen changes and uncertainties in its kinemat-
ics and dynamics, which is similar to human reaching movements and tool
manipulation.

This paper is organized as follows. Section 2 formulates the robot dynamic
equations and kinematics; Section 3 presents the approximate Jacobian set-
point controllers; Section 4 presents the adaptive Jacobian tracking controller;
Section 5 offers brief concluding remarks.

2 Robot Kinematics and Dynamics

The equations of motion of robot with n degrees of freedom can be expressed
in joint coordinates q = [q1, · · · , qn]T ∈ Rn as [19, 23, 24]:

M(q)q̈ + (
1
2
Ṁ(q) + S(q, q̇))q̇ + g(q) = τ (1)
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where M(q) ∈ Rn×n is the inertia matrix, τ ∈ Rn is the applied joint torque
to the robot,

S(q, q̇)q̇ =
1
2
Ṁ(q)q̇ − 1

2
{ ∂

∂q
q̇T M(q)q̇}T

and g(q) ∈ Rn is the gravitational force. Several important properties of the
dynamic equation described by equation (1) are given as follows [19, 3, 23]:

Property 1 The inertia matrix M(q) is symmetric and uniformly posi-
tive definite for all q ∈ Rn.

Property 2 The matrix S(q, q̇) is skew-symmetric so that

νT S(q, q̇)ν = 0,

for all ν ∈ Rn.
Property 3 The dynamic model as described by equation (1) is linear in a
set of physical parameters θd = (θd1, · · · , θdp)T as

M(q)q̈ + (
1
2
Ṁ(q) + S(q, q̇))q̇ + g(q) = Yd(q, q̇, q̇, q̈)θd

where Yd(·) ∈ Rn×p is called the dynamic regressor matrix. ♦

In most applications of robot manipulators, a desired path for the end-
effector is specified in task space, such as visual space or Cartesian space. Let
x ∈ Rn be a task space vector defined by [19],

x = h(q) (2)

where h(·) ∈ Rn → Rn is generally a non-linear transformation describing
the relation between joint space and task space. The task-space velocity ẋ is
related to joint-space velocity q̇ as:

ẋ = J(q)q̇ (3)

where J(q) ∈ Rn×n is the Jacobian matrix from joint space to task space.
Note that if cameras are used to monitor the position of the end-effector,

the task coordinates are defined as image coordinates. Let r represents the
position of the end-effector in Cartesian coordinates and x represents the
vector of image feature parameters [25]. The velocity vector ẋ is therefore
related to q̇ as

ẋ = JI(r)ṙ = JI(r)Je(q)q̇, (4)

where JI(r) is the image Jacobian matrix [25, 26, 27] and Je(q) is the manip-
ulator Jacobian matrix of the mapping from joint space to Cartesian space.
When a position sensor such as an electromagnetic measurement system or
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laser tracking systems is used to measure the end effector’s position, the task
co-ordinates are defined as the Cartesian co-ordinates.

A property of the kinematic equation described by equation (3) is stated
as follows:

Property 4 The right hand side of equation (3) is linear in a set of constant
kinematic parameters θk = (θk1, · · · , θkq)T , such as link lengths, link twist
angles. Hence, equation (3) can be expressed as,

ẋ = J(q)q̇ = Yk(q, q̇)θk (5)

where Yk(q, q̇) ∈ Rn×q is called the kinematic regressor matrix. ♦

It is well known that in joint-space control method, the exact kinemat-
ics described by equation (2) is required to solve the inverse kinematics to
generate a desired joint position. When the control problem is formulated
in Cartesian space, the exact Jacobian matrix or forward kinematics is still
required in the control laws. Hence, the robot control system is not able to
adapt to uncertainties or unforeseen changes in the kinematics if its exact
knowledge is required to control the robot’s movements.

3 Approximate Jacobian Setpoint Control of Robots

In this section, approximate Jacobian feedback controllers [32] are presented
for setpoint control of robots with uncertain kinematics and dynamics. The
controllers do not require the exact knowledge of kinematics and Jacobian
matrix that is assumed in the literature of robot control.

3.1 Approximate Jacobian Setpoint Control with Gravitational
Force Compensation

First, a simple Approximate Jacobian feedback controller with gravitational
force compensation is presented. The control input using an approximate Ja-
cobian matrix Ĵ(q) ∈ Rm×n is proposed as [32],

τ = −ĴT (q)Kps(e)−Bv q̇ + g(q) (6)

where ĴT (q) is chosen so that

‖JT (q)− ĴT (q)‖ ≤ p, (7)

and e = x−xd = (e1, · · · , em)T is a positional deviation from a desired position
xd ∈ Rm, s(e) = (s1(e1), · · · , sm(em))T , p is a positive constant to be defined
later, Kp = kpI, Bv = bvI are positive feedback gains for the task-space
position error and joint-space velocity respectively, I is the identity matrix,



Approximate Jacobian Control for Robot Manipulators 39

si(·), i = 1, · · · ,m, are saturation functions [19]. The task-space position x
is measured by a sensor such as vision system, electromagnetic measurement
system or position sensor system.

Let us define a scalar potential function Si(θ) where θ ∈ R and its deriv-
ative si(θ) as shown in Figure 1. The functions Si(θ) and si(θ) have the
following properties [19]:

(1) Si(θ) > 0 for θ 
= 0 and Si(0) = 0.
(2) Si(θ) is twice continuously differentiable, and the derivative si(θ) = dSi(θ)

dθ
is strictly increasing in θ for |θ| < γi with some γi and saturated for
|θ| ≥ γi, i.e. si(θ) = ±si for θ ≥ +γi and θ ≤ −γi respectively where si is
a positive constant.

(3) There exist a constant c̄i > 0, such that,

Si(θ) ≥ c̄is
2
i (θ), (8)

for θ 
= 0.

The closed-loop equation of the system is obtained by substituting equa-
tion (6) into equation (1),

M(q)q̈ + (
1
2
Ṁ(q) + S(q, q̇))q̇ + ĴT (q)Kps(e) + Bv q̇ = 0. (9)

To carry out the stability analysis for the closed-loop system with the
approximate Jacobian controller, a Lyapunov function candidate is defined as

V = 1
2 q̇T M(q)q̇ + αq̇T M(q)ĴT (q)s(e) +

∑m
i=1(kp + αbv)Si(ei), (10)

To show the positive definiteness of the Lyapunov function candidate, we note
that

1
4 q̇T M(q)q̇ + αq̇T M(q)ĴT (q)s(e) +

∑m
i=1(kp + αbv)Si(ei)

= 1
4 (q̇ + 2αĴT (q)s(e))T M(q)(q̇ + 2αĴT (q)s(e))

−α2sT (e)Ĵ(q)M(q)ĴT (q)s(e) +
∑m

i=1(kp + αbv)Si(ei)
≥
∑m

i=1{kpc̄i + α(bv c̄i − αλm)}s2
i (ei)

where λm
�
= λmax[Ĵ(q)M(q)ĴT (q)] and λmax[A] denotes the maximum eigen-

value of matrix A. Substituting the above equation into equation (10), we
have,

V ≥ 1
4
q̇T M(q)q̇ +

m∑
i=1

{kpc̄i + α(bv c̄i − αλm)}s2
i (ei) ≥ 0

where bv and α can be chosen so that

bv c̄i − αλm > 0. (11)
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Fig. 1. (a) Quasi-natural potential: S(θ), (b) derivative of S(θ): s(θ)

Next, we proceed to show that the time derivative of the Lyapunov function
is negative definite in (q̇, s(e)). Differentiating V with respect to time and
substituting the closed-loop equation (9) into it, we have

d

dt
V = −W (12)

where

W = bv q̇T q̇ + αkps
T (e)Ĵ(q)ĴT (q)s(e)− (kp + αbv)q̇T (JT (q)− ĴT (q))s(e)

−α{sT (e)Ĵ(q)( 1
2Ṁ(q)−S(q, q̇))q̇+ṡT (e)Ĵ(q)M(q)q̇+sT (e) ˙̂

J(q)M(q)q̇}.(13)

From the last term on the right-hand side of equation (13), since s(e) is
bounded, there exist a constant c0 > 0 such that [19]



Approximate Jacobian Control for Robot Manipulators 41

α|sT (e)Ĵ(q)(
1
2
Ṁ(q)−S(q, q̇))q̇+ṡT(e)Ĵ(q)M(q)q̇+sT(e) ˙̂

J(q)M(q)q̇|≤αc0‖q̇‖2.
(14)

Substituting inequality (14) into equation (13) yields

W ≥ q̇T (bvI − αc0I)q̇ + αkps
T (e)Ĵ(q)ĴT (q)s(e)

−(kp + αbv)q̇T (JT (q)− ĴT (q))s(e). (15)

Now, letting ∆̄
�
= JT (q)− ĴT (q), we have

W ≥ q̇T (bvI − αc0I)q̇ + αkps
T (e)Ĵ(q)ĴT (q)s(e)− (kp + αbv)q̇T ∆̄s(e). (16)

The existence of a ∆̄ so that W is positive definite can be clearly seen from
equation (16). In the following development, a sufficient condition to guarantee
the positive definiteness of W will be derived. From equation (16), we have

W ≥ (bv − αc0)‖q̇‖2 − p(kp + αbv)‖s(e)‖ · ‖q̇‖+ αkpλĴ‖s(e)‖2, (17)

where λĴ = λmin[Ĵ(q)ĴT (q)]. Next, we note that

−‖s(e)‖ · ‖q̇‖ ≥ −1
2
(‖s(e)‖2 + ‖q̇‖2). (18)

Substituting inequality (18) into equation (17) gives,

W ≥ bvl1‖q̇‖2 + bvl2‖s(e)‖2, (19)

where

l1 = 1− αc0
bv
− p

2 (ā + α), l2 = αāλĴ −
p
2 (ā + α), (20)

and ā = kp

bv
. Hence, if

min{
2(1− αc0

bv
)

ā + α
,
2āαλĴ

ā + α
} > p, (21)

and bv > αco, then l1 > 0 and l2 > 0 and hence, W is positive definite.
In order to guarantee the stability of the system with approximate Ja-

cobian matrix, the allowable bound p of the Jacobian uncertainty ∆̄ =
ĴT (q)− JT (q) must satisfy the condition in 21. Figure 2 shows an interesting
graphical illustration of the condition.

It can be seen from the condition that both the feedback-gains ratio ā =
kp/bv and the absolute value of bv play an important role in stabilizing the
system in the presence of uncertain kinematics. As seen from the condition,
increasing bv will increase 2(1− αc0

bv
)/(ā+α) and hence, result in higher p for

the same feedback ratio ā. That is, larger bv would allow a higher margin of
uncertainty of the approximate Jacobian matrix for the same ā. When bv is
so large that αc0/bv is negligible, condition (21) reduces to
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Fig. 2. Variation of p with ā and bv (joint-space damping)

min{ 2
ā + α

,
2āαλĴ

ā + α
} > p. (22)

Conversely, if p is small, a smaller controller gain bv is required. Next, it is
interesting to note the effect of ā on the stability of the system. As seen from
the condition, a larger range of ā can be chosen for a smaller p. In fact, in
the extreme case where p = 0, ā could be chosen as any value. However,
when p is larger, a narrower range of ā is allowed. An important and practical
conclusion of the result is that, when the system is unstable, redesign of Ĵ(q) or
calibrations may not be necessary as the instability may be due to the reasons
that the feedback gain bv or the feedback gain ratio ā is not tuned properly.
In practice, we should therefore try to stabilize the system or increase the
margin of stability first by increasing feedback gains or reducing ā.

We are now in a position to state the following Theorem [32]:

Theorem 1. The equilibrium state (xd, 0) of the closed-loop system described
by equation (9) is asymptotically stable with uncertain Jacobian matrix Ĵ(q)
if the feedback gains Kp and Bv are chosen to satisfy conditions (11), (21)
and Ĵ(q) is chosen to satisfy condition (7).

Proof:
Since both V and W are positive definite, from equation (12), we have

d

dt
V = −W < 0. (23)
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Hence, V is a Lyapunov function whose time derivative is negative in (s(e), q̇).
This implies directly the asymptotic stability of the equilibrium state such
that, xd − x→ 0, q̇ → 0, as t→∞.

� � �

3.2 Adaptive PD for Uncertain Gravitational Force

Next, approximate Jacobian setpoint controller with uncertain gravitational
force compensation is presented. Note that the gravity term can be completely
characterized by a set of parameters ψ = (ψ1, · · · , ψp)T [19] as

g(q) = Z(q)ψ, (24)

where Z(q) ∈ Rn×p is the gravity regressor. Then, the control input is pro-
posed as [32]

τ = −ĴT (q)Kps(e)−Bv q̇ + Z(q)ψ̂, (25)

˙̂
ψ = −LZT (q)(q̇ + αĴT (q)s(e)), (26)

where Z(q) ∈ Rn×p is the gravity regressor given in equation (24), Kp = kpI,
Bv = bvI, α is a positive scalar and L ∈ Rp×p is a positive definite matrix.
Note that the above controller does not require generalized inverse of the
Jacobian matrix.

Substituting equations (24) and (25) into equation (1), we have the closed-
loop equation,

M(q)q̈ + (1
2Ṁ(q) + S(q, q̇))q̇ + ĴT (q)Kps(e) + Bv q̇ + Z(q)∆ψ = 0, (27)

where ∆ψ = ψ − ψ̂. We are now ready to state the following Theorem:

Theorem 2. The closed-loop system described by equations (27) and (26) give
rise to the asymptotic convergence of (x(t), q̇) to (xd, 0) as t → ∞ if the
feedback gains Kp, Bv and Ĵ(q) are chosen as in Theorem 1.

Proof:
Let us define a Lyapunov function as:

V1 = V +
1
2
∆ψT L̄−1∆ψ (28)

where V is defined in equation (10) of the previous subsection. Note that V1

is positive definite since V is positive definite in s(e) and q̇. Differentiate V1

with respect to time, we have

d

dt
V1 = −W ≤ 0. (29)

Therefore, by LaSalle’s invariance Theorem, we have, xd − x → 0, q̇ → 0 as
t→∞.
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� � �
Remark 1. To overcome this problem of kinematic uncertainty, approximate
Jacobian setpoint controllers with task-space damping are first proposed [28].
The proposed controllers [28] require the measurement of a task-space position
by a sensor such as vision systems and the task-space velocity is obtained by
differentiation of the position. In addition, the controllers require the inverse
of Jacobian matrix. In [32], approximate Jacobian feedback controllers with
joint-space damping are also proposed. The main advantages of the controllers
in [32] are that the task-space velocity and the inverse of the approximate Ja-
cobian matrix are not required.

Remark 2. Another way of compensating for the uncertain gravitational
force is the use of an approximate Jacobian PID control law [30, 31]. In this
case, the structure of the gravitational force is not required. The result can
also be extended to deal with uncertainty in gravity regressor matrix [33].

Remark 3. An adaptive law can be used to update the kinematic parame-
ters of the approximate Jacobian matrix online [34, 35]. By using the adaptive
Jacobian setpoint controllers, the stability conditions become simpler as com-
pared to using a fixed approximate Jacobian matrix in [28, 32, 33].

Remark 4. If task-space damping is available as in [29], the stability condi-
tion becomes

min{
2(1− αc0

bv
)

ā + 2bJT
, 2αλĴ} > p, (30)

where bJT denotes the norm bound for Ĵ−T (q). A graphical illustration of
condition (30) is shown in Figure 3. In order to guarantee the stability of
the system with approximate Jacobian matrix and task-space damping, the
allowable bound p of the Jacobian uncertainty ∆̄ = ĴT (q) − JT (q) must be

less than the minimum of the two curves described by
2(1−αc0

bv
)

ā+2bJT
, and 2αλĴ .

Since there exists an α sufficiently large so that α > 1
2bJT λĴ

, condition (30)
can be simplified as

p <
2(1− αc0

bv
)

ā + 2bJT
, (31)

which is a simple condition inversely proportional for ā. The condition also
implies that when task-space damping is available, the feedback gain ratio ā
can be set smaller.

4 Adaptive Jacobian Tracking Control of Robots

In the previous section, approximate Jacobian setpoint controllers are pre-
sented. However, in some applications, it is necessary to specify the motion
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Fig. 3. Variation of p with ā and bv (task-space damping)

in much more details than simply stating the desired final position. Thus, a
desired trajectory should be specified. In this section, we present an Adaptive
Jacobian Tracking Controller for robot with uncertain kinematics and dynam-
ics [36]. The main idea is to introduce an adaptive task-space sliding vector
using an estimated task-space velocity. The uncertain kinematic parameters of
the estimated task-space velocity and the Jacobian matrix are being updated
online by a kinematic parameter update law, using the concept of kinematic
regressor that we defined in Property 4. The other properties of the robot
dynamics described in section 2 are also exploited in designing the adaptive
controller.

Let us define a vector ẋr ∈ Rn as,

ẋr = ẋd − α(x− xd), (32)

where x or x − xd is measured from a position sensor and xd ∈ Rn is a de-
sired trajectory specified in task space and ẋd = dxd

dt ∈ Rn is the desired
velocity specified in task space. Many commercial sensors are available for
measurement of x, such as vision systems, electromagnetic measurement sys-
tems, position sensitive detectors or laser tracking systems.

Differentiating equation (32) with respect to time, we have

ẍr = ẍd − α(ẋ− ẋd), (33)

where ẋ = dx
dt is the task-space velocity and ẍd = dẋd

dt ∈ Rn is the desired
acceleration in task space.
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In the presence of kinematic uncertainty, the parameters of the Jacobian
matrix is uncertain and hence equation (5) can be expressed as

ˆ̇x = Ĵ(q, θ̂k)q̇ = Yk(q, q̇)θ̂k, (34)

where ˆ̇x ∈ Rn denotes an estimated task-space velocity, Ĵ(q, θ̂k) ∈ Rn×n is an
approximate Jacobian matrix and θ̂k ∈ Rq is an estimated kinematic parame-
ters. In this paper, the estimated kinematic parameters of the approximate
Jacobian matrix will be updated by a parameter update law to be defined
later.

Next, we define a adaptive task-space sliding vector using equation (34)
as,

ŝx = ˆ̇x− ẋr = Ĵ(q, θ̂k)q̇ − ẋr, (35)

where Ĵ(q, θ̂k)q̇ = Yk(q, q̇)θ̂k as indicated in equation (34). The above vector is
adaptive in the sense that the parameters of the approximate Jacobian matrix
will be updated by a parameter update law. Differentiating equation (35) with
respect to time, we have,

˙̂sx = ˆ̈x− ẍr = Ĵ(q, θ̂k)q̈ + ˙̂
J(q, θ̂k)q̇ − ẍr, (36)

where ˆ̈x denotes the derivative of ˆ̇x. Next, let

q̇r = Ĵ−1(q, θ̂k)ẋr, (37)

where Ĵ−1(q, θ̂k) is the inverse of the approximate Jacobian matrix Ĵ(q, θ̂k).
In this paper, we assume that the robot is operating in a finite task space such
that the approximate Jacobian matrix is of full rank. From equation (37), we
have

q̈r = Ĵ−1(q, θ̂k)ẍr + ˙̂
J−1(q, θ̂k)ẋr, (38)

where ˙̂
J−1(q, θ̂k) = −Ĵ−1(q, θ̂k) ˙̂

J(q, θ̂k)Ĵ−1(q, θ̂k). Hence, we have an adaptive
sliding vector in joint space as,

s = q̇ − q̇r = Ĵ−1(q, θ̂k)((ˆ̇x− ẋd) + α(x− xd))

= Ĵ−1(q, θ̂k)ŝx (39)

and

ṡ = q̈ − q̈r = Ĵ−1(q, θ̂k) ˙̂sx + ˙̂
J−1(q, θ̂k)ŝx (40)

Substituting equations (39) and (40) into equation (1), the equations of
motion can be expressed as,

M(q)ṡ + (1
2Ṁ(q) + S(q, q̇))s

+M(q)q̈r + (1
2Ṁ(q) + S(q, q̇))q̇r + g(q) = τ. (41)
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From Property 3, the last four terms of equation (41) are linear in a set of
dynamics parameters θd and hence can be expressed as,

M(q)q̈r + (
1
2
Ṁ(q) + S(q, q̇))q̇r + g(q) = Yd(q, q̇, q̇r, q̈r)θd, (42)

where Yd(q, q̇, q̇r, q̈r) is the dynamic regressor matrix.
From equation (42), the dynamic equation (41) can be expressed as,

M(q)ṡ + (1
2Ṁ(q) + S(q, q̇))s + Yd(q, q̇, q̇r, q̈r)θd = τ. (43)

In this paper, we propose an adaptive controller based on the approximate
Jacobian matrix as,

τ = −ĴT (q, θ̂k)(Kv∆ẋ + Kp∆x)− ĴT (q, θ̂k)Kŝx

+Yd(q, q̇, q̇r, q̈r)θ̂d, (44)

where
ŝx = Yk(q, q̇)θ̂k − ẋr, (45)

and ∆ẋ = ẋ− ẋd, ∆x = x− xd, Kv ∈ Rn×n, Kp ∈ Rn×n and K ∈ Rn×n are
positive definite matrices. In the proposed controller (44), the first term is an
approximate Jacobian transpose feedback law of the task-space velocity and
position errors, the next term is an approximate Jacobian transpose feedback
law of the adaptive sliding vector (45) and the last term is an estimated control
input based on equation (42). The estimated kinematic parameters θ̂k of the
approximate Jacobian matrix Ĵ(q, θ̂k) are updated by,

˙̂
θk = LkY T

k (q, q̇)(Kv∆ẋ + Kp∆x), (46)

and the estimated dynamics parameters θ̂d of the dynamic model are updated
by,

˙̂
θd = −LdY

T
d (q, q̇, q̇r, q̈r)s. (47)

where Lk ∈ Rq×q and Ld ∈ Rp×p are positive definite matrices.
Although some kinematic parameters appear in θ̂d, we should adapt on

them separately in θ̂k to preserve linearity. The linear parameterization of the
kinematic parameters is obtained from equation (5). The estimated kinematic
parameters θ̂k of the approximate Jacobian matrix Ĵ(q, θ̂k) is updated by the
parameter update equation (46). The estimated parameters θ̂k is then used
in the inverse approximate Jacobian matrix Ĵ−1(q, θ̂k) and hence q̇r and q̈r

in the dynamic regressor matrix. Note that θ̂k (like q and q̇) is just part
of the states of the adaptive control system and hence can be used in the
control variables even if it is nonlinear in the variables (provided that a linear
parameterization can be found else where in the system model i.e. equation
(5)). Since Ĵ(q, θ̂k) and its inverse Ĵ−1(q, θ̂k), are updated by q and θ̂k, ˙̂

J(q, θ̂k)
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and ˙̂
J−1(q, θ̂k) = −Ĵ−1(q, θ̂k) ˙̂

J(q, θ̂k)Ĵ−1(q, θ̂k) are functions of q, q̇, θ̂k, ∆x

and ∆ẋ because ˙̂
θk is described by equation (46).

The closed-loop equation is obtained by substituting equation (44) into
equation (43) to give

M(q)ṡ + (1
2Ṁ(q) + S(q, q̇))s + Yd(q, q̇, q̇r, q̈r)∆θd

+ĴT (q, θ̂k)(Kv∆ẋ + Kp∆x) + ĴT (q, θ̂k)Kŝx = 0, (48)

where ∆θd = θd − θ̂d.
Let us define a Lyapunov-like function candidate as

V = 1
2sT M(q)s + 1

2∆θT
d L−1

d ∆θd

+ 1
2∆xT (Kp + αKv)∆x + 1

2∆θT
k L−1

k ∆θk, (49)

where ∆θk = θk − θ̂k. Differentiating equation (49) with respect to time and
using Property 1, we have

V̇ = sT M(q)ṡ + 1
2sT Ṁ(q)s−∆θT

d L−1
d

˙̂
θd,

+∆xT (Kp + αKv)∆ẋ−∆θT
k L−1

k
˙̂
θk (50)

Substituting M(q)ṡ from equation (48), ˙̂
θk from equation (46) and ˙̂

θd from
equation (47) into the above equation, using Property 2 and equation (39)
yields,

V̇ = −sT ĴT (q, θ̂k)Kŝx − sT ĴT (q, θ̂k)(Kv∆ẋ + Kp∆x)
+∆xT (Kp + αKv)∆ẋ −∆θT

k Y T
k (q, q̇)(Kv∆ẋ + Kp∆x)

= −ŝT
x Kŝx − ŝT

x (Kv∆ẋ + Kp∆x) + ∆xT (Kp + αKv)∆ẋ

−∆θT
k Y T

k (q, q̇)(Kv∆ẋ + Kp∆x). (51)

From equations (45), (5) and (32), we have

ŝx = ∆ẋ + α∆x− Yk(q, q̇)∆θk, (52)

where
Yk(q, q̇)∆θk = J(q)q̇ − Ĵ(q, θ̂k)q̇ = ẋ− ˆ̇x, (53)

Substituting equation (52) into equation (51) yields,

V̇ = −(∆ẋ + α∆x− Yk(q, q̇)∆θk)T K(∆ẋ + α∆x− Yk(q, q̇)∆θk)
−∆ẋT Kv∆ẋ− α∆xT Kp∆x ≤ 0. (54)

We are now in a position to state the following Theorem:
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Theorem 3. For a finite task space such that the approximate Jacobian ma-
trix is non-singular, the approximate Jacobian adaptive control law (44) and
the parameter update laws (46) and (47) for the robot system (1) result in the
convergence of position and velocity tracking errors. That is, x− xd → 0 and
ẋ− ẋd → 0, as t→∞. In addition, the estimated task-space velocity converges
to the actual task-space velocity, i.e. ˆ̇x→ ẋ, t→∞.

Proof:
Since M(q) is uniformally positive definite, V in equation (49) is positive def-
inite in s, ∆x, ∆θk and ∆θd. Since V̇ ≤ 0, V is also bounded, and therefore s,
∆x, ∆θk and ∆θd are bounded vectors. This implies that θ̂k, θ̂d are bounded,
x is bounded if xd is bounded, and ŝx = Ĵ(q, θ̂k)s is bounded as seen from
equation (39). Since ∆x is bounded, ẋr in equation (32) is also bounded if
ẋd is bounded. Therefore, q̇r in equation (37) is also bounded if the approxi-
mate Jacobian matrix is non singular. From equations (39), q̇ is bounded and
the boundedness of q̇ means that ẋ is bounded since the Jacobian matrix is
bounded. Hence, ∆ẋ is bounded and ẍr in equation (33) is also bounded if

ẍd is bounded. From equation (46), ˙̂
θk is therefore bounded since ∆x, ∆ẋ,

q̇ are bounded and Yk(·) is a trigonometric function of q. Therefore, q̈r in
equation (38) is bounded. From the closed-loop equation (48), we can con-
clude that ṡ is bounded. The boundedness of ṡ imply the boundedness of q̈ as
seen from equation (40). From equation (36), ˙̂sx is therefore bounded. Finally,
differentiating equation (52) with respect to time and re-arranging yields,

∆ẍ + α∆ẋ = ˙̂sx + Ẏk(q, q̇, q̈)∆θk − Yk(q, q̇) ˙̂
θk, (55)

which means that ∆ẍ = ẍ− ẍd is also bounded.
To apply Barbalat’s lemma, let us check the uniform continuity of V̇ .

Differentiating equation (54) with respect to time gives,

V̈ = −2ŝT
x K ˙̂sx − 2∆ẋT Kv∆ẍ− 2α∆xT Kp∆ẋ. (56)

This shows that V̈ is bounded since ŝx, ˙̂sx and ∆x, ∆ẋ, ∆ẍ are all bounded.
Hence, V̇ is uniformly continuous. Using Barbalat’s lemma, we have ∆x =
x− xd → 0, ∆ẋ = ẋ− ẋd → 0, and ŝx → 0 as t→∞. Finally, from equation
(53), the convergence of ∆x, ∆ẋ and ŝx imply that ẋ− ˆ̇x→ 0, as t→∞.

���
Remark 5. It is interesting to note that the stability of the closed-loop system
can still be ensured if Kv (or Kp) in the controller (44) and the parameter
update law (46) is set as zero. Substituting Kv = 0 into V in equation (49)
and V̇ in equation (54), we have

V = 1
2sT M(q)s + 1

2∆θT
d L−1

d ∆θd

+ 1
2∆xT Kp∆x + 1

2∆θT
k L−1

k ∆θk, (57)
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and

V̇ = −ŝT
x Kŝx − α∆xT Kp∆x ≤ 0. (58)

Remark 6. If the controller gain K in equation (44) is set as zero, then

τ = −ĴT (q, θ̂k)(Kv∆ẋ + Kp∆x) + Yd(q, q̇, yr, ẏr)θ̂d, (59)

then τ simply consists of an approximate impedance controller (or approx-
imate Jacobian PD controller [28]) and an adaptive dynamic compensation
term. From equation (54), we have,

V̇ = −∆ẋT Kv∆ẋ− α∆xT Kp∆x ≤ 0. (60)

Hence, ∆x and ∆ẋ still converge to zero as t → ∞ but the convergence of
ŝx and ẋ − ˆ̇x cannot be ensured. However, the control gain K in equation
(44) is useful in system identification to obtain the kinematics parameters. As
seen from equation (53), when ẋ − ˆ̇x → 0, Yk(q, q̇)∆θk → 0 and hence the
kinematics parameters converge if the ”persistent excitation” (P.E.) condition
is satisfied. Alternatively, the kinematic parameter update equation (46) can
be modified as,

˙̂
θk = −LkPkY T

k (q, q̇)P (ˆ̇x− ẋ) + LkY T
k (q, q̇)(Kv∆ẋ + Kp∆x), (61)

where P is a symmetric positive definite matrix. This add to V̇ minus the P
square norm of Yk(q, q̇)∆θk and hence the convergence of θ̂k can be achieved
even if K is set as zero.

Remark 7. From equation (52), the adaptive sliding vector can be expressed
as:

ŝx = ∆ẋ + α∆x + Yk(q, q̇)θ̂k − Yk(q, q̇)θk. (62)

Hence, the sign of the parameter update laws in equations (46) and (47) are
different because the last term in equation (44) is positive while the last term
in equation (62) is negative. Therefore, the sign of equation (46) is positive.

Remark 8. In the presence of kinematic uncertainty, inverse kinematics can-
not be used to derive the desired trajectory in joint space. In addition, when
the dynamics equation is expressed in task space by using equation (3) and
its derivative, we have

M(q)J−1(q)ẍ+(−M(q)J−1(q)J̇(q)+B+
1
2
Ṁ(q)+S(q, q̇))J−1(q)ẋ+g(q) = τ

The above equation cannot be expressed in a form as in Property 3 because
J−1(q) is not linear in the unknown kinematic parameters. In addition, the
mapping between force and torque using Jacobian transpose is also uncertain
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due to the unknown kinematic parameters. Therefore, the standard adap-
tive controller by Slotine and Li [3] cannot be applied directly to overcome
the uncertainty in both kinematics and dynamics. Hence, in the presence of
kinematic uncertainty, the adaptive method [3] results in tracking error or
even unstable response in the end-effector’s motion. The nonlinearity and un-
certainty of the robot kinematics pose a difficult and challenging adaptive
tracking control problem which remains unsolved for almost two decades.

Remark 9. The first tracking convergent adaptive controller for robots with
uncertainties in kinematics and dynamics was considered in[36]. The main
idea was to introduce an adaptive sliding vector based on estimated task-space
velocity, so that kinematic and dynamic adaptation can be performed concur-
rently. A novel dynamics regressor using the estimated kinematics parameters
was also proposed. It was shown that the end-effector’s position converges
to the desired position even when the kinematics and Jacobian matrix are
uncertain. The proposed controller requires the measurement of a task-space
velocity or differentiation of the task-space position which is very noisy. In
[37], an adaptive Jacobian tracking control law is proposed to eliminate the
need for task-space velocity while creating task-space damping. The approach
is based on filtered differentiation of the measured visual task-space position.
To avoid singularities associated the Euler angles representation, adaptive
Jacobian tracking controller based on unit quaternion is proposed [38].

5 Conclusion

This paper presents several approximate Jacobian controllers for robots with
uncertain kinematics and dynamics. Both setpoint and tracking control prob-
lems are formulated based on Lyapunov analysis. It has been shown that the
end effector is able to follow a desired motion even when the kinematics and
Jacobian matrix are uncertain. This gives the robot a high degree of flexibil-
ity in dealing with unforseen changes and uncertainties in its kinematics and
dynamics.
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Summary. A novel adaptive controller is presented in this Chapter for image-based
dynamic control of a robot manipulator when the intrinsic and extrinsic parame-
ters of the camera and the position coordinates of the feature points are unknown.
Both the fixed camera and eye-in-hand camera configurations are considered. The
key idea lies in the use of a depth-independent image Jacobian matrix to map the
visual signals onto the joint space of the robot manipulator. By virtue of the depth-
independent image Jacobian matrix, it is possible to linearly parameterize the closed
loop dynamics of the system by the uncalibrated camera parameters and the un-
known feature coordinates. A new adaptive algorithm, different from the Slotine
and Li algorithm, has been proposed to estimate the unknown parameters and co-
ordinates on-line. The asymptotic stability of the system under the control of the
proposed method is rigorously proved by the Lyapunov theory with the nonlinear
robot dynamics fully taken into account.

1 Introduction

Human heavily relies on visual feedback in motion control. To mimic human
intelligence, visual servoing has been proposed for motion control of robot ma-
nipulators. Visual servo control leads to greater flexibility to robot operations
because vision is the most convenient, effective and natural sensor to acquire
information of the external environment.

1.1 Image-based and Position-based Visual Servoing

Visual servoing has been extensively studied in robotics since the early 1990s
and various methods have been developed. Existing methods can be classified

∗ This work was supported in part by the Hong Kong Research Grant Council under
the grant CUHK4217/03E and by the National Science Foundation of China
under projects 60334010 and 60475029. Y. H. Liu is also with National University
of Defense Technology as a visiting professor.
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into two basic schemes, namely position-based control [9][11][19][33][39][41]
and image-based control[1]-[8]. A position-based approach first uses an algo-
rithm to estimate the 3-D position and orientation of the robot manipulator
or the feature points from the images and then feeds the estimated posi-
tion/orientation back to the robot controller. Since 3-D position/orientation
estimation from images is subject to big noises, position-based methods are
weak to disturbances and measurement noises. An image-based approach se-
lects a set of feature points on the robot or the target object and directly
employs their projection signals on the image plane of the camera in ro-
bot control. Since the feedback signals are projection errors on the image
plane, image-based controllers are considered more robust to disturbances
than position-based methods.

1.2 Fixed Camera and Eye-in-Hand Configurations

There are two possible configurations, namely eye-in-hand configuration and
fixed camera configuration, to set up a vision system for visual servo control
of robot manipulators. In a fixed camera setup (Fig. 1) [2][3][18][23][37][39],
the camera is fixed at a position near the manipulator. In this case, the cam-
era does not move with the robot manipulator and its objective is to monitor
motion of the robot. In an eye-in-hand setup (Fig. 2)[1][7][14][30][43], the
camera is mounted at the end-effector of the robot manipulator so that it
moves with the manipulator. The camera is to measure information of ob-
jects in the surrounding environment. While each configuration has its own
advantages and drawbacks, they both can be found in real applications. Eye-
in-hand systems can be widely found in research laboratories and are being
used in tele-operated inspection systems in hazardous environments such as
nuclear factories. Fixed camera setups are used in vision-based pick-and-place
at manufacturing lines, robots assisted by networked cameras, etc.

1.3 Kinematics-based and Dynamic Visual Servoing

Existing methods can be classified into kinematics-based [17][19][31][32][35]
and dynamic methods [3]-[6][9][18][22][23][39][44]. Kinematics-based methods
do not consider the nonlinear dynamics of the robot manipulator and design
the controller based on the kinematics only. An underlying assumption here is
that the robot can accurately generate desired control inputs to visual servo
loop, which are usually velocity commands of the joints or the end-effector. It
is well known that the nonlinear robot forces have significant impact on robot
motion, especially when the robot manipulator moves at high speed. Neglect-
ing them not only decays the control accuracy but also results in instability.
In a rigorous sense, the stability is not guaranteed for all kinematics-based
controllers. Kinematics-based controllers are suitable for slow robot motion
only.
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Dynamic visual servoing takes into account the nonlinear robot dynam-
ics in controller design and stability analysis. The nonlinear centrifugal and
Coriolis forces are compensated for in the control loop. Dynamic controllers
guarantee the stability and are suitable for both slow and fast robot motions.
Compared to kinematics-based methods, work on dynamic visual servoing is
relatively limited, though the importance has been recognized for a long time
by many researchers. This is mainly due to the difficulties in incorporating
the nonlinear forces in controller design and the existence of the nonlinear
scaling factors corresponding to the reciprocal of the depths of the feature
points in the perspective projection. Since it is difficult to measure or esti-
mate on-line the depths of the feature points, most dynamic controllers are
subject to planar motions of robot manipulators only.

1.4 Calibrated and Uncalibrated Visual Servoing

In image-based visual seroving, the image Jacobian or interaction matrix is
widely employed to map visual signals onto the joint space of the robot manip-
ulator. The image Jacobian depends nonlinearly on the intrinsic parameters
of the camera, including the focal length, coordinates of the principal point,
and the scaling factors, and the extrinsic parameters, e.g. the homogenous
transform matrix between the vision system and the robot manipulator. The
accuracy of the camera parameters is crucial to the control performance. The
works mentioned in the previous section assumed that the camera parame-
ters are accurately calibrated. Although tremendous efforts have been made
to camera calibration in computer vision and many algorithms have been
proposed, obtaining accurate camera parameters is still a costly process.

To avoid camera calibration, people attempted to directly employ an un-
calibrated vision system. Major efforts were directed to on-line estimation of
the image Jacobian. Hosoda and Asada [17] and Jagersand et al. [20] proposed
an algorithm for one-line estimation of the image Jacobian using the Broyden
updating formula. Piepmeier et al. [37] proposed a dynamic quasi-Newton
method for the same purpose. Ruf et al. [38] investigated on-line calibration
of the unknown parameters. Recently, Malis[31] proposed a novel method
which is invariant to changes of the camera intrinsic parameters. However,
this method cannot cope with unknown extrinsic parameters. The approach
proposed by Lu et al. [29] is for on-line calculation of the exterior orientation
only. It should be pointed out that works mentioned above are kinematics-
based approaches.

Works on dynamic visual servoing with unknown camera parameters are
limited to planar robots or plane motion. Xiao et al. [42] studied a vision-based
hybrid control of a robot manipulator whose endpoint moves on a plane using
an uncalibrated fixed camera. The adaptive controllers proposed by Kelly
[21][22], Hsu et al. [18], Astolfi et al. [2], and Bishop and Spong [4] are suitable
for planar manipulators only. The controller developed in our early work [39] is
for position-based visual servoing when the extrinsic parameters of the camera
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are unknown but the intrinsic parameters are calibrated. Therefore, there is
no visual servo controller that is able to cope with uncalibrated cameras as
well as the nonlinear dynamics of robot manipulators in general 3-D motion.

1.5 Outline of This Chapter

This chapter summarizes our recent work [24]-[28] on dynamic visual servoing
with guaranteed dynamic stability to cope with uncalibrated cameras and the
3-D motion of robot manipulators. A new adaptive controller will be presented
for controlling the projections of a number of feature points with unknown 3-D
positions to desired positions on the image plane of an uncalibrated camera.
When designing the controller, we fully consider the nonlinear robot dynamics.
Both the fixed camera and the eye-in-hand configurations are addressed in this
chapter.

This new dynamic visual servo controller is developed on the basis of two
major ideas: the proposal of a depth-independent image Jacobian or inter-
action matrix [25][26] and the development of a new adaptive algorithm for
on-line estimation of the camera parameters and the unknown coordinates of
the feature points. The reason why existing methods cannot cope with 3-D
robot motion is because the image Jacobian or interaction matrix cannot be
linearly parameterized by the unknown parameters. This bottleneck problem
can be solved by using the depth-independent image Jacobian matrix. The
use of the depth-independent image Jacobian matrix enables the unknown
camera parameters to appear linearly in the closed-loop dynamics. Therefore,
an adaptive algorithm, similar to that proposed by Slotine and Li [40], could
be used to estimate the unknown camera parameters and position coordi-
nates on-line. However, since the problem addressed is an output adaptive
control problem, the asymptotic convergence of the image errors cannot be
achieved by the Slotine-Li algorithm only. Our adaptive algorithm combines
the Slotine-Li method with on-line gradient descending minimization process
of the estimated projection errors of the feature points. We have employed
the Lyapunov theory to rigorously prove asymptotic convergence of the image
errors when the nonlinear dynamics of the robot manipulator are fully taken
into account.

This chapter is organized as follows. Section 2 will review the kinematics
and the depth-independent image Jacobian matrix. Section 3 will present
image-based control of a single feature point using an uncalibrated camera.
In Section 4, we will discuss the extension of the controller to the problem of
controlling multiple feature points. Section 5 presents the experimental results
and Section 6 concludes the major results in this chapter.

2 Kinematics and Dynamics

In this section, we review perspective projection, intrinsic and extrinsic para-
meters of a camera, kinematics and dynamics of robots under visual servoing.
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Before the review, we give the notations adopted in this chapter. A matrix
and a vector are represented by a bold capital letter and a bold lower case
letter, respectively. Let an italic letter represent a scalar quantity. A matrix,
or vector, or scalar accompanied with a bracket(t) represents that its value
varies with time. Furthermore, Ik×k and 0k×l denote the k×k identity matrix
and the k × l zero matrix, respectively.

Fig. 1. A fixed camera setup for visual servoing

2.1 Perspective Projection and Camera Parameters

First, consider the fixed camera setup (Fig. 1). Three coordinate frames,
namely the robot base frame, the end-effector frame, and the camera frame,
have been established to represent the kinematic relation between the vision
system and the manipulator. Denote the joint angle of the manipulator by a
n×1 vector q(t), where n is the number of degrees of freedom. For simplicity,
we first consider a single feature point whose homogeneous coordinates with
respect to the end-effector frame are denoted by a 4 × 1 vector x. Note that
vector x is a constant vector. Denote the coordinates of the feature point
with respect to the camera frame by cx(t). Let T be the 4 by 4 homogeneous
transform matrix from the robot base frame to the camera frame. Note that
T is a constant and unknown matrix:

T =
(

R p
01×3 1

)
, (1)

where R is the 3 by 3 rotation matrix and p denotes the 3 by 1 translational
vector.

Denote the homogenous transform matrix of the end-effector frame with
respect to the robot base frame by Te(q). The coordinates cx(t) and x are
related by

cx(t) = TTe(q(t))x. (2)
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Denote by y(t) =


u(t)

v(t)
1


 the homogenous coordinates of the projection

of the feature point on the image plane. Under the perspective projection
model,

y(t) =
1

cz(q(t))
ΩTTe(q(t))x, (3)

where cz(q(t)) is the depth of the feature point with respect to the camera
frame. Ω is a 3× 4 matrix in the following form:

Ω =


α − α cot ϕ u0 0

0 γ
sin ϕ v0 0

0 0 1 0


 , (4)

where α and γ are the scalar factors of the u and v axes of the image plane.
ϕ represents the angle between the two axes. (u0, v0) is the position of the
principal point of the camera. The constants α, γ, ϕ, and (u0, v0) are the in-
trinsic parameters of the camera. The homogenous transformation matrix T
is called the extrinsic parameter of the camera. Denote by M the product of
the matrices Ω and T, i.e.,

M = ΩT =


αrT

1 − α cot ϕrT
2 + u0rT

3 αpx − α cot ϕpy + u0pz
γ

sin ϕrT
2 + v0rT

3
γ

sin ϕpy + v0pz

rT
3 pz


 , (5)

where rT
i denotes the i-th row vector of the rotation matrix, and (px, py, pz)

are the coordinates of the translation vector p. The matrix M is called the
perspective projection matrix and its dimension is 3×4. Note that this matrix
depends on the intrinsic and extrinsic parameters, independent of the position
of the feature point. Eq. (3) can be rewritten as

y(t) =
1

cz(q(t))
MTe(q(t))x. (6)

The depth of the feature point is given by

cz(q(t)) = mT
3 Te(q(t))x, (7)

where mT
3 denotes the third row vector of the perspective projection matrix

M.
Consider the eye-in-hand setup in Fig. 2. In this case, the camera moves

with the robot manipulator. Similarly, we set up three coordinate frames,
namely the robot base frame, the end-effector frame, and the camera frame.
Denote the homogenous coordinates of the feature point w.r.t. the robot base
and the camera frames by x and cx, respectively. Note that the x is an
unknown constant vector. Denote the homogenous transform matrix of the
end-effector frame with respect to the base frame by Te(q), which can be
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Fig. 2. The eye-in-hand setup for visual servoing

calculated from the kinematics of the manipulator. Denote the homogeneous
transformation matrix of the camera frame with respect to the end-effector
frame by Tc(q). From coordinate transformation, we have

cx(t) = T−1
c T−1

e (q(t))x. (8)

Then the projection of the feature point on the image plane is given by

y(t) =
1

cz(q(t))
Ωcx(t)

=
1

cz(q(t))
ΩT−1

c T−1
e (q(t))x

=
1

cz(q(t))
MT−1

e (q(t))x

. (9)

The depth of the feature point is given by

cz(q(t)) = mT
3 T−1

e (q(t))x. (10)

Similar to eq. (5), the perspective projection matrix is given by

M = ΩT−1
c . (11)

It is important to note that the rank of the perspective projection matrix
M is 3 [12]. When the camera parameters are not calibrated, the perspec-
tive projection matrix M should be estimated from coordinates of the feature
points and their projections on the image plane. Note that there are 12 com-
ponents in the matrix. Since two equations correspond to one feature point,
six feature points are necessary to estimate the perspective projection matrix.
However, the following property should be noted [25]:

Property 1: Given the world coordinates of a sufficient number of feature
points and their projections on the image plane, the perspective projection
matrix M can be determined only up to a scale.

This can be easily explained by the fact that the matrix αM for any
nonzero α results in the same image as matrix M does because
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y(t) =
MTe(q(t))x
mT

3 Te(q(t))x
=

αMTe(q(t))x
αmT

3 Te(q(t))x
. (12)

2.2 The Depth-Independent Image Jacobian Matrix

Now, we present the depth-independent interaction or image Jacobian matrix
proposed in our early work. The depth-independent image Jacobian matrix
plays one of the most important roles in the controller design and stability
analysis.

First, consider the fixed camera setup. By differentiating eq. (6), we obtain
the following velocity relationship:

ẏ(t) =
1

cz(q(t))
(M

d

dt
{Te(q(t))x} − y(t)cż(q(t)))

=
1

cz(q(t))
A(y(t))

∂

∂q
{Te(q(t))x}

︸ ︷︷ ︸
D(q(t),y(t))

q̇(t) , (13)

where the matrix A(y(t)) is a 3× 4 matrix in the following form:

A(y(t)) = M− y(t)mT
3 =


mT

1 − u(t)mT
3

mT
2 − v(t)mT

3

01×3


 . (14)

The term
∂

∂q
{Te(q(t))x} is the Jacobian matrix of the robot manipulator,

which is denoted by J(q(t),x). It should be noted that
1

cz(q(t))
A(y(t))J(q(t),

x) is the image Jacobian matrix. The matrix A(y(t)) is independent on
the depth of the feature point, we call it depth-independent interaction ma-
trix [25][26]. The matrix A(y(t))J(q(t),x)is called the depth-independent im-
age Jacobian matrix denoted by D(q(t),y(t)). It should be noted that the
components of matrix A(y(t)) are linear to the components of the perspec-
tive projection matrix M.

Proposition 1: The depth-independent interaction matrix A(y(t)) has
a rank of 2 [25].

Proof: This can be simply proved. Assume that the rank of the matrix
A(y(t)) is smaller than 2. In this case, there are nonzero scalars λ1 and λ2

such that
λ1(m1 − u(t)m3) + λ2(m2 − v(t)m3) = 0. (15)

Equation (15) can be written as follows:

λ1m1 + λ2m2 − (λ1u(t) + λ2v(t))m3 = 0. (16)

If the coefficient (λ1u(t)+λ2v(t)) is not equal to zero, equation (16) means that
the row vectors of the perspective projection matrix M are linearly dependent.
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If the coefficient is equal to zero, vectors m1 and m2 are linearly dependent.
Therefore, the rank of the matrix M is smaller than 3. This is against to the
fact that the matrix M has a rank of 3. Consequently, the rank of the matrix
A(y(t)) is 2.

By differentiating the depth in eq. (7)

cż(q(t) = mT
3

∂

∂q

{
T(q

e (t))x
}

︸ ︷︷ ︸
h(q(t))

q̇(t). (17)

For the eye-in-hand case, we can define the depth-independent interaction
matrix similarly by differentiating eq. (9):

ẏ(t) =
1

cz(q(t))
(MṪ

−1

e (q(t))− y(t)cż(q(t))

=
1

cz(q(t))
A(y(t))

∂

∂q

{
T−1

e (q(t))x
}
q̇(t),

(18)

where the depth-independent interaction matrix A(y(t)) has the same form
as that in eq. (14).

Remark 1: It should be noted that the matrix ∂
∂q

{
T−1

e (q(t))x
}

is related
to the Jacobian matrix of the manipulator. For non zero vector x , this matrix
is always of full rank. Furthermore, it is not necessary to take the inverse of
the manipulator Jacobian to calculate this matrix.

2.3 Robot Dynamics

Assume that the robot manipulator addressed is a serial arm with revolute
joints. The dynamic equation of the robot manipulator has the following stan-
dard form

H(q(t))q̈(t) + (
1
2
Ḣ(q(t)) + C(q(t), q̇(t)))q̇(t) + g(q(t)) = τ , (19)

where H(q(t)) is the positive-definite symmetric inertia matrix. C(q(t), q̇(t))
is a skew-symmetric matrix such that for any vector s

sT C(q(t), q̇(t)) s = 0. (20)

The term g(q(t)) represents the gravitational force, and τ is the joint torque
of the robot manipulator. The first and second terms on the left side of eq.
(19) represent the inertial force, and the Coriolis and centrifugal forces, re-
spectively. It should be noted that the inertial, Coriolis and centrifugal forces
are highly nonlinear. Kinematics-based controllers are designed with an as-
sumption that the robot moves slowly so that the nonlinear forces can be
neglected. In a strict sense, the stability of the system is not guaranteed. To
guarantee the stability rigorously, we need to consider the nonlinear dynamic
forces in the controller design.
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3 Adaptive Dynamic Visual Servoing

3.1 Problem Statement

This chapter addresses image-based visual servoing of robot manipulators with
uncalibrated cameras. In the fixed camera setup, the problem is to control
motion of the robot manipulator properly so that a number of feature points
marked on the end-effector can be moved to desired positions on the image
plane. In the eye-in-hand setup, the problem is to control motion of the robot
manipulator so that the projections of a number of feature points in the
environment onto the image plane can be moved to desired positions. For
simplicity, we first address the problem of controlling a single feature point
and extend the discussion to problem of multiple feature points.

Denote the desired position of the feature point on the image plane by yd,
which is a constant vector. According to whether the position of the feature
point with respect to the robot manipulators is given, we define the following
three control problems:

Problem 1: Image-based Visual Servoing with Unknown Feature
Points: Assume that the intrinsic and extrinsic parameters have been accu-
rately calibrated, but the coordinates x of the feature point with respect to the
robot manipulator is unknown. Design a proper joint input τ (t) of the robot
manipulator such that the image y(t) of the feature point is convergent to the
desired value yd as time approaches to the infinity.

Problem 2: Image-based Visual Servoing with Uncalibrated Cam-
era: Assume that the intrinsic and extrinsic parameters of the camera are not
calibrated, but the coordinates x of the feature point with respect to the robot
manipulator is known. Design a proper joint input τ (t) of the robot manipu-
lator such that the image y(t) of the feature point is convergent to the desired
value yd as time approaches to the infinity.

Problem 3: Image-based Visual Servoing with Uncalibrated Cam-
era and Unknown Feature Points: Assume that the intrinsic and extrinsic
parameters of the camera and the coordinates x of the feature point with re-
spect to the robot manipulator are all unknown. Design a proper joint input
τ (t) of the robot manipulator such that the image y(t) of the feature point is
convergent to the desired value yd as time approaches to the infinity.

Problem 3 is more general than the other two problems because it is subject
to more unknown parameters. By fixing some of the parameters, Problem 3
can be changed to Problem 1 or Problem 2, respectively. Therefore, in the
following our efforts will be focused to the controller design for Problem 3.

It should be pointed out that we will not limit motion of the robot ma-
nipulator to planar motion. The robot manipulator moves in a 3D space.
Furthermore, the nonlinear dynamics of the robot manipulator must be taken
into account in the controller design. Since the kinematics equation of the
fixed camera setup is inherently the same as that of the eye-in-hand setup, for
simplicity, our discussion will be mainly made on the dynamic visual servoing
of robot manipulators using an uncalibrated fixed camera.
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3.2 The Parameters Vector

It should be noted that the camera parameters and the position vector x
are unknown. List all possible products of the components of matrix M with
components of vector x by a vector θ, which depends only on the unknown
parameters including the camera intrinsic and extrinsic parameters and the
unknown coordinates x of the feature point. We call vector θ the unknown
parameters vector. Since one component of the matrix M can be fixed to one,
the vector θ consists of 38 unknown parameters.

Property 2: The product A(y(t))J(q(t),x)ρ of the depth-independent
image Jacobian matrix with any vector ρ, can be linearly parameterized by the
unknown parameters ,i.e.

A(y(t))J(q(t),x)ρ = P(q(t),y(t),ρ)θ, (21)

where P(q(t),y(t),ρ) is the regressor matrix without depending on the un-
known parameters.

This property is the foundation for us to design the adaptive algorithm
for estimating the unknown parameters on-line.

3.3 Controller Design

The controller is designed on the basis of two ideas. First, we use the depth-
independent image Jacobian matrix to map the image errors onto the joint
space of the robot manipulator. Second, the controller employs an adaptive
algorithm to estimate the unknown parameters θ on-line. The image error of
the feature point is obtained by measuring the difference between its current
position and the desired one on the image plane:

∆y(t) = y(t)− yd, (22)

where ∆y(t) is the 3× 1 image error vector whose third component is always
zero. Denote a time-varying estimation of the unknown parameters θ by θ̂(t).
Using the estimated parameters, we propose the following controller:

τ (t) = g(q(t))−K1q̇(t)−
{
D̂T (q(t),y(t)) +

1
2
ĥT (q(t))∆yT (t)

}
B∆y(t).

(23)
The first term is the gravity compensator. The second term represents a

velocity damping in the joint space. The third term is the image error feedback.
The matrix D̂(q(t),y(t))represents an estimation of the depth-independent
image Jacobian matrix calculated using the estimated parameters. ĥ(q(t))is
an estimation of the vector h(q(t)). K1 is a positive-definite gain matrix and
B is a positive definite position gain matrix.

It should be pointed out that no inverse of the manipulator Jacobian or
the depth-independent image Jacobian matrix is used in the controller (23).
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It is important to note that the depth factor 1/cz(q(t))does not appear in
controller. The quadratic form of ∆y(t) in eq. (23) is to compensate for the
effect caused by the removal of the depth factor. Using the depth-independent
image Jacobian matrix and including the quadratic term differentiates our
controller from other existing ones. By substituting the control law (23) into
the robot dynamics (19), we obtain the following closed loop dynamics:

H(q(t))q̈(t) + (1
2Ḣ(q(t)) + C(q(t), q̇(t)))q̇(t) = −K1q̇(t)

−[DT (q(t),y(t)) + 1
2h(q(t))∆yT (t)]B∆y(t)

−[(D̂T (q(t),y(t))−DT (q(t),y(t)))
+ 1

2 (ĥ(q(t))− h(q(t)))∆yT (t)]B∆y(t).

(24)

From the Property 2, the last term in eq. (24) can be represented as a linear
form of the estimation errors of the parameters as follows:

[(D̂T (q(t),y(t))−DT (q(t),y(t)))
+ 1

2 (ĥ(q(t))− h(q(t)))∆yT (t)]B∆y(t) = −Y(q(t),y(t))∆θ(t),
(25)

where ∆θ(t) = θ̂(t)−θ, representing the estimation error and Y(q(t),y(t))is
a regressor matrix without depending on the unknown parameters.

3.4 Estimation of the Camera Parameters

This subsection presents a new adaptive algorithm to estimate the unknown
parameters on-line. This algorithm combines the Slotine-Li algorithm with
an on-line minimization process based on an idea similar to structure from
motion in computer vision.

Structure from motion is a problem of constructing the 3-D coordinates
(structure) of fixed feature points and recovering motion of the camera from
multiple images captured by a moving camera. In our case, the camera is
fixed, but the feature point is moving. Furthermore, the motion of the feature
point can be measured by the joint angles of the robot manipulator. The
problem here is to construct the three dimensional coordinates of the feature
point with respect to the end-effector frame and to estimate the perspective
projection matrix of the camera from the images of the feature point at a
sequence of positions when the robot is moving (Fig. 3). We can formalize
this as a problem of finding a solution of the estimated matrix M̂(t) and
coordinates x̂(t) that minimizes the Frobenius norm,

E =
l∑

j=1

∥∥∥cẑ(q(tj))y(tj)− M̂(t)Te(q(tj))x̂(t)
∥∥∥2

, (26)

from images of the feature point at a sequence of positions when the robot
moves. The symbol l denotes the number of images captured by the camera
at different configurations of the manipulator. Here tj represents the time
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instant when the j-th image was captured. Note that the l images can be
selected from the trajectory of the robot manipulator. For simplicity, define

e(t, tj) = cẑ(tj)y(tj)− M̂(t)Te(q(tj))x̂(t). (27)

The vector e(t, tj) is called the estimated projection error of the feature point,
which can be written as follows:

e(t, tj) = y(tj)(cẑ(tj)− cz(tj))− (M̂(t)Te(q(tj))x̂(t)−MTe(q(tj))x)
= y(tj)(m̂3(t)Te(q(tj))x̂(t)−m3Te(q(tj))x)
− (M̂(t)Te(q(tj))x̂(t)−MTe(q(tj))x).

(28)
From Property 2, the equation (28) can be written as follows:

e(t, tj) = W(q(tj),y(tj))∆θ(t). (29)

From the results in computer vision [12], we have
Proposition 3: If a sufficient number of images of the feature point on

its trajectory due to motion of the robot manipulator have been captured, the
equation

W(q(tj),y(tj))∆θ(t) = 0, ∀j = 1, 2, ..., l, (30)

implies one of the following two cases:
(1) the estimated parameters differ from real values by a scale, i.e. there

exists a scalarλsuch that
θ̂(t) = λ θ. (31)

(2) The estimated parameters are zero.
As shown in [27], the trivial solution θ̂(t) = 0 can be simply avoided by

fixing one of the components of the perspective projection matrix to a partic-
ular value. The following adaptive rule is proposed to update the estimation
of the parameters:

d

dt
θ̂(t) = −Γ−1{YT(q(t),y(t))q̇(t)

+
l∑

j=1

WT(q(tj),y(tj))K3W(q(tj),y(tj))∆θ(t)},
. (32)

where Γ and K3 are positive-definite and diagonal gain matrices.
Remark 2: Although the estimation error ∆θ(t) explicitly appears in the

eq. (32), it is not necessary to use the unknown estimation error to calculate
W(q(tj),y(tj))∆θ(t), which can be calculated by eq. (27).

Remark 3: In the adaptive algorithm (32), in addition to the regressor
term (the first term on the right hand side), there is an term corresponding to
on-line minimization of the Frobenius norm of the estimated projection errors
to guarantee the convergence of the estimated parameters to the real values up
to a scale.
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Fig. 3. Images of the feature point at a sequence of positions

3.5 Stability Analysis

This section analyzes the stability of the proposed adaptive controller on the
basis of the nonlinear robot dynamics. For simplicity, we assume that the
feature point is visible during the motion so that its depth with respect to the
camera frame is always positive.

Theorem 1: If a sufficient number of images captured by the camera
during motion of the robot manipulator are employed to estimate the unknown
parameters using the adaptive algorithm (32), the proposed controller (23)
gives rise to the asymptotic convergence of the image error, i.e.

lim
t→∞

∆y(t) = 0. (33)

Furthermore, the estimated parameters θ̂(t) are convergent to the real values
up to a scale.

Proof: To prove the convergence of the image error, we introduce the
following non-negative function:

v(t) =
1
2
{q̇T (t)H(q(t))q̇(t)+cz(q(t))∆yT (t)B∆y(t)+∆θT (t)Γ∆θ(t)}. (34)

Note that the depth cz(q(t))is always positive. Multiplying the q̇T (t)from the
left to the closed loop dynamics (24) results in

q̇T (t)H(q(t))q̈(t) + 1
2 q̇

T (t)Ḣ(q(t))q̇(t) = −q̇T (t)K1q̇(t)
−q̇T (t)DT (q(t),y(t))B∆y(t)
− 1

2 q̇
T (t)hT (q(t))∆yT (t)B∆y(t)

+q̇T (t)Y(q(t),y(t))∆θ(t).

(35)

From equation (13), we have

q̇T (t)DT (q(t),y(t)) = cz(q(t))ẏT (t) = cz(q(t))∆ẏT (t). (36)

By multiplying the ∆θT (t) from the left to the adaptive rule (32), we obtain
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∆θT (t)Γ∆θ̇(t) = −∆θ(t)YT (q(t),y(t))q̇(t)

−
l∑

j=1

∆θT (t)WT (tj)K3W(tj)∆θ(t).
(37)

Differentiating the function v(t) in (34) results in

v̇(t) = q̇T (t)(H(q(t))q̈(t) + 1
2Ḣ(q(t))q̇(t))

+∆θT (t)Γ∆θ̇(t) + cz(q(t))∆yT (t)B∆ẏ(t)
+ 1

2
cż(q(t))∆yT (t)B∆y(t).

(38)

From equation (17), we have cż(q(t)) = h(q(t))q̇(t). By combining the
equations (35-38), we have

v̇(t) = −q̇T (t)K1q̇(t)−
m∑

j=1

∆θT (t)WT (tj)K3W(tj)∆θ(t). (39)

Therefore, v(t) is a non-increasing function so that it is upper bounded. From
equation (34), bounded v(t) directly implies that the joint velocity, the image
errors, and the estimation errors are all bounded. Then, the joint acceleration
q̈(t) is bounded from the closed-loop dynamics (24) and so is ˙̂θ(t) from the
adaptive algorithm (32). Consequently, the joint velocity q̇(t) and the esti-
mated parameters θ̂(t) are uniformly continuous. From the Barbalat Lemma,
we conclude that

lim
t→∞

q̇(t) = 0, (40)

lim
t→∞

W(x(tj),y(tj))∆θ = 0. (41)

When W(tj)∆θ(t) = 0 and the number l of images is sufficiently large (>19),
the estimated parameters are convergent to the real values up to a scale. This
means that the estimated projection matrix M̂(t) has a rank of 3.

To prove the convergence of the image error, we further consider the equi-
librium points of the system. From the closed-loop dynamics (24) of the robot
manipulator, at the equilibrium point we have:

JT (q(t), x̂(t)) (ÂT (y(t)) +
1
2
m̂3(t)∆yT (t))︸ ︷︷ ︸

Q(θ̂(t),y(t))

B∆y(t) = 0. (42)

Note that ∆y(t) is a 3 dimensional vector whose third component is zero.
B is a 3 by 3 matrix. Q(θ̂(t),y(t)) is a 4 by 3 matrix whose fourth row is due
to the homogenous coordinates. For non-zero estimated coordinates x̂(t), it is
possible to prove that the rank of the matrix J(q(t), x̂(t)) is 3 when the rank
of the manipulator Jacobian matrix is larger than or equal to 3. Therefore, at
the equilibrium points we have:

Q(θ̂(t),y(t))B∆y(t) = 0. (43)
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Note that

Q(θ̂(t),y(t)) =


 m̂T

1 (t) + (0.5∆u(t)− u(t))m̂T
3 (t)

m̂T
2 (t) + (0.5∆v(t)− v(t))m̂T

3 (t)
01×4




T

. (44)

The rank of the estimated perspective projection matrix M̂(t) is 3 when the
estimated parameters are convergent to the real values up to a scale. By
using a similar proof to that for Proposition 1, it is possible to demonstrate
that the matrix Q(θ̂(t),y(t)) has a rank of 2. From eq. (43), it is obvious
that ∆y(t) = 0 at the equilibrium point. Consequently, the image error is
convergent to zero as the time approaches to the infinity.

It should be pointed out that the estimated parameters are not convergent
to the true values. If a sufficient number of positions of the feature point are
selected for the parameter estimation, the parameters are convergent to the
true values up to a scale. The convergence of the image errors does not mean
the convergence of the end-effector to the desired position. To regulate the
end-effector in 3-D space, the feature points must be properly selected. The
selection of the feature points is beyond the scope of this chapter.

3.6 Discussions on Stability Conditions

Theorem 1 states that the condition for the asymptotic convergence of the
image error is that the number l of images must be sufficiently large. We look
into the conditions for each of the problem stated in the subsection 3.1.

We first consider Problem 1. Since the camera is calibrated, the perspec-
tive project matrix is known and hence the rank of the matrix Q(θ̂(t),y(t))
is always 2. Therefore, if the Jacobian matrix of the robot manipulator is of
a rank greater than 2, the asymptotic convergence is always guaranteed. Fur-
thermore, the estimated parameters corresponding to x̂(t) are also convergent
to the real values if the number l of images is larger than 1. This can be easily
explained by the fact that e(t, tj) = 0 at two points means the estimated
position of the feature point satisfies the triangle constraint. In other words,
once the projections of the feature point on the images captured by a cali-
brated camera at two points are given, the position of the feature point can
be uniquely determined.

The condition for asymptotic stability in Problem 2 is more complicated
than that for Problem 1. In this problem, the parameters to be estimated are
11 parameters corresponding to the normalized components of the perspective
projection matrix. Six images of the image are necessary to solve the unknown
parameters when e(t, tj) = 0 for all the images. Our early work [25] proved
that the asymptotic convergence of the image error can be guaranteed if 5
images are so selected that it is not possible to find three projections of the
feature point which are collinear on the image plane. It should be noted that in
this problem the estimated parameters are not convergent to the true values.
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In Problem 3, there are total 38 unknown parameters. To solve the para-
meters by assuming that the estimated projection errors e(t, tj) is zero, the
number l of images must not be smaller than 19. Since our objective is to force
the feature point to the desired position instead of calculating the unknown
parameters, the number l could be made smaller. The detailed condition needs
to be further investigated in future.

4 Uncalibrated Visual Servoing for Multiple Feature
Points

We extend the proposed adaptive controller to position control of a number
of feature points. Denote the number of the feature points by S. Denote the
homogenous coordinates of feature point i on the image plane by yi(t) and
its coordinates with respect to the end-effector frame by constant vector xi.
The two coordinates are related by the perspective projection:

yi(t) =
1

czi(q(t))
MTe(q(t))xi, (45)

where czi(q(t)) denotes the depth of the feature point i with respect to the
camera frame. The velocity relationship is given by

ẏi(t) =
1

czi(q(t))
(M

∂

∂q
{Te(q(t))xi} q̇(t)− yi(t)cżi(q(t)))

=
1

czi(q(t))
Ai(yi(t))Ji(q(t),xi)q̇(t), (46)

where the depth-independent interaction matrix Ai(yi(t)) is similar to that in
eq. (14). It should be noted that the Jacobian matrix Ji(q(t),xi) of the robot
manipulator is different for different feature points. We design a controller
similar to that in eq. (23) as follows:

τ = g(q(t))−K1q̇(t)−

(
JT

1 (q(t), x̂1),JT
2 (q(t), x̂2), ...,JT

S (q(t), x̂S)
)



Q1(θ̂(t),y1(t))B1∆y1(t)
Q2(θ̂(t),y2(t))B2∆y2(t)
...

QS(θ̂(t),yS(t))BS∆yS(t)


 ,

(47)
where

Qi(θ̂(t),yi(t)) = ÂT
i (y(t)) +

1
2
m̂3(t)∆yT

i (t). (48)

By substituting the control law (46) into the robot dynamics (19) and
noting Property 2, we obtain the following closed loop dynamics:
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H(q(t))q̈(t) + {1
2Ḣ(q(t)) + C(q(t), q̇(t))}q̇(t) = K1q̇(t)−

(
JT

1 (q(t), x̂1),JT
2 (q(t),x2), ...,JT

S (q(t),xS)
)



Q1(θ(t),y1(t))B1∆y1(t)
Q2(θ(t),y2(t))B2∆y2(t)
...
QS(θ(t),yS(t))BS∆yS(t)




+Y(q(t),y1(t), ...,yS(t))∆θ(t).
(49)

The following adaptive algorithm, similar to that in eq. (32), is proposed
to estimate the unknown parameters:

d

dt
θ̂(t) = −Γ−1{YT (q(t),y1(t), ...,yS(t))q̇(t)

+
S∑

i=1

l∑
j=1

WT (q(tj),yi(tj))K3ei(t, tj)},
(50)

where yi(tj) denotes the projection of the feature point i on the j-th image
selected for the parameter adaptation. The number l must be so selected that
l > 19. The estimation error ei(t, tj) is similar to that in eq. (27).

Theorem 2: The adaptive controller (47) and (50) guarantees that the
position errors of the feature points are convergent to positions satisfying:

(
JT

1 (q(t), x̂1), ...,JT
S (q(t), x̂S)

)

Q1(θ̂(t),y1(t))B1∆y1(t)

...

QS(θ̂(t),yS(t))BS∆yS(t)


 = 0. (51)

Proof: The proof is similar to that for Theorem 1. Introduce the following
non-negative function:

v(t) = 1
2{q̇T (t)H(q(t))q̇(t)

+
S∑

i=1

czi(q(t))∆yT
i (t)Bi∆yi(t) + ∆θT (t)Γ∆θ(t)}. (52)

By multiplying the q̇T (t) and ∆θT (t) from the left to the closed loop dynamics
(49), and the adaptive rule (50), respectively, we obtain

v̇(t) = −q̇T (t)K1q̇(t)

−
S∑

i=1

m∑
j=1

∆θT (t)WT (q(tj),yi(tj)) ·K3W(q(tj),yi(tj))∆θ(t). (53)

By using a similar logic to that in the proof of Theorem 1, it is possible
to prove that q̈(t) and ˙̂θ(t) are bounded, and thus that q̇(t) and θ̂(t) are
uniformly continuous. On the other hand, from the closed-loop dynamics (49)
the equilibrium points must satisfy eq. (51). The Barbalat’s Lemma states the
convergence of the image errors to the equilibrium points satisfying (51).

It is not possible to conclude the convergence of the image errors to zero
from eq. (51) only. The image errors are convergent to zero only when the
rank of the coefficient matrix
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(
JT

1 (q(t), x̂1),JT
2 (q(t),x2), ...,JT

S (q(t), x̂S)
)

is equal to 2S. This implies that the number n of degrees of freedom of the
manipulator must be larger than or equal to 2S. When all the feature points
are on a rigid end-effector, it is possible to conclude the convergence of the
image errors of the feature points to zero. The detailed discussion is referred
to our early work [25].

Finally, note that although the discussion has been made for the fixed
camera configuration, the controller for the eye-in-hand configuration can be
designed similarly because the kinematics and dynamics are inherently the
same.

5 Experiments

5.1 Experimental Setup

To verify the performance of the proposed controller, we have implemented
it in a 3 DOF robot manipulator at the Networked Sensors and Robotics
Laboratory of The Chinese University of Hong Kong (Fig. 4). The manipulator
is driven by Maxon brushed DC motors at the three joints. The powers of the
motors at the first, second and third joints are 20 watt, 10 watt, and 10watt,
respectively, and the corresponding gear ratios are 480:49, 12:1, and 384:49,
respectively. The gear ratios and the motor powers are all relatively small,
so the nonlinear forces of the robot manipulator have relatively strong effect
on its motion. The moment inertia about its vertical axis of the first link
of the manipulator is 0.005kgm2, the masses of the second and third links
are 0.167 kg, and 0.1 kg, respectively. The second and third link lengths are,
0.145m and 0.1285m, respectively. Three incremental optical encoders with a
resolution of 2000 pulses/turn are employed to measure the joint angles of the
manipulator. The joint velocities are obtained by differentiating the measured
joint angles. We use a Ptgrey camera at the rate of 120 fps to capture the
image. An Intel Pentium IV PC is employed to process the image captured
by the frame grabber and to extract the image features. The sampling period
of the control loop is 13ms.

5.2 Visual Servoing using a Fixed Camera

In this first experiment, we addressed Problem 2 in a fixed camera setup
(Fig. 1). In other words, we assumed that both the intrinsic and extrin-
sic parameters of the fixed camera are unknown, but the positions of the
feature points with respect to the end-effector frame are given. We consid-
ered three feature points whose coordinates with respect to the end-effector
frame are x1 = (−0.02, 0, 0.021)T m, x2 = (−0.05, 0.0105, 0.018)T m, and
x3 = (−0.05 − 0.0105, 0.018)T m, respectively. Fig. 5 shows the initial and
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Fig. 4. The experimental setup

desired positions of the feature points on the image plane. Figure 6(a) illus-
trates the trajectories of the feature points on the image plane and Fig. 6(b)
plots the profiles of the image errors. The profiles of the estimated parameters
are demonstrated in Fig. 7. The experimental results confirm the asymptotic
convergence of the image errors of the feature points to zero. The residual
image errors are within one pixel. In this experiment, we employed three
current positions of the feature points in minimizing the estimated projec-
tion errors in the adaptive algorithm. The control gains used the experiments
are B = 0.00035 I2×2 and K1 = diag{5, 200, 60}. The adaptive gains were
K3 = 0.00001 I2×2 and

Γ = diag{0.0005, 0.0005, 0.0005 0.0005, 0.0005, 0.0005
0.0005, 0.0005, 50, 50, 50}.

The true values and initial estimations of the camera intrinsic parameters are
shown in Table I. The true camera extrinsic parameters were not available.
The initial extrinsic parameters are

T̂(0) =




0.97 −0.26 0 0.1
0 0 −1 0.1

0.26 0.97 0 3
0 0 0 1


 .

5.3 Visual Servoing Using an Eye-in-Hand Camera

The second experiment is to verify the performance of the proposed method in
uncalibrated visual servoing using an eye-in-hand camera (Fig. 8). The control



Adaptive Visual Servoing of Robot Manipulators 75

Table 1. TABLE I The Camera’s Intrinsic Parameters

Real parameters Initial estimations

α(pixel) 1806 2000

γ(pixel) 1812 2000

u0(pixe) 282 300

v0(pixel) 249 300

Fig. 5. The initial and desired (squared) positions of the feature points

problem addressed here is Problem 3, i.e. both the camera parameters and
coordinates of the feature points are unknown. We first set initial positions
of the feature point and then move the robot manipulator to another posi-
tion and record its desired position of the feature point on the image plane.
Figure 9 shows the initial and desired position of the feature point on the
image plane. Fig. 10 plots the profiles of the image errors under control of the
proposed adaptive controller. The experimental results clearly demonstrate
the asymptotic convergence of the image error to zero. The control gains used
in the experiments are K1 = 15, B = 0.00003, K3 = 0.01, Γ = 5000 I. The
initial estimated transformation matrix of the end-effector frame respect to
the vision frame is

T̂c(0) =




0 0 1 0
0 −1 0 0
1 0 0 1
0 0 0 1


 .

The initial estimated position of the feature point is x̂(0) =
[
1 −0.1 0.2

]T .
The real and initial estimated intrinsic parameters are au = 871, av = 882,
u0 = 381, v0 = 278, and âu(0) = 1000, âv(0) = 1000, û0(0) = 300, v̂0(0) =
300, respectively.
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Fig. 6. Experimental results for three feature points: (a) trajectories of the feature
points on the image plane, and (b) the image errors
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Fig. 7. The estimated parameters

Fig. 8. The experiment setup system
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Fig. 9. The initial and desired (black square) positions

Fig. 10. The image errors of the feature point
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The experimental results confirm that the proposed adaptive controller
yield asymptotic stability of the vision-based control system for both the fixed
camera and the eye-in-hand setups when the camera parameters and position
of the feature points are unknown.

6 Conclusions

This chapter presents a novel adaptive controller for dynamic visual serov-
ing of robot manipulators in general 3-D motion when the intrinsic and
extrinsic parameters of the camera and the positions of the feature points
are not known. Both the fixed camera and the eye-in-hand configurations
were addressed. The basic idea of our controller lies in the use of the depth-
independent image Jacobian matrix to map the image errors onto the joint
space so that the dynamic system can be linearly parameterized by the un-
known parameters. The adaptive algorithm combines the Slotine-Li algorithm
with an on-line minimization process derived from the structure from motion
problem in computer vision in order to estimate the unknown parameters on-
line. The asymptotic stability of the system under the control of the adaptive
controller is proved by the Lyapunov theory based on the fully nonlinear dy-
namics of the robot manipulator. The superior performance of the proposed
method has been verified by experiments on a 3 DOF robot manipulator. In
the future, we will address the robustness of the controller to measurement
errors of the visual position and velocity. Since the sampling rate of a vi-
sion system is usually slow, the visual velocity measurement is subject to big
noises. Designing a controller without using the visual velocity is one of our
future topics.
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Summary. A monocular visual servoing scheme for constrained robots is consid-
ered in this chapter. Inspired by the Orthogonalization Principle (OP) introduced
by Suguru Arimoto in the context of robot force control, a Visual Orthogonalization
Principle (VOP) is proposed and a novel control scheme for adaptive image-based
visual servoing is presented. The scheme guarantees a global exponential convergence
for the image-based position-velocity and contact forces even when the robot para-
meters are considered unknown. The stability of the new control scheme is tested
under experiments. The experimental results comply to the theoretical considera-
tions.

1 Introduction

Since the publication of the work [1] in 1977 the problem of robot force control
represented a tremendous challenge in the robotics and control community for
over 15 years [2], [3], [4]. Many control schemes were proposed to deal with
the problem on how to exert force by a robot manipulator over a rigid surface
while simultaneously moving its end-effector along this surface. The main dif-
ficulty in this problem stemmed from the fact that when the robot is in contact
to a rigid surface, modeled by an implicit equation, it is geometrically con-
strained. This can be modeled by the algebraic differential equations (DAE).
Recognizing this fact, a new controller based on the DAE formulation was
introduced in [5]. There, it was proposed to project the n degrees of freedom
robot dynamics into two orthogonal subspaces complements, one related to
the force signals and the other related to the position signals, to derive a
global, asymptotically stable simultaneous force-position controller. However,
this approach results in a computationally expensive control scheme.

It was not until 1992 that a physically-based principle was introduced [6]
to formally solve this problem in the powerful settings of the passivity-based
control theory. The principle is based the fundamental interpretation, made



84 Vicente Parra-Vega and Emmanuel Dean-Leon

by Suguru Arimoto, of what physically happens when the end-effector of a
rigid body system with n degrees of freedom comes in contact to, and estab-
lish motion over, a rigid surface. This principle was coined as the “Orthogo-
nalization Principle” (OP) and applied to the control of robot manipulators
constrained by a rigid surface modeled by an implicit equation. In [6], the OP
was introduced to produce a simple nominal reference based on two orthog-
onal complements without projecting and decomposing the robot dynamics.
The result was a local asymptotically stable force-position controller. Later
on, this basic principle allowed the synthesis of motion control for such com-
plex systems as cooperating robot arms [7] and multi-fingered robotic hands
[8]. In this chapter, an extension of the OP is introduced to tackle the prob-
lem of the passivity-based monocular adaptive visual servoing for constrained
robot manipulators. It is shown that the extended OP produces second order
sliding modes, guaranteeing a global exponential tracking.

2 The Orthogonalization Principle: Robot Force Control

2.1 Constrained Robot Dynamics

Consider a robot whose gripper maintains a stable contact to an infinitely rigid
surface. According to [6], this system is modeled by the following nonlinear
differential algebraic equations

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ + JT
ϕ+(q)λ (1)

ϕ(q) = 0 (2)

where the generalized joint position q ∈ �n and the joint velocity q̇ ∈ �n. In
(1), matrix H(q) ∈ �n×n stands for the robot inertial matrix; C(q, q̇)q̇ ∈ �n

stands for the vector of centripetal and Coriolis torques; g(q) ∈ �n is the
vector of gravitational torques; Jϕ+(q) = Jϕ(q)

Jϕ(q)JT
ϕ (q)

∈ �n×m is the constrained
normalized Jacobian of the kinematic constraint ϕ(q) = 0 (rigid surface with
continuous gradient); λ ∈ �m is the constrained Lagrangian multiplier for m
contact points (magnitude of the contact force); ϕ(q) = 0 ∈ �m models the
surface (for m independent contact points), and finally τ ∈ �n stands for the
vector of the joint torques.

2.2 The Orthogonalization Principle

According to the forward kinematic mapping X = f(q) ∈ �n. Since ϕ(q) =
g(X) ≡ 0, we have
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ϕ(q) = 0→ d

dt
ϕ(q) =

∂g(X)
∂X

∂X(f(q))
∂q

dq

dt
≡ 0

=⇒ d

dt
ϕ(q) = Jg (x) Jx (q) q̇

= Jϕ (q) q̇ ≡ 0 (3)

This means that Jϕ (q) is orthogonal to q̇ in the joint space. Thus, q̇ belongs to
the kernel of Jϕ (q). However, it is well known from the classical mechanics that
the vector of the generalized velocities lies in the tangent space at the contact
point. Therefore, q̇ = Qq̇, where Q ∈ �n×n stands for the generator of the null
space of Jϕ (q), with Jϕ (q) being orthogonal to Q. In words, the OP states that
q̇ can be decomposed of the direct summation of two components, one in the
velocity subspace Q and the other in the force subspace Jϕ (q). The nominal
reference for q̇ can be constructed similarly. Therefore, a unique orthogonalized
velocity joint error signal can be introduced to build a unique open loop error
dynamics depending on both the velocity and force error signals. This is the
key idea of the seminal paper [6]. Using the OP in the physical interpretation
of Arimoto [6], one can build a unique nominal reference in terms of the two
orthogonal errors and avoid decomposing the full nonlinear robot dynamics
as proposed in [5].

2.3 Passivity of Constrained Robot Dynamics

The integral of the dot product of q̇ and τ yields
∫ tf

t0

q̇T τ = E(tf )− E(t0)− q̇T JT
ϕ+(q)λ︸ ︷︷ ︸
zero

≤ −E(t0)

where E(t) is the total energy of the robot. Note that the antisymmetry of
[Ḣ(q) − (C(q, q̇) + C(q, q̇)T )] is used in the derivation of this equation. The
passivity of the robot dynamics is established then from the joint velocity
input q̇ to the torque output τ 1. Since in the force control the objective is
the convergence of the position/velocity tracking errors simultaneously with
the force tracking error, a unique error signal at the velocity level must be
established to conform to the passivity inequality in the closed-loop control.
This unique error signal is introduced [6] via the so-called nominal reference
q̇r based on the OP:

q̇r = q̇v + q̇f ≡ Qq̇ev + JT
ϕ q̇ef (4)

Equation (4) depends on the orthogonal nominal references for the velocity q̇v

and force q̇f . Since q̇ = Qq̇, the extended error surface can be defined follows

1 Notice that if the robot dynamics equation includes a viscous friction term, then
the dissipativity is established.
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Sq = q̇ − q̇r ≡ Q(q̇ − q̇ev)− JT
ϕ q̇ef (5)

To design a passivity-based controller, the linearity of the left hand side of
the robot dynamics in a set of its physical parameters can be used to define:

H(q)q̈r + C(q, q̇)q̇r + g(q) = YrΘ (6)

Here, Yr = Yr(q, q̇, q̇r, q̈r) ∈ �n×p is the dynamic regressor matrix, and Θ ∈ �p

stands for the unknown (but constant) vector of the robot parameters. Adding
and subtracting (6) to (1) produces the open loop error equation

H(q)Ṡq = −C(q, q̇)Sq + τ + JT
ϕ+(q)λ− YrΘ

Now, if
τ = −KdSq + YrΘ − JT

ϕ+(λd − η∆F ) (7)

where ∆F =
∫ tf

t0
(λ(σ) − λd(σ))dσ, λd(t) is the desired magnitude of the

contact force, Kd is a symmetric positive definite 2 × 2 feedback gain, and
η > 0, the simultaneous local asymptotic convergence of λ→ λd and q̇ → q̇ev

is assured. If q̇ev = q̇d−Ω(q− qd) for Ω ∈ �2×2
+ , then q → qd, where qd stands

for the desired motion of the end-effector on the surface [6].
To extend the previous result to the visually driven force control one needs

to address two problems. The first one is how to redesign (4) in terms of im-
age coordinates, and the second one is how to produce a visual-based control
law (7) to guarantee the simultaneous convergence of the contact force error
and the visual coordinate errors in the presence of the robot parametric un-
certainties. To this end, we introduce the Visual Orthogonalization Principle
(VOP).

3 The Visual Force Control Problem

Similar to the standard force control problem, the OP naturally arises in visual
servoing of constrained robot manipulators; the joint space orthogonalization
is preserved since the video camera does not introduces any additional dy-
namics. The problem now is how to synthesize the joint torque input in terms
of the desired visual trajectories and guarantee that the contact force error
and the visual position error converge simultaneously. This is a very impor-
tant problem in modern applications, wherein non-invasive sensors, like CCD
cameras, are used to guide the system under human surveillance and supervi-
sion. In this case, the robot moves along the surface and the camera captures
its motion by the optical flow. To solve the control problem at hand, the OP
has to be reformulated in the context of the image-based visual coordinates
to incorporate visual errors to the nominal reference. This gives rise to the
VOP. Note that this type of robot control tasks involves significant difficul-
ties. It stands as a robot control paradigm that surpasses traditional schemes
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in robot control and sensor fusion, thus requiring new theoretical frameworks.
In our problem, the VOP fuses generalized sensors (measurement of encoder,
tachometer, moment and force), and non-generalized sensors (CCD camera)
through the nominal reference q̇r. To continue the explanation, it is necessary
to briefly review the dynamic visual servoing.

3.1 Visual Servoing

Visual servoing is an ill-posed control scheme because measurements from the
camera do not deliver directly the state of the system, and thus cannot be
modified directly by the control input to the robot. Besides, the optical flow
(velocity of the visual landmarks) is not orthogonal to the joint torque input.
To make clear the choice between the position-based and image-based visual
servoings, the following features of these techniques [9] should be noted:

1. Position-based servoing: The image coordinates are transformed into
generalized coordinates to compute the control laws. This approach is
prone to errors due to this transformation and is computationally difficult.

2. Image-based servoing: The target to be tracked is captured and the
computed error in the image plane is obtained. Then, the joint control
input is synthesized to ensure asymptotic behavior of the visual error.
This approach is robust to the camera calibration since the tracking error
remains in the visual coordinates.

The image-based visual servoing is more practical because, in addition
to the arguments pointed in item 2, the user can input the desired position
directly in the image task space, i.e., directly from the image she/he sees.
The research on visual servoing started with the pioneering work [10] and so
far several authors extended the scope [11]∼[18]. In 1993, the authors of [11]
proposed a model and an adaptive control scheme for an eye-in-hand system
where the depth of each feature was estimated at each sampling time. In [12],
the authors introduced a new technique called a visual compliance that was
achieved by a hybrid vision/position control structure. Some authors included
the nonlinear robot dynamics in the control design [14]∼[17]. Some of them
modeled the vision system by a simple rotation matrix [14], others proposed
a variety of techniques for the off-line camera calibration [13], and only a
few approaches were aimed at the more important problem of the on-line
calibration under the closed loop control. Specifically, for a fixed camera con-
figuration, the authors of [15] considered a more representative model of the
camera-robot system to design a control law that compensates for unknown
intrinsic camera parameters but requires the exact knowledge of the camera
orientation.

Later, the authors of [16] presented a redesigned control law that also
takes into account uncertainties in the camera orientation. The control law
features the local asymptotic stability but requires the perfect knowledge of



88 Vicente Parra-Vega and Emmanuel Dean-Leon

the robot gravitational terms, and the error of the estimation of camera ori-
entation is restricted to (−90o, 90o). Further developments were presented in
[13], wherein a position tracking control scheme with an on-line adaptive cali-
bration of the camera that guaranteed the global asymptotic position tracking
was presented. Nevertheless, this approach requires the knowledge of the robot
dynamics and the desired trajectories need to be persistently excited. In [17],
the authors designed an adaptive camera calibration control law that com-
pensates for the uncertain camera parameters and the entire robot-camera
system, achieving the global asymptotic position tracking. Recently, a robust
and continuous joint PID-like controller was introduced in [18]. This scheme
guarantees the exponential convergence of the image-based tracking errors, in
spite of the lack of the knowledge of the camera and robot parameters. In com-
parison to the approaches considered above, it does not presents limitations
on the camera orientation.

Despite of the availability of various approaches considered in this section,
none of them fuses the force information for the image-based tracking of the
constrained robot systems. The robot control problem is still elusive, though
[19] lights the path for the passivity-based dynamic tracking in visual servoing
schemes. However, it fails when the camera angle is close to π [19].

3.2 Fusing Visual and Joint Signals

When only the sensors associated with the generalized coordinates are in-
volved in robot force control, the OP unobtrusively provides a harmonious
unique error signal, combining the position and contact force errors. However,
when the robot tasks involve also non-generalized sensors2, the control law
must deal with the multisensor fusion of the force and joint encoders signals
along with the visual information. Therefore, in order to implement a sensor
fusion-based controller, a careful and judicious analysis of the robot nonlinear
dynamics, sensors behavior, and the contact tasks is required. To continue,
let us review briefly some visual-based force servoing schemes.

3.3 Visual Force Servoing

The reference [21] focuses on the sensor fusion of the force and visual land-
marks. The authors of [22] study a visual contour tracking in a structured
environment. In [23], the authors present an adaptive robot controller to re-
alize contact tasks in an unknown environment. In [23] it is assumed that
the movement of the camera-manipulator system is slow and the mapping
from the joint space to the image space is constant, which severely limits the
system performance. Along similar developments, the paper [20] presents a
computed torque scheme for an uncalibrated environment, which requires the

2 For example a CCD camera. The non-generalized sensors do not directly measure
the state variables of the robot dynamic equations.
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Fig. 1. Visual servoing of the contact task.

exact knowledge of the robot dynamics and relies upon a very complex control
law. The control laws in [23] and [20] require complex computations and do
not fully solve the control problem posed above.

4 Dynamics of the Visually Driven Constrained Robot

Here, a monocular visual servoing scheme is presented3. In order to design a
proper nominal reference for the joint velocities q̇r, the direct and inverse ro-
bot kinematics, based on the static pin hole, with thin lens without aberration
camera model [9], is used. Let the direct kinematics of the robot be

xb = f(q) (8)

where xb ∈ �2 represents the 2D position of robot end-effector in the robot
work space and f (·) : �2 → �2. The differential kinematics of the robot
manipulator is defined as follows

ẋb = J(q)q̇ (9)

It relates the Cartesian velocities ẋb ∈ �2 to the joint space velocities q̇ ∈ �2.
The visual position xv = [u, v]T ∈ �2 of the robot end-effector in the image
(screen) space4 is given as follows [9]
3 Explicitly, this means that the 2D case is considered and the image plane is

parallel to the 2D work plane of the nonlinear DAE robot. Notice, however, that
the extension to the 3D case, though straightforward, requires a stereo camera
model with additional considerations for the (pseudo)inverse of the differential
kinematic mapping.

4 The subscript v of xv denotes visual from the visual space notation.
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xv = αh(z)R (θv) xb + β (10)

where α = diag[αu, αv] ∈ �2×2
+ is the scale factor; h(z) = ξ

ξ−z < 0, z > ξ.
Here, ξ stands for the focal distance, and R (θv) ∈ SO(2) is the upper left 2×2
matrix of R3 (θv) ∈ SO(3); β ∈ �2

+, depends on the intrinsic and extrinsic
parameters5 of the camera. The differential kinematic model of the camera is
defined as follows

ẋv = αh(z)R (θv) ẋb (11)

where ẋv ∈ �2 determines the visual robot end-effector velocity, i.e. the visual
flow. Notice that the the transformation αh(z)R (θ) is constant and it maps
statically the robot Cartesian velocities ẋb into the visual flow ẋv. By using
(9), equation (11) becomes

ẋv = αh(z)R (θv) J(q)q̇ (12)

It relates the visual flow ẋv to the joint velocity vector q̇. Thus, in terms of
the visual velocities6 the inverse differential kinematics (12) becomes

q̇ = JRinvẋv (13)

where JRinv = J(q)−1R(θ)−1h(z)−1α−1. This relation is useful in designing
the nominal reference for the joint velocities q̇r.

4.1 Visual Orthogonalization Principle (VOP)

Since the robot end-effector is in contact to the constrain surface, ϕ(q) = 0 ∀t
and the OP explains the implications of d

dtϕ (q) = 0. Therefore, using (13) we
obtain

Jϕ (q) q̇ = q̇ ≡ JϕJRinvẋv
.= 0

This means that Jϕ (q) is orthogonal to the optical flow ẋv mapped into the
joint space. Clearly, there exists an orthogonal projection Q of Jϕ(q) which
spans the tangent space at the contact point between the end-effector and the
surface ϕ(q) = 0. In other words, (13) and q̇ = Qq̇ leads to

q̇=QJRinvẋv (14)

From (4) and (14), the nominal reference for VOP becomes

q̇r = QJRinvẋr + q̇f (15)

Finally
q̇r = QJRinvẋr + ΓF2J

T
ϕ (q) q̇rf (16)

5 The focal distance, the depth of the field, the translation of the camera center to
the image center, and the distance between the optical axis and the robot base.

6 The entries of JRinv ∈ �2×2 are functions of the robot and camera parameters.
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where ΓF2 > 0 is a 2 × 2 feedback gain. Let the nominal visual reference for
the velocities be

ẋr = ẋvd − Ψ∆xv + Svd − Γv1

∫ t

t0

Svδ (ζ) dζ − Γv2

∫ t

t0

sign [Svδ (ζ)] dζ (17)

where ẋvd stands for the desired visual velocity trajectory, and ∆xv = xv−xvd

is the visual position tracking error, Ψ > 0 a positive definite n× n feedback
gain, and Γvi

= ΓT
vi
∈ �n×n

+ , i = 1, 2. Let the visual error surface be

Svδ = (∆ẋv + Ψ∆xv)︸ ︷︷ ︸
Sv

−Sv (t0) e−κvt︸ ︷︷ ︸
Svd

(18)

where ∆ẋv = ẋv− ẋvd defines the visual velocity tracking error, κv > 0. Now,
consider the following nominal force reference

q̇rf = ∆F − SFd + ΓF1

∫ t

t0

SFδ (ζ) dζ + ΓF2

∫ t

t0

sign [SFδ (ζ)] dζ (19)

for the force error surface

SFδ = ∆F︸︷︷︸
SF

−SF (t0) e−κF t︸ ︷︷ ︸
SF d

(20)

where

∆F =
∫ t

t0

∆λ (ζ) dζ, ∆λ = λ− λd,

∆λ is the force tracking error and λd is the desired contact force; κF > 0,
and ΓFi

= ΓT
Fi
∈ �m×m

+ , i = 1, 2. Using equations (16), (17), (19) and (14),
we obtain the following representation for the joint error surface Sq = q̇ − q̇r

Sq = QJRinv(ẋv − ẋr)− ΓF2J
T
ϕ (q) q̇rf

= QJRinvSvv − ΓF2J
T
ϕ (q) SvF (21)

where

Svv = Svδ + Γv1

∫ t

t0

Svδ (ζ) dζ + Γv2

∫ t

t0

sign [Svδ (ζ)] dζ (22)

SvF = SFδ + ΓF1

∫ t

t0

SFδ (ζ) dζ + ΓF2

∫ t

t0

sign [SFδ (ζ)] dζ (23)

Svv stands for the extended visual manifold, and SvF stands for the extended
force manifold.

Remark 1. Notice that Sq is composed of two orthogonal complements.
The first, QJRinvSvv, depends on the image coordinate errors, and the second,
ΓF2J

T
ϕ (q) SvF , depends on the integral of the contact force errors. Thus, the

tracking errors (∆xv,∆ẋv) and ∆F can be controlled independently within a
single control loop.
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4.2 Global Decomposition of Joint Space

Consider the following partition of the joint space q [5], [24]

q = [q1, q2]T (24)

where q1 ∈ �m, and q2 ∈ �n−m. Since the constraint ϕ (q) ∈ �m, there are
m dependent states which are defined in (24) as q1. This partition is not
arbitrary. Thus, to identify q1 the Jacobian of the restriction Jϕ (q) and the
Gauss decomposition are used in order to define a non-singular matrix m×m.
The generalized coordinates defined by the choice of this matrix are indeed q1

[25]. According to the implicit function theorem, there exist, locally, an open
group O ∈ �n−m and a function Ω : �n−m → �m such that

q1 = Ω (q2) (25)

Then, ϕ (q) = ϕ (Ω (q2) , q2) = 0 ∀q2 ∈ O. Using the time derivative of (2) and
its partitioning (24), we obtain

Jϕ (q) q̇ = [Jϕ1 (q) q̇1 + Jϕ2 (q) q̇2] ≡ 0 (26)

where Jϕ1 (q) q̇1 ∈ �m and Jϕ2 (q) q̇2 ∈ �m. Solving (26) for q̇1 defines

q̇1 = Ωq2 q̇2, where Ωq2 = − [Jϕ1 (q)]−1
Jϕ2 (q)

for Ωq2 : �n−m → �m. Then, joint velocities are built upon the independent
coordinates

q̇ = Qq̇2, where Q = [Ωq2 , In−m]T (27)

and Q ∈ �n×(n−m) is a full column matrix of rank (n−m). Then, Q is
well posed, rank (ϕ (q)) = m and (Jϕ1 (q))−1 exists in the finite workspace of
(1). Notice again that Q spans the tangent plane at the contact point, and,
therefore, Jϕ (q) and Q are the orthogonal complements. i.e., QJT

ϕ (q) = 0.
Therefore, Jϕ1 (q) ∈ ker (Q), and the space �n is decomposed into the two
orthogonal subspaces, �n = � (Jϕ)⊕� (Q).

Remark 2. Using a generalization of the implicit function theorem, we can
state that Q is well posed ∀q ∈ Ωq, where Ωq = {q|rank (J (q)) = n,∀q ∈ �n}
stands for the robot workspace free of singularities. This defines a global de-
composition for the 2D case. However, for the 3D case this approach will
require an efficient algorithm to compute the independent coordinates on line
because the solution of the implicit equation may be not unique. Note, how-
ever, that the numerical stability of the decomposition is preserved [25].

4.3 Open Loop Error Equation

Due to the fact that the linear parametrization YrΘ depends on q̈r =
f(ẍr, q̈rf ), the computation of q̈rf and ẍr gives
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ẍr = ẍvd − Ψ∆ẋv + Ṡvd − Γv1Svδ − Γv2sign(Svδ) (28)

q̈rf = ∆Ḟ − ṠdF + ΓF1SFδ + ΓF2sign (SFδ) (29)

which introduces discontinuous terms. To avoid introducing high frequency
discontinuous signals, we need to get rid of discontinuous signals in YrΘ. To
this end, add and subtract tanh(µvSvδ) and tanh(µF SFδ) to q̈r, assuming that
µF > 0, µv > 0. Then, q̈r becomes

q̈r = q̈rc + QΓv2zv − JT
ϕ (q) ΓF2zF (30)

with zv = tanh (µvSvδ)−sign (Svδ) and zF = tanh (µF SFδ)−sign (SFδ), and

q̈rc = QJRinvẍrc + Q̇JRinvẋrc + QJ̇Rinvẋrc + ΓF2J
T
ϕ (q) q̈rfc + ΓF2 J̇

T
ϕ (q) q̇rfc

for

ẍrc = ẍvd − Ψ∆ẋv + Ṡvd − Γv1Svδ − Γv2 tanh(µvSvδ) (31)

q̈rfc = ∆Ḟ − ṠdF + ΓF1SFδ + ΓF2 tanh(µF SFδ) (32)

Therefore, the linear parametrization (6) becomes

H(q)q̈r + C(q, q̇)q̇r + g(q) = YcΘc + H(QΓv2zv − JT
ϕ (q) ΓF2zF ) (33)

In this formulation, Yc = Yr (q, q̇, q̇r, q̈rc) is continuous since (q̇r, q̈rc) ∈ C1,
where YcΘc = H(q)q̈rc + C(q, q̇)q̇rc + g(q). Adding and subtracting (33) to
(1), we obtain the following open loop error equation

H(q)Ṡq = τ −C(q, q̇)Sq +JT
ϕ+(q)λ−YcΘc +H(QΓv2zv −JT

ϕ (q) ΓF2zF ) (34)

We are ready to present the main result.

5 Control Design

Assume that (xv, ẋv) can be measured by the camera, (q, q̇) can be measured
by, respectively, encoders and tachometers, and (λ, F ) can be measured by a
force sensor. Assume also that the desired image trajectory is free of singu-
larities, i.e., (xvd, ẋvd) ∈ Ωx, for Ωx =

{
xv|rank (JRinv) = 2,∀xv ∈ �2

}
, and

λd ∈ C1. Then, we have the following theorem.

Theorem 1. Assume that the initial conditions and the desired trajectories
belong to ΩT = [Ωq, Ωx], for Ωq =

{
q|rank (J (q)) = 2,∀q ∈ �2

}
, and con-

sider the robot dynamics (1)-(2) with the following visual adaptive force-
position control law

τ = −KdSq + Ycθ̂b + JT
ϕ+ (q) [−λd + η∆F ]

+ΓF2J
T
ϕ+(q)

[
tanh (µF SFδ) + η

∫ t

to

sgn [SFδ (ζ)] dζ

]
(35)

˙̂
θb = −ΓY T

c Sq (36)
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where θ̂b is the online estimate of the robot parameters, Γ = ΓT ∈ �p×p
+ ,

Kd = KT
d ∈ �n×n

+ , and η > 0. If Kd is large enough and the errors of initial
conditions are small enough, and if

Γv2 ≥
∥∥∥∥ d

dt

[
Q#

θ Sq

]∥∥∥∥ , ΓF2 ≥
∥∥∥∥ d

dt

[
J#

ϕ Sq

]∥∥∥∥
where Q#

θ = Rα (θv) J (q)
(
QT Q

)−1
QT , and J#

ϕ (q) =
(
−ΓF1JϕJT

ϕ (q)
)−1

Jϕ,
the global exponential convergence of the visual and force tracking errors is
guaranteed for any value of the rotational camera angle Θv.

Proof . The proof is based on the Lyapunov stability theory along with
the variable structure control theory for second order sliding modes. A brief
outline of the proof can be stated as follows:

• Part I: Boundedness of the closed loop trajectories. In this part, the passiv-
ity from the joint velocity error input to the torque output is established.
If the viscous friction is considered, then the dissipativity is established.
This implies that the boundedness of the closed loop signals is proved.

• Part II: Second order sliding modes. Once the boundedness of the input
signals is proved, the sliding mode regime for the visual and force subspaces
needs to be induced. The proper gains are selected in this part.

• Part III: Exponential convergence of the tracking errors. A proper selection
of the gains guarantees the sliding mode for each subspace for all time.
Then, we prove that each sliding mode induces the exponential convergence
of the visual tracking errors and the force tracking errors for all time.

The details of the proof are given in the Appendix.

6 Discussions

6.1 Robustness issues

The closed loop system gives rise to two sliding modes. It is well known that
the sliding modes are extraordinary robust to parametric uncertainties for
certain classes of bounded unmodeled dynamics.

6.2 Well-Posed Inverse Jacobian

Apparently there can be a problem with J(q(t))−1. The visual position ex-
ponentially converges to the desired visual position without overshoot, i.e.,
xv(t) → xvd(t), xvd (t) ∈ Ωx =⇒ xv (t) ∈ Ωx. However, it does not guar-
antee that J (q (t))−1 is always well posed only because the joint position q
converges to the desired joint position qd with an exponential envelope. The
joint position q may experience a short transient and as a consequence J (q)
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may loose its rank. However, since q (t) converges to qd (t) locally, it means
that J (q (t)) → J (qd (t)) within Ωq. Consequently J(q(t))−1 is locally well

posed, i.e., ∀t rank
[
J (q (t))−1

]
= 2. In addition, in visual servoing tasks it

is customary to design the desired trajectories to be within Ωx, and therefore
within Ωq, away from singular joint configurations.

6.3 Smooth Controller

The continuous function tanh(∗) is used instead of sign(∗) in the control law
without jeopardizing the second order sliding mode. Moreover, notice that
the sign(∗) is not required to induce a second order sliding mode. This is in
contrast to the first order sliding modes theory.

6.4 The Control Structure

The control law features a low computational cost and is easy to implement.
The structure of the control law is, basically, similar to that presented in [6],
[24] except for the camera information processing part.

7 Experimental System

A planar robot with two degrees of freedom (see Fig. 2) is used in our exper-
iments. The robot and camera parameters are listed in, respectively, Tables 1
and 2. The control feedback gains are listed in Table 3.

Planar Robot

Force Sensor
with Bearing

Constraint
Surface

Fixed Camera

Personal
Computer

Planar Robot

Fixed Camera

Fig. 2. Experimental setup
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7.1 Hardware

Direct-drive Yaskawa AC servomotors SGM-08A314 and SGM-04U3B4L with
2048 pulse encoders are directly coupled to the links of the robot. Digital drives
(Yaskawa servopacks SGD-08AS and SGDA-04AS) are integrated into the
robot control system. A six-axes force-moment sensor 67M25A-I40-200N12
by JR3 Inc., provided with a DSP Based Interface System for PCI bus, is
mounted on the end-effector of the robot. A rigid aluminum probe, with a
bearing SKF R8-2Z in its tip, is attached to the end-effector as shown in
Fig. 2. The robot task is to move its tool-tip along a specified trajectory
over the steel surface while exerting a specified profile of the force normal to
the surface. A fixed SONY DFW-VL500 CCD camera is used to capture the
position of the robot end effector in the image space (measured in pixels).
The robot is initialized with a high gain PD control. The inertial frame of the
whole system is at the base of the robot, and the contact surface is an XZ
plane located at y = 122 pixels.

7.2 Software

A 2.2 GHz personal computer, running on Debian GNU/Linux 3.1 (kernel
2.4-27) with RTAI patch operating system (rtai 3.1.0-4) is used in the ex-
periments. This PC implements two real-time concurrent processes. The first
one communicates with the camera via IEEE1394 protocol and controls the
acquisition of the robot end-effector position in the image space at a sampling
rate of 30 Hz. The second process computes the torque output for the ser-
vopacks and runs at a sampling rate of 1 KHz. The communication between
the processes is done by allocating a shared memory. A data acquisition board
is connected to the computer. It contains an internal analog quadrature en-
coder interface, 14 bit analog resolution outputs, and digital I/O ports. The

Table 1. Robot Parameters.

Parameter Mass Length Center of Mass Inertia

Link 1 7.1956 Kg 0.4 m 0.1775 m 0.2779 Kgm2

Link 2 1.8941 Kg 0.3 m 0.0979 m 0.02339 Kgm2

Table 2. Camera Parameters.

Parameter Value

Rotation angle θv 90

Scale factor α 99500 pixel/m

Depth field of view z 1.6 m

Camera offset β [−335,−218]T pixel

Focal length ξ 0.08 m
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velocity is computed using a dirty Euler numerical differentiation formula fil-
tered with a low pass second order Butterworth filter with a cutoff frequency
of 20Hz.

7.3 Control Task

The initial configuration of the robot is shown in the camera image space
in Fig. 3.A. Also depicted there are the path of the robot’s free motion and
the direction of the constrained movement. The control task consists of the
following three steps.

1. The end-effector is requested to move until it makes contact with the
surface as shown in Fig. 3.B. The free motion time interval is [0, 3] s.
Next, within t ∈ [3, 5] s the end-effector establishes a stable contact with
the constraint surface.

2. The tool-tip exerts a desired profile of the force normal to the surface
(from 0 to 7.5 N) while moving forward along the X axis from 403 pixels
to 254 pixels (see Fig. 3.C). This is done in the time span t ∈ [5, 10] s

3. In the time interval t ∈ [10, 15] s the exerted force is incremented from 7.5
to 15 N, while moving the tool-tip (see Fig. 3.C) backward along the X
axis from 254 pixels to 403 pixels.

The desired position and force are both designed with

Φ(t) = P (t) [Xf −Xi] + Xi, (37)

where P (t) is a fifth order polynomial that satisfy P (ti) = 0, P (tf ) = 1 and
Ṗ (ti) = Ṗ (tf ) = 0. The subscript i and f denote the initial and the final
moments, respectively. At the first stage of the control task (free motion), the
control law (35)-(36) is used with JT

ϕ (q) = 0 and Q = I. The stability of this
free motion control scheme is proved in [26].

7.4 Experimental Results

The performance of the simultaneous force and position tracking is illustrated
in Fig. 4, 5, 6, and 7. Figure 10 gives an image of the visual tracking of the
robot’s end effector. The motion of the robot’s end-effector in the image space

Table 3. Feedback Gains.

Gain Value Gain Value Gain Value Gain Value

Kd

[
14 0
0 1.8

]
κv 20 Γv(1,2)

[
8 0
0 8

]
Γ 1

Ψ

[
5 0
0 5

]
κF 20 ΓF(1,2) 3 η 2.8
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is shown in Fig. 5 and 6. Note that the image coordinated system is rotated
by θv degrees (in this case 90o). The maximum tracking error is 1 pixel (near
to 0.20mm). The tracking performance can be improved by using a sub-pixel
resolution.

Figure 8 shows the joint torques. As can be seen from Fig. 8, the control
output is not saturated. The torque noise in the free motion segment is due
to the fact that the control gains are tuned for the position-force control
task. These gains are high during the free motion time, and this causes the
high response observed in Fig. 8. Fig. 9 depicts the exponential envelope of
the Cartesian tracking errors. Fig.4 shows the exerted force profile. As can
be seen, from t = 0s to t = 3s the robot’s end effector is in free motion
(the contact force is near to 0N) until it makes contact with the surface (an
overshoot in the contact force is presented due to contact transition). The end-
effector remains in that state 2 more seconds. The applied force is smoothly
increased from 0N to 7.5N while the end-effector moves forward along the X
axis in the time interval [5 10]s. Then, in the time interval [10 15]s the applied
force is increased from 7.5N to 15N while the end-effector moves backward.
The seemingly high frequency in the force response can be explained by the
precision of the sensors. The movement task requires a very precise control,

Fig. 3. Experimental phases
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but the sensor resolution is limited to 1 pixel and the JR3 force sensor noise
is ±2N7.

8 Conclusions

A novel scheme for the adaptive image-based visual servoing of constrained
robots was proposed in this chapter. The new scheme is based on the Visual
Orthogonalization Principle (VOP). The main feature of the control scheme
is the ability to fuse the image coordinates and the integral of contact forces.
The scheme guarantees a global exponential convergence for the image-based
position-velocity and the contact forces even when the robot parameters are
considered unknown. The experimental results confirm the stability of the
control scheme. The novel control scheme can improved to deal with the un-
certainties in the description of the constraint surface, the robot Jacobian,
and the friction forces. The scheme can be used in a number of control tasks
employing the dynamic visual servoing. These task include the cooperative
control of multiple robot arms and multi-fingered robotic hands. It can be
also used in the control of biped walking machines8.

Appendix: Proof of Theorem 1

The closed loop dynamics (35)∼(36) and (34) yields
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Fig. 4. Force Tracking

7 Better plots can be obtained by simply reducing the desired visual velocity or by
increasing λd(t).

8 The examples can be found in www.manyrob.cinvestav.mx.
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H (q) Ṡq = −{Kd + C(q, q̇)}Sq − Y c∆θb + JT
ϕ+ (q) [∆λ + ΓF2 tanh (µF SFδ)]

+ ηJT
ϕ+ (q)

[
∆F + ΓF2

∫ t

t0

sgn (SFδ (ζ)) dζ

]
(38)

∆θ̇b = ΓY T
c Sq (39)
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Fig. 9. Cartesian tracking error with exponential envelope.

where ∆θb = θb − θ̂b. The proof is organized in three parts.
Part I. Boundedness of the closed loop trajectories. Consider the

time derivative of the following Lyapunov candidate function

V =
1
2
[
ST

q H (q) Sq + ΓF2S
T
vF SvF + ∆θT

b Γ−1∆θb

]
(40)

Along the solutions of (38)-(39) we have

V̇ ≤ −Kd

∥∥∥Ŝq

∥∥∥2

2
− ΓF2 ‖SvF ‖+ ‖Ŝq‖ψ (41)

where ST
q

(
1
2Ḣ (q)− C (q, q̇)

)
Sq = 0 and ψ is a functional depending on the

state and error manifolds [27]. If Kd and ΓF2 are large enough and the errors in
initial conditions are small enough, we conclude the semi-negative definiteness
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of (41) outside of the hyperball ε0 =
{

Sq|V̇ ≤ 0
}

centered at the origin.
Therefore, the following properties of the state of the closed loop system take
place

(Sq, SvF ) ∈ L∞ → (‖Svv‖, ‖SvF ‖) ∈ L∞ (42)

Then,
(
Svδ,

∫ t

t0
sign (Svδ (ζ)) dζ

)
∈ L∞ and since the desired trajectories are

differentiable functions and the feedback gains are bounded, we have (q̇r, q̈r) ∈
L∞. The right hand side of (38) shows that there exists ε1 > 0 such that∥∥∥Ṡq

∥∥∥ ≤ ε1. Since Sq ∈ L2 and JRinv and Q are bounded, then QJRinvSvv

is bounded. Since ϕ (q) is smooth and lies in the reachable robot space and
SvF → 0, then JT

ϕ (q) ΓF2SvF → 0. Now, taking into account that Ṡq is
bounded, then d

dt (JRinvQSvv) and d
dt

(
JT

ϕ (q)ΓF2SvF

)
are bounded (this is

possible because J̇T
ϕ (q) is bounded and so is Q̇). All these conclusions prove

that there exist constants ε2 > 0 and ε3 > 0 such that
∣∣∣Ṡvv

∣∣∣ < ε2,
∣∣∣ṠvF

∣∣∣ < ε3

So far, the analysis shows only the stability of all the closed-loop signals. Now
we prove the appearance of the sliding modes. To this end, we have to prove
that for the properly selected feedback gains Γv2 and ΓF2 the trajectories of
the visual position and force converge to zero. This can be done if we can
prove that the sliding modes are established in the visual subspace Q and in
the force subspace JT

ϕ (q).
Part II: Second order sliding modes.
Part II.a: Sliding modes for the velocity subspace. From (21) we

obtain

Constraint Surface

Visual Marks
of Robot

End Effector

Constrained Motion

Free Motion

Fig. 10. Camera view point.
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(
QT Q

)−1
QT Sq ≡ JRinvSvv (43)

By multiplying (43) by αh(z)R (θ)J (q) and substituting it into (22), we have

Q#
θ Sq = Svδ + Γv1

∫ t

t0

Svδ (ζ) dζ + Γv2

∫ t

t0

sign(Svδ(ζ))dζ (44)

Taking the time derivative of (44), and multiplying it by ST
vδ, we have

ST
vδṠvδ = −γv2S

T
vδsign (Svδ)− Γv1S

T
vδSvδ + ST

vδ

d

dt

[
Q#

θ Sq

]

≤ −µv |Svδ| − Γv1 ‖Svδ‖2 (45)

where µv = Γv2 − ε4, and ε4 ≥
∣∣∣ d
dt

[
Q#

θ Sq

]∣∣∣. Thus, we obtain the sliding
condition Γv2 > ε4. Therefore, µv > 0 in (45) guarantees a sliding mode
at Svδ = 0 when tv = |Svδ(t0)|

µv
. However, notice that for any initial condition

Svδ (t0) = 0 we have tv = 0, which implies that the sliding mode at Svδ (t) = 0
is guaranteed for all time.

Part II.b: Sliding modes for the force subspace. In much the same
way as has been done in Part II.a, we process equation (21) to obtain

J#
ϕ (q) Sq = SFδ + ΓF1

∫ t

t0

SFδ(ζ))dζ + ΓF2

∫ t

t0

sign (SFδ(ζ)) dζ (46)

Taking the time derivative of (46) and multiplying it by ST
Fδ, (46), we have

ST
FδṠFδ = −ΓF2 |SFδ| − ΓF1S

T
FδSFδ + ST

Fδ

d

dt

(
J#

ϕ (q)Sq

)
(47)

≤ −ΓF2 |SFδ| − ΓF1 ‖SFδ‖2 + |SFδ|
d

dt

(
J#

ϕ (q) Sq

)
(48)

≤ −µF |SFδ| − ΓF1 ‖SFδ‖2 (49)

where µF = ΓF2 − ε5, and ε5 ≥ d
dt

[
J#

ϕ (q)Sq

]
. If ΓF2 > ε5, then a sliding

mode at SFδ (t) = 0 is induced at tf ≤ |SF δ(t0)|
µF

, but SFδ (t0) = 0 and thus
SFδ(t0) = 0 is guaranteed for all time.

Part III: Exponential convergence of tracking errors.
Part III.a: Visual tracking errors. Since a sliding mode exists for all

time at Svδ (t) = 0, then we have

Sv = Svd ∀t→ ∆ẋv = −Ψ∆xv + Sv (t0) e−κvt

This implies that the visual tracking errors globally and exponentially con-
verge to zero and xv → xvd, ẋv → ẋvd. Therefore, in the image space the
end-effector reaches the desired position xvd with the desired velocity ẋvd.

Part III.b: Force tracking errors. Since a sliding mode at SFδ (t) = 0
is induced for all time, we have ∆F = ∆F (t0) e−κF t. From this we obtain
∆Ḟ ≡ ∆λ = −κF ∆F (t0) e−κF t, showing the global convergence of the force
tracking errors. Thus λ reaches λd exponentially fast. QED.
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Summary. In this paper we study passivity-based control for the problem of co-
ordination and synchronization of multi-agent systems. We treat agents described
by affine nonlinear systems that are input-output passive and that exchange infor-
mation over a network described by an interconnection graph. We treat both linear
interconnections on balanced, directed graphs and nonlinear interconnections on
undirected graphs. We present synchronization results for both fixed and switching
graphs. Finally, we treat the realistic case of time delay in the communication of in-
formation among agents. Our results unify several existing results from the literature
on multi-agent systems.

As applications of our results we present a constructive methodology to solve the
local exponential convergence problem for Kuramoto oscillators. We then apply our
results to the general problem of synchronization of multiple Lagrangian systems.
Using a network of simple pendula, the phenomena of oscillator death, synchro-
nization, and anti-synchronization are all shown to be special cases of our results,
depending on whether or not the natural frequencies of the pendula are identical or
distinct. We also show that the general problem of multi-robot coordination can be
handled using the results in this paper.

1 Introduction and Motivation

1.1 Energy Shaping and Passivity-Based Control

In this paper we present some recent results on passivity-based control of
multi-agent systems on the occasion of the 70th birthday of Professor Suguru
Arimoto. In our opinion, the fundamental work of Takegaki and Arimoto [34]

∗ Dedicated to the 70th birthday of Professor Suguro Arimoto. This research was
partially supported by the Office of Naval Research under Grant N00014-02-1-
0011, N00014-05-1-0186, and by the National Science Foundation under Grants
ECS-0122412 and INT-0128656.
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in 1981 marked the beginning of robot control as a distinct discipline. Prior to
this work, most research on robot control relied on textbook linear methods
based on first-order approximations to the nonlinear dynamics or on feedfor-
ward control. The Takegaki-Arimoto result introduced the notion of potential
energy shaping as a way to stabilize an equilibrium set-point position of a ro-
bot manipulator. Potential-energy shaping is now a well-established method
of control, not only for manipulators, but also for vehicles, bipedal robots,
electric motors and many other systems. Indeed the lineage of many of the re-
cent advanced Lagrangian and Hamiltonian methods in control can be traced
back directly to the 1981 paper of Takegaki and Arimoto.

Potential-energy shaping is now recognized as a special case of the more
general notion of Passivity-Based Control. The term passivity-based control
was coined in 1988 by Ortega and Spong [25] to describe a class of adaptive
control algorithms for manipulators. Thus, it is fitting that we discuss the
application of passivity-based control in robotics as a tribute to the influence
and legacy of Professor Arimoto.

1.2 Background

The problem of communication and control in multi-agent systems is impor-
tant in numerous practical applications, such as sensor networks, unmanned
aerial vehicles, and robot networks. Inspired by nature (schools of fish, flocks of
birds) and driven by practical engineering considerations, the control problems
are inherently distributed in nature. The goal then is to generate a desired col-
lective behavior by local interaction among the agents. The pioneering model
of boids [27], the discrete time flocking model of Vicsek et. al. [37] have been
mathematically analyzed in [13]. Group coordination and formation stability
problems have been recently addressed in [9, 18, 10, 20, 19, 35]. Agreement,
group consensus and oscillator synchronization problems have been studied
in [8, 14, 15, 17, 22, 26, 30, 28, 29, 32, 36]. The effect of communication
delay on some of the aforementioned agreement protocols has been studied
in [2, 28, 36, 38].

In this work we investigate a class of dynamic models for the networked
agents that we believe unifies many of the results in the collective motion
and oscillator synchronization literature. We treat the case where each agent
in the network can be modeled as a nonlinear system that is affine in the
control and input/output passive. The goal then is to drive the outputs of the
agents to each other asymptotically. The assumption of passivity is a natural
one for the types of problems considered. Many of the existing results in the
literature model the agents as velocity-controlled particles; in other words,
as first-order integrators, which are the simplest type of passive systems. On
the other hand, quite complicated Lagrangian and Hamiltonian systems, such
as n-degree-of-freedom robots, satisfy a natural and well-studied passivity
property [31].
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Passivity

To set the background and notation for what follows, consider a control affine
nonlinear system of the form

Σ

{
ẋ = f(x) + g(x)u
y = h(x) (1)

where x ∈ Rn, u ∈ Rm, and y ∈ Rm. The functions f(.) ∈ Rn, g(.) ∈ Rn×m,
and h(.) ∈ Rm are assumed to be sufficiently smooth. The admissible inputs
are taken to be piecewise continuous and locally square integrable and we
note that the dimensions of the input and output are the same. We assume,
for simplicity, that f(0) = 0 and h(0) = 0.

Definition 1. The nonlinear system Σ is said to be passive if there exists a
C1 storage function V (x) ≥ 0, V (0) = 0 and a function S(x) ≥ 0 such that
for all t ≥ 0:

V (x(t))− V (x(0)) =
∫ t

0

uT (s)y(s)ds−
∫ t

0

S(x(s))ds (2)

The system Σ is strictly passive if S(x) > 0 and lossless if S(x) = 0.

An important characterization of passive systems is the following result, due
to Moylan [23]:

Theorem 1. The following statements are equivalent.

(i) The system (1) is passive
(ii) There exists a C1 scalar storage function V : Rn → R such that V (x) ≥ 0,

V (0) = 0, and S(x) ≥ 0 such that

LfV (x) = −S(x)
LgV (x) = hT (x) (3)

where LfV (x) = ∂V
∂x

T
f(x) and LgV (x) = ∂V

∂x

T
g(x).

Throughout this paper we assume that the ith agent under consideration can
be represented as a passive system in the above form and possesses a radially
unbounded C2 positive definite storage function Vi.

Graph Theory and Communication Topology

Information exchange between agents can be represented as a graph. We give
here some basic terminology and definitions from graph theory [11] sufficient
to follow the subsequent development.
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Definition 2. By a graph G we mean a finite set V(G) = {vi, . . . , vN}, whose
elements are called nodes or vertices, together with set E(G) ⊂ V×V, whose
elements are called edges. An edge is therefore an ordered pair of distinct
vertices.

If, for all (vi, vj) ∈ E(G), the edge (vj , vi) ∈ E(G) then the graph is said to
be undirected. Otherwise, it is called a directed graph.

An edge (vi, vj) is said to be incoming with respect to vj and outgoing
with respect to vi and can be represented as an arrow with vertex vi as its
tail and vertex vj as its head.

The in-degree of a vertex v ∈ G is the number of edges that have this
vertex as a head. Similarly, the out-degree of a vertex v ∈ G is the number
of edges that have this vertex as the tail.

If the in-degree equals the out-degree for all vertices v ∈ V(G), then the
graph is said to be balanced.

A path of length r in a directed graph is a sequence v0, . . . , vr of r + 1
distinct vertices such that for every i ∈ {0, . . . , r − 1}, (vi, vi+1) is an edge.

A weak path is a sequence v0, . . . , vr of r + 1 distinct vertices such that
for each i ∈ {0, . . . , r − 1} either (vi, vi+1) or (vi+1, vi) is an edge.

A directed graph is strongly connected if any two vertices can be joined
by a path and is weakly connected if any two vertices can be joined by a
weak path.

We quote the following result from [11], which we will use in our subsequent
analysis.

Lemma 1. Let G be a directed graph and suppose it is balanced. Then G is
strongly connected if and only if it is weakly connected.

The remainder of this chapter is organized as follows. In section 2 we
present results on output synchronization of networked passive systems in
the case of linear coupling among agents. We demonstrate output synchro-
nization for a system of N agents with possibly time-varying coupling gains,
switching network topologies and time delays in the network. In Section 3
we treat the case of nonlinear coupling among the agents, with and without
time delay. In Section 4 we present some important problems and examples in
oscillator synchronization, general Lagrangian and Hamiltonian systems and
multi-robot networks which can be addressed using our results.

2 Output Synchronization

The evolution of multi-agents networked passive systems depends fundamen-
tally on their interconnection topology. We list below several assumptions
regarding the interconnection topology that we will make in the sequel. The
specific assumption(s) used in a given result below will be made clear in the
statement of the theorem.
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A1: The agents are weakly connected pointwise in time and form a balanced
graph with respect to information exchange. Hence the information graph
is also strongly connected from from Lemma 1.

A2: The agents form a balanced information graph pointwise in time, and
there exists an infinite sequence of bounded, non-overlapping time intervals
across which the agents are jointly connected.

A3: In addition to assumption A1, we assume that there exists a unique path
between any two distinct nodes.

A4: The agents are weakly connected pointwise in time and form an undirected
graph with respect to information exchange. As all undirected (bidirec-
tional) graphs are also balanced, the agents are also strongly connected
from Lemma 1.

A5: In addition to assumption A4, there exists a unique path between any
two distinct nodes.

2.1 Output Synchronization with Linear Coupling

In this section we show that, when the information graph is balanced and
weakly connected, linear coupling among agents is sufficient to achieve output
synchronization. Recall that each agent’s (passive) dynamics can be written
for i = 1, . . . , N as

ẋi = fi(xi) + gi(xi)ui

yi = hi(xi)
(4)

Definition 3. Suppose we have a network of N agents as above. In the ab-
sence of communication delays, the agents are said to output synchronize if

lim
t→∞

|yi(t)− yj(t)| = 0 ∀i, j = 1, . . . , N (5)

We first analyze the case when the communication topology is fixed, i.e., the
information graph does not change with time. Suppose that the agents are
coupled together using the control

ui =
∑
j∈Ni

K(yj − yi), i = 1, . . . , N (6)

where K is a positive constant and Ni is the set of agents transmitting their
outputs to the ith agent.

Theorem 2. Consider the dynamical system described by (4) with the con-
trol (6). Then under assumption A1, the nonlinear system (4),(6) is globally
stable and the agents output synchronize.

Proof. Consider a positive definite Lyapunov function for the N agent system
as

V = 2(V1 + · · ·+ VN ) (7)
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where Vi is the storage function for agent i. Using Theorem (1) and the control
law (6), the derivative of this Lyapunov function along trajectories of the
system is

V̇ = 2
N∑

i=1

(Lfi
Vi + Lgi

Viui) = 2
N∑

i=1

(−Si(xi) + yT
i ui)

= −2
N∑

i=1

Si(xi) + 2
N∑

i=1

∑
j∈Ni

yT
i K(yj − yi) (8)

= −2
N∑

i=1

Si(xi)− 2K
N∑

i=1

∑
j∈Ni

yT
i yi + 2K

N∑
i=1

∑
j∈Ni

yT
j yi

As the information exchange graph is balanced, we have

2K
N∑

i=1

∑
j∈Ni

yT
i yi = K

N∑
i=1

∑
j∈Ni

yT
i yi + K

N∑
i=1

∑
j∈Ni

yT
j yj (9)

and, therefore, it follows that

V̇ = −2
N∑

i=1

Si(xi)−K
N∑

i=1

∑
j∈Ni

(yi − yj)T (yi − yj) ≤ 0 (10)

Thus the system is globally stable and all signals are bounded. Consider the
set E = {xi ∈ Rn×1, i = 1, . . . , N | V̇≡0}. The set E is characterized by
all trajectories such that {Si(xi)≡0, (yi − yj)T (yi − yj)≡0 ∀j ∈ Ni, ∀i =
1, . . . , N}. Lasalle’s Invariance Principle [16] and strong connectivity of the
network then implies output synchronization of (4).

Remark 1.

(i) In systems without drift, i.e. (fi(xi) = 0), it can be shown [5] that the
outputs will converge to a common constant value.

(ii) Suppose that the dynamics of the N agents are given by identical linear
systems of the form

ẋi = Axi + Bui

yi = Cxi i = 1, . . . , N (11)

and let ui be given by (6). Then, it is easily shown that, if the pair (C,A)
is observable, output synchronization implies synchronization of the full
state, i.e. limt→∞ |xi − xj | = 0 ∀i, j.

(iii) In Theorem 2 the coupling gain K was taken to be a constant for simplic-
ity. The result can be easily extended to the case where K is a positive
definite matrix and thus, the linear consensus protocol of [28] can be ad-
mitted as a special case of Theorem 2.
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The Case of Switching Topology

We next consider the case when the graph topology is not constant, such as
in nearest neighbor scenarios. In the case of linear coupling, it turns out that
output synchronization is still guaranteed for switching graphs under fairly
mild assumptions.

Consider now the coupling control law

ui(t) =
∑

j∈Ni(t)

K(t)(yj − yi), i = 1, . . . , N (12)

In this equation we allow both the gain K(t) > 0 and the set Ni of neighbors
of agent i to be time-dependent. We assume that the gain K(t) is piecewise
continuous and satisfies

Kl ≤ K(t) ≤ Kb, Kl,Kb > 0 ∀i, j (13)

Theorem 3. Consider the dynamical system described by (4), coupled to-
gether using the control law (12) together with the assumption A1. Suppose,
in addition, that there are at most finitely many switches in the graph topology
on any finite time interval. Then the system described is globally stable and
the agents output synchronize.

A more interesting scenario occurs when the agents are allowed to lose
connectivity at every instant, but maintain connectivity in an average sense
to be made precise. Let tij(e), tij(d) denote the time instances at which the
information link or the edge (i, j) is established and broken respectively. In
the subsequent analysis we require that

tij(d)− tij(e) ≥ δij > 0 ∀i, j ∈ E (14)

The above assumption is similar to the dwell time assumption in Theorem 5
of [13], but is less stringent as it does not require the dwell time to be the
same for every agent, but implies it it to be uniformly bounded away from
zero. The notion of joint connectivity was introduced in [13] (see also [36]),
and has been used by several authors including [2, 22, 26, 30]. The agents are
said to be jointly connected across the time interval [t, t + T ], T > 0 if the
agents are weakly connected across the union ∪σ∈[t,t+T ]E(G(σ)). Note that
the above assumption (14) implies that there are only finitely many distinct
graphs in this union for each T . Our main result in this section is then

Theorem 4. Consider the dynamical system described by (4), coupled to-
gether using the control described by (12) together with the assumption A2.
Then the system is globally stable and the agents output synchronize.

Proof. We note that a proof for this result implies Theorem 3 as a corollary.
The proof basically proceeds by demonstrating that the Lyapunov function
candidate
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V = 2(V1 + . . . + VN ) (15)

is a common Lyapunov function for the switching system. Using the pointwise
balanced nature of the information graph, as in Theorem 2, the derivative of
(15) can be written as

V̇ (t) = −2
N∑

i=1

Si(xi)−K(t)
N∑

i=1

∑
j∈Ni(t)

(yi − yj)T (yi − yj) ≤ 0 (16)

implying that the nonlinear system described by (4) and (12) is globally stable
and every solution is bounded. Also, limt→∞ V (t) exists and is finite since V
is lower bounded by zero. Consider a infinite sequence V (ti) i = 1, . . . , where
the times ti approach infinity as i approaches infinity. Then, using Cauchy’s
convergence criteria, ∀ε ≥ 0 ∃M > 0 s.t ∀k > l ≥M

|V (tl)− V (tk)| ≤ ε (17)

As the above statement is true ∀k, l > M , in particular we choose k, l such
that the time interval [tk, tl] encompasses some time interval across which the
agents are jointly connected. Existence of such a time interval is guaranteed
by assumption A2. Therefore, from (16),

|
N∑

i=1

∑
j∈Ni(tk,tl)

∫ tk

tl

K(t)(yi − yj)T (yi − yj)dt| ≤ ε

⇒ |
∑

j∈Ni(tk,tl)

∫ tk

tl

K(t)(yi − yj)T (yi − yj)dt| ≤ ε ∀i

⇒ |
∑

j∈Ni(tk,tl)

∫ tij(d)

tij(e)

K(t)(yi − yj)T (yi − yj)dt| ≤ ε ∀i

as ε is arbitrary this implies

lim
t→∞

∫ t+δij

t

||yi − yj ||2dt = 0, ∀j ∈ Ni(t, t + T ), ∀i

As xi ∈ L∞ ∀i, ẏi ∈ L∞ ∀i, and hence the above limit implies that

lim
t→∞

||yi − yj || = 0 ∀j ∈ Ni(t, t + T ) ∀i

Weak connectivity of the network across the time interval [t, t+T ] then guar-
antees output synchronization of (4).

Remark 2.

(i) If the graph is undirected, the above results are still valid in the case that
different gains (or weights) Kij(t) couple the agents, provided Kij(t) =
Kji(t) ∀i, j.
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2.2 Output Synchronization with Time Delay

In this section, we study the problem of output synchronization when there are
communication delays in the network. The delays are assumed to be constant
and bounded.

Definition 4. The agents are said to output synchronize if

lim
t→∞

|yi(t− Tij)− yj(t)| = 0 ∀i, j j 
= i (18)

where Tij is the sum of the delays along the path from the ith agent to the jth

agent.

It is to be noted that assumption A3 is needed to ensure uniqueness of Tij ∀j 
=
i. Let the agents be coupled together using the control

ui(t) =
∑
j∈Ni

K(yj(t− Tji)− yi) i = 1, . . . , N (19)

where K > 0 is a constant and Ni is the set of agents transmitting their
outputs to the ith agent.

Theorem 5. Consider the dynamical system described by (4) with the control
law (19). Then under the assumption A3, the nonlinear system (4), (19) is
globally stable and the agents output synchronize in the sense of (18).

Proof. Consider a positive definite Lyapunov Krasovskii functional for the N
agent system as

V = K

N∑
i=1

∑
j∈Ni

∫ t

t−Tji

yT
j (τ)yj(τ)dτ + 2(V1 + . . . + VN ) (20)

The derivative of this Lyapunov-functional along trajectories of the system is
given as

V̇ = K

N∑
i=1

∑
j∈Ni

(yT
j yj − yj(t− Tji)T yj(t− Tji)) + 2

N∑
i=1

(Lfi
Vi + Lgi

Viui)

Using Theorem (1), the derivative reduces to
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V̇ = K

N∑
i=1

∑
j∈Ni

(yT
j yj − yj(t− Tji)T yj(t− Tji)) + 2

N∑
i=1

(−Si(xi) + yT
i ui)

= K

N∑
i=1

∑
j∈Ni

(yT
j yj − yj(t− Tji)T yj(t− Tji))

−2
N∑

i=1

Si(xi) + 2
N∑

i=1

∑
j∈Ni

yT
i K(yj(t− Tji)− yi)

= K

N∑
i=1

∑
j∈Ni

(yT
j yj − yj(t− Tji)T yj(t− Tji))

−2
N∑

i=1

Si(xi)− 2K

N∑
i=1

∑
j∈Ni

yT
i yi + 2K

N∑
i=1

∑
j∈Ni

yj(t− Tji)T yi (21)

As the graph is balanced

K
N∑

i=1

∑
j∈Ni

yT
j yj = K

N∑
i=1

∑
j∈Ni

yT
i yi (22)

Using this in (21) yields,

V̇ = −K

N∑
i=1

∑
j∈Ni

yT
i yi −K

N∑
i=1

∑
j∈Ni

yj(t− Tji)T yj(t− Tji)

+ 2K

N∑
i=1

∑
j∈Ni

yj(t− Tji)yi − 2
N∑

i=1

Si(xi)

= −K

N∑
i=1

∑
j∈Ni

(yj(t− Tji)− yi)T (yj(t− Tji)− yi)− 2
N∑

i=1

Si(xi) ≤ 0

Therefore the system is globally stable, every solution is bounded, limt→∞ V (t)
exists and is finite. Differentiating V̇ we obtain

V̈ = −2
N∑

i=1

∂Si(xi)
∂xi

ẋi − 2K

N∑
i=1

∑
j∈Ni

(
(
∂yi

∂xi
− ∂yj(t− Tji)

∂xj
)(ẋi − ẋj(t− Tji))

)T

.(yj(t− Tji)− yi) (23)

By assumption, all partial derivatives are defined and are continuous. Using
the fact that xi ∈ L∞ ∀i, we have ∂Si(xi)

∂xi
, ∂yi

∂xi
, ẋi ∈ L∞ ∀i (as xi ∈ L∞,

R.H.S of (4) is bounded) which implies that V̈ ∈ L∞ and hence, the function
V̇ is uniformly continuous. Invoking Barbalat’s Lemma [16] we conclude that
limt→∞ V̇ = 0. Thus,
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limt→∞ |yj(t− Tji)− yi| = 0 ∀j ∈ Ni i = 1, . . . , N

Strong connectivity of the interconnection graph then implies output synchro-
nization of (4) in the sense of (18).

2.3 Nonlinear Coupling Among Agents

We next consider the case of nonlinear coupling. The agents are assumed to be
coupled together using any nonlinear passive control strategy. We demonstrate
that under such a framework the multi-agent system is globally stable and
output synchronizes for a class of such controls.

Let χ(z) : R→ R be a nonlinear function satisfying the following proper-
ties

(i) χ(z) is continuous and locally Lipschitz
(ii) χ(−z) = −χ(z) ∀z 
= 0

If the argument z ∈ Rn, then by χ(z) ∈ Rn×1 we mean the function χ(.)
acting componentwise on the vector z. Let the agents be coupled together
using the control

ui =
∑

(i,j)∈E(G)

χ(yj − yi) i = 1, . . . , N (24)

which takes as argument the difference of each agent’s output with that of its
neighbors. In the sequel, for the sake of brevity χ(yj − yi) ≡ χji and similarly
for all other controls and scalar functions unless mentioned otherwise.

The controls χji ∀i, j are assumed to be passive, therefore they satisfy the
differential version of the passivity property outlined earlier,

V̇ji + Sji = (yj − yi)T χji (25)

Let the Lyapunov function candidate for the system be given as

V =
N∑

i=1

Vi +
∑

(i,j)∈E(G)

Vji (26)

Our main result in this section is the following:

Theorem 6. Consider the system (4) together with the control law given
by (24). Then under assumption A4, the nonlinear system (4), (24) is globally
stable and all trajectories converge to the largest invariant set where V̇ = 0.

Proof. Using Theorem (1), the control law (24) and (25), the derivative of the
Lyapunov function (26) along trajectories of the system is given as
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V̇ =
N∑

i=1

(Lfi
Vi + Lgi

Viui) +
∑

(i,j)∈E(G)

V̇ji

=
N∑

i=1

(−Si(xi) + yT
i ui) +

∑
(i,j)∈E(G)

(−Sji + (yj − yi)T χji)

= −
N∑

i=1

Si(xi) +
N∑

i=1

∑
(i,j)∈E(G)

yT
i χji +

∑
(i,j)∈E(G)

(−Sji + (yj − yi)T χji)

Let us examine the term

N∑
i=1

∑
(i,j)∈E(G)

yT
i χji (27)

in the above expression for V̇ . As the information exchange structure is bidi-
rectional, it is easy to see that corresponding to every term yT

i χji for some
i, j there is a corresponding term yT

j χij in the summation (27). Then, using
Property 2 of the function χ(.), we can rewrite this term as −yT

j χji. Thus

N∑
i=1

∑
(i,j)∈E(G)

yT
i χji = −

∑
(i,j)∈E(G)

(yj − yi)
T
χji (28)

It follows that

V̇ = −
N∑

i=1

Si(xi)−
∑

(i,j)∈E(G)

Sji ≤ 0

Therefore the system is globally stable, limt→∞ V (t) exists and is finite. Con-
sider the set E = {xi ∈ Rn×1, i = 1, . . . , N | V̇≡0}. The set E is character-
ized by all trajectories such that {Si(xi)≡0, Sji≡0 ∀ ∈ (i, j) ∈ E(G), ∀i =
1, . . . , N}. Using Lasalle’s Invariance Principle [16], all solutions of the dy-
namical system given by (4) and (24) converge to M as t → ∞, where M is
the largest invariant set contained in E.

Asymptotic properties of the signals, and in specific output synchroniza-
tion, depend on the scalar functions Si, Sji ∀i, j, and consequently on the spe-
cific choice of the control action χ(.). It is important to note that by suitably
choosing the controller dissipation functions Sij ∀i, j, we can steer the differ-
ence of the agents’ outputs to a desired set. If Sij ≡ 0 ⇔ (yi − yj) ≡ 0 ∀i, j,
then output synchronization results. We next investigate a class of controls
which ensure output synchronization, namely the sector nonlinearities.

Let φ(z) : R → R be a nonlinear function satisfying the following proper-
ties
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(i) φ(z) is continuous and locally Lipschitz
(ii) φ(z) = 0 ⇔ z = 0
(iii) φ(−z) = −φ(z) ∀z 
= 0
(iv) αz2 ≤ φ(z)z ≤ βz2

where α, β > 0. As before, if the argument z ∈ Rn, then by φ(z) we mean the
function φ(.) acting componentwise on the vector z. Suppose that the control
law ui is given by

ui =
∑

(i,j)∈E(G)

φji i = 1, . . . , N (29)

Then we can show the following

Theorem 7. Consider the system (4) together with the control law (29).
Then, under assumption A4, the nonlinear system (4), (29) is globally stable
and the agents output synchronize in the sense of (5).

Proof. It can be easily computed that for the control φ(.)

Vji = 0 ; Sji = (yj − yi)T φji

Therefore using Theorem 6 the closed loop system given by (4),(29) is globally
stable and all trajectories converge to the largest invariant set where Sji ≡ 0.
Property 2 of the control φ(.) together with strong connectivity of the network
then implies output synchronization of (4).

Remark 3.

(i) Theorem 7 can also be taken as the generalized version of the nonlinear
consensus protocol of [28].

(ii) A proof for synchronization of Kuramoto oscillators, for the case when
the oscillators have identical natural frequencies [14, 22], follows from the
application of Theorem 7.

3 Nonlinear Coupling with Time-Delay

In this section we demonstrate delay independent stability (and in some cases
output synchronization) of the multiagent system using any nonlinear passive
control strategy. The key tool we use is the scattering transformation which
was earlier used in the problem of bilateral teleoperation [1], [24] to guarantee
delay independent stability. In the new setting (with the scattering transfor-
mation) the agents transmit the so called scattering variables instead of their
outputs to their neighbors. The reader is referred to [1], [24] and the references
within to get a background on the scattering transformation.

Let the agents be coupled together using the control
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ui =
∑

(i,j)∈E(G)

χ(yjs − yi) i = 1, . . . , N (30)

where as before, the controls χ(.) ∈ R→ R act componentwise on the vector
argument (yjs − yi). In the sequel, for the sake of brevity χ(yjs − yi) ≡ χjsi

and similarly for all other controls and scalar functions unless mentioned oth-
erwise. The reference variables yjs, yis are derived out of the scattering trans-
formation. The scattering transformation is given as

s+
ij = 1√

2b
(−χjsi + byjs) ; s−ij = 1√

2b
(−χjsi − byjs)

s+
ji = 1√

2b
(χisj + byis) ; s−ji = 1√

2b
(χisj − byis)

(31)

where b > 0 is a constant. The superscript +,− for the scattering variables is
a convention for the direction of power flow. As mentioned before, the agents
transmit the scattering variables instead of their outputs. This is illustrated
schematically in Figure 1. The ith agent transmits the scattering variable s+

ij

to the jth agent who receives it as the scattering variable s+
ji. The jth agent

then uses the the control χisj to extract the signal yis out of the incoming
scattering variable s+

ji. A similar procedure is used to obtain the reference
signal yjs by the ith agent. It is important to observe from (30) that the ith

agent is participating in ni closed loops as the one demonstrated in Figure 1,
where ni is the number of neighbors of the ith agent. As the scattering variables

Transf.
Scattering

Transf.
Scattering

Delay

Delay

Agent j

χjsi

Agent i

yi yjs s+
ij s+

ji

s−ji

yis yj

s−ij
χjsi χisj χisj

Tij

Tji

Fig. 1. The Scattering Transformation

are transmitted across the network, they satisfy the following relation

s+
ji = s+

ij(t− Tij)

s−ij = s−ji(t− Tji) (32)

The scattering transformation renders the communication channel passive and
the storage function for the communication channel is given as

V ij
channel =

1
2

∫ t

0

(||s+
ij ||2 − ||s+

ji||2 + ||s−ji||2 − ||s−ij ||2)dτ

=
1
2

∫ t

0

(||s+
ij ||2 − ||s+

ij(τ − Tij)||2 + ||s−ji||2 − ||s−ji(τ − Tji)||2)dτ

=
1
2

∫ t

t−Tij

||s+
ij ||2dτ +

1
2

∫ t

t−Tji

||s−ji||2dτ ≥ 0
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where the notation ||.|| denotes the Euclidean norm of the enclosed signal. It
is easy to verify from (31) that

V ij
channel =

1
2

∫ t

0

(||s+
ij ||2 − ||s+

ji||2 + ||s−ji||2 − ||s−ij ||2)dτ

=
∫ t

0

(−χT
jsiyjs − χT

isjyis)dτ ≥ 0 (33)

The controls χjsi ∀i, j are assumed to be passive, therefore they satisfy
the differential version of the passivity property outlined earlier,

V̇jsi + Sjsi = (yjs − yi)T χjsi (34)

where symbols have the previously defined interpretation. Our main result in
this section is:

Theorem 8. Consider the system (4) together with the control law (30) and
the scattering transformation (31). Then under assumption A5, the nonlinear
system (4), (30), (31) is globally stable.

Proof. Consider the following Lyapunov function candidate for the system as
following Lyapunov function

V =
N∑

i=1

Vi +
∑

(i,j)∈E(G)

V ij
channel +

N∑
i=1

∑
(i,j)∈E(G)

Vjsi (35)

The derivative of V along trajectories of the system can be computed using
Theorem 1, (33), (34) as

V̇ = −
N∑

i=1

Si(xi) +
N∑

i=1

∑
(i,j)∈E(G)

yT
i χjsi +

∑
(i,j)∈E(G)

(−χT
jsiyjs − χT

isjyis)

+
N∑

i=1

∑
(i,j)∈E(G)

−Sjsi + (yjs − yi)T χjsi

It can be verified that
N∑

i=1

∑
(i,j)∈E(G)

yT
i χjsi + (yjs − yi)T χjsi +

∑
(i,j)∈E(G)

(−χT
jsiyjs − χT

isjyis) = 0

Therefore the derivative of the Lyapunov function reduces to

V̇ = −
N∑

i=1

Si(xi)−
N∑

i=1

∑
(i,j)∈E(G)

Sjsi ≤ 0

Thus the system is globally stable, every solution is bounded and limt→∞ V (t)
exists and is finite.
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As was the case in Theorem 6, asymptotic properties of the signals de-
pend on the scalar functions Si, Sjsi ∀i, j, and consequently on the specific
choice of the control action χ(.). It seems likely that Theorem 8 can be ex-
tended to ensure that the difference of agents’ outputs reach a desired limit
set by suitably choosing the controller dissipation functions Sij ∀i, j. The
corresponding analysis tool for the same would be the extension of Lasalle’s
invariance principle for autonomous time-delay systems [12]. This shall be a
subject of our future research.

Next, we study case where the control χ(.) ≡ φ(.) where φ(.) retains the
properties described in Section 2.3. The control law ui for the ith agent is then
given by

ui =
∑

(i,j)∈E(G)

φjsi i = 1, . . . , N (36)

Then we can show the following

Theorem 9. Consider the system (4) together with the control law (36)
and the scattering transformation (31). Assuming A5, the nonlinear sys-
tem (4), (36), (31) is globally stable and the agents output synchronize in
the sense of (18).

Proof. It is to be noted that for the control φ(.)

Vjsi = 0 ; Sjsi = (yjs − yi)T φjsi

Consider the following Lyapunov function function

V =
N∑

i=1

Vi +
∑

(i,j)∈E(G)

V ij
channel (37)

Following Theorem 8, the derivative of (37) along trajectories is given as

V̇ = −
N∑

i=1

Si(xi)−
N∑

i=1

∑
(i,j)∈E(G)

(yjs − yi)T φjsi ≤ 0

Therefore the system is globally stable, limt→∞ V (t) exists and is finite.
As xi ∈ L∞ ∀i, we have that V̈ ∈ L∞, and hence the function V̇ is uniformly
continuous. Invoking Barbalat’s Lemma we conclude that limt→∞ V̇ = 0.
Thus, limt→∞(yjs− yi)T φjsi = limt→∞(yis− yj)T φisj = 0 (i, j) ∈ E(G). This
implies that

lim
t→∞

(yjs − yi) = lim
t→∞

(yis − yj) = 0 (i, j) ∈ E(G) (38)

To establish output synchronization further analysis is needed. The transmis-
sion equations (32) can be rewritten as
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yis = yjs(t− Tij)−
1
b
(φisj + φjsi(t− Tij))

yjs = yis(t− Tij)−
1
b
(φjsi + φisj(t− Tji))

From the above two equations we have

lim
t→∞

yis = lim
t→∞

yjs(t− Tij)− lim
t→∞

1
b
(φisj + φjsi(t− Tij))

lim
t→∞

yjs = lim
t→∞

yis(t− Tji)− lim
t→∞

1
b
(φjsi + φisj(t− Tji))

As limt→∞ φisj = limt→∞ φjsi = 0, we have

lim
t→∞

yis = lim
t→∞

yjs(t− Tij)

lim
t→∞

yjs = lim
t→∞

yis(t− Tji)

Therefore using (38) we have that

lim
t→∞

yi = lim
t→∞

yj(t− Tji)

lim
t→∞

yj = lim
t→∞

yi(t− Tij) (i, j) ∈ E(G)

Strong connectivity of the network then implies output synchronization.

Remark 4. It is interesting to note that output synchronization in the sense

of (18) implies existence of equations of the kind

lim
t→∞

|yi − yi(t− T1)| = . . . = lim
t→∞

|yi − yi(t− Tm)| = 0

where m is the number of closed communication loops in which the ith agent
participates, and Ts s = 1, . . . ,m is the closed loop delay in the sth loop.
Therefore, the results in this section hint at the existence of delay induced
periodicity in the outputs [39].

4 Examples

Synchronization of Kuramoto Oscillators

The Kuramoto model consists of a population of N oscillators whose dynamics
are governed by the following equations

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi), i = 1, . . . , N (39)

where θi ∈ S1 is the phase of the ith oscillator, ωi ∈ R is its natural fre-
quency and K > 0 is the coupling gain. It is to be noted that the coupling
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between the oscillators is all-to-all and hence bidirectional. The problem then
is to characterize the coupling gain K so that the oscillators phase velocities
synchronize, i.e.

lim
t→∞

|θ̇i − θ̇j | = 0 ∀i, j (40)

To get a nice intuition about the problem, the oscillators may also be thought
of as points moving on a unit circle. Imagining these oscillators as points on a
circle, the points then become frequency locked, or in other words they start
moving with the same angular frequency asymptotically. The reader is referred
to [32] for an excellent survey of the problem and the subsequent efforts to
address it.

Kuramoto demonstrated that in the continuum limit where N →∞, when
the natural frequencies are distributed according to a unimodal probability
density, then for a large enough coupling gain K the oscillator population
splits into two groups, one of which starts synchronizing and eventually start
moving with the mean natural frequency of the group. Numerical simulations
hint that the oscillators synchronize exponentially. To date there is no analy-
sis which shows that the oscillators in the original Kuramoto model (where
the oscillators have different natural frequencies) synchronize exponentially
(even locally) and quoting Strogatz [32] “Nobody has even touched the prob-
lems of global stability and convergence”. In this example we demonstrate
that Theorem 3 and Theorem 7 provide a constructive tool to address the
synchronization problem for the Kuramoto oscillators.

We analyze the Kuramoto model for the case where

• There are finite number N of oscillators.
• The natural frequencies ωi ∀i are picked arbitrarily from the set of reals.

First, consider the case when |θi| ≤ π
4 and the natural frequencies are same

for all oscillators and are given by ωs. Transforming the system to a rotating
frame by the transformation Φi → θi − ωst ∀i, the system (39) can be written

Φ̇i = u u =
K

N

N∑
j=1

sin(Φj − Φi)

yi = Φi i = 1, . . . , N (41)

This above system is passive with storage function V = 1
2ΦT Φ, where Φ =

[Φ1 . . . ΦN ]T . From Theorem 7, it immediately follows that

lim
t→∞

|Φj − Φi| = 0 ∀i, j = 1, . . . , N (42)

Reverting back to the inertial frame we have

lim
t→∞

|θ̇i − ωs| = 0 ∀i (43)
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and, hence the oscillators synchronize to the common frequency ωs for all
K ≥ 0.

The more interesting scenario is when all oscillators have different natural
frequencies. In the subsequent analysis we additionally assume that

• All oscillators at t = 0 are contained in the set D where D = {θi, θj | |θi−
θj | < π

2 ∀i, j = 1, . . . , N}.

As we are interested in dynamics of the angular frequencies, we differenti-
ate the Kuramoto model (39) to get

θ̈i =
K

N

N∑
j=1

cos(θj − θi)(θ̇j − θ̇i), i = 1, . . . , N (44)

Choosing θ̇i = xi and cos(θj − θi) = gji(t), we can construct a state space
representation for the Kuramoto model as

ẋi = u ; u =
K

N

N∑
j=1

gji(t)(xj − xi)

yi = xi (45)

At this point let us recall a result from [8].

Theorem 10. Consider the previously described system. Let all initial phase
differences at t=0 be contained in the compact set D = {θi, θj | |θi − θj | ≤
π
2 − 2ε ∀i, j = 1, . . . , N} where ε < π

4 is an arbitrary nonnegative number.
Then there exists a coupling gain Kinv > 0 such that (θi − θj) ∈ D ∀t > 0.

This result ensures that for a sufficiently large coupling gain Kinv, the
phase differences are positively invariant with respect to D. Selecting K >
Kinv, (θj − θi) ∈ D ∀t ≥ 0⇒ cos(θj − θi) = gji(t) > 0. As cos(.) is an even
function, gij(t) = gji(t) ∀i, j.

The dynamics given by (45) represent a first order integrator that is passive
with V = 1

2xT x as the storage function, where x = [x1 . . . xN ]T is the vector
representing the angular rates of the oscillators. Choosing φ(z) = xj − xi,
noting that Kij(t) = gij(t), and invoking the nonlinear version of Theorem 3
(see Remarks 2, 3) we have

lim
t→∞

|xi − xj | = 0 ∀i, j or

lim
t→∞

|θ̇i − θ̇j | = 0 ∀i, j (46)

and, hence the oscillators synchronize in the sense of (40). To the best of
authors’ knowledge, it was demonstrated for the first time in [8] that the
oscillators locally exponentially synchronize to the mean frequency.
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Mechanical Systems and Multi-Robot Networks

Following [31], the Euler-Lagrange equations of motion for N mechanical sys-
tems (under the gravitational potential field) are given as

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi

yi = q̇i i = 1, . . . , N (47)

where q ∈ Rn are the generalized configuration coordinates for the system
with n degree of freedom, τ ∈ Rn is the vector of generalized forces acting on
the system, M(q) is the n×n symmetric, positive definite inertia (generalized
mass) matrix, C(q, q̇) is the n× n vector of Centripetal and Coriolis torques
and g(q) is the n×1 vector of gravitational torques. Although the above equa-
tions of motion are coupled and non-linear, they exhibit certain fundamental
properties due to their Lagrangian dynamic structure.

Property 1 The inertia matrix M(q) is symmetric positive definite and
there exists positive constants m and M such that

mI ≤M(q) ≤MI (48)

Property 2 Under an appropriate definition of the matrix C, the matrix
Ṁ - 2C is skew symmetric.

The dynamics (47) are passive with

Vi(qi, q̇i) =
1
2
q̇T
i Mi(qi)q̇i + Gi(qi) (49)

where G(qi) is the gravitational potential energy and gi(qi)=∂Gi

∂qi
. It can be

verified (using Property 2) that

Vi(t)− Vi(0) =
∫ t

0

τi(s)T q̇i(s)ds (50)

and hence the dynamics are passive with (τi, q̇i) as the input-output pair.
It is easily seen that Vi ∀i is positive definite. Let the interconnection

structure between the N systems satisfy assumption A1, and the system are
coupled together using the control

τi =
∑
j∈Ni

K(q̇j − q̇i), i = 1, . . . , N (51)

Then invoking Theorem 2 with

V = 2(V1 + . . . + VN ) (52)

as the Lyapunov function candidate, the systems output synchronize and
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lim
t→∞

|q̇i(t)− q̇j(t)| = 0 ∀i, j = 1, . . . , N (53)

Similarly, the agents output synchronize in the presence of communication
delays using Theorem 5.

Example 1: Consider a system constituting point masses, hence the matrix
M(q) = m is a constant, and P (q) = 0. The equations of motion for a N body
system reduce to

miq̈i = τi

yi = q̇i ∀i (54)

Let the systems be coupled together using the control (51). It is easily seen
that this system is passive with V =

∑N
i=1 2Vi =

∑N
i=1 miq̇

T
i q̇i as the positive

semi-definite storage function. If the coupling torques are given by (51), then
using the calculations in Theorem 2 and Barbalat’s Lemma it can be shown
that limt→∞ τi = 0 which implies velocity synchronization. Furthermore, it is
easily seen that

∑N
i=1 τi = 0, and thus from (54)

∑N
i=1 miq̈i = 0. Hence the

total momentum
∑N

i=1 pi =
∑N

i=1 miq̇i of the system is invariant, and

lim
t→∞

q̇i =
m1q̇1(0) + . . . + mN q̇N (0)

m1 + . . . + mN
(55)

where q̇i(0) is the velocity of the ith particle at time t = 0.
Consider a network of four agents, with a ring like communication struc-

ture. The agent dynamics are given by

m1q̈1 = K(q̇2 − q̇1)
m2q̈2 = K(q̇3 − q̇2)
m3q̈3 = K(q̇4 − q̇3)
m4q̈4 = K(q̇1 − q̇4) (56)

Let m1 = 1,m2 = 2,m3 = 4,m4 = 4.5 and q̇1(0) = 3, q̇2(0) = −4, q̇3(0) =
−1, q̇4(0) = 2, so that

∑4
i=1 miq̇i(0) = 0. As seen in Figure 2, the agent

velocities converge to the origin as the initial mean momentum of the system
was zero.

Example 2: The next example of two simple pendula is used to bring
out some interesting phenomena in oscillator synchronization. Consider two
pendula of lengths L1 and L2 with the following dynamics

q̈1 +
g

L1
sin(q1) = u1

q̈2 +
g

L2
sin(q2) = u2 (57)

and choose u1 = −u2 = K(q̇2 − q̇1). The simple pendulum is passive from
ui → q̇i i = 1, 2 with Vi = 1

2 q̇2
i + g

Li
(1 − cos(qi)) as the positive definite
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Fig. 2. The agent velocities converges to the origin.

storage function. Invoking Theorem 2, all trajectories converge to the largest
invariant set where q̇1 ≡ q̇2. From (57), this implies

g

L1
sin(q1) ≡

g

L2
sin(q2) (58)

If the pendulum lengths are different, the largest invariant set is given as
qi ≡ 0 ⇒ q̇i ≡ 0, and hence the oscillations die out asymptotically as seen in
Figure 3.
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Fig. 3. The oscillations die out when the pendula have different lengths.

If the two pendulums are identical, the largest invariant set is of the kind
q1 ≡ q2, and thus the oscillators synchronize as seen in Figure 4.

Passivity from ui → q̇i guarantees passivity from −ui → −q̇i. Exploiting
this fact we may chose the control u1 = u2 = −K(q̇2 − (−q̇1)). Using The-
orem 2 all trajectories approach the largest invariant set where q̇1 ≡ −q̇2.
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Fig. 4. The pendula move synchronously when they have identical lengths

From (57) we get
g

L1
sin(q1) ≡ −

g

L2
sin(q2) (59)

As before, for non-identical pendula the oscillations die out, for identical pen-
dula the largest invariant set is of the kind q1 ≡ −q2, and the pendula move
asynchronously (Figure 5).
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Fig. 5. Identical pendula move out of phase

Next we address the tracking problem for multiple robots when there are
delays in the network. In such a scenario the goal is to coordinate the motion
of multiple robots and ensure that every robot tracks the position (and not
only velocity using (51)) of every other robot asymptotically. It is evident that
to develop an effective coordination strategy within the passivity framework,
the following goals need to be accomplished
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• A feedback control law that renders the manipulator dynamics passive
with respect to an output from which the joint displacement information
is observable.

• A passive coordination control law which uses this output to kinematically
lock the motion of the N robots.

In order to achieve the first design objective, we choose torque for the ith

robot as

τi = −Mi(qi)λq̇i − Ci(qi, q̇i)λqi + gi(qi) + τ̄i (60)

where τ̄i is the additional motor torque required for coordination control and
λ is a constant positive definite diagonal matrix. The system dynamics (47)
now reduce to

q̇i = −λqi + ri

Miṙi + Ciri = τ̄i (61)

where

ri = q̇i + λqi (62)

is the new output of the ith robot. Consider Vi = 1
2rT

i Miri as the positive semi-
definite storage function for each robot. It can be verified (using Property 2)
that

Vi(t)− Vi(0) =
∫ t

0

τ̄T
i (z)ri(z)dz i = 1, . . . , N ∀t > 0

Therefore the dynamics described by (61) are lossless with (τ̄i, ri) as the
input-output pair.

The robots are assumed to satisfy assumption A3, and following (19), let
the robots be coupled using a the control

τ̄i =
∑
j∈Ni

K(rj(t− Tji)− ri) i = 1, . . . , N (63)

where K > 0 is a constant. Let the positive semi-definite storage function for
the system be given by

V = K

N∑
i=1

∑
j∈Ni

∫ t

t−Tji

rT
j (τ)rj(τ)dτ + 2(V1 + . . . + VN )

Following the calculations in Theorem 5 (and noting that Si(ri) = 0 ∀i)

V̇ = −K

N∑
i=1

∑
j∈Ni

(rj(t− Tji)− ri)T (rj(t− Tji)− ri)

= −K−1
N∑

i=1

τ̄T
i τ̄i ≤ 0
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Thus ri ∈ L∞ ⇒ qi, q̇i ∈ L∞ ∀i (from (61)). It can seen from the above
equation that the signals rj(t − Tji) − ri ∈ L2 ∀j ∈ Ni, i = 1, . . . , N .
Using (62)

rj(t− Tji)− ri =
(
q̇j(t− Tji)− q̇i

)
+ λ
(
qj(t− Tji)− qi

)
= ėji + λeji

where eji = qj(t − Tji) − qi represents the position tracking error between
the jth robot and the ith robot. Therefore the signal ėji + λeji ∈ L2 which
guarantees asymptotic convergence of the tracking error eji to the origin.
Strong connectivity of the network then implies

lim
t→∞

|qi(t− Tij)− qj | = 0 ∀i, j

and thus the robots track each other asymptotically. The above results were
used in [7] to solve the bilateral teleoperation problem without using the scat-
tering transformation approach [1], and thus was the first result that guaran-
teed delay independent asymptotic position and force tracking in a nonlinear
bilateral teleoperation system.

Example 3: Consider four point masses with the the previously described
dynamics (54). It was shown recently in [18] that the flocking and consensus
problem for a second order drift free system is nontrivial, and mimicking the
linear consensus protocols in [28] can potentially make the system unstable
for certain choices of the coupling gains. We apply the proposed methodology
to ensure asymptotic convergence of the position and velocity tracking errors
to the origin. Following (60), choosing λ = 1 and applying the preliminary
feedback

τi = −miq̇i + τ̄i ∀i
the dynamics reduce to

q̇i = −qi + ri

miṙi = τ̄i ∀i

where ri = q̇i + qi. Let the communication structure among the agents be
described by a ring topology. Then the system dynamics (using (63)) are
given as

m1ṙ1 = K(r2(t− T21)− r1)
m2ṙ2 = K(r3(t− T32)− r2)
m3ṙ3 = K(r4(t− T43)− r3)
m4ṙ4 = K(r1(t− T14)− r4)

where K = 1, mi ∀i are chosen same as before, Tij denotes the delay from
the ith agent to the jth agent. In this simulation T21 = .1s, T32 = .2s, T43 =
1s, T14 = 1.5s and as seen in Figure 6, the agents synchronize asymptotically.
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Fig. 6. The four agents synchronize in spite of the communication delay

5 Conclusions

In this paper a new formulation was developed which views the multi-agent
coordination and control problem from an input-output perspective. This ap-
proach has been shown to unify a lot of results in the literature where the
information graph is restricted to be balanced and connected over uniformly
bounded time intervals. Given that agents have nonlinear control affine, in-
put/output passive, open loop stable dynamics, control laws were developed
to achieve output synchronization. In the specific case where the coupling
control is linear in the outputs, it was shown that output synchronization
is robust to arbitrary constant (bounded) time delays. Finally, the proposed
results were used as constructive tools in solving many problems such as the
open problem of exponential synchronization of Kuramoto oscillators, out-
put synchronization of Lagrangian systems and the multi-robot coordination
problem.

Systems which are minimum phase and relative degree one, are feedback
equivalent to a passive system. Hence the proposed methodology is also ap-
plicable to any nonlinear system satisfying the above two properties. It will
be interesting to see the extension of the formulation to a system with lower
triangular structure via backstepping. Future research involves extension of
the proposed approach to rooted communication graphs.
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Summary. In this review we explore the possibility of adapting first order hybrid
feedback controllers for nonholonomically constrained systems to their dynamical
counterparts. For specific instances of first order models of such systems, we have
developed gradient based hybrid controllers that use Navigation functions to reach
point goals while avoiding obstacle sets along the way. Just as gradient controllers
for standard quasi-static mechanical systems give rise to generalized “PD-style”
controllers for dynamical versions of those standard systems, so we believe it will
be possible to construct similar “lifts” in the presence of non-holonomic constraints
notwithstanding the necessary absence of point attractors.

1 Introduction

The use of total energy as a Lyapunov function for mechanical systems has a
long history [1] stretching back to Lord Kelvin [2]. Unquestionably, Arimoto
[3] represents the earliest exponent of this idea within the modern robotics
literature, and, in tribute to his long and important influence, we explore
in this paper its extension into the realm of nonholonomically constrained
mechanical systems.

The notion of total energy presupposes the presence of potential forces
arising from the gradient of a scalar valued function over the configuration
space. We focus our interest on “artificial cost functions” introduced by a
designer to encode some desired behavior as originally proposed by Khatib
[4, 5]. However, we take a global view of the task, presuming a designated
set of prohibited configurations — the “obstacles” — and a designated set
of selected configurations — the “goal,” which we restrict in this paper to
be an isolated single point. We achieve the global specification through the
introduction of a Navigation Function (NF) [6] — an artificial potential
function that attains a maximum value of unity on the entire boundary of the
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obstacle set, and its only local minimum, at zero, exactly on the isolated goal
point. Such functions are guaranteed to exist over any configuration space of
relevance to physical mechanical systems [7], and constructive examples have
been furnished for a variety of task domains [6, 8, 9, 10].

NF-generated controls applied to completely actuated mechanical systems
force convergence to the goal from almost every initial condition and guarantee
that no motions will intersect the obstacle set along the way. In the dynamical
setting, where the role of kinetic energy is important, they achieve a pattern of
behavior analogous to that of similarly controlled corresponding quasi-static
dynamics. For example, in the one degree of freedom case, the dynamical
setting is represented by the familiar spring-mass-damper system

mq̈ + cq̇ + kq = 0 (1)

and the corresponding quasi-static model arises through a neglect of the in-
ertial forces, m→ 0 in (1), yielding

cq̇ + kq = 0 (2)

To illustrate the nature of NF-gradient-based controllers in this simple
setting, take the configuration space to be Q := {q ∈ R : |q| ≤ 1} with nav-
igation function ϕ(q) := 1

2kq2, implying that {0} = ϕ−1[0] is the goal and
{−1, 1} = ϕ−1[1] the obstacle set. We imagine that both systems, (1), (2),
arise from application of the NF-gradient control law, u := −∇ϕ, to the re-
spective open loop,

u = mq̈ + cq̇

or
u = cq̇.

We observe that ϕ is a global Lyapunov function for (2) guaranteeing that
all initial conditions give rise to motions that avoid the obstacle set while
converging asymptotically on the goal set. Analogously, the total energy,
µ := 1

2 q̇2 + ϕ(q) is a Lyapunov function for the velocity-limited extension of
Q, X := µ−1[0, 1] =

{
(q, q̇) ∈ R

2 : µ(q, q̇) ≤ 1
}
. This guarantees that all ini-

tial conditions in X give rise to motions that avoid the obstacle (and, in fact,
are repelled from the entire boundary, µ−1[1]) while converging asymptoti-
cally on the zero velocity goal set, µ−1[0] = {(0, 0)}. A more general global
version of Arimoto’s [3] adaptation of Lord Kelvin’s observations has been
presented in greater detail in [11].

In contrast, for incompletely actuated mechanical systems, when the de-
grees of freedom exceed the number of independently controlled actuators,
the applicability of NF-gradient-based controllers to either dynamical or quasi-
static mechanical systems remains largely unexplored. One particularly impor-
tant class of such systems arises in the presence of nonholonomic constraints
— systems with intrinsically unavailable velocities whose absence cannot be
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expressed in terms of configuration space obstacles [12]. In such settings, there
is an inherent degree of underactuation, since no amount of input work can be
exerted in the forbidden directions. In an echo of Arimoto’s [3] “lift” of first
order gradient dynamics (2) to damped second order mechanical dynamics (1),
this paper explores the relationship between quasi-static and fully dynamical
NF-gradient controllers for a class of nonholonomic systems.

One very important general observation about nonlinear systems that
throws a shadow on every aspect of this exploration was made two decades ago
by Brockett [13] who pointed out that nonlinear systems may be completely
controllable while failing to be smoothly stabilizable. Nonholonomically con-
strained systems suffer this defect, so that no smooth feedback controller,
NF-gradient or otherwise, could ever stabilize a single point goal. However,
switching controllers incur no such limitation.

In the next section we will introduce a switching controller for a broad
class of systems that alternately runs “down” and then “across” the gradient
slope to bring all motions arbitrarily close to the goal without hitting any
obstacles. For these classes we can prove this analytically. The next section
addresses the same class of systems, now cast in the dynamical setting. We
show how to recast the hybrid controller to give the analogous result for these
second order systems. Finally, as an illustrative example, we present numerical
simulations of the rolling disk defined in a configuration space with a simple
sensory model that imposes a particular configuration space topology.

2 Hybrid Controller for Nonholonomic Kinematic
Systems

We start by presenting a class of controllers defined in R
3 for nonholonomic

kinematic systems. For an in depth exposure please see [14]. Consider the class
of smooth and piecewise analytic, three degree of freedom, drift-free control
systems

q̇ = B(q)u, q ∈ Q ⊂ R
3; u ∈ R

2, (3)

where Q is a smooth and piecewise analytic, compact, connected three di-
mensional manifold with a boundary, ∂Q (that separates the acceptable from
the forbidden configurations of R

3), possessing a distinguished interior goal
point, q∗ ∈ Q. In this section we will impose very general assumptions on
B and construct a hybrid controller that guarantees local convergence to an
arbitrarily small neighborhood of the goal state while avoiding any forbidden
configurations along the way.3

We find it convenient to write (3) using the nonholonomic projection ma-
trix [15], H into the image of B:
3 In the next section, we will introduce more specialized assumptions that extend

the basin of attraction to include almost every initial configuration in Q.
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H(q) = B(q)B(q)† = B(q)
(
B(q)T B(q)

)−1
B(q)T (4)

q̇ = H(q)v, q ∈ Q ⊂ R
3; v ∈ R

3 (5)

2.1 Two Controllers and Their Associated Closed Loop Dynamics

It is useful to compare the unconstrained system q̇ = v with the constrained
version (5). Let ϕ be a navigation function defined in Q. For the input
v = −∇ϕ the unconstrained system is globally asymptotically stable at the
origin. Using ϕ as a control Lyapunov function yields ϕ̇ = −‖∇ϕ‖2. Given
this result, a naive approach to attempt stabilizing system (5) is to use the
same input v = −∇ϕ. Define the vector field f1 : Q → TQ such that
f1(q) := −H(q)∇ϕ(q) and the system

q̇ = f1(q) = −H(q)∇ϕ(q) (6)

Since H has a 1-dimensional kernel it follows that (6) has a 1 dimensional
center manifold

Wc := {q ∈ Q : H(q)∇ϕ(q) = 0} ,

as corroborated by explicitly computing the Jacobian of f1 at q∗:

Df1|q∗ = −(∇ϕ|q∗︸ ︷︷ ︸
=0

⊗I)DHS −HD2ϕ = − HD2ϕ
∣∣
q∗ (7)

Using ϕ as a control Lyapunov function, La Salle’s invariance theorem states
that system (6) has its limit set in Wc:

ϕ̇ = −∇ϕT H∇ϕ

= −‖H∇ϕ‖2
{

= 0 if q ∈ Wc

< 0 if q /∈ Wc (8)

Figure 1 illustrates the topology associated with (6): the projection H im-
poses a co-dimension 1 foliation complementary to the center manifold. The
stable manifold, Ws, is the leaf containing the goal, q∗. The input

u1 := B(q)†∇ϕ(q) (9)

alone cannot stabilize system (6) at the origin, since no smooth time invariant
feedback controller has a closed loop system with an asymptotically stable
equilibrium point [12]. Nevertheless, for any initial condition outside Wc an
infinitesimal motion in the direction of f1 reduces the energy ϕ. If there can
be found a second controller that “escapes” Wc without increasing ϕ then it
is reasonable to imagine that iterating the successive application of these two
controllers might well lead eventually to the goal. We now pursue this idea by
introducing the following controller,
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Ws

Wc

q∗

leaves

Fig. 1. Conceptual illustration of the flow associated with (6). Each leaf is an
invariant manifold with all trajectories collapsing into Wc.

u2 := B(q)† [A(q)×∇ϕ(q)] , (10)

leading to the closed loop vector field

q̇ = f2(q)
f2(q) := A(q)×∇ϕ(q) (11)

where A(q) := ×B(q) is the cross product of the columns of B(q). 4 Note
that the nonholonomic constraint expressed in (3) can be represented by the
implicit equation AT (q)q̇ = 0. Since the derivative of ϕ in the direction of f2

is

Lf2ϕ = ∇ϕ(q)T · (A(q)×∇ϕ(q)) = 0, (12)

it follows that f2 is ϕ-invariant — i.e. the energy, ϕ, is constant along its
motion. Moreover 0 = AT (A×∇ϕ) = AT f2, verifying that f2 indeed satisfies
the constraint (3).

2.2 Assumptions, a Strategy, and Preliminary Analysis

Given the previous two vector fields — one which is energy decreasing; the
other energy conserving — we now sketch a strategy that brings initial condi-
tions of system (3) to within an arbitrarily small neighborhood ε of the goal,
4 We will assume in A3 that B has rank two at each point.
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by way of motivating the subsequent definitions and claims that arise in the
formal proofs to follow. Let f t

1(q) and f t
2(q) denote the flows of f1 and f2

respectively.

(1). If q0 ∈ Wc then follow a direction in im(H) for a finite amount of time t0
such that f t0

1 (q0) /∈ Wc and ϕ ◦ f t0
1 (q0) < 1 for all t ∈ (0, t0).

(2). If q0 
∈ Wc and ϕ(q0) > ε

2.1) Use a scaled version of f2 for time τ2 to escape a δ-neighborhood of
Wc, keeping the energy ϕ constant.

2.2) Use controller f1, for time τ1, to decrease the energy ϕ, stopping at a
γ-neighborhood of Wc such that fτ1

1 (q) /∈ Wc and γ < δ.

We now introduce a number of assumptions, definitions and their consequences
that will allow us to formalize each of the previous steps:

A1 Q is a smooth compact connected manifold with boundary.
A2 ϕ is a navigation function in Q.
A3 H has rank two, uniformly throughout Q.

Assumption A1 gives the proper setting for the existence of a naviga-
tion function in the configuration space.Assumption A3 assures the foliation
sketched in figure 1.

Define the local surround of the goal to be the closed “hollow sphere”,
Qs := ϕ−1[Φs], with Φs := [ε, ϕs] whose missing inner “core” is the arbitrar-
ily small open neighborhood, Qε := ϕ−1[Φε]; Φε := [0, ε), and whose outer
“shell”, Q1 := ϕ−1[Φ1], with Φ1 := (ϕs, 1], includes the remainder of the free
configuration space. ϕs is defined to be the largest level such that all the
smaller levels, ϕ0 ∈ (0, ϕs) are homeomorphic to the sphere, S2, and are all
free of critical points, ‖∇ϕ‖−1[0] ∩ ϕ−1[(0, ϕs)] = ∅.

The restriction to ϕ-invariant topological spheres precludes limit sets of f2

more complex than simple equilibria in the local surround. However, has in the
examples section of [14], one can provide more specialized conditions resulting
in the guarantee that the algorithm brings almost every initial condition in
the “outer” levels, Q1 into the local surround, Qs and, thence, into the goal
set Qε.

Lemma 1 ([14]). Given the previous assumptions

f−1
1 [0] ∩Qs ≡ f−1

2 [0] ∩Qs ≡ Wc ∩Qs. (13)

To formally express the “δ-neighborhood” described in the stabilization
strategy we start by defining the function ξ : Q− {q∗} → [0, 1]:

ξ(q) :=
‖H(q)∇ϕ(q)‖2
‖∇ϕ(q)‖2 (14)
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The quantity ‖H(q)∇ϕ(q)‖2 evaluates to zero only in Wc. Therefore in
a small neighborhood of Wc the level sets of ‖H(q)∇ϕ(q)‖2 define a “tube”
around Wc. The denominator of (14) normalizes ξ such that 0 ≤ ξ ≤ 1.
Moreover it produces a “pinching” of the tube at the goal q∗.

Lemma 2 ([14]). For all ϕ0 ∈ Φs , ϕ−1[ϕ0] intersects the unit level set of ξ,
i.e., ξ−1[1] ∩ ϕ−1[ϕ0] 
= ∅.

Corollary 1 ([14]). For all ϕ0 ∈ Φs the level set ϕ−1[ϕ0] intersects every
level set of ξ, i.e., ξ−1[α] ∩ ϕ−1[ϕ0] 
= ∅ for all α ∈ [0, 1].

Lemma 3 ([14]). A sufficient condition for the Jacobian of f2(q) evaluated
at Wc − ‖∇ϕ‖−1[0] to have at least one eigenvalue with non-zero real part is
that the control Lie algebra on B spans R

3.

Lemma 4 ([14]). The Jacobian of f2(q) evaluated at Wc ∩Qs has two non-
zero real part eigenvalues with the same sign.

Now consider the implicit equation,

ξ(q) = ξ∗ ⇔ ‖H(q)∇ϕ(q)‖2 = ξ∗‖∇ϕ(q)‖2 (15)

At the goal any ξ∗ satisfies (15). Although ξ is not defined at q∗ all of its level
sets intersect at q∗.Finally, define the parameterized cone Cγ around Wc, and
its complement Cc

γ := Q− Cγ − {q∗}, by:

Cγ = {q ∈ Q− {q∗} : ξ(q) ≤ γ} (16)

We follow by imposing conditions on H and A such that the vector field f2

can afford the needed “escape” from Wc.

Lemma 5 ([14]). Suppose system (3) satisfies assumptions A1-A3 and, hence,
the previous lemmas. Then, there exists a function σ : Q → R that renders
the system

q̇ = σ(q)A(q)×∇ϕ(q) = f̄2(q) (17)

unstable at Wc ∩Qs.

Corollary 2 ([14]). Under the conditions of the previous lemma, there can
be found a τ ∈ (0,∞) such that for all q0 ∈ ξ−1[δ/2] we have ξ ◦ f̄τ

2 (q0) ≥ δ.

Figure 2 illustrates the steps used in the previous proof. Trajectories start-
ing inside N − Cc

γ will traverse ∂Cγ and ∂Cδ in finite time.
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∂N+

∂Cδ

∂Cγ

∂N−

ε

Wc

q0

f̄τ
2 (q0)

Fig. 2. Illustration of the construction used in the proof of corollary 2.

2.3 A Hybrid Controller and Proof of its Local Convergence

Given the previous result define the time variables τ1, τ2 and the scalars γ < δ
such that:

τ1(q, γ) :=
{

min {t > 0 | ξ(f t
1(q)) = γ} if q ∈ Cc

γ

0 otherwise

τ2(q, δ) :=
{

min
{
t > 0 | ξ(f̄ t

2(q)) = δ
}

if q ∈ Cδ −Wc

0 otherwise

I.e., τ1 is the time to reach the γ neighborhood of Wc using vector field f1

and τ2 is the time to escape from a γ neighborhood to a δ neighborhood of
Wc using vector field f̄2.

This results in the following maps:

fτ1
1 : Cc

γ → ∂Cγ (18)

f̄τ2
2 : Qs −Wc → Cc

δ ⊂ Cc
γ , (19)

where C is the closure of C. With δ = 2γ define the map P : Qs −Wc → ∂Cγ

P (q) = f
τ1(·,γ)
1 ◦ f̄

τ2(q,2γ)
2 (q) (20)

and consider the recursive equation:

qk+1 = P (qk). (21)

The set ∂Cγ can be interpreted as a Poincaré section for the discrete system
(21). We are now ready to present the following result:

Theorem 1 ([14]). There exists an iteration number, N : Qs → N such that
the iterated hybrid dynamics, PN brings Qs to Qε.
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Proof. Define

N := min {n ∈ N|0 ≤ N ≤ Nε|ϕ ◦ Pn(q0) ≤ ε} ,

and ∆ϕ(q) := ϕ ◦ P (q) − ϕ(q). Since Qs is a compact set it follows that
|∆ϕ| achieves its minimum value, ∆ε, on that set, hence at most Nε :=
ceiling(ϕs − ε)/∆ε iterations are required before reaching Qε.

Note that all initial conditions in the pre-image of the “local surround”,
R :=

⋃
t>0 f−t

1 (Qs−Wc) are easily included in the basin of the goal, Qs, by an
initial application of the controller u1. While it is difficult to make any general
formal statements about the size of R, we show in the next section that for
all the examples we have tried, the “missing” initial conditions, Q−R = Z,
comprise a set of empty interior (in all but one case Z is actually empty)
because all of Wc, excepting at most a set of measure zero, is included in Qs.
In configuration spaces with more complicated topology, there is no reason to
believe that this pleasant situation would prevail. To summarize, the following
algorithm is guaranteed to bring all initial configurations in R to the goal set,
Qs:

(1). ∀q0 ∈ Qs −Wc, follow successive applications of (21), i.e. use the inputs
to equation (3):

u1(q) := B†(q)∇ϕ(q) (22)
u2(q) := σ(q)B†(q)J(A(q))∇ϕ(q) (23)

(2). ∀q0 ∈ Wc use the input

u3 :=
[

α1

α2

]
, (24)

for a small amount of time t3 such that ϕ ◦ f t3
3 (q0) < 1, with f3(q) :=

B(q)u3.
(3). ∀q0 ∈ R−Qs, use the input u1 for time t until f t

1(q0) ∈ Qs.

2.4 Other Considerations

• Limit cycles in the level sets of ϕ. In many practical applications
switching between controllers f1 and f2 using a small δ-neighborhood is
far too conservative. It may be possible to escapeWc by more than just the
small collar ξ−1[δ]. If we could recognize the passage into Ws and switch
off controller u2 (i.e. turnWs into an attractor of a suitable modified form
of f2) then a final application of controller u1 is guaranteed to achieve the
goal state, q∗. The hope of reworking the form of u2 so that the resulting
closed loop vector field, f2, has its forward limit set solely in Ws thus
raises the question of when there exists limit cycles in the level sets of ϕ
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for the flow of f2. More importantly, we seek a condition that guarantees
that every trajectory of f2 starting in a small neighborhood of Wc can
intersect Ws either by forward or inverse time integration of system (11).
Note that f2 generates a planar flow, making the Bendixon’s criteria a
natural candidate for such condition. Several authors [16, 17, 18, 19] have
developed extensions to Bendixson’s criteria for higher dimensional spaces,
obtaining in general conditions that preclude invariant sub-manifolds on
some set. For systems with first integrals, such as some classes of systems
that result from nonholonomic constraints, the conditions simplify to a di-
vergence style test. Feckan’s theorem (see [16]) states that in open subsets
where divf2 
= 0 there can exist no invariant submanifolds of any level
precluding cyclic orbits. The divergence measure can be used this way to
detect limit cycles. Note however, that the previous result does not pre-
clude quasi-periodic orbits.

• Computational heuristic substitutes for σ. The σ function intro-
duced in Lemma 5 modifies the flow of f2 rendering the center manifold
unstable. Having that property is sufficient for stabilization, but more
can be accomplished. By careful craft of σ one can minimize the number
of switches between controllers f1 and f̄2 necessary to reach the desired
neighborhood of the goal. If the stable manifold Ws is contained in the
zero set of σ andWs is made attractive by f̄2 for any point in Qs then one
gets f∞

1 ◦ f̄∞
2 (Qs) = q∗, i.e., only 2 steps are necessary to reach the goal.

Different methods for approximating σ are presented in [14]. Specifically
the function σ is replaced by the divergence of f2 in a neighborhood of
Wc; by maximizing ξ, since that implies escaping Wc in some measure;
or replacing σ by and implicit polynomial stable manifold approximation
(please see [20, 14] for invariant manifold computations).

3 Hybrid Controller for Nonholonomic Dynamic Systems

In this section we look into the “lift” of the algorithm proposed in the previ-
ous section to nonholonomically constrained dynamical systems. The resulting
corollaries arise naturally from the ideas introduced in [21]. Let (25) and (26)
be the system of equations for unconstrained systems [22] and nonholonomi-
cally constrained systems [23] with q, u ∈ R

n and v ∈ R
m,m < n:

M(q)q̈ + c(q, q̇) = u (25)

M(q)q̈ + c(q, q̇) = A(q)T λ + B(q)v (26)
A(q)q̇ = 0

where M is the mass matrix, c the Coriolis term, A and B represent the actu-
ation constraints defined in section 2 and λ is a vector of Lagrange multipliers.
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We start by recalling some notation and lemmas required for the subsequent
proofs. Using the “stack-kronecker notation” [24, 25, 26] consider the following
linear map:

Ḿq : x �→ [x⊗ I]T DqM
S (27)

and the skew-symmetric value operator:

Jq(x) := Ḿq(x)− ḾT
q (x) (28)

Lemma 6 ([21]). For any curve, q : R→ Q, and any vector, x ∈ Tq(t0)Q,

Ṁq|t0x = Ḿq(t0)(x)q̇|t0 (29)

Lemma 7 ([21]). Given a Lagrangian with kinetic energy, κ, with no poten-
tial forces present, and with an external torque or force actuating at every
degree of freedom as specified by the vector, τ , the equations of motion may
be written in the form:

M(q)q̈ + c(q, q̇) = τ (30)

where

c(q, x) = C(q, x)x (31)

and

C(q, x) :=
1
2
Ṁ(qx)− 1

2
Jq(x) (32)

Notice that the representation of the Coriolis and centripetal forces in
terms of the bilinear operator valued map C only coincide at q̇ with the
quadratic expression c(q, q̇). In general they are not the same.

Corollary 3 ([21]). For any motion q : R → Q, and any tangent vector,
x ∈ TQq(t),

xT

[
1
2
Ṁ(q)− C(q, q̇)

]
x ≡ 0 (33)

Proof. From the previous lemma,

xT

[
1
2
Ṁ(q)− C(q, q̇)

]
x = −1

2
xT Jq(q̇)x = 0
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3.1 Embedding the Limit Behavior of Gradient Dynamics

Controller f1(q) = −H(q) · ∇ϕ(q), introduced in Section 2.1, aims to reach
a fixed point in the center manifold Wc. In order to lift the controller into
a 2nd order system, theorem 2, concerning limit sets of gradient dynamics,
is complemented with corollary 4. Let the state variables p1, p2 represent q, q̇
respectively and let P = T Q be the tangent bundle of Q for system (25).

Theorem 2 (Koditschek[21]). Let ϕ be a Morse function on Q which is
exterior directed on the boundary ∂Q, surpasses de value µ > 0 on the bound-
ary, and has a local minima at the points G := {qi}n

i=1 ⊂ Q. Let K2 > 0
denote some positive definite symmetric matrix. Consider the set of “bounded
total energy” states

Pµ :=
{[

p1

p2

]
∈ P : ϕ(p1) +

1
2
pT
2 Mp2 ≤ µ

}
(34)

Under the feedback algorithm

u := −K2p2 −DϕT (p1) (35)

Pµ is a positive invariant set of the closed loop dynamical system within which
all initial conditions excluding a set of measure zero take G as their positive
limit set.

Let H be the nonholonomic projection matrix. Define Q(q) := I − H(q)
to be the nonholonomic converse projection matrix. Notice that ker(A) =
ker(Q) and therefore Q(q)q̇ = 0. Let Wc

0 := {q ∈ Wc ∧ q̇ = 0}. As shown in
Section 2.1, Wc is the center manifold of the system q̇ = −H(q) · ∇ϕ(q).
Rewriting equation (26) with a new input v := B(q)†u we get:

M(q)q̈ + c(q, q̇) = A(q)T λ + H(q)u
A(q)q̇ = 0 (36)

Corollary 4. Let K2 = K̄2H(q) with K̄2 > 0 denoting a positive definite
symmetric matrix. Under the conditions of theorem 2 all the initial conditions
of the system (36), excluding a set of measure zero, take Wc

0 as their positive
limit set.

Proof. Let V = ϕ(q) + 1
2 q̇T M(q)q̇ be a Lyapunov function for (5). Then

V̇=Dϕq̇ +
1
2
q̇T Ṁ q̇ − q̇T

(
HK2q̇ + HDϕT + HCq̇

)
+ q̇T AT λ︸ ︷︷ ︸

=0

=DϕQq̇︸ ︷︷ ︸
=0

+ q̇T Jq q̇︸ ︷︷ ︸
=0

−q̇T HK2q̇

=−q̇T HT K̄2Hq̇
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HT K̄2H is a semi-definite positive matrix. V̇ is null when either q̇ = 0 or
Hq̇ = 0. Since A(q)q̇ = 0 ⇒ Hq̇ 
= 0 then the largest invariant set is the
interception of the previous sets with Wc

0 resulting in Wc
0 . La Salle’s theorem

guarantees that (5) with input (35) takes Wc
0 as the forward limit.

3.2 Embedding of More General Dynamics

We now seek to lift the controller f2(q) defined in Section 2.1 to a 2nd order
system. We do so by adding once again a level regulator term, so that the
reference dynamics attracts to a particular level set. First recall the embedding
of general reference dynamics: let f be a reference vector field with Lyapunov
function µ, and let F (p) := p2 − f(p1). Consider the control algorithm,

u = −K2F −DµT + MDfp2 + Cf (37)

which applied to the mechanical system (25) yields a closed loop form, ṗ =
h(p),

h(p) :=
[

p2

Dfp2 −M−1
[
K2F + CF + DµT

] ]

Theorem 3 (Koditschek[21]). If µ is a strict Lyapunov function for f on
Q, then

V := µ +
1
2
FT MF

is a strict Lyapunov function for h on P.

In system (5) the set of images of H for each point on Q is the tangent
bundle of Q. Therefore, since H is a projection operator then ∀x ∈ P we have
H(px).x = x. Define H̄ = M−1HM and Q̄ = M−1QM . For system (36) with
input (37) the closed loop is written in the following way:

h(p) :=
[

p2

H̄Dfp2 −M−1
[
HK2F + HCF + HDµT + QCp2 −AT λ

] ]

Corollary 5. Suppose Hf = f , i.e. the reference vector field respects the
nonholonomic constraints. If µ is a strict Lyapunov function for f on Q for
system (36), then

V := µ +
1
2
FT MF

is a strict Lyapunov function for h on P.

Proof. First note that Q.f = 0; Q.p2 = 0; A.f = 0.
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V̇=Dµ p2 +
1
2
FT ṀF + FT MQ̄Dfp2 +

−FT
(
HK2F + HCF + HDµT + QCp2

)
+ FT AT λ

=DµHf − FT HK2F − fT Q(MDfq̇ − Cf)︸ ︷︷ ︸
=0

+ fT AT λ︸ ︷︷ ︸
=0

=Dµf − FT K2F

According to the hypothesis, the first term is negative except on the largest
invariant set of F = 0. The second term is always negative except in F−1[0].
The interception of the two results in the limit set of q̇ = f(q).

The previous result show that as long as the reference dynamics respects
the nonholonomic constraints we can apply Theorem 3 directly. Notice that
Corollary 5 also applies to controller −H(q).∇ϕ(q). In general such restrictive
dynamics are not necessary for that controller, so using Corollary 4 gives a
better tool since we are only interested on the limit set.

4 Simulations

x

y

θ

φ

Fig. 3. The vertical rolling disk.

In this section we present simulation examples for the unicycle or vertical
rolling disk depicted in Figure 3. The unicycle is commonly defined in the
SE(2) configuration space with constraint equation ẋ sin(θ) − ẏ cos(θ) = 0.
Since we are interested in simulations in a dynamic setting we will follow
instead Bloch’s vertical rolling disk [27], defined in the configuration space
Q = R

2×S1×S1 = SE(2)×S1 with coordinates q = (x, x, θ, φ). The equations
of motion for the vertical rolling disk are:
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(mR2 + I)φ̈ = u1

Jθ̈ = u2, (38)

with the constraint equations:

ẋ = R cos(x)φ̇
ẏ = R sin(x)φ̇. (39)

Differentiating (39) in time and replacing φ̈ from (38), one obtains a complete
set of equations of motion that verifies the nonholonomic constraints for initial
conditions that also verify (39):

ẍ = −R sin(θ)θ̇φ̇ +
R cos(θ)
mR2 + I

u1

ÿ = R cos(θ)θ̇φ̇ +
R sin(θ)
mR2 + I

u1 (40)

This system is now written in the form M(q)q̈ + c(q, q̇) = B(q)u for which
corollaries 4, 5 apply directly. The A(q) and B(q) matrices are:

A :=




−I + mR2

R − sin(θ)

0 cos(θ)

0 0

cos(θ) 0




; B :=




R cos(θ)
mR2 + I

0

R sin(θ)
mR2 + I

0

0 1

1 0




(41)

Although the algorithms presented in section 2 are defined only in R
3, by

close inspection of A and B one realizes that, for this particular example, by
choosing a R

4 navigation function defined only by the first three parameters
of q we will obtain the “same” controller has in R

3. Let ϕ be a navigation
function such that ∇ϕ = [ϕx, ϕy, ϕθ, 0]T . Next compute the R

4 cross product
of A and ∇ϕ:

×(A,∇ϕ) =
4∑

i,j,k,l=0

εijkl∇ϕjAk1Al2êi (42)

=
−1

cos(θ)




ϕθ cos(θ)
ϕθ sin(θ)

−ϕx cos(θ)− ϕy sin(θ)

−I + mR2

R θ


 , (43)

where εijkl denotes the permutation tensor, êi are the canonical basis vectors
and Ai,j is the ith row, jth column of A. We now compare with the function
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f2, defined in equation (11) for the R
3 unicycle with A3 = [− sin(θ), cos(θ), 0]T

and ∇ϕ3 := [ϕx, ϕy, ϕθ]T :

f2 = A3 ×∇ϕ3 = (44)

=




ϕθ cos(θ)
ϕθ sin(θ)

−ϕx cos(θ)− ϕy sin(θ)


 (45)

The two previous computations produce, in effect, the same behavior for
the variables x, y and θ. For each fixed coordinate φ in Q ⊂ R

4 one obtains a
copy of the topology of SE(2). Therefore, from here on, although the config-
uration space is defined in R

4, we will only be interested in x, y and θ.

4.1 Navigation Function

Kantor and Rizzi [28] solved the problem of positioning a robot in relation to
a single engineered beacon by using the notion of Sequential Composition of
Controllers [29]. The final approach to the goal is implemented using Ikeda’s
Variable Constraint Control. We recast the problem with a NF-encoding ac-
cording to the approach described in the previous sections, to recover in sim-
ulation behavior comparable to that obtained in [28].

Let h be a change of coordinates from SE(2)× S1 to double polar coordi-
nates times S1 that we denote by P with coordinates p = [η, µ, d, φ]T :




η
µ
d
φ


 = h(x, y, θ, φ) =




arctan (y/x)
θ − arctan (y/x)√

x2 + y2

φ


 (46)

Obstacles are introduced on the field of view so that the robot maintains
a range of distances to the beacon and keeps facing it:

µm < µ < µM ; dm < d < dM (47)

Consider the following potential function:

ϕ̄(p) :=

(
2− cos(η − η∗)− cos(µ− µ∗) + (d− d∗)2

)k
(1− cos(µ− µm))(1− cos(µ− µM ))

·

· 1
(d− dm)(dM − d)

, (48)

and its “squashed” navigation function version ϕ̌ : P → [0, 1]:

ϕ̌(p) :=
ϕ̄(p)l

ε + ϕ̄(p)l
(49)
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The navigation function written in the Q coordinates is ϕ(q) = ϕ̌ ◦ h(q)
and its derivative:

∇ϕ(q) = DhT (q) · ∇ϕ̌ ◦ h(q) (50)

We choose to present the Kantor-Rizzi example as the canonical illustra-
tion of our ideas due to the interesting topology of the configuration space.
Since Q is not simply connected the level sets of ϕ change from topological
spheres close to the goal q∗ to topological tori close to the boundary of Q.
Initial conditions stating in the tori will generate quasi-periodic orbits when
f2 is used. In the dynamical setting this provides a good example of the ap-
plicability of corollary 5, resulting in the generation of reference dynamics
that attract to a particular level set.

4.2 Kinematic Rolling Disk

We first simulate the previously described system in a kinematic setting by
solving the system:

q̇ = B(q)u, (51)

and using the control functions f1, f2 defined in section 2:

u1(q) := f1(q) = −H∇ϕ (52)
u2(q) := σ(q)f2(q) = ×(A,∇ϕ)σ (53)

Figure 4 illustrates the resulting simulation where the initial condition is
q0 = [1, 1,−3π

4 , 0]T , the desired goal is q0 = [0,−2, π
2 , 0]T , the body parame-

ters are I = J = m = R = 1, the obstacles are µm = −π
4 ;µM = π

4 ; dm = 1;
dM = 3 and σ(q) = x. The manifold {q ∈ Q : x = 0} is a good local approxi-
mation for the stable manifold Ws of the system q̇ = f1(q). One can observe
that from the initial time to ts the controller f2 keeps the energy constant
while moving exactly in the level set ϕ−1[ϕ∗], with ϕ∗ = 0.98. At time ts we
switch to controller f1 and the resulting final position is very close to the goal.
Looking at φ in the “positions” graphic one observes that the robot does a
back and forward motion, necessary to the parallel park maneuver. This comes
as a natural consequence of moving in the surface of the torus shown in the
“trajectories” plot.

4.3 Dynamic Rolling Disk

For the dynamic setting we solve the system defined by equations (38) and
(40):

M(q)q̈ + c(q, q̇) = H(q)u, (54)
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Fig. 4. Kinematic simulation of the vertical rolling disk.

with control functions (35) and (37):

u1(q, q̇) := −K2q̇ −∇ϕ (55)
u2(q, q̇) := −K2F −DµT + MDf2q̇ + Cf2, (56)

where F (q, q̇) := q̇ − f2(q) and µ := α(ϕ− ϕ∗)2.
The first simulation, depicted in Figure 5, uses a high gain α = 5000 in the

function µ to track the level set as close as possible while the controller f2 is in
use. That results in a good tracking but very jerky steering motion, visible in
the first part of the “velocities” and “trajectories” plots. The damping matrix
K2 is set to the identity matrix, resulting in low damping, as observed in the
intervals [ts, tf ] of the “positions” and “velocities” plots.

For the second simulation in the dynamic setting, depicted in Figure 6,
the parameter α = 250 provokes a less accurate tracking of the desired level
set ϕ∗, when using f2, as one can observe in the “energy” and “trajectories”
plots. However, the resulting motion is smoother then the previous simulation.
For the controller f1, the damping matrix K2 = 10I slows down the approach
to the desired goal, elimination any oscillations as seen in the “energy” plot.

The damping matrix K2, and the Lyapunov function µ are the design
parameters for the control of equation (54).

5 Conclusions

This exploratory discussion paper addresses the reuse of navigation functions
developed for fully actuated bodies in the setting of nonholonomic constrained
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Fig. 5. Dynamic simulation of the vertical rolling disk.
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systems for both kinematic and dynamic versions of the model. We suggest
how the vector fields developed for kinematic systems can be lifted to the
dynamic setting with the introduction of damping and proportional gain type
constants. The simulations suggest this lifting can be readily realized in real
applications, by proper choice of the damping and gain.
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16. Fečkan M (2001) A generalization of Bendixson’s criterion. In: Proceedings of
the American Mathematical Society. Volume 129. 3395–3399
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Summary. In this paper, we discuss control scheme design methods of a complex
system that comprises many elements. To control such a system, we assert the im-
portance of a control scheme design based on the structure, which is physically
characterized. As examples of the control scheme design method, iterative learn-
ing control and time-scale transformation are introduced. This paper particularly
describes that the dynamics of a robot and a contact environment are physically
characterized by time-scale transformation. The effectiveness of the time-sale trans-
formation is shown in cases where a robot moves in air and in water. It is diffi-
cult to model the hydrodynamic effect in the neighborhood of the robot when it
moves in water. It is claimed that the difficulty on modeling is overcome if time-
scale transformation is applied. Finally, the usefulness of time-scale transformation
is demonstrated through examination of some experimental results.

1 Introduction

1.1 Design Methods of Control Schemes for a Complex System

We consider design methods of control schemes for a complex system that
comprises many elements. A way of resolving the system into simple elements
is generally useful at first to control such a complex system. Next, the element
is investigated and modeled. Finally, each element’s model parameters are
identified. It might be natural to consider that the control of the whole system
is realized by combining each identified element. Such a technique can be called
a control scheme design method by an inverse process of element resolution
of a system. In this way, excellent control performance is achievable in some
cases. However, for cases in which the modeling and the parameter estimation
of the element are incomplete, an incomplete part is accumulated by each
element. Consequently, the required performance is often unachievable.
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On the other hand, another control scheme design method uses the input-
output relation of the system without considering each element inside the
system. In memory-based control, which is represented by neural nets and so
on, it is not necessary to identify each element of the system minutely as the
model. We might need to devote attention only to the relation between input
and output. That is, this method of control scheme design accumulates the
input-output relation. However, this control scheme is not compatible with
the physical model. Therefore, even if a suitable performance is obtainable
through the input-output relation, it is often difficult to physically understand
the control performance and to apply the obtained input-output relation data
to another objective system.

Therefore, we consider a design method that is different from the two
above. First, the method resolves an objective system into elements and it
models each element. Here, it is extremely important to note that the inverse
process of resolving to the elements is not necessary. Instead of the inverse
process of the element resolution, the structure of each element that is phys-
ically characterized is considered in this paper. We assert the importance of
the control scheme design method based on the structure, which is physically
characterized. It is expected that the control performance can be physically
expressed and that the obtained results are applicable to another objective
system because the physical structure of each element is clear. Moreover, it
is presumed that the more complex the object system is, the more useful this
control system design method can be.

1.2 Inverse Dynamics and Iterative Learning Control

Here we consider an inverse dynamics problem for mechanical systems such
as robots. That is, the problem is to obtain a desired torque pattern that pro-
duces a given desired motion pattern. For analyses of multivariable nonlinear
robot dynamics, each element can correspond to each link of the robot. It
is considered that each element is integrated into the overall robot dynam-
ics. To identify each element, the physical parameters of the link length, the
mass, the moment of inertia and so on are required. It is possible to calculate
the desired input torque based on those parameter values and the desired
motion (position, velocity and acceleration) if all parameters are identified
perfectly. It is the inverse process of resolving to elements and is well known
as the computed torque method. However, if modeling errors and parameter
identification errors occur, then this method cannot make the desired input
torque. Furthermore, the neural network method or memory-based control
method was proposed. Those methods are very useful when the modeling of
the objective system is very difficult. However, because the physical structure
is unknown, the acquired data cannot be used easily when conditions such
as the contact condition to the environment are changed. Moreover, in some
cases, an enormous number of test motions is necessary.
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To solve such problems, iterative learning control was proposed [1]-[4]. In
iterative learning control, we devote attention to the input and output of the
system and the trial motion is repeated using the actual robot system. At
each trial motion, the input pattern is modified by the difference between the
desired motion pattern and the actual robot motion pattern. The modified
input torque pattern is used at the next trial motion. The input-output data
at each sampling time are put into memory in a computer. Therefore, it might
be called a kind of memory-based control. However, the convergence of the ac-
tual motion to the desired one is mathematically proven based on the physical
structure of robot dynamics, which is called passivity. In iterative learning con-
trol, it is not necessary to identify the parameters of robot dynamics exactly.
Moreover, even though repeatable disturbances exist, the desired motion is
obtainable. The practical usefulness was demonstrated through experimental
results [5],[6].

1.3 Planning and Control of Robot Motion Based on Time-Scale
Transformation

The desired motion is obtained using the iterative learning control even if
the parameters of the system are not known. The subsequent problem was
whether or not it is possible to synthesize a new input torque pattern that
produces a new desired motion pattern using a combination of input torque
patterns that have been already obtained through iterative learning control.
It was proven that a new desired input torque pattern for a different speed
motion pattern is formed by some combination of the desired input patterns
[7]. Because the motion trajectory is same in space but different in time, the
changing of the motion speed means that the time-scale is changed in robot
dynamics. We clarified the physical structure with the time-scale transfor-
mation on nonlinear robot dynamics in order to obtain a new desired input
pattern without additional iteration [7]. In [7], the linear time-scale transfor-
mation was investigated. Results showed that nonlinear robot dynamics can
be classified as the zero-th, first, and second-order terms of the coefficient
with time-scale changing. The same characterization with time-scale transfor-
mation on robot dynamics had already been pointed out by Hollerbach [8].
However, the purpose of the paper was the characterization of robot dynamics
and was not the use of the input torque patterns obtained through iterative
learning control. According to our results, it is possible to produce another
speed pattern without additional iterative operations if the robot has once
learned three different speed motion patterns.

Our result in [7] treated the linear time-scale transformation or the co-
efficient of the time-scale function as constant. Next, we proposed nonlinear
time-scale transformation in which the time-scale function can have nonlin-
earity with some conditions [9]. From this result, we were able to set arbitrary
time-scale functions for robot motions. Nonlinear time-scale transformation
became possible. Therefore, optimal control such as minimum-time-control
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and so on were resolved as a planning problem with the time-scale function
[10]. Generally speaking, an optimal control input is computed based on the
estimated parameter values of the system. Therefore, if estimation errors are
apparent, then the computed control input cannot become optimal. On the
other hand, in time-scale transformation, parameter estimation is not neces-
sary. As a result, the optimal control input is found only from the input torque
patterns obtained through iterative learning control.

Next, we consider the case in which a robot contacts on an environment.
Modeling and the identification of the contact environment are generally dif-
ficult. A robot itself has multivariable nonlinear dynamics. Furthermore, the
contact environment of the robot is added and the complexity of the total dy-
namics increases. In such a case, it is possible to form the desired input pattern
and to plan an optimal motion easily by clarifying the physical characteris-
tics through time-scale transformation of the complex dynamics including the
contact environment. In the following sections, we introduce cases in which a
robot mechanically contacts a rigid surface and a robot moves in water. The
modeling and identification of hydrodynamic terms in the total dynamics are
extremely difficult in practice when a robot moves in water. On the other
hand, if the physical characteristics of the robot’s dynamics of and the water
environment are clarified in the sense of the time-scale transformation, the
desired input patterns can be formed easily. An optimal control input is ob-
tainable even though neither the parameter identification nor the iteration is
utilized. In the following parts of this paper, the effectiveness of the time-scale
transformation is explained theoretically and the usefulness of this method is
demonstrated using some experimental results.

2 Characterization of Robot and Environment Dynamics

2.1 Robot and Environment Dynamics

Suppose that a robot moves in contact with an environment and that the
dynamics of the robot and the environment are represented as

dr (q, q̇, q̈) + de = u, (1)

where q, q̇, and q̈ respectively represent the joint angle, velocity, and acceler-
ation vectors, dr denotes robot dynamics, de means environment dynamics,
and u denotes control input.

Figure 1 shows the cases in which a robot mechanically contacts a rigid
surface and a robot moves in water. When de = 0, Eq. (1) represents that a
robot manipulator moves in free space without contacts.

2.2 Passivity

For iterative learning control, passivity of the robot and the environment dy-
namics plays an important role in acquiring desired motion patterns qd(t) (t ∈
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Fig. 1. A robot and its environment

[0, T ]). Robot dynamics are known to be physically characterized by passivity
[4]. Convergence of the robot motion to the desired motion in the learning
process is guaranteed based on the passivity condition. As described in [4],
when a robot moves in free space, the passivity condition is satisfied and the
robot can learn the desired motion in the learning process. In the case that
a robot moves in contact with an environment, we might investigate whether
the robot and the environment dynamics given by Eq. (1) can satisfy the pas-
sivity condition or not. When a robot moves with mechanical constraints, the
passivity condition is satisfied under some assumptions [4]. On the other hand,
the authors theoretically and experimentally investigated the case of under-
water robots in [12]. Unfortunately, the passivity condition with underwater
robot dynamics has not been checked rigorously yet, but several sets of ex-
perimental results show that the motion of the underwater robot manipulator
converges to the desired one with some conditions even if the hydrodynamic
forces and moments influence the iterative learning process.

2.3 Classification of Time-Scale Transformation

Time-scale transformation is a useful tool to classify nonlinear dynamics of
robots and environments. We explain the characteristics of time-scale trans-
formation and classify nonlinear dynamics from the viewpoint of time-scale
transformation.

If we consider a vector function x(t), a time-scale is transformed easily by
x(r(t)), where r(t) is a time-scale function. Mathematically, the relationship
between x(t) and x(r(t)) is as follows:

x(t) = x(r(t)). (2)

In the case of a function dx(t)/dt, the corresponding transformation is ex-
pressed as

dx(t)
dt

=
dr

dt

dx(r)
dr

. (3)
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Namely, the derivative of the time-scale function r(t) must be multiplied. In
the same manner as Eq. (3), a function d2x(t)/dt2 generates a square term of
dr/dt. Here, it is important to classify nonlinear dynamics from the viewpoint
of the time-scale transformation as follows:

D0 class : zero order of dr/dt (ex. gravitational term),
D1 class : first order of dr/dt (ex. viscous friction term),
D2 class : second order of dr/dt (ex. inertia, centrifugal and Coriolis terms).

Therefore, the robot dynamics can be characterized as D0, D1 and D2 classes
in the sense of time-scale transformation. Regarding environmental dynam-
ics, the structure of the environmental dynamics should be investigated. Of
course, a higher order of dr/dt might be considered if necessary. However, it
is presumed that D0, D1, and D2 classes are sufficient for many cases because
motion equations such as the Newton-Euler equation belong to D0, D1, and
D2 classes.

3 Planning and Control of Robot Motion under an
Endpoint Constraint

3.1 Dynamics and Iterative Learning Control of Robots under an
Endpoint Constraint

Here, we consider the case in which an endpoint of a robot manipulator is
constrained on a rigid and fixed surface. Assume that the dynamics of a robot
with 3 degrees of freedom (D.O.F.) in contact with a constraint surface ψ = 0,
as shown on the left side of Fig. 1, are described as

R (q(t))
d2q(t)

dt2
+

dqT (t)
dt

S (q(t))
dq(t)

dt
+ Bq

dq(t)
dt

+ g (q(t))

= u(t)− γT
ψ (q(t)) λ(t)− JT (q(t)) Bp

dp(t)
dt

. (4)

The matrices and the vectors in the above equation are given as follows:

R (q) ∈ R3×3 : inertia matrix,

S (q) ∈ R3×3×3 : position dependent tensor in formulation of Coriolis and
centrifugal forces,

Bq ∈ R3×3 : coefficient matrix of viscous friction at joint parts,

g (q) ∈ R3×1 : position-dependent vector of gravity force,

p(t) ∈ R3×1 : task-oriented coordinates given by [x(t), y(t), z(t)]T ,

J(q) ∈ R3×1 : Jacobian which is defined as J = ∂p/∂q,

γψ(q) ∈ R1×3 : vector defined as γψ(q) = ∂ψ
∂p

∂p
∂q = ∂ψ

∂pJ(q)
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λ(t) : contact force with the normal direction to the constraint surface,

Bp ∈ R3×3 : coefficient matrix of viscous friction at the contact point on the
surface,

For simplicity, Eq. (4) is rewritten as

R (q(t))
d2q(t)

dt2
+

dqT (t)
dt

S (q(t))
dq(t)

dt
+ B (q(t))

dq(t)
dt

+ g (q(t))

= u(t)− γT
ψ (q(t)) λ(t) (5)

where

B (q(t)) = Bq + JT (q(t))BpJ(q(t)).

Iterative Learning Control of Robot Manipulators with Endpoint
Constraints

In the case where the endpoint of a robot manipulator is constrained on a
rigid and fixed surface, iterative learning control guarantees that the robot
motion and the contact force converge to the desired motion and the desired
force as the trial number k →∞. The convergence of this iteration was proven
mathematically by Arimoto based on passivity and orthogonality in [4].

3.2 Time-Scale Transformation

Classification of Robot Dynamics on Time-Scale Transformation

Presuming that the iterative learning control realizes four desired motions
qi(ri) (i = 1, 2, 3, 4), the spatial paths on these motions are identical, but the
time trajectories are different. In [7], we used three desired motions to form
a new desired motion. In that case in [7], the time-scale functions were linear
with a standard time-scale. Nonlinear time-scale functions must be considered
to treat general cases. For this purpose, we introduce the fourth desired mo-
tion. The role of the fourth motion will be explained in the following section.

All motions have the same spatial path. Therefore, the same relation as
that in Eq. (2) is obtained as

q1 (r1(t)) = q2 (r2(t)) = q3 (r3(t)) = q4 (r4(t)) , (6)

where ri(t) (i = 1, 2, 3, 4) are appropriate time-scale functions.
Presume cases in which the contact forces λi (i = 1, 2, 3, 4) have an

identical pattern, but have different speeds. That is, the contact forces λi

(i = 1, 2, 3, 4) have the following relationships:

λ1 (r1(t)) = λ2 (r2(t)) = λ3 (r3(t)) = λ4 (r4(t)) . (7)
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Regarding the velocity and acceleration, as shown in Eq. (3) a linear term
and a square term of dr/dt are obtained, respectively. In Eq. (5), we know
that the robot dynamics with mechanical constraints are characterized by the
time-scale transformation. We classify the robot dynamics with mechanical
constraints as

D0 class : gravitational, contact force terms,

D1 class : viscous friction terms,

D2 class : inertia, centrifugal and Coriolis terms.

Conditions for The Time-Scale Transformation

Without loss of generality, the standard time-scale t is given as r1(t) = t.
Moreover, the following conditions are set for the time-scale functions.

I. For ri(t) (i = 0, 1, 2, 3, 4):
(i) ri(0) = 0, ri(T1) = Ti (Ti : Terminal time),
(ii) ri(t) ∈ C2 t ∈ [0, Ti],
(iii) 0 < dri(t)/dt <∞ t ∈ [0, Ti].

II. For r2(t) and r3(t):
r2(t) = k2t, r3(t) = k3t
where k2 and k3 are positive constant scalars such that k2 
= 1, k3 
= 1,
and k2 
= k3.

III. For r4(t):
1/dr4(t)

dt 
= 0, d2r4(t)
dt2 
= 0 t ∈ [0, T4]

In condition I, (ii) and (iii) mean that the functions dri(t)/dt are contin-
uously differentiable and ri(t) are monotonically increasing functions. Here,
it is noteworthy that the motion qi(ri) becomes more rapid if dri(t)/dt < 1.
It slows if dri(t)/dt > 1, as compared with q1(t). Condition II means that
the time-scale functions of the desired motions q1, q2 and q3 must have a
linear relation. Condition III plays an important role to treat the nonlinear
time-scale function.

Preliminary for Formation of a New Desired Torque Pattern

The four input torque patterns ui(ri) (i = 1, 2, 3, 4) to generate the four de-
sired motion patterns exactly qi(ri) and the four desired contact force patterns
λi(ri) (i = 1, 2, 3, 4) are acquired through iterative learning control, meaning
that those input patterns can satisfy

R (qi(ri))
d2qi(ri)

dr2
i

+
dqT

i (ri)
dri

S (qi(ri))
dqi(ri)

dri
+ B (qi(ri))

dqi(ri)
dri

+g (qi(ri)) = ui(ri)− γT
ψ (qi(ri)) λi(ri) (i = 1, 2, 3, 4). (8)
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Now, the following equations are satisfied from the characteristics of the time-
scale functions.

dq1(t)
dt

=
dri

dt

dqi(ri)
dri

,

d2q1(t)
dt2

=
d2ri

dt2
dqi(ri)

dri
+
(

dri

dt

)2 d2qi(ri)
dr2

i

. (9)

Therefore, we obtain:

dqi(ri)
dri

= ai
dq1(t)

dt
,

d2qi(ri)
dr2

i

= a2
i

d2q1(t)
dt2

− a3
i bi

dq1(t)
dt

(10)

where

ai
�
= 1/

dri

dt
, bi

�
=

d2ri

dt2
. (11)

Substituting Eqs. (6), (7) and (10) into Eq. (8) yields

−a3
i bif14(t) + a2

i f11(t) + aif12(t) + f13(t) = ui(ri) (i = 1, 2, 3, 4) (12)

where

f11(t) = R (q1(t))
d2q1(t)

dt2
+

dqT
1 (t)
dt

S (q1(t))
dq1(t)

dt
, (13)

f12(t) = B (q1(t))
dq1(t)

dt
, (14)

f13(t) = g (q1(t)) + γT
ψ (q1(t)) λ1(t), (15)

f14(t) = R (q1(t))
dq1(t)

dt
. (16)

Here, it is crucial to know whether the input patterns ui in Eq. (12) contain
the vector f14(t) in Eq. (16), even though the vector f14(t) does not exist in
the original robot dynamics. In other words, vector f14(t) is produced from
the nonlinearity of the time-scale functions. In the following, it will be shown
that the vector f14(t) is obtained under conditions I, II, and III with the
time-scale functions ri(t).

First, using matrix form, Eq. (12) is rewritten as

Af = u, (17)

where the following pertain.

A
�
=




a2
1I a1I I −a3

1b1I
a2
2I a2I I −a3

2b2I
a2
3I a3I I −a3

3b3I
a2
4I a4I I −a3

4b4I


 , f

�
=




f11(r1)
f12(r2)
f13(r3)
f14(r4)


 , u

�
=




u1(t)
u2(k2t)
u3(k3t)
u4(r4)


 . (18)
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From r1(t) = t and condition II of the time-scale functions, matrix A can be
rewritten as

A =


 B

0
0
0

a2
4I a4I I −a3

4b4I


 , B =


a2

1I a1I I
a2
2I a2I I

a2
3I a3I I


 . (19)

Because matrix B is a block Vandermonde matrix and neither a4 nor b4

becomes zero from Eq. (11) and condition III, matrix A is always non-singular.
Therefore, we obtain

f = [f11(t),f12(t),f13(t),f14(t)]
T = A−1u, (20)

f14 = [0 0 0 I] f = [0 0 0 I] A−1u. (21)

Formation of the Desired Input Torque Pattern

Here, the input torque pattern u0 to realize an arbitrary desired motion q0

is formed from u1, u2 and u3 and the already obtained compensation vector
f14.

It is considered that ri (i = 1, 2, 3, 4) is a function of r0. Furthermore, we
define

αi
�
= 1/

dri

dr0
, βi

�
= 1/

d2ri

d2r0
. (22)

In the same manner as Eq. (10), the following equations

dqi(ri)
dri

= αi
dq0(r0)

dr0
,

d2qi(ri)
dr2

i

= α2
i

d2q0(r0)
dr2

0

− α3
i βi

dq0(r0)
dr0

(23)

hold, and we obtain the dynamics of

α2
i f01(r0) + αif02(r0) + f01(r0) = ui(ri) + α3

i βif04(r0), (i = 1, 2, 3)(24)

where

f01(r0) = R (q0(r0))
d2q0(r0)

dr2
0

+
dqT

0 (r0)
dr0

S (q0(r0))
dq0(r0)

dr0
, (25)

f02(r0) = B (q0(r0))
dq0(r0)

dr0
, (26)

f03(r0) = g (q0(r0)) + γT
ψ (q0(r0)) λ0(r0), (27)

f04(r0) = R (q0(r0))
dq0(r0)

dr0
. (28)
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Because

α2 = dr0/d(r2t) = α1/k2, α3 = dr0/d(r3t) = α1/k3, (29)
β2 = d2(r2t)/dr2

0 = k2β1, β3 = d2(r3t)/dr2
0 = k3β1, (30)

and vector f04 is obtained from f14 in the following manner

f04 = R (q0(r0))
dq0(r0)

dr0
= R (q0(r0))

dq1(t)
dt

dt

dr0
=

f14(t)
α1

, (31)

we can rewrite Eq. (24) as

A∗f∗ = u∗ (32)

where

A∗ �
=


 α2

1I α1I I
(α1/k2)2I (α1/k2)I I
(α1/k3)2I (α1/k3)I I


 , f∗ �

=


f01(r0)

f02(r0)
f03(r0)


 ,

u∗ �
=


 u1(t) + α2

1β1f14(t)
u2(k2t) + (α2

1β1/k2
2)f14(t)

u3(k3t) + (α2
1β1/k2

3)f14(t)


 . (33)

Here, matrix A∗ is in Vandermonde form and is non-singular. Therefore,
we obtain

[I I I] A∗−1u∗ = f01(r0) + f02(r0) + f03(r0)

= R (q0(r0))
d2q0(r0)

dr2
0

+
dqT

0 (r0)
dr0

S (q0(r0))
dq0(r0)

dr0

+ B (q0(r0))
dq0(r0)

dr0
+ g (q0(r0)) + γT

ψ (q0(r0)) λ0(r0)

= u0(r0). (34)

The desired input torque pattern u0(r0) for a different speed motion pat-
tern is obtainable through some combination of input patterns ui(ri) (i =
1, 2, 3, 4).

3.3 Time-Optimal Control Method

Here, we propose a motion planning method that realizes a minimum-time
motion without parameter estimation of robot dynamics. In the proposed
method, limitations of input torque and velocity can be incorporated easily
into the planning process. To simplify the explanation, we treat only the
limitations on the input torque, which are represented as

uj
min ≤ uj

opt(t) ≤ uj
max (j = 1, · · · , n), (35)
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where uj
min and uj

max are the minimum and the maximum bounds on the j-th
element of the input torque.

Considering definitions of A∗ and u∗, Eq. (34) is rewritten as

u0(r0) = [I I I] A∗−1u∗

= −f14(t)
α3

1

(−α3
1β1) +

(α1 − k2)(α1 − k3)
(1− k2)(1− k3)α2

1

u1(t)

− (α1 − k3)(α1 − 1)
(k2 − k3)(k2 − 1)α2

1

u2(k2t) +
(α1 − 1)(α1 − k2)

(k3 − 1)(k3 − k2)α2
1

u3(k3t).(36)

Now, scalars k2, k3 and vectors u1, u2, u3, f14 are already obtained from
the motions qi(ri). Moreover, β1 is rewritten as

β1 =
d2t

dr2
0

=
dt

dr0

d(dt/dr0)
dt

=
1
α1

dα−1
1

dt
= − 1

α3
1

dα1

dt
. (37)

Therefore, substituting Eq. (37) into Eq. (36), we obtain

u0(r0) = χ1(t, α1)
dα1

dt
+ χ2(t, α1), (38)

where

χ1(t, α1) = −f14(t)
α3

1

χ2(t, α1) =
(α1 − k2)(α1 − k3)
(1− k2)(1− k3)α2

1

u1(t)−
(α1 − k3)(α1 − 1)

(k2 − k3)(k2 − 1)α2
1

u2(k2t)

+
(α1 − 1)(α1 − k2)

(k3 − 1)(k3 − k2)α2
1

u3(k3t). (39)

That is to say, each element of the input torque pattern u0(r0) has a linear
function of dα1/dt.

Now, uopt(ropt) is given by expanding or shrinking the time-scale r0. There-
fore, the time-scale function r0 is expanded or shrunk so that the input torque
pattern u0(r0) satisfies the limits of the input torque as

uj
min ≤ χj

1(t, α1)
dα1

dt
+ χj

2(t, α1) ≤ uj
max, (j = 1, · · · , n). (40)

Therein, χj
1(t, α1) and χj

2(t, α1) respectively denote elements of j-th joint for
χ1(t, α1) and χ2(t, α1).

We analyze the paths of dα1/dt in Eq. (40) on the t− α1 phase plane to
obtain the optimal motion. From Eq. (40), by defining
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Lj(t, α1) =
{

(uj
min − χj

2)/χj
1 (χj

1 > 0),
(uj

max − χj
2)/χj

1 (χj
1 < 0)

Hj(t, α1) =
{

(uj
max − χj

2)/χj
1 (χj

1 > 0),
(uj

min − χj
2)/χj

1 (χj
1 < 0)

(41)

we have

Lj(t, α1) ≤
dα1

dt
≤ Hj(t, α1) (j = 1, · · · , n). (42)

These inequalities represent the upper limits and the lower limits of dα1/dt
at the j-th joint. In the case χj

1 = 0, Eq. (42) is satisfied over the whole range
of dα1/dt when uj

min ≤ χj
2 ≤ uj

max (j = 1, · · · , n). On the other hand, the
inequalities are not satisfied over the whole range of dα1/dt when χj

2 < uj
min

or uj
max < χj

2 (j = 1, · · · , n).
Let us define the minimum value of Lj(t, α1) as ML(t, α1) and the maxi-

mum value of Hj(t, α1) as MH(t, α1) among all the joints. When MH(t, α1)
is greater than ML(t, α1), we have

ML(t, α1) ≤
dα1

dt
≤MH(t, α1). (43)

This inequality represents an enabled bound of direction at any arbitrary
point on the t− α1 phase plane. In contrast, if the above inequality does not
hold on the t− α phase plane, no direction is enabled.

Because of the conditions for the time-scale function r0(t), α1(t) must
satisfy α1 ∈ C1 and α1 > 0. The time-optimal motion qopt(ropt) is determined
from a path of α1, which surrounds a minimum region on the phase plane,
because

∫ t

0

α1dτ =
∫ t

0

dr0(τ)
dτ

dτ = r0(t)− r0(0) = r0(t) = ropt(t). (44)

Because the time-scale function ropt(t) is obtained using the above equation,
the time-optimal motion qopt(ropt) can also be obtained.

4 Planning and Control of the Underwater Robot’s
Motion

4.1 Dynamics and Iterative Learning Control of Underwater
Robot Manipulators

For underwater robots, the environment dynamics de in Eq. (1) represent
hydrodynamic terms such as added-mass, drag, and buoyancy terms. Several
researchers, e.g., [14], [15], [16], have studied the models of the dynamics of
underwater manipulators.
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Here, we use a strip-theory approach to model the hydrodynamic terms.
First, each link of a manipulator as shown in Fig. 2 is divided into m strips.
If the manipulator has n links, the number of all strips is n×m. Let us define
a characteristic velocity vj,k for a jk-th strip as a perpendicular flow velocity.
Then, the added-mass force ∆fAj,k and the drag force ∆fDj,k acting on the
jk-th strip can be given respectively as

∆fAj,k = CA(j,k)
dvj,k

dt
, (45)

∆fDj,k = CD1(j,k)vj,k + CD2(j,k) |vj,k| vj,k (46)

where CA(j,k), CD1(j,k) and CD2(j,k) are parameters that consist of the hy-
drodynamic coefficients, the density of the fluid, the geometric shape of the
manipulator and so on. Here, we suppose that the parameters on a strip are
constants.

Through the summation of ∆fAj,k and ∆fDj,k taken over the j-th link, the
hydrodynamic forces acting on the j-th link can be computed. Consequently,
the robot dynamics including hydrodynamic terms are described as follows:

R (q(t))
d2q(t)

dt2
+ RA (q(t))

dv(t)
dt

+
dqT (t)

dt
S (q(t))

dq(t)
dt

+D1 (q(t)) v(t) + |v(t)|T D2 (q(t)) v(t) + Bq
dq(t)

dt
+g (q(t)) + b (q(t)) = u(t). (47)

The matrices and the vectors in Eq. (47) are defined as
v ∈ Rnm×1 : flow velocity vector
v = [v1,1, v1,2, · · · , vn,m]T,
|v| = [|v1,1| , |v1,2| , · · · , |vn,m|]T,
RA (q) ∈ Rn×nm : added inertia matrix,
D1 (q) ∈ Rn×nm : matrix of linear drag force,
D2 (q) ∈ Rnm×n×nm : tensor of quadratic drag force,
b (q) ∈ Rn×1 : vector of buoyancy force.

Iterative Learning Control of Underwater Robot Manipulators

We theoretically and experimentally investigated the performance of the itera-
tive learning control for underwater robot manipulators in [12]. Some assump-
tions for the passivity condition in the case of underwater robot manipulators
were evaluated theoretically. The effectiveness of the iterative learning control
was demonstrated through experiments using a 3-D.O.F. robot manipulator.
Experimental results showed that learning control realized the desired motions
in water. Moreover, the robustness of the learning control was investigated
through some additional experiments.
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Fig. 2. Robot manipulator and a flow-velocity model

4.2 Time-Scale Transformation

Classification of Time-Scale Transformation

Suppose that learning control realizes four desired motions qi(ri) (i =
1, 2, 3, 4). The time-scale functions ri(t) (i = 1, 2, 3, 4) should satisfy condi-
tions I, II, and III, which are given in the previous section. The four motions
have an identical spatial path. Therefore, we obtain

q1(r1(t)) = q2(r2(t)) = q3(r3(t)) = q4(r4(t)). (48)

Here, we assume that the flow velocities around the manipulator satisfy

vj,k(r1) =
dri

dt
vj,k(ri), (i = 2, 3, 4) (49)

when the time-scale is changed. It is presumed that the flow velocities vj,k

around the manipulator depend largely on the time-scale ri of the motions
qi when the manipulator moves in still water. In such a case, it is expected
that the relation represented by Eq. (49) can hold. In fact, our experimental
results [13] show that this assumption is appropriate.

From such points, we classify the hydrodynamic term de from the view-
point of time-scale transformation as:

D0 class : buoyancy term,

D1 class : linear drag term,

D2 class : added inertia, quadratic drag terms.

Here, we regard the linear and quadratic drag terms respectively as D1 and
D2 class.
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Conditions for Time-Scale Transformation

Control and planning of underwater robot manipulators presented here also
require the four time-scale functions ri(t) (i = 1, 2, 3, 4). Therefore, we also
set conditions I, II and III.

Preliminary for Formation of a New Desired Torque Pattern

In place of Eq. (8), we have the following.

R (qi(ri))
d2qi(ri)

dr2
i

+ RA (qi(ri))
dvi(ri)

dri
+

dqT
i (ri)
dri

S (qi(ri))
dqi(ri)

dri

+D1 (qi(ri)) vi(ri) + |vi(ri)|T D2 (qi(ri)) vi(ri) + Bq
dqi(ri)

dri

+g (qi(ri)) + b (qi(ri)) = ui(ri), (i = 1, 2, 3, 4). (50)

The following equations in reference to Eq. (49),

v1(t) =
dri

dt
vi(ri),

dv1(t)
dt

=
d2ri

dt2
vi(ri) +

(
dri

dt

)2 dvi(ri)
dri

, (51)

are satisfied. Therefore, we obtain

vi(ri) = aiv1(t),
dvi(ri)

dri
= a2

i

dv1(t)
dt

− a3
i biv1(t), (52)

where

ai
�
= 1/

dri

dt
, bi

�
=

d2ri

dt2
. (53)

In place of Eq. (12), substituting Eqs. (10), (48) and (52) into Eq. (50)
yields

−a3
i bif14(t) + a2

i f11(t) + aif12(t) + f13(t) = ui(ri) (i = 1, 2, 3, 4), (54)

where

f11(t) = R (q1(t))
d2q1(t)

dt2
+ RA (q1(t))

dv1(t)
dt

+
dqT

1 (t)
dt

S (q1(t))
dq1(t)

dt
+ |v1 (t)|T D2 (q1 (t)) v1 (t) , (55)

f12(t) = Bq
dq1(t)

dt
+ D1 (q1 (t)) v1 (t) , (56)

f13(t) = g (q1(t)) + b (q1 (t)) , (57)

f14(t) = R (q1(t))
dq1(t)

dt
+ RA (q1 (t)) v1 (t) . (58)
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We can derive the compensation vector f14 in the same manner as in the
case of a robot in contact with a constraint surface.

Formation of the Desired Input Torque Pattern

The input torque pattern u0 that realizes an arbitrary desired motion q0 is
formed from u1, u2, u3, which realize q1, q2, q3, and the compensation vector
f14.

In the same manner as Eq. (24), we can obtain

−α3
i βif04(r0) + α2

i f01(r0) + αif02(r0) + f03(r0) = ui(ri) (i = 1, 2, 3),(59)

where αk = 1/ dri

dr0
, βk = d2ri/dr2

0, and

f01(r0) = R (q0(r0))
d2q0(r0)

dr2
0

+ RA (q0(r0))
dv0(r0)

dr0

+
dqT

0 (r0)
dr0

S (q0(r0))
dq0(r0)

dr0
+ |v0(r0)|T D2 (q0(r0)) v0(r0), (60)

f02(r0) = Bq
dq0(r0)

dr0
+ D1 (q0(r0)) v0(r0), (61)

f03(r0) = g (q0(r0)) + b (q0(r0)) , (62)

f04(r0) = R (q0(r0))
dq0(r0)

dr0
+ RA (q0(r0)) v0(r0). (63)

As a result, the input torque pattern u0 to realize an arbitrary desired
motion q0 is calculated as the following.

u0(r0) = [I I I] A∗−1u∗ = f01(r0) + f02(r0) + f03(r0)

= R (q0(r0))
d2q0(r0)

dr2
0

+ RA (q0(r0))
dv0(r0)

dr0

+
dqT

0 (r0)
dr0

S (q0(r0))
dq0(r0)

dr0
+ D1 (q0(r0)) v0(r0)

+ |v0(r0)|T D2 (q0(r0)) v0(r0) + Bq (q0(r0))
dq0(r0)

dr0

+g (q0(r0)) + b (q0(r0)) . (64)

4.3 Time-Optimal Control for Underwater Robot Manipulators

It is also possible to consider motion planning that realizes a minimum-time
motion of an underwater robot under the following limitations:

uj
min ≤ uj

opt(ri) ≤ uj
max (j = 1, · · · , n). (65)

The algorithm of motion planning for underwater robots explained here
is identical to that for motion planning for robots that was presented in the
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previous section. Therefore, the time-optimal motion qopt(ri) bounded by Eq.
(65) is also formed from the four basic torque patterns ui(ri) (i = 1, 2, 3, 4)
without using parameter estimation.

5 Experiments

This section presents some experimental results to confirm the effectiveness of
the proposed control scheme based on iterative learning control and time-scale
transformation. In the experiments, a robot with 3 D.O.F. moves in air and
in water; the proposed control scheme is applied.

5.1 Basic Experiments using a Robot without Mechanical
Constraints

As a basic experiment, a robot manipulator (A460; CRS Plus) like that shown
in Fig. 3 was utilized. The robot manipulator moved in free space and learned
four desired motion patterns with different speeds. The effectiveness of the
time-scale transformation is demonstrated through realization of the minimum
time control input.

In this experiment, only three D.O.F. in the manipulator are controlled;
the input voltages to the amplifiers are regarded as input patterns.

First, one of the basic motions is set as

p1(r1) = p1(t) =


350

0
330


+


 cos ζ(t) − sin ζ(t) 0

sin ζ(t) cos ζ(t) 0
0 0 1




50

0
0


 , (66)

ζ(t) = 2π

{
−2
(

t

T1

)3

+ 3
(

t

T1

)2
}

[rad], T1 = 2.0[s]. (67)

The other three basic motions pi(ri) (i = 2, 3, 4) are defined by the time-
scale functions as

r2(t) = 1.25t, T2 = 2.5[s], (68)
r3(t) = 1.5t, T3 = 3.0[s], (69)

r4(t) =
2 (exp (t/2)− 1)

exp (1)− 1
, T4 = 2.0[s]. (70)

The joint motion patterns qi(ri) are obtained from pi(ri) by solving inverse
kinematics. The input patterns ui(ri) (i = 1, 2, 3, 4) that realize the basic
motions qi(ri) are formed through iterative learning control. After several
iterative operations, the trajectory tracking errors of the endpoint of the robot
became smaller than 1 [mm] at any time of the trajectories.
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Now, we set the limitations for the input voltages uj
max = 9.2[V ], uj

min =
−9.2[V ] (j = 1, 2, 3). Under those limitations, we sought an optimal path
in the t − α1 phase. The result is shown in Fig. 4. The time optimal motion
qopt(ropt) and the control input uopt(ropt) in Fig. 5 were obtained. Because the
terminal time of the obtained time minimum motion is 1.18 [s], it is confirmed
that the four desired motions with the terminal times 2.0 [s], 2.5 [s], 3.0 [s],
and 2.0 [s] can generate a faster motion while retaining the input limitations.

Fig. 3. 6-D.O.F. Robot Manipulator Fig. 4. t − α phase plane

Fig. 5. Input patterns for the minimum-time motion

5.2 Experiments using an Underwater Robot Manipulator

To demonstrate the effectiveness of the proposed control scheme, the minimum
time control was conducted using a 3-D.O.F. manipulator, as shown in Fig.
6. This robot was designed and developed at Ritsumeikan University. In this
experiment, the input electric currents to the actuators of the manipulator
are considered to be the input torques.

First, the spatial path p1(t) is chosen as
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p1(r1) = p1(t) =


 350
−250 + 500 sin θ(t)

750


 , (71)

θ(t) =
π

2

{
6
(

t

T1

)5

− 15
(

t

T1

)4

+ 10
(

t

T1

)3
}

[rad], T1 = 1.8[s].(72)

For the spatial path, we consider the time-scale functions as

r2(t) = 3t, T2 = 5.4[s], (73)
r3(t) = 1.5t, T3 = 2.7[s], (74)

r4(t) =
t2 + 5t

5
, T4 = 2.45[s]. (75)

The joint motions qi(ri) corresponding to pi(ri) are calculated using inverse
kinematics.

The basic input patterns ui(ri) (i = 1, 2, 3, 4) that realize the basic mo-
tions qi(ri) are formed by the iterative learning control. In this case, after
15 iterative operations, the trajectory tracking errors of the endpoint of the
robot became smaller than 2.5 [mm] at any time of the trajectories.

Under the following limitations of the inputs:

−1.0 < ui
opt(ri) < 1.0 [A] (j = 1, 2, 3), (76)

an optimal path is sought on the t − α1 phase plane. The result is shown in
Fig. 7. The time-optimal motion popt(ropt) and the control input uopt(ropt) are
obtained using α1. Figure 8 shows that the input patterns uopt are bounded
by the limitations. This case also shows that the four desired motions with
the terminal times of 1.8 [s], 5.4 [s], 2.7 [s] and 2.45 [s] can produce a faster
motion with the terminal time 1.28 [s], while keeping the input limitations.

6 Conclusion

Through this study, we have asserted the importance of the control scheme
design method based on the structure, which is physically characterized. As
examples of the control scheme design method, iterative learning control and
time-scale transformation were introduced in this paper. Regarding iterative
learning control, the desired input pattern can be acquired without estimating
the parameters of a robot and its environment. The effectiveness of iterative
learning control is guaranteed by the physical characteristic of ”passivity”.
On the time-scale transformation, a new desired input pattern for a different
speed motion pattern is formed through some combination of the desired
input patterns that are obtained using iterative learning control if the physical
characteristic, ”classification on time-scale” of the system is clear.
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Fig. 6. 3-D.O.F. Underwater Manipu-
lator

Fig. 7. t − α phase plane

Fig. 8. Input patterns for the minimum-time motion

It is important to know whether the proposed control scheme design
method based on characterization of the objective dynamics is useful for mo-
tion control of a complex system. In this paper, we set two environments for
a robot as complex systems: a rigid surface and water. In both cases, the ef-
fectiveness of the time-scale transformation is theoretically proven. Moreover,
it is demonstrated experimentally that the minimum control inputs for un-
derwater robot manipulators are obtainable through iterative learning control
and time-scale transformation.
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Part II

From Robot Control to Human-Like
Movements



Modularity, Synchronization, and What
Robotics May Yet Learn from the Brain

Jean-Jacques Slotine

Massachusetts Institute of Technology, Cambridge MA 01239 USA, jjs@mit.edu

Summary. Although neurons as computational elements are 7 orders of magnitude
slower than their artificial counterparts, the primate brain grossly outperforms ro-
botic algorithms in all but the most structured tasks. Parallelism alone is a poor
explanation, and much recent functional modeling of the central nervous system
focuses on its modular, heavily feedback-based architecture, the result of accumu-
lation of subsystems throughout evolution. In our earlier work, we have extensively
discussed this architecture from a global stability and convergence point of view. In
this article, we describe recent work which extends these ideas to synchronization
as a model of computations at different scales in the nervous system. We also de-
scribe a simple condition for a general dynamical system to globally converge to a
polyrhythm, i.e., a regime where multiple groups of fully synchronized elements co-
exist. Applications to some classical questions in robotics and systems neuroscience
are discussed.

1 Introduction

I am truly delighted to contribute to this book on the occasion of Professor
Suguru’s Arimoto’s 70th birthday. Professor Arimoto’s work is probably the
one I most admire in the whole field of robotics. Like the founders of cybernet-
ics [86, 87, 93, 3], Professor Arimoto was also deeply interested in neuroscience
from the start, and actually he was one of the main contributors to the now
very classical FitzHugh-Nagumo [11, 55] model of neural oscillators. So I be-
lieve it is fitting to write an article about what robotics may yet learn from
the brain in the context of this celebration.

Although neurons as computational elements are 7 orders of magnitude
slower than their artificial counterparts, the primate brain grossly outperforms
robotic algorithms in all but the most structured tasks. Parallelism alone is
a poor explanation, and much recent functional modeling of the central ner-
vous system focuses on its modular, heavily feedback-based computational
architecture, the result of accumulation of subsystems throughout evolution.
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We have extensively discussed in some earlier work [76, 74, 44] this archi-
tecture from a global stability and convergence point of view. In this article,
we describe recent work [88] on synchronization as a model of computations
at different scales in the brain, such as pattern matching, temporal binding
of sensory data, and mirror neuron response. Finally, we derive [63] a simple
condition for a general dynamical system to globally converge to a regime
where multiple groups of fully synchronized elements coexist. Applications
of such ”polyrhythms” to some classical questions in robotics and systems
neuroscience are discussed.

The development makes extensive use of nonlinear contraction theory, a
comparatively recent analysis tool whose main features will be briefly re-
viewed. In particular,

• Global results on synchronization can be obtained using most common
models of neural oscillators, such as the FitzHugh-Nagumo model.

• Long-range synchronization between regions can be achieved without di-
rect connections.

• Since contraction is preserved under most common system combinations
(parallel, hierarchies, negative feedback), it represents a natural framework
for motor primitives.

• In locomotion, the analysis exhibits none of the topological difficulties
that may arise when coupling large numbers of phase oscillators, and it
guarantees global exponential convergence.

• Replacing ordinary CPG connections by filters enables automatic frequency-
based gate selection.

• Stable polyrhythmic aggregates of arbitrary size can be constructed recur-
sively, motivated by evolution and development.

• Just as global synchronization occurs naturally and quantifiably in net-
works of locally coupled oscillators, it can be turned off by adding a single
inhibitory connection.

• In vision and pattern recognition, detectors for various types of symmetries
can be systematically constructed.

2 Modularity, Stability, and Evolution

Basically, a nonlinear time-varying dynamic system will be called contract-
ing if initial conditions or temporary disturbances are forgotten exponentially
fast, i.e., if trajectories of the perturbed system return to their nominal behav-
ior with an exponential convergence rate. It turns out that relatively simple
conditions can be given for this stability-like property to be verified, and fur-
thermore that this property is preserved through basic system combinations
(such as series, hierarchies, parallel combinations, and negative feedback), a
state-space feature reminiscent in spirit of input-output passivity [65]. Fur-
thermore, as discussed in Section 3, the concept of partial contraction allows
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to extend the applications of contraction analysis to include convergence to
behaviors or to specific properties (such as equality of state components, or
convergence to a manifold) rather than trajectories. This section is largely
based on [43, 76, 74, 44] to which the reader is referred for details.

We consider general time-varying deterministic systems of the form

ẋ = f(x, t) (1)

where f is an n×1 nonlinear vector function and x is the n×1 state vector. The
above equation may also represent the closed-loop dynamics of a controlled
system with state feedback u(x, t). All quantities are assumed to be real and
smooth, by which it is meant that any required derivative or partial derivative
exists and is continuous. The basic result of [43] can then be stated as

Theorem 1. Consider system (1), and assume there exists a uniformly posi-
tive definite metric

M(x, t) = Θ′(x, t) Θ(x, t)
such that the associated generalized Jacobian

F =
(
Θ̇ + Θ ∂f

∂x

)
Θ−1

is uniformly negative definite. Then all system trajectories converge exponen-
tially to a single trajectory, with convergence rate |λmax|, where λmax is the
largest eigenvalue of the symmetric part of F. The system is said to be con-
tracting.

By Θ′ we mean the Hermitian (conjugate transpose) of Θ, and by sym-
metric part of F we mean 1

2 (F + F′). It can be shown conversely that the
existence of a uniformly positive definite metric with respect to which the
system is contracting is also a necessary condition for global exponential con-
vergence of trajectories. In the linear time-invariant case, a system is globally
contracting if and only if it is strictly stable, with F simply being a normal
Jordan form of the system and Θ the coordinate transformation to that form.
The results immediately extend to the case where the state is in C

n.
Example [74] Consider the Lorenz system

ẋ = σ (y − x)
ẏ = ρ x − y − x z
ż = − β z + x y

with strictly positive constants σ, ρ, β, and, given measurements of x, the
reduced-order identity observer [62, 58]

˙̂y = ρ x − ŷ − x ẑ
˙̂z = − β ẑ + x ŷ

The symmetric part of the observer’s Jacobian is − diag(1, β), and thus the
observer is contracting with an identity metric. Since by construction (ŷ, ẑ) =
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(y, z) is a particular solution, the estimated state converges exponentially to
the actual state, with rate min(1, β).

An important property is that, under mild conditions, contraction is
preserved through system combinations such as parallel, series or hierar-
chies, translation and scaling in time and state, and certain types of feed-
back [43, 45, 76, 74].

Example [74] Consider the system

ẋ = f(x, t) + B(x, t) u

and assume that there exist control primitives u = pi(x, t) which, for any
i, make the closed-loop system contracting in some common metric M(x).
Multiplying each equation

ẋ = f(x, t) + B(x, t) pi(x, t)

by a positive coefficient αi(t), and summing, shows that any convex combina-
tion of the control primitives pi(x, t)

ẋ = f(x, t) + B(x, t)
∑

i

αi(t) pi(x, t) ,
∑

i

αi(t) = 1

also leads to a contracting dynamics in the same metric. For instance, the time-
varying convex combination may correspond to smoothly blending learned
primitives in a humanoid robot.

As our understanding of both brain function and robot design improves,
common fundamental questions strongly suggest exploring the relations be-
tween integrative neuroscience and robotics beyond the most obvious analo-
gies. While today the evolution and development of cognitive processes is
seen as closely linked to the progressive refinement of sensorimotor functions,
similarly robotics takes artificial intelligence beyond its classical conceptual
domain by emphasizing the central role of physical interaction with the en-
vironment. Of course, the constraints and opportunities of robotics are very
different from those of biology. While their physical hardware is far behind
nature’s, in principle robots can have perfect memory, near-perfect repeata-
bility, can use mathematics explicitly, and can simulate (imagine) specific
actions much faster than humans. The traveling speed of information through
an nerve axon is significantly slower than the speed of sound, while that along
an electrical wire is closer to the speed of light. Processing time at each and
every chemical synapse is about 1 ms, probably a major incentive for develop-
ing parallel computational architectures. But similar delay problems can also
be found in robotics, if one looks not at an autonomous robot, but rather, for
instance, at telerobotics over large distances.

While most of robotic theory is founded on physical models and mathe-
matical algorithms, the fundamental conceptual tool in biology is the theory
of evolution. Evolution proceeds by accumulation and combination of stable
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intermediate states. Conceptually, such accumulations have also been a recur-
rent theme in cybernetics and AI history, and also form the basis of several
recent theories of brain function. However, in themselves, accumulations and
combinations of stable elements have no reason to be stable. Hence our hy-
pothesis in [76, 74, 44] that evolution will favor a contraction-like form of
stability, which automatically guarantees stability in combinations, since this
would considerably reduce (in effect, avoid combinatorial explosion of) trial-
and-error as the systems become large and complex. Thus, contraction theory
may help guide functional modeling of the central nervous system, and con-
versely it provides a systematic method to build arbitrarily complex robots
out of simpler elements.

Incidentally, the definition of contraction fits rather naturally with known
data on biological motion perturbation, e.g. perturbation of arm move-
ment [80, 94]. Furthermore, it is intrinsic, in the sense that the system’s
“nominal” behavior needs not be known. Finally, such a form of stability,
at least in a local sense, is also a basic prerequisite for any learning, since it
guarantees the consistency of the system’s behavior in the presence of small
disturbances or variations in initial conditions. Automatic contraction preser-
vation is a a property reminiscent of input-output passivity [65], although it
applies in state-space to more general forms of combinations. An interesting
discussion of the application of passivity tools to recursive refinement of the
control of movement can be found in [2].

In [97] we use contraction to derive a nonlinear observer which computes
the continuous state of an inertial navigation system based on partial discrete
measurements, the so-called strap-down problem. The mathematical state-
ment of this problem is common to aircraft navigation, robot localization,
and head stabilization in mammals and birds. Indeed, the human vestibular
system uses otolithic organs measuring linear acceleration and semi-circular
canals estimating angular velocity through heavily damped angular accelera-
tion signals, an information then combined with visual data at much slower
update rate. Furthermore, head stabilization is likely used to simplify control
and overall balance [5], a feature yet to be implemented in humanoid or flying
robots.

3 Synchronization

We use partial contraction analysis to study synchronization phenomena. This
section is largely based on [88] to which the reader is referred for details. Its
results will be further expanded and systematized in Section 4.

Theorem 2. Consider a nonlinear system of the form

ẋ = f(x,x, t)

and assume that the auxiliary system
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ẏ = f(y,x, t)

is contracting with respect to y. If a particular solution of the auxiliary y-
system verifies a smooth specific property, then all trajectories of the original
x-system verify this property exponentially. The original system is said to be
partially contracting.

Proof: The virtual, observer-like y-system has two particular solutions,
namely y(t) = x(t) for all t ≥ 0 and the solution with the specific property.
This implies that x(t) verifies the specific property exponentially.

Example [78] Consider a rigid robot model

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ

and the energy-based controller [75]

H(q)q̈r + C(q, q̇)q̇r + g(q)−K(q̇− q̇r) = τ

with K a constant s.p.d. matrix. The virtual y-system

H(q)ẏ + C(q, q̇)y + g(q)−K(q̇− y) = τ

has q̇ and q̇r as particular solutions, and furthermore is contracting, since the
skew-symmetry of the matrix Ḣ− 2C implies

d
dt

δyTHδy = −2δyT(C + K)δy + δyTḢδy = −2δyTKδy

Thus q̇ tends to q̇r exponentially. Making then the usual choice
q̇r = q̇d − λ(q− qd) creates a hierarchy and implies in turn that q tends
to qd exponentially.

Example Consider a convex combination or interpolation between con-
tracting dynamics

ẋ =
∑

i

αi(x, t) fi(x, t)

where the individual systems ẋ = fi(x, t) are contracting in a common metric
M(x) and have a common trajectory xo(t) (for instance an equilibrium), with
all αi(x, t) ≥ 0 and

∑
i αi(x, t) = 1. Then all trajectories of the system globally

exponentially converge to the trajectory xo(t). Indeed, the auxiliary system

ẏ =
∑

i

αi(x, t) fi(y, t)

is contracting (with metric M(y) ) and has x(t) and xo(t) as particular solu-
tions.

Example The main idea of the virtual system in partial contraction can
be applied in a variety of ways. Consider two coupled FitzHugh-Nagumo [11,
55] neural oscillators
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v̇1 = c(v1 +w1− 1
3v3

1 + I(t)) + k (v2− v1) ẇ1 = − 1
c (v1−a+ bw1)

v̇2 = c(v2 +w2− 1
3v3

2 + I(t)) + k (v1− v2) ẇ2 = − 1
c (v2−a+ bw2)

where a, b, c are strictly positive constants and I(t) an external input. The
above imply

v̇1 + (2k − c)v1 + 1
3cv3

1 − cw1 = v̇2 + (2k − c)v2 + 1
3cv3

2 − cw2

ẇ1 + 1
c (v1 + bw1) = ẇ2 + 1

c (v2 + bw2)

Let gv(t) be the common value of the terms in the first line, and gw(t) the
common value of the terms in the second line. Both gv(t) and gw(t) depend
on initial conditions. Define the virtual system

ẏv + (2k − c)yv + 1
3cy3

v − cyw = gv(t)

ẏw + 1
c (yv + byw) = gw(t)

By construction, both neural oscillators follow particular trajectories of the
virtual system. Furthermore, using a metric transformation Θ = diag(1, c)
yields the generalized Jacobian

F =
[
−2k − c(y2

v − 1) 1
−1 − b

c

]

so that the virtual system is contracting if 2k > c . Thus, if 2k > c, the two
neural oscillators synchronize with an exponential rate min(2k − c , b/c) .

The results extend to global synchronization conditions for networks of
locally coupled FitzHugh-Nagumo neural oscillators [88]. It can also be shown
that in such networks, a single inhibitory link of the same gain between two
arbitrary nodes can destroy synchronization. This can provide a simple mech-
anism to avoid synchronization when it is undesirable. Such inhibition prop-
erties may be useful in pattern recognition to achieve rapid desynchronization
between different objects. They may also be used as simplified models of min-
imal mechanisms for turning off unwanted synchronization, as e.g. in epileptic
seizures or oscillations in internet traffic. In such applications, small and local-
ized inhibition may also allow one to destroy unwanted synchronization while
only introducing a small disturbance to the nominal behavior of the system.

Cascades of inhibition are common in the brain, in a way perhaps remi-
niscent of NAND-based logic.

Distributed synchronization phenomena are the subject of intense research.
In the brain such phenomena are known to occur at different scales, and are
heavily studied at both the anatomical and computational levels. In partic-
ular, synchronization has been proposed as a general principle for temporal
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0 50 100 150 200 250 300
t

Fig. 1. An example of fast inhibition with a single inhibitory link. The plot shows
the states of ten FitzHugh-Nagumo neurons as functions of time. The inhibitory link
is actived at t = 100 and removed at t = 200. Thus, synchronization can be readily
achieved and just as readily turned off.

binding of multisensory data [73, 20, 41, 53, 84, 37, 57], and as a mecha-
nism for perceptual grouping [95], neural computation [6, 7, 92] and neural
communication [34, 27, 69, 70]. The recently recognized pervasiveness [13] of
diffusion-like, bilateral electrical synapses (gap junctions) makes these syn-
chronization models particularly intriguing. Not entirely coincidentally, the
same basic mathematics describing the collective behavior of neurons also de-
scribe the collective behavior of fish schools or bird flocks, as well as certain
types of phase-transition in physics [82].

4 Polyrhythms

This section, which extends and systematizes the results of the Section 3, is
based on [63], to which the reader is referred for details.

4.1 Concurrent Synchronization

In an ensemble of dynamical elements, concurrent synchronization is defined
as a regime where the whole system is divided into multiple groups of fully
synchronized elements1, but elements from different groups are not necessarily
synchronized [4, 96, 64] and can be of entirely different dynamics [16]. It can be
easily shown that such a regime corresponds to a flow-invariant linear subspace
of the global state space. Concurrent synchronization phenomena are likely
pervasive in the brain, where multiple “rhythms” are known to coexist [34, 69],
neurons can exhibit many qualitatively different types of oscillations [34, 26],
and functional models often combine multiple oscillatory dynamics.
1 In the literature, this phenomenon is often called poly- or partial synchronization.

However, the latter term can also designate a regime where the elements are not
fully synchronized but behave coherently [82].
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A simple sufficient condition for a general dynamical system to converge
to a flow-invariant subspace is introduced in [63]. The analysis is built upon
nonlinear contraction theory [43, 88], and thus it inherits many of the theory’s
features :

• global exponential convergence and stability are guaranteed, as opposed
to [4, 96, 17] where only stability in the neighborhood of the invariant
manifold is discussed,

• convergence rates can be explicitly computed as eigenvalues of well-defined
symmetric matrices,

• under simple conditions, convergence to a concurrently synchronized state
can be preserved through system combinations,

• generalized symmetries in the sense of [16] can be systematically exploited,
so that long-range synchronization between regions can be achieved with-
out direct connections,

• robustness to variations in dynamics can be easily quantified.

Consider, in R
n, the deterministic system

ẋ = f(x, t) (2)

where f is a smooth nonlinear function. Assume that there exists a flow-
invariant linear subspaceM (i.e. a linear subspaceM such that ∀t : f(M, t) ⊂
M), which implies that any trajectory starting in M remains in M. Let
p = dim(M), and consider an orthonormal basis (e1, . . . , en) where the first
p vectors form a basis of M and the last n − p a basis of M⊥. Define an
(n − p) × n matrix V whose rows are e	p+1, . . . , e

	
n . V may be regarded as a

projection 2 on M⊥, and it verifies [24, 31] :

V	V + U	U = In VV	 = In−p x ∈M ⇐⇒ Vx = 0

where U is the matrix formed by the first p vectors.
Now let z = Vx. By construction, x converges to the subspace M if and

only if z converges to 0. Multiplying (2) by V on the left, we get

ż = Vf(V	z + U	Ux, t)

Construct the auxiliary system

ẏ = Vf(V	y + U	Ux, t) (3)

By construction, a particular solution of system (3) is y(t) = z(t). In addi-
tion, since U	Ux ∈ M and M is flow-invariant, f(U	Ux) ∈ M = Null(V).
Thus y(t) = 0 is another particular solution of system (3). If furthermore sys-
tem (3) is contracting with respect to y, then z(t) will converge exponentially
to 0. This leads to [63]
2 For simplicity we shall call V a “projection”, although the actual projection

matrix is in fact V�V.
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Theorem 3. If a linear subspace M is flow-invariant and if system (3) is
contracting, then all solutions of system (2) converge exponentially to M.
In practice, the subspace M is often defined by the conjunction of (n − p)
linear constraints. In a synchronization context, each of the constraints may
be, e.g., of the form xi = xj where xi and xj are subvectors of the state x.
This provides directly a (generally not orthonormal) basis (e′p+1, . . . , e

′
n) of

M⊥, and thus a matrix V′ whose rows are e′p+1
	

, . . . , e′n
	, and which verifies

V′ = TV

with T an invertible (n − p) × (n − p) matrix, and x ∈ M ⇐⇒ V′x = 0.
For instance, for three systems, each of dimension m and state xi, one has

V′ =
(

Im −Im 0
0 Im −Im

)

Thus, using an identity metric in (3), the sufficient condition for conver-
gence to M

∀ x, V
(

∂f
∂x

)
V	 < 0 (4)

can be written equivalently in the more simply evaluated form

∀ x, V′
(

∂f
∂x

)
V′	 < 0 (5)

Note however that to evaluate explicitly the convergence rate to M, one
has to use the orthonormal version, e.g. through a Gram-Schmidt proce-
dure [24] on the rows of V′.

The definition of the linear subspace may also comprise composite vari-
ables, such as sliding variables, thus reducing the dimensionality of the or-
thogonal subspace.

Different “rhythms” (α, β, γ, δ) are known to coexist in the brain, which,
in the light of the previous analysis, may be interpreted and modeled as
concurrently synchronized regimes. Since contracting systems driven by pe-
riodic inputs will have states of the same period [43], different but synchro-
nized computations could be robustly carried out by specialized areas in the
brain using synchronized elements as their inputs. Such a temporal “bind-
ing” [73, 20, 41, 84, 37, 57, 95, 8, 13] mechanism would also complement the
general argument in [76] that multisensory integration may occur through the
interaction of contracting computational systems connected through an ex-
tensive network of feedback loops. Furthermore, because of the preservation
of contraction through system combinations, Theorem 3 suggests a mecha-
nism for stable accumulation and interaction of concurrently synchronized
groups, showing [63] that the simple conditions for contraction to a linear
subspace, combined with the high fan-out of typical neurons, increase the
plausibility of large concurrently synchronized structures being created in the
central nervous system in the course of evolution and development. Making
these observations precise is the subject of current research.
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4.2 Percolation

When a sync subspace is a strict superset of another, one should expect that
the convergence to the former state is “easier” than the convergence to the
latter [96, 4, 64]. This progressive synchronization or “percolation” effect can
be quantified easily from Theorem 3, by noticing that

MA ⊃MB ⇒ M⊥
A ⊂M⊥

B ⇒ λmin(VALsV	
A) ≥ λmin(VBLsV	

B)

While in the case of identical systems and relatively uniform topologies, this
effect may often be too fast to observe, the above applies to the general con-
current synchronization case and quantifies the associated and possibly very
distinct time-scales.

4.3 Coincidence and Symmetry Detection

Coincidence detection is a classic mechanism proposed for segmentation and
classification. In an image for instance, elements moving at a common velocity
are typically interpreted as being part of a single object, and this even when
the image is only composed of random dots [41, 37].

The possibility of decentralized synchronization via central diffusive cou-
plings can be used in building a coincidence detector. In [92], inspired in part
by [7], the authors consider a leader-followers network of FitzHugh-Nagumo
oscillators, where each follower oscillator i receives an external input Ii as well
as a diffusive coupling from the leader oscillator (the element e1 of G1). Oscil-
lators i and j receiving the same input (Ii = Ij) synchronize, so that choosing
the system output as

∑
1≤i≤n[v̇i]+ captures the moment when a large number

of oscillators receive the same input.
However, the previous development also implies that this very network

can detect the moments when several groups of identical inputs exist. Fur-
thermore, it is possible to identify the number of such groups and their relative
size. Indeed, assume that the inputs are divided into k groups, such that for
each group Gm, one has ∀i, j ∈ Gm, Ii = Ij . Since the oscillators in Gm only
receive as input (a) the output of the leader, which is the same for everybody
and (b) the external input Ii, which is the same for every oscillator in group
Gm, they are input-symmetric and should synchronize with each other.

Symmetry, in particular bilateral symmetry, has also been shown to play
a key role in human perception [6]. Consider a group of oscillators having the
same individual dynamics and connected together in a symmetric manner. If
we present to the network an input having the same symmetry, some of the
oscillators will synchronize as predicted by the earlier theoretical results. One
application of this idea is to build fast symmetry detectors, extending the
oscillator-based coincidence detectors of the previous section [63].
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4.4 Robustness

Robustness results for contracting systems [43] can be exploited to guarantee
approximate synchronization even when the elements are not exactly identi-
cal, with important practical implications for the synchronization of spiking
neurons of different dynamics.

Consider again a network of n dynamical elements

ẋi = fi(xi, t) +
∑
j �=i

Kij(xj − xi) i = 1, . . . , n (6)

with now possibly fi 
= fj for i 
= j, and let us apply the robustness result for
contracting systems of [43] to the projected system of Theorem 3. For strong
enough coupling strength, all trajectories of the system will exponentially
converge to a boundary layer of thickness D/λ around the sync subspace M,
where λ is the contraction rate of the auxiliary system and D is a measure of
the dissimilarity of the elements [63].

Consider for instance, a system of the form (similar to the model used for
coincidence detection in [88] and the previous section)

ẋi = f(xi) + Ii + k(x0 − xi)

In this case, D = Imax−Imin
2 .

Assume now that two spiking neurons are approximately synchronized, as
just discussed. Then, since spiking induces large abrupt variations, the neurons
must spike approximately at the same time. More specifically, if the bound
on their trajectory discrepancy guaranteed by the above robustness result is
significantly smaller than spike size, then this bound will automatically imply
that the two neurons spike approximately at the same time. This inherent
robustness of spike timing may be another reason why nature chose action
potential mechanisms to represent information.

4.5 Locomotion

In an animal/robotics locomotion context, central pattern generators are often
modeled as coupled nonlinear oscillators delivering phase-locked signals. Con-
sider for instance [63] a system of three coupled 2-dimensional Andronov-Hopf
oscillators, 


ẋ1 = f(x1) + k(R 2π

3
x2 − x1)

ẋ2 = f(x2) + k(R 2π
3
x3 − x2)

ẋ3 = f(x3) + k(R 2π
3
x1 − x3)

where f is the dynamics of an Andronov-Hopf oscillator and the matrix R 2π
3

describes a 2π
3 planar rotation :

f
(

u
v

)
=
(

u− v − u3 − uv2

u + v − v3 − vu2

)
R 2π

3
=

(
− 1

2 −
√

3
2√

3
2 − 1

2

)
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We can rewrite the dynamics as ẋ{} = f{}(x{})− kLx{}, where

L =


 I2 −R 2π

3
0

0 I2 −R 2π
3

−R 2π
3

0 I2




First, observe that the linear subspace

M =
{(

R2
2π
3

(x),R 2π
3

(x),x
)

: x ∈ R
2
}

is flow-invariant, and that M is also a subset of Null(Ls). Next, remark that
the characteristic polynomial of Ls is X2 (X − 3/2)4 so that the eigenvalues
of Ls are 0, with multiplicity 2, and 3/2, with multiplicity 4. Now since M
is 2-dimensional, it is exactly the nullspace of Ls, which implies in turn that
M⊥ is the eigenspace corresponding to the eigenvalue 3/2.

Moreover, the eigenvalues of Js(u, v) are 1− (u2 + v2) and 1− 3(u2 + v2),
which are upper-bounded by 1. Thus, using the previous development, for
k > 2/3 the three systems will globally exponentially converge to a 2π

3 -phase-
locked state (i. e. a state in which the difference of the phases of two consecutive
elements is constant and equals 2π

3 ).

4.6 Coupled CPGs

Let us further illustrate combinations of such systems on the following exam-
ple, based on [71], which studies models of central pattern generators in fish
and salamanders [25].

Consider again an Andronov-Hopf oscillator, now with a limit cycle of
constant radius ρ > 0,

ẋ = fρ(x) =


−v −

(
u2+v2

ρ2 − 1
)

u

u−
(

u2+v2

ρ2 − 1
)

v


 ,

where xT = [u, v]. Note that

• fρ(Rx) = Rfρ(x) for an arbitrary rotation R
• fρ(kx) = kfρ/k(x) for k > 0,

Consider now a two-way chain of n such oscillators with phase-shift diffu-
sive couplings,

ẋ1 = f1(x1)− γb1(x1 −T−1
1 x2)

...
ẋi = fi(xi)− γai−1(xi −Ti−1xi−1)− γbi(xi −T−1

i xi+1)
...

ẋn = fn(xn)− γan−1(xn −Tn−1xn−1)

(7)
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where each ρi > 0 is the radius of the corresponding limit cycle (the ρi > 0
may be distinct) and Ti is defined as

Ti =
ρi+1

ρi
Ri,

with Ri a planar rotation of φi,

Ri =
(

cos(φi) − sin(φi)
sin(φi) cos(φi)

)
.

Hence, a pair of diffusive couplings (xi+1−Tixi) and (xi−T−1
i xi+1) matches

different limit cycle radii ρi+1 and ρi, and shifts the phase as much as φi.
The coupling is two-way in that the downward coupling (xi+1 − Tixi) that
appears in the equation of xi+1 oscillator pushes xi+1 to follow xi adjusted
through Ti; and the upward coupling (xi−T−1

i xi+1) pushes xi to follow xi+1

through T−1
i . γai is the downward coupling strength and γbi the upward. By

combining the coupling coefficients multiplied by γ, we can adjust the overall
strength without affecting the upward to downward ratio.

Defining collective quantities

x{}
∆=




x1

...
xn


 f{}(x{}) =




f1(x1)
...

fn(xn)




we can rewrite the system (7) as

ẋ{}
∆= f{}(x{})− γLx{}, (8)

where the coupling matrix L is then defined as

L =


 b1I −b1T−1

1 0
−a1T1 a1I 0

0 0 0


+ . . . +


0 0 0

0 bn−1I −bn−1T−1
n−1

0 −an−1Tn−1 an−1I


 .

In order to make the coupling matrix L symmetric, we define a coordinate
transformation y{} = Φx{} where

Φ =




I 0 0 · · ·
0 ρ1

ρ2

√
b1
a1

I 0 · · ·

0 0 ρ1
ρ3

√
b1b2
a1a2

I
. . .

...
...

. . . . . .




Then (8) becomes

ẏ{} = Φf{}(Φ−1y{})− γΦLΦ−1y{}
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where the Jacobian of the couplings is symmetric positive semidefinite,

ΦLΦ−1 =




b1I −
√

a1b1RT
1 0 · · ·

−
√

a1b1R1 a1I 0 · · ·
0 0 0 · · ·
...

...
...

. . .


+

+




0 0 0 0 · · ·
0 b2I −

√
a2b2RT

2 0 · · ·
0 −
√

a2b2R2 a2I 0 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .




+ · · ·

The corresponding linear invariant subspace in y-system is

My = {
√

biRiyi −
√

aiyi+1 = 0, i = 1, . . . n− 1},

or equivalently, in the original x-system,

Mx = {xi+1 = Tixi , i = 1, . . . n− 1}

Notice thatMy is the eigenspace corresponding to zero eigenvalues of ΦLΦ−1.
We can now construct a non-orthonormal basis for M⊥

y directly from My

as

Ṽ =




√
b1R1 −

√
a1I 0 · · · 0

0
√

b2R2 −
√

a2I
. . .

...
...

. . . . . . . . . 0
0 · · · 0

√
bn−1Rn−1 −

√
an−1I


 ,

whose rows form a basis of M⊥
y . Through orthogonalization of Ṽ we obtain

the orthogonal matrix V, and the resulting VΦLΦ−1VT is positive definite.
The Jacobian of ẋ = fρ(x) is

∂fρ
∂x

=

(
−2u2

ρ2 − u2+v2

ρ2 + 1 −1− 2uv
ρ2

1− 2uv
ρ2 −2v2

ρ2 − u2+v2

ρ2 + 1

)

and the eigenvalues of its symmetric part are

1− u2 + v2

ρ2
; 1− 3(u2 + v2)

ρ2

Hence, by choosing γ large enough so that

γ λmin(VΦLΦ−1VT) > 1

the generalized projected Jacobian verifies
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V
[
Φ

(
∂f
∂x
− γL

)
Φ−1

]
s

VT < 0.

Thus, a two-way chain of oscillators with arbitrary positive couplings gains can
be synchronized to the desired invariant set Mx for sufficiently large overall
coupling strength γ. The analysis extends easily [71] to double antisynchro-
nized chains and to the other types of gaits studied e.g. in [25].

4.7 Frequency-Based Gait Selection

To study concurrent synchronization, extensive use is made in [63] of gener-
alized symmetries [16]. Actually, replacing ordinary connections in the CPGs
by filters enables frequency-based symmetry selection. This idea may have
powerful applications, one of which could be automatic gait selection in lo-
comotion. An simplified analogy with horse gaits can be made, for instance,
by associating the low-frequency regime with the walk (left fore, right hind,
right fore, left hind), and the high-frequency regime with the trot (left fore
and right hind simultaneously, then right fore and left hind simultaneously).
Transitions between the two regimes can occur automatically according to the
speed of the horse (the frequency of its gait).

Note that standard techniques allow sharp causal filters with frequency-
independent delays to be easily constructed [61].
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Summary. The advantages and challenges of producing and controlling force with
a mechanism like the human skeleton driven by actuators like mammalian muscles
are considered. Some counter-intuitive subtleties of musculo-skeletal biomechanics
are discovered: despite the energetic cost of isometric muscle activation, exerting
forces that do no work may reduce metabolic energy consumption; in some cir-
cumstances, anatomical antagonist muscles may become functional synergists; and
muscle tension acts to make skeletal posture statically unstable. The latter effect
can be counteracted by muscle mechanical impedance, which emerges as an essential
adjunct to muscle force production.

1 Introduction

Physical interaction with the world is a commonplace of life; we touch things,
squeeze them, push them. Successful interaction with objects in the world
depends in part on the ability to control the force we exert on them. The
human body is richly endowed with muscles; they comprise about half of our
body weight and they appear to be uniquely specialized for producing force.
However, because of the unique properties of muscles and the way they are
connected to the skeleton, force production presents some interesting chal-
lenges and opportunities. Some of them are reviewed below.

This chapter is dedicated to Professor Suguru Arimoto on the occasion of
his 70th birthday. Throughout his influential career, Professor Arimoto has
advocated and articulated the value of a physics-based approach to control:
understanding the physics of a manipulator and the tasks it performs leads to
improved designs and more effective methods for its control. In the following,
that physics-based approach is applied to “reverse-engineer” force control in
the mammalian biomechanical system. Some counter-intuitive observations
are discovered and the possibility is raised that some of muscle’s unique prop-
erties may have evolved in response to the challenges and opportunities of
force production.
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Because of the molecular underpinnings of muscle contraction, exerting
muscle force always consumes metabolic energy. This is true even when no
mechanical work is done because muscle length remains constant or when
muscle absorbs work by lengthening under load. It may therefore seem that to
economize metabolic energy consumption we should avoid exerting forces that
do no useful work. However, an analysis of force exertion against a kinematic
constraint will show that workless forces may, in fact, be used to reduce effort
and energy consumption.

Another basic fact of muscle physiology is that skeletal muscles pull but
don’t push; to achieve both flexion and extension of the joints, they are de-
ployed in opposing or antagonist groups. However, an analysis of musculo-
skeletal geometry will lead to the counter-intuitive observation that for certain
force-production tasks, anatomically antagonist muscles may actually coop-
erate as agonists or synergists.

A further subtlety of musculo-skeletal biomechanics is that force produc-
tion challenges skeletal stability. Examining the kinematic details of musculo-
skeletal attachments will show that because muscles are deployed to surround
the bones (a basic fact of mammalian anatomy) the static stability of skeletal
posture is reduced in proportion as muscle tension increases.

Of course, because it is manifestly evident that muscle contraction does
not, in fact, cause the skeleton to collapse, we are presented with a para-
dox. One solution to this puzzle lies in the properties of muscle mechanical
impedance. A stabilizing muscle stiffness will be shown to be an essential
requirement for controlling force with a muscle-activated endoskeleton.

All of these considerations may be derived from a straightforward mechan-
ical analysis. To begin, the standard robotic analysis of mechanism kinematics
is reviewed.

1.1 Torque Space

If the human skeleton is regarded as a mechanism1 then a starting point
for its description is a set of variables that uniquely define its configuration.
These generalized coordinates, usually identified as angular degrees of free-
dom relating adjacent rigid limb segments, define a configuration space which
is fundamental to the analysis of skeletal mechanics. Knowing the configu-
ration variables and the geometry of the limb segments, the location of all
points on the skeleton may be determined. Though not unique, these general-
ized coordinates are fundamental; for example, the inertial and gravitational
dynamic equations of the skeleton are properly defined in configuration space.

To analyze force production, a starting point is to identify the correspond-
ing generalized forces. By definition these are such that the scalar product of
generalized forces with incremental displacements in configuration space de-
fines mechanical work done on the mechanism. Just as joint angles are usually
1 The term “mechanism” is used loosely herein to refer to a collection of

kinematically-constrained rigid bodies.
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an appropriate choice for generalized coordinates, joint torques are usually an
appropriate choice for generalized forces. They define a torque space which is
fundamental to a description of how forces are exerted on and transmitted
through the skeleton.

1.2 Mapping Torque Space to Contact Space

The position and orientation of any point of contact between the skeleton and
the world (i.e., a hand, a foot, etc.) defines a contact space which may always
be expressed as a function of the generalized coordinates or configuration
variables

X = L (θ) (1)

where X is an array containing the positions and orientations of the contact
point in some appropriate external reference frame (e.g. Cartesian coordi-
nates), θ is an array containing the generalized coordinates and L is an array
of algebraic functions.

Conversely, any force or torque exerted at that point of contact may be
mapped into torque space, for example by considering the incremental me-
chanical work it does. Denoting the exerted forces and torques by F, the
incremental work is

dW = FtdX (2)

The incremental displacement of the point of contact is determined by

dX = J (θ) dθ (3)

where J is the Jacobian of the function relating the two sets of coordinates.
By definition, the incremental mechanical work done on the skeleton is

dW = τ tdθ (4)

where τ is an array containing the generalized forces (joint torques). Substi-
tuting and rearranging

τ = Jt (θ)F (5)

The Jacobian matrix characterizes the mechanical transmission of force and
torque between the world and the skeleton. Its columns define the moment
arms relating contact forces to joint torques or the “gear ratios” relating
contact torques to joint torques. It is always well-defined, even when the di-
mension of the configuration space exceeds that of the point of contact (i.e.,
the skeleton is redundant with respect to this contact point).

2 Workless Forces

When we exert ourselves to push on the world, the details of the mechani-
cal transmission affect our action. Efficiency would seem to imply that forces
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should be exerted only to do useful work. However, one counter-intuitive as-
pect of force production with a muscle-activated skeleton is that it may be
advantageous and energetically efficient to exert forces that generate no me-
chanical work [1].

Consider the class of constrained-motion tasks represented by turning a
crank. Common examples include opening a door or pedaling a bicycle. The
crank defines a holonomic constraint on the motion of the limb, allowing
displacement only in certain directions (e.g., tangent to the circle described
by the door handle or the pedals). Displacement normal to the constraint is
nominally zero; elongation or compression of the pedals is negligible as is the
change of the radius of the door handle about its hinges. Any force exerted
in the normal direction does negligible mechanical work and no useful work.
Only forces tangent to the constraint (e.g., in line with the path of the pedals
or the door handle) perform useful work. One basic fact about mammalian
muscle is that generating force consumes metabolic energy even when the
muscle does no work. One might therefore expect that the most energetically
efficient way to turn a crank with the least muscular effort would be to exert
exclusively tangential forces. Surprisingly, that turns out not to be true.

It is informative to represent the task in torque space. For simplicity,
consider a two-segment model of the skeleton (e.g., describing planar motion
of the arm and forearm). The elbow angle (forearm relative to arm) and
shoulder angle (arm relative to thorax) may serve as configuration variables.
The corresponding generalized forces are the elbow and shoulder torques and
the torque space is depicted in Fig. 1.

shoulder torque

elbow torque

torque vectors along this line 
generate tangential forces

torque vectors along this line 
generate normalforces

any torque vector with its tip 
on this line will generate the 
required tangential force this torque vector generates 

the specified tangential force

Fig. 1. Torque-space diagram illustrating how forces exerted normal to a constraint
may reduce muscular effort. The sub-spaces (directions in this example) that gen-
erate normal and tangential forces at a particular limb configuration are shown by
the light lines; in general they are not orthogonal. Any torque vector with its tip on
the dashed line generates the specified tangential force. The torque vector (shown
bold) that generates no normal force is not the shortest torque vector that meets
the task requirements.
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To exert a tangential force requires a particular torque vector (see Fig. 1)
determined by equation (5). Consequently, at any given configuration, tan-
gential forces exerted on the crank define a sub-space of torque space, in this
two-dimensional example a line or direction in torque space. Normal forces
(that stretch or compress the crank) correspond to torque vectors in a dif-
ferent sub-space (a different direction in this example) but, due to the limb
geometry, it is rarely orthogonal to the torque vector for tangential force.
If workless normal forces are allowed, the specified tangential force can be
achieved by any torque vector with its tip on the (dashed) line in Fig. 1.

To assess exertion or efficiency we need some measure of effort, and one
convenient candidate is the length of a vector in torque space. By that mea-
sure, effort is minimized by the shortest torque vector that meets task re-
quirements. Referring to the figure, it becomes evident that the least muscu-
lar effort (by this measure) is generally not achieved by generating a purely
tangential force. Except in the (unusual) case that the torque-space directions
corresponding to normal and tangential forces are at right angles, minimum
effort (the shortest torque vector) will be achieved by exerting a combination
of normal and tangential forces.

Many alternative measures of effort (including total metabolic energy con-
sumption, total root-mean-squared stress on the joints, etc.) have been sug-
gested and explored. However, insofar as these measures are equivalent to
defining a norm on the torque space, the above argument applies. For exam-
ple, if metabolic energy consumption is described by a monotonic function of
torque, with minimal consumption at zero torque, that function may be used
to re-scale the axes of torque space and the argument proceeds as before. Ex-
cept in the unusual case that the torque sub-spaces corresponding to normal
and tangential forces are orthogonal with respect to the particular norm, the
minimizing torque vector will generate both normal and tangential forces. In
short, attempting to stretch or compress the crank can (almost) always be
used to economize the effort need to push tangential to it.

As the dimensions of the torque space and the contact space are the same
in this example, it may be analyzed equivalently in terms of the forces exerted
at the contact point. However, in general the number of relevant joints exceeds
the number of relevant task dimensions, often by a large margin (there are
estimated to be about 200 distinct limb segments in the human skeleton). In
that case it is not generally possible to identify the contact forces that result
from individual joint torques. To do so would require inverting equation (5)
but the Jacobian is not square and not invertible. Nevertheless, though it
cannot be inverted, the Jacobian is well-defined; it is always possible to project
contact forces into torque space. Torque space is fundamental for analysis of
how forces are exerted on and transmitted through the skeleton.
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3 Coordinating Muscle Forces

A more detailed analysis of force production should consider how muscle forces
are coordinated to generate joint torques. Upon doing so, another counter-
intuitive subtlety of musculo-skeletal biomechanics emerges: anatomical an-
tagonists may be functional synergists. The best way to produce a specified
force may require simultaneous contraction of opposing muscles [1].

3.1 Mapping Muscle Space to Torque Space

This arises because of the geometry of the skeleton and the way muscles
are attached. For simplicity, assume that the lengths of muscles and their
associated tendons are uniquely defined by the configuration of the skeleton2.
In that case, the complete set of muscle lengths (which may be taken as the
coordinates of a muscle space) may be expressed as a function of skeletal
configuration variables (generalized coordinates)

q = q (θ) (6)

where q is an array containing muscle lengths and g is an array of algebraic
functions. With this information, muscle forces may be mapped to torque
space. As above, one way to do this is to consider the incremental mechanical
work done. Denoting the complete array of muscle forces by f , the incremental
work is

dW = f tdq (7)

The relation between incremental displacements in muscle length space and
configuration space are determined by

dq = j (θ) dθ (8)

where j is the Jacobian of the function relating the two sets of coordinates. The
incremental mechanical work done on the skeleton is again given by equation
(4), hence (substituting and rearranging)

τ = j t (θ) f (9)

The Jacobian matrix j characterizes the mechanical transmission of force from
the muscles to the skeleton. Its columns define the moment arms of the muscles
2 In fact, the relation between musculo-tendon length and skeletal configuration

may depend on the force exerted by a muscle and perhaps by its neighbors. If its
tendon passes through an aponeurosis or wraps around a joint, increasing tension
may increase or decrease the moment arm of a muscle about the joint even when
that joint does not move. Similarly, the line of action of a muscle’s force may
change due to the contraction (and hence shape change) of its neighbors, again
without any change in skeletal configuration. However, these complications do not
change the main result, that anatomical antagonists may be functional synergists.
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about the joints. It is always well-defined, even though the dimension of muscle
space exceeds that of configuration space, i.e., the number of muscles exceeds
the number of skeletal degrees of freedom.

For any given skeletal configuration, each individual muscle force defines a
sub-space of torque space, the combination of joint torques generated by that
muscle. Assuming that muscles can’t push3, this sub-space is a “half-space”,
the set of vectors pointing in a direction in torque space, but not vectors of the
opposite sign. Muscles that actuate a single degree of freedom define a sub-
space co-aligned with one of the torque space axes. Consider a two-segment
model of planar motion of the arm and forearm as described above. Elbow
and shoulder torques define the axes of torque space as depicted in Fig. 2.

τtwo-joint
flexor

τ two-joint
extensor

τelbow flexor

τelbow
extensor

τshoulder
flexor

τ shoulder extensor

shoulder torque

elbow torque

Fig. 2. Torque-space diagram illustrating the joint torque contributions due to
single-joint elbow flexor (τelbowflexor) and extensor (τelbowextensor) muscles; single-
joint shoulder flexor (τshoulderflexor) and extensor (τshoulderextensor) muscles; and
two-joint flexor (τtwojoint flexor) and extensor (ttwo−jointextensor) muscles. Torque
vectors of single-joint antagonist muscles are anti-aligned but those of two-joint
antagonist muscles need not be.

The action of individual muscles may be represented as vectors in this
space. A muscle such as brachialis spans only the elbow joint and generates
torque to flex it. In Fig. 2, single-joint elbow flexors such as brachialis define
a sub-space which is the positive horizontal axis; i.e., they generate torque
vectors oriented positively (but not negatively) along the horizontal axis.

Single-joint muscles have unambiguous antagonists. A muscle such as the
deep head of triceps spans only the elbow joint and generates torque to ex-
tend it. In Fig. 2, single-joint elbow extensors define a sub-space which is the
negative horizontal axis; i.e., they generate torque vectors oriented negatively
(but not positively) along the horizontal axis.

3 This is generally true of skeletal muscles but not necessarily for muscular hy-
drostats such as the tongue.
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Similarly, single-joint shoulder flexor muscles generate torque vectors ori-
ented along the positive vertical axis in Fig. 2 and single-joint shoulder exten-
sor muscles generate torque vectors oriented along the negative vertical axis.
The unambiguous mechanical antagonism of these muscle groups is reflected
in the architecture of the nervous system that drives them. In general flexors
and extensors are endowed with a different density and combination of sensors
and may be activated by different neural pathways.

Other muscles span multiple degrees of freedom or multiple joints and
generate torques about each of them. The torque sub-space defined by a poly-
articular muscle corresponds to positive displacement in a direction that does
not co-align with the torque space axes. For example, biceps brachii gener-
ates torque to flex the elbow and also to flex the shoulder. The moment arms
that map the single muscle force onto torques about the two different joints
may vary with limb configuration and, in general, are not equal. In Fig. 2,
two-joint flexor muscles generate a combination of shoulder and elbow flex-
ion torques represented by a vector oriented between the positive (but not
negative) horizontal and vertical axes.

Like single-joint muscles, multi-joint muscles typically have anatomical an-
tagonists. For example, the long head of triceps brachii generates torques to
extend the elbow and also to extend the shoulder. Again, the moment arms
that map the single muscle force onto torques about the different joints may
vary with limb configuration and, in general, are not equal. In Fig. 2, two-
joint extensor muscles generate a combination of shoulder and elbow flexion
torques represented by a vector oriented between the negative (but not posi-
tive) horizontal and vertical axes.

For the most part, multi-joint flexor and extensor muscle groups act an-
tagonistically; i.e., the long head of triceps generally opposes biceps brachii.
However, the muscle moment arms about the two joints are not generally in
the same ratio. At any given limb configuration, force in biceps brachii may
generate flexion torques about elbow and shoulder in a different ratio than
triceps long head generates extension torques about the same joints. Whereas
the torque vectors generated by single-joint flexor and extensor muscles are
always exactly opposed, the torque vectors generated by two-joint flexor and
extensor muscles are not always exactly in opposition.

3.2 Antagonists or Synergists?

One important consequence is that anatomically antagonist muscles may con-
tribute synergistically to force production. Because the two-joint flexor and
extensor torque vectors are not anti-aligned (i.e., they do not exactly oppose
one another), there exists a region of torque space (a sector in Fig. 2) onto
which both flexor and extensor poly-articular muscles have positive projec-
tions. Any force to be generated where the limb contacts the world, (e.g., the
hand, the foot, etc.) requires a combination of joint torques that may always
be represented by a vector in torque space (as described above). If the required
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joint torque lies in the region in which flexor and extensor poly-articular mus-
cles have positive projections, then both can make a positive contribution
to producing the required force. In that case, these anatomical antagonists
become functional synergists.

To what extent are these theoretical considerations biologically meaning-
ful? After all, if these antagonist muscles project weakly onto the required
torque, then their contribution to force production will come at a heavy cost,
e.g., in the consumption of metabolic energy. To the author’s knowledge, this
question has not been fully explored. However, if a situation requires maximal
force production, then every contribution matters, however costly. Reasoning
along similar lines, if a force is to be produced with minimal effort, where the
measure of effort is equivalent to defining a norm on the torque space, then for
certain forces the minimum-effort solution will include contributions, albeit
small, from both of these anatomical antagonists.

Given that muscles spanning multiple degrees of freedom are more the rule
than the exception in the mammalian musculo-skeletal system, the identifica-
tion of antagonists requires care. Though the distinction between flexors and
extensors may have a sound neural basis (possibly a legacy of phylogeny) their
functional definition as antagonists is ambiguous and depends sensitively on
the task. The same pair of muscles may act as antagonists in one case and
synergists in another—even if the configuration of the limb remains fixed and
the only change is the direction of the force to be produced.

4 Kinematic Instability

In the analysis above, the configuration of the skeleton serves to parameterize
the mappings between contact forces, joint torques and muscle forces. In ef-
fect, the analysis is equivalent to assuming an instantaneous static equilibrium,
with the skeleton remaining at a fixed configuration as force is produced. How-
ever, a further subtlety of musculo-skeletal mechanics is that co-contraction of
antagonist muscles may cause the skeletal configuration to become statically
unstable.

Naturally, an equilibrium posture cannot be maintained if a joint torque
is generated without any opposing equilibrating load. However, even when
net joint torque is zero (a necessary condition for static equilibrium) muscle
contraction may still destabilize the limbs. To understand how, consider the
relation between muscle forces and joint torques described by equation (9).
The columns of the Jacobian, j, define the moment arms of the muscles about
the joints. However, those moment arms depend on limb configuration so that
incremental changes of the joint angles may increase or decrease the moment
arms. Any non-zero muscle force will result in a joint torque that depends
on joint angle. That produces a behavior analogous to that of a spring, but
with a stiffness that may be positive or negative, depending on the details of
musculo-skeletal attachment.



210 Neville Hogan

The details may be quantified simply by differentiating equation (9), the
relation between muscle force and joint torque (which has been transposed
for clarity).

dτ t = f t (∂j (θ)/∂θ) dθ = f th (θ) dθ (10)

where the partial derivative of the Jacobian matrix j with respect to the array
θ denotes the Hessian h of the function relating configuration variables to
muscle lengths. It is a three-index array of partial derivatives of the elements
of the Jacobian matrix with respect to each of the configuration variables.
The product of the Hessian and the muscle force vector yields a two-index
matrix that defines what may be termed a configuration-dependent “kinematic
stiffness”, Γ.

Γt (θ) = f th (θ) (11)

Though it is a second-order effect of the relation between joint angles and
muscle lengths, kinematic stiffness is important nonetheless. Most mammalian
muscles span joints in such a manner that their torque acts to move the
limbs in a direction that increases the muscle’s moment arm. For example,
brachialis is connected between the arm and forearm such that its origin,
insertion, and the axis of the elbow form an approximate triangle. Brachialis
acts to flex the elbow and as it does, the perpendicular distance between
its line of action (joining its origin and insertion and forming the base of the
triangle) and the elbow axis (the apex of the triangle) increases. Consequently,
if brachialis exerts a constant force, the corresponding elbow torque increases
as the elbow flexes and decreases as it extends. This resembles a negative
spring and has a destabilizing effect on the joint. For example, if brachialis
were opposed by a constant torque so that static equilibrium was achieved at
a particular elbow angle, small displacements towards flexion would increase
the net torque acting to flex the elbow; similarly, small displacements towards
extension would increase the net torque acting to extend the elbow.

Though the details vary, this example is typical of the muscles of the
mammalian skeleton: because muscles are deployed outside the bones, their
moment arms tend to increase as they move the limbs. Consequently, muscles
with this destabilizing kinematic connection are typically opposed by muscles
which also exhibit the same behavior, and that compounds the destabilizing
effect. In essence, the skeleton may be regarded as a set of columns of rigid
links connected by joints of negligible torsional stiffness. The links are sur-
rounded by tensile elements, the muscles, which act to load the columns in
compression. As the column has negligible torsional stiffness, it is vulnera-
ble to buckling. Force production in a muscle-activated endoskeleton4 may
destabilize its posture and cause it to collapse.

4 It may be otherwise for an exoskeleton.
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4.1 Muscle Mechanical Impedance

Despite this observation, a moment of personal experimentation will confirm
that simultaneous contraction of opposing muscles (that’s what we do when
we tense our muscles or clench a fist) does not destabilize the limbs. How can
this be? An answer lies in the special properties of muscle.

Muscle powers movement but is remarkably different from engineering
power sources. For example, electrical voltage sources are painstakingly de-
signed so that (as nearly as resources and engineering expertise can achieve)
their output voltage is independent of current delivered. Electrical current
sources (e.g., commonly used with permanent-magnet electric motors) deliver
current largely independent of the required voltage. These properties are quan-
tified by electrical impedance, where zero is the ideal impedance for voltage
sources and infinity (equivalent to zero admittance) is the ideal for current
sources. Mechanical power sources are similar; for many applications the ideal
is an actuator that produces force (or torque) independent of translational (or
angular) speed and displacement. This property is quantified by mechanical
impedance (the ratio of force/torque change to motion change) with zero be-
ing the ideal for a torque or force source. Conversely, an ideal motion source
has infinite mechanical impedance (zero mechanical admittance).

In striking contrast, mammalian muscle is neither an ideal force source
nor an ideal motion source. Quite aside from variations due to fatigue or
pathological conditions, for a constant activation of the alpha-motoneuron
that drives it, the force developed by a skeletal muscle is a strong function of
muscle length and its rate of change. Its mechanical impedance is certainly
not infinite (the speed at which a muscle shortens depends strongly on the
load it moves) but neither is it zero; force developed may change by several
hundreds of percent as muscle length and shortening velocity vary within their
physiological range. With mechanical impedance far from either ideal extreme,
muscle appears to be a poor power source (by engineering standards).

This might reflect nothing more than a biological imperfection or an in-
complete evolutionary adaptation. Skeletal muscles generate force by deform-
ing myosin molecules after they have been attached to binding sites on actin
filaments [2]. Dependence of contractile force on muscle length might be an
epi-phenomenon arising in part from incomplete overlap of myosin heads and
actin binding sites; or from mechanically parallel passive tissue that encap-
sulates a sarcomere; or from some other mechanisms. However, available evi-
dence favors the view that finite muscle mechanical impedance is not an im-
perfection but is highly adaptive, solving some of the problems inherent in a
muscle-activated endoskeleton and supporting the remarkable motor abilities
of biological systems.

4.2 Mammalian Actuators

From neurophysiology we learn that mammalian muscle is richly endowed with
muscle spindles [2]. These sensory organs are the origin of afferent nerve fibers
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carrying signals related to (at least) muscle length and its rate of change. They
make monosynaptic excitatory connections in the spinal cord to at least the
homologous alpha-motoneurons innervating the muscle containing the spindle.
Both these afferent fibers and the efferent alpha fibers are myelinated, with
nerve conduction velocities among the highest in the nervous system. The
result is one of the body’s fastest feedback connections, giving rise to the well-
known stretch reflex: abrupt stretch of a muscle evokes a brisk, involuntary
contraction a short time later. Other prominent muscle sensors include Golgi
tendon organs, which respond almost exclusively to muscle-generated force in
the tendon. Their afferents are also myelinated (hence fast-conducting) and
act to inhibit the alpha-motoneurons of homonymous muscles. One plausible
role of these nested feedback loops is to enhance (and perhaps regulate) the
apparent mechanical impedance of the actuator that drives the skeleton [3, 4].
That is, the apparent stiffness of the actuator is increased; more precisely,
because of reflex loop dynamics, apparent impedance5 is changed.

4.3 Neural Feedback Complements Intrinsic Mechanical
Impedance

Although muscle responds rapidly to activity of its embedded sensors, the
delay in neural transmission is nevertheless substantial: about 30 milliseconds
or more for muscles of the human upper limbs, 50 milliseconds or more for
muscles of the human lower limbs. To avoid instability due to this delay,
feedback gain must be limited, which in turn limits impedance bandwidth:
an effective opposing force is generated in response to stretch only at lower
frequencies. Feedback-generated impedance declines at higher frequencies.

It is a remarkable fact that intrinsic muscle impedance due to actin-myosin
interactions exhibits a complementary variation with frequency. Broadly
speaking, as muscle is stretched, deformation of each myosin molecule bound
to an actin filament contributes to apparent muscle stiffness. At the same
time, the rate at which myosin molecules detach from their actin binding sites
increases with deformation but is limited by the dynamics of the ATP-driven
reactions that provide the energy to separate myosin heads from actin fil-
aments. The result is that the steady force generated in response to rapid
stretch is much smaller than the transient force. Intrinsic muscle impedance
is high at higher frequencies and declines at lower frequencies.

It therefore appears that feedback-generated impedance properties of the
peripheral neuromuscular system may complement those due to intrinsic mus-
cle contractile mechanics [5]. Rather than think of the skeleton being driven
by muscles, it is probably more useful to consider the skeletal actuator to be a
neuro-muscular system comprised of the muscle, its sensors and the associated
reflex loops, acting in concert to manage mechanical impedance over a wide
frequency range.

5 Mechanical impedance may be considered a dynamic generalization of stiffness.



Force Control with A Muscle-Activated Endoskeleton 213

4.4 The Stabilizing Effect of Muscle Impedance

The analysis presented above demonstrated that the static equilibrium of the
skeleton may be compromised by force production; muscle tension may cause
the skeleton to collapse upon itself. Muscle stiffness (the static component of
muscle mechanical impedance) counteracts this effect. A sufficient condition
to ensure static stability is readily obtained by extending the differentiation
of equation (9) and assuming that muscle forces f depend on muscle lengths
q (as well as other variables such as neural drive)

f = f (q,u) (12)

where u is an array containing at least the neuro-muscular control inputs6.
Using equations (8) and (11) yields

∂τ

∂θ
= Γ (θ) + j t (θ)

(
∂f
∂q

)
j (θ) (13)

In words, the net joint stiffness is the sum of a kinematic stiffness and a neuro-
muscular stiffness. Positive-definite net joint stiffness is sufficient to ensure
static stability. This may be achieved if neuro-muscular stiffness is positive-
definite (i.e., stabilizing) and larger than kinematic stiffness. Furthermore,
note from equation (11) that the destabilizing kinematic stiffness is propor-
tional to muscle force. To stabilize skeletal posture, neuro-muscular stiffness
must increase with muscle force at least as rapidly.

One robust observation of mammalian muscle is that its neuro-muscular
impedance is positive and increases with force exerted. The a-reflexic (intrin-
sic) contribution to muscle stiffness is positive at zero operating force and
increases in proportion to force over the full range of contraction [4]. With
reflexes intact, neuro-muscular stiffness is substantially larger. It is also pos-
itive at non-zero operating force and increases in approximate proportion to
force (though about three times more rapidly) up to about 50% of maximum
voluntary contraction [4]. Furthermore, while the torque contributions of an-
tagonist muscles usually oppose each other, the impedance contributions of
all muscles always add to net joint impedance [6].

Taken together, these properties of muscle-generated impedance offset the
destabilizing effects of configuration-dependent muscle moment arms. In fact,
the increase of neuro-muscular impedance with force exerted more than com-
pensates for the static instability due to musculo-skeletal kinematics. It is
easily verified that voluntary co-contraction of antagonist muscles increases
the externally-observable net joint stiffness [7, 8].

6 For a-reflexic muscle, the neural input is alpha-motoneuron activity. However, if
we consider the basic neuro-muscular actuator to comprise the muscle and its
associated reflex feedback loops, the neural control input to that actuator has
not yet been identified unambiguously.
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5 Concluding Remarks

One important conclusion to be drawn from this analysis is that it is inade-
quate or at best incomplete to consider muscle as just a force generator. While
engineering actuators are often painstakingly designed to minimize mechanical
impedance, that would be quite unsuitable for a machine with the kinematic
structure of the mammalian musculo-skeletal system. The minimum compe-
tent description of muscle should include its mechanical output impedance,
and almost certainly the fact that muscle stiffness increases with force.

Once the importance of mechanical impedance is recognized, it affords a
wealth of alternative approaches to problems in both robotics and biology. For
example, the stabilizing properties of neuro-muscular mechanical impedance
may simplify motion control. They endow the skeleton with dynamic attractor
properties (e.g., a tendency to converge to a certain pose or trajectory) so
that trajectory details could then emerge from dynamic interaction between
skeleton, muscle and peripheral neural circuits with minimal intervention from
higher levels of the central nervous system. That is one key element of the so-
called “equilibrium-point” theories of neural control, which remain appealing
(though controversial!) after four decades of research [9, 10].

Modulating net joint stiffness may be used to regularize ill-posed prob-
lems such as the “inverse kinematics” of a redundant multi-joint system. The
challenge is to determine trajectories of the joints that will achieve a specified
trajectory of, say, the hand. Approaches equivalent to computing a pseudo-
inverse of the Jacobian have been proposed, but the resulting map is not
integrable; that is, closed paths of the hand do not yield closed paths of the
joints. However, taking advantage of the natural stabilizing properties of joint
stiffness yields an inverse map that is fully integrable [11]. In fact, the full
theoretical implications of muscle mechanical impedance for motion control
of redundant mechanical systems remain to be articulated; see especially the
recent work by Arimoto et al. [12].

The ability to modulate externally-observable mechanical impedance also
provides a robust way to control physical interaction with the world. Im-
pedance control of robots has been investigated and applied extensively; see
[13] for a review. Observations of human subjects interacting with unstable
objects have verified that they can skillfully tune the stiffness of the hand to
maintain stability [8]. This may be an essential requirement for effective use
of tools which destabilize limb posture [14].

The unique challenges of force production in a muscle-activated endoskele-
ton raise the intriguing possibility that muscle mechanical impedance may
be an evolutionary adaptation of the biological actuator. To prevent mus-
cle activation from collapsing the skeleton, muscle stiffness must increase
with muscle force at least as rapidly as the destabilizing effects of musculo-
skeletal kinematics. If that is achieved, muscle stiffness that increases even
more rapidly with muscle force enables antagonist co-contraction strategies to
modulate mechanical impedance at the hand, which then enables sophisticated
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behavior such as the use of tools. To the author’s knowledge, the biological
validity of these speculations remains untested.
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Summary. This chapter deals with modeling of human-like reaching and pinching
movements. For the reaching movements, we construct a two-link planar arm model
with six redundant muscles. A simple task-space feedback control scheme, taking
into account internal forces induced by the redundant and nonlinear muscles, is
proposed for this model. Numerical simulations show that our sensory-motor control
can realize human-like reaching movements. The effect of gravity is also studied
here and a method for the gravity compensation on the muscle input signal level
is introduced. The stability of this method is proved and its effectiveness is shown
through numerical simulations. For the pinching movements, realized by the index
finger and the thumb, the co-contraction between the flexor and extensor digitorum
muscles is analyzed. It is shown that an internal force term can be generated by
the redundant muscles to modulate a damping factor in the joint space. Numerical
simulations show that the co-contraction of each digitorums makes it possible to
realize human-like pinching movements. Our results suggest that the central nervous
system (CNS) does not need to calculate complex mathematical models based on the
inverse dynamics or on the planning of optimal trajectories. Conversely, the human
motor functions can be realized through the sensory-motor control by exploiting the
passivity, nonlinearity and the redundancy of the musculo-skeletal systems.

1 Introduction

This paper is dedicated to Professor Suguru Arimoto on the occasion of his
70th birthday. From the early information science to signal processing and
system control theory, from robotics to biological motor control studies, he
has contributed a lot of original results that are recognized as the most fun-
damental in these fields. Specifically, he has emphasized that nonlinearity and
passivity characteristics in robotics are very important in the robot control
design. Recently, this has led to an interesting theory of “the stability theory
on a manifold” [1, 2]. This theory may give us a hint on how animals realize
their redundant dynamic motor control functions. In this chapter, we study
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human motions following his philosophy. By modeling the nonlinear dynam-
ics of the human arms, fingers and redundant muscles, we show in numerical
simulations that even a simple sensor-motor control can generate human-like
skillful motions.

Natural human movements are smoother, more dexterous, and more so-
phisticated than the movements of present-day robots. The skill and the
beauty of the human motor functions have attracted the attention of not
only physiologists and kinesiologists, but also the robotics researchers. Study-
ing human-like natural movements has become an important research area in
modern robotics. A variety of human-like movements have been mimicked in
robotic systems, and many computational models have been proposed. How-
ever, the most fundamental problem of how the CNS generates a strategy to
perform these movements is still unsolved. One of the reasons is related to the
ill-posed problems induced by the joint and muscle redundancies. These prob-
lems were pointed out by N.A. Bernstein [3, 4] more than half a century ago.
Many physiologists and robotics researchers have challenged to solve these
ill-posed problems by introducing optimization criteria. In the robotics field,
there have been attempts to determine the solution of the inverse kinematics
uniquely by introducing artificial performance indices and optimizing them
[5, 6]. Recently, the joint redundancy problem has been approached more nat-
urally by introducing novel concepts called “the stability on a manifold” and
“the transferability to a submanifold” proposed by Arimoto [1, 2].

In physiology, there are several hypotheses to determine movements of sur-
plus limbs or muscles. Fel’dman [7] firstly presented an equilibrium point(EP)
hypothesis and later Bizzi et al. [8] observed that the joint angle can be de-
termined by the equilibrium point when the output forces of agonist and
antagonist muscles are balanced. After that, several researches treated multi-
joint reaching movements based on the EP hypothesis [9, 10, 11, 12]. The
attractive point of this hypothesis is that there is no need to solve the inverse
dynamics. Hogan [13] extended the EP hypothesis to a control scheme called
“a virtual trajectory control hypothesis”. This hypothesis defines the desired
trajectory by using a minimum-jerk criterion, and the virtual trajectory is
derived corresponding to the equilibrium point. Morasso [14] also observed
reaching movements of the human arm and concluded that the CNS central
commands may be coordinated not in the joint space but in the task space.
This was called “a spatial control hypothesis”. This hypothesis is closely re-
lated to the Bernstein’s problem introduced in 1935 [4], which states that the
human motions are coordinated by the CNS in the task space, not in the
joint and muscles spaces. In contrast, Kawato [15] presented a feedback-error
learning scheme that is based on the learning of internal dynamical models.
This scheme emphasizes that a human being controls many redundant limbs
and muscles by using an internal dynamical model, and the inverse model can
be obtained by learning the feedback error. It was also pointed by Katayama
and Kawato [16] that the virtual trajectory hypothesis approach [13] is too
complex to calculate the equilibrium point trajectory in the joint space in
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order to realize human-like reaching movements. Note that Kawato’s approach
also needs to derive the desired trajectory in advance by introducing optimiza-
tion criteria [17]. However, calculating these criteria as well as computing the
inverse dynamics can be too complicated.

In this chapter, in order to understand the brain-motor control strategies,
we pay a special attention to the sensory-motor control mechanisms. We take
the viewpoint that the human can hardly calculate in real time any complex
mathematical model based on the inverse dynamics or on the planning of
optimal trajectories. We address two types of human movements. One is a
reaching movement produced by the upper and forearm, and the other is
a pinching movement produced by the index finger and the thumb. These
dexterous movements require an intelligent control.

To model the reaching movement, we construct a two-link planar arm
model with six redundant muscles and introduce a simple task-space feedback
control scheme. In addition, we take into account the effect of internal forces
induced by the redundant muscles. The internal forces are generated by the
co-contraction of agonist and antagonist muscles. Hogan [18] remarked and
Gribble [19] observed that the co-contraction of agonist and antagonist mus-
cles plays an important role in the regulation of the impedance characteristics
of each joint. Arimoto et al. [2] pointed out that the damping in the joints
plays a crucial role for the convergence of the end-point trajectory.

In our study we use a simple model of nonlinear muscle dynamics based
on the physiological study [20]. We introduce an internal force term in ad-
dition to the simple task-space feedback control term in order to modulate
the damping factors in the joint space. We also formulate the kinematics and
the dynamics of the arm model, and give a proof of the convergence of the
closed-loop dynamics. Numerical simulations show that our simple sensory-
motor control can result in the human-like reaching movements [21, 22]. In
everyday life, humans move naturally even though the gravity force affects
their bodies. This is because the antigravity muscles work to compensate the
gravity force without the control loop from the high level of the brain motor
cortex. In physiology, it is considered as a stretch reflex. To take this effect
into consideration, we propose a method for the gravity compensation at the
muscle input signal level [22]. The stability of this method is proved and its
effectiveness is shown through numerical simulations.

Next, we proceed to the cooperative control of a pair of fingers. In physi-
ology, a tip-to-tip pinch produced by the index finger and the thumb is called
a precision grip [23]. It is distinct from the power grip (whole-finger grasping)
in both anatomical and functional sense. In fact, the muscle actuation pattern
in the precision grip is quite different from that in the power grip [24]. This
pinching movement can be realized by synergistic actuation [25] of the flexor
and extensor digitorum muscles. The co-contraction (or co-activation) of the
flexor and extensor digitorum muscles in performing the pinching motion has
been observed in physiological studies [26]. In our study we focus on the co-
contraction between the flexor and extensor digitorum muscles in performing
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the stable pinching by the index finger and the thumb. It is known that the
muscle configuration of the human hand is quite complex. In particular, the
index finger and the thumb consist of not only several intrinsic digitorum mus-
cles, but also of multiarticular extrinsic digitorum muscles. They are attached
to the fore-arm to perform flexion and extension movements.

In the analysis of pinching movements, we employ a model of dual 2 D.O.F.
fingers. To mimic the structure of the human fingers [27], each finger in our
model is actuated by one monoarticular digitorum muscle and two biarticu-
lar digitorum muscles. We formulate the kinematics and the dynamics of the
finger-object system under the conditions that the overall motion of this sys-
tem is in the horizontal plane, and the object has two parallel flat surfaces.
Then, we derive a control law realizing the stable pinching simultaneously
with the posture regulation [1, 29]. We show that the internal forces gener-
ated by the redundant muscles can modulate the damping effect in the joint
space [21, 22]. Finally, we present numerical simulations and suggest that
the co-contraction of each digitorums makes it possible to realize human-like
pinching movements.

2 Human-Like Reaching Movements

2.1 A Two-link Arm Model with Six Redundant Muscles

In this section, we consider a two-link arm model with six muscles as shown
in Fig. 1. It is assumed that the movements of the overall system are in the
horizontal plane. The effects of gravity and friction are ignored. The masses
of the muscles are neglected.

Kinematics of Muscle-Joint Space

The lengths of the muscles can be defined as follows:

l(θ) =
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1
2
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(1)

where l(θ) ∈ R
6 is the vector of the muscle lengths, θ1, θ2 are the joint angles.

a1∼4, b1∼4 and a51, a52, a61, a62 are the positions of the muscle insertions as
shown in Fig. 1. The time derivative of eq. (1) can be expressed as follows:
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Fig. 1. A two-link arm model with six muscles

l̇ = Q(θ)θ̇ (2)

where l̇ ∈ R
6 is the vector of the contractile velocity and θ̇ ∈ R

2 is the vector
of the angular velocity. Q(θ) ∈ R

6×2 is the Jacobian matrix from the joint
space to the muscle space. The relation between the muscle forces and the joint
torques can be expressed, by using the principle of virtual work, as follows:

τ = WF (3)

where F ∈ R
6 is the vector of the muscle forces, τ ∈ R

2 is the vector of
the joint torques and W = Q(θ)T ∈ R

2×6 from eq. (2). The inverse relation
between the joint torques and the muscle forces can be expressed as follows:

F = W +τ +
(
I6 −W +W

)
ke (4)

where W + = W T(WW T)−1 ∈ R
6×2 is the pseudo-inverse matrix of W ,

ke ∈ R
6 is an arbitrary vector, and I6 ∈ R

6×6 indicates an identity matrix.
The physical meaning of the second term of the right-hand side in eq. (4) is
the internal forces generated by the redundant muscles.
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Kinematics of Joint-Task Space

The end-point position of the two-link arm, which is described by the Carte-
sian coordinates (x, y), is defined as:

(
x
y

)
=
(

L1 cos θ1 + L2 cos(θ1 + θ2)
L1 sin θ1 + L2 sin(θ1 + θ2)

)
(5)

By taking differentiation of eq. (5), we obtain:

ẋ = J(θ)θ̇ (6)

where ẋ ∈ R
2 is the vector of the end-point velocity and J(θ) ∈ R

2×2 is the
Jacobian matrix from the task space to the joint space. It is defined as:

J(θ) =
(
−L1 sin θ1 − L2 sin(θ1 + θ2) − L2 sin(θ1 + θ2)
L1 cos θ1 + L2 cos(θ1 + θ2) L2 cos(θ1 + θ2)

)
(7)

Modeling of Muscle Dynamics

Muscles can change their viscoelasticity depending on the muscle activation
level. Here in this section, we introduce a nonlinear muscle model that is a
simplified version of Hill’s model [20]. We define it as:

f = ᾱ− (ᾱb + b0)l̇ (8)

where f is the output force. The control input to the muscles is defined as
ᾱ = αf0 ≥ 0 (f0 is the maximum output force of the isometric contraction
model, α is muscle activation level). The control input is saturated as shown
in Fig. 2.

It is noted that the approximated model (8) has two types of damping
coefficients. One is b and the other is b0. b > 0 is the damping coefficient
which depends on the control input ᾱ, and b0 > 0 stands for the intrinsic
damping coefficient. It is known from the physiological studies [7, 8, 9, 10, 11,
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Fig. 2. The saturation of muscle input ᾱ
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12, 13] that the muscle output force behaves like a spring-like force. To take
this feature into account, we introduce a simple task space position feedback
control with the control input

ᾱ = −W +JTKp∆x +
(
I6 −W +W

)
ke (9)

where the diagonal matrix of Kp ∈ R
2×2 is the position feedback gain, x ∈ R

2

is the position of the end-point, ∆x = x−xd ∈ R
2 is the position error from

the desired position of the end-point. The first term of the right-hand side
in eq.(9) generates a spring-like force at the end-point. The overall muscle
dynamics of this system can be represented as follows:

F = ᾱ− (AB + B0) l̇ (10)


F = (f1, f2, · · · , f6)T ∈ R
6

ᾱ = (ᾱ1, ᾱ2, · · · , ᾱ6)T ∈ R
6

A = diag(ᾱ1, ᾱ2, · · · , ᾱ6) ∈ R
6×6

B = diag(b1, b2, · · · , b6) ∈ R
6×6

B0 = diag(b01, b02, · · · , b06) ∈ R
6×6

Dynamics of The Two-Link Arm Model

The dynamics of a two-link planar arm can be described by Lagrange’s equa-
tion [15].

H(θ)θ̈ +
{

1
2
Ḣ(θ) + S(θ̇,θ)

}
θ̇ = WF (11)

where H(θ) ∈ R
2×2 is the inertial matrix of the arm, θ̈, θ̇, θ ∈ R

2 are
the angular acceleration, velocity and position, respectively. The inside of
the bracket {} denotes the nonlinear term which include the Coriolis and
centrifugal force, S(θ̇,θ) ∈ R

2×2 is a skew-symmetric matrix, and WF is
the vector of the input torque generated by the muscle forces. Substituting
eq. (10) into the two-link arm dynamics of eq. (11) yields the overall system
dynamics

H(θ)θ̈ +
{

1
2
Ḣ(θ) + S(θ̇,θ)

}
θ̇ = W

{
ᾱ− (AB + B0) l̇

}
(12)

2.2 Stability Analysis

The closed-loop dynamics, in which the input is defined as ∆u = 0, can be
derived from eq.(12). It is given as:

∆u = H(θ)θ̈ +
{

1
2
Ḣ(θ) + S(θ̇,θ)

}
θ̇

+ JTKp∆x + W (AB + B0) W Tθ̇ = 0 (13)



224 Kenji Tahara and Zhi-Wei Luo

Taking the inner product of the input ∆u in eq.(13) with the output θ̇ yields:

θ̇
T
∆u =

d
dt

{
1
2
θ̇

T
Hθ̇ +

1
2
∆xTKp∆x

}
+ θ̇

T
W (AB + B0) W Tθ̇ (14)

By integrating eq.(14) over time interval [0, t], it becomes:

∫ t

0

θ̇
T
∆udτ = E(t)− E(0) +

∫ t

0

θ̇
T
W (AB + B0) W Tθ̇dτ (15)

where

E(t) =
1
2
θ̇

T
Hθ̇ +

1
2
∆xTKp∆x ≥ 0 (16)

Since the muscles can output only a tensile force, each diagonal element of
A = diag(ᾱ1, ᾱ2, ..., ᾱ6) is non-negative. Therefore, the matrix (AB + B0)
is positive definite since A ≥ 0, B > 0 and B0 > 0. The control input
ᾱ = −W +JTKp∆x +

(
I6 −W +W

)
ke becomes zero if and only if (x =

xd, ẋ = 0) when ke = 0. Thus, the joint damping matrix W (AB + B0) W T

is positive definite as far as W is not degenerated. Therefore, from

d
dt

E(t) = −θ̇
T
W (AB + B0) W Tθ̇ ≤ 0 (17)

one concludes that the closed-loop dynamics is passive. The scalar function
E(t) plays the role of Lyapunov’s function, and LaSalle’s invariance theorem
can be applied to it. Then, x→ xd, ẋ→ 0 when t→∞ [30].

2.3 Numerical Simulation

In this section, we present numerical simulations. The physical parameters of
the model are shown in Table 1, 2 and the parameters of the control law are
shown in Table 3. The internal force vector is defined as ke = kee (ke is a
positive constant and e ∈ R

6 is an unit vector). The initial posture of each
joint and the desired point are shown in Table 4.

Figure 3 shows the end-point paths of the reaching movements. It can
be seen from this figure that the end-point converges to the desired point.
Moreover, when ke is set to 20.0 the end-point path is slightly curved, which
is similar to what is observed in human movements. However, when ke is

Table 1. Physical parameters of the two-link arm model

L [m] M [kg] I [kg·m2] Lg [m]

1st Link 0.31 1.93 0.0141 0.165

2nd Link 0.34 1.52 0.0188 0.19
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Table 2. The muscle insertion point

Muscles Values [m]

Shoulder flexor (l1) a1 = 0.055 b1 = 0.080

Shoulder extensor (l2) a2 = 0.055 b2 = 0.080

Elbow flexor (l3) a3 = 0.030 b3 = 0.120

Elbow extensor (l4) a4 = 0.030 b4 = 0.120

Double-joint flexor (l5) a51 = 0.040 a52 = 0.045

Double-joint extensor (l6) a61 = 0.040 a62 = 0.045

Table 3. Gains and coefficient

Kp =

(
10.0 0
0 10.0

)
, B =

(
10.0 0
0 10.0

)
, B0 =

(
10.0 0
0 10.0

)
, ke = (20.0 or 0)

Table 4. Initial angles and desired point

Initial posture [deg] (θ1, θ2) = (60◦, 30◦)

Desired point [m] (x, y) = (−0.40, 0.40)
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Fig. 3. End-point paths of the reaching movements
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set to zero the end-point path behaves strangely and cannot be represented
by a straight line. This is because the elements of the joint damping matrix
W (AB + B0) W T are increased when ke is increased. Note that the settling
time in the case of ke = 20.0 is shorter than that in the case of ke = 0 (see
Fig. 4).

Figure 5 shows the tangential velocities of the end-point. It can be seen
that the velocity profile in the case of ke = 20.0 is nearly bell-shaped, similar
to what is observed in human movements. However, the velocity profile in the
case of ke = 0 is obviously not bell-shaped. Therefore, we suggest that the
human-like reaching movement can be realized by choosing a suitable internal
force to regulate the damping.

2.4 Gravity Compensation

In everyday life, humans move naturally even though the gravity force affects
their bodies. The reason is that antigravity muscles always compensate the
effect of gravity without a high level control loop in the brain motor cortex.
In physiology it is considered as a stretch reflex. To model this reflex, we
introduce a method for the gravity compensation at the muscle input level.
The two-link arm dynamics under the effect of gravity is given as:

H(θ)θ̈ +
{

1
2
Ḣ(θ) + S(θ̇,θ)

}
θ̇ + G(θ) = WF (18)

where G(θ) is the gravitational term depending on the joint angles. It is
assumed that the movements of the overall system are in the vertical plane,
and the direction of the gravitational acceleration is defined as positive on the
y-axis. It is well-known that the gravity term can be expressed [30] as follows:

G(θ) = Z(θ)Θ (19)

where Z(θ) is called a regressor matrix. It defined as follows:

Z(θ) =
(

Lg1 cos θ1 L1 cos θ1 + Lg2 cos(θ1 + θ2)
0 Lg2 cos(θ1 + θ2)

)
g (20)

where g is the gravity acceleration, L1 is the length of the first link, Lg1 and
Lg2 are the center of gravity position of each link. It is assumed that Lg1 and
Lg2 are known. Θ = (M1, M2)T is the vector of the unknown parameters
(the link masses). Now, we define the control input as follows:

ᾱ = −W +
(
JTKp∆x−Z(θ)Θ̂

)
+
(
I6 −W +W

)
ke (21)

where Θ̂ = (M̂1, M̂2)T is the online estimate of the unknown parameters. Its
update law is defined as:
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Θ̂(t) = Θ̂(0)−
∫ t

0

Γ−1Z(θ)T(θ̇ + βJT∆x)dτ (22)

where Γ−1 is a positive definite diagonal matrix and α is a positive number.
Therefore, the overall dynamics under the effect of gravity can be given by:

H(θ)θ̈ +
{

1
2
Ḣ(θ) + S(θ̇,θ)

}
θ̇ + G(θ)

= −JTKp∆x + Z(θ)Θ̂ −W (AB + B0) W Tθ̇ (23)

2.5 Stability under Unknown Gravity

From eq. (23), the closed-loop dynamics can be obtained as follows:

H(θ)θ̈ +
{

1
2
Ḣ(θ) + S(θ̇,θ)

}
θ̇

+ JTKp∆x + Z(θ)∆Θ + W (AB + B0)W Tθ̇ = ∆u = 0 (24)

where ∆u = 0, ∆x = x− xd and ∆Θ = Θ − Θ̂. Assume that the Jacobian
matrices W and J are not degenerated during the reaching movements. By
taking the inner product of the input ∆u with the output θ̇ + βJT∆x, we
obtain:

(θ̇ + βJT∆x)T∆u =
d
dt

{
1
2
θ̇

T
Hθ̇ +

1
2
∆xTKp∆x +

1
2
∆ΘTΓ∆Θ

}

+ β∆xTJHθ̈ + β∆xTJ

{
1
2
Ḣ + S

}
θ̇ + β∆xTJJTKp∆x

+ θ̇
T
W (AB + B0)W Tθ̇ + β∆xTJW (AB + B0)W Tθ̇ = 0 (25)

Next, we consider the following scalar function V (t) as a candidate of Lya-
punov’s function:

V (t) =
1
2
θ̇

T
Hθ̇ + β∆xTJHθ̇ +

1
2
∆xTKp∆x +

1
2
∆ΘTΓ∆Θ (26)

Eq. (26) can be rewritten as follows:

V (t) =
1
2
(θ̇ + βJT∆x)TH(θ̇ + βJT∆x)

+
1
2
∆ΘTΓ∆Θ +

1
2
∆xT

(
Kp − β2JHJT

)
∆x (27)

Therefore, if the position feedback gain Kp can be chosen large enough and
the positive number β can be chosen small enough to satisfy Kp ≥ β2JHJT,
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the scalar function V (t) is semi-positive definite. Then, it plays a role of
Lyapunov’s function. Taking differentiation of V gives:

d
dt

V (t) = θ̇
T
Hθ̈ +

1
2
θ̇

T
Ḣθ̇ + ẋTKp∆x + ∆Θ̇

T
Γ∆Θ

+βẋTJHθ̇ + β∆xTJ̇Hθ̇ + β∆xTJḢθ̇ + β∆xTJHθ̈ (28)

Substituting eq. (28) into eq. (25) yields

d
dt

V (t)− βθ̇
T
JTJHθ̇ − β∆xTJ̇Hθ̇ + β∆xTJ

{
−1

2
Ḣ + S

}
θ̇

+ β∆xTJJTKp∆x + θ̇
T
W (AB + B0)W Tθ̇

+ β∆xTJW (AB + B0)W Tθ̇ = 0 (29)

Rewriting eq. (29), one can see that the scalar function V (t) satisfies the
following inequalities:

d
dt

V (t) = −θ̇
T
{

W (AB + B0)W T − βJJTH
}

θ̇ + βh(∆x, θ̇)

− β∆xTJW (AB + B0)W Tθ̇ − β∆xTJJTKp∆x

≤ −θ̇
T
{

W (AB + B0)W T − βJJTH
}

θ̇ + β|h(∆x, θ̇)|

− β∆xTJW (AB + B0)W Tθ̇ − β∆xTJJTKp∆x (30)

where h(∆x, θ̇) is defined as:

h(∆x, θ̇) = ∆xTJ̇Hθ̇ −∆xTJ

{
−1

2
Ḣ + S

}
θ̇ (31)

Note that in eq. (31) Ḣ, J̇ and S are linear and homogeneous with respect to
θ̇. Therefore, the function h(∆x, θ̇) is quadratic in θ̇, and there exist positive
numbers c0 and c1 for h satisfying the following inequality:

|h| ≤ c0||θ̇||2 + c1||∆x||2 (32)

Substituting eq. (32) into eq. (30) yields

d
dt

V (t) ≤ −θ̇
T
{

W (AB + B0)W T − βJJTH
}

θ̇

− β∆xTJW (AB + B0)W Tθ̇

+ βc0||θ̇||2 + βc1||∆x||2 − β∆xTJJTKp∆x (33)

Also, since

−∆xTJW (AB + B0)W Tθ̇ ≤
{
‖W (AB + B0)W T‖‖J‖

}
‖θ̇‖‖∆x‖(34)
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where

‖θ̇‖‖∆x‖ ≤ 1
2

(
‖θ̇‖2 + ‖∆x‖2

)
(35)

then

−∆xTJW (AB + B0)W Tθ̇

≤ 1
2

{
‖W (AB + B0)W T‖‖J ||

}(
‖θ̇‖2 + ‖∆x‖2

)
(36)

Therefore, eq. (33) becomes

d
dt

V (t) ≤ −θ̇
T
{

W (AB + B0)W T − βJJTH
}

θ̇

− β∆xTJJTKp∆x + βc0‖θ̇‖2 + βc1‖∆x‖2

+
1
2
β‖W (AB + B0)W T‖‖J‖

(
‖θ̇‖2 + ‖∆x‖2

)
(37)

Also, note that

−θ̇
T
{

W (AB + B0)W T
}

θ̇ ≤ −λmin

[
W (AB + B0)W T

]
‖θ̇‖2 (38)

θ̇
T
JJTHθ̇ ≤ λmax

[
JJTH

]
‖θ̇‖2 (39)

−∆xTJJTKp∆x ≤ −λmin

[
JJTKp

]
‖∆x‖2. (40)

In the above inequalities, λmax[ ] and λmin[ ] are, respectively, the maximum
and minimum eigenvalues of a matrix in the bracket [ ]. The derivative of the
scalar function V (t) satisfies the following inequality:

d
dt

V (t) ≤ −
{

λmin

[
W (AB + B0)W T

]

−β
(
λmax

[
JJTH

]
− 1

2
||W (AB + B0)W T||||J || − c0

)}
||θ̇||2

−β

{
λmin

[
JJTKp

]
− 1

2
||W (AB + B0)W T||||J || − c1

}
||∆x||2(41)

As shown in Section 2.2, the inequality W (AB + B0)W T > 0 is satisfied if
the Jacobian matrix W is not degenerated. Therefore, V (t) plays the role of
Lyapunov’s function and LaSalle’s invariance theorem can be applied to it.
Then, we have x→ xd, ẋ→ 0 when t→∞ [30].

2.6 Simulation of the Gravity Effect

This section shows the results of numerical simulations when the gravity force
affects the arm. The desired point and the parameter update gains are shown
in Table 5. The physical parameters, gains, initial posture are the same as in
Section 2.3. Four controllers were examined in our simulations,
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1) gravity compensation & ke =20.0
2) gravity compensation & ke =0 (zero internal force)
3) no gravity compensation & ke =20.0
4) no gravity compensation & ke =0 (zero internal force)

Figure 6 shows the end-point paths of the reaching movements. The curve
corresponding to the 1st controller is shown as dashed solid line, for the 2nd
one as dashed gray line, for the 3rd one as dotted gray line. The simulation
result for the 4th controller (not in shown in Fig. 6) is almost same as that for
the 3rd one. It can be seen from Fig. 6 that if the gravity is compensated the
end-point paths converge to the desired point. However, the end-point path
for the controller without the gravity compensation cannot converge to the
desired point, and much larger steady state error remains even if ke is set to

Table 5. Desired point and parameter update gains

Desired point [m] (x, y) = (−0.40, 0.20)

Γ −1 =

(
20.0 0

0 13.0

)
, β = 10.0
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Fig. 6. End-point paths of the reaching movements under the effect of gravity



232 Kenji Tahara and Zhi-Wei Luo

either 20.0 or zero. Of course, it is too early to say whether the human control
system employs our method or not. But surely the gravity compensation is
implemented in human movements. It is known that the weights of the human
upper arm and forearm are about 1.5 ∼ 2.5 [kg], respectively, and the moment
arms from the muscle forces to the joint torques are small (about 2 ∼ 3 [cm]).
Therefore, the antigravity muscles have to generate a large force in order to
support the weights. This cannot be done without the gravity compensation
control.

It should be noted that the end-point path for the gravity compensation
can converge to the desired point even if ke is set to zero. It is because the
control input matrix A in eq. (21) includes the gravity compensation term.
Then, the damping matrix W (AB + B0)W T is changed in correspondence
with the estimation of the unknown parameters. Therefore, the damping force
increases even if the internal force term is not introduced in the control input.
It can be seen from Fig. 7 that the end-point path in the case of ke = 20.0
converges to the desired point faster than that in the case of ke = 0. As can
be seen from Fig. 8 the tangential velocity of the end-point for ke =20.0 are
smoother than that for ke = 0. However, the velocity profiles are not bell-
shaped. Figure 9 shows the estimated parameters. It can be seen that they
are not converged to the actual values. The estimated values in the case of
ke =20.0 are different from these in the case of ke =0. One of the reasons is
the nonlinearity of the muscle model.

3 Human-Like Pinching Movements

3.1 A Model of Dual 2 D.O.F. Fingers with Redundant Muscles

In this section, we consider a model of dual fingers in which each finger has
2 D.O.F. and is actuated by one monoarticular digitorum muscle and two
biarticular digitorum muscles. The overall system is shown in Fig. 10.

Kinematics of Muscle-Joint Space

Assume that the muscles can only be contracted straightforwardly and are not
curved. In the following, the subscript i (= 1, 2) in the variables and equations
denotes the finger’s number. It is known that the muscles of the index finger
and the thumb are inserted in the fore-arm part. The configuration of the index
finger is shown in Fig. 11. We decompose the muscle length lij(j = 1, 2, 3)
into a variable part lvij(j = 1, 2, 3), which depends on the finger angles, and
a static part lsij(j = 1, 2, 3), which does not contribute to the change of the
muscle moment arms. The relation between the muscle length li ∈ R

3 and
joint angle qi ∈ R

2 can then be expressed as follows:
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li(qi) = (lvi1 + lsi1, lvi2 + lsi2, lvi3 + lsi3)
T (42)

=




(ai1
2 + ai2

2 + 2ai1ai2 cos qi1)
1
2 + lsi1

(ai3
2 + ai4

2 + 2ai3Li1 cos qi2 + 2ai3Li1 cos qi1

+ Li1
2 + 2ai3ai4 cos (qi1 + qi2))

1
2 + lsi2

(ai5
2 + ai6

2 − 2ai6Li1 cos qi2 − 2ai5Li1 cos qi1

+ Li1
2 + 2ai5ai6 cos (qi1 + qi2))

1
2 + lsi3




where aim(m = 1∼6) are the insertion points of the muscles, and lsij(j =
1, 2, 3) are constants. Now, taking derivation of eq. (42) yields:

l̇i = W T
i q̇i (43)

where W T
i ∈ R

3×2 is the Jacobian matrix from joint space to muscle space.
The relation between the muscle output force Fmi ∈ R

3 and the joint torque
τ i ∈ R

2 can thus be expressed from the principle of virtual work. It is defined
as:

τ i = W iFmi (44)

It is assumed that the Jacobian matrix W i is not degenerated. Therefore, we
can take the inverse relation of eq. (44):

Fmi = W +
i τ i +

(
I3 −W +

i W i

)
kei (45)
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where W +
i = W T

i (W iW
T
i )−1 ∈ R

3×2 is the pseudo-inverse matrix of W i,
kei ∈ R

3 is an arbitrary vector, and I3 ∈ R
3×3 indicates an identity matrix.

The physical meaning of the second term of the right-hand side in eq. (45) is
the internal force generated by the redundant muscles.

Dynamics of Overall System

It is assumed that the fingers move in the horizontal plane, and the effect
of gravity is ignored. It is also assumed that the shape of the object has
parallel flat surfaces. Only the rolling contacts between the finger tips and the
object are allowed, and each finger tip is not detached from the object surfaces
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Fig. 11. Configuration of digitorum muscles in human index finger

during movement. In addition, it is assumed that the shape of the finger tips is
hemispherical of radius ri, and the friction is ignored. It is important to note
that we have only two types of geometric constraints. One is the constraint
on the normal direction. It is given as follows:

Qi = (−1)i−1 {(x− x0i) cos θ − (y − y0i) sin θ} − ri − di = 0 (46)

where ri is the radius of each finger tip and di is the distance from the object
mass center Oc.m. to the contact points of each finger Oi. The other is the
constraint on the tangential direction:

Ri = Yi −
{
n0i − ri

(
π + (−1)i−1θ − qT

i ei

)}
= 0 (47)

where ei = (1, 1)T, qi = (qi1, qi2)T, and n0i (i = 1, 2) stand for the integration
constants, and Yi can be expressed as follows:

Yi = (x0i − x) sin θ + (y0i − y) cos θ (48)

All the variables and the physical parameters in these equations are shown
in Fig. 10. The geometric constraints (46), (47) induce four constraint forces
which can be interpreted as Lagrange’s multipliers fi and λi:

Q =
2∑

i=1

Qifi = 0, R =
2∑

i=1

Riλi = 0 (49)

Now, the kinetic energy of the overall system can be expressed as follows:

K =
2∑

i=1

1
2
q̇T

i Hiq̇i +
1
2
żTMż (50)

where Hi ∈ R
2×2 and M = diag(M,M, I) ∈ R

3×3 are the inertia matrices
for each finger and the object. They are symmetric and positive definite, and
z = (x, y, θ)T. Therefore, the Lagrangian can be defined as follows:
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L = K + Q + R (51)

Applying Hamilton’s principle to the Lagrangian L gives:

∫ t1

t0

(
δL +

2∑
i=1

τT
i δqi

)
dt = 0 (52)

where τ i ∈ R
2 is the input to each joint. Therefore, Lagrange’s equations can

be stated as follows:
For the dual 2 D.O.F fingers

Hiq̈i +
{

1
2
Ḣi + Si

}
q̇i −

∂Qi

∂qi

T

fi −
∂Ri

∂qi

T

λi = τ i (53)

For the object

Mz̈ −
2∑

i=1

∂Qi

∂z

T

fi −
2∑

i=1

∂Ri

∂z

T

λi = 0 (54)

where Si ∈ R
2×2 is a skew-symmetric matrix, and the constraint Jacobian

matrices in eqs. (53) and (54) are given as follows:

∂Qi

∂qi

T

= (−1)i

(
∂x0i

∂qi

,
∂y0i

∂qi

)(
cos θ
− sin θ

)

∂Ri

∂qi

T

= −riei +
(

∂x0i

∂qi

,
∂y0i

∂qi

)(
sin θ
cos θ

)

∂Qi

∂z

T

=


 (−1)i cos θ

(−1)i−1 sin θ
(−1)i−1Yi


 ,

∂Ri

∂z

T

=


 − sin θ
− cos θ

(−1)i−1di


 (55)

3.2 Nonlinear Muscle Model Inspired by Physiological Studies

In this section, we consider a muscle model that is more plausible than that
analyzed in Section 2.1. We assume that the masses of all the muscles are
included into the masses of each link. The well-known Hill muscle model [20]
is defined as:

(fmij + aij)(l̇ij + bij) = bij(fm0ij + aij) (56)

where fmij is the tensile force of the muscle, l̇ij is the contractile velocity,
fm0ij is the maximum isometric tensile force, aij is the heat constant, bij is
the rate constant of the energy liberation. The subscript j is the number of
muscles. It is known [28] that the tensile force in the lengthening phase is
larger than that in the shortening phase. To take into account this feature,
the Hill muscle model (56) can be modified as follows:
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fmij(αij , l̇ij) =




bijfm0ij − aij l̇ij

|l̇ij |+ bij

αij , l̇ij ≥ 0

bijfm0ij − (2fm0ij + aij)l̇ij
|l̇ij |+ bij

αij , l̇ij < 0

(57)

where 0 ≤ αij ≤ 1 is the muscle activation level, and the constants aij , bij

defined as aij = 0.25fm0ij , bij = 0.9l0ij [28]. Here, l0ij is the intrinsic rest
length of the muscles. Now, we define the control input to the muscles ᾱij =
fm0ijαij and introduce a muscle intrinsic viscosity c0ij > 0 independently
from ᾱij . The muscle dynamic model can be represented as follows:

fmij(ᾱij , l̇ij) = pij

{
ᾱij − (ᾱijcij + c0ij) l̇ij

}
(58)

where

pij =
0.9l0ij

0.9l0ij + |l̇ij |
, cij =




0.25
0.9l0ij

> 0, if l̇ij ≥ 0

2.25
0.9l0ij

> 0, if l̇ij < 0

It is known that muscle can generate only a contractile force. Therefore, the
control input ᾱij can be defined as a saturated function so as to keep ᾱij ≥ 0.
There are three muscles for the i-th finger, and the muscles dynamics for the
i-th finger can be expressed as follows:

Fmi = P iᾱi − P i (AiCi + C0i) l̇i (59)


Fmi = (fmi1, fmi2, fmi3)T ∈ R
3

P i = diag(pi1, pi2, pi3) ∈ R
3×3

ᾱi = (ᾱi1, ᾱi2, ᾱi3)T ∈ R
3

Ai = diag(ᾱi1, ᾱi2, ᾱi3) ∈ R
3×3

Ci = diag(ci1, ci2, ci3) ∈ R
3×3

C0i = diag(c0i1, c0i2, c0i3) ∈ R
3×3

It is important to note that the control input matrix Ai is given not as a
column vector but as a diagonal matrix [21, 22]. This is attributed by the
nonlinearity of the muscle model, and by the fact that diagonal matrices P i,
Ci, and C0i are positive definite, and Ai is semi-positive definite.

3.3 Stable Pinching and Posture Regulation

Let us design the control input ᾱ for the simultaneous realization of the stable
pinching and the posture regulation. It is assumed that the observable state
variables are the joint angles qi and the orientation of the object θ. The control
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law τpi, realizing the stable pinching of the object can be defined as follows
[1, 29]:

τpi = −∂Qi

∂qi

T

fd + (−1)i rifd

r1 + r2
(Y1 − Y2)ei (60)

where fd stands for the desired pinching force. Now, it should be noted that in
eq. (60) the distance Y1−Y2 can be expressed through the observable variables
qi and θ:

Y1 − Y2 = (x01 − x02) sin θ + (y01 − y02) cos θ (61)

where (x0i, y0i) (i = 1, 2) are the end-positions of the links. Next, the control
law, regulating the object angle, can be defined as follows:

τθi = (−1)i ∂Ri

∂qi

T

kθ∆θ (62)

where ∆θ = θ − θd, and kθ is a positive constant. The diagonal matrix P i in
eq. (59) is positive definite. The bound of its diagonal elements pi satisfies 0 <

pi ≤ 1. Therefore, we can take the pseudo-inverse matrix W̄
+
i = (W iP i)+ as

long as the Jacobian matrix W does not become singular during the pinching
movement. Then, the control input ᾱi can be given as:

ᾱi = W̄
+
i

(
τpi + τθi

)
+
(
I3 − W̄

+
i W̄ i

)
kei (63)

where kei ∈ R
3 is an arbitrarily vector, and W̄ i = W iP i. The second term

of the right-hand side in eq. (63) plays a role of the internal force generated
by the redundant muscles. Therefore, the closed-loop dynamics of the finger-
object system can be expressed by substituting eqs. (43), (44), (59) and (63)
into eq. (53). It is defined as follows:
For the dual 2 D.O.F fingers

Hiq̈i +
{

1
2
Ḣi + Si

}
q̇i −

∂Qi

∂qi

T

∆fi −
∂Ri

∂qi

T

λ̄i

− (−1)i rifd

r1 + r2
(Y1 − Y2)ei + W iP i (AiCi + C0i) W T

i q̇i = 0 (64)

For the object

Mz̈ −
2∑

i=1

∂Qi

∂z

T

∆fi −
2∑

i=1

∂Ri

∂z

T

λ̄i =

{
fd (Y1 − Y2)−

2∑
i=1

dikθ∆θ

}
eθ (65)

where

∆fi =fi − fd, λ̄i =
(
λi + (−1)ikθ∆θ

)
, eθ =(0, 0, 1)T
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It should be noted that in eq. (64) the last term of the left-hand side plays a
role of the damping factor. It can be modulated by the arbitrary vector kei

which is generated by the redundant muscles. Now, taking the inner product
of the closed-loop dynamics of the overall system (64), (65) with q̇i, ż yields:

d
dt

E(t) = −
2∑

i=1

q̇T
i W iP i (AiCi + C0i) W T

i q̇i ≤ 0 (66)

where

E(t) = K +
fd (Y1 − Y2)

2

2 (r1 + r2)
+

d1 + d2

2
kθ∆θ2 ≥ 0 (67)

It should be noted that in eq. (67) the scalar function E(t) is semi-positive
definite with respect to the state vector (q,z, q̇, ż) ∈ R

14 even though the
holonomic constraints Qi and Ri are taken into consideration. Therefore, E(t)
cannot be taken as Lyapunov’s function. Here, the concept of “stability on a
manifold [1]” can be fruitful in establishing the stability and the convergence
of the closed-loop dynamics of this redundant system.

3.4 Numerical Simulation

In this section, we present the results of numerical simulations. All the physical
parameters used in the simulations are shown in Table. 6. The initial condition
and the desired states for the system configuration are shown in Table. 7.
Figure 12 depicts the pinching movement in the case of θd = −5 [deg]. In this
figure, thin lines correspond to the initial state and thick lines correspond to
the final state of the system. It can be seen from this figure that the pinching
is stable when Y1 − Y2 → 0, which cancels the rotational moment affecting
the object. At the same time the object angle θ converges to the desired angle
θd = −5 [deg]. Figures 13 and 14 show the transient responses of the pinching
forces fi and the rolling constraint forces λi, respectively. It can be seen from
these figures that the pinching forces converge to the desired value of fd = 0.2
[N] quickly. The rolling constraint forces λi converge to zero with the settling
time about 3 [sec]. Figures 15 and 16 show the transient responses for Y1−Y2

and the object angle θ, respectively. It can be seen from these figures that the
value of Y1−Y2 converge to zero with the settling time about 3 [sec], and the
object angle θ converges to the desired angle θd = −5 [deg] with the settling
time about 2 [sec]. Figure 17 depicts the pinching movement in the case of
θd = 5 [deg]. It can be seen from this figure that the movement stability is
realized by Y1 − Y2 → 0. At the same time the object angle θ converges to
the desired angle θd = 5 [deg]. Figures 18 and 19 show the transient responses
of the pinching forces fi and the rolling constraint forces λi in the case of
θd = 5 [deg], respectively. It can be seen from these figures that the pinching
forces converge to the desired value of fd = 0.2 [N] and the rolling constraint
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Table 6. Parameters of the dual 2 D.O.F. fingers model

Physical parameter Value

Length of Li1 [m] 0.035

Length of Li2 [m] 0.030

Center of mass Lgi1 [m] 0.0175

Center of mass Lgi2 [m] 0.015

Mass of Li1 [kg] 0.035

Mass of Li2 [kg] 0.025

Inertia of Li1 [kg·m2] 1.25 × 10−7

Inertia of Li2 [kg·m2] 1.88 × 10−6

Radius of finger tip ri [m] 0.006

Distance of each finger D [m] 0.040

Width of the object d1 + d2 [m] 0.020

Mass of the object M [kg] 0.010

Inertia of the object I [kg·m2] 6.93 × 10−7

Insertion points of the muscles aij [m]
ai1 = 0.005, ai2 = 0.015

ai3 = 0.004, ai4 = 0.003

ai5 = 0.005, ai6 = 0.004

Intrinsic length of the muscles l0ij [m]
l0i1 = 0.264

l0i2 = 0.290

l0i3 = 0.280

Table 7. Initial condition and desired states

Initial condition

Y1 -0.004 [m]

Y2 -0.001 [m]

θ 0.0 [deg]

Desired states and gains

fd 0.2 [N]

θd -5.0 or 5.0 [deg]

kθ 0.8

kei (1.5, 1.8, 1.8)T

forces λi converge to zero. Figures 20 and 21 show the transient responses for
Y1 − Y2 and the object angle θ in the case of θd = 5 [deg], respectively. It can
be seen from these figures that the value of Y1 − Y2 converges to zero. Also,
the object angle θ converges to the desired angle θd = 5 [deg]. The settling
times for these variables are about 3 [sec]. A slight overshoot is presented at
1.8 [sec].

Figure 22 shows the pinching movement in the case of θd = −5 [deg] with
zero internal force (kei =0). It can be observed from this figure that the final
posture takes a configuration impossible for the human fingers. Note that
the Jacobian matrix W i degenerates during this pinching movement. It is
because the joints cannot support the reaction force from the opposite finger
if the damping factor modulated by the internal force coming from the co-
contraction between agonist and antagonist digitorum muscles is small. We
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Fig. 12. Pinching movement in the case of θd = −5 [deg]

have thus shown that both the stable pinching and the posture regulation
of the object can be realized by the sensory-motor control law (63) with the
adequate internal force, modulating the damping factor in the joint space.

4 Summary

In this chapter we studied human-like reaching and pinching movements from
the viewpoint of robot control. First, a two-link planar arm model with six
redundant muscles has been formulated, and a simple task-space feedback
control scheme, taking into account the internal force induced by the redun-
dant nonlinear muscles, has been proposed. In addition, the effect of gravity
has been studied and a method for the gravity compensation on the muscle
input signal level has been introduced. The stability of this method has been
proved, and its effectiveness has been shown through numerical simulations.
In particular, it has been demonstrated that our sensory-motor control can
realize human-like reaching movements .
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Fig. 14. The rolling constraint forces λi

in the case of θd = −5 [deg]

Next, an analysis of human-like pinching movements has been undertaken.
Here, the co-contraction between the flexor and extensor digitorum muscles in
the stable pinching and the posture regulation of the object has been analyzed.
It has been shown that the internal force term generated by the redundant
muscles could modulate the damping factor in the joint space. Numerical
simulations has shown that the co-contraction of each digitorums makes it
possible to realize both the stable pinching and the orientation regulation of
of the object.
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Fig. 17. Pinching movement in the case of θd = 5 [deg]

0 1 2 3 4 5
0.16

0.17

0.18

0.19

0.2

0.21

0.22

Time [sec]

Pi
nc

hi
ng

 f
or

ce
 f

i [
N

]

f
1

f
2

f
d

Fig. 18. The pinching forces fi in the
case of θd = 5 [deg]

0 1 2 3 4 5
-0.06

-0.04

-0.02

0

0.02

0.04

Time [sec]

R
ol

lin
g 

co
ns

tr
ai

nt
 f

or
ce

 λ
i [

N
]

λ1

λ2

Fig. 19. The rolling constraint forces λi

in the case of θd = 5 [deg]



On Dynamic Control Mechanisms of Musculo-Skeletal System 245

0 1 2 3 4 5
-4.0

-3.0

-2.0

-1.0

0

1.0

Time [sec]

Y 1
 -

 Y
2 

[m
m

]

Fig. 20. The value of Y1 −Y2 in the case
of θd = 5 [deg]

Time [sec]

O
bj

ec
t a

ng
le

 θ
 [

de
g]

0 1 2 3 4 5
0.0

1.0

2.0

3.0

4.0

5.0

6.0

θ
θd

Fig. 21. The object angle θ in the case
of θd = 5 [deg]

θd = - 5.0 [deg]

-0.04 -0.02 0 0.02 0.04 0.06 0.08

-0.02

0

0.02

0.04

0.06

0.08

0.1

x-position [m]

y-
po

si
tio

n 
[m

]

Fig. 22. Pinching movement in the case of θd = −5 [deg] with zero internal force
(kei =0)



246 Kenji Tahara and Zhi-Wei Luo

As a conclusion, we suggest that the CNS does not need to calculate com-
plex mathematical models based on the inverse dynamics or on the planning of
optimal trajectories. Conversely, the human motor functions could be realized
through a simple sensory-motor control exploiting the passivity, nonlinearity,
and the redundancy of the musculo-skeletal systems.
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Summary. The principle of superposition introduced by Prof. S. Arimoto and his
colleagues for the control of robotic hand has been shown to be applicable to the
control of prehensile actions by humans. In particular, experiments have shown that
static human hand actions can be viewed as a superposition of two independent
synergies controlling the grasping force and the orientation of the object. Studies of
elderly persons have shown that they are impaired in both synergies and show worse
stabilization of the grasping force and of the total moment of forces applied by the
digits to a hand-held object. Recent studies have also shown that the principle of
superposition holds with respect to reactions to expected and unexpected mechan-
ical perturbations applied to a hand-held object. Indices of the two synergies have
shown different changes following a perturbation. Generalization of the principle of
superposition to human prehension is an important step towards understanding the
principles of control of the human hand.

1 History of the Principle of Superposition

The idea that biological processes obey some kind of a superposition princi-
ple has been debated for many years. This principle implies that output of a
set of elements with several inputs equals the sum of the outputs produced
by each of the inputs applied separately. Violations of this principle in neu-
rophysiology are many and varied. They do not come as a surprise because
of the well known highly nonlinear properties of neurons, in particular their
threshold properties and the all-or-none generation of units of information, ac-
tion potentials (reviewed in [1]). For example, the phenomena of spatial and
temporal summation of synaptic inputs illustrate situations when individual
stimuli cannot bring a target neuron to its threshold for action potential gen-
eration while several stimuli coming simultaneously or at a high frequency
can. A number of recent studies questioned applicability of the principle of
superposition in studies of such diverse objects as motor unit firing patterns
and maintenance of vertical posture [2, 3].
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Despite the obvious highly nonlinear features of neurons, muscles, and re-
flex loops (reviewed in [4]), several research teams tried to find regularities of
behaviors of large populations of such elements that would behave in a nearly
linear fashion and obey the principle of superposition. Ruegg and Bongioanni
[5] reported nearly linear input-output properties of motoneuronal pools in
tasks that involved a superposition of steady-state and ballistic contractions.
Studies of neuronal populations in different areas of the brain have also sup-
ported applicability of the principle of superposition [6, 7]. In a recent study,
Fingelkurts and Fingelkurts [8] have come up with a conclusion that inte-
grative brain functions can be manifested in the superposition of distributed
multiple oscillations according to the principle of superposition (see also [9]).

In the area of motor control, the idea of the principle of superposition
has been developed by proponents of the equilibrium-point (EP) hypothe-
sis [10, 11]. According the EP-hypothesis, voluntary actions are controlled
with variables that define spatial coordinates of muscle activation thresholds
(reviewed in [12]). Actual levels of muscle activation, as well as externally
manifested mechanical variables (such as endpoint force and/or speed), are
defined by control signals, properties of the tonic stretch reflex loop, and ex-
ternal force field (load). Feldman suggested that control of a joint could be
described with two variables, a coactivation command (c) and a reciprocal
command (r). Effects of these two control variables affect activation of in-
dividual muscles according to the principle of superposition. Experimental
support for this principle has been obtained in studies of fast arm movements
[13, 14] and postural control [15].

2 Arimoto’s Principle of Superposition

To our knowledge, prior to the third millennium, only one study applied the
principle of superposition at the level of mechanical variables; this was a study
of kinematic synergies during stepping in rats [16]. Seminal papers by Arimoto
and colleagues [17, 18] have shown that the principle of superposition may
be applied at the level of mechanical variables for the control of robotic hand
action. The main idea of this approach is to separate complex motor tasks into
sub-tasks that are controlled by independent controllers. The output signals
of the controllers converge onto the same set of actuators where they are
summed up. This method of control has been shown to lead to a decrease in
the computation time as compared to control of the action as a whole.

This idea is far from being trivial. For example, if a robotic hand tries
to manipulate a grasped object, it has to produce adequate grasping and
rotational actions. However, a straightforward change in the grasping force,
in general, leads to a change in the total moment produced by the digits on
the object. Hence, the grasping and rotational components of the action are
not independent, and if a controller responsible for the grasping changes its
output, a controller responsible for the rotational action also has to change
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its output. Having independent controllers for the two action components
becomes possible for a mechanically redundant system; the redundancy allows
to decouple the two action components.

Hence, the principle of superposition in robotics becomes tightly linked
to the problem of motor redundancy, arguably the most famous problem in
motor control. Although approaches to the problem of redundancy have been
rather different in robotics and motor control, the principle of superposition
represents an example when progress in robotics proves to be fruitful for
studies of the control of the human hand.

3 Major Issues in the Control of Redundant Biological
Systems

Over half-a-century ago, a Russian scientist, N.A. Bernstein suggested that
the essence of control of human movement was in elimination of redundant
degrees-of-freedom [19, 20]. This problem, known as the Bernstein problem
[21] has been in the center of attention of the motor control community for
many years. Typical approaches involved application of optimization methods
(reviewed in [22, 23, 24] to find unique solutions for the generally ill-posed
problems such as, for example, defining joint trajectories based on a desired
endpoint trajectory of a multi-joint limb (the problem of inverse kinematics
[25]) or finding joint torques that would produce a desired endpoint trajectory
(the problem of inverse dynamics [26]).

However, already in the nineteen-sixties, Gelfand and Tsetlin [27] sug-
gested that degrees-of-freedom during biological motion could be not elimi-
nated (for example, by adding a sufficient number of additional constraints)
but used to form task-specific structural units (synergies). Later, this idea
was developed as a principle of abundance [28], which views the availability
of numerous degrees-of-freedom not as a source of computational problems
but rather as a powerful apparatus that has to be properly organized. This
approach has resulted in a definition of synergies as task-specific neural orga-
nizations of elemental variables with the purpose to stabilize a desired value
or a time profile of a performance variable.

In different studies, depending on the selected levels of analysis, elemental
variables have been associated with joint rotations, digit forces, hypothetical
signals to fingers (finger modes), hypothetical signals to muscle groups (muscle
modes), while performance variables could represent endpoint trajectory of
a multi-joint limb, the total gripping force and the total moment of forces
produced by a set of digits, shifts of the center of pressure in a standing
person, etc ([29, 30, 31, 32, 33, 34, 35, 36]).

In this Chapter, we are primarily interested in the combined action of the
human digits during prehensile tasks. The human hand is a complex mechan-
ical structure that combines both serial and parallel manipulators. Individual
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digits can be viewed as serial mechanisms, with several joints linking the fin-
gertip to the wrist. Such mechanisms are redundant in kinematic tasks that
typically have fewer task constraints than the number of degrees of freedom
in the joints. However, in force-producing isometric tasks, serial mechanisms
are over-constrained because a force vector at the endpoint defines unam-
biguously all the joint torques [37]. In contrast, when several fingers grasp a
rigid object, they represent a parallel mechanism that is over-constrained in
kinematics, because movement of one finger induces movement of all other
fingers. However, the parallel mechanism is redundant in statics because an
infinite number of combinations of finger forces can produce a required total
force [38, 39].

The design of the human hand makes it a very attractive object to study
the organization of multi-element synergies. These synergies are learned by
humans over the lifetime and may be expected to show reproducible behaviors
across a variety of tasks. Obviously multi-digit synergies are very important
for everyday activities. Besides, studies of multi-digit synergies have obvious
practical applications in such areas as robotics, prosthetics, and rehabilitation.

4 Prehension Synergies: The Hierarchical Control

We are going to accept a definition of synergies as conjoint changes in me-
chanical variables produced by individual digits that are seen over repetitions
at a multi-digit task [40]. We view such conjoint changes not as results of
“noise” but as a purposeful control strategy that does not select a unique
combination of elemental variables based on some optimization criterion but
facilitates large families of such combinations that stabilize the explicit task
variables and also provide for an ability of the system to handle other tasks
simultaneously.

This definition is close to the framework of the uncontrolled manifold
(UCM) hypothesis in motor control. The UCM hypothesis [29] assumes that
the neural controller acts in the space of elemental variables and selects in that
space a sub-space (a UCM) corresponding to a desired value of a performance
variable. Further, the controller limits variability in the space of elemental
variables in directions orthogonal to the UCM while it allows relatively large
variability within the UCM. The ideas of UCM and its orthogonal comple-
ment are close to the notions of range and self-motion manifolds in robotics
[41].

It is of no surprise that much experimental support for the UCM hypoth-
esis has come from studies of multi-finger action [31, 42, 43, 44, 45, 46]. In
those studies, to meet the requirement of orthogonality of elemental variables,
analyses were performed not in the space of digit forces but in the space of
hypothetical commands to digits, finger modes. Finger forces are not indepen-
dent of each other because of the well documented phenomenon of enslaving,
that is unintended force production by fingers when another finger of the hand
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produces force [47, 38, 48, 49]. Difficulties with estimating enslaving in pre-
hensile tasks has been a major obstacle that has not allowed to use the notion
of finger modes for analysis of such tasks. This resulted in using finger forces
and moments of forces as elemental variables.

If an object is grasped using the so-called prismatic grasp with all five
digits of the hand, there are constraints of statics that have to be met for
the object to be in an equilibrium. For a relatively simple case of an external
load acting vertically (along the direction of gravity) and an external moment
acting in the plane of the grasp (a vertical plane that contains all the points
of digit contacts with the object), three equations have to be satisfied:

Fn
th = Fn

i + Fn
m + Fn

r + Fn
l , (1)

L = F t
th + F t

i + F t
m + F t

r + F t
l , (2)

M = Fn
thdth + Fn

i di + Fn
mdm + Fn

r dr + Fn
l dl︸ ︷︷ ︸

Moment of the normal forces≡Mn

(3)

+ F t
thrth + F t

i ri + F t
mrm + F t

rrr + F t
l rl︸ ︷︷ ︸

Moment of the tangential forces≡Mt

,

where the subscripts th, i, m, r, and l refer to the thumb, index, middle,
ring, and little finger, respectively; the superscripts n and t stand for the
normal and tangential force components, respectively; L is load (weight of
the object), and coefficients d and r stand for the moment arms of the normal
and tangential force with respect to a pre-selected center, respectively.

 

Thumb VF 

I M R L 

TASK 

PERFORMANCE 

Level-1 

Level-2 

Fig. 1. A two-level hierarchical scheme of control. The first level (Level-1) distrib-
uted the task between the thumb and the virtual finger (VF). At the second level
(Level-2), the command to the VF is distributed among actual fingers of the hand
(I – index, M – middle, R – ring, and L – little).

To simplify analysis of multi-finger grasps, a hierarchical control scheme
has been suggested that includes two levels [50, 51] (Figure 1). At the upper
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level, the total mechanical effect is distributed between the thumb and a
virtual finger – an imagined digit whose mechanical action is equal to the
combined action of all four fingers. At the lower level, the action of the virtual
finger is distributed among the fingers of the hand. A number of studies have
supported the idea of such two-level hierarchical control by demonstrating
variable behavior at the level of individual digits that was accompanied by
stable behavior at the thumb-VF level [33, 45, 46, 52].

5 Prehension Synergies: The Principle of Superposition
in Static Tasks

The principle of superposition suggests that two synergies may form the foun-
dation for a variety of prehensile actions. One of them is likely to be respon-
sible for the stabilization of the grasping force, while the other controls the
rotational action of the hand (the total moment applied by the digits on the
grasped object).

Grasping itself is associated with two groups of synergies. First, there are
kinematic synergies that stabilize the grasp aperture. For example, if a person
tries to grip a small object between the index finger and the thumb, a mechan-
ical perturbation applied to one of the digits produces quick adjustments in
motion of both digits such that the time profile of the grip aperture remains
relatively unchanged [53]. Besides, there are kinetic synergies that stabilize
the mechanical action of the hand on the grasped object. If a person holds an
object steadily, there are fluctuations in the forces applied by individual dig-
its. The fluctuations of the forces produced by the thumb and the combined
force produced by the opposing fingers tend to be in-phase, while fluctuations
of forces of a pair of finger acting in parallel are more likely to be out-of-phase
[54]. The former relation makes sure that the net force applied to the object
is small, while the second relation prevents large variations in the total force
applied by the set of fingers opposing the thumb.

Analysis of prehensile synergies can be performed at two levels of the
hierarchical control scheme (Figure 1). For two-dimensional tasks, each digit
(the thumb and the VF) can produce two components of force, normal to
the surface and parallel to the surface, and also change the point of force
application in the direction parallel to the surface of the object. The three
static constraints introduced earlier (eqs. 1-3) are:

Fn
th = Fn

V F , (4)
L = F t

th + F t
V F , (5)

M = Fn
thdth + Fn

V F dV F︸ ︷︷ ︸
Moment of the normal forces≡Mn

(6)

+ F t
thrth + F t

V F rV F︸ ︷︷ ︸
Moment of the tangential forces≡Mt

,
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where the abbreviations are the same as in eqs. 1-3, VF stands for virtual
finger. The thumb-VF system is apparently redundant because is has fewer
constraints than elemental variables.

In one of the studies, variations of elemental variables were analyzed when
subjects held statically a handle, to which different external loads and differ-
ent external torques were applied in different trials [55]. Elemental variables
showed strong effects of both load and torque, but they did not show any sig-
nificant interaction between the two factors (Figure 2) suggesting that com-
mands to adjust elemental variables when one of the two external parameters
(load or torque) changed did not interfere with commands related to the other
parameter.
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Fig. 2. An illustration of dependencies between one of the elemental variables (Mn
vf )

and task parameters (external load and external torque). The variable showed sig-
nificant changes with each of the two task parameters but no interaction between
the two. Typical data for a representative subject.

A study of the patterns of variability of the elemental variables at the
thumb-VF level in experiments when the subjects were required to hold the
same object repeatedly many times [33] have also shown the existence of two
groups of the elemental variables. Variables within a group showed strong
correlations across trials, while variables that belonged to different groups did
not. The two groups could be associated with two sub-components of the task,
“to grasp the object stronger/weaker” and “to maintain rotational equilibrium
of the object”.

These observations have suggested that the principle of superposition, orig-
inally formulated by Arimoto and his colleagues [18] for robotic prehension, is
also valid for human prehension. The central nervous system apparently de-
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couples the control of two essential components of prehensile tasks and forms
two synergies or two null-spaces in the space of elemental variables.

Recently, these results have been generalized to static grasping tasks in
three dimensions [45]. The sets of elemental variables associated with the
moment production about the vertical axis in the grasp plane and the axis
orthogonal to the grasp plane consisted of two non-correlated subsets each; one
subset of variables was related to the control of grasping forces (grasp control)
and the other subset was associated with the control of the orientation of the
hand-held object (torque control). Hence, the principle of superposition has
been shown to be valid for the prehension in three dimensions as well.

The principle of superposition has also shown its applicability to applied
studies of movements. In one of the studies, the ability of young and elderly
persons to stabilize the total gripping force and the total moment of forces
applied to a hand-held object was studied [34]. Based on the principle of super-
position, separate analysis of the two synergies, force-stabilizing and moment-
stabilizing, has shown that elderly persons are impaired in both components
of the prehensile tasks: Their indices of synergies were significantly smaller
than those in young persons.

People commonly manipulate objects with the center of mass beyond the
hand grip, e.g. mugs with the handle, hammers, spoons, etc. Such objects
exert torques on the hand. During object manipulation, e.g. during motion in
the vertical direction, both the load force and the external torque change in
parallel with object acceleration. To prevent the object rotation the performer
should generate an opposing moment of equal magnitude at each instant of
time. Hence, during object manipulation, simultaneous control of the grasp-
ing force and the moment of forces is required. Recent studies have suggested
that the principle of superposition may be also applicable to tasks that in-
volve moving a hand-held object [56]. In particular, the observed finger forces
have been explained as the outcome of summation of two central commands
whose goals are to achieve: (a) slip prevention and (b) tilt prevention. The
first command is proportional to the load force, i.e. to object acceleration. It
causes stronger/weaker forces by all involved fingers and hence changes in the
grip force. The second command potentiates flexion commands to the fingers
that produce moments of forces acting against the external torque (moment
agonists) and inhibits the commands to the moment antagonist fingers. As a
result, the force of the agonist fingers increases and the force of the antago-
nist fingers decreases. This pattern was actually observed experimentally in
agreement with the principle of superposition.

6 Prehension Synergies: The Principle of Superposition
in Reactions to Perturbations

In a recent series of experiments, subjects were required to hold a handle with
a set of three loads that altogether produced no external torque with respect to
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a horizontal axis passing through the center of the handle (Figure 3). Further,
one of the loads could be lifted (removed) either by the subject himself/herself
or unexpectedly, by an experimenter. This action always produced the same
perturbation in the weight of the handle but it could produce different torque
perturbations depending on the load that was lifted, either a close to zero
toque perturbation or a non-zero torque perturbation in either pronation or
supination.

 

X 

Y 

Z 

Perturbation 

Left 

Center Right 

Fig. 3. An illustration of the experimental setup. The subject grasped the handle
instrumented with force/torque sensors (shown as black boxes). Three loads were
attached to the handle. One of them was removed (lifted) in each trial either by the
subject or by the experimenter (unexpectedly).

Indices of covariation of elemental mechanical variables that contributed
to the grasping force and to the total moment produced by the digits were
computed separately over multiple repetitions at each task. These indices re-
flected the strength of two synergies, force-stabilizing and moment-stabilizing,
∆VF and ∆VM in Figure 4.

When the subjects held the object steadily, both indices corresponded to
a strong negative covariation among elemental variables contributing to both
total grasping force and total moment of forces, that is, two synergies were
acting in parallel. When the subjects introduced the perturbation themselves,
the indices of both synergies showed a decline about 100-150 ms prior to the
actual perturbation. Such adjustments were not seen when the same pertur-
bations were triggered unexpectedly by the experimenter. These phenomena,
anticipatory synergy adjustments were described in earlier studies prior to
quick voluntary changes in the total force produced by a set of fingers [57, 46].
They have been interpreted as purposeful weakening of a force-stabilizing syn-
ergy in preparation to a quick change in the force. This experiment has shown
that anticipatory synergy adjustments can also be seen in preparation to a



258 Mark L. Latash and Vladimir M. Zatsiorsky

 

0 . 0 

0 . 5 

1 . 0 

0. 0 

0. 5 

1. 0 
A  B  

before  
after  

∆VF (norm)
 

VM (norm) 

L C R L C R L C R L C R 

Experimenter SelfExperimenter Self

∆

Fig. 4. Indices of two synergies, force-stabilizing (∆VF ) and moment-stabilizing
(∆VM ) at two steady-states, before load perturbation and after the perturbation.
Note that all indices were positive corresponding to stabilization of both grasping
force and total moment of forces across trials. However, ∆VF decreased following a
perturbation while ∆VM increased. Averaged across subjects data are shown with
standard deviation bars. L – left load location, C – center load location, R – right
load location.

self-triggered perturbation and that they could be organized with respect not
only to the total force but also with respect to the total moment of forces.

Following a perturbation, there was a drop in indices of both synergies and,
after about 1-2 s, the synergies recovered. It is of interest that the indices of
the force-stabilizing synergies decreased in a new steady-state, while indices of
the moment-stabilizing synergies increased (Figure 4). This was true for both
self- and experimenter-triggered perturbations across the magnitudes of the
external torque perturbation. These contrasting changes in the synergy indices
provide additional support for the relative independence of the two synergies
involved in the grasping and rotational components of prehensile actions and
show that the principle of superposition holds for multi-digit reactions to
force/torque perturbations.

7 Concluding Comments

The principle of superposition has a long history in neurophysiology and motor
control. However, the recent development of this principle by Prof. Arimoto
has been very fruitful not only for the area, for which it was originally meant
(robotics), but also for analysis of human hand actions. This principle has
received support in a variety of experimental studies involving both static
hand actions and reactions to perturbations, young and elderly persons, and
two- and three-dimensional tasks. Applications of this principle to prosthetic
design and development of rehabilitation strategies seem very promising.
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Summary. The paper deals with modeling of human-like reaching movements in
dynamic environments. A simple but not trivial example of reaching in a dynamic
environment is the rest-to-rest manipulation of a multi-mass flexible object (un-
deractuated system) with the elimination of residual vibrations. This a complex,
sport-like movement task where the hand velocity profiles can be quite different
from the classical bell shape and may feature multiple phases. First, we establish
the Beta function as a model of unconstrained reaching movements and analyze it
properties. Based on this analysis, we construct a model where the motion of the
most distal link of the object is specified by the lowest order polynomial, which
is not uncommon in the control literature. Our experimental results, however, do
not support this model. To plan the motion of the system under consideration, we
develop a minimum hand jerk model that takes into account the dynamics of the
flexible object and show that it gives a satisfactory prediction of human movements.

1 Introduction

This chapter is dedicated to Professor Suguru Arimoto on the occasion of his
70th birthday. Recently, modeling of human-like reaching movements and re-
solving Bernstein’s problem of redundant degrees of freedom has become an
active topic of his research activity. In the past few years we have had the plea-
sure to discuss with him this research subject in our personal communications,
and now we are delighted to write about it in this book.

When humans make point-to-point movements in free space, there is, in
principle, an infinite choice of trajectories. However, many studies have shown
that human subjects tend to choose unique trajectories with invariant fea-
tures. First, hand paths in point-to-point movements tend to be straight and
smooth. Second, for relatively fast movements the velocity profile of the hand
trajectory is bell-shaped [1, 2]. These invariant features give hints about the
internal representation of the movements in the central nervous system (CNS)
[3].
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Understanding the trajectory formation in human reaching movements is
a very important research problem in computational neuroscience and modern
robotics. This problem can be attacked from different directions. One of the
research lines deals with the sensory-motor feedback control and looks for a
natural resolution of the redundancy of human movements [4, 5]. Another,
complimentary research line deals with the open-loop control and employs
optimization approaches [6, 7].

These two research lines are quite different but both important because,
in our opinion, it is the blending of the feedforward and feedback control that
defines the appearance of reaching movements. Indeed, experiments show that
for relatively slow movements the velocity profiles are left-skewed [8, 9], a fea-
ture that is well-captured by the feedback control. As the time of movement
decreases, the velocity profiles tend to a symmetric bell-shaped form3, that
can be captured by the feedforward control [11]. Thus, the resulting movement
can be considered as the superposition of a major ballistic (feedforward) com-
ponent and a corrective (feedback) component [12, 13]. How specifically the
blending of these components works is one the greatest secrets of the CNS,
and recent ideas of Arimoto [14, 15] may prove fruitful in opening it.

In this chapter we will deal with the feedforward component of reaching
movements and model it via optimization theory. In this approach, the tra-
jectory of the human arm is predicted by minimizing, over the movement
time T , an integral performance index J subject to boundary conditions im-
posed on start and end points. The performance index can be formulated
in the joint space or in the task space normally associated with the human
hand. It is well established that for the unconstrained reaching movements
the trajectory of human hand can be predicted with reasonable accuracy by
the minimum hand jerk criterion [11]. Another popular model is based on the
minimum joint torque change criterion [16].

While the above criteria captures well the invariant features of reaching
movements in the free space, it remains to be seen if they are applicable
to the modeling of reaching movements in dynamic environments. A simple
but not trivial example of reaching in a dynamic environment is the rest-to-
rest manipulation of a linear chain of flexible objects with compensation of
structural vibration. Considering this manipulation task from the engineering
point of view, one can find different control strategies to generate rest-to-
rest motion commands that eliminate residual vibrations [17, 18, 19, 20, 21].
Perhaps the most simple open-loop control strategy is to specify the motion
of the most distal link of the flexible object by the lowest-order polynomial
satisfying the system boundary conditions [22]. Recently this control strategy
has been successfully applied to the modeling of reaching movements in the
manipulation of one flexible object [23]. Despite seeming simplicity, this task

3 Experiments also show that for very fast movements the velocity profiles can be
even slightly skewed to the right [8, 10]. However, it remains to be tested how far
from zero the end-point accelerations are in such movements.
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requires a lot of skill that must be acquired by practicing. An interesting
feature of this task, experimentally established in [23], is that a human subject
controls the object in a very non-trivial way, keeping two distinct phases in
the hand velocity profile.

In this paper we analyze the lowest-order polynomial approach for the
general case of a multi-mass flexible object and compare it with the minimum
hand jerk model. Our theoretical and experimental analysis show that the
minimum hand jerk model is a more consistent candidate for the prediction
of reaching movements in the manipulation of flexible objects. For simplicity,
we deal with a simplified, one-dimensional model of human movements. In
this model the configuration dependance of the human arm is ignored and the
motion is considered at the hand level. Inertial properties of the arm are not
taken into consideration. It is thus assumed that the human arm, controlled
by the CNS, is a perfect actuator driving the hand in the task space.

The paper is organized as follows. First, in Section 2 we consider a gener-
alization of the classical minimum jerk model of the free-space reaching move-
ments, relate it to the lowest polynomial approach, and show that the solution
is given by the regularized incomplete Beta function. Next, in Section 3, we
introduce a mathematical model of the flexible object and derive analytical
solutions for the lowest-order-polynomial model and for the minimum hand
jerk model. The analytical solutions are tested against experimental data in
Section 4. Finally, conclusions are summarized in Section 5.

2 Beta Function as a Model of Reaching Movements

Consider the problem of finding a function x(t) minimizing the criterion

J =
1
2

∫ t1

t0

(
dnx

dtn

)2

dt (1)

under the following boundary conditions:

x(t0) = x0, ẋ(t0) = 0, ẍ(t0) = 0, . . . , x(n−1)(t0) = 0, (2)
x(t1) = x1, ẋ(t1) = 0, ẍ(t1) = 0, . . . , x(n−1)(t1) = 0. (3)

This problem is often raised in the prediction of human movements, normally
for n = 3 (the minimum hand jerk model [11]) and occasionally for n = 4 (the
minimum snap model [24, 25]). Solutions of the problem under considerations
are also often employed in motion planning for robotic systems, again most
commonly for n = 3. Higher derivatives are used when the motion smoothness
is important. For example, the solutions for n = 6 and n = 8 were used in,
respectively, [26] and [27] to generate reference signals for motion planning of
robots with flexible links.
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From the engineering point of view the use of higher-order feedforward
trajectories, having the inherent advantage of smoothing, implies a lower en-
ergy content at higher frequencies [28]. This results in a lower high-frequency
content of the error signals, which facilitates the construction of the feedback
control loop [29]. This reasoning can be also applied to the human movements.
It is often argued in the literature on the computational neuroscience that the
brain plans and controls the reaching movements in such a way so that to
produce highly smooth trajectories [30, 31]. The argument comes from the
comparison of the optimal trajectories obtained by the minimum acceleration
and the minimum jerk criteria. The minimum jerk criterion does not produce
acceleration jumps at the start and end points, while the minimum accelera-
tion criterion does. Based on this observation, some researchers suppose that
the human brain implicitly adopts smoothness as the criterion for motion
planning.

A general formula for the optimal velocity profiles minimizing the criterion
(1) under the boundary conditions (2,3) has been correctly guessed in [22, 32].
Here, we present a formal derivation, establish the solution, and recognize it
as a famous special mathematical function. To pose the optimization problem
in non-dimensional settings, introduce the following change of variables:

x(t) = x0 + (x1 − x0) y(τ(t)) (4)

where
τ =

t− t0
t1 − t0

, τ ∈ [0, 1]. (5)

In the new variables y and τ we have the criterion

J =
1
2

∫ 1

0

(
dny

dτn

)2

dτ, (6)

and the boundary conditions

y(0) = 0, y′(0) = 0, y′′(0) = 0, . . . , y(n−1)(0) = 0, (7)
y(1) = 1, y′(1) = 0, y′′(1) = 0, . . . , y(n−1)(1) = 0, (8)

where

y(k)(τ) =
(t1 − t0)k

(x1 − x0)
x(k)(t), k = 1, . . . , n− 1. (9)

As can be easily shown, the Euler-Lagrange equation for the problem under
consideration is y(2n)(τ) = 0. The general solution for this equation is given by
the polynomial y(τ) =

∑2n−1
i=0 ci τ i, where the coefficients ci are established

from the boundary conditions (7,8). Thus, the optimization problem under
consideration is equivalent to the construction of the lowest order polynomial
satisfying the boundary conditions (7,8).

To clarify the analytical structure of the solution, we recast the optimiza-
tion task as the optimal control problem. Let us introduce the state vector
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y = {y, y′, . . . , y(n−1)}T and define the control input u = y(n). The state dy-
namics are the n-th order integrator ẏ = Ay + bu, where b = {0, . . . , 0, 1}T,
and the elements of the matrix A are defined as

[A]ij =
{

1 if j = i + 1,
0 otherwise. (10)

The analytical solution for the minimum effort control problem, seeking
the control minimizing J = 1

2

∫ 1

0
u2 dτ for the dynamic system ẏ = Ay + bu

and the boundary conditions y(0) = y0, y(1) = y1, is well-established in the
control literature [33]. It can be represented as

y(τ) = eAτ
({

I −W (τ)W
−1

(1)
}

y0 + W (τ)W
−1

(1)e−Ay1

)
, (11)

where
W (τ) =

∫ τ

0

e−AsbbTe−ATsds. (12)

For the n-th order integrator the matrix exponent is defined as

[
eAτ
]
ij

=




τ j−i

(j − i)!
if j ≥ i,

0 if j < i,
(13)

and by direct calculations one finds

[W (τ)]ij =
(−1)i+jτ2n+1−i−j

(2n + 1− i− j)(n− i)!(n− j)!
. (14)

As shown in [34], for the n-th order integrator the matrix W (τ) can be de-
composed as W (τ) = τP (−τ)HP (−τ), where

[P (τ)]ij =




τn−j

(n− i)!
if i = j,

0 otherwise.
(15)

and H is the Hilbert matrix

[H]ij =
1

(2n+1−i−j)
, (16)

the inverse of which is known to be
[
H

−1
]

ij
=

(−1)i+j(2n− i)!(2n− j)!
(2n+1−i−j){(n−i)!(n−j)!}2(i−1)!(j−1)!

. (17)

The elements of the inverse matrix W
−1

(τ) = τ
−1

P
−1

(−τ)H
−1

P
−1

(−τ) can
now be easily established:
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[
W

−1
(τ)
]

ij
=

(2n− i)!(2n− j)!
(2n+1−i−j)(n− i)!(n− j)!(i− 1)!(j − 1)!τ2n+1−i−j

. (18)

For the rest-to-rest movements y0 = 0, y1 = {1, 0 . . . , 0}T, and e−Ay1 =
y1. Therefore, y(τ) = eAτW (τ)W

−1
(1)y1. The components of the vector

y(τ), which are the derivatives of the corresponding order of y(τ), are found
from (13,14,18) by direct computation:

y(i−1)(τ)=
n∑

j=i

n∑
s=1

(−1)j+s(2n−1)!(2n−s−1)!τ2n+1−i−s

(j−i)!(2n+1−s−j){(n−s)!}2(n−j)!(n−1)!(s−1)!
. (19)

To find the velocity y′(τ), we set i = 2 in (19) and take into account that

n∑
j=2

(−1)j

(j−2)!(2n+1−s−j)(n−j)!
=− 1

(s−n−1)(s−n−2) . . . (s−n−(n−1))

=
(−1)nΓ (1+n−s)

Γ (2n−s)
=

(−1)n(n−s)!
(2n−s−1)!

, (20)

where Γ is the usual Gamma function. Then, after some simple manipulations
using the binomial expansion for (1−τ)n−1, one obtains

y′(τ) =
(2n−1)!τn−1

(n−1)!

n∑
s=1

(−1)n+sτn−s

(n−s)!(s−1)!
=

τn−1(1− τ)n−1

B(n, n)
, (21)

where

B(n, n) =
(n− 1)!(n− 1)!

(2n− 1)!
(22)

is the symmetric Beta function. Therefore, the solution y(τ) can be formally
represented as

y(τ) =

∫ τ

0
pn−1(1− p)n−1dp

B(n, n)
� B(τ ;n, n)

B(n, n)
� B̄(τ ;n, n). (23)

This expression is known as the regularized incomplete Beta function [35].
While it is widely used in many fields, it is best known for its applications in
statistics [36]. The basic properties of the Beta distribution are well-known
[35]. In particular, the velocity y′(τ) is symmetric with respect to the mid-
dle point τ = 1/2, the position y(1/2) = 1/2, and the even derivatives
y(2k)(1/2) = 0 for k = 1, 2, 3 . . . . The first 15 solutions for y(τ) and y′(τ)
are plotted in Fig. 1.

Several comments are in order.
1o. The opinion that the brain maximizes the movement smoothness is

sometimes expressed in the literature [30, 31]. It can be appealing to associate
the order of the optimization problem with the smoothness of the resulting
solution and measure the smoothness by, say, the L2-norm:
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Fig. 1. Position and velocity profiles for n = 1, 2, . . . , 15.

‖yn(τ)‖2L2
=
∫ 1

0

y2
n(τ) dτ . (24)

Here, with slight abuse of notation we use yn(τ) to denote the solution of
the optimization problem (6-8) for a given n. It can be shown that indeed
‖yn(τ)‖L2 is a monotonously increasing function of n, and limn→∞ ‖yn(τ)‖L2 =
1/
√

2 is well-defined. However, while the solutions yn(τ) are continuous
functions of τ for any fixed n, in the limiting case of n → ∞ the solu-
tion is discontinuous. In this case the velocity is the unit impulse function
y′
∞(τ) = δ(τ − 1/2),

∫ 1

0
y′
∞(τ)dτ = 1. The position y∞(τ) is the unit step

function, which is unity for τ > 1/2 and is 0 for τ < 1/2.
2o. It is noticed in [11] that while, in general, the minimum jerk model

(n = 3) is a good candidate for mimicking human-like movements, the min-
imum snap model (n = 4) sometimes also provide a reasonable fit to the
experimental data. In this connection, it should be noted that the Beta func-
tion is defined not only for integer but also for real n. This suggests that
the criterion (1) can be generalized to non-integer orders using, for example,
Riemann-Liouville fractional integrals and derivatives[37]. It also suggests that
in fitting experimental data of reaching movements we can use real numbers
n ∈ [3, 4].

3o. The symmetry of the Beta function with respect to its last two argu-
ments in (21,23) is explained by the symmetric placement of the boundary
conditions. It can be shown that for the asymmetric placement (na boundary
conditions at the start point and nb at the end point, na+nb =2n) the solution
is expressed through the asymmetric Beta function

y(τ) =

∫ τ

0
pna−1(1− p)nb−1dp

B(na, nb)
� B(τ ;na, nb)

B(na, nb)
, (25)

where

B(na, nb) =
(na − 1)!(nb − 1)!

(na + nb − 1)!
. (26)

Note that while the function (25) is the lowest order polynomial satisfying
the asymmetric boundary conditions, it does not have a variational meaning.
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Strictly speaking, it does not minimize (6) because in the classical variational
formulation the boundary conditions (those that are imposed directly, as in
(7,8), and those obtained automatically from the variational formulation and
sometimes called the complementary or the natural boundary conditions [38])
are always placed symmetrically at the end-points.

4o. This remark addresses the boundary conditions, which are not less
important than the criterion itself. In our optimization problem we fixed the
first n− 1 derivatives, which, as far as the human movements are concerned,
might not be plausible from the physiological point of view4. Let us now fix
(directly impose) to zero only the first k derivatives and assume that the
order n of the optimization problem can be changed. Then, for any given n
the natural boundary conditions that follow from the variational problem will
be imposed on the derivatives from n to 2n− 2− k. It can be shown that the
lowest order polynomial solutions yn(τ) minimizing criterion (6) for different
n are the same for n = k +1 and n = 2k +2, 2k +3, . . . ,∞. They are given by
B̄(τ ; k + 1, k + 1), which has the minimal L2-norm compare to the solutions
obtained for n = k +2, . . . , 2k +1. This gives a different interpretation for the
optimal solution.

Let us illustrate this point for the case of k = 2. The optimization problems
for n = 1 and n = 2 are over-constrained (in terms of the boundary conditions)
and do not make sense. For n = 3 there are no natural boundary conditions.
For any n > 3 the structure of the boundary conditions has the following form

y(0) = 0, y′(0) = 0, y′′(0) = 0, | y(n)(0) = 0, . . . , y(2n−4)(0) = 0, (27)
y(1) = 1, y′(1) = 0, y′′(1) = 0,︸ ︷︷ ︸

direct boundary conditions

| y(n)(1) = 0, . . . , y(2n−4)(1) = 0.︸ ︷︷ ︸
natural boundary conditions

(28)

It is not difficult to show that the lowest order polynomial solutions yn(τ),
minimizing (6) under the directly imposed boundary conditions and the nat-
ural boundary conditions, are

yn(τ)=




10τ3−15τ4+6τ5 = B̄(τ ; 3, 3), ‖y(τ)‖L2 ≈ 0.626, n = 3
7τ3−21τ5+21τ6−6τ7, ‖y(τ)‖L2 ≈ 0.629, n = 4
9τ3−10.5τ4+6τ7−4.5τ8+τ9, ‖y(τ)‖L2 ≈ 0.627, n = 5
10τ3−15τ4+6τ5 = B̄(τ ; 3, 3), ‖y(τ)‖L2 ≈ 0.626, n = 6, 7 . . .∞

(29)
This gives a different interpretation for the classical minimum jerk model
(B̄(τ ; 3, 3)). Namely, for the fixed end-point positions, velocities and accelera-
tions, among the lowest order polynomials yn(τ), minimizing criterion (6) for
n = 3, 4, 5, . . .∞, the solution given by B̄(τ ; 3, 3) has the minimal L2-norm.

5o. The minimum jerk model can be thought of as a phenomenological
model [7]. Its biological relevance is often questioned as there are no plausi-
ble physiological mechanisms through which it can be implemented directly
[39, 40]. Yet, numerous experiments reported in the literature on free-space
4 Can the reader imagine the end-point control of, say, the 21st derivative?
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reaching movements show that this model can be a reasonable (yet indirect)
approximation to what really takes place in the human control system. Can
the minimum jerk model enjoy the overall success in the prediction of reaching
movements without a physiological reason? The remarks 2o and 4o may be
helpful in the clarification of this issue.

If we assume that the CNS is pre-wired in such a way that, given the
boundary conditions for y, y′, y′′, . . . , y(k), among all the smooth curves y(t),
represented by the lowest order polynomials minimizing (6) for n = k +1, k +
2, . . .∞, it selects the curve of the minimal L2 norm, the main accent in the
issue of the physiological plausibility is shifted from the optimality criterion
to the boundary conditions. The question now is, what k is physiologically
plausible? It is known that in reaching a human being can control the end-
point position, velocity, and acceleration, and this observation can rationalize
the minimum jerk model (B̄(τ ; 3, 3)). It is not known, however, if the human
can control the end-point jerk or snap, and until such evidence is presented
the corresponding models (B̄(τ ; 4, 4) or B̄(τ ; 5, 5)) cannot be considered as
plausible.

This discussion can be generalized if we assume that k is a real number.
The assumption sounds biologically plausible because the natural sensors and
actuators in the human body are likely to deal with the fractional derivatives.
The generalization can go even further if we observe that, in general, the hu-
man sense of position is better than that of velocity, that of velocity is better
than that of acceleration, and so on. It would be then reasonable to intro-
duce a continuous, monotonically decreasing strength function and associate
it with the positional derivatives. The development of a macroscopic model
of reaching movements in these settings would require an essential reformula-
tion of the model considered in this section and remains the subject of future
research.

3 Reaching Movements in Dynamic Environments

In this section we consider reaching movements in a dynamic environment
that is modeled as a multi-mass flexible object [41]. First, we construct a
mathematical model of the object and formulate a reaching task. Then we
proceed to an analysis of two models for motion planning, the lowest order
polynomial model and the minimum hand jerk model.

3.1 Multi-Mass Flexible Object

Consider a chain system of n + 1 masses connected by n springs as shown in
Fig. 2. Let xh � x0 be the hand coordinate. Assume that the first mass in
the system is that of the hand, mh = m0, and the object is composed of the
remaining n masses. The hand dynamics is given as
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m0ẍ0 + k1(x0 − x1) = F, (30)

where F is the driving force, while the dynamic equations for the object read

miẍi + ki(xi − xi−1) + ki+1(xi − xi+1) = 0, (31)
mnẍn + kn(xn − xn−1) = 0, (32)

where i = 1, . . . , n− 1.

F

x h 

x o 

k 1 

m h m 1
 

mn-1

 
mn
 

k 2 k n k n-1 

Fig. 2. Multi-mass object.

The system described by equations (30) and (31,32) can be considered
as force-actuated. However, in what follows we will assume that the human
arm, controlled by the CNS, is an ideal driver of the hand. Under such an
assumption the inertial properties of the hand do not need be not taken into
consideration. Thus, the hand dynamics (30) can be ignored, the hand position
can be treated as the control input, and the object dynamics (31,32) can be
considered as kinematically actuated. For the kinematically actuated system
the hand dynamics represented by equation (30) does not play an independent
role in finding optimal solutions. It can be used later on, for example, for
the estimation of the driving force when the optimal solution is found. Note,
however, that equation (30) plays a role in setting up the boundary conditions.

Let mo be the total mass of the flexible object. Assume that the masses
mi = mo/n, i = 1, . . . , n. Also assume that the stiffness coefficients are equal
and assign the stiffness distribution from the condition that the n-mass system
is statically equivalent5 to a virtual one mass flexible system (of mass mo and
stiffness ko), which gives ki = ko n, i = 1, . . . , n. For the symmetric mass and
stiffness distribution the object dynamics (31,32) can be rearranged as

xi−1 =
1

(nω)2
ẍi + 2xi − xi+1, i = 1, . . . , n− 1, (33)

xn−1 =
1

(nω)2
ẍn + xn, (34)

where ω =
√

ko/mo.

5 The equivalence is defined in the following sense: pre-loading by the same static
force causes equal end-point displacements for the n-mass system under consid-
eration and for the virtual one mass flexible system.
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3.2 Eigen Values

Consider the eigen-value problem for the system (33,34) with xh = 0
(clamped-free vibration mode). For the n-mass object the characteristic equa-
tion is defined as Dn = 0, where

Dn =

∣∣∣∣∣∣∣∣∣∣∣

2 + z −1 0 . . . 0 0 0
−1 2 + z −1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . −1 2 + z −1
0 0 0 . . . 0 −1 1 + z

∣∣∣∣∣∣∣∣∣∣∣
, (35)

and
z = (λ/nω)2 . (36)

The characteristic determinant Dn can be unfolded by the following recurrence
relations

Dk = (2 + z)Dk−1 −Dk−2, k = 2, . . . , n, (37)

with the initial conditions

D1 = (1 + z), D0 = 1. (38)

Using these relations and the principle of mathematical induction, it is easy
to prove that

Dn =
n∑

s=0

Cn−s
n+szs, (39)

where Cq
p = p!/(q!(p− q)!) denotes the binomial coefficient.

As the system under consideration is conservative, the eigen-values are
purely imaginary: λk = ±ıpk, where pk, k = 1, . . . , n, are the natural fre-
quencies of the object. To find them, replace in (36) λ2 by −p2. Then, if one
defines

cos θ = 1− 1
2

( p

nω

)2

, (40)

the characteristic determinants Dk turn into the Chebyshev polynomials of
the 3rd kind for which the general expression is known [42]:

Dn =
cos(n + 1

2 )θ
cos 1

2θ
. (41)

Solving Dn = 0, one obtains from (40) the natural frequencies

pk = 2ωn cos
(n− k + 1)π

2n + 1
, k = 1, 2, . . . , n. (42)

Notice that in the limiting case of n → ∞, pk = ω 2k−1
2 π, as in the clamped-

free rod with distributed stiffness.
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3.3 Reaching Task and the Boundary Conditions

Assume that a human subject is requested to make a reaching movement of
length L and time T and stop the hand and all the masses of the object
without excitation of oscillations. In other words, the subject is requested to
generate a rest-to-rest motion command that eliminates residual vibrations.
Without loss of generality we assume that the subject transports the masses
from the initial state

xi(0) = 0, ẋi(0) = 0, i = 1, . . . , n, (43)

to the final state

xi(T ) = L, ẋi(T ) = 0, i = 1, . . . , n. (44)

Then, assuming F (0) = F (T ) = 0 in (30), one defines the following boundary
conditions for the hand

xh(0) = 0, ẋh(0) = 0, ẍh(0) = 0, (45)
xh(T ) = L, ẋh(T ) = 0, ẍh(T ) = 0. (46)

In what follows, we will represent the optimization problems in terms of the
object end position xo � xn that is the coordinate of the most distal mass. For
this purpose we need to formulate the boundary conditions for xo which can
be obtained from the boundary conditions (43,44) and (45,45). Differentiating
equations (33,34) sequentially, i-th equation 2i times, and considering them
at t = 0 and t = T one obtains x

(2)
i (0) = x

(3)
i (0) = . . . = x

(2i+2)
i (0) = 0, and

x
(2)
i (T ) = x

(3)
i (T ) = . . . = x

(2i+2)
i (T ) = 0. For i = n one thus obtains the

following boundary conditions for the object end position:

xo(0) = 0, ẋo(0) = . . . = x
(2n+2)
o (0) = 0, (47)

xo(T ) = L, ẋo(T ) = . . . = x
(2n+2)
o (T ) = 0. (48)

3.4 Minimum Order Polynomial Model

One way to plan the reaching movements under consideration is to specify the
motion of the most distal link xo(t) in the form of the lowest order polynomial
satisfying the boundary conditions (47,48). This approach is not uncommon in
the control literature. The examples can be found in [22, 43, 44]. Recently, it
was successfully used for the modeling of reaching movements with a one-mass
flexible object [23].

For the boundary conditions (47,48) the minimal order of the polynomial
xo(t) is 2n+3. As shown in Section 2, the solution is given by the regularized
incomplete Beta function. For the dimensions under consideration we have
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xo(t) = L B̄(τ ; 2n + 3, 2n + 3), (49)

vo(t) =
L

T

{τ(1− τ)}2n+2

B(2n + 3, 2n + 3)
, (50)

where τ = t/T . Note that for a given number of masses n the normalized ob-
ject velocity v̄h = vh/(L/T ) does not depend on the object mass and stiffness
and is defined exclusively by the non-dimensional movement time τ .

Having defined the object trajectory, one can proceed to the hand tra-
jectory. The hand position xh can be expressed in terms of the object co-
ordinate xo and its derivatives. Solving equations (33,34) recurrently for
i = n− 1, n− 2, . . . , 0, one obtains

xh(t) =
n∑

l=0

Cn−l
n+l

(nω)2l
x(2l)

o (t). (51)

The hand velocity is therefore defined as

vh(t) =
L

T

1
B(2n+3, 2n+3)

n∑
l=0

Cn−l
n+l

(nωT )2l

d(2l)

dτ (2l)
{τ(1− τ)}2n+2

. (52)

As can be shown, the resulting solution xh(t) keeps the main properties of
the regularized incomplete Beta function. In particular, the even derivatives
are antisymmetric and the odd derivatives are symmetric with respect to
the middle point t = T/2. Also, the position xh(T/2) = L/2, and the even
derivatives x

(2k)
h (T/2) = 0 for k = 1, 2, 3 . . .

For a given number of masses n, the normalized hand velocity v̄h =
vh/(L/T ) is a function of two parameters: the normalized movement time
τ ∈ [0, 1] and κ = ωT . The latter parameter can be thought of as the non-
dimensional reaching time or the non-dimensional frequency. It can be also
interpreted as the non-dimensional stiffness of the reaching movement. Quali-
tatively, changing T has the same effect as changing ω. The hand trajectories
with the same ωT have the same normalized profiles and, therefore, can be
called isochronous. For the isochronous trajectories the increase of T is equiv-
alent to the decrease of ω and vice versa.

An interesting feature of the hand velocity profiles in the minimum order
polynomial model is the change of phases. Depending on the number of masses
n they may have up to n+1 phases. This is illustrated in Figures 3-5, where we
show the normalized velocities v̄h and v̄o as function of κ and τ . The maximal
number of phases is attained for relatively small values of the reaching stiffness
κ. As κ increases the number of phases declines. As follows from (52), the
difference between the hand and the object velocities becomes smaller as κ→
∞, and in the limit both these velocities are defined by (50).

It should be noted that from the engineering point of view there is noth-
ing wrong in the minimum order polynomial model. It makes sense and is
feasible. However, when considering it in the context of human movements,
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Fig. 3. Normalized hand (left) and object (right) velocity profiles for n = 1
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Fig. 4. Normalized hand (left) and object (right) velocity profiles for n = 2
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Fig. 5. Normalized hand (left) and object (right) velocity profiles for n = 3
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one can see the following drawbacks. First, the fact that in the limiting case
of the minimum order polynomial model the hand trajectory is given by the
regularized incomplete Beta function B̄(τ ; 2n+3, 2n+3) contradicts to the
minimum hand jerk hypothesis, which offers B̄(τ ; 3, 3) for the absolutely rigid
object. Next, the criterion of optimality associated with the solution (49) is
defined in the task space of object coordinates and has the following form:

J =
1
2

∫ T

0

(
d(2n+3)xo

dt(2n+3)

)2

dt. (53)

This criterion is not invariant with respect to the number of masses n. For one-
mass object it is defined through the 5-th derivative of the object position6,
for two-mass object through the 7-th, for three-mass object through the 9-th,
and so on. It cannot be well-defined for the object with distributed mass and
stiffness (n→∞). In the latter case the object velocity is defined by the Dirac
delta-function vo(t) = Lδ(T/2), which does not seem plausible for human
movements. To illustrate the general behavior of the prediction obtained by
criterion (53), we plot the object and hand velocity profiles in Fig. 6 for
n = 1, 2, . . . , 15. Here we set L = 0.2m, T = 2.5 s, mo = 3kg, ko = 10N/m.
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Fig. 6. Object (left) and hand (right) velocity profiles predicted by criterion (53)
for n = 1, 2, . . . , 15.

3.5 Minimum Hand Jerk Model

Consider now a minimum hand jerk model where the criterion of optimality
is defined as

J =
1
2

∫ T

0

(
d3xh

dt3

)2

dt. (54)

To find the optimal solution corresponding to this criterion, one can solve the
minimum norm control problem [33] for the dynamic system (31,32) with the

6 It was named the minimum object crackle criterion in [23].



278 Mikhail Svinin, Igor Goncharenko and Shigeyuki Hosoe

control u =
...
xh. However, due to the specific structure of the flexible object

(linear chain) the use of the calculus of variations is the shortest way to solve
the optimization problem.

Differentiating the hand position (51) three times and substituting the
result into (54), one can represent the minimum hand jerk criterion in the
following form:

J =
1
2

∫ T

0

(
n∑

l=0

Cn−l
n+l

(nω)2l
x(2l+3)

o

)2

dt. (55)

Denote by L the integrand of the criterion (55). The object trajectory xo(t)
minimizing criterion (55) under the boundary conditions (47,48) must satisfy
the Euler-Lagrange equation

2n+3∑
k=0

(−1)k d(k)

dt(k)

{
∂L

∂x
(k)
o

}
= 0, (56)

which for the given structure of L reduces to the following linear differential
equation

n∑
s=0

n∑
l=0

Cn−s
n+s Cn−l

n+l

(nω)2s (nω)2l
x(2{l+s+3})

o = 0. (57)

It is easy to show that the characteristic equation corresponding to (57) can
be represented as

λ6

(
n∑

s=0

Cn−s
n+s

(nω)2s
λ2s

)2

= 0. (58)

This equation has 6 zero roots and, as follows from (39), 2n pairs of imaginary
roots λ = ± ı ps, where ps, s = 1, 2, . . . , n, are the natural frequencies of the
object defined by (42). The optimal object trajectory is therefore defined as

xo(t) =
5∑

i=0

αi ti+
n∑

i=1

(β1i+β2it) sin pit+(β3i+β4it) cos pit, (59)

where αi and βji are the constant coefficients. For any fixed n, T > 0 and
ω 
= 0 these coefficients are defined uniquely from the boundary conditions
(47,48). This follows from the fact that in the equivalent minimum-norm opti-
mal control problem the dynamic system (31,32) is controllable unless ω = 0,
and this implies the uniqueness of the optimal solution [45].

To find the solution for the hand position, we first establish the following
expression for the even derivatives of the object position:

x(2l)
o (t) =

5∑
i=0

αi A2l
i ti−2l+(−1)l2l

n∑
i=1

p2l−1
i (β4i sin pit− β2i cos pit)

+ (−1)l
n∑

i=1

p2l
i {(β1i+β2it) sin pit + (β3i+β4it) cos pit}, (60)
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where Ak
i = i!/(i−k)! are the permutation numbers. Next, taking into account

that
n∑

l=0

(−1)l
Cn−l

n+l

(nω)2l
p2l

i = 0, (61)

which follows from the system characteristic equation (39), one obtains

xh(t) =
5∑

i=0

n∑
l=0

Cn−l
n+l

(nω)2l
αiA

2l
i ti−2l

+
n∑

i=1

n∑
l=0

Cn−l
n+l

(nω)2l
(−1)l2lp2l−1

i (β4i sin pit− β2i cos pit)

�
5∑

i=0

α̃i ti+
n∑

i=1

β̃1i sin pit+β̃2i cos pit. (62)

Thus, the optimal hand trajectory is composed of a 5-th order polynomial
and trigonometric terms. Note that in (62) there are no secular terms that
are featured in the optimal object trajectory (59).

As can be shown, the solution (62) possesses the property xh(t) = xh(T )−
xh(T−t). Therefore, one concludes that the even derivatives are antisymmetric
and the odd derivatives are symmetric with respect to the middle point t =
T/2. Also, the position xh(T/2) = L/2, and the even derivatives x

(2k)
h (T/2) =

0 for k = 1, 2, 3 . . . It can also be shown that exactly the same properties hold
for the object trajectory xo(t).
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Fig. 7. Object (left) and hand (right) velocity profiles predicted by criterion (55)
for n = 1, 2, . . . , 15.

To illustrate the general behavior of the prediction obtained by criterion
(55), we conduct a simulation, solving the boundary value problem (47,48,57)
for n = 1, 2, . . . , 15 and L = 0.2m, T = 2.5 s, mo = 3kg, ko = 10N/m. The
results are shown in Fig. 7 where we plot the object and hand velocity profiles
As can be seen, the trajectories predicted by criterion (55) appear to converge
to single profiles.
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For a given number of masses n, the normalized hand velocity v̄h =
vh/(L/T ) and the normalized object velocity v̄h = vh/(L/T ) are characterized
by the normalized frequencies pi/ω, i = 1, . . . , n (constant numbers) and two
parameters: the non-dimensional stiffness κ = ωT and the non-dimensional
movement time τ = ωt. Note that τ differs from the non-dimensional move-
ment time in the lowest order polynomial model, while κ is defined exactly as
in Section 3.4.

Similar to what has been established for the lowest order polynomial
model, the hand velocity profiles in the minimum hand jerk model may have
up to n + 1 phases. The same holds true for the object velocity profiles. How-
ever, the phase transitions in the object velocity profiles show up for relatively
large values of κ and are manifested weakly. In contrast, the maximal number
of phases in the hand velocity profiles is attained for relatively small values
of the reaching stiffness κ. This is illustrated in Figures 8-10, where we plot
the normalized velocities v̄o and v̄h as function of κ and τ . As κ is increasing
the number of phases in the hand velocity profiles is declining. Note that the
jerk component in (55) becomes dominant as ω → ∞. As follows from (51),
the difference between the hand and the object trajectories becomes smaller
as κ → ∞, and in the limit both these velocities are defined by the classical
minimum jerk solution B̄(τ ; 3, 3).

Finally, we would like to note that if instead of the minimum hand jerk
criterion (54) one employs a more general criterion

J =
1
2

∫ T

0

(
dmxh

dtm

)2

dt (63)

the structure of the optimal solution for the reaching movement undergoes
changes only on the polynomial part. More specifically, it can be shown that
in this case

xo(t) =
2m−1∑
i=0

αi ti+
n∑

i=1

(β1i+β2it) sin pit+(β3i+β4it) cos pit, (64)

xh(t) =
2m−1∑
i=0

α̃i ti+
n∑

i=1

β̃1i sin pit+β̃2i cos pit. (65)

We do not conduct the formal analysis of the generalized solution because we
think that setting m = 3 is enough for the generation of human-like reaching
movements. To confirm this point, we turn to the experiments.

4 Experimental Results

To check the velocity profiles of reaching movements with multi-mass objects,
we conducted an experiment. In the experimental setup, shown in Fig. 11, a
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haptic device (PHANToM Premium 151A/3DOF, maximum exertable force
8.5N) is connected to computer (dual core CPU, Intel Pentium 4, 3.0 GHz)
through PCI interface.

Fig. 11. Experimental setup.

Five right-handed näıve subjects (males, aged between 25 and 35 years
old) participated in the experiments. The subjects were instructed to move
a multi-mass virtual flexible object, with the 1st mass (shown in black color
in Fig. 11) “connected” to human hand by haptic feedback generated by the
PHANToM motors. The hand & object system was at rest at the start point.
Before starting the movement the subject positioned the PHANToM pointer
to the 1st mass and “connected” it to the hand by pressing a button on the
computer keyboard. The subjects were requested to move the flexible object
and stop the hand and all the masses at a target point. The subjects made
these rest-to-rest movements along a line (in the direction from left to right) in
the horizontal plane using the PHANToM stylus. The one-dimensional move-
ments were implemented in software by setting a higher constraint force in
the direction orthogonal to the movement line. The positions of the hand
and the object were displayed on the computer monitor, providing the sub-
ject with real-time visual feedback. The object dynamics were simulated in
the computer (4th-order Runge-Kutta method with constant step h = 0.001s)
and real-time haptic feedback was supplied to the subject through the PHAN-
ToM stylus. The hand position and velocity were measured by the PHANToM
hardware.

As the reaching movements under consideration are quite unusual and dif-
ferent from what we experience in daily life, the experiment was conducted in
three days. On the preliminary day we conducted a general evaluation of the
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subjects’ performance. The subjects familiarized with the experimental setup,
comprehended the reaching task, performed movement trials and learned the
unusual dynamic environment. The subjects were requested to produce reach-
ing movements in a natural way, on their own pace, trading off the speed and
the comfortability. A trial was considered to be successful if the task was com-
pleted within certain position, and velocity tolerances. The subject was given
an audio feedback, generated by the computer, if a trial was successful. No
data were recorded during the preliminary evaluation as the main purpose
was to select such parameters of the movement task that would guarantee an
acceptable rate of the successful trials and facilitate the learning process.

In the course of the preliminary evaluation, we selected the parameters of
the object (the total mass mo = 3kg, stiffness ko = 10N/m, and the number
of masses n = 10). For the experimental analysis we selected the reaching
task with the traveling distance L = 0.2m, the movement time T = 2.35s, and
the time tolerance ∆T = ±0.4s. For each mass of the object we selected the
following position, velocity, and acceleration tolerances to be satisfied at the
start and end points: ∆x = ±0.012m, ∆v = ±0.024m/s, ∆a = ±0.16m/s2.
For the hand, the start and end point position and velocity tolerances were set
as ∆x = ±0.012m and ∆v = ±0.05m/s. A movement trial now was defined
as successful if the subject was able to complete the reaching task within the
above-specified tolerances.

Table 1. Progress in motor training (success rate)

Subject Day 1 (600 trials) Day 2 (600 trials) Total (1200 trials)

Subject 1 54 (9.00%) 68 (11.33%) 122 (10.17%)

Subject 2 68 (11.33%) 94 (15.67%) 162 (13.50%)

Subject 3 84 (14.00%) 89 (14.83%) 173 (14.41%)

Subject 4 80 (13.33%) 96 (16.00%) 176 (14.67%)

Subject 5 100 (16.67%) 119 (19.83%) 219 (18.25%)

Having selected the parameters of the reaching task, we proceeded fur-
ther and conducted experiments in two days. On the 1st day the subjects
performed the reaching task and completed 600 trials. The subject was given
an audio feedback, generated by the computer, if a trial was successful. The
experiment was conducted in two blocks. Upon completing 300 trials the sub-
jects rested for about 30 minutes. The overall success rate achieved on the 1st
day of the experiment is shown in Table 1. On the 2nd day (recording phase)
the experiment was repeated in the similar manner. The data regarding the
position and the velocity of the hand and those of the simulated masses were
collected for analysis. These data were recorded at 100 Hz.
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Fig. 13. Learning history of subject 2.
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Fig. 14. Learning history of subject 3.
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Fig. 15. Learning history of subject 4.
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Fig. 16. Learning history of subject 5.
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As can be seen from Table 1, in the 2nd day of the experiment the suc-
cess rate slightly increased for all the subjects in all the reaching tasks. This
confirms the recovery and the increase of the motor memory. Partially it is re-
flected in the history of learning presented in Fig. 12-16. The resulting success
rate is still far from perfect after two days of practicing. The relatively low
success rate can be explained by the complexity of the reaching task which
features a sport-like movement. The behavior of the flexible object in this
movement is non-trivial, which requires from the subject a good coordination
skill. It was observed that in the successful trials the subjects produced the
following movement strategy. In the beginning, the positions of all the masses
coincide at the start point. During the first half of the movement the first
(driving) mass, shown as black sphere in Fig. 11, is ahead of the last (most
distal) mass, with the distance between the first and last masses being about
5cm. During the second half of the movement the configuration is reversed
symmetrically. The driving mass becomes behind the last mass, and finally
all the masses reach the target point. Clearly, more training is necessary to
achieve a higher success rate for such a complex movement. However, the ex-
perimental data of the successful trials can be taken for the comparison with
the theoretical predictions.

Table 2. Movement times

Subject Average Minimum Maximum RMS

Subject 1 2.258s 1.97s 2.72s 0.215s

Subject 2 2.280s 2.01s 2.75s 0.206s

Subject 3 2.261s 1.96s 2.74s 0.213s

Subject 4 2.260s 1.96s 2.75s 0.225s

Subject 5 2.237s 1.96s 2.75s 0.189s

The average, minimum and maximum times shown by the subjects in
the successful trials are summarized in Table 2. Also listed in Table 2 are the
root-mean-squares (RMS) of the movement times, characterizing the standard
deviations from the averages. Examination of the hand and object velocity
profiles demonstrated that for all the subjects the experimental data were in
favor of the minimum hand jerk model. Qualitatively, the resulting velocity
patterns for all the subjects were similar. A quantitative measure for the
comparisons was represented by the integrated RMS of the velocity errors,

ε =

√√√√ 1
N

N∑
i=1

{vpred(ti)− vexp(ti)}2, (66)

over the trajectories between the theoretical predictions (by criteria (53) and
(55)) and the experimental data. Here, N is the number of sampled data in
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one trial. The integrated RMS of the velocity errors, calculated for all the
successful trials for all the subjects, are summarized in Table 3. It should be
noted that, overall, the worst matching (maximal RMS error) by criterion
(55) is better than the best matching (minimal RMS error) by (53).

Table 3. Matching of experimental data by integrated RMS

Velocity prediction Average Minimum Maximum

Subject 1

vh(t) by (55) 0.0265 m/s 0.0209 m/s 0.0293 m/s

vo(t) by (55) 0.0269 m/s 0.0161 m/s 0.0391 m/s

vh(t) by (53) 0.0508 m/s 0.0456 m/s 0.0565 m/s

vo(t) by (53) 0.0655 m/s 0.0562 m/s 0.0760 m/s

Subject 2

vh(t) by (55) 0.0273 m/s 0.0212 m/s 0.0313 m/s

vo(t) by (55) 0.0360 m/s 0.0259 m/s 0.0442 m/s

vh(t) by (53) 0.0556 m/s 0.0506 m/s 0.0605 m/s

vo(t) by (53) 0.0764 m/s 0.0663 m/s 0.0852 m/s

Subject 3

vh(t) by (55) 0.0251 m/s 0.0136 m/s 0.0292 m/s

vo(t) by (55) 0.0304 m/s 0.0170 m/s 0.0485 m/s

vh(t) by (53) 0.0522 m/s 0.0402 m/s 0.0586 m/s

vo(t) by (53) 0.0705 m/s 0.0579 m/s 0.0777 m/s

Subject 4

vh(t) by (55) 0.0258 m/s 0.0140 m/s 0.0322 m/s

vo(t) by (55) 0.0293 m/s 0.0199 m/s 0.0413 m/s

vh(t) by (53) 0.0519 m/s 0.0411 m/s 0.0567 m/s

vo(t) by (53) 0.0693 m/s 0.0604 m/s 0.0808 m/s

Subject 5

vh(t) by (55) 0.0251 m/s 0.0155 m/s 0.0289 m/s

vo(t) by (55) 0.0304 m/s 0.0168 m/s 0.0425 m/s

vh(t) by (53) 0.0511 m/s 0.0392 m/s 0.0576 m/s

vo(t) by (53) 0.0694 m/s 0.0539 m/s 0.0822 m/s

For the graphical illustration of the velocity profiles, we take the data of
last 15 successful trials of each subject and compare them with the theoretical
predictions. To compare motions of different durations, the velocity profiles
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Fig. 17. Hand (left) and object (right) velocity profiles, predicted by criteria (55)
(solid line) and (53) (dashed line), in comparison with experimental data (gray lines)
of the subject 1.
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Fig. 18. Hand (left) and object (right) velocity profiles, predicted by criteria (55)
(solid line) and (53) (dashed line), in comparison with experimental data (gray lines)
of the subject 2.
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Fig. 19. Hand (left) and object (right) velocity profiles, predicted by criteria (55)
(solid line) and (53) (dashed line), in comparison with experimental data (gray lines)
of the subject 3.

are time scaled using the average time of successful trials, T = 2.259s. The
experimental velocity profiles are shown in Fig. 17-21 in gray color. The hand
and object velocity profiles, predicted by the minimum hand jerk criterion,
are shown in solid lines in Fig. 17-21. The predictions by criterion (53), are
shown there in dashed lines. As can be seen from Fig. 17-21, the collected
experimental data are clearly in favor of the minimum hand jerk criterion.
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Fig. 20. Hand (left) and object (right) velocity profiles, predicted by criteria (55)
(solid line) and (53) (dashed line), in comparison with experimental data (gray lines)
of the subject 4.
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Fig. 21. Hand (left) and object (right) velocity profiles, predicted by criteria (55)
(solid line) and (53) (dashed line), in comparison with experimental data (gray lines)
of the subject 5.

While our initial experiments support the minimum hand jerk model, one
should realize that its applicability is apparently limited to some range of
the parameter T that can be associated with comfortable movements. It is
known that for comfortable reaching movements in free space the movement
time is in the range of [0.25, 0.8]s for the traveling distance varying from
0.2m to 0.5m [46]. For the movement in dynamic environments, the time
range of comfortable reaching is of course environment-dependent. In this
connection, it should be mentioned that the fastest completion time in our
task (1.96s) was very close to the lower bound admissible by the time tolerance.
It suggests that it is perhaps possible to produce faster reaching movements in
the conditions of our experiment. However, with shorter T one would expect a
slower learning rate as the human control system would get closer to the limits
of neuromuscular performance. Obviously, the movement time T cannot be
reduced arbitrarily without violating the constraints imposed by the neural
and musculoskeletal hardware on the traveling distance, maximal force, and
the accuracy of reaching. These constraints are ignored in the optimization
problems (54,45,46) and (47,48,55) under the assumption that for comfortable
reaching movements the control system operates without undue stress, away
from the limits of neuromuscular performance. Taking into account additional
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considerations would lead to different optimization problems with possibly
different criteria of optimality [47].

5 Conclusions

An analysis of reaching movements in the manipulation of multi-mass flexible
objects has been undertaken in this paper. Two candidates for the modeling of
human-like reaching movements, the lowest-order polynomial model and the
minimum hand jerk model, have been analyzed. The models under study have
been established in the analytical form for the general case of a linear chain
of n masses. Both these models predict qualitatively similar hand velocity
profiles featuring at most n + 1 phases. Qualitatively, however, the velocity
profiles are different. The difference becomes sharper with the increase of the
number of masses, and in the limiting case of infinite-dimensional object the
lowest-order polynomial model does not produce bounded velocity profiles.
Finally, theoretical predictions by the models under considerations for a ten-
mass flexible object have been tested against experimental data obtained using
a virtual reality-based setup. It has been demonstrated that the prediction by
the minimum hand jerk criterion matches the experimental patterns with
reasonable accuracy.
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the previously reported set-point regulation based force scaling algorithm over a
wide range of user applied input force trajectories and force scale factors.

1 Introduction

Microsurgical tasks often require delicate instrument manipulation and tactile
sensing of small interaction forces [1, 2, 3]. Though surgeons possess greater
skill than lay persons when performing similar tasks, inherent human limita-
tions of dexterity and tactile sensitivity can complicate and constrain micro-
surgical procedures [1, 3, 4]. For example, several studies suggest that inexpe-
rienced surgeons, particularly residents and fellows, demonstrate low relative
success rates in a complex microsurgical procedure called stapedotomy that
requires dextrous instrument manipulation in a confined space in the presence
of low haptic feedback to the surgeon. [5, 6, 7, 8]. Robot-assist devices of vari-
ous types, by reducing tremor, directing task execution, and enhancing haptic
feedback, promise to overcome some of these limitations [4, 9, 10]. Examples
include passive devices that employ motion constraining mechanical designs
to guide human task execution [11, 12], and active devices that employ ro-
bot control algorithms to assist in the execution of fine manipulation tasks
[10, 13, 14]. One such novel application of robot control, previously shown to
improve task performance during otologic microsurgery [10], is the subject of
the investigation reported in this chapter.

We report the theoretical and experimental development of a robot force
control application called position based force scaling, henceforth referred to
simply as force scaling. We specifically address the case of human-tool to tool-
environment force down-scaling during human-robot co-manipulation tasks.
Force down-scaling uses position based force control algorithms to augment
human haptic feedback during robot-assisted co-manipulation tasks. We re-
view three previously reported position based force control algorithms [15]
and report a theoretical and experimental investigation into their compara-
tive performance when applied to the task of force scaling. To the best of our
knowledge, the applications of two of these algorithms to force scaling are the
first reported implementations of asymptotically exact force scaling, and the
first results in on-line environment compliance estimation while performing
the task of force scaling.

Note that the force scaling task in a co-manipulation paradigm, often called
force reflection when the scale factor is 1:1, is different from that of force-
reflection in master/slave tele-robotic systems. In tele-robotic force reflection,
the objective is to provide force feedback during remote manipulation at sites
distant from the human operator [16, 13, 14, 17]. Previous work most similar
to that presented in this chapter includes that of Kazerooni et al; [18, 19, 20],
which reports the development of exoskeletons to amplify the strength of a
human operator and that of Kumar et al; [16], which reports the implementa-
tion of one-dimensional position based force scaling on the JHU Steady Hand
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Robot. In [18, 19, 20] the authors report a linear systems analysis of the stabil-
ity and robustness of cooperative human-robot manipulator control systems
in which the manipulator scales-up the human operator’s force input by a
factor of approximately 10. A concise stability analysis of these closed-loop
systems, comprising dynamical models of both the robot arm and the human
arm, is complicated by the fact that precise mathematical plant models exist
for neither the hydraulically actuated robot nor the operator’s human arm. In
consequence, the authors report a robustness analysis for stable robot force-
control laws that accommodate wide variation in both human and robot arm
dynamics. In [16] the authors implement one-dimensional force down-scaling
using the position based force set point regulator, first reported in [21]. The
authors report a stability analysis for one-dimensional position based force
scaling and show that the tool tip forces asymptotically track down-scaled
user applied forces for the special case of a constant handle force and ex-
act inner loop position control. The experimental results in [16] demonstrate
one-dimensional force scaling to work reasonably for several hand generated
handle force trajectories. In the present report we extend this previous work
and present the complete theoretical and experimental development of three-
dimensional position based force scaling.

The specific objectives of this chapter are threefold:

(i) We present a push-poke theory of tool-environment interaction and use
this theory, in concert with the position based force trajectory tracking
controllers reported in [21, 15, 22], to develop the first complete theory
of three-dimensional force scaling.

(ii) We report the first implementation of adaptive position based force scal-
ing. The adaptive force scaling algorithm provides asymptotically exact
force reflection and force scaling while simultaneously estimating the en-
vironment compliance.

(iii) We report a comprehensive comparative experimental study into the per-
formance of the three position based force control algorithms reported in
[21, 15, 22] for the task of force scaling.

The rest of this chapter is organized as follows. Section 2 reviews the co-
manipulation paradigm and formulates the force scaling problem for human-
robot co-manipulation tasks. Section 3 reviews three previously reported
one-dimensional position based force control algorithms. Section 4 presents
the push-poke theory of tool-environment interaction and addresses the sur-
face coordinate system representation problem for both these types of tool-
environment interactions. Section 5 reports a comparative theoretical analysis
of the properties of three one-dimensional force control algorithms, reviewed in
Section 3, when applied to the task of three-dimensional force scaling. Section
6 reports the results of an extensive comparative experimental investigation
into the performance of the three algorithms for the task of force scaling while
pushing and poking. Section 7 summarizes and concludes the main results of
this chapter.
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2 Position Based 3-D Force Scaling during
Human-Robot Co-Manipulation: Problem Statement

ROBOT
ARM

&
TOOL Tool

Tip

Tool
Compliance

Environment
Compliance

ft(t)
Tool Tip Force

x(t)
Robot Position

User Applied
Handle Force

fh(t)
eγ

Fig. 1. Simple 1-D position based force scaling in a co-manipulation paradigm.
Shown in the figure are the rigid 1-D position controlled robot, compliant tool and
environment, and the handle and tip forces.

In the co-manipulation force scaling paradigm, both the robot and the hu-
man simultaneously manipulate a single tool that interacts with a compliant
environment [16, 13]. The point at which the human user holds the tool is
called the handle and the point at which the tool interacts with the environ-
ment is called the tool tip. The handle and the tool tip are both instrumented
with force sensors called, respectively, the handle sensor and the tip sensor.
The robot is assumed to be rigid, non-backdrivable, and under joint level po-
sition or velocity control. The task of the force scaling controller then is to
synthesize a desired joint position or velocity trajectory based on the sensed
handle and tool tip forces, such that the actual tool tip force trajectory as-
ymptotically converges to a scaled version of the user applied handle force
trajectory by a user determined scale factor. Figure 1 shows a schematic of
the co-manipulation force scaling paradigm for the one-dimensional case.

Figure 2.A shows a schematic block diagram of the system. Figure 2.B
defines the notation used in the block diagram and the rest of this chapter.
Unless otherwise stated, all forces and positions in Figure 2 and the rest of the
chapter are assumed to be expressed in the local surface coordinate system
at the point of tool-environment contact. Further, the z-axis of this local
coordinate system is chosen to be perpendicular to the surface at the point of
contact.
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FORCE
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CONTROL-

LED ROBOT

ENVIRON-
MENT

� � �
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fh, ḟh
xd, ẋd x, ẋ ft

ft

(A) Schematic block diagram

Symbol Meaning SI unit

ft(t) Tip force N

ḟt(t) First time derivative of tip force N/s

fh(t) Handle force N

ḟh(t) First time derivative of handle force N/s

ν Force scale factor (Desired tip force/handle force) -

∆ft(t) = ft(t)−νfh(t) Tip force tracking error N

x(t) Actual robot position m

ẋ(t) Actual robot velocity m/s

xd(t) Desired robot position m

ẋd(t) Desired robot velocity m/s

∆x(t) = x(t) − xd(t) Robot position tracking error m

∆ẋ(t) = ẋ(t) − ẋd(t) Robot velocity tracking error m/s

xe Undeformed environment position (position cor-
responding to zero force)

m

k = ke Combined tool, sensor & environment stiffness
(henceforth called the environment stiffness)

N/m

γ = γe = 1/k Combined tool, sensor & environment compliance
(henceforth called the environment compliance)

m/N

γ̂(t) Time varying estimate of γ m/N
˙̂γ(t) First time derivative of γ̂ m/ N-s

(B) Notation

Fig. 2. 3D Force Scaling: Shown in the figure are (A) the block diagram of the
system, and (B) the nomenclature used to describe the control problem. Note that
all positions and forces shown are 3-dimensional and expressed in the local surface
coordinate frame at the point of tool-environment contact.

2.1 Control Task: Known Environment Compliance

Given a user applied handle force trajectory, fh(t) ∈ R3, a positive force
scale factor ν < 1, and a known environment compliance γ, the force scaling
problem is to synthesize a desired robot velocity trajectory ẋd(t) such that
the tip force ft(t) satisfies:
Case 1: Asymptotically exact inner loop velocity tracking

lim
t→∞

|ftz(t)− νfhz(t)| = 0 if lim
t→∞

∆ẋ(t) = 0. (1)
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Case 2: Bounded inner loop velocity errors

lim sup
t→∞

|ftz(t)− νfhz(t)| ≤ ε if lim sup
t→∞

||∆ẋ(t)|| ≤M, (2)

where 0 < M < ∞ is a finite bound on the robot velocity tracking error and
ε can made arbitrarily small by choosing a high enough gain. Note that ftz(t)
and fhz(t) are respectively the components of the handle and tip forces along
the z-direction of the local surface coordinates at any time t. Also note that
the robot position x(t) ∈ R3 and velocity ẋ(t) ∈ R3 are expressed in the local
surface coordinates at any time t.

2.2 Control Task: Unknown Environment Compliance

For the case of an unknown environment compliance, given a handle force
trajectory fh(t) ∈ R3 and a force scale factor 1 > ν > 0, the adaptive force
scaling problem is to design a desired robot velocity trajectory ẋd(t) and an
adaptive parameter update law for the compliance estimate γ̂(t) such that
each of (1) and (2) are satisfied.

3 Three Force Control Algorithms: A Review

In this section we review three one-dimensional position/velocity based force
controllers that were previously reported in [21, 15]. The convergence prop-
erties of these one-dimensional force control laws, in conjunction with the
push-poke theory of Section 4, are used in Section 5 to deduce convergence
properties of the three-dimensional force scaling laws based on them. We use
the ·̃ notation to differentiate a one-dimensional variable from the general 3-
dimensional variables of Section 2. Let x̃(t) ∈ R, ˙̃x(t) ∈ R, f̃(t) ∈ R be the
one-dimensional robot position, velocity and end-effector force respectively.

3.1 Set Point Regulator (SPR)

For the case of a constant desired force f̃d, in [21] the authors showed that
the simple feedback control law:

˙̃xd(t) = −kf∆f̃(t), (3)

where ˙̃xd(t) ∈ R is the desired robot velocity, ∆f̃(t) = f̃(t) − f̃d ∈ R is the
force regulation error, and kf > 0 is the force gain guarantees that ∆f̃(t) is
bounded and that:

lim
t→∞

∆f̃(t) = 0 if lim
t→∞

∆ ˙̃x = 0 (4)

and
lim sup

t→∞

∣∣∣∆f̃(t)
∣∣∣ ≤ M

kf
if lim sup

t→∞

∣∣∆ ˙̃x
∣∣ ≤M, (5)

where 0 ≤ M < ∞ is a finite bound on the steady-state inner loop velocity
tracking error ∆ ˙̃x.
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3.2 Trajectory Tracking Controller (TTC)

When the linear environment compliance γ is known, in [15] the authors
showed that the control law:

˙̃xd(t) = γ
˙̃
fd(t)− kf∆f̃(t), (6)

where ˙̃xd(t) ∈ R is the desired robot velocity, ∆f̃(t) = f̃(t) − f̃d(t) ∈ R is
the force tracking error, and kf > 0 is the force gain guarantees that ∆f̃(t)
is bounded and satisfies (4) and (5) for all time-varying bounded C2 desired
force trajectories with bounded time derivatives ˙̃

fd(t),
¨̃
fd(t) ∈ R.

3.3 Adaptive Trajectory Tracking Controller (TTCA)

For the case when the environment compliance is not known, in [15] the au-
thors reported the following adaptive control law:

˙̃xd(t) = γ̂(t) ˙̃
fd(t)− kf∆f̃(t) (7)

˙̂γ = −α
˙̃
fd(t)∆f̃(t), (8)

where α > 0 is the adaptive gain and γ̂(t) is the time-varying estimate of the
environment compliance γ, and showed that the control law guarantees that
∆f̃(t), γ̂(t) are bounded and that :

lim
t→∞

∆f̃(t) = 0 if lim
t→∞

∆ ˙̃x = 0 and ∆ ˙̃x ∈ L2, (9)

for all time-varying bounded C2 desired force trajectories with bounded time
derivatives ˙̃

fd(t),
¨̃
fd(t) ∈ R.

4 Theory of Pushing and Poking

In order to develop the three-dimensional theory of force scaling, we have
identified two types of tool-environment interactions which we call push and
poke. Tools that push are called pushers and those that poke are called pokers.
The orientation of the local surface coordinate system, which is the coordi-
nate system in which the three-dimensional position based force control and
force scaling problem is formulated, depends on type of tool-environment in-
teraction and hence it becomes important to a-priori identify the nature of
this interaction. We note here that for tools in contact with the environment,
none of three position based controllers reviewed in Section 3 require knowl-
edge of the exact position of the environment and hence we do not concern
ourselves with its identification.

In poke interactions, the tool is usually sharp and partially penetrates the
surface that it manipulates. The effect is that, locally, the surface takes the
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(A) Poking (B) Pushing

Fig. 3. Poking and pushing: Shown are the tool, environment and the interaction
force during (A) a poke type tool-environment interaction, and (B) a push type
tool-environment interaction .

shape of the tool and the predominant interaction force is along the approach
axis, defined to be the z - axis, of the tool. As a result, at any given instant
of time after contact, the axes of the local surface coordinate system can
be chosen to be identical to that of the tool tip coordinate system. Since
the tool tip coordinate axes are a known smooth continuous function of the
joint variables and kinematic parameters of the robot, the orientation of the
surface, at the point of contact, is always known and no additional knowledge
is required about the surface. Figure 3.A shows a schematic diagram of a
poke-type interaction and the tool-environment interaction forces. Note that
a blunt tool that interacts with a very compliant environment and causes the
environment to locally take the shape of the tool would be, for force scaling
purposes, classified as a poker.

In push interactions, the tool is usually blunt and the surface is semi-rigid.
The effect is that the surface does not locally take the exact shape of the tool.
In the absence of friction, the tool can only apply forces perpendicular to
the surface. The problem statement for force control and force scaling is then
identical to the problem statement of hybrid force/position control reported in
[22]. To correctly implement force scaling for such a tool-surface interaction,
the surface has to satisfy all the properties stated in [22] — specifically, the
global surface coordinate system has to be known a-priori. Figure 3.B shows
a schematic diagram of a push-type interaction and the the tool-environment
interaction forces.
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5 Three Force Scaling Algorithms

In this section, we report three force scaling algorithms which are directly
derived from the three position/velocity based force controllers reviewed in
Section 3.

5.1 Set Point Regulator (SPR) based Force Scaling

Set point regulator (SPR) based force scaling is the most basic position based
force scaling approach. The algorithm used to achieve force scaling is:

ftd(t) = νfh(t), (10)

ẋd(t) = −kf∆ft(t), (11)

where ∆ft(t) = ft(t) − ftd(t) = ft(t) − νfh(t) ∈ R3 is the tip force tracking
error expressed in the local surface coordinate system and kf > 0 is the force
feedback gain. A one-dimensional version of this algorithm was proposed in
[16], where the authors show asymptotically exact force scaling for constant
handle forces when the robot is under exact inner loop position/velocity con-
trol. However, from Section 3.1, we know that this control algorithm guar-
antees asymptotically exact force set point regulation for constant desired
handle forces both when the robot is under exact inner loop velocity control
as well as when it is under asymptotically exact inner loop velocity control,
and arbitrarily small force tracking errors under bounded inner loop velocity
tracking errors.

This algorithm has two advantages: 1) It requires no knowledge of the
environment compliance or orientation. 2) When contact with the environment
is lost, the algorithm automatically puts the robot under proportional-velocity
control, where the velocity of the tool tip is proportional to the applied handle
force, and thus guarantees stable operation of the robot in free space.

The principal disadvantage of this algorithm is that it does not guarantee
asymptotically exact force scaling for time varying handle force trajectories
even when the robot is under exact inner loop position/velocity control.

5.2 Trajectory Tracking Controller (TTC) based Force Scaling

Trajectory tracking controller (TTC) based force scaling employs the known
environment compliance value γ, in conjunction with the trajectory tracking
controller of Section 3.2, to provide asymptotically exact force scaling perpen-
dicular to the surface for all smooth time varying handle force trajectories.
The control law used to achieve this asymptotically exact force scaling is:

ftd(t) = νfh(t), (12)
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ẋdx(t) = −kf∆ftx(t), (13)
ẋdy(t) = −kf∆fty(t), (14)

ẋdz(t) = γḟtdz − kf∆ftz(t), (15)

where ∆ftx(t) = ftx(t)−ftdx(t) ∈ R,∆fty(t) = fty(t)−ftdy(t) ∈ R,∆ftz(t) =
ftz(t)−ftdz(t) ∈ R respectively are the x, y and z components of the tip force
tracking errors expressed in the local surface coordinates at the point of tool-
environment contact.

This algorithm has three advantages: 1) It provides asymptotically exact
force scaling perpendicular to the surface for all smooth time-varying handle
force trajectories when the robot is under exact or asymptotically exact inner
loop velocity tracking control and arbitrarily small force tracking errors in
the presence of bounded inner loop velocity errors. 2) It provides scaled force
set point regulation in the remaining directions when the tool is stuck in
the environment. 3) It provides proportional-velocity control parallel to the
surface when the tool is not stuck in the environment.

The principal disadvantages of this force scaling algorithm are twofold:
1) For its implementation, it requires differentiation of the desired tip force
which is a scaled version of a typically noisy sensed handle sensor force. 2)
The combined tool environment compliance has to be a-priori known in order
to implement this controller.

5.3 Adaptive Trajectory Tracking Controller (TTCA) based Force
Scaling

The third force scaling algorithm reported here is based on the adaptive tra-
jectory tracking controller of Section 3.3. Specifically, the algorithm is:

ftd(t) = νfh(t), (16)

ẋdx(t) = −kf∆ftx(t), (17)
ẋdy(t) = −kf∆fty(t), (18)

ẋdz(t) = γ̂ḟtdz − kf∆ftz(t), (19)
˙̂γ(t) = −αḟtdz(t)∆ftz(t), (20)

where α > 0 is the adaptive gain.
This algorithm has five main advantages: 1) It does not require knowl-

edge of the environment compliance for its implementation. 2) It estimates
the environment compliance on-line and thus provides a powerful tool to do
on-line environment (e.g. tissue) property identification. 3) It guarantees as-
ymptotically exact force scaling perpendicular to the surface for all smooth
time-varying handle trajectories when the robot is under exact or asymptot-
ically exact inner loop velocity tracking control. 4) It provides scaled force
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set-point regulation in the remaining surface directions when the tool is stuck
in the environment. 5) It provides proportional-velocity control parallel to the
surface when the tool is not stuck in the surface.

The main disadvantages of this algorithm are twofold. 1) It requires differ-
entiation of the desired tip force, which is a scaled version of a typically noisy
handle sensor signal, for its implementation. 2) When contact is lost with the
environment, the compliance estimate adapts to the infinite compliance of free
air if the adaptation is active.

6 Experimental Results

This section reports the results of comparative experiments in pushing and
poking with the three force scaling algorithms reported in Section 5.

6.1 Experimental Setup

The JHU Steady Hand Robot employed in these experiments is a seven degree
of freedom remote-center-of-motion (RCM) robot arm developed at the Johns
Hopkins University for medical applications [16, 13]. The arm has a 3-DOF
linear base stage, a 2-DOF intermediate RCM stage [23], and a final two degree
of freedom z - theta stage. For the experiments reported in this section, all
the joints of the arm, except the linear insertion (z) axis of the z - theta stage
were active. The ambient noise in the both force sensor readings was of the
order of 2-3 mN, leading to a force sensor accuracy of +/- 3 mN.

The tool used for the poking experiments was a 16 cm long thin stainless
steel surgical instrument (Storz) with a sharp tip and the tool used for the
pushing experiments was a 16 cm long thin aluminum rod having a rounded
tip at one end. Both tools were rigidly attached to the tip force sensor at
one end and interacted with the environment with the other end. The handle,
rigidly attached to the handle force sensor, employed an ergonomic design
commonly found in surgical instruments and was manipulated by the user to
make the tool move and interact with the environment. Two surfaces provided
the environment in the experiments — (1) the compliant surface of a thin
plastic box and (2) the more compliant surface of a stretched sheet of paper.
Figure 4 shows the JHU Steady Hand robot, the handle, the handle and tip
sensors, and the pushing and poking tools used in the experiments.

All six active joints of the robot were under independent joint level PI
velocity control. Further, the rotational joints were put under outer loop
proportional-velocity control such that the desired angular velocity of the
remote center of motion at the tool tip was proportional to the user applied
torque at the handle. This allowed the user to orient the the tool to a desired
angle of approach to the surface without moving the position of the tool-tip.
The desired velocities of the three linear axes of the base were determined
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(A) JHU Steady Hand Robot

(B) Poking Tool (C) Pushing Tool

Fig. 4. Experimental Setup: Shown in the figure are (A) the JHU Steady Hand
Robot, (B) the poking tool, and (C) the pushing tool.

by the user applied linear handle force, the tip-environment interaction force,
and the force scaling algorithm being used.

Since we are primarily interested in comparing the relative performance
of three force scaling algorithms reported in Section 5 in a fair and unbiased
fashion, the force feedback gain, kf , was held at a constant value of 0.005
N-m/s for all the three algorithms for all the poking and pushing experiments
reported in this section. Higher feedback gains were observed, of course, to
give lower tracking errors but the relative performance of the three controllers
remained unchanged. Further, unless otherwise noted, the adaptive gain, α,
was held constant at a value of 0.0005 m/N3 for all experiments employing
the TTCA based force scaling algorithm.
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6.2 Algorithm Implementation

This section addresses the practical problems associated with the implementa-
tion of the force scaling algorithms reported in Section 5. As noted in Sections
5.2 and 5.3, the TTC and TTCA based force scaling algorithms require feed-
forward terms that involve the derivative of the measured handle force sensor
signal which is typically noisy. Similarly, the adaptation law for the TTCA
based force scaling algorithm includes the derivative of the measured handle
force sensor signal. To obtain a clean derivative of the measured handle force
signal, we filtered the signal using a first order IIR filter having a relatively
high time constant of 50 ms. As is well known, filters with high time con-
stants introduce a phase lag between the raw signal and the filtered signal. At
a first glance, this would seem to defeat the purpose of the TTC and TTCA
based force scaling algorithms, which is to eliminate the phase lag between
the desired and the actual force trajectories inherent in the SPR based force
scaling algorithm. To overcome this problem, we used a multi-part filter in the
implementations of the TTC and TTCA based force scaling controllers. This
consisted of using an unfiltered force error feedback term and a filtered feed
forward term involving the derivative of the measured handle force. Similarly
the implementation of update law (20) for the TTCA based force scaling al-
gorithm used an unfiltered force error term and an IIR filtered handle force
derivative term. This resulted in implementations that provided force tracking
with almost no phase lag, as will be seen in Sections 6.3 and 6.4.

Another practical issue in the implementation of the TTCA based force
scaling algorithm is that the compliance estimate theoretically adapts to ∞
when contact is lost with the environment. To overcome this problem, we
disabled the adaptation (that is ˙̂γ = 0), whenever the the tip force fell below
the small threshold of 0.05 N, indicating that contact was about to be lost.
This resulted in γ̂ maintaining a constant value when contact was lost and a
stable operation of the TTCA based force scaling algorithm in air.

6.3 Poking Experiments

The poking experiments consisted of a human user and the robot co-manipulat-
ing the poking tool while the tool-tip interacted with the environment. The
user held the tool at the handle and applied a repeatable time varying force
for all the experiments reported in this section. The robot sequentially ran
the three force scaling algorithms reported in Section 5 at four different force
scale factors of 1.0, 0.5, 0.25, and 0.14.Experiments were performed with the
poking tool both perpendicular to as well at a shallow angle to the surface
being manipulated

4 At a scale factor of 0.1, tool tip forces are amplified by a factor of 10 at the handle,
which is the haptic interface, thus amplifying the operators haptic sensitivity by
a factor of 10
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SPR based poking: Tip force tracking errors at Force Scale Factor = 1

SPR based force reflection while poking -
(Left) Z-component of handle and tool tip forces and (Right) force tracking errors
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TTC based poking: Tip force tracking errors at Force Scale Factor = 1

TTC based force reflection while poking -
(Left) Z-component of handle and tool tip forces and (Right) force tracking errors
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TTCA based Poking: Tip force tracking at Force Scale Factor = 1
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TTCA based poking: Tip force tracking errors at Force Scale Factor = 1

TTCA based force reflection while poking -
(Left) Z-component of handle and tool tip forces and (Right) force tracking errors

Fig. 5. Position based force reflection: Shown (top to bottom) are the tracking
performance and errors of the SPR, TTC, and TTCA based force scaling controllers
while poking at a force scale factor of 1. For the experiments in this figure, the poking
tool was perpendicular to a plastic box environment.
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Figure 5 shows the tool tip or local surface coordinate z-components of the
handle force trajectory, the tool tip trajectory, and the tool-tip force tracking
errors for the three algorithms when the poking tool is perpendicular to the
plastic box environment and the force scale factor is 1.0. As seen from the
figure, the TTC and TTCA based force scaling algorithms, which incorporate
a filtered feedforward term, have significantly lower force tracking errors than
the SPR based force scaling algorithm. Figure 6 shows the evolution of tool-
environment compliance estimate with time for the TTCA based force scaling
algorithm. As seen from the figure, the compliance estimate converges to a
value of 3 × 10−4 m/N within 0.5 seconds of tool-environment contact. The
experimentally measured compliance value, used in the TTC controller, for
this tool and environment is 3.1× 10−4 m/N.
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TTCA Based Poking: Compliance Estimate Adaptation. ν = 1

Fig. 6. TTCA based force scaling: Evolution of the tool-environment compliance
estimate with time while poking at a force scale factor of 1.0.

Figure 7 shows the average root mean square force tracking errors of the
three force scaling algorithms at four different force scale factors for a plastic
box environment. For each force scale factor and each algorithm, the average
was taken over two experiments — one with the poking tool perpendicular
to the surface and the other with the tool at an angle to the surface. The
error values have been normalized such that for any given set of experiments
(e.g. poking tool interacting with the plastic box environment at an angle
and at a force scale factor of 0.1) the root mean square error of the SPR
based algorithm is 1.0. The figure shows that the TTC and TTCA based
force scaling algorithms significantly outperform the SPR based algorithm at
force scale factors of 1.0 and 0.5. At lower force scale factors of 0.25 and 0.1,
the TTC based algorithm performs worse than the SPR algorithm.

What is the reason for this change in the order of rankings between the
SPR and TTC based algorithms at lower force scale factors? To investigate
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Comparative Performance of SPR, TTC, and TTCA based Force Scaling Algorithms: Plastic Environment

ν = 1.00 ν = 0.50 ν = 0.25 ν = 0.10

SPR 
TTC 
TTCA

Fig. 7. Poking: Average root mean square force tracking errors of the SPR, TTC,
and TTCA based force scaling algorithms at force scale factors of ν = 1.0, 0.5, 0.25,
and 0.1 for a plastic box environment. The errors have been normalized so that the
average RMS error of the SPR based algorithm is 1.0

this, we revisit one of the assumptions made in the force scaling problem
statement formulated in Section 2. We have assumed that the robot is com-
pletely rigid. In other words, we assume that the compliance γr between the
robot base stages, which are controlled using the force scaling laws, and the
handle, which the user manipulates, is 0 m/N and the net compliace γ seen
by the force controlled active base stages, and consequently used in the feed-
forward term of the TTC control law, is equal to the environment compliance
γe. However, as seen from Figure 4, there is a large lever arm between the
handle and robot base stages which results in a finite non-zero robot-base to
handle compliance γr, henceforth referred to simply as the robot compliance.
If this compliance is incorporated in the system closed loop model, a simple
force balance at the handle and a closed loop error analysis similar to that
in [15] yields the following expression for the net effective compliance of the
system:

γ = γe

[
1− (n− 1)

γr

γe

]
, (21)

where n = 1/ν is the inverse of the force scale factor.
We observe the following from Equation 21:

(i) The net effective system compliance γ equals the environment compliance
γe when the robot compliance γr is 0. This holds for all force scale factors
ν, where ν = 1/n.

(ii) The net effective system compliance γ equals the environment compliance
γe when the force scale factor ν is 1. This holds for all values of the robot
compliance γr.
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(iii) For force scale factors ν < 1 (that is, for n > 1) and a non-zero robot
compliance, γr, the net effective system compliance γ is less than the
environment compliance γe. As ν decreases (or as n increases), γ be-
comes progressively smaller than the environment compliance γe, until
eventually γ equals 0 when n = 1 + γe/γr.

We note, once again, that the TTC based force scaling algorithm imple-
mented in these experiments uses purely the environment compliance, γ = γe,
in its feedforward term. As noted in the observations above, this is the cor-
rect net effective system compliance only at a force scale factor of 1. Hence
the TTC based force scaling algorithm performs best at force scale factors
near 1 and its performance progressively degrades relative to the SPR based
algorithm at lower force scale factors. However, the TTCA based force scal-
ing algorithm, which requires no initial knowledge of the system compliance,
adapts its compliance estimate, γ̂, to the correct net effective system com-
pliance, γ, at all force scale factors and hence its performance still remains
the best amongst the three controllers. Further, we note that at a force scale
factor of ν = 0.25, the net effective system compliance is roughly zero for
the poking experiments described in this section (see observation iii). Hence
the SPR based algorithm now becomes a TTC based algorithm that incorpo-
rates the correct effective compliance (0 m/N) of the system in its feedforward
term. The compliance estimate of the TTCA based algorithm converges and
oscillates around this value, due to force sensor noise, unmodeled friction etc.,
thus leading to a marginally worse performance of the TTCA controller at this
force scale factor. Another interesting observation is that at ν = 0.1, the net
effective system compliance is negative. Though the sufficiency proofs used
to prove stability and convergence properties of the TTCA algorithm require
a non-negative value of γ [15], we observe that in practice, the compliance
estimate of the TTCA algorithm correctly converges to the negative value of
system compliance γ. Hence the TTCA algorithm outperforms the SPR algo-
rithm even at this very low force scale factor. This theoretically unexplained
fact invites further investigation.

Figure 8 shows the normalized average root mean square tracking errors of
the SPR and TTCA based force scaling algorithms for the case of the poking
tool interacting with a more compliant stretched paper sheet environment.
As seen from the figure, the adaptive algorithm outperforms the SPR based
algorithm at all the experimentally verified force scale factors.

6.4 Pushing Experiments

Similar to the poking experiments, the pushing experiments consisted of a
human user and the robot co-manipulating the pushing tool while the tool-
tip interacted with the environment. For all the experiments reported in this
section, the human user applied a repeatable time-varying force at the handle
while the robot sequentially ran the three force scaling algorithms reported
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Comparative Performance of SPR and TTCA based Force Scaling Algorithms: Paper Environment

SPR 
TTCA

Fig. 8. Poking: Average root mean square force tracking errors of the SPR and
TTCA based controllers at force scale factors of ν = 1.0, 0.5, 0.25, and 0.1 for a
cantilevered paper sheet environment. The errors have been normalized so that the
average RMS error of the SPR based algorithm is 1.0

in Section 5 at four different force scale factors of 1.0, 0.5, 0.25, and 0.1.
Experiments were performed with the pushing tool both perpendicular to as
well at a shallow angle to the surface being manipulated. In all experiments
reported in this section, the environment consisted of the compliant surface
of a thin plastic box.

Figure 9 shows the global surface z-components of the handle force tra-
jectory, the tool tip trajectory, and the tool-tip force tracking errors for the
three algorithms when the pushing tool is perpendicular to the environment
and the force scale factor is 1. As seen from the figure, the TTC and TTCA
based force scaling algorithms, which incorporate a filtered feedforward term,
have significantly lower force tracking errors than the SPR based force scaling
algorithm.

Figure 10 shows the normalized average root mean square force tracking
errors of the three force scaling algorithms in global surface z-direction at
four different force scale factors. For each force scale factor, the average was
taken over two experiments — one with the tool perpendicular to the surface
and the other with the tool at an angle to the surface.The error values have
been normalized such that for any given set of experiments (e.g. pushing tool
interacting with the environment at an angle and at a force scale factor of
0.1) the root mean square error of the SPR based algorithm is 1.0. The figure
shows that the TTC and TTCA based force scaling algorithms significantly
outperform the SPR based algorithm at force scale factors of 1.0, 0.5, and
0.25. At the force scale factor of 0.1, the SPR based force scaling algorithm
outperforms the TTC based algorithm. Again, as explained in Section 6.3, this
can be attributed to the fact that at this low force scale factor, the contribution
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SPR based Pushing: Surface z−force tracking errors at Force Scale Factor = 1

SPR based force reflection while pushing -
(Left) z-component of handle and tool tip forces and (Right) force tracking errors
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TTCA based Pushing: Surface z−force tracking errors at Force Scale Factor = 1

TTC based force reflection while pushing -
(Left) z-component of handle and tool tip forces and (Right) force tracking errors
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TTCA based Pushing: Surface z−force tracking errors at Force Scale Factor = 1

TTCA based force reflection while pushing -
(Left) z-component of handle and tool tip forces and (Right) force tracking errors

Fig. 9. Position based force reflection: Shown (top to bottom) are the tracking
performance and errors of the SPR, TTC, and TTCA based force scaling controllers
while pushing at a force scale factor of 1. For the experiments in this figure, the
poking tool was perpendicular to a plastic box environment.
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of the unmodeled robot compliance, γr, to the net effective system compliance,
γ, is significant (see Equation 21). This affects the performance of the TTC
based algorithm, which does not take the robot compliance, γr, into account
and purely uses the environment compliance, γe, in its feedforward term.
The TTCA based algorithm however adaptively estimates the correct net
effective system compliance, γ, and outperforms both the SPR and TTC based
algorithms.
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Comparative Pushing Performance of SPR, TTC, TTCA based Force Scaling Algorithms
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Fig. 10. Pushing: Average root mean square force tracking errors of the SPR,
TTC, and TTCA based force scaling algorithms at force scale factors of ν = 1.0,
0.5, 0.25, and 0.1 for pushing on a plastic box environment. The errors have been
normalized so that the average RMS error of the SPR based algorithm is 1.0

Figure 11 shows the force reflection (ν = 1) performance of the SPR and
TTCA based force scaling algorithms when the user manipulates the handle
such that the tool is held at an angle to the surface and pushes perpendicular
to the surface while simultaneously sliding along the surface. As seem from
the figure, the TTCA based force scaling algorithm, which adaptively esti-
mates the compliance of the surface and uses it in its feedforward term, has
significantly lower tip force tracking errors than the SPR based force scaling
algorithm.

Figure 12 plots the normalized root mean square force tracking errors of
the two controllers for the task of simultaneous pushing and sliding at four
different force scale factors. As seen, the TTCA based algorithm outperforms
the SPR based algorithm at almost all the force scaling factors studied. Again,
the only exception is at a force scale factor of 0.25, where the effective system
compliance is roughly zero and hence the SPR based algorithm unintentionally
includes this zero feedforward to provide better tracking than the TTCA based
algorithm, in which the compliance converges to but oscillates around zero.



Haptic Feedback Enhancement Through Adaptive Force Scaling 313

0 5 10 15 20 25
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (s)

F
or

ce
 (

N
)

SPR based Pushing: Force Tracking while sliding along the surface, ν = 1

Scaled Handle Force 
Actual Tip Force    
Force Tracking Error

0 5 10 15 20 25
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

T
ip

 F
or

ce
 T

ra
ck

in
g 

E
rr

or
 (

N
)

SPR based Pushing: Force Tracking Errors while sliding along the surface, ν = 1

SPR based force reflection while sliding -
(Left) z-component of handle and tool tip forces and (Right) force tracking errors
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TTCA based Pushing: Force Tracking while sliding along the surface, ν = 1
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TTCA based Pushing: Force Tracking Errors while sliding along the surface, ν = 1

TTCA based force reflection while sliding -
(Left) z-component of handle and tool tip forces and (Right) force tracking errors

Fig. 11. Pushing while Sliding: Shown are the force tracking performance and
tip force tracking errors of the SPR (top) and TTCA (bottom) based force scaling
algorithms for the task of pushing perpendicular to the surface while simultaneously
sliding along the surface. The force scale factor for both experiments is 1.0.

7 Conclusions

This chapter reported the theoretical and experimental development of a novel
force control application called position based force scaling. Force scaling uses
the position based force control algorithms reported in [21, 15, 22] to augment
human haptic feedback during human-robot co-manipulation tasks. Detailed
results, presented in Sections 4, 5, and 6 are summarized here:

(i) We present the push-poke theory of tool-environment interaction for co-
manipulation tasks and use this theory, in conjunction with the three
position based force control algorithms, previously reviewed in [15], to
develop the theory of 3-D force scaling.
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Fig. 12. Pushing while sliding: Normalized root mean square tracking errors of
the SPR and TTCA based force scaling algorithms at force scale factors of ν = 1.0,
0.5, 0.25, 0.1. The errors have been normalized so that RMS error of the SPR based
algorithm is 1.0 for each force scale factor.

(ii) We report the theoretical and experimental development of adaptive force
scaling. The adaptive force scaling algorithm estimates the environment
compliance on-line during co-manipulation tasks and uses this estimate
to provide asymptotically exact force reflection and force scaling for all
smooth time-varying user-applied forces.

(iii) We provide experimental insights into the implementation of asymptot-
ically exact force scaling and force reflection, and directly address the
practical issues involved in force sensor signal differentiation. We show
that a multi-part filtering approach involving IIR filters provides a good
practical way of filtering noisy force sensor signals while ameliorating the
known limitations of IIR filters.

(iv) We provide an extensive comparative experimental study into the per-
formance of the three position based force control algorithms reviewed in
[15] for the task of force scaling. The adaptive TTCA based force scaling
algorithm significantly outperforms both its non-adaptive counterpart
and the set point regulator based force scaling algorithms over a wide
range of force scale factors for the tasks of poking as well as pushing.
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Summary. We propose a method of controlling a paddle so as to return the ball
to a desired point on the table with specified flight duration. The proposed method
consists of the following three input-output maps implemented by means of Locally
Weighted Regression (LWR): (1) A map for predicting the impact time of the ball hit
by the paddle and the ball position and velocity at that moment according to input
vectors describing the state of the incoming ball; (2) A map representing a change in
ball velocities before and after impact; and (3) A map giving the relation between the
ball velocity just after impact and the landing point and time of the returned ball.
We also propose a feed-forward control scheme based on iterative learning control to
accurately achieve the stroke movement of the paddle as determined by using these
maps.

1 Introduction

To perform tasks with intermittent interactions between a robot and its envi-
ronment, the robot must be able to adjust the strength and timing of interac-
tions during execution of the tasks. These are called hybrid (mixed continuous
and discrete) control problems by Burridge et al., who cited hopping, catch-
ing, hitting, and juggling as typical examples [1]. These tasks have attracted
the attention of researchers in the experimental psychology because they re-
quire both receptor anticipation of the environmental situation and effector
anticipation of internal movement processes [2]. However, it is difficult to find
general approaches that are sufficiently tractable for the robot to perform
these tasks. In this paper, we focus on the table tennis task that involves the
intermittent nature of the robot-ball interaction in order to explore hybrid
control problems.
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Andersson constructed a sophisticated robot system that could play ta-
ble tennis with humans [3]. The expert controller he developed performs task
planning and updates the plan as the sensor data change, based on physical
models and an exception handling mechanism. Andersson’s approach makes
full use of human knowledge as explicit models of the task and the environ-
ment, and the task performance depends on the system creator’s knowledge.
In other words, the robot system could not improve its skills through practice
or experience.

Researchers in the area of sports science have proposed hypotheses on
the nature of the human internal processes to execute complex tasks such
as the table tennis stroke. For example, Ramanantsoa proposed simplifying
procedures of the table tennis stroke based on Bernstein’s hypothesis that
expert players limit the degrees of freedom in their movements when planning
and performing a shot [4]. The core idea of the procedures he proposed is to
identify and reach virtual targets, the point at which the ball should be struck
and the paddle velocity just before hitting the ball.

Motivated by Ramanantsoa’s idea, we constructed a robot system and
let it perform the table tennis task, in which virtual targets were predicted
using input-output maps implemented efficiently by means of a k-d tree (k-
dimensional tree) [5]. The paddle approached these targets by using a visual
feedback control scheme similar to the mirror law proposed by Koditschek
[6]. In this control scheme, the feedback gain (mirror gain) is adjusted using
an input-output map learned so as to achieve a specified traveling distance
of the ball after ball/paddle contact. This method was derived by taking a
hint from the idea of “task-level robot learning” proposed by Atkeson [7].
However, this research has revealed the following two problems. One is that
the proposed feedback scheme cannot control the height of the ball’s return
trajectory. This may cause the ball to fail in going over the net. The other is
that tracking errors owing to the joint servos hinder the control scheme from
functioning properly, because we cannot separate the servo control problem
from the trajectory planning problem if tracking errors cannot be ignored.

In this monograph, we propose a method of controlling the paddle so as
to return the ball to a desired point on the table with a specified duration
of flight. The proposed method consists of the following three input-output
maps implemented by means of Locally Weighted Regression (LWR) [8]:

(1) A map for predicting the impact time of the ball hit by the paddle and
the ball position and velocity at that moment according to input vectors
describing the state of the incoming ball

(2) A map representing changes in ball velocities before and after the impact
(3) A map giving the inverse relation between the ball velocity just after the

impact and the bouncing point and time of the returned ball

These maps are employed to predict virtual targets for the above-mentioned
paddle control. The third map, which Andersson had not taken into consid-
eration, makes it possible for the robot to aim at the desired point. These
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maps are implemented by means of Locally Weighted Regression (LWR) [8],
though there are alternative approaches such as multi-layer neural networks
(NN), radial basis functions (RBF), and so on. The slow convergence rates
observed in common NN are impractical in our target problem, though ef-
ficient on-line learning algorithms have been proposed [9]. Though RBF is
suited for faster learning, applying RBF without removing unreliable sensing
data deteriorates the ability of RBF to learn the input-output relation. In
comparison with RBF, LWR which is also suited for faster learning can easily
incorporate the ability to explicitly identify unreliable training data. In addi-
tion, Gorinevsky and Connoly have compared several different approximation
schemes (NN, RBF, LWR) on simulated robot inverse kinematics with added
noise, and have shown that LWR is more accurate than all other methods
[10].

Once a trajectory of the paddle has been planned, it must be executed
as accurately as possible. We propose a feed-forward control scheme based
on the iterative learning control (ILC) [11] to compensate for servo errors of
the robot controller. This scheme synthesizes new inputs given several other
inputs that have been correctly learned already.

Contributions of this monograph are summarized as follows:

(i) to verify the effectiveness of the memory based learning approach to
the hybrid control problems involved in robotic tasks with intermittent
interactions between a robot and its environment,

(ii) to demonstrate that a good combination of forward and inverse maps
makes it possible for a robot system to plan appropriate motions in a
dynamical environment, and

(iii) to propose a feed-forward control scheme perfectly realizing the robot’s
action plan using the input-output maps.

An overview of the table tennis robot system is presented in the next sec-
tion. The third section describes “ball events” in one stroke in connection with
tasks the robot has to execute. In the fourth section, we explain the input-
output maps to predict virtual targets and how to plan the trajectory of the
paddle. The fifth section proposes a feed-forward control scheme based on ILC
for precisely tracking the trajectory of the paddle arbitrarily given as a func-
tion of time. After that, experimental results including rallies with a human
opponent are reported to demonstrate the effectiveness of our approach.

2 Robot Table Tennis

2.1 Table Tennis System

Although Andersson stated that five degrees of freedom are required for the
paddle attached to the robot to execute the table tennis task, the minimum
number of the degrees of freedom is four, two for its position in a horizontal
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Fig. 1. Table tennis system

plane and two for its attitude because every incoming ball rebounds on a table
before being hit during the game. In this paper, we adopt a robot system with
the minimum number of degrees of freedom (four) to demonstrate only the
effectiveness of our approach to the robot table tennis task without considering
the use of redundant degrees of freedom.

Fig. 1 illustrates the table tennis robot system we developed. The robot is
driven by four electric motors, motors 1 and 2 for the motion in a horizontal
plane and motors 3 and 4 for the paddle attitude. The 155[mm] square paddle
moves in parallel with the table at a height of 200[mm]. A stereo vision sys-
tem (Quick MAG System 3: OKK Inc.), whose two cameras are set behind the
paddle at (x, y, z) = (3200,−1500, 2300) and (2700, 2000, 1800) [mm] which
are represented with reference to the coordinate frame shown in Fig. 1, ex-
tracts the location of the ball’s center of gravity from the image every 1/60[s]
using the stereo calculation.

2.2 Table Tennis Task

Let us explain the task the table tennis robot must do. The robot plays table
tennis according to the same rules as humans. The table’s width is 1.5 meters
and the net is 0.16 meters high, which is the same as standard table tennis.
(Andersson’s robot has played against humans according to special rules for
robots, scaling down and restricting the area that must be covered by the
robots.) We consider that it is basically required for the table tennis robot to
have the ability to perform the following task: returning the ball to a desired
point on the table with a specified duration of flight.

Of course, these terminal conditions of the return trajectory must be cho-
sen freely. In this monograph, we focus on this basic task and describe how
to execute it. The quantitative measure of the robot’s performance is the re-
sultant accuracy of the terminal conditions (the aim point on the table and
the time of flight).
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3 Ball Events in One Stroke

To make the following explanation clear, we define “ball events” by stating
the conditions of a ball, which are given below and in Fig. 2.

3.1 Definition of Ball Events

Event- (s) Hit by the opponent
Event- (m) Passing through a virtual plane for the measurement
Event- (l) Bouncing on the robot’s court
Event- (h) Hit by the robot
Event- (r) Bouncing on the opponent’s court

Numbers 1 and 2 in Fig. 2 mean “before” and “after” the bounce.
The task starts when an opponent player or a pitching machine hits the ball

(s) and the ball passes through a virtual plane (m) that is set to measure the
motion of an incoming ball (the location of the virtual plane is x = −1000[mm]
as shown in Fig. 7). After the ball flies over the net, it bounces in the robot’s
court (l1, l2) and then hit by the robot (h1, h2). The ball is then returned and
bounces in the opponent’s court again (r1, r2).

3.2 Stroke Movement

The table tennis task can be divided into three subtasks as shown in Fig. 3
and summarized below:

TASK A: the planning task in which the robot predicts and plans the hitting
trajectory,

TASK B: the hitting and returning task in which the robot achieved the
hitting and returning motion planned in TASK A, and
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Fig. 3. One stroke movement

TASK C: the waiting task in which the system updates input-output maps
(explained in section 4.1) and continues monitoring the ball motion to
find that Event m occurs.

We divide TASK A into two parts. In A1, the system predicts everything
required to hit the ball and determines the virtual targets (hitting time, paddle
attitude and velocity at the impact, see section 4). In A2, the system generates
the hitting trajectory and motion commands based on the prediction made in
A1 (see section 5).

3.3 Ball’s State Estimation

In our approach, robot motions are planned based on the ball’s state (position,
velocity, acceleration) at Event m. The procedure for estimating the ball’s
state are given below:

(i) to store a sequence of the ball’s location acquired by the stereo vision
system until the ball passes through the virtual plane,

(ii) to fit a trajectory described by a first-order polynomial in each direction
of X and Y and a second-order polynomial of time in the Z direction,
using the least square algorithm,

(iii) to calculate the ball’s state at Event m using the trajectory obtained in
2.

The same procedure is employed to estimate the ball’s state during other
events.
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4 Paddle Motion Decision

4.1 Input-Output Maps

Determining the impact time of the ball hit by the paddle and the paddle po-
sition/attitude and velocity at that moment is most important for performing
the table tennis task. This decision has to be made before the impact occurs.
Our approach to making the decision is to use empirically acquired input-
output maps instead of following Andersson’s approach which is based on
explicit models of the task and the environment derived from human knowl-
edge [3].

These input-output maps represent three physical phenomena shown in
Figs. 4 to 6 and are defined below.

Map 1 – A map for predicting the impact time of the ball hit by the paddle
and the ball’s position and velocity at that moment (at Event h1) accord-
ing to input vectors describing the state of the incoming ball at Event
m.

Map 2 – A map representing a change in ball velocities before (h1) and after
(h2) the impact of a ball against the paddle with a velocity (Vh) and
attitude (θ3, θ4).

Map 3 – A map giving the relation between the ball’s velocity just after the
impact (h2) and the landing point (pr) / time (tr) of the returned ball.

These maps are implemented by means of LWR(see Appendix). We use
LWR on memorized data to fit a planar local model at each point where an
input-output relation is to be predicted. Each data point is weighted by a
function of its distance to the desired point in the regression and the model
parameters are determined by the least square algorithm.

Learning Map 1 is implemented by observing the incoming balls hit by
a human opponent or a pitching machine and storing the ball’s state at the
event m and h1. Once the learning of Map 1 is completed, the robot can hit
almost every kind of the incoming ball using Map 1. Learning Map 2 and
Map 3 are implemented by observing the ball hit by the paddle with a certain
attitude and velocity given at random and storing ball velocities before and
after the impact, the paddle’s attitude and velocity, and the landing point and
time of the returned ball. We explain these maps in more detail hereinafter.

4.2 Prediction of the Ball’s State at the Impact Using Map 1

The aerodynamics of a ball and the physics of a ball’s bounce off of a table
govern a change in the ball’s state between Events m and h1. Andersson
formulated the ball’s equations of motion:

a = −Cd|V |V + Cm|V |W × V − g (1)
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impact (h2) and the landing point and time of the returned ball (r)
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where V is the velocity vector, W is the spin vector, a is the acceleration
vector, g is the acceleration of gravity, and Cd and Cm are the drag coefficient
& the coefficient for the Magnus effect. He also derived algebraic equations
of a ball’s bounce. We do not use these explicit models to predict the ball’s
state at the event h1. Instead, we take notice that the ball’s state at Event
h1 depends on the ball’s state at Event m, that is, the ball’s position vector
(pbmx, pbmy, pbmz), the velocity vector (vbmx, vbmy, vbmz), and the spin vector
(wbmx, wbmy, wbmz). However, we cannot directly observe the spin vector. We
substitute the acceleration vector for the spin vector as components of the
ball’s state at Event m because Eq.(1) holds at any point in time. Moreover,
considering that most of the spin is along the Y axis (wbmy), we use abmz in
place of wbmy. Additionally considering the condition that Event h1 occurs,
that is, pbhz = 200[mm], we can represent a change in the ball’s state between
the Events m and h1 as a nonlinear input/output relation of the form:

[pbmz, vbmx, vbmy, vbmz, abmz]→ [dt, dx, dy],V bh1 (2)

where dt = th − tm, dx = pbhx − pbmx, dy = pbhy − pbmy and V bh1 =
[vbh1x, vbh1y, vbh1z] (See Fig. 7). We call these maps Map 1.

Learning Map 1

In the learning phase of Map 1, we store the ball’s state at Events m and
h1 as a set of input/output pairs. The procedure of constructing Map 1 is as
follows:

(i) Measuring the trajectories of the incoming ball without hitting.
(ii) The ball’s state at Event m (Bm) is obtained using the measured position

data around the virtual plane.
(iii) The ball’s state at Event h (Bh) is obtained using the measured position

data around the hitting plane.
(iv) Each input vector is standardized independently.
(v) We use the cross-validation error check [8] to store only reliable data sets.

Utilization of Map 1

In the lookup phase, the impact time ∗th and the ball position (∗pbhx, ∗pbhy)
and velocity (∗vbh1x, ∗vbh1y, ∗vbh1z) at that moment are predicted by Map 1
with the aid of LWR and the following relations:

∗th = tm + ∗dt (3)
∗pbhx = pbmx + ∗dx (4)
∗pbhy = pbmy + ∗dy (5)

where ∗dt, ∗dx, and ∗dy are interpolated outputs of Map 1. The ball velocities
(∗vbh1x, ∗vbh1y, ∗vbh1z) are also predicted by Map 1 with the LWR interpola-
tion.
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4.3 Decision of the Hitting State of the Paddle Using Map 2 and
Map 3

The remains of virtual targets, the paddle attitude and velocity at the impact,
are determined using Map 2 and Map 3.

Learning Map 2 and Map 3

The collision dynamics between the ball and the paddle govern the transition
of the ball’s state from Event h1 to Event h2. The flight dynamics after hitting
govern the transition of the ball’s state from Event h2 to Event r. We consider
that these transitions are expressed as input-output maps of the form

[Vh, θ3, θ4]→ V bh12(= [vbh12x, vbh12y, vbh12z]) (6)

V bh2 → [dthr, dpbhr(= [dpbhrx, dpbhry])] (7)

where V bh12 means the difference between the velocities just before hitting
V bh1 and just after hitting V bh2, that is, V bh12 = V bh2 − V bh1. dthr is
the flight duration of the returned ball. dpbhr is the flight distance, that is,
dpbhr = pbr − pbh. Since the acquired data in the learning phase should be
distributed uniformly in the input space, we randomly choose input variables
Vh and (θ3, θ4). The measurement is executed by hitting a ball under these
paddle conditions at the hitting point determined by using Map 1.

Utilization of Map 2 and Map 3

If we regard the input-output maps of Eq. (6) and Eq. (7) as forward maps in-
volved in the return shot, we need their inverse maps to determine appropriate
control variables Vh and (θ3, θ4). Andersson modeled the collision dynamics
between the ball and the paddle for the special case of a spinless ball with
the paddle normal parallel to the paddle velocity [3]. According to his model,
the paddle attitude (θ3, θ4) is uniquely determined by Vbh12 and the paddle
velocity Vh(=[vhx, 0, 0]) is uniquely determined by Vbh12 and Vbh1·Vbh12 (“·”

1000[mm]

Z

X

Y

Bh

Bm

dx

pbmz

pbmy
200[mm]

pbhy

pbhx

Virtual plane

Hitting plane

Fig. 7. Prediction of the Ball Trajectory
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means the inner product). Referring to his model, we consider the following
inverse maps to determine the control variables.

[dthr, dpbhr] → V bh2 (8)

[V bh12,V bh1 · V bh12] → [Vh, θ3, θ4] (9)

which are constructed using the same stored data that constitute the forward
maps of Eq. (6) and (7).

Once the desired [dthr, dpbhr] is given, the required ball velocity just after
hitting V bh2 is determined using the inverse map of Eq. (8). A change in
velocities at the impact point V bh12 is then calculated by V bh2 and ∗V bh1

(predicted by Map 1), and the control variables Vh and (θ3, θ4) are determined
using the inverse map of Eq. (9).

4.4 Paddle Trajectory

Given virtual targets using the above-mentioned input-output maps, we can
define a trajectory of the paddle which attains the designated final position
(p), velocity (v) and acceleration (a) corresponding to the virtual targets. We
use a fifth-order polynomial as the position trajectory of each axis and set the
velocity trajectory of the form

v(t) = c1t
4 + c2t

3 + c3t
2 (10)

considering the boundary conditions:

p(0) = pi, v(0) = 0, a(0) = 0
p(th)= ph, v(th)= vh, a(th)= 0 (11)

where th is the time for the entire trajectory which is predetermined by taking
account of the robot’s torque limits. As may be seen from these conditions,
the paddle motion begins at rest and ends with zero acceleration. The co-
efficients c1, c2, and c3 are obtained by applying these boundary conditions.
After completing the paddle motion to hit a ball, the paddle has to return to
the waiting position as soon as possible. We use the same trajectory as Eq.
(10) reversing the boundary conditions of Eq. (11).

5 Generation of Paddle Movement

Once a trajectory of the paddle has been planned, it must be executed as
accurately as possible. The iterative learning control [11] based on the itera-
tive operations of a robot is an effective method to accurately track a desired
motion pattern without modeling the dynamics of the controlled object. Un-
fortunately, this control method is not directly applicable to the table tennis
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task because the desired motion patterns of the paddle vary depending on the
motion of the incoming ball. In this section, we propose a method of synthe-
sizing new control inputs without the use of iterative operations in learning
control given several other inputs that have been correctly learned already.

5.1 Synthesizing a New Trajectory

Let us assume that the following three desired motion (velocity) trajectories
of the paddle are given:

va(t)(0 ≤ t ≤ Ta), vb(t)(0 ≤ t ≤ Tb), vc(t)(0 ≤ t ≤ Tc) (12)

where each trajectory is represented as a fourth-order polynomial given by
Eq. (10) and its coefficients are expressed by ca = [ca1, ca2, ca3]T , cb =
[cb1, cb2, cb3]T and cc = [cc1, cc2, cc3]T respectively. Then, an arbitrary tra-
jectory vd(t)(0 ≤ t ≤ Td) expressed by the same fourth-order polynomial as
Eq. (10) with coefficients cd = [cd1, cd2, cd3]T can be represented as a linear
combination of the trajectories va(t), vb(t), and vc(t), that is,

vd(t) = kava(t) + kbvb(t) + kcvc(t) (0 ≤ t ≤ Td) (13)

where Td ≤ min(Ta, Tb, Tc) and the coefficients [ka, kb, kc]T are determined by
solving 

 ca1 cb1 cc1

ca2 cb2 cc2

ca3 cb3 cc3




ka

kb

kc


 =


 cd1

cd2

cd3


 (14)

The 3×3 matrix on the left side of Eq. (14) has to be nonsingular. It should be
noted that the relation of Eq. (13) holds even if each duration of the motion
trajectory is different from the rest. Concerning the number of trajectories
provided to synthesize a new trajectory, it depends on the degree of the poly-
nomial function and its boundary conditions and is equal to the number of
coefficients representing the polynomial.

5.2 Synthesizing New Input Commands

In the following, we assume that the controlled object can be represented as
a linear system with an input u and an output v to simplify the explanation.
If a new desired trajectory vd(t) is given by Eq. (13), the approximate ideal
input ud(t) for the desired trajectory vd(t) can be obtained by

ud = kaua + kbub + kcuc (15)

where the coefficients [ka, kb, kc]T are the same as those in Eq. (13). Although
Kawamura et al. also proposed an interpolation method based on a linear rela-
tion of the controlled object, they did not mention the details of interpolation
[12].
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Fig. 8. Patterns A, B and C (ui: Learned input. vdi: Desired trajectory.)

5.3 Experimental Verification

To demonstrate the effectiveness of the proposed method, we now present
experimental results. In the following, we focus on the motion of the actuator
on the X axis. Fig. 8 shows the approximate ideal inputs for the three desired
trajectories learned by using ILC. In this figure, we omit the actual trajectory
of each motion pattern because it coincides almost perfectly with the desired
one.

Figure 9 shows an experimental result obtained by applying the proposed
method. A new trajectory is accurately achieved by the input ud(t) synthesized
by combining the learned inputs for the three trajectories given in Fig. 8. We
can also see that the synthesized input ud(t) coincides almost perfectly with
the input uILC(t) obtained by using ILC.

Next we explain how to achieve an accurate stroke movement and demon-
strate an experimental result. This is an application of the proposed method
to the table tennis task. As mentioned in Section 3, one stroke motion of the
paddle consists of two parts. One is the “hitting motion” that starts from a
home position (at t = 0) and ends at a predicted hit point ph with a desired ve-
locity vh and attitude of the paddle (at t = th). Another is “returning motion”
that starts from the final state of the “hitting motion” (at t = th) and ends at
the home position (at t = tf ). Fig. 10 illustrates an experimental result of the
stroke motion achieved by using the proposed method. In this stroke motion,
the desired velocity at the hit point ph = 500[mm] is set vh = 200[mm/s].
Hitting motion ends at th = 0.4[s] and returning motion ends at tf = 0.8[s].
From this figure, we can see that a given stroke movement of the paddle is
accurately achieved by the input determined using the proposed method.
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6 Experimental Results

In this section, we demonstrate the effectiveness of our approach by present-
ing experimental results achieved by the table tennis robot. Short movies of
the robot’s learning, returning the ball, and rallying with a human can be
found at http://robotics.me.es.osaka-u.ac.jp/MiyazakiLab/Research/pingpong/
2003/movie-e.html.
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6.1 Experimental results of the “ball controlling task”

Ball Prediction with the Map 1

We evaluated the prediction accuracy of our method through the following
experiments carried out under the following three spin conditions:

(a) knuckle balls (without fast spin) pitched by a pitching machine
(b) three kinds of ball spins (top spin, back spin and knuckle) pitched by a

pitching machine
(c) slow spin ball hit by a human

The ball states were extracted offline from 300 data of trajectories mea-
sured in advance. Two hundred ball states were used to construct the database
and others were used to evaluate the prediction accuracy. The results of eval-
uation are shown below.

There are two major sources of prediction error. One is the propagation
of measurement noises. Another is a shortage of the data that constitute the
learned maps. The former is an inevitable source which remains even if the
learned maps are perfect.

The standard deviation of the ball position data acquired by the vision
system is 5.0 [mm]. In the process of state estimation using the least square
algorithm, the standard deviation is reduced (2.5 [mm] in position and 95
[mm/s] in velocity). We can estimate the prediction error using the error
analysis, provided that the learned maps are perfect. For example, if we as-
sume that the ball flies in 0.4 [s] from the virtual plane at x = −1000[mm]
to the hitting position (Fig. 7), the prediction error of the ball’s state at the
impact in X direction is about 40 [mm] (standard deviation) in position and
95 [mm/s] in velocity.

Prediction of the Ball Trajectory Pitched by the Machine

The ball trajectories were given by the pitching machine, which is set to pitch
knuckle balls with various angles, positions and velocities. In the process of
prediction with Map 1, we chose the weight matrix of the distance function to
be a unit matrix I, and the band width h is to be 0.8 in the LWR (see Appen-
dix). Table 1 presents the averages and standard deviations of the prediction
errors in time, position, and ball velocities at the impact.

The error in the hitting time is a few milliseconds, and the position er-
rors are within a few centimeters. This means that if the paddle reaches the
predicted position at the predicted time, it can hit the ball around the center
of the paddle. The errors in the ball positions and velocities are close to the
result of the error analysis mentioned above, which is enough to determine
the paddle conditions at the impact.
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Table 1. Prediction error (knuckle)

Average Standard deviation

dt [s] 0.003641 0.003364

dx [mm] 29.7799 20.4901

dy [mm] 18.0082 14.8297

vx [mm/s] 64.6510 51.9007

vy [mm/s] 46.6689 70.5712

vz [mm/s] 42.5393 55.5754

Prediction of the Ball Trajectory with Different Spins

We evaluated the prediction accuracy of the ball motion with different spins.
The map acquired in the learning phase consists of three data groups, each
of which has one hundred data elements and is characterized by the ball spin
such as knuckle (no spin), top spin, and back spin. The pitching machine with
various positions and various angles pitched the balls at various velocities and
spins. The prediction error was evaluated using the data not included in the
map.

Tables 2 and 3 depict the results for balls with top spin and back spin.
Though the prediction errors are larger than those for the knuckle ball only
(as compared with Table 1), they are acceptable for hitting a ball. The results
also indicate the ability to recognize the spin of the ball. In other words, the
system can properly predict a ball’s different spins.

Table 2. Prediction error (top spin)

Average Standard deviation

dt [s] 0.004534 0.009044

dx [mm] 16.9239 26.5432

dy [mm] 8.8132 14.0514

vx [mm/s] 117.0519 229.9383

vy [mm/s] 33.0024 55.7955

vz [mm/s] 41.2663 65.5895

Table 3. Prediction error (back spin)

Average Standard deviation

dt [s] 0.006952 0.010768

dx [mm] 18.9122 25.9342

dy [mm] 10.7785 16.0699

vx [mm/s] 66.1913 102.2234

vy [mm/s] 33.1297 44.9824

vz [mm/s] 67.0640 91.1075

Prediction of the Ball Trajectory hit by a chuman

We evaluated the prediction accuracy of the ball motion hit by a human. The
pitching machine set behind the robot’s court pitched the ball to the human.
The human returned the ball to the robot’s court and the ball trajectory was
measured. In this experiment we requested the human to hit the ball normally.

Figures 11 and 12 depict the predicted hitting time and position with
prediction errors. The prediction accuracy was almost the same as in the
knuckle case.
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Map for the Decision of the Hitting Motion

We experimentally acquired Map 2 and Map 3 with which the robot decides
the hitting motion.

In the learning phase, the robot hit the balls pitched by a pitching ma-
chine with a constant angle, velocity, and spin using a paddle driven by the
commanded velocities and angles in the range of

800 ≤ Vh ≤ 2000[mm/s] (16)
−50 ≤ θ3 ≤ 50[deg] (17)
−20 ≤ θ4 ≤ 20[deg] (18)

Fig. 13 illustrates a map representing the relation between V bh12 and Vh

acquired by learning 120 trajectories of the returned ball, as an example of the
acquired maps. Three surfaces corresponds to the cases of vbh12z = 0,−500
and 500 [mm/s] respectively. Using this map, the robot can determine the
paddle velocity that gives the required ball velocity.

Next we evaluated the capability of controlling the flight duration of the
returned ball with the acquired maps. These maps were well learned in 140
trials. We used these well-learned maps in the following experiments. We fixed
the desired landing point as x = −1100[mm], y = 300[mm]. We also set the
desired duration of flight as 0.5 [s] and 0.7 [s] alternatively. In this lookup
phase, the robot continues to acquire the data of the ball and paddle move-
ments for Map 2 and Map 3 to improve the hitting motion, that is, the robot
continues learning in parallel. Figs. 14 and 15 show experimental results of the
duration of flight and errors of landing point for the last 40 trials performed
by a robot.

The influence of measurement noises on the landing point can be estimated
similarly to the prediction error. Assuming that the ball bounds on the oppo-
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nent’s table in 0.8 [s] after passing through the virtual plane, we can estimate
the returning position error to be about 80 [mm] (standard deviation) through
the error analysis. The returning position errors shown in Fig. 15 are close to
this value, which supports the effectiveness of Map 2 and Map 3.

We also measured the accuracy of the landing point by making a compar-
ison between the robot and a human player with ten years experience playing
table tennis. Fig. 16 is the errors in the landing point for the last 40 trials
performed by the human. We can see that the robot achieves almost the same
accuracy as the human. Both the human and a robot tend to return balls over
the destination.

Figs. 17 and 18 present the ball and paddle trajectories over the 179th and
180th trial. We can see that the robot achieves different returning trajectories
with the same landing position by controlling the duration of flight.
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6.2 Experimental Results of the Rally Task with a Human

Rally Task Experiment

We demonstrate the robot rally with a human as an application of our ap-
proach (Fig. 19). The “rally task” means the table tennis rally that people
generally play. We consider it as the repetition of “ball controlling task” de-
scribed in the previous subsection.

Experimental Results

We demonstrate that the robot can perform the rally task with a human using
the proposed method described previously. In the experiment, a human hit a
ball toward the robot at random and the robot returned the ball with a fixed
duration of flight (dthr=0.55 [s]) to a desired landing point (prx = 1550 [mm],
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Fig. 16. Errors in the landing point by a human

pry=0.3 × ∗pbhy) for the opponent’s easy hitting, where ∗pbhy is a predicted
impact point.

Figures 20 to 22 present some part of the data acquired in the rally. Figure
20 shows the time history of the ball motion in X direction. Figures 21 and
22 show the ball and paddle trajectories on plane where the waiting position
of the paddle is x=900 [mm], y=0 [mm]. It should be noted that the rally
task comprises three subtasks (Task A∼C) described in section 3.2. We can
see that the robot returns the ball to the point the opponent can hit easily by
changing the impact point back and forward, right and left.
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7 Conclusion

We have described an approach for a robot to play the table tennis task on
the premise that no explicit models concerning the task are employed and
determining the impact time of the ball hit by the paddle and the paddle po-
sition/attitude and velocity at that moment is most important for performing
the table tennis task. Our approach to making the decision is to use empiri-
cally acquired input-output maps which are implemented by means of LWR.
These maps represent three physical phenomena, the aerodynamics of a ball,
physics of a ball’s bounce off of a table, and physics of a ball’s bounce off of a
paddle. We have also proposed a feed-forward control scheme based on ILC to
accurately achieve the stroke movement of the paddle as determined by using
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Fig. 19. Experimental environment of the “rally task”
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these maps. Experimental results including rallies with a human opponent
also have been reported.

Appendix: Locally Weighted Regression(LWR)[8]

Let us consider approximating the n training values {y1, y2, ..., yi, ..., yn} taken
under different n conditions {x1, x2, ..., xi, ..., xn} to the linear model

y = β0 + β1x1 + ... + βjxj + ... + βmxm = xT β (19)

where xj(j = 1, ...,m) is the jth components of the input vector x.
In Locally Weighted Regression (LWR), the linear local model can be

specialized to the query by emphasizing nearby points. Weighting the criterion
is done in the following way

C(q) =
n∑

i=1

[(xT
i β − yi)2K(d(xi, q))] (20)

where K() is the weighting or kernel function and d(xi, q) is a distance be-
tween the stored data point xi and the query point q.

We can predict ŷ
ŷ(q) = qT β̂ (21)

using the estimated β̂ to minimize the criterion (20).
There are many different approaches to defining a distance function. We

use the following model in which the distance function between the query
point q and ith data xi and the weighting function K(di) are
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di =

√√√√ p∑
j=1

m2
j (xij − qj)2 (22)

K(di) = w2
i = exp(−d2

i

h2
) (23)

where the mj is the feature scaling factor for the jth dimension and a smooth-
ing or bandwidth parameter h defines the scale or range over which general-
ization is performed.

Then, introducing a matrix X whose ith row is xi and a vector y whose
ith element is yi, the estimated β̂ is given by

β̂ = (ZT Z)−1ZT v (24)

where Z = WX, v = Wy, and W is a n× n matrix with diagonal elements
wi.
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