
Bio-Inspired
Artificial Intelligence
THEORIES, METHODS, AND
TECHNOLOGIES

Dario Floreano
and Claudio Mattiussi

Bio-Inspired
A
rtificial Intelligence

COMpuTER SCIENCE/ARTIFICIAL INTELLIGENCE

Bio-Inspired
Artificial Intelligence
THEORIES, METHODS, AND
TECHNOLOGIES

Dario Floreano
and Claudio Mattiussi

New approaches to artiÞcial intelligence spring from the idea
that intelligence emerges as much from cells, bodies, and so-
cieties as it does from evolution, development, and learning.
Traditionally, artiÞcial intelligence has been concerned with
reproducing the abilities of human brains; newer approaches
take inspiration from a wider range of biological structures
that are capable of autonomous self-organization. Examples
of these new approaches include evolutionary computation
and evolutionary electronics, artiÞcial neural networks, immune
systems, biorobotics, and swarm intelligenceÑto mention
only a few. This book offers a comprehensive introduction to
the emerging Þeld of biologically inspired artiÞcial intelligence
that can be used as an upper-level text or as a reference for
researchers.
 Each chapter presents computational approaches inspired
by a different biological system; each begins with background
information about the biological system and then proceeds to
develop computational models that make use of biological
concepts. The chapters cover evolutionary computation and
electronics; cellular systems; neural systems, including neuro-
morphic engineering; developmental systems; immune sys-
tems; behavioral systemsÑincluding several approaches to
robotics, such as behavior-based, biomimetic, epigenetic,
and evolutionary robots; and collective systems, including
swarm robotics as well as cooperative and competitive co-
evolving systems. Chapters end with a concluding overview
and suggested reading.

Dario Floreano is Director of the Laboratory of Intelligent
Systems at the Swiss Federal Institute of Technology in
Lausanne (EPFL). He is the coauthor of Evolutionary Robotics:
The Biology, Intelligence, and Technology of Self-Organizing
Machines (MIT Press, 2000). Claudio Mattiussi is a researcher
at the Laboratory of Intelligent Systems at EPFL.

INTELLIGENT ROBOTICS AND AuTONOMOuS AGENTS SERIES

ÒBio-Inspired ArtiÞcial Intelligence brings together all the things
IÕve been interested in for the last twenty-Þve years, and sur-
prises me by providing a coherent intellectual framework for
them all. This book is a treasure trove of history from Darwin to
Gibson and Walter, an unambiguous tutorial on how to build a
plethora of computational models, and a healthy exploration of
the philosophies that have driven wide-ranging research
agendas.Ó
Rodney Brooks, Panasonic Professor of Robotics,
Department of Electrical Engineering and Computer Science, MIT

ÒCompetent, lucid, well-written, Bio-Inspired ArtiÞcial Intelli-
gence contains precisely the material you want from a com-
prehensive textbook, with many highly informative examples
from biology, engineering, and computing. This book has the
potential to become the new standard in the artiÞcial intelli-
gence Þeld.Ó
Rolf Pfeifer, Director, ArtiÞcial Intelligence Laboratory,
University of Zurich

Floreano and
M
attiussi

THE MIT pRESS MASSACHuSETTS INSTITuTE OF TECHNOLOGY CAMBRIDGE, MASSACHuSETTS 02142 HTTp://MITpRESS.MIT.EDu

978-0-262-06271-8

M
d. D

alim
 #974743 7/16/08 O

range G
ray D

k.B
lue

Ramon
Text Box
[FM:2008]

Bio-Inspired Artificial Intelligence

Intelligent Robotics and Autonomous Agents
Edited by Ronald C. Arkin

Dorigo, Marco, and Marco Colombetti, Robot Shaping: An Experiment in Be-
havior Engineering

Arkin, Ronald C., Behavior-Based Robotics

Stone, Peter, Layered Learning in Multiagent Systems: A Winning Approach
to Robotic Soccer

Wooldridge, Michael, Reasoning about Rational Agents

Murphy, Robin R., An Introduction to AI Robotics

Mason, Matthew T., Mechanics of Robotic Manipulation

Kraus, Sarit, Strategic Negotiation in Multiagent Environments

Nolfi, Stefano, and Dario Floreano, Evolutionary Robotics: The Biology, Intelli-
gence, and Technology of Self-Organizing Machines

Siegwart, Roland, and Illah R. Nourbakhsh, Introduction to Autonomous Mo-
bile Robots

Breazeal, Cynthia L., Designing Sociable Robots

Bekey, George A., Autonomous Robots: From Biological Inspiration to Implemen-
tation and Control

Choset, Howie, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram
Burgard, Lydia E. Kavraki, and Sebastian Thrun, Principles of Robot Motion:
Theory, Algorithms, and Implementations

Thrun, Sebastian, Wolfram Burgard, and Dieter Fox, Probabilistic Robotics

Mataric, Maja J., The Robotics Primer

Wellman, Michael P., Amy Greenwald, and Peter Stone, Autonomous Bidding
Agents: Strategies and Lessons from the Trading Agent Competition

Floreano, Dario, and Claudio Mattiussi, Bio-Inspired Artificial Intelligence: The-
ories, Methods, and Technologies

Bio-Inspired Artificial Intelligence
Theories, Methods, and Technologies

Dario Floreano
Claudio Mattiussi

The MIT Press
Cambridge, Massachusetts

London, England

© 2008 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form
by any electronic or mechanical means (including photocopying, recording,
or information storage and retrieval) without permission in writing from the
publisher.

MIT Press books may be purchased at special quantity discounts for busi-
ness or sales promotional use. For information, please email special_sales@
mitpress.mit.edu or write to Special Sales Department, The MIT Press, 55
Hayward Street, Cambridge, MA 02142.

This book was set by the authors using LYX and LATEX.
Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Floreano, Dario.
Bio-inspired artificial intelligence : theories, methods, and technologies /
Dario Floreano and Claudio Mattiussi.

p. cm. – (Intelligent robotics and autonomous agents series)
Includes bibliographical references and index.
ISBN 978-0-262-06271-8 (hardcover : alk. paper)
1. Artificial intelligence–Data processing. 2. Biologically-inspired com-
puting. 3. Self-organizing systems. 4. Autonomous robots. I. Mattiussi,
Claudio. II. Title.

Q336.F66 2008
006.3–dc22

2008008739

10 9 8 7 6 5 4 3 2 1

Ramon
Highlight

In memory of Annamaria Collovini Floreano – D. F.

To Betty – C. M.

Contents

Preface xi

Acknowledgments xiii

1 Evolutionary Systems 1

1.1 Pillars of Evolutionary Theory 2
1.2 The Genotype 5
1.3 Artificial Evolution 13
1.4 Genetic Representations 16
1.5 Initial Population 21
1.6 Fitness Functions 22
1.7 Selection and Reproduction 23
1.8 Genetic Operators 26
1.9 Evolutionary Measures 29
1.10 Types of Evolutionary Algorithms 33
1.11 Schema Theory 37
1.12 Human-Competitive Evolution 39
1.13 Evolutionary Electronics 42
1.14 Lessons from Evolutionary Electronics 43
1.15 The Role of Abstraction 45
1.16 Analog and Digital Circuits 49
1.17 Extrinsic and Intrinsic Evolution 53
1.18 Digital Design 58
1.19 Evolutionary Digital Design 62
1.20 Analog Design 77
1.21 Evolutionary Analog Design 79
1.22 Multiple Objectives and Constraints 85

viii Contents

1.23 Design Verification 90
1.24 Closing Remarks 92
1.25 Suggested Readings 97

2 Cellular Systems 101

2.1 The Basic Ingredients 101
2.2 Cellular Automata 107
2.3 Modeling with Cellular Systems 110
2.4 Some Classic Cellular Automata 118
2.5 Other Cellular Systems 124
2.6 Computation 134
2.7 Artificial Life 138
2.8 Complex Systems 145
2.9 Analysis and Synthesis of Cellular Systems 153
2.10 Closing Remarks 159
2.11 Suggested Readings 160

3 Neural Systems 163

3.1 Biological Nervous Systems 167
3.2 Artificial Neural Networks 175
3.3 Neuron Models 177
3.4 Architecture 189
3.5 Signal Encoding 191
3.6 Synaptic Plasticity 196
3.7 Unsupervised Learning 198
3.8 Supervised Learning 219
3.9 Reinforcement Learning 235
3.10 Evolution of Neural Networks 238
3.11 Neural Hardware 250
3.12 Hybrid Neural Systems 256
3.13 Closing Remarks 261
3.14 Suggested Readings 265

4 Developmental Systems 269

4.1 Potential Advantages of a Developmental Representation 270
4.2 Rewriting Systems 272
4.3 Synthesis of Developmental Systems 296
4.4 Evolution and Development 298
4.5 Defining Artificial Evolutionary Developmental Systems 299

Contents ix

4.6 Evolutionary Rewriting Systems 301
4.7 Evolutionary Developmental Programs 310
4.8 Evolutionary Developmental Processes 315
4.9 Closing Remarks 332
4.10 Suggested Readings 334

5 Immune Systems 335

5.1 How Biological Immune Systems Work 337
5.2 The Constituents of Biological Immune Systems 353
5.3 Lessons for Artificial Immune Systems 366
5.4 Algorithms and Applications 373
5.5 Shape Space 375
5.6 Negative Selection Algorithm 384
5.7 Clonal Selection Algorithm 388
5.8 Examples 390
5.9 Closing Remarks 395
5.10 Suggested Readings 396

6 Behavioral Systems 399

6.1 Behavior in Cognitive Science 400
6.2 Behavior in Artificial Intelligence 403
6.3 Behavior-Based Robotics 407
6.4 Biological Inspiration for Robots 419
6.5 Robots as Biological Models 437
6.6 Robot Learning 449
6.7 Evolution of Behavioral Systems 460
6.8 Evolution and Learning in Behavioral Systems 482
6.9 Evolution and Neural Development in Behavioral Systems 494
6.10 Coevolution of Body and Control 499
6.11 Toward Self-Reproduction 504
6.12 Simulation and Reality 507
6.13 Closing Remarks 511
6.14 Suggested Readings 513

7 Collective Systems 515

7.1 Biological Self-Organization 516
7.2 Particle Swarm Optimization 524
7.3 Ant Colony Optimization 527
7.4 Swarm Robotics 531

x Contents

7.5 Coevolutionary Dynamics: Biological Models 547
7.6 Artificial Evolution of Competing Systems 554
7.7 Artificial Evolution of Cooperation 572
7.8 Closing Remarks 581
7.9 Suggested Readings 583

Conclusion 585

References 587

Index 651

Preface

This book is an introduction to the bio-inspired artificial intelligence that is
emerging in the twenty-first century. For almost fifty years, mainstream ar-
tificial intelligence focused on creating computers and algorithms that dis-
played human cognitive abilities. Over time, it gradually departed from its
original source of inspiration – biological intelligence – and became increas-
ingly concerned with efficient signal processing, optimal control, and data
mining.

Mainstream artificial intelligence has been very successful at designing al-
gorithms and devices that solve problems that most humans are not very
good at, such as playing chess, controlling aircraft dynamics, or finding the
three-dimensional structure of proteins. But, in doing so, it ended up neglect-
ing fundamental aspects of biological intelligence, such as physical embod-
iment, behavioral autonomy, self-healing, social interaction, evolution and
learning, that make biological organisms prone to errors and sometimes dif-
ficult to predict, but also so successful to survive in unknown and changing
environments.

The mid-1980s witnessed a renaissance of diverse approaches to the un-
derstanding and engineering of intelligent systems. A range of newly born
fields, such as embodied cognitive science, neuromorphic engineering, arti-
ficial life, behavior-based robotics, evolutionary robotics, and swarm intelli-
gence, to mention only a few, questioned the validity of the assumptions and
methods of mainstream artificial intelligence for creating artifacts that could
approximate the operational characteristics and performance of biological
intelligence.

The new artificial intelligence, as it is sometimes called, that emerged at the
turn of the millennium expanded its focus of attention from human brains
and cognitive reasoning to a wider range of organisms, processes, and phe-

xii Preface

nomena that occur at multiple spatial and temporal scales. This change
reflected not only a philosophical revolution where humans are no longer
at the center of the biological universe, but also a technological revolution
where desktop computers are dissolving into a swarm of virtual and physical
artifacts (Internet agents, virtual personae, personal digital assistants, com-
munication devices, mobile robots, intelligent prostheses, etc.) in need of
real-time and embedded intelligence, autonomous behavior, self-adaptation,
and social awareness to interact, merge, and substitute with us.

This book aims at providing a systematic introduction to the theories and
methods of bio-inspired artificial intelligence, and at providing a toolbox of
design principles for engineers. Theories and methods are accompanied by
sample software and hardware technologies to illustrate the application bio-
inspired artificial intelligence. The material is organized into seven chapters
that gradually guide the reader through biological and artificial systems that
operate at different temporal and spatial scales. On the temporal scale, it
progresses from systems that change at evolutionary pace to systems that
develop and learn during their lifetime, all the way to systems that interact
in real time with the environment and with other individuals. On the spa-
tial scale, it progresses from cells and neurons to multicellular organisms,
all the way to societies of individuals. Most systems are introduced by a
presentation of biological theories and observations followed by a descrip-
tion of engineering methods and technologies. Each chapter concludes with
pointers to new avenues and suggestions for further readings.

Approaches that combine methods and technologies operating at multiple
temporal and spatial scales are introduced only at a stage when their con-
stituent elements have already been introduced. For example, evolutionary
robotics is described in the chapter on behavioral systems, and not in the ear-
lier chapter on evolutionary systems, because its full appreciation requires
also an understanding of neural systems, of developmental systems, and of
behavioral systems. The keywords on the text side are designed to allow a
rapid browsing through the book. Whether you are a student, an advanced
researcher, or simply curious about the future of artificial intelligence, we
hope that you will find this book instructive and useful.

Acknowledgments

This idea of writing this book developed from a master’s course taught at
EPFL by the authors for almost ten years. The course quickly became so
successful that we had to restrict access in order to maintain a high standard
of teaching. Our main problem however was the lack of a suitable textbook
that would accompany lectures and exercises.

Although there are many books that describe specific aspects of the field,
such as neural networks, evolutionary algorithms, behavior-based robotics,
or cellular automata, there was no book that spanned the entire field, cover-
ing both theories, algorithms, and hardware technologies. We felt the need
for a book that would not only provide a systematic organization of this ma-
terial for students, but also serve as a basis for the intellectual consolidation
of the emerging field of bio-inspired artificial intelligence for advanced sci-
entists and engineers.

Bob Prior at MIT Press liked the book proposal from the very beginning
and, after a quick round of peer reviews, offered us a contract. We were
much slower than expected in delivering the manuscript. It took us almost
four years to digest the literature cited in this book, extract salient aspects,
and organize it in a coherent story that would make sense (in our opinion)
for both students and advanced scholars. Bob continuously encouraged us
to persist, and accepted to extend and modify the contract a few times as the
book was slowly taking shape. When the manuscript was finally ready, Ada
Brunstein took over the project as Bob moved to another division within MIT
Press. Ada and her team maintained the same level of energy, friendly en-
couragement, and effective project management during the final production
stages.

Many people helped with various aspects of this book. Daniel Marbach
designed the icons on the cover illustration and drew several figures that

xiv Acknowledgments

appear in the text. Mototaka Suzuki collected and organized on a website
many software tools that may be used to experiment with the approaches
described in the book. Along with them, Silvano Chialina, Elisabetta Dosso,
Peter Dürr, Sabine Hauert, Julien Hubert, Sara Mitri, and Markus Waibel
proofread and commented earlier drafts of some chapters. The feedback of
the hundreds of students who took the master’s course over the years was
extremely valuable to improve the organization of the material and the se-
lection of examples used to illustrate theories and methods.

Many colleagues kindly provided us with originals of the illustrations
from their own work, often reworking the digital format to comply with
the publisher’s guidelines. Their names are individually acknowledged in
the figure legends. Similarly, several publishers allowed us to reproduce
copyrighted material for free or for a symbolic fee. The copyright holders
are acknowledged in the figure legends too.

EPFL provided a unique environment to carry out this project, giving us
both state-of-the-art infrastructure and freedom to pursue challenging and
innovative projects. The strengthening of life science and the encourage-
ment of interdisciplinary research between engineers and biologists actively
pursued by EPFL created a stimulating and dynamic atmosphere that was
ideal for the writing of this book. Along with EPFL, the Swiss National Sci-
ence Foundation and the Information Society and Technology division of the
European Commission sponsored several research projects that allowed us
to explore and actively contribute to the development of bio-inspired artifi-
cial intelligence. We especially appreciate the future-oriented and risk-taking
perspectives of these sponsoring organizations that are so important for pur-
suing creative and innovative research.

We are also indebted to our biologist colleagues who shared with us their
knowledge and insights in various collaborative projects. In particular, we
would like to mention Laurent Keller, who guided us with great clarity
through the evolutionary theories of cooperation and competition; Jean-Luis
Deneubourg and Jose Halloy, who introduced us to the fascinating world
of self-organizing behavior in social animals; and Mandyam Srinivasan and
Nicolas Franceschini, who showed us the elegant mechanisms and behav-
ioral strategies that insects use for vision-based flight.

It is not exaggerated to say that this book would have never been com-
pleted without the support of our partners. Krisztina and Betty made sure
that we never gave up with the project when tempted to do so and patiently
contemplated the prospect of its completion as we spent numerous evenings,
weekends, and holidays reading and writing.

1 Evolutionary Systems

All biological systems result from an evolutionary process. The sophistica-
tion, robustness, and adaptability of biological systems represent a powerful
motivation for replicating the mechanisms of natural evolution in the at-
tempt to generate software and hardware systems with characteristics com-
parable to those of biological systems. More than 40 years ago, computer
scientists and engineers began developing algorithms inspired by natural
evolution (Rechenberg 1965; Fogel et al. 1966; Holland 1975) to generate solu-
tions to problems that were too difficult to tackle with other analytical meth-
ods. Evolutionary computation rapidly became a major field of machine
learning and system optimization and, more recently, it spread into the area
of hardware design by exploiting new technologies in reconfigurable elec-
tronic circuits, computer-assisted manufacturing, material production tech-
nologies, and robotics.

Before delving into the features of natural and artificial evolution, we wish
to emphasize that there is a major, and often neglected, difference between
these two processes. Whereas natural evolution does not have a predefined
goal and is essentially an open-ended adaptation process, artificial evolu-
tion is an optimization process that attempts to find solutions to predefined
problems. Therefore, while in natural evolution the fitness of an individual
is defined by its reproductive success (number of offspring), in artificial evo-
lution the fitness of an individual is a function that measures how well that
individual solves a predefined problem.

The consequence of this difference is that artificial evolution, as it is for-
mulated today, cannot possibly hope to match the diversity and creativity
generated by natural evolution because, by definition, artificially evolved
systems will all tend to satisfy the predefined problem.

2 1 Evolutionary Systems

Even in the context of problem solving, artificial evolution is sometimes
criticized by engineers because it contains elements of randomness and lacks
formal proofs of convergence proper of other, model-based, optimization
techniques. Indeed, artificial evolution is better employed in situations where
conventional optimization techniques cannot find a satisfactory solution, for
example when the function to be optimized is discontinuous, nondifferentia-
ble, and/or presents too many nonlinearly related parameters.

In this chapter we will start by reviewing key features of natural evolu-
tion and molecular genetics, which represent a source of inspiration for the
models of artificial evolution described in this and later chapters. We will
then proceed to explain the basic steps of an artificial evolutionary system,
describe the most common algorithms and genetic representations, and give
examples of human-competitive results. The second part of the chapter is
devoted to the detailed analysis of a particular application of artificial evo-
lution, namely, evolutionary electronics. We will use this subject as a way to
illustrate some issues arising in the application of the evolutionary approach
to real-world design problems. In the closing remarks we will point out some
ideas to achieve open-ended evolution. The combination of evolution with
other bioinspired techniques will be described in later chapters.

1.1 Pillars of Evolutionary Theory

Biology is making continuous progress in the description of the components
that make up living organisms and of the ways in which those components
work together. However, the ultimate explanation is to be found in the the-
ory of natural evolution. As Dobzhansky (1973) put it, “nothing in biology
makes sense except in the light of evolution.” A bewildering number of
books and articles have been written on the theory of natural evolution, but
its foundations are rather simple and elegant.

The theory of natural evolution rests on four pillars: population, diver-
sity, heredity, and selection. The premise for evolution is the existence of a
population, which here we will loosely define as a pool of two or more indi-POPULATION

viduals. In other words, we cannot speak of evolution of a single organism.
Diversity means that the individuals of the population vary from one anotherDIVERSITY

to some extent. Individual diversity, both within and between species, has
been observed and described for thousands of years. Heredity indicates thatHEREDITY

individual characters can be transmitted to offspring through reproduction.
The notion that individual characters are hereditary was suggested in the

1.1 Pillars of Evolutionary Theory 3

eighteenth century by Maupertuis (1753). Selection indicates that only partSELECTION

of the population is capable of reproducing and transmitting its characters
to future generations. Natural selection, put forward by Darwin (1859) and
Wallace (1870) in the nineteenth century, is based on the premise that individ-
uals tend to make several offspring and that not all of them may reproduce.
The selection of individuals that can reproduce is not completely random,
but regulated by environmental constraints. For example, if an environment
contains too many individuals for the available food , those individuals that
are better or faster at gathering food will have a higher chance of survival
and reproduction.

Natural selection is the most debated, often misunderstood, and abused
pillar of natural evolution. In the engineering community, it is commonly de-
scribed as selection of the fittest; “fittest” is often associated with “best”; and
selective reproduction of the best is often associated with progress. However,
organisms are not always selected for how well they score individually. For
example, some animal societies maintain a number of altruistic individuals
that pay a cost in terms of reproduction for the good of their society. Further-
more, selective reproduction of the fittest does not necessarily imply progress
in the two common meanings of the word. One meaning of progress is thatPROGRESS

new individuals are better than previous ones. However, natural selection
has no comparative memory. The only way in which selection operates is
here and now. Individuals are selected against the environment and/or their
peers at a specific point in space and time. For example, prey at a given point
in evolutionary time may be very good at escaping the current generation of
coevolving predators they are confronted with, but may not be better than
prey of previous generations when predators were different. In general, any
change in the environment over time creates different selection conditions
and therefore does not guarantee that recent generations are comparatively
better than older generations selected in different environmental conditions.
The other meaning of progress is that individuals tend to become better in
the future. This notion of progress implies a final goal or optimal state of
matter. However, natural evolution has no goal, no plan, and no end. In
the best case, the combination of variety, heredity, and selection can increase
today the rate of individuals whose parents had more suitable characteristics
yesterday.

Where does population diversity come from? From an evolutionary per-
spective, generation of diversity takes place during reproduction. Offspring
are copies of selected parents with small variations. This error-prone copy
process can generate individuals with new or modified characteristics. Some

4 1 Evolutionary Systems

of these characteristics will have an effect on the ability of the organism to
survive and reproduce. Those new or modified features that give the organ-
ism a better ability to cope with the environment with respect to its peers
and therefore to reproduce, have a higher probability of being transmitted
to future generations. However, also those new or modified features that do
not negatively affect the reproduction rate of the organism can be transmit-
ted to future generations (although not at a higher rate). In this latter case,
we speak of neutral evolution to indicate that the population is changing overNEUTRAL EVOLUTION

generations in ways that do not affect its reproduction rate (Huynen et al.
1996).

The generation of diversity provides adaptation power to evolving pop-
ulations. Without continuous generation of diversity and given a constant
environment, evolution would simply result in the growth of the number of
individuals with suitable characteristics for that environment. The appear-
ance of new characteristics allows individuals to sample new functionalities,
behaviors, morphologies, and environmental niches. Although error-prone
copy is a random process, natural selection makes sure that characteristics
that affect the organism negatively have less probability of being transmitted
to the next generations. Other new characteristics instead propagate through
generations and, if beneficial to the survival of the species, spread at a higher
rate through the population.

Again, evolutionary adaptation does not necessarily imply progress in the
two meanings of the word described earlier. Natural evolution may simply
increase diversity by continuously generating new organisms that occupy
new environmental niches. Or, it may increase complexity by incrementally
adding new features to previous ones, provided that previous features do
not represent a cost for the organism, do not interact negatively with new
features, or simply have a higher probability to be preserved than to be re-
placed by the error-prone copy mechanism.

Considering the enormous explanatory power and relative simplicity of
the basic tenets of evolutionary theory, we might expect to find in the litera-
ture a compact and universal model that formally describes the evolution of
populations, something akin to the laws of thermodynamics or to Newton’s
laws of physics. In practice, the complexity of the factors that affect the mech-
anisms and dynamics of evolution has not yet been sufficiently understood
to allow the development of a universal formalism. Nonetheless, several for-
mal models have been developed to address specific issues, mainly in the
field of population genetics. It is worth pointing out that the great majority
of these formal models describe evolutionary phenomena in terms of their ef-

1.2 The Genotype 5

fect on the variation rate of the population size or of a given character of the
evolving individuals. In other words, formal measures of evolution, if we
may liberally call them so, describe frequencies of the occurrence of given
characters, or of given types of organism, over generations. For example,
these models predict that in a relatively stable environment the percentage
of individuals with fitter characteristics will gradually grow until they dom-
inate the population (Fisher 1930). These models do not address the notion
of performance and progress in evolving populations, but only the change in
proportion of organisms of a certain type.

1.2 The Genotype

So far, we have not yet explained how individual characters can be inherited
and modified. In 1865 Mendel arrived at the conclusion that individuals
reproduce by transmitting specific particles, now known as genetic material,
to their own offspring. Recent progress in genetics (the discipline studying
the structure and behavior of genes) and in functional genomics (the discipline
studying the role of genes in organisms) has provided several clues to the
molecular mechanisms and processes that support inheritance and variation.
Although Darwin was probably not aware of Mendel’s conclusions when he
formulated the theory of evolution, genetics has become an integral part of
modern evolutionary theories.

The genetic material of an individual is known as the genotype, whereas itsGENOTYPE

manifestation as an organism is known as the phenotype. Natural selectionPHENOTYPE

operates solely on the phenotype, but the genotype is the ultimate vehicle of
inheritance. The extent to which we are determined by our genotype or phe-
notype and the relationship between these two aspects of our individuality
is a complex and much debated issue (S.J. Gould 1977; West-Eberhard 2003).

In what follows, we will introduce genes, adopting the rather conventional
framework described in most textbooks. We will then point to recent results
that, at the time of writing, are changing our perspectives on the role of genes
in the development and evolution of organisms.

The conventional story involves three types of molecules and goes as fol-
lows. Cells contain a class of molecules, known as proteins, whose shape,PROTEINS

concentration, and behavior determine the properties of the cell. For exam-
ple hair cells and muscle cells are different because they are composed of
different proteins. The definition of specific proteins depends on another
molecule, known as DNA (deoxyribonucleic acid), which in turn relies onDNA

6 1 Evolutionary Systems

A

T

A

T

T

A

T

A

T

A

T

A

T

A

G

C

G

C

G

C

G

C

G

C

C

G

C

G

C

G

3’

3’

5’

5’

Figure 1.1 Structure of a piece of DNA molecule showing the two strands with
matching nucleotides. The numbers 5 and 3 refer to the atomic structure of the
molecule and affect the way in which the molecule sequence is translated into a pro-
tein. The order of translation always proceeds in the direction from 5’ to 3’.

proteins to become operative and on the mediation of a third type of mol-
ecule, known as RNA (ribonucleic acid), which is structurally similar to theRNA

DNA molecule.
The DNA is the genetic material that is transmitted over generations. It

is often enclosed within the nucleus of the cell and all cells in the organ-
ism have the same genetic material. DNA molecules (figure 1.1) are long
chains of complementary strands composed of four types of chemical units
(nucleotides or bases): adenine (A), cytosine (C), guanine (G), and thymineNUCLEOTIDES

(T). The two strands stick together because nucleotides can lock to each other:
Adenine binds to thymine and cytosine binds to guanine. This specific bind-
ing means that the two DNA strands are perfectly complementary. If we
find the sequence ACA on one strand, we know that the corresponding part
of the complementary strand will display the sequence TGT (although some
mismatch may occur very rarely).

The genetic material is organized in several separated DNA molecules,
called chromosomes. Furthermore, in several organisms chromosomes oc-CHROMOSOMES

cur in pairs (also known as diploid organisms in contrast to haploid organ-
isms). The two chromosomes in a pair are approximately homologous in the
sense that corresponding areas produce proteins with a similar functional-
ity in similar cells. The number of chromosome pairs and total length of the
DNA molecules vary from species to species. For example, humans have 23
pairs of chromosomes totaling several hundreds of millions of nucleotides
(International Human Genome Sequencing Consortium 2001). The redun-
dant structure of the genetic material (two chromosomes, two strands) allows
replication of DNA molecules during cell replication.

There are two types of cell replication: mitosis and meiosis (figure 1.2). Mi-MITOSIS

tosis occurs during growth of the organism when a cell divides by producing
a copy with the same number of chromosomes (23 times 2 in humans). Dur-
ing mitosis, the two strands of the 46 DNA molecules are separated and each

1.2 The Genotype 7

Figure 1.2 Cell replication during mitosis and meiosis. For the sake of simplicity,
only a pair of homologous chromosomes are shown.

strand goes to one cell. Each strand then rebuilds the missing strand by re-
cruiting the complementary nucleotides. The process ends with two exact
copies of the double-stranded DNA molecule, one for each cell. Meiosis oc-MEIOSIS

curs during the production of sex cells (sperm and eggs). Sex cells receive
only one chromosome for each pair. In diploid organisms the pairs of chro-
mosomes are recombined during fecundation of the egg cell (containing the
set of chromosomes from the mother) by the sperm cell (containing the set of
chromosomes from the father). Although the chromosomes from the mother
and father sex cells are homologous, their sequences may be slightly differ-
ent and produce different proteins for the same functionality. This may result
in the expression of features that belong either to the mother or to the father.

1.2.1 Gene Expression

The sequence of four nucleotides along the DNA chain determines the prop-
erties of the cells and the development of the organism. The four nucleotides
are effectively the letters of the genetic alphabet. Genes are functionally rel-GENES

evant subsequences of nucleotides in the DNA chain (just like words in a
sentence), which can produce proteins.

Proteins are long molecular chains (figure 1.3) composed of hundreds of
submolecules, known as amino acids. There are 20 types of amino acids thatAMINO ACIDS

can be combined in various ways and numbers to build up a very large num-
ber of different proteins. When amino acids are chained together, the chain
bends and twists in the three-dimensional space. The properties of a protein

8 1 Evolutionary Systems

A

T

A

T

T

A

T

A

T

A

T

A

T

A

G

C

G

C

G

C

G

C

G

C

C

G

C

G

C

G

3’

3’

5’

5’

AA UUUUU GGGGG CCC

3’5’

Transcription

DNA

mRNA

Amino acids

leuleu argcysgly

Folded protein

Folding

Translation

Protein

Codon

Figure 1.3 Creation of a protein molecule. A sequence from one strand of DNA is
transcribed into a single-stranded RNA molecule where uracil (U) is used in place of
thymine (T). Triplets of nucleotides (codons) are then translated into corresponding
amino acid molecules (a given amino acid can be generated by one or more types of
codons). Amino acids are then linked together to form the protein molecule that folds
into different shapes according to the specific sequence of amino acids.

are determined mainly by its shape. Each amino acid corresponds to one or
more specific sequences of three nucleotides (codon) in the DNA chain.CODON

The production of proteins (figure 1.3) from DNA is mediated by RNA.
RNA is a long molecule similar to DNA, but it consists of only one strand of
nucleotides, is much shorter (typically a few thousand nucleotides), and fea-
tures uracil (U) in place of DNA thymine (T). During protein production, the
two strands of DNA are separated and an RNA molecule is assembled along
a small part of the DNA strand so as to match the corresponding nucleotides.
This process is known as transcription. The resulting RNA molecule is used toTRANSCRIPTION

create a protein by assembling a chain of amino acids that correspond to the
sequence of nucleotides. Some proteins regulate cell division and genetic ex-
pression of proteins. It is important to notice that while the sequence of DNA
nucleotides cannot be modified by proteins, the sequence of protein amino
acids is instead determined by DNA. In other words, information flows in
one direction only, from genes to proteins. This is the reason why modifi-
cations of the phenotype that occur during the life of the individual and are
caused by environmental phenomena cannot directly modify the genotype
and be inherited by offspring (with the exception of exposure to radiation,

1.2 The Genotype 9

Coding regionRegulatory region

Binding site

OFF ON

RNA

Protein

Regulatory protein

Figure 1.4 Genes are composed of a regulatory region and of a coding region. The
activity of the coding region (that is, the production of corresponding proteins) is de-
termined by the activation of the regulatory region following the binding of a specific
protein. Since DNA-binding proteins are produced by genes, the activation pattern
of a DNA molecule is a complex network of interactions between parts of the genes
and its protein products.

which can directly affect the DNA sequence). This is also the reason why the
genotype is sometimes considered the blueprint of the organism, that is, the
list of instructions to build a fully fledged living system.

The genotype includes both genic and nongenic DNA. Genic DNA is the
part of the molecule that can produce proteins, whereas nongenic DNA is
the part that does not produce proteins. We will come back later to nongenic
DNA, how it emerged, and what role it could play. For the moment, let’s fo-
cus on genic DNA. At any point in time, a given gene can be active, inactive,
or moderately active. The activity level of a gene is used to indicate the rate
at which the corresponding protein is produced by means of RNA. Genes are
structured into two regions along the DNA molecule (figure 1.4): a coding re-
gion and a regulatory region. The coding region is composed of a sequence ofCODING REGION

nucleotides that is translated into an RNA molecule and ultimately into the
corresponding protein. The translation process and its speed are controlled
by the presence of special proteins that bind to the regulatory region of the
gene. The regulatory region is a sequence of nucleotides that do not produceREGULATORY REGION

proteins. The shape of binding proteins is such that they can bind only to
specific sequences of nucleotides on the regulatory region. If such a binding
happens on the regulatory region of a gene, in some cases that gene expresses
itself by initiating the translation of its coding region into an RNA molecule.
In other cases binding proteins can inhibit the expression of the gene or in-
terfere in various ways with other proteins that are binding to different areas

10 1 Evolutionary Systems

of the regulatory region, so as to speed up or slow down the rate at which
the coding region is translated.

The proteins that regulate gene expression are themselves produced by
genes, which in turn are regulated by other proteins, which are produced by
other genes, and so on. Furthermore, now we know that chemical signals
from other cells, or induced by the environment, can affect gene expression.
The emerging picture is a complex network of interdependences, also known
as the gene regulatory network, among genes whose activity can promote or in-GENE REGULATORY

NETWORK hibit other genes. A single DNA molecule can include several genetic regu-
latory networks, each corresponding to a complex dynamical pattern of gene
expression. Therefore, the role of genes cannot be fully understood by sim-
ply looking at the DNA sequence or by taking a snapshot of the pattern of
gene expression at a given time with today’s technology of DNA microarray
chips. Understanding gene functionality requires unveiling the gene regula-
tory networks in which a gene participates and its level of expression over
time. The study of gene regulatory networks and their relation to the way in
which organisms grow and adapt is known as functional genomics.FUNCTIONAL

GENOMICS The interpretation of DNA as a set of instructions to build the organism,
which is often used in conventional descriptions of genetic material and in
evolutionary computation, does not do justice to the complex networks of
mutual interactions between genes and proteins, proteins and cells, cells and
organisms, and organisms and environment. Within this larger perspective,
DNA molecules should rather be seen as the most constant part of a com-
plex dynamical system that unfolds into a full behaving organism. In other
words, DNA molecules are the relatively immutable structure that is trans-
mitted from parents to offspring.

1.2.2 Genetic Mutations

DNA molecules can change by means of mutations, or errors, that occur dur-MUTATIONS

ing replication. Mutations that occur in sex cells can directly affect the evolu-
tion of the species. Here we will briefly review only some types of mutations
(figure 1.5) that are also used in evolutionary computation (some more often
than others).

Substitution mutations change one nucleotide into another (for example,SUBSTITUTION

from A to G or from A to C). If the change does not correspond to the produc-
tion of an amino acid different from that expressed before the mutation (the
same amino acid can be produced by several triplets of nucleotides), the mu-

1.2 The Genotype 11

G A C C T G A T G T

G A T C T G A T G T

T T C T A G G G A A

G A C C A G G G A A

T T C T A G G G A A

Original strand

Complementary strand

Substitution

Nonreciprocal recombination

Reciprocal recombination

Insertion

Deletion

Inversion

Chromosome 1 Chromosome 2

G A C C T A T C G T

G A G A T G T

G A C C T G A T C C A G T

T T C T T G A T G T

T T C T T G A T G T

Figure 1.5 Types of mutations, some involving exchange of material from two ho-
mologous chromosomes.

tation is called synonymous or silent. Nonsynonymous mutations instead
can change a codon so that it produces a different amino acid.

In inversion mutations a long sequence of the double-stranded DNA mole-INVERSION

cule is rotated by 180 degrees.
Recombination mutations affect segments of nucleotides between homolo-RECOMBINATION

gous sequences of homologous chromosomes. In the case of reciprocal re-
combination, chromosomes are crossed over so that they exchange homolo-
gous sequences. In nonreciprocal recombination, the sequence of one chro-
mosome is replaced by the homologous sequence of the other chromosome,
but the replaced sequence is lost. Recombination mutations in sexual in-
dividuals effectively correspond to mixing characteristics of the parents be-
cause the homologous chromosomes under recombination were separately
provided by the father and the mother of the individual. In some evolu-
tionary algorithms, crossover assumes an important role and is considered
separately from mutations.

Insertion and deletion are two types of mutation where long sequences ofINSERTION AND

DELETION nucleotides are inserted or deleted, respectively, in a DNA molecule. This
can happen either during recombination between misaligned sequences of
two chromosomes or during replication with slippage of one strand within
the same chromosome. The mutation rate of DNA in mammals has been

12 1 Evolutionary Systems

estimated to be 4−10 nucleotides substitution per nucleotide site per year (Li
et al. 1985; Kondrashov and Crow 1993).

1.2.3 Nongenic DNA

The size of genomes varies enormously among species. The size of a genome,
also known as the C-value to indicate that it is relatively constant within aC-VALUE

species, is given by the number of base pairs in DNA. For example, the hu-
man genome is approximately 3.6 million kilobases long, quite similar to
that of the tobacco plant, but a hundred times shorter than that of an ameba.
It seems that there is no relationship between genome size and number of
proteins or the morphological and behavioral complexity of an organism
(Cavalier-Smith 1978). This can be partly explained by the fact that large
parts of the genome are composed of nongenic DNA, which is sequences of
nucleotides that do not generate a protein. Nongenic DNA arises from sev-
eral processes, such as insertion and deletion mutations, that add genetic
material without function or disable functional genes. Another such process
is gene duplication whereby adjacent sequences of DNA, which often includeGENE DUPLICATION

functional genes, are copied to other parts of the DNA molecule. Duplication
can also occur in the case of entire chromosomes. (In addition, some genes,
known as transposons or jumping genes, contain all the machinery necessary
for their own excision, duplication, and insertion in other parts of the DNA.)
Duplicated genes gradually accumulate mutations that make them useless.
These defective copies, also known as pseudogenes, accumulate and disap-
pear at various rates across species and across evolutionary time within the
same species.

There are several hypotheses to explain the role of nongenic DNA. The se-SELECTIONIST

HYPOTHESIS lectionist hypothesis argues that nongenic DNA may play various important
roles in gene expression and is therefore actively maintained by evolution
(Zuckerkandl 1976). There is indeed experimental evidence for the existence
of pseudogenes that regulate the expression of genes they derive from (Zuck-
erkandl 1976; Hirotsune et al. 2003; Korneev et al. 1999).

The neutralist hypothesis instead suggests that nongenic DNA is inert ma-NEUTRALIST

HYPOTHESIS terial and is carried along genic DNA during evolution as long as it does
not impair the fitness of the organism. (For example, a possible drawback of
long genomes is that replication takes a long time and may therefore affect
the ability of the species to adapt to the environment.) On similar lines, the
selfish DNA hypothesis argues that nongenic DNA serves no other functionSELFISH DNA

HYPOTHESIS

1.3 Artificial Evolution 13

than perpetuating itself by incorporating mechanisms for easier replication
(Orgel and Crick 1980).

The nucleotypic hypothesis instead suggests that nongenic DNA plays struc-NUCLEOTYPIC

HYPOTHESIS tural roles in the nucleus of the cell, such as maintaining the volume of the
nucleus, that are not related to protein expression (Cavalier-Smith 1978). For
example, amebas, which have large cells, have very large genomes (Cavalier-
Smith 1978).

Nongenic DNA is not only accumulated but also lost during evolution be-
cause the continuous accumulation would create too much of a metabolic
and structural burden on the organism. It has been argued that spontaneous
deletion of nongenic DNA may be a major factor to account for different
genome sizes (Hartl 2000). For example, the fruit fly Drosophila loses DNA 60
times faster than mammals and has a comparatively shorter genome (Petrov
et al. 1996). Incidentally, 50 years ago researchers begun to search for the
shortest genome which contains the minimal set of genes necessary for cel-
lular life and self-replication (Morowitz 1984). Recent analysis, based on
counting the set of genes that are common to a group of organisms, points
to approximately 240 genes (Koonin and Mushegian 1996). Other results,
based on gene knockout, give a similar result of approximately 250 genes
(International Human Genome Sequencing Consortium 1995).

Nongenic DNA may have a role in the adaptability of a species because
it could eventually result in the appearance of new genes. Indeed, it has
been argued that gene duplication and diversification could play an adaptive
role in coping with environmental challenges and may account for the rapid
evolution of complexity of invertebrates (Ohno 1970). For example, it has
been shown that a duplicated gene can mutate into a new type of functional
gene, as in the case of olfactory-receptor genes (Glusman et al. 2001).

1.3 Artificial Evolution

Artificial evolution includes a wide set of algorithms that take inspiration
from the principles of natural evolution and molecular genetics in order to
automatically find solutions to hard optimization problems, improve object
shapes, discover novel computer programs, design electronic circuits, and
explore several other areas that are usually addressed by human design.
Most artificial evolution is based on the very same four pillars of natural
evolution: (1) maintenance of a population; (2) creation of diversity; (3) a
selection mechanism; and (4) a process of genetic inheritance.

14 1 Evolutionary Systems

In artificial evolution, the phenotype of an individual is the solution to a
problem and undergoes a selection process. The genotype instead is a ge-
netic representation of that solution and is transmitted through generations
and manipulated by genetic operators. The mapping between the genetic
representation (genotype) and the problem description (phenotype) can take
various degrees of complexity ranging from a direct, one-to-one correspon-
dence all the way to sophisticated models of gene expression.

As we mentioned in the introduction to this chapter, the most remarkable
difference between artificial and natural evolution is that the former is often
formulated and used as a problem-solving technique. The problem-solving
feature of artificial evolution is built into the selection process, which consists
of two steps: (1) an evaluation of the phenotype that provides a quantitative
score, also known as the fitness value; and (2) a reproduction operator that
makes a large number of copies of genotypes corresponding to phenotypes
with high fitness values. Although this utilitarian and goal-oriented twist
of evolution has been successfully applied to living organisms by breeders
of plants and animals for hundreds of years, it is not the way in which nat-
ural evolution operates. At the end of this chapter we will discuss some
consequences of goal-oriented artificial evolution versus open-ended natural
evolution.

The structure of an evolutionary algorithm consists of a simple iterative
procedure on a population of genetically different individuals (figure 1.6).
The phenotypes are evaluated according to a predefined fitness function, the
genotypes of the best individuals are copied several times and modified by
genetic operators, and the newly obtained genotypes are inserted in the pop-
ulation in place of the old ones. This procedure is continued until a “good
enough” solution is found.

Evolutionary algorithms are often used on hard problems where other op-
timization methods fail or are trapped in suboptimal solutions. Those prob-
lems typically include cases that have several free parameters with complex
and nonlinear interactions, are characterized by noncontinuous functions,
have missing or corrupted data, or display several local optima.

Evolutionary algorithms are applicable to a large number of domains as
long as a coherent genetic representation can be formulated. Evolutionary
algorithms can also be coupled to other complementary search methods to
increase the quality of the solutions. For example, a local gradient ascent
technique could be applied to the phenotypes before fitness evaluation so
that the selection process could reproduce individuals that are located in
better areas of the search space. Evolutionary algorithms also allow inter-

1.3 Artificial Evolution 15

101101011010001

001011011010000

100101011110001

100001000010111

111111011010001

101100000010001

001101011010000

101101011010111

000101111011001

101101011010001 = 3

001011011010000 = 0

100101011110001 = 2

100001000010111 = 1

111111011010001 = 9

101100000010001 = 2

001101011010000 = 0

101101011010111 = 6

000101111011001 = 1

101101011010001 = 3

111111011010001 = 9

101101011010111 = 6

101101011010001 = 3

111111011010001 = 9

101101011010111 = 6

101101011010001 = 3

101101011010111 = 6

101101011010111 = 6

111111011010001 = 9

111111011010001 = 9

111111011010001 = 9

111111011010001

11111011010001

101101011010111

101101011010001

101101001010111

101101011010111

111111011010001

101101011010001

111111011010001

11111

0

0

10110

initialization evaluation selection

reproductioncrossover & mutation

Figure 1.6 A simple evolutionary algorithm. The bit strings represent the genotypes
of the individuals. The generational cycle illustrated in the four boxes is continued
until a satisfactory genotype is found.

action and collaboration with human designers, for example by letting hu-
mans override the fitness function and manually select certain individuals
for reproduction or insert in the evolving population genotypes of individu-
als with desired features.

There are several types of evolutionary algorithms, which are often labeled
differently for historical reasons. These algorithms put emphasis on different
components, such as the type of mutation operator, or are tailored for specific
types of problem, such as the evolution of computer programs. Instead of
delving into the details of each type of evolutionary technique, we will pro-

16 1 Evolutionary Systems

vide an overview of the main steps necessary to assemble a “custom-made”
evolutionary algorithm. These steps are: (1) choose a genetic representation;
(2) build a population; (3) design a fitness function; (4) choose a selection op-
erator; (5) choose a recombination operator; (6) choose a mutation operator;
(7) devise a data analysis procedure.

1.4 Genetic Representations

A genetic representation, also known as genetic encoding, describes the ele-GENETIC ENCODING

ments of the genotype and how these elements are mapped into a phenotype.
A suitable genetic representation should be devised so that (a) the recombi-
nation and mutation operators have a high likelihood of generating increas-
ingly better individuals, and (b) the set of all possible genotypes have a high
likelihood of covering the space of optimal solutions for the problem at hand.

Therefore, the choice of a genetic representation can benefit from knowing
some properties of the search space. For example, if one intends to evolve a
digital electronic circuit, the genetic representation may use a discrete alpha-
bet that has some correspondence to the components of the circuit so that
mutations of the genotype are more likely to map into meaningful pheno-
types. Instead, if one intends to evolve an analog circuit, the genetic repre-
sentation may include some real-valued elements to describe the parameters
of components such as resistors and capacitors, or at least allocate more char-
acters to genes that describe analog components at a sufficiently fine granu-
larity.

Since artificial evolution is often used for problems that are ill-defined or
poorly understood, the choice of a suitable genetic representation is not a
simple affair. In this section we describe some common representations that
rely on a one-to-one correspondence between the genotype and phenotype
space. These representations do not include gene regulation dynamics.

1.4.1 Discrete Representations

The individual is described by a sequence of l discrete values drawn from an
alphabet with cardinality k. For example, genetic algorithms (Holland 1975;
Goldberg 1989), which are a particular class of evolutionary algorithms, often
resort to a binary alphabet 0, 1 with cardinality k = 2.

In a few cases, this binary representation can be directly interpreted asBINARY

REPRESENTATION a phenotype, such as in the description of the configuration string of field-
programmable gate arrays (a specific type of reconfigurable digital electronic

1.4 Genetic Representations 17

01010100

Job A.M. P.M.84

0.328125

x
x

x
x

x
x

x
x

1
2
3
4
5
6
7
8

Figure 1.7 Binary representation of an eight-bit-long genome. Left: Integer number
and real number in the interval [0, 1]. Right: Job schedule for morning and afternoon
shifts.

circuits) that will be described later. However, most often it is necessary to
transform a binary representation into a different phenotype representation.
Binary genotypes can be mapped into a large number of phenotypes, such as
integer numbers, real numbers, schedules, circuit configurations, etc.

Let’s consider, for example, the genotype <01010100> (figure 1.7). This
genotype can be transformed into an integer phenotype i (figure 1.7, left)
using the binary mapping 0× 27 + 1× 26 + 0× 25 + 1× 24 + 0× 23 + 1× 22 +
0 × 21 + 0 × 20 = 84.

It can also be decoded into a real number r in the range [min,max] by
first decoding it into the integer i and then applying the formula r = min +
(i/255)(max − min), where 255 is the maximum integer value represented
by an eight-bit string.

The same binary genotype can also be used to describe job schedules (fig-
ure 1.7, right). Imagine, for example, describing the allocation of eight dif-
ferent jobs in a factory between morning and afternoon shifts. Each position
of the genotype corresponds to a different job while its bit value corresponds
to the morning (0) or afternoon (1). Our sample genotype will therefore de-
scribe a schedule where jobs 1, 3, 5, 7, and 8 are carried out in the morning
and the remaining three jobs are carried out in the afternoon. If there are
more than two time slots (for example, in the case of a teaching schedule for
a school), one should choose a genetic alphabet whose cardinality matches

18 1 Evolutionary Systems

Figure 1.8 Planning a holiday across several resorts with minimal transportation
costs (numbers indicate ticket price). Top: Some Swiss ski resorts and railway con-
nections (copyright 2005 SwissTopo). Bottom: Genetic representation of a holiday
plan.

the number of available time slots and whose length matches the number of
taught subjects.

Discrete representations can also be used for describing sequences. Con-
sider for, example, the case of planning your two-week winter holiday to
visit six skiing resorts in Switzerland with a minimum cost for train tickets
(figure 1.8). Each location will be represented by a symbol of the alphabet
(in this case, k = 6) and the visiting order will be represented by the position
of the symbols in the genotype. This example is an instance of the travelingTRAVELING SALESMAN

PROBLEM (TSP) salesman problem, a class of problems that consist in visiting all nodes of
a graph under multiple constraints (limit in the number of repeated visits,
path length, time, etc.).

1.4.2 Real-Valued Representations

The genotype consists of a set of n numbers belonging to the domain of real
numbers, typically represented as floating-point values. This representation

1.4 Genetic Representations 19

r=min+(i/255)(max-min)

(+, min, (*, (/, i, 255), (-, max, min)))

+

min *

i 255

%

max min

-

Figure 1.9 Tree representation of the expression to map integers into real numbers.
Left: Expression form and nested list. Right: Tree.

is suitable for solutions that require high-precision parameter optimization,
such as in the case of the description of a wing profile. In this case each num-
ber will represent the value of a parameter describing the wing curvature. If
we know that the problem does not require a high resolution of the param-
eter space, we may well use a binary representation and allocate a suitable
number of bits for each parameter value, as we have seen above. However,
the two types of representations require quite different genetic operators, as
we will see later in this chapter.

1.4.3 Tree-Based Representations

These representations are suitable for describing hierarchical structures with
branching points and conditions. They are notably used in genetic program-
ming, a particular class of evolutionary algorithms used for evolving com-
puter programs, but are also applied to the description of electronic circuits,
construction procedures, and experiment planning, to mention a few.

In genetic programming, each individual is a computer program (or, more
generally, an expression) represented as a nested list, which can be directly
mapped into a tree (figure 1.9). Consider, for example, the computer pro-
gram to map an integer value i into a real number r in the range [min,max]
that was described above for discrete representations. The program consists
of the operators +, -, *, /; the constants min, max, 255; and the vari-
able i. The program is described by the nested list (+, min, (*, (/,
i, 255), (-, max, min))), which can be visualized as a tree where a
branching point is defined by the opening of a new bracket and the depth of
the tree is given by the number of open brackets.

A tree-based representation is composed of a finite set of functions and of aFUNCTIONS

finite set of terminals. The choice of these two sets depends on the problem toTERMINALS

20 1 Evolutionary Systems

be solved and on some prior knowledge of the solution space. In our simple
example, the function set includes the four arithmetic operators. Terminals
are the endpoints, or leaves, of the tree. The terminal set may consist of
variables, constants, sensor readings from a robot, etc. In the example, the
terminal set includes the variable i and the constants 255, min, max.

The function set and the terminal set should satisfy the principles of clo-
sure and sufficiency. Closure means that all the functions should accept anyCLOSURE

element of the terminal set and any value returned by the functions in the
function set. In order to satisfy the principle of closure, the arithmetic divi-
sion / is replaced by “protected division %” that checks whether the divider
is zero in order to avoid premature termination of the program. SufficiencySUFFICIENCY

means that the choice of functions and terminals should allow the generation
of programs that represent the solution to the problem. This second princi-
ple is difficult to satisfy if the user has little prior knowledge of the solution
space.

1.4.4 Evolvability

Genetic representations can dramatically affect the evolvability of the system,
i.e., the probability of generating improvements through the application of
genetic operators (Wagner and Altenberg 1996). For example, direct rep-
resentations, such as those that we have described in this section, use geno-
types whose lengths are proportional to the number of free parameters of the
problem. Unless the genetic representation is well tailored for the problem
to be solved, longer genotypes tend to correspond to larger search spaces
and most likely lower the probability of producing improvement through
random mutations of few genes.

Another problem is that the dimension of the search space and the number
of possible solutions is predefined and constant, which limits the potential
of generating more complex solutions over generations. Despite all these
caveats, evolutionary algorithms in computer science and engineering often
resort to variations of the three genetic representations that have been de-
scribed in this section because they work reasonably well for a large number
of function optimization problems.

The issue of evolvability and of more suitable genotype-phenotype map-
pings typically arises when one is interested in evolving phenotypes made
of several different components, such as complex electronic devices or au-
tonomous robots, or when one is interested in open-ended evolution. Re-
cently, researchers have attempted to devise more efficient genetic represen-

1.5 Initial Population 21

tations and mapping processes inspired by the principles of gene expression
described earlier in this chapter.

However, it is not always clear to what extent higher biological realism
in genetic encoding is useful for artificial evolution. The most promising
examples capture a subset of biological features that bring a specific advan-
tage to the problem at hand. Therefore, different problem domains are often
tackled with different genotype-to-phenotype mappings. We will see several
examples of this approach when we will describe the evolution of electronic
circuits, neural networks, plants, and robots in later parts of this book.

1.5 Initial Population

The initial population should be sufficiently large and diverse to ensure that
individuals display different fitness values because, if all individuals have
the same fitness, selection cannot operate properly. How large a popula-POPULATION SIZE

tion should be depends on (a) the properties of the search space at hand and
(b) the computational cost of evaluating all the individuals for several gen-
erations. Problems where most genotypes have the same fitness or where
random mutations have very little probability of generating a fitness im-
provement require larger populations. In most cases, the initial population
size is determined by rule of thumb or computational costs. In the literature
we often find populations ranging from a hundred to a few thousand indi-
viduals. If the evaluation of an individual requires real-world experiments,
as in the case of robot evolution, the population size is often smaller than a
hundred individuals.

In the case of binary representations, each genotype is created by generat-
ing random sequences of 0s and 1s. A similar process is used for real-valued
representations by sampling uniformly within a predefined interval. How-
ever, for real-valued representations this works well only if the representa-
tion is bounded within that interval, but less well if that is not the case. In
this latter situation, a good strategy consists of using a binary representa-
tion of the real numbers and a dynamic mapping that zooms in and out of
parts of the interval depending on the degree of convergence in the popu-
lation (Schraudolph and Belew 1992). For example, the eight bits encoding
a variable may be initially mapped in the range [0, 1] and later in the range
[0.4, 0.5], thus providing a better resolution of the variable in the region that
corresponds to higher fitness.

22 1 Evolutionary Systems

Tree-based genotypes are constructed through a recursive process that ex-
pands each node into randomly sampled branches. One starts with the root
node by randomly selecting a function from the function set. For each argu-
ment of the selected function, one randomly selects among all functions in
the function set and all terminals in the terminal set. If a terminal is selected,
it becomes a leaf of the tree. If a function is selected, it becomes a new node
that is further expanded by randomly selecting a new function or terminal. A
maximum depth of branching points is usually imposed in order to prevent
the generation of very big trees.

Another way of initializing the population consists in seeding it with mu-
tated copies of one or more genotypes that are known to correspond to good,
or promising, phenotypes. However, this strategy carries the risk that the
population may not be sufficiently diverse and that evolution may be biased
to search in the neighborhood of a suboptimal solution.

1.6 Fitness Functions

The fitness function associates a numerical score to each phenotype in the
population. When the phenotype is the result of a growth process or can
be modified by other nongenetic processes, such as lifelong fluctuations or
learning, the fitness function indirectly evaluates also the quality of the de-
velopmental or learning processes. There are two important aspects involved
in the design of a fitness function: (a) the choice and combination of fitness
components, and (b) the way in which the function is evaluated.

Fitness functions often attempt to optimize multiple objectives of the prob-MULTIPLE OBJECTIVES

lem at hand. For example, one may wish to evolve the design of an airplane
wing that maximizes lift, minimizes drag, and is composed of the smallest
number of pieces. Although multiobjective optimization in the context of
evolutionary computation has been largely discussed (e.g., Michalewicz and
Fogel 2004), there is no standard way of combining and weighting the var-
ious objectives. Unless one has some knowledge of the properties of the
search space that shed light on the relationships among components, the
choice is often arbitrary, based on previous experience, or the result of a
trial-and-error procedure. We will address again multiobjective optimiza-
tion in the specific context of evolutionary electronics in the second part of
this chapter.

Evaluating the fitness of individuals is often the most time-consuming partFITNESS EVALUATION

of an evolutionary algorithm. The quality of the evolved solutions depends

1.7 Selection and Reproduction 23

on how exhaustive the evaluation of individuals has been. Later in this book,
we will describe examples where artificial evolution finds solutions that capi-
talize on specific conditions of the fitness evaluation, such as the temperature
of the room where an electronic circuit has been evolved. Although this is an
instance of evolutionary adaptation to a particular environment, it implies
that evolved solutions may not operate properly in situations that are differ-
ent from the evolutionary conditions (for example, room temperature).

In several situations, especially in the evolution of physical devices or com-
plex nonlinear systems, it is impractical to evaluate an individual in a large
number of conditions. This is, for example, the case of synthetic drugs where
the evaluation requires computationally expensive modeling of protein fold-
ing and protein interaction. In those cases, one may temporarily use methods
to approximate the fitness computation by extrapolating fitness data from
similar individuals that have already been evaluated, by relaxing the preci-
sion of the simulator, or by using adaptive estimation methods, such as ar-
tificial neural networks, that gradually build a model of the correspondence
between genotypes and fitness values. However, fitness approximation must
be used with extreme care to prevent evolution of solutions that do not work
in real settings.

Subjective fitness is the name used when human observers rate the perfor-SUBJECTIVE FITNESS

mance of evolving individuals by visual inspection. An early instance of
subjective fitness was the biomorphs software described by Dawkins (1986)
where an observer was presented with a screen filled by insect-like creatures
whose genes defined their morphologies. The user could select individu-
als for reproduction by clicking on their shapes. Subjective fitness is often
used in artistic fields, such as the evolution of figurative art, architectural
structures, and music, where it is difficult to formalize aesthetic qualities
into objective fitness functions. Subjective fitness can also be combined with
objective fitness (Takagi 2001).

1.7 Selection and Reproduction

The role of selection is to allocate a larger number of offspring to the best
individuals of the population. The selection pressure indicates the percent-SELECTION PRESSURE

age of individuals that will create offspring for the next generation. High
selection pressure means that only a small percentage of individuals will be
selected for reproduction. Although this strategy may result in rapid fitness
increment, it brings the risk that the population will rapidly lose diversity

24 1 Evolutionary Systems

fitness

genetic space

fitness

genetic space

p=0.22

p=0.03

p=0.08

Figure 1.10 Roulette wheel selection. Left: Roulette wheel representation of propor-
tionate selection. Each slot corresponds to an individual and the size of the slot is
proportional to the reproduction probability of the individual. Center: All individu-
als in the population obtain similar fitness and therefore there is little chance that the
best individual will make more offspring than the other individuals. Right: One indi-
vidual obtains much higher fitness than all other individuals and therefore almost all
individuals in the next generations will be copies of itself.

and will converge to a local minimum of the search space. It is therefore
important to maintain a good balance between selection pressure and other
factors that can generate diversity, such as genetic mutations.

In proportionate selection, assuming that the fitness is non-negative, the prob-PROPORTIONATE

SELECTION ability p(i) that an individual i makes a copy of its own genome is given by
the ratio between its own fitness value f(i) and the sum of the fitness values
of all individuals in the population

∑
i f(i)

p(i) =
f(i)∑N
i f(i)

Consequently, the expected number of offspring for an individual i is Np(i)
where N is the size of the population. One way of visualizing this process
is to think of a roulette wheel where each slot corresponds to one individualROULETTE WHEEL

in the population and the size of a slot is directly proportional to the repro-
duction probability p(i) of that individual (figure 1.10, left). Each offspring is
generated by spinning the wheel and making a copy of the individual corre-
sponding to the slot where the ball ends up. Therefore, in order to re-create
a population of N individuals, the roulette wheel is spun N times. However,
this selection method does not work well in two situations: when all individ-
uals have similar fitness values (figure 1.10, center) and when one individual
obtains much higher fitness than the rest of the population (figure 1.10, right).
In the first case, all individuals will have almost equal probability of making
an offspring and evolution will amount to random search. Furthermore, be-

1.7 Selection and Reproduction 25

cause of stochastic effects, some individuals won’t be reproduced and the
population will gradually converge toward a region of the genotype space
that may correspond to a local minimum. A similar phenomenon in biology
is known as genetic drift (Kimura 1983). In the second case, instead, almost
all offspring will be copies of the individual with high fitness, whose geno-
type will soon dominate the population and cause premature convergence.
In order to alleviate this problem, one may scale the fitness values prior to
selection so as to emphasize or reduce differences, but the scaling procedure
requires additional parameters.

Rank-based selection does not suffer from the above-mentioned problemsRANK-BASED

SELECTION because it is based on the rank of the individual in the population instead of
its absolute fitness. It consists of ranking all individuals from best to worst
and allocating reproduction probabilities proportional to the rank of the in-
dividual. Therefore, no matter how small the difference between any two
individuals is, the better one of the two will always have a higher probability
of making offspring.

Truncated rank-based selection is a variation that consists of taking only theTRUNCATED

RANK-BASED

SELECTION
top n individuals in the ranked list and making the same number of offspring
for each selected individual. For example, one may take the best 20 individu-
als out of 100 individuals that compose the population and make five copies
of each of them in order to create the new population. Provided that n is not
too small (which would cause premature convergence), this method ensures
that also individuals that have obtained relatively low fitness scores, but still
higher than the worst ones, are given the same number of offspring as the
best individuals. This method is quite useful when individuals cannot be ex-
haustively evaluated and thus their fitness scores may not reflect their true
fitness, because both high-scoring and low-scoring individuals within the
top n individuals of the population are given the same chance to reproduce.

Tournament selection consists of organizing a tournament among a smallTOURNAMENT

SELECTION subset of individuals in the population for every offspring to be generated.
The procedure starts by randomly picking k individuals from the popula-
tion, where k is known as the tournament size. The individual with the best
fitness among the k individuals generates an offspring. All k individuals are
then put back into the population and are eligible to participate in further
tournaments. A new tournament is organized for every offspring to be gen-
erated. Tournament selection achieves a good compromise in maintaining
both selection pressure and genetic diversity in the population.

In generational replacement, by far the most frequently used, the newly pro-GENERATIONAL

REPLACEMENT duced offspring replace the entire old population of individuals. However,

26 1 Evolutionary Systems

if the search space is very complex, the fitness evaluation is very noisy, or ge-
netic mutations affect very strongly the phenotype, a good individual may
be lost in future generations. In this case, a popular replacement strategy,
known as elitism, consists of maintaining the n best individuals from the pre-ELITISM

vious population. It is also possible to relax full generational replacement by
inserting only a few offspring into the population in place of individuals that
have obtained the worst fitness. In this case, we have a gradual generational
rollover.

1.8 Genetic Operators

Genetic operators capture the effects of biological mutations on the geno-
type. In this section we will describe only a subset of genetic operators that
are applicable to the frequently used genetic representations described ear-
lier. These operators are designed to modify genotypes of fixed length that
include only coding regions. Other types of genetic operators that can mod-
ify the length of genetic strings, such as deletion, insertion, and duplication,
are used for more advanced representations tailored to evolve specific prob-
lems. We will see an example of those representations when we describe the
evolution of electronic analog circuits.

Genetic operators introduce diversity in the population and allow the ex-
ploration of novel solutions. The combination, or crossover, of genetic ma-
terial from two parents may, under some conditions, exploit useful genetic
building blocks in the two parents. Since genetic crossover is emphasized as
an important source of evolution in genetic algorithms, we will describe it
separately from other types of mutations.

1.8.1 Crossover

Crossover makes sure that offspring inherit characteristics from parents by
creating pairwise recombinations of the genomes of selected individuals.
This operator is also known as recombination. The newly created offspring areRECOMBINATION

randomly paired and parts of their genotypes are swapped by the crossover
operator with a probability pc. Crossover operators come in different forms,
which are tailored to the genetic representations. The idea behind genetic
recombination is that some of the resulting offspring may benefit from the
synergistic effect that results from the combination of subsolutions found by
the two parents.

1.8 Genetic Operators 27

a) 1 1 1 0 0 1 0 1 0 0 0 1 1 0

0 1 1 0 0 0 0 1 0 0 1 1 1 0

1 1 1 0 0 0 0 1 0 0 1 1 1 0

0 1 1 0 0 1 0 1 0 0 0 1 1 0

b) 0.2 0.6 1.2 3.0 0.8 2.4 0.6

0.4 0.4 1.0 3.4 0.6 2.2 0.6

0.4 0.6 1.0 3.0 0.8 2.2 0.6

0.2 0.4 1.2 3.4 0.6 2.4 0.6

c) 0.2 0.6 1.2 3.0 0.8 2.4 0.6

0.4 0.4 1.0 3.4 0.6 2.2 0.6

0.3 0.5 1.1 3.2 0.7 2.3 0.6

A B C D E F G G F C D B A E

E B C D G F A E

d)

e)

Figure 1.11 Examples of crossover operators. a) one-point; b) uniform; c) arithmetic;
d) for sequences; e) for trees.

However, it is not straightforward to tell whether it is effective in isolating
and recombining chunks of genomes that correspond to a subsolution of the
phenotype. In that case, genetic recombination may amount to a large ran-
dom mutation and have a deleterious effect on the fitness of the individual.
To check if that is the case, one may compare at every generation the average
and best fitness values of genetically recombined individuals with those of
other individuals in the population. If recombined individuals report con-
sistently lower fitness values, crossover operates as a large random mutation
and consequently pc should be set to zero.

One-point crossover can be applied to discrete and real-valued representa-ONE-POINT

tions. It consists of randomly selecting a crossover point on each of the two
strings and swapping genetic material between the individuals around this
point (figure 1.11, a)). Multipoint crossover consists of randomly selecting n

crossover points on the two strings and exchanging genetic material that falls
between these points.

For real-valued representations one may also choose between uniform and
arithmetic crossover. Uniform crossover consists of exchanging the geneticUNIFORM

content at n randomly chosen positions (figure 1.11, b)). Arithmetic crossoverARITHMETIC

28 1 Evolutionary Systems

instead creates a single genotype by taking the average of n randomly chosen
positions of the two genetic strings (figure 1.11, c)).

When the genotype represents a sequence, the crossover operator must
respect more constraints. For example, in the case of the traveling salesman
problem described earlier, one wishes to change the order in which each city
is visited, while ensuring that all cities are visited and that no city is visited
twice. Therefore, each genotype must contain all the symbols corresponding
to all cities and must not contain multiple instances of the same symbol. The
crossover operator creates a genotype by taking a randomly selected part of
one string and filling the remaining slots with the remaining cities arranged
in the order that appears on the other string with wraparound (figure 1.11,
d)). For tree-based representations, crossover randomly selects a node on
each parent and swaps the two corresponding subtrees (figure 1.11, e)).

1.8.2 Mutation

Mutation operates at the level of the individual. Mutations are small random
modifications of the genotype that allow evolution to explore variations of
existing solutions. The mutation operator should be designed so that every
point in the space of the genetic representation could be potentially reached.
Mutations are useful to escape local minima and to achieve further progress
in highly converged populations where genetic recombination has little ef-
fect. However, the number and size of mutations should be relatively low to
prevent loss of previously discovered solutions.

Typically, a mutation consists of changing the contents of each position of
the genotype with probability pm. In the literature we often find mutation
probabilities on the order of 0.01 per position (which is much higher than
in biology), but the actual values should be chosen considering the effects
of mutations on the fitness of the phenotype, which depend on the type of
mapping from genotype to phenotype and on the properties of the problem
to be solved.

In binary representations, mutation consists of toggling the selected bit
values (figure 1.12, a)). In real-value representations, a selected position is
modified by adding a random value drawn from a Gaussian distribution
N(0, σ), where 0 is the mean and σ is the variance, in order to produce few
large mutations (figure 1.12, b)). In representations that describe sequences,
as in the example of the traveling salesman problem, mutation consists in
swapping the contents of two randomly chosen positions on the genotype of
the individual (figure 1.12, c)). In this latter case, the probability of mutation

1.9 Evolutionary Measures 29

Figure 1.12 Example of mutations. a) Toggling a binary position; b) Adding a ran-
dom value to a position in real-valued representations; c) Swapping the contents of
two positions in a sequence representation; d) for trees.

refers to individuals, not to positions in the genotype. In tree-based repre-
sentations, mutation consists in changing the content of a selected node with
another element from the same set (figure 1.12, d)). If the selected node is a
terminal, it will be replaced by another element randomly chosen from the
terminal set. If the node is a function, it will be replaced by another element
randomly chosen from the subset of functions in the function set that have
the same number of terminals.

1.9 Evolutionary Measures

The evolutionary search space is often described as a fitness landscape, whichFITNESS LANDSCAPE

can be visualized as a multidimensional surface obtained by associating a
fitness value to all possible individuals that can be obtained from the genetic
representation (figure 1.13). Since it is impossible to sample all possible indi-
viduals for any realistic problem, in practice one considers a few hundred or
thousand genotypes generated by randomly sampling the genetic represen-
tation. For the sake of visualization, often fitness landscapes are collapsed
to a two-dimensional graph where all sampled individuals are lined on the
same axis according to some ordering criterion (for example, string distance
or sampling order). If most of the fitness values are equal or zero, the evolv-
ability of the system is very low. In this case, it is advisable to use large
populations to change the genetic representation. However, the landscape

30 1 Evolutionary Systems

fitness

genetic space

Figure 1.13 The fitness landscape gives an indication of the fitness distribution for
a random sample of genotypes. Each point on the x-axis represents a different in-
dividual. Neighborhood on this graph does not imply neighborhood on the fitness
landscape where two individuals are true neighbors only if the application of the
genetic operators allows the direct transition between them.

metaphor can be quite misleading because it implies a notion of neighbor-
hood, which often does not match the way in which genetic operators move
on the genetic space.

To better explore the evolutionary search space from the perspective of the
evolutionary operators, one may sample the surroundings of individuals by
applying multiple times in sequence a genetic operator (for example, muta-
tion) for a given number of steps. The size of the improvement (the larger the
better) gives a rough indication of how easy it is for evolution to move over
the landscape. Yet another method consists in retaining only operations (for
example, mutations) that produce an improvement of the fitness and count
the number of steps necessary to obtain a fitness improvement of a given
magnitude. Other methods for assessing the properties of fitness landscapes
are available (for a critical review, see T.M.C. Smith et al. 2001), although all
of them can provide only a partial picture unless the sampling size covers
almost the entire genotype space.

The fitness graph instead is a visualization of performance of an evolution-FITNESS GRAPH

ary algorithm across generations (figure 1.14). Researchers typically plot the
average fitness of the population and the fitness of the best individual at
every generation. Since artificial evolution builds upon a restricted pool of
individuals, multiple runs with different initialization of the population are
necessary to draw any solid conclusion about the quality of the final solution.
Therefore, fitness graphs often display averages across several runs and in-
clude the standard error for each data point. Fitness graphs are meaningful

1.9 Evolutionary Measures 31

100806040200
0.0

0.1

0.2

0.3

Average

Max

Generations

Fi
tn

es
s

Figure 1.14 A fitness graph shows the average and best fitness of the population
across generations (each data point shows the average and standard error over mul-
tiple runs from different initial conditions).

only if the problem to be solved is stationary, that is, its search space does
not change properties while the evolutionary algorithm is sampling it. If the
fitness function, or the problem-defining features change over generations,
the fitness values obtained at different generations are no longer compara-
ble unless a suitable scaling of the previously obtained fitness values can be
performed (e.g., Floreano 1992).

An evolutionary run lasts as long as a satisfactory individual is generated
or when the average and best fitness values do not grow any further. How-
ever, in the latter case it is not straightforward to tell whether the individuals
have reached the maximum attainable fitness value or are only temporarily
stuck in a local minimum. Further information can be gained from the anal-
ysis of the diversity of the population. If the population has lost most of itsPOPULATION

DIVERSITY diversity, it is very likely that crossover won’t have significant effects and
that the population moves in the search space by means of mutations only.
That implies that the fitness values may not grow further or may take a lot
of generations to display some improvement. However, if the genotype-to-
phenotype mapping is redundant or allows for mutations that do not affect
the fitness of the phenotype, the population may move along “fitness neu-NEUTRAL PATHS

tral” paths that could eventually lead to a novel solution with higher fitness.
In this case, the population average and best fitness may display long periods
of stasis interrupted by rapid increments when a new solution is found.

32 1 Evolutionary Systems

generation

40036032028024020016012080400

d
iv

e
rs

it
y

10

100

10,000

fi
tn

e
s
s

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

max fitness

diversity

1,000

Figure 1.15 Diversity of the population across generations of a function optimiza-
tion experiment measured with the all-possible-pairs diversity measure described in
the text.

There are several ways to measure the diversity of an evolving population
that depend on the genetic representation and genotype-to-phenotype map-
ping. In the case of direct encoding of phenotype parameters with real-value
and binary representations, the all-possible-pairs diversity (Wineberg and Op-ALL-POSSIBLE-PAIRS

DIVERSITY pacher 2003) may be an appropriate measure of population diversity:

Da(P) =
∑

i,j∈P

d(gi, gj)

where the Da(P) is given by the sum of the Euclidean or Hamming dis-
tances, respectively, between the genotypes of all the pairs of individuals in
the population. Figure 1.15 shows an example of application of this measure
to estimate the population diversity during an evolutionary run.

An alternative measure of diversity that is especially useful for nonbinary
genetic alphabets is the entropic diversity:ENTROPIC DIVERSITY

De(P) =
l∑

k=1

∑
α∈A

fk(α) log fk(α)

where fk(α) is the frequency of the character α of the genetic alphabet A at
the position k in the population genome, and l is the length of the genomes.
However, when individuals in the population can have genotypes with a

1.10 Types of Evolutionary Algorithms 33

different length, these two measures are no longer applicable. This happens,
for example, with the tree-based genetic representations used in genetic pro-
gramming and with other variable-length genotypes. In these cases one
must resort to more sophisticated measures of population diversity. Typi-
cally, these are based on an estimation of the variety of substructures that
exist in the population genomes, for example, the variety of subtrees (Burke
et al. 2002) or the variety of substrings (Mattiussi et al. 2004).

1.10 Types of Evolutionary Algorithms

As we mentioned earlier, there are several types of evolutionary algorithms
that differ mainly in the choice of genetic representation and operators (Eiben
and Smith 2003). The optimal choice of algorithm, or the assembly of a
custom-made evolutionary algorithm, depends on the properties of the prob-
lem to be solved; in other words, there is no single algorithm that performs
better on a majority of problems (Michalewicz 1996). In this section we men-
tion some common types of algorithms that make use of the elements de-
scribed in the previous sections. We then describe additional variations that
have idiosyncratic features.

Genetic algorithms (Holland 1975) operate on binary representations of theGENETIC ALGORITHMS

individuals and emphasize the role of building blocks and crossover. GeneticGENETIC

PROGRAMMING programming (Koza 1992) operates on tree-based representations of computer
programs and circuits. Evolutionary programming (Fogel et al. 1966) operatesEVOLUTIONARY

PROGRAMMING directly on the parameters that define the phenotype by applying pertur-
bations drawn from a zero-mean Gaussian distribution (small perturbations
are more likely than large perturbations). Evolutionary programming often
relies on tournament-based selection with gradual population replacement
and does not use crossover. Evolutionary strategies (Rechenberg 1973) are sim-EVOLUTIONARY

STRATEGIES ilar to evolutionary programming, but the variance of the distribution used
for mutation of the individual is genetically encoded and evolved along with
the parameters that define the phenotype.

Island models maintain a set of diverse populations that evolve in paral-ISLAND MODELS

lel and exchange genetic strings every generation. The idea is to let evolu-
tion pursue different courses in different islands while maintaining diversity
and exploiting potential synergies by exchanging genetic strings between
islands. Island models, which are also suitable for parallel implementa-
tions of evolutionary algorithms, display better performance than single-
population evolutionary algorithms for problems that are linearly separable

34 1 Evolutionary Systems

where good subsolutions discovered in different islands can be recombined
(Whitley et al. 1998). The main parameters of island models are the number
of different populations, the number and frequency of individuals migrating
across populations, and the paths used by migrants.

In steady-state evolution the individuals that obtained the worst fitness val-STEADY-STATE

EVOLUTION ues are replaced by offspring of the individuals that obtained the best fitness
values. The idea is to maintain in the population the best solutions found so
far while adding better solutions as they become available. It has been ex-
perimentally shown that steady-state evolution is suitable when small pop-
ulations are used Whitley and Kauth (1988); Syswerda (1989). Floreano et al.
(2002) devised a steady-state algorithm for very small populations (less than
ten individuals) where an individual is randomly chosen from the popula-
tion, mutated, and evaluated. If its fitness is equal or larger than the fitness
of the worst individual in the population, this mutated individual replaces
the worst individual; otherwise it is discarded. A mutated individual re-
places the worst individual even if it has the same fitness, in order to allow
for “neutral walks” (Kimura 1983) on the genetic landscape, which may be
a useful strategy for evolution of small converged populations (Harvey and
Thompson 1996).

Simulated annealing (Kirkpatrick et al. 1983) is a function optimization pro-SIMULATED

ANNEALING cedure based on random perturbations of a candidate solution and a proba-
bilistic decision to retain the mutated solution. Simulated annealing takes in-
spiration from the process of shaping hot metals into stable forms through a
gradual cooling process whereby the material transits from a disordered, un-
stable, high-energy state to an ordered, stable, low-energy state. In simulated
annealing, the material is a candidate solution (equivalent to the individual
phenotype of an evolutionary algorithm) whose parameters are randomly
initialized. The solution undergoes a mutation and, if its energy (equiva-
lent to the inverse of the fitness) is lower than that at the previous stage, the
mutated solution replaces the old one. Instead, if the energy is higher, the
mutated solution replaces the old one with a probability proportional to the
energy difference and the current temperature. Initially, when the temper-
ature of the system is high, mutated solutions with relatively high energy
(low fitness) have some probability of being retained. The temperature of
the system is lowered every n evaluations, effectively reducing the probabil-
ity of retaining mutated solutions with higher energy states. The procedure
stops when the annealing temperature approaches the zero value. The ma-
jor differences between simulated annealing and evolutionary algorithms is
that the former operates on a single individual whereas the latter operate

1.10 Types of Evolutionary Algorithms 35

on a population of individuals that compete for reproduction and in most
cases exchange genetic material. For a more extensive comparison, we refer
interested readers to (Davis 1989).

Population-based incremental learning (PBIL) operates on a single geneticPOPULATION-BASED

INCREMENTAL

LEARNING (PBIL)
string that represents an entire population of individuals (Baluja and Caru-
ana 1995). The algorithm assumes that the genotypes of all individuals have
the same length and use a binary encoding. The population string is a real-
valued vector P storing at each position Pi the probability of finding a 1 at
that position in all the n individuals of the population. At each generation g,
n binary genotypes are created by sampling the population string and their
fitness evaluated.The population string, which is initialized so that Pi = 0.5
for all i, is updated by moving the probability values Pi in the direction of
the average values Îi observed at location i in the best s individuals of the
sampled population:

P g
i = (1 − η)P g−1

i + ηÎg
i

where 0 ≤ η ≤ 1 is an update constant. At any given time PBIL requires only
storage of the population string P and of the s best individuals used for the
update. PBIL is therefore suitable for embedded applications of evolutionary
algorithms where memory size is an issue. It has been shown experimentally
that PBIL achieves solutions of comparable quality to genetic algorithms in a
number of problems (Baluja 1996; Urzelai and Floreano 1999), although it is
slower where crossover could provide an advantage.

However, PBIL can stagnate in local minima when the problem domain is
dynamic. To compensate for that problem, Baluja (1997) suggested adding a
small mutation to the population string values. Urzelai and Floreano (1999)
proposed instead a variation of the algorithm, named adaptive PBIL (A-PBIL),ADAPTIVE PBIL

that improves both convergence speed and robustness to dynamic environ-
ments. In A-PBIL the update constant is proportional to the fitness gain ob-
tained by the s best individuals with respect to the average fitness of the
population in the previous generation. After each update of the population
string, the values Pi tend to return to their initial value 0.5. Experimental
tests of A-PBIL in dynamic environments and with changing fitness func-
tions showed that the algorithm converged as fast as a standard genetic algo-
rithm and, in addition, it always readapted to dynamically changing fitness
landscapes where genetic algorithms and the original PBIL failed.

36 1 Evolutionary Systems

Box 1.1: DNA computing
DNA computing is an approach to parallel problem solving based

on DNA replication. Adleman (1994) showed how DNA molecules
could be used to find the shortest path of the traveling salesman prob-
lem (figure 1.8). The process was articulated in the following three
stages.

(1) Encode each of the N cities as a unique sequence of nucleotides
(for example, Davos could be ACCTTA and St. Moritz could be
TATCTA) and each possible route between two cities as the sequence
of nucleotides corresponding to the complement of the second half of
the departure city and of the first half of the arrival city (for example,
the complementary strands of Davos and St. Moritz are TGGAAT and
ATAGAT and the route between Davos and St. Moritz is the concate-
nation of AAT and ATA). Once all cities and possible routes have been
created, make many copies of them (for example, 1013), and mix them
together. During mixing, route strands will bind to the complementary
strands of two cities, creating long concatenations of cities.

(2) At the end of the mixing process, one will find several strands
of different length. In order to select only the strands that represent
paths between N cities, suitable DNA strands can be selected according
to the number of nucleotides (for example, if the problem involves 10
cities each encoded with 6 nucleotides, suitable strands should have 60
nucleotides.

(3) Many of the DNA strands selected so far may contain several
instances of the same city and lack other cities. In order to select only
strands that contain all cities, one starts by selecting all DNA strands
that contain the first city (for example, Davos). This is achieved by cre-
ating a complementary DNA strand attached to a magnetic bead and
“fishing out” the subset of DNA strands that bind to it. The opera-
tion is repeated on the resulting subset by fishing out the sub-subset of
DNA strands that contain also the second city (for example, St. Moritz).
This process is repeated until one is left with only the DNA strands
that connect all N cities and corresponds to the solution of the traveling
salesman problem.
Since a DNA strand can reproduce at a rate of up to 500 bases per sec-
ond and several strands replicate in parallel, after a few iterations the
number of processed data is larger than that of the fastest supercom-
puter available today. However, the number of DNA strands necessary
to solve a computationally hard traveling salesman problem becomes
so large that they could not possibly fit in a single building. (cont.)

1.11 Schema Theory 37

Box 1.1 (continued)
Furthermore, it is not yet possible to automate the three stages required
by the process. It took Adleman seven days to solve the equivalent of a
seven-city problem. Also, it is not clear how many problems could be
advantageously solved by such a machinery.

1.11 Schema Theory

John Holland (Holland 1975) formulated schema theory to formally show how
genetic algorithms efficiently explore the search space for increasingly bet-
ter solutions. Schema theory postulates that a genetic algorithm explores a
larger number of potential solutions, also known as schemas, than the numberSCHEMAS

of individuals in the population. A schema is a pattern-matching device that
encompasses many possible genotypes. It is defined over the same alphabet
used for the genetic representation, but includes an additional symbol ∗ in-
terpreted as “don’t care.” For example, given a binary genotype with length
l = 5, the schema set is defined over {0, 1, ∗} and schema <*,1,1,1,1> will
match genotypes <0,1,1,1,1> and <1,1,1,1,1>. For a genetic represen-
tation of cardinality k and length l, there are (k + 1)l schemas, that is, many
more than the number of different genotypes that the genetic algorithm eval-
uates over generations.

The observed fitness of a particular schema is given by the average fitness
of all the genotypes represented by that schema. John Holland mathemati-
cally showed that selective reproduction allocates an exponentially increas-
ing number of samples to schemas with above-average fitness and an ex-
ponentially decreasing number of samples to schemas with below-average
fitness. Consequently, the average population fitness will increase because
there will be an increasing number of individuals with higher fitness. Sche-
ma theory was later generalized to encompass other types of genetic repre-
sentations (Vose 1991).

However, selective reproduction alone does not explain how evolution can
generate individuals with higher fitness over generations. To address this is-
sue, John Holland proposed the so-called building blocks hypothesis. A build-BUILDING BLOCKS

ing block is a substructure of a schema that gives a positive contribution to
the fitness of the individual and that can be combined with other building
blocks to produce better schemas. John Holland argued that schemas with

38 1 Evolutionary Systems

higher fitness are generated through crossover by exploring various combi-
nations of building blocks from different individuals. By incorporating one-
point crossover into schema theory, he also showed that evolution will favor
schemas with a shorter distance between the first and last fixed position (e.g.,
<*,1,1,*,*> has a shorter distance than <1,*,*,*,1>). This tells us that
the genetic representation should be designed to allow for the presence of
short building blocks.

The combination of schema theory and of the building blocks hypothe-
sis suggests that the role of crossover consists of exploiting the genetic ma-
terial present in the evolving population by gradually combining building
blocks into better structures. Accordingly, mutation would play a comple-
mentary role by exploring parts of the search space that are beyond the re-
gion spanned by the current population. An effective genetic algorithm must
therefore strike a good balance between exploitation of existing solutions and
exploration of new solutions. Practitioners of genetic algorithms that en-
dorse schema theory use a rather high crossover probability (say, more than
0.8 per pair) and a low mutation probability (say, less than 0.01 per position).
However, the actual values depend on the properties of the search space and
are usually empirically tuned by trying a few combinations.

Over the last years, schema theory has been extensively discussed, ex-
panded, and criticized (several criticisms are summarized in (Mitchell 1996)).
One of the main criticisms concerns the evaluation of schemas. Schema the-
ory holds as long as a schema is uniformly sampled to provide a good es-
timate of its real fitness, which is given by the average of all possible indi-
viduals encompassed by that schema. In practice, a genetic algorithm eval-
uates the fitness of only a subset of all possible individuals encompassed
by a schema. Observed fitness is thus only an estimation of the real fit-
ness of a schema. Although the number of observations for good schemas is
increased along generations, selective reproduction introduces a strong ob-
servation bias toward an increasingly smaller subset of the genetic strings
encompassed by that schema. In other words, as the population converges
toward a few genetic strings, it no longer represents a uniform sample of the
schemas.

Another issue of concern is to what extent building blocks really exist for
a given genetic representation. And even if they do exist, the crossover op-
erator may not be properly designed to excise and recombine them in geno-
types of higher fitness. In the absence of building blocks or of a suitable
crossover operator, the genetic recombination of individuals is analogous to
a very large random mutation that may disrupt evolutionary progress.

1.12 Human-Competitive Evolution 39

1.12 Human-Competitive Evolution

Evolutionary algorithms are nowadays used in several engineering fields,
from design of electronic boards and wing profiles to biochemical synthesis,
all the way to scheduling and process optimization, in order to find solu-
tions for problems that cannot be easily solved by other techniques (for a
review of applications, see L. Davis 1991; Dasgupta and Michalewicz 1997;
Michalewicz and Fogel 2004).

Furthermore, evolutionary computation has the potential to discover nov-
el solutions that are both innovative and perform better than human-de-
signed solutions. The first Human-Competitive Award in Genetic and Evo-
lutionary Computation was launched in June 2004 at the Conference on Ge-
netic and Evolutionary Computation in Seattle. Entries were solicited for
human-competitive results that were produced by any form of genetic and
evolutionary computation and that had been published in the open litera-
ture (conference proceedings, articles, technical reports, theses, books, etc.)
within the 12 months preceding the conference. The selecting committee de-
fined an evolved result as human-competitive if it satisfies at least one of the
following eight criteria (http://isgec.org/gecco-2004/):

1. The result was patented as an invention in the past, is an improvement
over a patented invention, or would qualify today as a patentable new
invention.

2. The result is equal to or better than a result that was accepted as a new
scientific result at the time it was published in a peer-reviewed scientific
journal.

3. The result is equal to or better than a result that was placed in a scientific
database or archive of results maintained by an internationally recognized
panel of scientific experts.

4. The result is publishable in its own right as a new scientific result inde-
pendent of the fact that the result was mechanically created.

5. The result is equal to or better than the most recent human-created solu-
tion to a long-standing problem for which there has been a succession of
increasingly better human-created solutions.

6. The result is equal to or better than a result that was considered an a-
chievement in its field at the time it was first discovered.

40 1 Evolutionary Systems

7. The result solves a problem of indisputable difficulty in its field.

8. The result holds its own or wins a regulated competition involving human
contestants (in the form of either live human players or human-written
computer programs).

1.12.1 Example: Evolution of an Antenna

One of the winning entries at the 2004 conference described an evolved X-
band antenna design and flight-ready prototype to be deployed on NASA’s
Space Technology 5 (ST5) spacecraft (Lohn et al. 2004). The NASA ST5 mis-
sion consisted of developing three nanosatellites (figure 1.16, top) of 50 cm in
diameter and less than 25 kg that fly in the Earth magnetosphere and com-
municate with the ground station using the same technology of cell phones.
In this context, the antenna design plays a crucial role and is a notoriously
hard problem because of the difficulty of taking into account complex elec-
tromagnetic interactions at design time. The NASA ST5 mission managers
provided a specification list to an outside contractor who produced a quadri-
filar helical antenna (figure 1.16, bottom left).

The authors of the winning entry instead used an evolutionary algorithm
where the fitness function measured the properties of evolving antennas
against the specifications given by the mission managers. The genotype used
a tree-based representation where each node was an antenna-construction
command from the following list:

• Forward(length, radius): Add a wire with the specified length and radius
from the current location and then change the current location to the end
of the wire.

• Rotate-x(angle): Change the current orientation around the x-axis by the
specified amount.

• Rotate-y(angle): As above, for the y-axis.

• Rotate-z(angle): As above, for the z-axis.

The antenna was generated by executing the commands at each node in the
tree, starting from the root node.

The authors evaluated each antenna design several times with small ran-
dom perturbations added to the radius of the segments and to the joints in or-
der to take into account manufacturing imprecisions. Only the worst fitness

1.12 Human-Competitive Evolution 41

Figure 1.16 Top: Prototype of nanosatellite. Bottom left: Human-designed antenna
(quadrifilar helical). Bottom right: Evolved antenna. Images courtesy of G. Hornby,
NASA Ames Research Center.

score of all evaluations was retained in order to maintain a conservative esti-
mate of the antenna performance. These noisy and worst-fitness conditions
produced antennas that worked over a broader range of frequencies than an-
tennas evolved without noise and worst-fitness strategy. In all evolutionary
conditions, antenna designs were evaluated using a scaled-down version of
computationally intensive simulation software that simplified some aspects
of the electromagnetic modeling. The best designs were then tested using the
full version of the simulation software and eventually built and measured in
an anechoic chamber at NASA Goddard Space Flight Center.

The results of the hardware measurements showed that the best evolved
branching antenna (figure 1.16, bottom right) had significantly better gain
on a broader range of orientations and lower power requirements than the
human-designed antenna. Furthermore, it took only three months to pro-

42 1 Evolutionary Systems

duce the final result versus five months for the human-designed antenna.
This result was therefore considered human-competitive against criteria 5
and 7. Although evolved antennas are more difficult to manufacture than
those produced by human design, they can be quickly re-evolved if the mis-
sion constraints change. Engineers at NASA took advantage of this rapid
redesign feature when it was decided that the planned nanosatellites would
orbit at a different orientation and altitude and thus require a new antenna
design.

1.13 Evolutionary Electronics

We devote the remaining part of this chapter to evolutionary electronics, that
is, to the application of the evolutionary approach to the design of electronic
circuits. By electronic circuit we mean a collection of interconnected elec-
tronic devices such as transistors, resistors, and logic gates. The designer
must specify the kind of devices that compose an electronic circuit and their
connectivity, which constitute what is called the topology of the circuit. SinceCIRCUIT TOPOLOGY

each kind of device is typically endowed with a certain number of param-
eters (for example, the value of resistance of a resistor, or the value of a
geometric parameter of a transistor), the designer is required to define the
values of those parameters, an operation known as the sizing of the circuit.CIRCUIT SIZING

Finally, to physically build an electronic circuit it is necessary to specify not
only which device is connected with which but also what is the physical lay-
out of the devices and connections. This corresponds to the placement of the
devices and routing of the connections between them.

The process of electronic design starts with the specification of a desired
functionality and of a range of operating conditions in which the functional-
ity must be guaranteed. When successful, the design process produces the
parameter values, the topology, and, possibly, the physical layout of an elec-
tronic circuit that realizes the required functionality in the specified range
of operating conditions. In some cases the physical layout influences sub-
stantially the behavior of the circuit and in this case placement and routing
constitute an integral part of the circuit design problem. In other cases the
influence of the physical layout on the functionality can be expected to be
negligible and the electronic design problem proper can be considered con-
cluded with the definition of the circuit topology and parameter values.

In the simplest design scenario, the specification of the desired functional-
ity is followed by the choice of a predefined circuit topology which is known

1.14 Lessons from Evolutionary Electronics 43

to produce that kind of functionality. For example, a designer asked to pro-
duce a circuit that amplifies the difference of two signals might know that
the circuit shown in figure 1.17 has a topology which, for a suitable choice
of the device parameters, can provide the desired functionality and meet all
the required specifications. Thus, the design problem in this case is reduced
to the determination of a set of parameter values. In an evolutionary per-
spective this electronic design problem corresponds to a case of evolutionary
parameter optimization. The examples reported in the literature (for exam-
ple, Alpaydin et al. 2003; Nam et al. 2001) testify to the practical relevance
of using artificial evolution even in this simple design scenario. Nonethe-
less, the real nature of evolutionary electronics can be fully appreciated only
when considering the possibility of evolving simultaneously both the pa-
rameter values and the topology of the circuit. In this case, the definition of a
genetic representation for the circuit becomes a much more challenging prob-
lem, but the creative potential of the evolutionary process is correspondingly
unleashed. The contextual evolution of the physical layout of the electronic
circuits along with the parameter values and topology obviously constitutes
a further step in this direction. To keep things simple, this subject will not
be pursued here. The reader is referred to (Koza et al. 2003) for examples of
circuit evolution that include routing and placement.

We start the exploration of evolutionary electronics with an overview of
some general aspects of evolutionary electronics and some comments about
its place in the general context of evolutionary methods. Then, we will con-
sider separately the cases of digital and analog evolutionary design, describ-
ing briefly the conventional approaches to each problem before describing
the specificities of their evolutionary counterpart. The methodological dis-
cussion is followed by the analysis of some actual examples of circuit evolu-
tion. The significance of the current results is finally discussed in the crucial
perspective of circuit robustness and verification.

1.14 Lessons from Evolutionary Electronics

There are several reasons for singling out evolutionary electronics among the
many existing applications of evolutionary methods and for examining it in
detail. A first reason is that electronics is a mature technology which can pro-
vide a wealth of tools and devices permitting the exploitation of the potential
of evolutionary methodologies. For example, there exist many kinds of re-
configurable devices and simulators which, as explained below, permit the

44 1 Evolutionary Systems

V+ V-
Vout

Figure 1.17 The schematic representation of an electronic circuit. When a circuit
topology that can realize the required circuit performance is known, it can be used as
a starting point for the evolutionary design, which reduces to an evolutionary opti-
mization of a collection of numeric parameters.

automation of the process of evaluation of the fitness of the circuits generated
by artificial evolution. A second reason for the choice of electronics is the fact
that it provides a unified context for the illustration of many aspects that are
relevant to the real-world application of evolutionary methodologies that do
not find a place in elementary descriptions of evolutionary algorithms. In
this sense, this material can also be considered a concrete illustration and
extension of some points that were briefly sketched in the previous pages,
and many of the comments of the following sections that refer to electronic
circuits can be seen to apply to other domains of evolutionary design. Thus,
in what follows, “evolved circuit” can be often read to mean “evolved sys-
tem.” A third and pragmatically more compelling reason for focusing on
evolutionary electronics is that electronic circuits can be found in an enor-
mous variety of present-day systems, with an ever-increasing demand for
wider applicability, better performances, more complex functionalities, and
lower cost. Conventional design practices based on human circuit design
expertise are only partially able to satisfy this demand. Thus, alternative
design approaches are called for to complement those established practices.
Evolutionary electronics has the potential for being one of those alternative
approaches because it appears ideally suited to contexts where the limita-
tions of the conventional approach are most apparent, such as

1.15 The Role of Abstraction 45

• design problems where the circuit specifications are given in terms that
are difficult to formalize in the way required by conventional design prac-
tices (for example, a global measure of performance) but are naturally
expressed as an evolutionary problem;

• problems where systematic design techniques are scarce or missing alto-
gether and the progress in the generation of satisfying solutions is trusted
to the expensive and possibly uncertain insight of the human designer;

• design problems where existing systematic design techniques manage the
complexity of circuit design by imposing a number of constraints that re-
sult in a waste of devices or performance.

Before entering into the details of these contexts with actual examples of evo-
lutionary experiments and evolved circuits, it is useful to consider in gen-
eral the characteristics of the conventional design process and compare them
with those of the evolutionary approach. In particular, it is useful to consider
the crucial role played in any design process by the concept of abstraction.

1.15 The Role of Abstraction

Etymologically, “to abstract” means “to draw away.” This refers to the fact
that the process of abstraction consists in drawing away conceptually, that
is, in disregarding, some aspect or property of a system, focusing on a sub-
set of its original properties. We have already met one widely used example
of abstraction, namely, the circuit theory abstraction that is implicit in the
representation of an electronic circuit in the form exemplified by figure 1.17.
This abstraction consists in considering the circuit as composed of electronic
devices that interact only through the connecting wires, disregarding the
fact that in reality they interact also via electromagnetic fields that are not
“guided” by the wires. The cognitive advantage of the process of abstraction
consists in the possibility of thinking about the resulting system and its inter-
actions only in terms of the retained properties. Obviously, in this respect an
abstraction is meaningful as long as the aspects that are disregarded are actu-
ally irrelevant to the system behavior of interest. In other words, the system
must possess some properties that make the separate consideration of the
retained properties meaningful and useful. For example, the circuit theory
abstraction is meaningful and useful only if the interaction via nonguided
electromagnetic fields is actually small.

46 1 Evolutionary Systems

Figure 1.18 Complex systems produced by natural evolution and by human design
are typically organized into a hierarchy of levels of abstraction. In this hierarchy, a
system at one level becomes a building block for the system defined at the next higher
level.

Considering the limits of the human capacity for processing information
(G.A. Miller 1956), the use of abstraction appears essential for human design
of complex systems, since it decreases the number of effects and interactions
that the designer must take into account simultaneously. In fact, the conven-
tional approach to design consists typically in defining and working with
a succession of hierarchical layers of abstraction (figure 1.18). This is par-HIERARCHICAL

STRUCTURE ticularly apparent in the bottom-up design of computer programs, where
the design consists in building what can be seen as a succession of more
and more specific programming languages with those at lower levels consti-
tuting general purpose programming languages, and those at higher levels
defined ad hoc by the programmer in view of the particular application at
hand (Graham 1993). For example, the assembly language can be used to

1.15 The Role of Abstraction 47

build a compiler for the C programing language, which can be used to build
a compiler for the C++ programming language, which in turn can be used to
build a spreadsheet application and, within it, an interpreter for a macrolan-
guage. This hierarchical decomposition can be also observed in virtually
every field of human design and particularly in the field of electronic circuit
design, where a hierarchical succession of building blocks (also called cells or
modules) of increasing complexity and specialization is defined, and where at
each level of the hierarchy the designer thinks almost exclusively in terms of
the “language” of the cells defining that level.

The cognitive advantages provided by the use of abstraction, however,
come at a cost. This cost concerns the efficiency in the use of the collec-
tion of resources that constitute the system produced by the design process.
In other words, we can say that there exists an abstraction-efficiency tradeoff
or a cost of abstraction. The tradeoff is due to the fact that the process of ab-COST OF ABSTRACTION

straction leads to the disregarding of a certain number of physical effects and
interactions. By actively exploiting those effects and interactions there exist
typically ways to build a system that implements the same functionalities
using fewer resources. Alternatively, there exist ways to use the same re-
sources to build a system with better performances and functionalities. This
phenomenon is exemplified by the history of the P2, one of the most success-
ful commercial electronic amplifiers of all time. As reported in (Pease 1991),
the exceptional performance of the P2 was due to a interaction between dif-
ferent parts of the circuit which was not contemplated by the circuit theory
abstraction on which the design of the circuit was apparently based (it is not
clear if this interaction was purposely built in the circuit by the designer, or
if it was just a lucky accident). As a consequence, none of the competitors
who analyzed and tried to reverse-engineer the circuit on the basis of this
abstraction was able to replicate the P2 performance. The original manufac-
turer thus remained for many years (and very profitably) the sole source of
this kind of amplifier, until the development of more performing elementary
devices enabled the attainment of the P2 performances using conventional
design techniques.

The need for abstraction is not limited to the case of conventional design,
but extends also to evolutionary design. This can be understood by consider-
ing that a complex system, be it evolved or designed by hand, is a combina-
tion of interacting parts that contribute to the workings of the whole system.
As discussed in the first part of this chapter, evolution works by producing
and testing random changes in the structure of the system. If every part of the
system interacts with almost every other part, any change in a part of the sys-

48 1 Evolutionary Systems

space of all electronic circuits

current space of evolutionary designs

current space of conventional designs

Figure 1.19 An idealized representation of the spaces of electronic circuits and elec-
tronic designs (adapted from J.F. Miller et al. 2000). The discovery of new design
methodologies could enlarge the space of conventionally designed circuits, whereas
the discovery of new evolutionary techniques, as well as the increase of the avail-
able computational power, could enlarge the space of circuit designs accessible to
evolutionary methods.

tem results in the alteration of numerous functionalities of the system. Since
a random change has a greater probability of disrupting an evolved func-
tionality than of improving it, beyond a certain degree of complexity of the
system there would be virtually no possibility that the application of a ran-
dom change producing effects on many parts of the system would produce
a global improvement of its functionality. Thus, in the presence of an unlim-
ited global connectivity the evolutionary process would soon come to a halt.
The solution to this evolvability problem lies in the limitation of the interac-
tions of one part of the evolved system with all the other parts (for example,
by imposing a modular or hierarchical structure, which is observed in living
organisms and in complex technological systems), so that the evolutionary
process can produce changes with local effects. This limitation of the number
of interactions permits disregarding a lot of potential interactions, that is, it
corresponds to the enforcing of an abstraction. Ideally, it is the evolutionary
process itself that should be let free to choose the right kinds of abstraction
for the problem at hand. This would correspond to the implementation of a
process of unconstrained evolution. Unfortunately, for technical and concep-UNCONSTRAINED

EVOLUTION tual reasons, the full endowment of an artificial evolutionary process with
this kind of flexibility is still an open issue. It is instead usually the case that
certain abstractions are imposed from the outside on the evolutionary pro-
cess, typically in the form of constraints on the kinds of building blocks that

1.16 Analog and Digital Circuits 49

t t

clock
signal

a
m

p
lit

u
d
e

Figure 1.20 Analog signals are continuous in both time and amplitude (left). Digital
signals (right) are discrete in the amplitude and, typically, their amplitude can change
only at discrete time instants identified by a periodic clock signal.

are available for the design and on the structure of the genetic representation
(Gordon and Bentley 2002).

One might at this point wonder what advantage there could be in using
an evolutionary design process rather than a conventional approach, given
that both must submit to the abstraction-efficiency tradeoff. The answer is
that the limitations of an artificial evolutionary process can be different from
those of a human designer. For example, the number of interactions between
the elements that compose a module that the evolutionary process can suc-
cessfully manage might be much greater than the number of those that can be
handled by a human designer. Consequently, even if the requirement of ab-
straction prevents both the conventional and the evolutionary design process
from exploring the space of all the possible electronic circuits, the space of de-
signs accessible to the evolutionary process can be different from the space
of designs accessible to the conventional design techniques (figure 1.19) and
the circuits belonging to the former can thus usefully complement those of
the latter. Moreover, it is possible that new design principles can be discov-
ered by analyzing the workings of the evolved circuits, and added to the
collection of tools available for conventional design (J.F. Miller et al. 2000).

1.16 Analog and Digital Circuits

The connections between the devices that compose an electronic circuit con-
vey time-varying electric signals. A signal is considered as analog if its am-ANALOG

plitude takes its values in a continuous range, and digital if only a discreteDIGITAL

50 1 Evolutionary Systems

Box 1.2: Analog vs. digital
Let us consider the differences between analog and digital signals

and their consequences in terms of information content, resistance to
noise, and power consumption of the corresponding circuits.

The number of distinct signal amplitudes is finite in the digital case
and infinite in the analog case. Moreover, analog signals are typically
continuous in time, whereas digital signals are discretized also in time.
At first sight, the information conveyed by an analog signal is thus po-
tentially infinite, even if the signal has finite duration, whereas that con-
veyed by a digital signal is necessarily finite. Let us first consider the
issue in the time domain. The sampling theorem (Shannon 1949) tells us
that a band-limited signal, that is, a signal whose frequency content is
confined to a finite frequency interval of width W , can be reconstructed
with the information represented by a sequence of signal samples that
is discrete in time. Since all actual signals are band limited, we can
conclude that in practice a continuous-time signal has the same infor-
mation content of a discrete sequence of samples. When we consider
also the amplitudes, Shannon’s theorem for a noisy channel (Shannon
1949) tells us that the information that can be transmitted through it
depends on the average power P of the signal, on the power N of the
noise, and the bandwidth W of the channel. For example, for a channel
with white noise, the maximum rate of information transmission C is

C = W log2

P + N

N

Since the bandwidth and power of a physical signal are always limited
and the noise is never absent, the information content C of an actual
analog signal is always finite. Summing up, the amount of information
conveyed by actual signals – be they analog or digital – is always finite.

A fundamental difference between analog and digital signals is the
possibility to fight noise. Below a certain noise level, when noise cor-
rupts the amplitude of a digital signal, there is the possibility of restor-
ing it to its original level. In fact, in actual digital circuits each device, in
addition to its particular functionality, performs this operation of signal
restoration (Sarpeshkar 1998). Thanks to this possibility of easily restor-
ing their level, digital signals are characterized by a good tolerance of
noise, and very long sequences of operations can be performed on them
without worrying about the accumulation of the effects of noise. On
the contrary, analog signals do not permit this simple kind of signal
restoration and tend to accumulate progressively the effects of (cont.)

1.16 Analog and Digital Circuits 51

Box 1.2 (continued)
noise. Consequently, long chains of analog processing stages cannot be
used, lest the signals be completely swamped by noise.

Tolerance of noise in digital systems comes at some cost. Digi-
tal signals use only a few of the amplitude levels that could be ide-
ally distinguished according to Shannon’s formula for the channel ca-
pacity C. In other words, noise tolerance is obtained at the expense
of the (finite) amount of information that is carried by each signal.
The reduced information content of each signal
forces digital systems to adopt a distributed rep-
resentation of quantities. This can be appreciated
considering the structure of a typical analog-to-
digital converter (ADC), where a single input
line carrying an analog signal becomes many
output lines carrying binary digital signals (see
adjacent figure). There is also an energetic cost of the strategy used to
achieve noise tolerance in digital signals, which follows from the ne-
cessity of having signals switch between amplitude levels that are far
apart. The relevance of this problem is testified to by the magnitude
of the existing trend toward lower operating voltages in digital circuits
and by the fact that biological systems apparently evolved to achieve
noise (and fault) tolerance with a very different approach, based on
low-power (unreliable) devices, a combination of distributed and re-
dundant representations (Eliasmith and Anderson 2003), and an exten-
sive use of specialized analog devices (Sarpeshkar 2006). Finally, the
use of a distributed representation in digital electronics implies higher
wiring costs and complicates the circuitry required for the implementa-
tion of transformations and combinations of the represented quantities,
even simple ones like the sum of two signal amplitudes. On the other
hand, the use of a distributed representation in digital systems has the
definite advantage of permitting the increase of the resolution of the
representation with the addition of a few more signal lines, a result that
cannot be obtained with analog signals (von Neumann 1961).

collection of values is admitted (figure 1.20). In relation to the characteris-
tics of those signals, electronic circuits are classified into analog circuits and
digital circuits, with the expression mixed-signal circuits used to denote the
presence of both. In digital circuits it is the voltage amplitude that is typ-

52 1 Evolutionary Systems

100nF

2N2222

5V

1k�270k�

1k�

10nF

Vin

Figure 1.21 Analog circuits (left) are characterized by several parameters on which
evolution can act to slightly change the behavior of the circuit. These parameters are
typically absent from digital circuits (right) where evolution can operate only on the
topology of the circuit. The digital fitness landscape is therefore more discontinuous
and more difficult to explore than its analog counterpart.

ically discretized and assumed to take only two distinct levels. Note that
this assumption is actually an abstraction that disregards the values taken
by the signals during the transitions between these two levels. The result is
the familiar binary circuits that are at the heart of almost all present-day com-
puters. In most digital circuits time is also discretized by allowing changes in
the signals level only in correspondence with the changes of level of a special
synchronization signal called a clock signal.

The different nature of analog and digital signals has a number of conse-
quences in terms of, for example, the way in which they can convey infor-
mation, their tolerance of noise, and the power consumption of analog and
digital circuits (see box 1.2). From the point of view of evolution, what mat-
ters most is the difference between the typical structure of analog and digital
circuits (figure 1.21). Analog circuits are characterized by several parameters
such as resistance and capacitance values. In general, small changes in these
values result in small changes in the behavior of the circuit. This gives to the
analog fitness landscape a certain degree of continuity. Adjustable param-
eters are instead typically absent from digital circuits because most digital
design takes place at a level of abstraction above that of elementary devices
such as transistors, for example, at the level of the logic gate or higher. The
only aspect of the circuit that can be changed while working at this level is
the topology of the circuit, and this results in general in major changes of
the circuit behavior. Combined with the discreteness of the signal space, this
results in more discontinuous fitness landscapes with respect to the analog
case and in a greater evolutionary potential of analog circuits relative to dig-

1.17 Extrinsic and Intrinsic Evolution 53

ital circuits, provided one adopts a genetic representation that can exploit
their continuous transformability (Conrad 1990).

1.17 Extrinsic and Intrinsic Evolution

Evolutionary design is based on the generation and evaluation of a large
number of candidate solutions. This means that a substantial number of dif-
ferent circuits must be typically tested during an evolutionary electronics
run. Since it is practically impossible to build and test all these circuits by
hand, the evolutionary synthesis of electronic circuits requires the availabil-
ity of a way to perform this task automatically.

A first solution, which does not require the physical implementation of
the circuits, is based on the use of circuit simulators and results in what is
called extrinsic evolution of electronic circuits (de Garis 1993). Circuit sim-EXTRINSIC EVOLUTION

ulators (figure 1.22) are computer programs that take as input the formal
description of a circuit and the description of the desired operational con-
ditions, and give as output a numerical representation of the behavior of
the circuit in these conditions. For example, in a typical extrinsic evolution
scenario the simulator could be provided with the description of the circuit,
the description of the signals applied to its input terminals, the specification
of the circuit operating conditions such as the circuit temperature, and the
description of the kinds of analysis that are required. The simulator would
then compute the corresponding signals at the output terminals of the cir-
cuit, which could be finally compared with the desired response in order to
determine the value of fitness of the circuit.

The alternative to the use of a simulator is the physical implementation of
the circuits that must be tested in the context of the evolutionary process. As
mentioned above, this is practically feasible only if the circuits can be imple-
mented automatically, rather than built by hand one by one. This can be ob-
tained thanks to the availability of reconfigurable devices (box 1.3) and results
in what is known as intrinsic evolution of electronic circuits (de Garis 1993).INTRINSIC EVOLUTION

In practice, the intrinsic evolution of circuits proceeds as follows. The evo-
lutionary algorithm is run on a computer, which is connected to an external
system. This system contains the reconfigurable device and some auxiliary
programmable circuitry and instrumentation. The auxiliary circuitry permits
the generation of the required operating conditions and input signals and
the measurement of the circuit response. When the evolutionary algorithm
requires the evaluation of a circuit fitness, it instructs the computer to down-

54 1 Evolutionary Systems

Box 1.3: Reconfigurable devices
Reconfigurable devices

are boards or integrated
circuits composed of a col-
lection of analog or dig-
ital cells embedded in a
weave of connections (see
adjacent figure) that can be
programmed so as to im-
plement a large number of
different circuits. In the
simplest kind of reconfig-
urable devices, each cell
implements a fixed circuit
functionality and the re-
configurability is restricted
to the connections between
the cells and between the
cells and the input/output pins of the device. Typically, to limit the
complexity of the wiring and of the interconnection circuitry, not all
conceivable connections between the cells are permitted. More flexible
devices let the user choose also the functionality of the cells within a
predefined set of options.

A reconfigurable device is called fine-grained if each cell can provide
only simple functionalities such as an elementary logic gate in the dig-
ital case or a transistor in the analog case, and coarse-grained if each cell
can realize more complex circuits and functionalities such as a generic
Boolean function of many variables or an operational amplifier. The
configuration of the connections and the choice of the functionality of
the cells (when available) are done by downloading into the device a
string of configuration bits. To be suitable for evolutionary experiments
a reconfigurable device must permit the execution of this operation a
virtually unlimited number of times, and the whole downloading and
reconfiguration process must take a very short time. Dynamic reconfig-
urable devices admit the downloading of the configuration bits even
during the normal operation of the previously configured circuit, and
are thus ideally suited for an evolved circuit displaying online adapta-
tion. On the contrary, in static reconfigurable devices the configuration
can be done only when the circuit is not operating.

The programming of commercial reconfigurable devices is typically
entrusted to a specific configuration tool provided by the (cont.)

1.17 Extrinsic and Intrinsic Evolution 55

Box 1.3 (continued)
manufacturer of the device. The configuration tool transforms a high-
level description of the desired circuit in the corresponding sequence
of configuration bits, which can be safely downloaded into the chip.
Among other things, the mediation of the configuration tool excludes
the possibility of incorrect configurations of the device that could dam-
age its cells and connections. For this reason, the structure and meaning
of the configuration bits of commercial reconfigurable devices are often
not even officially documented by the manufacturer. To obtain a better
control of the reconfiguration process and also to have the possibility
to tailor the cell functionality and connectivity to the requirements of
the evolutionary process, several research groups have developed cus-
tom reconfigurable devices expressly conceived for the needs of intrin-
sic evolutionary electronics (for example, the evolvable motherboard
(Layzell 1998), the programmable transistor array (Stoica et al. 2001b),
the POEtic circuit (Tempesti et al. 2002), and several other integrated
circuits and boards (Zebulum et al. 2002)).

load on the reconfigurable device the configuration information necessary
to obtain the desired circuit, and to manipulate the auxiliary circuitry and
instrumentation to perform the necessary analyses on the circuit under eval-
uation. The results are finally sent back to the computer for the computation
of the circuit fitness.

Let us consider briefly the strengths and weaknesses of the extrinsic and
intrinsic approaches to evolution. Once again, many of these considera-
tions apply to the extrinsic and intrinsic evolutionary design of other kinds
of systems. A first aspect that must be considered is the kind of circuits that
can be generated and the degree of testing of their functionality that can be
achieved. In the case of intrinsic evolution, the limitations of the connec-
tivity, the necessity of avoiding circuit configurations that could damage the
physical devices, and the predefined number of cells available on each recon-
figurable device tend to put many constraints on the kinds of circuits that can
be realized and tested. Moreover, limitations on the kinds of signals that can
be generated and measured, and the cost and complexity of the hardware
necessary to test more than one physical device and change the environmen-
tal conditions of the tests make it difficult to probe extensively the range of
conditions in which the system is required to operate correctly. On the other

56 1 Evolutionary Systems

time (ms)
3.02.0 3.50.0

1.0

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1.0

v
o
lt
a
g
e

(V
)

C2
100nF

Q1
2N2222

V1
5V

Vin

Vout

R2

1k�

R1

270k�

* SPICE simulation example

* circuit description:

C1 2 3 10n

C2 4 5 100n

R1 3 1 270k

R2 4 1 1k

R3 0 5 1k

Q1 4 3 0 Q2N2222

V1 1 0 5Vdc

* input signal:

Vin 2 0 SIN 0 0.2 1k 0 0 0

* simulator directives:

.TRAN 0 3.5ms 0 0.01ms

.OPTIONS TEMP=25

* device models:

.MODEL Q2N2222 NPN

+ IS 14.3E-15 BF 256 NF 1

+ VAF 74 IKF 0.28 ISE 14.3E-15

+ NE 1.3 BR 6.1 NR 1 RB 10 RC 1

+ CJE 22.0E-12 MJE 0.377

+ CJC 7.3E-12 MJC 0.3416

+ TF 411E-12 XTF 3 VTF 1.7

+ ITF 0.6 TR 46.9E-09 XTB 1.5

.END

Vin

Vout

0.5 2.51.0 1.5

2 3

1

0

4
5

R

1

3

k�

C1
10nF

Figure 1.22 An example of circuit description and analysis performed with the cir-
cuit simulator SPICE (Vladimirescu 1994). Using a special circuit description lan-
guage, the circuit is represented as a text file for the simulator (right) which contains
the description of the circuit, of the operating conditions, and of the kinds of anal-
yses required. The simulator reads the description file and computes and outputs
the results of those analyses (left, bottom), which can be used to compute the circuit
fitness.

hand, in the intrinsic case there is the possibility of testing the behavior of
the circuit in operating conditions whose effects on the circuit are difficult to
simulate, such as extreme temperatures and exposure to high radiation lev-
els (Stoica et al. 2001a, 2004). In the case of extrinsic evolution, instead, the
virtual nature of the circuits permits the evaluation of an almost unlimited
variety of circuits and that of a large variety of operating conditions. The
only exceptions are a few pathological topologies, some extreme values of
device parameters and environmental conditions, and the above-mentioned
operating conditions whose effects are difficult to model and simulate.

In general, in the extrinsic case it is simple to probe extensively the range
of conditions in which the circuit must operate, because additional probing
entails only the execution of additional simulations. On the other hand, the
significance of this probing is reduced by the limitations in the accuracy of

1.17 Extrinsic and Intrinsic Evolution 57

the models used in extrinsic evolution. This fact could well result in ex-
trinsically evolved circuits whose performance is seriously degraded when
they are implemented in hardware. For example, the simulator might accept
operating conditions such as overvoltages and overcurrents that cannot be
tolerated by actual physical devices, or might model badly or not at all some
important real-world phenomena such as noise.

It is clear that intrinsic evolution does not suffer from any limitation in
this respect, since the real physical devices are used here. The use of real
hardware ensures that the outcome of intrinsic evolution is an actual cir-
cuit that certainly works. However, this is guaranteed only in the operating
conditions actually tested. Moreover, one must consider that the fabrication
processes are not perfectly replicable. Therefore, devices that are nominally
identical can differ slightly in their characteristics. This means that the work-
ing of a circuit evolved in real hardware is guaranteed only when the circuit
is constituted by the physical devices used for the evolution. This last lim-
itation can have serious consequences, since the circuit could be found to
be intolerant of changes of the physical device used for the implementation,
which could undermine the real-world applicability of a circuit synthesized
in this way. This can be especially true if evolution has found a way to exploit
some unconventional interactions that exploit the physical properties of the
circuit to achieve the required functionality. Although directly linked to the
intriguing possibility of transgressing the conventional design abstractions,
this behavior can be a mixed blessing, since it can tend to tune the functional-
ity to peculiarities of the hardware used for evolution, eventually interfering
with the transfer of the circuit on different physical platforms. An equally
mixed blessing is, of course, the fact that the use of a simulator entails the
risk of not modeling some physical interactions that could be exploited by
evolution.

Let us consider now the relative speed with which the circuits can be tested
and evolution can proceed in the extrinsic and intrinsic cases. Thanks to
the fast reconfigurability of modern reconfigurable devices, the intrinsic ap-
proach can often outperform in speed what can be obtained in simulation.
However, it is difficult to make definitive assertions on this issue. If a very
detailed model of the circuit and of the environment is required, simulation
on a programmable computer typically proceeds at a slower pace with re-
spect to the real hardware, due to the necessity to pay what has been called
“the price of programmability” (Conrad 1988). However, if the models can
be simplified by the adoption of some abstraction, a minimalistic simulator can
be defined which can proceed at a much faster pace than the real hardware.

58 1 Evolutionary Systems

In any case the magnitude of the speed difference seldom results in dramatic
differences in the degree of circuit complexity that can be tackled with the
two approaches, since the speed advantage is typically rapidly frustrated by
the increase of the size of the design space with the complexity of the circuit
(Yao and Higuchi 1999).

Finally, a unique property of intrinsic evolution is the possibility of letting
the process of evolution continue during the operation of the circuit, achiev-
ing online adaptation and fault tolerance (Keymeulen et al. 1998; Mange et al.
2000). In this case, what is evolved is not the defining features of the cir-
cuit but the rules that enable continuous reconfiguration of the circuit. The
term evolvable hardware (EHW) is typically used to refer to systems achievingEVOLVABLE HARDWARE

online adaptation, although the term is also used to refer to intrinsic evolu-
tionary electronics in general.

Summing up, there is no absolute winner in the intrinsic vs. extrinsic con-
test. The choice between the two depends on the kind of application and
the possibility to significantly exploit the advantages of one of the two ap-
proaches. As a general precept, it is advisable not to forget at the end of the
evolution to probe the weak points of the adopted approach. For example,
after evolving a circuit in simulation it is advisable to implement in hardware
the circuit for a final battery of tests before using it in a real-world applica-
tion, and after evolving in hardware it is advisable to probe extensively the
resulting circuit, which includes testing the circuit in a variety of environ-
mental conditions and using physical devices different from those used in
evolution. As discussed at the end of this chapter in the context of design
verification, the number of tests required can be dramatically reduced if the
working principles of the circuit intrinsically or extrinsically evolved can be
understood and analyzed formally.

1.18 Digital Design

After the general remarks of the previous sections, we proceed now to con-
sider the actual problem of circuit design. We start by examining the issue
of digital design, first in its conventional and then in its evolutionary form,
presenting some actual examples of evolution of digital circuits. The same
kind of analysis will be performed later for the analog case.

There are two types of digital circuits: combinational and sequential. A cir-
cuit is called combinational if its outputs depend only on the current inputsCOMBINATIONAL AND

SEQUENTIAL CIRCUITS and is called sequential if the outputs depend also on the past values of the
inputs (Wakerly 2001; Katz and Borriello 2004). In other words, combina-

1.18 Digital Design 59

Figure 1.23 The functionality of a combinational circuit C can be represented in
terms of its truth table (left, bottom), which specifies the configuration of the outputs
that are associated with each configuration of the inputs. The functionality of a se-
quential circuit S can be represented, for example, in terms of a state diagram (right,
bottom) specifying, for each state qi and each configuration of the inputs, the new state
of the circuit and the configuration of the outputs.

tional circuits are not endowed with memory whereas sequential circuits are.
The functionality of a combinational circuit can be represented in terms of its
truth table whereas a sequential circuit requires a more complicated represen-
tation such as a state/output table or a state diagram (figure 1.23). The greater
complexity of the specification and verification of sequential circuits is prob-
ably one of the reasons for the prevalence in the literature of examples of
evolution of combinational circuits over sequential ones.

We can identify various building blocks for digital circuits, at different lev-
els of abstraction (figure 1.24). The lowest level that is generally considered
is that of the transistors and of other elementary active and passive devices.
These are used to build logic gates which are combinational circuits that im-
plement elementary Boolean functions such as the logic negation (NOT), the
logic product (AND), the logic sum (OR), the exclusive OR (XOR), and so
on. The logic gates are used to build a variety of more complex combina-
tional and sequential building blocks such as encoders, decoders, multiplex-
ers, adders, flip-flops, shift registers, counters, and many others. Those ele-
ments of medium complexity can be further used to assemble digital circuits
of higher complexity.

60 1 Evolutionary Systems

ADD FF

...

...

...

Figure 1.24 The design of digital circuits occurs at various levels of abstraction. The
figure shows the level of the discrete components such as transistors (bottom row),
which are used to synthesize logic gates implementing elementary logic functions
such as the NOT, AND, OR, and XOR functions (center row, from left to right). The logic
gates are used to obtain building blocks of medium complexity such as multiplexers,
adders, and flip-flops (top row, from left to right), which are used to assemble even
more complex circuits.

There exist many kinds of commercial reconfigurable digital devices, some
of which can be used for the intrinsic evolution of digital circuits. The sim-
plest digital reconfigurable devices are generically called programmable log-
ic devices (PLDs) and permit the implementation of a well-defined class of
combinational circuits of medium complexity. For example, programmablePROGRAMMABLE

LOGIC ARRAYS (PLAS) logic arrays (PLAs) (figure 1.25) are reconfigurable devices whose cells are
constituted by nonreconfigurable elementary logic gates and whose recon-
figurable connections are structured so as to permit the implementation of
logic expressions in the form of sums of products of the directed and negated
inputs. Thanks to some theoretical results on the representation of logic func-
tions (Wakerly 2001; Katz and Borriello 2004), a reconfigurable device based
on this structure permits the implementation of all possible logic functions
of a given number of inputs. In general, to reduce the complexity of the de-
vices, only a subset of all the possible logic functions of the input signals can
be actually implemented on a given PLA. Several PLDs can be put together
on a single chip and linked by reconfigurable connections to form devices
called complex programmable logic devices (CPLDs). Alternatively, an ar-
ray of cells that are simpler than PLDs but more complex than elementary

1.18 Digital Design 61

in1 in2

out1 out2

AND

OR

NOT

Figure 1.25 An example of a programmable logic array (PLA) with two inputs, two
outputs, and the possibility of generating at each output the logic sum of up to four
logic products of the directed and negated input variables. The choice of the imple-
mented function is done by programming the reconfigurable connections represented
in the schematic by the X symbols. Typical commercial PLAs provide some tens of
inputs and outputs each realizing the logic sum of up to several tens of products of
the input variables.

logic gates can be assembled on a chip to form a field-programmable gateFIELD-PROGRAMMABLE

GATE ARRAY (FPGA) array (FPGA). The cell of a typical FPGA can be programmed to implement
a certain number of logic functions of a few input variables (see figure 1.31).
In FPGAs (and in some CPLDs) there is also the possibly to include in the
signal path of each cell a few memory elements. The reconfigurability of the
connections between the cells permits typically an almost arbitrary connec-
tion with neighboring cells of the array and provides a limited direct access
to more distant cells and input/output pins of the device. As discussed in
box 1.3 these devices are configured by loading a sequence of configuration
bits into the chip.

In general, both the human and the evolutionary design of digital circuits
proceed by using the building blocks at one level of abstraction to synthesize
circuits at the next higher level of abstraction. We have thus evolutionary ex-

62 1 Evolutionary Systems

periments where transistors are used to design gates (Koza et al. 2003; Zebu-
lum et al. 2002), experiments in which gates are used to synthesize building
blocks of medium complexity (J.F. Miller et al. 2000), and experiments that
use function blocks of higher complexity (Damiani et al. 1999). An impor-
tant aspect of digital design is the existence of systematic design techniques
working at the level of the logic gates and elementary memory elements for
both combinational and sequential circuits (Wakerly 2001; Katz and Borriello
2004). These powerful techniques ensure the synthesis of a system that re-
alizes the required functionalities. However, these techniques require the
specification of the functionality in terms, for example, of a truth table or of
a state diagram, and can produce systems that are not optimal in terms of re-
source usage. As will be explained later, the case of analog design contrasts
significantly with that of analog design, where no such systematic techniques
exist.

1.19 Evolutionary Digital Design

The setup of an evolutionary electronics experiment requires the specifica-
tion of a genetic representation for the circuits and that of a fitness function
representing the goal of the experiment. Many genetic representations can
be devised for digital circuits and, in fact, most of the creativity of the evo-
lutionary experimenter is typically expressed here. In a first class of popular
representations the genome is a list of blocks of fixed and predefined struc-
ture, each defining the nature of a circuit component and its connections to
the other components (see, for example, the genetic representation described
in figure 1.28). Another popular representation is used in the case of intrinsic
evolution with reconfigurable devices, and is based on the direct use of the
string of configuration bits as the genome. Program-based genetic represen-
tations such as genetic programming are another popular kind of representa-
tion and will be considered in more detail below, in the discussion of analog
evolutionary design.

Considering now the definition of the fitness function, if the design goals
include a conventional specification of the required combinational input/out-
put function or that of the sequential input/state/output behavior, there is
a natural priority for the realization of those requirements. In this case the
fitness function is typically defined in terms of a count of the items of the
required behavior that are correctly realized by the candidate solution. For
example, for the realization of a combinational circuit realizing a given truth

1.19 Evolutionary Digital Design 63

table, the fitness could be the number of output entries of the truth table that
are correctly realized. In some cases it is advisable to include a mechanism of
penalization of the circuit structures that discourages the matching of almost
all entries of the truth table with trivial functions that are difficult to improve
to an exact solution (Zebulum et al. 2002, p. 174). Once the priority objec-
tive of functionality has been realized, other objectives such as the number
of devices in the circuit, the input/output delay, the maximum admissible
clocking speed, the power consumption, and so on can be also taken into
account as objectives of the evolutionary process.

We consider now three examples of evolutionary digital design which il-
lustrate some of the most common circumstances in which the evolutionary
approach represents a valid alternative to the conventional digital design ap-
proach. In the first example the recourse to evolution is motivated by the fact
that the description is not given in a form equivalent to a truth table or to a
state diagram required by conventional design. In the second example the
objective is the synthesis of circuits that realize logic functions often used as
digital building blocks using fewer resources than with conventional syn-
thesis techniques. In the third example, the goal is to explore the potential of
evolution by letting it go beyond the limits of the conventional abstractions
of digital design.

1.19.1 Example 1: Evolution of a Robot Controller

An example of evolutionary application of a PLA reconfigurable device is the
robotic application described in (Keymeulen et al. 1998, 1997). The purpose
of the experiments described in these papers is the evolution of a controller
for robot navigation. The robot is put in a square arena delimited by walls
and populated by a few obstacles and by one special target object. The goal of
the experiment is the evolution of a controller driving the robot to the target
without getting stuck in the obstacles or bumping into the walls, starting
from any position within the arena. The obstacles are low relative to the
height of the robot, so that the target is always visible despite the presence of
the obstacles.

The robot (figure 1.26) is equipped with a series of obstacle detectors, with
a system that can detect the direction of the target, and with two motors
that drive independently the two wheels of the robot. The information col-
lected by the sensors is encoded into eight binary signals, six derived from
the outputs of the obstacle detectors and two from the system that detects the
direction of the target. These eight signals are given as input to a PLA, whose

64 1 Evolutionary Systems

1

2

49

50

1 2 3

1 2 8

motor decoder

sensors encoder

PLA

obstacle detectors
detector
of target
direction

M M

...

.
.
.

Figure 1.26 The structure of the controller for the experiment of robot evolution
reported in (Keymeulen et al. 1997). The information coming from a series of infrared
obstacle detectors and from a detector of the direction of the target are encoded into
eight binary lines. The corresponding eight signals are given as input to a PLA with
50 AND lines and three output lines. The three PLA output signals are decoded into
the signals driving the motors that drive the two wheels of the robot. The goal of the
experiment is the evolution of a configuration for the PLA connections (denoted by
the X symbols and encoded in the genome), which make the robot reach the target
object while avoiding obstacles. Note that to avoid overcrowding the diagram with
the input lines of the logic gates, we use here a simplified representation for the PLA
structure, where single lines entering the AND and OR gates stand for multiple input
lines.

duty is to control the robot by transforming the encoded sensory inputs into
encoded motor commands. The encoded motor commands are constituted
by three output binary signals which are decoded into actual signals for the
motors that drive robot wheels. This means that there are 28 = 256 differ-
ent input configurations and 23 = 8 different output configurations for the
PLA. Thus, the number of different Boolean functions that could be used for
the robot control in the given configuration is 8256 ≈ 10231. This is the size
of the phenotype space. The PLA has 50 AND lines, each of which can be
configured to use as input any of the eight input signals, either in its directed
or negated form. This is done by setting the state of the 8 × 2 × 50 = 800

1.19 Evolutionary Digital Design 65

Figure 1.27 The trajectories of a robot successfully evolved in simulation (adapted
from Keymeulen et al. 1997). The robot manages to reach the target object (whose
position is denoted by the X) without hitting the obstacles (represented by the gray
boxes) or touching the walls of the arena from all of the predefined starting positions
(except those that are located within an obstacle).

configuration bits (8 input lines, multiplied by two by the generation of the
inverted signal, each with the possibility of connecting to the 50 AND gates)
that determine the connectivity of the AND connection array. The output
of the 50 AND gates can be connected to any of the three output OR gates
using the 3 × 50 = 150 configuration bits of the OR connection array. This
gives 950 bits, which represent univocally the configuration of the PLA and
constitute the genetic representation for the individuals of the population
used in the evolutionary experiment. Thus, the size of the genotype space
is 2950 ≈ 10286. Note that the size of the genotype space is greater than the
size of the phenotype space. This is an effect of the redundancy that exists in
the representation of a logic function in terms of the configuration bits of the
PLA, since a given Boolean function can be obtained with several different
sets of configuration bits of the PLA (Keymeulen et al. 1997).

66 1 Evolutionary Systems

The evaluation of the behavior of each robot controller belonging to the
evolving population is done by starting the robot from a series of 64 pre-
defined positions regularly spaced in the environment (figure 1.27). Each
starting position is probed in sequence in a series of trials, each of which
lasts until the robot reaches the target object or hits an obstacle or a wall or
uses all the allotted time without reaching the target object. The fitness is
obtained by counting the number of starting positions from which the robot
was able to reach the target object, plus a contribution from the unsuccess-
ful trials that takes into account the final distance from the target object and
the number of steps used to reach the final position. The initial population
of controllers is obtained generating random sequences of configuration bits
corresponding to a connection probability of 0.3 for the AND array and a
connection probability of 0.5 for the OR array. Figure 1.27 shows an exam-
ple of behavior of a robot successfully evolved in simulation in less than 200
generations using a population size of 20. The figure shows that the robot
is able to reach the target object avoiding the obstacles (represented by gray
boxes) from all the starting positions that do not coincide with the position
of an obstacle.

This experiment exemplifies well some of the issues of evolutionary elec-
tronics that have been discussed above. A first observation is that the speci-
fications for the PLA are given here in terms of the resulting behavior of the
robot rather than in terms of a truth table or of an equivalent input/output
description. Thus, we are in one of the cases where the conventional method-
ologies of digital design are not applicable. We see also at work one of the
kinds of genetic representation mentioned above, namely the representation
in terms of the string of configuration bits of the reconfigurable device. From
the point of view of the verification of the result, note that during evolution
the space of initial configurations is sampled at a finite number of discrete
locations and with a small set of environmental conditions. Moreover, when
evolution is done in simulation the kind of sensory signals experienced by
the robot is limited to what is implemented in the simulator. This excludes,
for example, the effects of sensor noise and the actual variability of the real
environmental conditions. In order to assess the generality of the evolved
solution, the evolved robot should be tested extensively in other operational
conditions, starting from other initial positions and in other environments.
Finally, note that the use of intrinsic evolution in this case does not result
in any substantial speed advantage, since the device reconfiguration time is
negligible with respect to the time taken by the robot trials.

1.19 Evolutionary Digital Design 67

1.19.2 Example 2: Evolution of Arithmetic Circuits

A common application of combinational digital circuits is the implementa-
tion of arithmetic functions such as addition and multiplication of binary
numbers. There are well-established techniques for the synthesis of arith-
metic circuits, which are based on the decomposition of operations that in-
volve several bits into elementary arithmetic or logic operations. For ex-
ample, the addition of two n-bit binary numbers can be decomposed into
a series of elementary operations involving two-bit additions with carry, and
the multiplication of two binary numbers can be decomposed into elemen-
tary two-bit additions and two-bit logic operations according to the familiar
algorithm of multiplication (Katz and Borriello 2004). It is thus possible to
compare the outcome of an evolutionary process with the products of these
conventional design techniques. We describe here some of the experiments
of arithmetic circuit evolution reported in (J.F. Miller et al. 2000).

Figure 1.28 illustrates the genetic representation – called Cartesian geneticCARTESIAN GENETIC

PROGRAMMING (CGP) programming – used in these experiments. The elements used to compose
the circuit are a set of cells arranged in an array of n rows and m columns.
The genome is a list of blocks of predefined structure, each specifying the
functionality of the cells of the array and their connections to the other cells
and to the global inputs and outputs of the circuit. To avoid loops and ensure
the generation of combinational circuits only, the input of a cell in the array
is permitted to connect only to the outputs of cells of the preceding columns
or to global inputs. An additional parameter called levels-back permits lim-
iting the number of columns to the left of a cell that can connect their input
to that cell, although in the experiments reported below this limit is not en-
forced. The functionality of each cell can be chosen independently from a list
of available cell functionalities. In the experiments described below each cell
has three inputs and one output and its functionality is chosen from a list of
20 functions including the generation of a constant output, the directed and
inverted connection of one input to the output, the logical product and sum
of two inputs either directed or negated, and the selection (multiplexing) of
one of two inputs directed or negated from the part of the third input. All
these functions can be easily implemented in one cell of a typical commercial
FPGA.

The experiments are based on an evolutionary strategy which takes as a
starting point a population of genomes randomly initialized in terms of con-
nectivity and functionality of the cells. The target of evolution is defined by
the truth table of the desired arithmetic circuit, and the fitness of an evolved

68 1 Evolutionary Systems

.
.
. c11

.
.
. c21

.
.
. cn1

.
.
. c12

.
.
. c22

.
.
. cn2

.
.
. c1m

.
.
. c2m

.
.
. cnm

...

...

.
.
.

.
.
.

*

*

*

*

*

*

*

*

*

.
.
.

x1

x2

xN

*

*

*

{g
lo

b
a
l

in
p
u
ts

.
.
.

y1

y2

yM

{

g
lo

b
a
l

o
u
tp

u
ts

{ { { {c11 c12 cnm wiring
of global
outputs

...

{{

specification
of cell
function

wiring
of cell
inputs

{

Figure 1.28 The genetic representation of digital circuits adopted in (J.F. Miller et al.
2000). A set of global inputs {x1, . . . , xN}, a set of global outputs {y1, . . . , yM}, and
an array of cells are given (top). Each cell implements a logic function that is selected
from a small set of predefined cell functions identified by an integer. The global input
lines and the cell output lines (denoted by an asterisk in the figure) are also numbered.
The genome (bottom) is constituted by a sequence of integers that are subdivided into
blocks, one block for each cell of the array, specifying the cell function and to what
global input or cell output the input of the cell must be connected. A final block of
integers in the genome specifies to what global input or cell output the global outputs
must be connected.

circuit corresponds to the number of correct output bits that it generates.
We consider first an experiment aimed at the evolution of a two-bit multi-
plier, which is a circuit that takes as inputs a pair of two-bit binary numbers
and produces at its outputs the four-bit binary number corresponding to the
product of the two input numbers. The evolution was carried out on an ar-
ray of m = 7 columns and n = 1 rows using runs of 100,000 generations
with a population size of 5. Figure 1.29 compares the structure of a two-bit
multiplier synthesized with the conventional design approach and the cir-
cuit structure of an evolved multiplier. The number of two-input gates used
by the two circuits is the same and thus the evolved circuit has no advantage
in terms of resource usage relative to the conventional design. Still, the re-

1.19 Evolutionary Digital Design 69

a0

a1

b0

b1

a0

a1

b0

b1

p0

p1

p2

p3

p0

p1

p2

p3

Figure 1.29 The structure of a two-bit multiplier synthesized with conventional
design techniques (top) and an example of an evolved circuit performing the same
function (bottom) (adapted from J.F. Miller et al. 2000). The evolved circuit, although
composed of the same number of two-input gates of the conventional design, is in-
teresting because it is based on an unconventional reuse of the lowest-order bit p0 of
the product.

sult is interesting because the evolved circuit has an original topology which
is based on an unconventional reuse of the lowest-order bit of the product
p0, which permits the use of a single XOR gate in place of the two used by
the conventional multiplier (J.F. Miller et al. 2000). Another experiment was
aimed at the evolution of a three-bit multiplier. Artificial evolution was car-
ried out on an array of 25 columns and one row using runs of 10 million
generations with a population size of 5. Figure 1.30 compares the structure
of a three-bit multiplier synthesized with the conventional design approach
and the structure of one of the evolved multipliers. The conventional design
approach produces a circuit with 24 two-input gates and two multiplexers,
whereas evolution produced a circuit using 24 two-input gates and no multi-
plexers, and is thus more efficient in its use of resources. The evolved circuit
does not appear to generate all the terms appearing in the conventional mul-
tiplication algorithm and its working is of difficult interpretation from the
point of view of the conventional decomposition. Further evolutionary ex-

70 1 Evolutionary Systems

MUX

MUX

a0

a1

b0

b1

b2

a2

p0

p1

p2

p3

p4

p5

a0

a1

b0

b1

b2

a2

p0

p1

p2

p3

p4

p5

Figure 1.30 The structure of a three-bit multiplier synthesized with conventional
design techniques (top) and an example of an evolved circuit performing the same
function (bottom) (adapted from J.F. Miller et al. 2000). The conventionally designed
circuit uses 24 two-input gates and two multiplexers, whereas the evolved circuit uses
only 24 two-input gates and no multiplexers.

periments reported in (Vassilev et al. 2000), where the evolution was started
from the conventional circuit rather than from randomly generated circuits
resulted in an even more compact implementation of the three-bit multiplier,
using only 23 two-input gates. Although the differences between the conven-
tional and evolutionary results can seem minor, note that even the saving
of even a few logic gates can result in substantial savings when the corre-

1.19 Evolutionary Digital Design 71

sponding circuit is instantiated a large number of times, as can be the case
for reconfigurable digital devices with hundreds of thousands of cells.

Summing up, we see here at work a genetic representation that permits the
specification of the kind of devices composing the circuit and of their connec-
tivity. Compared with the case of the genetic representation in terms of the
string of PLA configuration bits considered in the previous example, this rep-
resentation permits a much more extensive exploration of the space of circuit
topologies, including topologies that are not considered by the conventional
digital design methodologies. We have seen here two actual examples of
structures of arithmetic circuits that differ from those obtained with conven-
tional design techniques. In the three-bit multiplier example illustrated in
figure 1.30, the evolved circuit achieves greater efficiency in the use of the re-
sources with respect to the most efficient conventional circuit. As anticipated
in the discussion about abstraction, this superior performance follows from
the fact that evolution ignores the conventional abstractions based on the de-
compositions into modules dictated by the algorithm of long multiplication.
On the other hand, the workings of the evolved circuits can be of difficult
interpretation. In this case, however, the functionality of the evolved circuits
can be tested exhaustively since it corresponds to the correct generation of
the finite number of entries of the truth tables for the arithmetic functions.

1.19.3 Example 3: Transgressing the Abstractions in FPGA Evolution

In the previous example there was no substantial difference – from the point
of view of the kind of functionality that can be potentially evolved – be-
tween running the evolution in simulation or running it in real hardware.
The reason is that no interactions and operating conditions beyond those
contemplated by the digital abstraction were admitted in that experiment.
We turn now to an evolutionary experiment that takes a complementary ap-
proach. This experiment, despite using building blocks that were explicitly
conceived for the implementation of digital circuits, tries to impose as few
constraints as possible on their interactions and operating conditions.

The objective of the experiment, described in (A. Thompson et al. 1999), is
the evolution of a circuit with one input and one output, capable of discrim-
inating a 1 kHz square wave from a 10 kHz square wave applied at its input
and to produce in correspondence of each input signal a distinct predefined
logic value at the output. To avoid the limitations on the kind of interactions
exploitable by evolution that would be imposed by the use of a simulator,
the evolution is performed on the real hardware. The device used is a com-

72 1 Evolutionary Systems

mercial FPGA constituted by an array of 64 × 64 cells, of which only the 100
cells of a 10 × 10 subarray are actually used (figure 1.31, top left). The input
and output lines of the circuit are assigned to two predefined cells located
on the boundary of this subarray. A particularity of the FPGA used in this
experiment is that any sequence of configuration bits is admissible and that
it is possible to define quite unconventional circuit topologies. Moreover, the
meaning of the configuration bits is fully documented by the manufacturer
and this permits the reconstruction of the topology of the evolved circuits
from the string of configuration bits. The device is mounted on a board that
is connected to a computer for the downloading of its configuration bits, for
the definition of the input signals, and for the recording of the circuit behav-
ior. In the FPGA used in this experiment the function unit (FU) of each cell
permits the implementation of any Boolean function of two inputs and any
multiplexing function of two inputs from the part of a third input. As shown
in figure 1.31 (top right), each cell has four inputs (N, E, S, W) coming from
the adjacent cells of the array and which can be used as arguments of the
cell function. Each cell has four outputs going to the adjacent cells, to each
of which can be routed any of the inputs coming from the other sides of the
cell, or the output of the function unit.

The genetic representation adopted in this experiment recalls the one used
in the previous example. The genome corresponds to the 1800 configuration
bits that are required to specify the connectivity and functionality of the 100
FPGA cells available to evolution. It is composed of a list of blocks of prede-
fined structure, specifying the functionality of the cells of the FPGA and their
connections to the other cells (figure 1.31, bottom). Contrary to the case of
the previous example, however, no constraints are imposed on the connec-
tivity in order to avoid loops or to ensure the generation of combinational
circuits only. Since no synchronization signal is used for the FPGA and no
other precautions are taken to ensure the stabilization of the signals at their
digital values, the circuit is not even constrained to operate as a conventional
synchronous or asynchronous sequential circuit (Katz and Borriello 2004).
The cells are thus free to operate as analog circuits and correspond in fact to
a collection of simple and very fast high-gain amplifiers.

In a first series of experiments (Thompson et al. 1999), the starting circuits
for the evolution were obtained by randomly generating an initial popula-
tion of genomes. Each genome was downloaded into the newly initialized
FPGA and the corresponding circuit was tested with an uninterrupted se-
quence of 10 randomly shuffled 500 ms bursts of the two kinds of input sig-
nals that the circuit is asked to discriminate, five bursts at 1 kHz and five at 10

1.19 Evolutionary Digital Design 73

c1,1

c1,2

c1,10

c2,1 c2,2 c2,10

c10,1
c10,2 c10,10

in

out

{ { {c1,1 c10,10

{{

specification
of cell
function

wiring
of cell

outputs {

wiring
of function

inputs

c1,2

...

.
.
.

.
.
.

...

MUX

FU

M
U

X

M
U

X

N S E W

N
S
E
W

N
S
E
W

MUX

N E W F

S

MUX

S E W F

N

M
U

X

N
S
W
F

E

M
U

X

N
S
E
F

W

Figure 1.31 The structure of the FPGA and the genetic representation adopted in
the experiments described in (A. Thompson et al. 1999). The material available to
evolution corresponds to a 10 × 10 array of cells of an FPGA (top left). Each FPGA cell
(top right) has a function unit (FU) to which can be routed the cell input signals coming
from the four adjacent cells. The output of the function unit and the cell inputs can
be routed to the cell outputs. The choice of the connectivity and of the functionality
of the function unit is done via a set multiplexers (MUX) that are driven by the cell
configuration bits (not represented). The genome (bottom) corresponds to a sequence
of blocks, one for each cell, specifying the value of the configuration bits.

kHz. The output voltage of the circuit was integrated during each burst. For
a perfectly discriminating circuit the output should correspond to a constant
+5 V amplitude during the 1 kHz bursts and a constant 0 V amplitude dur-
ing the 10 kHz bursts. To assess the discrepancy of the behavior of the tested
circuit from the ideal behavior, the fitness was defined as the weighted dif-
ference between the average output amplitude value during the 1 kHz bursts

74 1 Evolutionary Systems

and the average output value during the 10kHz bursts. The goal of evolution
was the maximization of the fitness of the evolved circuits.

Figure 1.32 shows the cells composing the circuit with maximum fitness
obtained after 5000 generations using a standard genetic algorithm and a
population size of 50. The figure shows in gray shading the 21 cells of the
FPGA array that contribute to the functionality of the circuit. The output of
all the other cells of the array can be clamped to a constant logic value with-
out affecting the circuit performance. The five cells shaded in dark gray in
figure 1.32 have the peculiarity of not having their function unit connected
in any way to the rest of the circuit and still influence the circuit behavior, as
proved by the fact that clamping the output of the function unit of these cells
results in a significant degradation of the circuit performance. The evolved
circuit exhibits a perfect signal discrimination, producing the required out-
put shortly after the corresponding 1 kHz or 10 kHz input signal is applied.

The successful evolution of a discriminating circuit for the two input sig-
nals using the resources represented in figure 1.32 is somewhat surprising,
because the characteristic time scales of the signals that must be discrimi-
nated is on the order of milliseconds, whereas the characteristic time scales
of operation of the devices constituted by the FPGA cells is on the order of
nanoseconds. Furthermore, the structure of the evolved circuit considered as
a digital circuit (figure 1.33) does not correspond to that of a counter or any
other digital accumulator that could bridge the several orders of magnitude
separating the two time scales. A series of analyses were therefore performed
on the evolved circuit, in an effort to understand its workings (A. Thompson
and Layzell 1999). A first outcome of these analyses is that the circuit does
not operate according to the conventional digital abstraction. This conclusion
follows from the observation that neither a digital simulation nor a hard-
ware implementation in terms of separate logic gates of the circuit shown in
figure 1.33 exhibit the frequency discrimination functionality of the evolved
circuit. Further tests suggested that the transient behaviors of the evolved
circuit following the start of the input pulses play a crucial role in the circuit
functionality. Despite extensive scrutiny, however, no satisfying explanation
of the circuit behavior could be eventually obtained and the discriminating
functionality was attributed by the authors of the experiment to “a subtle
property of the [FPGA] medium” (A. Thompson et al. 1999, p. 187). This
conclusion, although not unexpected, is somewhat disturbing in the light of
the issue of correctness verification, and opens the question of the robustness
of the evolved circuit and the sensitivity of its functionality to changes in
the environmental parameters and to variations in the characteristics of the

1.19 Evolutionary Digital Design 75

in

out

Figure 1.32 In gray shading, the 21 FPGA cells that contribute to the functionality of
the evolved signal signal discriminator circuit, and their connectivity (adapted from
A. Thompson et al. 1999). In dark gray shading, five cells whose function unit is
not connected to the rest of the circuit but whose function unit output cannot be
clamped without compromising the circuit performance. The thick black lines linking
the shaded cells illustrate the input/output connectivity of the evolved circuit.

physical devices. In fact, a series of tests confirmed that the functionality of
the evolved discriminator was seriously degraded if the evolved circuit was
required to operate outside the small range of temperatures experienced by
the circuits during evolution, or using a logically equivalent but physically
different FPGA chip for the implementation of the circuit, and even when
the circuit was implemented on a different 10 × 10 subarray of the original
FPGA.

To counter the observed sensitivity of the functionality of the evolved cir-
cuit to environmental parameters and chip characteristics, a new series of
evolutionary experiments was conducted with the explicit aim of evolving
circuit robustness in conjunction with circuit functionality (A. Thompson
and Layzell 2000). To this end the experimental setup was changed in or-

76 1 Evolutionary Systems

in

M
U

X

0

1 out

Figure 1.33 The best evolved discriminator circuit seen as a digital circuit, that is, in
terms of the logic gates and multiplexers of the light gray-shaded cells represented in
figure 1.32 that are connected to the circuit output (adapted from A. Thompson et al.
1999).

der to permit the testing of the evolving circuits on different FPGA chips,
on different subarrays of each FPGA, and in different temperature, power
supply, and output load conditions. Another major difference of the new
setup was that a 6 MHz clock signal was supplied to all the FPGA cells, al-
though no constraint was imposed to force the output of the function unit
of the cells to synchronize with the clock. Using this setup it was possible
to evolve robust discrimination circuits using a number of FPGA resources
comparable to those shown in figure 1.32. The evolved circuits used in an
essential way the newly available clock signal and their functioning was no
longer dependent on subtle, poorly reproducible effects. In fact, the newly
evolved circuit behavior could be easily replicated both in simulation and in
circuits composed of separate logic gates.

Summing up, the experiments described above show how unconstrained
evolution is able to transgress the conventional design abstractions – in this
case the digital circuit abstraction and, possibly, also the circuit theory ab-
straction – even when these abstractions are strongly built by design into
the available material (in this case, the digital cells of the FPGA chips). It
is probably this aspect that explains the fascination that the results of these
experiments exert, making them one of the most commented on of the whole
evolvable electronics literature. On the other hand, we have seen how these
transgressions can be paid in terms of robustness of the evolved systems, due
to the exploitation of subtle properties and the interactions of the evolving
components. We will discuss below, in the section devoted to the issue of
design verification, how robustness can be built into the evolved system by a

1.20 Analog Design 77

more extensive sampling of the circuit operational conditions at the price of a
greater complexity of the evolutionary experiments, of increased constraints
imposed on the “creativity” of the evolutionary process, and of reduced per-
formance of the synthesized circuit: in short, by paying the cost of robustness
(Gilbert 2002).

1.20 Analog Design

We said in the previous section that conventional digital design takes as its
starting point a formal description of the circuit functionality (figure 1.23)
and proceeds with formal methods to the generation of a circuit that realizes
that functionality. On the contrary, there exist no systematic analog synthesis
techniques capable of transforming in an almost algorithmic way a set of
nontrivial specifications into a circuit complying with them. Consequently,
analog design is a much less formalized activity than digital design, and its
outcome depends much more on the experience, creativity, and skill of the
human designer. This fact makes analog design a very promising domain for
the application of evolutionary methods.

One could argue that the actual economical impact of improvements in
analog design cannot be too great, since the analog share in electronic cir-
cuits is waning due to the steady trend toward the substitution of analog
processing with its digital counterpart. This reasoning is disproved by the
fact that analog circuits continue necessarily to constitute in most applica-
tions the interface between the digital circuitry and the real world, with typ-
ically a dramatic impact on the overall system performance. The behavior of
the analog subcircuitry of a complex electronic circuit is often the bottleneck
and the qualifying aspect of the circuit performance, despite its absorbing a
marginal portion of the circuit resources in terms of devices. For example,
the analog signal conditioning circuitry of a digital oscilloscope is crucial in
determining the performance of the instrument, no matter how complex, so-
phisticated, and expensive the digital signal processing and displaying hard-
ware and software that follows (Roach 1995). Similar observations can be
made about the role of the analog circuitry of many other bestselling devices
such as cellular phones and portable music players.

Like digital design, analog design can take place at various levels of ab-
straction (figure 1.34). Typically, the simplest level considered by circuit
designers is that of the transistors and other components such as resistors,
capacitors, and the like. There exists then a level of abstraction constituted

78 1 Evolutionary Systems

-

+

...

...

...

Figure 1.34 Discrete components such as resistors, capacitors, and transistors (bot-
tom row, from left to right) are used to synthesize small circuits (center row). Discrete
components and small circuits are used to obtain building blocks of medium com-
plexity such as operational amplifiers (top row), which are used to realize more com-
plex circuits.

by small circuit topologies composed typically of a handful of transistors and
passive components. These “little circuits” (Gilbert 1991) can be identified as
recurrent building blocks of analog circuits of greater complexity. The im-
portance of these small circuits is witnessed by their omnipresence. The dif-
ficulty of their discovery is attested by the fact that they are typically named
after their inventor. The most popular analog abstraction above the level of
small circuits is that of the operational amplifier or op-amp (Franco 2001). Exist-
ing examples of evolutionary analog design typically take place at the level
of abstraction of discrete devices such as transistors. There are also examples
of evolutionary experiments that try to capitalize on existing analog design
knowledge by also using libraries of standard small circuit topologies and
operational amplifiers (Kruiskamp and Leenaerts 1995; Dastidar et al. 2005).

A few manufacturers of integrated circuits have introduced in the recent
past models of analog reconfigurable devices called field-programmable ana-
log arrays (FPAAs), in the hope of replicating the commercial success of their
digital counterparts constituted by CPLDs and FPGAs. The structure of these
devices is typically based on a cell comprising one operational amplifier and
a few auxiliary resistors, capacitors, and transistors. By configuring the con-
nections within the op-amp and the auxiliary devices these devices permit

1.21 Evolutionary Analog Design 79

the choice for each cell between a handful of different analog functions such
as amplifiers with various gains, filters, comparators and the like. None of
these examples of commercial analog reconfigurable devices has attained so
far a consistent success, and the fabrication of many of them has been discon-
tinued. Probably the cause of this commercial failure must be attributed to
the necessity of using in analog design a large variety of op-amp types, char-
acterized by different specifications, in order to fine-tune the different parts
of an analog circuit and attain the required global performance. This con-
trasts with the practical necessity of using only one or at most a few different
op-amp types as cell elements of commercial reconfigurable devices, in or-
der to keep at a reasonable level the manufacturing and storage costs. The
scarcity of commercial analog reconfigurable devices and the relative inflexi-
bility of the circuit topologies whose production they permit have prompted
some research groups to develop custom analog reconfigurable devices, for
example, the evolvable motherboard (Layzell 1998) and the programmable
transistor array (Stoica et al. 2001b). A common problem in the evolution-
ary application of analog reconfigurable devices stems from the necessity of
dealing also with the connections of the devices with the power supply lines,
rather than only with signal lines as in the case of gate-level digital design.
This entails the risk of producing circuit topologies that would result in the
destruction of the devices due to excessive current, voltage, or power dissipa-
tion. To avoid a time-consuming checking of the admissibility of the evolved
circuit topologies, some of these custom devices employ for the reconfigura-
tion of their connections switches characterized by a relatively high internal
resistance, which ensures that even in the presence of unconventional con-
nectivity the device stress does not reach dangerous levels.

1.21 Evolutionary Analog Design

Like evolutionary digital design, evolutionary analog design experimenta-
tion requires the specification of a genetic representation and fitness function.
Some of the genetic representations for digital circuits presented in the pre-
vious sections can be used also for the evolution of analog circuits. This is
obviously the case, for example, for the representation used in intrinsic evo-
lution where the genome corresponds to the sequence of configuration bits of
the reconfigurable device. A difference in analog circuits with respect to dig-
ital circuits is that the nature of the external sources that produce the input
signals, the nature of the loads across which the output signals are delivered,

80 1 Evolutionary Systems

{ { {

specification
of device

type

wiring
of device
terminals{ {{

specification
of device

parameters

g1 g2 gn

0 2.7x10
5

1 3 0 1.0x10
3

1 4

2 3 0 0 1.0x10
3

0 5 1 1.0x10
-7

4 54

device type:

0: resistor

1: capacitor

2: transistor

...

100nF

2N2222

VCC

1k�270k�

2

3

1

0

4
5

1k�

10nF

VIN RL

1 1.0x10
-8

3 2

Figure 1.35 The schematic-based genetic representation used for analog circuits has
as its starting point the specification of a set of available device types (top right), each
associated with a unique numeric identifier. Each device type can have some evolv-
able parameters and has a fixed number of terminals. The variable-length genome
(top right, center) is composed of a sequence of genes, each comprising a few fields
specifying the device type, the value of the evolvable parameters (if any), and the
numbers that identify the nodes associated with the device terminals. This genome
can be directly decoded into a circuit (shaded box) and connected to the devices of
the preassigned external circuit.

and that of the power supplies – in short, the nature of the predefined ex-
ternal circuit – can influence significantly the behavior of the evolved circuit.
Consequently, it is necessary to define in advance the structure of the exter-
nal circuit and specify which of its nodes can be connected to the evolving
circuit.

A first kind of genetic representation that is frequently used for the evo-
lution of analog circuits is the schematic-based representation (Grimbleby 2000;SCHEMATIC-BASED

GENETIC ENCODING

1.21 Evolutionary Analog Design 81

Zebulum et al. 2002). This representation is based on a sequence of genes
that specify the nature of the devices and assign explicitly their connectivity.
Moreover, the genome contains typically the representation of many circuit
parameters. The genes that form the genome are composed of a number
of fields, for example an initial specifier of the device type, followed by the
specifiers of the evolvable parameter values and by the specifiers of the cir-
cuit nodes to which the device terminals are connected. The genome corre-
sponds thus to a sequence of genes that can be directly decoded into a circuit
comprising the preassigned external circuit and the evolved circuit. The ge-
netic operators can alter the values of the gene subfields, insert new genes,
or remove existing ones. The length of the genome and the complexity of
the circuit can therefore vary during the evolutionary runs. The definition
of the evolutionary experiment starts with the specification of the external
circuit (figure 1.35). A set of available electronic device types, such as resis-
tors, capacitors, and transistors, is also specified. Each device is associated
with a unique numeric identifier and has a predefined number of evolvable
parameters and terminals.

An alternative approach to the representation of analog electronic circuits
is based on a genome that does not specify directly the devices and their
connections but represents instead a sequence of instructions – a program
– that can be used to build the circuit. The experimenter must define an
embryonic circuit or embryo that is used as the starting point for the construc-
tion of the evolved part of the circuit. The instructions corresponding to the
genome are applied to the embryo following a predefined syntax and result
in a final circuit comprising the external and the evolved circuit. An example
of this kind of approach is represented by genetic programming (GP) (figureGENETIC

PROGRAMMING (GP) 1.36) (Koza 1992; Koza et al. 1999, 2003). Another example is the circuit-
constructing robot described in (Lohn and Colombano 1999). Program-based
approaches can evidently be used not only for the representation of analog
circuits but also for the representation of digital circuits and of many other
structures. For example, the genetic programming approach has been used
to represent and evolve structures such as antennas, control systems, neural
networks, and electronic circuits with routing and placement of the devices.
Moreover, the possibility to represent parameterized functions permits the
evolution of structures where the values of the components are defined by
a set of symbolic parameters. This possibility can be used, for example, to
design electronic filters with variable passband and stopband frequencies
(Koza et al. 2003).

82 1 Evolutionary Systems

EE

100nF

2N2222

VCC

1k�270k�

1k�

10nF

VIN RL

VCC

2

1

VIN RL

2

270k�

2

270k�

10nF

2

270k�

10nF

1k�

...

R

270k

S

E

C

10n

P

E -E

269k EE

function type:

R: insert resistor

C: insert capacitor

N: insert NPN transistor
with emitter
to ground

P: parallel

S: series

X: connect

E: end

- : subtraction

...

E

X

E R

1k

ER

270k S

E

C

10n

E

E

C

100n

P

NE -E

E E269k E X

E E

1

2

Figure 1.36 Genetic programming (GP) exemplifies an approach to the genetic rep-
resentation of electronic circuits that is based on the specification of a sequence of
instructions – a program – for the construction of the final circuit starting from an
embryo (shaded box in the center row, left) connected to the predefined external cir-
cuit. The program is given in the form of a tree (top left), which corresponds to the
genome. The nodes of the tree contain either the specification of a function belonging
to a predefined list (top right) or numeric values used to assign the device parameter
values. The instructions of the program specified by the tree are applied sequentially
to the embryo and unfold progressively the circuit structure. The final result is a
circuit comprising the external and the evolved circuit (bottom right).

1.21 Evolutionary Analog Design 83

token type:

C: capacitor

Q: transistor

T: terminal

P: parameter

...

2N2222

VCC

10nF

VIN RL

C

100nF

2N2222

VCC

1k�270k�

1k�

10nF

VIN RL

100nF

T P T

Q T T T

C T P T

{

specification
of device

type {

sequence
associated
with terminal{

sequence
associated

with parameter

{

g1

{

g2

{

g3

{

non-coding
genome

{

R = (,)f
0<R<�

R=0

R=�

Figure 1.37 Analog genetic encoding (AGE) is a genetic representation for analog
circuits based on an implicit definition of the interaction between devices that form
the circuit. The genome is constituted of a sequence of genes, possibly separated
by fragments of a noncoding genome (top). The genes correspond to the devices
and specify the sequences associated with their terminals and the parameters. In a
first decoding step the devices are extracted from the genome and the corresponding
sequences are associated with their terminals (second row from top). The value of the
parameters is also evaluated during this step. By using a function that maps pairs
of sequences to values of resistance (third row from top), the connections between the
devices can be established and the complete circuit composed of the external and
evolved circuit results (bottom).

84 1 Evolutionary Systems

Another kind of genetic representation tailored to analog circuits is repre-
sented by analog genetic encoding (AGE) (Mattiussi and Floreano 2004, 2007;ANALOG GENETIC

ENCODING (AGE) Mattiussi 2005; Mattiussi et al. 2008). To set up an evolutionary experiment
based on AGE (figure 1.37), the experimenter starts by defining the types
of devices that can appear in the circuit. The AGE genome is a sequence
of characters where special sequences defined by the experimenter identify
subsequences that correspond to genes. Each gene corresponds to a device
that will appear in the decoded circuit. However, neither the resistor nor the
connections of the device terminals are explicitly represented in the genome.
Rather, the connectivity of the devices represented in the genome is specified
implicitly by the sequences of characters that form a gene. The decoding pro-
cess starts with the extraction of these sequences, which are associated with
the terminals of the device represented by the gene. The experimenter de-
fines a function that transforms pairs of sequences into a value of resistance.
This function is applied to each pair of sequences attached to the terminals
of the devices. If the value of resistance thus obtained is finite, a correspond-
ing resistor is inserted between the two device terminals; otherwise the two
terminals are left unconnected. The final result is a complete circuit.

The fundamental characteristic of AGE is that of being based on an implicitIMPLICIT GENETIC

ENCODING genetic encoding of the connections between the devices. The use of an im-
plicit encoding has several advantages with respect to a direct encoding of
the circuit. First, it reduces the number of elements that must be encoded
in the genome with respect to direct encodings, since the resistors do not
explicitly appear as devices in an AGE encoding of a circuit. Another ad-
vantage of an implicit encoding is that a single mutation can have several
effects on the network structure. This is useful in terms of evolvability since
the evolutionary process can probe the effect of varying many interactions
simultaneously with a single mutation. Moreover, the implicit genetic en-
coding of AGE permits the use of genetic operators such as the duplication
of structures, which are known to be a crucial mechanism for the increase of
complexity in biological evolution (Shapiro 2005).

1.21.1 Example: Evolution of a Gaussian Function Generator

We consider an experiment of extrinsic analog circuit evolution aimed at the
synthesis of a Gaussian function generator using AGE (Mattiussi and Flo-
reano 2007). This problem was first proposed in (Stoica 1999) and was also
considered in (Koza et al. 1999). Figure 1.38 shows the devices of the ex-
ternal circuit: it is composed of a fixed voltage source Vp, and a variable

1.22 Multiple Objectives and Constraints 85

VC

V = 2.5VLV = 5VP

R =1C �

IO

evolved
circuit

Figure 1.38 The devices of the external circuit in the experiment of evolution of a
Gaussian function generator circuit using AGE. The external circuit is composed of a
variable voltage source Vc connected to a series resistance Rc, a fixed voltage source
Vp, and another fixed voltage source VL through which the output current Io of the
evolved circuit is measured.

voltage source Vc connected in series to the resistor Rc, and by a “load”
voltage source VL. The goal of the evolutionary experiment is the synthe-
sis of a circuit producing through the load voltage source an output current
Io that is a Gaussian function g(Vc) of the variable input voltage Vc in the
range 2V ≤ Vc ≤ 3V, with a peak value Iomax = 80 nA in correspondence to
Vc = 2.5V, and σ = 0.1V.

To assess the performance of the evolved circuits their output current Io is
evaluated in simulation in correspondence to a discrete set of 101 equispaced
values of the variable input voltage in the range of interest. The fitness func-
tion is defined as the sum of the squared differences (Io − I∗oi

)2 between the
output current Ioi produced by the evolved circuit and the desired output
current I∗o = g(Vc). The device set for this experiment contains a p-channel
metal-oxide-semiconductor field-effect transistor (PMOS) and an n-channel
metal-oxide-semiconductor field-effect transistor (NMOS) with the bulk ter-
minal of the PMOS transistors connected by default to the positive terminal
of Vp, and the bulk terminal of the NMOS transistors connected by default
to ground. Figure 1.39 shows an example of an evolved Gaussian function
generator circuit obtained after 30,000 generations using a population size of
100. The performance of this circuit is illustrated in figure 1.40.

1.22 Multiple Objectives and Constraints

Figure 1.40 shows that the evolutionary approach can produce a result that
complies well with the design objective stated in the example problem de-

86 1 Evolutionary Systems

4.22k2
3

7
k

1k

316k

75k

1
.2

4
M

7
5

0
k

1M

750k

750k

1
M

1M

VC VL

VP

RC 1

5V

2
.5

V

Figure 1.39 An example of Gaussian function generator circuit evolved using AGE
as genetic representation. The devices of the preassigned external circuit are drawn
outside of the dotted box.

3.02.92.82.72.62.52.42.32.22.12.0

input voltage V (V)c

o
u

tp
u

t
c
u

rr
e

n
t

I
(n

A
)

o

80

70

60

50

40

30

20

10

0

Figure 1.40 The output current I0 of the evolved Gaussian function generator circuit
shown in figure 1.39 plotted as a function of the input voltage Vc. The markers are
drawn in correspondence to the values of input voltage used to evaluate the circuit
fitness. The background line represents the ideal Gaussian relationship between Vc

and Io.

1.22 Multiple Objectives and Constraints 87

scribed in the previous section. However, the example is somewhat arti-
ficial in its imposing a single objective for the design process. The designOBJECTIVE

of an electronic circuit has typically many conflicting and heterogeneous
objectives. For example, an electronic amplifier could be required to pro-
vide the maximum possible gain and bandwidth with the minimum possible
power consumption, the minimum possible noise, and similar requirements
for some other ten or twenty characteristics of the amplifier. The multiobjec-
tive nature of the design problem means that the problem does not provide
a single function whose value represents the quality of the circuit and which
could be used as a basis for the definition of a fitness function. To define
our evolutionary algorithm we are thus forced to specify how the perfor-
mance of the circuits with respect to the different objectives must be linked
to the relative reproductive success of the circuits in the algorithm. This prob-
lem is at the core of the definition of multiobjective evolutionary algorithms,
which are one of the most rapidly developing areas in the field of evolution-
ary computation (Deb 2001; Fonseca and Fleming 2002; Tan et al. 2002). In
many cases, to be acceptable the solutions must also comply with a series of
constraints. For example, in addition to demanding a minimal input-outputCONSTRAINTS

delay, the design of a digital circuit might dictate that this delay must be kept
below a predefined value for the circuit to be acceptable at all. Solutions that
do not comply with the constraints are declared infeasible and should not ap-
pear in the result of the evolutionary process. To this end, the evolutionary
algorithms must be endowed with some technique of constraint handling
that eventually ensures the production only of feasible solutions (Bäck et al.
2000).

Summing up, evolutionary electronics (and many other evolutionary en-
gineering applications) requires in general the use of multiobjective evolu-
tionary algorithms with constraint handling, a detailed discussion of which
would take us too far afield. We will thus limit the subsequent discussion
to an overview of some possible approaches to the definition of the fitness
of the candidate solutions in multiobjective problems with constraints. In
the following, unless otherwise stated, we assume that the generic ith objec-
tive has been expressed in terms of a function fi(x), where x represents a
candidate solution in the design space.

In a first design scenario the multiple objectives can be ranked in orderPRIORITY-RANKED

OBJECTIVES of decreasing priority. In this case, the design can be initially focused on the
most important objective and then the objectives of lower priority can be pro-
gressively taken into account. This corresponds to considering a sequence
of single-objective design problems with fitness function fi(x). Sometimes,

88 1 Evolutionary Systems

after one or a few high-priority objectives are dealt with in this way there
remains a collection of objectives that have the same priority and to which
one of the approaches described below can be applied.

In a second scenario, for each objective there is a value gi that represents
the target of that objective. In this case the multiple objectives can be con-OBJECTIVES WITH

TARGETS verted into a single scalar fitness function via a suitably defined distance
of the vector (f1(x), . . . , fn(x)) of the objectives from the vector (g1, . . . , gn)
of the goals. Then, a conventional single-objective evolutionary algorithm
based on this scalar-valued fitness function can be applied.

A third possibility is to assume that we know how to convert the different
objectives in a common utility currency. For example, we might know how
much of the amplifier gain can be sacrificed for a given increment of band-
width, that is, we might know the tradeoff between gain and bandwidth. OfTRADEOFFS BETWEEN

OBJECTIVES course, similar tradeoffs must be defined for all the pairs of objectives if we
want arrive at a single numerical estimate of the performance. In its sim-
plest form the idea of tradeoff corresponds to the definition of an aggregated
fitness function f(x) which is a weighted sum of the objective functions

f(x) =
∑

i

wi fi(x)

with positive weights wi. We have at this point a conventional fitness func-
tion that must be maximized, and we can use a single-objective evolutionary
algorithm, possibly complemented by some constraint-handling technique.
The approach just described is much used by virtue of its simplicity. How-
ever, it rests on the assumption of the knowledge of the tradeoffs between
all the pairs of objectives, which is a condition rarely verified in practice.
Moreover, it is seldom the case that the different objectives can be combined
linearly, as implied by the above formula. For example, we could be ready
to exchange a large amount of bandwidth for some gain to improve an elec-
tronic amplifier with a very small gain and plenty of bandwidth, but we
should be willing to sacrifice a much smaller amount of bandwidth if the
gain is high and the bandwidth is less abundant.

A fourth approach to the management of multiple objectives, and which
does not require the specifications of tradeoffs, is based on the concept of
Pareto dominance. Given two candidate solutions x1 and x2, one is said toPARETO DOMINANCE

dominate the other if it is at least as good with respect to all objective func-
tions, and strictly better relative to at least one objective. Thus, the domi-
nating solution can be considered fitter than the dominated one. Of course,
it is possible that given two candidate solutions neither dominates the other

1.22 Multiple Objectives and Constraints 89

Figure 1.41 An illustration of the concept of Pareto dominance. The axes values
correspond to two objective functions f1 and f2 with larger values corresponding to
better performance. We denote with xi the candidate solutions in the design space
and represent the objectives as a vector-valued function f(x) = (f1(x), f2(x)). In
the figure, the solutions x1 and x2 both dominate x4, but x1 does not dominate x3,
whereas x2 does. The curve represents the Pareto front, and is composed of the values
f(x) of the solutions that, like xo, are not dominated by any other element in the space
of feasible solutions.

(figure 1.41). In fact, in the space of feasible solutions there will be typically
a whole set of solutions that are not dominated by any other solutions. This
collection of solutions constitutes the Pareto-optimal set and its image in the
space of the objectives is called the Pareto front. In general the outcome of
an evolutionary process based on the concept of Pareto dominance is a set
of individuals rather than a single optimal individual. Ideally, this set of in-
dividuals should be representative of the whole Pareto-optimal set, and it
is assumed that there will be a further phase of the project where a human
designer will select one of the solutions produced by the algorithm, possibly
applying the concept of tradeoff to this restricted set of solutions.

The approaches to multiobjective problems considered so far are based on
the concept of optimization, that is, of the idea of specifying a criterion to de-
fine (and search for) the best solutions in the design space. It has been argued
(Simon 1996; Eilon 1972) that in many design contexts the designer aims at
satisficing rather than optimizing. In satisficing, the designer sets for eachSATISFICING

objective a minimal required level of performance and then tries to find a so-
lution that satisfies all these performance criteria. Note that the data sheet of

90 1 Evolutionary Systems

a commercial product can be seen as just the list of performance criteria that
the designer has satisfied. The satisficing approach seems appropriate also in
the light of our current understanding of the workings of natural evolution.
As remarked by Ernst Mayr (2001), natural selection is best viewed as a pro-
cess of elimination of the individuals that are nonviable or only marginally
viable, rather than as a process of selection. The difference is that a pro-
cess of selection – which corresponds to an optimization – tends to lead to
the reproduction of only a few “best” individuals of the population. On the
contrary, a process of elimination removes individuals that are nonviable rel-
ative to the prevailing viability criteria, that is, it eliminates the individuals
that are not “satisficing” the viability constraints. The consequence is a re-
duction in the variety of individuals present in a population that is subject
to selection relative to the variety of those surviving in a population sub-
ject to elimination (see also the closing remarks of the end of the chapter).
A possible formulation of an evolutionary multiobjective design problem in
terms of satisficing can be based on the idea of the distance of an objective
from a target described above, with the difference that a component of the
distance is considered zero as soon as the required level of performance for
that objective is attained.

1.23 Design Verification

A recurrent theme in this chapter was the question of the actual applicabil-
ity of the results of the evolutionary design process as engineering products.
An evolutionary process can produce nonconventional designs whose work-
ing is based on mechanisms that go beyond the human cognitive limitations.
This entails that the workings of evolved systems can be difficult or even
impossible to understand by a human designer. This, in turn, can under-
mine the possibility of verifying the correctness of the system considered as
a solution of the original design problem. It is important to realize that a
design problem requires the implementation of a set of functionalities in a
whole range of operational conditions and values of the device parameters.
For example, an electronic amplifier is typically required to amplify correctly
all the inputs signals in a certain range of frequencies and voltage ranges.
Moreover, these performances must be guaranteed when the power supply
voltage, the circuit temperature, and many other variables – including the
values of the parameters of the devices that compose the circuit – vary in a
predefined range. In short, we can say that the designed circuit must be ro-

1.23 Design Verification 91

bust and perform correctly within a given operational envelope defined by theOPERATIONAL

ENVELOPE combined range of all these operational conditions and parameter values (A.
Thompson and Layzell 2000; Gilbert 2002; Koza et al. 2005).

Ideally, a design technique should be accompanied by suitable verification
techniques ensuring the correct functioning of the circuit within the whole
operational envelope. In practice, apart from elementary cases where the op-
erational envelope is composed of a small set of conditions that can be tested
exhaustively, the verification of the correctness of a system is seldom attain-
able. The conventional approach is to choose design abstractions that per-
mit the generalization of the verification of the circuit correctness from a few
points of the operational envelope to (ideally) the whole of it (Gordon and
Bentley 2002; Yao and Higuchi 1999). This means that the behavior of the de-
signed circuit is conceptually or experimentally tested in a few operational
conditions, with the assumption that the structure of the system has been
chosen so as to ensure that the validity of the tests extends to the operation
of the system in all other points of the operational envelope. Since evolution
typically works with abstractions that are different from those used in con-
ventional design, the verification of the correctness of evolved circuits can be
a major problem. A possible solution is the enforcement on the evolutionary
process of the use of the same abstractions that are adopted in conventional
design. This can facilitate the understanding of the workings of the evolved
circuits and permit the verification of their correctness. However, from our
previous discussion it follows that the imposition on the evolutionary pro-
cess of the same set of abstractions used in the conventional design threatens
to undermine the very reasons for using an evolutionary approach in the first
place, since it tends to cancel the difference between the conventional and the
evolutionary design spaces.

On the other hand, in the absence of some precautionary measure, the very
nature of the evolutionary process would tend to work against the satisfac-
tion of the specifications in the whole operational envelope. We must bear
in mind that evolution is able to subtly exploit the peculiarities of the con-
text in which the individuals subject to evolution are evaluated. Thus, it can
happen that the functionality of an evolved system depends on the presence
of conditions that are proper to the way in which the circuits were evaluated
during evolution. For example, a circuit whose evolution has been based on
fitness evaluations conducted with a constant circuit temperature, or with a
constant value of a certain device parameter, could be found to operate im-
properly when the temperature or the device parameter values are changed,
precluding the use of the evolved circuit in real applications. At first sight

92 1 Evolutionary Systems

a solution to this problem could consist in testing each individual in a large
variety of operational conditions, so as to sample extensively the operational
envelope (A. Thompson and Layzell 2000). Since this approach entails a
high evaluation cost for each evolving individual, a diluted version could
consist in testing each individual at a different point of the operational en-
velope, randomly chosen according to a suitable probability distribution. It
is clear, however, that neither of these tactics can guarantee the correctness
of an evolved system, since unexpected behaviors of the evolved circuit can
manifest themselves in points of the operational envelope that have not been
experienced during evolution, although the probability of this happening
might be rendered small by extensive testing.

To avoid closing this discussion on too pessimistic a note, in considering
these difficulties of the evolutionary approach we must not forget that the
formal verification of system correctness is a difficult problem for both the
conventional and the evolutionary synthesis of complex systems. In the evo-
lutionary case the ultimate answer to the verification riddle lies perhaps in
getting back to the real nature of the evolutionary design process, refraining
from forcing on it the categories of the conventional design process. This
means considering the result of the evolutionary process as a system that
is suited to operate in the environment where it has been evolved, rather
than as a system satisfying some specifications in a predefined operational
envelope (Yao and Higuchi 1999). Moreover, this means entrusting the gen-
eralization properties of the evolved systems to the adaptive capacities of the
system rather than to a set of predefined abstractions derived from the con-
ventional design approach. In other words, the system should be evolved in
conditions that favor the use of adaptation as a strategy to attain robustness
in a wide range of operating conditions (Hammerstein et al. 2006).

1.24 Closing Remarks

This overview of evolutionary electronics has been an opportunity to illus-
trate the challenges that one can expect to encounter when applying artificial
evolution to real-world problems. Through it we have distilled a series of
lessons that include the importance of the concept of abstraction and modu-
larity in the context of synthesizing complex systems. We have also empha-
sized the centrality and the difficulty of the verification of the correctness of
the systems generated by the evolutionary process when they correspond to
complex structures. The problem of verification can indeed be considered

1.24 Closing Remarks 93

one of the most important open problems for complex real-world applica-
tions of evolutionary methods. The existing examples of evolved circuits wit-
ness the possibility of solving interesting engineering problems and achiev-
ing a better exploitation of resources relative to conventional approaches.
They also show that it is possible to discover new system structures and
tackle design areas where no systematic design techniques exist. The expe-
rience of electronic circuit evolution suggests that it is necessary to increase
the extent of probing of the operational envelope during the evolutionary
process. It suggests also that it is important to use multiobjective algorithms
that do not force an excessively short-sighted optimization on the result.

The success of artificial evolution in addressing complex engineering prob-
lems is somehow at odds with the questions raised in the introduction to this
chapter on whether natural evolution is equivalent to a problem-solving pro-
cess. Paleontologist Richard Lewontin noted that the metaphor of biological
evolution as an adaptation process in which problems set by the external
world are solved by organisms through evolution originates from the pro-
cess by which humans modify their environment to meet their own needs.
Later, this metaphor was forgotten, he argued, and engineers started to be-
lieve that problems can be solved by mimicking natural evolution because
organisms solved their problems this way (Lewontin 1996).

The notion of evolutionary adaptation implies a preexisting set of chal-
lenges that the environment, or ecological niche, presents to the organisms.
In nature, this assumption is contradictory because the ecological niche is
defined in function of the relation with the organism, which is by defini-
tion already adapted to its own niche. Van Valen (1973) attempted to defend
the adaptive role of natural evolution by arguing that the environment is
constantly decaying with respect to its organisms and therefore evolution
operates so as to maintain organisms fit to their changing niche rather than
to improve them over time. But even this elegant explanation is not entirely
tenable because it does not predict or explain the diversification of species
that move out of existing niches, which brings back the contradictory notion
of preexisting niches and challenges available for organisms to be colonized
(Lewontin 1978).

As a matter of fact, the four pillars of natural evolution can explain and
predict only the differential reproduction and variability of individuals in a
diversified population, but not progress or adaptation (see also S.J. Gould
1997). Darwin (1859), however, argued that adaptation, in the sense of ame-
lioration of the current state of affairs, may occur in situations of particular

94 1 Evolutionary Systems

genotype
space

converged
population

Figure 1.42 Left: Evolution in genetic algorithms amounts to convergence of a pop-
ulation (shaded area) toward a region of genotype space with higher fitness. Right:
Evolution in SAGA corresponds to the displacement of a fairly converged population
in a slowly varying genotype space. Adapted from Harvey 1992.

environmental stress, such as in the presence of a competitor or of environ-
mental changes that undermine the survival of the species in specific ways.

Explaining the adaptive power of artificial evolution is easier because the
fitness function effectively amounts to a set of preexisting environmental
challenges and to a measure of progress along predefined directions. How-
ever, the consequence is that artificial evolution is a short-term and limited
–albeit powerful– optimization process, whereas natural evolution is an in-
cremental, open-ended, and creative process (Banzhaf et al. 2006). Current
attempts to modify artificial evolution so as to allow for emergence of in-
creasingly more complex and creative artifacts focus mainly on two aspects:
genetic representations and evolutionary conditions.

Fixed-length, one-to-one, genetic encodings often used for parameter op-
timization do not allow scalability and evolution of increasingly more com-
plex structures. More suitable genetic codes and mapping from phenotype to
genotype should have a number of properties, such as (a) an indirect map-
ping that allows phenotype variability without necessarily requiring geno-
type variability, such as growth and learning; (b) redundant mapping that
allows the expression of phenotype characteristics in many possible ways
from the same set of genes, so that genetic mutations have lower probabil-
ity of precluding incremental complexity; (c) variable-length genotypes that
can grow, shrink, and/or reorganize during evolution; (d) genetic operators
that have a significantly higher likelihood of producing small, rather than
big, variations in fitness; and (e) evolution of the genetic representation and
mapping.

After a few generations of artificial evolution, the population converges
around a genotype that encodes the best, or locally best, solution to the prob-

1.24 Closing Remarks 95

lem at hand. Genetic algorithms and schema theory are indeed designed to
display and explain, respectively, this behavior. If a new problem needs to be
tackled, it is common practice to start a new evolutionary experiment from
scratch with a new fitness function. Therefore, open-ended evolution is ruled
out by definition.

Harvey (1992) proposed SAGA (species adaptation genetic algorithm) toSPECIES ADAPTATION

GENETIC ALGORITHM

(SAGA)
address open-ended incremental evolution (figure 1.42). SAGA focuses on
the incremental evolution of fairly converged populations, which not only
is the final state of most evolutionary algorithms but may also capture the
state of affairs in evolving natural species. SAGA is based on redundant and
variable-length genotypes where small mutations (instead of crossover) are
the main factor that moves the population across genotype space as the envi-
ronment or fitness function changes. Genetic redundancy, which in SAGA
includes nongenic DNA, creates opportunities for “neutral walks” in the
fitness landscape, that is the accumulation of mutations that do not affect
the fitness of the individual, but may eventually lead to the expression of a
much fitter phenotype. In other words, SAGA relies on a genetic code that al-
lows many-to-one mappings from genotype to phenotype where mappings
of equivalent fitness can be reached by a single mutation in genotype space.
The collection of paths of equivalent fitness in the fitness landscape can be
visualized as a “neutral network” (Huynen et al. 1996).

Another strategy toward open-ended evolution may consist in reproduc-VIABILITY EVOLUTION

ing individuals according to “viability constraints,” rather than performance
against a specific problem (Mattiussi and Floreano 2005). Biological organ-
isms and artifacts must satisfy many constraints in order to stay alive (vi-
able). For example, bacteria and electronic circuits can operate only within a
well-defined temperature range; they also require a certain amount of energy
per unit of time in order to function properly; etc. In the case of electronic
circuits, for example, several viability constraints are readily obtained by the
specification sheet of the manufacturer. Each viability constraint defines a
range within a specific dimension (temperature, energy, etc.) and the inter-
section of these ranges defines the viability space of the organism or artifact
(figure 1.43, left).

Consider now a population of randomly generated individuals scattered
across the entire space. In the absence of selection pressure by competitors
or environmental change, all individuals within the viability space can re-
produce, but offspring that fall outside the viability space by the effect of
mutations are eliminated. This type of “viability evolution” has some ben-
efits: (a) It allows individuals to explore more areas of the fitness landscape

96 1 Evolutionary Systems

temperature

watts

selection
area

viability space

X
X

Figure 1.43 Viability evolution. Left: The gray area shows a simple viability space
for electronic circuits where the individuals (dots) can reproduce with equal proba-
bility. Individuals that fall outside the viability space by the effect of mutations are
eliminated. Individuals that fall within a selection area (here shown as an oval whose
gray level is proportional to fitness) are subjected to selective reproduction. The selec-
tion area is not necessarily present and can extend over more (or fewer) dimensions
than those spanned by the viability space. Right: The viability space can change over
time. An individual can reproduce as long as it stays within the viability tube.

than if they were selected against a predefined criterion; (b) the combination
of multiple constraints is easier to consider than in conventional multiobjec-
tive optimization; (c) the modification of existing constraints, or inclusion of
new constraints, at run-time is also easily done by modifying the borders and
dimensions of the viability space (figure 1.43, right).

Furthermore, selection pressure toward a specific goal can be introduced
in viability evolution by including a higher reproduction rate of individu-
als that satisfy a fitness criterion (dark shaded area in the left panel of fig-
ure 1.43). The evolutionary process is thus positioned somewhere between
reproduction of the viable and selection of the fittest. This position can be
dynamically shifted toward either extreme according to experimental needs
and results. Viability evolution can lead to growth (in some cases also to ex-
tinction) of the population unless a death criterion is introduced to kill the
excess of individuals. Individuals can be randomly selected for elimination
at periodic intervals or die of age or other factors.

SAGA and viability evolution are only two proposals toward open-ended
and incremental evolution that still require further experimental validation.
Whether or not they will prove useful models for science and engineering of
complex adaptive systems, we believe that emphasis on evolution as a con-

1.25 Suggested Readings 97

tinuous process of adaptation in dynamic and unpredictable environments
remains one of the most promising areas of research in evolutionary systems.

1.25 Suggested Readings

On the Origin of Species (Darwin 1859) remains a very readable and inspiring
book, especially for its treatment of selection forces, which is a major issue in
artificial evolution. However, Darwin was not aware of genes as the unit of
hereditary transmission. The role of genes in natural evolution is described
by Dawkins (1976) in the book The Selfish Gene where he argues that evolu-
tion is driven by genes that attempt to replicate in their own interest, even
if that does not coincide with the interest of the phenotype. Although some
aspects of that theory have been criticized, the book is worth reading for the
clarity and strength of the explanations. We also recommend The Blind Watch-
maker by the same author (Dawkins 1986), not only for its appealing and clear
description of the mechanisms of evolution but also for its emphasis that
evolution is not a random process, a criticism that is still raised by some en-
gineers and mathematicians against evolutionary algorithms. After reading
Dawkins, which may induce you into thinking that evolution is some sort
of optimal adaptive system, we recommend Full House by Gould (S.J. 1997),
which provides compelling evidence that evolution is mainly spread of di-
versity in a physical world constrained by the laws of physics. That book is
also an excellent antidote against the commonly held belief that humans are
at the top of the evolutionary ladder.

There are several other excellent books on evolution, such as the textbook
Evolution by Ridley (2004). The Major Transitions in Evolution by Maynard-
Smith and Szathmáry (1995) is unique in that it explains key facts in molecu-
lar biology and evolution within the perspective of how information is stored
and transmitted through generations. According to the authors, there have
been eight major transitions in evolutionary history starting from molecu-
lar replicators all the way to human societies and language. Although the
book requires good knowledge of some biological and chemical aspects, it is
particularly relevant for readers interested in the emergence of complexity.
A significantly scaled-down version for a wider readership was published
later under the title The Origins of Life (Maynard-Smith and Szathmáry 1999).
We found that starting with this latter version before attacking the original
book is a good strategy to fully appreciate all the insights provided by the
authors.

98 1 Evolutionary Systems

For what concerns the molecular biology involved in evolution, we rec-
ommend the handbook Fundamentals of Molecular Evolution by Graur and
Wen-Hsiung (1999), which is well-organized, clearly written, and richly il-
lustrated. The Art of Genes by Coen (1999) is an extremely clear and nicely
illustrated description of gene expression and interaction networks in the
formation of the phenotype.

In the area of artificial evolution, we recommend the original book on ge-
netic algorithms by Holland (1975) where the author also introduces schema
theory in formal terms. We also suggest Genetic Algorithms in Search, Opti-
mization and Machine Learning by Goldberg (1989), which is an excellent in-
troduction aimed mainly at computer scientists and engineers. A nice aspect
of that book is the inclusion of simple programming functions to illustrate
the different steps necessary to set up a genetic algorithm. Another good in-
troduction to genetic algorithms and their applications is given by Mitchell
(1996), where readers will also find a good description of schema theory with
its major criticisms.

For readers interested in genetic programming, we recommend the series
of four books by Koza and colleagues (Koza 1992, 1994; Koza et al. 1999,
2003). Although the basic elements of genetic programming are covered in
all books, each volume provides additional techniques and examples of ap-
plications. A nice feature of that series is that each book is accompanied by
a tutorial video that could be looked at before reading the book or used in
classes as support material.

For a more comprehensive view of the field of artificial evolution, we sug-
gest the recent Introduction to Evolutionary Computation edited by Eiben and
Smith (2003), which spans several approaches and variations of evolutionary
algorithms. We also recommend Evolutionary Computation: The Fossil Record
by Fogel (1998), which includes richly annotated reprints of 30 historical and
influential papers in various aspects of evolutionary computation. Readers
interested in understanding how to design an evolutionary algorithm tai-
lored to specific applications may read the excellent book How to Solve It:
Modern Heuristics by Michalewicz and Fogel (2004).

Coming now to the second part of this chapter, (Lohn and Hornby 2006)
is a simple and short introduction to evolvable hardware and evolutionary
electronics. A good critical overview of evolutionary electronics with com-
ments on the importance of verification is presented in (Yao and Higuchi
1999). In the same vein proceed A. Thompson et al. 1999, but with an in-
creased focus on the analysis of a few selected results and a discussion of
the concept of the operational envelope. An analysis more centered on digi-

1.25 Suggested Readings 99

tal circuits but with a general discussion of the scope of evolutionary circuit
design can be found in (J.F. Miller et al. 2000). Higuchi et al. (1999) present
several examples of circuit evolution from different fields. Book-length cov-
erages of evolutionary electronics are (Zebulum et al. 2002), (Sekanina 2004),
and (Greenwood and Tyrrell 2007).

The classic paper by von Neumann (1961) contains interesting comments
on the analog vs. digital issue in general and in relation to the working of
the brain. Eliasmith and Anderson (2003) provide an original approach to
the issue of neuronal encoding in the brain, which is relevant also to the gen-
eral issue of the digital vs. analog dilemma. Sarpeshkar (1998) presents a
good discussion of the advantages and limits of the analog representation
and describes a mixed approach based on the regeneration of signals and the
use of a distributed representation. Sarpeshkar (2006) describes examples
of analog computation in biological systems and discusses the challenge of
designing prosthetic sensory devices such as artificial cochleas, equaling the
performance of their biological counterpart. (Shannon 1949) is a classic ref-
erence describing the sampling theorem and the analysis of the information
content of analog signals.

There exist many good textbooks on conventional digital design tech-
niques, for example (Katz and Borriello 2004 and Wakerly 2001). Analog
reconfigurable devices, especially custom chips and circuits, are discussed
in the already mentioned (Zebulum et al. 2002). Good classic analog de-
sign textbooks are (Gray et al. 2001) and (Allen and Holberg 2002), which
contain also extensive analyses of the ”little circuits” traditionally used as
analog building blocks. In (Gilbert 2002) one can find a broad description
and analysis of tradeoffs in analog design. The real flavor of analog design
can be savored from many of the contributions in the two volumes edited
by Jim Williams (Williams 1991, 1995) and from Pease’s book on analog trou-
bleshooting (Pease 1991). The subsection title “Transgressing the Abstrac-
tions” is admittedly inspired by the title of Sokal’s hoax paper (Sokal 1996).

An extensive description of evolutionary multiobjective methods is given
in (Deb 2001). A more compact overview is given in (Fonseca and Fleming
2002). Several chapters of (Bäck et al. 2000) consider the various facets of
the issue of constraints in an evolutionary context. The original reference
on satisficing is (Simon 1996), where the relevant comments are scattered
in various chapters of the book. A more compact discussion of satisficing
and, more generally, of multiple objective problems is given in (Eilon 1972).
Interesting comments on natural evolution seen from the point of view of
elimination rather than selection can be found in (Mayr 2001).

2 Cellular Systems

The simplest kind of systems that we can reasonably consider as living are
biological cells (Harold 2001). Although cells are already quite complex sys-
tems, the most complex forms of life are multicellular organisms, that is,
structured assemblies of cells. In a multicellular organism almost all cells
contain the same genetic material and yet the morphology and function of
two cells can be strikingly different. This difference is explained by the fact
that the state of each cell depends not only on its genetic material but also on
the state of the cell when it was generated and on the influences that acted
on the cell from that moment onward. A multicellular system is thus an ex-
ample of a system that is composed of many copies of a fundamental unit –
the cell – whose interaction produces a global behavior that is not merely a
scaled-up version of the behavior of an isolated unit. In this chapter we will
explain how to define models that capture the essence of this property. We
are interested in particular in models whose fundamental units are very sim-
ple – much simpler than biological cells. We will start by drawing a list of the
basic constituents that are required to define such models. Then we will put
together these constituents to build various models of cellular systems. We
will analyze the properties of these models and discuss some of their appli-
cations in computation, artificial life, physics, and complex system modeling
and simulation.

2.1 The Basic Ingredients

We use the inspiration provided by biological cellular tissues to define the
elements of an abstract cellular system. This abstract system will be later
specialized in order to obtain models that are applicable to a variety of phe-

102 2 Cellular Systems

nomena. In abstracting a cellular tissue, the collection of cells becomes a dis-
crete cellular space. The complex internal state of a biological cell is reduced
to a numerical or symbolic state variable taking its values into a reasonably
simple state set. The complex rules and interactions that govern the tem-
poral dynamics of biological cells are abstracted by a mathematical function
or rule that specifies how the state variable must be updated in time, taking
into account the interactions of a cell with its neighbors, starting from a given
initial configuration of the cellular space.

In more precise and formal terms, an abstract cellular system is composed
of the following elements:

Cellular space. The collection of cells in the system is called the cellular space.
In general, it is a regular d-dimensional lattice of cells. When dealing with
cellular systems at an abstract level, the lattice is typically considered in-
finite. In practice, however, any actual implementation deals necessar-
ily with a finite space. Figure 2.1 shows some common kinds of cellular
spaces. Cellular spaces of more than three dimensions are seldom consid-
ered in actual implementations because the total number of lattice cells for
a given size along each dimension grows exponentially with the number
of dimensions.

Time variable. The dynamics of the cellular system unfolds along a time
axis that can be discrete or continuous.

State and state set. The state of a cell represents the information specifying
the current condition of the cell. It is the memory of what happened to
the cell in the past. Thus, it is the only way in which the history of the
cell can influence the future of the cellular system. The state set S is the set
of acceptable values for the state of a cell. Often, a special quiescent stateQUIESCENT STATE

so is specified, which represents the resting or inactive condition of the
cell. In most models of cellular systems the state of a cell is represented
by the value of a numerical variable. Sometimes an n-tuple of numerical
variables rather than a single variable is used to represent the state, even
if in principle this n-tuple could be re-encoded as a single variable. The
advantage of using an n-tuple is that each variable can represent in a more
meaningful way the different aspects of the cell condition that must be
modeled and can thus simplify the definition of the transition function
described below.

Neighborhood. The neighborhood of a cell is the set of cells (including the cell
itself) whose state can directly influence the future state of the cell. In other

2.1 The Basic Ingredients 103

1D

3D

2D

Figure 2.1 Some examples of one-, two-, and three-dimensional cellular spaces.

words, each cell can be thought of as directly connected to and sensing the
state of the cells that belong to its neighborhood. In principle, the shape
and size of the neighborhood can be arbitrary. However, the neighbor-
hood is typically composed of a small number of adjacent cells because
cellular systems are assumed as models of systems that exchange infor-
mation only locally. A simple way to assign the neighborhood is to define
a distance in the cellular space and then specify that the neighborhood of
a cell is composed by all cells within a certain radius (or range) r from theNEIGHBORHOOD

RADIUS cell. Figure 2.2 illustrates this concept and shows some of the most com-
mon neighborhoods for low-dimensional cellular systems. If all the cells
in the system have the same kind of neighborhood, the cellular system is
said to have a homogeneous or uniform neighborhood. Homogeneity can
be further specified as pertaining to space, time, or both.

State transition function. The state transition function, often called simply
the transition function, is the function that specifies how the state of a cell
unfolds in time. It depends only on the state of the cells belonging to
the cell’s neighborhood and, possibly, on the position of the cell and on
time. If the transition function is the same for all the cells or does not

104 2 Cellular Systems

1D

2D

von Neumann Moore

3D

r =1 r =2

Figure 2.2 Some examples of neighborhoods in cellular spaces. For the one-
dimensional case the figure shows how the concept of radius r can be used to define
the neighborhood. The most common two-dimensional neighborhoods are the von
Neumann neighborhood and the Moore neighborhood.

depend on time, the cellular system is said to be homogeneous relative to
the transition function, in space and time, respectively. In general, when a
cellular system is called homogeneous without further qualifications, it is
assumed to be homogeneous relative to both the transition function and
the neighborhood, in both space and time. For discrete-time cellular sys-
tems the actual implementation of the transition function on a computer
can be done by programming a routine that evaluates the function at each
time step. For small finite state sets and small neighborhoods the transi-
tion function can be implemented with a lookup table that stores all the
entries of the transition function.

Boundary conditions. If the cellular space has a boundary, boundary cells
may lack some of the cells required to form the prescribed neighborhood.
This problem can be solved by specifying suitable boundary conditions. The
most common kinds of boundary conditions (figure 2.3) are:

• Periodic: The simplest solution to the presence of boundaries is to
eliminate them by transforming the cellular space from a space with
boundaries to a space without boundaries. Typically, a rectangular d-

2.1 The Basic Ingredients 105

Assigned

Periodic

Adiabatic

Mirror

Absorbing

Figure 2.3 Some examples of boundary conditions, illustrated for the one-
dimensional case.

dimensional cellular space is transformed into a d-dimensional toroidal
cellular space by gluing the opposite sides of the rectangular space.
This strategy is known as the assignment of periodic boundary conditions.

• Assigned: Another strategy to cope with the presence of boundary
cells is to define a virtual neighborhood for them. The virtual cells
required to complete the neighborhood can also be assigned a state
that does not depend on the state of the actual cellular system. In most
cases the assigned state is fixed (fixed boundary conditions), but it can be
generated by a more complex process, for example, it can be generated
by a random process (random boundary conditions), or it can correspond
to a source of one of the quantities modeled in the cellular system (e.g.,
particles, or vehicles).

• Copying: Alternatively, the cells of a virtual neighborhood can be as-
signed a state that is a copy of the state of the cells of the cellular sys-
tem. Adiabatic boundary conditions are specified by copying the state
of the boundary cells. The name derives from systems used to model
diffusive thermal phenomena which have the temperature as the state
of the cell. For these systems this strategy defines a null temperature

106 2 Cellular Systems

gradient and thus a null exchange of heat across the boundary. Mirror
boundary conditions are specified by copying to the virtual cell the state
of the next cell from the boundary. Note that periodic boundary con-
ditions can be interpreted as copying to the virtual cell the state of the
cell at the opposite boundary.

• Reflecting: Reflecting boundary conditions (also called closed boundary
conditions) correspond to the definition of a process that reflects some
of the phenomena that are modeled within the cellular system (for ex-
ample, a particle colliding with the boundary, or a wave impinging on
it). The definition of the reflecting process depends on the details of
what is modeled by the cellular system.

• Absorbing: Absorbing boundary conditions (also called open boundary
conditions) are a special class of boundary conditions that permit simu-
lating with a finite space the behavior of an infinite cellular space which
has all but a finite number of cells in its quiescent state and whose tran-
sition function is null state quiescent (see below). The idea is to define
at the boundary a process that does not perturb the activity in the finite
region that is modeled. The definition of the absorbing process de-
pends on the details of the transition function and can be quite tricky.
An alternative solution is to define moving boundaries, that is, to keep
increasing the size of the cellular space in order to prevent boundary
effects from being felt in the finite region of interest.

For some cellular models some of the boundary conditions that are listed
above as distinct in fact coalesce. For example, for the cellular systems
used to model the motion of a particle, boundary conditions that reflect
and absorb particles can be implemented simply as fixed boundary con-
ditions corresponding, respectively, to the fixed presence or absence of
particles in the virtual cells beyond the boundary.

Initial conditions. In order to start the updating of the state of the cells of
the system according to the transition function it is necessary to specify
the initial state of all the cells. This is known as the assignment of the
initial condition or seed of the cellular system.

Stopping condition. The stopping condition specifies when the update of
the state of the cellular space must be stopped. Typical stopping condi-
tions are the attainment of a preassigned simulation time and the obser-
vation that the state of the cellular system is cycling in a loop.

2.2 Cellular Automata 107

2.2 Cellular Automata

The simplest and most popular kind of cellular system containing all the
above ingredients is the cellular automaton (CA). A CA has a discrete time
variable, a finite neighborhood, a finite state set, and a synchronous update
of all the cells in the cellular space. The integer sequence S = {0, . . . , k − 1}
is often used as the CA state set, with so = 0 representing the quiescent state.
The transition function ϕ of a CA (also called the transition rule or CA rule) isTRANSITION RULE

a deterministic function that gives the state si(t + 1) of the ith cell at the time
step t + 1 as a function of the state of the cells in the cell’s neighborhood Ni

at time t, that is,

si(t + 1) = ϕ(sj(t) : j ∈ Ni) .

The name CA derives from the mathematical concept of automaton1, a
discrete-time system with a finite set of inputs I , a finite set of states S, a
finite set of outputs O, a state transition function ϕ which gives the state at
the next time step as a function of the current state and inputs, and an output
function η which gives the current output as a function of the current state.
In a CA each cell is thus an automaton which issues its state as output and
takes as inputs the outputs of the cells in the cell’s neighborhood.

In principle, the transition rule of a CA can be represented as a transitionTRANSITION TABLE

table, that is, a table which specifies the next state of a cell for each possible
configuration of the states of the cells in its neighborhood (figure 2.4). If the
state set contains k elements and the neighborhood is composed of n cells,
the number of possible configurations of the neighborhood (and, thus, the
number of entries in the transition table) is kn. Thus, the representation of
the transition rule as a transition table becomes rapidly impractical as k and
n increase. The number of possible transition rules grows even more rapidly,
and becomes astronomical even for small values of k and n. Since for each
configuration of the neighborhood we have k ways to specify the next state,
there are kkn

different transition rules for a CA with k possible states and a
neighborhood of size n. For a CA with two possible states (a binary CA) and a
neighborhood of size three, this gives 223

= 256 different transition rules. But
already for a CA with three possible states (a ternary CA) and a neighborhood
of size three there are 333

= 7, 625, 597, 484, 987 different transition rules.

1. The plural of automaton is automata.

108 2 Cellular Systems

...

t

t +1

� � � � k
9

neighborhood configuration

next state of center cell

Figure 2.4 An example of a transition table for a two-dimensional CA with the
Moore neighborhood. The cell states are represented as gray levels. The table contains
one entry for each configuration of states of the nine cells that form the neighborhood.
With k possible states, the table contains k9 entries.

2.2.1 Special CA Rules

Since the universe of transition rules is in general so vast, it is useful to sin-
gle out some rules that comply with some additional constraints that make
them simpler to specify or ensure to the CA the possession of some special
property. Here is a list of the most common special CA rules:

• Totalistic: Assuming that the states are represented as numbers, a CA rule
is called totalistic if it depends only on the sum of the values of the states
in the neighborhood. A totalistic transition rule can be written as

si(t + 1) = ϕ(
∑
j∈Ni

sj(t)) .

With k states and a neighborhood of size n the sum can take only n(k −
1)+1 different values and thus there are kn(k−1)+1 possible totalistic rules.
For example, only 16 of the 256 rules of a binary CA with neighborhood
size of three, and only 2187 of the more than 1012 rules of a ternary CA
with neighborhood size of three are totalistic rules.

• Outer totalistic: A CA rule is called outer totalistic if it depends only on
the value of the state of the updated cell (the “center” cell) and the sum of

2.2 Cellular Automata 109

the values of the states of the other cells in the neighborhood (the “outer
neighborhood”). An outer totalistic transition rule can be written as

si(t + 1) = ϕ(si(t),
∑
j∈Ni
j �=i

sj(t)) .

• Symmetric: A transition rule is symmetric with respect to a permutation
of the states of the cells in the neighborhood if it is not affected by the
permutation. Since a totalistic rule depends only on the sum of the neigh-
borhood states, it is symmetric with respect to any permutation of the
states of the cells of the neighborhood. The same is true of an outer total-
istic rule with respect to the permutations of the states of all the cells of
the outer neighborhood.

• Null state quiescent: A CA rule is called null state quiescent if it maps a
quiescent neighborhood to the quiescent state.

2.2.2 Space-Time Diagrams

The most fascinating way to observe the activity of a CA is an animation on
a computer screen. When the only medium available is paper the activity
of one- and two-dimensional CA with a reasonably small state set can be
appreciated using a space-time diagram (or space-time plot). The left side of
figure 2.5 shows an example of a space-time diagram for a one-dimensio-
nal CAs. The cellular space at each time step is represented as a horizontal
line of squares and the vertical direction is used to show the unfolding in
time of the configuration of states of the cellular space. Each state of the
state set is represented by a different shade of gray (or color, when available).
The right side of figure 2.5 shows the direct generalization of the one-dimen-
sional diagram to the two-dimensional case (the white cells of the cellular
space are not shown for clarity). Since this kind of representation hides most
of the activity of the two-dimensional CA, the alternative representation of
figure 2.6 is often used for a two-dimensional CA. The unfolding in time
of the CA is now illustrated by a vertical stack of rectangular regions that
represent the state of the cellular space at different time steps.

Figure 2.5 and figure 2.6 both represent a binary CA with the Moore neigh-
borhood implementing the so-called outer parity rule. Black cells correspond
to the state s = 1 and white cells correspond to s = 0. The transition rule
specifies that the next state of a cell is 1 if the number of 1s in its outer neigh-
borhood is odd, and is 0 otherwise.

110 2 Cellular Systems

7

6

5

4

3

2

1

0

t

7
6
5
4
3
2
1
0

t

Figure 2.5 Space-time diagrams for (left) one- and (right) two-dimensional CAs.

2.3 Modeling with Cellular Systems

So far we have described in gen-

7

6

5

4

3

2

1

0

t

Figure 2.6 Another kind of space-time di-
agram for a two-dimensional CA.

eral terms the elements of cellular
system models. In this section we
show how to actually build a cellu-
lar model of a real-world phenom-
enon and use the model to investi-
gate the properties of the phenom-
enon. To define and run a cellular
model we proceed according to the
following steps:

1. Assign the cellular space.

2. Assign the time variable.

3. Assign the neighborhood.

4. Assign the state set.

5. Assign the transition rule.

6. Assign the boundary conditions.

7. Assign the initial condition.

8. Assign a stopping condition.

9. Proceed to update the state of
the cells until the stopping con-
dition is met.

2.3 Modeling with Cellular Systems 111

2.3.1 Example: The Elementary Traffic CA

To illustrate the application of the modeling steps listed above we will now
show how to define a simple CA model of traffic. We want to model a finite
stretch of a unidirectional, single-lane road (figure 2.7a)). This is done by dis-
cretizing the stretch of road into cells of finite length. The resulting cellular
space is a one-dimensional finite lattice of cells (figure 2.7b)). In a CA, the
time variable is discrete and vehicles are thus modeled as moving at discrete
time instants. Therefore, realistic traffic quantities will be measurable only
by averaging over several time steps or over several cells. We assume that
the state of each cell is influenced only by its adjacent cells, that is, the CA
neighborhood is composed of three cells (figure 2.7c)). We assume that each
cell contains either a single vehicle or is empty, which means that the state set
contains only two states (figure 2.7d)). This assumption is of course linked to
the length that we must attribute to each cell in discretizing the road, which
must be large enough to contain one vehicle but not so large as to make it
implausible that at most one vehicle is contained in it. The transition rule is
intended to model vehicles moving from left to right and prescribes that a ve-
hicle can advance and must advance only if the destination cell is free. This
rule can be represented with the transition table shown in figure 2.7e). We as-
sign periodic boundary conditions, so that vehicles leaving the cellular space
from the right reenter it from the left (figure 2.7f)). To run the simulations we
must now assign the initial conditions. We use as the initial condition a ran-
dom distribution of cars of density ρ that can vary from 0 (empty road) to 1
(each cell is occupied by a vehicle). Note that the transition rule ensures that
vehicles are neither created nor destroyed, that is, the number of vehicles is
conserved and thus the assigned density is maintained during the whole CA
evolution.

Running the CA we observe that after an initial transient the flow of vehi-
cles stabilizes into a configuration that repeats itself periodically. Figure 2.8
shows the space-time diagrams for two different car densities. Black cells
correspond to cells occupied by cars and white cells correspond to empty
cells. Note that there is a qualitative difference in the aspect of the two di-
agrams. For the lower density ρ = 0.3 once the initial transient is finished,
there remain in the space-time diagram only diagonal stripes of white cells,
corresponding in the model to empty stretches moving along the road in the
same direction of the traffic. For the higher density ρ = 0.7 after the transient,
there remain only diagonal stripes of black cells, corresponding to traffic jams
moving along the road in the direction opposite to that of the traffic.

112 2 Cellular Systems

Cellular space

T
ra

n
s
it
io

n
ta

b
le

Unidirectional single-lane road

Neighborhood

S = { , }

State set

Boundary conditions

0

t

1

2

3

T
im

e
v
a

ri
a

b
le

a)

b)

c)

d)

e)

f)

Figure 2.7 The elements of the traffic CA model. a) The kind of traffic flow modeled.
b) The cellular space-time. c) The neighborhood. d) The state set. e) The transition
table. f) The boundary conditions.

2.3 Modeling with Cellular Systems 113

0

t

�	
	���

0

t

�	
	��

49 49

Figure 2.8 Examples of traffic flow in the elementary traffic CA with two differ-
ent densities of vehicles. The space-time diagram on the left corresponds to a road
with 30% occupation by vehicles. The diagram on the right corresponds to a 70%
occupation by vehicles.

To analyze and understand the difference between the two plots of fig-
ure 2.8 we must repeat the simulation with different values of traffic density.
The result can be better appreciated by considering a global property of the
traffic flow, for example, the mean speed of all the vehicles measured in num-
ber of cells traveled per time step. Figure 2.9 shows the plot of the mean
speed of the vehicles as a function of the vehicle density ρ. The plot was
obtained by running the CA simulation and averaging over the part of the
space-time diagram where the traffic flow has stabilized. The plot reveals
that the qualitative change of behavior occurs for ρ = 0.5. Below this thresh-
old the traffic is moving freely and above it it is congested. In the language
of physics there is a phase transition between the two regimes at the criticalPHASE TRANSITION

density ρ = 0.5 (Fuks 1997; Maerivoet and De Moor 2005).

2.3.2 Remarks on Cellular Models

We could go on analyzing the properties of the elementary traffic CA but
what we want to stress at this point is the general properties of cellular mod-
els rather than the particular properties of this example. The first observation
is that by defining just the local properties of the model we have revealed in-
teresting global behaviors such as moving traffic “holes” and jams, and the
existence of two distinct regimes of traffic. This is one of the fundamental
characterizing properties of cellular modeling which makes them an ideal
tool to study how simple local rules can produce complex global behaviors.

114 2 Cellular Systems

0 0.25 0.5 0.75 1

0

0.2

0.4

0.6

0.8

1

freely flowing congested

m
e

a
n

v
e

h
ic

le
s
p

e
e

d
(c

e
lls

/t
im

e
s
te

p
)

vehicle density �

Figure 2.9 Examples of mean speed v̄ of the vehicles as a function of the vehicle
density ρ in the elementary traffic CA. The points shown in the plot are determined
by running the CA for 1000 time steps with a randomly generated initial distribution
of vehicles and considering only the last 500 time steps in order to let the initial tran-
sient die out. The continuous line corresponds to the relationship v̄ = 1−ρ

ρ
obtained

analytically for a cellular space of infinite length (Fuks 1997). The plot shows that at
the critical 50% vehicle density there is a transition between two different kinds of
traffic flow.

Of course, the fact that the model exhibits a certain global behavior does
not guarantee that the behavior is an actual feature of the phenomenon from
which the model is drawn. As in all scientific theorizing (see box 2.1) one
must actually go back to the real phenomenon and verify that the model
predictions comply with the phenomena that characterize the actual system
that is modeled. In this respect, since the state set of a CA is finite, CA mod-
els have the advantage of being implementable exactly on computer, with-
out worrying about numerical approximations and error propagation. This
means that what is observed in the simulation is an actual property of the
model implemented and not a numerical artifact. There is a second aspect of
cellular systems that can be appreciated from the traffic CA example, that is,
how cellular models help to define the model at the right level. By adopting
the cellular approach one is free to chose the level of description, from the
microscopic to the macroscopic. Detailed microscopic models have the ad-
vantage of reproducing the finest details of the phenomena. Moreover, they
often permit a very simple and natural modeling of boundary conditions that
are difficult to specify at higher levels (figure 2.10). On the other hand, very

2.3 Modeling with Cellular Systems 115

Figure 2.10 The interaction of a fluid with a fixed wall is an example of a bound-
ary condition that is difficult to model at the macroscopic level but straightforward
at the microscopic level. In the CA model represented schematically in this figure the
black disks with an arrow represent moving particles and the black disks on a dark
background represent fixed particles that constitute the wall (more details on cellular
models representing particles will be given in section 2.5). The collisions of the mov-
ing particles with those belonging to the wall slow down the collective motion of the
particles and produce a result that appears as friction once the motion of the parti-
cles is averaged over large enough portions of the space-time diagram. The amount
of friction is specified directly in terms of the roughness of the wall by choosing the
frequency and depth of the pits. No special boundary conditions must be specified
in the CA model besides the rules defining the result of the interaction between a
moving particle and a fixed particle.

detailed models require the processing of large masses of elementary entities
and some space-time averaging to smooth local fluctuations and to get back
to quantities that are observed at the macroscopic level. One must consider
that most present-day computers are designed for efficiency in the complex
manipulations of relatively few entities rather than of simple manipulations
of large numbers of entities. Computers specially designed to handle cellu-
lar models do exist, but occupy a small niche of the computer market (Toffoli
and Margolus 1987; Talia 2000). Moreover, when one builds a very detailed
model one often discovers that many details have little or no influence on
the global behavior of the system because their effect is averaged out when
observation is done at a coarser scale. For example, modeling the cars at
the level of their atomic constituents in the traffic CA would hardly help
us to improve our understanding of the properties of traffic. By not mod-
eling inessential details one obtains a model that displays the same global

116 2 Cellular Systems

Box 2.1: The scientific status of computational models

The scientific approach to the understanding of a system is based on
the specification of a formal model for the system.Typically, the model
is defined in mathematical terms so as to permit the systematic de-
duction of the consequences of the basic assumptions of the model.
A model must include rules that specify the correspondence between
some elements of the model and some observable properties of the real-
world system that is modeled (Russo 2004). With respect to this corre-
spondence, the predictions derived from the model must go beyond
the observed phenomena that inspire the model. The last requirement
assures that the model is not a mere formalization of what has been ob-
served but can provide new insights about the behavior of the system.

Scientific models and theories have the additional role of allow-
ing the development of a scientific technology, that is, of a corpus of
techniques for the rational design and control of real-world systems.
In some cases the laws of interaction of the elements that constitute
the system are given and cannot be changed (for example, the laws of
physics, or the rules of interaction of existing biological agents). How-
ever, one can still control the behavior of the system by driving it with
external signals or imposing suitable constraints on it, in order to steer
the spontaneous dynamics of the system in the desired direction. In this
case, system modeling permits the determination of the driving signal
and constraints required to achieve a predefined goal. In other cases
one is free to define the rules that govern the elements of the system and
their interactions (for example, by defining the control system and com-
munication abilities of the robots in a collective robotics experiment). In
this case system modeling is required also for the successful design of
the rules, since it allows the analysis of the consequences of the rules,
the driving signals, and the constraints that have been engineered into
the system.

Before the advent of large-scale automatic computation, only ana-
lytically tractable mathematical models were considered. Analytically
tractable models have many advantages. For example, they permit the
prediction of the system behavior when the parameters of the model
vary over continuous ranges, revealing the different regimes of opera-
tion of the system. On the other hand, these models are only a small
part of all the possible mathematical models. For example, many mod-
els defined in terms of the cellular systems described in this (cont.)

2.3 Modeling with Cellular Systems 117

Box 2.1 (continued)

chapter defy analytical solution. Furthermore, for computationally irre-
ducible models, running a simulation is provably the best way to derive
a prediction.

Now that the availability of computers permits the simulation of
analytically intractable models, we can wonder whether the results
give computational models full membership in the category of scien-
tific models. The main problem in this respect is that the kind of in-
sight that can be derived from a simulation is in general quite limited
in comparison with what can be obtained from an analytically tractable
model. For example, to explore the behavior of a system in a range of
parameters using a computational model one can at most run a finite
set of simulations for different values of the parameters (see figure 2.9),
and there is in general no guarantee that the explored values exhaust
the range of behaviors proper to the model. Despite these limitations,
some authors maintain that computational models deserve full mem-
bership in the scientific enterprise because, for example, they permit
proving that the details of a given model are sufficient to generate the
observed large-scale behaviors (Epstein 2006). However, other authors
challenge this opinion (Durlauf 1997; Diermeier 2007) and the scientific
community is in general divided on the value that must be attributed
to computational models in the context of scientific theories. An inter-
esting viewpoint on the role of computational models was provided
by John von Neumann and Stanislaw Ulam at the beginning of the
computer era (Ulam 1976; Rédei 2005; Farge 2007). They observed that
in domains where mathematical models are analytically intractable in
most real-world scenarios – for example, in fluid dynamics with even
moderately complicated boundary conditions – computer simulations
can be seen as an additional experimental technique which can provide
valuable insight into the behavior of a system and thus facilitate the
formulation of a more conventional explanatory theory.

Irrespective of their scientific status, computational models of oth-
erwise intractable complex systems are useful in an engineering con-
text because they provide the instruments for the design and control
of these systems. However, as explained in more detail when describ-
ing the problem of design verification in chapter 1, it is important to
verify that the behavior of a system whose design is based on computa-
tional models is robust with respect to the technologically unavoidable
parameter tolerances and to the expected external perturbations.

118 2 Cellular Systems

10111000 2 = 1 � 27+ 0 � 26 + ... + 0 � 20 = 18410 Rule 184

1 1 000110

R184

111 =72 10
...

1 1 1 1 1 10 10 00000000001 1 1 1 1

110 =62 10 001 =12 10 000 =02 10

a)

b)

Figure 2.11 a) The mechanism that associates Wolfram’s rule code to the elementary
CA. b) The conventional graphical representation of the transition table of elementary
CAs: cells in the s = 1 state are represented as dark squares and cells in the s = 0
state are represented as white squares.

behavior and is simpler to implement and simulate and whose results are
simpler to analyze. Focusing on the right model is more an art than a sci-
ence, and sometimes requires experimenting with models of different level
of detail. Finally, note that cellular systems are not used only to model exist-
ing phenomena. As will become clear later, cellular systems are also a tool
for system design and for the definition and analysis of artificial “universes”
with synthetic laws that permit the emergence of complex phenomena.

2.4 Some Classic Cellular Automata

Among all cellular systems there are two instances of CAs that enjoy a spe-
cial popularity: the class of the one-dimensional elementary CA and the two-
dimensional game of life CA. In this section we give a short description of
the main characteristics of these CAs. In later sections we will use them to
illustrate several aspects of cellular systems and of their applications.

2.4.1 Elementary CAs

As explained in section 2.2 there are 256 binary one-dimensional CAs with
a neighborhood of radius r = 1. They are called elementary CAs. In a sem-
inal study Wolfram (1983) analyzed these CAs and proposed a numbering
system known as Wolfram’s rule code which associates an integer from 0 toWOLFRAM’S RULE

CODE 255 with each elementary CA, as illustrated in figure 2.11a). The association

2.4 Some Classic Cellular Automata 119

0

t

0

t

49 49

R110R30

Figure 2.12 Examples of space-time diagrams for the elementary CA with rule codes
30 (left) and 110 (right). Both diagrams were obtained with a randomly generated ini-
tial state with about 50% of cells in the state s = 1, and periodic boundary conditions.
Cells in the s = 1 state are represented as black squares and cells in the s = 0 state
are represented as white squares.

is obtained by ordering the entries of the transition table according to the
state of the neighborhood interpreted as a binary integer. The ordered bi-
nary digits giving the next state of the center cell are then interpreted as a
binary integer, which is Wolfram’s code for the CA. The transition table of
an elementary CA is often represented with the stylized diagram shown in
figure 2.11b).

There are two fundamental reasons to be interested in elementary CAs.
First, some of them constitute the simplest cellular model of many phenom-
ena. For example, the traffic CA described in the previous section is actually
the elementary CA with rule code 184, as can be verified comparing the tran-
sition table of figure 2.11 with that of figure 2.7. A second reason of interest is
related to the fact that there exist only 256 of them and that it is therefore pos-
sible to study in detail all of them, trying to derive some general conclusions
about CAs and their classification. For example, looking at figure 2.8 and fig-
ure 2.12 which show samples of space-time diagrams of the elementary CAs
with rule codes 184, 30, and 110, we see that quite different spatiotemporal
patterns can be generated by elementary CAs. This observation will be de-
veloped further in section 2.9 when discussing the issue of the analysis and
synthesis of cellular systems.

120 2 Cellular Systems

2.4.2 Conway’s Life Game

In the early 1970s the mathematician John Conway defined a two-dimen-
sional binary CA that, following its popularization in two of Martin Gard-
ner’s columns in Scientific American (Gardner 1970, 1971), became rapidly one
of the most well-known and most studied CAs. Conway’s goal was to de-
fine a very simple CA that could produce the most interesting and surprising
behavior. To this end he explored extensively the space of two-dimensional
CAs in search of the right rule. Eventually, after almost two years of ex-
periments, Conway focused on a binary CA with the Moore neighborhood
(figure 2.2) obeying the following outer totalistic transition rule (Berlekamp
et al. 2004):

• A cell that is in the state s = 0 at time t switches to the state s = 1 at time
t + 1 only if exactly three of its eight outer neighbors are in the state s = 1
at time t.

• A cell that is in the state s = 1 at time t remains in this state at time t + 1
only if two or three of its eight outer neighbors are in the state s = 1 at
time t.

Conway gave a snappier description of the rule by calling the cell in the state
s = 0 dead cells, and calling live cells those in the state s = 1. The CA rule can
then be rephrased as

• Birth rule. A dead cell becomes a live cell only if exactly three of its eight
outer neighbors are live cells.

• Survival rule. A live cell remains a live cell only if two or three of its eight
outer neighbors are live cells. A live cell dies by isolation if it has fewer
than two live neighbors, and dies by overcrowding if it has more than three
live neighbors.

The CA following these birth and survival rules was renamed The Game of
Life, or simply the Life CA.

Running several times the Life CA starting from a random initial configu-
ration reveals the existence of different kinds of “objects.” Some correspond
to stable configurations that remain unchanged from one time step to the next.
Conway and his coworkers called these objects still-life configurations. Fig-
ure 2.13 shows three common stable configurations, called by Conway the
block, the pond, and the beehive. The second kind of common Life objects are

2.4 Some Classic Cellular Automata 121

3

2

1

0

t

.
.
.

Figure 2.13 Three static objects in Conway’s Life Game: (left) the block , (center) the
pond, and (right) the beehive. Live cells are represented in dark gray. The figure shows
also how a configuration at time step t can be generated by different configurations
at time step t − 1. In this case, a beehive can be generated by another beehive or by
two adjacent rows of live cells.

4

3

2

1

0

t .
.
.

Figure 2.14 Two oscillators in Conway’s Life Game: (left) the blinker, which has pe-
riod two, and (right) the clock II with period four.

122 2 Cellular Systems

4

3

2

1

0

glider

eater

t

eater

4

3

2

1

0

t
.
.
.

Figure 2.15 Left: The glider is the most common moving object in Conway’s Life
Game. Right: An eater can annihilate a glider and repair itself in four time steps.

oscillators, or life cycles. These are configurations that repeat themselves with
a period greater than one time step. Figure 2.14 shows the blinker, which has
period two and is the most common kind of oscillator and can be easily pro-
duced starting from a random initial condition, and the clock II which is a
hand-designed oscillator with period four (Poundstone 1985). A third kind
of common configurations in Life are moving objects. Figure 2.15 shows the
simplest and most interesting of them: the glider. The figure shows that glid-GLIDER

ers move diagonally by one cell each four time steps. The direction of the
motion depends on the initial orientation of the glider.

The existence of moving objects like the gliders suggested to Conway that
Life could be interpreted as a synthetic universe where it is possible to send
signals between places. This prompted him to investigate the possibility
of building more complex configurations capable of processing information.
This investigation was encouraged by the discovery of the glider gun, a con-
figuration designed by R.W. Gosper that is able to produce a new glider ev-
ery 30 time steps (figure 2.16). A fundamental role in Conway’s endeavor
was also played by the discovery of the eater, a static structure that is ableEATER

2.4 Some Classic Cellular Automata 123

30

29

28

2

1

0

t

.
.
.

glider

Figure 2.16 A glider gun generates a glider every 30 steps. Note that besides pro-
ducing the glider the gun regenerates its initial configuration (the two spurious live
cells on the right will die of isolation at time step 31).

to annihilate a suitably directed glider in four time steps while repairing the
damages inflicted by the encounter with the glider (figure 2.15, right).

Later we will explain how these structures were used by Conway to de-
fine within Life structures such as computers and self-reproducing automata.
For the time being let us just remark how the glider gun and the two oscil-
lators shown in figure 2.14 illustrate two different approaches to Conway’s
Life Game. The first approach looks at what kind of configurations are com-
monly produced by the automaton’s rule starting from a random state; the
second approach tries to design initial states that produce a desired sequence
of configurations. Another interesting observation is that Life’s rule cannot
be run backward; it is not reversible. This can be inferred from figure 2.13,REVERSIBILITY

124 2 Cellular Systems

which shows that the beehive can be obtained after one time step starting
from two adjacent rows of three live cells. This proves that in the Life CA
a given configuration can have more than one precursor and thus cannot be
used in general to trace back the automaton history. Finally, note that be-
ing based on an outer totalistic rule, the Life CA preserves the symmetry
of the configurations. Thus, any asymmetry existing in the configuration of
states at a certain time step is a consequence of an asymmetry in the initial
conditions.

2.5 Other Cellular Systems

CAs are just the simplest of the many possible cellular systems based on the
ingredients described in section 2.1. A CA has a discrete time variable, a
finite state set, a neighborhood that is homogeneous in both space and time,
a transition function that is deterministic and homogeneous in space and
time, and updates all its cells synchronously. By changing one or more of
these characteristics many other cellular systems can be obtained. In this
section we will present the most common of these other cellular systems.

2.5.1 Nonhomogeneous CA

A CA whose neighborhood or transition rule is not the same for all cells and
all time steps is called a nonhomogeneous (or nonuniform) CA. Nonhomoge-
neity in space can be useful, for example, to model regions with different
material properties. Nonhomogeneity in time can be used to define a se-
quence of different transformations of the initial CA state. For example, in
image processing, the pixel values of an image can be assigned as the ini-
tial state of the CA cells, and a collection of filters can be defined in terms
of transition rules. The sequential application of the different filters can be
obtained by specifying that the different transition rules are valid for differ-
ent intervals of time (Worsch 1999). Note that a CA with boundary cells can
be interpreted as a nonhomogeneous CA because a different transition rule
applies to the boundary cells.

Given a nonhomogeneous CA, an equivalent homogeneous CA can be eas-
ily obtained by extending the state set and the transition rule of the nonho-
mogeneous CA with an additional variable that determines what transition
rule and neighborhood must be used for a given cell at a given time step.
This example shows that some cellular systems that are not defined as stan-
dard CAs can be interpreted as such by complexifying the state set or the

2.5 Other Cellular Systems 125

Figure 2.17 An example of a transition rule for a binary one-dimensional mobile CA.
In addition to specifying how the state of the center cell changes from one time step
to the next, the rule specifies also the motion of the token (represented here by a disk)
that identifies the active cell.

transition rule. However, even when this can be done, it is usually not very
useful to adopt this point of view because it complicates the system and it
mixes elements that belong to the cellular model of interest with spurious
elements that are required just to implement it as a CA.

2.5.2 Asynchronous CA

In a standard CA all the cells of the cellular space are updated synchronously.
This implies the presence of a global synchronization signal that is distrib-
uted to all the cells and weakens the intended local nature of the CA concept.
When collective phenomena are observed in a CA it is therefore important
to consider the role played by the synchronous update in the existence and
nature of these phenomena. To this end one can consider the asynchronous
CA, that is, a CA where the updating of the cells is done asynchronously. By
experimenting with an asynchronous CA one can test the robustness of the
observed phenomena with respect to the update policy (Fatès and Morvan
2004; Chopard and Droz 1998; Schonfisch and de Roos 1999).

The abandonment of synchronous update creates the problem of the choice
of the updating scheme (Schonfisch and de Roos 1999). A simple solution is
to number the cells and proceed cyclically to the ordered update determined
by the cell number. For example, in a two-dimensional CA one can number
the cells by rows and columns and update according to the row and col-
umn number (line-by-line sweep). The problem of this fixed ordered update
scheme is that it tends to produce spurious effects due to the fixed correlation
between the update times of the cells. An update policy that solves this prob-
lem consists in assigning to each cell a probability of update and, at each time
step, in applying the transition rule only with the given probability, leaving
the state unchanged otherwise. An alternative is to update only one cell of
the automaton – the active cell – at each time step. Of course one must also
define a rule that determines which cell is active at each time step. This can

126 2 Cellular Systems

be done by defining a token which characterizes the active cell, adding to the
transition rule the specification of the motion of the token (figure 2.17). The
resulting asynchronous CAs are called mobile CAs (Wolfram 2002).MOBILE CA

2.5.3 Probabilistic CA

In the definition of CAs given in section 2.2 the transition rule is determin-
istic, that is, the state of a cell at the next time step is uniquely determined
by the current state of the cells in its neighborhood. In the probabilistic CA
(also called a stochastic CA) a given state of the neighborhood cells at time
t can lead to different states of the center cell at time t + 1, according to a
predefined probability for each possible successor state.

A typical example of a probabilistic CA is the forest fire CA. This is a two-FOREST FIRE CA

dimensional CA with the Moore or von Neumann neighborhood that is in-
tended to provide a simplified model of the spread of fires and the subse-
quent regrowth of trees in a forest. In the model, a cell can be in one of three
states: it can contain a green tree; it can contain a burning tree; or it can be
empty. The probabilistic transition table stipulates that

1. a cell containing a burning tree becomes an empty cell;

2. a cell containing a green tree that has at least one of its neighboring cells
containing a burning tree becomes a cell with a burning tree;

3. a cell containing a green tree that has no neighboring cells containing a
burning tree becomes a cell containing a burning tree with probability f ,
and remains in its current state with probability (1 − f). This provision
can be assumed to simulate the ignition of trees by lightning and, corre-
spondingly, f is called the probability of lightning;

4. an empty cell becomes a cell containing a green tree with probability of
growth g, and remains empty with probability (1 − g).

Figure 2.18 shows an example of a space-time diagram of the forest fire CA
with values of g = 0.05 and f = 0.0003. The figure shows that with this
choice of parameters regions of the “forest” where the density of green trees
is sufficiently high a fire front starts to propagate, clearing large zones of
forest. Since the probability of growth is much higher than the probability of
lightning, trees have time to regrow in the regions cleared by the fire.

Changing the values of the parameters f and g one can simulate the phe-
nomenon in a continuum of conditions. In other words, the presence of the

2.5 Other Cellular Systems 127

7

6

5

4

3

2

1

0

t

15

14

13

12

11

10

9

8

t

Figure 2.18 An example of space-time diagram for the forest fire CA. The cell space
was initialized with a 50% density of cells containing a green tree (represented as
gray cells), a few cells containing a burning tree (represented as black cells), and the
remaining cells empty (white cells). The diagram was obtained with periodic bound-
ary conditions, the von Neumann neighborhood, a probability of growth g = 0.05,
and a probability of lightning f = 0.0003. The propagation of fire fronts is clearly
visible in the final steps of this diagram.

128 2 Cellular Systems

Figure 2.19 The transition table of a block rule modeling particle motion using the
Margolus neighborhood. The block is constituted by a square of four adjacent cells.
The transition table shown here does not contain all possible entries for the states of
the block. The missing entries can be obtained by rotating the blocks of the existing
entries.

probabilistic parameters injects a certain degree of continuity in the other-
wise completely discrete universe of the CA. This is very useful, because it
permits the fine-tuning of the properties of the simulation, which are oth-
erwise rather constrained. This means that probabilistic CAs substantially
enlarge the range of phenomena that can be modeled using CAs with simple
transition rules. With probabilistic CAs one can study the different collective
regimes of operation of the model for different ranges of the probabilistic
parameters. For example, changing the ratio of the parameters f and g one
can observe collective phenomena and space-time structures quite different
from those illustrated in figure 2.18 (Drossel and Schwabl 1992, 1994; Mad-
dox 1992; Gaylord and Nishidate 1996).

2.5.4 Particle CA

One of the most widespread applications of CAs, especially in physics, is the
modeling of systems of moving particles. In its most simple form this can
be obtained by interpreting the state of the cells as defining the presence or
absence of a particle in the cell (more complex models admit the presence
of more than one particle in a cell). The transition rule specifies the condi-
tions under which the particles move between cells. Such a CA is known as a
particle CA or lattice-gas automaton. If you consider the elementary traffic CALATTICE-GAS

AUTOMATON defined in section 2.2 you can check that it corresponds to the definition of a
particle CA, with the cars playing the role of particles. Thus, strictly speak-
ing, a particle CA is just an ordinary CA. However, there are good reasons
to consider particle CAs as a separate class of CAs. The first, rather philo-
sophical reason is that in particle CAs the state is more fruitfully thought of

2.5 Other Cellular Systems 129

...

t

...

t +1 t +2

Figure 2.20 The motion of a particle determined by the transition rule of figure 2.19
induced by the alternation of the position of the blocks between time steps. The 2× 2
blocks that partition the cellular space (represented here by the thick lines) are shifted
by one cell in each direction at each time step. This allows the motion in time of the
particles beyond the limits determined by the blocks.

as something that is exchanged between cells rather than as something that
resides in the cells as in ordinary CAs. The second, more pragmatic reason
is that there is the specific problem of the conservation of particles to be ad-
dressed, and this requires the adoption of specially defined transition rules.

In the one-dimensional case exemplified by the elementary traffic CA the
realization of particle conservation was a simple matter because we had to
consider the state of a neighborhood of only three cells and the particles
could move only in one direction. However, already in a two-dimensional
particle CA the number of possible combinations of particle positions and
motions can become difficult to manage. A first solution is the substitution
of the traditional transition rules with the so-called block rules. The idea isBLOCK RULES

to partition the cellular space in small, disjoint, uniform blocks and consider
each block as a separate entity (for this reason particle CAs defined in this
way are also called partitioning CAs). The block rule is defined for the wholePARTITIONING CA

block rather than for the single cell as in ordinary transition rules. Since the
block is smaller than the typical neighborhood it is easier to define a block
rule. Moreover, since each block is considered as isolated from the other
blocks, the rule can be defined without worrying about particles belonging
to other blocks. Figure 2.19 shows an example of the block rule defined for
the so-called Margolus neighborhood.MARGOLUS

NEIGHBORHOOD The problem with a block rule as defined so far is that by stipulating the
isolation of distinct blocks it does not allow the exchange of particles between
them. This is clearly not acceptable because particles must in general be free
to move in the whole cellular space. To obviate this problem the definition
of the blocks is changed from one time step to the next, letting a given cell

130 2 Cellular Systems

Figure 2.21 The transition table of a particle CA can be defined in terms of parti-
cles moving between cells. This transition table corresponds to the HPP gas and does
not show all possible configurations of particles. The missing entries can be obtained
by rotating the existing entries. Note that the only entry of the transition table that
corresponds to an interaction between particles is the one drawn on a shaded back-
ground. This fact can be more easily appreciated in this representation than in the
representation of figure 2.19.

exchange its particles with cells from which it was previously isolated. Fig-
ure 2.20 shows an example of the alternation of the blocks of the Margolus
neighborhood in successive time steps.

An alternative approach to the definition of a particle CA is to adopt the
philosophy of objects moving between cells and use as state information the
position and direction of the particles. Figure 2.21 shows an example of the
transition rule for the HPP gas (Hardy, de Pazzis, and Pomeau 1976) definedHPP GAS

using this approach. Note that the transition rule of figure 2.19 is an alterna-
tive way to define the HPP gas.

2.5.5 Coupled Map Lattices

In a standard CA the state set is finite. If we let the state be a continuous
variable we obtain a coupled map lattice (CML). CMLs were first studied by
Kaneko in the 1980s (Kaneko 1992). Besides their interest for the study of
complex spatiotemporal dynamics and chaotic phenomena, CMLs are very
useful for the modeling of systems in terms of variables that represent di-
rectly macroscopic quantities at the cell sites. In this way it is not necessary
to average over large regions of cellular space to obtain the macroscopic be-
havior of the system. Another advantage is that one can define at each cell
additional continuous fixed variables to be used as parameters of the transi-

2.5 Other Cellular Systems 131

tion function. This permits a greater flexibility in modeling with respect to
CAs. An example of CMLs applied to the study of particle systems is the
lattice Boltzmann models (Chopard and Droz 1998), where the state variablesLATTICE BOLTZMANN

MODELS represent the concentration or the probability of presence of the particles in
the cell. Lattice Boltzmann models find application in particular in fluid dy-
namics simulations. Note that most discretized versions of physical prob-
lems involving partial differential equations (PDEs) (see box 2.2) can also bePARTIAL DIFFERENTIAL

EQUATION (PDE) considered CMLs. Of course, when a CML is implemented on a computer
the state variables are finite rather than continuous. Thus, strictly speaking,
these implementations are always CAs rather than CMLs. Still, it is more use-
ful to consider them as approximate implementations of CMLs rather than
CAs because the state space is typically too large to make the CA point of
view useful, whereas the results of the CML perspective still hold, albeit in
an approximate way.

2.5.6 Cellular Neural Networks

Cellular neural networks (CNNs) were introduced by Chua and Yang (1988b).
They are cellular systems where both the state and the time variable are con-
tinuous. The transition function is defined in terms of ordinary differential
equations and the whole cellular system corresponds to a system of coupled
differential equations. In CNNs each cell resembles one of the dynamical
artificial neurons that will be described later in chapter 3. The only differ-
ence between a CNN and the more general neural networks described in
that chapter is that in CNNs the interactions between neurons are limited
to neighboring neurons, whereas they can be arbitrary in a generic neural
network. The most important application of CNNs is as analog processors
which can be implemented in hardware to perform in real-time tasks such
as image processing and pattern recognition (Chua and Yang 1988a; Fortuna
et al. 2001; Arena et al. 1997). CNNs are also a useful model for the study of
nonlinear dynamical systems and complex spatiotemporal phenomena.

2.5.7 Cellular Systems with Multiple Cellular Spaces

Sometimes it is useful to consider systems obtained combining several inter-
acting cellular systems. A first example is the multilayered CA (Bandini andMULTILAYERED CA

Mauri 1999). Multilayered CAs are composed of a hierarchy of CA layers
(figure 2.22) where each cell of a CA of layer i > 0 corresponds to a whole
CA at the next lower layer in the hierarchy. The transition function for the

132 2 Cellular Systems

...

...

.

.

.

.

.

.

layer 0

layer 1

layer 2

...

...

.

.

.

.

.

.

...

...

.

.

.

.

.

.

Figure 2.22 A schematic representation of a multilayered cellular system. A cell at
level i > 0 in the hierarchy of layers corresponds to a whole CA at the next lower
level.

state of cells at level i depends on a horizontal neighborhood composed of cells
at layer i and by a vertical neighborhood composed of cells of the automata
at the adjacent layers. In this way one can define hierarchical cellular mod-
els with rules defined at different levels of abstraction. Of course, the idea
of multilayered CAs can be extended to the other kinds of cellular systems
discussed above.

Another example of cellular systems with coupled cellular spaces arises in
the numerical modeling of physical fields (Mattiussi 2002, 2000). To model
this kind of system it is often useful to employ two cellular spaces and as-
sociate different kinds of physical quantities as states of the cells of the two
cellular spaces (for example, the electric and the magnetic field in an electro-
magnetic numerical simulation). The dynamics of the system is assigned in
terms of two coupled map lattices that are updated alternately. The transi-
tion function of each coupled map lattice takes into account a neighborhood
composed of cells on the same cellular space at the current time step and cells
on the other cellular space considered at the previous time step.

2.5 Other Cellular Systems 133

Box 2.2: Numerical methods and cellular systems

To assess the quality of a model and use it to design technological ar-
tifacts scientists and engineers need to check that a model corresponds
to the modeled phenomenon and to evaluate the effect of given initial
and boundary conditions. To this end, they use the model to predict
the system behavior. For systems defined in both space and time, and
characterized by local interactions the traditional approach to model-
ing and prediction is based on partial differential equations (PDEs).
To write the set of PDEs (and the corresponding initial and boundary
conditions) for a phenomenon one starts by focusing on a level of de-
scription where the quantities of interest can be considered continuous
almost everywhere in space and time. The equations are then obtained
by writing in differential form the laws that govern the local behavior
of these quantities according to the given model (Potter 1973).

The mathematical study of PDEs has a long history. For PDEs de-
scribing linear phenomena it has produced powerful methods that give
predictions in closed form using symbolic manipulation. For PDEs de-
scribing nonlinear phenomena, however, analytical solutions are avail-
able only in a handful of cases and provided the initial and boundary
conditions are sufficiently well-behaved. For most nonlinear PDEs no
analytical solutions are known and predictions can be obtained only by
integrating the equations numerically. The numerical solution is often
obtained by first discretizing the PDEs so as to obtain a cellular system
(typically, a coupled map lattice), and then running the cellular model
(Potter 1973; Mattiussi 2000).

The use of PDEs as the starting point for the discretization is a her-
itage from a time when large-scale numerical computation was not fea-
sible and PDEs and their analytical solutions were necessarily the tool
of choice for modeling and prediction of space-time phenomena. Now
that powerful computers are available it is reasonable to consider the
possibility of defining directly cellular models. For example, for a large
class of physical problems that are traditionally modeled with PDEs it
has been shown that the definition of a cellular model is indeed the
most natural way to proceed in view of their simulation (Shashkov
and Steinberg 1995; Mattiussi 1997, 2000, 2002; Teixeira and Chew 1999;
Tonti 2001; Hiptmair 2001; Steinberg 2004; Bochev and Hyman 2006;
DiCarlo et al. 2007). Going directly to a cellular model becomes a ne-
cessity for phenomena that are difficult to model with PDEs, such as
those where it is not clear how to define meaningful quantities that are
continuous in space and time.

134 2 Cellular Systems

2.6 Computation

One of the uses of cellular systems is as input-output devices that perform
computation. The input of these cellular computers is the initial state of the cel-CELLULAR COMPUTERS

lular space and the output is the state of the cellular space (or that of a portion
of the space-time diagram) once a predefined stopping condition is met. A
cellular computer can be implemented in hardware as an array of analog or
digital processors and has a number of advantages over a conventional com-
puter, both in the realization of the hardware and in performance. Since the
interaction between the cells is local there is no need of long-range wiring of
the processors (except possibly for a global synchronization signal) or com-
plex communication and coordination strategies between different parts of
the computer. Moreover, since the transition rules are typically simple, each
processor can be simple and needs a small amount of memory. Finally, since
the processors work in parallel, large amounts of data can be processed very
rapidly.

To program a cellular computer one must define the ingredients of the
cellular system so as to have it perform the required computation. If the re-
quired processing is intrinsically local this is easy. For example, an image
filter that performs a local average of pixel values can be easily implemented
as a CA whose state set is the possible pixel values and whose transition
rule averages the values of the cells in a suitable neighborhood. However,
if the computation concerns some global property of the input data, devis-
ing a suitable cellular system can be tricky. The main problem is that there
is no general systematic approach to designing a local transition rule that
produces a given global behavior. Each problem must be considered sepa-
rately rather than approached with a general programming methodology as
in conventional computing.

An example a of cellular computation strategy defined for a global prob-
lem is the CA that solves mazes. Given a maze like the one shown in fig-MAZE CA

ure 2.23, the problem consists in finding a path from the entrance to the
exit. The conventional approach to the solution of this problem is to tread
the maze following a set of rules that ensure that blind alleys are explored
only once, until the exit is discovered. The cellular solution (Nayfeh 1993)
starts by mapping the maze to the initial state of a binary CA with one state
representing the presence of a wall and the other representing free space.
Figure 2.24 at time t = 0 shows the result of this operation for the maze of
figure 2.23. The transition function is based on the von Neumann neighbor-
hood and specifies that a free cell surrounded by three wall cells is trans-

2.6 Computation 135

Figure 2.23 The maze used to illustrate the cellular approach to the solution of
mazes. Free space is shown in white, walls are shown in dark gray, and the entrance
and exit are shown in light gray.

formed into a wall cell. To fill isolated holes, free cells surrounded by four
cells are also transformed into wall cells. In all other conditions the state of a
cell remains unchanged. Since we know that the boundary cells are either en-
try or exit cells, which must remain free, or wall cells, which will not change
state, there is no need to apply the rule to the boundary cells and thus we
need not specify boundary conditions. The CA must be run until the state
of the cellular space does not change, at which point the state of the cellu-
lar space corresponds to the maze solution (if one exists). Figure 2.24 shows
this process for the maze represented in figure 2.23. Note that, similarly to
the conventional approach, the transition function is defined so as to have
the CA trace back blind alleys starting from their end. The difference with
the conventional maze-solving approach is that the process is carried out in
parallel for all the blind alleys until none are left. For a finite cellular space
the process is guaranteed to converge in a finite number of time steps, since
at each time step (before the stopping condition is met) at least one free cell
is converted to a wall cell, and no new free cells are generated.

There is an obvious interest in the definition of cellular computers for other
computation problems. For example, it would be useful to be able to imple-
ment parallel arithmetic computation on CAs. This is a particular example
of the more general problem of how information that is distributed in space
can be processed using local rules. This requires the ability to propagate the
information and synchronize its processing. To better understand this prob-
lem, researchers have defined a set of benchmark problems that abstract its
basic challenges (Mitchell 1998), such as the firing squad synchronization prob-FIRING SQUAD

SYNCHRONIZATION

PROBLEM
lem (FSSP), and the density classification task (DCT). In the FSSP the cells of

136 2 Cellular Systems

9

8

7

6

5

4

3

2

1

0

20

19

18

17

16

15

14

13

12

11

10

t

t

Figure 2.24 The cellular maze-solving algorithm starts with the maze encoded as
the initial state of a CA. Cells in the “wall” state are represented in dark gray, cells
in the “free” state are represented in white, and the entrance and exit are represented
in light gray. The transition function transforms into a wall cell all free cells at the
end of a blind alley. Thus, at each time step blind alleys are traced back, until only
cells along the path from entrance to exit remain in the “free” state. From that point
onward the state of the system no longer changes, as shown in the transition from
t = 19 to t = 20.

2.6 Computation 137

a one-dimensional CA are initialized in a quiescent state. At a certain time
step tg one cell (the “general”) is externally assigned a special state that cor-
responds to a “command to fire.” The problem consists in defining a state set
and transition function that result in the broadcasting of the command to all
the other cells (the “soldiers”) so that at the time step tf > tg they all go to
another special “firing” state that they must not have previously assumed.
In the DCT a binary CA is assigned an initial configuration with a densityDENSITY

CLASSIFICATION TASK ρ0 of 1s. A “threshold density” value ρt is also assigned. The problem con-
sists in defining a transition function that in td time steps takes and keeps
the state of all cells to 0 if ρ0 < ρt, and to 1 otherwise. Both problems are
easy to solve for a system with global communication but challenging for a
system with only local communication. An interesting result of the efforts
devoted to the solution of these problems is the realization that it is useful to
think in terms of signals and try to define a state set and transition function
that allow the propagation of these signals across the cellular space without
mutual interference.

The approach based on signals has been also used to investigate the pos-
sibility of implementing a general-purpose computer within a given cellular
system, that is, a computer that allows the execution of an arbitrary finite
algorithm. When this is possible the cellular system is said to be capable of
universal computation. For example, it has been shown that this is the caseUNIVERSAL

COMPUTATION for Conway’s Life CA (Berlekamp et al. 2004) and the rule 110 elementary
CA (Wolfram 2002). In the case of Conway’s Life CA the computation is
based on the use of streams of gliders as binary signals. Conway has shown
(Berlekamp et al. 2004) that a suitable positioning of glider guns and eaters
permits the implementation of all the basic building blocks required to as-
semble a digital computer, such as logic gates (figure 2.25), delay lines, and
storage devices. This proves that a general-purpose computer can be actually
built with Life’s cellular space.

The interest of this kind of proof is not the actual implementation of a com-
puter, which would cover an enormous region of the cellular space, would
be inefficient, and would be almost impossible to program. The point is to
show that even simple cellular systems can be computationally irreducible, thatCOMPUTATIONAL

IRREDUCIBILITY is, that given an initial state of the system there is in general no simpler way
to predict the unfolding of the state than to actually run the system. This
follows from some results of computational theory referring to the general
impossibility of predicting the result of a program run (Hopcroft et al. 2006).
This means that cellular systems can be used to produce highly nontrivial
behaviors, which cannot be predicted by just looking at the state set and

138 2 Cellular Systems

Figure 2.25 A schematic representation of the implementation of a logic gate in Con-
way’s Life CA. The binary signals A and B correspond to streams of gliders (the pres-
ence of a glider in the stream corresponds to a logic 1, and its absence to a logic 0).
The gliders produced by the glider gun are annihilated when they crash into a glider
belonging to A, so that a stream corresponding to NOT(A) emerges from the inter-
action. The same kind of interaction between the streams B and NOT(A) produce a
stream corresponding to A AND B and some residual gliders that are annihilated by
the eater.

transition function. In particular, cellular systems can be used as synthetic
universes in which to observe and investigate the emergence of complexity
and the evolution of artificial life forms.

2.7 Artificial Life

The origins of the interest in cellular system models can be traced back to
the investigations of the mathematician John von Neumann concerning the
growth of complexity. In the late 1940s von Neumann was interested in prov-
ing formally that there exist machines which can produce machines more
complex than themselves (von Neumann 1966; McMullin 2000). In our ev-
eryday experience a machine typically builds only machines simpler than
itself. For example, the robots of a car assembly line are more complex than

2.7 Artificial Life 139

the parts of the car that they shape and assemble. In other words, complexity
appears at first sight to be a degenerative property of machines. The evidence
of the evolution of complex biological organisms from simpler forms of life
suggests, however, that it must be possible for a system to give birth to a
system more complex than itself.

Von Neumann realized that the growth of complexity in machines could be
based on the concept of self-reproduction. Imagine a machine that is able to
build a copy of itself using simpler parts that are available in its environment.
This already corresponds to a machine that can build machines as complex
as itself. Thus, self-reproduction dispels the persuasion of the degenerative
nature of complexity. If we add the requirement that the process of building
the copy be subject to random mutations, then we can expect that some of the
mutated copies are actually more complex than the original machine, thus
realizing von Neumann’s goal (figure 2.26). All this discussion rests of course
on the definition of complexity for a machine. Von Neumann was well awareCOMPLEXITY

of the importance of this concept but did not attempt a formal definition of it.
Rather, he defined it in intuitive terms as “effectivity in complication, or the
potential to do things.” Von Neumann explained that he was “not thinking
about how involved the object is, but how involved its purposive operations
are. In this sense, an object is of the highest degree of complexity if it can
do very difficult and involved things” (von Neumann 1966, p. 78). In the
context of this section we will adopt this heuristic definition of complexity
which we could tentatively dub purposive complexity.

Originally, von Neumann had in mind a self-reproducing machine built
of actual, physical parts such as girders, motors, sensors, and computer el-
ements. The parts would be floating on the surface of a pond and the self-
reproducing machine would have organs to recognize, grasp, and assemble
the parts required to build a copy of itself. Von Neumann soon realized that
the actual manipulation of physical parts in this kinematic model increased theKINEMATIC MODEL

difficulty of the task without benefiting its conceptual side. Following a sug-
gestion of Stan Ulam, von Neumann thus switched to a cellular model, whereCELLULAR MODEL

the environment of the self-reproducing machine is a two-dimensional CA.
The mathematical study of cellular systems was born.

The first problem that von Neumann faced in defining his self-reproducingSELF-REPRODUCING

AUTOMATON automaton was the choice of the state set and transition function of the CA,
that is, of the elementary “objects” of his synthetic universe and their rules
of behavior. On the one hand these objects ought not be so complex as to be
already endowed with the properties that von Neumann was about to inves-
tigate. On the other hand, these objects could not be so simple as to require

140 2 Cellular Systems

(a)

c
o
m

p
le

x
it
y

(b) (c)

Figure 2.26 An abstract representation of the role of self-reproduction in the growth
of complexity of machines. Machines are represented here as dots in a space ordered
by complexity. The arrows represent the production of a machine by another ma-
chine. (a) The common experience is that the production of machines from the part
of other machines is degenerative from the point of view of complexity. (b) Self-
reproducing machines give birth to machines with the same level of complexity as
themselves. (c) Self-reproduction with random mutations can give birth to machines
of a different level of complexity with respect to the original machine. In particular,
it can produce machines more complex than the original one (thick arrow, top right).

an excessive number of them to build anything interesting from the point of
view of the investigation. Von Neumann settled on a state set containing 29
states (von Neumann 1966): one vacuum state corresponding to the absence of
“matter” in the cell; several ordinary and special transmission states both exist-
ing in either a quiescent or activated condition; and some additional auxiliary
states. The transition function is defined so as to permit the transformation of
the vacuum state of a cell into other kinds of states, and vice versa. In other
words, the cellular model permits the creation and annihilation of “matter”
within the cellular space (instead of carrying it from other places, as in the
kinematic model). Ordinary transmission states are used to perform logic
operations, whereas special transmission states are used for growth opera-
tions. The transition function is defined so as to let the automaton operate on
its own matter under the control of its built-in logic: it permits the definition
of a self-modifying computer.

The next problem was to define the self-reproduction strategy. Von Neu-
mann discarded from the outset the idea of reproduction by self-inspection
for fear of logical paradoxes and of potential undesired interactions between

2.7 Artificial Life 141

the activity of the automaton and that of the self-inspection organ. He re-
lied instead on the use of a quiescent description of the automaton in the
form of a tape. His automaton (figure 2.27) is composed of a universal con-UNIVERSAL

CONSTRUCTOR structor capable of reading the tape and producing a quiescent copy of the
automaton described in it, and a tape copier capable of creating a copy of the
uninterpreted tape. The activity of the universal constructor and tape copier
is coordinated by a control unit that, when activated, can activate them in se-
quence and bring them back to a quiescent state. The fundamental idea for
achieving self-reproduction is to use a tape that contains the description of
all the parts of the automaton except the tape. In this way, upon activation of
the control unit the automaton will produce a quiescent copy of itself. Once
the copy is completed, the control unit of the original automaton activates
the control unit of the copy, starting again the self-replication process.

This approach to self-reproduction has several interesting properties. First,
it avoids the problem of the infinite regress of a description that contains its
own description, since the tape describes all the automaton but itself. Sec-ROBUST

SELF-REPRODUCTION ond, the use of a universal constructor makes self-reproduction robust with
respect to mutations of the tape. The universality of the constructor must be
intended in the sense that the constructor is able to interpret the description
and build any automaton that can be described on a tape. In particular, this
means that if the tape is mutated into a description of a different machine,
the reproduction process will generate the machine described by the mutated
tape with a copy of the mutated tape attached. Thus, by the line of reasoning
illustrated in figure 2.26, this structure realizes von Neumann’s stated goal of
proving that the growth of complexity is possible. An interesting side result
of self-reproduction as illustrated in figure 2.27 is the possibility of defining
structures that move in the cellular space. To this end it is sufficient to stip-
ulate that upon activation, the newly formed automaton proceeds to destroy
the original automaton by extending an arm that resets all its cells to the vac-
uum state. At the end of the whole process the result is an automaton that
has moved from its original position to the position of the copy. In this way
the synthetic universe is populated by systems that can move, reproduce,
and evolve. Von Neumann’s investigation can thus be considered as the first
formal study of the fundamental principles of life, which later became the
subject of study of artificial life (Langton 1996).ARTIFICIAL LIFE

Von Neumann’s work on self-reproducing automata was left unfinished
and the edited manuscripts published after his death give only an outline of
the structure of some of the organs required by the automaton. A computer
implementation of all the crucial organs of von Neumann’s self-reproducing

142 2 Cellular Systems

t
0

tape copier
co

nt
ro

l

universalconstructor

tape

tape copier
co

nt
ro

l

universalconstructor

tape
reading arm

construction arm

tape copier
co

nt
ro

l

universalconstructor

tape
reading arm

tape copying arm

tape copier
co

nt
ro

l

universalconstructor

tape copier
co

nt
ro

l

universalconstructor

tape

tape copier
co

nt
ro

l

universalconstructor

tape

t
1

t
2

t
3

activation arm

t

cellular space

Figure 2.27 A schematic representation of the operation of von Neumann’s self-
reproducing automaton. The automaton is constituted of a control unit, a universal
constructor, a tape copier, and a tape. The self-reproduction process starts when the
control unit is activated. The control unit activates the constructor, which grows two
mobile arms: one to read the tape and one to construct a copy of the automaton
(except the tape) by interpreting the tape. When the construction is finished, the
control unit activates the tape copier, which attaches to the newly built automaton
a copy of the uninterpreted tape. Finally, the control unit of the original automaton
activates the control unit of the copy, and the self-reproducing process starts anew.
Note that the various part of the automata are not drawn to scale.

2.7 Artificial Life 143

automaton was realized only many years later by Nobili and Pesavento (1996),
with further details given in (Pesavento 1995). To date, no one has attempted
to design the tape required to complete von Neumann’s automaton and,
therefore, there exists no running implementation of the self-reproduction
process as conceived by von Neumann. Von Neumann estimated that an au-
tomaton and tape realizing the robust self-reproduction process illustrated in
figure 2.27 using his 29-element state set would have a size of about 200,000
cells. Its implementation would therefore be a quite daunting task. To over-
come this problem some researchers (Codd 1968; Burks 1970; Langton 1984;
Sipper 1998) have tried simplify the definition of the automaton. In partic-
ular, Langton (1984) was able to define a very simple self-reproducing au-
tomaton known as Langton’s loop using a state set with only eight elementsLANGTON’S LOOP

(figure 2.28). However, to attain this result Langton was forced to drop the
requirement that the automaton contain a universal constructor. This choice
opens the question if Langton’s loop is capable of robust self-reproduction,
although some results show that this automaton is to some degree capable of
evolution (Salzberg et al. 2004).

Another interesting result was obtained by Conway, who proved that a
self-reproducing automaton in the spirit of von Neumann’s can be imple-
mented in a CA as simple as the Life Game (Berlekamp et al. 2004). Con-
way’s proof is based on the demonstration that glider collisions can produce
any Life structure. Thus, one can build in Life a machine containing a uni-
versal constructor that reads a tape and generates suitable configurations of
colliding gliders that reproduce the machine according to the scheme illus-
trated in figure 2.27. Given the simplicity of the state set of the Life Game
CA and the fact that the Life transition function is not explicitly designed to
achieve self-reproduction, we can expect that Conway’s self-reproducing au-
tomaton is even larger than von Neumann’s. Poundstone (1985) estimated a
scaling factor of about 100 million, so that an actual implementation of Con-
way’s self-reproducing automaton would require about 1013cells. Both von
Neumann’s and Conway’s CA can contain a general purpose computer and
thus are capable of universal computation. However, this property is not
essential to achieve robust self-reproduction. The embedding of a universal
computer in the self-reproducing automaton is just used to simplify the pro-
cess of encoding and interpretation of the tape. In general, we can expect
a tradeoff between the complexity of the tape decoder and that of the tape,
more complex decoders allowing more compact descriptions, and vice versa.

144 2 Cellular Systems

150

149

148

125

124

123

122

5

4

3

2

1

0

.
.
.

.
.
.

.
.
.

t

Figure 2.28 Langton’s self-reproducing automaton is composed of a signal cycling
in a loop, protected by a “sheath” of cells in a quiescent state. The signals can prop-
agate outside the loop to build a copy of the original loop. At the end of the process
the two loops separate and each starts a new cycle of self-reproduction in a direction
that does not interfere with the other loop. When a loop is completely surrounded
by other loops (not shown) it stops replicating. Since the information necessary for
self reproduction circulates, there is no need of tape-reading machinery as in von
Neumann’s automaton. Moreover, the transition table of the CA is defined in such a
way that the circulating signal creates the new structure without the need of explicit
constructor machinery.

2.7.1 Correspondences with Biology

When von Neumann was formulating his formal model of robust self-repro-
duction the molecular details of the process of reproduction in living cells
were not known. Now that molecular biology has revealed many aspects of
the working of cells we can compare von Neumann’s formal model with its
biological counterpart. It turns out that von Neumann’s model anticipates
many of the solutions discovered in biological organisms. In the process of
reproduction of a single cell the genome of a cell plays the role of the tape in

2.8 Complex Systems 145

von Neumann’s automaton. The molecular machinery which interprets the
genome to synthesize new proteins corresponds to the universal constructor,
and the molecular machinery which copies the genome without interpreting
it corresponds to the tape copier.

Note that the correspondence between what is observed in biology and
von Neumann’s model is not complete. In von Neumann’s model the whole
reproduction process is guided step by step by the instructions issued by
the control unit and by those read in the tape. On the contrary, in biologi-
cal cells the control of the self-reproduction activity is only in part controlled
by dedicated molecular machinery and by the genome. In biology an es-
sential role is played by processes of self-organization, which ensure that inSELF-ORGANIZATION

the physicochemical environment of the cell several steps of the structuring
of the newly created molecules will self-assemble in the right way. In other
words, in biological cells some of the details of the self-reproduction process
are not explicitly encoded in the machinery of the cell but follow implicitly
from the laws of physics. This does not happen in von Neumann’s model
because the “laws” of the synthetic universe represented by the state set and
transition function of von Neumann’s CA are defined at a higher level than
the laws of physics holding at the microscopic scale and which produce the
self-organization observed in biological cells.

A useful property of the formal model proposed by von Neumann is that
it lets us better understand the role and the information represented in the
various parts of biological cells and dispel some myths related to the genome
and to its role. For example, it lets us appreciate the fact that a bare genome
without its cellular environment does not specify a living entity, exactly as
the automaton tape does not mean much without the constructor machinery
capable of interpreting it. This is evident in the case of viruses, which are
composed almost exclusively of genetic information without the molecular
machinery required to interpret and copy it. Thus, a virus should not be
considered a self-reproducing organism but merely a free-floating tape with
some minimalistic machinery that allows it to invade cells and force them to
use their tape copier to replicate the virus genetic information.

2.8 Complex Systems

Many systems of interest in the physical and biological sciences are com-
posed of many simple units that interact nonlinearly. Study has revealed that
at the global level these systems can display behaviors and phenomena that

146 2 Cellular Systems

look very complicated despite the simplicity of their components and inter-
actions (figure 2.29). For this reason systems with many nonlinearly interact-
ing units are called complex systems (of course, systems with few interacting
elements can also show complex behavior). The idea of complexity that we
are considering here is obviously different from the idea of purposeful com-
plexity described in section 2.7. Following Crutchfield (2003) we could call it
structural complexity.

When the elements that form a complex system interact only locally, cellu-
lar systems are often the tool of choice for modeling. Earlier in this chapter
we have already met some examples of cellular models for complex sys-
tems. The traffic CA considered in section 2.2 is just the simplest example
of a plethora of traffic cellular models. More complex models take into ac-
count many more aspects of real-world traffic such as the stochastic nature of
the driver’s behavior; the possibility of cars moving at different speeds, trav-
eling on several lanes and changing lanes probabilistically; the presence of
road junctions; and many others (Nagel and Schreckenberg 1992; Wolf 1999;
Maerivoet and De Moor 2005; Chopard and Droz 1998). The same can be
said of the forest fire CA considered in section 2.5, which is a simple example
of a whole class of cellular models for excitable media, that is, media whoseEXCITABLE MEDIA

elements can store and release energy upon excitation. The elements can cy-
cle in a sequence that starts in a resting or receptive state, goes to an excited
state upon reception of a stimulus exceeding a given threshold, proceeds to
a refractory state once the stored energy is reduced below another thresh-
old and needs to be replenished, and finally goes back to the resting state.
Besides forest fires, these kinds of models are useful for many other appli-
cations, from chemical reaction-diffusion phenomena, to pattern formation
in physical and biological systems (see, for example, the description of Tur-
ing pattern formation in chapter 4), and modeling of contagion in epidemics
(Nijhout 1997; Deutsch and Dormann 2005).

Another rich class of cellular models are inspired by phenomena where
agents distributed in space reproduce and move according to their recipro-
cal interactions. The study of evolution in a spatially structured population
is a natural application for this class of models. Simple models of evolution
assume that each individual may compete and mate with any other individ-
ual in the population, and that the offspring of an individual may replace
any other individual. In reality, it is often the case that these interactions are
constrained by the spatial structure of the population. For this reason cellu-CELLULAR

EVOLUTIONARY

MODELS
lar evolutionary models have been developed, where each individual interacts
only with its neighbors for selection, mating, and replacement. Simulations

2.8 Complex Systems 147

t

200

650

Figure 2.29 A system as simple as an elementary CA can generate complex space-
time patterns. The figure shows the space-time diagram generated by the rule 110 CA
(see figure 2.12 for the transition table) using a random initial condition at time t = 0
and periodic boundary conditions. The initial transient up to t = 200 is not shown.

148 2 Cellular Systems

based on these models have revealed that the constraints on individual inter-
actions can greatly influence the evolutionary dynamics, for example, slow-
ing down the invasion of the population by fitter individuals (Giacobini et al.
2005; M.A. Nowak 2006).

Another area of application of cellular models with interacting agents is
the study of spatial effect in social dynamics. In this context these modelsAGENT-BASED MODELS

are often called agent-based models. In a classic work Sakoda (1971) (see also
Hegselmann and Flache 1998 for a recent discussion) formulated a model
where a population of agents belonging to two distinct classes are distributed
on a two-dimensional cellular space, with some cells being left empty. The
agents represent the members of two groups of individuals and the cellu-
lar space represents, for example, a residential neighborhood or a recreation
ground. According to the model, the agents have an attitude (represented by
a numerical value) toward the agents that belong to their own class and an
attitude toward the agents that belong to the other class. In the model each
agent assigns a value vi to its current position and to the position of the empty
cells that exist in the cellular space. The value is defined by the formula

vi =
∑
j �=i

(
aij

((xi − xj)2 + (yi − yj)2)
0.25

)

where aij is the attitude of the ith agent toward the jth agent, x and y are
coordinates in the cellular space, and the sum is extended to all the agents in
the population. At each time step all the agents are considered one by one
in a random order that is renewed at each step. For each agent, if there are
in the Moore neighborhood empty cells with a value greater than the value
assigned to its current position, the agent moves to the cell having the highest
value. Otherwise, the evaluation process is extended to a 5×5 neighborhood.
If no position with a value greater than the current position is found in the
enlarged neighborhood, the agent stays in its current position.

Sakoda considered the evolution in various scenarios, starting with a ran-
dom distribution of agents. In a scenario that Sakoda called segregation,
agents have a positive attitude aown = +1 toward agents of their own class
and a negative attitude aother = −1 toward agents belonging to the other
class. As expected, the simulations show that the agents tend to form sev-
eral homogeneous clusters in the cellular space (figure 2.30, left column).
However, simulations where agents have a neutral attitude aown = 0 to-
ward agents of their own class and a negative attitude aother = −1 toward
those of the other class (a scenario that Sakoda called suspicion) produce even
larger and more separated classes than the segregation scenario (figure 2.30,

2.8 Complex Systems 149

6

5

4

3

2

1

0

14

13

.
.
.

t

segregation (own , other)� �� � ��

6

5

4

3

2

1

0

55

54

.
.
.

t

suspicion (own , other)� � � ��

Figure 2.30 Two examples of a space-time diagram obtained with the CA for the
simulation of social dynamics considered by Sakoda (1971). Cells represented as light
and dark gray correspond to agents belonging to two distinct groups of 50 individuals
each. Initially, the agents are distributed randomly on a cellular space of 20× 20 cells
with impenetrable boundaries. The empty positions are represented as white cells.
See the text for the description of the CA rules and dynamics.

150 2 Cellular Systems

right column). In other words, a scenario where agents have a neutral atti-
tude toward “strangers” results in more spatial segregation than a scenario
where agents have a negative attitude toward strangers. This result can be
explained considering that the positive attitude toward one’s own class tends
to produce the early formation of homogeneous clusters that cannot be easily
broken. However, the result looks surprising at first and illustrates the dif-
ficulty of guessing the global consequences of local rules and the usefulness
of this kind of model to understand social phenomena. The left column of
figure 2.31 illustrates the result of a simulation with a scenario that Sakoda
dubbed boy-girl, where agents have a negative attitude aown = −1 toward
agents belonging to their own class and a positive attitude aother = +1 to-
ward those of the other class. The right column of figure 2.31 illustrates a
variant of this scenario where agents have a neutral attitude aown = 0 to-
ward agents belonging to their own class. Once again we observe outcomes
that look reasonable in the light of the experiment setup, but whose details
are difficult to predict from the knowledge of the parameters alone.

The CA defined by Sakoda’s model has a further interesting aspect of rel-
evance for the theory of CAs. In Sakoda’s model the motion of the agents
is local but the assessment of the value vi concerns the whole cellular space.
The agents move to the position that is surrounded by the configuration of
other agents that is closest to the ideal configuration of agents with the high-
est attitude value. However, nearby agents have a larger impact on vi than
more distant ones. Toffoli (1984) has shown that a point of view of this kind
is the natural one for the study of the CA dynamics in the sense that it can
be used to give a definition of CAs that is an alternative to the conventional
one given at the beginning of this chapter. This point of view determines
as natural for the space of CA configurations a metric and topology whereCA NATURAL

TOPOLOGY two configurations are made more similar by moving away from the current
position the nearest cell where the configurations differ.

Considering now the domain of physical modeling, the HPP gas example
of particle CA presented in section 2.5 is also the simplest of a class of particle
cellular models. For example, it has been shown that using a cellular space
that allows six directions for the motion of particles, one obtains a model (the
FHP gas) that approximates much better the actual behavior of fluid at the
macroscopic level (Frisch et al. 1986; Chopard and Droz 1998). Another ex-
ample is the combination of the particle and probabilistic concepts to model
the behavior of granular media (Karolyi and Kertesz 1999; Chopard and DrozGRANULAR MEDIA

1998). Figure 2.32 shows an example of a probabilistic particle transition rule
that can be used to model the flow of sandpiles and other granular media.

2.8 Complex Systems 151

6

5

4

3

2

1

0

8

7

t

6

5

4

3

2

1

0

10

9

t

.
.
.

boy-girl 1 (own 1, other)� � � �� boy-girl 2 (own , other)� � � ��

Figure 2.31 Two additional examples of a space-time diagram obtained with the
CA for the simulation of social dynamics defined by Sakoda (1971). The represen-
tation, cellular space, boundary conditions, and initial conditions are the same as in
figure 2.30. See the text for the description of the CA rules and dynamics

152 2 Cellular Systems

p 1-p

Figure 2.32 The transition table of a CA rule for probabilistic particle motion which
can be used to model granular media (Chopard and Droz 1998). The basic idea is to
have the particles fall downward to the nearest empty cell, possibly by toppling over
other particles. The probabilistic aspect appears in the rightmost entry of the table,
which represents the possibility that, with probability p, two particles are prevented
by friction from falling. The transition table for the Margolus neighborhood shown
here does not contain all possible entries for the states of the block but only those
where the configuration changes from one time step to the next.

This is a typical example of a phenomenon that is difficult to model with
traditional approaches based on PDEs but quite natural using a cellular ap-
proach. Note that this model represents friction at a level that is detailed
enough to allow the representation of particles and yet abstract enough to
avoid the modeling of the molecular detail of the interaction that produces
friction.

Besides modeling specific phenomena such as fluid flow, cellular models
have found application at a more fundamental level in physics. If we didCAS IN PHYSICS

not know that the space-time diagram of figure 2.29 is generated by rule
110, we could be tempted to interpret what we see in terms of the motion
and interaction of different kinds of particles characterized by their local
space-time pattern, much as physicists interpret what they observe at the
subatomic scale as the result of the propagation and interaction of families of
subatomic particles (Ilachinski 2001). This kind of observation has prompted
physicists to investigate the possibility of producing a CA model that would
underlie the laws of physics as they are currently formulated. The idea is
certainly fascinating, in particular in the light of the discrete nature of phys-
ical phenomena as revealed by quantum physics. However, the production
of a convincing CA model complying with all the observed physical facts
– including isotropy of space and the relativistic nature of space-time – ap-
pears difficult, despite some intriguing preliminary speculations (Zuse 1982;
Minsky 1982; Fredkin 1992; Wolfram 2002).

An interesting spinoff of the complex systems side of cellular models is the
possibility of using them to produce sequences of pseudorandom numbersCA RANDOM NUMBER

GENERATORS

2.9 Analysis and Synthesis of Cellular Systems 153

(Toffoli 1999; Wolfram 2002). The idea is to see cellular systems as dynamical
systems which can display chaotic behavior and thus sequences of states that
appear random. For example, the rule 30 elementary CA has been shown to
be able to produce sequences of binary digits that can withstand the most
stringent tests of randomness. Since the state set and the cellular space are
finite, there is a finite number of global configurations that the cellular au-
tomaton can assume. Thus, the sequence of pseudorandom numbers will
cycle after a finite number of time steps, which, however, can be very large.

What has been presented in this section gives, of course, just a short over-
view of some of the relationships of cellular systems with complex systems.
The use of cellular models for complex systems is so widespread that it is
difficult even to compile a list of existing applications. The list of suggested
readings at the end of this chapter gives some pointers to works surveying
the various aspects of cellular complex system modeling and can be used as
a starting point for further investigations in this fascinating field.

2.9 Analysis and Synthesis of Cellular Systems

Cellular systems are defined in terms of local rules that result in global be-
haviors. There are thus two main questions arising in cellular modeling. The
first goes from the local to the global, takes as a starting point the specifi-
cation of the cellular system, and asks for a characterization of the global
behavior. This is the direct problem and calls for the analysis of the cellularDIRECT PROBLEM

system properties. The second question goes from the global to the local, ask-
ing how the local rules must be defined in order to obtain a desired global
behavior. This is the inverse problem and concerns the synthesis of cellularINVERSE PROBLEM

systems.
We have already considered these two problems in various contexts in the

previous pages. It should be clear by now that the properties of a cellu-
lar system that one can be interested in investigating depend much on the
particular system that is considered and on the application that is being en-
visaged for it. For example, in dealing with coupled map lattices used for
the numerical modeling of physical fields one is in general interested in as-
sessing the stability of the system dynamics and its correspondence with the
dynamics of the continuous models formulated as PDEs (Potter 1973), but
this preoccupation is typically absent in complex system modeling. In view
of this variety of objectives it is impossible to discuss in general terms the
analysis and synthesis problems for cellular systems. Instead, we will fo-

154 2 Cellular Systems

cus on some representative problems that have received much attention and
have been considered from several different points of view.

2.9.1 Analysis

The reference problem that we consider to illustrate the subject of cellular
system analysis is the characterization of the dynamic properties of CAs.
This problem was first tackled systematically by Wolfram (1984), taking as in-
spiration the classification of the asymptotic behavior of continuous dynam-
ical systems. Wolfram used computer simulations to explore the behavior of
a large number of one-dimensional CAs. In particular, he explored exhaus-
tively the class of one-dimensional elementary CAs for a large ensemble of
initial conditions. Wolfram conjectured that the results of his observations on
a small subset of the universe of CAs have general validity and apply to all
CAs. The observation of the resulting space-time diagrams led Wolfram toWOLFRAM’S CA

CLASSES propose a classification into four qualitative classes of behavior (figure 2.33).

• Class I CAs are those that for almost all initial conditions evolve in a finite
number of time steps to a uniform state over all the cellular space.

• Class II CAs are those that for almost all initial conditions and after a short
transient either produce a stable nonuniform structure in cellular space, or
start to cycle over a small set of simple structures.

• Class III CAs are those that for almost all initial conditions produce ran-
dom-like “chaotic” sequences of states that result in fractal-looking pat-
terns in the space-time diagram.

These first three CA classes correspond to three kinds of asymptotic behavior
observed in continuous dynamical systems, namely limit points, limit cycles,
and chaotic attractors. Wolfram observed, however, a fourth class of CA
behavior that has no correspondence in the theory of continuous dynamical
systems.

• Class IV CAs are characterized by long-lived localized structures that can
propagate on a crystal-like background that covers the cellular space (see
also figure 2.29). Wolfram conjectured that class IV CAs are capable of
universal computation and that thus, in general, for the determination of
their long-term behavior there is no shortcut to the explicit simulation.

2.9 Analysis and Synthesis of Cellular Systems 155

0

0

0 0

0

0

0

0

t t

t t

t t

t t

160 250

44 56

18 22

110 54

I

II

III

IV

Figure 2.33 An illustration of the four qualitative classes of CA behavior identified
by Wolfram. For each class the figure shows two examples of a space-time diagram
generated by a one-dimensional elementary CA starting from a random initial condi-
tion with a 50% density of 1s.

156 2 Cellular Systems

�

�
c

��

c
o
m

p
le

x
it
y

low

high

I

II III

IV

Figure 2.34 A schematic representation of the correspondence between the values
of the characteristic parameter λ and Wolfram’s CA classes conjectured by Langton
(adapted from Langton 1990). According to this conjecture, class IV CAs correspond
to the critical value λc at which there is a phase transition between order (classes I
and II) and disorder (class III) which results in the most complex CA behaviors.

As proposed by Wolfram this classification is only phenomenological. To
assign a CA to one of the four classes one must run a CA several times start-
ing from different initial conditions and then guess the class membership
by observing the resulting space-time diagrams. Attempts to formalize this
process of guessing are hampered by the vagueness of the characterization of
the structures that identify classes III and IV and by some theoretical results
(Culik and Yu 1988) proving the impossibility of determining for an arbitrary
CA the eventual attainment of quiescence from all initial configurations. De-
spite these reservations, Wolfram classes remain a useful heuristic concept
that has inspired much of the subsequent work on the classification of CA.

A well-known example is provided by Langton (1990), who adopted an
approach inspired by the physics of phase transitions. In many physical
systems one can define a characteristic parameter (e.g., temperature) that
identifies different phases of the system (e.g., solid and liquid) character-
ized by different degrees of order. Moreover, the system exhibits the most
complex behaviors in the regions of the parameter where the phase transi-
tions occur. Langton proposed to define a characteristic parameter λ for CALANGTON’S

PARAMETER as follows. One element so of the state set is chosen as the quiescent state.
Then one defines λ = (N − no)/N , where N is the total number of entries in
the transition table and no is the number of entries leading to the quiescent
state. Based on the observation of many simulations of CA with different

2.9 Analysis and Synthesis of Cellular Systems 157

values of λ Langton proposed a correspondence between Wolfram’s classes
and ranges of values of λ (figure 2.34). According to this correspondence
class I and class II CAs would correspond to an ordered phase characterized
by values of λ below a critical value λc ≈ 0.3; class III CAs would correspond
to a disordered phase characterized by values of λ above the critical value;
class IV CAs would correspond to λ = λc, that is, to the transition between
the two phases. Even if this correspondence is proposed by Langton only in
terms of the average dynamical behavior of the CAs and does not refer to
the dynamical behavior of each single CA having a given value of λ, some
researchers have questioned the validity of this classification (Mitchell et al.
1993; Mitchell 1998). More recently, in a series of papers (Chua et al. 2002,
2003, 2004, 2005) Chua and coworkers have proposed an interesting new ap-
proach to the classification of the elementary CAs. The approach is based on
the association of an ordinary differential equation with each elementary CA
and on a geometric interpretation of the parameters that define the differen-
tial equations. This approach permits the formalization of some of Wolfram’s
original conjectures and observations. Many other approaches to the charac-
terization of CAs can be found in the literature, based on concepts borrowed
from various fields, such as dynamical system theory and statistical physics.
The reader is referred to (Ilachinski 2001; Deutsch and Dormann 2005) for
further discussion and an overview of the relevant literature.

2.9.2 Synthesis

The synthesis of a cellular system is similar to the activity of the scientist
trying to formulate a scientific theory for an observed phenomenon. The
designer of the cellular system may consider different local rules, analyze
their consequences in terms of global behavior, and compare them with the
desired behavior.

A first example of a synthesis problem that has received some attention
concerns cellular systems for the modeling of physical phenomena. In this
context Toffoli (1994) has observed that to select a set of plausible candidates
one can start with the set of all automata that have a reasonable state set and
neighborhood, and restrict the set by imposing the properties of invariance
that are known to hold in the physical system. For example, one can impose
particle conservation, momentum conservation in different directions of the
cellular space, rotational invariance, reversibility in time, and so on. By so
doing one reduces dramatically the huge universe of CA rules. Moreover,
one discovers that some aspects of the local rules have no effect at the global

158 2 Cellular Systems

level because their averaged effect is negligible, whereas other aspects sur-
vive the averaging process (in mathematical parlance, they commute with it)
and are felt at the global level. These latter aspects are crucial, not only be-
cause we must ensure that all the important local aspects are present but also
that no spurious aspects that survive averaging are present in the cellular
model. For example, the HPP gas model presented in section 2.5 (figure 2.21)
is plagued by the spurious conservation of the total momentum along each
horizontal and vertical line of the cellular space, which results in a macro-
scopic behavior that differs from that of a real fluid (Ilachinski 2001).

When the desired global behavior is given without an accompanying pre-
scription for the local behaviors that can be considered plausible, the syn-
thesis of cellular models becomes even more problematic. This is the case,
for example, of cellular systems that are required to perform some global
computation (see discussion in section 2.6). In these cases an interesting al-
ternative to the design by hand of cellular models consists in evolving themCA EVOLUTION

(Packard 1988; F.C. Richards et al. 1990; Mitchell et al. 1993, 1994; Mitchell
1998; Sipper 1996; Sipper et al. 1997). For example, Mitchell et al. (1994)
evolved the rule table of binary CAs for the solution of the density classifica-
tion task on cellular spaces of fixed, predefined size (see section 2.6, p. 135 for
the definition of the density classification task). The evolution is based on a
genetic algorithm whose genome consists of binary strings representing the
output bits of the transition table. Given the threshold density value ρt, the
quality of an individual is assessed by running several times the rule defined
by its genome starting with randomly generated initial conditions with den-
sity randomly chosen with uniform probability in the [0, 1] range. Each initial
condition is tested by running the CA until the state is stable or a maximum
number of time steps (varied randomly from run to run to avoid evolving
solutions tailored to a specific value) is attained. The fitness of a transition
rule is defined as the fraction of initial conditions that are classified correctly
by the rule when the CA is stopped. The experiments lead to the discovery
of rules that classify correctly about 95% of the initial configurations, which
is close to the 97% correct classification rate of the best-performing hand-
designed classification rule (Mitchell et al. 1994). Other interesting results
with the evolutionary approach have been obtained not only for computa-
tional tasks but also for the determination of CA rules capable of reproduc-
ing the experimentally observed behavior of complex physical systems (F.C.
Richards et al. 1990).

This short survey suggests that both the analysis and the synthesis of cel-
lular systems are in general quite complicated problems and many issues are

2.10 Closing Remarks 159

far from being resolved. Again, the problem stems from the nontrivial rela-
tionship between the local rules and the resulting global behaviors. In the
case of analysis one can at least always resort to running and observing the
behavior of the system. For the synthesis, the most precious resource is of-
ten the designer’s experience and insight into the phenomenon that must be
modeled, or the sophistication of some search algorithm.

2.10 Closing Remarks

Lest the reader that has been exposed to all the examples of applications of
cellular systems presented in the previous pages is left with the feeling that
cellular models are good for everything and should be used on all occasions,
let us now mention their principal limitation. We have seen that many pre-
scriptions can be relaxed in the basic cellular system represented by CAs to
produce a variety of systems adapted to various contexts. One thing remains,
however, fixed, namely, the rigid geometrical backcloth imposed by the cel-
lular space and by the not very flexible structure of the neighborhood. If we
are interested in modeling systems composed of elements having very dif-
ferent amounts of connectivity with each other, then it is probably better to
think different models (Bithell and Macmillan 2007), for example one of those
discussed in chapter 7. The same is true if the connectivity of the systems of
interest varies dynamically and rapidly.

Despite this limitation, the examples given in this chapter should have
convinced the reader that cellular models are a very useful tool. They afford
an appreciation of how simple local rules can produce complex global be-
haviors. They permit the sorting out of the essential ingredients of the local
rules that are responsible for the global behavior from the nonessential de-
tails that are averaged out at the collective level. They let one investigate the
robustness of the global phenomena to changes in the topology of the inter-
action, in the nature of the local rules, in the initial and boundary conditions.
They can be used also to define parallel computational devices that can solve
practical tasks in a very efficient way. In short, cellular models are essential
for the scientific understanding and analysis, design, and evolution of a large
class of complex systems.

160 2 Cellular Systems

2.11 Suggested Readings

Wolfram’s A New Kind of Science (Wolfram 2002) is a massive and richly il-
lustrated book which presents many examples of cellular systems in a very
accessible way, relegating all technical details to the endnotes. It is a good
starting point to get familiar with cellular systems by observing hundreds of
space-time diagrams while reading some daring speculations about the role
of CAs in physical and mathematical modeling. In (Toffoli and Margolus
1987) one can find a lively discussion of many methodological issues related
to cellular modeling. Although the notation used in this book is unusual
(referring to a specialized cellular computer designed by the authors), the
book makes good reading for its many valuable insights. (Ilachinski 2001) is
a treatise with encyclopedic ambitions which discusses in particular several
formal approaches to the analysis of cellular systems.

A good overview of the cellular approach applied to physical modeling,
with a detailed treatment of particle CAs and lattice Boltzmann models, can
be found in (Chopard and Droz 1998). Gaylord and Wellin (1995), Gay-
lord and Nishidate (1996), and Gaylord and D’Andria (1998) illustrate cel-
lular modeling with examples from several disciplines, from physics, to biol-
ogy, to socioeconomic sciences. The examples are accompanied by computer
code for the generation of fascinating space-time diagrams and animations.
(Deutsch and Dormann 2005) is an interesting work that discusses the role
of cellular modeling in the study of pattern formation in biological systems.
Nowak (2006) discusses the modeling of evolutionary dynamics and uses
cellular models to illustrate the effect of the spatial constraints on the interac-
tions of the individuals forming the evolving population. A classic example
of an agent-based model is the sugarscape system, described in detail in (Ep-
stein and Axtell 1996). This book and the collection of papers in (Epstein
2006) discuss the role of computational models in the study of complex so-
cial and economic phenomena. Ball’s Critical Mass (Ball 2004) is an excellent
nontechnical overview of complex system modeling (not only cellular-based)
with chapters on traffic modeling and social dynamics.

Conway’s description of the Life Game and its varied fauna of objects can
be found in (Berlekamp et al. 2004). This book sketches also the proof of the
universal computation capabilities of Life and of the possibility of building
a self-replicating automaton in Life. The same topics are treated in a more
detailed and accessible way by Poundstone (1985). The original manuscript
describing von Neumann’s work on robust self-reproduction was edited and
published as Theory of Self-Reproducing Automata (von Neumann 1966). The

2.11 Suggested Readings 161

actual description of the self-reproducing automata is a bit technical, but this
material is preceded by the transcript of five talks given by von Neumann
which reveal his ideas on the subject. The history of the reception of these
ideas by the scientific community has been reviewed critically by McMullin
(2000) and Sipper (1998). McMullin’s remarks on the sociology of science can
be usefully complemented by the excellent work of Russo (2004) which dis-
cusses the role of models in the definition of a scientific theory and presents
compelling evidence that the current viewpoint on this subject is not a mod-
ern creation – as is typically assumed – but can be found in the writings of
Hellenistic scientists who date back to the third century B.C.

Finally, to go back to the starting point of this chapter, (Harold 2001) is a
very readable overview of the properties of biological cells.

3 Neural Systems

Behavior, thought, and emotions are mediated by a complex network of cells
known as neurons. In the second half of the twentieth century, the availabil-
ity of electronic computers allowed scientists to recreate and study in silico
networks of lifelike neurons. Over the last 50 years, the development of for-
mal and computational models of neural systems has been pursued mainly
in two areas of research.

Computational neuroscience, which finds its roots in the detailed mathemat-COMPUTATIONAL

NEUROSCIENCE ical model of neuronal membrane dynamics, first described by Hodgkin and
Huxley (1952), attempts to understand the functioning of living brains. The
main questions addressed by computational neuroscience include the type
of communication used by neurons, the effects of chemicals on neuronal be-
havior, the dynamics of neuronal assemblies, and the theoretical capacity of
neuronal computation, to mention a few.

Neural engineering, which can be traced back to the logic-level descriptionNEURAL ENGINEERING

of a neuron given by McCulloch and Pitts (1943), instead aims at reproducing
the functionalities of brains in order to engineer intelligent machines. Issues
addressed by neural engineering include robust control for robotic systems,
learning algorithms and high-level architectures that could reproduce cogni-
tive abilities, and implementation of neural models in hardware.

Before describing neural systems, it is worth asking what potential ad-
vantages neuron-like systems could bring to an animal or machine. Some
single-cell organisms, such as the paramecium (figure 3.1, left), do not have
neurons, but can still do quite a lot of things, such as eating, moving toward
light, escaping from aversive situations, and even changing behavior after
repeated stimulation. They do so by means of chemical processes that af-
fect the electrical potential across their membrane and modify the shape of

164 3 Neural Systems

Figure 3.1 The paramecium and the sponge do not have neurons, but can react to
environmental stimuli by means of chemical reactions.

the constituent proteins. Chemical processes regulate also the behavior of
sponges (figure 3.1, right), which are multicellular animals without a neural
system. Sponges absorb nutrients from water that is pumped through their
bodies by contractile cells that respond to chemical, thermal, and mechanical
stimulation.

Neural systems bring at least two advantages compared to brainless or-
ganisms: (1) selective transmission of signals between distant parts of the
body and (2) adaptation by means of synaptic plasticity. These two fea-
tures allow for more complex bodies and better coping with partially un-
predictable environments that change too rapidly for evolution to catch up
with.

Neural systems have been discovered and shaped over millions of years
by evolution. At the same time, the additional adaptation provided by neu-
ral systems could improve the survival of the organism and thus affect the
evolution of the species. The influence of lifetime adaptation on evolution
was recognized by Darwin and by Lamarck (Lamarck 1914). Although they
had different views on this issue, they both believed that characteristics ac-
quired during life were transmitted to offspring. However, as we have seen
in chapter 1, we now know that the process of gene expression does not allow
a modification of the genotype by the phenotype.

165

fitness
random

mutation
fitnessfitness

cumulative

random

mutations

feature

acquired

during life

individual

at birth

fitness

generations

Figure 3.2 Illustration of the Baldwin effect. Individuals (square blocks) undergo an
adaptation process during life that makes them taller and gives higher fitness. This
adaptation process has also an evolutionary cost. By effect of random mutations,
some offspring are born taller and require less adaptation effort; therefore, their evo-
lutionary cost is smaller and they have higher probability of reproducing. Gradually,
evolution will select individuals that are born taller and taller by the effect of incre-
mental mutations, thus decreasing the role of lifetime adaptation. A similar effect
may apply to neural adaptation.

At the end of the nineteenth century, Baldwin (1896), Morgan (1896), and
Osborn (1896) independently suggested that learning can affect evolution
without assuming that characteristics acquired during life are directly trans-
mitted to offspring. Baldwin’s argument, in particular, was that learning
accelerates evolution because suboptimal individuals increase their baseline
reproduction rate by acquiring during life the necessary characteristics for
survival. However, lifetime learning often involves a cost because the indi-
vidual may be at risk at an early stage of its life or it may modify its behavior
and morphology in ways that are not functional for its survival, to mention
only two examples. Therefore, Baldwin suggested that evolution tends to
select individuals who already have at birth, by effect of random mutations,
some of the useful features that would otherwise be learned (figure 3.2). This
indirect assimilation of learned characteristics, also known as the Baldwin ef-BALDWIN EFFECT

fect, is still a debated issue, but is nowadays better accepted than the theory
of direct assimilation of lifetime modifications by evolutionary mechanisms
(Behera and Nanjundiah 1995).

The morphology and behavior of individual neurons are very similar a-
cross animal species and also across phylogenetic history, as far as one can
infer from comparative biology (G.H. Parker 1919). It seems therefore that
evolution of the brain occurred mainly at the level of the architecture, or con-
nectivity, of the neuronal networks. Indeed, the first systematic classification
of neurons given by the neuroanatomist Ramón y Cajal at the end of the nine-
teenth century was indeed based on the patterns of connectivity specific to
each type of neuron (Ramón y Cajal 1911).

166 3 Neural Systems

Axon

Impulse

Dendrites

Receptor molecules

Axon

SYNAPSE

Neurotransmitters

Dendrite

Synaptic

cleft

Figure 3.3 Biological neurons with detail of a synapse.

In this chapter, we start with an overview of the most salient principles and
mechanisms of biological neural systems and then proceed to describe how
those elements are modeled in artificial neural networks. We will also cover
major learning algorithms and conclude with artificial evolution of neural
networks.

Artificial neural networks are often implemented as software objects in
standard microcontrollers or desktop computers. However, there are situa-
tions where the computational demands of the artificial neural network or
the physical constraints (e.g., power, dimension) of the application require
the development of novel hardware solutions. The final section of this chap-
ter describes three major approaches to neural hardware, namely digital,
analog, and hybrid systems interfaced to cultures of living neurons.

As in other chapters of this book, the closing remarks provide some in-
sights into future promising directions as well as some criticism of estab-
lished models.

3.1 Biological Nervous Systems 167

3.1 Biological Nervous Systems

Nervous systems consist of assemblies of interconnected neural cells (fig-
ure 3.3). Neurons communicate by means of electrical signals that travel
mainly in one direction along connections. Neuronal cells consist of a body
with ramifications, known as dendrites, that receive signals from several otherDENDRITES

neurons, and of a single filament, known as an axon, that carries the outgoingAXON

electrical signal emitted by the neuron. The axon of a neuron branches out to
establish contact with several other neurons. At the same time, a neuron or
muscle cell can receive signals from several other neurons.

The transmission of electrical signals between neurons is mediated by elec-
trochemical devices, known as synapses, that are located at the contact pointSYNAPSES

between the axon of the emitting neuron and the dendrite of the receiving
neuron. Incoming electrical signals at the synaptic point trigger the release
of chemical substances, known as neurotransmitters. Neurotransmitters openNEUROTRANSMITTERS

molecular gates on the dendrites of the receiving neuron that let electrically
charged particles (ions) flow in. These ions generate a voltage difference
across the membrane that travels from the dendrite to the body of the re-
ceiving neuron, thus affecting the voltage difference between the interior of
the neuron body and the external environment. That voltage difference is
known as the activation level or potential of the neuron. Sending and receiv-ACTIVATION LEVEL

ing neurons are also referred to as presynaptic and postsynaptic neurons,
respectively.

For the sake of simplicity, most computational models assume that the
electrical voltages contributed by different synapses are summed up when
they meet at branching points of the dendritic tree on their travel toward
the body of the neuron. However, incoming signals can be combined also
in other ways, that can be described by Boolean logic functions (figure 3.4).
For example, active inhibitory synapses tend to block signals that travel from
higher parts of the dendritic tree, in a way similar to the NOT logic function.
Furthermore, the closer an inhibitory synapse is to the body of the neuron,
the stronger its effect is on silencing the neuron altogether, no matter what
other inputs are.

A neuron propagates an electrical signal along its axon when the voltage
difference (activation level) across its membrane is larger than its threshold
(figure 3.5). For example, the resting level of pyramidal neurons in the mam-
malian cortex is approximately -65 mV. The reception of incoming excitatory
signals brings the activation level toward positive values (depolarization),
causing an electrical discharge, also known as the action potential, when itACTION POTENTIAL

168 3 Neural Systems

and
or

veto

and-not

Figure 3.4 Synaptic interactions on the dendritic tree. Empty disks are excitatory
synapses, black disks are inhibitory synapses. An inhibitory synapse can block all
signals traveling from preceding synaptic points (veto effect). and = both synapses
must be active for a signal to get through; or = one synapse is sufficient to send a
signal; and-not = the excitatory synapse can transmit a signal only if the inhibitory
synapse is not active.

Figure 3.5 Schematic drawing of membrane dynamics. An outgoing electrical dis-
charge (spike) is generated when the action potential reaches a positive threshold.

reaches the threshold of -55 mV. The action potential travels along the axon
toward the postsynaptic neurons. The onset of an action potential is followed
by a phase of hyperpolarization where the neuron goes back to negative val-
ues that are larger than the resting level. Finally, the neuron goes back to
its resting potential of -65 mV. This fundamental cycle, which was first de-
scribed by Hodgkin and Huxley (1952), is caused by the inflow and outflow
of different types of ions across the body membrane and can last between

3.1 Biological Nervous Systems 169

Figure 3.6 Sensory neurons, motor neurons, and interneurons.

3 and 50 ms, depending on the type of ion currents. The output discharge
has a very sharp temporal envelope and therefore is often called a pulse or
spike. It is also common to say that the neuron has fired. Most neurons canSPIKE

emit up to 250 to 300 pulses per second and even in the absence of incoming
signals they display a resting activity of approximately 10 pulses per second.
Brains therefore display spontaneous activity even in the absence of external
stimuli, a fact that is rarely taken into account in artificial neural networks.

3.1.1 Neural Typology

Neurons come in two flavors: excitatory and inhibitory. Excitatory neuronsEXCITATORY

establish synaptic connections that tend to increase the activation of post-
synaptic neurons. Inhibitory neurons instead establish synaptic connectionsINHIBITORY

that tend to decrease or block the activation of postsynaptic neurons. It is
estimated that only 16% of synapses in the mammalian cerebral cortex are
inhibitory (Kandel et al. 2000). However, their strategic location and strong
effect on postsynaptic activation provide crucial regulation of brain activity
and prevent the onset of epileptic activity (Braitenberg 1984).

There are three major classes of neurons (figure 3.6). Sensory neurons areSENSORY

peripheral cells that have an input detector exposed to the environment and
an output connection that can diverge to make contact with several other

170 3 Neural Systems

neurons or effectors (muscle cells). This arrangement allows simultaneous
broadcasting of the signal across parallel neural pathways where the same
sensory signal can be analyzed and combined in different ways with other
signals. Where sensory neurons are directly connected to effectors, the di-
vergent signal can synchronize the response of effectors that are distributed
across distant parts of the animal body and ensure a rapid and coordinated
response.

Motor neurons are peripheral cells that send signals directly to effectorsMOTOR

or to other neighboring motor neurons. Motor neurons receive input from
sensory neurons or from other neurons in the system. They allow sensory or
control signals to converge from various sources before being transmitted to
one or more effectors. A neural system with both sensory and motor neurons
can display more complex behavior by combining sensory signals in various
ways so as to produce diverse behaviors.

Interneurons are neural cells that establish connections with other neurons,INTERNEURONS

but are not directly connected to the environment. Interneurons increase the
complexity of the neural system by allowing a larger number of connection
topologies and by adding further stages of signal transformation. For ex-
ample, interneurons can change the intensity of the signals transmitted from
the input neurons to the output neurons or let the signals through only in
the presence of signals from other input neurons. Also, inhibitory interneu-
rons can transform an incoming excitatory signal into an inhibitory signal,
thus reducing or blocking the activity of an output neuron when that signal
is present.

3.1.2 Neural Communication

A recurrent issue in neuroscience is how neurons encode and transmit in-
formation. One hypothesis is that information is encoded as the firing rate,FIRING RATE

that is, the number of spikes within a time interval. Indeed, we know that
the response of muscle cells is proportional to the firing rate of presynaptic
neurons (Adrian 1928). Another hypothesis is that information is encoded as
firing time, that is, the time interval between spikes. For example, a neuronFIRING TIME

may fire only if it receives two input spikes with a time delay of few millisec-
onds between the two. This property is exploited by the acoustic nervous
system to encode information about the spatial location of a sound source.
Those neurons are tuned to specific time delays between spikes generated
by sensory neurons on the two sides of the head (e.g., see Carr and Konishi
1988).

3.1 Biological Nervous Systems 171

As we move away from peripheral neurons toward the central nervous
system, it is increasingly difficult to tell whether neurons use firing rate or fir-
ing time to communicate. It has been argued that firing time may be used by
inner neurons to encode not only time-dependent but also space-dependent
information (Singer and Gray 1995), but the measurement of precise spa-
tiotemporal patterns of neural activity is still technically very challenging
(Villa 2000).

Neurons can affect each other in several other ways than through synap-
ses. For example, densely packed neurons, such as those in the retina and in
the hippocampus of mammalian brains, can affect the activation of neighbor-
ing neurons through direct connections between neural bodies (MakowskiDIRECT CONNECTIONS

et al. 1977) or local electrical fields (Taylor and Dudek 1984). These types of
communication seem to synchronize the activity of local neural assemblies.
In addition, some neurons can also communicate by means of long-rangeLONG-RANGE

NEUROTRANSMITTERS neurotransmitters, such as nitric oxide, that diffuse over areas comprising
several neurons and synapses (Garthwaite 1991). However, local interactions
through synaptic joints are the most widespread type of interaction among
neurons.

3.1.3 Neural Topology

Neural systems display regular architectural patterns generated during the
process of cellular growth. In addition to cell division and differentiation,
during early development of the brain neural cells can move and grow axons
guided by neurotrophic gradients (these are chemicals present in the brain
that drive axon growth during brain development). Neural systems are sym-
metrically organized along the three main directions of the body: bilateral
(left and right), rostrocaudal (head-tail), and dorsoventral (top-bottom). Fur-
thermore, neurons tend to concentrate in a specific area of the body, the head
of the animal, probably because of better efficiency in terms of connectivity
(Ramón y Cajal 1911).

Most neurons receive connections from, and project to, neighboring neu-
rons. This architectural feature has three consequences. The first is that the
layout of neurons close to sensory areas tends to preserve the topological re-
lations of the receptors. In other words, neighboring neurons respond to
neighboring sensors. The second is that neighboring neurons tend to re-
spond to similar patterns of stimulation, which will be explained later with
a computational model. The third is that nervous systems are organized in
local circuits characterized by specific patterns of connectivity, although it is

172 3 Neural Systems

Inhibitory

neurons

Neurons

layers

2,3,4

Neurons

layers

5, 6

Thalamus

Excitatory connection

Inhibitory connection

Figure 3.7 The canonical cortical circuit (adapted from Douglas and Martin 1990).
Numbers within blocks indicate the layers of the cortex: 2, 3, and 4 are layers closer
to the skull; 5 and 6 are closer to the center of the brain.

not yet clear to what extent this compartmentalization may correspond to
specialization of the circuit function.

Topology preservation and anatomical modularity are very evident in the
mammalian brain. Neurons in the visual, auditory, and tactile sensory areas
of the cortex are arranged so as to reflect retinotopic and tonotopic, and so-
matotopic relations (Knudsen et al. 1987; Merzenich and Kaas 1980). Those
topological relations are maintained throughout several layers of neurons,
although they become increasingly distorted with increasing distance from
sensory neurons. Sensory areas of higher interest for the animal receive at-
tention from a comparatively larger number of neurons. For example, there
are more neurons allocated to photoreceptors in the fovea (the central part of
the retina) than to photoreceptors in other parts of the retina. Similarly, there
are more neurons allocated to fingertips than to the dorsal part of the hand.
Mammalian brains also display several modules characterized by specific ar-
chitectures, such as the thalamus, hippocampus, cerebellum, and cortex, to
mention a few (Shepherd 1990). Even within those modules, one can find
further levels of modular organization. For example, the visual cortex seems
to be organized in several areas characterized by area-specific inter- and in-
traconnection patterns and by area-specific neural response (DeYoe and van
Essen 1988; van Essen and Maunsell 1983). On an even smaller scale, it has

3.1 Biological Nervous Systems 173

been suggested that the cortical areas consist of several modules with the
same local design (figure 3.7), known as the canonical circuit (Douglas andCANONICAL CIRCUIT

Martin 1990). Furthermore, inhibitory interactions seem to occur only within
local circuits.

Neural systems endow organisms with the ability to adapt to their envi-
ronment during their lifetime. In this book, we define adaptation as the setADAPTATION

of modifications occurring during the interaction between the organism and
the environment that are functional to increasing its probability of survival.
At a macroscopic (behavioral) level, adaptation has many manifestations. It
includes habituation, formation of associations, memorization of items and
places, and reinforcement learning, to mention a few. At a microscopic (neu-
rophysiological) level, adaptation is provided mainly by processes that affect
the strengths of synaptic connections between neurons. This process is also
known as synaptic plasticity.

The important role of synaptic plasticity in adaptation was emphasized
more than 50 years ago by the Canadian psychologist Donald Hebb, who
suggested a possible mechanism for associative learning:

When an axon of cell A is near enough to excite cell B or repeatedly
or consistently takes part in firing it, some growth or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the
cells firing B, is increased. (Hebb 1949, p. 62)

This mechanism, now known as Hebb’s rule, has been measured by severalHEBB’S RULE

experimental studies (e.g., Kelso et al. 1986) and is at the core of most com-
putational models. Hebb’s rule explains only long-term strengthening (also
known as long-term potentiation and abbreviated as LTP) of synaptic connec-LONG-TERM

POTENTIATION (LTP) tions. More recent experimental studies highlighted variations of this mech-
anism that can explain also long-term weakening (also known as long-termLONG-TERM

DEPRESSION (LTD) depression and abbreviated as LTD) of synaptic connections when the activa-
tions of two connected neurons are not correlated (e.g., Stent 1973; Singer
1987; Stanton and Sejnowski 1989). Hebb’s rule has two major implications.
First, it implies strong locality of the plasticity: the modification of a synapse
depends only on the presynaptic and the postsynaptic neurons. Second, it in-
troduces the concept of activity-induced reinforcement or weakening of the
synapse.

In the context of a spiking neuron, Hebb’s rule implies a temporal relation
because a presynaptic spike that is responsible for the emission of a spike
by the postsynaptic neuron necessarily occurs earlier in time. Recent ex-
perimental measurements indeed showed that presynaptic spikes arriving a

174 3 Neural Systems

Figure 3.8 Spike time-dependent plasticity. The percentage of synaptic modification
depends on the difference between presynaptic and postsynaptic spikes (tpre−tpost).
The temporal difference in the figure ranges between -100 ms and +100 ms. When the
postsynaptic neuron fires after arrival of the presynaptic pulse (positive difference,
also known as causal relation), the synaptic weight is increased; instead, when the
postsynaptic neuron fires before the arrival of the presynaptic pulse (negative differ-
ence, also known as anticausal difference), the synaptic weight is depressed. From
Gerstner and Kistler (2002) plotted on data from Bi and Poo (2001).

few milliseconds before a postsynaptic spike tend to increase (potentiate) the
synaptic strength, while presynaptic spikes that arrive a few millisecond later
tend to decrease (depress) the synaptic strength (Zhang et al. 1998; Bi and Poo
2001). The time window for synaptic potentiation and depression spans only
a difference of a few milliseconds between pre- and postsynaptic firing and is
asymmetric, as shown in figure 3.8. The apparently different descriptions of
spike time-dependent plasticity and of correlation-based plasticity describedSPIKE

TIME-DEPENDENT

PLASTICITY (STDP)
by Hebb in fact explain the same phenomenon when neural activity is con-
sidered over extended periods of time. In that case, systematic earlier firing
of the presynaptic neuron implies a causal and positive correlation, whereas
late firing of the presynaptic neuron implies an independence and negative
correlation.

There are several other neurophysiological processes that contribute to
adaptation, such as dynamic growth and death of connections as well as
modifications of the molecular properties of the neuron membrane. Those
processes typically occur over a longer time window, and are less frequent,

3.2 Artificial Neural Networks 175

than the activity-dependent synaptic process described above. They are also
less frequently incorporated in computational models of neural systems, but
may still play fundamental roles in the definition of brain architecture and
repair. We will describe some of these processes in chapter 4.

3.2 Artificial Neural Networks

Artificial neural networks are computational models implemented in soft-
ware or custom-made hardware devices that attempt to capture the behav-
ioral and adaptive features of biological nervous systems. An artificial neural
network is composed of several interconnected units, or neurons (figure 3.9).
Some of these units receive information directly from the environment (in-
put units), some have a direct effect on the environment (output units), and
others communicate only with units within the network (internal, or hidden,
units).

Each unit implements a simple operation that consists in becoming active
if the total incoming signal is larger than its threshold. An active unit emits
a signal that reaches all units to which it is connected. The connection, or
synaptic point, operates like a filter that multiplies the signal by a signed
weight, also known as synaptic strength.

Whereas biological neurons are either inhibitory or excitatory and have
the same effect on all neurons which they send signals to, artificial neurons
can emit both negative and positive signals and thus the same neuron can es-
tablish both negative and positive synaptic connections with other neurons.
There are two reasons for this difference. The first is that artificial neurons are
mathematical objects that are not constrained by the physiological properties
of biological neurons in order to achieve the same functionality. The second
is that an artificial neuron often models the average response of a popula-
tion of biological neurons, which may include both excitatory and inhibitory
neurons.

The response of an artificial neural network to an input from the environ-
ment depends on its architecture and pattern of connection strengths. The
knowledge of the network is distributed across its connections. The behav-
ior of the network is given by the pattern of activations of the neurons, which
in some models can self-sustain and change over time even in the absence of
input from the environment.

Neural networks learn by modification of synaptic strengths when pre-
sented with stimulation from the environment. Usually, learning requires

176 3 Neural Systems

External environment

External environment

Output units

Input units

Hidden units

Weighted

Connections

Figure 3.9 Generic neural network architecture.

several repeated presentations of the set of input patterns. There are several
types of learning rules, each displaying specific functionalities and applica-
ble to specific architectures. Typically, all synaptic connections within the
artificial neural network change according to the same learning rule.

In addition to the ability of learning by exposition to examples (learning
by demonstration), neural networks are often appreciated in engineering ap-
plications also for the following features.

• Robustness. Neural networks are robust to various types of signal degra-
dation, such as input noise or malfunctioning of connection and unit op-
eration in hardware implementations. As the noise level increases, neural
networks display graceful degradation by increasing the error rate more
or less uniformly across the entire input domain or by making errors for
specific input patterns while maintaining a correct response for all other
patterns. Furthermore, neural networks can be incrementally trained to
compensate for signal noise or damage to their components.

• Flexibility. Neural networks are not domain specific, that is to say that a
neural model can be applied to several types of problems (however, that

3.3 Neuron Models 177

does not mean that any type of neural network can be applied to any type
of problem). Neural networks can be used to tackle problems for which
there is not an analytical solution, but this presents the risk of giving up
the effort of understanding the problem to find the comfort of a neural
solution that does not increase our knowledge (Dewdney 1993).

• Generalization. Neural networks trained on a limited number of examples
can provide the correct response to input patterns that share some similar-
ity with training patterns, but were never seen before. This ability comes
from the fact that neural networks store a larger number of input-output
associations than the number of available synaptic strengths by extracting
invariant features of the patterns. The ability of the network to generalize
the response to a new pattern depends on the extent to which the new
pattern can be described by the learned invariant features. The extrac-
tion of invariant features is also a common property of biological neural
systems that allow them to operate consistently in continuously changing
environments. From an engineering perspective, the ability to generalize
to novel input patterns is very useful for those applications where it is im-
possible to obtain an exhaustive list of all situations that the system may
be exposed to.

• Content-based retrieval. Neural networks retrieve memories by matching
contents and can do so even when the input patterns are incomplete or
corrupted by noise. In some neural models, such as those derived from
adaptive resonance theory (Grossberg 1987), retrieval resembles the way
in which humans operate: more familiar patterns are recognized faster
than items that are different or seen less frequently. Instead, in conven-
tional computer systems, data are retrieved using the address of the elec-
tronic memory cells. If that number is corrupted or lost, the entire mem-
ory is lost.

3.3 Neuron Models

An artificial neuron is characterized by a set of connection strengths, a thresh-
old, and an activation function (figure 3.10). If we ignore transmission de-
lays, the effect of a set of input signals �x on the postsynaptic neuron is equal
to the product �w · �x, where �w are the synaptic weights and can take any

178 3 Neural Systems

Σ

wi1
wi2 wi3 wi4 wi5

Φ(Ai)θi

x1 x2 x3 x4 x5

yi

input

output

Figure 3.10 Schematic representation of a biological (pyramidal cell) and artificial
neuron.

real value (both negative and positive). The net input, or activation ai, of a
neuron i is the sum of all weighted inputs from presynaptic neurons j:

ai =
N∑

j=1

wijxj

The output signal yi is a function of the net input and of the neuron threshold
ϑi, which is usually subtracted from the sum of weighted inputs:

yi = Φ(ai) = Φ

⎛
⎝ N∑

j=1

wijxj − ϑi

⎞
⎠(3.1)

The activation function Φ(·) describes the response profile of the neuron
and can take several different forms (figure 3.11). In the original formulation
by McCulloch and Pitts (1943) neurons have a binary output (0 or 1) and theMCCULLOCH AND

PITTS MODEL threshold is used as a hard delimiter to tell whether a neuron emits a signal.

Φ(ai) =

{
1 :

∑N
j=1 wijxj > ϑi

0 : otherwise.

3.3 Neuron Models 179

-4 -2 2 4

-4

-2

2

4

-4 -2 2 4

0.2

0.4

0.6

0.8

1

-4 -2 2 44

0.2

0.4

0.6

0.8

1a b c

a

y

a

y

a

y

Figure 3.11 Some common activation functions (neuron output as function of total
weighted input): a, linear function with k = 1; b, step function with ϑ = 0; c, sigmoid
function with k = 1.

A variation of this function is the bipolar activation where

Φ(ai) =

{
1 :

∑N
j=1 wijxj > ϑi

−1 : otherwise.
(3.2)

Here the neuron can be in only one of two states and transmit only one bit
of information. More information can be transmitted if the neuron could be
in several states, as is the case for continuous activation functions. The out-
put of a continuous activation function is a real number. In biological terms,
this number could be interpreted either as the firing rate of the neuron over
a short time window or as the sum of all excitatory and inhibitory outputs of
a population of neurons at a given instant. The simplest continuous function
is the linear model

Φ(ai) = kai

where k is a constant. In undesirable situations where the output of the
neuron could grow indefinitely (for example, if it has a positive feedback
connection), this activation function can be constrained to operate within a
given interval, such as [0, 1] or [−1, 1].

There are also several continuous and nonlinear activation functions that
are used in complex neural architectures. One of the most common nonlinear
functions is the sigmoid, or logistic, functionSIGMOID FUNCTION

Φ(ai) =
1

1 + e−kai
(3.3)

where k is a scaling factor that determines the inclination of the slope shown
in figure 3.11, c (for k → 0 the function approximates a linear function; for
k → ∞ the function approximates a step function). The sigmoid function

180 3 Neural Systems

x

w

α

x1=0.7 x2=0.3

w1=0.3 w2=0.8

Figure 3.12 Representation of relationship between weight and input vectors of a
neuron.

tends asymptotically to 0 and 1. A similar function is tanh(kA), which tends
asymptotically to -1 and 1.

The activation of a neuron is proportional to the familiarity, or similarity
between its weight vector and the input vector (figure 3.12). Resorting to
linear algebra, we can describe the similarity between the two vectors with
the cosine of the angle α between the vectors:

cos α =
�w · �x

‖ �w ‖‖ �x ‖ , 0 ≤ α ≤ π

where ‖ �v ‖ is the length of vector v. Consequently, we can express the output
of the neuron as

y = �w · �x =‖ �w ‖‖ �x ‖ cos α.

This means that, provided that the lengths of the two vectors are constant, the
output of the neuron changes with the cosine of the angle between the two
vectors. Its magnitude is inversely proportional to the angular distance be-
tween the input and weight vector within the same quadrant. Therefore, the
output will be the smallest when the two vectors are orthogonal (cos 90◦ = 0)
and the largest when the two vectors are aligned (cos 0◦ = 1). In a neural net-
work with several output units, the activation levels tell which neurons have
synaptic weights closer to the input pattern, but only if the weight vectors
are normalized (that is, have the same length). If the activation function is
binary, the neuron output can be used to discriminate between two classes
of inputs, those whose angular distance is smaller than 90 degrees and those
whose angular distance is larger than 90 degrees to the weight vector of the
neuron.

Another way to look at the classification abilities of a neuron is to imag-
ine that the neuron traces a separation line in the input space between theSEPARATION LINE

3.3 Neuron Models 181

x1

x2

-1

-1

1

1

0 x1

x2

-1

-1

1

1

0

a b
w w

Figure 3.13 The separation line (thick line) of input space by a neuron with two
input units, shown in figure 3.12, both set to 1, is always perpendicular to the neuron’s
weight vector (thin line). The example shows a distribution of data points that such a
neuron could discriminate by responding differently depending on whether the input
is above or below the separation line (see text). a, neuron with threshold set to 1; b,
neuron with threshold set to 0.

classes of input patterns that produce different responses (figure 3.13). Imag-
ine, for example, describing a sample of patients on a bidimensional graph
according to their weight and cholesterol that corresponds to the activation
values of two input neurons. Imagine now that these patients happen to
cluster mostly into two small regions, one corresponding to high weight and
cholesterol values and one corresponding to low weight and cholesterol val-
ues. If the neuron has a suitable set of weight values from the two input
units, its output value (e.g., 0 and 1) will be different depending on which
side of the separation line the input is. In other words, the neuron will clas-
sify patients into two classes of response according to this virtual separation
line. The separation line becomes a plane if the neuron has three input units
and a hyperplane for more input units. If the input patterns can be divided
by such a line, plane, or hyperplane, we say that the classification problem
is linearly separable. This condition represents an important criterion for theLINEARLY SEPARABLE

choice of neural architecture, activation function, and learning rule, as we
will see later.

For the moment, let’s imagine that the neuron is presented with a linearly
separable classification problem, such as the one shown in figure 3.13. The
separation line is perpendicular to the weight vector of the neuron. For a

182 3 Neural Systems

x0=-1 x1=0.7 x2=0.3

w1=0.3w0=0.6 w2=0.8

Figure 3.14 The threshold of a neuron can be represented as an additional weighted
input x0 with a constant negative value. This representation has the advantage that
the threshold weight w0, also known as bias, can be modified during learning as all
other weights in the network.

neuron whose activation is given by y =
∑N

j=1 wjxj − θ, the line passes
through the points that describe the relationship

w1x1 + w2x2 − θ = 0

and can be traced by reformulating the same equation as

x2 =
θ

w2
− w1

w2
x1.(3.4)

This equation shows that if the threshold is not used (θ = 0), the separation
line must pass through the origin of the input space and therefore, no mat-
ter what values the synaptic weights take, the neuron may not discriminate
classes of inputs that fall, for example, within one quadrant, as is the case
in the second panel of figure 3.13, b). A nonzero threshold is also useful in
cases where the output neuron is required to provide an output in the ab-
sence of input, as could be the case for a robot that must continue to move
even without sensory input.

Considering the additive properties of the neuron activation (see equa-
tion (3.1)), the threshold is conveniently expressed as a synaptic weight con-
nected to an additional input unit with constant activation set to -1 (fig-
ure 3.14). This additional synaptic weight is often called bias and the cor-BIAS

responding input unit is called bias unit. Within this convention, the neural
activation can be expressed in the simpler form

y = Φ

⎛
⎝ N∑

j=0

wjxj

⎞
⎠

3.3 Neuron Models 183

Figure 3.15 A simple model of a discrete-time, dynamic neuron consists in adding a
delay element and a recurrent connection that brings the activation back to the input.
If the weight of the recurrent connection is 0 ≤ μ ≤ 1, the evolution of the neural
activation, when presented with an instantaneous input presented only at time n = 0,
corresponds to a gradual decay.

where x0 = −1 and w0 can be modified during the learning process as any
other synaptic connection in the network.

The neuron model described so far is static because its output is deter-
mined by its current input only. However, there are several types of prob-
lems, such as detection or generation of time sequences, where dynamical
behavior is necessary. Dynamical behavior can be obtained by coupling
static neurons with feedback connections. Another way of achieving time-
dependent functionalities consists in using dynamic neuron models. The
underlying principle of those models consists in introducing a temporal de-
lay with a feedback loop between the input and output of the neuron.

Consider for example the discrete-time, dynamic neuron model shown onDISCRETE-TIME

DYNAMIC NEURON

MODEL
the top of figure 3.15, which incorporates two novelties with respect to the
static model described in figure 3.10. The first element is a temporal delay Δ
between the update from the current activation level ai(n) to the activation
level at the next time step ai(n + 1). This implies that the neuron can hold
its current activation level for some time Δ. The second element is a recur-

184 3 Neural Systems

Figure 3.16 A continuous-time recurrent neuron where the delay integrates the
derivative of the activation and transforms it into the activation itself. In this case,
the μi takes the form of e−t/τi and the evolution of the neural activation, when pre-
sented with an instantaneous input presented only at time t = 0, corresponds to a
gradual decay when τi > 0.

rent connection with a weight μi that brings the current activation back to
the input used to compute the next activation level. For 0 ≤ μ ≤ 1, this cor-
responds to a spontaneous activation decay (figure 3.15, bottom). For each
update step n, we compute first the neuron activation

ai(n + 1) = μiai(n) +
N∑

j=1

wijxj(n)(3.5)

and then the neuron output signal

yi(n) = Φ (ai(n) − θi) .

A widely used variation of this model includes continuous-time dynam-
ics, and networks of such neurons are often called continuous-time recurrentCONTINUOUS-TIME

RECURRENT NEURAL

NETWORK (CTRNN)
neural networks, or CTRNNs (Beer and Gallagher 1992), as shown in the top
of figure 3.16. In the continuous-time case, we are interested in the variation

3.3 Neuron Models 185

Figure 3.17 A compact representation of the neuron model of figure 3.16 where the
exponential dynamics are described by a single element between the activation and
the output.

of the activation over time and the activation update of equation (3.5) can be
approximated by

dai(t)
dt

= − 1
τi

ai(t) +
N∑

j=1

wijxj(t)

where τi is a time constant whose magnitude (for τi > 0) is inversely propor-
tional to the decay rate of the activation (figure 3.16, bottom). These types
of models display rich dynamics and represent a first approximation of the
time-dependent processes that occur at the membrane of biological neurons.
Sometimes these neural models are also called leaky integrators, with refer-LEAKY INTEGRATOR

ence to electrical circuits, because the equation describing the neuron acti-
vation is equivalent to that describing the voltage difference of a capacitor,
where the time constant of the exponential and synaptic weights can be ap-
proximated by a set of resistors (Haykin 2007).

Both the discrete-time and continuous-time neuron models described a-
bove generate exponential dynamics. This behavior can be described more
simply by using a single exponential function between the activation and the

186 3 Neural Systems

Figure 3.18 Generalization to a model where the exponential dynamics are antici-
pated to the input and can therefore be different for each input line.

output of the neuron, as shown in figure 3.17. The dynamics of the neuron
are described uniquely by the parameter τi (μi for the discrete-time model).

To add even more flexibility to the model, we can imagine anticipating the
temporal dynamics to the input level so that each input line can not only have
its own different parameter value but also have different temporal dynamics
that are not necessarily exponential, as shown in figure 3.18. This generalized
model approximates even better the biological case where synaptic contacts
on the dendritic tree of the neuron can have different temporal dynamics
and effects on the neuron activation. In this case the neuron activation is the
integral (or sum in the discrete-time case) of the contributions of all input
lines. Each contribution is given by the temporal convolution of the input
xi(t) with a function ηij(t) = wijε(t), also known as the synaptic kernel (core
unit of computation). For example, a commonly used exponential function
for ε(t) (Gerstner 1999; Floreano and Mattiussi 2001) is given by

ε(t) =

{
e−

t−τd
τm : t ≥ τd

0 : otherwise

where τm is the temporal constant described above and τd is the temporal de-
lay necessary for the signal to travel from the presynaptic to the postsynaptic
neuron. This generalized model is not only capable of producing a large class
of time-dependent responses (Haykin 2007) but is also amenable to further
modeling of synaptic dynamics. For example, recent work in neurophysiol-
ogy and modeling emphasizes that synaptic kernels change depending on

3.3 Neuron Models 187

the pre- and postsynaptic activity. Those activity-dependent modifications
could be easily incorporated in the generalized model described above.

In the neuron models described so far, the temporal dynamics contribute
only to the definition of the neuron activation. The actual output of the neu-
ron is a function (usually the sigmoid function) of its activation. Therefore,
the information exchanged between neurons is basically the instantaneous
value of the neuron activation. However, as we have seen in the previous
section, most biological neurons communicate through action potentials, or
spikes, which are punctual events that result from a process taking place at
the output of the neuron. One of the reasons why biological neurons com-
municate spikes instead of activation states is that the former are large per-
turbations that can travel along big distances in the brain, whereas the latter
are small voltage differences that degrade rapidly along the axons and con-
sequently may alter the information transmitted. As a matter of fact, neurons
that are densely packed and have short-range local connections, as is the case
in the retina, transmit activation states instead of spikes.

In spiking neurons the activation state, which corresponds to an analogSPIKING NEURONS

value, can be approximated by the firing rate of the neuron. That is, a larger
number of spikes within a given time window would be an indicator of
higher activation of the neuron. However, if that is the case, it means that
spiking neurons require a relatively longer time to communicate information
to postsynaptic neurons. This hints at the fact that spiking neurons may use
other ways to efficiently encode information, such as the firing time of single
spikes or the temporal coincidence of spikes coming from multiple sources
(Singer and Gray 1995; Rieke et al. 1997). It may therefore be advantageous
for engineering purposes to use models of spiking neurons that exploit fir-
ing time in order to encode the spatial and temporal structure of the input
patterns with fewer computational resources.

There are several models of spiking neurons that describe in detail the elec-
trochemical processes that produce spiking events by means of differential
equations (e.g., Hodgkin and Huxley 1952). A simple way of implementing
a spiking neuron (figure 3.19, top) is to take the dynamic model described in
figure 3.17 and substitute the output function with an element that compares
the neuron activation with its threshold followed by a pulse generator that
takes the form of a Dirac function. In other words, if the neuron activation is
larger than the threshold, a spike is emitted. In order to prevent continuous
spike emission, we must also add a strong negative feedback ri so that the
neuron activation goes below threshold immediately after spike emission.
This model is often known as an integrate and fire neuron.INTEGRATE AND FIRE

NEURON

188 3 Neural Systems

Figure 3.19 Top: A simple model of an integrate and fire spiking neuron is obtained
by substituting the output function with a comparator followed by a pulse generator
and a strong negative feedback ri that brings the activation below threshold, thus
preventing another immediate spike (see also figure 3.17). Bottom: Generalization to
a model where the exponential dynamics are anticipated to the input (therefore can
be different for each input line) and the inhibitory feedback is also described by an
exponential dynamical process (see also figure 3.18). This model is also known as the
spike response model (Gerstner 1999).

A more sophisticated model of a spiking neuron (figure 3.19, bottom)
would anticipate, and possibly differentiate, to the input lines the temporal
dynamics, as in the generalized model described in figure 3.18. Similarly, the
negative feedback necessary to prevent a continuous series of spikes can be
approximated by an exponential kernel. The exponential kernel is such that
whenever a spike is emitted the neuron activation is brought to a very neg-
ative value from where, in the absence of incoming spikes, it exponentially
goes back to a resting potential. This model is known as the spike responseSPIKE RESPONSE

MODEL model (Gerstner 1999).

3.4 Architecture 189

a b

c d

Figure 3.20 Frequently used architectures (lower layer represents input units). a,
feedforward perceptron; b, feedforward, multilayer perceptron; c, recurrent connec-
tion among output units; d, recurrent connections among hidden units.

3.4 Architecture

The architecture of a neural network affects the functionality and type of
learning algorithms that can be used. The simplest architectural type consists
of feedforward networks where the output of each neuron depends uniquelyFEEDFORWARD

on the output of neurons in lower layers. Networks with a single layer of
synaptic connections (figure 3.20, a) are sometimes called perceptrons, from
the name given by the first person who studied their computational prop-
erties as pattern classifiers (Rosenblatt 1962). These networks are used to
perform classifications of linearly separable input patterns or to extract sta-
tistically significant information from the distribution of input vectors.

More complex classifications, where the input patterns fall into classes
that are not linearly separable, can be achieved with multilayer networks
(figure 3.20, b). Feedforward networks are input-output devices that cannot
detect or produce temporal sequences, unless they are composed of dynamic
neurons.

One way of providing temporal dynamics to neural networks of static neu-
rons consists in adding recurrent connections from neurons in the same layerRECURRENT

CONNECTIONS or from neurons in upper layers. In this case, the output of a neuron with
recurrent connections is given by

yt
i = Φ

⎛
⎝ N∑

j

wijx
t
j +

M∑
l

rilq
t−1
l − ϑi

⎞
⎠(3.6)

190 3 Neural Systems

I1

I2

I3

I4

y1

y2

y3

y4

Figure 3.21 An auto-associative network. Dots indicate that lines are connected.

where qt−1
l are the outputs of neurons in the same layer (possibly including

the neuron i) at the previous time step and ril are the synaptic connections. In
two commonly used architectures, recurrent connections occur at the output
layer (figure 3.20, c) or at the hidden layer (figure 3.20, d). The latter type of
architectures is also called Elman networks, from the name of the person who
studied their computational properties (Elman 1990) and can display more
complex time-dependent behaviors. Even more complex dynamics can be
achieved by using recurrent connections in networks of dynamical neurons
(such as CTRNNs) or of spiking neurons described earlier.

Autoassociative networks are used to memorize and reconstruct patterns andAUTOASSOCIATIVE

NETWORKS typically consist of a single layer of fully connected neurons (figure 3.21). An
input pattern is presented to the input lines of the network, and its synap-
tic weights are updated so that when a corrupted or incomplete version of
that pattern is presented again, the neurons can reconstruct the memorized
version. In this case, the neuron outputs are computed iteratively until they
stabilize according to

yt
i = Φ

⎛
⎝Ii +

N∑
j �=i

wijxj

⎞
⎠

where Ii are the values of the pattern presented to the network. These net-
works usually do not have a threshold and do not have self-connections.

Echo state networks (Jaeger and Haas 2004) are neural networks with a largeECHO STATE

NETWORKS number (typically between 50 and 1000) of randomly interconnected hidden
neurons, a layer of input connections, and a bidirectional layer of output
connections (figure 3.22). Hidden neurons are wired with a low probability

3.5 Signal Encoding 191

x y

Figure 3.22 Echo state network. Solid connections are randomly prewired and
fixed; dashed connections can be modified by learning.

(typically, 0.01) so as to create a reservoir of many loosely coupled subnet-
works and corresponding dynamical behaviors that can be excited (as echo
functions) by the input and output feedback connections. In echo state net-
works only the connections from the reservoir of hidden units to the output
units are modified so that the output of the network approximates a desired
input-output function (this can be done using a supervised learning algo-
rithm that will be described below). All other connections are prewired and
cannot be modified.

A simpler version of echo state networks, also known as liquid state ma-LIQUID STATE

MACHINES chines (Maass et al. 2002), does not include feedback connections from output
units to hidden units. The idea here is that connections from hidden to out-
put units operate as readout functions of the network dynamics that have
been triggered by the input, just like the perturbations of a liquid that have
been triggered by an external event (a stone, wind, or other). Liquid state ma-
chines can have several output units that detect multiple perturbations of the
network in parallel. However, the output units cannot affect the dynamics of
the hidden units as in echo state networks.

3.5 Signal Encoding

The encoding of input and output patterns is largely determined by the prob-
lem to be solved, but there are some criteria to be considered. Let us consider,
for example, the case of a neural network that must classify a set of objects.
The objects can be represented using local encoding, where each neuron en-

192 3 Neural Systems

1

2

3

4

5

1

2

3

4

5

Figure 3.23 Local and distributed encoding with five input units of five objects
shown in the central row of the image. Each column shows the activation of the input
units for the corresponding object with local (top) and distributed (bottom) encoding.
Filled disks indicate active neurons. It should be noted that distributed encoding
does not need all five neurons to represent the five objects.

codes one particular object; or using distributed encoding, where several units
participate in the representation of each object.

Local encoding (top part of figure 3.23), although very simple, has someLOCAL ENCODING

drawbacks. It demands a number of units equal to the number of objects to
be represented and consequently requires the knowledge of the number of
objects to be classified. Also, it is fragile in the sense that noise or malfunc-
tioning of a neuron results in the loss of the corresponding object.

With distributed encoding (bottom part of figure 3.23) neurons encodeDISTRIBUTED

ENCODING the presence of a certain feature, such as depth, roundness, corners, edges.
Whenever an object is presented to the network, the neurons tuned to some
features of the object become active. In distributed encoding objects are char-
acterized by a unique combination of active neurons. Notice that a neuron
can participate in the description of several objects. Distributed encoding
can describe many more objects than available units and is more resistant to
noise. Furthermore, similar objects will activate a similar set of units, making
the classification task easier for postsynaptic neurons.

3.5 Signal Encoding 193

imaging surface

input neurons

Figure 3.24 Partially overlapping receptive fields encourage a distributed represen-
tation of the information.

One way of enforcing distributed encoding throughout multiple layers of
a network consists in using restricted and overlapping connections. In this
case, neurons are arranged in space (for example, on a line or on a surface)
and each neuron receives connections from a set of neighboring presynap-
tic neurons partly shared with other neighboring postsynaptic neurons. The
set of incoming connections is also known as the receptive field of the neuron.RECEPTIVE FIELD

Consider, for example, a layer of neurons that receive information from an
imaging device (figure 3.24). If the receptive fields have a circular shape and
are uniformly distributed, the level of detail that the neurons can encode is
proportional to the number and radius of the receptive fields that span the
imaging device (Rumelhart et al. 1986a). Jacobs and Kosslyn (1994) studied
the influence of receptive field size and weighting functions on the type of
operations that the network can perform on the image. They showed that
networks with relatively small and nonoverlapping receptive fields learn
more easily to classify images and to detect relationships (e.g., above and be-
low) whereas networks with larger and partially overlapping receptive fields
learn more easily specific features of the images and precise metrics (e.g., red
triangle). These data, where corroborated by experimental results, show-
ing that when the radius of receptive fields can be modified by the learning
process, networks trained to classify images develop smaller receptive fields
than networks trained to detect the presence of specific images.

Feedforward neural networks have been used to model the detection of
symmetry and of other spatial relationships (Kosslyn et al. 1992; Enquist and
Arak 1994), but it is questionable whether such networks do actually per-
ceive spatial relations. It has been argued that feedforward networks sim-

194 3 Neural Systems

ply learn to classify data sets, but cannot perceive spatial relations because
neurons on the same layer are not interconnected and because the spatial ar-
rangement of incoming inputs to a neuron does not modify the activation of
that neuron, which is a sum of weighted inputs (Cook 1995; Cook et al. 1995).
In other words, changing the order of input units, which would break the
spatial relation, would not affect the activation of the output unit. However,
this criticism does not hold if neurons on the same layer are interconnected.

A frequent problem with input data is that the magnitudes of the values
may not be homogeneous. For example, sensors of a robot may return values
that operate on different scales or display high peaks. These differences do
not necessarily reflect significant differences in the environment, but may
affect the network response by saturating the activation of a neuron or by
masking the activity of other sensors. A frequently used strategy consists in
normalizing the input vectors so that the length, or norm, of the vector isNORMALIZATION

always equal to 1. For each input vector, this is done as follows:

x
′
i =

xi√∑N
j=1 x2

j

This operation also facilitates the functionality of the network because, as
we have seen earlier (figure 3.12), the output of a neuron is proportional to
the cosine of the angle between its weight and input vectors when both are
normalized.

In a spiking neural network, a single spike is a binary event that can en-
code only the presence or absence of a stimulus. Figure 3.25 shows three waysENCODING WITH

SPIKES to map the intensity of sensory information onto spiking neurons. A classic
method (figure 3.25, a)) consists of mapping the stimulus intensity to the fir-
ing rate of the neuron. This method is based on the hypothesis that a neuron
increases its firing rate to indicate stronger stimulation. For example, Adrian
(1928) experimentally showed that the firing rate of muscle stretch receptors
of frogs approximates a monotonically increasing function of the strength of
the stimulation and saturates near the maximum firing rate of the neuron.
More detailed studies indicate that this function is best described by a power
function of the general form R = KSn + C where R is the observed firing
rate, K is a constant of proportionality, Sn is the strength of the signal ele-
vated to the power of n, and C is a constant given by the spontaneous firing
rate of a neuron in the absence of stimulation (Mountcastle et al. 1963). An-
other method (figure 3.25, b)) consists in encoding the sensory stimulation
across several neurons and mapping the intensity of the stimulation into the
number of neurons that spike at the same time. This method is based on

3.5 Signal Encoding 195

Figure 3.25 Some models for encoding sensory information in spiking neurons. Fic-
tive spike trains recorded from five imaginary neurons. The different stimulus in-
tensities (represented by the gray scale) are converted to different spike sequences.
a) In the frequency code hypothesis (Sherrington 1906), neurons generate a differ-
ent frequency of spike trains as a response to different stimulus intensities. b) In the
temporal coincidence hypothesis (Singer and Gray 1995), spike occurrences are mod-
ulated by local field oscillation (gamma). Tighter coincidence of spikes recorded from
different neurons represent higher stimulus intensity. c) In the delay coding hypoth-
esis (Hopfield 1995), the input current is converted to spike delay. Neuron 1, which
was stimulated stronger, reached the threshold earlier and initiated a spike sooner
than neurons stimulated less. Different delays of the spikes (d1-d3) represent relative
intensities of the different stimulus.

196 3 Neural Systems

the hypothesis that the brain represents complex information by means of
synchronized spiking activity across several neurons (Singer 1990). This hy-
pothesis has been supported by measurements in the visual and temporal
cortex of monkeys (Abeles 1991; Singer and Gray 1995). A recently suggested
method (figure 3.25, c)) consists in encoding the strength of the stimulation in
the firing delay of the neuron with respect to a baseline signal (for example,
the so-called oscillatory theta rhythm). The underlying hypothesis is that
neurons that receive stronger stimulation fire earlier than neurons receiving
weaker stimulation. This hypothesis has been supported by measurements
in the olfactory neurons (Hopfield 1995).

3.6 Synaptic Plasticity

As we stated in the introduction to this chapter, adaptation is a major feature
of nervous systems. It allows organisms to modify and develop behaviors in
order to maintain or improve their survival probability in partly unknown
and dynamic environments.

Artificial neural networks can adapt according to several algorithms that
can be classified in two major families. Unsupervised learning includes algo-UNSUPERVISED

LEARNING rithms that allow the network to extract statistically significant information
from the distribution of input patterns or to memorize and reconstruct those
input patterns. Supervised learning includes algorithms that guide the train-SUPERVISED LEARNING

ing process of the network by taking into account the desired answer that
the network should provide for a given set of training patterns. Supervised
learning also encompasses reinforcement learning algorithms that modify
the network according to positive or negative feedback received from the
environment at irregular intervals.

In the following sections we will describe the major features of unsuper-
vised and supervised learning. We will also describe ways to combine learn-
ing and evolution. Before delving into the details of the algorithms, it is
worth noting some common features of synaptic plasticity.

Most learning algorithms are based on, or inspired by, Hebb’s rule of syn-HEBB’S RULE

aptic plasticity described earlier, which, in the case of neurons without tem-
poral dynamics, can be formalized as

Δwij = ηyixj(3.7)

where Δwij is the amount of change of the connection strength wij , η is the
learning rate, and yi, xj are the activation values of postsynaptic and presy-

3.6 Synaptic Plasticity 197

naptic units, respectively. Therefore, synaptic modification is based on the
correlation of the unit activations.

In the case of spiking neurons, the Hebb rule becomes a function of the
temporal difference between the reception of a spike from the presynaptic
neuron and the emission of a spike by the postsynaptic neuron. Therefore,
Hebbian learning in spiking neural networks is also known as spike time-SPIKE

TIME-DEPENDENT

PLASTICITY (STDP)
dependent plasticity, or STDP for short. An example of the STDP rule (Gerstner
and Kistler 2002) is given by

Δwij =
{

A+es/τ1 : s ≤ 0
A−e−s/τ2 : s ≥ 0

where s = (tpre−tpost) is the time difference between arrival of the presynap-
tic spike and emission of the postsynaptic spike, and A+, A−, τ1, τ2 are con-
stants tuned to approximate the neurophysiological data (Bi and Poo 2001;
Zhang et al. 1998) shown in figure 3.8. It has been shown that the integral
of the area corresponding to depression of the synapse should be larger than
that corresponding to potentiation in order to obtain stable learning (Song
and Abbott 2000).

In this book we won’t explore in further detail STDP rules, but we refer
interested readers to the excellent review article by Turrigiano and Nelson
(2004) that lists a number of mechanisms that ensure dynamic stability in
networks of biological and artificial spiking neurons with STDP. In the rest of
this chapter, we will focus on variations of correlation-based Hebbian learn-
ing rules, which up to now have had most success in engineering applica-
tions.

All learning algorithms display some common features. Initial synaptic
weights are often randomly assigned within a small range (e.g., [−0.1, 0.1]).
Learning consists in the repeated presentation of a set of input patterns, also
known as training patterns. In unsupervised learning, training patterns are
the input vectors presented to the network. In supervised learning, training
patterns are pairs of vectors that represent the input and the desired out-
put of the network for that input. The modification of the synaptic weights
Δwij is computed after each presentation of a training pattern and corre-
sponding network activation (online learning) or after the presentation of all
training patterns and network activations (offline learning). The new synap-
tic weights are computed by adding the modification Δwij to the current
synaptic weight:

wt+1
ij = wt

ij + Δwt
ij

198 3 Neural Systems

Learning rules therefore are concerned only with the computation of Δwij .
Learning in neural networks consists in the addition of new knowledge Δwij

to preexisting knowledge wij . In order to reduce interference between pre-
vious and new knowledge, learning takes place incrementally by presenting
the same training patterns several times and adding to the old weights only
a small fraction of the modification computed by the learning rule. The mag-
nitude of this fraction is a value 0 ≥ η ≤ 1 that controls the learning rate of
the network. The learning rate η is used to ensure the stability of the learning
process.

In most learning algorithms, there is a distinction between training and
testing phase. The training phase is stopped when a certain learning crite-TRAINING PHASE

rion is reached. The criterion could be a minimum error between the desired
response and the response of the network, or the stabilization of the synaptic
weights. The testing phase consists in the presentation of new input pat-TESTING PHASE

terns and readout of the network output. With the exception of a few models
that do not require a distinction between training and testing, this distinction
is problematic when the environment where the network operates changes.
In those situations it is not always clear when to resume learning and how
to protect the knowledge already developed by the network from potential
disruptions due to learning of new patterns.

3.7 Unsupervised Learning

In unsupervised learning the neural network learns some properties of the
input pattern distribution without any feedback from the environment or
from the user. Learning typically consists in the extraction of information,
such as the detection of common or distinctive features that allow the net-
work to classify the input patterns. From a mathematical perspective, unsu-
pervised learning performs statistical operations such as computation of cor-
relation indices, estimation of parameters of the probability density function
of the input patterns, and principal component analysis, to mention a few. In
order to carry out those operations, the input pattern distribution must be re-
dundant so as to allow the detection of structure (Barlow 1989). The models
described in this section derive from studies of the self-organization of the
visual or auditory cortex whose plasticity seems to be mainly driven by the
input stimulation.

3.7 Unsupervised Learning 199

Figure 3.26 Extracting the first principal component of the input pattern distribu-
tion. The network on the left was trained with the Oja learning rule for 1000 cycles on
input patterns randomly drawn from a uniform distribution of 40 patterns centered
on 0. The learning rate was set to 0.1. The graph on the right shows the input pat-
terns (dots) and the development of the synaptic weight vector during learning. The
direction and length of the final weight vector is indicated by the arrow. It is located
along the direction of maximum variance of the input pattern distribution.

3.7.1 Feature Detection

Let us consider, for example, a feedforward network with a single output
unit whose activation is a linear function of the weighted input (figure 3.26,
left) and whose synaptic weights are modified by the Hebb learning rule
(equation (3.7)). A learning cycle consists in presenting an input pattern,
computing the activation of the output unit, computing the modification of
the synaptic weights, and adding the obtained modification to the initial
weight values. This cycle is repeated for each pattern and all patterns are
presented in random order several times.

Synaptic weights corresponding to the input units that have been active
more frequently will become stronger than other synaptic weights. Conse-
quently (see also figure 3.12), the output neuron will become more active
when presented with input patterns that include the most frequent, or fa-
miliar, components. Since those components generate a stronger activation
of the output unit, the Hebb rule will further reinforce the corresponding
weights, causing an even stronger output and weight modification when
those components are presented again.

A simple way to prevent this self-amplification process, which would re-
sult in synaptic weights and outputs of potentially unbounded value, con-
sists in normalizing the synaptic weights after every learning update. In do-
ing so, synaptic weights tend to grow, but are constrained to remain within
bounds that depend on the sum of all synaptic values. This creates a sort

200 3 Neural Systems

of competition mechanism that results in the convergence and stabilization
of the weight vector along the direction of maximal variance of the input
distribution.

It can be mathematically shown that the synaptic weight vector moves
toward the eigenvector corresponding to the largest eigenvalue of the cor-
relation matrix of the input patterns, also known as the principal component
of the input distribution (Diamantaras and Kung 1996). As a consequence,
the output unit will tend to display stronger activation for the input patterns
that lay along the direction of maximum variance of the input distribution
(figure 3.26, right).

The normalization process suggested above is not biologically plausible
because the update of a synaptic weight requires the global knowledge of
all other weights in the network. Oja (1982) suggested a small modificationOJA RULE

to the Hebb learning rule where the synaptic weight vector tends to norm
1 without need of global normalization after every synaptic update. This is
achieved by taking into account the current strength of the synaptic weight
being updated:

Δwj = ηy(xj − wjy)

where the term wjy acts as a forgetting factor that limits the growth of the
synapse as a function of its current value. A functionally similar mechanism
seems to operate also in biological synapses (Stent 1973).

If the input patterns are drawn from a distribution centered around 0, the
synaptic weight vector will align along the direction of maximal variance of
the input distribution (figure 3.26, right) and correspond to the first principal
component of the input pattern distribution. Recalling what we said earlier
about the properties of an artificial neuron, such a simple network could dis-
criminate between a familiar input pattern (one that belongs to the training
distribution and thus forms a very small angle with the weight vector) and a
new pattern (that belongs to a different distribution and may thus lie farther
away from the weight vector).

Later, Oja (1989) suggested an extension of his learning rule that can be
applied to N output units (figure 3.27, a) lying on the same layer:

Δwij = ηyi

(
xj −

N∑
k=1

wkjyk

)

where i, k are indices that both point to the output units. In this rule, the
forgetting factor

∑N
k=1 wkjyk takes into account all weights of the network,

3.7 Unsupervised Learning 201

c

b

a

Figure 3.27 Extracting the first two principal components of the input pattern distri-
bution with two output units. a, Neural network. b, Development of synaptic weight
vectors of the network shown on top when trained with the Oja rule for N output
units. c, Development of synaptic weight vectors of the network shown on top when
trained with the Sanger rule.

thus making the rule less local. The synaptic weight vectors of this model
tend to converge to the subspace spanned by the eigenvectors corresponding
to the first N eigenvalues of the correlation matrix of the input distribution
(figure 3.27, b).

Sanger (1989) proposed a further modification to the learning rule so thatSANGER RULE

the synaptic vectors tend precisely toward the eigenvectors of the first N
eigenvalues, thus extracting the first N principal components of the input
distribution (figure 3.27, c):

Δwij = ηyi

(
xj −

i∑
k=1

wkjyk

)

202 3 Neural Systems

This is achieved by incorporating into the forgetting factor
∑i

k=1 wkjyk only
the weights of the output units k up to the output unit i being currently con-
sidered. In this model, the weight vector of the first output unit develops
first and aligns along the direction of maximal variance (first principal com-
ponent), then the weight vector of the second unit aligns along the direction
of maximal residual variance (second principal component), and so forth for
any remaining output unit.

However, Sanger’s rule introduces small and increasing distortions for
further output units because, although all synaptic weights are always up-
dated in parallel and continuously, the weights of further output units can
develop properly only after the weights of previous output units have stabi-
lized. Therefore, the model is efficient only when used with few output units
with very large input dimensionality.

An interesting property of principal component extraction with a neural
network is that input patterns can be reconstructed optimally with respect to
the mean square error between the original and reconstructed input patterns.
For example, once an Oja’s or Sanger’s network has been trained on a series
of images, the pixels of each image can be reconstructed by summing the
products between the final weight values and the output unit values for that
particular image:

xμ
j =

N∑
i

wijy
μ
i

where xμ
j is the value of the pixel to be reconstructed and yμ

i is the value of
output unit i for image μ. Consequently, one may save quite a lot of memory
by storing only the final synaptic weights and the activations of the output
units for each image instead of all pixels of all images. The fidelity of the re-
constructed image is proportional to the number of output units used. When
only few output units are used, the reconstructed images will resemble the
average of the images.

An amusing exercise is to train Sanger’s network on photographs of faces
of friends, making sure that each face occupies approximately the same area
of the image. It is also advised to use the logarithm of the pixel intensities in
order to allow the network to work on contrast rather than on light intensity
and to subtract from each value the average value of all pixels of all images in
order to center the distribution around zero. It is then interesting to observe
how many output units are necessary for recognition of the friends in the
reconstructed images.

3.7 Unsupervised Learning 203

Figure 3.28 Receptive fields of the first 15 neurons of a Sanger network trained on
natural images. Each box plots the strength and sign (negative = white, positive =
black) of all synaptic weights to a corresponding neuron arranged as a square. The
neuron will fire maximally when presented with an input pattern that is similar to its
receptive field. Image courtesy of P. Hancock.

The family of unsupervised neural networks described above can be used
as a preprocessing layer to reduce the dimensionality of the input patterns
and provide distinct output activations to be used as input to other types of
neural networks, such as the supervised models that we will describe in the
next section.

Considering that these neural networks use biologically plausible learn-
ing rules and architectures, one may wonder whether mammalian brains
perform something similar to principal component analysis in order to ef-
ficiently store information necessary for recognition and action. Hancock
and colleagues (Baddeley and Hancock 1991; Hancock et al. 1992) trained a
Sanger network on a set of natural images drawn from a collection of typical
visual scenes (nature, animals, houses, etc.) and showed that the neurons
developed receptive fields qualitatively similar to those found in the mam-
malian visual cortex (figure 3.28). Neurons corresponding to the first few
principal components became sensitive to center-surround patterns and to
oriented edges, which in biological visual systems are found in the lateral
geniculate nucleus and in the early layers of the visual cortex (Hubel and

204 3 Neural Systems

Wiesel 1963). Neurons corresponding to less important principal compo-
nents developed receptive fields that resembled those of complex cells found
in later stages of the visual cortex.

However, this explanation of cortical computation has been criticized by
Field (1994), who argues that visual neurons employ a sparse and distributed
activation code where each neuron has approximately the same probability
of becoming active for all visual inputs, but very low probability of becoming
active for a specific visual input. Within this perspective, input redundancy
is not reduced (as implicitly claimed by supporters of the principal compo-
nent principle), but transformed into redundancy of output unit activations.

Whatever the actual case is, it should be noted that principal component
networks do not develop neurons sensitive to different spatial frequencies,
while there is psychophysical evidence that mammalian visual brains do ex-
tract information about spatial frequency at several stages of sensory infor-
mation processing (Watt 1991).

Another limitation is that linear methods for extraction of principal com-
ponents cannot separate signal sources when the input activations are gen-
erated by a combination of independent signals. The cocktail party case is
an example of this situation where acoustic signals arriving to the ears are
a combination of independent sources, such as voices of different persons
and music. Independent component analysis has been recently developed
for dealing with those situations (Hyvärinen et al. 2001).

3.7.2 Multilayered Feature Detection

The models described in the previous paragraphs are characterized by a sin-
gle layer of neurons that process information from sensory units. However,
in biological nervous systems information is processed through a series of
neural layers and cortical modules. For example, in the visual system sen-
sory stimulation is successively relayed from the retina to the lateral genic-
ulate nucleus and superior colliculus; and from there to cortical area V1 and
further on to higher cortical areas. Neurophysiological evidence suggests
that simple static properties of the visual world, such as contrast and edge
orientation, are detected in the early stages of neural processing, whereas
more complex properties, such as composite or 3D shapes, are detected in
later stages. Other aspects of the visual world, such as color and movement,
are analyzed in parallel to geometric features through independent neural
pathways (DeYoe and van Essen 1988). Neurons responding to specific fea-
tures, such as the orientation of inclined edges, are already found in the brain

3.7 Unsupervised Learning 205

A

B

C

D

Input from Lateral Geniculate Nucleus

Figure 3.29 Simplified architecture of the multilayer model by Linsker. Each layer
is arranged as a 2D matrix of neurons whose connection probability with neurons of
the previous layer is described by a 2D Gaussian distribution.

at birth, suggesting that they may develop in the womb (another possibility
is that they are genetically specified, but this is unlikely for complex mam-
malian brains because that implies that the genetic code specifies the exact
strength and location of individual synapses of all neurons involved in that
computation).

Linsker (1986, 1988) showed that restricted connectivity and Hebbian plas-
ticity are sufficient to explain the formation of those receptive fields even in
the presence of random input. The neural network is composed of four lay-
ers of neurons that receive connections only from a small set of neighboring
neurons from the previous layer (figure 3.29). The output of all neurons is
characterized by the linear activation function

yi = k1

∑
j

wijxj

and the learning rule is given by

Δwij = k2yixj + k3xj + k4yi + k5

where k1−5 are constants and only k2 > 0. Synaptic weights are clipped to
[w+

ij , w
−
ij] in order to avoid infinite growth. Linsker analyzed the behavior

206 3 Neural Systems

of this network when the input is completely random, simulating the de-
velopmental conditions that may occur when the baby is still in the womb.
Initially, only the synapses in the first layer are adapted until they reach sta-
bility; then the synapses of the layer above are adapted until stability, and so
forth until the last layer of synapses is stabilized.

After training, neurons become sensitive to features of increasing complex-
ity as we proceed from lower to higher layers. Neurons in layer B develop
excitatory weights and thus their activation reflects the average stimulus in-
tensity in their receptive fields. Neurons in layer C respond maximally to a
strong positive signal surrounded by negative signals (similar to on-off bio-
logical cells) and to a strong negative signal surrounded by positive signals
(off-on cells). Neurons in layer D respond maximally when the network is
presented with bars at specific inclinations.

Although the similarity between these response profiles and those found
in the mammalian visual cortex (Hubel and Wiesel 1977) is striking, the
model is not intended to closely emulate the neurophysiology of visual cor-
tical areas; rather, it is intended to show that simple architectural constraints
coupled with Hebbian learning are sufficient to explain major organizational
structures of the cortex. Linsker also showed that, from a mathematical per-
spective, the development of the synaptic weights in his model correspond
to the maximization of the variance of the outputs of the neurons.

3.7.3 Self-Organizing Maps

In addition to a layered architecture that captures increasingly more com-
plex properties of the sensory stimulation, the mammalian cortex displays
two types of topological organization. The first type, which has already been
mentioned in the first section of this chapter, is such that neighboring neu-
rons reflect the activity of neighboring neurons in earlier layers and sensory
receptors. This type of topological organization can be explained by the re-
stricted connectivity between layers as in Linsker’s model. The second type
of topological organization is such that neighboring neurons respond to sim-
ilar properties of the stimulation, such as bar orientation or acoustic tone.
This type of topological organization can be explained by the presence of
lateral connections between neurons on the same layer.

A cortical neuron establishes three types of connections to neighboring
neurons: (a) connections within a radius of approximately 50 to 100 μm are
excitatory; (b) connections within an outer ring that extends up to 200 to 500
μm are inhibitory; (c) connections that extend even farther away up to a few

3.7 Unsupervised Learning 207

A

B

C

Figure 3.30 Lateral connection strength as a function of distance from projecting
neuron. A, Mexican hat function; B, neural architecture: white circles = excitatory
connections, black circles = inhibitory connections; C, stepwise approximation of con-
nection strengths.

centimeters are weakly excitatory. When observed along one dimension, this
configuration takes the form of a Mexican hat that can be approximated by
a stepwise distribution, if we ignore the weak long-range connections (fig-
ure 3.30).

Kohonen (1982) showed that a layer of neurons characterized by this pat-
tern of lateral connections will display “bubbles” of activity organized a-
round the unit with the strongest input signal. In other words, the units in
the neighborhood of the unit with the initially strongest activation will grad-
ually become more active and those farther away less active. Provided that
the output of the units is limited to a maximum value, the final stable state

208 3 Neural Systems

after some iterations of activity computation will consist of a region of units
with maximum activation while all the other units will be inactive. The cen-
ter of the bubble corresponds to the unit with the initial strongest activation
while the size of the bubble (neighborhood) depends on the relative strength
of excitatory and inhibitory connections.

Following Kohonen (1989), let’s now see how this property coupled with
Hebbian learning can develop topological maps of the sensory space, like
those found in the cortex of mammals. This computational model is also
known as self-organizing maps. Consider a set of neurons that occupy a spe-
cific position in a geometric arrangement (for example, in a line) and are all
connected to a set of input units. Let’s start by finding the neuron i∗ with the
highest activation for a given input pattern as the neuron with the smallest
square difference between its input and weight vectors (see explanation of
neuron operation in section 3.3),

i∗ = i

∣∣∣∣∣∣min
i

⎛
⎝∑

j

(xj − wij)2

⎞
⎠ ,(3.8)

and let’s call i∗ the winning neuron. Instead of using lateral connections and
iteratively computing the output of all neurons until stability, let’s capital-
ize on Kohonen’s observation that such a network will generate a bubble of
activity in the neighborhood of winning neuron i∗ and assume that neurons
have a binary output

yi = Φ(Ai) =
{

1 : within neighborhood of i∗

0 : otherwise.
(3.9)

In order to limit the unbounded growth of synaptic weights mentioned in
section 3.7.1, let’s modify the Hebb rule by adding a forgetting factor so that

Δwij = ηyixj − Ψ(yi)wij(3.10)

where

Ψ(yi) =
{

ψ : yi = 1
0 : yi = 0

(3.11)

where ψ is a small constant larger than 0. As for Oja’s rule, the forgetting
factor limits the uncontrolled growth of synaptic weights and ensures that
the weight vectors have length 1. By combining formulas (3.8) through (3.11),
you will notice that now the synaptic modification is 0 when the postsynaptic
neuron is not active:

Δwij =
{

ηxj − ψwij : yi = 1
0 : yi = 0

3.7 Unsupervised Learning 209

which means that only the synaptic weights of the neurons in the neighbor-
hood of the winning unit are modified. We can simplify even further the
learning rule by assuming that ψ = η and rewrite it as

Δwij =
{

η(xj − wij) : yi = 1
0 : yi = 0.

(3.12)

This learning rule is also known as standard competitive learning to indicate theSTANDARD

COMPETITIVE

LEARNING
application of the Hebb rule to a set of neurons that compete for activation
by means of lateral connections. If we write the final weight strengths in
vectorial notation,

�wt+1
i =

{
�wt

i + η(�x − �wt
i) : yi = 1

�wt
i : yi = 0,

we notice that competitive learning consists in adding to the weights of a
winning unit (and of its active neighbors) the difference between its input
vector and its weight vector. In other words, competitive learning moves
the weight vector toward the input vector that caused the unit to have the
highest activation.

The first consequence of this mechanism is that that unit will be even more
active if the same, or a similar, input pattern will be presented to the network.
The second consequence is that neighboring units will tend to become active
for similar input vectors because the neighborhood relation will cause them
to modify their weights in the same direction of the winning unit.

The choice of the neighborhood Λ(i, i∗), that is, the radius r of the area
surrounding the winning unit i∗ where other units are active, is a major factor
in the formation of good topological maps. It is convenient to formalize the
neighborhood as

Λ(i, i∗) =
{

1 : ‖ �ci − �ci∗ ‖≤ r

0 : otherwise

where �ci is the vector with the spatial coordinates of neuron i in the layer and
‖ �ci − �ci∗ ‖ is the Euclidean distance between that unit and the winning unit
i∗. For example, if units are organized in a one-dimensional layer with r = 1,
the neighborhood area includes the winning unit and the two adjacent units;
instead, if the units are organized in a two-dimensional layer with r = 1,
the neighborhood area includes the winning unit and the eight surrounding
units (units can be organized in higher dimensional space, but for the sake
of representation most models use up to three dimensions). We can now

210 3 Neural Systems

rewrite the standard competitive learning rule of equation (3.12) by taking
into account the neighborhood function as

Δwij = ηΛ(i, i∗)(xj − wij).

There is no theoretical criterion for setting the magnitude of r in the neigh-
borhood function. However, empirical observations show that the develop-
ment of self-organizing maps proceeds through two stages. During the first
“ordering stage,” the weights move so as to cover approximately the areaORDERING STAGE

spanned by the input patterns. During the second “convergence stage,” theCONVERGENCE STAGE

weights undergo small modifications to refine their final position. The con-
vergence stage requires many more training cycles than the ordering stage,
but does not introduce major modifications in the topological map. Conse-
quently, Kohonen (1989) suggested varying the learning rate η and the size r

of the neighborhood function only during the ordering stage. A typical strat-
egy consists of starting with η = 1 and decreasing it exponentially down to
approximately 0.01; similarly, the size r initially is such to include all units
in the network and exponentially decrease down to 1 or 0 (in this latter case
only the weights of the winning unit are modified). Both the final learning
rate and neighborhood size are kept constant during the convergence stage.

Figure 3.31 shows the ordering stage of a self-organizing map composed
of two input units and 20 output units trained on a C-shape distribution of
input patterns. The high learning rate and large neighborhood size during
the early iterations allow all the units in the network to rapidly align their
weights toward the areas covered by input patterns. As the learning rate
and neighborhood size are reduced, the units arrange themselves so as to
reflect the topology and density of the patterns more precisely. If the neigh-
borhood size is not sufficiently large at the beginning of training, there could
be some units whose weights are so far from the input patterns that they
never win the competition or are not in the neighborhood of other winning
units. Consequently, such units would never have a chance to modify their
weights and would be equivalent to dead neurons.

Kohonen’s network develops weights that optimally represent the input
distribution in that they minimize the distance between input patterns and
final weights 1/M

∑M
μ=1 ‖ �xμ − �wi∗ ‖ where M is the number of input pat-

terns used for training and �wi∗ is the weight vector of the winning unit for
pattern �xμ. Therefore, these neural networks are very useful in data mining
applications for representing complex databases with very high dimension-
ality into a smaller space and visualizing the relationships among individual
patterns. Since it is not possible to tell in advance to what features the units

3.7 Unsupervised Learning 211

Figure 3.31 Development of a self-organizing map consisting of a one-dimensional
layer of 20 neurons with two input units. The first panel on top left shows the distri-
bution of training patterns. The second panel on top right shows the initial random
distribution of the neurons on the input space. Each dot represents the synaptic vec-
tor of the corresponding neuron in the input space; the lines connect adjacent units
in the one-dimensional neural layer. The other panels show the movement of the
neurons in the input space during learning.

will become sensitive and which data they will represent, it is necessary to
proceed to a manual labeling of the neurons after learning.

A very useful property of Kohonen’s network is that it can also be trained
with incomplete data where other supervised methods that we will describe
in the next section typically fail (Samad and Harp 1989). For example, think
of an insurance company that wishes to categorize its customers according
to their personal data so as to detect potential high-risk customers. Each cus-

212 3 Neural Systems

tomer could be associated to a vector that encodes her characteristics. Since
it is impossible to obtain the necessary information for all customers, some
of the corresponding vectors will have empty components. In that case, the
computation of the winning unit during training is obtained by comparing
weight and input vectors only for the components that are known:

i∗ = i

∣∣∣∣∣∣min
i

⎛
⎝∑

j∈Pk

(xj − wij)2

⎞
⎠

where Pk represents the set of input units for which the values are known.
Similarly, the modification of synaptic weights occurs only for weights cor-
responding to known input values:

Δwij =
{

ηΛ(i, i∗)(xj − wij) : j ∈ Pk

0 : otherwise.

In addition to that, the missing values can be inferred by presenting the input
vector to the trained network, computing the winning unit, and taking the
strengths of the corresponding weight components as approximate values of
the input components.

3.7.4 Adaptive Resonance Theory

All models described so far, as well as most neural models, cannot develop a
stable representation if the input distribution changes over time. Therefore,
the response of the network to the same pattern will change over time as the
input distribution changes. One way of preventing this problem consists in
stopping the learning phase. The other way is to store old input patterns and
continuously present them to the network along with new input patterns
during learning. The former strategy does not allow the network to adapt
to new situations and the latter strategy is computationally demanding and
would require very large memory storage. For most applications that use
a database, this problem is not very important because the input patterns
are known and do not change. However, for applications in embedded sys-
tems and autonomous robotics, the problem is relevant because the input
distribution may not be entirely predefined in advance. Furthermore, bio-
logical brains are capable of adapting to new situations without forgetting
previously acquired knowledge and skills.

Grossberg (1980) named this limitation of neural models the plasticity-sta-PLASTICITY-STABILITY

DILEMMA bility dilemma: Either the neural network remains adaptive with the risk of

3.7 Unsupervised Learning 213

input/comparison layer cj

output/recognition layer ri

V

C1

C2

wij tji

Figure 3.32 Schematic representation of ART-1, a neural network capable of devel-
oping stable representations of changing input distributions.

losing stability, or it remains stable but is no longer adaptive. To address this
issue, he developed adaptive resonance theory (ART). ART includes a set ofADAPTIVE RESONANCE

THEORY (ART) architectural and learning principles that a self-organizing network should
have in order to remain both plastic and stable. On the basis of this theory,
he suggested with Carpenter a number of neural models of increasing com-
plexity and computational power that can develop stable representations of
continuously changing input distributions. In this chapter we will briefly de-
scribe the simplest model, known as ART-1 (Carpenter and Grossberg 1987),ART-1

which can operate only on binary input patterns. We refer interested readers
to (Grossberg 1987) for a more detailed introduction to ART and implemen-
tation of the neural model.

ART-1 (figure 3.32) is composed of two layers of neurons with feedfor-
ward wij and feedback tji synaptic connections. The output neurons include
a pattern of lateral connections that introduce competitive dynamics. The
competition results in the activation of only one winning unit for a specific
input pattern. These types of competitive systems are also known as winner-
take-all models. Capitalizing on what we explained earlier for self-organizing
maps (section 3.7.3), instead of modeling the lateral connections and comput-
ing the dynamics, one can directly find the winning neuron by comparing
weight and input vectors.

ART-1 also includes a set of neurons that modulate the activity of the net-
work and, for the sake of simplicity, can be implemented as if-then-else

214 3 Neural Systems

rules. The basic principle of the model is that input patterns are moved back
and forth between the two layers (resonance) until they are either recognized
as familiar or trigger a modification of the synaptic weights. When no neu-
ron responds to an input pattern, the model creates a new output neuron
and a corresponding set of synaptic weights. ART networks do not require a
distinction between training and testing phase.

The operation of the network can be summarized in five phases. In the
initialization phase, the user allocates a maximum number M of output unitsINITIALIZATION PHASE

(the number of input units N is given by the size of the input patterns). The
feedback weights tji are all set to 1 and feedforward weights wij are set all
equal and proportional to the number of input units:

wij =
L

L − 1 + N

where L > 1 is a constant. Finally, the values of the control units C1 and
C2 are set to 1 and the value of the so-called vigilance unit V is set between
0 and 1, with high vigilance values corresponding to high specialization of
output neurons and consequently to the use of several output neurons for
fine representation of the input patterns.

During the recognition phase, an input pattern �xμ is presented to the net-RECOGNITION PHASE

work and the winning unit i∗ is computed (for the first pattern, all output
units will have the same values and it is suggested to choose the neuron
with the smallest index i).

The network enters now into the comparison phase (the control unit C1 isCOMPARISON PHASE

set to 0 to disable acceptance of further input patterns) during which the
feedback weights of the winning unit are “compared” to the input pattern:

cj = (tji∗yi∗)x
μ
j

The ratio between the length of the resulting comparison vector �c and the
length of the input vector is measured against the vigilance value and if

‖ �c ‖
‖ �xμ ‖ ≥ V

the winning neuron i∗ is confirmed and the network proceeds to the modi-
fication of the synaptic weights; otherwise, the network enters the research
phase.

The research phase consists in finding another neuron more suitable for rep-RESEARCH PHASE

resenting the current input vector. The control unit C2 is set to 0 to disable
the current winning neuron and reset all other neurons to 0. At that point

3.7 Unsupervised Learning 215

the network goes again through the recognition and comparison phase until
a neuron is found that passes the vigilance check. If no neuron is found, it is
possible to add a further neuron, reduce the vigilance value, or discard the
input vector.

The adaptation phase occurs when a suitable winning neuron is foundADAPTATION PHASE

and consists in the modification of the feedforward and feedback synaptic
weights of the winning neuron so as to reflect the comparison vector and the
input vector respectively:

wt+1
i∗j =

Lcj

L − 1 + N+ ‖ �c ‖ , tt+1
ji∗ = ttji∗x

μ
j

The feedback weights are also known as template weights because they ef-
fectively store a representation of the input vectors to which output neurons
respond. From the equation above, it is easy to see that once a feedback
weight becomes 0, it can never reverse to 1, which ensures the stability of the
network.

ART-1 has a number of features that resemble the way in which humans
learn and recognize patterns. Familiar patterns are recognized faster (i.e.,
with fewer resonance cycles) than new patterns. Recognition is not a sim-
ple pattern match, but context-dependent because the comparison vector is
based on the length of the vectors. In other words, a pattern with a single 1 at
a certain position among several 0s is recognized faster than a pattern with
the same 1 among a series of 1s and 0s. The vigilance value is equivalent
to an attentional mechanism that could be modulated by the output of other
neural modules.

Neural competition is a very powerful principle that can explain not only
differentiation and specialization of individual neurons, formation of sen-
sory maps, and categorization of input patterns but may also explain the
formation, maintenance, and update of complex concepts mediated by inter-
connected and competing populations of cortical neurons as advocated by
Edelman (1988) in his theory of neural Darwinism.

3.7.5 Memory Formation

The models described so far are capable of developing neurons that respond
to representative features of the input distribution. Hopfield (1982) showed
that when the Hebb rule is applied to a network of interconnected neurons,
the resulting neural network can memorize patterns and reconstruct them
from corrupted or incomplete versions. A Hopfield network (figure 3.33)HOPFIELD NETWORK

216 3 Neural Systems

Figure 3.33 Schematic architecture of a Hopfield network.

is composed of N fully interconnected, bipolar units (equation (3.2)) where
each unit functions both as input and output. The number N of units de-
pends on the length of the patterns to be memorized. By definition, the
weights are symmetric wij = wji, the self-connections wii and the unit thresh-
olds θi are set to 0, and these conditions cannot change during learning. Be-
fore learning, all the connections are set to 0. The memorization of a bipolar
pattern �pμ consists in applying the pattern to the units of the network xi = pμ

i

and computing the weight modification as

Δwμ
ij = xμ

i xμ
j i
= j.

Since the memorization of a pattern requires only one modification of the
synaptic weights, the final weights of the network for M patterns are given
by

wij =

{ ∑M
μ=1 xμ

i xμ
j : i
= j

0 : i = j.

A Hopfield network recovers the memory of a pattern on the basis of its con-
tent as in biological systems, not on the basis of its memory address as in
conventional computer memory. Consequently, Hopfield networks are ca-
pable of recovering an incomplete or corrupted version �pμ∗ of a memorized
pattern. The recovery consists in presenting the incomplete or corrupted pat-
tern to the units xi = �pμ∗

i and iteratively updating the output of the units us-
ing the bipolar activation function described in equation (3.2) until all units
remain in the same state. This final state represents the recovered pattern.
The unit update can be synchronous, in which case all units are updated in
parallel at each iteration, or asynchronous, in which case a randomly selected

3.7 Unsupervised Learning 217

unit is updated at each time. The latter case may require more iterations for
the network to stabilize, but is more biologically plausible and is more con-
venient for hardware implementation because it does not require a global
clock.

The memory capacity of a Hopfield network is the number of patterns that
the network can memorize and recover correctly. It can be shown that this
capacity depends on the number N of units. It has been formally shown
that, for randomly generated patterns, the capacity of the network is 0.138 N
(Hertz et al. 1991). In other words, a network of 100 units can memorize and
reconstruct correctly approximately 13 randomly generated patterns. If the
network is trained on more patterns, there will be interference phenomena
that will disrupt the correct recovery. The capacity is reduced if the patterns
are correlated. Although this capacity may seem relatively small, it is less
so in realistic situations. For example a Hopfield network in theory could
memorize up to 565 images with a size of 64 x 64 pixels mapped onto 64 x 64
neurons (in practice, the number of memories will be smaller if images have
some degree of correlation).

Hopfield (1982) emphasized the similarity between the behavior of his
neural network and spin glass theory, which describes the behavior of mag-SPIN GLASS THEORY

netic particles that, in the Ising model, can be in one of two states (spin di-
rections). The particles tend to change spin direction depending on the spin
directions of neighboring particles in order to assume a coherent overall state
that is characterized by lower energy. Hopfield used this analogy in order to
describe the state of the neural network by an energy value H :

H = −1
2

∑
i

∑
i�=j

wijxixj

He formally showed that both the memorization of a pattern and the recon-
struction of a corrupted pattern consists in the transition to a lower energy
state (this can be easily observed in experiments by measuring H before and
after the memorization or recovery process). Using the language of physics,
the memorization of a pattern consists in the creation of a basin of attraction
on the energy landscape and the recovery of a pattern consists in the descent
toward the bottom of the closest basin of attraction.

Hopfield networks can have various types of attractors besides those cor-TYPES OF ATTRACTORS

responding to the original patterns. For example, for every memorized pat-
tern �p there is a corresponding symmetric basin −�p. In addition, there may
be metastable attractors that correspond to a linear combination of an even
number of patterns used to train the network (Amit et al. 1985) or to none of

218 3 Neural Systems

those patterns. Metastable attractors have a higher energy level than attrac-
tors corresponding to the original patterns and occur more frequently when
the capacity of the network is exceeded.

In order to prevent stagnation in metastable attractors during the recovery
phase, it is possible to use stochastic units whose state is given by a proba-
bility function

P (xi = 1) =
1

1 + e−β(∑ j wijxj)

that takes the form of the sigmoid function described earlier (see equation
(3.3) and figure 3.11). The introduction of probabilistic units increases the du-
ration of the recovery state, but may allow the network to skip metastable at-
tractors and converge to lower energy attractors corresponding to the mem-
orized patterns.

Furthermore, the analogy with statistical mechanics is even more realistic
because the modification of spin direction is also characterized by a certain
probability when the temperature of the material is above the absolute 0.
Indeed, in the Glauber model the spin transition is given by the stochastic
equation described above where β, which controls the curvature of the func-
tion, is inversely proportional to the temperature. In other words, the higher
the temperature, the smaller the β, and consequently the flatter the function
is around 0.5, which is the point where the state change of the particles, or
neurons, is completely random. Conversely, if the temperature tends to 0, β

will tend to positive infinite and the stochastic function will approximate a
step function between 0 and 1.

It has been suggested that the recovery process can be improved if the
temperature of the units is gradually reduced along the recovery phase, a
process called simulated annealing to signal the analogy to the temperature-
lowering process used in metallurgy to ensure good quality of the final metal
cast (Kirkpatrick et al. 1983).

Hopfield’s network holds also for continuous units with tanh activation
function that can memorize patterns with real values. Despite its simplic-
ity, Hopfield’s model seems to capture architectural and learning properties
of the hippocampus, a component of the mammalian brain that is responsi-
ble for memory formation and cognitive maps of the environment (Redish
1999). The model has also been used to explain brain damage leading to
deficit of face recognition (Virasoro 1989) and to reproduce the biological
network of neurons that control swimming behavior in the mollusk Trito-
nia diomeda (Kleinfeld and Sompolinski 1989). The model has also been ex-

3.8 Supervised Learning 219

tended to include internal neurons (not directly connected to the patterns to
be memorized) in order to extend the capacity of the network and the ability
to memorize partially overlapping patterns (Ackley et al. 1985).

3.8 Supervised Learning

Supervised learning is characterized by the presence of a teacher that
provides the response required from the network for each training pattern.
Within this framework, originally proposed by Rosenblatt (1962), the synap-
tic weights are modified so as to reduce the error between the desired re-
sponse and the response given by the network.

Consider a feedforward neural network with a single layer of synaptic
weights between input and output units with linear activation function. Giv-
en a set of training patterns composed of M pairs of input vectors �xμ and
desired response vectors �tμ, we want to find a set of synaptic weights so that
the response of the network corresponds to the desired response for all M

patterns. The performance of the neural network can be described by the
error function

EW =
1
2

∑
μ

∑
i

(tμi − yμ
i)2 =

1
2

∑
μ

∑
i

⎛
⎝tμi −

∑
j

wijx
μ
j

⎞
⎠2

(3.13)

which represents the mean quadratic error between the desired response and
the response given by the network. The error function depends uniquely
on the synaptic weights and can be reduced by changing the weights in the
opposite direction to the gradient of the error function with respect to the
weights. Derivating the error function with respect to the weights gives us
the learning rule

Δwij =
∑

μ

(tμi − yμ
i)xμ

j(3.14)

which, when applied after the presentation of each training pattern μ, be-
comes

Δwij = η(ti − yi)xj(3.15)

where η is the learning rate. Learning can be performed either in batch mode
or online by updating the weights with equation (3.14) after presentation of
each pattern randomly extracted from the set of training patterns M . In both

220 3 Neural Systems

x1

x0

x0 x1 t

0

1

1

0

0

1

0

1

0

0

1

1

Figure 3.34 The XOR function has two inputs and one output. It is not linearly
separable because it is impossible to separate the two groups of patterns with a line
and thus it cannot be learned by a network with a single layer of connections. Left:
Geometric visualization of the function. Each axis represents one input. The color of
the dot represents the desired output. Right: Tabular visualization.

cases, the initial synaptic weights are initialized to small random values cen-
tered around zero and the training patterns are presented several times until
the error function is minimized. It is standard practice to assess the learning
progress by monitoring the total EW after each presentation of the complete
training set M .

This algorithm is also known as the Widrow-Hoff rule from the names of its
authors (Widrow and Hoff 1960), or most often as the delta rule to emphasizeDELTA RULE

the role of the difference δ = t − y between the desired and the produced
response. The delta rule is often written as

Δwij = ηδixj

and it can be mathematically shown that it finds a set of synaptic weights that
minimize the error function if the training patterns are linearly separable.

The delta rule is applicable only to networks with one layer of connec-
tions. Those networks can learn only linearly separable mappings. Two sets
of points are said to be linearly separable if it is possible to draw a line be-
tween them. We have seen earlier in this chapter that the weights of a neuron
effectively correspond to the line that separates the response of the neuron
in two classes (see equation (3.4)). There are cases where the patterns are not
linearly separable, such as in the XOR problem shown in figure 3.34. In order
to learn nonlinearly separable mappings it is necessary to add internal units
(hidden units) to the network. Internal units recode the input vectors into
a set of linearly separable representations so that the output units can pro-

3.8 Supervised Learning 221

duce the desired output. The output function of the internal units must be
nonlinear because linear transformations (operated by output units) of linear
transformations (operated by internal units) remain linear transformations.
In other words, multilayer networks with linear output functions can always
be reduced to a network without internal units and therefore can learn only
linearly separable mappings. A typical choice of output function for these
networks is the sigmoid function (equation (3.3)) because it is nonlinear, con-
tinuous, and differentiable. Alternatively, one may use tanh function, which
has the same properties but spans a range between -1 and +1. Neural net-
works with hidden units and nonlinear output functions in theory can per-
form any mapping between input and output, provided that it is equipped
with a suitable architecture and connection weights.

3.8.1 Backpropagation of Error

Training a network with hidden units and nonlinear output functions re-
quires two modifications to the delta rule: consideration of nonlinear behav-
ior introduced by the output function, and a method to compute the contri-
bution of hidden units to the error measured at the output units. Although
the computational potentials of multilayer networks of nonlinear units have
been known since the 1960s, it remained unclear how one could compute the
contribution of the hidden units to the error of the output units in order to
modify the synaptic weights between input and hidden units. The methodBACKPROPAGATION OF

ERROR of backpropagation of error (Rumelhart et al. 1986a,b), also known as the gen-
eralized delta rule, provided a solution that could be applied to any networksGENERALIZED DELTA

RULE with an arbitrary number of neurons and connection layers.
The core of the algorithm consists in computing the error contribution of

hidden units by transmitting the error computed at the output units back to
the hidden units through the same weighted connections used to forward
activation signals from hidden to output units (hence the name of backprop-
agation of error). Backpropagation of error performs gradient descent of the
error function EW (equation (3.13)) for networks of arbitrary numbers of lay-
ers and neurons. The algorithm is so powerful and general that is has become
one of the most used methods to solve computational and engineering prob-
lems with neural networks. It turned out later that this method had already
been discovered previously in different contexts (e.g., see Bryson and Ho
1969; D.B. Parker 1985; Werbos 1974).

Consider the multilayer network shown in figure 3.35 and the symbols
associated to its elements. The values of the input units are determined by

222 3 Neural Systems

xk

hj

yi

wi

vjk

Figure 3.35 A multilayer, feedforward neural network with sigmoid activation
functions.

the input pattern. The output of the hidden and output units is computed
using the sigmoid function described in equation (3.3). The online version of
the algorithms proceeds as follows:

1. Initialize all weights (including weights from the bias unit) to small ran-
dom values centered around 0.

2. Set the values of the input units �x to the current training pattern �s:

xμ
k = sμ

k

3. Compute the values of hidden units:

hμ
j = Φ

(∑
k

vjkxμ
k

)

where Φ() is the sigmoid activation function (equation (3.3)).

4. Compute the values of output units:

yμ
i = Φ

⎛
⎝∑

j

wijh
μ
j

⎞
⎠

3.8 Supervised Learning 223

5. Compute the delta error for each output unit. Notice that the error is
multiplied by the first derivative (denoted by a dot) of the output function
of that node because we are using a nonlinear function. (This was not
necessary in the delta rule shown in equation (3.15) because the output
function was linear.)

δμ
i = Φ̇

⎛
⎝∑

j

wijh
μ
j

⎞
⎠ (tμi − yμ

i)

The first derivative of the sigmoid function can be conveniently expressed
in terms of the output of the unit itself. In the case of the output units, for
example,

Φ̇

⎛
⎝∑

j

wijh
μ
j

⎞
⎠ = yμ

i (1 − yμ
i).

6. Compute the delta error of hidden units by propagating the delta errors
at the output backward through the connection weights. Notice that the
index in the sum of the weighted deltas is i and refers to the output units.
As before, the delta error must be multiplied by the first derivative of the
output function of the unit:

δμ
j = Φ̇

(∑
k

vjkxμ
k

)∑
i

wijδ
μ
i

7. Compute the modifications to the synaptic weights of the two layers by
multiplying the delta errors at the postsynaptic units by the output of the
presynaptic units:

Δwμ
ij = δμ

i hμ
j

Δvμ
jk = δμ

j xμ
k

8. Finally, update the weights by adding a portion η of the modifications:

wt
ij = wt−1

ij + ηΔwμ
ij

vt
jk = vt−1

jk + ηΔvμ
jk

where η is the learning rate and is usually smaller than 1.

224 3 Neural Systems

Box 3.1: Bayesian supervised learning

There is an alternative, probabilistic way of looking at supervised
neural network learning (Bishop 1995; Neal 1996; MacKay 2003). The
idea is to consider supervised learning as a process where the training
data T = {tμ} represents noisy samples from an unknown function
f(x) and is used to update one’s state of information about f . The
mathematical tool that formalizes this concept is Bayes’ theorem:

p(f |T, I) =
p(T |f, I) p(f |I)

p(T |I)

According to Bayes’ theorem the prior probability distribution function
(pdf) p(f |I) – which represents our knowledge of f taking into ac-
count all our background information I but not the training data T –
is updated through the likelihood p(T |f, I) – which takes into account
the effect of the training data – with an additional normalization factor
p(T |I) called the evidence. The result is the posterior pdf p(f |T, I), which
represents our probabilistic assessment of f when we take into account
both our prior information and the training data.

This formulation refers to an abstract representation of the space of
functions f . The correspondence with the traditional approach is es-
tablished by considering a neural network as a parameterized repre-
sentation f(w;x) of the functions, with the network weights w acting
as parameters. Then, Bayes’ theorem can be rewritten as

p(w|T, I) ∝ p(T |w, I) p(w |I)

leading to an interpretation of neural network supervised learning as
an update through the likelihood p(T |w, I) of the prior pdf of the
weights p(w |I) to obtain a posterior pdf of the weights p(w|T, I).

There are advantages and disadvantages in the probabilistic view-
point with respect to the conventional neural network approach. A first
advantage is that the probabilistic context helps to keep in mind that, in
general, many functions f could have generated the training data and
that, consequently, the data assign different degrees of plausibility to
the candidate functions rather than determine a single function. This is
reflected in the better prediction model for further samples, which, in
the probabilistic approach, permits the estimation of the uncertainty of
the prediction and lets one perform “active learning” by directing the
acquisition of new data samples to regions of the input space where the
uncertainty is larger (MacKay 2003). (cont.)

3.8 Supervised Learning 225

Box 3.1: (continued)

A second advantage of the probabilistic viewpoint is that it helps to
realize that neural networks are just a way to represent parametrically
a set of functions and that other representations are possible. In par-
ticular, one can represent directly the pdfs over the space of functions
without parameterizing the functions, as exemplified by the approach
to supervised learning based on Gaussian processes (Neal 1996).

The probabilistic viewpoint reveals also that the minimization of the
quadratic error function prescribed by the conventional neural network
approach corresponds to the maximization of the likelihood in the hy-
pothesis of uniform independent Gaussian noise in the training sam-
ples. This realization opens the way to the extension of the learning
algorithm to nonuniform and non-Gaussian noise. Moreover, it per-
mits understanding of the phenomenon of overfitting and poor gen-
eralization that plague the conventional approach, with its perplexing
reference to the prediction performance on hypothetical samples that
have not yet been observed and thus cannot possibly influence the cur-
rent learning process. The probabilistic perspective reveals that by fo-
cusing on the sole likelihood, the conventional approach takes into ac-
count only the training data, disregarding any prior information about
the different degree of plausibility of the candidate functions f , which
should instead be balanced against the goodness of fit to the data.

A related question is the choice of the structure of the neural net-
work. In the conventional approach there are no prescriptions for the
comparison of the performance of different network structures. In the
probabilistic perspective one can instead apply to this problem the prin-
ciples of Bayesian model selection (MacKay 2003; Sivia 2006; von Tous-
saint et al. 2006). The resulting formulas provide a quantitative way to
balance the goodness of fit of a model with a measure of its simplicity.

Summing up, the probabilistic viewpoint provides much insight
into supervised learning and gives a sound foundation to some prob-
lematic aspects of the conventional neural network approach. These
advantages must be balanced against two main disadvantages of the
probabilistic viewpoint. The first is the difficulty of expressing formally
the prior information in the form of a pdf. The second is the complex-
ity of the expressions of the pdfs that can be produced even for simple
learning problems and network architectures. This latter point implies
that sophisticated numerical techniques must be used in general to ex-
tract the desired information from a probabilistic formulation (MacKay
2003; Jaynes 2003; Sivia 2006).

226 3 Neural Systems

Every pair of input-output pattern in the training set is presented several
times in random order until the total sum squared error computed over all
output units i and all training pattern μ,

TSS =
1
M

M∑
μ

(
1
N

N∑
i

(tμi − yμ
i)2
)

,

reaches a small value.

3.8.2 Using Backpropagation

Provided a suitable architecture and connection weights, it can be shown
that, in principle, multilayer networks can represent any arbitrary mapping
between input units and output units. Finding the right architecture is a ma-
jor issue and there are no theoretical guiding principles for that. Using a
large neural network in the attempt to learn complex mappings is not nec-
essarily a good solution because larger networks require larger training sets
that may not be available. The need for a larger training set is easy to un-
derstand when we consider the learning process as a parameter estimation
problem. The weights are the parameters that must be estimated and the
training patterns are the sample data. It is known from statistics that the
problem is ill-defined if the size of the sample is smaller than or equal to the
number of the parameters to be estimated. In other words, a rule of thumb
is that the number of training patterns should be larger than the number of
weights in the network.

Another strategy consists in starting from a suboptimal architecture and
adapting the topology along with the modification of synaptic weights. Sev-
eral methods have been developed that automatically increase (e.g., Frean
1990; Fahlman and Lebiere 1990) or decrease (e.g., Chauvin 1989; Scalettar
and Zee 1988) the size of the network by adding and deleting neurons and
connections. Furthermore, as we will see in chapter 4, the architecture of
the network can be designed by a developmental process whose rules can be
genetically encoded and evolved, as is the case for biological brains.

Once a supervised network has satisfactorily learned to produce the cor-
rect response for the patterns in the training set, it can be used on new pat-
terns without any further modification of the synaptic weights. The gener-
alization performance of the trained network consists in the ability to pro-
duce satisfactory responses to patterns that were not included in the training
set. Within this perspective, a very small residual error on the training set

3.8 Supervised Learning 227

a b

Figure 3.36 Learning to represent the training patterns (filled disks) as a fitting prob-
lem. The fitting error is the mean square error between a data point and the nearest
point of the fitting function. a, Overfitting the training data may result in a large error
for a new data point that was not included in the training set; b, a larger residual error
on training data points may correspond to a smaller error for new data points.

after learning does not necessarily translate into a good generalization per-
formance. This can be understood by considering supervised learning as a
data-fitting problem, as shown in figure 3.36,a. When the network has more
free parameters (synaptic weights) than training data (filled disks), each data
point in the training set could be perfectly covered by the network output
(fitting curve). However, when a new data point (empty disk) is presented,
the network output will result in a relatively large error. This problem of
overfitting, or hyperspecialization, can be prevented either by choosing aOVERFITTING

more appropriate architecture, which is not a trivial issue, or by halting the
learning phase earlier.

A widely used procedure consists of subdividing the patterns for which
a desired response is known into two sets: a training set used for changing
the synaptic weights and a validation set to assess the generalization perfor-
mance of the network (figure 3.37). During learning, the total sum squared
error is separately computed for the training set and for the validation set,
but the weights are modified using only the error on the training set. Assum-
ing that the training set and the validation set are extracted from the same
data distribution, the error will initially decrease on both data sets, but at
some point it will start to increase on the validation set while it will continue
to decrease on the training set. That point represents the moment when the
network begins to overfit the data and the learning phase should be halted
to guarantee optimal generalization performance (figure 3.36, b).

Learning in supervised systems is equivalent to finding the weight values
corresponding to the minimum of the error function EW described in equa-

228 3 Neural Systems

EW

Regular performance

S

Optimal performance

Training cycles

Error on
test patterns

Error on
training patterns

Figure 3.37 Relationship between error reduction on training and validation sets
during learning. The optimal performance level is obtained if learning is halted when
the error on the validation set begins to increase (S).

E(w)

weight space

Figure 3.38 Schematic representation of the error surface for a multilayer neural
network trained on nonlinearly separable patterns. The circle represents the position
of the network on the error surface.

tion (3.13). This amounts to navigating over the error space by descending
the error gradient in search of the absolute minimum. The error space for a
single-layer network trained with the delta rule on a set of linearly separable
patterns –when visualized in two dimensions– resembles a bowl. The bottom
of this bowl can be easily reached by the learning procedure. However, in the
case of multilayer networks with nonlinear activation functions trained with
backpropagation of error on patterns that are not linearly separable, the er-

3.8 Supervised Learning 229

ror space is much more complex (figure 3.38) because it may present several
local minima and, in some cases, flat areas where the learning process could
stagnate.

A local minimum is an area of the error space where a modification of the
weights in any direction corresponds to an increment of the error, but it is not
the area with the lowest possible error. Small local minima can be skipped by
using higher learning rates, so that single weight updates move the network
over larger distances in the error space. However, if the learning rate is too
high, the network may end up in areas characterized by higher error and
miss the path to the lowest minimum. Another way of avoiding stagnation
in local minima consists in adding a momentum, or inertia, to the movementMOMENTUM

of the network in the error space. This is achieved by adding to the weight
update a fraction of the previous weight update:

Δwt
ij = ηδixj + αΔwt−1

ij

where 0 ≤ α ≤ 1 is the momentum constant. Momentum tends to reduce
the oscillations due to high learning rates and improves movement across
flat areas of the search space where there is no gradient information (i.e., the
derivative of the network output is 0).

For some problems, such as the XOR shown in figure 3.34, the error space
displays very large flat areas (Kolen and Pollack 1991) where not even the
momentum can help. That is why for the XOR problem, depending on the
initial weight values, sometimes it is not possible to find the optimal solution.
In those circumstances, Fahlman (1989) suggested adding a small constant to
the derivative of the output in the computation of the delta error:

δμ
i =

⎛
⎝k + Φ̇

⎛
⎝∑

j=0

wijh
μ
j

⎞
⎠
⎞
⎠ (tμi − yμ

i)

where the constant k (k = 0.1 in Fahlman’s experiments) generates a move-
ment of the network even when the derivative is 0. This is equivalent to the
network skidding over the flat surface until an area with some gradient is
found where the derivative is again nonzero. Several other modifications to
supervised algorithms that improve their performances are described in a
book by Reed and Marks (1999).

The neural networks described so far for supervised learning have a feed-
forward architecture. The output of these networks depends only and en-
tirely on the pattern currently presented as input. In some cases, such as in
time series analysis, it is important to detect time-dependent features in the

230 3 Neural Systems

Figure 3.39 Two types of architectures with discrete time delay. Left: Elman archi-
tecture. The memory units hold a copy (dashed lines) of the activations of hidden
units at the previous time step. Right: Jordan architecture. The memory unit com-
putes its activation by combining a copy of the output unit at the previous time step
with its own previous state weighted by a self-recurrent connection.

sequence of input patterns. One way of doing that is to expand the input
layer in order to present several patterns at the same time to the network.
One can visualize the input layer as a window looking at several successive
patterns and shifting across them one at a time. These so-called time delayTIME DELAY NEURAL

NETWORKS (TDNNS) neural networks (TDNNs) require that the user know the appropriate size of
the window necessary to extract time-dependent features.

Another strategy consists in adding recurrent connections from neurons
in the same and upper layers. These connections transmit activations with a
time delay, as described in equation (3.6). Figure 3.39 shows two types of re-
current architectures that can be trained with backpropagation of error. The
strategy consists in adding extra input units that hold a copy (memory) of
the activations of other units at the previous time step. These extra memoryMEMORY UNITS

units are connected to hidden units with feedforward connection. In the ar-
chitecture proposed by Elman (1990) (figure 3.39, left) the memory units hold
a copy of the values of hidden units at the previous time step. Since hidden
units encode their own previous states, this network can detect and repro-
duce long sequences in time. In the architecture proposed by M.I. Jordan
(1989) (figure 3.39, right), a copy of the values of output units at the previ-
ous time step is combined with the weighted activation of the memory units
themselves at the previous time step (recurrent connection).

3.8.3 Sample Applications of Backpropagation

Although the delta rule and the backpropagation of error are not biologically
plausible at the neurophysiological level, they can be used as a tool for mod-

3.8 Supervised Learning 231

eling cognitive and neural functions where emphasis is put on the constraints
and features of the transformation from input to output rather than on the
precise physiological mechanisms that may lead to those transformations.

Incidentally, the delta rule is very similar to the Rescorla-Wagner rule that
was independently developed in psychology to model behavioral choice of
animals under classic conditioning (Gluck 1991). The Rescorla-Wagner rule
describes the way in which subjects modify their preference in multichoice
tasks when provided with binary feedback (yes-no) after their choice. For ex-
ample, it was shown that a simple neural network trained with the general-
ized delta rule could develop transitive inference (after training on examples
A>B, B>C, C>D, D>E, the network can generate all remaining relationships
in the series, such as B>D) (De Lillo et al. 2001), which seems to contradict
Piaget’s hypothesis that transitive inference requires complex logical skills.

As an example of neural modeling, Zipser and Andersen (1988) used the
backpropagation algorithm to train a network with two layers of connections
to map the position of an object from retinal coordinates into head-centered
coordinates, an operation that is performed by the mammalian brain in or-
der to obtain the position in space of objects with respect to the head of the
person. In principle, this transformation requires only a linear addition of
the vector with the retinal position of the object and of the vector with the
pointing direction of the eyes in head-centered coordinates. Therefore, this
mapping could be learned by a network with a single layer of connections
trained with the delta rule. However, since the biological system employs
several layers of intermediate neurons, the authors used a multilayer neural
network trained by backpropagation of error in order to study those inter-
mediate representations.

The trained neural network displayed patterns of hidden unit activation
that closely resembled the activation of biological neurons, which helped the
authors to understand the computation carried out by individual intermedi-
ate neurons. Furthermore, the artificial neural network developed the same
patterns of activations also when a different encoding of the input and out-
put vectors was used, indicating that what matters in the formation of the
intermediate neural representations is the type of operations involved in the
coordinate transformation and not the detail of the synaptic rules and inter-
face with other neurons.

Multilayer networks trained with backpropagation of error have been
used also to model higher-level cognitive functions, such as language (Sei-
denberg and McClelland 1989), dyslexia (Plaut and Shallice 1993), semantic
representations (Farah and McClelland 1991), and several other functions

232 3 Neural Systems

Figure 3.40 Architecture of NETtalk, a backpropagation-trained network that learns
to read aloud written text (Sejnowski and Rosenberg 1987).

that interested readers can find in thematic books (e.g., Clark 1989; Church-
land and Sejnowski 1992).

Supervised learning, and in particular backpropagation of error, is often
used in engineering applications to learn input and output relations that are
too difficult to capture by other optimization techniques, to develop control
systems for plants that operate in noisy and partly unpredictable environ-
ments, and more generally in all those situations where the system must be
easily customizable for new situations. Supervised neural networks are used
in medicine, image processing, plant control, market analysis, data mining,
signal processing, and character recognition, to mention a few fields.

NETtalk (figure 3.40) is a historical example of an application where a neu-NETTALK

ral network is trained to read aloud written text in the English language (Se-
jnowski and Rosenberg 1987; Anderson and Rosenfeld 1998). The input layer

3.8 Supervised Learning 233

Figure 3.41 The principle of weight sharing. Several neurons in the network have
the same set of synaptic weights, although they receive signals from different parts of
the input layer. The synaptic modification is computed for only one neuron and the
resulting weights are cloned for all the other neurons.

of the network consists of a seven-slot window moved over the text one char-
acter at a time. The network must learn to activate the output neurons that
produce the phonetic correspondence of the characters currently present in
the central input slot. The six surrounding slots are used only to provide
contextual information on the correct pronunciation of the central character.
Each input slot is represented by 29 neurons that locally code the letters of the
English alphabet and other signs, such as comma, period, semicolon, ques-
tion mark, etc. The 26 output units instead use a distributed representation
of the phonemes in the English language and activate a sound generator. The
network also contains 80 hidden units fully connected to all input units and
to all output units.

After training on a text of 1024 words for only 50 cycles up to a 95% ac-
curacy, the network could read any other written text in understandable
language. The pronunciation could be improved by increasing the num-
ber of words in the training set. Interestingly, the network learned to read
aloud in a way similar to how children learn to speak. Initially, the network
learned to segment words in the text, then started to produce sounds similar
to the babbling phase of babies, and then gradually produced words start-
ing with shorter ones. The performance of NETtalk is inferior to that of the
best systems that are commercially available today, but the results are still
remarkable considering the little effort required to develop the network and
its relatively small computational requirements.

234 3 Neural Systems

Chemical

vapor

Chemical

sensor array

Neural Network

Different sensor types

None

Acetone

Correction Fluid

Contact Cement

Glass Cleaner

Isopropanol

Lighter Fluid

Rubber Cement

Vinegar

Identified Chemical

Figure 3.42 Odor discrimination with a neural network. An odorant stimulates an
array of chemical detectors whose activations are fed to the input of the neural net-
work trained to classify them (Keller et al. 1994).

Neural networks are also employed in optical character recognition sys-
tems where the diversity of human writing and the distortion of imagesOPTICAL CHARACTER

RECOGNITION (OCR) demand adaptation and generalization. Here we describe an academic im-
plementation because the commercial versions that use neural networks are
not disclosed. Le Cun et al. (1990) used a network with four layers of neu-
rons to recognize handwritten postal code numbers. The network receives
its input from a preprocessing system that finds the sequence of numbers
on the envelope, corrects for size and inclination, and projects each number
onto a 16 x 16 pixel matrix. The input layer of the network is composed of
12 sets of 8 x 8 neurons, each covering a portion of the input matrix with an
overlap of two pixels per side. Each set of 8 x 8 neurons has exactly the same
weight values (a technique known as weight sharing, shown in figure 3.41),WEIGHT SHARING

so that it is necessary to train only one set of weights and clone it for every
set of inputs. Another layer of neurons is composed of 12 sets of 4 x 4 units
that map in a similar way the neurons in the preceding layer and use weight
sharing too. Another layer of 30 neurons is fully connected to all units of the
preceding layer and projects connections to the output layer of 10 neurons,
each corresponding to a digit. The authors used a weight-pruning technique
while training the network on 7000 handwritten digits that produced a 99%
correct generalization to 2000 new digits.

Signal processing is another fertile area of application for neural networks
because sensors are often noisy and nonlinear, which makes them hard to

3.9 Reinforcement Learning 235

process. For example, smell detection is a multibillion dollar industry that
includes cosmetics, food, medicine, and environmental applications. The
human brain can recognize millions of odors by combining the response of
only 10,000 receptors, but its performance varies with habituation, fatigue,
time of day, and previous experience. For those reasons, there is considerable
effort in developing artificial noses that could recognize and classify odors.

An artificial nose is composed of an array of sensors that, when exposed toARTIFICIAL NOSE

odor molecules, selectively change their physical properties (color, size, re-
sistance, depending on the technology employed). Keller et al. (1994) used a
multilayer neural network trained with backpropagation of error to classify
odors on the basis of the activation pattern of an array of 12 chemical sensors
(figure 3.42). The neural network was composed of 12 input units whose ac-
tivation was set equal to the corresponding sensor value, and 6 hidden units
and 9 output units, each corresponding to a specific odor, such as acetone,
glass cleaner, vinegar, correction fluid, etc. Each of those odors activated
several sensors in various amounts. After training on a set of sample odors,
the network could correctly classify various instances of the odors with very
high precision.

3.9 Reinforcement Learning

Despite their computational power, networks trained with the delta rule or
with backpropagation can be used only in those situations where one knows
the correct response for all input patterns in the training (and validation) set.
This is not always the case for agents that operate in partially unknown en-
vironments where the feedback (if any) available from the environment is
usually rare and generic. Unsupervised learning does not require the spec-
ification of the correct response but pays this flexibility with its inability to
discriminate the statistical regularities that are potentially useful to the agent
and are thus worth learning from those that are not worth learning. Agents
that must operate in a partially unpredictable environment require therefore
another kind of learning that is neither purely supervised nor purely unsu-
pervised. The solution devised by evolution consists in equipping biological
agents with a kind of learning that is linked to the consequences of the agent’s
behavior.

The exact mechanism that implements this kind of learning in biological
neural systems is the subject of much research and is not yet completely un-
derstood. The existing evidence points to the combined action of evolved

236 3 Neural Systems

value systems (Pfeifer and Scheier 1999) and neuromodulatory effects (Bailey
et al. 2000; Fellous and Linster 1998). The value system has the task of dis-
criminating the behaviors according to their reinforcing, punishing, or negli-
gible consequences. This leads to the production of neuromodulatory signals
that can activate or inhibit synaptic learning mechanisms.

Algorithms inspired by this kind of approach have been developed by the
machine-learning community. For example, reinforcement learning is a class
of learning algorithms that attempt to estimate, explicitly or implicitly, the
value of the states experienced by the agents in order to favor the choice of
those actions that maximize the amount of positive reinforcement received
by the agent over time (Sutton and Barto 1998).

These algorithms must solve at the same time two formidable credit as-CREDIT ASSIGNMENT

PROBLEM signment problems. The structural assignment problem is about which ac-
tion, among all those available, should be credited for a given reinforcement
value. The temporal assignment problem is about the distribution of credit
among all actions involved in a sequence that ended in a single reinforce-
ment value. In order to solve these problems, the agent must explore several
combinations of input-output patterns, also known as state-action pairs. In
order to reduce the state-action space and make learning feasible in reason-
able time, these algorithms are often applied to discrete simulated environ-
ments, that is, grid worlds with only a few possible actions (move forward,
turn right, stay, etc.) and highly abstract sensory information (Kaelbling et al.
1996).

A simple neural architecture that implements reinforcement learning con-
sists of two modules, the Actor and the Critic, shown in figure 3.43 (BartoACTOR AND CRITIC

1995; Sutton 1988). Both modules receive information on the current sensory
state (State). In addition, the Critic receives information on the current rein-
forcement value (External reinforcement) from the environment. The output
of the Critic generates an estimate of the weighted sum of future rewards
(Value or Internal reinforcement). The output of the Actor instead is a proba-
bility of executing a certain action. Using the output of the Actor as a proba-
bility to execute a certain action allows the system to perform an exploration
of the state-action space.

Both modules are trained with a supervised learning algorithm (e.g., back-
propagation of error). The Critic is trained to minimize the error between the
current reinforcement value produced by the network and the current exter-
nal reinforcement summed to the discounted (i.e., multiplied by a constant
0 < γ < 1) value computed by the Critic for the next sensory state. In other
words, the Critic module learns to estimate the sum of the future rewards

3.9 Reinforcement Learning 237

Computational learning agent

World

(Environment)

Internal

reinforcement

Critic

Value

NN

Action

NN

Actor

State vector

Action

External

reinforcement

Figure 3.43 The Actor-Critic architecture for reinforcement learning.

for the current state given a certain action of the Action module. The same
error is used to modify the output of the Action network, which corresponds
to increasing the probability of the current action if the internal reinforce-
ment value plus the external reinforcement is larger than the current internal
reinforcement value, and decreasing that probability if the converse holds.
This methodology is also known as temporal difference reinforcement learningTEMPORAL DIFFERENCE

REINFORCEMENT

LEARNING
because it compares reinforcement values at different points in time.

Much of current research is aimed at generalizing these algorithms to con-
tinuous input and output domains and translating them into models of neu-
ral networks (e.g., Mizutani and Dreyfus 1998; Doya et al. 2001). Many ob-
servations suggest that the mammalian brain uses learning strategies closely
related to reinforcement learning algorithms (Montague et al. 1996; Schultz
et al. 1997), but it is not clear whether a distinction between Actor and Critic
modules exists.

In this chapter we shall not enter into more detail on this family of algo-
rithms, but we refer interested readers to the already cited book by Sutton
and Barto (1998). However, in chapter 6 we will come back to this topic
in embodied systems that display reinforcement learning-like behavior by
means of different architectural and learning structures. Note that reinforce-
ment learning and evolutionary algorithms attempt to solve a similar class of
problems, although in different ways. Despite this, to the best of our know-

238 3 Neural Systems

ledge there are not yet objective comparisons between the two families of
algorithms.

3.10 Evolution of Neural Networks

The characteristics of neural networks can be encoded in artificial genomes
and evolved according to a performance criterion. The advantages of us-
ing an evolutionary algorithm are that several defining features of the neural
network can be genetically encoded and coevolved at the same time, that the
definition of a performance criterion is more flexible than the definition of
an energy or error function, and that evolution can be coupled with any of
the learning algorithms described above or even used to generate new learn-
ing algorithms. In what follows, we review some ways of evolving neural
networks and we expand some of these topics in later chapters of this book.

It has been argued (Schaffer et al. 1992; Radcliffe 1991) that evolving neural
networks may not be trivial because the population may include individu-
als with competing conventions (figure 3.44). This refers to the situation whereCOMPETING

CONVENTIONS very different genotypes (conventions) correspond to neural networks with
similar behavior. For example, two networks with inverted hidden nodes
may have very different genotypes, but will produce exactly the same behav-
ior. Since the two genotypes correspond to quite different areas of the genetic
space, this ambiguity generates two peaks on the fitness landscape instead of
only one as would be the case for the error space in the context of backpropa-
gation. Furthermore, crossover among competing conventions may produce
offspring with duplicated structures and low fitness. Although experimental
studies have shown that in practice this is not a noticeable problem (Hancock
1992), it may still be wise to use small crossover rates (much less than 100%)
when evolving neural networks.

The most common way of evolving neural networks consists in encoding
and evolving the synaptic weight values. Even in this simple case, there are
at least two reasons for using an evolutionary algorithm instead of a learning
algorithm: (a) there are no constraints on the type of architecture; (b) it is not
necessary to have a detailed description of the network response for each
pattern, as in supervised learning methods.

The synaptic weights (including bias weights and time constants, if appli-
cable) are directly encoded on the genotype either as a string of real values or
as a string of binary values with a given precision. In the latter case, Schrau-
dolph and Belew (1992) suggested the use of dynamic encoding (see also theDYNAMIC ENCODING

3.10 Evolution of Neural Networks 239

Box 3.2: Learning Classifier Systems
Learning classifier systems (LCSs) are a family of problem-solving

techniques that combine reinforcement learning and evolutionary al-
gorithms. Initially proposed by Holland (1976), they have been re-
cently simplified and modified to make them applicable to a wide
range of problems where only sparse reward from the environment
is available. In the simplified, or zero-level version (ZCS) proposed
by S.W. Wilson (1994), an LCS is composed of a population of binary
strings that encode the rule IF state THEN action, where state
and action are fixed-length strings of bits. An initial population of
different rules is created by randomly initializing the values of the
joined state-action bit string. The rules whose state portion bet-
ter matches the signals from the environment are selected as candidates
to produce an action in the environment. Since the pool of candi-
dates for a given state may include rules with very different actions, the
choice of the rule that will be applied at that specific time step is made
on the basis of the fitness of the rules by means of a roulette wheel se-
lection. If at a given time step, the environment provides a reward, this
is added to the fitness of the rule that was used. In addition, a fraction
of that fitness if shared among all rules in the pool of candidates that
had the same action string, as well as among all the rules that had the
same action string at the previous time step. Furthermore, the fitness
of all other rules that were in the candidate pool, but did not have the
same action string, is decreased by a certain value. At certain intervals,
a steady-state evolutionary algorithm is applied to the population of
rules. Two rules with the best fitness selected by means of a roulette
wheel are crossed over and mutated to produce two offspring that re-
place two rules with the worst fitness selected by means of a roulette
wheel. The two offspring receive also half of the fitness of the parents.
S.W. Wilson (1995) then extended the algorithm by computing the fit-
ness of the rules on the basis of their ability to predict the reward from
the environment (instead of the received reward). This extended ver-
sion (XCS) encourages rules to better map the entire problem space and
is currently one of the most widely used forms of learning classifier sys-
tems with very good performance in a variety of real-world problems
(Lanzi et al. 2000). The choice of rules and fitness attribution in learn-
ing classifier systems is inspired by economic policies where winning
members of a team share their reward with teammates who proposed
similar actions and where team members that proposed other actions
are taxed. Interested readers will find a good introduction to various
forms of reinforcement learning in (Bull and Kovacs 2005).

240 3 Neural Systems

A B C D E F
1 2 3

B A E F C D
1 23

1

32

A B

C

D E
F

1

3 2

AB

C

DE

F

a

b

c
fitness

genotype space

CONVENTION 1 CONVENTION 2

Figure 3.44 Competing conventions. Two different genotypes (a) may encode net-
works that are behaviorally equivalent, but have inverted hidden units (b). The two
genotypes define two separate hills on the fitness landscape (c) and thus may make
evolutionary search more difficult. (Adapted from Schaffer et al. 1992.)

section on genetic encodings in chapter 1) whereby the bits allocated for each
weight are used to encode the most significant part of the binary represen-
tation until the population has converged to a satisfactory solution. At that
point, those same bits are used to encode the less significant part of the bi-
nary representation in order to narrow the search and refine the performance
of the evolutionary network.

Montana and Davis (1989) compared the performance of synaptic weight
evolution with that of the backpropagation algorithm on a problem of sonar
data classification. The results indicated that evolution finds much better
networks and in significantly fewer computational cycles than backpropaga-
tion of error (the evaluation of one evolutionary individual on the data set is
equivalent to one set of training cycles on the data set). These results have

3.10 Evolution of Neural Networks 241

been confirmed for a different classification task by other authors (Whitley
et al. 1990).

The architecture of a network can significantly affect its ability to solve a
problem. Artificial evolution is an interesting way to find suitable architec-
tures because the space of possible architectures for a given task to be learned
is huge and noisy. When evolving architectures, it is common practice to en-
code in the genotype only some characteristics of the network, such as the
number of nodes, the probability of connecting them, the type of activation
function, etc., but not the synaptic weights. This strategy is also known as
indirect encoding to differentiate it from direct encoding of all network weights
and parameters (Yao 1993). When the connection weights are not specified
in the genotype, the decoded neural network is trained with a learning algo-
rithm.

For example, in pioneering work by Harp et al. (1989), the genetic string
encodes a blueprint to build a network. This blueprint is composed of sev-
eral segments, each corresponding to a layer of the network. Each segment
has two parts. One part defines node properties, such as the number of units,
their activation function, and their geometric layout, and the other part de-
fines properties of the outgoing connections, such as the connection density,
learning rate, etc. Once decoded, the network weights are trained with back-
propagation. Crossover takes place only between corresponding parts of the
segments. The authors showed that when the fitness function included a
penalty for the number of connections, the best networks had very few con-
nections. Instead, when the fitness function included a penalty for the num-
ber of learning cycles used to reach a predefined error threshold, the best
networks learned almost 10 times faster, but used many more connections.

Neuroevolution of augmenting topologies (NEAT) is a method for geneticallyNEUROEVOLUTION OF

AUGMENTING

TOPOLOGIES (NEAT)
encoding and evolving the architectures and weights of neural networks
(Stanley and Miikkulainen 2002). The approach makes use of genetic op-
erators that can introduce new genes and disable old ones. NEAT was de-
signed to avoid the problem of competing conventions, allowing meaningful
crossover between individuals with different genetic length, produce net-
works of increasing complexity starting from simple ones, and protect topo-
logical innovations that may initially display lower fitness but later develop
into powerful solutions.

The main insight of NEAT is that genes sharing the same origin are more
likely to encode a similar function. In order to keep a genetic historical
record, whenever a new gene is created, it is assigned a marker (global inno-
vation number) that corresponds to its chronological order of appearance in

242 3 Neural Systems

Node 1
Sensor

Node 2
Sensor

Node 3
Hidden

Node 4
Output

In 3
Out 4
Weight 0.7
Enabled
Innov 1

In 1
Out 4
Weight 0.2
Enabled
Innov 5

In 1
Out 4
Weight 0.7
Enabled
Innov 1

In 2
Out 4
Weight -1
DISABLED
Innov 3

In 2
Out 3
Weight 0.3
Enabled
Innov 4

In 4
Out 3
Weight -1
Enabled
Innov 9

In 1
Out 4
Weight 0.7
Enabled
Innov 1

In 1
Out 3
Weight 0.5
Enabled
Innov 10

Figure 3.45 Genetic encoding of a network topology within NEAT. Genetic oper-
ators can insert new genes or disable old genes. When a new gene is inserted, it
receives an innovation number that marks its inception. (From Stanley and Miikku-
lainen 2002.)

the evolving population. When genes are reproduced and transmitted to off-
spring, they retain their original markers. The marker number is used to find
homologous genes that correspond to alignment points between genotypes
of different length, to prevent crossover on competing conventions, and to
detect the genetic similarity of individuals in order to create subpopulations
of similar individuals. Selective reproduction operates on individuals within
the same subpopulation and the fitness of an individual is divided by a num-
ber proportional to the number of individuals that are genetically similar.

This last feature is useful for preventing the competition for reproduction
between old individuals, which have a relatively high fitness, and individ-
uals with topological innovations (genes with high innovation numbers),
which may display relatively low fitness. Since the two types of individu-
als will be genetically different, they will compete separately for reproduc-
tion. NEAT starts with an initial population where genotypes correspond
to neural networks of minimal size. The genetic operators can modify the
genotypes by inserting new genes that correspond to larger networks. If
those larger networks provide a competitive advantage, they are retained
and compete with networks of different size.

Analog genetic encoding (AGE) is an approach for genetically encoding andANALOG GENETIC

ENCODING (AGE) evolving topologies of any type of analog network (Mattiussi and Floreano
2007). In chapter 1, we described the application of AGE to the representa-

3.10 Evolution of Neural Networks 243

Figure 3.46 Neurons can be represented as symbolic devices with two regulatory
(terminal) sequences: one for the output connection and one for the input connec-
tion. The device extraction process obtains them from the genome by assigning the
sequences of characters between the device token (NE) and the terminal token (TE),
and between two terminal tokens, to the respective connection. The terminal se-
quences of the different neurons are then used to determine the synaptic weights
of the network. The interaction map I(s1, s2) assigns a weight to a pair of sequences,
such as w11 = I(s11, s12). The entire weight matrix can be calculated by doing this
for all pairs of terminal sequences in the network. From Dürr et al. 2006.)

tion and evolution of analog electronic circuits. Let us now see how AGE
operates on neural networks, which are an instance of the general class of
analog networks (Dürr et al. 2006). (For the sake of clarity, we will repeat
some generalities of the method.)

The genome is constituted of a sequence of characters from a finite ge-
netic alphabet, for example the characters of the ASCII alphabet (figure 3.46).
Genes encode devices (neurons) and have both a regulatory and a coding re-
gion. The experimenter defines the type of devices that evolution is allowed
to manipulate, such as one or more types of dynamic neurons. For each type
of gene, a unique device token (a short sequence of characters) signals the be-
ginning of the gene. The device token is followed by a sequence of characters
that specify a regulatory region (named terminal) that can interact with the
regulatory region of other genes. The end of the regulatory region is speci-
fied by a terminal token (a short sequence of genetic characters). Depending
on the type of encoded device, a gene can have one or more regulatory re-
gions. For example, a neuron is a device that can interact with other neurons
via an input and an output connection; therefore, the genetic representation
of a neuron will include two regulatory regions, or terminals.

244 3 Neural Systems

During the decoding process, the genotype is scanned in search of device
tokens and if one is found, the fragment of genome following the token is
scanned for the necessary terminal tokens. If a device token in the genome
is not followed by the required number of terminal sequences, the gene is
considered invalid and the decoding continues with the next device token in
the genome. Instead, if the gene is valid, it is decoded into a neuron with an
input and an output terminal. The connections and strengths are allocated by
allowing the terminals of all decoded neurons to interact with each other, just
like regulatory regions of biological neurons interact with each other during
gene expression (see chapter 1). Each possible pair of terminals is matched
and the quality of the match is scored by an interaction map. The output of
the interaction map defines whether a connection exists and, if it does, its
strength.

AGE allows for genotypes of variable length and no special protection is
needed to manipulate the genetic material. There is actually no apparent
distinction between tokens, coding, and noncoding regions of the genome.
Therefore AGE allows for all biologically plausible operators, such as char-
acter or fragment deletion, insertion, and substitution; genome duplication;
homologous crossover; and gene insertion; to mention a few (see chapter 1).
When compared to NEAT, AGE reported better performance on a nontrivial
dynamic problem (Dürr et al. 2006). However, what matters most is not a
comparison of a specific problem, but rather the generality of the encoding
approach which allows the evolution of topologies composed of mixed types
of neural devices.

Artificial evolution of architectures sometimes involves a growth process
that takes place instantaneously or is extended while the neural network in-
teracts with the environment. Since that approach takes inspiration from the
way in which biological systems grow and adapt through development, we
will describe them in chapter 4.

3.10.1 Evolution and Learning

The combination of evolution and supervised learning provides a powerful
synergy between complementary search algorithms (Belew et al. 1992). Since
backpropagation is very sensitive to the initial weight values, which may sig-
nificantly affect the quality of the trained network, evolutionary algorithms
can be used to find the initial weight values of networks to be trained with
backpropagation. The fitness function is computed using the residual error
of the network after training with backpropagation on a given task. No-

3.10 Evolution of Neural Networks 245

tice that the final weights after supervised training are not coded back into
the genotype, i.e., evolution is Darwinian, not Lamarckian, as explained in
chapter 1.

Experimental results consistently indicate that networks with evolved ini-
tial weights learn significantly faster and better (by two orders of magni-
tude) than networks with random initial weights. The genetic string can
also encode the values of the learning rate and of other learning parameters,
such as the momentum in the case of backpropagation. In this case, Belew
et al. (1992) found that the best evolved networks employed learning rates
10 times higher than values suggested by common wisdom (i.e., much less
than 1.0), but this result may depend on several factors, such as the order
of presentation of the patterns, the number of learning cycles allowed before
computing the fitness, and the initial weight values.

Evolutionary algorithms have been employed also to evolve learningEVOLUTION OF

LEARNING RULES rules. In its general form, a learning rule can be described as a function of
a few variables, such as presynaptic activity xj , postsynaptic activity yi, and
the current value of the synaptic connection wij :

Δwij = Φ(xj , yi, wij)

Chalmers (1990) suggested describing this function as a linear combination
of the products between the variables weighted by constants. For example,
if we take into consideration only first- and second-order products, the func-
tion above becomes

Δwij = a1(xj ,xj)+a2(xj ,yi)+a3(xj ,wij)+a4(yi,yi)+a5(yi,wij)+a6(wij ,wij)

where the constants an can assume discrete values −1, 0, 1 or continuous val-
ues in the range [−1, 1]. These constants are encoded in a genetic string and
evolved. The neural network is trained on a set of tasks using the decoded
learning rule and its performance is used to compute the fitness of the corre-
sponding learning rule. The initial synaptic weights are always set to small
random values centered around zero.

For example, Chalmers employed a fitness function based on the mean
square error. A neural network with a single layer of connections was trained
on eight linearly separable classification tasks. The genetic algorithm e-
volved a learning rule similar to the delta rule described earlier. Similar
results were obtained by Fontanari and Meir (1991). Dasdan and Oflazer
(1993) employed a similar encoding strategy to evolve unsupervised learn-
ing rules for classification tasks. The authors reported that evolved rules
were more powerful than comparable, human-designed rules. Baxter (1992)

246 3 Neural Systems

encoded both the architecture and whether a synapse could be modified by
a simple Hebb rule (the rule was predetermined). Floreano and Mondada
(1996) allowed evolution to choose different learning rules for each synaptic
connection and evaluated the approach for mobile robot control using be-
havioral fitness function. This method, and further modifications by other
authors, will be explained in more detail in chapter 6.

As we have seen at the beginning of this chapter, it has been known for
a long time that learning may affect natural evolution (Baldwin 1896). Em-
pirical evidence shows that this is the case also for artificial evolution when
combined with some form of learning (Nolfi and Floreano 1999).

Hinton and Nowlan (1987) proposed a simple computational model that
shows how learning might help and guide evolution. The authors consid-
ered the case where a neural network confers added reproductive fitness on
an organism only if it is connected in exactly the right way. In this worst case,
there is no reasonable path toward the good network and a pure evolution-
ary search can only discover which of the potential connections should be
present by trying possibilities at random. The good network is “like a needle
in a haystack” (p. 495).

In their computational explorations, Hinton and Nowlan use genotypes
with 20 genes corresponding to a neural network with 20 potentials connec-
tions. A gene can take three possible values: 0, 1, and ?, which represent, re-
spectively, the absence of the connection, the presence of the connection, and
a modifiable state (absence or presence of the connection) that can change its
value according to a learning mechanism. In the authors’ model, the learning
mechanism is a simple random process that keeps changing modifiable con-
nection weights until a good combination (if any) is found during the limited
learning time of the individual.

In the absence of learning (i.e., when genes can only have 0 and 1 allelic
values), the probability of finding a good combination of weights would be
very small given that the fitness landscape looks like a flat area with a spike
in correspondence to the good combination of genes (figure 3.47, thick line).
On such a surface genetic algorithms do not perform better than a random
search algorithm. However, if learning is enabled, it is more likely that some
individuals will achieve the good combinations of connection values at some
point during training time and start to collect fitness points.

The addition of learning, in fact, produces a smoothing of the fitness sur-
face area around the good combination of genes (weights), which can be
discovered and easily climbed by the genetic algorithm (figure 3.47, dashed
line). This is due to the fact that not only the right combination of genes but

3.10 Evolution of Neural Networks 247

Figure 3.47 Fitness landscape with and without learning. In the absence of learning,
the fitness landscape is flat, with a thin spike in correspondence to the good combi-
nations of genes (thick line). When learning is enabled (dashed line), the fitness sur-
face displays a smooth hill around the spike corresponding to the gene combinations
which have in part correct fixed values and in part unspecified (learnable) values.
The continuous line represents the fitness for each possible combination of two alle-
les ([0, 1]) while the dashed line represents the fitness for each possible combination
of three alleles [0, 1, ?]). Redrawn from Hinton and Nowlan (1987).

also combinations, which in part have correct genes and in part have un-
specified (learnable) genes, report an average fitness greater than 0. Notice
that the fitness of an individual is proportional to the number of fixed cor-
rect values because the time needed to find the correct combination through
learning is inversely proportional, on average, to the number of learnable
values. Hinton and Nowlan claimed that evolution with learning “is like
searching for a needle in a haystack when someone tells you when you are
getting close” (1987, p. 496).

This simple model also accounts for the Baldwin effect that postulates that
characters that are initially acquired through learning may later be fixated in
the genotype. Once individuals with part of their genes fixed on the correct
values and part of their genes unspecified (learnable) are selected, individ-
uals with fewer and fewer learnable genes tend to be selected because the
fitness increases monotonically by decreasing the number of learnable genes.
In other words, characters that were acquired through learning in early gen-
erations tend to become genetically specified in later generations.

Hinton and Nowlan’s model is very simple and elegant, but has some lim-
itations: (1) learning is modeled as a random process; (2) there is no distinc-
tion between the learning task and the evolutionary task; (3) the environment

248 3 Neural Systems

Evolutionary
surface

Learning
surface

a b

fitness

prediction
performance

combination of weights

Figure 3.48 Fitness surface for the evolutionary task (food reaching) and perfor-
mance surface for the learning task (sensory prediction). Movements due to learning
are represented as arrows. Point a is in a region where the two surfaces are dynami-
cally correlated. Even if a and b have the same fitness on the evolutionary surface at
birth, a has more probability to be selected than b since it is more likely to increase its
fitness during life than b.

.

does not change; (4) the learning space and the evolutionary space are com-
pletely correlated. The two spaces are correlated if genotypes which are close
in the evolutionary space correspond to phenotypes which are also close in
the phenotype space.

By systematically varying the cost of learning and the correlation between
the learning space and the evolutionary space, Mayley (1996) showed that:
(1) the adaptive advantage of learning is proportional to the correlation be-
tween the two search spaces; (2) the assimilation of characters first acquired
through learning is proportional to the correlation between the two search
spaces and to the cost of learning (i.e., to the fitness lost during the first part
of the lifetime in which individuals have suboptimal performance); (3) in
certain situations learning costs may exceed learning benefits.

Despite those caveats on the correlation of the evolutionary and learn-
ing landscapes, Nolfi et al. (1994a) found significant benefits by combining

3.10 Evolution of Neural Networks 249

evolution and learning even when the two processes attempted to improve
two different tasks and therefore may have had partially uncorrelated search
landscapes. In their work, networks were evolved to drive an agent toward
food items while parts of their synaptic weights were trained to predict the
sensory consequences of their actions. The authors explained the added ben-
efit of evolution and learning by suggesting that evolution may select in-
dividuals that happen to be in areas of the landscapes that are dynamically
correlated, that is, displacement in one direction induces the same effect (pos-
itive or negative) on the two landscapes.

To understand this, imagine two different search surfaces, an evolution-
ary surface and a learning surface (figure 3.48). Modifications of synaptic
weights due to learning produce a movement of the individual phenotype
both on the learning and on the evolutionary surface. However, since learn-
ing tries to maximize performance on the learning task, individuals will
move toward higher areas of the learning surface. Given that the way in
which individuals move in weight space affects their fitness (the total fitness
of the individual is the sum of the fitness values received during such dis-
placements on the weight space), evolution will tend to select individuals
located in areas where, by increasing their performance on the learning task,
they also increase their performance on the evolutionary task.

Consider, for example, two individuals, a and b, that are positioned in
two distant locations in weight space and have the same fitness at birth, i.e.,
the two locations correspond to the same height on the fitness surface (fig-
ure 3.48). Individual a is located in a region where the fitness surface and the
learning surface are dynamically correlated, that is, a region where on aver-
age movements that result in an increase in height on the learning surface
result in an increase in height on the fitness surface too. Individual b, on the
other hand, is located in a region where the two surfaces are not dynamically
correlated. If individual b moves in weight space, it will go up on the learn-
ing surface but not necessarily on the fitness surface. If learning is enabled,
the two individuals will move during their lifetime in a direction that im-
proves their learning performance, i.e., in a direction where their heights on
the learning surface tend to increase. This implies that individual a, which is
located in a dynamically correlated region, will end up with a higher fitness
than individual b and, therefore, will have a better chance to be selected. The
final result is that evolution will have a tendency to progressively select in-
dividuals that are located in dynamically correlated regions. In other words,
learning improves exploration of the search space by allowing evolution to

250 3 Neural Systems

select individuals that improve their performances with respect to both the
learning and the evolutionary tasks.

Harvey (1997) proposed another explanation for the observed benefits of
learning and evolution on different tasks by using a geometric argument.
He assumes that the synaptic weights of neural networks selected for re-
production are displaced from a point of high fitness by random mutations.
Then, whatever learning mechanism and task are applied, the trajectory of
the synaptic weights being modified has a high likelihood to transit closer to
that point of high fitness, thus raising the fitness of the individual. However,
some of the predictions of this elegant model were not confirmed in further
experiments by Nolfi (1999).

One may wonder whether Lamarckian evolution (i.e., an evolutionary pro-LAMARCKIAN

EVOLUTION cess where characters acquired through learning are directly coded back into
the genotype and transmitted to offspring) could be more effective than Dar-
winian evolution (i.e., an evolutionary process in which characters acquired
through learning are not coded back into the genotype). Ackley and Littman
(1992), for instance, claimed that in artificial evolution, where inherited char-
acters can be easily coded into the genotype given that the mapping between
genotype and phenotype is generally quite simple, there is no reason for not
using Lamarckian evolution. Indeed, the authors showed that Lamarckian
evolution is far more effective than Darwinian evolution in a stationary en-
vironment (where the input-output mapping does not change). However,
Sasaki and Tokoro (1997) showed that Darwinian evolution largely outper-
forms Lamarckian evolution when the environment is not stationary or when
different individuals are exposed to different learning experiences.

3.11 Neural Hardware

As soon as the first models of learning neural networks became available at
the end of the 1950s, considerable effort was invested in designing parallel
machines with adaptive elements that could emulate neurons and synaptic
weights. One of the first neural computers, the Mark I Perceptron, was com-
posed of several hundred potentiometers individually controlled by electric
motors that played the role of adjustable synaptic weights (Mark I Percep-
tron 1960). The potentiometers could be connected in arbitrary ways to im-
plement several types of neural architectures that could be trained with an
early version of the delta rule in order to recognize characters projected on a
screen.

3.11 Neural Hardware 251

In the late 1980s and early 1990s, a decade that marked the rapid expansion
of neural network research and large availability of personal digital comput-
ers, research efforts in neural hardware were mainly aimed at design of par-
allel computers from an assembly of several digital computers. The research
in that period followed two major approaches. One approach consisted in
designing specialized neural computers whose choice of components and
wiring matched the specificities of one or more families of neural models
(Ienne et al. 1996). Another approach consisted in using arrays of general-
purpose processing units that could take the form either of a parallel copro-
cessor attached to the serial port of a desktop computer or of a standalone
parallel computer with several processing units. In both cases, using those
parallel computers required special programming languages and techniques
to fully exploit the parallel features of the hardware.

For example, transputers (transistor computers) by INMOS were com-TRANSPUTERS

posed of microcontrollers (a CPU with memory, input/output facilities, and
a clock that can operate as a standalone computational device) specially de-
signed to be interconnected by fast serial links to other transputers and oper-
ate in parallel. Often these transputers were attached to a desktop computer
for programmability and input/output data storage on hard disks. After
an initial success, transputers gradually disappeared because they could not
match the decreasing price and increasing speed of desktop computers.

Another example of general-purpose digital devices used for simulating
neural systems was the Connection Machine by Thinking Machines Corpo-CONNECTION

MACHINE ration (Hillis 1987), a massively parallel computer composed of up to 65,536
processors, each with its own memory, that could be virtually wired in a
huge number of configurations. The Connection Machine was originally
conceived for research in artificial intelligence and artificial life, but was
also used for computer graphics and other computationally intensive tasks.
Eventually, it lost ground in the competition with parallel supercomputers
produced by other manufacturers and was dismissed (Taubes 1995).

Optical systems have been considered both for neural processing and as-OPTICAL SYSTEMS

sociative information storage. The advantage of optical processing is that
optical beams do not interfere when they cross. Therefore, neural networks
with optical connections can process in parallel and at light speeds high-
dimensional data. The basic idea in optical processing (figure 3.49) is to
present the input pattern as multiple light beams (one per input unit). The
intensity, or amplitude, of the light beam encodes the strength of the sig-
nal. Each beam irradiates a separate row of a semitransparent matrix, which
plays the role of synaptic weights. The matrix can be implemented as a liq-

252 3 Neural Systems

Figure 3.49 Schematic representation of an optical neural network. Input signals
are encoded by light intensity; each input signal irradiates one row of the semitrans-
parent matrix, which functions as the synaptic weight matrix. The output units are
represented by a set of photodetectors, each collecting light from one column of the
matrix. Learning is achieved by modifying the transparency of the matrix cells.

uid crystal device (LCD) where the position (reflectance) of the crystals at
each location can be individually programmed (Casasent 1992). The readout
of the weighted inputs is operated by a set of photodetectors (one per out-
put unit) that collect light from columns of the matrix. The synaptic weight
update can be implemented in a separate digital computer that modifies the
LCD matrix.

A similar functionality has been demonstrated with a holographic device
where the modulation strengths of the cells in the holographic grating can
be individually set (Psaltis et al. 1990). In this case, learning has been im-
plemented on the device itself by using a special mirror that feeds back the
input rays on the holographic device and records at each cell the pattern
of interference with the outgoing light rays in the form of an input-output
correlation analogous to the Hebb rule. It has been shown that such a holo-
graphic memory can store and retrieve information similarly to the Hopfield
network described earlier.

Associative memory storage and reconstruction (similar to the functional-
ity of Hopfield networks described earlier) has been demonstrated with thick
holographic devices. These devices can store multiple images that can be
singly retrieved by stimulating the device with a suitable light signal, which
corresponds to the memory address in electromagnetic storage devices. In

3.11 Neural Hardware 253

addition, it has been shown that images can be retrieved by projecting a cor-
rupted or incomplete version of the image onto the holographic device. This
is achieved by a set of mirrors and threshold devices that select the brightest
image (corresponding to the highest correlation with the corrupted image)
returned by the holographic device and feed it back recursively until the im-
age is fully reconstructed.

Today, entry-level desktop computers are largely sufficient to simulate and
operate in reasonable time neural networks for most applications in signal
processing, pattern recognition, control, and data mining. However, dedi-
cated neural hardware is still appealing for embedded systems that demand
the smallest possible size and power consumption without compromising
computational speed in real-time operation.

Within this context, field-programmable gate arrays (FPGAs) have beenFIELD-PROGRAMMABLE

GATE ARRAY (FPGA) used to implement artificial neural networks that take advantage of their
rapid hardware reconfiguration and parallel signal processing (see chapter
1). For example, Eldredge and Hutchings (1994) suggested exploiting run-
time reconfiguration to decompose the neural algorithm in several sequen-
tial stages and let the FPGA reconfigure itself after each stage. The algorithm
of backpropagation of error can be decomposed into stages corresponding
to the activation of each neuron layer followed by computation of the delta
errors for each layer and finally by update of the connection layers. This de-
composition requires less hardware because only a subset of the algorithm
must be implemented in hardware at any given time and can speed up the
execution of each stage by optimally matching the architecture of the FPGA
to the specificities of each computational stage. Rapid hardware reconfigura-
tion has also been exploited to implement neural systems that require mod-
ification of the neural topology during training, such as in ART networks or
in networks that incorporate pruning mechanisms (Perez-Uribe and Sanchez
1996).

Dedicated neural hardware is used also for implementation of networks
of spiking neurons because those models often require large assemblies of
neurons and/or incorporate detailed modeling of the physiological mecha-
nisms regulating the membrane dynamics that demand significantly higher
computational power.

In the case where the membrane dynamics are greatly simplified and do
not model the dynamics of ion exchange across the membrane, a spiking
neuron can be reduced to a digital device whose input/output streams are
composed of 1s and 0s (spike, no spike) and whose membrane dynamics
can be approximated by elementary digital operators, such as a spike ac-

254 3 Neural Systems

Figure 3.50 Top: Cell architecture implementing a spiking neuron. The main parts
are a register holding the membrane potential value, a connectivity mask block, an
addend block, a leakage and normalization block, and a control unit. Bottom: Effect of
incoming spikes on the membrane potential. Each time a spike is received the mem-
brane potential is increased (a constant decrement is also added to model leakage).
When the neuron threshold is reached the neuron emits a spike and the membrane
potential is reset and maintained at 0 for some time (gray column).

cumulator, a decrement operator for leakage, a threshold comparator, and a
reset unit (Floreano et al. 2002). FPGAs, which are composed of thousands of
simple transistors with low-band connectivity, offer an ideal platform for im-
plementing large assemblies of such spiking neurons (Roggen et al. 2003b),
as shown in figure 3.50, that can operate on a time scale similar to biological
neurons.

Instead, if one needs to better approximate the neuron membrane dynam-
ics, it is possible to exploit the nonlinear physical properties of transistor op-
eration in analog very large-scale integrated (aVLSI) circuits. This approach,
also known as neuromorphic engineering, was pioneered by Mead (1989, 1990)NEUROMORPHIC

ENGINEERING and has been constantly expanding over the last few years. There are at least
three advantages with reproducing neural circuits in analog VLSI. The first
is that certain operations typically used in neural computation, such as addi-
tion and multiplication, can be implemented with far fewer transistors than

3.11 Neural Hardware 255

in digital VLSI. The second is that most variables involved in neural com-
putation are described by real-valued numbers and continuous functions,
which can be mapped more efficiently in terms of accuracy and silicon sur-
face in analog VLSI than in digital VLSI. The third is that analog VLSI can
interface directly to the real world, which is intrinsically analog, without the
need of additional analog-to-digital converters used in digital VLSI.

Neuromorphic engineering makes use of standard metal oxide semicon-
ductor field effect transistors (MOSFETs). In conventional analog and digi-
tal circuit design a MOSFET is considered active when operating in the so-
called above-threshold region and is considered OFF when operating in the
so-called subthreshold region. The subthreshold region is characterized by
extremely low voltage differences. On the contrary, neuromorphic engineer-
ing relies on circuits that exploit the whole subthreshold region as an active
operating region. This permits the realization of complex analog computa-
tion and of functions typical of neural computation at very low power con-
sumption (Vittoz 1985; Sarpeshkar 2006), albeit at the cost of reduced noise
tolerance.

Analog VLSI circuits have been used to realize artificial retinas (see Indi-
veri and Douglas 2000 for a review), cochleas (e.g., Lazzaro et al. 1994; van
Schaik et al. 1996; Sarpeshkar 2006), and various networks of firing-rate and
firing-time neurons. Some challenges of neuromorphic engineering are the
implementation of global learning rules (where the weight modification does
not depend only on pre- and postsynaptic activity) and storage of the values
of synaptic weights when the circuit is not powered, but recent work has
pointed to various promising solutions. Often neuromorphic chips include a
combination of analog and digital circuitry. For example, analog VLSI may
be used to reproduce dendritic integration and membrane dynamics while
digital VLSI may be used to manage spike generation and broadcast.

A major obstacle to scaling up of both digital and analog neural circuits is
connectivity. Biological brains extend in three dimensions and each neuron
can be connected to several thousand other neurons. Electronic circuits in-
stead are limited to two dimensions where connection wires require not only
a surface exponentially growing with the number of neurons but also solu-
tions to avoid wire crossing. Furthermore, in neuromorphic sensory circuits
only a fraction of the neurons can be connected by wires to external devices.

A possible solution is to distribute silicon neurons across several chips,
each implementing a small population of neurons with local connectivity,
and to use high-speed data buses to interconnect those chips. Address-event
representation (figure 3.51) is a simple and yet powerful interchip communica-

256 3 Neural Systems

3 1 2 2 2 1

3

2

1

3

2

1

inputs outputs

source neural chip destination neural chip

data bus

Figure 3.51 Schematic representation of address-event representation for commu-
nication between two neural chips with three spiking neurons each. The numbers
represent the unique address of the neurons. Adapted from Deiss et al. (1999).

tion protocol that has been developed to encode and broadcast asynchronous
spikes among neurons sitting on different chips, as well as communicate
between sensors and neural chips (Mahovald 1994; Deiss et al. 1999). The
idea is to share a single data bus, which functions as a universal multiplexed
axon, to connect several neurons. Whenever a neuron emits a spike (event),
it immediately takes control of the data bus and sends its own address. The
receiving neural chip decodes the addresses and distributes the events to the
neurons. In this representation, the information is encoded in the temporal
sequence of spike events sent over the data bus. A problem may emerge if
there are several neurons that spike at intervals too close to be queued prop-
erly on the data bus. However, considering that the time constant of silicon
neurons is approximately 1 ms (similar to biological neurons), a data bus op-
erating at 1 MHz could support asynchronous firing of up to 1000 neurons
per chip. Since in practice not all neurons fire every millisecond, the number
of neurons per chip could be one or two orders of magnitude larger.

3.12 Hybrid Neural Systems

It is now possible to study cultures of neural tissues comprising hundreds of
interconnected neurons living on multielectrode arrays (figure 3.52, left). AMULTIELECTRODE

ARRAY (MEA) multielectrode array (MEA) is a biocompatible material that integrates an ar-
ray of microelectrodes arranged in a regular grid (matrix, hexagonal, circular,
etc.). The MEA can administer electrical stimulation to, and record electrical
activity from, a living culture of neurons and glia cells extracted from a ner-

3.12 Hybrid Neural Systems 257

Figure 3.52 Left: Multielectrode array (model shown by MultiChannel Systems
GmbH) with transparent culture dish. Right: Detail photograph of living culture
of neurons and connections on the MEA surface (Potter and DeMarse 2001). The
recording/stimulating electrodes appear as small dots spaced every 200 μm (image
courtesy of Steve Potter).

vous system. Although MEA technology has been available for more than 25
years (Pine 1980), the relevance of the data collected was limited by the fact
that neural tissues degraded in only a few hours on the MEA surface.

Potter and DeMarse (2001) surmounted that problem by using culture dish
lids that form a gastight seal and incorporate a transparent hydrophobic
membrane that is selectively permeable to oxygen and carbon dioxide, but
relatively impermeable to water vapor. This prevents contamination by path-
ogens in the air and greatly reduces dehydration of the neural tissue. The
authors showed that cortical cultures extracted from rat embryos and de-
posited on the sealed MEA (figure 3.52, right) exhibited robust spontaneous
electrical activity after more than one year.

MEA technology is now also used to create hybrid systems comprised of
neural wetware and hardware with the goal of combining the best of both
worlds: the adaptive and regenerative properties of living neural networks
and the programmability and computational power of electronic chips. Al-
though it is not yet clear to what extent a neural culture dissociated from a
brain could retain its functionalities and what is the best way to communicate
with it, it has been recently shown that a computer-controlled environment

258 3 Neural Systems

Figure 3.53 Experimental settings for the neurally controlled animat. A network of
hundreds of mammalian cortical cells (neurons and glia) are cultured on a transpar-
ent multielectrode array. Neural activity is recorded and clustered into patterns used
to control the movement of an artificial animal within a simulated environment. Sen-
sory input to the animat is translated into patterns of electrical stimuli sent back to
the network (DeMarse et al. 2001) (drawing courtesy of Steve Potter).

can guide a neural culture to selectively display desired patterns of activity
for certain stimulation (Shahaf and Marom 2001).

Le Masson et al. (2000) interfaced a living thalamic neuron with simulated
and analog VLSI neurons to study the effect of feedback inhibition in decorre-
lating thalamic activity from sensory activity, which happens in sleep onset.

DeMarse et al. (2001) interfaced a culture of rat cortical neurons with a
simple artificial animal, or animat (S.W. Wilson 1987), in a simulated envi-
ronment (figure 3.53). The spiking activity of the neural culture was sampled
every 200 ms by a grid of 60 electrodes spaced every 200 μm. Each electrode
channel recorded activity from a population of nearby neurons, which was
transformed into a real number by integrating the spike count over time and
passing the resulting number through a tanh squashing function. The vector
of 60 obtained values was then categorized according to an adaptive clus-
tering technique (similar to self-organizing maps described in section 3.7.3)
and an arbitrary motor action of the animat was associated to each cluster.
The animat had five types of sensory events (collision with a wall and four
types of movements) that were mapped to five electrodes in the MEA that

3.12 Hybrid Neural Systems 259

N N

picket picket

ion
channel

neuron

V

Figure 3.54 Neural interface with field-effect transistors. Left: Schematic representa-
tion of neuron-chip connection. Right: Eight leech neurons with axons and dendrites
on chip. From Fromherz (2003).

were previously shown to elicit reproducible spikes in the biological net-
work. Sensory feedback from the animat was provided to the neural tissue
with 100 ms delay after reading the network activity. The authors showed
that the neural tissue increased the number of different activity patterns for
50 minutes, which resulted in a good exploration of the environment by the
animat. Although this behavior cannot be defined as adaptive, it describes a
novel methodology to investigate neural activity in close loop with an envi-
ronment.

A similar approach was used by Fleming et al. (2000) to connect the brain
of a lamprey to a mobile robot placed in a circular arena. The reason for
using an entire brain instead of a neural culture is that the former has a well-
defined bilateral structure that, when properly connected to the sensors and
motors of the robot, results in predictable light-dependent behaviors. The
manipulation of the environmental properties allowed the authors to study
specific adaptive modifications of the behavior produced by the living brain.

An alternative technology makes use of field-effect transistors (FETs). TheFIELD-EFFECT

TRANSISTORS (FETS) advantage of this technology is that it capitalizes on widely available semi-
conductor techniques whose miniaturization allows the simultaneous re-
cording and stimulation of tens of thousands of neurons. The transistor is
coated with silicon dioxide, which is a biocompatible and inert insulator, and

260 3 Neural Systems

with a matrix of proteins (figure 3.54, left). The neuron is placed on the gap
between drain and source and adheres to the chip surface by means of pro-
truding proteins that bind with those on the chip matrix. When the neuron
emits a spike, it causes an extracellular potential that polarizes the silicon
dioxide and modulates source-drain current. Conversely, when a voltage is
applied to the chip, the capacitive current through the silicon dioxide gen-
erates a potential that opens voltage-sensitive ion channels on the neuron
membrane. This arrangement allows precise recording and stimulation of
single neurons, whereas the work described above with MEAs always inter-
acted with small groups of neighboring neurons.

Fromherz and collaborators (Fromherz 2003) perfected the FET-based tech-
nology and demonstrated its potentials for hybrid computational systems.
Fromherz and coworkers showed that two disconnected neurons can be put
into communication by an electronic circuit that functions as an artificial
synapse. Conversely, they showed an example where the circuit stimulates
one of two interconnected neurons and reads the output of the other neuron
at a distance. An improved version of this technology includes the forma-
tion of small fence pickets around the neuron cells to prevent displacement
of the neuron from the transistor during the outgrowth of connections to
other neurons (figure 3.54, right).

More recently, they progressed toward the creation of neuronal networks
with desired topologies, for example in configurations that resemble the
Hopfield networks described above, by encouraging neurons to grow axons
along predefined paths and establish synaptic connections with other neu-
rons. This was achieved by laying matrix protein on the silicon dioxide only
along predefined paths that provide a chemical guide to the outgrowing neu-
ral connections. Neurons successfully established a functional synapse when
their axons met. However, the limitation of this technique is that mechani-
cal forces pull the connections out of their path. To counteract those forces,
Fromherz and collaborators deposited a sheet of polyester on the surface of
the transistor and used photolithography to carve microscopic pits and chan-
nels for the neurons and their outgrowing connections.

Hybrid neural hardware is an exciting recent technology that may signifi-
cantly advance our understanding of neural systems both in circuits as they
appear in nature and in novel, task-specific circuits that we may wish to
build. However, its use as a machine that partly delegates computation to
the living neural tissue should be taken with care. On the one hand, as soon
as the functioning principles of the neural tissue are understood, they can be
implemented in a purely software or hardware system and there is no reason

3.13 Closing Remarks 261

for continuing to use the delicate biological system. On the other hand, if the
principles of the neural tissue are not fully understood, then it may not be
wise to delegate part of the computation to it.

3.13 Closing Remarks

In this chapter we offered a small window onto the vast landscape of neural
computation and decided to take a perspective that is often adopted in ma-
jor textbooks on the topic. That perspective looks at the brain as a parallel
distributed system of discrete units connected by modifiable wires, differ-
entiates the phase of neural activation from that of synaptic modification,
and presents adaptation as a data-driven learning process. Although these
classifications may serve as a guide to approach the rich field of neural com-
putation, they can be misleading if taken too strictly.

Models of the brain tend to build on analogies with dominant technologies
of their time: water pipes, telephone network, computer, and the Internet
(Kirkland 2002). Today’s models are based on the analogy with distributed
systems whose units can talk only to other interconnected units. However,
biological brains seem to rely also on more global processes, such as direct
exchange of ions across membranes, interaction with glia cells, and gases
emitted by active neurons that diffuse across cellular structures. In order to
explore the potentials of these global processes, Husbands et al. (1998) de-
veloped and evolved a class of neural networks denoted as GasNets inspiredGASNETS

by the modulatory effects of freely diffusing nitric oxide gases that affect the
response profile of affected neurons. The neurons of GasNets, which are
spatially distributed over a 2D surface, emit “gases” that diffuse through the
network and modulate the profile of the activation function according to the
local concentration (more detail on the application of GasNets to robotics will
be given in chapter 6). The authors showed that the modulation caused by
gas diffusion introduces a form of plasticity in the network without synaptic
modification.

On a similar note, the distinction between neural activation and synaptic
modification is often taken to imply that a neural network has two function-
ing modalities: a modality during which it activates the neurons so as to
operate in the environment using the knowledge embedded in the pattern
of synaptic values and a modality during which it acquires new knowledge
by modifying the pattern of synaptic values. Then the question arises of
when should the network acquire new knowledge and when should it op-

262 3 Neural Systems

erate in the environment. Most models (with the notable exception of ART)
address this question by imposing a time limit on the training phase. If the
environment changes and the network performance is no longer suitable,
the network is trained anew in the new conditions. However, living brains
seem capable of continuously adapting to the environment and there is no
evidence for a separation between an activation phase and a learning phase.

Furthermore, it has been shown that (1) a network with dynamic neurons
and without synaptic plasticity is still capable of displaying learning-like be-
haviors (Blynel and Floreano 2003); and (2) a network with synaptic plasticity
and static neurons is capable of using fast synaptic modification to change
behavioral response without acquiring new knowledge and/or skills (Urze-
lai and Floreano 2001). In both cases, the parameters of the neural networks,
the time constants and the learning rules, respectively, were genetically en-
coded and evolved instead of using available learning models.

These two examples challenge the more or less implicit assumption that
neural activations are responsible for behavior and synaptic change is re-
sponsible for learning. An alternative perspective is to consider the brain
as a dynamical system characterized by several time constants associated to
various processes, such as the integration time of neuron membranes, the
modification rate of synaptic strength, and the time delay of signal prop-
agation through axons and through extracellular gases, to mention a few.
Within that perspective, what matters is the relative rate of change of the
various processes. For example, if the modification rate of synaptic strength
is equal to or faster than the integration time of neuron membranes, a Heb-
bian process can serve as a mechanism to change the output of the neuron
without necessarily storing new information. Similarly, a neural network
whose synaptic modification rate is infinitely small (equivalent to no modi-
fication), but whose neurons have feedback interconnections and a suitable
combination of integration times, could modify permanently its behavior af-
ter the occurrence of a specific event. Such a dynamical system perspective
does not require us to make a mechanistic distinction between behavior and
learning of the network.

The notion of learning itself is questionable. Learning is frequently un-
derstood as a process of experience-driven change that allows an organism
to improve by incrementally acquiring new skills, knowledge, and memo-
ries (Reisberg 1999). We strongly doubt that all modifications fall within
that type of learning. For example, the development of sensitivity to cer-
tain types of visual patterns, but not to others, is an example of adaptation
to the environment that does not correspond to incremental accumulation

3.13 Closing Remarks 263

S
R

E
essential
variablesaction sensation

parameter
space (adaptation)

environment

organism

Figure 3.55 Components of an adaptive system as a homeostat. The organism and
the environment form a unique dynamical system that can be divided for the sake of
illustration into external and internal variables interconnected by motor and sensory
channels. Modifications of the environment due to actions by the organism or other
factors affect essential variables of the organism. If those essential variables fall out-
side a normal range (gray area), a modification of the parameter space S occurs, which
affects the variable phase space defining the activity of the organism. That modifica-
tion in S has the effect of bringing the essential variables back into the normal range
(adapted from Ashby 1960, p. 83).

of new knowledge. Furthermore, a teleological interpretation of learning as
change toward the better implies that the organism knows in advance what
will be good for its survival in the future, a vicious circle that we already
highlighted in chapter 1.

More than 40 years ago, Ashby (1960) proposed an original and still in-
teresting interpretation of adaptation as a homeostatic process that bringsADAPTATION AS A

HOMEOSTATIC PROCESS an organism back to its equilibrium point following some perturbation of
its environment. In Ashby’s perspective, “adaptive behavior is equivalent
to the behavior of a stable system, the region of stability being the region of
the phase-space in which all essential variables lie within their normal limit”
(Ashby 1960, p. 64). The essential variables include temperature, blood pres-
sure, energy, and other factors necessary to the survival of the organism.
Ashby developed this framework in order to encompass a large number of
adaptation phenomena, from habituation all the way to trial-and-error learn-
ing, and built an electromagnetic device, named homeostat, that displayed
some of those adaptation properties (figure 3.55). Although Ashby did not

264 3 Neural Systems

attempt to establish analogies between components of his theory and physi-
ological processes in the brain, recent work on the evolution of learning rules
for dynamical neural networks exposed to changing environments showed
that evolved systems behaved according to the theory suggested by Ashby
(E.A. DiPaolo 2000).

Another important aspect of Ashby’s theory is that the functioning of a
brain can only be understood if studied in the context of a body and of an
environment. Translated into the context of this chapter, it means that neural
models should be developed and studied in the context of an organism that
behaves in an environment. We shall address the full implications of this
issue in chapter 6, but we wish to emphasize here that if a neural network
can affect the environment with its output, then the probability distribution
function of the input data is not likely to be uniform as assumed by most
neural models described in this chapter. Consequently, when these neural
models are used in behavioral systems, either the models must be modified
to account for learning skewed data distributions or the data distribution
must be preprocessed and corrected to ensure convergence of the learning
algorithms.

Finally, it should be noted that this chapter presented only a few generic
models, that is, architectures and learning algorithms that can be applied to
a variety of application domains. As a matter of fact, the literature on neu-
ral computation abounds in interesting specific models, that is, architectures
and learning mechanisms that are either tailored to a specific application do-
main or are intended to reproduce the functionalities of specific parts of the
nervous system, such as visual object recognition, spatial orientation and
navigation, hand-eye coordination, selective attention, and so forth (see Ar-
bib 1995 for a rich collection of such models). These latter types of models
are often composed of modular and heterogeneous architectures and use dif-
ferent neuron models and learning rules in different parts of the network.
Unfortunately, these models are rarely compatible because they are based
on different assumptions and levels of abstraction, which makes it almost
impossible to integrate them into a single artificial brain.

Leaving aside the question of the suitable level of abstraction for a neural
model (Herz et al. 2006), it is likely that a great majority of the manifestations
of learning and adaptation in biology are subsumed by the same physiolog-
ical mechanisms, such as long-term potentiation and depression of synaptic
connections based on local electrochemical events. If we subscribe to this hy-
pothesis, the big open question is how those two mechanisms are regulated
and combined in a complex neural system to provide a variety of learning

3.14 Suggested Readings 265

abilities. In order words, the challenging question is how neurons are con-
nected together and how do they affect, not only their activity but also the
type, onset, and offset of synaptic mechanisms. The importance of connec-
tivity recognized by Ramón y Cajal (1909, 1911) more than a century ago still
remains a central issue for understanding and re-creating the brain.

3.14 Suggested Readings

Swanson (2003) presents a very clear and nicely illustrated description of the
architectural and functional components of brains, starting from the simplest
circuits found in invertebrates all the way to the macromodules that make up
a mammalian brain. The compact format, highly readable style, and anno-
tated bibliography make this book a strongly recommended introduction to
nervous systems. More detailed information on the architecture and physi-
ology of synaptic connectivity can be found in the book edited by Shepherd
(1990), which is organized in chapters dedicated to the major components
of the mammalian brain. Churchland and Sejnowski (1992) instead provide
an overview of biological brains with emphasis on computational roles of
circuits and modules. The book brings together biological, cognitive, and
computational models into a uniform framework. In a similar vein, but on a
much larger scale, is The Handbook of Brain Theory and Neural Networks, edited
by Arbib (1995), which collects more than 250 articles especially written by
leading experts in their fields. Each article is sufficiently short and compre-
hensive to be read at a single sitting and yet provides a good coverage of the
topic.

After more than 50 years of neural computation theory and practice, there
are several books on the market that offer good introductions to artificial
neural networks. We recommend the two seminal volumes on Parallel Dis-
tributed Processing (Rumelhart et al. 1986b; McClelland et al. 1986) that in 1986
resuscitated the interest in artificial neural networks among computer scien-
tists, cognitive scientists, and engineers. The two volumes offer not only a
historical perspective on the field but also a very clear explanation of several
models that are still in use today. Although the authors write for a general
readership, their emphasis on cognitive models makes the books particularly
appealing for computational psychologists. Hertz et al. (1991) instead offer
an introduction to neural networks from the standpoint of physics. For ex-
ample, readers will find there one of the best and concise explanations of
neural models inspired by models of spin glass theory. The book covers the

266 3 Neural Systems

major neural models with great clarity and marks mathematical sections that
can be skipped without major loss for those who are mainly interested in
the implementation of the algorithms. For readers who have a background
in computer science and information theory, we recommend the second, re-
vised edition of the comprehensive book by Haykin (2007), which not only
includes very recent models but also highlights the similarities between neu-
ral network techniques and statistical theory. Finally, for readers with a back-
ground in engineering, we recommend the book by Eliasmith and Anderson
(2003), who do an excellent job at explaining what artificial neurons can do
and how they can be used to solve various classes of problems, instead of
focusing on neuron and learning models as most other books do (including
this chapter).

We also suggest the rich collection of milestone papers on neural computa-
tion edited and annotated by Anderson and Rosenfeld (1988), where readers
will find precursory writings from psychologist William James, seminal pa-
pers by McCulloch and Pitts, Hebb, Hopfield, Grossberg, Rumelhart, and
Kohonen, to mention a few, along with several other gems that are still very
inspirational after several years. Readers interested mainly in unsupervised
learning may consider the edited collection on that topic by Hinton and Se-
jnowski (1999), which includes original descriptions of the major models.
Instead, readers interested mainly in supervised learning may read the book
by Reed and Marks (1999), which presents also a large number of practical
solutions to improve performance.

Herz et al. (2006) offer an excellent synthesis of the levels of abstraction
used in neural modeling and indicate the extent of the predictions on biolog-
ical phenomena that each level can generate. They also describe the intrinsic
computational properties displayed by various levels and their behavioral
effects observed in animals.

Belew and Mitchell (1996) brought together an unsurpassed collection of
chapters on the combination of evolution and learning. The chapters, writ-
ten by experts in their fields after a brainstorming meeting in Santa Fe, New
Mexico, offer an inspiring description of the principles at work in systems
where adaptation takes place at several temporal and spatial scales. The
chapters are preceded by introductions written by other contributors to the
same book in order to make them accessible to a wide readership. The book
also includes early, hard-to-find papers on the topic, such as extracts from
Baldwin, Lamarck, and Morgan.

The foundations of neuromorphic engineering are described in the seminal
book by Mead (1989) whereas a survey of more recent models and meth-

3.14 Suggested Readings 267

ods in the context of spiking neurons can be found in the book edited by
Maass and Bishop (1999). For readers interested in implementations, Liu
et al. (2002) provide a comprehensive tutorial on analog VLSI circuits used
in the context of neuromorphic engineering.

4 Developmental Systems

Multicellular organisms are assemblies of cells organized in structures of
amazing complexity that realize impressive feats of coordination and func-
tionality. Some multicellular organisms are composed of a few hundred cells,
as in the case of the microscopic worm Caenorhabditis elegans, but some are
composed of an astronomical number of them; for example, many trillions
of cells form a human body. The idea of an organized system composed of
se huge numbers of elements and the problems posed by its construction are
difficult to appreciate from the perspective of our everyday experience. You
can realize the complexity of the task if you consider that there are more cells
in a human finger than people in the world (Wolpert 1992).

The assembly of the structures that constitute a multicellular organism is
due to a process of development, which starts from a single cell – the fertil-DEVELOPMENT

ized egg or zygote – and builds progressively the organized structures that
form the complete organism. We don’t know yet all the details of the devel-
opmental process that builds biological organisms, but many aspects have
been already elucidated (Wolpert et al. 2007). We know that to build the
final structure, cells form patterns of organized activity in both space and
time, using a variety of mechanisms. These mechanism include the exchange
of signals between cells, the reactivity of cells to environmental conditions,
and the ability of cells to grow, divide, die, migrate, and differentiate. All
these activities are influenced by the genome and by the initial state of the
zygote, that is, by the concentration and distribution of chemicals that de-
termine the initial steps of the developmental process. The zygote, however,
does not contain a blueprint of the developed organism but, rather, the in-
structions that – in a suitable environmental context – steer the process of
self-organized construction of the organism. We can say that the zygote and
its genome constitute a developmental representation of the organism.DEVELOPMENTAL

REPRESENTATION

270 4 Developmental Systems

4.1 Potential Advantages of a Developmental Representation

From the properties observed in biological organisms we can infer that de-
velopmental representations have a number of favorable properties. A de-
velopmental representation provides the possibility of defining a compact de-
scription of potentially very complex structures. An often cited example of
this property is represented by the orders of magnitude of difference between
the number of human genes and the number of neurons and connections in
the brain of a newborn. The conciseness of the representation is partly due
to the possibility of reuse of the developmental programs describing the con-
struction of substructures, as if they were program subroutines that can be
invoked multiple times. The biological evidence shows that a developmental
representation permits and possibly favors the definition of structures pos-
sessing a certain degree of modularity and symmetry.

The large variability in the total number of cells that compose different
kinds of biological organisms proves that a developmental representation
can have good properties of scalability. This property is related to the fact that
the developmental process is a self-organized and distributed process whose ac-
tivity is decentralized and characterized by parallel operation of its constituents.
One of the consequences of parallel operation is that a small number of cycles
of parallel division of the cells can produce a structure composed of an as-
tronomical number of elements. The property of parallel operation and the
sensitivity of cells to environmental signals permits the endowment of the
developmental process with remarkable properties of robustness to perturba-
tions occurring during the process and with a certain degree of adaptability to
the environmental conditions that exist during development. Note that there
is no contradiction between the robustness to environmental perturbations
and the adaptability to environmental conditions, because the developmen-
tal representation can be structured so as to let the developmental process
discriminate between environmental signals that must be treated as noise,
and signals that can be allowed to influence the process.

The biological evidence suggests that major changes in the size and struc-
ture of the outcome of the developmental process can be achieved with min-
imal changes in the developmental description. For example, the fact that
the developmental process is composed of several processes that unfold in
parallel in time permits the control and change of the outcome of the process
by controlling the rates and relative timing of the different developmental
processes (a phenomenon called heterochrony in biology). The potential flex-
ibility and robustness of a genetically instructed developmental process can

4.1 Potential Advantages of a Developmental Representation 271

endow systems thus obtained with greater evolvability with respect to more
rigid genetic descriptions.

The processes that structure a multicellular organism are most apparent in
the first stages of the organism’s life, the so-called embryonic phase. However,
these processes are not completely and suddenly disabled once the overall
structure of the organism is in place but, rather, continue to some extent
during the whole life of the organism. For example, considerable processes
of growth and adaptation to environmental conditions can be observed in
mammals after birth, and in some organisms developmental processes can
be activated at any time for the regeneration of lost or damaged parts, for ex-
ample, the tail, limbs, and retina of certain amphibians (Wolpert 2003). More
generally, the developmental processes observed in biological organisms are
self-limiting in the sense that they subside as soon as the required structure
has been built, with the possibility of reactivation if the need arises.

Summing up, a developmental representation for a system has potentially
many favorable properties, such as compactness, scalability, self-organiza-
tion, robustness, adaptability, evolvability, fault tolerance, and self-repair.
Consequently, there have been many attempts to define developmental rep-
resentations for artificial systems endowed with similar characteristics. In
this chapter we will describe and analyze critically some of the ideas that
have been proposed to realize this objective. We will call the artificial devel-ARTIFICIAL

DEVELOPMENTAL

SYSTEMS
opmental system the combination of a developmental representation and the
rules that specify how the representation must be interpreted to build the
artificial system. In this chapter we will focus mainly on the developmental
systems inspired by the early phases of the developmental processes of mul-
ticellular organisms, that is, on the development of what in biology is called
the embryo. Artificial developmental systems inspired by the processes of
lifetime adaptation, learning, and regeneration of biological organisms will
be described in the chapter 6.

In taking inspiration from biology to model developmental systems we
can operate at different levels of abstraction. At one extreme we can disre-
gard all the low-level cellular details of the developmental process, leaving
only the essential elements such as cell duplication. At the other extreme we
can implement the finest details of the chemistry and physics of gene reg-
ulation and cell interaction. In between there is a continuum of models of
intermediate complexity and abstraction. In the next section we start by ex-
amining some of the most abstract models, called rewriting systems. We will
progressively add detail and flexibility to the rewriting models considered.

272 4 Developmental Systems

After examining a representative selection of models, we will pause to con-
sider the difficulties of the definition and usage of developmental systems.
This leads naturally to a discussion of the relationship between developmen-
tal models and evolutionary approaches, which is useful also to understand
the less abstract models considered in subsequent sections.

4.2 Rewriting Systems

If we strip a biological developmental process of all its low-level details, what
remains is the activity of division, differentiation, and death of the cells that
constitute the organism. In 1968 the biologist Aristid Lindenmayer (1968a,b)
proposed to model these aspects of the developmental process using a class
of formal models called rewriting systems. A rewriting system is a formal sys-
tem that works on strings of symbols called words. The system defines a set of
rules that specify how a word transforms into another word. Starting with an
initial word and applying recursively the rules, one obtains thus a sequence
of words. The original idea was to consider the sequence of words produced
by the rewriting system as representing the sequence of configurations of
cells produced by the developmental process

4.2.1 L-Systems

The class of rewriting system considered by Lindenmayer is now known as
Lindenmayer systems, or L-systems for short. An L-system is a rewriting system
that operates on strings of symbols. The system is defined by assigning an
alphabet A of symbols, an initial string of symbols ω called the axiom, and a
set π = {pi} of rewriting or production rules that specify how each alphabetPRODUCTION RULES

symbol is replaced by a string of symbols at each rewriting step. An example
of a production rule is

a → abc

where the symbol a on the left is called the predecessor, and the sequence
abc of symbols on the right is called the successor. The rule states that at each
rewriting step the predecessor is replaced by the successor. If no replacement
rule is explicitly specified for a symbol of the alphabet, a default rule that
replaces the symbol with itself is implicitly assumed to hold.

In the original formulation of Lindenmayer, each symbol in the L-system
alphabet represents a cell in a given state and the production rules repre-
sent the change of state of a cell from one time instant to the next. Since the

4.2 Rewriting Systems 273

Figure 4.1 The graphical representation of the first four rewriting steps that model
the development of a filament of bacteria using the L-system described in the text.

state of cells is updated in parallel in biological systems, Lindenmayer stip-
ulated that at each iteration the production rules are applied in parallel to
all the symbols of the current word. For this reason an L-system is called
a parallel rewriting system. In general, a stopping condition for the rewriting
process is also specified in defining an L-system. The simplest stopping con-
dition is just the attainment of a predefined number of rewriting steps. For
L-systems endowed with the property of self-limited growth, the stopping
condition can be the observation that the structure has not changed between
two rewriting steps.

One of the examples originally considered by Lindenmayer concerned the
modeling of the development of multicellular filaments of cells observed in
some types of bacteria. Simplifying the results of the observations on the
actual bacteria considered by Lindenmayer, one can split their life cycle into
two stages. In the first stage, which we denote with the symbol g, the cells
are growing and not yet ready to divide. In the second stage, which we
denote with d, the cells are ready to divide. When a cell divides it produces
two daughter cells, one in the g stage and one in the d stage. The cells have
one of two possible kinds of polarity that we denote with the subscripts r

and l. The polarity specifies the position and polarity of the daughter cells
that will be produced at the next division. Summing up, the cells can be in
four possible states, gr, gl, dr, and dl. The rules that govern the development

274 4 Developmental Systems

Figure 4.2 A schematic representation of the types of cells composing a moss leaf
according to Nägeli (1845). Primary cells (I) are found at the tip of the leaf, secondary
cells (II) are found on the margin of the leaf, and tertiary cells (III) compose the inte-
rior of the leaf.

of a filament starting from a cell in the dr state can be represented by the
following L-system:

A = { gr, gl, dr, d l}
ω = dr

π =
{

dr → dl gr , dl → gl dr , gr → dr , gl → dl

}
Figure 4.1 shows a graphical representation of the first steps of the simulated
developmental process determined by this L-system.

Lindenmayer (1975) considered also the application of L-systems to de-
scribe the development of two- and three-dimensional assemblies of cells.
For example, he considered the rules of development of moss leaves, which
are composed of a single sheet of cells. According to Nägeli (1845), a moss
leaf is composed of three types of cells: primary cells are found at the tip of
the leaf, secondary cells are found on the margin of the leaf, and tertiary cells
compose the interior of the leaf (figure 4.2). In the early stages of develop-
ment a primary cell divides into a primary cell and a secondary cell, whereas
a secondary cell divides into two secondary cells or into a secondary cell and
a tertiary cell. Lindenmayer modeled this developmental process, represent-
ing cells as rectangles in the plane and defining the following L-system:

A = { a, b, c, d, e, f, g, h, i, j, k, l,m,D,R }

4.2 Rewriting Systems 275

Figure 4.3 The graphical representation of the first seven rewriting steps modeling
the development of a moss leaf using the L-system proposed by Lindenmayer (1975).
The final result has the same topology of the leaf cells shown in figure 4.2, with rect-
angles marked with the letters a and b (light shading) representing cells of type I ,
rectangles marked with the letter g (dark shading) representing cells of type III ,
and rectangles marked with other letters (intermediate shading) representing cells of
type II .

ω = a

π =

⎧⎪⎪⎨
⎪⎪⎩

a → cR b , b → a D i , c → d , d → e D g

e → f , f → hR h , g → g , h → m

i → j , j → g R k , k → l D l , l → j

m → f D g

⎫⎪⎪⎬
⎪⎪⎭

The lowercase symbols in the alphabet represent cell states. The D and
R symbols represent the direction in the plane (down or right) along which
the rectangles that represent the cells divide, as illustrated in figure 4.3. Fig-

276 4 Developmental Systems

Figure 4.4 A schematic representation of the graphics interpretation of L-systems.
The developmental process defined by the L-system produces a string of symbols as
a result of the rewriting rules acting recursively on the L-system axiom. The graphic
interpreter transforms the string of symbols into a geometric structure.

ure 4.3 shows the first steps of the simulated leaf developmental process de-
scribed by this L-system. Comparing figure 4.3 with figure 4.2 reveals that
the symbols a and b represent two states of primary cells, the symbol g stands
for tertiary cells, and the other lowercase symbols of the alphabet represent
different states of secondary cells.

4.2.2 Showing the Result: Turtle Graphics Interpretation

In the examples considered above, most of the symbols appearing in the al-
phabet represent cells of the developing organisms in various states. One can
thus easily see the correspondence between the steps of the developmental
process generated by the L-system and the phases of the development of the
organs of a multicellular organism. It was soon realized that the potential of
L-systems for the description of structures can be further increased by aban-
doning the direct correspondence between symbols and cells. The idea is to
consider a more abstract interpretation of strings of symbols as sequences
of drawing instructions, typically in a two- or three-dimensional Euclidean
space. In other words, the strings of symbols generated by the operation of
the L-system are no longer a direct representation of the structures but must
be first interpreted by a suitably defined graphics system (figure 4.4).

The most popular implementation of the idea of a graphics interpreta-
tion for the strings generated by L-systems is the so-called turtle interpreta-TURTLE

tion (Prusinkiewicz 1986; Prusinkiewicz and Lindenmayer 1990). In its two-
dimensional realization, the turtle represents a drawing tool in the Euclidean
plane. The turtle has a position represented by the Cartesian coordinates (x, y)
and an orientation represented by an angle α that specifies the heading relative
to a reference direction. The turtle is assigned an initial position (x0, y0), an

4.2 Rewriting Systems 277

Figure 4.5 The two-dimensional turtle graphics interpretation of the symbols F , f ,
+, and − of an L-system using an angle increment δ = 90◦.

initial heading αo, and two parameters: the step length d and the angle incre-
ment δ. Given a string generated by an L-system, the turtle interprets the
following four symbols as commands (figure 4.5):

F Move forward by a step while drawing a line.

f Move forward by a step without drawing a line.

+ Turn left by an angle δ.

- Turn right by an angle δ.

All other symbols appearing in the string are ignored by the turtle; this per-
mits the use of auxiliary symbols that help define the growth process without
interfering with the graphical interpretation. When a word generated by an
L-system is processed by the turtle interpreter, it is transformed into a draw-
ing, as illustrated in figure 4.6. Note that the turtle interpreter produces a
many-to-one mapping from words to geometric structures. For example, the
sequence of symbols +− turns the turtle to the left and then to the right, leav-
ing the position and heading of the turtle unchanged and without producing
any drawing. Consequently, two words that differ only on a substring of
this kind produce the same drawing when processed by the turtle graphics
interpreter.

The turtle interpretation can be easily extended to the three-dimensional
Euclidean space (Abelson and diSessa 1981; C. Jacob 2001). The position
is now represented by three Cartesian coordinates (x, y, z). The orientation

278 4 Developmental Systems

Figure 4.6 An example of drawing produced by interpreting the strings of symbols
FF − FFF − F − FF + F − F + f f F + FFF + F + FFF with the turtle graphics
interpreter. The step length d corresponds to the step size of the background grid,
and the angle increment is δ = 90◦.

of the turtle is defined by three orthogonal vectors h, l, and u specifying
the heading, left direction, and up direction of the turtle. The set of symbols
interpreted by the turtle as commands is extended as follows:

F Move forward by a step while drawing a line.

f Move forward by a step without drawing a line.

U Turn left by an angle δ.

u Turn right by an angle δ.

L Pitch down by an angle δ.

l Pitch up by an angle δ.

H Roll left by an angle δ.

h Roll right by an angle δ.

Note that the 2D and 3D turtle interpreters described above are just two
examples of the turtle system for the graphics interpretation of the strings

4.2 Rewriting Systems 279

produced by L-systems. More sophisticated drawings can be obtained by
expanding the list of drawing commands, for example, to include lines of
different thickness, color, dashes, and so on. In other words, apart from the
existence of a common subset of symbols, the turtle system that interprets
graphically the strings of symbols is independent of the L-system that pro-
duced the strings. Different graphical interpretations with different meaning
and different graphical sophistication can be applied to the same L-system,
producing different geometric structures.

One of the most popular applications of the turtle graphics interpretation
of L-systems is the generation of fractal structures. Fractals are geometric
structures that exhibit some degree of self-similarity across a large range of
scales (see box 4.1) (Mandelbrot 1982; Peitgen and Saupe 1988; Avnir et al.
1998). Fractals can be typically defined in terms of the recursive applica-
tion of a mathematical rule such as, for example, a geometric rewriting rule.
For this reason the combination of the rewriting properties of L-systems and
the geometric rendering of the turtle interpretation is ideally suited for the
description of fractal structures. Figure 4.7 shows the first steps of the con-
struction of the fractal curve known as the Koch curve. The sequence of strings
defining the curve are generated by the following L-system:

A = {F, +, −}
ω = F

π = {F → F + F −−F + F }

which results in the following sequence of strings:

ω : F

↓
s1 : F +F−−F +F

↓
s2 : F +F−−F +F +F +F−−F +F−−F +F−−F +F +F +F−−F +F

↓
s3 : . . .

To transform the resulting sequence of strings into the Koch curve, the two-
dimensional turtle is given a horizontal initial heading and an angle incre-
ment δ = 60◦. The step length d is not specified because it is assumed that
the drawing is rescaled in order to keep fixed its horizontal width. In the
case of the Koch curve this can be obtained by dividing by three the step
length at each iteration. Note that, contrary to this particular example, given

280 4 Developmental Systems

axiom

step 1

step 2

step 3

step 4

step 5

Figure 4.7 The first five steps of the development of the Koch fractal curve produced
by the L-system described in the text, followed by the turtle graphics interpretation
with angle increment δ = 60◦ and rescaling the graph at each iteration.

an arbitrary L-system there is in general no way to derive analytically from
the L-system the scaling factor that is required to keep fixed the scale of the
whole drawing (Peitgen et al. 1992). The solution is in general to build the
drawing using a fixed step length and then to rescale it.

4.2 Rewriting Systems 281

4.2.3 Circuits and Networks: Graph Interpretation of L-Systems

The turtle graphics interpretation of L-systems is quite powerful, as illus-
trated by the example above and by those that will be presented later. How-
ever, it is not very well suited to the definition of graphs containing many
closed paths, such as networks and circuits. The reason is that the turtle inter-
preter puts on the user the burden of ensuring that the sequence of drawing
commands corresponds to a closed path. To transform the sequences of sym-
bols produced by an L-system into a network structure it is therefore better
to rely on interpreters that are especially tailored to that kind of structure.
An example is provided by the graph interpretation of L-systems proposed
by Boers and Sprinkhuizen-Kuyper (2001). In the graph interpretation sys-
tem the symbols appearing in the L-system alphabet A are divided into two
subsets N and L. The set N is used to represent the nodes of the network and
is in general a set of alphabetic characters. The set L is used to represent the
links between the nodes and is a subset of the set of integer numbers. The
words generated by an L-system for graph interpretation must be structured
as a sequence of blocks composed by an element of N followed by one or
more elements of L.

An example will clarify the actual working of this system (figure 4.8). The
word

A 2 3 B − 1 C − 1 2 D 0 1 E − 4

is interpreted as a network whose nodes are denoted by the uppercase al-
phabetic characters A,B, C, D, E. In order to connect the nodes, they are
put in a linear list according to the order in which they appear in the word,
as illustrated in figure 4.8a). A number l appearing in the list of elements of
L immediately after the symbol for a node denotes a directed link from that
node to a node having distance l from it on the right or on the left, according
to the sign of l. A value l = 0 corresponds to a node self-connection. Note
that with this simple interpretation, the numbers that can appear after a node
are constrained to correspond to the position of actual nodes. To simplify the
definition of the L-system production rules, additional interpretation rules
can be specified. For example, numbers pointing to node positions beyond
the actual list of nodes can be truncated to the boundaries of the list, or they
can be interpreted as links to fixed input and output nodes, or they can be
folded within the list by evaluating the remainder of the absolute position
modulo the list length. One can also specify constraints on the connectivity
by specifying suitably the set L. For example, one can limit the connection to

282 4 Developmental Systems

Figure 4.8 The network produced by the graph interpretation of the string of sym-
bols A 2 3 B − 1 C − 1 2 D 0 1 E − 4. a) The nodes are ordered linearly to permit
the interpretation of the numbers as specifying the relative position of the nodes con-
nected by a link. b) Once built, the network can be redrawn for clarity removing the
linear ordering of the nodes.

forward nodes by admitting only positive integers in L. Note that the graph
interpretation of the word produced by the L-system is very similar to that
used by Cartesian genetic programming (J.F. Miller et al. 2000) to describe
electronic circuits (see chapter 1).

4.2.4 Plants, Branches, and Subnetworks: Bracketed L-Systems

Besides fractals, a very popular application of the combination of L-systems
and turtle graphics interpretation is the modeling of plants. The reason is
that many plants have a remarkable degree of self-similarity between their
parts (see box 4.1). For example, branches growing from the main trunk of
a tree (called first-order branches) may have the same structure as the whole
tree, and the same property may hold recursively for higher-order branches.
Thus, we could use L-systems to define a developmental process that realizes

4.2 Rewriting Systems 283

axiom step 1 step 2 step 3 step 4

(a)

(b)

Figure 4.9 The first four steps of the development of two plant-like structures using
the bracketed L-systems described in the text.

this kind of self-similarity, as we did for the fractal structures considered
previously.

At first sight, to realize this goal we could use the turtle-based graphic
system introduced above. However, that simple set of drawing commands
is not suited to the production of branching structures. The problem lies in
the necessity to reposition the turtle at the base of a branch after the drawing
of the branch itself, in order to proceed with the drawing of the structure.
An elegant solution consists in the use of bracketed L-systems. A bracketed L-
system is an L-system whose alphabet includes the following two additional
symbols used to save and restore the state of the turtle.

[Save the current state of the turtle, that is, the turtle position and orienta-
tion.

] Restore the state of the turtle using the last saved state.

284 4 Developmental Systems

In other words, the [symbol saves the current state of the turtle in a last-in,
first-out memory, and the] symbol retrieves the state from the memory. In
the parlance of computer systems, the bracket symbols push and pop the
turtle state to and from a stack.

Figure 4.9 (a) shows the first steps of the development of a plant-like struc-
ture generated by the following bracketed L-system

A = {F, +, −, [,] }
ω = F

π = {F → F [+F]F [−F [+F][−F]]F }

using a turtle interpretation with an angle increment δ = 29◦. Figure 4.9 (b)
shows the first steps of the development of a plant-like structure generated
by the bracketed L-system

A = {F, +, −, [,] }
ω = F

π = {F → F [+F [+F] − F][−F]F }

using a turtle interpretation with an angle increment δ = 21◦. These figures
show that it is possible to use bracketed L-systems to generate structures
that look like different kinds of plants. The realism of the result can be still
improved, including production rules for the generation of leaves and using
sophisticated graphics techniques that add texture and color to the generated
structures (Prusinkiewicz and Lindenmayer 1990).

Bracketed L-systems can be also used in conjunction with the graph inter-
pretation to define hierarchically structured and modular networks (Boers and
Sprinkhuizen-Kuyper 2001). A sequence of symbols within brackets is in-
terpreted as a subnetwork whose depth in the hierarchy is determined by
the number of bracket pairs that enclose the symbols corresponding to the
subnetwork. A subnetwork is seen as a monolithic node from the point of
view of other nodes and subnetworks at the same level in the hierarchy. This
requires a rule to transform inputs and outputs to a subnetwork into inputs
and outputs to the actual subnetwork nodes. There are different ways to
define this rule (Boers and Sprinkhuizen-Kuyper 2001). For example, the in-
puts to a subnetwork can be routed to all the subnetwork nodes that have
no inputs within the subnetwork, with a corresponding rule for the outputs.
Figure 4.10 shows the development of a network obtained applying this rule
to the following bracketed L-system:

4.2 Rewriting Systems 285

Figure 4.10 The first two steps of the development of the network produced by the
graph interpretation of the strings generated by the bracketed L-system described in
the text. The dotted lines enclose the subnetworks defined by the brackets appearing
in the strings.

A = {A, B, 1, −2, [,] }
ω = A

π = {A → B 1 [AB] 1 B − 2 }

286 4 Developmental Systems

4.2.5 Variations on a Theme: Stochastic L-Systems

One of the characteristics of the systems considered so far is that they are
deterministic. A deterministic L-system uses production rules that always re-DETERMINISTIC

L-SYSTEM place a given symbol with the same string. Thus, for a given axiom the
rewriting process of a deterministic L-system always produces the same se-
quence of strings. If the graphic interpretation system is also deterministic it
always transforms a given symbol into the same graphical command. This
means that a deterministic L-system coupled with a deterministic graphic
interpreter always produces the same sequence of geometric structures. The
use of a deterministic system to build, say, a forest of trees for a virtual reality
scene, would produce a very unnatural result composed of many identical
copies of the same structure.

To add some degree of randomness to the geometric structures that are
generated we can operate at the level of the graphic interpreter or at the
level of the L-system (figure 4.4). The effect of adding a limited amount
of randomness to the graphic interpreter alone is to produce structures that
are merely variants of the same topology (Prusinkiewicz and Lindenmayer
1990). The observation of different specimens of real plants belonging to the
same species reveals, however, that in general their topology too varies from
specimen to specimen. This kind of variation is easily obtained by injecting
some randomness at the level of the L-system production rules. A stochasticSTOCHASTIC L-SYSTEM

L-system is an L-system which can associate multiple production rules to a
single symbol of the alphabet. Typically, values of probability summing to
1 are specified for the production rules associated with a symbol, and each
rule is chosen with the given probability.

Figure 4.11 shows a few examples of plant-like structures generated after
four rewriting steps by the following stochastic L-system

A = {F, +, −, [,] }
ω = F

π =

⎧⎨
⎩F →

〈 F [+F]F [−F]F with probability 1
3

F [−F]F [+F]F with probability 1
3

F [−FF − F]F with probability 1
3

⎫⎬
⎭

using a turtle interpretation with an angle increment δ = 29◦. Although
the topology of the plant-like structures shown in figure 4.11 varies, there
is a common underlying theme that makes them appear as belonging to the
same plant species.

4.2 Rewriting Systems 287

Figure 4.11 Different instances of plant-like structures generated using the same
stochastic L-system.

4.2.6 Values and Conditions: Parametric L-Systems

The turtle interpretation system used so far for the transformation of strings
into geometric structures is based on two fixed geometric parameters: the
step length l and the angle increment δ. These two parameters define the
geometric granularity of the structures that can be built by the turtle. In
principle, this is not a limitation because one is free to choose very small val-
ues for the two parameters to describe small details in the system structure.
With this approach, however, systems with structures defined at different
scales require long strings of commands for their description. A more flexi-
ble solution is to add the possibility of having numerical parameters within
the strings processed by the L-system, and the possibility of manipulating
these parameters during the rewriting process. The use of parameters is use-
ful not only to add flexibility to the definition of geometric structures but
also to model biological parameters such as the concentration of chemicals
in a cell, the age of a cell, or the number of divisions that it has undergone
(Lindenmayer 1974).

An L-system of this kind is called a parametric L-system (Prusinkiewicz andPARAMETRIC L-SYSTEM

Lindenmayer 1990). In a parametric L-system, the symbol appearing on the
left side of a production rule is followed by a list of parameters enclosed
within a parenthesis. The parameters can be formal parameters belonging
to a set X , or actual numeric or symbolic values. Examples of parametric
production rules are

a(x) → a(x + 1) b(x − 1)

288 4 Developmental Systems

and

a(x, y) → a(x) b(y)

where x and y belong to the set X of formal parameters. In applying the pro-
duction rule, the actual parameters appearing in the word that is rewritten
are substituted for the formal parameters appearing in the definition of the
rule. An additional degree of flexibility is obtained by admitting conditions
within the production rules, as in

a(x) : x > 1 → a(x + 1) b(x − 1)

where it is stipulated that the production rule must be applied only if the
condition stated between the symbols “:” and “→” is true for the actual value
of the parameter x. Note that the set of production rules of a parametric L-
system can mix nonparametric rules and parametric rules.

When we use a parametric L-system in conjunction with a turtle inter-
preter, the definition of the latter must be extended to accommodate the pos-
sibility of using the parameters. For example, the commands of a parametric
turtle interpreter for the Euclidean plane can be defined as follows:

F(x) Move forward by a step of length x while drawing a line.

f(x) Move forward by a step of length x without drawing a line.

+(x) Turn left by an angle x.

-(x) Turn right by an angle x.

Parametric and nonparametric symbols corresponding to drawing com-
mands can be allowed to mix by specifying that the default values l of step
length and δ of angle increment must be used in the absence of an explicit
parameter. Using this parametric turtle interpreter, the developmental steps
for the construction of the self-rescaling Koch curve shown in figure 4.7 can
be defined by the following parametric L-system:

A = {F, +, − , (,) }
X = {x}
ω = F (1)

π = {F (x) → F (
x

3
) + F (

x

3
) −−F (

x

3
) + F (

x

3
) }

given a horizontal initial heading for the turtle, and an angle increment δ = 60◦.

4.2 Rewriting Systems 289

4.2.7 Signals and Regulation: Context-Sensitive L-Systems

In the L-systems that we have considered so far the production rules specify
how a symbol is replaced by a string of symbols independently of the sym-
bols that precede and follow it in the string that is being rewritten. In other
words, the replacement does not take into account the context in which a
symbol appears. If we go back to the biological developmental processes that
originally inspired Lindenmayer’s definition of L-systems, the independence
of the symbol replacement from its context corresponds to the independence
of the fate of a cell from the context in which the cell is placed. This means
that the developmental future of a cell is determined only by its current state
and does not contemplate the possibility of interactions with other cells.

In biology, embryos where the development of cells is determined only by
the current state are called mosaic embryos, whereas embryos whose devel-MOSAIC AND

REGULATIVE EMBRYOS opment relies on the interaction between cells are called regulative embryos
(Wolpert 2003). The problem with a mosaic embryo is that all the information
for the structuring of the system must be transmitted through inheritance
from a cell to its descendants, and there is no way to sense and correct devel-
opmental errors and anomalies. It is therefore not surprising that, although
there exist some biological embryos that develop for certain periods of time
as mosaic embryos, all known biological developmental processes are based
at least in part on the interaction between the cells. In other words, a purely
mosaic embryo is merely an abstraction without correspondence in actual
biological development (Lawrence and Levine 2006).

It is therefore reasonable to consider the possibility of extending L-systems
to take into account during the rewriting process the context in which the
symbols appear. L-systems extended in this way are called context-sensitive
L-systems. Correspondingly, the L-systems that we have considered so far,
which do not take context into account, are called context-free L-systems.CONTEXT-FREE

L-SYSTEMS To specify a context-sensitive L-system we just need to extend the defi-
nition of the production rules from isolated symbols to symbols in a context
within a string (Prusinkiewicz and Lindenmayer 1990). The context is consti-
tuted by one or more symbols that must be adjacent to the left or to the right.
To define context-sensitive production rules we use the additional symbol �
to delimit the left context and the symbol � to delimit the right context. For
example, the production rule

b � a → g

290 4 Developmental Systems

specifies that the predecessor a is replaced by the successor g only if it is
preceded by the symbol b, that is, if the left context of the symbol a is the
symbol b. The production rule

b � a � c → g

specifies that the predecessor a is replaced by the successor g only if its left
context is the symbol b and its right context is the symbol c. In general, we can
define production rules that take into account several symbols on the right
and several symbols on the left. In defining a context-sensitive L-system we
can mix rules that do not depend on the context and rules that depend on
it. We can also define several production rules of different context specificity
for a given symbol, with the provision that more specific rules are tried first,
until a matching rule is found.

The definition of a context-sensitive production rule can be extended to
bracketed L-systems. In verifying the matching of a context-sensitive rule
that contains brackets we must take into account the fact that two symbols
must be considered adjacent if they are separated by a string enclosed by
brackets. For example, the production rule

b � a � c [d] e → g

applies to the symbol a contained in the string

ub [v [w x]]a c [d y] e z

(where the symbols appearing in the production rules are represented in
boldface for clarity) because in this string the symbol a must be considered
adjacent to the symbol b on the left and to the strings c d and c e on the right.

As said above, the motivation for the introduction of context sensitivity is
the desire to model the interaction between cells and elements that take place
in biological development. We can verify that, indeed, context-sensitive L-
systems permit the exchange of signals between adjacent elements of a struc-
ture. Concatenating a series of local exchanges one can obtain the long-range
propagation of signals. Figure 4.12 shows an example of long-range signal
propagation across a branching structure defined by the following context-
sensitive L-system:

A = {F , S , Q ,+, −, [,] }
ω = S [−F [−F] F] F [+F [+F] F] F [−F] F

π =
{

S � F → S, ignore+,−
S → Q

}

4.2 Rewriting Systems 291

Figure 4.12 An example of signal propagation across a structure defined through
a context-sensitive L-system. The reception of the signal by an element leads to the
change of state of the element, represented here by thick black lines. After reception
of the signal, the element is set to a quiescent state, represented here by thick gray
lines.

In this simple example the geometric structure is defined from the beginning
by the axiom ω, and the reception of the signal by an element is represented
by the change of state of the element from F to S. After reception of the
signal, the element is switched to a quiescent state Q. The “ignore +, −”
clause associated with the S � F → S production rule means that the + and
− symbols must be disregarded while determining the context of the symbol
F . This clause permits the propagation of the signal to the whole structure.
Without this clause the signal in figure 4.12 would propagate only vertically,
leaving out the lateral branches.

Context-sensitive production rules can be also extended to parametric L-
systems. This gives additional flexibility to the definition of the exchange
of information between the parts of a developing system. For example, a
production rule such as

b(y) � a(x) � c(z) → g(x + y + z)

realizes the transmission to the symbol a of the information of the parameters
y and z associated with the symbols that are adjacent to a.

An example of the biological modeling using context-sensitive parametric
L-systems is described by Lindenmayer (1974). Like the one considered in
section 4.2.1, this example concerns the modeling of the development fila-
ments of bacteria. However, in addition to the state of the cells, we now take

292 4 Developmental Systems

into account the concentration of a chemical acting as inhibitor and the age
of the cell. The production rules of the L-system are

π =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(s, y, v, V) � c(a, x, u, U) � c(t, z, w, W) : x > 3, u < U →
c(a, y+z−2x

4 , u + 1, U)

c(s, y, v, V) � c(a, x, u, U) � c(t, z, w, W) : x > 3, u = U →
c(a, y+z−2x

4 , 0, rnd(6000, 600))c(a, y+z−2x
4 , 0, rnd(6000, 600))

c(a, x, u, U) : x ≤ 3 → c(b, 1000, 0, 0)

c(b, 1000, 0, 0) → c(b, 1000, 0, 0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The sequence c(a, x, u, U) stands for a cell in state a, with a concentration
x of inhibitor, having age u, and maximum age U . The first production
rule states that a cell in state a with an internal concentration of inhibitor
above a threshold t = 3 and below maximum age will increase its age and
update its inhibitor concentration according to the formula y+z−2x

4 This for-
mula represents the diffusion of the inhibitor across the three adjacent cells
that constitute the target and the context of the production rule (at each time
step one-fourth of the inhibitor contained in a cell diffuses in an adjacent cell,
so that the center cell c(a, x, u, U) loses a quantity proportional to 2x

4 to the
adjacent cells, and receives from them a quantity proportional to y+z

4). The
second production rule states that if a cell attains its maximum age with a
concentration of inhibitor above the threshold, it divides into two new cells
of state a and age zero. The maximum age of the newly formed cells is set to
a random number with average 6000 and standard deviation 600. The third
production rule states that a cell whose concentration of inhibitor goes below
the threshold goes to a steady state b in which it does not age and maintains
a constant concentration of inhibitor, as revealed by the fourth production
rule.

According to Lindenmayer (1974) these production rules capture well the
development of filaments of a class of blue-green algae, as described in
(Baker and Herman 1972a,b). From a more general perspective, the addi-
tional interest of this example is that it illustrates how parametric context-
sensitive L-systems facilitate the modeling of important aspects of the de-
velopmental processes such as self-limitation. This example suggests that
there are at least two ways to implement developmental self-limitation in the
production rules, one based on a parameter used as a counter that is decre-

4.2 Rewriting Systems 293

mented by the rewriting process, and the other by a threshold mechanism
linked to a diffusion process based on parametric context-sensitivity.

4.2.8 Remarks on Rewriting Systems

The overview of rewriting systems presented in the previous sections has
shown how it is possible to use them to define and study some abstract
models of development. The high level of abstraction of the models means
that one must accept some limitations in exchange for the simplicity of the
model. In rewriting systems the developmental process proceeds at discrete
time steps and thus one cannot observe a continuous growth process. How-
ever, by defining production rules that represent small developmental steps,
this intrinsic discreteness is of limited impact. A more serious limitation is
that there is no simple way to represent the motion of cells across the devel-
oping structure. The observation of biological development reveals instead
that in the first phases of the developmental process a crucial role is played
by the migration of the cells that compose the embryo. It is true that we
could define in an L-system a multistage process mimicking the motion of a
symbol across the developing structure, by deleting a symbol in one place,
propagating a signal across the structure, and introducing a new symbol at
the signal destination. However, this definition would appear quite artificial
and difficult to implement in a general way. In the end, cell migration dur-
ing development is better modeled using less abstract developmental models
discussed below. Finally, rewriting systems and L-systems in particular were
originally conceived as a means to describe existing developmental processes
producing self-similar structures. Thus, they were not intended to be easy to
synthesize in the absence of an explicit model, and we cannot expect this
kind of description to be particularly evolvable. Nonetheless, as discussed
later, several examples of applications of rewriting systems in conjunction
with artificial evolution exist in the literature.

It is interesting to compare L-systems, as originally conceived by Linden-REWRITING SYSTEMS

VS. CELLULAR SYSTEMS mayer, to other cellular systems, such as the cellular automata described in
chapter 2. The developmental process illustrated in figure 4.1 can resemble
the structure of one-dimensional cellular automata. More precisely, the cel-
lular structure, the state of the cells, and the production rules of L-systems
can recall the notions of cellular space, cell state, and the transition rule of
cellular automata. There is, however, a fundamental difference. In cellular
automata the structure of the cellular space is fixed and the cells cannot be
created or removed. On the contrary, the process described by the L-system

294 4 Developmental Systems

Box 4.1: Self-similarity
The reason L-systems and fractals are well suited to the repre-

sentation of many biological and physical structures is the fact that
these structures exhibit a certain degree of self-similarity across a non-
negligible range of scales. From the perspective of scientists this ob-
servation is just the beginning of the investigation, the next step being
the attempt to explain why the observed self-similarity arises at all. For
nonbiological phenomena the explanation must be searched in the self-
organization across different spatial and temporal scales produced by
the operation of physical laws (Gouyet 1996; Ball 1999). For biological
systems, besides the possibilities and the constraints provided by the
laws of physics, the notion of adaptation must be brought into the pic-
ture. This means that we must investigate the possibility that the use of
self-similar structures provides some kind of evolutionary advantage
to the organism.

Elsewhere in this chapter we discuss the possible advantages of
achieving a compact genetic representation of the phenotype using a
recursive developmental representation. This is a first possible evolu-
tionary reason for the self-similarity observed in biological organisms.
It is very likely, however, that there are additional reasons related to the
mechanical and thermodynamic performance of self-similar structures.
This aspect assumes a great practical importance because it could lead
to the synthesis of better artificial systems.

When these artificial systems are generated by automatic synthesis
tools such as artificial evolution, one can assume the functional useful-
ness of self-similar structures as a working hypothesis. In this case, one
must just ensure that the genotype-to-phenotype map provides the pos-
sibility of generating self-similar structures (without imposing it), and
that the evolutionary process has the possibility of accessing them. The
evidence of biological organisms and the examples of artificial develop-
mental systems described in this chapter show that the use of a suitable
developmental genetic description can endow the evolutionary process
with both these possibilities.

When the artificial systems are not automatically synthesized, self-
similar structures must be explicitly designed into the systems and,
apart from aesthetic considerations, this is justified only if it can be as-
certained that this choice benefits the system performance. An example
of self-similar structures derived in this way is those designed using
the constructal theory developed by Bejan (1997, 2000). The constructal
theory deduces the presence of self-similar structures in (cont.)

4.2 Rewriting Systems 295

Box 4.1 (continued)
biological and artificial systems as a consequence of the optimization of
the flows required by the operation of the systems, given the physical
constraints on the materials and shapes that can be used in their con-
struction. For example, the structure of the bronchial tree in the lungs
is derived from the constructal theory imposing the requirement of op-
timal oxygen distribution and carbon dioxide removal, given the con-
straints imposed by the physical mechanisms available for the transport
and exchange of fluids (Reis et al. 2004; Bejan 2000).

Note, incidentally, that some critics raised objections to the ac-
tual performance of the constructal theory (Ghodoossi 2004; Kuddusi
and Eǧrican 2008). What interests us here, however, is that the self-
similarity of the structures generated by the constructal theory is in part
the result of the hierarchical design strategy on which it is based, and
this reduces the explanatory power of the theory with respect to the
question of the origin of self-similarity in biological organisms.

This limitation can be understood considering that the classic design
of a structure via an optimization problem requires the establishment
of constraints that make the problem mathematically well posed and
tractable. For example, one cannot set up a mathematical optimiza-
tion problem for the optimal oxygen distribution and carbon dioxide
removal in the space of all the possible geometrical shapes, because
this space is too vaguely defined. Thus, the hierarchical assumptions
of constructal theory appear as a reasonable way to define the range
of the search. In this light, the best we can hope for is probably a syn-
thesis where the search space encompasses the largest possible variety
of system structures. Artificial evolutionary methods coupled with a
suitable genetic representation like the developmental representations
described in this chapter can be seen as a way to realize this objective.

is crucially based on the possibility of inserting or removing cells from the ex-
isting structure. Although a cellular automaton that mimics this property on
a fixed cellular space could be conceived, its specification is in general more
complicated than the specification of an L-system realizing an equivalent de-
velopment. This fact is illustrated by the complexity of the self-reproducing
cellular automaton conceived by John von Neumann and described in chap-
ter 2. Note that, despite the greater difficulty of defining a construction pro-
cess in a cellular automaton, von Neumann’s choice of using a cellular au-

296 4 Developmental Systems

tomaton rather than a rewriting system is justified by his desire to specify a
system that could potentially evolve and complexify in a given artificial uni-
verse. The two-dimensional cellular space and relatively simple transition
rules of von Neumann’s construction provide such an artificial universe. It
would be quite difficult to realize the same in the more rarefied context of an
L-system, where a natural notion of space-time backcloth is absent.

4.3 Synthesis of Developmental Systems

A fundamental problem with the application of the developmental approach
to the description and design of artificial systems is the definition of the de-
velopmental system. In some cases we have some insight into the nature
of the developmental rules, for example, because these rules are actually
observed in an existing biological organism. This was the case for the two
examples given above of L-systems defined by Lindenmayer for the model-
ing of filaments of bacteria. Given the biologist’s description of the cell states
and developmental rules, Lindenmayer was able to abstract them in terms
of L-system alphabet and production rules. In this case, assuming correct-
ness of the biological model, the verification of the adequacy of the L-system
developmental model requires just the verification of the correspondence be-
tween the elements and rules of the two models. A nonbiological instance
of this scenario is given by the L-system defining the development of the
Koch curve shown in figure 4.7. In that case the mathematical definition of
the Koch curve is already given in terms of recursive rules and thus we need
only to translate those rules into the language of L-systems and of their turtle
interpretation.

The problem becomes much more difficult if what is specified is the de-
sired developmental outcome rather than the details of the developmental
process. The synthesis of the developmental system realizing a given devel-
opmental outcome constitutes what is called the inference problem (or inverseINFERENCE PROBLEM

problem) of developmental systems. The difficulty with the inference prob-
lem stems from the complex relationship that exists in general between the
developmental description and the outcome of the developmental process.
We met a similar problem with the definition of the state set and transition
rule of cellular automata in chapter 2. For both developmental systems and
cellular systems the rules are local and their consequences are global. Given
the rules it is easy to compute their consequences but it is in general diffi-

4.3 Synthesis of Developmental Systems 297

cult to discover the rules required to obtain a given global outcome. As for
cellular systems, there is in general no systematic way to transform global
requirements into a set of developmental system specifications.

To solve the inference problem for developmental systems we can envis-
age a trial-and-error procedure. Given an initial guess of the developmental
system properties, we can evaluate its consequences and compare them with
the desired outcome. If the actual outcome is judged unsatisfactory, we go
back to the first step and modify the definition of the developmental system.
In some cases this procedure can be executed by hand, typically, because the
determination of a good initial guess is easy or because the specification of
the outcome allows some freedom in the outcome. An example of the latter
type is given by the examples of plant development shown in figure 4.9 and
figure 4.11. In these cases what we wanted to obtain was just a reasonably
realistic plant-like appearance of the developmental outcome. The exploita-
tion of the potential of definition of self-similar structures was thus sufficient
to achieve a satisfying result. We did not even check if the result is botan-
ically plausible in terms, say, of the relative position of the branches. This
kind of loose specification of the developmental outcome is a situation often
encountered in graphics modeling applications of developmental systems.

The search by hand using the iterative procedure described above is not
feasible in most other cases, for example, when the required matching be-
tween the actual developmental outcome is strict, or when the target is not
specified directly in terms of structure of the developmental outcome but,
rather, in terms of some functionality produced by it. An example of this lat-
ter case is encountered when a developmental system is used to build a con-
trol structure such as an artificial neural network for a robot. In these cases
we need a tool for the computer-based automatic synthesis of the develop-
mental system. Not surprisingly, the most popular approach to the automatic
synthesis of developmental systems is based on the use of evolutionary al-
gorithms. This is due in part to the great representational flexibility of evolu-
tionary algorithms, which permits the representation and manipulation of a
large variety of developmental specifications. However, the relationship be-
tween artificial developmental systems and artificial evolutionary systems is
complex and many-sided, and cannot be reduced to the use of evolution as a
tool to synthesize developmental systems. This parallels the growing appre-
ciation of the role of development in biological evolution. In the next section
we will briefly describe some of the current views on the relations between
development and evolution, and how they affect artificial evolution.

298 4 Developmental Systems

4.4 Evolution and Development

As mentioned in chapter 1, the generation of phenotypic variation (or phe-
notypic diversity) in the individuals of a population is one of the pillars on
which the theory of evolution is founded. However, not all phenotypic vari-
ation that is generated in the offspring is equally useful. For evolution to
proceed the phenotypic variation must contain some novelty with respect
to the parent population, and must have the potential of being selected and
to spread through the population. If these conditions are not verified, the
evolutionary process stalls.

In considering natural evolution it is often assumed that the genetic mu-
tations and the resulting genotypic population diversity produce the right
kind and amount of phenotypic variation in the population. The validity of
this assumption is far from obvious. This fact is well-known to the users of
artificial evolutionary systems, who often observe the absence of phenotypic
evolution even though the genetic operators produce abundant genotypic
and phenotypic diversity in the offspring. To ensure the success of artificial
evolution, that is, to ensure evolvability in the system, it is known that one
must choose the right kind of genotype, the right kind of genetic operators,
and the right kind of genotype-to-phenotype mapping.

Biologists are also aware of the unwarrantedness of the assumption that
the generation of genetic variation is sufficient per se to guarantee the pro-
gression of evolution. They have thus begun to investigate the mechanism
that generates the variation that propels the evolution of biological organ-
isms. For multicellular organisms, one of the most promising candidates for
this role is the process of development itself. This has led to the emergence of
a new discipline called evolutionary developmental biology (or evo-devo), whichEVOLUTIONARY

DEVELOPMENTAL

BIOLOGY
studies the role of development in the generation of the selectable variation
of organisms which leads, through the action of natural selection, to the gen-
eration of evolutionary changes in phenotypes (G.P. Wagner 2000, 2001; G.P.
Wagner and Larsson 2003).

From the point of view of artificial evolutionary and developmental sys-
tems there are two main messages to be gained from the discoveries of evo-
lutionary developmental biology. The first message is that the relationship
of artificial evolution and development is not limited to the possible use of
evolution for the synthesis of a developmental process. On the contrary, the
use of a developmental process can play a crucial role in the realization of
artificial evolutionary systems that display an actual potential for the gener-
ation of complex systems. In other words, development is not just a way to

4.5 Defining Artificial Evolutionary Developmental Systems 299

describe complex systems compactly, but can be instrumental to their effec-
tive automatic synthesis via artificial evolution. The second message stems
from the recent and puzzling discovery of the high degree of conservation of
the basic developmental mechanisms in organisms that appear very different
phenotypically, for example, insects and vertebrates (Wolpert et al. 2007; Ger-
hart and Kirschner 1997). Apparently, natural evolution has discovered just
once a set of developmental mechanisms suitable for the evolution of com-
plex organisms, and thereafter it has just tinkered with these mechanisms. If
natural evolution – which was able to rediscover several times how to build
complex structures like the eye (Land and Fernald 1992) – could not repeat
this feat with developmental mechanisms, we can expect the search for an
evolvable artificial developmental system to be a difficult task.

From this point of view, one of the most intriguing questions of evolution-
ary developmental biology is how the “right” developmental mechanisms
were evolved in the first place. The simplest hypothesis (Kirschner and Ger-
hart 1998, 2005), working at the level of single organisms, is that the basic
mechanisms of development were selected because they contributed to the
robustness of the developmental process to environmental disturbances and
noise (A. Wagner 2005). According to this hypothesis, many of the charac-
teristics that ensure developmental robustness, such as the independence of
modules and the potential of varying in a coordinate way the elements of a
module, would – as a byproduct – also ensure the possibility of generating
selectable novelty. Thus, they would endow the organism with evolvabil-
ity. Of course, evolvability itself can give evolutionary advantages and be
selected, but this can happen only beyond the level of the single organism,
for example, at the level of a line of descent of parents and offspring.

4.5 Defining Artificial Evolutionary Developmental Systems

To simplify the analysis and discussion of artificial evolutionary develop-
mental systems it is useful to classify them in four categories .CLASSIFICATION OF

DEVELOPMENTAL

SYSTEMS 1. Systems where a parameterized developmental process is fully prescribed
by the designer and evolution can thus work only on the choice of the pa-
rameters, which are encoded in the genome. This approach puts on the
designer the whole burden of devising a good developmental process. In
the end, the result in just the evolution of a set of parameters mediated
by a nontrivial hand-designed genotype-to-phenotype map. Since this
approach sidesteps the issue of the evolutionary synthesis of the develop-

300 4 Developmental Systems

mental process, it can be subsumed in those presented in chapter 1 and
will not be consider further below.

2. Systems where the basic mechanisms of the developmental process are
encoded in the genotype and evolved, but their order and number of ap-
plications is fixed and cannot evolve. In general, when this approach is
used the goal is not to achieve evolvability but to search for a develop-
mental system that can produce a given outcome within a given class of
developmental systems. For example, as illustrated by the examples pre-
sented in the next section, this approach can be used to evolve parallel
rewriting systems such as L-systems.

3. Systems where the basic mechanisms of the developmental process are
hand-designed, but their order and number of applications is encoded in
the genome and are subject to evolution. The designer task of choosing
the right basic mechanisms is obviously nontrivial. However, the freedom
given to evolution in combining these mechanisms gives potential access
to a large variety of developmental processes. The typical example of this
kind of approach is given by developmental systems based on genetic
programming, some examples of which will be described below.

4. Systems where some aspects of both the basic mechanisms of the develop-
mental system and of their order and number of applications is encoded in
the genome and can be evolved. These systems can explore a larger space
of developmental systems and have the greatest freedom in the search for
systems displaying a good evolutionary potential. However, the designer
of this kind of system typically is faced with the choice of many low-level
details of the evolutionary environment. Moreover, the second message
gained from the observation of biological systems mentioned in the pre-
vious section warns us that the problem of evolving from scratch a set of
suitable basic developmental mechanisms is presumably very difficult.

This classification can be helpful in the choice of the best kind of artificial
evolutionary developmental systems for a given application. This choice,
however, is still more an art than a science and the suitability of a choice
must be often judged, at least in part, by the results that it is able to generate.
Once a kind of evolutionary developmental system is selected, one has to
chose a genetic representation for it. In general, for a given kind of develop-
mental system there are many possible options for its genetic representation.
The choice of the genetic representation entails also the choice of the genetic

4.6 Evolutionary Rewriting Systems 301

operators that can be applied to it, and influences the exploratory proper-
ties of the evolutionary process. In general, the more abstract and formally
structured the developmental model, the greater the care required to define
the genetic operators so as to ensure that the mutated genome can be still
interpreted as describing a well-defined developmental system.

In the following sections we will present some examples of artificial evolu-
tionary developmental systems. Here we will deal mainly with the problem
of defining the system structure. Later, in chapter 6, we will reconsider some
of these examples and assess them from the point of view of the performance
of the evolved systems. Since the possible combinations of elements compos-
ing an evolutionary developmental system are countless, as are the examples
that can be found in the literature, we consider only some examples that illus-
trate the main issues. Pointers to the literature describing other interesting
examples can be found in the list of suggested readings at the end of the
chapter.

4.6 Evolutionary Rewriting Systems

In this section we describe some examples of the second of the four kinds
of artificial developmental systems listed in the previous section. These are
systems where the basic mechanisms of the developmental process are en-
coded in the genotype and evolved and the modality of their applications
is fixed and cannot evolve. The typical example, which we will consider
throughout this section, is L-systems. In L-systems the basic developmental
mechanism is the rewriting of symbols and, thus, in evolutionary L-systems
it is the rewriting rules that are genetically encoded and evolved. The appli-
cation of the developmental mechanisms is instead fixed and corresponds to
the parallel application of the rewriting rules. For this reason, we need focus
only on the genetic representation of the axiom and of the rewriting rules.

4.6.1 Binary Representation

The simplest approach to the genetic representation of an L-system is the use
a binary strings to encode the elements that define the L-system (Boers and
Sprinkhuizen-Kuyper 2001; C. Jacob 2001). The binary genome is decoded by
dividing it into chunks of fixed length (for example, eight bits) and interpret-
ing these chunks as symbols. A special symbol such as | is chosen as a marker
that delimits the parts of the genome that correspond to the axiom and to the

302 4 Developmental Systems

Figure 4.13 The simple binary genetic representation of L-systems can produce se-
quences of symbols that do not correspond to a valid L-system description. A possi-
ble solution is the implementation of a repair process after the decoding of the binary
string.

production rules. For example, using the ASCII binary representation for the
symbols, the context-sensitive production rule

b � a � c → d

is represented as follows using a binary string:

01100010︸ ︷︷ ︸ 01111100︸ ︷︷ ︸ 01100001︸ ︷︷ ︸ 01111100︸ ︷︷ ︸ 01100011︸ ︷︷ ︸ 01111100︸ ︷︷ ︸ 01100100︸ ︷︷ ︸
↓ ↓ ↓ ↓ ↓ ↓ ↓
b | a | c | d

↓ ↓ ↓ ↓ ↓ ↓ ↓
b � a � c → d

The genetic operators of the evolutionary algorithm, such as mutation and
recombination, will operate directly on the bits of this binary string with-
out concern for its interpretation as high-level symbols. The difficulty in
adopting this simple genetic representation for L-systems is that an arbitrary
binary string is not in general a valid representation of an axiom followed
by a list of production rules. This means that even if we start with a bi-
nary string that is a valid representation of an L-system, the application of

4.6 Evolutionary Rewriting Systems 303

a genetic operator could produce a string that is no longer decodable as an
L-system (figure 4.13).

A first remedy for this problem consists in following the decoding of the
bit string with a phase of repair. The repair transforms into a valid L-system
description the string of symbols that has been originally decoded (figure
4.13). Boers and Sprinkhuizen-Kuyper (2001) have applied this approach
to the evolution of neural network architectures. Their approach is based
on the graph interpretation of L-systems described in section 4.2.3. In their
approach, the L-system describes just the architecture of the neural network,
whereas the values of the network weights are determined by a separate
search algorithm that is performed on the decoded network.

4.6.2 Syntactic Representation

To avoid the complexity of the repair technique described above one can en-
force some constraints on the genetic operators. The constraints must ensure
that a genome that is a valid representation of an L-system remain so after the
action of the genetic operators. The implementation of this approach is fa-
cilitated by the use of a genome composed of high-level symbols rather than
binary symbols. For example, using the symbol | as a marker, the sequence
of symbols a|b|a|c|d is first interpreted as follows:

a | b | a | c | d | . . .

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
a , b � a � c → d , . . .

and then transformed into the following axiom and production rules:

ω = a

π = {b � a � c → d, . . .}

The list of symbols a|b|a|c|d can be used directly as a genome instead of be-
ing first transformed into a binary genome as in the example in the previous
subsection. To ensure the preservation of the genome structure, the separa-
tor symbols that appear in the genome are protected from the action of the
mutation operators (figure 4.14).

This approach corresponds in practice to use as the genome a high-level
syntactically constrained representation of the axiom and production rules of
the L-system. The various elements of the genome need not even be consid-
ered as assembled into a unique string of symbols, since in any case the sepa-
rators are not touched by the genetic operators and the syntactic structure of

304 4 Developmental Systems

Figure 4.14 To circumvent the problem of nonvalid genomes produced by genetic
operators illustrated in figure 4.13, the genetic operators can be constrained so as to
transform a valid L-system representation into another valid representation. In this
case, the separator symbols | appearing in the genome are protected from mutation,
thus preserving the genome decodability. The figure illustrates this approach using
strings of high-level symbols rather than binary strings as the genome. (The protected
symbols are identified here by the shaded background.)

the L-system is always preserved. This is the most straightforward genetic
representation of an L-system and, given the simplicity of its implementa-
tion, is thus also most often used in practice. An example of an application
of this kind of approach is described in (C. Jacob 2001), where it is used to
successfully evolve fractal shapes. The set of genetic operators considered by
Jacob includes mutation, recombination, deletion, and duplication of rules.
The decoded L-system is run for a fixed number of rewriting steps, and the
outcome is interpreted with a turtle graphics system. The resulting geomet-
ric structure is then compared with the desired fractal shape to determine
the fitness of the genome. Escuela et al. (2005) used a similar syntactic rep-
resentation of L-systems to infer evolutionarily the structure of proteins, and
Ochoa (1998) to evolve artificial plant morphologies. A syntactic represen-
tation of parametric L-systems to evolve the morphology of physical objects
such as tables is illustrated in (Hornby and Pollack 2001a) and its extension
to the synthesis of the morphology of robots, called L-robots, is described in
(Hornby and Pollack 2001b; Hornby et al. 2003).

4.6 Evolutionary Rewriting Systems 305

Figure 4.15 An example of rewriting rules for the evolution of a developmental pro-
cess for neural network connectivity proposed by Kitano (1990). The symbol E is the
axiom of the rewriting system.

4.6.3 Example: Matrix Rewriting

Matrix rewriting (Kitano 1990) is one of the first examples of evolution of
neural networks using a syntactic genetic representation for a developmental
system. The aim of matrix rewriting is the evolution of the connectivity of the
network. Once the network connectivity is established, the actual synaptic
weights are determined using a suitable neural network learning algorithm.
Kitano’s system corresponds to an L-system combined with a graphic inter-
preter that transforms the final result into a neural network. Constraints on
the genetic operators ensure that the genome remains decodable as a parallel
self-limiting rewriting system.

In the matrix rewriting system, the set of developmental rules consists of a
collection of matrix rewriting rules as exemplified in figure 4.15. The figure
shows that the rewriting system is based on a hierarchy of rewriting rules.
On top, there is a rule that substitutes the primeval symbol E (the axiom),
which stands for the embryo, with a matrix of uppercase alphabetic char-
acters. Next in the hierarchy, there is a set of rules that substitute matrices
of lowercase alphabetic characters for uppercase alphabetic characters. Fi-
nally, a set of rules substitute matrices of 1s and 0s for lowercase alphabetic
characters. The 1s and 0s are used to represent the presence and absence,
respectively, of a link between the nodes of the evolved network, and thus
there is no further set of rewriting rules below in the hierarchy. Of course,
the user is free to define additional intermediate rewriting steps.

306 4 Developmental Systems

Figure 4.16 The result of the application of the matrix rewriting rules of figure 4.15,
leading to the production of a binary matrix defining the connectivity of a neural
network.

Figure 4.16 shows the result of the application of the three levels of rewrit-
ing rules defined in figure 4.15. The rewriting rules are applied in parallel
and, at the end of the three rewriting steps, the result is a binary matrix. Each
row of the matrix corresponds to a node of the network. A 1 in row i, column
j of this matrix corresponds to a connection from the ith node to the jth node
of the network. Figure 4.17 shows the neural network corresponding to the
connection matrix generated by the rewriting steps of figure 4.16.

In Kitano’s evolutionary system, the rewriting rules are generated by an
evolutionary process. Once the alphabets used at the various hierarchical
levels are defined, we can define a genome that encodes the successor of each
rewriting rule. For example, the rules shown in figure 4.15 can be represented
with the following genome:

AB C D ada a c b b a b a a c a b a d 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0

where, to facilitate its reading, we have inserted a space between groups of
symbols referring to the same production rule. The mutation operator is
defined so as to guarantee the substitution of characters suitable to the level
to which the rule belongs.

Despite the compactness of the representation, it is still unclear if the ma-
trix rewriting approach leads to actual advantages with respect to the direct
encoding. Although Kitano (1990) reported advantages in terms of speed of
convergence of the learning algorithm for the weights, which grew larger as

4.6 Evolutionary Rewriting Systems 307

Figure 4.17 The transformation of the connectivity matrix of figure 4.16 into a neural
network. The presence of a 1 in row i, column j of the connectivity matrix produces
a connection from the ith node to the jth node of the network.

the network size increased, some researchers have questioned the validity of
these claims (Siddiqi and Lucas 1998).

4.6.4 Tree-Based Representation

L-systems can also be genetically encoded using the tree-based representa-
tion described in chapter 1. Koza (1993) used the genetic programming tree-
based representation to evolve L-systems for the turtle graphics interpreter.
The goal of the evolutionary search was a bracketed L-system capable of
drawing a curve matching a given curve. For example, Koza considered as

308 4 Developmental Systems

Figure 4.18 The quadratic Koch island is the fractal curve used as a target for the
evolution of an L-system using a tree-based genetic representation.

target the fractal curve obtained after three rewriting steps using the produc-
tion rule

F → F − F + F + FF − F − F + F

starting from the axiom ω = F + F + F + F and using an angle increment
δ = 90◦ (figure 4.18).

Koza used the following set of terminals (see chapter 1 for a description of
the genetic programming terminology):

T = {F,+,−}

where the symbols have the usual turtle graphics meaning described above,
and the following set of functions:

F = {C, []}

where C is a function that combines its two arguments, and [] is a function
that puts its single argument within brackets. The symbols + and − are
left unchanged during the rewriting process. Thus, F is the only symbol
for which a production rule must be provided. The use of a tree and of the
functions and terminals listed above ensures that the string decoded from the

4.6 Evolutionary Rewriting Systems 309

Figure 4.19 An example of tree encoding of a sequence of symbols. This sequence
can be used as the right side of a context-free production rule. Thus, this structure
can be interpreted as the tree-based genetic representation of a context-free L-system
with the single production rule F → F + FF −− + + + FF − [FF].

tree is always a valid successor for the production rule. Figure 4.19 shows an
example of a tree representing the production rule

F → F + FF −− + + + FF − [FF] .

Note that in this simple case, since the L-system is context-free and there is
only one production rule, we need only encode the successor of the produc-
tion rule.

To compare the structures produced by the evolved L-system with the tar-
get fractal curve, Koza used the following approach. Both the target curve
and the evolved curve were enclosed within their minimal containing square.
The containing square was divided into a regular grid of 10,000 cells. The
similarity of the two curves was defined as the number of cells in which the
behavior of the two curves did not differ. This discrepancy was used as the
fitness function, maximized by the evolutionary search. The evolutionary al-
gorithm was able to generate a curve that perfectly matches the target curve.
Figure 4.20 shows an example of an individual generated at an intermediate
step of the evolutionary process. Eventually, the evolutionary process found
the production rule

F → F − F + F −− + + + FF − F [−F] − F + F

which gives a curve that achieves a perfect match with the target curve. The
resulting rule does not correspond formally to the production rule F → F −
F + F + FF − F − F + F used to generated the target curve. However, the
sequence −−++ can be canceled because it does not draw any line or change

310 4 Developmental Systems

Figure 4.20 An intermediate result produced by the evolutionary process aimed at
the generation of an L-system for the quadratic Koch island described in (Koza 1993).
This curve in black corresponds to the production rule F → [F]F −F +F −−+++
FF − [F][[−F]F +−F +−−F]FFFF . The target curve is shown in the background
for comparison.

the turtle status, and the sequence [-F]-F draws twice the same line and thus
corresponds in practice to the sole sequence −F . With these simplifications
the evolved production rule corresponds exactly to the production rule used
to generated the target curve.

4.7 Evolutionary Developmental Programs

In this section we describe some examples of the third of the four kinds
of artificial developmental systems listed above. These are systems where
the basic mechanisms of the developmental process are fixed and cannot
evolve, but the modality of their application is encoded in the genome and
can evolve. We can interpret the fixed developmental mechanisms used by
these systems as the basic instructions of a programming language, so that
what is evolved can be seen as a developmental program based on these
instructions. The tree-based representations discussed in chapter 1 are the
most popular genetic representations for programs. Thus, typically, evolu-

4.7 Evolutionary Developmental Programs 311

tionary developmental systems of the type discussed in this section are based
on genetic programming or one of its variants. We have already described in
chapter 1 an example of the application of genetic programming to the de-
velopmental description of electronic circuits. We consider here a variant of
this approach called cellular encoding.

4.7.1 Example: Cellular Encoding

Cellular encoding was proposed by Gruau (1994a,b) as a developmental ap-
proach to the definition and evolution of artificial neural networks. Devel-
opmental systems are in general well suited to the description of structured
networks, that is, networks where a certain network motif is treated as a mod-
ule and reused several times or encapsulated within a higher-order motif in
a hierarchy of levels of organization. As we will see, in defining cellular
encoding, Gruau aimed specifically at the possibility of defining modular
networks.

Similarly to what happens in genetic programming, the basic element of
the cellular encoding description is a set of network transformation operationsNETWORK

TRANSFORMATION

OPERATIONS
that alter the topology or the parameters of the neural network. Figure 4.21
illustrates some possible network transformation operations. Figure 4.21(a)
represents the initial untransformed graph. The five nodes at the top of the
graph represent the inputs and the five nodes at the bottom represent the
outputs. The central node is the one that will be the subject of the net-
work transformation operation. For example, the operations illustrated by
figure 4.21(b,c) substitute the central node with two daughter nodes con-
nected in series between inputs and outputs; the operations illustrated by
figure 4.21(d,e) substitute the central node with two nodes connected in par-
allel between inputs and outputs; the operation illustrated by figure 4.21(f)
removes a connection; the operation illustrated by figure 4.21(g) adds a re-
current connection to the central node; and the operations illustrated by
figure 4.21(h,i) change an input and an output weight, respectively. There
are several other network transformation operators that are similar to those
shown here. Although these operators appear as reasonable candidates for
the development of a network, the task of choosing them and of verifying
that they are sufficient and not too redundant is not simple.

In cellular encoding the sequence of instructions that constitutes a cellu-
lar programming developmental program is represented in the form of one
or more trees (figure 4.22). The network transformation operations shown
in figure 4.21 are represented by symbols. When one of these symbols is

312 4 Developmental Systems

Figure 4.21 Some examples of network transformation operations that can be de-
fined for the development of a neural network using the cellular encoding approach
(adapted from Gruau 1994a). (a) Original network. (b,c) Series division operations.
(d,e) Parallel division operations. (f) Connection removal. (g) Recurrent connection
insertion. (h) Input weight change. (i) Output weight change.

4.7 Evolutionary Developmental Programs 313

Figure 4.22 An example of cellular encoding of a neural network using the mecha-
nism of automatic definition of neural subnetworks. The terminal symbols L and U
define the nature of the neural network nodes, the terminal symbols n1 instruct the
system to execute the developmental program represented by the next tree in the se-
quence, and all the other symbols correspond to network transformation operations
like those represented in figure 4.21 (adapted from Gruau 1994a).

encountered while parsing the tree, the corresponding network operation is
applied to a node of the developing network, starting from the unique node
of the initial elementary network, as shown in the first developmental step
of figure 4.23. Special terminal symbols L and U , which can appear as leaves
of the tree, define the nature and parameters of the neural network nodes
created by the network transformation operations. The cellular encoding
developmental program is in general constituted by a list of several trees.
Besides the terminal symbols L and U , the leaves of a tree can contain also
a special symbol n followed by an integer d. The symbol n is interpreted as
an instruction to substitute a node with the network generated by the exe-
cution of the sequence of instructions represented by the tree whose relative
distance from the currently executed tree is d. For example, each symbol n1
present on the leaves of the first tree seen in figure 4.22 corresponds to the
substitution of a node with the network generated by the execution of the
instruction of the second tree, and each symbol n1 present on the leaves of
the second tree corresponds to the substitution of a node with the network
generated by the execution of the third tree. This mechanisms permits the
reuse as a subnetwork of the network generated by the set of instructions

314 4 Developmental Systems

Figure 4.23 The first steps of the development of the neural network represented by
the cellular encoding description of figure 4.22 (adapted from Gruau 1994a). (a) The
symbol R in the first node of tree 1 inserts a recurrent connection. (b) The symbol T in
the second node of the tree splits the original neuron into two neurons connected in
series. (c) The symbols n1 in the terminal nodes of tree 1 start the parallel execution
of tree 2 on both neurons. (d) The symbol A splits each neuron into two neurons
connected in parallel. (e) The symbol W inserts a waiting step in the development
of the neurons on the left, whereas the symbols A perform another parallel splitting
of the neurons on the right. At this point all the neurons are assigned the symbol n1
appearing in the terminal nodes of tree 2, which cause the parallel execution of tree 3
on all neurons (not shown).

4.8 Evolutionary Developmental Processes 315

represented by a tree. Gruau (1994a) called this mechanism automatic defini-AUTOMATIC

DEFINITION OF NEURAL

SUBNETWORKS
tion of neural subnetworks. Figure 4.23 shows the result of the execution of the
first steps of the developmental program defined by the trees of figure 4.22.

Gruau’s experiments confirm that the possibility of reusing developmental
modules permits the evolution of very compact genomes that develop into
modular neural networks. Moreover, as explained in more detail in chap-
ter 6, the structure of the evolved networks can comply with the symmetries
of the controlling task, for example, the bilateral symmetry of a six-legged
insect-like robot. On the contrary, if the possibility of reusing developmental
trees is disabled, the evolved networks have many more nodes and connec-
tions, and do not display any structure obviously related to the structure of
the controlled system (Gruau 1994a).

4.8 Evolutionary Developmental Processes

Biological developmental processes are obviously more flexible and complex
than any of the models considered above, and underwent evolution both at
the level of their basic mechanisms and of their combination and unfolding
in space and time. In this section we describe some examples of the last of
the four kinds of artificial developmental systems listed above, namely, those
that – like biological systems – encode and evolve features of both the basic
mechanisms of development and of their application and interaction with
the environment. Since the goal is the definition of artificial developmental
systems with characteristics comparable to the biological ones, it is advisable
to look in more detail to the fundamentals of the latter.

A first observation is that a biological developmental process is not just
a gene-driven process but is composed of the interplay of at least three ele-
ments (Mahner and Bunge 1997): the genome; the cellular environment (cy-
toplasm) with which the genome interacts; and the external environment in
which development takes place. A second observation is that the genome
does not unidirectionally control the development. For example, the cellu-
lar machinery that interacts with the genome does not merely read it but can
modify the genome and select some regions to actively interact with the cyto-
plasm while silencing other regions. Moreover, this process depends on the
cell state and on the external signals received by the cell which, in turn, are
influenced by the external environment. An example of the interaction of the
external environment with the developmental process is represented by the
development of the vertebrate nervous system, which is influenced by the

316 4 Developmental Systems

sensory signals received by the organism during development. A third ob-
servation is that the elements of the developing organism comply with a set
of physical laws that determine the nature of the interactions that can exist
and be exploited by the developmental process. For example, molecules can
diffuse, attract, and bind to other molecules according to well-defined laws
that can be exploited to build cells that divide, differentiate, migrate, and
adhere to each other, to produce signals that propagate in the developing
organism, and so on. Summing up, development can be seen as a dynamic
process that takes as the initial condition the initial state of the cell – which
includes but is not limited to the genome – and unfolds according to the laws
of physics and the boundary conditions imposed by the environment.

The inclusion of development thus leads to a much more sophisticated
scenario for evolution than is usually taken as inspiration for artificial evo-
lutionary systems. In particular, it highlights the fact that what is passed
from parents to offspring is not just a genome but, rather, a genome plus a
cellular environment plus an external environment in which development
takes place, given a fixed backcloth of physical laws determining how the
first three elements interact. In setting up a fully fledged artificial evolution-
ary developmental system inspired by biological evolutionary development
it is of course unreasonable to attempt a detailed modeling of all these as-
pects. We must thus decide what simplifying assumptions to adopt, that is,
we must decide which of the above-mentioned features we want to imple-
ment and how. Despite many attempts and proposals, this field of investiga-
tion is still in its infancy and no consensus has yet emerged on what are the
crucial aspects that must be modeled in order to achieve satisfying results.
The number of possible choices and combination of elements is so large that
it is impossible to mention all the approaches that have been proposed in
the literature. Below we present some approaches that have been proposed
for integration into an artificial evolutionary framework, some of the ele-
ments observed in the biological developmental process, such as phenotypic
plasticity, morphogenesis, gene regulation and signal transduction, and cell
differentiation and adhesion.

4.8.1 Example: Phenotypic Plasticity

The first example that we consider was proposed by Nolfi et al. (1994b) in
order to explore the role of the interaction of the environment with the evo-
lutionary developmental process. The basic idea is to define evolutionary
agents that are characterized by a plastic phenotype, that is, a phenotype that

4.8 Evolutionary Developmental Processes 317

Figure 4.24 The structure of the genome used in the phenotype plasticity experi-
ments. The genome is composed of a fixed number of genes, each gene encoding a
fixed number of parameters, some of which influence the developmental process that
builds a neural network (adapted from Nolfi et al. 1994b).

is not completely specified by the genotype but is instead in part determined
by the interaction of the agents with their environment. In the model pro-
posed by Nolfi and coworkers the agents are simulated wheeled robots and
the part of their phenotype that is plastic is the artificial neural network that
controls their behavior. The evolved genome contains information that can
be used to control the development of a neural network according to the ac-
tivity of the neurons. This means that the development of the network is not
completed before the start of the simulated life of the agents but takes place
in part during life.

The genome is composed of a fixed number of genes, each gene corre-
sponding to one neuron (figure 4.24). The connections between the neurons
are established using an L-system with the standard turtle graphic inter-
preter. The L-system is used to build in a 2D space a branching structure
which represents the axon of the neuron (figure 4.25). Two numerical pa-
rameters x and y contained in each gene specify the position of the neuron
in the plane. Two other gene parameters specify the branching angle and
the segment length of the branching structure. To build the branching struc-
ture, a hand-designed L-system and turtle interpreter that produces binary
branching is applied a fixed number of times (four in the example shown in
figure 4.25). The direction of growth of the branching axon and the range

318 4 Developmental Systems

of the y parameter for each neuron type are chosen so as to guarantee the
generation of feedforward networks. When the growth of the branching
structure is terminated, the branches that do not contribute to establishing
a connection between the neuron at the root of the branching structure and
other neurons are pruned. The surviving branches are assigned a value of
synaptic weight specified by an additional gene parameter. The root neuron
is assigned a bias and a type (sensory, hidden, output) specified by specific
gene parameters. The resulting neural network is further simplified to re-
move the neurons that are not functional, either because they are isolated or
because they do not contribute to the network output.

The crucial aspect of the system, which determines the interaction of de-
velopmental process with the environment via the agent’s behavior, is the
existence of an additional gene parameter interpreted as a gene expressionGENE EXPRESSION

THRESHOLD threshold. This parameter determines the conditions under which the branch-
ing axon is actually built. In the experiments reported in (Nolfi et al. 1994b)
the axon is built only if the variability of the neuron activation during the last
10 time steps exceeds the gene expression threshold. This means that if the
threshold is set to its minimal value by the evolutionary process, the axon is
always grown at birth, independently of the neuron activation. If the thresh-
old is set to its maximal value, the axon is never grown. For all intermediate
values, the axon growth is conditional on the relation between the neuron
activity and its threshold.

This developmental mechanism implies that the structure of the network
is jointly determined by both the genetically encoded parameters of the neu-
ron and by its environment. Moreover, the relative roles of the genome and
of the environment are not fixed but can be influenced by the evolutionary
process, which can chose which neuron structure must be grown at birth
and which can be influenced by interaction with the environment. Note that
the environment of a neuron can be either the external environment of the
agent (which sends the sensory stimulation) or other neurons in the network
(which stimulate the neuron with their activation). This corresponds to what
happens in biological developmental systems, where both the external en-
vironment and the other cells of the organism constitute the environment
of a cell. As discussed in more detail in chapter 6, Nolfi et al. (1994b) have
shown that this type of developmental process endows the evolving agents
with a form of phenotypic plasticity that results in a greater adaptivity of the
evolved agents to changing environments.

4.8 Evolutionary Developmental Processes 319

input neurons

output neurons

(a) (b)

input neurons

output neurons

(c)

input neurons

output neurons

(d)

Figure 4.25 An example of development of the neural network in the phenotype
plasticity experiments of Nolfi et al. (1994b). (a) The neurons are placed in the 2D
space according to their (x, y) coordinates encoded in the genome. (b) Branching ax-
ons are grown from the neurons according to their activity and the value of the gene
expression threshold; the parameters determining the geometry of the axon are also
encoded in the genome. (c) The branching axons are pruned to leave only the con-
nections between the neurons. (d) The nonfunctional neurons and the corresponding
connections are removed from the network, producing the final neural network. This
developmental process continues during the whole life of the agents whose behavior
is controlled by the neural network (adapted from Nolfi et al. 1994b).

4.8.2 Morphogens

One of the characterizing properties of development is the phenomenon of
morphogenesis, that is, the robust generation of complex forms and patternsMORPHOGENESIS

starting from embryos that appear at first look to be quite homogeneous.
In 1953 Alan Turing, using a simple mathematical model, showed how pat-
terns can emerge spontaneously by amplification of small fluctuations in an

320 4 Developmental Systems

Figure 4.26 In Turing’s model of morphogenesis two chemical substances act as ac-
tivator and inhibitor. The activator diffuses slowly and enhances its own production
and that of the inhibitor. The inhibitor diffuses rapidly and decreases its own produc-
tion and that of the enhancer.

otherwise homogeneous structure. Turing’s model considers a few chemicalTURING MODEL

substances that react with each other and diffuse in a cellular or homoge-
neous tissue (figure 4.26). Turing proved that – given the right equations
for the chemical reactions and the right values for the diffusion parameters
– after some time the concentration of the chemical substances forms wave-
like or spot-like Turing patterns in the structure (figure 4.27). To simplify theTURING PATTERNS

model and make it amenable to mathematical analysis Turing did not at-
tempt to model the internal dynamics of the cells. One must consider that
at the time not much was known about the structure of the genes and of
their interaction with the cytoplasm and with the substances in contact with
the cells. Moreover, Turing’s goal was not to formulate a realistic model of
spontaneous pattern formation in biological organisms, but just to prove the
theoretical possibility of this phenomenon.

In 1969, Wolpert proposed a more realistic model of pattern formation in
biological organisms, based on what he called positional information. In thePOSITIONAL

INFORMATION THEORY simplest formulation of this model, a fixed concentration of one or more
chemical substances called morphogens is assigned at the boundary of the
embryo. Morphogens diffuse in the embryo and determine a profile of con-
centration within it. These profiles provide the cells with information about
their position with respect to the boundaries. Morphogens can be originally

4.8 Evolutionary Developmental Processes 321

Figure 4.27 The reaction-diffusion dynamics of Turing’s model amplifies random
fluctuations in the initial distribution of the two substances, leading to the production
of large-scale patterns of activator concentration.

present in the zygote or can be a result of the activity of some of the cells that
form the developing organism. The information provided by morphogens
can result in a change of state (cell differentiation) that influences the sub-
sequent developmental history of a cell. For example, a morphogen can
change the fate of a cell when its concentration around the cell exceeds a
given threshold (figure 4.28). By using several thresholds and several mor-
phogens, the initially undifferentiated cells of a tissue can differentiate and
form a pattern. This model of pattern formation is quite robust to perturba-
tions and changes of scale, being based only on the profile of concentration
of the morphogens. For example, the final pattern of figure 4.28 is invariant

322 4 Developmental Systems

Figure 4.28 A schematic illustration of the positional information model of pattern
formation. (a) The fate of the initially undifferentiated cells of the embryo is deter-
mined by the value of morphogen concentration. The internal machinery of the cell,
instructed by the genome, compares the external concentration of the morphogen
to the internally set thresholds and steers the further history of the cell accordingly.
(b) The positional information mechanism is robust to perturbations; for example,
if the profile of concentration of the morphogen remains qualitatively the same, a
change of scale of the embryo does not change the pattern of differentiation of the
cells.

to changes in the length of the structure and in the number of cells that it
contains, provided the profile of concentration along the structure is main-
tained.

4.8.3 Example: Morphogenetic System

Although the mechanism based on the diffusion of morphogens is just one
of several mechanism of pattern formation in biological organisms (Wolpert

4.8 Evolutionary Developmental Processes 323

Figure 4.29 The developmental steps of the morphogenetic system (Roggen et al.
2007). (a) In the signaling phase the diffusers are placed in cells as specified by the
genome, and the morphogens diffuse in the 2D lattice of initially undifferentiated
cells. (b) When a cell has been reached by a morphogen, the expression table encoded
in the genome is used to assign a function to it, thus modeling cell differentiation.

et al. 2007), its simplicity and robustness led to its adoption in many artificial
evolutionary developmental systems (e.g., Astor and Adami 2000; Bentley
2004; Bongard and Pfeifer 2003; Dellaert and Beer 1996; Eggenberger 1997b;
Fleischer and Barr 1994; Hampton and Adami 2004; Jakobi 2003; P. Kennedy
and Osborn 2001; Kitano 1995; J. Miller and Banzhaf 2003; Roggen et al. 2007;
Stanley and Miikkulainen 2003). By way of example, we will describe the
morphogenetic system devised by Roggen et al. (2007) and the POEtic archi-
tecture (Tempesti et al. 2002; Tyrrell et al. 2003) that is ideally suited to its
hardware implementation.

The morphogenetic system is based on a 2D cellular lattice of elements,MORPHOGENETIC

SYSTEM where each element can be thought of as a cell of the developing organism.
Each cell contains an artificial genome that determines the functionality of
the cell according to the signals present on the 2D lattice, which are inter-
preted as morphogens. The system models morphogens as generated within
cells by diffusers. Morphogens diffuse in the cellular space so as to decrease
their concentration according to a simple law. The position of the diffusers –

324 4 Developmental Systems

Figure 4.30 The development of a morphogenetic system evolved to match the Nor-
wegian flag pattern (figure 4.31). At the beginning, the diffusers are placed in the lat-
tice of initially undifferentiated cells. The activity of the diffusers starts to be visible
at step 1. At step 15 all the cells have been assigned a functionality and development
stops (adapted from Roggen et al. 2007).

one for each type of signal defined in the system – is encoded in the genome.
The functionality of the cells is determined by an an expression table that is
also encoded in the genome. The expression table associates the identity and
concentration of the morphogens with the cell function, using a mechanism
of pattern matching (figure 4.29). The development of the system starts with
all the cells in an undifferentiated state (figure 4.30). The diffusers are placed

4.8 Evolutionary Developmental Processes 325

Figure 4.31 The Norwegian flag and CA-generated reference patterns used in the
pattern-matching experiments with the morphogenetic system (from Roggen et al.
2007).

in the lattice according to the genome prescriptions and diffuse at discrete
time steps in the so-called signaling phase. When the signaling phase is fin-
ished each cell has been reached by at least one morphogen. This activates
the expression phase, where the functionality of the cells is assigned accord-
ing to the prescriptions of the genetically encoded expression table. When a
functionality has been assigned to all cells, the development is complete.

The system has been tested first for its ability to evolve the development
of given patterns, for various sizes of the cellular lattice. In this batch of ex-
periments the cell functions correspond to the displaying of a color on the
cell surface, and the fitness is the proportion of cells that match the color
of the prescribed pattern. Figure 4.30 shows an example of an evolved de-
velopmental process aimed at the production of the Norwegian flag pattern
(figure 4.31). The authors compared the performance of the morphogenetic
system with that of an evolutionary system using a direct genetic encoding
of the cell colors. The results (figure 4.32) show that for small lattice sizes the
direct encoding performs better, but that the developmental encoding of the
morphogenetic system displays a smaller degradation of performance as the
lattice size increases.

Another property of the developmental model implemented in the mor-
phogenetic system is that it can exhibit a certain degree of recovery from
perturbations. In a series of experiments, a certain percentage of the cells at
the end of the development have been reset to the undifferentiated state, and
the developmental process has been restarted. Figure 4.33 shows that the
morphogenetic system can recover almost to the initial degree of matching

326 4 Developmental Systems

Figure 4.32 Comparison of the results of the pattern-matching experiments using
a direct encoding and the developmental encoding of the morphogenetic system for
various sizes of the cellular lattice (from Roggen et al. 2007). The fitness corresponds
to the fraction of cells whose color matches that of the reference pattern (figure 4.31).

of the prescribed pattern for a large range of perturbation rates. By con-
trast, the direct encoding, which has no mechanism of recovery, suffers a
large degree of degradation of its pattern-matching performance. To test the
potential of the morphogenetic system in tasks more complex than static pat-
tern matching, two series of experiments of neural network evolution were
also performed. In the first series, neural network was used for character
recognition, whereas in the second it was used to produce obstacle avoid-
ance behavior in a miniature robot. In both tasks the morphogenetic system
outperformed an evolutionary system based on direct encoding of the net-
works (Roggen et al. 2007).

The results of the morphogenetic system evolutionary experiments show
that indeed the direct encoding can work well for simple systems that can
be encoded in a small genome. When the size and complexity of the system
increases, the genome size increases and the performance of the direct en-
coding falters. By contrast, the developmental encoding scales well with the
problem size. However, its low performance for small problem sizes illus-
trated by figure 4.32 suggests that the developmental process can produce
constraints on the kind of structure that can be produced. This means that
if the developmental process is not suited to the kind of structures that need

4.8 Evolutionary Developmental Processes 327

Figure 4.33 The developmental morphogenetic system can recover part of the func-
tionality when development is re-enabled after a certain percentage of cells has been
reset to the undifferentiated state. Recovery is almost complete up to very high levels
of disturbance. The result for the direct encoding – which does not have a mechanism
of fault tolerance – are also plotted for comparison (from Roggen et al. 2007).

to be produced (as, for example, L-systems are suited to the production of
plant-like structures), a perfect solution to even simple problems can be dif-
ficult to evolve. One of the most interesting aspects of the results reported
in (Roggen et al. 2007) is that the evolved systems displayed a robustness toROBUSTNESS

perturbations even if there was no selective pressure to achieve that func-
tionality. Developmental robustness seems to be generated as a byproduct of
evolution coupled with a suitable developmental process. This suggests that
when coupled with a suitable developmental process, evolution can produce
developmental robustness as a byproduct. Note that in describing the rela-
tionship between evolution and development we referred to the hypothesis
that developmental robustness can produce evolvability as a byproduct. In
other words, the relationship between evolvability and developmental ro-
bustness seems to be a two-way affair of mutual enhancement.

4.8.4 Intrinsic Artificial Development

The property of artificial developmental systems such as the morphogenetic
system of recovering from perturbation can realize its full potential only if

328 4 Developmental Systems

P

O

E

epigenesis

ontogenesis

phylogenesis

Figure 4.34 The layered architecture of the POEtic tissue. The genotype layer per-
mits the implementation of an intrinsic evolutionary process and corresponds to the
phylogenetic axis of the system. The mapping layer permits the implementation of an
intrinsic developmental process and corresponds to the ontogenetic axis. The pheno-
type layer permits the implementation of an online learning process and corresponds
to the epigenetic axis (adapted from Tyrrell et al. 2003).

the system can be implemented in hardware, on a platform permitting de-
velopment and dynamic reconfiguration during the operation of the system.
Using the terminology introduced for evolutionary electronics in chapter 1,INTRINSIC

DEVELOPMENTAL

PROCESS
the developmental process must be intrinsic rather than extrinsic. When this
is the case, the theoretical property of recovery from disturbances can be
transformed into one of run-time fault tolerance of the system (Roggen et al.FAULT TOLERANCE

2007). In this scenario, the return of a cell to an undifferentiated state can
correspond to the reset of a subsystem that is found to be faulty (for exam-
ple, using artificial immune system techniques like immunotronics discussed
in chapter 5). The subsequent recovery of the cell state corresponds then to
the automatic reconfiguration of the subsystem state brought about by the
developmental process.

An example of a hardware platform that permits the realization of this
online developmental scenario is the POEtic tissue (Tempesti et al. 2002, 2003;
Roggen et al. 2003a; Tyrrell et al. 2003). This is a custom hardware platform
specially conceived for bioinspired experiments involving evolution, devel-
opment, and learning. The first three letters of the name refer to the availabil-

4.8 Evolutionary Developmental Processes 329

ity of the three axes of the adaptation process in nature: the phylogenetic axis
(P), which refers to evolution; the ontogenetic axis (O), which refers to devel-
opment; and the epigenetic axis (E), which refers to learning. The POEtic tis-
sue (figure 4.34) is based on a layered reconfigurable FPGA-like architecture
(see chapter 1 for a description of FPGAs). This architecture has a genotype
layer that permits the implementation of an intrinsic evolutionary process,
a genotype-to phenotype mapping layer that permits the implementation of
an online intrinsic developmental process, and a phenotype layer that per-
mits the implementation of an online learning process. Thus, it permits in
particular the implementation of the morphogenetic system and the actual
realization of its online fault-tolerance mechanism (Roggen et al. 2007).

4.8.5 Cell Physics

As pointed out by Wolpert (2003), the actual cornerstone of the complexity of
multicellular organisms is the complexity of the regulatory dynamics, signal-
ing strategies, and physical properties of the eukaryotic cell. The examples
described so far in this section remain at a relatively high level of abstrac-
tion with respect to these aspects. It is thus worth exploring the possibility
of modeling them in more detail, at a lower level of abstraction. The draw-
back of this approach is that the computational complexity of the models
will grow with the amount of detail modeled. In exchange, we can expect
to obtain a greater freedom for the evolutionary process in the discovery of
the right developmental mechanism. Another advantage is the possibility
of exploiting the potential of a sufficiently rich dynamics to produce com-
plex self-organized structures (Camazine et al. 2001), without being forced
to explicitly encode all their detail in the genome.

An interesting series of explorations along these lines was performed by
Eggenberger (1997a,b, 2003, 2004a,b). Eggenberger defined an evolutionary
developmental system that he named AES (artificial evolutionary system).ARTIFICIAL

EVOLUTIONARY

SYSTEM (AES)
AES models some aspects of gene regulatory dynamics, and a simple model
of cell signaling, differentiation, division, adhesion, motion, and death (fig-
ure 4.35). The gene regulatory and cell-cell signaling dynamics is defined
by differential equations that take into account the interaction between gene
products and their diffusion in the developing structure. The physics of cell-
cell interaction is modeled using a physical simulator that implements New-
ton’s laws and provides the possibility of defining elastic and viscous forces
acting on cells. Eggenberger showed that AES is capable of evolving a devel-
opmental process that creates aggregates of cells displaying morphologies

330 4 Developmental Systems

Figure 4.35 The basic properties of the artificial cell model defined by Eggenberger
(1997a) in the artificial evolutionary system. The genome determines the structure of
the control network which governs the internal dynamics of the cell and its interac-
tions with the environment and with other cells. The cell can be also endowed with
mechanical properties and actuators controlled by the internal network. This cell
model permits the evolution of cell functions such as cell signaling, differentiation,
division, adhesion, migration, and death.

similar to those observed in the early stages of vertebrate embryo develop-
ment. AES was also used to successfully evolve functional structures such as
optical lenses and neural networks for robot control.

Taking inspiration from AES, Bongard and Pfeifer (2001, 2003) defined an
artificial evolutionary developmental system called artificial ontogeny (AO),ARTIFICIAL ONTOGENY

(AO) with the aim of exploring further the possibility of using such a system to co-
evolve the behavior and the morphology of artificial agents. To this end, they
integrated in the system a developmental model for neural networks based
on Gruau’s cellular encoding described above in this section. The spherical

4.8 Evolutionary Developmental Processes 331

Figure 4.36 Two examples of structures evolved for block pushing in the exper-
iments with the artificial ontogeny system. The body of the agents is composed
of spheres and develops in a virtual environment under the control of the evolved
genome contained in each sphere. The developmental process determines how the
spheres are connected, controlled, and actuated, and what kind of sensors they pos-
sess. In the figure, light gray spheres have both sensors and actuators, dark gray
spheres have only sensors, and black spheres are passive building blocks lacking both
sensors and actuators (adapted from Bongard and Pfeifer 2003).

basic building blocks of the agent’s body are endowed with sensors and ac-
tuators that can send and receive signals from sensor and motor neurons of
the neural network. The actuators operate on the links connecting the build-
ing blocks and permit their relative motion. This means that, compared to
Eggenberger’s system, the building blocks are no longer intended as models
of biological cells but, rather, correspond to macroscopic elements that can
be used to build the agent’s body and limbs. Moreover, the agents are no
longer evaluated with respect to their morphology but with respect to their
ability to perform behavioral tasks in a virtual physics environment. The
evaluation of the evolved structure is performed after the development of
the agent is completed. Bongard and Pfeifer were able to obtain encouraging
results in the evolution of agents capable of directed motion and block push-
ing (figure 4.36). They also observed phenomena similar to those observed in

332 4 Developmental Systems

biological organisms, such as the repeated convergence of the agents, to sim-
ilar body plans for a given task, and the greater impact of genome mutations
that affect the early phases of the developmental process.

Running both the AES and the AO evolutionary models is computation-
ally expensive. However, the experiments performed with these systems
proved that it is already computationally feasible to model many low-level
aspects of the biological developmental process, provided one remains at the
level of the cells without going down to the molecular details of the chem-
ical and physical interactions. Moreover, these experiments confirmed that
the developmental representation scales well with the size of the problem, in
the sense that once a critical level of complexity in the genotype dynamics is
exceeded, the genome is almost independent of the number of cells in the de-
veloped structure. It remains to be elucidated, on the one hand, the level of
complexity of the systems that can be obtained with this approach while re-
maining in the realm of the computationally feasible and, on the other hand,
which of the many low-level aspects of biological developmental processes
that are modeled by AES and AO are essential to the result obtained.

4.9 Closing Remarks

Developmental processes are a powerful tool for the description and synthe-
sis of artificial complex systems. Thanks to the scalability provided by the
possibility of reuse of substructures and modules, more complex structures
do not require a correspondingly more complex developmental description.
However, the indirect and possibly opaque relation between the description
and the resulting system can entail some difficulty in the definition of a de-
velopmental system producing a given result. This is especially true in the
absence of some clues concerning the basic developmental mechanism re-
quired to achieve the result, as can be obtained, for example, from a recursive
definition of a geometric object.

In this respect, the observation of biological developmental processes is an
important source of inspiration for the definition of artificial developmen-
tal systems. However, the multiplicity of mechanisms at work in biological
development poses a serious difficulty in the choice and combination of the
basic elements. Some guiding principles and a better understanding of the
role and integration of the elements of biological developmental processes
are required before we can think of building by hand a developmental sys-
tem using these elements as building blocks. Artificial evolution can pro-

4.9 Closing Remarks 333

vide a powerful tool for the exploration of the space of the combinations of
these building blocks. Here we are, however, faced with a dilemma. On
the one hand, modeling the biological phenomena at a very low level and
with plenty of detail in the hope of letting evolution discover and exploit
their essential property is computationally very expensive. On the other
hand, choosing a set of high-level mechanisms entails the risk of explor-
ing the wrong subset of developmental processes, with the risk of imposing
unwanted constraints on the possible result and of hampering evolvability.
For example, few of the examples that can be found in the literature give
much relevance to the “negative” phenomenon of controlled cell death and
catabolism, which appears instead to be a fundamental component of bio-
logical processes (Marijuán 1996).

The issue of evolvability in artificial evolutionary experiments is another
crucial contribution that development could bring to the synthesis of artifi-
cial systems. We do not mean by this that development must be assumed
as the only way to obtain evolvability. For example, the genetic regulatory
networks of unicellular organisms are certainly also evolvable, without be-
ing the result of a developmental process. However, development appears as
the most promising way to evolve complex structures, systems, and behav-
iors, thanks to the combination of its potential impact on evolvability and
its power of providing a compact and scalable representation for complex
systems.

In biological systems the crucial step toward the combination of these as-
pects seems to have been the evolution of the complexity of the eukaryotic
cell, with its complex regulatory dynamics, signaling, and mechanical prop-
erties (Wolpert 2003). One of the challenges for artificial evolutionary devel-
opmental systems is thus the identification and abstraction at the right level
of the fundamental properties that characterize the eukaryotic cell and its
dynamics in multicellular development. Given the possible role of pheno-
typic plasticity in fostering the evolution of evolvability, another challenge is
the realization of evolutionary experiments where environmental variability
and noise require the evolution of developmental plasticity. The examples
described in the second part of this chapter attest to the efforts that are cur-
rently being devoted to answering these challenges and bringing to artificial
systems the combined power of evolution and development.

334 4 Developmental Systems

4.10 Suggested Readings

A good textbook on biological development, which lists as first author the
originator of the theory of positional information, is (Wolpert et al. 2007). For
a more colloquial description of the mechanisms of development and their
genetic control, we recommend (Nüsslein-Volhard 2006). For a crash course
in evolutionary developmental biology, see (Wolpert 2003). An interesting
methodological overview of developmental biology, with a formal definition
of development, can be found in (Mahner and Bunge 1997). An extensive
collection of examples of developmental mechanisms with a detailed discus-
sion of their relationship to evolvability is (Gerhart and Kirschner 1997). The
same authors reformulated and extended these themes in terms of a theory
of facilitated variation, which is explained in simple terms in (Kirschner and
Gerhart 2005). The importance of phenotypic plasticity and its relation to
evolvability is extensively discussed in (West-Eberhard 2003).

(D.W. Thompson 1941) is a classic on the relation between biological form
and the constraints and possibilities created by physical laws and by the re-
quirements of geometric consistency. A recent edited and abridged reprint
of this work is (Thompson 1992). Although not focused on development,
(Camazine et al. 2001) and (Ball 1999) present a modern perspective on the
role of self-organization in biological and natural pattern formation. Deutsch
and Dormann (2005) give an overview of mathematical models of biological
pattern formation, with a special emphasis on cellular automata modeling
and a chapter devoted to Turing’s model of morphogenesis.

The classical introduction to L-systems and the turtle graphics interpre-
tation, with some history of the field and many examples and illustrations
is (Prusinkiewicz and Lindenmayer 1990). A more technical work, focused
on the modeling of plants is (Deussen and Lintermann 2005). Examples of
programs that implement L-systems, their 2D and 3D turtle graphics inter-
pretation, and an evolutionary encoding can be found in (C. Jacob 2001).
The collection of contributions edited by Kumar and Bentley (2003) gives a
good overview of artificial evolutionary developmental systems of the type
described in the second part of this chapter, with some background on bio-
logical developmental processes.

5 Immune Systems

To survive and reproduce, living beings need suitable materials and energy
and must find these resources in their environment. Since all known natu-
rally evolved living beings are composed of the same basic building blocks,
they are potentially a rich source of high-quality matter and energy for each
other. For this reason, living organisms must protect themselves from the at-
tempt of other organisms to exploit their resources. In some cases the size of
the would-be exploiter – the pathogen– is many orders of magnitude smallerPATHOGEN

than that of its target – the host. For example, viruses, bacteria, fungi, pro-HOST

tozoans, and some kinds of parasitic worms in the initial stage of their life
cycle are much smaller than the typical vertebrate. Due to the greatly dif-
ferent spatial scales of pathogen and host, the organs that the latter uses to
interact with the environment are typically poorly suited to the detection and
elimination of potential pathogens. The countermeasures that the host can
take against the pathogens at the spatial scale of its body are mostly aimed at
reducing the probability of getting in contact with the pathogens, for exam-
ple by staying away from environments that can potentially house them. The
host can also have physical barriers that reduce the probability of entry into
its body of pathogens with which it has come into contact, or change the envi-
ronment represented by its own body to make it less suitable for the survival
and replication of the pathogen. However, since an organism cannot be com-
pletely isolated from its environment, and cannot perturb too much its own
bodily variables, these kinds of countermeasures can be only partially effec-
tive. Another consequence of the difference in size between the pathogen
and its host is that the pathogen can reproduce much faster and can generate
easily populations that are orders of magnitude larger than the typical host
population. This means that pathogens can rapidly evolve ways to neutral-

336 5 Immune Systems

ize the countermeasures adopted by the host to keep pathogens outside of its
body or to render its body a hostile environment for the pathogens. In order
to balance the struggle the host needs a set of countermeasures which oper-
ate on the same scale and which can keep up with the evolutionary pace of
the pathogen. This collection of countermeasures constitutes the immune sys-IMMUNE SYSTEM

tem of the host. Its function is to detect the pathogens once they have entered
the host body and to eliminate them with minimal cost in terms of resources
employed and damage done to the host. The immune system represents also
a protection against the possibility of malfunctioning and failure of individ-
ual host cells. For example, cancer cells can behave as independent entities
that pursue their own agenda and entail for an organism problems that are
similar to those represented by pathogens.

Many human-built systems face the same kind of problems of biological
organisms targeted by pathogens. For example, computer systems represent
computational resources and contain data that attract nonauthorized users
in the form of computer viruses and network intrusion attempts (Nachen-
berg 1997; Mukherjee et al. 1994). Typically the nonauthorized operations
take place at a low level in the hierarchy of software levels of the computer
system so that their effect is not immediately apparent at the scale of the
computer user or network administrator interface. The countermeasure con-
sisting in the isolation of the computing system is seldom an option in times
of widespread networking. The addition of built-in protections to the oper-
ating system does not always solve the problem, because the frequency of
update that is reasonable for the operating system is quite low when com-
pared with the speed with which the attack modality can change. Currently,
the most common solution is the use of frequently updated antivirus and
intrusion detection programs. However, the implementation and update
of these protection programs requires a substantial effort, and the effective-
ness of the protection can be compromised if a communication failure or an
oversight results in the omission of an update. A better solution would be
a protection system capable of autonomously detecting and opposing the
attempts at intrusion and exploitation. Human-built systems must also be
protected against malfunctioning and failures of their subsystems. As men-
tioned above, the strategies used to automatically fight exploitation attempts
can be also used for the detection and cure of faults, that is, to obtain systems
with built-in fault tolerance. Artificial immune systems (AISs) are the result ofARTIFICIAL IMMUNE

SYSTEMS (AIS) an effort to implement protection against external attacks and internal faults
explicitly inspired by the workings of biological immune systems. More gen-
erally, an AIS is any artificial system that implements some of the processes

5.1 How Biological Immune Systems Work 337

that are found in biological immune systems. The applications of an AIS can
thus go beyond system protection and fault tolerance to encompass other
functions such as pattern recognition, noise reduction, function optimiza-
tion, and biological modeling. To pave the way to the understanding of AISs,
in the next two sections we describe the structure and operation of biological
immune systems. Then, we proceed to show how the concepts inspired by
biological immune systems can be applied to the definition of artificial im-
mune systems, and describe some examples of their application to computer
and network protection and to fault detection in electronic systems.

5.1 How Biological Immune Systems Work

Biological immune systems are exceedingly complex and are typically
formed by several components that work in coordination. Given this com-
plexity, in this section we provide an abstract description of biological im-
mune systems, in order to permit the appreciation of their logic of operation,
uncluttered by all the implementation details. The next section will describe
to some extent the low-level implementation details, that is, the molecules
and cells that form the vertebrate immune system. It is useful to distinguish
between innate immunity – which refers to the immune countermeasures that
do not change during the lifetime of the host – and adaptive immunity – which
refers instead to the countermeasures that can change during its lifetime –
although the two systems work in strict coordination.

5.1.1 The Innate Immune System

Once a pathogen has breached the physical barriers of the host and entered
its body, the immune system of the host must recognize and destroy the
pathogen, or at least interfere with its activity so as to render it harmless.
Since a pathogen has an evolutionary goal that is different from that of the
host, there exist in general some molecular structures which are found in the
pathogen but not in the healthy host. If these structures are accessible to the
immune system, it can use them to identify the pathogen as such. For this
reason the working of an immune system can be based in part on a collec-
tion of immune detectors distributed in the whole body of the host (figure 5.1),
which carry pattern recognition receptors (PRRs). Any structure that carries aPATTERN RECOGNITION

RECEPTORS (PRRS) pattern that can be potentially recognized by a PRR is called an antigen. The
ANTIGEN structure of an antigen that is recognized by a PRR is called an antigenic deter-

minant or epitope. A single pathogen can have multiple epitopes and can thus

338 5 Immune Systems

Figure 5.1 A schematic representation of the operation of the innate immune sys-
tem. a) When a pathogen enters the host body it finds itself in an environment pa-
trolled by inactive immune detectors and effectors b) If the pattern recognition recep-
tors (PRRs) of an immune detector match the pathogen-associated molecular patterns
(PAMPs), the detector becomes activated. c) The activated detector activates an effec-
tor. d) The activated effector attacks the pathogen and e) kills it. Note that, although
logically distinct, the detector and effector functions can be implemented by the same
immune elements and share parts of the same physical structure.

be recognized by several distinct PRRs. Note that both the structures of the
host and those of the pathogens can be antigens. To distinguish the two, the
former are referred to as autoantigens. To ensure that the activity of the innateAUTOANTIGEN

immune system is focused on the pathogens, its PRRs are structured so as to

5.1 How Biological Immune Systems Work 339

recognize pathogen-associated molecular patterns (PAMPs), that is, patterns thatPATHOGEN-
ASSOCIATED

MOLECULAR PATTERNS

(PAMPS)

are peculiar to the pathogens. When an antigen is recognized by an immune
detector as belonging to a pathogen, the detector is activated and proceeds
to activate the elements of a collection of immune effectors, which attack and
destroy the pathogen.

The PRRs of the innate immune system are genetically encoded and cannot
change during the lifetime of the host. Therefore, they must target PAMPs
that the pathogen cannot easily modify or hide in order to escape detection.
For example, good targets of the innate PRRs are patterns that belong to
structures which are required by some crucial function of the pathogen and
that are necessarily exposed, like the flagella of bacteria, or some molecules
that are essential constituents of their cell wall. Different pathogens can re-
quire different strategies of attack, which means that the effectors must be
also tailored to the characteristics of the pathogen. The innate immune sys-
tem includes many kinds of effectors, and links the recognition of a pathogen
to the activation of the effectors which are most effective against that patho-
gen. Besides the direct elimination of pathogens, the effectors also play a role
in mobilizing the immune system. If the host is subject to a massive attack of
pathogens that cannot be rapidly eliminated by the effectors present in place,
the effectors produce an inflammatory response which enhances and focuses
the activity of the immune system at the site of the attack.

5.1.2 The Limits of Innate Immunity

Innate immune systems can be very effective, as witnessed by the fact that
invertebrates seem to rely almost exclusively on them for their protection
from pathogens. However, there are limitations on what can be achieved
with a system that cannot change during the lifetime of the host. The prob-
lem is that pathogens can evolve and change the patterns that are accessible
for inspection by immune detectors. One could imagine building an immune
system capable of recognizing and attacking all the structures carrying pat-
terns that are not found in the healthy host. This strategy, however, entails a
number of problems. The first is that the number of required PRRs could be
very large, even if one assumes that – as is typically the case – each PRR is
able to recognize many PAMPs. Since the PRRs of the innate immune system
are encoded in the genome of the host, the size of the genome would grow
unacceptably. Moreover, an excessively large genetically encoded repertoire
of PRRs would have a high probability of producing PRRs that recognize au-
toantigens as a consequence of random genetic mutations. Another problem

340 5 Immune Systems

with this strategy is that it limits the possibility that the host can change, or
that different individuals of the host population can exchange and recombine
their patterns in forming new individuals. For example, new autoantigens
typically appear during development, with aging, and during pregnancy,
facts that are incompatible with a hypothetical fixed universal repository of
PRRs. Summing up, an all-encompassing implementation of innate immu-
nity appears problematic because the memory requirements of the immune
system become excessive and the evolutionary and developmental flexibil-
ity of the host is unduly constrained. A solution to this problem consists in
endowing the protection system with the possibility to change during the
lifetime of the host.

A first strategy for adding adaptivity to the host defenses is to outsource
part of the protection activity to other organisms. For example, vertebrates
and invertebrates can associate mutualistically with harmless bacteria that
interfere with pathogen invasion. Typically, the protecting bacteria line the
surfaces where exchange between the host and its environment takes place
(Loker et al. 2004). Since the mutualistic bacteria operate at the same spa-
tiotemporal scale of the pathogens, they can fight them effectively. Mutual-
istic bacteria, however, do not entirely share the evolutionary fate of the host
and therefore cannot be trusted too much in their protection role. The ul-
timate strategy for overcoming the limitations of innate immune systems is
therefore based on the deployment of an adaptive arm of the immune system
which complements and integrates the activity of the innate system.

5.1.3 Monitoring of Subsystems

An additional difficulty for the operation of the immune system is that the
pathogens could hide within subsystems of the host which are not accessi-
ble to the immune detectors and effectors. For example, the detectors and
effectors of the vertebrate immune system are cells and molecules that do
not enter the cells of the host. To permit the elimination of infected sub-
systems whose internals are not accessible, the vertebrate immune system
adopts two strategies that require the active collaboration of the subsystems.
The first strategy is implemented by innate immunity and consists in dis-
tributing in the body of the host effectors which are ready to destroy ev-
erything that comes into contact with them, unless inhibited by special sig-
nals. The inhibitory signals are provided by all healthy host subsystems
but are not easily mimicked by pathogens. The second protection strategy
(figure 5.2) is more sophisticated and requires the cooperation of the adap-

5.1 How Biological Immune Systems Work 341

Figure 5.2 The “billboard” strategy used by the immune system to deal with in-
accessible subsystems. a) The subsystem reports on its internal activity on the bill-
boards. The detectors of the adaptive immune system inspect the content of the
billboards. b), c) The billboards are either empty, unreadable, or missing. These con-
ditions activate specialized elements of the innate immune system which destroy the
subsystem.

tive immune system. This strategy consists in requiring that the subsystems
report on their internal activity using specialized interfaces or “billboards”
(Sompayrac 2003). The adaptive immune detectors that will be described
below scan the billboards and target for destruction the subsystems that dis-
play patterns that appear to be the product of pathogen activity. To neutral-
ize the obvious pathogen countermeasure consisting in the disabling of the
billboards, subsystems which fail to report because the billboards are either
missing or unreadable are assumed as potentially invaded by a pathogen
and destroyed by the innate immune system. To make the task more difficult
for the pathogens, there is a large variability in the way the immune systems

342 5 Immune Systems

of different individuals of a population process and affix on the billboards
the results of the internal activity of their subsystems. This means that even
if a pathogen evolves an escape from the “billboard detection system” of the
immune system of one individual, this escape is almost certainly ineffective
for the immune system of other individuals of the population.

5.1.4 The Adaptive Immune System

Just like innate immune systems, adaptive immune systems use a collection
of detectors and effectors. The novelty of adaptive immune systems is that
both can change during the lifetime of the host. The problem thus becomes
the definition of the strategy for the generation of detectors and effectors that
are effective against pathogens but do not interfere with the normal activity
of the host tissues.

A simple way to generate a large variety of PRRs for the adaptive detec-
tors consists in producing random structures. Adaptive immune systems
use these approaches to generate an initial collection of candidate detectors
and effectors. However, there are several reasons for not putting directly
into use detectors with randomly generated PRRs. First, there is the prob-
lem that many of the PRRs thus produced will be targeted at autoantigens
and would thus be autoreactive, resulting in the immune attack of the host
tissues. A second problem is that many of the randomly generated detec-
tors and effectors would not be effective against any pathogen and would
thus represent a waste of resources for the host. These limitations can be
obviated by subjecting detectors and effectors carrying the randomly pro-
duced PRRs to a process of selection before being accepted as part of the
immune system and readied for action. The process of selection of the ver-
tebrate adaptive immune system is composed of several stages. Each stage
contributes to lowering the probability that the selected elements are active
against the host and increase the probability that they are effective against
potential pathogens. The end result is a very low probability that a pathogen
goes undetected or that an autoreactive element is left free to damage the
host (see box 5.1). Some stages perform a negative selection that eliminates theNEGATIVE SELECTION

autoreactive elements. Other stages perform a positive selection that preservesPOSITIVE SELECTION

and reproduces preferentially the elements that have the potential of being
useful in the fight against pathogens. In some cases the preferential repro-
duction is accompanied by a random mutation of the reproduced elements,
which results in the implementation of a Darwinian process of variation and
selection that improves the performances of the immune elements.

5.1 How Biological Immune Systems Work 343

The purported ability of the adaptive immune system to perform the selec-
tion described above on the pool of randomly generated elements requires
some explanation, since the antigens of the pathogens do not differ per se
from autoantigens. Therefore, it is not clear at first sight how the adap-
tive immune system can discriminate between the two. The solution of this
problem rests on the use of a notion of context. The innate immune system
collaborates with the host tissues in marking some regions of the host as dan-
ger zones. Patterns belonging to antigens found in the regions that are not
marked as danger zones are assumed as being associated with harmless ma-
terials and structures. Patterns belonging to antigens that are encountered
in danger zones are assumed instead as potentially belonging to a pathogen.
The definition of the danger zones is not static but varies dynamically ac-
cording to the presence of danger signals (Matzinger 2002, 2007; Seong andDANGER SIGNAL

Matzinger 2004). A first category of danger signals corresponds to PAMPs
that are recognized by the innate immune system and reveal the persistent
presence of pathogens which have not been rapidly removed by the innate
immune system, typically due to the lack of suitable effectors. A second cat-
egory of danger signals corresponds to distress signals released either inten-
tionally or unintentionally by the host tissues. An example of a danger signal
produced unintentionally is observed when a cell dies due to the attack of a
pathogen. This is typically a catastrophic process that exposes structures that
are normally hidden from the immune system. These structures can thus be
interpreted as danger signals by the immune system. Note that the normal
(apoptotic) death of a cell in the context of the physiological processes of the
host is managed so as to avoid the exposure of such structures.

The production of the elements of the adaptive immune system which are
activated to recognize and destroy the pathogens proceeds as follows. First,
the immune system produces a collection of detectors and effectors carrying
randomly generated PRRs. The newly generated elements are not yet ac-
tive and are carried to specialized safe regions where they can interact with
a large collection of autoantigens. The elements are subjected to a process
of negative selection which eliminates all the elements that are responsive
to the autoantigens present in the region. The unresponsiveness of an ele-
ment of the immune system to an antigen is called tolerance and the process
just described realizes the so-called central tolerance. Besides being centrallyCENTRAL TOLERANCE

tolerized, the detectors that work by inspecting the billboards of the host sub-
systems are also tested for their capacity to access the billboards. A process of
positive selection preserves only the detectors which are able to inspect the
billboards of the subsystem present in the regions where central tolerance

344 5 Immune Systems

Box 5.1: The power of the product
The result of the multiplication of several real numbers smaller than

unity can be an exceedingly small value. This fact has some interesting
consequences for the design and evolution of systems. For example, to
keep low the risk of autoimmunity, adaptive immunity is implemented
so as to lead to an autoimmune attack only if several improbable and
independent conditions are realized. The probability of an autoimmune
attack is thus made to correspond to the product of the probabilities of
each separate condition, and in this way it is reduced to sufficiently
small values.

In the design of portable devices such as portable phones it is impor-
tant that accidental pressing of the keypad does not result in unwanted
activation of functions. For this reason these devices permit the locking
of the keypad, and require a unique sequence of key pressings to unlock
it. Some devices adopt as unlocking strategy the continuous pressing
of a specific key for a certain time. Since the operating software of the
device polls the keypad at discrete intervals, the probability of acciden-
tal unlocking corresponds to the joint probability that the unlocking
key is accidentally pressed at all the polling instants. The problem is
that in normal operating conditions, especially if the device is put in a
pocket or in a bag with other objects, the probability that a key is ac-
cidentally pressed is not independent of its having being accidentally
pressed in the near past. Thus, the joint probability does not corre-
spond to the product of the probability of the separate events and is
in fact not much smaller than the probability of a single accidental key
pressing. Consequently, users of devices adopting this unlocking strat-
egy can be expected to experience several accidental activations during
the operating lives of the device (although this tends to be masked by
the self-locking of the keyboard after a period of inactivity). Other de-
vices adopt as unlocking strategy the sequence of events constituted
by the pressing of different keys in a well-defined temporal sequence.
With a suitable choice of the sequence, the accidental pressings of keys
can be rendered practically independent of each other. In this way the
probability of accidental activation becomes small enough that a user of
this device has a good probability of never experiencing an accidental
activation during the whole operating life of the device.

In other circumstances the smallness of the product of several terms
has instead undesirable consequences. For example, in evolutionary
processes the rate of mutation of the genomes is kept low to avoid pro-
ducing too many nonviable offspring. If the improvement of (cont.)

5.1 How Biological Immune Systems Work 345

Box 5.1 (continued)
an evolving system depends on the simultaneous occurrence of two or
more independent genome mutations, the corresponding event has a
very low probability and evolution stalls.

The properties of the product can be observed also when a collec-
tion of numbers greater than 1 are multiplied. In this case the result can
become rapidly very large and the phenomenon can have favorable or
unfavorable consequences. A well-known unfavorable consequence is
the combinatorial explosion of the complexity of problems that depend
on the number of possible combinations of the elements that enter the
problem. For example, this effect is present when the solution of a prob-
lem requires the sampling of a multidimensional space, since the num-
ber of samples required to cover the space reasonably well grows like
the product of the samples required by each dimension. In this case the
unfavorable effect is referred to as the “curse of dimensionality” (Bell-
man 1961) and prevents the practical solution of problems that exceed
a certain dimensionality.

The complementary favorable effect of the combinatorial explosion
is extensively exploited by evolution and human engineering. A typi-
cal example is constituted by the possibility of using the combination of
a few elements, each taken from a small set, to represent an enormous
variety of elements. This is the case of the languages based on finite al-
phabets and of the positional representation of numbers. In biology, we
see an example of exploitation of this phenomenon in genomes, where
an astronomical number of different configurations can be potentially
obtained by combining the four letters of the genetic alphabet. Another
example can be seen in the generation of the PRRs of the vertebrate
immune systems, where the large required variety is obtained by com-
bining the elements of several gene libraries, each providing an element
selected among a few alternatives.

is established. The detectors and effectors that survive these first rounds of
positive and negative selection are dispatched to an ensemble of specialized
“meeting places” of the immune system. These meeting places are linked to
form a network where the newly generated elements can circulate from node
to node. These elements are still kept inactive when dispatched because there
is still the possibility that they are reactive for autoantigens not present in the
regions where central tolerance was induced. There is therefore the need for

346 5 Immune Systems

a further selection aimed at the elimination of the remaining autoreactive el-
ements. This further selection realizes the so-called peripheral tolerance of thePERIPHERAL

TOLERANCE elements of the immune system. Finally, there is a process that activates the
elements that can recognize and destroy the pathogens that have invaded the
host.

The establishment of peripheral tolerance and the activation of the im-
mune elements are based on the activity of special agents of the immune
system called antigen-presenting cells (APCs). APCs patrol the host body andANTIGEN-PRESENTING

CELLS (APCS) systematically engulf the antigens that are found in the patrolled region. The
APCs then migrate to the meeting places where they present the captured
antigens to the detectors of the adaptive immune system, using special “pro-
fessional” billboards with which the APCs are endowed. We can think of
APCs as taking and carrying to the meeting places a “snapshot” of the zone
where they engulf the antigens (Sompayrac 2003). In the absence of danger
signals the APCs perform their duty at a low pace and remain in an inac-
tive state. When an antigen is presented by an inactive APC it can thus
be assumed as belonging to something that is not dangerous. This means
that there is no need to eliminate the structures that carry that antigen but
is rather the detector that must be assumed as being autoreactive. Conse-
quently, an inactive detector or effector that recognizes an antigen presented
by an inactive APC is permanently disabled or eliminated (figure 5.3). This is
a crucial step of peripheral tolerization, because it can happen that an antigen
that belongs to the healthy host is accidentally captured in a danger zone by
an APC. However, the same antigen is more likely to be found and captured
in a nondanger zone. Thus, an immune element that recognizes nondanger-
ous antigens is more likely to be eliminated than activated. This mechanism
of peripheral tolerization is known as frequency-based tolerization. Finally, an
inactive element is eliminated if it fails to find in reasonable time an APC
that presents an antigen recognized by it. In this way, the immune system is
freed from elements that are not useful in the prevailing conditions.

In the presence of a danger signal the APCs switch to an active state and
become much more willing to engulf antigens and migrate to the meeting
places. When an antigen is presented by an active APC it can thus be as-
sumed as belonging to something that is dangerous. If an inactive detector
or effector recognizes a pattern on an antigen presented by an activated APC,
it also switches to an active state. This mechanism of activation is thus based
on the presence of two signals converging on a detector: the first signal is
constituted by the presence of the recognized antigen; the second signal is

5.1 How Biological Immune Systems Work 347

Figure 5.3 A schematic representation of the process of peripheral tolerization of
the elements of the adaptive immune system. a) The normal activity of healthy host
tissues results in the presence of autoantigens. b) Inactive APCs capture the autoanti-
gens and present them to the APCs’ billboards. c) Inactive detectors that recognize the
antigens presented by an inactive APC are eliminated, freeing the adaptive immune
system from potentially autoreactive elements.

known as costimulation and conveys the information that the antigen wasCOSTIMULATION

found in a danger zone and belongs to something that must be presumably
identified as a pathogen and destroyed. Due to the importance of the ex-
change of information between APCs and immune detectors, the surface of
contact between APCs and immune detectors has been called an immunologi-IMMUNOLOGICAL

SYNAPSE cal (or immune) synapse (D.M. Davis 2006; D.M. Davis and Dustin 2004; Friedl
et al. 2005), with reference to the surfaces of contact through which neurons
communicate. Activated immune detectors proceed to make copies of them-
selves, and each copy proceeds to activate the effectors that are targeted at
the same antigen recognized by the detector. The choice of the effectors that
are activated is guided by the kind of danger signal sensed by the APC that

348 5 Immune Systems

has performed the initial activation, and by additional signals produced by
the tissue under attack (Matzinger 2007). Figure 5.4 summarizes the logic of
activation of the elements of adaptive immunity.

The activated effectors proliferate and are then distributed in the body, be-
ing especially attracted to the danger zones, where they proceed to eliminate
the host structures carrying the recognized antigen. The elimination is car-
ried out by “graceful” cell death (apoptosis) so as not to produce new danger
signals which would further fuel the activity of the immune system and lead
to its uncontrolled runaway. To further reduce the risk of an uncontrolled
escalation of autoreactivity, the detectors and effectors of the adaptive sys-
tem are only temporarily activated and must be reactivated after they have
reverted to their inactive state. The automatic inactivation of active elements
happens when a sufficient time has elapsed since their activation or when
a sufficient number of eliminations has been performed. The active APCs
themselves revert to an inactive state or die some time after entering a meet-
ing place. In this way the information about the danger is kept updated.
If a detector or an effector that has reverted to the inactive state recognizes
an antigen but is not reactivated by an APC within a reasonable time, it is
eliminated according to the rule mentioned above, or it becomes a so-called
regulator element which proceeds to the elimination of other immune ele-
ments that recognize the same pattern.

In the process of proliferation of activated detectors and effectors, some
of them can change slightly their PRRs in a process called somatic hypermu-SOMATIC

HYPERMUTATION tation because it involves nongerminal cells and rates of mutation many or-
ders of magnitude higher than those normally observed in the genome. The
elements which are the most effective against the pathogens are then prefer-
entially selected for further activation, leading to a process of affinity matu-AFFINITY MATURATION

ration of detectors and effectors. Hopefully, this process leads to a progres-
sively increasing effectiveness of the adaptive immune system in fighting
the pathogen. Eventually, the rate of pathogen elimination surpasses the rate
of pathogen replication and the host is progressively cleared from the pres-
ence of the pathogen. When the pathogen invasion has been eradicated and
all the pathogens destroyed, the danger signal abates, the immune elements
cease to be reactivated, and most of them are eliminated for lack of match-
ing antigen patterns, except for a small population of long-lasting elements
which is formed by the detectors and effectors that most effectively fought
the pathogen. These element constitute the immune memory of the pathogen.IMMUNE MEMORY

They have a increased sensitivity of recognition of the antigens and permit
quick mounting of an immune response against the same pathogen if it is

5.1 How Biological Immune Systems Work 349

Figure 5.4 A schematic representation of the process of activation of the elements
of the adaptive immune system. a) The presence of a pathogen causes stress or dam-
age to the host tissues, which produce danger signals. b) The danger signals cause
the activation of the APCs and enhance their activity of capture and presentation of
antigens on the APCs billboards. c) Activated APCs activate the detectors that recog-
nize the captured antigens. d) Activated detectors activate the effectors most suited
to fight the pathogens that caused the production of the danger signals.

350 5 Immune Systems

encountered again. The immune memory also speeds the generation of an
effective immune response against new pathogens that resemble pathogens
that have been successfully fought in the past.

Summing up, an inactive detector or effector is activated only when it is as-
certained that it recognizes a pattern belonging to an antigen that was found
in a danger zone. It is instead permanently deactivated or eliminated if it
is ascertained that either it does not recognize any pattern or if it recognizes
a pattern belonging to an antigen that is found in a region not marked as a
danger zone.

This context-based strategy of activation of the immune elements permits
the extension of the activity of the immune system to the control of errors
and dysfunctions of the subsystems of the host itself, independently of the
presence of pathogens. If a subsystem starts to malfunction due to some
internal damage or wear, and if a danger signal is produced as a consequence
of the stress induced by the malfunction, the adaptive immune system can
identify the patterns that characterize the dysfunctional subsystem, destroy
it, and replace it with a newly produced healthy version. For example, this
is the case of cells that become cancerous, provided they lead to the early
generation of danger signals. It has been hypothesized that the enforcement
of control of the identity and functionality of the subsystems constituting the
host was the original reason which led to the evolution of adaptive immune
systems (Klimovich 2002).

5.1.5 The Limits of Adaptive Immunity

Adaptive immunity is a substantial improvement over innate immunity,
since it permits keeping up with the pace of rapidly changing pathogens and
damaged subsystems. However, it entails additional risks for the host, and
it comes with its own limitations. A first limitation of adaptive immunity
is the delay with which it generates an effective response when challenged
by a new pathogen. Since the variety of possible antigens and patterns is
immense, only a few PRRs that are specific to the new pathogen can be ex-
pected to be present in the host body at the time of the initial pathogen at-
tack. The activation of the adaptive immune response requires the meeting
of those rare detectors and effectors with the APCs carrying the pathogen
antigens, and this may require some time. The existing PRRs that recog-
nize the pathogen can be also expected to have initially a low affinity for
the pathogen. There is thus typically a further delay which is imposed by
the process of affinity maturation. This initial interval is known as the la-

5.1 How Biological Immune Systems Work 351

tent or lag phase of the primary response which follows the first exposure toPRIMARY RESPONSE

a pathogen. During this initial phase the innate immune system must be
able at least to contain the invasion and prevent the host from being over-
whelmed by the pathogen. Since the innate immune system is unable to fight
the pathogen effectively (otherwise the adaptive immune system would not
have been called into action), this phase can be characterized by a reduced
functionality of the host. On the other hand, the mechanism of immune
memory ensures that further encounters with the same (or a very similar)
pathogen lead to a quick and strong reaction of adaptive immunity known
as the secondary response (figure 5.5). The speed and effectiveness of the sec-SECONDARY RESPONSE

ondary response make it typically asymptomatic, that is, no reduction of the
host functionality ensues from further encounters with the pathogen. The
limited speed with which the adaptive immune system can mount an effec-
tive response against a pathogen that it has never encountered entails also
the possibility that a pathogen escapes destruction through rapid antigenic
variation. For example, the human immunodeficiency virus (HIV) responsi-
ble for AIDS has a high rate of mutation of the genetic material that encodes
its surface proteins. In this way, an instance of HIV for which the adaptive
immune system has developed effective countermeasures can rapidly pro-
duce variants that are no longer recognized by the existing immune detectors
(Nowak and McMichael 1995).

Another potential problem linked to the activity of adaptive immunity
is the destruction of healthy structures of the host. The attack on the host
from its immune system is called autoimmunity and leads to the so-called au-AUTOIMMUNE

DISEASES toimmune diseases. A first scenario for this behavior is the activation of an
effector from the part of an APC that has engulfed and processed an au-
toantigen present in a danger zone (Matzinger 1998). The possibility that
such an effector exists is reduced but not eliminated by the mechanisms of
central tolerance. The mechanism of peripheral tolerance typically limits the
ensuing destruction to the few acts of elimination that an effector is enabled
to perform before requiring reactivation on the part of an APC. Therefore,
this scenario can entail extensive destruction of host tissues only if the im-
mune system is unable to clear the host and the pathogen presence becomes
chronic. The problem becomes much more serious in the context of a second
scenario, where there is a strong similarity between a pattern found on an
antigen belonging to a pathogen and one belonging to an autoantigen that
is not present in the region where central tolerance is established. In this
case the activity of eradication of the pathogen will be accompanied by the
destruction of the host structures carrying the autoantigen that is similar to

352 5 Immune Systems

primary response

secondary response

primary
antigen
injection

secondary
antigen
injection

lag phase

time

c
o

n
c
e

n
tr

a
ti
o

n
o

f
im

m
u

n
e

e
ff
e

c
to

rs
Figure 5.5 When an antigen is first presented to the adaptive immune system, a
primary response is observed, which is characterized by a delay between the antigen
injection and the mounting of a significant immune response. The immune memory
of the first encounter permits the faster reaction to subsequent encounters with the
same antigen that is observed in the secondary response.

the pathogen antigen. This phenomenon will recur each time the pathogen
invades the host, leading to a progressive self-inflicted damage. For exam-
ple, it has been hypothesized that multiple sclerosis and rheumatoid arthritis
are autoimmune diseases produced by the similarity between some viral and
bacterial antigens and some autoantigens found in healthy myelin and carti-
lage cells (Sompayrac 2003).

Finally, the mechanism of activation of the adaptive elements upon detec-
tion of a danger signal entails the possibility of an asymptomatic invasion
of the host. This would happen if a pathogen that is not recognized by the
innate immune system enters the host without producing damage and thus
without resulting in the generation of danger signals. This invasion would
not be fought until some damage to the host ensues. In the meantime the
antigens of the invader would tolerize the elements of the immune system.
Only when damage ensues would danger signals start to be produced and
newly produced detectors and effectors could slowly start to be activated
to fight the invader. The risk is that by that time the pathogen infection is
so widespread that no effective immune response can be mounted before
the host is overwhelmed. The answer seems to be a combination of the re-
finement of the detection abilities of the innate immune system and of the
abilities of host cells to generate danger signals following even minor per-

5.2 The Constituents of Biological Immune Systems 353

turbations of their activity. This reduces the probability that a widespread
pathogen invasion goes undetected, even if it does not initially produce any
damage. This approach, however, is less effective against anomalous behav-
iors of the host subsystems, because the host antigens cannot be the target
of innate immune detection. It follows, for example, that the adaptive im-
mune system will not target cancerous cells as long as their proliferation does
not harm the host, at which point the spread and speed of replication of the
cancerous cells could be excessive for the resources of the immune system
(Matzinger 1998). Moreover, part of the burden in the production of danger
signals rests on the cells themselves and this mechanism could also be per-
turbed in a cancer cell (D.M. Pardoll 2003). On the other hand, this scenario
opens the way to the development of techniques to mobilize the immune
system against tumors by generating artificially suitable danger signals in
the early phases of their growth (D.M. Pardoll 1998; Wiemann and Starnes
1994; Gilboa 2004).

5.2 The Constituents of Biological Immune Systems

In this section we will describe the constituents that implement the immune
processes described in the previous section. Given the complexity of the
immune function the description omits many details of our current under-
standing of the vertebrate immune system. Note that the operation of the
vertebrate immune systems is far from being completely understood and
that there are still controversies concerning not only its details but even its
general “philosophy” of operation (Matzinger 2002). For each function, we
describe here only the most important components, focusing on the aspects
that are most relevant to the implementation of an artificial immune system.
The details discussed in this section are not necessary for the understanding
of the rest of the chapter. Readers not interested in these biological details
can skip this section without compromising their understanding of the sub-
sequent sections. However, even this simplified overview gives an idea of
how many elements and interactions are required to implement effectively
the protection strategies described in the previous section. Comparing the
complexity of biological immune systems with that of the existing AISs that
will be described in the following sections one can appreciate the gap that
currently exists between the two and understand the limitations of current
AISs.

354 5 Immune Systems

The patterns recognized by biological immune systems are the molecu-
lar structures of the various substances that can reveal the presence of a
pathogen. Antigens are always recognized from their three-dimensional mo-ANALOG AND DIGITAL

RECOGNITION lecular shape. We can distinguish a “digital” modality of recognition from
an “analog” one. In the digital case, the recognition concerns a specific se-
quence of molecular substructures. A typical example is the recognition of
a subsequence in the sequence of amino acids that constitutes the primary
structure of a protein. In the analog case, the recognition concerns the three-
dimensional shape of a part of the antigen, without a specific recognition of
its separate constituents. In this case there is a continuous range of values of
affinity of the receptor relative to the antigen, rather than the highly specific
digital recognition of a subsequence. This implies that the analog recognition
is more adaptable through a selection process, but it is also less reliable than
its digital counterpart. For this reason, the activation of the immune effectors
is almost exclusively entrusted to detectors operating in the digital modality.

In some cases the elimination of the pathogens is done directly by the im-CELLULAR AND

HUMORAL IMMUNITY mune effector cells. In this case we speak of cell-mediated or cellular immunity.
In other cases the elimination of the pathogens is mediated by molecules that
are secreted and circulate in the intercellular spaces. In this case we speak of
humoral immunity. There is a strong interaction between these two kinds of
immunity. In particular, many elements of humoral immunity do not directly
disable or kill the pathogens but mark them for destruction from the part of
the elements of cellular immunity. The most important effectors of cellularPHAGOCYTES

innate immunity are a class of cells called phagocytes. Phagocytes work by
engulfing the structures that must be destroyed and flooding them with ag-
gressive chemicals that fragment the engulfed material into their basic con-
stituents. Several phagocytes can cooperate in the extracellular killing of a
pathogen by surrounding it and secreting special antipathogen chemicals.
The most important element of innate humoral immunity is the complementCOMPLEMENT SYSTEM

system. It is constituted of chemicals that are distributed in the blood and in
the tissues of the host. These chemicals tend to stick to the surface of cells
and start a cascade of self-amplifying reactions that end up drilling holes in
the cell membrane, thus killing the cell. The host cells produce specialized
antidotes that inactivate the first step of the process and prevent the cascade
of reactions from happening. The antidote itself is complicated to produce,
thus making its synthesis quite demanding on the part of pathogens. Even
partial inactivation of the cascade is ineffective, since phagocytes recognize
and kill cells whose surface is coated with components of the complement
system.

5.2 The Constituents of Biological Immune Systems 355

The APCs that realize the mechanism of context-based activation of adap-DENDRITIC CELLS

tive immunity described in the previous section are the dendritic cells (DCs).
To perform their function, DCs are equipped with many kinds of PRRs which
permit them to discriminate between the various kinds of danger signals that
can exist in the host body. DCs remain normally in an inactive state and pa-
trol the body in search of danger signals generated by distressed host tissues
or represented by PAMPs. DCs are equipped with the machinery required to
capture and present antigens existing in the extracellular fluid that surrounds
them. When they sense a danger signal, DCs become activated and increase
their rate of capture and presentation of external antigens. Moreover, they
become much more inclined to migrate to nearby meeting places to present
the captured antigens to the components of adaptive immunity. When DCs
are activated, they communicate this fact to the components of adaptive im-
munity by accompanying the presentation of the captured antigens with the
presentation of an additional signal which represents the costimulation re-
quired for the activation of the elements of adaptive immunity.

The elements of the adaptive immune system are activated when they
meet activated APCs (typically, DCs) carrying antigens that the adaptive el-
ements recognize. To realize this function, there must be in the body “facto-
ries” where adaptive immune elements are produced, and a system for the
distribution of the newly produced elements in the host body. Newly gen-
erated adaptive immune elements are not directly distributed in the whole
body since they would be too dispersed and the probability of their meeting
the right activated DCs would be too low. Newly generated adaptive im-
mune elements are instead dispatched to specialized meeting places where
the density of DCs and immune elements permits a more efficient transfer
of information from the DCs to the immune elements. The lymphatic systemLYMPHATIC SYSTEM

is the ensemble of organs where all these processes take place. It includes
primary lymphoid organs like the thymus and the bone marrow, where the im-
mune elements are produced and screened; lymphatic vessels for (among other
things) the dispatching and circulation of immune elements; and secondary
lymphoid organs such as the lymph nodes, which are the meeting places men-
tioned above, where DCs and immune elements can meet and exchange in-
formation. The two kind of cells of the adaptive immune systems discussed
below, namely, T cells and B cells, are consequently called lymphocytes.

As anticipated in the previous section, the scenario where the pathogens
become invisible to the immune system after entering the host cells is a-
voided by requiring that the cells report about their internal activity using
specialized “billboards” present on their external surface. The most impor-MHC-I

356 5 Immune Systems

Figure 5.6 Schematic representation of the process of MHC antigen presentation.
a) Generic cells (including APCs) use MHC-I molecules to present internally gener-
ated peptides. b) APCs use MHC-II molecules to present peptides they have engulfed
from their surroundings.

tant and best known kind of billboards are those devoted to the reporting
about the proteins that are synthesized within the cells. These billboards are
implemented by the so-called class I major histocompatibility complex (MHC-I)
molecules. The presentation of proteins based on MHC-I molecules works
as follows (figure 5.6a)). Proteins are continuously synthesized within cells.
To obtain a functional protein, a linear chain of amino acids is first assem-
bled and then folded to produce a three-dimensional structure. Many of the
assembled chains of amino acids do not fold correctly and are quickly disas-

5.2 The Constituents of Biological Immune Systems 357

sembled into their amino acid constituents by specialized cellular machines.
The same fate is reserved for proteins that have lost their functionality or are
no longer needed by the cell. In order to let the immune system know what
kind of proteins exist and are synthesized within the cell, not all proteins tar-
geted for destruction are directly reduced to their constituent amino acids. A
sample of protein fragments of some 8 to 10 amino acids in length is inter-
cepted before their complete disassembly. These sequences of amino acids
are mounted on a groove existing on newly synthesized MHC-I molecules.
Then, the complex formed by the MHC-I molecule and the sequences of
amino acids migrates to the membrane of the cell, where the MHC-mounted
protein fragment is exposed outside the cell for the inspection of the immune
system.

The presentation of proteins via MHC molecules has several interesting
properties. First, the protein fragment is presented as a sequence of amino
acids. This permits its digital recognition on the part of the immune system,
thus giving the immune system the possibility of recognizing, with a low
probability of error, the presence of pathogens within cells. Moreover, the
cutting into pieces of the proteins before presentation exposes parts of the
protein that are normally hidden from view due to protein folding. The only
limitation of this modality of antigen presentation follows from the fact that
the mounting of the protein fragment on the groove of the MHC molecules
imposes certain constraints on the nature of some of the amino acids of the
sequence. In other words, a given MHC molecule is compatible only with
certain sequences of amino acids. To compensate for this limitation, each in-
dividual has several genetically encoded MHC molecules. This means that
many different sequences of amino acids can be presented by the whole set
of MHC molecules of one individual, especially if there is a good diversity
in its set of MHC genes (Mitchison 1993). Vertebrate populations are highly
polymorphic on MHC-encoding genes. This means that two randomly cho-
sen individuals have a high probability of having different sets of MHC
genes. Their MHC molecules will therefore display different parts of a given
pathogen-derived protein. Thus, an intracellular pathogen which escapes
recognition by the immune system of one individual is probably detected
by the immune system of the other. It has even been hypothesized that this
phenomenon is a major reason for the maintenance of sexual reproduction
(Hamilton et al. 1990).

The mechanism based on MHC-I molecules gives to all host cells the pos-
sibility to inform the immune system about their internal activity of protein
synthesis. Antigen-presenting cells (APCs) must perform the additional task

358 5 Immune Systems

of picking up antigens from their surrounding and presenting them to the
detectors of the immune system (figure 5.6b)). To this end APCs use the so-
called class II major histocompatibility complex (MHC-II) molecules. They differMHC-II

from MHC-I molecules in that they have a longer groove which can house
protein fragments up to 20 amino acids long. Note that only APCs possess
MHC-II molecules and the machinery to load and expose them. Other kinds
of specialized APCs billboards have been recently discovered in vertebrate
immune systems, which report on antigens other than proteins, for exam-
ple lipids (Moody et al. 2005). Their logic of operation is the same as MHC
molecules.

As discussed in the previous section, a mechanism of reporting on the in-
ternal activity of inaccessible subsystems can be effective only if the reporting
cannot be safely disabled by pathogens that have entered the subsystems. In
fact, many viruses have evolved a mechanism to reduce the display of MHC-
I molecules loaded with antigens on the surface of the cells that they have
infected. The countermove of the immune system is represented by naturalNATURAL KILLER CELL

killer (NK) cells. The main function of NK cells is to monitor the density and
the quality of the MHC-I molecules that are displayed on the surface of the
host cells. If the density of MHC molecules drops below a certain level, or
if their structure has been modified beyond recognition, the NK cells acti-
vate a process that kills the host cell. This is the logic of operation illustrated
schematically in figure 5.2.

The adaptive immune elements that are in charge of inspecting the MHCT CELL

billboards are called T cells. Two different kinds of T cells are devoted to
the two existing kinds of MHC molecules. Helper T cells (TH cells) are spe-TH CELLS

cialized for MHC-II molecules, whereas cytotoxic T cells (TC cells) inspectTC CELLS

the MHC-I molecules. The role of TH cells is to orchestrate the working of
the other parts of the adaptive immune system using the information gath-
ered by APCs, while the role of TC cells is to kill the cells that show signs
of having been invaded by a pathogen. T cells constitute the cellular arm of
adaptive immunity. To inspect the MHC molecules T cells use specialized TT CELL ANTIGEN

RECEPTORS (TCRS) cell antigen receptors (TCRs). TCRs are proteinic molecules that are produced
within T cells and subsequently migrate to their surface to act as the PRRs
of T cells (figure 5.7a)). Their capability to inspect the MHC molecules and
the antigens mounted on them is due to the shape of the portion of the TCR
surface which is exposed to the outside of T cells (figure 5.7b)). Part of this
surface complements and recognizes the MHC molecule. Another part of the
TCR is capable of sensing the sequence of amino acids mounted in the MHC
groove. The parts of a TCR which complement the MHC molecules need a

5.2 The Constituents of Biological Immune Systems 359

Figure 5.7 a) T cells are equipped with T cell antigen receptors (TCRs) that are ex-
posed on their surface. b) The shape of the TCR surface complements in part the
shape of the surface of MHC molecules and in part the shape of the surface of the
antigens mounted on the MHC molecules. This permits the recognition of the anti-
gens on the part of T cells and limits the recognition to the MHC-mounted antigens.

limited variability for the small set of different MHC molecules existing in
each individual. The parts of a TCR which recognize the antigen mounted in
the MHC groove need instead an enormous variability. In principle, the di-
versity should permit the recognition of all the possible sequences of amino
acids that can be presented by the existing MHC molecules. TCRs are built
using the information encoded in the host genome. For each region of the
TCR the host genome encodes a collection of some tens of alternative genes,
depending on the variability required by the region. Each collection consti-
tutes a a gene library for the definition of the corresponding TCR region. TheGENE LIBRARIES

strategy for the generation of the required TCR diversity is the random selec-
tion of elements from these gene libraries (figure 5.8). This process is carried
out when T cells develop in the thymus (whence their name). At the end of
this process the genome of a given T cell contains the information to build
just one kind of TCR. Thus, all the TCRs of a given T cell and of all its clonesMONOSPECIFICITY OF

T CELLS

360 5 Immune Systems

Figure 5.8 The generation of TCR diversity using random selection of elements be-
longing to the gene libraries of the host genome devoted to the encoding of TCRs.

that will be possibly produced are identical. We refer to this property saying
that T cells are monospecific. Thanks to the process of random selection within
gene libraries, there can be as many different TCRs as products of the num-
ber of alternative genes for each region (see box 5.1). Moreover, the process
of joining the selected regions of the genome is purposefully kept loose, so as
to add further variability to the result. It is estimated that, depending on the
kind of T cell, the number of different TCRs that can be potentially generated
varies from 1015 to 1018, enough to recognize all possible antigens mounted
on MHC molecules. Due to the random element in the process of genome
reorganization, it is possible that the TCRs of a newly produced T cell are
unable to access MHC molecules because the required complementarity is
missing. For this reason, before T cells are dispatched to lymph nodes, a pro-
cess of positive selection is executed in the thymus. This positive selection is
called MHC restriction and preserves only the T cells that can access the MHCMHC RESTRICTION

molecules of the cells present in the thymus. Newly produced T cells can also
have TCRs that recognize autoantigens. A negative selection process elimi-
nates all T cells that recognize the antigens that are presented in the thymus.
This establishes the central tolerance of T cells. T cells that survive both se-
lections specialize as TH or TC cells, (the mechanism of commitment to one
of the two types has not been fully clarified yet).

Newly produced T cells are dispatched to the lymph nodes as inactive TH

or TC cells. Eventually, they will be either activated against some pathogen,

5.2 The Constituents of Biological Immune Systems 361

or eliminated by lack of matching antigen or by the mechanism of periph-
eral tolerance. More precisely, inactive TH cells that in their circulation in the
lymphatic system recognize an antigen presented by an inactive DC are per-
manently inactivated or eliminated. The same fate awaits inactive TH cells
that after some time have not yet found a DC that presents an antigen that
they recognize. Inactive TH cells that in their circulation in the lymphatic
system recognize an antigen presented by an active DC are activated, thanks
to the presence of the costimulation provided by the active DC. Inactive TC

cells are peripherally tolerized in much the same way as inactive TH cells,
except that TC cells interact with the MHC-I billboards of DCs rather than
with their MHC-II billboards.1

Activated TH cells proceed to clone themselves, to activate B cells as de-
scribed below, to migrate to the danger zones, and to produce chemicals
that stimulate the other components of adaptive and innate immunity (fig-
ure 5.9). Activated TC cells proceed to clone themselves and migrate to the
tissues, where they kill the cells that present the antigen that is recognized
by their TCRs. The monospecificity of the T cells (and that of the B cells de-
scribed below) is crucial for the safe working of the mechanism of activation
just described, since it ensures that a T cell activated by one antigen is not ac-
tive against unrelated antigens. As explained in the previous section, all ac-
tivated elements of the adaptive immune system, including TH and TC cells,
must be periodically reactivated. In the normally prevailing conditions of
localized pathogen invasion, autoantigens are found much more frequently
outside of danger zones then inside them. Thus, according to the tenets of
frequency-based tolerization, autoreactive T cells that have been accidentally
activated have a good probability of being peripherally inactivated or elimi-
nated rather than reactivated. After the pathogen invasion is cleared, most T
cells produced and activated during the attack die for lack of the antigen that
they can recognize, except a few memory cells. The mechanism of choice and
maintenance of memory T cells is currently poorly understood.

T cells can eliminate the cells of the host that have been infected by a
pathogen. However, they do not fight the pathogens in their extracellular
form, whereas the life cycle of many pathogens takes place at least in part

1. The fact that TC cells interact with MHC-I rather than MHC-II billboards creates a difficulty,
since the information for the activation of adaptive immune elements is possessed by activated
DCs, which normally present externally captured antigens on MHC-II rather than on MHC-I
molecules. A possible scenario that reconciles this difficulty works as follows. An active DC ac-
tivates a TH cell which, in turn, “conditions” the DC to present the externally captured antigens
on MHC-I rather than on MHC-II molecules. Conditioned DCs can thus activate TC cells.

362 5 Immune Systems

Figure 5.9 The life cycle of TH cells. Unless explicitly marked with an upward ar-
row, all the flow lines proceed from top to bottom. The short horizontal lines that cut
the flow lines denote conditions that must be verified before the TH cell development
is allowed to proceed along the corresponding flow line.

outside of the host cells. There is thus the need for an additional component
of adaptive immunity capable of dealing with extracellular pathogens and
with the products of their activity. This additional component is made up by
B cells and constitutes the foundation of the humoral arm of adaptive immu-B CELL

nity. B cells do not operate by directly attacking the pathogens but by pro-

5.2 The Constituents of Biological Immune Systems 363

ducing molecules called antibodies. Antibodies are proteinic molecules thatANTIBODY

circulate in the extracellular fluids of the host and are shaped so as to bind to
pathogen antigens. In some cases the presence of antibodies bound to their
surface targets the pathogens for destruction by the effectors of the innate im-
mune system. In other cases this binding itself inactivates the pathogen, for
example by altering a molecular structure that is essential to the activity of
the pathogen. This is a very efficient strategy since molecules like antibodies
are much more economical to produce than whole cells, and can be gener-
ated rapidly in large quantities. We can distinguish two regions in the anti-
body molecule: an antigen-binding region and a “tail.” The antigen-bindingANTIGEN-BINDING

REGION region is the part of the antibody that is used to recognize the pathogens and
bind to them. The recognition is based on the complementarity between the
three-dimensional shape of the surface of the antigen-binding region and a
portion of the surface of the pathogen. Contrary to what happens for T cells,
this kind of recognition has an analog nature. By slightly changing the shape
of the antigen-binding region the affinity of the antibody for the pathogen
can be modified incrementally. Moreover, the recognition applies not only to
proteins but to many other kinds of molecules such as lipids and polysaccha-
rides. The tail of the antibody molecule determines the class of the antibody
response, that is, how the antibody operates against the pathogen. This per-
mits the choice of different modalities of attack against different pathogens.
There is a small number of classes of antibodies and B cells are instructed to
switch to the production of a given class by the signals they receive during
their activation.

Before a given kind of antibody is mass-produced and released in the ex-
tracellular fluids it is necessary to ascertain that it has a high affinity for the
antigens of the pathogens that are present, and that it has a low affinity for
autoantigens. To ensure this, antibodies are first produced in the form of
B cell antigen receptors (BCRs). In this role, they are constrained to remainB CELL ANTIGEN

RECEPTORS (BCRS) attached to the cell, with their tail embedded in the B cell membrane and
their antigen-binding region exposed at the surface of the B cell. B cells can
sense the degree of affinity of the antigen-binding region for the antigens
with which they come into contact. In this way a B cell can “know” when it
has bound to an antigen for which its BCRs have a high affinity. Only after
the B cell has been activated according to the mechanism described below
the is B cell permitted to mass-produce and release its BCRs as antibodies.

BCRs – like TCRs – must be able to match the antigens of an enormous
variety of pathogens. To this end, B cells must be able to produce a large
variety of BCR antigen-binding regions. The mechanism of generation of

364 5 Immune Systems

this variability is similar to that used for TCRs (figure 5.8) and is based on
the random selection of elements of gene libraries that are devoted to the
encoding of the BCR molecules. As in the case of T cells, at the end of the
process of selection in the gene libraries, the genome of a given B cell contains
the information to build a unique BCR. Thus, all the BCRs of a given B cell are
identical. The establishment of central tolerance for B cells is also similar to
that of T cells and is based on a process of negative selection which eliminates
the B cells that bind to the antigens that are present in the bone marrow. B
cells that survive the negative selection which establishes central tolerance
are dispatched in the host body as inactive B cells since there is still the risk
that centrally tolerized B cells recognize autoantigens. Therefore, there must
be a further selection leading to the elimination of autoreactive B cells and
activation of B cells that recognize pathogen antigens.

The activation and peripheral tolerization of B cells is mostly based on
their interaction with TH cells (figure 5.10). When an inactive B cell senses
the binding with high affinity of its BCRs to an antigen, it proceeds to en-
gulf, process, and display the antigen on its MHC-II molecules. This pro-
cess can be seen as an analog-to-digital conversion which links the analog
recognition performed by the antigen-binding region of BCRs to the digital
display of MHC molecules. An inactive B cell that encounters an inactive
TH cell which recognizes the antigens presented by the B cell on its MHC-II
molecules is permanently inactivated or eliminated. The same fate awaits an
inactive B cell that after some time has not met a TH cell that recognizes the
antigens. An inactive B cell that encounters an active TH cell which recog-
nizes the antigens presented by the B cell is instead activated. As said above,
active TH cells have been informed by APCs that the antigen they recognize
can be found in a danger zone. With the mechanism of B cell activation just
described, active TH cells relay this information to B cells. Activated B cellsSOMATIC

HYPERMUTATION

Figure 5.10 (facing page) a) B cells carry BCRs on their surface. b) If the antigen-
binding surface of the BCRs complements well a portion of the surface of an antigen,
the antigens bind to the BCRs. Antigens bound with high affinity to BCRs are en-
gulfed by B cells, processed internally, and presented on MHC molecules. c) An ac-
tive TH cell that recognizes an antigen presented by a B cell activates it. d) Activated
B cells proliferate and undergo somatic hypermutation which modifies their BCRs.
Clonal selection preserves the B cells with higher affinity for the antigens. These cells
will become either memory B cells or plasma cells. The latter are specialized cellular
factories that produce and secrete antibodies.

5.2 The Constituents of Biological Immune Systems 365

366 5 Immune Systems

start to proliferate and when they reproduce are subject to a high rate of mu-
tation of certain regions of their genome which code for the antigen-binding
region. This phenomenon is known as somatic hypermutation (see box 5.2). It
has been hypothesized that the rate of mutation is higher for B cells whose
BCRs have a lower affinity for the antigens that are present. This focuses the
adaptation process on B cells whose BCRs are relatively less efficient against
the invading pathogens (Berek and Ziegner 1993). Finally, a phenomenon
of clonal selection multiplies preferentially B cells with better affinity for the
antigens.

The adaptation process brought about by somatic hypermutation and
clonal selection increases the effectiveness of the antibodies that are pro-
duced. Note that the mechanism of somatic hypermutation could generate
B cells whose BCRs are autoreactive. The mechanism of activation through
activated TH cells ensures that these autoreactive B cells are not activated.
Contrary to B cells, T cells do not undergo somatic mutation and clonal selec-
tion after their activation. It is not clear if this absence is due to the excessive
complication that would result from this additional adaptation step (with
the necessity of reactivating also the mutated T cells from the part of the ac-
tivated APCs), or to the minor efficiency of the evolutionary process on the
much more rugged landscape determined by the digital modality of recog-
nition of TCRs compared to the analog one of BCRs. Some of the activated
B cells become memory cells, whereas some of them become plasma cells and
instead of membrane-bound BCRs they start to produce and secrete antibod-
ies. Like T cells, after the pathogen invasion is cleared, most B cells activated
during the attack die for lack of their complementary antigen, except for the
memory B cells which remain in circulation to speed the response to possible
future invasions of the same or similar kind of pathogen.

Figure 5.11 presents a simplified schematic overview of the activity of the
main actors of the adaptive immune system.

5.3 Lessons for Artificial Immune Systems

We proceed now to review what we have learned about the natural immune
system, focusing on the aspects that can be expected to be relevant to the
synthesis of artificial immune systems.

Performance The immune protection is an ongoing process that is kept ac-
tive by the struggle between the host and the pathogens. We cannot expect
the immune system to attain a definitive success against pathogens and fail-

5.3 Lessons for Artificial Immune Systems 367

Figure 5.11 a) A schematic overview of the activity of the adaptive immune sys-
tem and b) some additional detail on the activation of the most important elements
involved in the immune process.

368 5 Immune Systems

Box 5.2: Localized hypermutation
The high mutation rate that is observed in somatic hypermutation of

B cells is not uniformly distributed on the whole genome but localized
in the regions that encode the antigen-binding region. A similar phe-
nomenon is observed in pathogens for the regions of their genome that
encode the antigens that are most exposed to the detection of the im-
mune system of their host. Even higher organisms, such as venomous
insects, snakes, and marine snails, present a high degree of mutation
from parent to offspring of the genes that encode the toxins that they
use to immobilize or kill their prey. All these examples show that organ-
isms can have different local rates of mutation in different parts of their
genome. This phenomenon can be observed also with respect to other
genetic operators. For example, recombination hotspots have been
identified in the genome of many organisms (McVean et al. 2004). The
nonuniform distribution of the genome reorganization rates focuses the
generation of variability where it is required, keeping undisturbed the
regions of the genome where important functions must be conserved.
It is tempting to interpret this nonuniform distribution as an adaptation
brought about by natural selection. However, the hypothesis that nat-
ural selection can adapt the local mutation rates is controversial. The
contentious cases are those where there is no immediate advantage in
either survival or reproduction for an individual. It has been argued
(Dickinson and Seger 1999) that in these cases selection cannot work
on the corresponding feature since this would require foresight on its
part. To counter these objections it is sufficient to consider the reproduc-
tive success of the offspring in addition to that of the parent. The term
second-order selection has been proposed for this extension (Weber 1996;
Metzgar and Wills 2000; Tenaillon et al. 2001). The focusing of genetic
changes on the regions where they have a greater probability of being
useful operates in the light of the past trend of the environmental con-
ditions. This increases the chances of survival and reproduction of the
offspring and, other things being equal in terms of the immediate re-
productive success of the parent, it increases its long-term reproductive
success.

The mechanisms that permit the encoding of the local reorganiza-
tion rates are only partially understood. A first hypothesis is based on
the exploitation of the degeneracy of the genetic code that associates
nucleotide triplets (codons) to amino acids. Degeneracy indicates that
several codons correspond to the same amino acid; the same protein
can be encoded using different sequences of codons. The choice (cont.)

5.3 Lessons for Artificial Immune Systems 369

Box 5.2 (continued)
of a particular codon in the set of those that specify a given amino acid
can thus correspond to the choice of the mutation rate that must be ap-
plied to that particular region of the genome. This corresponds to the
definition of an additional code on top of the genetic code (Caporale
1984). The hypothesis of existence of a mechanism of this kind is cor-
roborated by the observation of highly evolutionarily conserved codon
choice in the encoding of certain proteins. The idea of encoding and
evolving either the global or the local mutation rates has also been con-
sidered in evolutionary computation (Bäck 1992). The results obtained
so far, however, have not led to a widespread acceptance of this prac-
tice, especially in the field of genetic algorithms. An exception is rep-
resented by evolutionary strategies, where it is common to encode and
mutate the variances that determine the Gaussian mutation of the real
phenotypic parameters represented in the genome (Bäck 1996). Note
that, for the reasons mentioned above, the self-adaptation of local rates
of genome reorganization can be expected to be much more powerful
than that of global rates.

ures of host subsystems. Rather, a balance is achieved between the effective-
ness of the protection and the costs and stability of the system.

Costs An immune system can be expected to be very expensive in terms of
resources. An innate immune system requires the generation and operation
of many components. In addition, an adaptive immune system requires a
strict selection of the adaptive elements and this increases significantly the
magnitude of the effort. In the human immune system it is estimated that
more than 95% of the lymphocytes are destroyed soon after their generation
by the mechanism of central tolerance and MHC restriction (Palmer 2003).
The mounting of a full-scale adaptive immune response is so expensive in
terms of resources that it can result in a long-term reduction in the fitness of
an individual. Thus, there is a tradeoff between the mounting of an immune
response and the operation of other physiological systems of an organism
(Hanssen et al. 2005; Svensson et al. 1998). It has even been hypothesized that
organisms can modulate the strength, timing, and specificity of their immune
response according to an estimate of the resources that will be available to
the organism in the near future (Schmid-Hempel 2003) and that this could

370 5 Immune Systems

provide an explanation for the existence of the placebo effect (Humphrey
2002).

Damage and Regeneration The operation of an immune system can in-
flict damage on the host, either intentionally, in order to destroy infected
subsystems, or accidentally, due to autoreactivity. This is especially true for
adaptive immunity, since the generation of danger signals required for its
activation is often associated with already existing damage. This damage
constitutes an additional cost for the host and it implies that the host must be
able to generate new, healthy subsystems to replace the ones destroyed. This
capability of regeneration is an important and demanding requirement for
systems protected by immune systems, be they innate, adaptive, or artificial.
For example, cells invaded by a virus are destroyed and replaced by newly
created ones, just like programs attacked by computer viruses must in some
cases be removed and reinstalled from trusted backups. The immune system
can thus be expected to be endowed with a dual role: the first is to destroy the
pathogens and the infected subsystems; the second is to initiate and manage
the recovery operations required by the damages that it has inflicted while
playing its first role.

Design for Immunity The relationship between the immune system and
the system it protects takes the form of a dialogue rather than of a mono-
logue of the immune system. The host is not merely a passive receiver of the
protection provided by the immune system but is instead explicitly designed
to cooperate with it. This means that to realize an effective protection the pro-
tected system should be designed from the beginning with this cooperation
in mind, rather than retrofitted a posteriori with an immune system. This
joint design permits in particular the use of the concept of a danger signal to
solve the problem posed by the inability to discriminate a priori between le-
gitimate and unauthorized activity when both are produced by entities that
are composed of the same building blocks.

Distributedness, Decentralization, Self-Protection, and Robustness To
simplify the wording of the exposition we have so far talked of the host and
of the immune system as if they were two distinct entities. In fact, the im-
mune system is itself part of the host. This means that the immune system
must be built so as to be self-protecting. The vertebrate immune system is built
as a self-organizing distributed system composed of autonomous agents. The
control of the immune activity is decentralized. Small groups of immune el-
ements are capable of initiating an immune action based on the integrated

5.3 Lessons for Artificial Immune Systems 371

information they have collected. In this way, besides controlling the host, the
elements of the immune system can control each other. An immune system
realized as a centralized protection system would generate instead a self-SELF-PROTECTION

PARADOX protection paradox, since an additional second-order immune system would
be required to protect the first immune system, leading to an infinite hier-
archy of such systems. Thanks to its distributed nature and decentralized
control, the immune system is robust not only relative to pathogen attacks
but also to the malfunctioning of individual agents. To overwhelm such a
system, a large number of agents must be separately attacked and disabled.

Parallel Operation and Scalability The distributed and decentralized na-
ture of the vertebrate immune system is accompanied by the parallel oper-
ation of its elements. This gives the immune system a good scalability. The
adaptation of the immune activity to different sizes and complexities of the
host requires merely the adaptation of the number of immune elements, in-
stead of a complicated reprogramming of their behavior and interactions.

Adaptivity, Tolerance, Autoimmunity The example of the vertebrate im-
mune system shows that an immune system must be adaptive if it must deal
effectively with changes in the host or changes in the pathogens. It shows
also that the adaptivity of the action implies the risk of autoimmunity and
requires a sophisticated mechanism of establishment of tolerance to reduce
this risk to acceptable levels. Two mechanisms for the establishment of toler-
ance are suggested by the observation of the vertebrate immune system. The
first is a mechanism of central tolerance based on a process of negative selec-
tion and the second is a mechanism of peripheral tolerance based on danger
signals, activation by costimulation, and frequency-based tolerization.

Dynamic Allocation of Resources and Self-Limitation To contain the
costs and adapt the response to the prevailing contingencies, the resources
available to the immune system are dynamically allocated in terms of type
of elements and their distribution in the host body. Different types of im-
mune elements can be produced rapidly and concentrated at the site of the
infection when needed. Moreover, a mechanism of automatic shutdown of
the response leads to the rapid reduction of activity and resource usage when
the emergency subsides. The lifetime of most immune elements is kept short
and forces the dynamic adaptation of the tolerance and the response to the
prevailing contingencies. The turnover of detectors permits the coverage of
the space of antigens with a small population of detectors that is regenerated
at a high rate.

372 5 Immune Systems

Circulation of Detectors and Effectors The circulation of the detectors and
effectors of adaptive immunity in search of their antigen results in the expo-
sure of the immune elements to a random sample of antigens. This helps the
establishment of adaptive tolerance and reduces the population of immune
elements that must be generated and maintained in the host system in order
to ensure a reasonable probability of pathogen detection.

Adaptation of Local Sensitivity The modality of operation of the verte-
brate immune system permits knowing not only that there is a pathogen
invasion but also where the threat is located in the body. The mechanism of
inflammation permits changing locally the conditions required for the acti-
vation of the immune elements. In this way the local activity and sensitivity
of the immune system can be adapted to the prevailing level of pathogen
threat.

Generation of Diversity The detection of the pathogens on the part of the
adaptive immune system requires the generation of an enormous variety of
pattern recognition receptors. The strategy used by the vertebrate immune
system to generate this diversity is based on the random recombination of
the elements of genetically encoded libraries of building blocks rather than
on the random generation of receptors from scratch.

Strategies of Detection The detection of pathogens is based on the recog-
nition of the patterns constituted by antigens that are characteristic of the
pathogens. The vertebrate immune system contains detectors with different
modalities of recognition and different specificity. The processing and pre-
sentation on the billboards of antigens from the part of APCs is a strategy
that permits the presentation of multiple “views” of the pathogen.

Choice of Effector The information conveyed by the APCs that mediate
the activation of the immune effectors concerns not only the pathogen anti-
gens but also the kind of pathogen that is presumably associated with the
antigens. The vertebrate immune system uses this information (for example,
in deciding the class of the antibody response) to link the detection to the
activation of the kind of effector that has the greatest probability of being
effective against the estimated threat.

Learning and Memory The vertebrate immune system can use the infor-
mation conveyed by the pathogens it fights to increase the effectiveness of
its adaptive detectors and effectors. This feature is based on the use of an
adaptive process founded on localized hypermutation and clonal selection.

5.4 Algorithms and Applications 373

Moreover, the rate of mutation can be linked to the affinity of the matching,
in order to improve the performance of the process. The information thus
gathered can be retained for a long time in memory elements that permit the
use of the information of the past threats to fight more effectively and rapidly
the new threats.

Population Diversity The diversity of the vertebrate population relative
to the genes encoding the billboards for antigen presentation points to the
importance of maintaining a diversity in the immune systems of different
individuals of the population. The lesson for artificial systems is that it is
not advisable to protect multiple instances of a machine or computer with
identical copies of a given artificial immune system. So far, this policy has
been implemented by information technology departments by using differ-
ent protection software or different operating systems. The implementation
of an effective artificial immune system should lead to the automatic imple-
mentation of this kind of diversity.

5.4 Algorithms and Applications

The previous sections have shown that the operation of an immune system
implies the presence of a variety of agents and processes. To date, no AIS
tries to implement all that variety, although the ARTIS system, which will
be described below, represents a first step in this direction. The majority of
examples of AISs described in the literature focus instead on the implemen-
tation of one or at most a few of the concepts listed in the previous section. It
has been remarked (e.g., by Garrett 2005) that when considered separately,
many of those concepts and processes have some elements in common with
concepts and processes derived from other bioinspired approaches, in par-
ticular in the context of evolutionary methods. Still, as explained below, in
their immunological embodiment these ideas possess typically some pecu-
liarities that make them a distinct and useful bioinspired tool, possibly for
applications that are different from intrusion attack and fault protection.

Apart from the complexity of its implementation, one of the principal rea-
sons that hinders attempts at the realization of a full-blown AIS is the paucity
of systems that are designed from the beginning to operate in collaboration
with an AIS. Typically, the current approach is instead to try retrofitting ex-
isting systems with immune protection. This is particularly true in the field
of computer and network protection, since the existing infrastructure is too
extensive to be completely scrapped in favor of newly designed systems

374 5 Immune Systems

(Mukherjee et al. 1994). For example, very few systems implement a mech-
anism of reporting about the operations of their subsystems which parallels
the processing and presentation of proteins on the billboards of generic cells
and APCs. The only widespread exception that comes to mind is electronic
systems designed to operate in conjunction with watchdog devices, which
in their simplest form require that the protected subsystem send periodi-
cally a signal to the watchdog in order to confirm that the system operation
complies at least with a basic temporal pattern of activity (Mahmood and
McCluskey 1988).

It is also very difficult to find systems implementing a mechanism of gen-
eration of danger signals comparable to those found in biological systems
protected by immune systems. To justify this absence, it must be said that
the generation of useful danger signals is one of the most difficult aspects
in the implementation of an AIS inspired by the immune model described
in the previous pages (Garrett 2005). In the case of biological systems the
danger signals are the result of the joint evolution of the host and of its im-
mune system, whereas most of the existing systems that are candidates for
the implementation of an AIS are hand-designed. This lays on the human
designer the burden of devising suitable danger signals. Another obstacle to
the implementation of danger models is that the activation of the protection
system following the generation of a danger signal on the part of the pro-
tected system implies that some damage has possibly already occurred to
the system. This prospect is somewhat alien to the mainstream engineering
practices, which prefer a scenario where the protective action precedes the
damage. This position is more understandable if we consider that apart from
a few isolated efforts (e.g., Mange et al. 2000), current technology does not
permit the regeneration of damaged subsystems. Summing up, the exploita-
tion of the concepts revealed by the analysis of biological immune systems
requires that the protected system be endowed with many of the properties
of biological systems, an objective that is not yet within the reach of hardware
implementations. However, this perspective is already being considered for
systems implemented in software (Bentley et al. 2005). Moreover, as we shall
show below, many of the concepts inspired by immune systems lead also to
techniques that are useful for more conventional systems (Garrett 2005).

The danger model that we have described so far is a relatively recent (andDANGER MODEL

still not universally accepted) viewpoint on the operation of the vertebrate
immune system (Matzinger 1994). The traditional model that is still preva-TRADITIONAL MODEL

lent in textbooks does not contemplate the generation of danger signals on
the part of the host tissues and is instead focused on the concept of self/nonselfSELF/NONSELF

DISCRIMINATION

5.5 Shape Space 375

discrimination. According to this view, the crucial process in the operation
of the immune system is constituted by the mechanism of negative selection
that establishes central tolerance. Correspondingly, the first implementations
of AISs were also focused on the implementation of a mechanism of discrim-
ination between self and nonself. This viewpoint is certainly more palatable
to a conventional engineering mind, since the protective activity follows the
recognition of the nonself, which can precede the occurrence of any dam-
age to the protected system. Unfortunately, this conventional model cannot
explain a number of properties observed in the operation of the adaptive im-
mune system of vertebrates, in particular the tolerance for a changing self
and for what constitutes a harmless nonself (Matzinger 2002). For this rea-
son, the AIS community is also moving toward the adoption of the danger
model viewpoint (e.g., Aickelin and Cayzer 2002; Kim et al. 2005).

There exists a third model of the immune system, the so-called immune net-IMMUNE NETWORK

MODEL work model (Jerne 1974). This model puts the focus on the activity of adaptive
immune detectors, which are assumed to form a network of elements whose
receptors can not only sense the pathogens but are also engaged in an on-
going activity of mutual recognition. In the absence of pathogen invasion,
the network attains a condition of dynamic equilibrium which corresponds
to tolerance for the healthy host. The presence of pathogens produces a per-
turbation of the equilibrium of the immune networks which, above a certain
threshold, entails the activation of the immune response. The immune net-
work has enjoyed a certain popularity in biological circles in the past but
its validity has been questioned on the basis of more recent observations.
Nonetheless, it is still largely used as an inspiration for the implementation
of an AIS. We will not consider here artificial immune network models, since
the additional principles of operation with respect to models already dis-
cussed are very similar to those found in artificial neural networks, even if
some peculiarities exist (Dasgupta 1997; de Castro and Timmis 2002).

5.5 Shape Space

The concept of shape space (Perelson and Oster 1979) is an abstraction that
gives a geometric interpretation to the process of recognition of an antigen
on the part of an immune detector. The goal is to obtain a simplified model
of the action of the immune system to be used in the analysis and design of
artificial immune systems.

376 5 Immune Systems

In biological systems the actual recognition of antigens on the part of the
immune detectors (both in the analog and in the digital modalities of recog-
nition) is based on the complementarity of the geometric shape and electric
charge distribution of parts of the surface of the antigen and parts of the sur-
face of the receptors that equip the detector. We can simplify the descriptionGENERALIZED SHAPE

of this interaction by giving an abstract mathematical representation to the
receptor and to the antigen. We assume that the properties of the antigen
and of the receptor that are significant in the interaction can be represented
with a list of l parameters, that is, an l-tuple. This l-tuple is called the gen-
eralized shape of the antibody or receptor (de Castro and Timmis 2002). The
value of l depends on the complexity of the receptor and its interaction with
the antigen. The nature of the parameters can vary according to the kind of
model adopted for the molecules and the interaction. In general, they are
either real numbers or symbols belonging to a finite alphabet. Summing up,
the first step is the representation of the antigens and receptors as points in
an l-dimensional shape space.

The next step is the representation of the recognition of the antigen by the
detector. In our representation we can ignore the complementarity that ex-
ists in the actual interaction between antigen and receptor, because from an
abstract point of view what matters is the matching between the two and
not how it is physically realized. We arrive in this way to a representation
where a receptor r that matches perfectly an antigen a is characterized by
the same l-tuple of parameters, so that a = r. More generally, the recep-
tor will not match the antigen exactly, and we can specify a measure of the
affinity between the receptor and the antigen which represents the strengthAFFINITY

of the binding between them. The representation of the affinity is obtained
by associating with the pair (a, r) a real number d(a, r) that defines the dis-
tance in the shape space between the points that represent the receptor and
the antigen. Larger distances mean more dissimilar pairs, with a null value
only in the case of a perfect matching. A complementary approach is to as-
sociate with each pair (a, r) a value of similarity s(a, r) which increases with
the affinity of the matching and is maximal for perfectly matching pairs.

We can now say that a detector D equipped with receptors of type r rec-
ognizes an antigen a if d(a, r) is below a certain threshold θD. Thus, this
detector permits the recognition of all the antigens a that satisfy the condi-
tion d(a, r) < θD. The region of space thus defined is the recognition regionRECOGNITION REGION

of the detector. The recognition region is specified by the triple constituted
by the receptor r, the distance function d(·, ·), and the threshold θD. The
value of the threshold determines the specificity of the detector, with largerSPECIFICITY

5.5 Shape Space 377

Figure 5.12 Representation in shape space of antigens, receptors, and detectors.
Antigens and receptors are represented as points whose position is determined by
the l-tuple of their parameters. The detectors are represented by their recognition re-
gion, whose position is determined by that of the receptor of the detector, and whose
shape and size is determined by the distance function and by the threshold used by
the detector. The figure shows two immune detectors with different specificity, one
of which recognizes an antigen thanks to the fact that the position of the antigen in
shape space falls within the recognition region of the detector.

thresholds corresponding to bigger recognition regions and smaller speci-
ficity (figure 5.12).

The union of the recognition regions of all the detectors of an immune sys-IMMUNE REPERTOIRE

tem corresponds to the set of all the antigens that can be recognized by the
immune system. This region defines the coverage of the shape space by the
immune repertoire. Even if the variety of antigens can be potentially infinite,
physical constraints limit the range of the l parameters that characterize the
antigens, and thus the size of the shape space. Consequently, a finite number
of detectors carrying distinct receptors can cover the space of all the possible
antigens. To avoid autoimmunity, however, no active detector should in-
clude in its recognition region an autoantigen. Ideally, the immune repertoire
should cover all the regions of space that do not correspond to autoantigens.
If this is not the case, we say that the immune repertoire has holes that can beHOLES IN THE IMMUNE

REPERTOIRE potentially exploited by a pathogen to escape detection.
In this abstract scenario the problem that a natural or artificial immune

system faces is thus the following: how to chose (1) the number ND of dis-

378 5 Immune Systems

tinct detectors, (2) the distribution of their receptors in the shape space, (3)
the distance function d(·, ·) that they implement, and (4) the threshold θD

that determines their specificity, so as to ensure that the probability P that
a pathogen is recognized by at least one detector is reasonably high, while
avoiding autoimmunity.

A possible choice (Perelson and Oster 1979) is to represent antigens a and
receptors (antibodies) r as l-tuples of real numbers, and the affinity between
them by the Euclidean distance

d(a, r) =

√√√√ l∑
i=1

(ai − ri)2 .

The recognition regions are thus l-dimensional balls centered on the points
representing the antibodies. Assuming a random distribution of antibod-
ies with uniform density in the shape space, the probability that at least an
antibody recognizes a randomly chosen antigen is given by

P = 1 − e−ND θ̂ l

where θ̂ is a normalized threshold value that satisfies 0 ≤ θ̂ ≤ 1, with the up-
per limit attained when an antibody has no specificity and recognizes all the
possible antigens. Although derived from a simplified model, this formula is
useful to understand the relationship between the size of the immune reper-
toire, the specificity of the detectors, and the complexity of their receptors.
By plotting the formula for P as a function of ND (figure 5.13) one observes
the presence of a relatively rapid transition from the near certainty of antigen
escape to the near certainty of antigen recognition across a range of values of
ND. The position of the transition region shifts toward larger values when
the specificity of the receptors increases. This means that using a number of
distinct detectors in the range below the transition region results in a poor
performance of antigen recognition, whereas using a number of distinct de-
tectors in the range above the transition region gives a progressively dimin-
ishing return in terms of improvement of the recognition performance. The
curves of figure 5.13 show also that if θ̂ is reduced and the specificity is con-
sequently increased, the number of distinct detectors that is required for a
given performance increases very rapidly. On the other hand, we know that
the specificity cannot be reduced too much because excessively large recog-
nition regions would tend to fill all the shape space, leaving no room for the
host antigens.

5.5 Shape Space 379

0.0

0.2

0.4

0.6

0.8

1.0

10 10
2

0.0

0.2

0.4

0.6

0.8

1.0

10
4

10
3

10
5

10
6

10
7

10
8

10 10
2

10
4

10
3

10
5

10
6

10
7

10
8

N
D

P

�

�
��

�

�
��

�

�
��

�

^

^

^

l
	�

Figure 5.13 The curves of the probability that given a set of ND detectors randomly
distributed in the shape space, at least one recognizes a randomly chosen antigen
(adapted from Perelson and Oster 1979). The curves correspond to the case l = 5

and are plotted for three different values of the normalized recognition threshold θ̂.
Smaller values of θ̂ correspond to greater specificity of the detectors.

The scenario described above assumes a unique distance function and a
fixed threshold for all detectors. This constraint reduces the flexibility of
the immune system because it forces all the recognition region to have the
same shape. This complicates the task of covering the holes of the immune
repertoire without recognizing autoantigens. A technique to weaken this
constraint on the shape of the recognition regions consists in implementing
several distinct distance functions. In this way, given a pathogen antigen,
the immune system has a greater possibility of producing a detector with a
recognition region that includes the pathogen antigen without overlapping
with the regions of the shape space that contain autoantigens (figure 5.14).
The diversity of the billboards for antigen presentation in vertebrate immune
systems can be interpreted as a way to implement this strategy of diversifi-
cation of the shape of the recognition regions. This reminds us also of the
fact that when the detection of a pathogen involves some processing of the
antigen like the one provided by APCs and their billboards, the process itself
contributes to the definition of the distance function.

The Euclidean distance is well suited to the representation of an analog
type of antigen detection. This is the case, for example, for the recognition
of antigens on the part of B cells and antibodies. In this case the affinity and
the parameters that constitute the l-tuples which represent the receptors and

380 5 Immune Systems

Figure 5.14 The problem of holes in the immune repertoire, and how it can be al-
leviated using detectors with different recognition regions. The cross and the dots
represent in the shape space the position of a pathogen antigen and that of a few host
antigens, respectively. The shape and size of the recognition region of the detector of
type 1 implies that it cannot be equipped with a receptor permitting it to recognize the
pathogen without incurring in the problems due to the recognition of the autoanti-
gens and the associated autoreactivity. A detector of type 2 has instead a recognition
region that, given a suitable receptor, permits the detection of the pathogen antigen
without risk of autoreactivity.

the antigens can take a continuous range of values. In AIS applications it is
often the case that receptors and antigens are strings of symbols that belong
to a finite alphabet, for example binary strings. In this case other measures
of distance or similarity are typically used. These measures correspond to a
digital type of antigen detection and are also more suited to the modeling of
the recognition of antigens on the part of T cells.

A first example of distance suited to pairs of strings of symbols of the
same length is the Hamming distance, which is defined as the number of cor-
responding positions where two strings differ. Another example is a mea-
sure of similarity defined as the length of the longest sequence of contiguous
symbols in corresponding positions which are the same in the two strings
(the length of the longest corresponding substring). This measure of similar-
ity leads to the r-contiguous symbols rule for the definition of the recognition
region (Percus et al. 1993; Forrest et al. 1994). This rule establishes that an
antigen is recognized by a receptor if the length of the longest corresponding

5.5 Shape Space 381

Figure 5.15 The working of the r-contiguous symbols rule for the recognition of an
antigen by a receptor.

substring that the antigen has in common with the receptor is greater than or
equal to r (figure 5.15). The value of r corresponds thus to the threshold that
determines the specificity.

Typically, given a distance function for strings of symbols, by applying a
permutation mask to one of the two strings – that is, by reordering the string –PERMUTATION MASK

before the application of the distance function, one obtains a different mea-
sure of similarity and a different shape of the recognition region. As ex-
plained above the availability of several different kinds of recognition re-
gions simplifies the problem of reconciling the coverage of the regions of the
shape space where pathogens are present with the absence of autoreactivity.

5.5.1 Example: Vaccine Design

The concept of shape space is used in almost all implementations of the AIS
and, in particular, in the examples considered at the end of this chapter. This
concept is also useful in studying biological immune systems. To illustrate
this fact we consider here an example of application of the concepts just in-
troduced to the analysis and design of vaccines for biological organisms. We
will refer here to some details of the workings of biological immune systems
described in section 5.2.

The modality of operation of the adaptive vertebrate immune system per-
mits the generation of protective immune memory for a pathogen in an in-

382 5 Immune Systems

dividual that has never been infected by the pathogen. This procedure is
called active immunization or vaccination. We can use the concept of shape
space to model how vaccination works and to predict the effects of multiple
vaccinations targeted at different pathogens. The technique of vaccination
consists in introducing into an organism a small amount of a preparation
called a vaccine which contains a certain quantity of antigens that are char-
acteristic of the pathogen, or are very similar to the actual pathogen antigens.
These antigens are attenuated to render them harmless to the organism. The
vaccine contains also substances that represent or lead to the production of
danger signals in the region where the antigens are introduced. The adaptive
immune system of the organism reacts to the introduction of the vaccine by
mounting an immune response which is targeted at the antigens. The final
result is the establishment of an immune memory for the antigens present in
the vaccine. In particular, the vaccination will result in the generation of a
collection of memory B cells whose BCRs possess a high affinity for these
antigens. If the organism is now attacked by the pathogen, the immune
memory thus established permits the mounting of a secondary immune re-
sponse that can eradicate the pathogen before it can cause any harm to the
host.

We can model this process in terms of shape space, as follows (figure 5.16,
top). An antigen present in the vaccine corresponds to a point av . The result
of the vaccination is the generation in the shape space of a cloud of points
corresponding to the receptors. These points are distributed around the anti-
gen and correspond to the BCRs of memory B cells whose recognition region
includes the antigen av . The process of clonal selection ensures that the den-
sity of points is greater in the vicinity of av. Any pathogen antigen ap that is
similar to av will correspond to a point of the shape space that is close to av .
Thus, it will also fall in the recognition region of the memory B cells induced
by av . Therefore, the pathogen will be attacked and cleared by those B cells.

Some pathogens use a mechanism of evasion from the control of the im-
mune system that is based on the variation of their antigens. For example,
the influenza virus changes rapidly the antigens that are recognized by the
immune system of its hosts. Consequently, a new vaccine against influenza
must be synthesized each year, based on the antigens of the new strains that
appear more likely to produce the next epidemic. Note that the production
of the vaccine must be done well before the actual epidemic materializes, so
that the antigens included in the vaccine derive from a guess about the struc-
ture of the pathogen. Consequently, the antigens included in the vaccine can
differ somewhat from those of the actual epidemic strain.

5.5 Shape Space 383

Figure 5.16 The shape space representation of the interaction between two vaccines.
Each black dot represents an antigen. The shading of the disks centered on the anti-
gens represents the density of cell receptors of the memory B cells produced by the
immune response to the antigens. See the text for the other details of the explanation.

384 5 Immune Systems

It has been observed that in some cases the efficacy of the vaccine for a
given influenza strain is reduced if an individual has already been vaccinated
against another influenza strain. However, in other cases no such effect is ob-
servable. The representation in terms of shape space permits the interpreta-
tion of this puzzling phenomenon. According to the model presented in (D.J.
Smith et al. 1999), the influence of a first vaccination against the virus strain
v1 on the efficacy of the vaccination against v2 when the epidemic strain ve

materializes depends on the relative position in the shape space of the anti-
gens a1, a2 of the vaccines and of the antigen ae of the epidemic strain. If a1

and a2 are far apart in the shape space, the two vaccines will not interact. If,
instead, a2 belongs to the recognition region of the memory B cells elicited
by the vaccination with a1, those memory cells will be activated and produce
antibodies that will rapidly remove the antigen a2 from the body. Thus, the
vaccination with a2 will not result in the generation of a cloud of receptor
points centered on it (figure 5.16, center).

This does not necessarily mean that an individual vaccinated against v2

is unprotected against ve. Since the antigen ae of the actual epidemic strain
can be expected to be close to a2, if a1 and a2 are close to each other there
is a good probability that ae also belongs to the recognition region of the
memory B cells elicited by the vaccination with a1. If this is the case, the
old vaccination will provide protection also against the new epidemic strain.
If, however, the antigen ae of the new epidemic strain ve does not belong to
the recognition region of the memory B cells elicited by the vaccination with
a1, the result of the old vaccination will not protect against the new strain
(figure 5.16, bottom). On the contrary, it will be the cause of the absence of
the protection that could have been provided by the vaccine against v2 alone
(figure 5.16, top).

The realization of this mechanism of interaction can be used as a guide to
the design of the vaccines (D.J. Smith et al. 1999). For example, if the data
on the estimated coming epidemic strain ve leave a choice between different
candidate antigens a2, the choice should fall on the antigen that is at the
greatest distance from a1.

5.6 Negative Selection Algorithm

The concept of shape space permits visualizing the concept of detection of
pathogens by the detectors of the immune system. In particular, it helps to
appreciate that one of the problems that an immune system must solve in the

5.6 Negative Selection Algorithm 385

generation of an immune repertoire is the distribution of the receptors in the
shape space so as to include in the recognition region of the corresponding
detectors the pathogens but not the autoantigens. We have seen that one
of the strategies used by the vertebrate immune system for the solution of
this problem is the random generation of receptors and a process of negative
selection that removes the receptors that match autoantigens. Inspired by
this strategy, a negative selection algorithm was proposed (Forrest et al. 1994; Ji
and Dasgupta 2007) for the generation of the detectors of an AIS.

The negative selection algorithm assumes that there is a collection P of
fixed-length strings of symbols which must be protected from unauthorized
change. For example, this collection could be an ensemble of data and pro-
gram files in the memory of a computer, or the control program of an elec-
tronic device, or the patterns of operation of a machine, or the patterns of
connectivity and traffic of a networked computer. In the absence of unautho-
rized changes P corresponds to a collection S which is called the self. The
goal of the algorithm is to generate a set of detectors that can signal the ap-
pearance in P of any string that does not belong to S, that is, the appearance
in P of any nonself string. Nonself strings could be generated, for example,
by the presence in the system of a virus or a network intrusion. To attain this
goal the algorithm prescribes the following steps:

1. Assign a similarity or matching function m(·, ·) for pairs of strings, a de-
tection threshold θD, a mechanism of generation of candidate receptor
strings, and the maximum acceptable probability Pf of detection failure.

2. Estimate the number ND of strings required to obtain the performance
specified by Pf using the recognition regions specified by m(·, ·) and θD,
and the mechanism of generation of candidate receptor strings specified
at step 1.

3. Censoring phase (figure 5.17): Generate a candidate receptor string rc. If rc

matches any self-string, that is, if m(s, rc) ≥ θD for any string s belonging
to S, discard the string; otherwise include rc in the initially empty set of
receptors R. Repeat this step until the size |R| of R corresponds to ND.

4. Monitoring phase (figure 5.17): Choose (either deterministically or ran-
domly) a string s in P and a string r in R and evaluate m(s, r). If m(s, r) ≥
θD, signal the detection in P of a string not belonging to the legitimate self
S; otherwise repeat this step with another pair of strings (s, r).

386 5 Immune Systems

Figure 5.17 The steps of the negative selection algorithm with details of the censor-
ing phase. A schematic shape space representation of the criterion of acceptance of
newly generated detectors is also given. Unless explicitly marked with an upward ar-
row, all the flow lines proceed from top to bottom. The short horizontal lines that cut
the flow lines denote conditions that must be verified before the algorithm is allowed
to proceed along the corresponding path.

In its original formulation the negative selection algorithm used the r-con-
tinuous symbols rule for the matching function and generated randomly the
candidate receptor strings rc. The experiments reported in (Forrest et al.
1994) show that the algorithm is effective in detecting changes in protected
collections of strings. However, the original version of the algorithm suffers
from some limitation. The main problem lies in the complexity of the censor-
ing phase whose time grows exponentially with the size of the protected set.
For this reason, improved techniques of generation of the candidate recep-

5.6 Negative Selection Algorithm 387

tors have been devised which result in a linear time complexity (D’haeseleer
et al. 1996). Another problem is the difficulty of the determination of the re-
quired size of the detector set. The theoretical estimates of the required size
for the original algorithm have been shown to be close to the experimen-
tal values in simple cases, but generalization to more difficult cases is not
granted or may lead to excessively large estimates and detector sets.

Another limitation of the original algorithm is the use of the same recogni-
tion region for all detectors. This exacerbates the above-mentioned problem
(section 5.5) of the presence of holes in the coverage of the set of nonself
strings. To alleviate this problem Hofmeyr and Forrest (2000) suggested a
version of the algorithm which applies a permutation to the characters of
one of the strings before the evaluation of the matching function. This corre-
sponds to the use of a different matching function and of a different shape for
the recognition regions. A further increase in the flexibility could be obtained
by letting different detectors use different thresholds. Note, however, that in
general the holes cannot be avoided if the detection must remain probabilis-
tic, that is, if we want to avoid the degenerate case where the detectors have
maximum specificity and recognize a single antigen. This compromise is an-
other face of the problem of generalization and overfitting that was discussed
in the context of neural networks.

In the version described above, the negative selection algorithm works
for a fixed protected system but cannot deal with a changing collection of
protected strings S. For example, the activity of authorized users typically
results in changes in the files that are stored in the hard disk of a computer.
In the vertebrate immune system the process of negative selection is used
just to establish central tolerance, and is complemented by the mechanism of
peripheral tolerance in order to deal with a changing host. Similarly, the neg-
ative selection algorithm must be complemented by other protection mecha-
nisms in the AIS that are designed to protect changing collections of strings
(Hofmeyr and Forrest 2000). Nonetheless, the negative selection algorithm
has several interesting characteristics as an anomaly detection system (Kim
and Bentley 1999; Forrest and Hofmeyr 2001). Thanks to its strategy of im-
plicit definition of the nonself using the information represented by the self,
it can protect a system against a threat without the necessity of specifying
the nature of the threat. The algorithm is able not only to signal the presence
of an anomaly but to inform about its nature by pointing to the string that
represents the anomaly. The probabilistic nature of the recognition permits
a tradeoff of the probability of detection failure with the complexity of the
detection. The algorithm can be easily distributed if several similar systems

388 5 Immune Systems

must be protected. In this case, by using different local sets of detectors, even
small sets of detectors and high probabilities of local failure can result in very
low probabilities of global failure. Moreover, the algorithm does not require
a mechanism of central coordination for the generation of the detectors, thus
avoiding the corresponding communication costs.

5.7 Clonal Selection Algorithm

The detectors of the vertebrate immune system that survive the process of
negative selection are distributed in the body and interact with the antigens.
For some of these detectors there exists a mechanism that improves their
recognition performance . This mechanism of affinity maturation is based on
an iterative process of production of clones, variation, and selection which
resembles an evolutionary process. Eventually, the best performing detectors
resulting from this clonal selection process are preserved as memory cells.

A clonal selection algorithm based on the characteristics of this biological
process has been proposed (de Castro and Von Zuben 2002) for pattern recog-
nition and function optimization. In the case of function optimization prob-
lems the goal is to produce a population R of receptors that constitute a col-
lection of candidate solutions to the problem. To achieve this end the clonal
selection algorithm prescribes the following steps:

1. Assign the size of the population of receptors, the selection strategy, and
the number of random receptors generated at each iteration. Assign a
function that transforms the value of the optimizing function into a value
of affinity. Assign a function that links the affinity to the rate of mutation
to be applied. Assign the function that links the affinity to the number of
clones to be produced.

2. Initialize a random population R of receptors.

3. Evaluate the affinity of the receptors in the population R.

4. Select the receptors with highest affinity obtaining a collection RH .

5. Clone the elements of RH , that is, for each element in RH create a number
of copies prescribed by the function assigned at step 1.

6. Mutate the clones with a mutation rate given by the function assigned at
step 1, obtaining a collection RM .

5.7 Clonal Selection Algorithm 389

7. Generate randomly a collection RR of new receptors.

8. Select the best receptors among RH , RM , RR to form the new population
R of receptors and return to step 3, unless some termination criterion is
satisfied.

For function maximization problems the affinity corresponds in general di-
rectly to the value of the function to be maximized. The function that gives
the rate of mutation is defined so as to result in larger mutation rates for
smaller values of affinity. In this way, the best receptors are modified only
slightly to fine-tune their affinity, whereas low-affinity receptors are mutated
substantially in order to create diversity and explore the shape space. An
example of function linking the affinity to the mutation rate p is (de Castro
and Von Zuben 2002)

p = exp(−ρ â)

where ρ is a parameter that determines the scale of the mutation, â is a nor-
malized affinity a/amax, and amax is the estimated maximum affinity.

In the case of pattern recognition, the goal of the algorithm is to produce a
set of elements that can recognize the element of a set P of patterns. To this
end a collection M of memory receptors is used in addition to the population R.
The objective is to specialize the memory receptors on the different patterns
(antigens) that must be recognized. At each iteration, one pattern is selected
from P and the joint collection formed by M and by the set of receptors R is
processed. At the end of the iteration, the receptor with the highest affinity
for the current pattern is stored in M if its affinity is greater than that of the
previously stored memory receptor with highest affinity for the pattern.

The results produced by the clonal selection algorithm are encouraging,
especially in the case of multimodal function optimization (de Castro and
Von Zuben 2002). However, it is not clear if there are substantial advantages
with respect to a conventional genetic algorithm (Garrett 2005), since the only
original aspect of the clonal selection algorithm is the mechanism of affinity-
related mutation. Moreover, the fact of assigning a priori a function that
prescribes the number of clones to be produced as a function of their affinity
can result in large collections of clones, the evaluation of whose affinity can
slow the execution of the algorithm.

390 5 Immune Systems

5.8 Examples

5.8.1 ARTIS and LISYS

ARTIS (artificial immune system) (Hofmeyr and Forrest 2000; Glickman et al.
2005) is an AIS framework that models many of the processes and properties
of the vertebrate immune system, including some of the concepts and algo-
rithms described in the previous sections. The goal of ARTIS is to specify the
elements of a general adaptive distributed system without reference to any
specific application. These generic elements must be then particularized ac-
cording to the characteristics of the application. As an example of this partic-
ularization we will describe LISYS (lightweight intrusion detection system)
(Hofmeyr and Forrest 2000), a network intrusion detection system based on
ARTIS.

ARTIS assumes that the system to be monitored is a distributed environ-
ment represented by nodes that can exchange information. At each node a
collection of fixed-length strings is defined, which are the target of the secu-
rity monitoring. For example, the nodes can be computers in a network and
the collection of strings can represent the network traffic, including the traf-
fic between the protected computers and other computers not belonging to
the network protected by ARTIS. The goal of the monitoring is the detection
of the appearance of anomalous strings in the collection. The performance
of the system is measured in terms of the proportion of anomalous strings
that are not signaled as such – the rate of false negatives – and the proportionFALSE NEGATIVES AND

POSITIVES of legal strings that are classified as anomalous – the rate of false positives.
Typically, the lowering of one rate conflicts with the lowering of the other.

To realize the protection, ARTIS uses a distributed version of the negative
selection algorithm which also allows the protected strings to vary in time. A
local collection of detectors is defined at each node. The detectors are consti-
tuted by a string (the receptor) of the same length as those of the monitored
collection, by a locally defined function that specifies the similarity between
pairs of strings, and by a local activation threshold. In the original formula-
tion the similarity function is based on the r-contiguous symbols rule and the
local similarity function is obtained using a permutation mask (different for
each node) that is applied to the characters of one of the two strings. The lo-
cal activation threshold permits choosing the sensitivity of the node and the
tradeoff between the rate of false positives and false negatives. In ARTIS theSENSITIVITY LEVEL

local activation threshold is varied according to a local sensitivity level which
links the value of the threshold to the number of anomalies detected in the

5.8 Examples 391

near past. This increases the alertness of the node when there are indications
that the node is under attack and restores it to its base level when the attack
subsides.

In ARTIS the strings that constitute the receptors are randomly generated.
Newly created detectors are subjected to a process of tolerization of fixed du-
ration T during which they are compared with a sample of the monitored
strings that are present in the node. If during the tolerization period a detec-
tor recognizes a monitored string, the detector is eliminated. Detectors that
survive the tolerization period continue to be compared to the monitored
strings but now become activated if during a certain time interval they rec-
ognize a sufficient number of strings. This condition creates a bias toward
the detection of temporally clustered anomalies, which is a characteristic of
many kinds of system anomalies (Glickman et al. 2005). When a detector be-
comes activated it sends a signal to a human operator. If the human operator
does not confirm within a time Ts (the costimulation delay) that the detected
string is a harmful one, the detector is eliminated. If instead the operator con-
firms the dangerous nature of the detected string by sending a costimulation
signal to the detector, the detector enters a competition with all the detectors
activated by the same string. The best-matching detector becomes a memory
detector and copies of it are sent to the neighboring nodes. Memory detectors
have a lowered threshold of activation thus leading to a faster secondary re-
sponse to returning attacks of the same kind. ARTIS implements a dynamic
population of detectors. A detector that survives the tolerization period has
a certain fixed probability pd of dying at each time step. This means that each
detector has a finite lifetime and is eventually replaced by a new randomly
generated one. The only exception is memory detectors, which have a po-
tentially infinite lifetime. To avoid the unbounded increase in the number
of memory detectors, once a given size of the population of memory detec-
tors is attained, the least recently used are replaced by newly formed ones.
Figure 5.18 summarizes the life cycle of a detector in ARTIS.

LISYS is a partial particularization of ARTIS to the problem of network
intrusion detection (Hofmeyr and Forrest 2000; Glickman et al. 2005). In
LISYS the monitored nodes are computers that must be protected against
unauthorized access (figure 5.19). The activation of detectors corresponds
to the detection of suspect traffic that could correspond to an attack. In this
case false negatives correspond to undetected attacks and the false positives
correspond to unnecessary signals sent to the human operator. The strings
that are monitored summarize the information about the connections that
concern the nodes. Each string contains the identity (IP addresses) of the

392 5 Immune Systems

Figure 5.18 The life cycle of a detector in ARTIS (adapted from Hofmeyr and Forrest
2000). See the caption of figure 5.9 for explanation of the diagram symbolism.

connected nodes and the specification of the kind of service requested. For
simplicity, it is assumed that all the information about the traffic of the whole
network is available at each node. The system was tested with data collected
from real computer networks which contained known intrusions and was
able to detect all the intrusion attempts, apart from very short ones, with a
small rate of false positives.

ARTIS implements many of the processes of the vertebrate immune system
as described in the first half of this chapter, such as negative and frequency
selection for tolerization, the local modulation of sensitivity observed in in-
flammation, the tolerization and activation of detectors, the use of a costim-
ulatory danger signal for detector activation, and the turnover of detectors.
Some processes observed in biological immune systems such as clonal selec-
tion for affinity maturation and the use of gene libraries for receptor gener-
ation, are not used in ARTIS but could be easily included in the framework.
Still other concepts, such as the association of different kinds of effectors to
the kind of anomaly detected, the presence of an innate immune system that

5.8 Examples 393

Figure 5.19 The structure of the system and of the nodes in LISYS. Each node in the
protected system is a networked computer which has a local collection of receptors
and a local sensitivity level. The antigens that must be monitored by the detectors are
strings that contain information about the network traffic that affects the protected
nodes. The detection of an anomalous string results in the generation of an alarm for
a human operator.

cooperates with the adaptive system, and the fully autonomous operation
of the system without the intervention of a human operator, are not imple-
mented. Nonetheless the results obtained with LISYS are encouraging and
permit, in particular, confirmation that all the implemented processes and
concepts contribute to the system performances (Glickman et al. 2005). As
in many bioinspired systems there are many parameters that the user can
choose. If this makes the setup of the system more difficult, it permits on the
other hand a balancing of the various tradeoffs of the system performance.

394 5 Immune Systems

5.8.2 Immunotronics

Immunotronics (Bradley and Tyrrell 2002) is an application of AIS concepts
to the detection and recovery of faults in digital electronic systems. The clas-FAULT DETECTION

sic approaches to fault detection and recovery in artificial systems are redun-
dancy and the addition of protection systems that check and possibly correct
the validity of the system state. The immunotronics approach defines a sys-
tem of this latter kind but applies the immune system concept of self/nonself
discrimination to automate the generation of the verification criteria used by
the protection system. The immunotronics approach applies to finite stateFINITE STATE

MACHINES (FSMS) machines (FSMs), a class of systems where the operation is modeled in terms
of states and transitions between them and which encompasses the majority
of existing electronic systems.

In the case of an FSM the self can be defined as the collection of strings
that represent the legal transitions between the states of the machine. For ex-
ample, the strings can be formed by concatenation of a string containing the
values of the current inputs, a string containing the current state, and a string
containing the next state generated by the FSM (figure 5.20). A collection of
self-strings can be obtained by observing the operation of the system in its
fault-free condition. By applying the negative selection algorithm, a collec-
tion of receptor strings can be created and used to monitor the subsequent
operation of the system. An additional hardware device is connected to the
system and monitors the incipient state transitions. The corresponding anti-
gen strings are compared with the collection of receptors using a matching
function m(·, ·) that measures the similarity between antigens and receptors.
If the matching exceeds a predefined threshold θD, a potential anomaly is sig-
naled in terms of an alarm signal. By using a content-addressable memory,
the matching can be evaluated in parallel for all the strings of the detector col-
lection, thus permitting the generation of the alarm signal in realtime, before
the state transition is actually permitted to happen.

There is a relationship between the performance of the system in terms
of probability of false-positive and negative fault detection, and the num-
ber of receptors and their sensitivity and diversity. The flexibility ensuing
from the possibility of tuning these parameters is the main advantage of the
immune approach with respect to traditional methods. However, the sys-
tem described above applies only partially the tenets of immune systems. In
particular, the protection system is not decentralized and does not include a
mechanism of recovery from the detected faults. A possible solution to this
latter problem would be the use of an additional collection of strings that

5.9 Closing Remarks 395

Figure 5.20 The immunotronics approach to fault detection uses negative selection
to build a collection of receptor strings. These are compared to the antigen strings
produced by the finite state machine under observation. A degree of match above
a threshold θD corresponds to the detection of potential nonself and results in the
generation of an alarm signal.

represents a sample of the “healthy host,” that is, a sample of the legal tran-
sitions, so that an estimated correct transition can be obtained after anomaly
detection.

5.9 Closing Remarks

There are in the literature many examples of AISs besides those analyzed in
the previous pages, with applications that go beyond computer security and
fault detection, to include pattern recognition, machine learning, optimiza-
tion, control, and robotics (de Castro and Timmis 2002; Ishida 2004). These
examples can differ in some detail of their implementation, but they are all
based on the fundamental concepts and processes observed in the operation
of the vertebrate immune system which have been presented in the first half
of this chapter. The analysis of the strategies used by the vertebrate immune
system shows that there are several interesting concepts that solve in novel
ways many problems relevant to engineering (Glickman et al. 2005). The al-
gorithms that these strategies inspire can be profitably exploited as separate

396 5 Immune Systems

tools. However, the full potential of the immune system concept emerges
when all the elements work together.

Not many years ago the operation of biological immune systems was un-
derstood in terms of discrimination between self and nonself. Correspond-
ingly, the first AIS models and applications were also based on that perspec-
tive. Today, in both the biological and AIS modeling, we are witnessing a
shift away from a static self/nonself dichotomy toward models that empha-
size the cooperation of the protected system, of the innate immune system,
and of the adaptive immune system in the dynamic definition of what con-
stitutes the self. This transition promises to take the field of AISs to new
levels of performance and flexibility. However, to achieve its full potential
it requires a profound rethinking of the current engineering approach to the
design of systems. The availability of systems that are protected like the bio-
logical organisms are protected by their immune systems can be expected to
become more and more important as the designed systems’ complexity, their
potential of connectivity, and the resulting number of potential malfunctions
increases.

5.10 Suggested Readings

(Coico et al. 2003) is a clear and well-illustrated description of the human
immune system, which remains within limits of size and detail that are more
than adequate for the scope of the present chapter. Lydyard et al. (2000)
renounce fancy colored illustrations in favor of a highly structured presen-
tation organized in many short and highly focused chapters. (Alberts et al.
2002) is a classic molecular biology textbook that contains two chapters that
give an overview of the immune system and of its relations with the opera-
tion of cells. (Sompayrac 2003) is a very short and readable introduction to
the immune system that omits most of the low-level details and focuses on
the logic of the operation of the immune system. (Hofmeyr 2001) is a com-
pact introduction to biological immune systems which is written with AISs
in mind and includes a very useful glossary. Typically, the immunology text-
books have not yet adopted the danger model perspective presented in this
chapter. However, this perspective is well described in the review papers of
one of the originators of the model (Matzinger 1994, 1998, 2002).

The special September 1993 issue of Scientific American (Piel 1993) contains
several interesting and well-illustrated papers devoted to particular aspects
of the human immune system. Friedl et al. (2005) discuss and illustrate the

5.10 Suggested Readings 397

concept of the immune synapse, comparing it to the neural synapse. Engel-
hard (1994) gives an excellent overview of antigen processing and presenta-
tion via MHC molecules. The evidence supporting the existence of a genetic
encoding of local mutation rates in natural genomes is reviewed in (Capo-
rale 2003, 2004). Humphrey (2002) proposes a fascinating hypothesis that
explains the placebo effect in terms of the cost required by the operation of
the immune system.

(Segel and Cohen 2001) contains many interesting contributions that look
at the biological immune system from an engineering perspective. Ishida
(2004) and de Castro and Timmis (2002) provide extensive descriptions of
AIS concepts and applications. In particular, the reader can find in these
books a detailed treatment of the network immune models, which have been
omitted from this chapter. (Garrett 2005) and (Timmis 2007) are critical over-
views of the AIS concepts which compare this approach to other bioinspired
methodologies with the aim of assessing the novelty and usefulness of the
AIS contribution. A review of the applications of AISs to intrusion detection
can be found in (Kim et al. 2007a). Finally, Glickman et al. (2005) present a
critical analysis of AIS concepts from the perspective of machine learning.

6 Behavioral Systems

R
4

Behavior is a sequence of interactions between an organism and its environ-
ment where the actions of the organism affect its own perceptions, and con-
sequently its future actions and perceptions. A behavioral system consists of
a body with a sensory and a motor apparatus that allows the interaction with
the environment, a brain to map sensory stimulation onto motor actions, and
a metabolism to support its operation.

The significance of behavior and embodiment for understanding and re-
producing biological intelligence has been realized only recently, as we will
see in the next two historical sections. Autonomous robots are behavioralAUTONOMOUS ROBOTS

machines capable of operating in partially unknown and changing environ-
ments without, or with limited, human intervention. Assembly robots used
in factory plants are not behavioral systems because their input and output
sequences are strictly predefined by human designers.

The increasing availability and usability of robot technologies are con-
tributing to the adoption of robots as models and tools to study biological
organisms. The reader should not be surprised therefore that this chapter
is almost entirely dedicated to biological inspiration for autonomous robots
and to the use of robots for understanding biology.

After the next two historical sections, we will describe behavior-based
robotics, biologically inspired robots, robots as biological models, epigenetic
and developmental robotics, evolution of control systems, evolution and
learning, as well as evolution and development in behavioral systems, co-
evolution of body and brain, self-reproducing robots, and issues on the use
of simulations and hardware in robotics. In order to better understand and
compare the various methods, we will present several research examples that

400 6 Behavioral Systems

address comparable questions from different perspectives. The description
of behavioral systems will then continue in chapter 7.

6.1 Behavior in Cognitive Science

The systematic study of human perception, also known as psychophysics,
paved the way for the first theories of human mind summarized by William
James (1890) in the book Principles of Psychology. By the end of the nineteenth
century, psychology was mainly interested in conscious processes.

A radical shift occurred in the early twentieth century with the birth of
behaviorism, a movement that emphasized the study of actions over intro-BEHAVIORISM

spection of mental processes. Behaviorism criticized introspection for not
adhering to the scientific criteria of objective measurement, reproducibility,
and testability. Behaviorism focused mainly on the laws that relate percep-
tion to actions, but largely ignored the effects of actions on perception. How-
ever, behaviorism made at least three long-lasting contributions that remain
at the foundations of modern approaches to intelligent systems research.

The first contribution was the recognition of a continuity between the be-
haviors of animals and humans (Jennings 1906). This was in sharp contrast
with the established assumption at the end of the nineteenth century that
human intelligence was unique, but was perfectly in line with Darwin’s ob-
servations on the evolution of the species. As a consequence, behaviorists
often carried out experiments with simple animals, such as rats and pigeons,
assuming that the results could be extrapolated to better understand human
intelligence.

The second contribution was the emphasis on learning by reinforcement
(Skinner 1938). Behaviorists developed accurate and sophisticated methods
for training animals and measuring their performances, some of them to be
found in today’s methods for training and assessing robots.

The third contribution was the effort to translate behavioral and psycho-
logical phenomena into operational models (which today we would call “com-
puter programs”) that could be subjected to scientific study. These phenom-
ena included reactive behaviors, learning, and even representation-mediated
behaviors, such as navigation with the help of spatial maps (Tolman 1948).

By the end of the 1950s, behaviorism had slipped into the background of
a renewed interest in internal states and mental processes, which resulted in
the rise of cognitive science. Cognitive science brought together psychology,COGNITIVE SCIENCE

neuroscience, and computer science in the attempt to create a computational

6.1 Behavior in Cognitive Science 401

theory of mind. For example, Donald Hebb, whose contributions to learning
theory were discussed in chapter 3, linked cognitive processes to specific
neural mechanisms, thus giving birth to a field that later became known as
computational neuroscience (Churchland and Sejnowski 1992).COMPUTATIONAL

NEUROSCIENCE At the same time, the nascent computer technology served as a model for
mapping cognitive processes onto operational models (von Neumann 1958)
and a tool for testing such models at different levels of abstraction, ranging
from symbolic rules to neural networks.

In the early years, cognitive science was focused on identifying the mech-
anisms and processes that intervene between the recording of sensory data
and the production of decisions and actions (Neisser 1967). Although later
reformulations of the research agenda emphasized the need to better incor-
porate behavior as an action-perception loop (Neisser 1976), mainstream cog-
nitive science remained focused for most of the twentieth century on inter-
nal representation, symbolic reasoning, and problem solving. The dominant
assumption was that human intelligence was equivalent to a sophisticated
information-processing system (Lindsay and Norman 1972).

As cognitive science became established, a number of philosophers, psy-
chologists, and neuroscientists felt increasingly uncomfortable with an ap-
proach that essentially endorsed the primacy of mental processes over be-
havior. Merleau-Ponty in France was among the first to point out that sensa-
tions were affected by the physical body of the perceiver and that perception
was not a passive recording of environmental stimulation, but a process of
active exploration akin to body movement (Merleau-Ponty 1962). Merleau-
Ponty’s philosophical writings, whose value was fully appreciated only in
very recent years, pointed to the necessity of considering embodiment and
behavior as constituent elements of sensation and cognition.

Approximately at the same time in the United States, Gibson stressed the
role of environmental situatedness and behavior for understanding visual
perception. He identified a number of perceptual laws that derive from
the relationship between an embodied organism and its environment (Gib-
son 1979). Gibson distanced himself both from the reductionist stimulus-
response approach of behaviorism and from the mentalism of cognitive sci-
ence where free interaction of the organism with the environment was largely
ignored. He argued for an ecological approach to the study of organisms asECOLOGICAL

APPROACH they interact with the environment and affect the stimulations that arrive
to their sensing organs. Gibson claimed that the environment of an organ-
ism could not be described with the same tools used to describe the physical
world. Each organism has physical characteristics that allow it to interact

402 6 Behavioral Systems

with the environment at certain spatial and temporal scales. This unique
level of interaction creates specific opportunities that are readily detected by
the perceptual system of the organism, but not by an external observer.

Gibson uncovered the limitations of the dominant view of perception,
which he called “snapshot vision,” where the eye is considered as a camera
that records photographic images for further processing. He pointed out that
arthropods display sophisticated vision-based behaviors, but their eyes do
not have a lens and a projecting surface similar to a retina. Instead, their vi-
sual system consists of a set of tube-like photoreceptors pointing in different
directions that signal modifications in light intensities to the brain without
passing through a photographic image. Gibson argued that what matters in
visual perception are indeed modifications in light intensity, mostly caused
by the movement of the physical organism in the environment. In particu-
lar, he dedicated much effort to the study of optic flow, that is, the pattern
of sensory modification that occurs when the organism or the environment
moves.

Gibson’s work remains unique for its scientific and philosophical force in
showing the role of behavior in perception. His message caused cognitive
science to revise its position (Neisser 1976), but in practice it did not have a
major impact at that time, probably because computers, which were at the
heart of cognitive science models, did not have eyes and legs. With the
recent development of robot technologies, Gibson’s approach became im-
mediately relevant and inspired a range of algorithms and technologies for
vision-based robots, as we will see later in the chapter. Gibson’s approach is
appealing for engineering because it suggests that vision is not necessarily
a complicated and computationally expensive business if one departs from
the photographic metaphor of snapshot vision.

While several parts of Gibson’s theory are applicable to behavioral systems
of any type and complexity, his examples were mostly concerned with rela-
tively simple perceptual experiences and organisms. An increasing number
of experimental and theoretical work is now indicating that behavior plays
an important role also in human perception with important implications for
representations, memories, and consciousness. This was recently summa-
rized by Noë (2004), who coined the name enactive perception to emphasizeENACTIVE PERCEPTION

that all perceptions are actions.
Building on Merleau-Ponty’s philosophy, Noë argued that “we do not rep-

resent whole scenes in consciousness all at once. Visual experiences do not
present the scene in the way that a photograph does. In fact, seeing is much
more like touching than it is like depicting” (Noë 2004, p.72). The enactive

6.2 Behavior in Artificial Intelligence 403

approach to perception has two major implications. Since vision is an ex-
ploratory act based on the sensorimotor abilities of the organism, developing
a model of vision requires developing a model of the sensorimotor charac-
teristics of the organism (O’Regan and Noë 2001) and consequently of its
body and environment. Similarly, understanding the neural basis of vision
requires a novel neuroscience of embodied activity in place of mainstream
neuroscience of brain activity (E. Thompson and Varela 2001).

The ensuing movement that emphasizes the role of embodiment and be-
havior in shaping intelligence is now known as embodied cognitive scienceEMBODIED COGNITIVE

SCIENCE (Clark 1997). In order to account for the rich set of spatiotemporal inter-
actions between the organism and its environment, this approach often re-
lies on dynamical systems theory (McFarland and Boesser 1993; Thelen and
Smith 1994; van Gelder 1998) where a set of variables describing the brain,
body, and environment continuously evolves over time. Instead of symbols
and representations, dynamical system approaches resort to concepts as at-
tractors, transients, and trajectories in a dynamical space. Often dynamical
models are implemented as neural networks, such as continuous-time re-
current neural networks described in chapter 3. Within embodied cognitive
science, robots have now replaced computers as the metaphor to develop
and test models of biological intelligence.

6.2 Behavior in Artificial Intelligence

Artificial intelligence was formally established as a research area at a meetingARTIFICIAL

INTELLIGENCE organized by John McCarthy at Dartmouth College in 1956. The mission of
artificial intelligence was to understand human intelligence and build intel-
ligent machines, which at that time were intended mostly as digital comput-
ers. The legitimacy of this enterprise was based on the nascent computation
theory and technology after the World War II, the realization that neurons
were equivalent to computational devices (McCulloch and Pitts 1943), and
the hypothesis that cognition was a form of computation (Turing 1950). Arti-
ficial intelligence developed in parallel to cognitive science and the two fields
affected each other in many ways, often sharing theories, models, and tools.
Until the 1980s, mainstream artificial intelligence was mainly concerned with
symbolic reasoning (Newell and Simon 1972), representations (Marr 1982),
and language (Chomsky 1957). The typical testbed of artificial intelligence
was the game of chess, a well-defined task that requires sophisticated percep-
tual and cognitive abilities, but not necessarily embodiment and behavior.

404 6 Behavioral Systems

Figure 6.1 The robots devised by Grey Walter and built with the assistance of Bunny
Warren in Bristol, England. The motor system of the robot was like a tricycle where
the front wheel was actuated by motors for regulating speed and steering. The robot
shell hung from a pole and came into contact with internal sensors whenever an
obstacle was encountered, thus functioning like a touch sensor. A photoreceptor
mounted on a rotating head was used to measure light intensity while scanning the
environment. The photograph shows a replica built by Owen Holland. Image cour-
tesy of the Intelligent Autonomous Systems lab, University of West England at Bristol.

In contrast to that approach, in the early 1950s Grey Walter built a series
of mobile robots to demonstrate that complex and purpose-driven behavior
could emerge from a set of simple and interconnected neuron-like devices
embodied in a situated organism (Walter 1950, 1951). Grey Walter, who is
now considered the creator of the first autonomous robots (Freeman 2003),
was trained as a neurophysiologist and electrical engineer. His robots were
also called “turtles” because of their shelled body and relatively low speed.
The electronics were composed only of analog devices (two valves, two ca-
pacitors, and two mechanical relays) and Walter insisted on the importance
of using analog elements instead of the digital computation embraced by
mainstream artificial intelligence. Owen Holland recently reconstructed the
robots from original pieces and circuit diagrams (figure 6.1). He showed that
these robots displayed complex and partially unpredictable behaviors such
as exploration, negative and positive tropism, discrimination, adaptation to
changing environments, and behavioral stabilization (Holland 2003).

Walter’s work attracted the attention of the media at that time, but did not
have an immediate impact on cognitive science and artificial intelligence.

6.2 Behavior in Artificial Intelligence 405

+
+

+ +

A

B

Figure 6.2 Two Braitenberg vehicles: vehicle A is repulsed by light and vehicle B is
attracted. Reproduced from Braitenberg (1984).

Thirty years later, the neuroscientist Braitenberg (1984) published a book-
let describing a series of imaginary vehicles with simple wiring of sensors
and motors inspired by the anatomical and physiological principles of ner-
vous systems, such as symmetry, cross-lateral connection, excitation and in-
hibition, time-delayed activity, and nonlinear dynamics (figure 6.2). When
placed in an environment, Braitenberg’s vehicles displayed a range of com-
plex behaviors that an external observer might have labeled as aggression,
love, fear, logic, foresight, egotism, and free will. He even described an imag-
inary experiment with artificial evolution of these vehicles.

Braitenberg’s vehicles were intended to convey two major messages. The
first message was that much of the complexity observed in behavioral sys-
tems stemmed from the interaction with the environment rather than from
the complexity of the brain, similar to what Grey Walter intended to show
with his mechanical turtles. The second message was the law of uphill anal-
ysis and downhill invention: “When we analyze a mechanism, we tend to
overestimate its complexity. In the uphill process of analysis, a given de-
gree of complexity offers more resistance to the workings of our mind than it
would if we encountered it downhill, in the process of invention” (Braiten-
berg 1984, p.20). In other words, he argued that neuroscience and cognitive
science could gain considerably by combining the analysis of living brains
with the construction (synthesis) of embodied and behavioral circuits. Al-

406 6 Behavioral Systems

Figure 6.3 The miniature mobile robot Khepera was instrumental in the develop-
ment of bioinspired approaches in robotics and artificial intelligence. The robot’s
software included an example of a Braitenberg architecture for collision-free naviga-
tion (Mondada et al. 1993).

though Braitenberg was mainly concerned with understanding living ner-
vous systems, his book had a strong impact on artificial intelligence and
robotics, partly because many of his imaginary vehicles could be readily im-
plemented in real robotic systems (figure 6.3).

In the late 1980s, Rodney Brooks published a series of influential papers
describing a radically new approach to artificial intelligence and robotics,
which he named behavior-based robotics (see Brooks 1999 for an annotated col-BEHAVIOR-BASED

ROBOTICS lection). Brooks claimed that intelligent behavior is generated by the direct
coupling between perceptions and actions without invoking the mediation
of high-level cognitive processes, such as representation and reasoning. He
argued that intelligence existed only in the eye of the observer and was
an emergent phenomenon resulting from the interactions among multiple
perception-action modules in a situated and embodied system.

Behavior-based robotics served as a catalyst for a large-scale and wide-
spread paradigm shift in artificial intelligence, cognitive science, and robot-
ics. On the wave of this shift, connectionist models of the brain (Rumelhart
et al. 1986b) were criticized for being oversimplified structures that learned
in vacuo (Parisi et al. 1990; D.T. Cliff 1991) and were therefore inadequate to
capture the principles of intelligence.

Ballard (1991) extended the behavioral approach to computer vision. He
claimed that many of the problems in reproducing human visual abilities
stemmed from the attempt to map “two dimensional data into a description
[of] 3-D surfaces, volumes, boundaries, shadows, occlusion, depth, color,
motion” (Ballard 1991, p. 57). He argued instead that biological vision is
animate vision because it continuously moves by means of saccadic displace-ANIMATE VISION

6.3 Behavior-Based Robotics 407

ments, it is governed by behavioral modules, and it does not necessarily need
categorical representations of the 3D world. Along with other researchers
(Aloimonos et al. 1987; Bajcsy 1988), Ballard suggested that a behavioral ap-
proach to vision may even simplify the complexity of vision-based tasks by
focusing computation on fewer and simpler features at a time.

Behavior affects the type and distribution of sensory information that an
embodied nervous system receives. Consequently, this may affect the forma-
tion of the synaptic connections in developing and adapting brains. How-
ever, this is almost never taken into account by computational neuroscience,
which assumes uniform or well-behaved probability distribution functions
of input data. It has been recently shown that the actual probability distribu-
tion function of natural images recorded from a camera strapped to the head
of a cat is significantly different from uniform (Betsch et al. 2004). This holds
also for a robot that moves around an environment according to an arbi-
trary, but not random, vision-based behavior. A comparison of the snapshots
taken by the robot’s camera with those taken by the same camera pointing
in all possible directions and orientations shows that a behavioral system se-
lects only a subset of the theoretically available information and that subset
is not a uniform sample (Floreano et al. 2005). A control system designed,
learned, or evolved by taking into account the behavior of the embodied sys-
tem therefore may be simpler, faster, or more efficient (Verschure et al. 2003)
because it does not need to build and rely on a complete model of the external
environment.

The modern approach to artificial intelligence that emphasizes behavior,
embodiment, and situatedness is now known as new AI (Pfeifer and ScheierNEW AI

1999) and is contrasted to good old-fashioned AI (Haugeland 1985), which fo-GOOD OLD-FASHIONED

AI cused on symbolic reasoning and planning and went under major criticism
over recent years (Dreyfus 1992).

6.3 Behavior-Based Robotics

Although behavior-based robotics started off as a practical methodology to
design and build efficient robots that could operate in the real world, it
caused a major rethinking of priorities and approaches in artificial intelli-
gence.

Behavior-based robotics is perhaps best understood by comparing it with
the established approach to intelligent robotics that dominated until the mid-
1980s, and still is mainstream in major robotics conferences. In the main-

408 6 Behavioral Systems

sensors actuators

p
e

rc
e

p
tio

n

m
o

d
e

lin
g

p
la

n
n

in
g

ta
s
k
 e

x
e

c
u

tio
n

m
o

to
r c

o
n

tro
l

Figure 6.4 Functional decomposition of robot control. From Brooks (1986).

stream approach, the control system of a robot is typically divided into a
sequence of functional modules that decompose the solution into separate
units, such as perception, modeling, planning, and execution (figure 6.4).

According to Brooks (1991c), this functional division can be traced back to
the history and organization of artificial intelligence. For example, percep-
tion is typically dealt with in computer vision, which is expected to provide a
description of the environment in terms of objects and landmarks from large
vectors of pixel intensities (e.g., Marr 1982). Computer vision is not neces-
sarily concerned with the uses that other people make of those descriptions.
A large area of artificial intelligence attempts to put together those descrip-
tions into models of the environment that can be manipulated and exploited
for planning. Symbolic reasoning, expert systems, and connectionism are
a small sample of different techniques for developing those world models;
they rely on the existence of perceptual descriptions and are not necessar-
ily concerned with the implementation of the process in a real mobile robot.
Hardcore robotics consists in designing the physical machine and executing
the planned trajectories. Besides the mechatronic aspects of robot design, the
questions of concern at the control system level consist in developing suit-
able automatic methods for finding sequences of joint or wheel torques that
will result in the trajectory demanded by the planning system.

This functional decomposition produces precise, controllable, and predict-
able robotic systems that may be required in some applications, such as
manufacturing and surgical robotics. It also tends to produce general ar-
chitectures that can be applied to several instances of robots. However, this
approach does not cope well with the noise and uncertainty that is met with
by autonomous robots. Furthermore, since each functional level depends
on the completion of previous levels to operate, failure at an early stage can
jeopardize the functioning of the entire control system. Finally, the need for

6.3 Behavior-Based Robotics 409

sensors actuators

avoid collision

wander

explore

look around

build map

Figure 6.5 Behavioral decomposition of robot control. Adapted from Brooks (1986).

building a model and producing plans requires considerable computational
power, especially when both the model and the plan are both built at the
same time. As a consequence, the mainstream approach is often applied to
relatively well-defined environments with little noise and autonomy, results
in relatively slow and bulky robotic systems, and does not have a general
strategy for coping with malfunction of some software or hardware compo-
nent.

Brooks (1986) instead suggested decomposing the problem in terms of the
competences, or task-achieving behaviors, that the robot requires in order
to meet its goals (figure 6.5). Each behavior can have direct access to the
sensors and actuators of the robot and operate in parallel to other behaviors
by means of distributed coordination mechanisms.

Behavior-based robotics rests on the core ideas that the control system
must be (a) situated, that is, it must deal with the sensory and motor contin-SITUATEDNESS

gencies of the environment where the robot operates and not with abstract
descriptions; and (b) embodied, that is, it must experience the world directlyEMBODIMENT

through its sensors and physically act on the environment, rather than op-
erate in simulated worlds (Brooks 1991c). As a consequence, behavioral de-
composition can lead to very different control architectures that depend on
the type of robots and goals.

One can visualize a behavior-based architecture as a layered stack of par-
allel behaviors where the behaviors at the bottom deal with the survival of
the robot and the behaviors at the top achieve desirable goals if opportuni-
ties exist. The design of a behavioral control system proceeds incrementally.
The first layer is designed, tested on the robot, and refined until it is satisfac-
tory. At this point, the robot is already operational. Then, the second layer
is designed, tested, and refined. At this point the robot can make use of both
types of competences. And so forth.

Behaviors in higher layers can rely on, and sometimes affect, behaviors
in preceding layers. However, behaviors in higher levels do not use the be-

410 6 Behavioral Systems

Figure 6.6 A behavior module in subsumption architecture. Adapted from Brooks
(1986).

haviors in preceding layers as subroutines, but simply as a set of preexisting
competences. This architecture is known as subsumption architecture becauseSUBSUMPTION

ARCHITECTURE higher layers subsume, or encompass, early layers. Early layers can continue
to operate also without the presence of further layers and need not be repro-
grammed. However, if opportunities exist for higher layers to operate (for
example, the detection of gas molecules activates a plume-tracing behavior),
they may suppress, modify, or substitute the output of lower behaviors with
their own behavior.

The incremental design of behavior-based architectures recapitulates in a
broad sense the natural evolution of intelligence (Brooks 1991b) where ba-
sic survival competences, such as forage and escape, emerged before higher
competences, such as communication and reasoning. Similarly, behavior-
based design proceeds from the development of behaviors that ensure the
viability of the robot all the way to higher goal-seeking behaviors that build
upon basic behaviors.

Each competence layer can be structured differently and further decom-
posed in several ways, including using the mainstream approach of percep-
tion, modeling, and execution. Indeed, some implementations of behavior-
based architectures include a combination of low-level behaviors with high-
level reasoning (e.g., Arkin 1990).

A behavior is a self-contained and operationally independent module withBEHAVIOR

input and output lines (figure 6.6). In its simplest version, a behavior is a
motor response to a sensory stimulation from the environment. The inter-
nal operation of a behavioral module cannot be modified by other modules,
although some implementations of behavior-based architectures share mem-

6.3 Behavior-Based Robotics 411

ory registers among several behaviors. The input lines convey signals from
the sensors of the robot or from other behavioral modules. The output lines
send signals to the actuators of the robot or to other behavioral modules. In
the subsumption architecture, input and output lines can be suppressed or
inhibited by other modules. In the case of suppression, the signal from the
sending module substitutes for the signal traveling on the suppressed line. In
the case of inhibition, the signal traveling on the inhibited line is zeroed for
some time. Furthermore, a module can receive a reset signal from another
module. In doing so, higher behavioral modules subsume, or incorporate,
the competences of lower behavioral modules.

Each behavioral module can be, in principle, implemented as a separate
augmented finite state machine (Brooks 1989) with its own internal clock,
but without global synchronization. Consequently, if a behavior does not
provide an output after a certain amount of time, another behavioral module
may take over the control of the actuators.

There are several ways of coordinating behaviors, each corresponding to a
different behavioral architecture. In the subsumption architecture (figure 6.7,
a)), the priority among behaviors is fixed by the pattern of inhibition and
suppression among modules. In the action-selection architecture (figure 6.7,
b)), each behavior includes an activation value and the behavior with the
highest activation level is selected to take over the control of the robot (Maes
1989). In the voting architecture (figure 6.7, c)), each behavior casts a vote for
a set of predefined robot actions and the action with the highest number of
votes is executed (D.W. Payton 1986). For a review and comparison of these
and other behavioral architectures, we suggest (Arkin 1998).

Behavior-based control has a number of advantages with respect to the
mainstream approach based on functional decomposition. It results in fast
reactions because behavioral modules can immediately map sensory infor-
mation onto motor actions. It is a robust architecture because if a hardware
or software component fails, the robot has a higher probability of retaining
at least some behavioral competence. It can accommodate multiple goals
that are dealt with asynchronously by multiple behaviors. It is scalable to
robots with different degrees of freedom and extensible if new sensors and
hardware modules or if new behavioral competences are added to the robot.

The complexity of the robot behavior does not derive from the complexity
of the control system or of the world model, as in the functional decompo-
sition approach, but from the interaction among several simple behavioral
modules that are continuously interacting with the external world and with
each other. Consequently, intelligent behavior results from the dynamics of

412 6 Behavioral Systems

Figure 6.7 A sample of behavior-based architectures: subsumption, action selection,
and voting. Adapted from Arkin (1998).

interaction with the world. As Brooks (1991a) put it, intelligence is in the
eye of the beholder, not in any particular components or set of components
within the machine.

However, it has been argued that the lack of a central world model could
restrict the behavioral competences of the robot to those of simple animals;
that the lack of planning could result in purely reactive behaviors that cannot
anticipate future events, which could have an influence in current decisions;
and that the predictability of the robot’s behavior may consequently be af-
fected (Arkin 1998). To address these criticisms, Matarić and Brooks (1990)
described a robot that is capable of incrementally building a map of the
environment without using Cartesian metrics and central representations.
The behavioral architecture established a set of interconnected sensorimotor

6.3 Behavior-Based Robotics 413

Figure 6.8 Zeroth competence level: runaway from any obstacle. Adapted from
Brooks (1986).

nodes that linked perceptual events to motor actions. Brooks et al. (1998)
also argued that behavior-based principles could be extended to tackle some
aspects of human-like intelligence with the help of a humanoid robot, as we
will see in a later section.

Although the theoretical advantages and disadvantages of behavior-based
robotics are still widely debated, this approach has found successful applica-
tions in several mobile robots that range from commercially available robot
toys and domestic assistants all the way to planetary rovers (Brooks 2002).

6.3.1 Example 1: Navigation of a Mobile Robot

Let us start with a simplified version of an example that Brooks (1986) used
to illustrate the implementation of a subsumption architecture. The robot
consists of a wheeled platform with a circular array of sonar sensors that
provide information on distance from objects.

The zeroth competence level (figure 6.8) provides the robot with the ability
to steer away from any incoming obstacles or obstacles that it may encounter
as it runs away. It consists of several behavioral modules. The sonar mod-
ule receives the sonar readings and produces a vector of distances around the
robot. This is sent in parallel to two modules. The collide module checks
if any of the vector values is below a given threshold, which would signal an
obstacle very close to the robot, and if that is the case it outputs a stop signal
to the module that is responsible for advancing the robot. Notice that the
collide module acts independently of what other parts of the architecture
are doing. The feelforce module instead computes a vector correspond-
ing to the repulsive force that results from the distance vectors and sends it

414 6 Behavioral Systems

Figure 6.9 First competence level: wander around the environment. Adapted from
Brooks (1986).

to the runaway module, which outputs a heading direction if the received
force is larger than a threshold. The turn module rotates the robot to align it
with the heading direction, reads the wheel rotation encoders, outputs a go
signal, and goes into a busy state. On reception of the go signal, the forward
module advances the robot by a fixed distance, unless it receives a stop sig-
nal, and reads the value of the wheel rotation encoders when the robot is
idle. This value is sent back to the turn module and acts as a reset signal.
The parameters of the modules (thresholds and time constants) are adjusted
while the architecture is tested and debugged on the physical robot.

The first level of competence adds to the robot the ability to move around
(figure 6.9) and capitalizes on the behavioral competences that the robot al-
ready has. It consists of a wander module the generates a new heading di-
rection at regular intervals (e.g., every 10 seconds). The avoid module com-
bines the new heading direction with the repulsive force, if any, to produce
the resulting heading direction, which is connected with a suppression link
to the input line of the preexisting turnmodule. The suppression link writes
the new heading signal over the heading signal, if any, from the runaway
module. The first competence level therefore subsumes the zeroth compe-
tence level in that it builds on its competences and can take over some of its
behavioral modules.

Once the augmented architecture (level 0 + level 1) has been tested, de-
bugged, and its parameters adjusted on the robot, the second level of com-
petence is incrementally developed (figure 6.10). The robot is equipped with
a rotating stereo camera that can be used to compute distances. The second

6.3 Behavior-Based Robotics 415

Figure 6.10 Second competence level: vision-based exploration. Adapted and sim-
plified from Brooks (1986).

level of competence is intended to add vision-based exploration to the robot.
Whenever the robot has been idle for some time, it looks around for a corri-
dor or an opening. The whenlook module monitors the status of the robot
from the turn module and, if the robot has been idle longer than a prede-
fined time, it sends a start signal that inhibits the output of the wander mod-
ule for a predefined time and activates the look module. The look module
sends a rotation angle to the click module, which rotates the camera, takes
a snapshot, and passes it back to the look module. If the look module does
not find any candidate corridor or opening, it issues a new rotation angle un-
til a suitable image is found and passed on to the explore module, which
computes a heading direction. The heading direction is sent through a sup-
pression line to the input of the avoid module, which combines it with any
repulsive force to generate the resulting heading.

At this stage the robot has a full range of behavioral competences. When
somebody approaches, it will move away until it finds a safe open space. If it
has been idle for some time, it will search with the camera for an opening and
will move in that direction while avoiding obstacles on the way. If no open-
ing is found, it will wander aimlessly in the environment, while avoiding
any encountered or approaching obstacle.

416 6 Behavioral Systems

Figure 6.11 A commercially available power wheelchair equipped with sensors for
autonomous operation (Gomi and Ide 1996). Image courtesy of Takashi Gomi, Ap-
plied A.I. Systems, Inc., Ottawa, Canada.

6.3.2 Example 2: An Intelligent Wheelchair

Behavior-based methodologies have rapidly found applications in several
commercially available robots (Brooks 1986). The autonomous wheelchair
project described in this section represents probably the best detailed exam-
ple of a development stage for which details are publicly available. Gomi and
Ide (1996) of Applied A.I. Systems Inc., Ottawa, Canada, employed behavior-
based control for the development of an intelligent wheelchair that is ex-
pected to be fully or semiautonomous.

The wheelchair used in the development stage was a commercially avail-
able motorized chair (figure 6.11) with two differentially driven wheels and
two free front casters. The front casters add a lot of fluctuations that in main-

6.3 Behavior-Based Robotics 417

stream control approaches would require a redesign of the motor platform
or specially designed modeling and error-correction routines. The entire me-
chanical, electrical, and electronic structure of the commercial wheelchair,
which included a joystick to manually steer the wheelchair, was used with-
out modifications.

The original platform was extended (figure 6.11) with the addition of sev-
eral bumper and infrared distance sensors, two color CCD cameras on the
armrests, a keypad and a small TV panel for purposes of software develop-
ment and monitoring, and two processor boards (one for vision-based be-
haviors and the other for all remaining behaviors).

The behavior-based architecture was incrementally built by adding, test-
ing, and debugging on the wheelchair various levels of behavioral compe-
tence (figure 6.12). These levels were organized in terms of safety priori-
ties. Inputs from the joystick had the highest priority, as revealed in the
control diagram by the suppression line closest to the motor control of the
wheelchair. In other words, the user always had the option to override au-
tonomous behavior and take control of the wheelchair. The second highest
priority was given to behaviors that received input signals from the left and
right bumpers and infrared distance sensors. These behaviors provided ob-
stacle avoidance competences that prevented uncomfortable or damaging
collisions. They were followed by behaviors that used infrared distance sen-
sors in order to “squeeze” the wheelchair through narrow passages. Lower
in the priority list were behaviors that handled voice commands and behav-
iors that produced vision-based corridor following. The last behaviors in the
priority list were those that used a vision-based landmark navigation system
to take the user to a goal location that has been entered through the keypad.

The autonomous wheelchair was capable of successfully operating au-
tonomously and semiautonomously in several outdoor environments, shop-
ping malls, and other daily situations by physically impaired people who
tested it. The reactive and somewhat natural movements produced by the
behavior-based architecture induced external observers to believe that the
chair was manually operated.

Gomi and Ide (1996) motivated the choice of behavior-based architecture
with the ability to operate rapidly in real-world situations and consequently
to produce a smooth customer experience. They also indicated that behavior-
based control provided an intrinsic fail-safe architecture, whereas main-
stream approaches required the addition of special routines for safe standby
in case of software or hardware malfunction. Finally, they mentioned that the
entire software architecture took only 35 kB for the vision-related behaviors

418 6 Behavioral Systems

Figure 6.12 Schematic diagram of behavior-based architecture for the autonomous
wheelchair (Gomi and Ide 1996). Each behavior may include several other behaviors,
which are not shown. Filled arrowheads at the module output indicate the corre-
sponding motion of the wheelchair. Image courtesy of Takashi Gomi, Applied A.I.
Systems, Inc., Ottawa, Canada.

6.4 Biological Inspiration for Robots 419

Figure 6.13 A snake robot may provide better agility and flexibility than wheeled or
legged robots for search-and-rescue missions in collapsed buildings. Photo courtesy
of Gavin Miller, S7 prototype with compass, sonar, and heat sensors.

(out of which 25 kB were dedicate to map generation and low-level image
processing) and 32 kB for all other behaviors, including a significant portion
to deal with peripheral management, such as keypad, voice input/output,
and visual display. This slim code allowed for rapid prototyping and real-
time operation.

6.4 Biological Inspiration for Robots

Bioinspired robots are robots that resemble living organisms in some specific
characteristics, such as the control system, the morphology, the actuators,
or the electronics. Robot engineers take inspiration from biology in order
to design robots that have better agility and flexibility, that display a novel
functionality, that are more adaptive and intelligent, or that can better op-
erate in the vicinity of humans. For example, snake robots (figure 6.13) are
developed for search and rescue in collapsed buildings (G.S.P. Miller 2002)
where wheeled and legged robots may not meet the requirements necessary
to move over debris, climb high obstacles, and pass through narrow open-
ings.

There are several degrees of bioinspiration, ranging from loose metaphors
to high-fidelity replicas of specific parts. The goal is to capture and repro-
duce the mechanisms that provide better performance for a given engineer-

420 6 Behavioral Systems

Figure 6.14 Left: Top view of the fly visual system. Optical stimulation is collected
by several single-lens eyes (omatidia), each containing eight visual receptors, that
drive an array of motion-sensitive neurons in the medulla and lobula plate. Right:
The elementary motion detector (EMD) responds to motion in a specific direction by
collecting signals from neighboring receptors with temporal delays on the connection
lines. Adapted from Franceschini et al. (1992).

ing problem. In the following subsections, we will describe three cases of
biological inspiration that provide better performance or a novel functional-
ity to the robots.

6.4.1 Example 1: Vision-based Flying Robots

Robots that can fly autonomously in cluttered or indoor environments could
be very useful for search-and-rescue missions, for 3D cartography of urban
environments, or for surveillance. In those conditions, GPS signals are often
not available, teleoperation is very difficult or impossible, and localization
methods used for wheeled robots (such as laser rangefinder or other active
sensing) are not applicable because of energy consumption and size.

Vision represents a promising sensing modality because it does not require
energy to acquire information and today’s cameras are sufficiently small and
lightweight to be carried by miniature aircraft. However, it is not trivial to
process visual information in real time within low-power, embedded micro-
controllers. Insects are marvelous examples of systems that use vision to
avoid collisions, take off and land, search, and pursue. For that reason, a
number of engineers have taken inspiration from the visual system and be-
havior of the fly, which has been studied in great neurophysiological detail
(Hausen and Egelhaaf 1989).

6.4 Biological Inspiration for Robots 421

The fly’s primary sensor for flight control consists of two compound eyes
(figure 6.14, left) that span an almost omnidirectional field of view with
coarse resolution (Land 1997). The optic lobes contain motion-sensitive neu-
rons which respond to retinal image shifts, the so-called optic flow, induced
by the motion of the animal relative to the surroundings (Gibson 1950). The
fly has several neurons sensitive to optic flow, also known as elementary mo-ELEMENTARY MOTION

DETECTORS (EMDS) tion detectors (EMDs), that have been linked to specific visually guided be-
haviors (see Egelhaaf and Kern 2002 for a review).

Optic flow is a linear combination of two components, one resulting from
rotation and one from translation of the animal. Translational optic flow is
the only component whose magnitude depends on distance from an object
(Koenderink and van Doorn 1987). If the rotational component is eliminated,
the residual optic flow may provide useful information for behaviors that
rely on distance from objects, such as collision avoidance, altitude control, or
landing.

The need for reducing rotational optic flow may be the reason why flies fly
in straight lines separated by rapid turns, known as saccades (Tammero and
Dickinson 2002). Straight flight allows flies to experience pure translational
optic flow, which may be used to tell how close an obstacle is and decide
to initiate a saccadic turn. During saccadic turns, flies seem to ignore visual
information, which is dominated by the rotational optic flow.

In pioneering work, Franceschini et al. (1992) built a physical model of
the fly’s visual system to map visual stimulation into motor commands of a
wheeled robot. The authors reproduced a horizontal slice of the fly’s visual
system with 100 EMDs distributed around the circular body of the robot.
The functional diagram of each EMD, shown at the right of figure 6.14, was
established on the basis of electrophysiological analyses carried out on the in-
sect and reproduced with analog electronics. An EMD collects signals from
neighboring receptors with asymmetric connection lines and a temporal de-
lay. The EMD is active if the sequential stimulation of the receptors occurs
in one direction, but not in the other direction. The output of the EMD is
proportional to the angular velocity of the object on the receptor surface. If
the angle between adjacent EMDs and the translation velocity of the animal
is known, the distance to the object can be recovered. The EMD therefore
measures distance to objects according to the principles of motion parallax
(Whiteside and Samuel 1970).

The behavior of the wheeled robot consisted of a series of translational
steps of fixed size during which the EMD signals were collected. At the end
of each step, the pattern of EMD activations provided a “snap map” of sur-

422 6 Behavioral Systems

Figure 6.15 A 30 g aircraft for autonomous indoor flight. The signals from two linear
cameras, pointing sideways, are used to detect the magnitude of optic flow and de-
cide when to initiate a saccadic turn. An MEMS gyroscope provides information for
course stabilization during straight trajectory. In this version altitude was manually
controlled.

rounding obstacles in polar coordinates. A steering command was issued
from this snap map in order to avoid near obstacles and move in the direc-
tion of a target location always visible from a sensor beacon positioned high
above the robot center. The 10 kg robot was capable of slaloming through a
field of poles at a speed of 50 cm/s toward a distant target location. It did
not have a plan or a global map of the environment, but relied entirely on re-
active behaviors resulting from a combination of attraction to the target and
repulsion from obstacles.

Zufferey and Floreano (2006) developed an indoor flying robot that reliedINDOOR FLYING ROBOT

on optic flow to steer away from walls (figure 6.15). In order to cope with
the stringent weight constraints of the 30 g platform, they used two linear
cameras pointing at 45◦ from the center. The signal of each camera was pro-
cessed within an onboard microcontroller to extract the optic flow magnitude
in each direction by means of an image-interpolation algorithm (Srinivasan
1994). Instead of extracting distance information to decide where to move,
as Franceschini’s robot did, the flying robot initiated a saccadic turn when
the combination of the two optic flow signals exceeded a predefined thresh-
old. The threshold value was chosen to leave sufficient time to the aircraft to
avoid a collision. The saccadic turn consists of a deflection of the rudder for
1 s.

6.4 Biological Inspiration for Robots 423

The flying platform posed an additional problem with respect to the
wheeled robot used by Franceschini: how to maintain straight trajectories
and how to recover from a saccadic turn. Since insects face the same prob-
lem, it is worth learning how they solve it. Flies possess mechanosensory
structures, called halteres, that detect rotations of the body, allowing them
to maintain equilibrium in flight (Dickinson 1999). Halteres have also been
shown to play an important role in gaze stabilization (Nalbach and Heng-
stenberg 1994), which may serve to cancel residual components of rotational
optic flow due to turbulence while flying on a straight trajectory.

These biological sensors are analogous to microelectromechanical, piezo-
electric, rate gyroscopes, which sense Coriolis forces that act on oscillating
mechanical parts. Zufferey and Floreano (2006) used the rotation informa-
tion from a piezoelectric gyroscope to maintain straight trajectory with a
proportional feedback controller acting on the rudder and to prevent the on-
set of additional saccadic turns while the aircraft was recovering from a turn,
a strategy that may also be used by insects (Tammero and Dickinson 2002).

Recently, we demonstrated this approach in a 10 g indoor flyer (Zufferey
et al. 2006b) and proposed the use of an additional linear camera to maintain
altitude by “avoiding” the floor (Beyeler et al. 2007).

6.4.2 Example 2: Wheeled Legs

Wheels allow robots to travel at very high speed, but can operate only on
relatively flat terrain. Legs instead allow robots to move on very rugged
surfaces, but are slower than wheels on flat terrain. In order to combine
the best of both worlds, active wheels have been attached to the extremities
of passive articulations (e.g., Estier et al. 2000), but this solution entails a
significant cost in mechanical complexity and efficiency of the servomotors
embedded in the wheels.

The remarkable mobility and speed displayed by cockroaches in extremely
rugged terrains attracted the attention of researchers because it seems that
the animal combines a simple, preprogrammed, feedforward control with
dynamic stability provided by a compliant leg system (Full and Koditschek
1999). In other words, the animal bounces and collides frequently with the
ground and obstacles, but the mechanical properties of its legs coupled with
its characteristic gait allow the animal to automatically recover without ex-
plicit control. Cockroaches have six legs and display tripod gaits: the front
and rear leg on one side move in phase with the central leg on the other side.
The remaining three legs display the same pattern shifted by 180◦.

424 6 Behavioral Systems

Figure 6.16 RHex is a simple hexapod robot capable of tripod gait and navigation
on rough terrains (www.rhex.org).

Several robots with both rigid and elastic legs capable of tripod gait have
been developed (Ayers et al. 2002), but most robots use one or two motors
per leg (to produce swing and stance), which results in relatively heavy and
fragile mechanics. Alternatively, they use pneumatic actuators, which are
more robust and agile, but require an external air compressor.

RHex (figure 6.16) instead is a hexapod robot that captures the flexibilityRHEX

of the cockroach with simple mechanics and control (Saranli et al. 2001). It
has six arched legs rotating around their horizontal axles. Each leg is driven
by an electric motor that accelerates the swing phase to produce the tripod
gait. The legs are made of elastic material that complies with the ground and
the central leg is mounted further out to leave space for the rotation of the
other legs. The robot is capable of navigating faster than one body length
per second in rough terrains without feedback control and, because of its
symmetric design, can keep going even when it rolls over on its back.

Quinn et al. (2002b) designed another hexapod robot that is even simpler,
but still captures the control and mechanical properties of cockroach gait. Its
locomotion system is based on a combination of wheels and legs (figure 6.17),
and thus has been named Wheg. Whegs are rimless wheels with three equallyWHEGS

spaced spokes. This configuration allows a spoke to get a foothold on an ob-
stacle that is higher than the length of the spoke. The authors showed that
three spokes, as compared to two or four, are optimal in achieving a compro-

6.4 Biological Inspiration for Robots 425

Figure 6.17 Whegs consist of a rimless wheel that can climb obstacles higher than
a spoke and of a passive torsional mechanism within the axle that enables the Wheg
to a change of phase by as much as 60◦ when an obstacle is met. A spring within
the torsional mechanism brings the wheels out of phase once the obstacle is passed.
Figures adapted from Quinn et al. (2002b).

mise between climbing abilities and riding smoothness. For a three-spoke
Wheg, the axle travels vertically 13% of the spoke length when the vehicle is
moving in a tripod gait on a flat terrain. Smaller vertical displacement can
be achieved by manufacturing the spokes out of elastic materials. The posi-
tion of the front Whegs is as much forward as possible in order to allow the
spokes to contact the obstacles before the body of the robot.

When cockroaches meet obstacles, sometimes their front legs move in
phase over the top of the obstacle, which facilitates the climbing. Similarly,
Whegs include a spring in the drive train enabling them to passively change
their relative phase by as much as 60◦. When one Wheg hits an obstacle but
cannot place its endpoint on top of it, both Whegs will continue to rotate,
advancing the robot further until the Wheg on the opposite side reaches the
top of the obstacle. At this point, the torsional compliance will keep the
spoke in place while the Wheg on the other side will reach the top of the
obstacle too. Once the obstacle is passed, the springs drive the two opposing
Whegs out of phase for the usual tripod gate.

The authors have designed and tested a variety of Wheg robots. In all
cases, a single drive motor is used to rotate all Whegs. This design allows
for a more powerful motor and overall lighter weight as compared to robots
where each wheel is controlled by a dedicated motor, such as RHex where

426 6 Behavioral Systems

Figure 6.18 Miniwhegs feature four Whegs and employ alternating diagonal gait
to cover 10 body lengths per second. Images courtesy of Roger Quinn and Andrew
Horchler, Case Western Reserve University, Cleveland.

each motor must have sufficient torque to drive the robot out of trouble and
is therefore relatively heavy.

Whegs-1 featured six Whegs, measured 50 cm, and moved at three body
lengths per second through a thick lawn with tripod gait (Quinn et al. 2002b).
The front and rear Whegs could be steered sideways for turning with the aid
of two small servomotors, which is equivalent to the way in which cock-
roaches turn by changing the position of their legs. The robot could keep
running even when it rolled over on the dorsal side.

Miniwhegs (figure 6.18) had only four Whegs, measured 9 cm, and moved
at 10 body lengths per second with an alternating diagonal gait (Morrey et al.
2003). The size reduction implied a number of modifications. Whegs no
longer had a sharp tipped foot, which in larger prototypes provided good
traction, because at this smaller size it made the robot jump when the tip got
stuck in the ground. Sharp tips were therefore replaced by small feet. The
functionality of the passive torsional mechanism within the axle of the larger
Whegs was obtained by fabricating the spokes out of compliant material.

6.4.3 Example 3: Wall Climbing

Robots capable of walking on vertical surfaces would in general be very use-
ful for surveillance, inspection, and cleaning. Several robot prototypes have
been built that use vacuum suction, magnetic attraction, or grasping. How-
ever, all these solutions impose strong constraints. For example, vacuum
suction works only on flat surfaces and cannot be used for space applica-

6.4 Biological Inspiration for Robots 427

Figure 6.19 Waalbot and detail of the passive joints of a footpad. Images courtesy
of Metin Sitti, Carnegie Mellon University, Pittsburgh.

tions; magnetic attraction requires the presence of ferromagnetic surfaces;
and grasping does not work on flat surfaces.

Ideally, one would want a clinging mechanism that works on any material
without damaging the surface. Geckos seem to have evolved a solution to
that problem. Each toe of gecko feet is covered with hundreds of thousands
of filaments, known as setae, and each seta divides into hundreds of smaller
filaments, known as spatulae, that have a diameter of approximately 0.2 μm.
This structural design allows toes to adapt perfectly to the microstructure of
any type of surface and exploit van der Waals forces of weak electrical at-
traction between molecules in order to stay attached (Autumn et al. 2002).
Therefore, they operate both in wet and in dry environments (that’s why it is
said that they use the principle of dry adhesion), do not require energy to at-DRY ADHESION

tach or cling to any material, and can also work in space where suction-based
solutions are not usable. What matters is the size and density of the spatulae,
not the material of which they are composed. Autumn et al. (2002) showed
almost identical sticking force of microfabricated artificial setae made of two
different materials that respected the dimensions and density predicted by
mathematical analysis of gecko toes.

While the synthesis of dry adhesives is under way in several academic
and industrial labs worldwide, a team led by Metin Sitti at Carnegie Mellon
University in Pittsburgh developed a robotic platform that could exploit the

428 6 Behavioral Systems

sticking properties of dry adhesives. In particular, the adhesion system re-
quires a method for conforming the adhesive foot to the wall surface and a
method to peel off the foot. Waalbot (figure 6.19) is a 100 g and 13 cm longWAALBOT

robot with two three-footed wheels, each driven by a dedicated motor, and a
tail (Murphy and Sitti 2007). Although Waalbot’s wheels resemble the mech-
anisms described earlier for RHeX and Whegs, their specificity resides in the
twin joint of the foot that makes them particularly suitable for climbing. Each
footpad can passively rotate along the axis of the ankle as well as laterally.
This allows the pads to conform to the surface as the robot moves forward
and enables lateral turns.

During forward motion, the two legs are synchronized. As the motor
turns, the tail of the robot presses against the surface and the legs rotate for-
ward. Two footpads, one on each side, are sufficient to hold the robot on
vertical surfaces. During forward motion, the compliance of the pads brings
four feet temporarily in contact with the surface. As the motor turns, the rear
feet are pulled off the surface. The robot turns by advancing one motor at
a time while the footpad on the other side rotates around the laterally pas-
sive joint. The length of the tail, designed to fit within the rotation circle of
the robot, strikes a compromise between the need for long length for reduc-
ing peeling force and for short length for reducing weight and the turning
angle in narrow passages. The design of the legs allows a smooth walking
transition between surfaces at 90◦, e.g., between floor and wall.

A team led by Mark Cutkosky at Stanford University took a different ap-
proach that emphasized the morphological and dynamical properties of the
gecko’s setae. The animal uses two mechanisms to detach: on the microscale
it modifies the angle of the setae with the surface and at the macroscale it hy-
perextends the digits. Although the combination of these two mechanisms
may lead one to think that the gecko literally peels off its setae one by one
from the surface, recent findings (Autumn et al. 2006) suggest that the the
adhesion of the setae is dominated by shear force. The anisotropic design of
the spatulae exploits shear forces when the animal is attached vertically on a
wall. Instead, when the animal is attached to a ceiling, it must pull together
its opposing toes to increase shear forces. Therefore, the hyperextension of
the digits is helpful mainly for decreasing shear forces on vertical surfaces.

Stickybot (figure 6.20) is morphologically similar to a gecko and featuresSTICKYBOT

four legs and a long tail to decrease the distance between its center of mass
and the surface. Each leg has three motors: two for controlling swing and
stance phases, and one for hyperextension of the toes. The leg segments are
slightly elastic to offer better compliance. The artificial setae are anisotropic

6.4 Biological Inspiration for Robots 429

Figure 6.20 Stickybot with detail of the retractable footpads and of the anisotropic
artificial setae. Images courtesy of Mark R. Cutkosky, Stanford University, Stanford,
CA.

to better exploit shear forces (Park et al. 2007; Santos et al. 2007), and the
control system is based on distributed active force control (Kim et al. 2007b).
Stickybot is capable of walking on perfectly flat surfaces and moves by lifting
and repositioning one leg at a time.

As emphasized in (Murphy and Sitti 2007), robots exploiting dry adhesives
will benefit from miniaturization because the mass of the robot is propor-
tional to the cube of its dimension while the adhesive force is proportional
to the square of its contact surface. Therefore, as the robot shrinks, the mass
decreases faster than the adhesive force.

6.4.4 Example 4: Humanoid Robots

For many people, humanoids represent possibly the ultimate goal of bioin-
spired robotics. Although this view is not shared by all scientists, anthro-

430 6 Behavioral Systems

Figure 6.21 Development of Honda humanoid robot from 1987 to 2007. Image cour-
tesy of Honda Motors Co.

pomorphic design may be useful for robots that are expected to operate in
environments built for human size and dexterity, such as offices and homes.
In addition to that, humans may find it easier to interact with a machine that
shares the same physical configuration and gesticularity. Humanoid robots
may also be important for investigating biological models that are specific
to human-like behavior, such as manipulation and transportation of objects,
where computer simulations would be unfeasible or comparatively ineffec-
tive.

The first humanoid robot, WABOT-1 (Waseda robot No. 1), was developedWABOT

in Japan at Waseda University in 1972 (I. Kato et al. 1972). This robot was
essentially a biped with a torso and two arms for balancing the body during
walk. The second-generation WABOT-2 was capable of playing a piano and
performed musical pieces every day during the Tsukuba Science Exhibition
in 1985. WABOT-2 was the size of a human, had a single camera mounted
on the head, and two arms with articulated fingers (Sugano and Kato 1987).
Waseda University continued to produce a range of new humanoid robots
over the years, the most recent one being the WABIAN (Waseda bipedal
humanoid), a human-size robot with stereo color vision, speaker detection,
onboard computation, two arms with detailed hands, and two articulated
legs for autonomous walk (Hashimoto et al. 2002).

In 1986 Honda started research on humanoid robotics – although the proj-
ect was unveiled years later (Hirai et al. 1998) – with the ultimate goal of

6.4 Biological Inspiration for Robots 431

producing a domestic robot capable of interacting with humans (figure 6.21).
The first prototypes of Honda robots were focused on understanding the de-
sign and control of bipedal walking. The first unveiled prototype, P2, was
a humanoid robot with a height of 182 cm, a weight of 210 kg, two arms,
two legs, a head with a camera, and a backpack containing four computers
and nickel-zinc batteries for autonomous operation. The robot was capable
of opening doors and walking on stairs. The most recent version, AsimoASIMO

(advanced step in innovative mobility) has the size of a 10-year-old child and
perfected mechanics and control. The reduced size makes humans feel more
comfortable with interacting with the robot. The robot is sufficiently reli-
able to allow the company to make it available for rental. Asimo is currently
capable of recognizing and autonomously walking toward objects and hu-
mans by means of a stereo vision system that emulates human eyes with
foveal and peripheral vision (implemented as a double-camera system with
narrow and wide fields of view). The robot can also interact to some extent
with humans by means of audio processing and speech synthesis. Honda is
currently investing research efforts in brain architecture, neural computing,
and bioinspired control for adding learning abilities to its robot.

Both the Waseda and Honda robots are made of stiff metallic and plastic
structures actuated by electric servomotors. Gait control of biped robots is
challenging because the robots tend to tip over when they move (as con-
trasted to robots with four or more legs that maintain static equilibrium
throughout the entire range of motion). Most humanoids, including the
Waseda and Honda robots, use active control to maintain the so-called zero-ZERO-MOMENT POINT

moment point within the support area of the robot. The zero-moment point,
first suggested in 1968, is the projection on the ground of the point corre-
sponding to the position where the tipping momentum of the robot is zero
(Vukobratovic and Borovac 2004). The control system continuously monitors
the error between the desired and the current position of the zero-moment
point and generates joint torques that reduce this error by means of a set of
differential equations.

In recent years, there has been renewed interest in “passive walkers”PASSIVE WALKERS

where the locomotion pattern is generated by gravity and inertia, instead of
active control of the joints. McGeer (1990b) provided an analytical study of
several passive walkers, ranging from small wooden toys with two rigid legs
connected by an axle, to more elaborated structures with articulated knees.
When a passive walker is positioned on an inclined surface, it produces a
bipedal walking pattern by passively swinging the two legs back and forth
in alternation under the combined effects of gravity and inertial forces.

432 6 Behavioral Systems

Figure 6.22 Two walk sequences of the Cornell ankle-powered biped on a level sur-
face. Both the robot and the person are walking at about one step per second. From
Collins et al. (2005). Reprinted with permission of the American Association for the
Advancement of Science..

The problem of foot clearance from the ground when the leg swings for-
ward can be solved in at least two ways. The wooden toys have laterally
arched feet that make the toy rock sideways during the swing phase, thus
giving sufficient clearance to the other leg. However, the rocking movement
dissipates energy and makes the gait less efficient. An alternative solution
consists in using articulated knees with a mechanical stop that prevents the
hyper-extension of the leg during the forward swing (figure 6.22, center), as
in humans. It has been shown that a passive walker with knees can produce
efficient walking patterns when started with certain initial positions of the
two legs (Mochon and McMahon 1980; McGeer 1990b). Furthermore, the ad-
dition of a hip joint with torsional springs, and that of linear springs on the
legs can produce passive runners (McGeer 1990a). These developments indi-
cate that the control of dynamic walk can be greatly simplified by taking into
account the mechanical design instead of delegating the problem entirely to
algorithms that continuously monitor and correct the motion of the joints.

Recently, Collins et al. (2005) extended the principle of passive walk to
horizontal surfaces by adding a simple actuation system in place of the grav-
itational force and designed a series of machines, such as the Cornell biped
shown in figure 6.22, which featured two actuated ankles that extended for
pushoff when the opposite foot hit the ground, two passive knees with me-
chanical stops, a hip, and two arms mechanically linked to the opposite leg.

6.4 Biological Inspiration for Robots 433

The authors showed that the efficiency (measured as used energy divided by
weight of the machine times traveled distance) of these semipassive walkers
was comparable to that of humans, whereas the efficiency of the Asimo robot
was 10 times worse than that of humans.

The principle of exploiting, rather than controlling, the physical properties
of the robot was also used in the design and control of the MIT humanoid
robot COG (Brooks and Stein 1994; Brooks et al. 1998). COG is a human-sizeCOG

torso, with a head and two arms, that has been designed to study embodied
cognition and interactions between humanoids and humans (Brooks et al.
1999). The joints of the arms include a novel type of elastic actuator incorpo-
rating a spring between the gears and the load point (Pratt and Williamson
1995), which absorbs shocks, makes the arm compliant, and allows stiff-
ness regulation. Therefore, the articulations of COG arms are equivalent to
masses connected by springs, just like human arms.

Williamson (1998) showed that this design could be used to perform sev-
eral natural forms of repetitive motion with minimal control modulating the
natural oscillation of the physical arm, instead of attempting to actively con-
trol its trajectory. Each joint was controlled by an oscillator built out of two
spiking neurons with self- and mutual inhibitory connections where one neu-
ron flexed the joint and the other extended it. Each neuron received the force
or position of the joint. Once the joint moves at its natural oscillation fre-
quency, only a small amount of energy is required to maintain it. It seems
that also humans exploit natural frequencies of the arms to minimize the
metabolic cost of movement (Williamson 1998).

Kuniyoshi et al. (2004) at Tokyo University showed an impressive case
where both humans and humanoids partly delegated control to their bod-
ies while performing complex actions. The authors studied the roll-and-rise
sequence (figure 6.23) used to move from a lying position to a crouching po-
sition without the help of the hands. This motion is very dynamic, depends
strongly on the physical properties of the body, and involves several contacts
with the ground, all of which make it almost impossible to model and re-
produce by means of differential equations. The authors noticed that human
subjects asked to perform the movement followed trajectories that varied sig-
nificantly except at a few points, such as the point where the ground contact
shifts from the hip to the feet. They called these points “knacks” to indi-KNACKS

cate that they are the critical parts of the behavioral sequence that must be
performed precisely, while the other parts of the sequence can be left to the
natural dynamics of the body shape, which may vary from person to person
or robot. Consequently, the authors modeled and developed control strate-

434 6 Behavioral Systems

Figure 6.23 Roll-and-rise sequence performed by a humanoid robot that actively
controls only a few critical points (“knacks”) of the behavioral sequence and leaves
the other parts to the natural dynamics of the body (Terada et al. 2003). Reproduced
with permission of IEEE Press, Piscataway, NJ.

gies only for those knacks and tested them on an adult-size humanoid robot
with padded torso and limbs. The robot performed the entire sequence of
actions in less than four seconds with a 100% success rate (figure 6.23). In
some cases the robot used its hands to prevent falling forward and to return
to the crouching position.

Passive walkers, COG arms, and roll-and-rise are examples of what to-
day goes under the name of morphological computation, that is, processes per-MORPHOLOGICAL

COMPUTATION formed by a physical body rather than by a brain or a control system. The
principle of morphological computation extends well beyond humanoid ro-
botics to encompass the design of any type of embodied behavioral system.
Interested readers may also consult (Hara and Pfeifer 2003) for a collection
of sample research in this area. Pfeifer and Bongard (2007) suggested that
morphologies and materials out of which artificial and biological bodies are
made constrain and affect the behavioral and cognitive properties of the or-
ganism in important ways. We will come back to this issue, which is very
distinctive of embodied and behavioral systems, in later sections of this chap-
ter.

Several research efforts are also being put into principles and technologies
necessary to support natural and engaging interactions between humanoids
and humans. Although that may seem a daunting task, it turns out that the
problem is simplified by our innate tendency to attribute complex emotional
and social features even to simple animate objects. For example, Braiten-

6.4 Biological Inspiration for Robots 435

Figure 6.24 Kismet is an anthropomorphic robot head. Three degrees of freedom di-
rect the robot’s gaze, another three control the orientation of its head, and the remain-
ing fifteen move its facial features (e.g., eyelids, eyebrows, lips, and ears). Kismet
is equipped with four color cameras (two for foveal vision and two for peripheral
vision). Reproduced with permission from Breazeal (2003). Courtesy of Elsevier,
Amsterdam.

berg’s vehicles described earlier in this chapter may express fear, love, or
curiosity in the eyes of an observer.

Robots designed for social interaction display several levels of sophistica-
tions. Socially evocative devices, such as the Furby toy, give the appearance ofSOCIALLY EVOCATIVE

social states, but do not react to human social expressions. Androids are high-ANDROIDS

fidelity replicas of human faces and body parts with biomimetic skin and
realistic expressions (Hara et al. 2001). They may be used to convey speech
and emotions from a distant person or in exhibitions and movies, but they do
not have internal states and autonomy. However, android technologies have
been recently combined with humanoid technologies and artificial intelli-
gence to improve humanoid-human interaction (Hanson 2005; Jun-Ho et al.
2006). Sociable robots can express social and emotional states, can perceiveSOCIABLE ROBOTS

and engage in human social interactions, and have internal states and learn-
ing that allow them to influence the social interaction with humans. Fong
et al. (2003) present a survey of socially interactive robots from the perspec-
tive of the technologies and intelligence required by these robots.

Although we do not yet have truly sociable robots, some recent robots,
such as Kismet (figure 6.24), can engage a person in natural interactions forKISMET

several minutes. Kismet is a robotic face that can interact physically, affec-
tively, and socially with humans in order to ultimately learn from them and
elicit interactions that improve the learning potential (Breazeal 2002a). It is

436 6 Behavioral Systems

Figure 6.25 The uncanny valley suggested by Mori (1970). Familiarity increases
with human likeness until a point is reached at which subtle differences in appearance
and behavior create an unpleasant feeling. Image courtesy of Karl F. MacDorman,
Indiana University, Bloomington.

equipped with a behavior-based architecture that allows prompt and partly
unpredictable, but coherent, responses. The robot can direct its attention
to establish a shared reference with a human, give expressive feedback and
recognize emotional states from voice features, and take turns to structure
learning events (Breazeal 2002a). Kismet takes a proactive role in regulating
the interaction with humans so that it is neither overwhelmed nor under-
stimulated. That strategy also facilitates gradual learning.

Although Kismet does not have a full understanding of human language,
that does not seem to bother people who engage in conversations that adapt
to the robot’s feature, e.g., by speaking more slowly, waiting longer for a re-
sponse, and checking for cues from the robot. As Breazeal (2003: pp. 173-174)
puts it, “[S]ocial interaction is not just a scheduled exchange of content, it is
a fluid dance between the participants. [...] In short, to offer a high quality
(i.e., compelling and engaging) interaction with humans, it is important that
the robot not only do the right thing, but also at the right time and in the
right manner.”

Kismet is not an android in the sense that it does not aim at being indistin-
guishable from a human face or display exactly the same expressions. This
may be one of the reasons why humans like to interact with it. The Japanese

6.5 Robots as Biological Models 437

robotics researcher Mori (1970) suggested that although a closer resemblance
of robots to humans triggers better social interactions, very human-like ro-
bots may look “uncanny” and cause unpleasant feelings (figure 6.25). How-
ever, positive feelings will appear again if the resemblance is improved. Fur-
thermore, he argued that these reactions, both positive and negative, are
amplified if the robot is moving. It has been suggested that the uncanny val-UNCANNY VALLEY

ley is caused by small imperfections that make the android look human but
not alive; consequently, the perception of death, or of the living dead if the
robot moves, may trigger unpleasant feelings (MacDorman 2005). Although
this phenomenon requires further scientific investigation, the film industry
seems to be taking it seriously after the negative reactions of some viewers
to the animated baby in the movie Tin Toy.

6.5 Robots as Biological Models

Robots can also be used as models to investigate biological questions and test
hypotheses. As we mentioned in the historical introduction to this chapter,
robots have been gradually replacing computers as the preferred tool and
metaphor in embodied cognitive science. Robots are becoming increasingly
accepted also among experimental biologists and neuroscientists as tools to
validate their models.

A robot that operates in the real world constrains the choice of models
among all those that could be possibly constructed (Webb 2002). Robotic im-
plementations force scientists to be very concrete in specifying the design of
the complete biological system (Franceschini et al. 1992) and help to produce
testable hypotheses (Webb 2001). Robot models also allow scientists to study
how the interaction with the environment and the operation of the neural
system affect each other, whereas disembodied computer studies are neces-
sarily limited in their front end and ability to modify the environment. If the
agent-environment interaction is very complex (e.g., flow dynamics or com-
plex sensory input and mechanical interaction), simulations may introduce
simplifications that could severely misguide the development of the models
(Möller 2000). A realistic interaction with the environment can also provide
new data and modification of classic perception-action models (Chiel and
Beer 1997; Suzuki et al. 2005). Furthermore, the evolution of robots may al-
low the testing of evolutionary hypotheses for which there is no fossil record
(Nolfi and Floreano 2000). We will describe two such cases where robots

438 6 Behavioral Systems

are used to test evolutionary models, namely competitive and cooperative
coevolution, in chapter 7.

Webb (2001) identified seven dimensions along which robotic models of
biology differ: (1) relevance: whether the model tests and generates hypothe-
ses applicable to biology; (2) level: the elemental units of the model in the
hierarchy from atoms to societies; (3) generality: the range of biological sys-
tems the model can represent; (4) abstraction: the complexity, relative to the
target, or amount of detail included in the model; (5) structural accuracy:
how well the model represents the actual mechanisms underlying the be-
havior; (6) performance match: to what extent the model behavior matches
the target behavior; (7) medium: the physical basis by which the model is
implemented. In particular, she argued that in building robot models bio-
logical relevance is more effective than loose biological inspiration and that
a physical medium can have significant advantages.

In this section, we will describe three case studies that, according to Webb’s
classification, have high biological relevance, operate at the level of the in-
dividual, explain several biological phenomena, abstract key variables nec-
essary for answering the specific questions, attempt to capture the actual
mechanisms that generate corresponding behaviors in biology, match very
well the performance of the biological system, and rely on physical robots.
Therefore, these three case studies represent high-quality examples of robots
as biological models.

6.5.1 Example 1: Song Recognition and Localization

Let us begin with an example drawn from Webb’s research where she used a
mobile robot to understand how female crickets recognize males’ songs and
approach them (Webb and Scutt 2000). Crickets have an ear in each foreleg
that produces direction-dependent differences in response amplitude. There-
fore, one may think that the female simply turns to the side with the strongest
response to go toward the source of the male calling song. However, that is
not sufficient to explain how females can selectively approach only males of
the same species, which emit a characteristic song. A cricket song is com-
posed of short bursts, known as syllables, in a pure tone between 4 and 5
kHz. Syllables are grouped in chirps. Experimental evidence showed that
the syllable repetition interval (SRI) is the most important cue for discrimi-SYLLABLE REPETITION

INTERVAL (SRI) nating different songs.
The biological models available in the literature assume that the cricket

nervous system includes both a song recognition system to detect songs with

6.5 Robots as Biological Models 439

an SRI characteristic of the same species and a localization system to ap-
proach the source of the song. Webb made the hypothesis that a simpler
model, which does not differentiate between recognition and localization,
could explain the selective behavior of female crickets. She used exactly the
same experimental method used by biologists for testing the robot model
and exposed it to songs recorded from living crickets.

A number of neurons have been identified in the neural circuitry that is
responsible for cricket phonotaxis. Some of these include pairs of auditory
neurons that receive excitatory input from the ear ipsilateral to their dendritic
tree; pairs of omega neurons that in addition to ipsilateral input excitation
receive inhibition from the controlateral omega neuron; and brain neurons
that receive connections from auditory neurons. It is not known whether
the firing rate or the firing time of these neurons matters in producing the
phonotactic behavior, but most available models seem to discard firing time.
Also, it is not clear how the specific syllable rate (SRI) is recognized because
auditory neuron pairs do not display selectivity for temporal patterns.

Webb argued that the firing time of the auditory neurons is sufficient both
for producing movement toward the song source and for selecting the ap-
propriate song. Assuming that the relative onset of spiking activity in the
left and right auditory neurons is the important factor in deciding in which
direction to turn, the female cricket will move only toward songs with a suit-
able syllable repetition interval because (1) songs with intervals that are too
short will excite almost continuously the auditory neurons, making it almost
impossible to tell which one fired first; and (2) songs with intervals that are
too long may not be sufficient to fire postsynaptic neurons or will cause very
few turning behaviors and result in poor tracking of the song source. Ac-
cording to this model, the sensitivity to the species-specific syllable repetition
interval depends on specific temporal parameters of the neural circuitry.

The neural model (figure 6.26, left) consisted of only four spiking neu-
rons analogous to the integrate-and-fire neurons with a refractory period
described in chapter 3. The four neurons were intended to capture the mem-
brane dynamics of the biological auditory neurons and of the brain neurons,
which in the model served as motor neurons issuing motor commands to the
robot. The reasons for using such a simple model were that (a) these neurons
were considered to be essential to the phonotactic behavior; and (b) it is bet-
ter to start with a minimal set of elements and add further elements at a later
stage only if required to explain more biological phenomena (see also the
methodology in behavior-based robotics). The excitatory synaptic weights
between auditory and motor neurons halved in value after every signaling

440 6 Behavioral Systems

Figure 6.26 Left: Neural model comprising two auditory and two motor spiking
neurons, dynamic excitatory synapses (arrowhead), and inhibitory synapses (ball-
head). Right: Khepera robot with electronic auditory circuit comprising two micro-
phones.

event, but recovered exponentially to the original value. The synaptic de-
pression was implemented by means of an inhibitory synapse-to-synapse
connection from auditory neurons, but they could have been implemented
in a variety of other ways. Consequently, a motor neuron will increase its
membrane potential only if the ipsilateral auditory neuron has fired before
the contralateral auditory neuron.

The neural network was implemented within the processor of a Khepera
robot so that a cycle of neural activation lasted approximately 1 ms. The
robot (figure 6.26, right) was equipped with a purpose-built sound-proc-
essing circuit designed to mimic the properties of the two cricket ears (Lund
et al. 1998). The output of the two artificial ears were scaled and passed to
the auditory neurons. Whenever a motor neuron emitted a spike, the robot
would turn in place at the same speed and angle measured in crickets. In
order to replicate exactly the biological experiments where crickets are put
on a treadmill and maintained at a constant distance from sound sources,
the robot default movement was set to zero in the absence of turning actions.

The robot was exposed to songs recorded from real crickets exactly in the
same conditions used in biological experiments. In all conditions, the robot
displayed exactly the same behavior observed in animals. Specifically, it
turned toward, and tracked precisely, the source of conspecific songs, but not
a continuous tone on the same frequency; it displayed selective sensitivity for

6.5 Robots as Biological Models 441

a narrow band of syllable repetition interval with a sudden drop in behav-
ioral response for slow songs; it was capable of initiating turning behaviors
also when the sound was emitted from above its head at the same distance
from both ears (the turning direction being determined by ambient and cir-
cuit noise); it avoided a continuous tone when a concurrent conspecific song
was played above its head; when presented with two simultaneous songs
from different species, it tracked precisely the source of the conspecific song;
and when presented with two simultaneous versions of the same conspecific
song, it turned toward the song of better quality.

These results suggest that the firing time of auditory neurons coupled
with dynamic synaptic connections is sufficient to explain recognition and
localization of conspecific male songs as well as a number of other phono-
tactic phenomena displayed by crickets. Although higher biological real-
ism could be achieved by incorporating other neurons and connections, the
model would require the tuning of more parameters and make analysis much
more complicated without necessarily better clarifying the original question
of how crickets recognize and locate certain songs.

6.5.2 Example 2: Vision-based Homing

Several insects display remarkable abilities to return to a nest or to a food
location after traveling for hundreds of meters and for extended periods of
time. Social insects, such as ants and honeybees, do so by relying on at least
two strategies: path integration and visual piloting (Wehner et al. 1996). In
desert ants, path integration seems to be achieved by integration of a di-
rection vector computed from the orientation of polarized light in the sky
(Wehner 1997) and of a distance measure estimated by step count (Wittlinger
et al. 2006). Path integration is also a frequently used method in robotics
for localization and homing. In robots, the polarization filters are often re-
placed by a magnetic compass and the step-counting mechanism is replaced
by wheel odometers. However, path integration is prone to errors for both
ants and robots.

When the desert ant Cataglyphis approaches the vicinity of the target lo-
cation, it seems to use visual cues for compensating path integration errors.
Since very little is known about the neural circuitry that regulates this behav-
ior, all models of visual homing have been derived from experimental obser-
vations of animal behavior. A widely accepted model, known as the snap-SNAPSHOT MODEL

shot model, postulates that the animal memorizes an image (snapshot) of the
landscape before leaving the home location and later uses the comparison be-

442 6 Behavioral Systems

Figure 6.27 Left: The Sahabot robot with four sample landmarks in the desert. Right:
Extraction of snapshot from omnidirectional camera positioned on top of the robot.
Figures 16 and 15 from AutoRobo. Images courtesy of Rolf Pfeifer, University of
Zurich.

tween this stored image and images taken at its current location to compute
a difference vector that points toward the home location (Wehner and Räber
1979; Cartwright and Collett 1983). The snapshot model suggests that ants
compare the retinal positions and sizes of distinctive landmarks that appear
in the stored snapshot and in the current snapshot. As the animal moves,
the retinal size and position of landmarks change. The comparison between
the two snapshots requires the alignment of the current snapshot with the
stored snapshot, presumably using compass information. Since these insects
have almost 360◦ vision, a snapshot can be considered as a ring centered on
the animal that may include several landmarks in its visible surroundings.
For each landmark comparison, two unit vectors are generated: a vector tan-
gential to the ring and pointing toward the current retinal position of the
landmark, and a centrifugal, or centripetal, vector if the size in the current
snapshot is smaller, or larger, respectively, than that in the stored snapshot.
The weighted sum of all the pairs of vectors for all landmarks results in a sin-
gle vector, the homing vector. The animal continuously compares the current
view with the stored snapshot to update the homing vector.

Despite its elegance and experimental support, the snapshot model as-
sumes that the nervous system of the insect is capable of memorizing an
entire image and performing several complicated comparisons at multiple
points during its homing trajectory. Also, the snapshot model does not seem
to explain experimental results where the search area of bees was shifted
when a portion of a circular array of landmarks was removed between the

6.5 Robots as Biological Models 443

Figure 6.28 Left: Average landmark vector model. Right: Homing trajectories (im-
age courtesy of Rolf Pfeifer, University of Zurich).

outgoing and return flight, which suggested that such insects rely on the
overall configuration of their visual surroundings, rather than on individual
landmarks (Anderson 1977). Lambrinos et al. (2000) and Möller (2000) sug-
gested a more parsimonious version of the original snapshot model, known
as the average landmark vector (ALV) model, and compared its performanceAVERAGE LANDMARK

VECTOR (ALV) to that of the snapshot model in mobile robots (figure 6.27) exposed to situa-
tions similar to those faced by insects engaged in visual homing.

In the ALV model (figure 6.28), each visual landmark is associated to a
unit vector, known as the landmark vector, that points from the current po-
sition of the agent to the landmark. When the animal is at the target loca-
tion, all landmark vectors are averaged to produce the average landmark
vector, which is stored in the memory of the animal (�vt). When the animal
returns to the vicinity of the target location and switches on the visual hom-
ing mechanism, it computes in the same way a new average landmark vector
at its current location (�vc) and compares it with the stored average landmark
vector. The difference between the two vectors produces the home vector
�vh = �vc − �vt, which the animal follows with a fixed-length displacement.
A new home vector is computed after every displacement until the animal
reaches the target location. As in the original snapshot model, the vectors
must be aligned with the help of a compass before the comparison. In the
robot model, the image is taken from an omnidirectional camera and pro-
cessed to extract the landmarks (figure 6.27, right).

The ALV model has been tested in real and simulated robots with a varying
number of landmarks and compared to the original snapshot model. In all
cases, the model led the robot to the target location (figure 6.28, right) and
produced trajectories that are comparable, although not exactly similar, to
those produced by the original snapshot model. The ALV, as the original

444 6 Behavioral Systems

Figure 6.29 Catchment area of panoramic snapshot. Left: Position of snapshots.
Right: Gradient surface of catchment area along x and y for constant z (a similar
gradient occurs for z, picture not shown). Images courtesy of Jochen Zeil, Australian
National University in Canberra.

snapshot model, can lead the agent toward the target even if some landmarks
partially cover each other or if some landmark is missing. Furthermore, the
ALV can reproduce the shift of search area when a portion of the landmarks
is removed between the outward and inward journeys of the robot, which the
original snapshot model could not reproduce (Möller 2000). The ALV makes
many fewer assumptions about the computational and memory load of the
animal and has also been implemented in analog electronics with operations
that may be performed by biological neurons (Möller 2000). Finally, the ALV
model resembles another model that has been independently formulated for
explaining the visual homing behavior of rats (O’Keefe 1991).

The maximum radius of the homing area around the target where both
the ALV and the original snapshot model can operate depends on the res-
olution of the camera and on the size of the landmarks. One may imagine
a simple modification of the model with storage of multiple target vectors
that connect multiple areas and operate as route landmarks (Möller 2000).
However, it is not clear how the performance of the ALV (and of the original
snapshot model) with sparse and highly contrasted landmarks can extend
to natural settings, such as a forest, where there are a very large number of
potential candidate landmarks and where each of them has complex three-
dimensional shapes.

Zeil et al. (2003) studied the information potentially available to a flying
insect by means of an omnidirectional camera attached to a robot arm posi-
tioned in the middle of a forest to record snapshots at regular positions along

6.5 Robots as Biological Models 445

the x, y, and z axes (figure 6.29, left). They compared the images by comput-
ing the root mean square (RMS) pixel differences between images �Ic

p taken at
positions p in the surroundings of the target location and the image �It taken
at the target location in order to produce the RMS surface �C:

cp =

√∑X
x=1

∑Y
y=1(�Ic

p(x, y) − �It(x, y))2

XY

where �I(x, y) is the intensity of the image pixel x, y and X,Y are the dimen-
sions of the image.

The RMS error surface displays a smooth and monotonic gradient towardRMS ERROR SURFACE

the target location. An insect located at any point on this area could move
toward the target location by simply descending the gradient of the error
surface. Zeil et al. (2003) suggested a simple strategy consisting in moving
along the same trajectory as long as the RMS error difference between the
current and previous image is negative and turning by 90◦ if the difference is
positive. Zampoglou et al. (2006) suggested instead a strategy similar to the
chemotaxis behavior of the worm Caenorhabditis elegans, for which the biolog-
ical neural circuit has been elucidated. The size of the area with a gradient
leading to the target location, known as the catchment area, depends mainly
on the resolution of the vision system (in their experiments it was approxi-
mately 3 m). The surface of the catchment area displays strong variability in
the presence of environmental movements (leaves blown by the wind, other
animals, etc.) and changing lighting conditions during the day (shadows,
intensities), but the overall gradient information is relatively stable.

Flying insects do not just take a snapshot when they leave a location they
wish to return to. Instead, they perform an elaborate flight during which
they turn toward the target location and move away from it backward in
a series of increasing arcs, while pivoting at the target location (Zeil et al.
1996). Furthermore, when they return to the target location, they do not fly
in a straight trajectory, but approach it in a series of sideways movements.
Although these flights may be used for other purposes, such as landmark-
background segregation and landmark centering, they may also provide the
opportunity for memorizing the image of the target location when leaving
and descending the gradient of the catchment area when returning.

Although it is not yet clear whether insects rely on feature-based strategies
(snapshot or ALV model) or image-based strategies (RMS error surface) for
visual homing, the robot models described in these studies have been crucial
for the formulation, evaluation, and comparison of the models.

446 6 Behavioral Systems

It should be noted that the navigation strategies displayed by these models
do not necessarily produce the optimal path toward the target location. A
number of other strategies, which are inspired by biological evidence but are
not necessarily intended to test biological models, have been developed for
the purpose of optimal navigation and used in robotics applications (e.g.,
Franz et al. 1998; Hong et al. 1992; Möller and Vardy 2006).

The models described here only tell the animal where to go, but not where
it is in space. The knowledge of the agent’s position is often requested in
robot applications, such as guidance and exploration, and is the focus of
a research area named simultaneous localization and mapping (SLAM). SLAMSIMULTANEOUS

LOCALIZATION AND

MAPPING (SLAM)
methods attempt to build and maintain a map while the robot explores the
environment. These methods can generate topological maps or Cartesian
maps. Topological maps represent the environment as a list of intercon-
nected nodes and resemble the way in which rats represent space (Arleo
et al. 1999). Cartesian maps instead represent the environment in metric co-
ordinates, which, although it may not be biologically plausible, can be useful
for human operators that interact with the robot (Dissanayake et al. 2001).
Since each map has its advantages and limitations, the combination of the
two approaches is currently a topic of interest (Tapus and Siegwart 2006).

6.5.3 Example 3: From Swimming to Walking

The transition from water to land, estimated to have happened 370 million
years ago, is one of the most crucial events in the evolution of vertebrates,
but the scientific evidence supporting that transition is sparse. Only recently
the discovery of a fish fossil with a tetrapod morphology provided a strong
link between swimming and walking vertebrates (Long et al. 2006). This
fish lived in a semiaquatic environment and its four limbs could provide
propulsion both in water and on land, like today’s amphibians.

However, the transition between the architectures of the brain tissues re-
sponsible for controlling swimming and walking did not leave a fossil record.
The salamander is a living amphibian that resembles most closely the first
terrestrial tetrapods and is capable of switching between swimming and
walking. The swimming pattern is similar to that of the lamprey, a primitive
fish that swims by means of fast undulatory movements that travel along the
body from head to tail. On the ground, the salamander switches to a slower
tetrapod gait where diagonally opposed limbs are moved together while the
body undulates with standing waves with nodes at the girdles (Ijspeert et al.
2007). Understanding how the salamander switches between the two modes

6.5 Robots as Biological Models 447

Figure 6.30 Neural control architecture of the robotic salamander. See main text for
explanation of symbols. (Ijspeert et al. 2007). Images courtesy of Auke Jan Ijspeert,
EPFL, Lausanne, Switzerland.

of locomotion may shed light on the evolutionary transition of locomotion
control.

Ijspeert et al. (2007) developed a numerical model of the spinal cord and
a robot model of the salamander (figure 6.30) to test the hypothesis that a
primitive neural circuit for swimming could be easily extended to walking
and to show that such a circuit could rapidly switch between swimming and
locomotion as the salamander does. The locomotion of the salamander is
controlled by a central pattern generator (CPG), which consists of a group ofCENTRAL PATTERN

GENERATOR (CPG) interconnected neurons that display rhythmic oscillations. These neurons
oscillate faster for stronger input, but they stop oscillating when the input
is larger than a saturation threshold. The salamander CPG is organized into
two sub-CPG circuits (figure 6.30, left): the body CPG, which is responsible
for the oscillations of the main body; and the limb CPG, which is responsible
for the tetrapod walking gait. Both sub-CPG circuits display reciprocal con-
nectivity between nearest-neighbor neurons. The entire CPG circuit, which
is distributed along the spinal cord of the animal, receives input from the
mesencephalic locomotor region (MLR), which is located in the midbrain.

448 6 Behavioral Systems

Low levels of stimulation from the MLR region generate a walking gait
that becomes faster as the level of stimulation increases. If the MLR stimu-
lation increases over a certain threshold, the animal switches from walking
to swimming, which also becomes faster as the level of stimulation contin-
ues to increase. The authors suggested that this phenomenon, which none
of the previously developed models could account for, could be explained
by assuming that (1) the neurons in the limb CPG oscillate more slowly and
saturate at a lower threshold than the neurons in the body CPG; and (2) the
connections from limb CPG to body CPG have stronger weights than the
connections between body CPG neurons and between body CPG neurons
and limb CPG neurons (not drawn in figure 6.30).

The robot (figure 6.30, right) was 85 cm long and designed to approxi-
mately match the structure of the salamander. It could produce lateral undu-
lations of the spine with six separately actuated hinges and a tetrapod gait
with four rotating limbs. The limb rotation principle was similar to that of
the RHex (figure 6.16) and Miniwhegs (figure 6.18) robots described earlier.
The outputs of the oscillatory neurons determined the desired angles of the
motors that actuated the hinges and the limbs.

The numerical model reproduced the same pattern of neural activity ob-
served in the salamander when increasing the stimulation from the MLR
neurons. Low stimulation intensities activated the limb CPG, which dom-
inated the body CPG; as the MLR stimulation increased, the limb oscillations
became faster until the entire limb CPG was saturated and shut down. At
that point, the body CPG could immediately take over and oscillate increas-
ingly faster as the MRL stimulation increased. The activation of the limb
CPG resulted in a tetrapod gait with a standing undulation of the body axis
while the activation of the body CPG resulted in a traveling wave from head
to tail that would propel the robot in water. Both types of locomotion were
similar to those observed in the salamander (figure 6.31).

This model provided a parsimonious explanation of the ability to switch
between two locomotion patterns displayed by the salamander. It also sug-
gested that the evolutionary transition from swimming to walking may have
happened in a few generations by replicating and adding to the body CPG a
set of oscillatory neurons with small variations of their intrinsic and satura-
tion frequencies. In addition, the model provided a number of predictions on
the regulation of speed and turning behavior that remain to be tested with
the animal. The use of a robot in this study was essential for the develop-
ment of the model because it required a body and the measurement of the
resulting behaviors.

6.6 Robot Learning 449

Figure 6.31 Walking (top) and swimming (bottom) behaviors of animal and robot
(Ijspeert et al. 2007). Images courtesy of Auke Jan Ijspeert, EPFL, Lausanne, Switzer-
land.

6.6 Robot Learning

A key feature of biological organisms is the ability to continuously adapt and
develop a range of novel abilities during their lifetime. It would be highly
desirable that robots display similar abilities. The area of robotics research
that studies the mechanisms of lifelong adaptation that are not entirely de-
termined by genes is known as epigenetic robotics. Developmental robotics isEPIGENETIC ROBOTICS

450 6 Behavioral Systems

another name for indicating approximately the same area of research, but itDEVELOPMENTAL

ROBOTICS puts special emphasis on the role of morphological change that occurs dur-
ing the development of cognitive systems (see Lungarella et al. 2003 for a
survey).

A developing biological or artificial organism is capable of finding solu-
tions to multiple problems and executing multiple tasks. Developmental
programs are therefore more general and, in principle, simpler than specific
hand-designed programs or learning algorithms that take into account the
specificities of the problem to be solved (Weng et al. 2001).

Robots represent ideal tools for studying biological development because
physical embodiment and behavioral interaction critically affect the forma-
tion of the adult organism (Thelen and Smith 1994). At the same time, ro-
botics can benefit from reproducing principles of biological development to
endow robots with self-learning and social abilities. This is especially true
for humanoid robots where the management of complex sensory inputs, ac-
tuators, and social interactions cannot be hand-coded or solved by problem-
specific algorithms.

Learning in behavioral systems is a multifaceted phenomenon that in-
cludes perceptual self-organization, sensorimotor coordination, memoriza-
tion, and association, to mention a few. In this section we will mention only
three facets of learning in behavioral systems, namely value-based learning,
learning with morphological change, and imitation learning. We selected
these areas because they strongly rely on the two tenets of behavioral sys-
tems: situatedness and embodiment.

6.6.1 Value-based Learning

Robots, like newborn infants, should be able to develop behaviors that satisfy
their needs and desires without an external teacher. In artificial intelligence
the problem of associating sensory states with suitable actions that lead to the
satisfaction of those needs or desires has been framed as the reinforcement
learning problem, which has been mentioned in chapter 3.

In its classic and still dominant formulation (Sutton and Barto 1998), re-
inforcement learning is not easily applicable to real robots because it relies
on the mathematical assumption that the problem can be described as that
of finding the best reward-generating associations between discrete sensory
states and discrete actions among all possible combinations of states and ac-
tions. This has two negative consequences for robotics. The first consequence
is that learning requires a long and careful phase of exploration of several

6.6 Robot Learning 451

possible states and actions, which may not always be suitable for a physical
robot. The second consequence is that the use of rich analog sensors (vision
or touch) and of a real environment, which is essentially analog, implies a
rapid combinatorial explosion of the couplings to be explored or some ad hoc
solution to reduce the search space to a smaller set of discrete combinations,
thus reducing the adaptive potential of the machine.

Classic reinforcement learning theory assumes that the environment pro-
vides explicit positive or negative rewards that are directly used by the al-
gorithms to decide what should be learned. However, reward signals in
the brain are mediated by neural structures with specific chemical, spatial,
and temporal characteristics, whose computational role is not yet fully un-
derstood. In addition, humans and some other animals are also capable of
internally generating rewards for achieving specific goals.

The set of internally mediated and internally generated rewards represents
the value system of the organism because it discriminates implicitly betweenVALUE SYSTEM

good and bad. There is mounting evidence that this value system operates
through specific neurons that use neuromodulatory transmitters, which act
as global signals that affect the plasticity and response profile of several re-
ceiving neurons (see Doya et al. 2002 for a sample of computational models).
The neuromodulatory system uses at least four types of neuromodulatorsNEUROMODULATORY

SYSTEM (dopamine, serotonin, norepinephrine, and acetylcholine), but a single neu-
romodulatory neuron makes use of only one type of modulator with specific
effects. Neuromodulatory neurons are activated by the occurrence of certain
sensory events, such as an environmental reward or an unexpected stimula-
tion or other types of salient cues; they display a short-lived activation; they
project to large areas of cortical neurons. Furthermore, different neuromod-
ulatory neurons may project to overlapping cortical areas and combine their
effects in various ways.

Although it has been suggested (Doya 2002; Suri 2002) that the combined
action of the four neuromodulators could provide the neurobiological basis
for temporal difference reinforcement learning (see chapter 3), some authors
argue that the global and short-lived signal of neuromodulatory neurons
serves mainly as a “gating factor” of the onset, duration, and strength of
Hebbian learning (e.g., Friston et al. 1994; Pfeifer and Scheier 1999). Ac-
cording to this perspective, the output of the value system V is incorporated
in the Hebbian rule as a multiplicative factor so that the weight update of
value-based learning takes the general form of

Δwij = viηxjyi(6.1)

452 6 Behavioral Systems

Figure 6.32 A mobile robot learns to recognize cubes of a specific color and pick
them up through a value-based learning architecture. Image courtesy of Olaf Sporns,
Indiana University, Bloomington.

where vi may incorporate a nonlinear function of the raw value signal. How-
ever, such a simple formulation of value-based learning cannot readily ex-
plain the establishment of associations between events that occurred prior
to, and caused the triggering of, a value signal (which instead is explained
by temporal difference methods) unless it is selectively used in neural archi-
tectures with appropriate modules and dynamics.

For example, Alexander and Sporns (2002) proposed a modular neural ar-
chitecture for value-based formation of perceptual categories and behavior
that approximates the anatomical and functional areas involved in the mam-
malian dopamine system (Schultz et al. 1997). The architecture included an
array of input neurons that unfolded in space the time series of sensory ac-
tivity (similar to the time delay neural networks described in chapter 3). It
also included two value-dependent neurons, one signaling the occurrence
of an unpredicted positive reward and the other signaling the lack of pre-
dicted reward. The neural model was embedded in a mobile robot with a
gripper positioned in an arena with several blue and red cubes (figure 6.32).
The robot could perceive the cubes with a color camera and “taste” them by
means of resistivity sensors placed within the gripper. Red cubes had resis-
tive surfaces and corresponded to food, which triggered a positive reward
signal to the neural architecture. The robot was also equipped with a set of
neurally prewired behaviors, such as approach, avoid, and grip.

6.6 Robot Learning 453

After 10 minutes of operation, the robot avoided the blue cubes and se-
lectively gripped only the red cubes. During learning the value-dependent
neurons developed predictive abilities, that is, they became active in the un-
predicted visual perception of a cube that was expected to lead to a positive
reward, but not in the presence of the actual reward, as they did at the begin-
ning of learning. Also, they became active when the robot expected a reward,
but did not receive it. The development of these predictive properties, which
has been documented in the mammalian dopamine system (Schultz 1998), al-
lowed the robot to autonomously adapt if its actions were artificially slowed
down, causing a delay between the expected reward from vision of a red
cube and the actual reward from tasting it with the gripper. The significance
of this work consists in showing that a simple and biologically plausible
value-based system embedded in a suitable neural architecture can learn by
delayed reward without explicitly resorting to temporal difference methods.

In a later section on evolution and learning, we will describe value-based
neural architectures where learning will take place within a value system
partly shaped by evolution.

6.6.2 Learning and Morphological Change

Living organisms undergo significant morphological and neural modifica-
tions throughout their entire maturation period. In humans, the first neural
connections are established within a few weeks after conception while the
body undergoes dramatic changes in shape, mass, and elasticity. Morpho-
logical and neural development progress in synchrony throughout the entire
fetal stage and for several years after birth.

In chapter 4 we described various methods for describing and reproducing
morphological growth and we highlighted the challenges of implementing
them in physical systems. As a matter of fact, most robots today cannot
physically grow, at least not without the help of an engineer who adds or
takes away modules. Furthermore, engineers may prefer to design a robot
that has the characteristics of a fully functional and mature organism rather
than those of a newborn and immature organism. Therefore, at first sight, it
may seem awkward to take into account morphological development in the
context of robotics.

An important hypothesis of developmental robotics is that physical de-
velopment is not simply an automatic transition from an imperfect and in-
complete state to a fully functional adult state, but rather a crucial process
that guides and helps the emergence of complex sensorimotor and cognitive

454 6 Behavioral Systems

Figure 6.33 The hanging humanoid robot develops a robust swinging behavior
through a developmental process that gradually increases the number of degrees of
freedom under control. Image courtesy of Max Lungarella, University of Zurich.

skills. The complexity of adult morphology, sensing, actuation, and social
environment would be prohibitive for a learning brain to cope with. Physi-
cal development provides the opportunity for the nervous system to gradu-
ally acquire the skills in simplified conditions that become increasingly more
complex. Developmental modifications of body morphology and of neurally
mediated control affect each other and proceed through stages that can be
more or less discrete according to Piaget (1953) or Thelen and Smith (1994),
respectively.

The control of complex robotic forms, such as humanoids, may therefore
benefit from a gradual developmental approach. Human movements are
an example of how morphological development can guide and help con-
trol. The adult human body has a very large number of degrees of freedom
that require coordinated control. Bernstein (1967) suggested that the problem
of acquiring this complex coordination can be efficiently tackled by a three-

6.6 Robot Learning 455

stage developmental process. In the first stage, the joints in the periphery of
the body are stiffer, thus restricting coordination learning to a much smaller
number of joints. In the second stage, the peripheral joints become more
mobile and their control is incrementally acquired on top of the previously
acquired coordinated movements of the main joints. In the third stage, the
organism selects and improves those coordinated movements that are more
efficient (e.g., they require less energy and active control because they exploit
passive dynamics) or preferred by habit.

Lungarella and Berthouze (2002) translated this hypothesis into a develop-
mental program for a hanging humanoid robot that was expected to develop
a swinging behavior (figure 6.33). The robot was equivalent to a pendulum,
but swinging was caused by the action of the hip joints and of the knee joints.
The robot had more degrees of freedom than actuated joints and the feed-
back to the learning system was given by the position of the body, not of the
legs. Each joint was controlled by a separate neural oscillator that could pro-
duce rhythmic activity, as we already saw in a previous section on walking
and swimming control. Learning was achieved by simulated annealing (see
chapter 1) of the neural parameters where the amount of exploration versus
exploitation was inversely proportional to the quality of the swing. In other
words, the worse the swing, the larger the parameter change was, and vice
versa.

The authors experimentally compared the case where the robot learned
simultaneously to control both hip and knee joints with the case where the
knee joint was initially frozen and later freed up once the hip-mediated swing
had become stable. Although in both cases the robot developed good swing-
ing patterns, in the second –developmental– case the robot developed a more
robust control strategy (i.e., less sensitive to initial conditions and external
perturbations) where the neural oscillations matched the natural oscillation
frequency of the legs. This “physical entrainment” was caused by the in-PHYSICAL

ENTRAINMENT cremental fine-tuning of the knee joint controller that improved the perfor-
mance of, and reduced the sensitivity to, the hip joint controller.

Kuniyoshi and Sangawa (2006) instead investigated the hypothesis that
the primitive behaviors displayed by newborn infants may not be geneti-
cally determined, but rather emerge from the development of a neural sys-
tem that becomes physically entrained with its physical body during the fetal
and neonate stages. The authors conceived a physics-based simulation of a
realistic human baby with 198 muscles that were modeled in detail after mea-
surements of muscle properties and muscle sensors of human babies (finger
and face muscles were not simulated). Each muscle was connected bidirec-

456 6 Behavioral Systems

tionally (input and output) to weakly coupled neural oscillators capable of
generating both periodic and chaotic activity. In addition, they added a sim-
plified somatosensory and motor cortex, simulated as self-organizing maps
(see chapter 3) with continuous neuron dynamics, that received inputs from
sensors of muscular stretch and tension and provided output to the muscles
and to the neural oscillators. The synaptic connections to the somatosensory
cortex and from the motor cortex were adapted by means of Hebbian learn-
ing so that coherent patterns of motion that persisted for some time were
clustered and represented by cortical neurons. Preliminary experiments with
the baby model lying in a fenced bed displayed the emergence and transition
between coherent motor primitives, such as rolling over from a face-up to a
face-down posture and crawling.

At the time of writing this book, the authors were extending the baby
model to incorporate realistic morphological change of muscular and skeletal
properties as a function of weeks after gestation so that they could simulate
physical growth during the fetal and neonatal periods. The fetal-stage baby
grew in a simulated uterus filled with liquid while the neonate baby could
continue to develop in a playpen. Kuniyoshi et al. (2007) reported prelimi-
nary results where the baby acquired coherent movements during the fetal
stage that, once connected to a visual system during the neonate stage, could
be triggered by recognition of similar movements by other persons. The au-
thors argued that early development of neural control during the fetal stage
could serve as a “motor babbling” that chunks movements into sequencesMOTOR BABBLING

that can support early imitation mechanisms displayed by infants (Meltzoff
and Moore 1977).

6.6.3 Imitation Learning

Imitation is a powerful way of learning because it reduces the number of
trials and errors that are required when learning in isolation. In robotics,
learning by demonstration has attracted much attention for several years be-
cause it can simplify and improve the process of hand-coding a program.
For complex robots with several degrees of freedom, such as humanoids, it
has been argued that learning by demonstration may actually be the most
promising way of achieving complex behaviors (Schaal 1999).

In the classic symbolic approach (Dufay and Latombe 1984), learning by
demonstration starts by manually moving the robot through a series of fixed
points while recording all angles and forces measured by the robot sensors.
Once the entire behavior has been demonstrated, it is decomposed in subbe-

6.6 Robot Learning 457

haviors, which, starting from a sensor state corresponding to a fixed point,
generate a sequence of control commands to reach the sensor state corre-
sponding to the next fixed point. The strategy for finding a set of suitable
control commands that take the robot from an initial state to a desired state
is known as the inverse model. However, this approach does not extend easilyINVERSE MODEL

to robotic systems characterized by highly nonlinear sensors and actuators
that are expected to learn by observation of another agent’s behavior, which
is ultimately the case with autonomous and socially interactive robots.

Imitation of an actor by an observer entails a number of problems, such
as recognition of the movements to be imitated, estimation and tracking of
the actor’s posture, transformation from external to egocentric coordinates,
matching the actor’s body to the observer’s body, comparing the observed
movement with previously learned movements, controlling the degrees of
freedom that are not specified by the observed movement, and segmenting
and representing the observed behavior in suitable movements, to mention
a few (Schaal et al. 2003).

It is also important to distinguish between true imitation and copying (Bil-
lard 2002). True imitation consists in the reproduction of a novel behavior,TRUE IMITATION

that is, of a behavior that the observer does not have yet in its behavioral
repertoire. Copying instead consists in the reproduction of a behavior thatCOPYING

the observer already has in its behavioral repertoire. Copying is displayed
by several animals and entails all the above-mentioned problems, but does
not improve the behavioral repertoire of the animal and may serve mainly
as a social response or a facilitator of response. True imitation instead is dis-
played only by humans and some primates and serves primarily a learning
function in the development of the individual.

As we mentioned in the previous section, human neonates display sim-
ple imitative skills soon after birth (Meltzoff and Moore 1977). This ability
requires neural circuits capable of recognizing specific actions, producing
action sequences, and mapping recognized actions onto the production of
similar actions. Neurophysiological findings on monkeys seem to provide
support for the existence of those circuits. Perrett et al. (1990) found neurons
in the superior temporal sulcus that respond selectively to faces, postures,
and body movements in viewer-centered coordinates. Rizzolatti et al. (1988)
instead found neurons in the area F5 that signal motor actions, such as grasp-
ing by hand or holding, and remain active during the generation of the entire
motor sequence. It has been suggested that these neurons encode behavioral
primitives (Murata et al. 1998). In addition, some of these neurons are active
not only when the animal produces the action but also when the animal sees

458 6 Behavioral Systems

Figure 6.34 The dual-route model of imitation learning consists of a “passive route”
that acquires novel behaviors and an “active route” that selects the best-matching
behavior for imitation (Demiris and Hayes 2002). The passive route is invoked when
none of the existing behaviors in the active route match the behavior to be imitated.
See text for explanation.

the same action performed by another person (Rizzolatti et al. 1996). These
neurons were thus called mirror neurons to distinguish them from the otherMIRROR NEURONS

“canonical” F5 neurons.
Although there is not yet evidence for a neural path from STS neurons

to F5 mirror neurons, the detection of an external action, the mapping onto
the same self-generated action, and the production of that action may pro-
vide the necessary neural circuitry for imitation. Oztop and Arbib (2002)
developed a detailed computational model that suggested how suitable con-
nections from STS to F5 areas could develop through learning.

A number of recent computational models inspired from that line of cog-
nitive and neurophysiological research have been developed and applied to
various robotic platforms (see Oztop et al. 2006 for a critical review). Among
them, the dual-route model of Demiris and Hayes (2002) is particularly in-
teresting because it integrates both copying and true imitation within the
same conceptual framework (figure 6.34). The authors argue that imita-
tion is mediated by two neural circuits or routes: a route that passively

6.6 Robot Learning 459

acquires observed behaviors as infants do, and a route that recognizes behav-
iors through the same neural circuitry used for generating those behaviors,
as the mirror neurons in the adult brain may do.

The passive route is inspired by a detailed model of infant imitation, but itPASSIVE ROUTE

cannot explain all aspects of adult imitation. The neural architecture takes
as input the observed posture of an external actor and attempts to produce
motor actions that generate the same posture. The architecture relies on a
module that matches the posture of the actor expressed in visual coordinates
with the posture of the observer expressed in proprioceptive coordinates.
The output of this module is used to generate actions that improve the match
between the observed and the proprioceptive posture.

The active route instead assumes that the observer has already acquiredACTIVE ROUTE

a set of primitive behavioral networks that take as input an observed state
and produce as output the motor commands necessary to achieve that state.
The motor commands of each behavioral network are sent both to the mus-
cle centers and to a predictive network that outputs the predicted state after
execution of those commands. During imitation, the observed state is fed
into all behaviors while the output lines to the muscle centers are inhibited
and the predicted state resulting from each behavioral network is produced.
The internally predicted states are compared to the next observed state of the
actor and those behaviors that have produced a close match raise their confi-
dence level while the other behaviors decrease their confidence level. After a
few iterations of observation, comparison of internally with externally gen-
erated states, and behavior confidence update, only one behavior will reach a
sufficiently high confidence to override the inhibition of muscle centers and
produce the movements that imitate the observed behavior.

Although the active route is a high-level model, it can account for several
aspects of adult imitation, including pathologic conditions where the patient
cannot be prevented from executing the demonstrated actions. However, the
active route can explain only copying because, if the demonstrated behav-
ior is not in the behavioral repertoire of the agent, all behavioral modules
will decrease their confidence and no imitation will take place. Therefore,
Demiris and Hayes (2002) suggested that true imitation requires a dual-route
architecture where the passive route is invoked if none of the existing behav-
iors can match the observed behavior via the active route. Once the new
behavior has been acquired by the passive route, it is stored in the behav-
ioral repertoire. Both the behavioral modules and the predictive modules
can be represented as neural networks. Jordan and Rumelhart (1992) suggest

460 6 Behavioral Systems

a method for training the predictive modules while the behavioral system
executes movements.

Demiris and Hayes (2002) tested the dual-route architecture on a simulated
humanoid robot with 13 degrees of freedom that was capable of imitating an-
other humanoid robot controlled by a hand-coded program, even in the case
where the dynamics of the joints was different and the visual and propriocep-
tive inputs were imperfect. Despite these impressive achievements, several
open questions remain to be addressed, such as how can a robot know what
movements should be imitated, how can a demonstrated complex behavior
be decomposed in subbehaviors, how can a robot learn to imitate the goal of
an action rather than the action itself, when should imitation be used, and
how a more interactive role between the robot and the instructor could facil-
itate imitation learning (Breazeal 2002b).

A full understanding and synthesis of imitation learning in animals and
robots is not yet within reach, but it could have tremendous impact for robots
who may use it to engage in social interactions that go beyond mimicking.
Rizzolatti and Arbib (1998) suggested that the neural circuitry used for imita-
tion could provide a basis for the emergence of language. As we will see also
in the next chapter, a prerequisite of the emergence of communication is the
establishment of a common understanding between a signaler and a receiver.
The existence of mirror neurons could be instrumental in the establishment
of a common ground between signaler and receiver because the reproduction
of a behavior (copying) by an observer could be recognized and understood
as such by the actor. Starting from the observation that the human equivalent
of area F5 is close by, and partially overlapping with, the language area, Riz-
zolatti and Arbib (1998) developed an intriguing hypothesis of how gesture
imitation could become gradually associated to specific sounds and provide
the supporting mechanism for the establishment of speech, which gradually
expanded and substituted for gesture-mediated communication.

6.7 Evolution of Behavioral Systems

The idea of using artificial evolution for automatically generating control sys-
tems dates back to at least the 1950s (Turing 1950) with a more explicit form
appearing in the mid 1980s through the ingenious thought experiments of
Braitenberg (1984) on neurally driven vehicles. In the early 1990s, the first
generation of artificial organisms with a genetic code describing the neural
circuitry and morphology of a sensorimotor system began evolving in com-

6.7 Evolution of Behavioral Systems 461

Figure 6.35 Left: The Khepera mobile robot has two wheels and eight infrared sen-
sors that can measure both the amount of infrared light and the distance from objects.
Right: Bird’s-eye view of the looping maze with the Khepera robot.

puter simulations (Beer 1990; Parisi et al. 1990; Floreano et al. 1991; Husbands
and Harvey 1992), followed soon after by evolutionary experiments on real
robots (Lewis et al. 1992; Floreano and Mondada 1994; Harvey et al. 1994)
when the term evolutionary robotics was coined (Cliff et al. 1993).EVOLUTIONARY

ROBOTICS Evolutionary robotics is the application of artificial evolution to the hard-
ware and software components of a robot where the fitness is given by the be-
havioral performance of the robot. The field includes almost all the elements
of bioinspiration that we have described so far in this book. In this section
we will introduce the methodology with the help of examples of evolution
of reactive control systems. In later sections we will also cover evolution and
learning, evolution and development, coevolution of body and control, and
hardware self-replication. In chapter 7, we will extend the description to the
evolution of behavioral systems that compete and cooperate.

Most cases of control evolution resort to artificial neural networks because
neural networks can easily be mapped to noisy and analog sensors, display
intrinsic generalization to novel sensory situations, are amenable to artificial
evolution, can be subjected to lifelong learning mechanisms in addition to
generational evolution, and can be biologically plausible models of control
in living systems, thus facilitating the incorporation of principles extracted
from living systems. In relatively few cases, the control system was directly
mapped to a field-programmable gate array or represented as a computer
program and evolved with genetic programming. However, various forms
of genetic programming have been used to evolve the rules of growth of
neural networks for robot control, as we will see in a later section.

462 6 Behavioral Systems

...
Mutation

Crossover

Selective reproduction

Evaluation

Population manager

Figure 6.36 Evolutionary experiments on a single robot. Each individual of the pop-
ulation is decoded into a corresponding neurocontroller which reads sensory infor-
mation and sends motor commands to the robot every 300 ms while its fitness is
automatically evaluated and stored away for reproductive selection.

6.7.1 Example 1: Collision-free Navigation

In an early experiment on robot evolution without human intervention car-
ried out at the École Polytechnique Fédérale de Lausanne (EPFL) (Floreano
and Mondada 1994), a small wheeled robot was evolved for navigation in a
looping maze (figure 6.35, right). The Khepera robot had a diameter of 55KHEPERA

mm and two wheels with controllable velocities in both directions of rota-
tion. It also had eight infrared sensors, six on one side and two on the other
side, that can function either in active mode to measure distance from ob-
stacles or in passive mode to measure the amount of (infrared) light in the
environment (figure 6.35, left). The robot was connected to a desktop com-
puter through rotating contacts that provided both power supply and data
exchange through a serial port (figure 6.36).

A genetic algorithm with binary encoding, single-point crossover, and rank-
based selection (see chapter 1) was used to evolve the synaptic strengths of a
neural network composed of eight sensory neurons and two motor neurons.
Each sensory unit was assigned to one of the eight active infrared sensors
whose value was updated every 300 ms. Each motor unit received weighted
signals from the sensory units and from the other motor unit, plus a recurrent
connection with itself with a 300 ms delay. The net input of the motor units
was offset by a modifiable threshold and passed through a logistic squashing
function. The resulting outputs, in the range [0, 1], were used to control the

6.7 Evolution of Behavioral Systems 463

Figure 6.37 Trajectory of the robot with the best neural controller of the last gener-
ation. Segments represent the axis between the two wheels. Data were recorded and
plotted every 300 ms using an external laser positioning device.

two motors so that an output of 1 generated maximum rotation speed in one
direction, an output of 0 generated maximum rotation speed in the opposite
direction, and an output of 0.5 did not generate any motion in the corre-
sponding wheel. A population of 80 individuals, each coding the synaptic
strengths and threshold values of the neural controllers was initialized with
all weights set to small random values centered around zero. Each individual
was tested on the physical robot for 80 sensorimotor cycles (approximately
24 seconds) and evaluated at every cycle according to a fitness function with
three components measured onboard the robot:

Φ = V
(
1 −

√
Δv
)

(1 − i)(6.2)

where V is the average of the unsigned rotation speeds of the two wheels,
Δv is the absolute value of the algebraic difference between the signed speed
values of the wheels (positive in one direction, negative in the other), and i

is the normalized activation value of the infrared sensor with the highest ac-
tivity. The first component was maximized by speed, the second by straight
motion, and the third by distance from objects. The fitness was accumulated
over the entire duration of the test.

Within fewer than 100 generations, the best evolved individuals displayed
smooth trajectories around the maze (figure 6.37). Although the fitness func-

464 6 Behavioral Systems

tion did not specify in what direction the robot should navigate (given that
it was perfectly circular and that the wheels could rotate in both directions),
after a few generations all the best individuals moved in the direction corre-
sponding to the side with the highest number of sensors. Individuals moving
in the other direction had a higher probability of colliding into corners with-
out detecting them and thus disappeared from the population. Furthermore,
the cruising speed of the best evolved robots was approximately half of the
maximum available speed and did not increase even when the evolutionary
experiment was continued up to 200 generations. Further analysis revealed
that this self-limitation of the navigation speed had an adaptive function be-
cause, considering the sensory and motor refresh rate together with the re-
sponse profile of the distance sensors, robots that traveled faster had a higher
risk of colliding into walls before detecting them and gradually disappeared
from the population. Finally, the evolved recurrent connections at the output
units allowed the robot to move out of situations where the input signals at
two symmetric points around the body of the robot were equal and would
cancel each other in a feedforward architecture, such as Braintenberg’s vehi-
cles shown in figures 6.2 and 6.3.

Despite its simplicity, this experiment indicated that evolution could au-
tomatically discover solutions that matched not only the computational re-
quirements of the task to be solved but also the morphological and mechan-
ical properties of the robot, which are difficult to estimate and incorporate in
hand-designed control.

6.7.2 Example 2: Walking

Over the past 15 years or so there has been a growing body of work on evolv-
ing locomotion controllers for various kinds of walking robots - a nontriv-
ial sensorimotor coordination task. Early work in this area concentrated on
evolving dynamical network controllers for simple (abstract) simulated in-
sects (often inspired by cockroach studies) which were required to walk in
simple environments (e.g., de Garis 1990;Beer and Gallagher 1992). Probably
the first success in this direction was achieved by Lewis et al. (1992, 1994),
who evolved a neural controller for a real hexapod robot using coupled os-
cillators built from continuous-time, leaky-integrator, artificial neurons. All
evaluations were done on the actual robot with each leg connected to its own
pair of coupled neurons, leg swing being driven by one neuron and leg ele-
vation by the other. In order to speed up the process they employed stagedSTAGED EVOLUTION

evolution where first an oscillator capable of moving a leg was evolved and

6.7 Evolution of Behavioral Systems 465

Figure 6.38 The octopod robot developed by Applied AI Systems Inc. was used for
various evolutionary projects described in the text.

then an architecture based on these oscillators was further evolved to de-
velop walking. The robot was able to execute an efficient tripod gait on flat
surfaces. Gallagher et al. (1996) described experiments where neural net-
works controlling locomotion in an artificial insect were evolved in simu-
lation and then successfully downloaded onto a real hexapod robot. This
machine was more complex than that of Lewis et al., with a greater number
of degrees of freedom per leg. In this approach, each leg was controlled by
a fully connected network of five continuous-time, leaky-integrator neurons,
each receiving a weighted sensory input from that leg’s angle sensor.

Galt et al. (1997) used a genetic algorithm to derive the optimal gait param-
eters for a Robug III robot, an eight-legged, pneumatically powered walk-
ing and climbing robot. The individual genotypes represented parameters
defining each leg’s support period and the timing relationships between leg
movements. These parameters were used as inputs to a finite-state machine
pattern-generating algorithm that drove the locomotion. Such algorithms,
which are often used in conventional walking machines, rely on relatively
simple control dynamics and do not have the same potential for the kind
of sophisticated multigait coordination that complex dynamical neural net-
work architectures, such as those described above, have been shown to pro-
duce. However, controllers were successfully evolved for a wide range of
environments and to cope with damage and system failure (although an in-
dividual controller had to be tuned to each environment, they were not able
to self-adapt across a wide range of conditions).

466 6 Behavioral Systems

Figure 6.39 Left: Fully recurrent, continuous-time neural network with motor neu-
rons controlling the displacement of hip and knee joints. Right: Motion sequence of
biped controlled by best evolved individual. Frame order is from left to right and top
to bottom. Images courtesy of Torsten Reil and Phil Husbands.

Gomi and Ide (1998) evolved the gaits of an eight-legged robot (figure 6.38)
using genotypes made of eight similarly organized sets of genes, each gene
coding for leg motion characteristics, such as the amount of delay after which
the leg begins to move, the direction of the leg’s motion, the end positions
of both vertical and horizontal swings of the leg, and the vertical and hor-
izontal angular speeds of the leg. After a few dozen generations, in which
evaluation was performed on the robot, a mixture of tetrapod and wave gaits
were obtained. Using the cellular developmental approach, Gruau and Qua-
tramaran (1997) and Kodjabachian and Meyer (1998a) evolved stable neural
controllers for the same eight-legged robot used by Gomi and Ide. This work
will be described in more detail in a later section on evolution and devel-
opment. Jakobi (1998) successfully evolved modular controllers based on
Beer’s continuous recurrent networks to control the same eight-legged robot
as it engaged in walking about its environment avoiding obstacles and seek-
ing out goals. The robot could smoothly change gait, move backward and
forward, and even turn on the spot. More recent work has used architectures
similar to those explored by the researchers mentioned above to control more
mechanically sophisticated robots such as the Sony Aibo (Tellez et al. 2006).

Recently there has been successful work on evolving coupled neural oscil-
lators for the highly unstable dynamic problem of biped walking. Reil and
Husbands (2002) used physics-based simulations to evolve controllers able
to generate successful bipedal gaits. In a first stage, they evolved the synaptic

6.7 Evolution of Behavioral Systems 467

weights and time constants of the network shown on the left of figure 6.39.
The fitness function was the sum of two components, one measuring the dis-
tance traveled from the origin and one penalizing individuals that lowered
their center of gravity below a certain height. The second component was
useful to prevent solutions that displayed grotesque movements. Efficient
walkers were evolved in fewer than 60 generations (figure 6.39, right). In a
second stage, they provided the walker with two ears and evolved individu-
als for their ability to approach a sound source. In this case all neurons of the
neural network received additional input from a sound sensor whose activa-
tion was proportional to the difference between sound strengths measured
in the two ears. The previously evolved weights were clamped and only the
weights from the sensory unit were genetically encoded and evolved. An
additional 60 generations of incremental evolution were sufficient to obtain
robots capable of approaching the sound source from any position in their
surroundings. Coupled neural oscillators have also been evolved to control
the swimming pattern of articulated, snake-like, underwater robots using
physics-based simulations (von Haller et al. 2005).

Vaughan used a simulation of a 3D ten-degrees-of-freedom bipedal robot
with passive dynamics and compliant tendons to conserve energy while walk-
ing on a flat surface (Vaughan et al. 2004a). The parameters of the body and a
continuous dynamical neural network controller were under genetic control.
The machine started out as a passive dynamic walker (McGeer 1990b) on a
slope and then throughout the evolutionary process the slope was gradually
lowered to a flat surface. The machine demonstrated resistance to distur-
bance while retaining passive dynamic features such as a passive swing leg.
This machine did not have a torso, but Vaughan has also successfully applied
the method to a simplified 2D machine with a torso above the hips. When
pushed, this dynamically stable bipedal machine walks either forward or
backward just enough to release the pressure placed on it. It is also able to
adapt to external and internal perturbations, as well as to variations in body
size and mass (Vaughan et al. 2004b).

McHale and Husbands (2004a,b) have compared many forms of evolved
neural controllers for bipedal and quadrapedal walking machines. Recur-
rent dynamical continuous time networks were shown to have advantages
in most circumstances. The vast majority of the studies mentioned above
were conducted in relatively benign environments. Nevertheless, we can
conclude that the more complex dynamical neural network architectures,
with their intricate dynamics, generally produce a wider range of gaits and
generate smoother, more adaptive locomotion than the more standard use of

468 6 Behavioral Systems

Figure 6.40 The gantry robot used in the visual discrimination task. Image courtesy
of Phil Husbands, Sussex University, England.

finite-state machine-based systems employing parameterized rules govern-
ing the timing and coordination of individual leg movements (e.g., Laszlo
et al. 1996).

6.7.3 Example 3: Vision-based Navigation

The experiments described so far used relatively simple distance sensors,
such as active infrared or sonar. Pioneering experiments on evolving visu-
ally guided behaviors were performed at Sussex University (Harvey et al.
1997) on a specially designed gantry robot (figure 6.40). Discrete-time dy-GANTRY ROBOT

namical recurrent neural networks and visual sampling morphologies were
concurrently evolved: the brain was developed in tandem with the visual
sensor (Harvey et al. 1994; Husbands et al. 1997; Jakobi 1997a). The robot
was designed to allow real-world evolution by having “offboard” power and
processing so that the robot could be run for long periods while being mon-
itored by automatic fitness evaluation functions. A CCD camera pointed
down toward a mirror angled at 45◦ as shown in figure 6.40. The mirror
could rotate around an axis perpendicular to the camera’s image plane. The
camera was suspended from the gantry allowing motion in the x, y, and z
dimensions. This effectively provided an equivalent to a wheeled robot with

6.7 Evolution of Behavioral Systems 469

Robot x=61.58, y=73.78, θ=2.1, Time-step=135

A B

Figure 6.41 The shape discrimination task. A, the position of the robot in the arena,
showing the target area in front of the triangle. B, The robot camera’s field of view
showing the visual patches selected by evolution for sensory input. Image courtesy
of Phil Husbands, Sussex University.

a forward-facing camera when only the x and y dimensions of translation are
used.

The apparatus was initially used in a manner similar to the real-world
experiments on navigation in the looping maze with the miniature mobile
robot described earlier. A population of strings encoding robot controllers
and visual sensing morphologies were stored on a computer to be down-
loaded one at a time onto the robot. The exact position and orientation of
the camera head could be accurately tracked and used in the fitness evalua-
tions. A number of visually guided navigation behaviors were successfully
achieved, including navigating around obstacles, tracking moving targets
and discriminating between different objects (Husbands et al. 1997). In the
experiment illustrated in figures 6.40 and 6.41, starting from a random posi-
tion and orientation the robot had to move to the triangle rather than to the
rectangle. This had to be achieved irrespective of the relative positions of the
shapes and under very noisy lighting conditions. Recurrent neural network
controllers were evolved in conjunction with visual sampling morphologies.
Only genetically specified patches from the camera image were used by be-
ing connected to input neurons according to the genetic specification. The
rest of the image was thrown away. This resulted in extremely minimal sys-
tems using only two or three pixels of visual information, yet still able to
perform the task reliably under highly variable lighting conditions (Harvey
et al. 1994; Husbands et al. 1997).

In another set of experiments, Husbands et al. (1998) evolved vision-based
controllers of GasNets, a class of neural networks that incorporate two dis-
tinct signaling mechanisms, one “electrical” and one “chemical” (see also the

470 6 Behavioral Systems

. .
.

Sensory receptor

Motor output
..
.

. ..

. ..
. ..

Sensory receptorsNeurons (t-1)

N
eu

ro
ns

synaptic connections

sign synapse presence

Figure 6.42 The architecture of a network of spiking neurons is evolved to drive the
vision-based robot in the arena. The light below the rotating contacts allows continu-
ous evolution also overnight. A binary genetic string encodes the sign of each neuron
and the presence/absence of all potential connections to that neuron.

closing remarks in chapter 3). The visual sampling morphology was also un-
der evolutionary control. The original basic GasNet was found to be signif-
icantly more evolvable than a variety of other styles of connectionist neural
networks. Successful GasNet controllers for this task tended to be rather
minimal, in terms of numbers of nodes and connections, while possessing
complex dynamics (Husbands et al. 1998).

Floreano and Mattiussi (2001) instead evolved the architecture of a net-
work of spiking neurons for driving a vision-based robot in an arena painted
with black stripes of variable size against a white background (figure 6.42).
The Khepera robot used in these experiments was equipped with a vision
turret composed of one linear array of gray-scale photoreceptors spanning
a visual field of 36◦. The output values of a bank of local contrast detection
filters (Laplace filters) were converted in spikes –the stronger the contrast,
the larger the number of spikes per second (see right side of figure 6.43)–
and sent to 10 fully connected spiking neurons implemented according to
the spike response model (Gerstner et al. 1996) described in chapter 3. The
spike series of a subset of these neurons was translated into motor commands
(more spikes per second corresponded to faster rotation of the wheels). The
fitness function was the amount of forward translation of the robot mea-
sured over two minutes using the wheel rotation encoders. Consequently,
robots that turned in place or hit the walls had comparatively lower fitness
than robots that could move straight and turn only when it was necessary to
avoid walls. The genome of these robots was a bit string that encoded only
the sign of the neurons and the presence of synaptic connections. Existing

6.7 Evolution of Behavioral Systems 471

A
ct

iv
at

io
n

Fi
lte

re
d

150˚

an
d

sc
al

ed
R

ec
tif

ie
d

0

1

0

0

255

Laplace Filter

-.5 1.0 -.5

bumpers (6x) front view

linear camera

anemometer

Figure 6.43 Left: Front view of the blimp with its main components: the anemome-
ter on top of the envelope, the linear camera pointing forward with a 150◦ horizontal
field of view, the bumpers, and the two propellers. Right: Contrast detection is per-
formed by selecting 16 equally spaced photoreceptors and filtering them through a
Laplace filter spanning three photoreceptors. Filtered values are then rectified by tak-
ing the absolute values and scaling them in the range [0, 1]. These values represent
the probability of emitting a spike for each corresponding neuron. The output of the
linear camera is the only source of information passed to the evolutionary spiking
network. The anemometer is used for fitness computation.

connections were set to 1 and could not change during the lifetime of the
robot.

Evolution reliably discovered very robust spiking controllers in approxi-
mately 20 generations (approximately 30 hours of evolution on the real robot).
Evolved robots could avoid not only walls but any object positioned in front
of them. Detailed analysis of the best evolved controllers revealed that neu-
rons did not exploit time differences between spikes, which one would have
expected if some type of optic flow information was used to detect distance
from walls. Instead, they simply used the number of incoming spikes (fir-
ing rate) as an indication of when to turn. When the robot perceived several
edges (which generated strong spiking activity in the network) it would go
straight, but when the number of perceived edges decreased below a certain
level, it started to turn away. Given the low resolution of the camera and its
limited field of view, the number of perceived edges is proportional to the
distance from the walls.

The same methodology was then applied to a blimp-like robot equipped
with a linear camera spanning 150◦, two lateral propellers, and an anemome-

472 6 Behavioral Systems

Figure 6.44 Left: The blimp-like robot is evolved in a 5 x 5 x 3 m room with ran-
domly sized black-and-white stripes painted on the walls. The serial data transmis-
sion of sensory and motor commands between the blimp and the desktop computer
implementing the evolutionary algorithm and spiking neural network is handled by a
Bluetooth wireless connection. The blimp has onboard batteries that must be changed
every three hours.

ter shown in figure 6.43 (Zufferey et al. 2002). The blimp was equipped
with an anemometer whose rotation direction and speed were used as an
indication of how fast the blimp moved forward. The fitness function was
simply the average rotation speed of the anemometer helix in the direction
corresponding to the forward translation of the blimp. The blimp was also
equipped with 12 sticks connected to electrical on/off switches whose ac-
tivation indicated a collision with a wall. Only the visual information was
provided as input to the evolutionary neural controller.

The blimp was evolved in a room with randomly sized black-and-white
stripes (figure 6.44, left), similar to the arena used for the wheeled Khepera
robot described earlier. As for the Khepera robot, 20 generations were suffi-
cient to evolve spiking controllers capable of steering the blimp around the
room (figure 6.44, right). The evolved control strategy, however, was differ-
ent from that evolved in the wheeled robot. Although the steering angle of
the evolved blimp was approximately proportional to the amount of contrast
(firing rate), the robot was also capable of recognizing collisions with walls,
briefly reversing the thrust of the two propellers, and resuming forward mo-
tion in a suitable direction. In further work, Zufferey et al. (2006a) devised
a physics-based simulation of the blimp that allowed seamless transfer of

6.7 Evolution of Behavioral Systems 473

B) visual scene

A) visual
neurons

C) proprioceptive
neurons

D) system
behavior

E) vision
behavior

F)

retina

Figure 6.45 The neural architecture of the active vision system is composed of A) a
grid of visual neurons with nonoverlapping receptive fields whose activation is given
by B) the gray level of the corresponding pixels in the image; C) a set of proprioceptive
neurons that provide information about the movement of the vision system; D) a set
of output neurons that determine the behavior of the system (pattern recognition, car
driving, robot navigation); E) a set of output neurons that determine the behavior of
the vision system; F) a set of evolvable synaptic connections. The number of neurons
in each subsystem can vary according to the experimental settings.

evolved controllers on the real blimp. This allowed them to start the eval-
uation of individuals in “difficult” conditions (e.g., against a wall), which
resulted in controllers that were capable of maximizing the amount of for-
ward translation by staying very near the walls without ever colliding into
them.

In a different line of work, Floreano et al. (2004) studied the coevolution of
active vision and of visual feature selection in several types of behavioral sys-
tems. Active vision is the sequential and interactive process of selecting andACTIVE VISION

analyzing parts of a visual scene (Aloimonos et al. 1987; Bajcsy 1988; Ballard
1991). Feature selection instead is the development of sensitivity to relevant
features in the visual scene to which the system selectively responds (Han-
cock et al. 1992). Each of these processes has been investigated and adopted
in machine vision, but the codevelopment of active vision and visual feature
selection has been largely ignored so far.

The behavioral systems were equipped with a simple moving camera and
a deliberately simple neural architecture (figure 6.45). The neural architec-
ture was composed of an artificial retina and two sets of output units. One
set of output units determined the pan, tilt, and zoom values of the cam-

474 6 Behavioral Systems

Figure 6.46 Left: An evolved individual explores the screen searching for the shape
and recognizes it by the presence of a vertical edge. Right: Search for the edge of the
road at the beginning of a drive over a mountain road.

era and the other set of units determined the behavior of the system. This
could vary across experiments; in one case it was the response of a pattern
recognition system, in another case it was the actions of a car driver, and
in yet another case it was the wheel speeds of a robot. The neural network
was embedded in the behavioral system and its input/output values were
updated every 300 ms while its fitness was computed. Therefore, the synap-
tic weights of this network were responsible for both the visual features on
which the system based its behavior and for the motor actions necessary to
search for those features.

In a first set of experiments, the neural network was embedded within a
pan-tilt camera and asked to discriminate between triangles and squares of
different size that could appear at any location of a screen (figure 6.46, left),
a perceptual task similar to that explored with the gantry robot described
earlier. The visual system was free to explore the image for 60 seconds
while continuously telling whether the current screen showed a triangle or
a square. The fitness was proportional to the amount of correct responses
accumulated over the 60 seconds for several screenshots containing various
instances of the two shapes. Evolved systems were capable of correctly iden-
tifying the type of shape with 100% accuracy after a few seconds of explo-
ration despite the fact that this recognition problem is not linearly separable
and that the neural network does not have hidden units, which in theory are
necessary to solve nonlinearly separable tasks, as we have seen in chapter 3.
Indeed, the same neural network presented with the same set of images and
trained with supervised learning, but without the possibility to actively ex-

6.7 Evolution of Behavioral Systems 475

Figure 6.47 A mobile robot with a pan-tilt camera is asked to move within the
walled arena in the office environment.

plore the scene, was not capable of solving the task Kato and Floreano (2001).
The evolved active vision system developed sensitivity to vertical edges, ori-
ented edges, and corners and used its movement to search for these features
in order to tell whether the shape was a triangle or a square. These features,
which are found also in the early visual system of almost all animals, are
invariant to size and location.

In a second set of experiments, the neural network was embedded in a
simulated car and was asked to drive over several mountain circuits (fig-
ure 6.46, right). The simulator was a race car video game. The neural net-
work could move the retina across the scene seen through the windshield
from the driver’s seat and control the steering, acceleration, and braking of
the car. The fitness was inversely proportional to the time taken to com-
plete the circuits without exiting the road. Evolved networks completed all
circuits with lap times competitive to those of well-trained students control-
ling the car with a joystick. Evolved networks started by searching for the
edge of the road and tracked its relative position with respect to the edge of
the windshield in order to control steering and acceleration. This behavior
was supported by the development of sensitivity to oriented edges, as in the
previous experiments.

In a third set of experiments, the neural network was embedded in a real
mobile robot with a pan-tilt camera that was asked to navigate in a square

476 6 Behavioral Systems

arena with low walls located in an office (figure 6.47). The fitness was propor-
tional to the amount of straight motion measured over two minutes. Robots
that hit the walls because they watched people or other irrelevant features of
the office had low fitness. Evolved robots tended to fixate the edge between
the floor and the walls of the arena and turned away from the wall when the
size of their retinal projection became larger than a threshold. This combi-
nation of sensitivity to oriented edges and looming is found also in visual
circuits of several insects and birds.

In a further set of experiments (Floreano et al. 2005), the visual pathway of
the neural network was augmented by an intermediate set of neurons whose
synaptic weights could be modified by Hebbian learning (Sanger rule), which
extracts the principal components of the image (see chapter 3) while the robot
moved in the environment. All the other synaptic weights were genetically
encoded and evolved. The results showed that lifelong development of the
receptive fields improved the performance of evolved robots and allowed
robust transfer of evolved neural controllers from simulated to real robots be-
cause the receptive fields developed a sensitivity to features encountered in
the environment where they happened to be born. Furthermore, the results
showed that the development of visual receptive fields was significantly and
consistently affected by active vision as compared to the development of re-
ceptive fields passively exposed to the same set of sample images. In other
words, robots evolved with active vision developed sensitivity to a smaller
subset of features in the environment and actively tracked those features to
maintain a stable behavior.

In conclusion, all these experiments indicate that behavioral systems that
are free to explore the environment can solve visually mediated tasks with
much simpler architectures and computational resources than those typically
advocated in computer vision. This is possible because these systems rely on
behavior to self-select the visual stimulation that is most useful for the task
to be performed and that matches their computational properties. Artificial
evolution plays an important role in the discovery of these vision-based sys-
tems because it reduces the bias of the human designer and can explore a
space of solutions that capitalize on the interaction between the behavioral
system and its environment. Nolfi and Floreano (2000) provide more exam-
ples and a detailed explanation of the way in which evolution works from the
inside of the system to generate powerful behavioral systems with relatively
simple computational strategies.

6.7 Evolution of Behavioral Systems 477

Figure 6.48 The original apparatus in (Held and Hein 1963), where the gross move-
ments of a kitten moving almost freely were transmitted to a second kitten that was
carried in a gondola. Both kittens were allowed to move their head. They received
essentially the same visual stimulation because of the unvarying pattern on the walls
and the center post of the apparatus. Reproduced with permission from Held (1965).

6.7.4 Example 4: Computational Neuro-Ethology

Evolutionary robotics is also used to investigate open questions in neuro-
science and cognitive science (D.T. Cliff 1991;Harvey et al. 2005). Although
the results should be carefully considered when drawing analogies with bio-
logical organisms, evolutionary robotics can generate novel models and test
existing hypotheses.

For example, the active vision system with Hebbian plasticity described
in the previous section was used to test a hypothesis raised by Held and
Hein (1963) who devised the apparatus shown in figure 6.48 where the free
movements of a kitten (active kitten) were transmitted to a second kitten that
was carried in a gondola (passive kitten). The second kitten could move its
head, but its feet did not touch the ground. Consequently, the two kittens re-
ceived almost identical visual stimulation, but only one of them received that
stimulation as a result of body self-movement. After a few days in that envi-
ronment, only the active kitten displayed normal behavior in several visually
guided tasks. The authors suggested the hypothesis that proprioceptive mo-

478 6 Behavioral Systems

RFa RFp1 RFp2 RFp3 RFp4
0

0.1

0.2

0.3

0.4

0.5

0.6

F
it

n
es

s

Lesion test, all RF

intact

3rd, 4th, and 5th lesioned

Figure 6.49 Performance of robots with three lesioned visual neurons after develop-
ment of receptive fields in active condition (RFa) or in one of our passive conditions
(RFp1−4). Dark bars show performance levels (average and standard error over 10
trials) of a robot with intact neurons; light bars show performance levels after lesion.

tor information resulting from generation of actions was necessary for the
development of normal, visually guided behavior.

The kitten experiments were replicated by using two robots with active
vision (figure 6.47). The neural architecture shown in figure 6.45 was aug-
mented with an intermediate layer of five neurons whose synaptic weights
could adapt while the robot interacted with the environment according to
Sanger’s rule. The best evolved network was cloned and the synaptic val-
ues of the adaptive visual neurons were randomly initialized in both clones.
One cloned robot was then left free to move in the environment, as the active
kitten did, while the other cloned robot was forced to move along imposed
trajectories, but was free to control its camera position, just like the passive
kitten (Suzuki et al. 2005). During these tests the adaptive neurons could
change their synaptic strengths (receptive fields). The results indicated that
the visual receptive fields and behaviors of robots that developed receptive
fields in the passive condition differed significantly from those of robots that
developed receptive fields in the active condition. Furthermore, cloned pas-
sive robots that were later left free to move could no longer avoid obstacles
properly.

A series of lesion studies (figure 6.49) after development of the receptive
fields indicated that three of the adaptive visual neurons could be silenced
without observing performance loss in active robots. However, when those
three neurons were silenced in robots that developed their receptive fields

6.7 Evolution of Behavioral Systems 479

Figure 6.50 Bird’s-eye view of the arena with the light tower over the recharging
station and the Khepera robot.

in passive conditions, the performance of the robots significantly increased.
This and further analysis suggested that passive robots, which could not
fully control the series of visual inputs during learning, developed sensitiv-
ity to visual features that were not functional for their normal behavior and
interfered with other dominant features in the visual field. That explains
both why robots that developed in the passive condition could not fully co-
ordinate their behavior when put in normal conditions and why the lesion
of some specific neurons restores their behaviors. Whether this explanation
holds also for living animals remains to be further investigated, but at least
these experiments indicated that motor feedback is not necessary to explain
the pattern of pathological behavior observed in animals and robots.

Let us now consider the case of an animal exploring an environment and
periodically returning to its nest to feed. It has been speculated that this
type of situation requires the formation of spatial representations of the en-
vironment that allow the animal to find its way home (Healy 1998). Different
neural models with various degrees of complexity and biological detail have
been proposed that could provide such functionality (Schmajuk and Blair
1993; Burgess et al. 1997).

480 6 Behavioral Systems

Would a robot evolved under similar survival conditions develop a spatial
representation of the environment and, if so, would that type of representa-
tion resemble that suggested by existing biological models? These questions
were explored using a Khepera robot evolved in a square arena with a small
patch on the floor in a corner where the robot could instantaneously recharge
its (simulated) battery (figure 6.50). The environment was located in a dark
room with a small light tower over the “recharging station.”

The sensory system of the robot was composed of eight distance sensors,
two ambient-light sensors (one on each side), one floor-color sensor, and a
sensor for battery charge level. The battery lasted only 20 seconds and had
a linear discharge. The evolutionary neural network included five fully con-
nected internal neurons between sensory and motor neurons. The same fit-
ness function described earlier (equation (6.2)) for navigation in the looping
maze was used, except for the middle term which had been used to encour-
age straight navigation in the looping maze. The fitness value was computed
every 300 ms and accumulated over the life span of the individual. Therefore,
individuals who discovered where the charger was could live longer and ac-
cumulate more fitness by exploring the environment (individuals were killed
if they survived longer than 60 seconds to limit the experimentation time).

After approximately 200 generations, the robot was capable of navigat-
ing around the environment, covering long trajectories while avoiding both
walls and the recharging area. When the battery was almost discharged it
initiated a straight navigation toward the recharging area and exited imme-
diately after battery recharge to resume navigation. The best evolved indi-
viduals always entered the recharging area one or two seconds before full
discharge of the battery. That implies that robots must somehow calibrate
the timing and trajectory of their homing behavior depending on where they
happened to be in the environment.

In order to understand how that behavior could possibly be generated, a
set of neuroethological measures were performed. By correlating the robot
position and orientation with the activation of the internal neurons in real
time while an evolved individual freely moved in the environment, it was
found that some neurons specialized in reactive behaviors, such as obstacle
avoidance and forward motion. Other neurons instead displayed more com-
plex activation patterns. One of them revealed a pattern of activation levels
that depended on whether the robot was oriented facing the light tower or
facing the opposite direction (figure 6.51). In the former case, the activation
pattern reflected zones of the environment and paths typically followed by
the robot during exploration and homing. For example, the robot trajectory

6.7 Evolution of Behavioral Systems 481

Facing light Facing opposite corner

low
battery

full
battery

Figure 6.51 Activation levels (brightness proportional to activation) of an internal
neuron plotted over the environment while the robot was positioned at various loca-
tions in each of the four conditions (facing recharging area or not, discharged battery
or not). The recharging area is located at the top left corner of each map.

toward the recharging area never crossed the two “gate walls” visible in the
activation maps around the recharging station. When the robot faced the
opposite direction, the same neuron displayed a gradient field orthogonally
aligned with the recharging area. This gradient provides an indication of the
distance from the recharging area. Interestingly, this pattern of activity is not
significantly affected by the charge level of the battery.

The functioning of this neuron recalls the findings on the hippocampus of
the rat brain where some neurons (also known as “place cells”) selectivelyPLACE CELLS

fire when the rat is in specific areas of the environment (O’Keefe and Nadel
1978). Also, the orientation-specific pattern of neural activation measured
on the evolved robot recalls the so-called “head-direction neurons” in the ratHEAD-DIRECTION

NEURONS hippocampus, which are positioned near place cells, whose firing patterns
depend on the rat heading direction with respect to an environmental land-
mark (Taube et al. 1990). Although the analogy between brains of evolved
robots and of biological organisms should not be taken literally, these results

482 6 Behavioral Systems

indicate that artificial and biological organisms converge toward a function-
ally similar computational strategy, which may be more efficient to address
this type of situation than a strategy that does not rely on spatial representa-
tions, but only on reactive strategies such as random motion, light following,
and dead reckoning.

6.8 Evolution and Learning in Behavioral Systems

Evolution and learning are two forms of biological adaptation that differ in
space and time. Evolution is based on the existence of a population of indi-
viduals displaying variability at the genetic level. Learning, instead, takes
place within a single individual during its lifetime. Evolution and learning
operate on different time scales. Evolution is a form of adaptation capable
of capturing relatively slow environmental changes that might encompass
several generations, whereas learning can account for rapid environmental
change that occurs within a single generation. Whereas evolution operates
on the genotype, learning affects only the phenotype and phenotypic modi-
fications cannot directly modify the genotype. In the introductory section of
chapter 3 we described how these two adaptive processes may interact and
how evolution tends to assimilate features that are learned during a lifetime
when learning implies a cost for the fitness of the individual. In that same
chapter we also described several methods to combine artificial evolution
and learning for artificial neural networks.

The combination of evolution and learning in behavioral systems serves
two purposes (Nolfi 1999): (a) to identify the potential advantage of combin-
ing these two methods for developing robust and effective control systems;
(b) to understand the role of the interaction between learning and evolution
in organisms that interact with their environment.

However, learning can imply evolutionary costs such as (1) a delay in the
ability to acquire fitness caused by the time it takes to learn the required char-
acteristics, and (2) an increment of unreliability due to suboptimal learning
caused by unpredictable interactions between the agent and its environment
(Mayley 1996). Under these circumstances, the Baldwin effect may gradually
assimilate learned features into the genotype and reduce the role of learning.
This is not necessarily a good effect if one wants to evolve robots that should
retain adaptive properties after the evolutionary process is completed.

In the next subsections we will describe examples showing some of the po-
tential advantages of combining evolution and learning. We will also show

6.8 Evolution and Learning in Behavioral Systems 483

Figure 6.52 Left: A Khepera robot gains fitness points by finding and staying over
a movable target area located on the floor. The walls are covered with white (image)
or black paper that changes every generation. The robot has a ground sensor that can
detect the target area when it passes over it. Right: Self-teaching network. The output
values of two teaching neurons are used as teaching values of two motor neurons.
The weights that connect the sensory neurons to the teaching neurons do not vary
during the robots’ lifetime while the weights that connect the sensory neurons to the
motor neurons are modified by backpropagation of error.

that evolution can generate robot controllers that display learning-like be-
haviors without using any form of synaptic plasticity.

6.8.1 Example 1: Evolution of Self-Teaching Controllers

Consider the case of a Khepera robot that should explore an arena surround-
ed by black or white walls to reach a target placed in a randomly selected
location, as shown in figure 6.52 (Nolfi and Parisi 1996). Evolving robots are
provided with four sensory neurons that encode the state of four infrared
sensors and two motor neurons that control the desired speed of the two
wheels. The color of the walls randomly changes between black and white
every generation and, since the color significantly affects the intensity of the
response of the infrared sensors, evolving robots should develop an ability
to understand whether they are currently located in an environment with
white or black walls and modify their behavior accordingly.

Robots were provided with a neural controller (figure 6.52) whose out-
put layer included two “teaching neurons” that were used to modify with
backpropagation learning the connection weights from the sensory neurons
to the motor neurons during the robot’s lifetime. This special architecture

484 6 Behavioral Systems

Figure 6.53 Two methods for genetically encoding the properties of a synapse. In
the “genetically determined” case, the genetic string encodes the strength of the
synapse, which cannot change during the lifetime of the robot. In the “adaptive”
case, instead, the genetic string encodes one of four Hebbian learning rules shown on
the left and one of four learning rates. In this latter case, the initial synaptic strengths
of the initial decoded network are set to small random values and change during the
lifetime of the robot according to the learning rules and rates specified in the genetic
string.

allows evolving robots to use the sensory information not only to generate
behavior but also to generate teaching signals that can modify that behavior.

Analysis of evolved robots revealed that they developed two different be-
haviors that were adapted to the particular arena where they happened to be
“born.” Evolving robots did not inherit an ability to behave effectively, but
rather a predisposition to learn to behave. This predisposition to learn in-
volved several aspects such as a tendency to move so as to experience useful
learning experiences and a tendency to acquire useful adaptive characters
through learning (Nolfi and Parisi 1996).

6.8.2 Example 2: Evolution of Learning

In the previous example, the evolutionary neural network learned using an
off-the-shelf supervised learning rule that was applied to all synaptic con-
nections. Floreano and collaborators (Floreano and Mondada 1996) explored
the possibility of genetically encoding and evolving the learning rules asso-
ciated to the different synaptic connections of a neural network embedded in
a real robot.

6.8 Evolution and Learning in Behavioral Systems 485

In order to prevent assimilation of learned synaptic weights by evolution
(Baldwin effect), which would reduce the role of learning and thus the adapt-
ability of the controller to unforeseen variations, the synaptic weight values
were not genetically encoded. Each synaptic connection in the network was
described by three genes that defined its sign, its learning rule, and its learn-
ing rate (figure 6.53). Every time a genome was decoded into a neural net-
work and downloaded onto the robot, the synaptic strengths were initialized
to small random values and could change according to the genetically spec-
ified learning rules and learning rates while the robot interacted with the
environment.

Variations of this methodology included a more compact genetic encod-
ing where all synapses afferent to a neuron were assigned the same proper-
ties (sign, learning rule, learning rate), instead of dedicating a set of genes
for each synapse. Genes could encode four types of Hebbian learning that
were modeled on neurophysiological data and were complementary to each
other (Floreano and Urzelai 2000). These rules were (1) the plain Hebb rule
(synapse is strengthened if both pre- and postsynaptic units are active); (2)
the postsynaptic rule (synapse is modified only if the postsynaptic unit is ac-
tive: it is strengthened if also the presynaptic unit is active, otherwise it is
weakened); (3) the presynaptic rule (synapse is modified only if the presy-
naptic unit is active: it is strengthened if also the postsynaptic unit is active,
otherwise it is weakened); and (4) the covariance rule (synaptic unit mod-
ification is proportional to the degree of the correlated activity of pre- and
postsynaptic activity).

The methodology was tested both for simple situations, such as navigation
in the looping maze described above, and in nontrivial, multitask situations,
such as the light-switching task shown in figure 6.54. Results indicated that
this methodology had a number of significant advantages with respect to
the evolution of synaptic strengths without learning (Urzelai and Floreano
2001). When compared to genetically determined neural controllers without
synaptic plasticity, the evolution of learning rules was faster and produced
significantly better fitness values in all situations.

Furthermore, evolved behaviors of adaptive individuals were qualitatively
different, notably in that they did not exploit minimal solutions tuned to the
environment where they evolved. For example, genetically determined indi-
viduals (i.e., individuals whose genes encode the synaptic strengths, but not
the learning rules) solved the light-switching task by turning in circles tuned
to the dimensions of the evolutionary arena which eventually take them over
the light switch area and then over the light bulb area. Instead, evolved

486 6 Behavioral Systems

Figure 6.54 Left: A Khepera robot equipped with a vision module can gain fitness
points by staying on the gray area only when the light is on. At the beginning of a
trial, the light is off, but it can be switched on if the robot passes over the black area
positioned on the other side of the arena. The robot can detect ambient light and wall
color with the linear vision module described earlier, but not the color of the floor.
The fitness function is simply proportional to the amount of time spent by the robot
under the light bulb when the light is on. Right: Behavior of an individual evolved in
simulation with genetic encoding of learning rules.

adaptive individuals modified their synapses so as to develop in sequence
the following set of behaviors: (a) avoid walls; (b) locate and go toward light
switch; (c) locate and go toward light bulb; (d) stay under light bulb if it is
on. Most importantly, these robots displayed remarkable adaptive proper-
ties after evolution. Best evolved individuals (1) transferred perfectly from
simulated to physical robots, (2) accomplished the task when the light and
reflection properties of the environment were modified, (3) accomplished the
task when light bulb and light switch were positioned at different locations,
and (4) transferred well across morphologically different robotic platforms.
In other words, these robots evolved the ability to solve a partially unknown
problem by adapting on the fly, rather than a solution to a specific problem
seen during evolution. This result is conceptually similar to the results of the
evolution of self-teaching networks described in the previous section.

In further experiments where the genetic code for each synapse of the net-
work included one gene whose value caused its remaining genes to be inter-
preted as connection strengths (equivalent to the “genetically determined”
case) or learning rules and rates (equivalent to the “adaptive” case), 80% of
the synapses “made the choice” of using learning, reinforcing the fact that
this genetic strategy has a comparatively stronger adaptive power (Floreano
and Urzelai 2000). This methodology also has promising applications to the
evolution of growing neural networks where synapses are created at run-

6.8 Evolution and Learning in Behavioral Systems 487

time and thus their strengths cannot be genetically specified (Floreano and
Urzelai 2001).

The adaptive advantages of this methodology were confirmed in the con-
text of evolutionary spiking neurons for robot control. DiPaolo (2003) evolved
spiking neural controllers modeled using the spike response model and het-
erosynaptic variants of the STDP learning rule described in chapter 3 for a
robot required to approach a light source, but to avoid it if a sound was de-
tected. The learning rule was described as a polynomial expression of the
STDP rule where the components of the rule were weighted by individual
constants that were genetically encoded and evolved (similar to the encod-
ing proposed by Chalmers, which is described in chapter 3). The author
showed that evolved robots were capable of learning suitable associations
between environmental stimuli and behavior.

In the work of both Floreano and of Di Paolo, evolved adaptive controllers
exploited the ability to continuously modify the synaptic strengths to regu-
late the behavior of the robot, instead of converging toward a stable pattern
of synaptic strengths that would solve the task as most off-the-shelf neural
learning algorithms do. Whether this is the case also for biological organisms
or is some artifact of the robotic experiments remains to be investigated. At
this stage, it is not yet technically possible to measure and correlate behav-
ioral modification with synaptic modification in living organisms.

Niv et al. (2002) used a similar approach to evolve adaptive controllers
in the context of value-dependent learning. The agent was a simulated bee
whose fitness was the amount of nectar collected by visiting flowers that con-
tained different quantities of nectar with variable probabilities (figure 6.55,
a)). The bee could differentiate flowers through a simple visual system with
a small field of view. (The experiments were also reproduced with a mobile
Khepera robot equipped with a color camera.)

The neural architecture (figure 6.55, b)) was composed of three modules
providing information on the current visual perception, on the difference be-
tween the current perception and the perception at the previous time step,
and on the amount of nectar collected when the bee landed on a flower. The
output of the neural network was the probability (figure 6.55, c)) of choosing
a new random flying direction. The architecture contained both normal con-
nections and neuromodulatory connections that modulated synaptic plastic-
ity, as recently discovered in biological neural tissues (e.g., Bailey et al. 2000).
Neuromodulation allows a neuron to gate the plasticity of a synaptic con-
nection between two other neurons. In this architecture, the weights of the
connections from the three modules toward the output unit (solid lines in

488 6 Behavioral Systems

Figure 6.55 a) A simulated bee with a 10-degree cone view must collect nectar by
flying towards patches of colored flowers. The environment contains two types of
flowers, blue (B) and yellow (Y), that provide different quantities of nectar with differ-
ent probabilities. The area outside the flower patch has no color (N). The bee descends
from a random height in steps of one unit that can be taken in any downward direc-
tion (360◦ horizontal and 90◦ vertical). The nectar is collected when the bee lands on
one of the flowers. b) The evolutionary neural controller is composed of three mod-
ules: the regular input module provides sensory information on the amount of B, Y,
and N color currently perceived; the differential input module provides information
on the difference between the perception at the current time step and the perception
at the previous time step; the activation of the neuron in the reward module acts as a
neuromodulatory input (dashed connections) that can enable Hebbian learning in the
connections (solid lines) of the other modules. The output of the neural controller is a
probability P to randomly reorient the current heading direction according to one of
the functions shown in panel c). Reproduced from Niv et al. (2002). Image courtesy
of Yael Niv, Hebrew University in Jerusalem.

6.8 Evolution and Learning in Behavioral Systems 489

the figure) could be modified if the presynaptic units connected by neuro-
modulatory synapses (dashed lines in the figure) were active, according to a
heterosynaptic Hebbian learning rule. This corresponded to using a binary
value signal in the value-based learning rule of equation (6.1).

The genotype of the agent encoded the values of the constants associated
to the components of the heterosynaptic Hebbian rule (as in Chalmers’s and
Di Paolo’s experiments), the presence or absence of the connections, the ini-
tial weights of the synapses “at birth,” and a global learning rate. The synap-
tic weight of the reward module was set to one and not evolved.

Bees were evolved in uncertain environments where at each generation
one of the flower types was randomly assigned as a constant-yielding high-
mean flower (0.7 μl of nectar) and the other as a variable-yielding low-mean
flower (1 μl in one-fifth of the flowers, none in the others; mean 0.2 μl of
nectar). Furthermore, the amount and mean nectar content was switched in
the second or third quarter of the bee’s life. Evolved bees learned first to
land only on the flower patch and then (in half of the evolutionary runs) to
land on flowers that yielded the larger expected amount of nectar. When the
nectar distribution was switched, bees learned in a few feeding trials to land
on the other type of flower.

Furthermore, evolved bees displayed risk-aversion behavior because, when
tested in new environments where the two flower types had identical mean
nectar content but one was constant and the other was variable, they chose
constant-yielding flowers. This risk-aversion behavior was observed also for
bees evolved in environments with constant nectar content in the two flow-
ers. Risk aversion, which is observed in several choice scenarios in animals
and humans and typically explained by nonlinear properties of the corre-
spondence between the actual and perceived reward (Smallwood 1996), was
explained by the authors as a consequence of Hebbian learning in finite time
windows where the environmental uncertainty requires high learning rates.

Evolved bees also displayed probability-matching behavior whereby, when
exposed to flowers containing the same amount of nectar but with differ-
ent probabilities, they regulated their choice according to the ratios of the
two probabilities instead of always choosing the flower type with the higher
probability. This behavior, observed also in some animal species (Herrnstein
1997), could be explained by the same mechanism mentioned above. The au-
thors showed that evolved neural controllers implemented (near-) optimal
reinforcement learning and were similar to the Actor-Critic model of rein-
forcement learning described in chapter 3, but changed the synaptic weights

490 6 Behavioral Systems

Figure 6.56 A simulated agent (triangle) lives in a 1D world with a visible landmark
(rectangle). The agent collects fitness points by reaching a goal point (circle) across
several trials where it always starts at the center of the world. The agent is exposed
to four sets of trials where the positions of the goal and landmark are changed (A, B,
C, and D). Within a set of trials, the positions are maintained constant. Adapted from
Yamauchi and Beer (1994).

only in the presence of a reward instead of continuously as in the Actor-Critic
model.

When compared to the purely epigenetic approach described in the ear-
lier subsection on value-based learning, this approach relies on evolution to
shape the weights of the connections that drive the neuromodulatory signals,
which corresponds to the application of a genetically wired value system. In
both approaches, the neural architecture is handcrafted and only the weights
of the connections are allowed to change.

The question of which neurons should be neuromodulatory and how they
should be wired to other neurons is not trivial and all computational models
presented so far used fairly complicated architectures based on biologically
or computationally motivated assumptions. In recent work, Soltoggio et al.
(2007) described a set of experiments on artificial evolution of the topology
of networks that could include, if needed, modulatory neurons. For the sake
of comparison, the new experiments used the same bee problem described
in this section. They showed that simulated bees evolved a modulatory net-
work that maximized the total reward using simpler and more effective neu-
ral architectures. Evolution operated on genomes with analog genetic encod-
ing (Mattiussi and Floreano 2007; Mattiussi et al. 2008), which was described
in chapters 1 and 3. An interesting result of this work was that the tem-
poral difference information, which both reinforcement-learning algorithms
and Niv’s hand-coded architecture rely on, was not used by evolved neuro-
modulatory topologies, which found a simpler cue in the sensory input for
triggering the release of neuromodulators affecting learning.

6.8 Evolution and Learning in Behavioral Systems 491

6.8.3 Example 3: Evolution of Learning-like Behavior without Synaptic
Plasticity

In animal studies it is very difficult to disentangle the contribution of learn-
ing to behavioral success (Plotkin 1988). It is therefore worth exploring wheth-
er situations that are typically assumed to require some form of learning
could be tackled by agents without synaptic plasticity. Yamauchi and Beer
(1994) evolved the neural controllers of simulated agents asked to reach for
an invisible target area whose location changed during the life of the agent,
but was always correlated to the location of a visible landmark for a series
of trials (figure 6.56). The correlation between target area and landmark was
kept constant across several trials, but could change during the life of an
individual. In some trials, the landmark was between the agent’s starting
location and the target area; in other trials the landmark was at the opposite
end of the arena. The fitness was the amount of time spent by the robot on
the target area. One would expect that in this scenario, robots should use
some sort of reinforcement learning that would associate the position of the
landmark with the target location.

Yamauchi and Beer used a modular continuous time recurrent neural net-
work without synaptic plasticity and evolved the synaptic weights and time
constants. Evolved agents could solve the problem and switch heading direc-
tion depending on the spatial relations between the landmark and the target
after a few trials. The authors explained the results by comparing the evolved
neural network to a dynamical system that switches between different basins
of attraction depending on the sequence of sensory information.

However, the authors could not evolve monolithic controllers for solving
this task, raising the question of whether the problem was too difficult to be
solved by evolution unless one restricted the search space by using specific,
modular architectures. Tuci et al. (2002) addressed this question by evolving
a fully connected (monolithic), continuous time recurrent neural network for
a mobile Khepera robot in a more realistic version of the landmark-target
scenario (figure 6.57). The landmark was a light bulb that could be perceived
by the robot anywhere in the environment. The target area was a black stripe
that could be perceived by the robot only when it was on it. The fitness func-
tion was proportional not only to the time spent by the robot on the target
area but also to the proximity of the robot to the target area. In other words,
the fitness landscape was smoother than in the case of Yamauchi and Beer,
who used a binary fitness function. Evolved neural controllers were capable
of detecting the spatial relation between landmark and target and modify

492 6 Behavioral Systems

Figure 6.57 A mobile Khepera robot equipped with light sensors and a floor-color
sensor lives in an arena with a light source. The fitness of the robot is inversely pro-
portional to its distance to a target area (black stripe painted on the floor) across sev-
eral trials where it always starts in the center of the environment (dashed area in A) at
a random orientation. As in the experiments by Yamauchi and Beer (1994), the robot
is exposed to four sets of trials where the positions of the target area and of the light
source are changed (B, C, D, E). Within a set of trials, the positions of the target area
and light source are maintained constant. Adapted from Tuci et al. (2002).

their heading direction accordingly. These experiments indicated that the
failure with the evolution of monolithic networks by Yamauchi and Beer was
not due to architectural constraints, but probably to the fitness function used.

In another series of experiments, Blynel and Floreano (2003) evolved fully
connected continuous time recurrent neural networks for a Khepera robot
required to find a target location in the T-maze shown in figure 6.58. In
this task, which is a classic experimental scenario for studying reinforcement
learning in animals (Gallistel 1990), the robot or animal is positioned at the
origin of the maze and is let free to explore the maze. If it arrives at the end-

6.8 Evolution and Learning in Behavioral Systems 493

Figure 6.58 The T-maze task. The robot must locate and stay over the colored area
across several trials. The location of the colored area is randomly changed every n
trials. The robot can perceive the target area when it is on it, using its floor sensor.
At the beginning of a trial, the robot starts at the origin of the T-maze. Left: First trial
of an evolved robot. Center: Second trial of the same evolved robot. Right: Evolved
controllers are successfully transferred to the real robot.

point of the target arm, it receives a reward signal. For animals, the reward
is a piece of food or a signal (e.g., sound or light).

The robot instead did not receive a reward, but could perceive the target
area with a floor sensor when it was over it and its fitness value was propor-
tional to the amount of time spent over the target in a number of trials. The
location of the target area could change during the life of the robot, but it
was kept constant for several trials. The states of the neurons were not reset
at the beginning of a trial. Evolved robots could easily solve the problem
by using the first one or two trials to explore the maze while in all remain-
ing trials they correctly went to the target endpoint. If the target endpoint
was switched, they required only one trial to move to the other endpoint.
Neural controllers evolved in simulation were easily transferred to the real
robot. Furthermore, the authors successfully evolved robots capable of solv-
ing a double T-maze problem where the endpoint of each of the two arms
in the simple T-maze is the origin of another T-maze, giving a total of four
possible target areas. Evolved controllers solved the problem by activating
one or more neurons when the cue signal was found and maintaining those
neurons active in the remaining trials, therefore modifying the internal ac-
tivation dynamics necessary to produce the correct behavioral trajectories
(Blynel 2001).

The results presented in this subsection fit neurophysiological evidence
and theories that perception, classification, and memory in animals and hu-
mans can be explained by the establishment of chaotic attractors in large
assemblies of interconnected neurons (e.g., in the olfactory system) and tran-
sition among these attractors (e.g., Freeman 2001). However, the main goal of
these experiments with robots was to provoke awareness that synaptic plas-

494 6 Behavioral Systems

ticity may not always be necessary to explain behaviors that seem to require
learning. There is no doubt that living brains use synaptic plasticity, but that
plasticity may not always be required for learning or may be intimately and
intricately combined with dynamical properties of neural activation. From
an engineering perspective, these results suggest that a promising approach
to the evolution of learning agents consists in using genetic encodings that
allow for the combination of plastic and nonplastic connections. For exam-
ple, one could add genes that affect the expression of other genes, which
may result in adaptive or in fixed synaptic connections, as mentioned in the
previous section (Floreano and Urzelai 2000, 2001).

6.9 Evolution and Neural Development in Behavioral Systems

A developmental genotype-to-phenotype mapping may (a) result in a more
compact and evolvable genetic encoding of complex control systems; (b) in-
clude the possibility of developing the phenotype while the robot interacts
with its environment, akin to a maturation process, thus adding another form
of adaptive plasticity to the evolving robot; and (c) incorporate the develop-
mental rules of both the control system and the body morphology. In this
section we will describe seminal approaches that address points (a) and (b)
and in a later section on coevolution of body and control we will describe
approaches that address point (c).

In natural organisms the development of the nervous system begins with
the folding in of the ectodermic tissue which forms the neural crest. This
structure gives origin to the mature nervous system through three phases:
the genesis and proliferation of different classes of neurons by cellular du-
plication and differentiation, the migration of the neurons toward their final
destination, and the growth of terminals (axons, dendrites).

In chapter 4, we described a method for cellular neural encoding devel-
oped by Gruau (1994a). He applied this method to evolve neural controllers
for a simulated hexapod robot. The fitness function was the distance covered
by the robot within a limited amount of time. The controllers were contin-
uous time recurrent neural networks. The model of the robot was a sim-
plified version of a six-legged insect. The genotypes consisted of network-
generating programs that could recursively point to subroutines in order to
develop complex neural architectures.

Evolved genotypes were more compact and the phenotypes displayed
more regular and symmetric architectures, as compared to encoding that

6.9 Evolution and Neural Development in Behavioral Systems 495

Figure 6.59 Left: Neural network architecture resulting from a developmental ge-
netic encoding that can reuse subroutines. Right: Neural network architecture re-
sulting from a developmental encoding without reuse of subroutines. Adapted from
Gruau (1994a).

could not reuse subroutines (figure 6.59) that matched the spatial distribu-
tion of the actuators on the robot body. In the example displayed on the left
of figure 6.59, the network included three repeated subnetworks controlling
two legs each. In further work, Gruau and Quatramaran (1997) applied this
method to the real octopod robot shown in figure 6.38 by including a number
of handcrafted constraints that reduced the search space.

Kodjabachian and Meyer (1998a) proposed a related approach, known as
simple geometry-oriented cellular encoding (SGOCE), that was applied to theSIMPLE

GEOMETRY-ORIENTED

CELLULAR ENCODING

(SGOCE)

same insect model. The fitness function was the distance covered during
the evaluation period increased by a term encouraging any leg motion. In
this approach, neurons grew their connections in a two-dimensional matrix
substrate where their positions affected the types of connections that were
established. As in the case of Gruau’s model, the genotype was formed by a
tree of instructions and crossover was accomplished by exchanging subtrees
(genetic programming). Genotypes included only six different instructions:
(a) a cellular division instruction that takes as parameters the distance and
the relative angle of the daughter cell; (b) two instructions that create outgo-
ing or incoming connections and take as parameters the angle and distance
of the neuron with which the connection should be made and its connection
weight; (c) two instructions that specify the values of the time constant and
the bias threshold of the cell; and (d) an instruction that causes a cell to die.

The authors were able to evolve behaviors of increasing complexities in an
incremental fashion (Kodjabachian and Meyer 1998b). The evolved neural
controller was saved and used as a building block for evolving more com-
plex controllers. In a second evolutionary stage an additional module was
evolved. This module received sensory information through additional sen-

496 6 Behavioral Systems

sory cells and influenced the walking behavior by establishing connections
with the cells of the first module. In one experiment, a gradient-following
module was evolved in an additional substrate placed just to the left of the
first substrate which was provided with two precursor cells and two pho-
toreceptor sensors. In this second phase, individuals were selected for their
ability to approach the light source as quickly as possible. The authors later
evolved a third obstacle avoidance module that received information from
two additional contact sensors.

When compared to the encoding scheme proposed by Gruau, Kodjabachian
and Meyer handcrafted a set of important phenotypical properties: the ge-
ometry of the substrate over which the network developed, the positions of
the sensory cells and of the motor neurons, and the number and position of
six precursor cells. The handcrafting of these features is probably one of the
reasons why the authors observed the emergence of walking behaviors in
significantly shorter time (after about 100,000 evaluations) than in Gruau’s
experiments.

Several other authors proposed related approaches that included cell divi-
sion, migration, and establishment of connections (e.g., Cangelosi et al. 1994;
Dellaert and Beer 1996).

Husbands et al. (1994) proposed a developmental approach that did not
invoke cellular division. In this approach a number of genetically specified
neurons were located in a brain space and connections grew according to a
set of differential equations. The genotype encoded the properties of each
neuron (the type of neuron, the relative position with respect to the neu-
ron created previously, the initial direction of growth of the dendrites, and
the parameters of the equations governing the growth process). During the
genotype-to-phenotype process, the genetic string was scanned from left to
right until a particular marker was found. When a special marker indicating
the beginning of the description of a neuron was encountered, the following
bits were read and interpreted as parameters for a new neuron. The presence
of an additional marker, however, could indicate that the parameters of the
current neuron were specified in a previous portion of the string. This mech-
anism could potentially allow the emergence of phenotypes with repeated
structures formed by reexpression of the same genetic instructions, similar
to the approach described by Gruau.

However, in all the approaches described so far development occurred in-
stantaneously before evaluating the fitness of the fully formed phenotype.
Nolfi et al. (1994b) used a growing encoding scheme to evolve the architec-
ture and the connection weights of neural networks controlling a Khepera

6.9 Evolution and Neural Development in Behavioral Systems 497

Figure 6.60 Top: Growth of axonal connections in the 2D brain space, pruning of
axons that do not connect to other neurons, and pruning of all neurons that are not
connected to input, output, or other parts of the network. Center: Testing an evolved
individual in a “light” environment. Trajectory, connected sensors, and neural archi-
tecture. Bottom: Testing an evolved individual in a “dark” environment. Trajectory,
connected sensors, and neural architecture.

robot, but the growth of the neural network occurred during the lifetime of
the robot while its fitness was evaluated. These controllers were composed
of a collection of artificial neurons distributed over a two-dimensional space
with growing and branching axons (figure 6.60, top). The genotype speci-
fied instructions that control the axonal growth and branching process of a
set of neurons. When the axon growing from one neuron reached another
neuron, a connection between the two neurons was established. Axons grew
and branched only if the neurons displayed an activation variability above a

498 6 Behavioral Systems

genetically specified threshold. Axons that did not connect to other neurons
and neurons that remained unconnected were pruned.

This activity-dependent growth was based on the idea that the sensory
information coming from the environment played a critical role in the mat-
uration of the connectivity of the biological nervous system. Indeed, it has
been shown that the maturation process is affected by the activity patterns of
single neurons (Purves 1994; Quartz and Sejnowski 1997). The developmen-
tal process of these individuals was therefore determined by both genetic
and environmental factors. The genotype of evolving robots was divided
in blocks, each coding for the growth properties of corresponding neurons.
The genes of input neurons also specified which sensors they were connected
to (out of eight proximity and eight light sensors available on the Khepera
robot). Similarly, genes of output neurons specified which of the two wheels
they affect.

Robots were evolved in a 60 x 35 cm arena to find and stay on a randomly
positioned target. At even generations, the target was illuminated by a small
light that could be perceived at a distance by the robots; in odd generations
there was no light and the robots could detect the target area with a floor sen-
sor only when they happened to pass by it. Evolved individuals were able to
reach the target area most of the time both in dark and in light environments
although performances were clearly better in light environments.

Evolved robots displayed different patterns of development, neural archi-
tecture, and behavior according to the environment where they were born
(figure 6.60, center and bottom). For example, an evolved individual placed
in the “light” environment grew an architecture that used both proximity and
light sensors in order to avoid walls and approach the light on top of the tar-
get area. When this same individual was placed in the “dark” environment,
it did not grow connections from light sensors, but displayed an exploratory
strategy that increased the chance of finding the target area while avoiding
the walls. This experiment clearly indicated that lifetime development rep-
resents a form of adaptive plasticity.

Vaario et al. (1997) used a neural growth approach based on diffusion
equations guiding the growth of connections (akin to Husbands’s approach)
that took into account the activity of sensory neurons while the robot in-
teracted with the environment (akin to Nolfi’s approach). They successfully
evolved neural controllers for mobile robots that were expected to reach light
sources while navigating a looping maze similar to that described in an ear-
lier section of this chapter (Floreano and Mondada 1994). However, they

6.10 Coevolution of Body and Control 499

did not test the adaptability of the resulting controllers in changing environ-
ments, as Nolfi et al. (1994a) did.

To summarize, a developmental mapping from genotype to phenotype can
be an advantage if it can generate repeated structures that match the spatial
layout of the behavioral system, such as multiple legs. This may result in
faster and higher-fitness evolution than the case where each repeated mod-
ule is separately encoded in the genotype and must be separately evolved.
The other advantage of a developmental mapping comes from the adap-
tive growth of the architecture while the individual interacts with the en-
vironment. Developmental costs, such as a retarded appearance of a mature
architecture, can be reduced by including the developmental period in the
computation of the fitness.

6.10 Coevolution of Body and Control

In the work described so far there has been an overwhelming tendency to
evolve control systems for preexisting robots: the brain is constrained to fit a
particular body and set of sensors. Of course, in nature the nervous system
evolves simultaneously with the rest of the organism. As a result, the ner-
vous system is highly integrated with the sensory apparatus and the rest of
the body: the whole operates in a harmonious and balanced way - there are
no distinct boundaries between control system, sensors, and body. From the
start, work at Sussex University incorporated the evolution of sensor prop-
erties, including positions, but other aspects of the physical robot were fixed
(Cliff et al. 1993). Although the limitations of not being able to genetically
control body morphology were acknowledged at this stage, there were se-
vere technical difficulties in overcoming them, so this issue was somewhat
sidelined.

Karl Sims started to unlock the possibilities in his highly imaginative work
on evolving simulated 3D “creatures” in an environment with realistic phys-
ics (Sims 1994). In this work, the creatures coevolved under a competitive
scenario where they were required to gain control of a resource (a cube)
placed in the center of an arena (figure 6.61). Both the morphology of the
creatures and the neural system controlling their actuators were under evo-
lutionary control. Their bodies were built from rigid 3D primitives with the
overall morphology being determined by a developmental process encoded
as a directed graph, as described in chapter 4. Various kinds of genetically
determined joints were allowed between body parts. A variety of sensors

500 6 Behavioral Systems

Figure 6.61 Some of the coevolved creatures competing to get hold of the dark cube.
Reproduced from Sims (1994).

6.10 Coevolution of Body and Control 501

Figure 6.62 A snapshot of the simulator for coevolving body and neural morpholo-
gies of stick-like creatures. From Komosinski and Ulatowski (2000).

could be specified for a specific body part. The simulated world included re-
alistic modeling of gravity, friction, collisions, and other dynamics such that
behaviors were restricted to be physically plausible. Many different styles of
locomotion evolved along with a variety of interesting, and often entertain-
ing, strategies to capture the resource. These included pushing the opponent
away and covering up the cube.

With the later developments of sophisticated physics engines for model-
ing a variety of physical bodies, Sims’s work inspired a rush of evolved
virtual creatures, including realistic humanoid figures capable of a variety
of behaviors (Reil and Husbands 2002). Komosinski and Ulatowski (1999)
devised an approach similar to Sims’s work, but greatly simplified the ge-
netic representation and the description of the creatures, which consisted of
elongated bars joined by muscle-like connections. Each bar, whose shape
parameters were genetically encoded, could be equipped with several sen-
sors, such as light, temperature, force, gyroscopes, and food, that were con-
nected to evolvable neural architectures. This work resulted in the software
Framsticks (Komosinski and Ulatowski 2006) which can be used to coevolveFRAMSTICKS

body and brains of creatures in several environments with user-defined fit-
ness functions (figure 6.62).

Bongard and Pfeifer (2003) expanded this line of work by evolving mul-
ticellular organisms (figure 6.63) where individual cells grew and differen-
tiated according to the dynamics of gene regulatory networks. Building

502 6 Behavioral Systems

Figure 6.63 Artificial ontogeny of a multicellular organism with sensor, body, and
muscle cells (see also figure 4.36). Reproduced from Graham-Rowe (2002). Reprinted
with permission of New Scientist.

on previous work by Eggenberger (1997b) on morphological differentiation,
Bongard and Pfeifer (2003) used a genotype encoding genes that could either
affect the phenotype or regulate (promote or inhibit) the activation of other
genes (see section 4.8.5). Some of these genes encoded the size and type
of cells; other genes encoded the neural structure that could be associated
with a cell. Morphological growth and differentiation therefore proceeded
along with neural growth and differentiation. However, in contrast to Nolfi’s
work on neural growth described earlier, in this case the fitness evaluation of
the individual started only after development of the organism. The authors
showed successful evolution of multicellular organisms capable of growing
the appropriate body mass, morphology, sensorimotor apparatus, and con-
trol necessary to push boxes of different sizes.

In what might be regarded as a step toward evolving physical robot bod-
ies, Funes and Pollack (1998) explored the use of evolutionary algorithms
in the design of physical structures, taking account of stresses and torques.
They experimented with evolving structures assembled from elementary
components (Lego bricks). Evolution took place in simulation and the de-
signs were verified in the real world. Stable 3D brick structures such as
tables, cranes, bridges, and scaffolds were evolved within the restrictions
of maximum stress torques at each joint between brick pairs. Each brick
was modeled as exerting an external load with a lever arm from its center
of mass to the supporting joint, resulting in a network of masses and forces
representing the structure. A genetic programming approach was taken us-

6.10 Coevolution of Body and Control 503

Figure 6.64 A locomoting “creature” evolved by Lipson and Pollack (2000) in re-
search which achieved an autonomous design and fabrication process.

ing tree structures to represent the 3D Lego structures. A mutation operator
acted on individual brick parameters while subtree crossover allowed more
radical changes to the structure. The fitness function was designed to encour-
age particular types of structures. It also included a cost factor proportional
to the number of bricks that successfully weeded out many of the redun-
dant bricks that inevitably arose. Lego proved to be a predictable building
tool with modes of breakage and linkage that could be modeled relatively
easily. While this work was successful, producing very strong designs, it
focused on static structures, so was limited in terms of its relevance to func-
tional robotic body parts. However, it did demonstrate a viable approach to
evolving physical structures.

While various researchers advocated the use of fully evolvable hardware
to develop not only a robot’s control circuits but also its body plan, which
might include the types, numbers, and positions of the sensors; the body size;
the wheel radius; actuator properties; and so on (e.g., Lund et al. 1997), this
was still largely confined to theoretical discussion until Lipson and Pollack’s
work on the golem project (Lipson and Pollack 2000), which was a significantGOLEM PROJECT

step forward from the earlier Lego work (Funes and Pollack 1998).
Lipson and Pollack, working at Brandeis University, pushed the idea of

fully evolvable robot hardware about as far as is reasonably technologically
feasible at present. In an important piece of research, directly inspired by
Sims’s earlier simulation work and Framsticks shapes, autonomous “crea-
tures” were evolved in simulation out of basic building blocks (neurons,

504 6 Behavioral Systems

plastic bars, actuators) (Lipson and Pollack 2000). The bars could connect
together to form arbitrary truss structures with the possibility of both rigid
and articulated substructures. Neurons could be connected to each other and
to bars whose length they would then control via a linear actuator. Machines
defined in this way were required to move as far as possible in a limited pe-
riod of time. The fittest individuals were then fabricated robotically using
rapid manufacturing technology (plastic extrusion 3D printing) to produce
results such as that shown in figure 6.64. They thus achieved autonomy of
design and construction using evolution in a limited-universe physical sim-
ulation coupled to automatic fabrication. The fitness function employed was
simply the Euclidean distance moved by the center of mass of a machine over
a fixed small number of cycles of its neural controller. A number of different
mutation operators acted in concert: small changes to bar or neuron prop-
erties, additions and deletions of bars or neurons, changes to connections
between neurons and bars, and creation of new vertices. The highly uncon-
ventional designs thus realized performed as well in reality as in simulation.
The success of this work leads the way to new possibilities in developing
energy-efficient, fault-tolerant machines.

In current work, Lipson (2005) is developing novel types of rapid proto-
typing machines capable of assembling different materials into functional de-
vices, such as batteries and electrical actuators. These machines, also known
as fabbers, position the item to be fabricated and change the deposition ma-FABBERS

terial according to computer-generated instructions. Although so far the in-
structions are specified according to engineering principles, the ultimate goal
is to introduce an evolutionary process capable of generating the instructions
for robots that will autonomously “walk out” of the machine.

6.11 Toward Self-Reproduction

In the work described so far, robots are either composed of preexisting struc-
tures (albeit modifiable), assembled by hand, or built after instructions re-
sulting from software evolution. In order to have a fully autonomous evolu-
tionary robot, robots should be capable of self-assembly and self-reproduc-
tion.

The idea of creating self-assembling and self-reproducing physical systems
that could evolve into increasingly complex structures was first entertained
by John von Neumann in 1948. In a series of informal meetings held at
the Institute for Advanced Study at Princeton University, which were recon-

6.11 Toward Self-Reproduction 505

structed by A.W. Burks (von Neumann 1966) from the notes and memories of
the participants, von Neumann discussed and described the behavioral and
physical properties that individual elements of such systems should have.
His system was composed of about “one or two dozen parts with simple
properties [existing in] the millions.” He described eight elements that in-
cluded a sensory organ, a coincidence organ and an inhibitory organ, a rigid
body, a muscle, a fusing organ, a cutting organ, and a stimulus producer (the
environment). He also planned to add a source of energy and an element
that actively recruited necessary elements from a large collection of other ele-
ments, but did not provide further details about them. Von Neumann argued
that embedded binary logic in the form of McCulloch-Pitts neurons (McCul-
loch and Pitts 1943) was sufficient for these systems to self-assemble and
self-reproduce, but speculated that inheritable mutations (errors) in the sys-
tem were necessary to bootstrap the process and lead to the degree of com-
plexity observed in self-reproducing biological systems. He also mentioned
that these systems should be put in an environment where they could “float”
in order to allow for the necessary patterns of self-connection. Eventually,
von Neumann gave up the realization of physical self-assembling and self-
reproducing systems because of the technological limitations at that time.
Instead, he concentrated on two-dimensional logic systems, which eventu-
ally resulted in the conception of cellular automata described in chapter 2
(for a review of self-replication in software systems, see Sipper (1998)).

Other models of physical self-replication were studied a few years later.
For example, Penrose concentrated on the shape and possible mechanical
interaction of molecules that self-connect and copy themselves by simple
vibrations (Penrose 1959, 1962) and demonstrated that with wood blocks.
Other attempts include those of Jacobson (1958) and Morowitz (1959) who
used a system of railroad cars in a closed-loop circuit, but those attempts
were not concerned with the evolution of complexity, which was von Neu-
mann’s main concern (McMullin 2000). Eventually, the interest in physi-
cally self-reproducing and evolving systems faded out in favor of theoretical
models, computer-based simulations, and in vitro experiments with organic
molecules.

Von Neumann’s ideas on self-assembly developed in the modern field of
self-assembling and self-configuring robots, which will be described later in
chapter 7. All these robotic systems are composed of simple actuated units
(most often consisting of a block and a joint) that can connect to each other in
various ways in order to form several shapes. In some cases, these robots can

506 6 Behavioral Systems

Figure 6.65 Self-reproduction of a four-module robot. a) Molecube (basic module),
with an illustration of its internal actuation mechanism. b) Snapshots from the first
10 seconds showing how a four-module robot transforms when its modules swivel
simultaneously. c) Sequence of frames showing the self-reproduction process, which
spans about 2.5 minutes New molecubes are manually positioned at the two “feed-
ing” locations circled in red. Reprinted by permission of Macmillan Publishers Ltd:
Nature (Zykov et al. 2005).

even change their shape and behavior without human intervention. How-
ever, the basic modules are all equal and are not conceived to self-reproduce.

The idea of robotic self-reproduction was first put forward by Fukuda in
his work on cellular robotics (Fukuda and Ueyama 1994) where he described
autonomous docking and separation of two wheeled robots as well as a
manipulator robot that assembled another robot out of preassembled robot
modules. Lipson and colleagues investigated the shape and other physi-
cal properties of basic modules for a self-replicating robot (Mytilinaios et al.
2004). Their solution involved a set of identical cubes with magnetic actu-
ators that could switch between repel, attract, and passive modes. In later
work, the authors demonstrated physical self-reproduction of multicellular
robots, made out of motorized and articulated cubes (molecubes), that couldMOLECUBES

6.12 Simulation and Reality 507

build a copy of themselves (Zykov et al. 2005), as shown in figure 6.65. How-
ever, these robotic systems had to be manually fed with other cubes and
could only construct a copy of themselves according to prespecified instruc-
tions.

At the time of writing this book, the combination of autonomous self-
assembly and self-reproduction in physical systems has not yet been achieved.
We will return to robots composed of several modular units in chapter 7.

6.12 Simulation and Reality

Few of the experiments described in this chapter were carried out entirely on
physical robots because (a) learning or evolution may require several lengthy
evaluations, especially if it is carried out on a single robot that incarnates the
bodies of all the individuals of an evolving population; (b) the physical robot
may be damaged because populations always contain a certain number of
poorly performing individuals (for example, colliding against walls) from
the effect of random mutations; (c) restoring the environment to initial con-
ditions between trials of different individuals or populations (for example,
replenishing the arena with objects) may not always be feasible without hu-
man intervention; and (d) evolution of morphologies and evolution of robots
that can grow during their lifetime is almost impossible with today’s technol-
ogy without some level of human intervention.

For these reasons, researchers often resort to learning or evolution in simu-
lation and transfer the evolved controllers to the physical robot. However, it
is well-known that programs that work well in simulation may not function
properly in the real world because of differences in sensing, actuation, and
in the dynamic interactions between the robot and the environment (Brooks
1992). This “reality gap” is even more evident in adaptive approaches, suchREALITY GAP

as evolutionary robotics, where the control system and morphology are grad-
ually crafted through the repeated interactions between the robot and the en-
vironment. Therefore, robots will evolve to match the specificities of the sim-
ulation, which differ from the real world. Although these issues clearly rule
out any simulation based on grid worlds or pure kinematics, over the last
10 years simulation techniques have dramatically improved and resulted in
software libraries that model reasonably well system dynamics, such as fric-
tion, collision, mass, gravity, inertia, etc. (Featherstone and Orin 2000). These
software tools allow one to simulate articulated robots of variable morphol-
ogy as fast as, or faster than, real time on a desktop computer. Today, these

508 6 Behavioral Systems

physics-based simulations are widely used by most researchers in evolution-
ary robotics.

Nonetheless, even physics-based simulations include small discrepancies
that can accumulate over time and result in behaviors that are very different
from reality (for example, a robot may get stuck against a wall in simulation
whereas it can free itself in reality, or vice versa). Also, physics-based simu-
lations cannot account for the diversity of response profiles of the individual
sensors, motors, and gears of a physical robot. There are at least four meth-
ods to cope with these problems and improve the quality of the transfer from
simulation to reality.

• A widely used method consists of adding independent noise to the valuesINDEPENDENT NOISE

of the sensors provided by the model and to the end position of the robot
computed by the simulator (Jakobi et al. 1995). Some software libraries
allow the introduction of noise at several levels of the simulation. This
method prevents learning or evolution from finding solutions that rely on
the specificities of the simulation model. One could also sample the actual
sensor values of the real robot positioned at several angles and distances
from objects of different texture. These values are then stored in a lookup
table and retrieved with the addition of noise according to the position of
the robot in the environment (Miglino et al. 1996). This method proved
to be very effective for generating controllers that transfer smoothly from
simulation to reality. A drawback of the sampling method is that it does
not scale up well to high-dimensional sensors (e.g., vision) or geometri-
cally complicated objects.

• Another method, also known as minimal simulations, consists in modelingMINIMAL SIMULATIONS

only those characteristics of the robot and environment that are relevant to
the emergence of desired behaviors (Jakobi 1997b). These characteristics,
which are referred to as base-set features, should be accurately modeled
in simulation. All the other characteristics, which are referred to as imple-
mentation aspects, should be randomly varied across several trials of the
same individual in order to ensure that evolving individuals do not rely
on implementation aspects, but rely on base-set features only. Base-set
features must also be varied to some extent across trials in order to ensure
some degree of robustness of the individual with respect to base-set fea-
tures, but this variation should not be so large that reliably fit controllers
fail to evolve at all. This method allows for very fast evolution of complex
robot-environment situations, as in the example of the hexapod walk de-
scribed earlier. A drawback of minimal simulations is that it is not always

6.12 Simulation and Reality 509

Figure 6.66 Schematic outline of the estimation-exploration algorithm applied to
robotics. (a) The physical robot begins by performing an action, and then (b) uses the
resulting sensor data to synthesize a set of self-models that explain the observed data.
Then, (c) the robot synthesizes a new action that disambiguates between the models
generated in step b. This cycle continues until the set of models converges or a fixed
number of cycles have elapsed. The most accurate model from the set is then passed
to the behavior synthesis component (d), which creates a behavior for the robot using
this model. The best behavior is then executed by the physical robot (e). If a new
behavior is desired, the experiment resumes at step d; if an unexpected motor-sensor
pattern is detected, the experiment resumes at step b. Reproduced from Bongard et al.
(2006). Courtesy of Josh Bongard, University of Vermont, Burlington.

510 6 Behavioral Systems

easy to tell in advance which are the base-set features that are relevant to
the desired behavior.

• Yet another method consists in the coevolution of a robot’s controller and
of the simulator parameters that are most likely to differ from the real
world and that may affect the quality of the transfer (Bongard and Lip-
son 2005). This method, also known as the estimation-exploration algorithm,ESTIMATION-

EXPLORATION

ALGORITHM
consists of coevolving three populations, one encoding possible simula-
tor parameters, one encoding robot controllers used only to find a good
simulator, and the third also encoding robot controllers, but these con-
trollers are meant to allow the robot to fulfill its task, such as forward
locomotion (figure 6.66). Coevolution happens in several passes through
a three-stage process. In stage 1, a randomly generated population of con-
trollers is evolved in the default simulator and the best individual is exe-
cuted on the real robot while the time series of sensory values is recorded.
In stage 2, the population of simulators is evolved for reducing the dif-
ference between the time series recorded on the real robot and the time
series obtained by running the same controller within the simulator. The
best evolved simulator is then used for stage 1 where a new randomly
generated population of controllers is evolved and the best individual is
tested on the real robot to generate the time series for another pass of
simulator evolution. This two-stage coevolution is repeated several times
until the error between simulated and real robot behavior is as small as
possible. Then, the best simulator found so far is used by a third popu-
lation (the third stage), in which robot controllers are again evolved, this
time to elicit some desired behavior. The best controller from this popula-
tion is then executed on the physical robot, and, if the evolved simulator
was accurate, the real robot will exhibit the same behavior as that seen in
the evolved simulator.
It was shown that 16 passes of the three-stage process were sufficient to
evolve a good control system that could be transferred to an articulated
robot. In this case, the real robot was used to test only 17 controllers: the
16 controllers used to find an accurate simulator, and the 17th evolved
to enable the robot to perform some desired task (Bongard et al. 2006).
The authors also showed that this approach could be used to adapt the
control system to cope with a damaged robot (for example, loss of a leg,
malfunctioning of a sensor, etc.). The advantage of this approach with re-
spect to other methods for damage recovery with evolutionary algorithms
(e.g., Grefenstette and Ramsey 1992; Keymeulen et al. 1998; Mahadavi

6.13 Closing Remarks 511

and Bentley 2003) is that it not only incrementally evolves the controller
to the changed situation using very few trials on the physical platform
but it also reveals in the coevolved simulator the type of damage incurred
by the physical robot. This is particularly useful for situations where the
physical robot is operating in remote areas, such as other planets, where
engineers can only get sensory signals from the robot, but cannot actually
see the robot.

• Finally, another method consists in evolution of learning, rather than evo-EVOLUTION OF

LEARNING lution of control parameters (e.g., connection strengths), as we have seen
in a previous section. The parameters of the decoded control system are
always initialized to small random values at the beginning of an indi-
vidual lifetime and must self-organize using the learning rules (Urzelai
and Floreano 2001). This method prevents evolution from finding a set of
control parameters that fit the specificities of the simulation model and en-
courages emergence of control systems that remain adaptive to partially
unknown environments. When such an evolved individual is transferred
to the real robot, it will develop its control parameters online according to
the genetically evolved learning rules and taking into account the speci-
ficities of the physical world.

6.13 Closing Remarks

Embodiment and situatedness are central aspects of all forms of life on this
planet. Organisms exist in a physical form and live by acting on their envi-
ronment. All living organisms are therefore behavioral systems, but not all
bioinspired systems are behavioral systems. For example, the systems that
we considered prior to this chapter captured some aspect of biology, but in
general they were not behavioral systems.

Behavior introduces unique constraints that make it difficult to reproduce
in artificial systems by means of approaches that attempt to hand-code it, re-
duce noise, and improve controllability. However, difficulties are reduced if
the behavioral system is endowed with self-adapting abilities, intrinsic noise
is exploited rather than reduced, and control is delegated as much as possible
to the intrinsic dynamics of the body and of the environment.

Nonetheless, the design of an artificial behavioral system that is endowed
with appropriate embodiment and robust self-adaptation properties is still a
major challenge because it requires choosing and balancing multiple compo-
nents with highly dynamical properties. We believe that artificial evolution

512 6 Behavioral Systems

of behavioral systems has very promising potentials for the design of be-
havioral artifacts because it takes a global perspective where the genetically
encoded components (morphology, sensing, actuation, wiring, development,
adaptation, etc.) can capitalize on each other’s interdependencies in endow-
ing the organism with the unique features that are required for its evolution-
ary success. To this extent, any artificially evolved individual whose fitness
does not fluctuate much along several generations is a balanced behavioral
system.

However, evolutionary robotics introduces several new challenges that are
not yet solved, such as the choice of genetic encodings and mappings that
are suitable for complex embodied systems, the choice of fitness functions
and methods for assessing behavioral systems, the length of time required
for obtaining viable solutions, and the inadequacy of hardware technolo-
gies for autonomous evolution, to mention only a few. Although finding
solutions to these questions will generate huge rewards, other bioinspired
approaches that attempt to capture hardware and control principles of living
behavioral systems have had a significant impact and contributed to the dra-
matic improvement of robot technologies that we have witnessed over the
last decade.

It is sometimes argued that artificial evolution and reinforcement learning
are similar because in both cases the behavioral system is shaped by a sin-
gle numerical value (fitness function and reward policy, respectively) that is
available only at the end of a sequence of sensorimotor events (lifetime and
trial, respectively). However, the two methods are not comparable because
(a) evolution involves also the system architecture (both hardware and soft-
ware), which as we have seen in this chapter affects the characteristics of the
computational problem; (b) evolution searches the problem space very dif-
ferently from reinforcement learning, although no formal comparisons are
available yet; and (c) evolution can subsume reinforcement learning or any
other type of value-based and non-value-based learning, including the pos-
sibility of discovering novel learning structures. It is interesting to notice that
robotics experiments with artificial evolution largely outnumber those with
reinforcement learning, although this may due to the difficulties inherent in
classic reinforcement learning algorithms, as we mentioned in the section on
value-based learning.

A major challenge of artificial behavioral systems consists in the devel-
opment of novel materials that display the flexibility, adaptability, and self-
healing properties of the biological materials that make up living behavioral
systems. Today’s technology relies on metallic and rigid structures, ser-

6.14 Suggested Readings 513

vomotors, and digital computers. These structures are inert, demand con-
trol, and naturally lead to the separation of hardware and software design.
Recent work in biomimetic design, morphological computation, and self-
reproduction described in this chapter represents a first step in the direction
of more robust, adaptive, and functional behavioral systems.

6.14 Suggested Readings

The book on ecological perception by Gibson (1979) represents one of the
earliest works showing how behavior can simplify the computational op-
erations required of an animal or machine. The book is easy to read, still
modern, and useful for robotics researchers alike. The imaginary vehicles
described by Braitenberg (1984) represent a stimulating and fun-reading in-
troduction to the importance of taking behavior into account when designing
and analyzing both artificial and living control systems. For roboticists, we
suggest the annotated collection of papers by Brooks (1999) on the technol-
ogy, methods, and philosophy of behavior-based robotics. A more compre-
hensive introduction to new AI, with emphasis on behavioral systems, is
provided by Pfeifer and Scheier (1999), who also suggest a series of prin-
ciples that should be followed in the design of intelligent artifacts. By the
same first author, we also recommend (Pfeifer and Bongard 2007) for its em-
phasis on the role of embodiment and morphology in reducing and affecting
computation.

Biorobotics, that is, biological inspiration for robots and robots as biolog-
ical models, is a rapidly growing field. We recommend the books edited by
Webb and Consi (2001) and by Ayers et al. (2002) for a collection of semi-
nal works that include both approaches. We also suggest the book edited by
Healy (1998) for a collection of papers on spatial navigation in animals and
robots. The book by Nolfi and Floreano (2000) provides a comprehensive in-
troduction to evolutionary robotics with emphasis on the methodology and
on the important details of foundational experiments.

Throughout this chapter and in the closing remarks we repeatedly pointed
to the importance of novel types of hardware for bioinspired behavioral sys-
tems. We definitely recommend the book on comparative biomechanics by
Vogel (2003) for an extensive and critical introduction to the methods and
technologies used to reproduce biological functionality. We also suggest the
book edited by Bar-Cohen (2001) for an overview of recent developments in
artificial muscles and other materials with bioinspired functional properties.

514 6 Behavioral Systems

Finally, for a more relaxed approach, we recommend the book Robosapi-
ens (Menzel and D’Aluiso 2000) for its series of annotated and artistic pho-
tographs of robots and their creators, as well as the podcast series Talking
Robots, directed by Floreano (2006-2008), featuring audio interviews with
several of the leading authors mentioned in this chapter on the science, tech-
nology, and business of intelligent robotics.

7 Collective Systems

In this chapter we describe phenomena that are unique to systems that op-
erate in groups composed of two or more individuals. In particular, we are
interested in collective phenomena that provide an adaptive function that is
not available to individuals operating in isolation.

Consider, for example, a group of people walking through a shopping mall
on a Saturday afternoon or a school of fishes that aggregate in the presence
of a predator. In both cases the behavior of an individual is affected by the
behaviors of its neighbors. However, while in the former case the trajecto-
ries are not instrumental to an adaptive collective behavior, in the latter case
they produce a centripetal movement that protects fishes from predators at-
tacking weaker individuals at the periphery of the school. Although the first
type of collective movement is worth studying for improving sales or pre-
venting accidents, in this chapter we will focus on collective phenomena of
the second type, which provide an adaptive functionality to the participating
individuals.

The biological world abounds in collective phenomena that have impor-
tant adaptive functions, ranging from coordinated movement to nest build-
ing, and all the way to communication. In most cases, these phenomena
rely on simple rules and local information, do not require a global plan or
a central coordinator, and are robust to malfunction or deviations of some
individual.

In this chapter we start by reviewing phenomena and models of biologi-
cal self-organization of collective systems and then describe algorithms and
technologies that have been inspired by those models. We will then turn our
attention to the evolutionary conditions that lead to the emergence of those

516 7 Collective Systems

collective systems and how they affect the evolutionary dynamics in both
biological and artificial systems.

There are some similarities between the models presented in this chapter
and some of those presented in chapter 2, especially the agent-based models
discussed in section 2.8, since both refer to agents that can interact with their
neighbors to produce a nontrivial and self-organizing collective dynamics.
However, the models described below are typically based on agents whose
interaction with other agents and with the environment are more sophisti-
cated than those defined in a cellular space using a state transition rule. In
particular, the agents that will be described in this chapter can be endowed
with modalities of perception, action, and embodiment that are generally
absent in purely cellular models.

7.1 Biological Self-Organization

The notion of self-organization comes from the world of physical chemistry
to indicate a process where local interactions among simple particles gener-
ate a structure at a higher level. Examples of self-organization include the
appearance of geometric patterns in reaction-diffusion chemical systems, the
formation of snow crystals, and the appearance of moving objects within
Conway’s Game of Life described in chapter 2. The resulting global pat-
terns are also said to be emergent because they are more than the sum of the
constituent parts.

The principles of self-organization are appealing for explaining biologi-
cal collective phenomena where the resulting structures and functionalities
greatly exceed in complexity the perceptual, physical, and cognitive abilities
of the participating organisms. Examples of biological self-organization in-
clude the construction of beehives, the foraging strategies of ants, and the
regulation of colony life in social insects. In all these cases, the resulting
structure emerges from the collective work of individual organisms that exe-
cute simple behaviors based on local information and do not possess a global
plan of the end result.

Some of those simple behaviors could be genetically programmed, but it
is unlikely that long series of actions are encoded in the genotype because
that would require large sequences of DNA and would be too inflexible for
sudden change that can occur in the environment. A more plausible explana-
tion is that evolution selects for behavioral rules that capitalize on principles
of self-organization for producing a collective phenomenon. In other words,

7.1 Biological Self-Organization 517

most of the resulting behaviors are not genetically encoded, but result from
the interactions with other individuals in a self-organizing process.

Self-organization builds on two opponent forces: attraction and repulsion.
In biological systems, these forces are often described as positive and neg-
ative feedback (Camazine et al. 2001). Feedback occurs when a quantity in
the system is fed back into the system to increase or decrease the magnitude
of that same quantity. As we will see in the next section, the quantity could
be the density of individuals in a group. Small density produces attraction
behaviors that increase density, while high densities produce repulsion be-
haviors that decrease density.

Typically, the equilibrium of a self-organizing system results from the in-
terplay between positive and negative feedback. This equilibrium state is
equivalent to an attractor in dynamical systems theory because the system
will tend to return to it if perturbed. However, a self-organizing system can
display multiple states and chaotic trajectories. Self-organizing systems can
be conveniently described by sets of differential equations where the change
of system state is a function of the system state at the previous time step (pos-
itive feedback) times a limiting factor (negative feedback) whose magnitude
is inversely proportional to the magnitude of the system state.

It has been shown that self-organizing systems with positive and negative
feedback can display sudden modifications –or bifurcations– that affect theBIFURCATIONS

pattern or functionality at the global level (May 1974). This occurs for par-
ticular values of the parameters that describe the system. For example, the
logistic equation Nt+1 = rNt(1 − Nt), which describes the evolution of the
population size N , produces a gradual extinction when the parameter r is
smaller than 1, a growth to a constant value for 1 ≤ r < 3, the oscillation
between two different sizes for 3 < r ≤ 3.4, and multiple states for r > 3.4
that quickly display chaotic trajectories where the population can transit be-
tween several unpredictable, but not random, sizes (Crutchfield et al. 1986).
Assuming that the parameter r is partly or entirely determined by geneti-
cally dependent factors, as the metabolism of a species, evolution may favor
parameter values that generate stable behaviors, such as in the regulation
of the nest temperature, or parameter values that produce unpredictable be-
haviors, as in the fleeing behavior of an insect. The genetic description of a
single parameter is a very convenient way to produce radically different dy-
namics instead of the genetic description of all the components that produce
the most suitable behavior.

The interaction at a distance between animals occurs by means of cues
and signals (Camazine et al. 2001). A cue is an unintentional index that can

518 7 Collective Systems

be picked up by an animal, such as a trail in the snow. The perceiving animal
can decide whether to follow (positive feedback) or avoid (negative feed-
back) the cue. Instead, a signal is an intentional index emitted by an animal
that is intended (more or less consciously) to affect the behavior of other re-
ceiving animals. For example, the alarm cry of some birds when a predator
approaches is an intentional signal.

Stigmergy is a specific type of social communication through modificationSTIGMERGY

of the environment. The result of work by an individual affects the action
of another individual. Stigmergy was first advocated by Grassé (1959) to ex-
plain the construction of elaborated nest architectures by termites and other
insects. It was later extended to explain the foraging strategies of ants that
deposit trails of chemicals, known as pheromones. Stigmergy is a form of
cue-based communication because it is not intentional.

The intentionality of signals, i.e., signals that can be emitted at will by the
animal, can lead to more complex dynamics (Maynard-Smith and Harper
2003; Searcy and Nowicki 2005) and eventually to human language (see Sza-
mado and Szathmary 2006 for a review of theories on the emergence of hu-
man language) that involve both evolutionary and cognitive factors.

Let’s now consider some examples of self-organization that have inspired
computational and robotic models described later in this chapter.

7.1.1 Aggregation

Aggregation is a typical example of self-organization that can be explained
by positive and negative feedback. For example, in fish schools large num-
bers of individuals swim in close formations that can rapidly change direc-
tion as well as disperse and reunite. The coordinated, homogeneous, and
rapid movement of the school gives the appearance of a single superorgan-
ism. Huth and Wissel (1992) suggested a simple model of schooling based
on both negative and positive feedback. In its simplified version, a fish dis-
plays four behavioral reactions that depend on the position and orientation
of other fish: (a) if there is another fish in its immediate neighborhood, the
focal individual will move away to avoid collision (negative feedback); (b)
if there is another fish at an intermediate distance, the focal individual will
tend to align along its orientation; (c) if there is another fish at a greater dis-
tance, the focal individual will tend to swim toward it (positive feedback); (d)
if there is no fish in sight, the focal individual will perform random search
movements. Although the model makes strong assumptions about the per-

7.1 Biological Self-Organization 519

ceptual abilities of fish and does not consider other sources of perturbation,
it can capture several behaviors observed in animals (Partridge 1982).

7.1.2 Clustering

Several ant species engage in clustering and sorting of objects. For example,
corpses of dead ants are organized in large clusters at the periphery, or near
walls, of the nest for better circulation (Theraulaz et al. 2002); sand pellets are
clustered to form a circular wall that protects the colony (Franks et al. 1992);
and eggs are organized in regular patterns where neighboring eggs have sim-
ilar maturation times for more efficient feeding (Franks and Sendova-Franks
1992). All these types of clustering and sorting behaviors can be explained
by variations of a simple behavioral model that combines positive and neg-
ative feedback. In its simplest form, the probability that an ant picks up an
object is inversely proportional to the number of objects that it has experi-
enced within a short time window. Therefore, the ant will tend to pick up
isolated objects, but won’t remove objects that occur in clusters. Instead, the
probability that an ant deposits an object is directly proportional to the num-
ber of perceived objects in a short time window. Therefore, the ant will be
more likely to deposit an object near larger clusters of objects (Deneubourg
et al. 1991; Theraulaz et al. 2002). Sorting behaviors may be explained by
adding different response probabilities for different types of objects in the
environment.

7.1.3 Nest Construction

Termites and wasps collectively build nests whose architectural complexities
exceed the perceptual and cognitive abilities of single individuals. Even if an
individual possessed the full sequence of behaviors necessary to assemble
such nests, the question still remains of how that individual could possibly
coordinate with other individuals who work in parallel. A number of mod-
els based on positive and negative feedback have been advocated to explain
how such engineering feats can be realized without a plan or a master archi-
tect. All models rely on stigmergic communication (Grassé 1959) whereby
the perception of the result of previous work triggers specific construction
behaviors genetically encoded as stimulus-response associations. Theraulaz
and Bonabeau (1995) proposed a discrete stigmergic model of wasp nest con-
struction. The model operates like a cellular automaton where each cell in a
3D lattice represents a cell of the nest. The wasp decides if and where a new

520 7 Collective Systems

Figure 7.1 Successive steps in the construction of a structured lattice architecture
including a pedicel, an external envelope, regularly spaced internal layers or combs,
and an entrance opening. This architecture resembles that of the Epipona wasp nest.
The completion of each step gives rise to stimulating configurations that belong to the
next one. In steps 7 to 9, the front and right portions of the external envelope have
been cut away. Reproduced with permission from Theraulaz and Bonabeau (1995).

cell is constructed according to a set of predefined rules (figure 7.1). The
stigmergic communication is discrete because the animal switches between
discrete construction rules depending on discrete perception patterns. The
authors have also used an evolutionary approach driven by a complexity
fitness measure to investigate the space of construction rules and resulting
architectures; some of the resulting nests resembled very closely the wasp
nests found in nature.

7.1 Biological Self-Organization 521

Figure 7.2 Pheromone-depositing ants tend to choose one of two available paths.
Adapted from Deneubourg et al. (1990).

7.1.4 Foraging

Stigmergy can also improve the efficiency of collective foraging. Some ant
species lay a pheromone trail that is used to select a path, find the shortest
one, and establish a link between the food area and the nest. Deneubourg
et al. (1990) showed that when pheromone-laying ants are presented with
two alternative paths of equal length between the nest and the food area,
they distribute equally between the two paths, but after a few minutes most
ants will travel only through one of the two paths (figure 7.2). This hap-
pens because the path that is initially visited by more ants contains more
pheromones, which attracts more ants, which increases the pheromone quan-
tity, and so forth in a positive feedback loop. If the ants are presented with
two paths of different length, they will tend to choose the shorter one be-
cause ants on the short path return earlier to the nest and thus leave more
pheromones on that path (Goss et al. 1989). However, if considerably more
ants choose the long rather than the short path in the early stage of explo-
ration, they will tend to stick with the longer path. As we will see later in this
chapter, computational models inspired by ant foraging solve this issue by
assuming a fast evaporation of the pheromone trail, which favors the choice
of short paths; however, it is not clear if in natural systems evaporation is
sufficiently rapid to play a role in the choice of the shorter path.

Deneubourg et al. (1989) also showed that positive feedback mediated by
pheromone deposition can help blind army ants to raid through a large ter-
ritory in search of prey while maintaining a path to the nest (figure 7.3). The
authors showed that the different raiding patterns displayed by different
species of army ants are not generated by different searching rules, but by
different dispersion patterns of the prey that the ants chase.

522 7 Collective Systems

Figure 7.3 Army ants explore the environment in search of prey while maintaining
a path to the nest with pheromone deposition. The foraging pattern depends on the
scattering of prey. Adapted from Burton and Franks (1985).

7.1.5 Division of Labor

In the examples of self-organization described so far, all individuals have
the same set of behavioral rules or perform the same activity. However,
several insect societies display division of labor and specialization where
different activities are simultaneously performed by specialized individuals
(Robinson 1992). Individuals can be specialized in a soft or strong manner.
Softly specialized individuals are individuals that can perform several activ-
ities, but at every instant tend to perform the activity that is most needed
by the group. Strongly specialized individuals instead are individuals that
can perform only one or few activities. Examples of division of labor include
foraging and nest defense in ants (Detrain and Pasteels 1991), foraging and
nursing (Calderone and Page 1996), and nectar and pollen collection (Seeley
1995) in honeybees.

Although genetic factors certainly play a role in some types of strong spe-
cialization (Bourke and Franks 1995), such as polyethism (age-dependent
specialization) and polymorphism (different body shapes), the unpredictable
modifications of the environment and the variability within the colony re-
quire additional mechanisms for ensuring dynamic task allocation. For ex-
ample, Edward O. Wilson (1984) noticed that in some ant species specialists
of type A can carry out tasks that they would normally not perform if the

7.1 Biological Self-Organization 523

number of specialists of type B for those tasks decreases (but not the other
way around).

In order to explain these results, Bonabeau et al. (1996) proposed the re-RESPONSE THRESHOLD

MODEL sponse threshold model whereby an individual performs a task if the stimulus
associated to that task exceeds the individual’s threshold. For example, the
demand for water is a stimulus associated to water collection; similarly, the
number of enemies in the surrounding of the nest is a stimulus associated to
nest defense. An individual with a low threshold will tend to perform the
corresponding task even if the stimulus (need) is very low; conversely, an
individual with a high threshold will perform the corresponding task only if
the stimulus (need) is very high. The response threshold model can explain
the regulation of an essential element, such as food, by allocating individu-
als to foraging as soon as the food demand increases. Individuals can have
as many different thresholds as the many different tasks required for colony
survival.

The dynamic task allocation observed by Wilson (1984) can be explained
by assuming that specialists of type A have low thresholds for the stimulus
associated to task A and moderate thresholds for task B, whereas specialists
of type B have low thresholds for the stimulus associated to task B (and high
thresholds for task A). As soon as the number of specialists of type B de-
creases, the stimulus associated to that task will increase until it exceeds the
corresponding thresholds of specialists of type A; consequently, some spe-
cialists of type A will perform task B until the corresponding stimulus falls
below their threshold.

The response threshold model has some similarity with the so-called mar-
ket-based models of task allocation where agents bid a certain amount of
their resources for a good (task) and where the cost of the goods depends on
their scarcity and demand (Clearwater 1995). For a comprehensive overview
of models of division of labor in social insects, we refer the reader to (Beshers
and Fewell 2001).

The examples of collective self-organization and models that we described
above inspired the design of novel machine-learning techniques and robotic
systems. This area of research, also known as swarm intelligence (Beni 2004;SWARM INTELLIGENCE

Bonabeau et al. 1999), studies large collections of relatively simple agents that
can collectively solve problems that are too complex for a single agent or that
can display the robustness and adaptability to environmental variation dis-
played by biological agents. In the following three sections we will describe
examples of swarm intelligence applied to computer science and robotics.

524 7 Collective Systems

F(x)

x

Figure 7.4 A swarm of five particles searching for the global minimum of a one-
dimensional function defined over the domain of real values.

7.2 Particle Swarm Optimization

Particle swarm optimization (PSO) is a machine-learning technique loosely
inspired by birds flocking in search of food (Kennedy and Eberhart 1995).
Imagine a flock where each bird cries at an intensity proportional to the
amount of insects that it finds at its current location, can perceive the po-
sition of neighboring birds, and can tell which of the neighboring birds emits
the loudest cry. There is a good chance that the flock will find a spot with
the highest concentration of insects if each bird follows a trajectory that com-
bines three directions: keep flying in the same direction, return to the location
where it found the highest concentration of insects so far, and move toward
the neighboring bird that cries the loudest.

PSO consists of a number of particles (birds) that collectively move on the
search space in search of the global optimum (figure 7.4). Each particle is
characterized by its position and performance. For example, in the optimiza-
tion of a function of one variable, each particle will be characterized by the
value of the variable and by the corresponding value of the function.

Initially, particles are randomly distributed on the search space and move
according to local information. Each particle communicates its performance
to neighboring particles; can remember the position where it recorded the
best performance so far; and can tell the position of the neighboring particle
with the highest performance. Each particle updates its position by adding
up fractions of three displacements: (a) a fraction of the displacement in the
same direction that it was following at the previous time step; (b) a fraction
of the displacement in the direction toward the position where it recorded

7.2 Particle Swarm Optimization 525

F(x)

xprevious
best own

best neighbor
resulting

Figure 7.5 The update of the position of a particle (black disk) is given by the sum
of three directions: its previous direction, the direction toward its own best position
so far (gray disk with black outline), and the direction toward the position of its best
neighbor (gray disk without outline) at that moment. Each of the three directions can
be separately weighted by the constants a, b, c, which in the figure have been all set
to 1. Furthermore, some uncertainty (dotted lines) can be added to the positions of
the best own and best neighbor (no uncertainty has been used for the update in the
figure).

the highest performance so far; and (c) a fraction of the displacement in the
direction toward the position of the neighbor with the highest performance
at that moment.

Formally, the new position xt+1
i of a particle i is given by

xt+1
i = xt

i + vt+1
i

where vt+1
i is the new velocity of the particle. In this simple case, we consider

particles continuously moving on a one-dimensional function of real values.
The velocity of each particle is computed by adding up the three directions

(figure 7.5) mentioned above:

vt+1
i = avt

i + b(xp
i − xt

i) + c(xt
j − xt

i)

where a, b, c are constants that separately control the importance of the three
directions, (xb

i − xt
i) is the difference between the position of the particle

where it recorded the best performance p so far and its current position, and
(xt

j − xt
i) is the difference between the position of the neighboring particle j

with the best performance at that moment and the particle’s position.
Whenever a particle records a better performance at its new location, the

value xb
i is updated. However, the velocity update requires some element of

526 7 Collective Systems

F(x)

x

A B

C

D

E

A

B

C

D
E

Figure 7.6 Geographical and social neighborhoods. In the geographical neighbor-
hood, a particle speaks and listen to a small number of particles that are nearby in
the space of the function to be optimized (dotted area on the left). In social neighbor-
hoods, particles are labeled and defined as neighbors according to some predefined
ordering, such as the circle on the right. During search, a particle will always speak
and listen to its social neighbors (dotted area on the right), irrespective of where they
are in the function space.

randomness in order to allow particles to explore novel areas of the search
space and avoid stagnation in local optima. This is obtained by adding a re-
gion of uncertainty around the position of the best performance recorded so
far and of the neighboring particle with the best performance (dotted regions
in figure 7.6), which formally translates into

vt+1
i = avt

i + brs(x
p
i − xt

i) + crt(xt
j − xt

i)

where rs and rt are random values in the range [0, s] and [0, t], respectively.
The neighborhood of the particles can be geographical, in which case the

neighborhood is given by the positions of the particles in the function space
(figure 7.6, left), or social, in which case the particles are labeled and defined
as neighbors independently of their position. For example, a frequently used
social neighborhood consists of ordering particles around a circle (figure 7.6,
right). If a social neighborhood is used, a particle will always speak and listen
to the same set of particles throughout the search process. The position of
the particles in the swarm can be updated synchronously or asynchronously
(similarly to the update of neurons in Hopfield neural networks described in
chapter 3).

The typical size of the swarm is in the range of [20, 200] particles and the
neighborhood is approximately one-tenth of the swarm size. The values of
the three constants a, b, c and of the uncertainty regions s and t can be indica-
tively set in the range [0.1, 1] for low-dimensional functions in the domain

7.3 Ant Colony Optimization 527

of real values. Clerc and Kennedy (2002) provide a formal study of these
PSO constants for solving complex functions. The values of the constants,
neighborhood, and swarm size can also be adapted during search (Shi and
Eberhart 1998).

Particle swarm optimization has been used with success in several do-
mains ranging from regulation of power plants to the class of traveling sales-
man problems (Kennedy and Eberhart 2001). When compared to other op-
timization techniques, there is empirical evidence that PSO performs better
for optimization of functions of real variables, such as the weights of a neural
network. In the case of multidimensional functions and of functions that are
defined over discrete or non-Euclidean spaces, one must find the most appro-
priate ways of computing directions and updating velocities so that particles
converge toward the optimum of the function. This choice is very delicate
because it transforms the mapping between contiguous points in function
space and in particle space, thus affecting the likelihood of optimizing the
function.

Just like the evolutionary algorithms (EAs) described in chapter 1, particle
swarm optimization searches the problem space in parallel with a population
of candidate solutions. However, whereas the search in EA is driven by com-
petition among candidate solutions, the search in PSO is driven by coopera-
tion. The choice of suitable genetic encodings and crossover operators in EA
is equivalent to the choice of suitable position and velocity updates in PSO.
In both cases, the choices may be easy for real-valued function optimization,
but not for more complex and discontinuous problem spaces where differ-
ent mappings and operators can generate very different results. Landon and
Poli (2007) used genetic programming to find problems which demonstrated
the strength and weakness of PSO as compared to other search techniques,
including EA.

7.3 Ant Colony Optimization

Ant colony optimization (ACO) is another family of optimization algorithms
inspired by pheromone-based strategies of ant foraging. ACO algorithms
were originally conceived to find the shortest route in traveling salesman
problems. In ACO several ants travel across the edges that connect the nodes
of a graph while depositing virtual pheromones.

Ants that travel on the shortest path will be able to make more return trips
and deposit more pheromones in a given amount of time. Consequently, that

528 7 Collective Systems

A

C

D

E

B

τ
BC

η
BC

τ
BD

η
BD

τ
BE

η
BE

τ
BA

η
BA

?

?

?

Figure 7.7 A virtual ant arriving from node A considers which edge to choose next
on the basis of pheromone levels τij and visibilities ηij (inverse of distance). The edge
to node A is not considered because that node has already been visited.

path will attract more ants in a positive feedback loop. In nature, however,
if more ants choose a longer path during the initial search, that path will be-
come reinforced even if it is not the shortest. To overcome this problem, ACO
assumes that virtual pheromones evaporate, thus reducing the probability
that long paths are selected.

Several types of ACO algorithms based on those principles have been de-
veloped with variations that address the specificities of the problems to be
solved. In this chapter we will describe the first ACO algorithm, known as
the ant system (Dorigo et al. 1996), which provides a foundation for moreANT SYSTEM

recent and specific algorithms.
Initially, ants are randomly distributed on the nodes of the graph. Each

artificial ant chooses an edge from its location with a probabilistic rule that
takes into account the length of the edge and the amount of pheromones on
that edge. Edges leading to nodes that have already been visited by that ant
are not considered in the probabilistic choice. Once all ants have completed
a full tour of the graph, each of them retraces its own route while depositing
on the traveled edges an amount of pheromones inversely proportional to
the length of the route. Before restarting the ants from random locations for
another search, the pheromones on all edges evaporate by a small quantity.
The pheromone evaporation, combined with the probabilistic choice of the
edge, ensures that ants eventually converge on one of the shortest paths, but
some ants continue to travel also on slightly longer paths.

Let us now consider the algorithm more formally. The number of ants M is
usually equal to the number of nodes N in the graph. A small amount of vir-

7.3 Ant Colony Optimization 529

tual pheromones is deposited on all edges at the beginning of the search. The
probability pk

ij that ant k chooses the edge from node i to node j (figure 7.7)
is given by

pk
ij =

τa
ijη

b
ij∑H

h∈Jk τa
ihηb

ih

where τij is the amount of virtual pheromones on that edge and ηij is the
visibility of the node computed as the inverse of the edge length 1/lij . The
constants a, b weight the importance of the two factors. If a = 0, ants choose
solely on the basis of the shortest distance; conversely, if b = 0, ants choose
solely on the basis of the pheromone amount. The divider in the fraction
sums up the pheromone and visibility values for all edges H that are avail-
able at the node where the ant sits as long as they belong to the set Jk of
nodes that the ant k has not yet visited. As soon as the ant visits a node, this
is deleted from the list Jk.

Once all ants have completed a tour of the graph, each ant k retraces its
own path and deposits an amount of pheromone Δτk

ij on traveled edges ac-
cording to

Δτk
ij = Q/Lk

where Lk is the total length of the path found by ant k and Q is a constant,
which is set to be the length of the shortest path estimated with a simple
heuristic method. The amount of pheromones on each edge after all M ants
have retraced their own path is equal to

ΔTij =
M∑
k

Δτk
ij .

Before starting all ants again in a new search for the shortest path, phero-
mone levels evaporate according to

τ t+1
ij = (1 − ρ)τ t

ijΔTij

where 0 ≤ ρ < 1 is the coefficient of pheromone evaporation.
This concludes one iteration of the algorithm. The process is repeated for

several hundred iterations until a satisfactorily short path has been found.
The ant system is not guaranteed to find the shortest path, but for graphs of
moderate size (approximately 30 nodes) it provides equal or better solutions
than the best algorithms designed for solving the traveling salesman prob-
lems. The performance of the algorithm can be improved by allowing ants

530 7 Collective Systems

S

D

S

D

Figure 7.8 Left: Virtual ants maintain multiple paths between source and destination
nodes. Shorter paths are traversed by more ants (thicker line). Right: If a node (or
edge) fails, ants immediately use and reinforce the second shortest path available.

that have found the shortest path at each iteration to retrace their own path
several times while depositing virtual pheromone.

However, for problems of higher dimensionality or problems that present
specific constraints, the ant system is no longer competitive with other algo-
rithms that have been specifically designed for solving those problems. To
address this issue, Dorigo and Gambardella (1997) developed the ant colony
system algorithm which improves on the ant system by introducing local
search heuristics in addition to the virtual ants.

Although ACO algorithms are not guaranteed to find the shortest path in
complex, high-dimensional graphs, they find satisfactory solutions with rel-
atively little computation. A major advantage of ACO over other algorithms
for path finding is that virtual ants discover and maintain several short paths
in addition to the best one (figure 7.8, left) because of the probabilistic edge
choice. If an edge is no longer traversable or a node is unavailable, ants will
quickly use and reinforce the second shortest path (figure 7.8, right), whereas
other algorithms must recompute the shortest path on the new graph. There-
fore, ACO is particularly suited for dynamic scenarios where alternative so-
lutions must be available immediately.

This is the case of routing in a real communication network where data
must be sent between two points in the shortest time and with the best qual-
ity despite possible congestion or failure of some nodes. Schoonderwoerd
et al. (1996) developed an ACO algorithm for optimizing the load and per-
formance of telephone networks. The algorithm scored significantly better
than other shortest-route algorithms in terms of failed calls when tested on
a simulation of the 30-node British Telecom network. Di Caro and Dorigo
(1998) developed another ACO algorithm for packet routing on the Internet
and tested it on realistic simulations of the T1 US backbone network with
14 nodes and 21 bidirectional links and of the Japanese NTT network with

7.4 Swarm Robotics 531

57 nodes and 162 bidirectional links. When compared to a series of industry-
standard routing algorithms, ACO scored at least as well as the best standard
algorithm in terms of throughput (bits per second) and performed much bet-
ter than all other algorithms in terms of packet delay time. Furthermore, the
algorithm performed equally well on both networks, despite their different
topology and properties of the nodes.

ACO is a very powerful method for finding the shortest path in dynamic
networks, but it is not straightforward to apply it to other problems, such
as function optimization or search on Euclidean spaces. The challenge in
that case, similar to PSO and to EA, is to find a suitable representation of
the problem so that it can be navigated by virtual ants. Stuetzle and Dorigo
(2004) describe several applications of ACO algorithms in a variety of prob-
lems with different representations.

7.4 Swarm Robotics

Swarm robotics is the application of the principles of self-organization to col-
lections of simple, autonomous robots (Şahin 2004). By simple robots, we
mean robots that do not have sophisticated sensors, electronics, and mechan-
ics and that do not use complex algorithms based on global information or
central control. The core idea of swarm robotics is to capitalize on simple
interactions among robots in order to solve complex problems by means of
emergent behavior, similar to what social insects do.

Swarm robotics is mainly concerned with groups of robots that are larger
than those that could be easily controlled with a centralized, top-down ap-
proach, but within a reasonable number that could be manufactured at a
price that is roughly comparable to that of a few sophisticated robots. Given
the constraints of today’s technology and manufacturing processes, the typ-
ical size of robotic swarms is currently in the range of 10 to 100 units. How-
ever, since swarm robotics puts emphasis on hardware and software sim-
plicity, it should benefit from further miniaturization of robotics hardware,
which implies simple sensing and computing. The idea of exploiting the po-
tential synergy of several simple robots was first put forward by Fukuda and
Ueyama (1994) under the name of cellular robotics.

The potential advantages of this approach include the robustness of the
swarm to failure of individual robotic units or run-time addition of new
units, the scalability of the emergent behaviors to swarms of different sizes,
the capitalization of self-organization principles of environmental noise and

532 7 Collective Systems

individual differences, and the synergetic effect whereby the work of the
swarm is greater than the sum of the work by the individual units, also
known as superlinearity.SUPERLINEARITY

Most developments in swarm robotics focus on populations of homoge-
neous robotic units, which fall into two distinct classes. One class consists of
groups of relatively inexpensive mobile robots, which are fully autonomous
and can operate also in isolation. Typical examples are the MARS (Fukuda
et al. 1999) and Khepera (Mondada et al. 1993) robots. Within this context,
also known by the name of collective robotics, the main goal is devising simple
control rules based on local information that give rise to adaptive function-
alities at the level of the swarm, such as coordinated exploration or object
clustering and transportation.

The other class of swarm robotics includes self-reconfigurable and self-
assembling robots, which are composed of several identical modules. Here
the notion of cellularity is taken very literally because the robot is composed
of several, partially independent but interconnected robotic cells. Robotic
cells cannot operate in isolation, but can modify their relative position in or-
der to produce various robotic morphologies with different functionalities.
In this case too, the principles of self-organization, based on simple and local
control, are used to provide emergent functionalities to the robotic superor-
ganism.

Behavior-based control, which was described in chapter 6, is often used in
swarm robotics because it offers a methodology for rapidly adding and fine-
tuning control rules until the desired emergent swarm behavior is obtained,
it maps easily into a distributed and asynchronous collection of physically
distinct robotic units without central control, and it can easily accommodate
the principles of positive and negative feedback that lie at the heart of self-
organization.

7.4.1 Example 1: Coordinated Exploration

A first concern with a swarm of mobile robots is to make sure that individu-
als remain together as they move through cluttered space.

In a seminal work, Reynolds (1987) suggested three simple rules that in-
dividual agents should obey in order to display bird-like flocking or fish
schooling (figure 7.9). Reynolds assumed that agents, known as boids, couldBOIDS

perceive the distance and orientation of other agents within a small neigh-
borhood. Each boid followed three rules: (a) if it was too close to other
boids, it moved away from them; (b) if it was too far from other boids, it

7.4 Swarm Robotics 533

Figure 7.9 Three behavioral rules for boid flocking: separation, cohesion, and align-
ment. When embedded in a flock of agents with local perception, these rules produce
coordinated navigation through obstacles without dispersing the agents. Adapted
from Reynolds (1987).

moved toward them; and (c) it aligned its orientation along the orientation of
neighboring boids. Simulated boids moved together in both empty and clut-
tered spaces, temporarily diverging and then reaggregating once the obsta-
cles were passed. The film industry adopted this approach because it could
rapidly generate computer graphics sequences of natural-looking groups of
animals. This not only saved time with respect to drawing each character
separately, but also produced sequences that looked more realistic. Accord-
ing to Reynolds’s website, which is a rich source of information on the syn-
thesis of group behavior, variations of the boids algorithm were used in the
movies The Lion King, Batman Returns, and Star Trek, among others.

The assumption that agents can perceive the distance and orientation of
neighboring agents is not easily met in mobile robots, where sensing is still
a challenge. Matarić (1992) designed a series of behavior-based modules for
mobile robots that, when combined and properly weighted, would produce
flocking behavior. Her wheeled robots were equipped with collision sensors
(electromechanical switches) and with six infrared distance sensors point-
ing in different directions around the body of the robot. The sensors could
be used to measure the distance to another robot within a small neighbor-
hood and to detect collisions. The robots were equipped with four elemen-
tary behaviors. “Collision avoidance” steered the robot away from objects
that were closer than a predefined threshold. “Following” steered the robot
toward another robot perceived on its left or right, if that was the only per-
ceived object; instead, if robots were perceived on both the left and the right,
the robot would move straight for a short time until another robot in front

534 7 Collective Systems

Marker for
Overhead
Camera

Proximity Sensors

Polymer
Odor
Sensor

Directional
Wind
Sensor

�

�����

���	
�

����������

���	���

���	������

���	������

�������

Figure 7.10 Left: The 24 cm mobile robot equipped with an anemometer (wind sens-
ing) and conducting polymer for odor detection that was used in experiments on lo-
calization of an odor source (Hayes et al. 2002). Right: Behavioral strategy of a robot
engaged in collective odor localization. Images courtesy of Alcherio Martinoli, EPFL,
Lausanne, Switzerland.

was perceived. “Dispersion” and “aggregation” pulled together the distance
readings from multiple sensors and steered the robot away and toward, re-
spectively, the computed center of mass. When suitably combined in a sub-
sumption architecture, these behaviors resulted in flocking behavior of five
robots through empty spaces. However, flocking through cluttered environ-
ments was not tested and may require more sophisticated sensing abilities to
align with the orientation of other robots.

Environmental monitoring is a potential application of swarm robotics.
For example, Hayes et al. (2002) showed that a swarm of mobile robots with
minimal sensors and behaviors could be deployed for localizing an odor
source. Although single robots were already suggested for odor localiza-
tion by moving up the odor gradient in the air and water (Kazadi et al. 2000),
the turbulent nature of odor dispersion tends to generate isolated packets
of odors rather than plumes with gradient information, which makes the
problem more difficult and suitable for collective search. Hayes et al. (2002)
devised a simple behavioral controller, rooted in the biological evidence of
chemotactic strategies of insects, which combines spiraling and straight tra-
jectories to locate an odor source.

The wheeled robots used in those experiments were equipped with an
odor sensor, a wind direction sensor, infrared distance sensors, and a wire-
less communication chip (figure 7.10, left). Robots autonomously switched

7.4 Swarm Robotics 535

among three behaviors. In the absence of other information, a robot per-
formed spirals until it detected an odor packet. At that point, it measured
wind direction and moved upwind for a predefined number of steps, which
could be adapted to the frequency of odor detection events. At the end of the
sequence, if no odor was detected, the robot engaged in another spiraling tra-
jectory whose size depended on the time lag of the previously detected odor
events until a new odor packet was detected. During the straight trajectories,
the robot kept a memory of the global displacement using the wheel odome-
ters. If no more global displacement was detected after some time, the robot
assumed that it reached the source of odor.

The authors compared the performance of a swarm of robots required to
localize an odor source with respect to the size of the swarm and to sig-
nals exchanged among all robots when the odor was detected. Experimental
results indicated that swarms of robots enabled to exchange signals were
faster in detecting the odor source than robots operating in isolation and than
groups of robots that could not exchange signals.

However, global signal exchange may not scale well to a large number of
robots. Therefore, Payton et al. (2005) suggested using virtual pheromones in
a swarm of robots required to locate a target in cluttered environments and
lead a human toward it. The idea of pheromone robotics is that robots broad-PHEROMONE ROBOTICS

cast optical signals (virtual pheromones) that can be detected by neighboring
robots on line of sight and rapidly spread across the swarm indicating a vi-
able path toward the source of the signal. The authors demonstrated this
concept with a swarm of 20 wheeled robots equipped with Palm computing
devices.

Robots had a circular circuit composed of eight infrared emitters and re-
ceivers driven by a microcontroller. The modulated signal allowed robots to
send data, such as the signal identity and hop count from the source robot.
Received signals (virtual pheromones) were tagged with direction and in-
tensity. Robots received multiple signals, but accepted only signals with
hop counts greater than those that were already received earlier. The hop
count of accepted signals was decreased and further transmitted along the
eight directions. The optical nature of infrared signals, their directionality
and intensity, along with the hop-count decrement, rapidly created a gradi-
ent through open passages from the source to the periphery of the robotic
swarm. A human with a head-mounted camera could detect the directional-
ity and intensity of the infrared signals, thus obtaining a path leading from
the periphery of the signal to its source.

536 7 Collective Systems

The authors tested the method with a swarm of robots equipped with var-
ious sensors and behaviors similar to those described by Matarić (1992). The
robots quickly located a source of interest, deployed so as to cover the open
space, and indicated the path to a human equipped with the head-mounted
camera and display. A potential problem with this method is the mismatch
between the size of robots and of humans because objects that obstruct op-
tical signals between the small robots may not necessarily be obstacles for
humans, and small openings where robots can exchange optical signals may
not be traversed by humans.

Target search and path formation were also implemented by means of
chaining methods (Goss and Deneubourg 1992; Drogoul and Ferber 1992;CHAINING

Werger and Matarić 1996) where robots establish long head-to-tail chains
linking a target with a source. A limitation with chaining is that robots must
continuously touch each other to maintain contact, or pass messages to es-
tablish directionality of the chain, as in the pheromone approach described
previously. Nouyan and Dorigo (2006) suggested an alternative chaining
strategy where robots could light up in one of four different colors to signal
their position in the chain. Each robot was equipped with three behaviors:
searching for a target, chaining by setting up a color according to the color
of the neighboring robot (if any), and exploring by moving up the chain to
the target location while following the color order. Robots switched among
these behaviors with predefined probabilities until a link between target and
starting locations was established. The preprogrammed color rule allowed
robots to form repeated sequences of colors that gave a directionality to the
chain.

7.4.2 Example 2: Transportation and Clustering

Swarming has also been studied in the context of physical work. As we men-
tioned earlier, social insects excel in carrying out physical work that a single
animal could not perform.

In one of the earliest studies of collective physical work, Kube and Zhang
(1993) studied the problem of coordinated box pushing by a team of robots
without explicit communication. The box was brightly lighted and too heavy
for a single robot. Robots were equipped with directional light sensors for
detecting the box and directional infrared sensors for detecting obstacles
and other robots. When the box and the robots were positioned in an en-
closed arena, only three behaviors (box pushing, robot following, and ob-

7.4 Swarm Robotics 537

Figure 7.11 Nests constructed by one, two, and four robots using a blind bulldozing
strategy (Parker et al. 2003). Image courtesy of Chris Parker, University of Alberta,
Canada.

stacle avoidance) organized in a subsumption architecture were sufficient to
push the box toward a wall.

However, the swarm was stuck if several robots happened to push the box
from opposite directions. In later work, Kube and Bonabeau (2000) realized
that ants solve this problem during the transportation of heavy prey by ran-
domly realigning their pulling and pushing directions when when they do
not detect any displacement for some time. The authors added a similar con-
trol rule to the robots and observed that even large swarms of robots could
reliably push the box all the way to a wall. Box pushing has been studied also
by other authors who used teams of robots with different sensors, shape, and
locomotion mechanisms (Parker 2000).

Parker et al. (2003) showed that collective pushing can also result in prim-
itive forms of construction. The authors took inspiration from nest construc-
tion strategies, known as blind bulldozing, displayed by ants that build circu-BLIND BULLDOZING

lar nests in rock crevices where light cannot enter (Franks et al. 1992). Each
ant pushes granules encountered on its path until the piled-up material of-
fers too much resistance. At that point, the ant turns in a different direction
and resumes the pushing behavior. The combined work of the ants results in
a clear area surrounded by walls that is sufficiently large for the ant colony
to live within.

The authors programmed a number of mobile robots with three behaviors
that were sequentially activated according to predefined transition rules. The
robots moved in straight trajectories pushing whatever dirt was found. If a
robot encountered resistance above a predefined threshold, it reoriented it-
self in a new random direction, and resumed pushing. The robot reoriented
itself also if it encountered another robot detected with dedicated sensors.

538 7 Collective Systems

This behavior resulted in a clean, circular area surrounded by walls of col-
lected material. The shape of the nest-like area was not affected by the num-
ber of robots in the swarm (figure 7.11). It should be noticed that although
nest construction resulted from stigmergy (the result of piled-up material af-
fects the robot’s actions), in this case only a single robot could be sufficient
for construction of the nest.

Beckers et al. (1994) reported that a similar set of pushing behaviors, when
embedded in a swarm of robots, can result in clustering and sorting of spa-CLUSTERING

tially dispersed objects, as observed in the biological ants described earlier.
Holland and Melhuish (1999) systematically studied the behavioral, mor-
phological, and environmental conditions that lead to the formation of clus-
ters collected by a swarm of mobile robots. The objects were disks of two col-
ors distributed in an arena. The robots were equipped with a disk-grasping
mechanism and three sensors: a grasp sensor, a color sensor that reported the
color of the grasped disk, and an obstacle detection sensor. Robots moved
according to three behavioral rules: (1) If the robot held a disk and detected
an obstacle (wall or other robot), it chose with a predefined probability ei-
ther to turn away and keep the disk, or to release the disk and turn away;
(2) if the robot held a disk and detected another disk in its path, it released
the disk and turned away in a random direction; (3) in all other cases, the
robot moved forward. A swarm of 10 robots was put in a large arena with 44
spatially dispersed disks.

The authors noticed that the work of the swarm produced two different
results for different values of the probability of the first rule: when the prob-
ability of turning away from obstacles while retaining the disk was set to 1,
the robots reliably brought all disks into a single cluster at the center of the
arena; instead, when the probability was below 0.88, the robots started to
form clusters along the walls of the arena; when the probability value was 0,
the robots lined up all objects at the boundaries of the arena, but no clusters
were formed. As we have seen earlier, this sudden bifurcation between sta-
ble and different outcomes is a typical behavior of self-organizing systems
and has also been observed in the behavior of ants clearing up dead corpses.
Holland and Melhuish (1999) also noticed that by adding to the second rule
a pull-back and release behavior if the disk held in the gripper was of a cer-
tain color, the robots sorted out the disks into a cluster with all the disks of
that color surrounding all the disks of the other color. This result indicated
that sorting and clustering may not be the result of different behaviors, but
variations of the same set of rules.

7.4 Swarm Robotics 539

Figure 7.12 A team of robots cooperate to pull long sticks out of the ground (Ijspeert
et al. 2001). Image courtesy of Alcherio Martinoli, EPFL, Lausanne, Switzerland.

The identification of critical parameters, such as the disk release probabil-
ity described above, whose variation can affect the emergence of collective
behavior, represents a major research goal in the study of self-organization.
Along this line of investigation, Ijspeert et al. (2001) analyzed the condi-
tions under which a swarm of robots can cooperatively pull sticks out of the
ground. Groups of two to six Khepera robots were placed in a circular arena
that contained four thin sticks partially buried in the ground (figure 7.12).
Robots were equipped with grippers that could be used to lift sticks, but
the maximum elevation of the gripper was shorter than the portion of the
stick in the ground. Collaboration was thus required, with one robot lift-
ing the stick half out of the ground until another robot approached the stick
from the opposite direction and lifted the stick completely out. Robots used
infrared sensors to discriminate sticks from walls and from other robots be-
cause sticks were much thinner; robots could also feel the effect on their own
gripper of another robot attempting to extract the stick. The control sys-
tem was composed of few behaviors that allowed the robot to wander in the
arena while avoiding walls and other robots. If a stick was encountered, the
robot gripped and pulled it up. If it did not feel any other robot holding the
stick, it waited some time with the partially elevated stick for another robot
to help. Instead, if a robot was already holding the stick and another robot
arrived to help, it released the grip, allowing the full extraction of the stick
by the second robot. If no robot came to help within a predefined amount of
time, the first robot released the stick and resumed the wandering behavior.

The authors studied the optimal waiting time relative to the number of
cooperative events (successfully extracted sticks) within a predefined time

540 7 Collective Systems

window as a function of the number of robots. When all robots adopted the
same waiting time, two conditions clearly emerged. If the number of robots
was larger than the number of sticks, the optimal waiting time was very large
because there was always at least one free robot that sooner or later would
arrive to help. Instead, if the number of robots was smaller than the number
of sticks, the authors found an optimum waiting time that maximized the
number of extracted sticks. Furthermore, they discovered a superlinear effect
of cooperation (cooperation increased not only the total number of successful
events but also the number of successful events per robot) for groups of up to
six robots, independently of how the waiting time was set. For larger groups,
the cooperation effect decreased because of overcrowding and interferences
among robots. The authors also realized that when the number of robots was
smaller than the number of sticks, i.e., the condition when the setting of the
waiting time was important, the number of cooperative events increased if
the robots adopted different waiting times. However, this heterogeneity did
not have any effect on swarms of more than six robots.

Although it would be interesting to check whether similar findings on the
interactions between group size, relatedness, and criticality hold also in other
experimental settings, this experiment revealed several properties of collec-
tive self-organization, namely synergetic cooperation to perform tasks that a
single individual cannot tackle, complex behavior emerging from interaction
of simple behaviors, and superlinear performance of swarms.

7.4.3 Example 3: Reconfiguration

Reconfigurable robots are composed of several robotic units and can change
shape to perform different functions. As we already anticipated in chapter
6, these robots are rooted in early suggestions by von Neumann and others
in the 1960s. The first prototype of a reconfigurable robot was the CEBOT
(cellular robot), whose history is described in (Fukuda and Ueyama 1994).

The robotic units that compose reconfigurable robots are sometimes assim-
ilated to the cells that compose an organism. In other cases the robotic units
are assimilated to the individuals that compose a society. The most important
functionality of a reconfigurable robot is the ability to change shape, possi-
bly autonomously, in order to execute a variety of different tasks. Therefore,
their measure of success is generality and flexibility of operation rather than
optimality in performing a specific task.

Most reconfigurable robots are composed of several homogeneous mod-
ules. Homogeneity of the constituent modules brings several advantages,

7.4 Swarm Robotics 541

Figure 7.13 Lattice-type (a) and chain-type (b) reconfigurable robots. Adapted from
Murata and Kurokawa (2007).

such as reduced development and manufacturing costs, but also requires
greater effort in the design of the module, which affects the shape and func-
tionality that the assembled robot can display. Homogeneity also brings the
possibility of self-repair with identical elements being shifted to replace mal-
functioning elements.

Reconfigurable robots fall into two classes (figure 7.13), according to their
connectivity modes (see Murata and Kurokawa 2007 for a recent review).
Chain-type robots are composed of modules with few connecting points thatCHAIN-TYPE ROBOTS

can be assembled in chains and, where connections on the sides of the mod-
ules exist, in branched structures. These robots typically take the form of
snakes, loops, and legged robots, such as the salamander robot described
in chapter 6. Lattice-type robots instead are composed of modules withLATTICE-TYPE ROBOTS

more connecting points and can be assembled in 2D and 3D lattice struc-
tures. These robots can change shape by displacement of constituent mod-
ules throughout the structure of the robot. The regularity of the lattice struc-
ture allows better self-reconfigurability and offers the possibility of generat-
ing more diverse shapes than chain structures where the extremities hang in
the void and are thus difficult to guide into precise docking to other elements
of the robot. However, chain robots offer better mobility, strength, and speed
for functions that require locomotion.

CONRO (configurable robot) is an example of a chain-type reconfigurable
robot composed of a set of homogeneous modules (Castano et al. 2000).
Compared to similar robots, such as the Polybot (Yim et al. 2002), the
CONRO design puts emphasis on the energy and motion self-sufficiency
of each module. A module is an articulated segment composed of three
parts (figure 7.14, top): an active connector that can attach to other mod-
ules, a passive connector that accepts connections from other modules, and

542 7 Collective Systems

Figure 7.14 A CONRO module and a fully assembled CONRO robot (Castano et al.
2000). Photograph courtesy of Andres Castano, NASA JPL, Pasadena, CA.

a central body with two servomotors that provide pitch motion to the active
connector and yaw motion to the passive connector. The passive connector
has three identical sides with two pins and two infrared receivers where the
single-sided active connector can dock with the help of two sockets and two
infrared transmitters. Infrared communication is used for aligning the faces
of the modules prior to attachment and for exchanging simple messages be-
tween attached modules. The active connector incorporates an electrome-
chanical device for locking in the pins after attachment and for releasing
them when required. Each module incorporates a battery and a microcon-
troller that can control the movement of the connectors relative to the main
body. Additional elements, such as antennas or cameras, must be piggy-
backed on one of the modules.

CONRO modules can operate either in master-slave mode, where the in-
structions for motion patterns are computed by an external computer and
propagated to the individual modules, or in distributed mode, where each
module receives the same set of rules and executes a particular movement

7.4 Swarm Robotics 543

according to the state or messages received from neighboring modules.
CONRO successfully demonstrated rapid wave-like motion in snake forma-
tion (figure 7.14, bottom) as well as walking in quadruped and hexapod for-
mation. Thanks to the self-sufficiency of modules, the robot can disassemble
into multiple functional robots and vice versa. However, autonomous self-
assembly is rather difficult, as in other chain-type robots, because it requires
precise guidance of the extremities of the robot.

The M-TRAN (modular transformer) instead is an example of a lattice-type
reconfigurable robot (Murata et al. 2002), although it can also reconfigure it-
self as chain type. M-TRAN modules are designed to fill the spaces of a
regular 3D lattice and can self-reconfigure in a larger variety of shapes than
CONRO by precisely shifting individual modules along other modules in the
structure. An M-TRAN module is composed of two interlinked cubes that
can independently rotate around their parallel joints (figure 7.15, top). As in
CONRO, one cube is an active connector and the other is a passive connector.
Although each cube has connecting devices only on one side, the connection
can occur in any of the four possible orientations. Cubes rotate along the
linked axis in steps of 90° precisely connecting to the face of another cube
in the lattice. When connected in series, M-TRAN modules can transform
into a chain-type robot. M-TRAN robots demonstrated self-reconfiguration
between several different shapes and the ability to move in snake, circle, and
quadruped formation. However, compared to CONRO where modules can
rotate around two perpendicular axes, M-TRAN modules can rotate only
around a parallel axis and thus require more hardware or reconfiguration
steps to perform turns during locomotion. Another recent lattice-type robot,
known as ATRON, addresses this limitation by using quasi-spherical mod-
ules composed of two rotating hemispheres with multiple attachment points
on the surface (Jorgensen et al. 2004).

The control of lattice-type robots is still challenging because shape recon-
figuration requires not only complicated displacements of the units but also
complex calculations to prevent intermediate configurations where the struc-
ture can no longer transform into the desired shape. Therefore, almost all
demonstrated robots rely on precomputed displacements of individual mod-
ules.

Cellular automata have been recently considered as a promising approach
to autonomous self-reconfiguration of lattice-type robots (figure 7.16). In this
approach, which, incidentally, reconnects the field of reconfigurable robots to
its roots conceived by von Neumann, each module incorporates the same set
of transition rules that are executed according to the presence and messages

544 7 Collective Systems

Figure 7.15 An M-TRAN module and a fully assembled M-TRAN robot (Murata
et al. 2002). Images courtesy of Haruhisa Kurokawa, AIST, Tsukuba, Japan.

7.4 Swarm Robotics 545

Figure 7.16 A simulated self-reconfigurable robot that transforms from a random
assembly into a chair-like structure (Stoy 2006). Image courtesy of Kasper Stoy, Uni-
versity of Southern Denmark, Odense, Denmark.

of neighboring modules. Cellular automata were used to produce relative
movements of modules that generate locomotion of a preassembled robot
(Butler et al. 2001) and to self-reconfigure into desired 3D shapes (Stoy 2006).
In this latter case, the transition starts with a randomly selected module act-
ing as a seed and broadcasting the transition rules to all other elements. In
order to attract modules that are far away from the seed module, a digital
signal is diffused throughout the structure providing a gradient that individ-
ual modules follow. When new modules are in place, they act as seeds, until
all modules reach their final destination. Stoy (2006) showed that the combi-
nation of cellular automata and gradient diffusion guarantees convergence
to a desired shape if certain precautions are taken in the choice of the transi-
tion rules and in preventing the structure from obstructing the trajectories of
modules to their destination. However, the modules used in the simulations
rely on motion abilities that have not yet been met by hardware prototypes
of lattice-type robots.

Finally, Swarm-bots (figure 7.17) are robots that cut across the dichotomy
between collective and self-reconfigurable robots because they are composed
of several autonomous units, known as s-bots, which can operate either in
isolation or in physically connected assemblies (Mondada et al. 2004). S-bots
can coordinate their behavior by exchanging light signals and can physically
self-assemble in the most appropriate shape for solving problems that a sin-

546 7 Collective Systems

Figure 7.17 Swarm-bots are composed of several s-bot units that can operate in iso-
lation or in physically connected assemblies (Mondada et al. 2004). a, A group of
s-bots are deployed for coordinated search. b, A Swarm-bot of five s-bots is passing
over a step. c, A Swarm-bot of five s-bots transports a heavy objects towards a target
region. d, A Swarm-bot of 18 s-bots pulls a child to a safe location.

gle s-bot could not, such as passing over large gaps, climbing stairs, or trans-
porting heavy objects. S-bots can connect to each other with a strong gripper
and can feel the torque exerted by other connected robots. They also have
an omnidirectional color camera, several infrared distance sensors pointing
around and under the body of the robot, directional microphones, inclinome-
ters, and temperature sensors. The combinations of wheels and tracks allows
an s-bot to move with high precision on flat surfaces as well as on rough and
stony terrain. S-bots can also rotate their body with respect to the wheel base
in order to grasp other robots or objects and can light up their translucent
belt in different colors, patterns, and frequencies. Swarm-bots can operate as
a coordinated and physically disjointed swarm, or in physically connected
2D and 3D assemblies, but do not offer the rich 3D reconfiguration abili-

7.5 Coevolutionary Dynamics: Biological Models 547

ties of other chain and lattice robots. Swarm-bots were used for coordinated
search, navigation through gaps, and obstacles larger than a single s-bot, and
for transportation of heavy objects (figure 7.17).

The field of reconfigurable robots is still in its infancy and there are several
electromechanical and control challenges that remain to be solved, but it of-
fers enormous potential both in the context of swarm intelligence and of evo-
lutionary robotics to approximate the self-reproducing and self-organizing
properties of living organisms.

7.5 Coevolutionary Dynamics: Biological Models

In the previous sections we have described how collections of agents can
interact with each other during their lifetime in order to produce emergent
functionalities. In the rest of this chapter we will describe how interacting
agents can affect evolutionary dynamics and what evolutionary conditions
are necessary for the emergence of cooperation.

7.5.1 Predator-Prey Competition

As we have seen in the first chapter, evolution occurs in populations where
the struggle for limited resources implies a competition with other individu-
als in the environment. There are situations where the competition between
individuals sharing the same environment becomes so dominant over other
environmental factors that evolutionary dynamics can be significantly af-
fected.

Let us consider the extreme case of two species that coevolve in competi-
tion with each other, such as prey and predators or hosts and parasites. In
this case of competitive coevolution, the reproduction probability of individ-
uals of one species depends on the abilities of individuals in the opponent
species. It has been suggested that competing species may reciprocally drive
themselves to increasing levels of performance by producing an evolutionary
arms race (Dawkins and Krebs 1979).

Formal models of competitive coevolution are based on a set of differen-
tial equations, first developed by Lotka and Volterra in the mid 1920s (LotkaLOTKA-VOLTERRA

MODEL 1925; Volterra 1926), that describe the variations in size of the two popula-
tions, assuming a certain number of characters in the two species:

dN1

dt
= N1(r1 − b1N2)

548 7 Collective Systems

population
density (size)

generations

Figure 7.18 Variation of population size of two competing species according to the
Lotka-Volterra model.

dN2

dt
= N2(−r2 + b2N1)

where N1 and N2 are the population sizes of the two species (number of prey
and number of predators, respectively), r1 is the growth rate of prey in the
absence of predators, r2 is the death rate of predators in the absence of prey,
b1 is the death rate of prey caused by predators, and b2 is the effect of prey
capture on the reproduction rate of predators.

The model predicts that increments of population size in one species cause
decrements of population size in the opponent species, with cyclical dynam-
ics as long as the two populations remain viable (figure 7.18). Later experi-
mental results with coevolving parasites and hosts in controlled laboratory
conditions displayed similar dynamics (Utida 1957). However, the Lotka-
Volterra model does not allow for change in the characteristics of the indi-
viduals, which may affect the reproduction rates of the two species and con-
sequently the evolutionary dynamics. Therefore, the Lotka-Volterra models
cannot tell whether competitive coevolution may lead to incremental prog-
ress in the characteristics and behaviors of the opponent species. As we will
show in a later section, the application of artificial evolution to competing
agents can provide an answer to this question, at least in the context of arti-
ficial agents.

7.5 Coevolutionary Dynamics: Biological Models 549

B
ef

o
re

A
ft

er

Cost
Green beard effect

Cost
Genetic relatedness

No cost
Indirect reciprocation

No cost
Direct reciprocation

Figure 7.19 Conditions for evolution of cooperation (after Lehmann and Keller
2006). When there is no cost for the cooperator, cooperation can evolve if there is
direct reciprocation or indirect reciprocation (in the latter case, reputation may help).
When there is a cost to the cooperator, cooperation can evolve if individuals have a
high level of genetic relatedness or if they both have green beard genes. The pattern
indicates the genetic similarity between individuals. The size change after coopera-
tion indicates the cost or benefit of cooperation. Adapted from E.W. Wilson (2000).

7.5.2 Cooperation

Competition for survival among individuals of the same species seems at
odds with the observation that some organisms display cooperative behav-
iors. In order to better understand the conditions where cooperation can
evolve, Lehmann and Keller (2006) suggested distinguishing between two
types of cooperation (figure 7.19), namely the situations where a cooperator
does not pay a fitness cost for helping other individuals and the situations
where a cooperator must pay a fitness cost for helping other individuals. Let
us remember from the first chapter that in biology fitness benefits and costs
translate into the number of genetic copies that an individual can produce or
lose with respect to its baseline reproduction rate.

The situation where cooperation generates a fitness benefit without any
cost to the cooperator is relatively common in nature. This situation can be
further divided into two cases: when the benefit is immediate or direct and
when the benefit is indirect. Examples of cooperation with direct benefits
include nest building and group hunting. Whenever a cooperator obtains
an immediate and direct benefit from helping another individual, coopera-
tion will always evolve and remain stable, no matter whether the receiving
individuals belong to another species or have never been seen before.

550 7 Collective Systems

Instead, if the benefit is indirect, i.e., the act of helping is not immediately
reciprocated or the benefit appears only in the long term, cooperation evolves
only if individuals have an initial tendency to cooperate, interact together
several times, and can both recognize the partner and remember the outcome
of previous interactions. If these conditions are satisfied, cooperation will
always evolve and remain stable even if the cooperating individual belongs
to a different species (see box 7.1).

It has also been shown that recognition of other individuals and memo-
rization of the outcomes of the interactions is not necessary if there is a rep-
utation system that informs how cooperative an individual is (Nowak and
Sigmund 1998). The way in which animals and people decide to cooperate
has been studied also in game theory (see box 7.1).

Instead, the situation where cooperation implies a fitness cost to the co-
operator is less common. Cooperation with a cost is also known as altruismALTRUISM

because the cooperator helps other individuals at its own expense. Parental
care is an instance of altruism directed toward offspring of the individual
because it implies an energetic cost to the parent. The alarm call emitted
when a predator is approaching a group is another example of altruism be-
cause the emitter is more likely to attract the attention of the predator and be
killed while the other members of the group can escape. The specialization
of ant colonies into large numbers of sterile workers (for food collection, nest
defense, rearing of the pupae, etc.) is yet another instance of altruistic coop-
eration where the helping workers incur the highest fitness cost because they
cannot reproduce.

Building on earlier intuitions by Haldane (1955), Hamilton (1964) sug-
gested that altruism can evolve if the cooperator is genetically related to the
recipient of help. In this case, even if the cooperator cannot propagate its own
genes to the next generation, its altruistic act will increase the probability that
a large portion of those genes will be propagated through the reproduction
of the recipient of the altruistic act. Hamilton (1964) proposed the notion of
inclusive fitness, which is the sum of the individual fitness and of the fitnessINCLUSIVE FITNESS

effects caused by its own act on the portion of genes shared with other indi-
viduals. The portion of shared genes between two individuals is known as
genetic relatedness. Hamilton (1964) predicted that altruistic cooperation will
evolve if the inclusive fitness of the helper is larger than zero:

rb − c > 0(7.1)

where r is the coefficient of genetic relatedness, b is the fitness benefit of the
recipient(s) of help, and c is the fitness cost of the helper. To use an example

7.5 Coevolutionary Dynamics: Biological Models 551

suggested by Haldane, in the case of brothers, where r = 1/2, an individual
may be willing to sacrifice its own life and thus pay the maximum cost c = 1
if its act increases more than twice b > 2 the fitness of the brother. For cousins,
where r = 1/8, an individual may be willing to pay the maximum cost if its
act increases the fitness of the cousin more than eight times.

Hamilton’s inequality applies to average genetic relatedness over the en-
tire genotype and population, i.e. it is not restricted to the sharing of a spe-
cific set of genes. It also applies to the case where the act of cooperation
benefits multiple individuals with various degrees of relatedness. The the-
ory of kin selection (Maynard-Smith 1964), which developed from Hamilton’sKIN SELECTION

model, predicts that the ratio of altruistic individuals in a population is re-
lated to the degree of kinship, or genetic relatedness, among individuals.
Although the theory is widely accepted, its quantitative validation in nature
has not yet been done because it is difficult to precisely measure the values
of the three variables in equation (7.1).

For evolution of altruism to occur, helping should be directed toward re-
lated individuals. This is more likely to happen when individuals share the
same geographical space, such as a nest, for social activities. Indeed, most
cases of altruistic cooperation are found in families of social insects (Keller
and Chapuisat 2002). Kin selection does not require that individuals recog-
nize kin individuals or know their degree of genetic relatedness. As long
as the act of altruism benefits genetically related individuals, altruism will
spread throughout the population and remain stable.

A particular case of altruism occurs when individuals share few specific
genes that favor cooperating behaviors only between individuals having a
specific phenotypic character, such as a green beard (Dawkins 1976), and
that express the same phenotypic character. However, altruism due to green
beard effects can be disrupted if the linkage between the genes responsible
for the green beard and the genes responsible for altruistic behavior is dis-
rupted. For example, a mutant individual with a green beard but without
the altruistic behavior will have larger inclusive fitness than individuals who
have both types of genes; consequently, it will spread in the population and
destroy altruistic cooperation (Lehmann and Keller 2006).

The four conditions for the evolution of cooperation, direct or indirect reci-
procity, genetic relatedness, and green beard genes, which can all be included
within a single model (Lehmann and Keller 2006), hold only if cooperation
brings a net fitness advantage to the individuals. In some societies, the actual
values of benefits and costs are distorted by means of coercion and punish-
ment to ensure maintenance of cooperative behavior.

552 7 Collective Systems

Box 7.1: The prisoner’s dilemma

The prisoner’s dilemma game is a general framework for study-
ing decision strategies in a situation where the pursuit of self-interest
by each player leads to a poor outcome for all. The game takes place
between two players who are assumed to make decisions to maximize
their own self-interest. The name of the game comes from the metaphor
of two imprisoned suspects, a and b, being questioned separately by the
police. The police offers each of the two suspects the same deal: “If you
testify against your partner (and your partner refuses to testify against
you), you are free and your partner receives a 10-year sentence; if both
you and your partner refuse to testify, you will both get half a year in
prison; if you both testify against each other, each of you gets a 5-year
sentence.” The dilemma comes from the fact that both prisoners must
make a decision without knowing what the partner decides. If they
knew, the best decision for both of them would be to refuse to testify.
However, since they don’t know what the partner decides, the best de-
cision in their self-interest is to betray the partner. In doing so, they
both end up in a worse situation than if they had cooperated.

Cooperate (b) Defect (b)
Cooperate (a) R(a)=3, R(b)=3 S(a)=0, T(b)=5

Defect (a) T(a)=5, S(b)=0 P(a)=1, P(b)=1

The game is often reformulated as a cooperation-defection game
where two players, a and b, receive a specific payoff associated to the
outcomes of the game (see table): a temptation payoff to defect when
the other cooperates, a reward payoff for reciprocal cooperation, a pun-
ishment payoff for reciprocal defection, and a sucker’s payoff for decid-
ing to cooperate when the other defects. Both players know the payoff
matrix, but must decide whether to cooperate or defect without know-
ing the decision of the other player. The actual payoff values are not
important as long as they are identical for both players; they are or-
dered so that T > R > P > S; and R is larger than the average of T and S
to prevent alternation of reciprocal exploitations.

Axelrod (1989) used the prisoner’s dilemma to study the efficiency
of various decision strategies and understand under what conditions
both players would engage in reciprocal cooperation. When the game
is played only once, both players choose defection.
If the game is played several times by the same players (also known as
the iterated prisoner’s dilemma), but for a finite number of times, recipro-
cal cooperation will never emerge because both players know (cont.)

7.5 Coevolutionary Dynamics: Biological Models 553

Box 7.1: continued

that the other player will defect in the last game. However, if the game
is played for an indefinite number of times, reciprocal cooperation can
emerge and remain stable. This latter situation is common in natural
settings where an animal does not know when the last interaction with
another animal will occur.

When comparing several play strategies, Axelrod discovered that
the most efficient one was the so-called tit for tat. This strategy started
by cooperating and then did what the other player had done at the
previous move. Axelrod highlighted the four properties of tit for tat
that contributed to its efficiency: (1) start with cooperation; (2) retaliate
if the other player does not cooperate; (3) forgive if the other player
reverts to cooperation; and (4) be simple and clear so that the other
player can understand your rules and comply with them.

Although tit for tat has shown high performance in maximizing
self-interest, it does not guarantee the establishment of mutual cooper-
ation (and thus even better self-interest). For cooperation to emerge, the
other player must start with a cooperative move. When the prisoner’s
dilemma is played between several players in a community, coopera-
tion can emerge if the players have the chance to have more than one
interaction (many interactions are not necessary, but it is important that
the number is unknown to the players) and if there is a certain num-
ber of players that start with a cooperative move. This latter condition
raises the question of how those cooperators could have been there in
the first place, which can be answered in an evolutionary context.

Despite its level of abstraction, the prisoner’s dilemma captures a
large number of situations in the animal and human kingdom, ranging
from small fishes cleaning the mouth of large predators to stopping at
road junctions when the red light is on, all the way to wars between
countries.

Yet another explanation for the evolution of altruistic cooperation is pro-
vided by the theory of group selection, which argues that altruistic cooperationGROUP SELECTION

may also evolve in groups of genetically unrelated individuals that are se-
lected and reproduced together at a higher rate than the single individuals
composing the group (Wynne-Edwards 1986). This could happen in situa-
tions where the synergetic effect of cooperation by different individuals pro-
vides a higher fitness to the group with respect to other competing groups. In

554 7 Collective Systems

those situations, cooperating individuals are assimilated by a superorganism
that becomes a unit of selection. It has been suggested that group selection
may be a driving force behind the transition from unicellular to multicellular
organisms (Michod 1999).

However, the theory of group selection has been criticized because genetic
mutations at the level of the individual are more likely and frequent than mu-
tations at the level of the group, thus creating stronger competition among
individuals than among groups. It has also been argued that the transition
from unicellular to multicellular organisms can be explained by kin selection
because all cells share the same genotype (Wolpert and Szathmary 2002). Al-
though proponents of group selection respond to these criticisms by pointing
to evidence for the evolution of group-level features that decrease individual
conflict (such as a reduced mutation rate of individual organisms or cells
that compose the group), the theory of group selection is still widely de-
bated. Furthermore, group selection may eventually lead to high genetic
relatedness, thus making even more difficult the disambiguation between
the original driving forces that led to altruistic cooperation.

7.6 Artificial Evolution of Competing Systems

In the previous section, we described a biological model of competitive co-
evolution between predators and prey. In this section we will describe the
application of artificial evolution to competing agents. We will start by re-
viewing an artificial ecological system evolving in the digital memory of a
computer where parasites and hosts emerge autonomously. We will then de-
scribe an application of competitive coevolution to computer programs and
suggest ways to enforce coevolutionary progress. Finally, we will describe
the application of competitive coevolution to behavioral robots.

7.6.1 Tierra

The dynamics of an artificial coevolutionary system were first investigated
by Ray (1992) with the aim of understanding the origins of biological di-
versity that occurred during the Cambrian explosion 600 million years ago
by replicating those conditions in an artificial world, named Tierra, which
existed within the memory of a computer. Ray started by creating a pri-
mordial artificial organism composed of a list of machine code instructions
whose only ability was to self-replicate by allocating space in the memory
and making a copy of itself. This self-replication ability did not require any

7.6 Artificial Evolution of Competing Systems 555

external piece of code for evaluating fitness and for selecting individuals for
reproduction as in the evolutionary algorithms described earlier. Individuals
could replicate within Tierra as long as their own machine code and environ-
ment allowed them to do so. Therefore, Tierra was a potentially open-ended
evolutionary system when compared to traditional evolutionary algorithms,
which are limited by an externally imposed fitness function. According to
Ray, self-replication, as opposed to fitness-driven selective reproduction, is a
critical feature for emergence of complexity and creativity in artificial evolu-
tion because individuals are free to invent their own implicit fitness functions
in unexpected ways.

Since machine languages are not designed to be evolvable because sin-
gle mutations have a very high probability of crashing the entire system,
Ray devised a virtual computer within the memory of a regular computer.
Each creature had a central processing unit (CPU) with registers and pointers
within the virtual computer. A CPU could execute simple arithmetic oper-
ations on the registers and move instruction pointers around the memory
(RAM) of the computer where all the creatures lived. The genetic code of a
creature was its own machine code.

A creature had a membrane defined by start and end bytes that define
the size of the creature in the memory space. Each creature had write privi-
leges within its own membrane and could also read and execute instructions
of other creatures, but could not write within the membrane of other crea-
tures. A creature could allocate an additional block of memory, which could
later be used to spin off a daughter creature.

Tierra had various sources of mutation that flipped the bits of the digital
substrate with very low probability. When the memory of the computer was
filled at more than 80%, creatures with the largest number of errors died by
deallocating their memory, but their instructions were not erased from the
environment and could be executed and incorporated by other creatures.

The Tierran ecosystem was started by inoculating a single creature con-
sisting of 80 instructions and letting it free to replicate. Soon the computer
memory was filled by daughters of the ancestor creature (figure 7.20). During
prolonged runs of Tierra, Ray observed several phenomena found in biologi-
cal life. Initially, creatures were small and their turnover rate was very rapid.
As time progressed, there was an increasing diversity of the population with
respect to size, longevity, and replication rate. At this point parasite creatures
emerged that did not harm their hosts, but generated competition for mem-
ory space. For example, some parasites did not have a copy instruction, but
could reproduce by executing the copy instruction of another creature. As

556 7 Collective Systems

Figure 7.20 A snapshot of the Tierra ecosystem in the artificial life monitor (AL-
mond), a program developed by Marc Cygnus. Shaded blocks correspond to bodies
of creatures in the memory space.

parasites started to occupy larger portions of the Tierran memory space, host
creatures became rarer. As a consequence, parasite density decreased and
host density rebounded, in cycles predicted by the Lotka-Volterra dynamics
explained earlier. In addition, Ray observed the emergence of social commu-
nities with a high degree of genetic relatedness that could self-reproduce if
they lived close enough in the memory space. In very long runs, the pattern
of evolutionary change was characterized by long periods of stasis followed
by rapid evolutionary change, similar to the pattern of punctuated equilibria
observed in natural evolution (Gould and Elredge 1977).

Tierra was conceived as a tool to re-create and study evolution of life in
silico. A more recent and publicly available system to investigate evolution-
ary and biological phenomena in silico, known as Avida, has been created
through a joint collaboration between physicist Chris Adami at Caltech and
biologist Richard Lenski at the University of Michigan (Adami 1998). The
Avida program is based on concepts similar to those employed by Tierra,
but in Avida the population can also evolve though a combination of self-
replication and of an externally imposed fitness function provided by the
researcher. Avida has been used to study several biological phenomena, in-
cluding the role of gene interactions (Lenski et al. 1999), increment of com-
plexity (Adami et al. 2000), and effects of mutation rates (Wilke et al. 2001),
to mention a few.

7.6 Artificial Evolution of Competing Systems 557

In(1)

In(2)

In(3)

In(4)

Out(1)

Out(2)

Out(3)

Out(4)

4

1

3

2

1

4

2

3

1

2

3

4

2

3

Figure 7.21 A sorting network for arranging four arbitrary numbers in nondecreas-
ing order. Vertical connectors represent comparators that exchange the position of
two incoming elements if the lower is smaller than the higher. Redrawn from (Knuth
1998, p. 221).

7.6.2 Competitive Coevolution of Programs

The potential advantage offered by coevolving parasite programs was ex-
plored by Hillis (1992) to generate efficient sorting networks. A sorting net-
work is an algorithm that sorts a series of n characters according to a prede-
fined order. Such networks can be represented as graphs made of horizontal
input-output lines and vertical connectors that represent comparators (fig-
ure 7.21). In order to reduce computation time, it is desirable to execute as
few comparisons as possible. Although it can be demonstrated that the four-
input sorting network of figure 7.21 can sort any series of four numbers, it
is not obvious that it is demonstrable for networks of arbitrary size (Knuth
1998, p. 223). However, it has been shown that if a network with n input lines
can sort all 2n sequences of 0s and 1s into nondecreasing order, it will also
sort arbitrary sequences of any n numbers into nondecreasing order (Knuth
1998, pp. 223-225). This result greatly reduces the number of tests that must
be made in order to check the efficiency of large sorting networks.

Capitalizing on this result, Hillis attempted to evolve sorting networks of
0s and 1s without and with coevolving parasite programs. He focused his
experiments on a 16-input network because this was a well-studied case for
which there existed a number of previously suggested algorithms requiring
between 65 and 60 comparisons (the latter being the best found so far). The
sorting network was represented by genetically encoding pairs of numbers
that point to the elements to be compared and exchanged. Individuals could
include between 60 and 120 pairs (comparators), but they all started with
the same pattern of 32 comparators defined in the first half of the genotype
because this was known to be an efficient subsolution for networks of 16
elements. The remaining part of the genotype was randomly initialized.

558 7 Collective Systems

Human designed (60 comparisons) Co-evolved (61 comparisons)

Figure 7.22 Shortest 16-element sorting network developed so far by humans
(Green, cited by Knuth 1998) and best coevolved network (redrawn from Hillis 1992).

In the case of evolution without parasites, the fitness was the percentage
of test input sequences for which the network produced the correct order.
The test cases were randomly generated out of all 216 possible sequences.
The best sorting networks discovered by evolution required 65 comparisons,
which, although not optimal, ranked among the best found by humans.
However, Hillis noticed that most evolutionary runs tended to stagnate into
local minima and would often score well on the test cases used during evo-
lution, but not so well on new test cases.

Hillis then introduced a coevolving population of parasites that encoded
the test sequences and used them to evaluate the quality of the sorting net-
works. The fitness of the parasites was inversely proportional to the fitness of
the sorting networks. In other words, while the goal of the sorting networks
was to sort out the test cases in the best possible order, the goal of the par-
asites was to generate test cases that would be very hard to sort. Although
the original article does not give much detail on the procedure, Hillis men-
tioned that both parasites and sorting networks evolved at the same speed,
meaning that the generational turnover happened at the same time for the
two competing populations. In other words, the fitness of the two species
was computed by pairwise association of test cases and sorting networks.

7.6 Artificial Evolution of Competing Systems 559

predator prey

rank 3

rank 4

rank 2

rank 1

Figure 7.23 Strategies for organizing tournaments in competitive coevolution. Left:
All against all. Center: Pairwise (separate species). Right: Tournament-based ranking.
Adapted from Angeline and Pollack (1993).

The best coevolved sorting network (figure 7.22, right) displayed 61 com-
parisons, only one more that the best sorting network found so far by hu-
mans. Hillis suggested that these results were obtained because coevolving
parasites generated continuously changing test sequences that effectively
probed weak parts of sorting networks and at the same time maintained a
higher diversity in the population, thus preventing premature convergence.

7.6.3 Progress in Competitive Coevolution

In competitive coevolution solutions coevolve and provide a continuously
changing set of challenges rather than a predefined and immutable set as in
standard evolutionary algorithms. This has two potential advantages. Evo-
lution of a new strategy in one species may represent a new challenge for the
competing species, which in turn would develop a new and more efficient
strategy. From the perspective of a single species, this situation corresponds
to a pedagogical series of challenges that requires gradually more complex so-
lutions (Rosin and Belew 1997). As a whole, the continuation of this recip-
rocal process of coadaptation may drive both species toward increasingly
better solutions.

The other advantage of competitive coevolution is a lower probability of
stagnation in local minima thanks to the preservation of higher genetic di-
versity, which is caused by the continuously changing fitness landscape. In
other words, the combinations of genes that correspond to high fitness may
change as the opponents change strategies. Consequently, individuals with
relatively low fitness in the current generation may still score higher fitness
in later generations before a suboptimal genotype spreads too far within the
population.

560 7 Collective Systems

Angeline and Pollack (1993) extended the framework of competitive co-
evolution to the more general case of a single population with tournament
selection. They pointed out that the choice of opponents for the tournaments
of a competitive coevolutionary run is crucial to both the success of the ex-
periment and to the number of tournaments (figure 7.23). Axelrod (1989), for
example, considered an exhaustive approach where each individual is tested
against all other individuals in the current generation, which, for a popu-
lation of n individuals, requires (n(n − 1))/2 tournaments. In the work by
Hillis on sorting networks, each parasite is coupled to one sorting network
of the same generation, which corresponds to only n/2 tournaments (assum-
ing that n includes both the parasite test cases and the sorting networks),
but it may not always be practical for other problems to devise competing
populations and fitness functions as in Hillis’s work.

Angeline and Pollack (1993) therefore proposed a solution where members
of the population undergo a series of binary tournaments to determine their
relative ranking. Two individuals are randomly selected (without replace-
ment) and the one with highest fitness is selected to enter the second level of
tournaments. Once the first round of tournaments is completed, individuals
are randomly paired again and only the best ones move on to the next round
of tournaments. This is repeated until there is one winner. The fitness of
an individual is its rank in the tournament stages. Individuals with higher
fitness have higher reproduction probability, but it is important to ensure
that individuals within the same rank are randomly selected for reproduc-
tion in order to ensure sufficient genetic variability. This method requires
n−1 tournaments and does not necessarily require two separate populations
and different fitness functions.

However, there are at least two factors that may hamper continuous prog-
ress in coevolution of competing populations. Coevolving populations may
drive each other into twisting pathways where new solutions are good
enough to defeat current strategies used by the coevolving population, but
are not necessarily better than solutions discovered in earlier generations in
the sense that they may not be able to defeat earlier competitors. Further-
more, competing populations may enter cycling dynamics where previously
evolved strategies are rediscovered over and over again (figure 7.24).

Another potential problem is caused by the continuously changing fitness
landscape (see chapter 1). This problem is known as the Red Queen effect,RED QUEEN EFFECT

from the name of the chess character in Lewis Carroll’s Through the Looking
Glass who was always running without making any progress because the
landscape was moving in the same direction. In competitive coevolution,

7.6 Artificial Evolution of Competing Systems 561

A1 > B1

A2 > B2

A1 < B2

A2 < B1

A1 B1
A1 B2
A2 B2
A2 B1

A1 B1
A1 B2
A2 B2
A2 B1

A1 B1
A1 B2
A2 B2
A2 B1

... ...generations

predator prey

cycle 1

cycle 2

cycle 3

tournament
outcome

Figure 7.24 Cycling dynamics of two coevolving populations with pairwise tourna-
ments. Each population develops two types of strategies: A1 and A2, and B1 and B2,
respectively. The same strategies are rediscovered over and over again.

the reproductive value (fitness) of a specific combination of genes can change
as the opponents coevolve (figure 7.25, top right). Although this may have
beneficial effects to avoid stagnation into local minima and encourage popu-
lation diversity, there is the danger that a particular combination of features
evolved over some generations may become ineffective in later generations.

Furthermore, the instantaneous fitness (that is, the fitness measured at
each generation) is no longer an indicator of progress because a decline may
be caused either by less effective strategies than those used in earlier gen-
erations or by a more effective strategy discovered by the opposing species
(figure 7.25, bottom right). The same ambiguity holds in the case where the
instantaneous fitness displays an increment over generations.

Rosin and Belew (1997) suggested a method for preventing the lack of
“generational memory” and the Red Queen effect. The method consists of
setting up a Hall of Fame that records a copy of all the best individuals gen-HALL OF FAME

erated over generations. Each individual of the evolving population is then
tested against all the best opponents recorded so far in the Hall of Fame.
This method was used to coevolve play strategies for a 3D version of the
tictactoe game and was shown to produce continuous progress in the sense
that evolved players were capable of defeating both current and previous

562 7 Collective Systems

Genetic Space

Fitness

I

Genetic Space

Fitness

I

C

generations

Fitness(I)

1

2

3

generations

Fitness(I)

1

2

3

Figure 7.25 Top: The Red Queen effect. Individuals evolved in isolation (left) tend
to converge toward combinations of genes with higher fitness. When a coevolving
competitor is introduced (right), the fitness landscape is modified so that the fitness
of certain combinations of genes is lowered by the adaptive modifications of the com-
petitor. Bottom: Instantaneous fitness of a coevolving population (right) is no longer a
reliable indicator of progress, as is the case for populations evolved in isolation (left),
because it is not possible to disambiguate between fitness variations due to change
in the measured population and fitness variations due to change in the competing
population.

opponents. As the Hall of Fame grows over generations, the number of tour-
naments that each individual must face increases too. However, Rosin and
Belew (1997) also showed that to ensure progress it is sufficient to test indi-
viduals against a fixed number of opponents randomly chosen from the Hall
of Fame.

7.6.4 Competitive Coevolution of Behavioral Systems

Cliff and Miller realized the potential of coevolution of pursuit-evasion tac-
tics for evolutionary robotics (see also chapter 6). In the first of a series of
papers (G.F. Miller and Cliff 1994), they introduced a 2D simulation of preda-
tor and prey robots. Later, they proposed a set of visualization techniques,
known as CIAO plots (current individual vs. ancestral opponent), in orderCIAO PLOTS

7.6 Artificial Evolution of Competing Systems 563

Figure 7.26 CIAO plots show the result of tournaments where the best individual
of one generation is tested against the best individual of another generation. Black:
predator wins; white: prey wins. Left: CIAO plot of an ideal situation where compet-
itive coevolution produces increasingly better solutions in both species. Right: CIAO
plot of a situation where competitive coevolution does not produce increasingly bet-
ter solutions.

to detect evolutionary progress which could not be tracked otherwise due to
the Red Queen effect (D. Cliff and Miller 1995).

A CIAO plot (figure 7.26) is a matrix whose rows and columns indicate the
generations of predators and prey. Each cell in the matrix shows in white or
black whether the best predator or the best prey, respectively, of the corre-
sponding generations won the tournament. If competitive coevolution gen-
erated increasingly better solutions in the two competing species, the CIAO
plot should display two distinct black and white areas (figure 7.26, left). If
instead, competitive coevolution did not display continuous progress, the
CIAO plot may display patches of black and white areas distributed across
the entire surface (figure 7.26, right).

In a later paper (D. Cliff and Miller 1996), the authors described experi-
ments where simulated prey and predator robots were coevolved for pursuit
and evasion. The fitness of the prey fpy was proportional to its distance from
the predator scaled in the range [0, 1] and the fitness of the predator fpr was
its complement 1−fpy. In the first generation individuals were tested against
a set of randomly chosen individuals from the opponent species. In all sub-
sequent generations, individuals were tested against the best opponent of
the previous generation to improve coevolutionary stability, as suggested by
Rosin and Belew (1997). The genetic code of the robots included not only the
parameters of the neural controllers but also the layout of the neurons in 2D
space and the morphologies of their eyes. The CIAO analysis did not display
a clear pattern of continuous progress although one could detect temporally

564 7 Collective Systems

Figure 7.27 Right: Pursuit-evasion trajectories resulting from testing an evader from
generation 200 against a pursuer from generation 999. Left: Plot of the sensorimotor
morphologies of best pursuers and evaders at generations 0, 200, and 999. Each plot is
a top-down view of the animat where the large circle is the extent of the animat body
and the inner dotted circle is the area where terminations of synaptic connections
(smallest circles) contribute to the movement of the animat. Other circles are neu-
rons. The genetic specification of visual neurons includes the orientation and angle
of acceptance of the visual receptor (shown as solid and dotted sectors). Reproduced
from D. Cliff and Miller (1996).

limited improvements. Some of the best evolved predators used four wide-
field lateral visual sensors and two narrow-field rear visual sensors, whereas
some of the best evolved prey used only four wide-field lateral visual sen-
sors (figure 7.27, left). Cliff and Miller (1996) reported successful pursuit or
evasion strategies only when competitors that were far apart in evolutionary
time were tested together (figure 7.27, right).

Despite these promising achievements, if one looks carefully at the results
described in the literature, focusing on competitive coevolution of pursuit-
evasion behaviors, it is easy to notice that coevolutionary benefits often come
at the cost of several thousand individuals per population (C.W. Reynolds
1994), several hundred generations with little progress (D. Cliff and Miller
1996), or repeated trials of evolutionary runs with alternating success (Sims
1994). Moreover, since all the experiments were conducted in simulation, of-
ten the results cannot be directly applied to real robots, either because agent
descriptions are too abstract or technically unfeasible, or because the fitness

7.6 Artificial Evolution of Competing Systems 565

VISION INFRARED

1 SYNAPSE
36 o

47 cm

4
7

c
m

Figure 7.28 Left: The predator and prey robots. The predator (to the right) is
equipped with a linear vision module. The prey (to the left) does not have vision
and has a black hat that can be detected by the predator, but its maximum speed is
twice that of the predator. Both predator and prey are equipped with eight infrared
proximity sensors (maximum detection range was 2 cm in the environment used for
this experiment). Center: Details of the visual field of view, divided into five sectors,
of the neural architecture, and of the genetic encoding. The prey differs from the
predator in that it does not have five input units for vision. Each synapse in the net-
work is coded by five bits, the first bit determining the sign of the synapse and the
remaining four bits its strength. Right: Initial starting position for prey (left, empty
disk with small opening corresponding to frontal direction) and predator (right, black
disk with line corresponding to frontal direction) when tested after coevolution.

function is the distance between the competing agents (see also discussion of
fitness space in chapter 1).

Floreano and Nolfi 1997b and Floreano et al. 2001 explored competitive
coevolution of predator and prey systems in real mobile robots. The au-
thors speculated that the difficulties found in previous work were due to
one or more of the following reasons: (a) the genetic encodings and neural
controllers were exceedingly complex for the situation under study and may
have introduced unnecessary complications in the fitness landscape and thus
the evolvability of the system; (b) the two agents were equipped with the
same set of sensorimotor abilities (even if in some cases these could evolve),
thus creating a symmetric situation that may have hampered exploitation by
each species of the weaknesses of the opponent species; (c) the fitness func-
tion was based on distance between the opponents, thus forcing coevolution
to explore a very limited set of potential behaviors that the agents could have
developed.

In order to address these issues, they used simple feedforward neural
networks without hidden units, direct genetic encoding of the connection
weights in bit strings, two robots with different sensorimotor abilities, and

566 7 Collective Systems

an internal fitness function based on time to contact measured by the robot’s
internal clock.

Two Khepera robots were coevolved in a square arena with white walls
(figure 7.28). The predator robot was equipped with a linear vision module
and eight short-range (2 cm) proximity sensors. The prey robot had only the
short-range proximity sensors, but had a maximum available speed that was
twice the available speed of the predator. The prey had a black hat that could
be detected by the predator with the vision module. Both robots were con-
nected to a desktop computer through a triple set of rotating contacts that
provided power supply and data communication while preventing twisting
of the cables as the two robots engaged in pursuit-evasion strategies. Coevo-
lutionary experiments were carried out both with the real robots and with
simulated robots that allowed the exploration of long evolutionary runs. The
overall pattern of results was not significantly different in physical and sim-
ulated evolutionary runs.

Two populations of 100 individuals each were coevolved for 30 genera-
tions in the physical experiments and for 100 generations in the simulation
experiments. Each individual was tested against the best competitors of the
10 previous generations in order to improve coevolutionary stability. At the
beginning of each tournament, the two robots were positioned at random lo-
cations and orientations in the arena. A tournament ended either when the
predator touched the prey or after 50 seconds. The fitness of the prey was
the time to collision T scaled by the maximum tournament duration, while
the fitness of the predator was 1 − T .

In all evolutionary runs, the fitness graphs of the two species displayed
counterphase oscillations, as one would expect from competitive coevolu-
tionary dynamics. When the fitness of the predator increased, the fitness of
the prey decreased, and vice versa. The authors observed spontaneous evo-
lution of obstacle avoidance, visual tracking, object discrimination (prey vs.
wall), following, and a variety of other behaviors that appeared and disap-
peared over generations. However, after approximately 20 generations, a
small set of behavioral strategies were cyclically adopted by the two oppo-
nent robots.

In order to measure coevolutionary progress, if any, the authors devised
what they called master tournaments where the best individual of a speciesMASTER

TOURNAMENTS recorded at each generation was tested 10 times against all the best com-
petitors of all generations. The master fitness values resulting from these
tournaments provide an absolute measure of progress. If a species developed
increasingly more powerful solutions, that is, solutions capable of defeating a

7.6 Artificial Evolution of Competing Systems 567

Figure 7.29 Top: Fitness of best individuals in master tournaments. Letters indicate
position of best prey and best predators. Numbers indicate position of individuals
whose tournaments are displayed below. Bottom: Behaviors recorded at interesting
points of coevolution, representing typical strategies. Black disk is predator, white is
the prey. See text for explanation.

larger number of opponent strategies, its master fitness would increase over
generations. However, this was not the case in the experiments with robots
(figure 7.29, top), where the master fitness of the two species remained al-
most constant over generations. Indeed, a CIAO analysis revealed patterns
of local dominance by one species followed by patterns of local dominance
by the other species. Master tournaments tell two additional things: at which
generation one can find the best prey and the best predator, and at which gen-
eration one should observe the most complex tournaments. The best individ-
uals are those corresponding to generations with the highest fitness when the
competitor also reports the highest fitness (marked by the letters A and B in

568 7 Collective Systems

the graph). Instead, the most complex tournaments are those that take place
between individuals that report the same fitness level, because those are the
situations where both species have the same level of ability to win over the
competitor.

Despite the lack of increasing progress, evolved behaviors displayed a
very rich variety of relatively complex and surprising strategies. In the lower
part of figure 7.29, behaviors of the best competitors at critical stages of co-
evolution, as indicated by master tournament data, give a more intuitive idea
of how pursuit-evasion strategies coevolved. Initially, the predator tended
to stop in front of walls while the prey moved in circles (panel 1). Later, the
prey moved fast with straight trajectories, avoiding walls, while the preda-
tor tracked it from the center and quickly attacked when the prey was closer
(panel 2). Interestingly, predators developed the ability to know how distant
the prey was by using information on how fast they moved on their visual
field. Decrement of predator performance around generation 65 was due to
a temporary loss of the ability to discriminate between walls and prey, prob-
ably because most of the time predators were successful at catching the prey
without experiencing collisions with walls. The decrement of predator per-
formance was most likely due to a more efficient prey strategy. As shown
in panel 3, the predator intercepted the prey, but missed it and ended up
against the wall. Around generation 75 (panel 4), the prey moved in circles
and, when the predator got closer, it rapidly avoided it. In fact, prey that
moved too fast around the environment sometimes could not avoid an ap-
proaching predator because they detected it too late (proximity sensors have
lower sensitivity for an object as small as a robot, which reflects less infrared
light than a white flat wall). Therefore, it paid off for prey to wait for the
slower predator and accurately avoid it. However, some predators became
smart enough to perform a small circle once they had missed the target, and
to attack again until, by chance, the prey offered the side with the wheels
where there are no proximity sensors. Consequently, prey rediscovered the
fast-moving trajectories around the environment. At that point, predators
developed a “spider strategy” (panel 5): instead of running after the prey,
they slowly moved backward until they hit a wall where they waited for
the fast-approaching prey, which collided into the “spider robot” before de-
tecting it. However, this strategy did not pay off when the prey stayed in
the same place. Finally, at generation 99 a new interesting strategy emerged
(panel 6): the predator quickly tracked and reached the prey, which had been
quietly rotating in small circles. As soon as the prey sensed the predator, it
backed off and then approached the predator (without touching it) from the

7.6 Artificial Evolution of Competing Systems 569

Figure 7.30 Left: Master fitness of predator and prey coevolved with Hall of Fame
strategy (Rosin and Belew 1997). Right: Master fitness of predator and prey with
standard coevolution where the prey is equipped with a vision module spanning
240° (much larger than that of the predator).

side where it could not be seen; consequently, the predator quickly turned
in an attempt to visualize the prey which rotated around it, producing an
entertaining dance.

Nolfi and Floreano (1998) also showed that real coevolutionary progress
(as revealed by master tournaments) could be obtained either by using the
Hall of Fame strategy (figure 7.30, left) or by providing the prey with a vision
module spanning a much larger field of view than that of the predator (fig-
ure 7.30, right). They also showed that predators evolved to catch some of
the best (previously) coevolved prey could not develop efficient strategies,
as predators coevolved with prey, indicating that competitive coevolution
was more effective than evolution of individual agents. Finally, the authors
measured the fitness of all coevolved prey and predators using the distance
metrics used by Cliff and Miller and noticed that while prey robots did ob-
tain a very high score, predator robots obtained a very low score, indicating
that predators used other strategies to maximize the probability of hitting the
prey (e.g., visual tracking and interception or spider strategies).

The results of this set of experiments suggest that the difficulties en-
countered by authors of previous work on competing agents may have been
caused either by complicated genetic and neural structures or by a constrain-
ing fitness function that did not allow more exploration by coevolution.

570 7 Collective Systems

7.6.5 Ontogenetic Plasticity in Competitive Coevolution

In the experiments described above, predator and prey robots could not
modify the synaptic strengths during their lifetime. Considering that the en-
vironment faced by those robots is very dynamic, lifetime synaptic plasticity
may affect the outcome of coevolutionary dynamics.

In order to study this issue, Floreano and Nolfi (1997a) carried out two
additional sets of coevolutionary experiments under exactly the same condi-
tions described earlier. In the first set of experiments, two bits of each synap-
tic gene (see figure 7.28) were used to determine the strength of the synapse
and the two remaining bits were translated into a quantity of uniform noise
(centered around zero) added to the synaptic strength at each sensorimotor
cycle. In this “noise” condition, synaptic plasticity was not directional (i.e.,
it was independent of the behavior of the competing robot) and served as a
control situation. In a second set of experiments, instead, the four bits en-
coded one of the four Hebbian rules and four possible learning rates, exactly
as in the experiments on the evolution of learning described in chapter 6
(figure 6.53). In this “adaptive” condition, synaptic plasticity could be po-
tentially exploited to develop abilities aimed at improving the individual’s
performance according to the competitor’s behavior.

Floreano and Nolfi (1997a) then measured the relative performance of the
two species’ master fitness in the genetically determined condition (previous
section), in the noise condition, and in the adaptive condition. The relative
performance consisted in counting how often in the master fitness graph the
fitness of one species was higher than that of the other species. For a coevo-
lutionary run of 100 generations, the relative performance could be in the
range [−100, 100]. The results of this analysis indicated that the genetically
determined condition and the noise condition were not statistically differ-
ent and that both predators and prey prevailed in an almost equal number
of generations. However, the adaptive condition was significantly different
because predators prevailed in more than 70% of the generations.

Behavioral strategies of coevolved adaptive robots were similar to those of
coevolved genetically determined robots. However, compared to the genet-
ically determined condition where predators tracked and attacked the prey
only in one direction (figure 7.29), in the adaptive condition predators ef-
ficiently tracked and attacked in both directions by adjusting their trajecto-
ries according to the observed behaviors of the prey (figure 7.31). Whereas
activity-dependent synaptic change was exploited by the far-sighted preda-
tor, the same did not happen for the prey whose short-range proximity sen-

7.6 Artificial Evolution of Competing Systems 571

Figure 7.31 Behavioral strategies of predator and prey with adaptive synapses.
Black disk is predator, white disk is prey. Left. Generation 20. Center. Generation
70. Right. Generation 95.

sors did not provide sufficient information to develop an effective counter-
strategy.

In order to check whether such improvements were due to a real advan-
tage of the predator provided by Hebbian learning, rather than to some dif-
ficulty of the prey to cope with Hebbian learning, the authors organized
master tournaments between predators coevolved in adaptive conditions
and prey coevolved in genetically determined conditions. Also in this case,
predators won most of the tournaments, suggesting that Hebbian learning
did not penalize prey in the adaptive condition, but rather provided an ad-
vantage to predators.

Finally, Floreano et al. (2001) used a genetic representation with two ad-
ditional bits per synapse whose values indicated whether the remaining bits
were interpreted as synaptic strength (genetically determined condition),
synaptic strength plus uniform noise (noise condition), or Hebbian rules plus
learning rate (adaptive condition). The results indicated that all best co-
evolved predators used Hebbian learning in most synapses, whereas best
coevolved prey oscillated between noise and Hebbian learning across gen-
erations in a significantly smaller set of synapses. Relative performance
measured in master tournaments showed that predators won most of the
tournaments in this case too.

The results described in this subsection carry two important messages. The
first is that ontogenetic plasticity can affect the outcome of coevolutionary
dynamics. The second is that the morphology and physical properties of the
agent can affect the efficiency of neural plasticity and produce quite differ-
ent behavioral outcomes. This specific and opportunistic view of learning

572 7 Collective Systems

reinforces the criticism of learning as a general-purpose mechanism that we
mentioned in the closing remarks in chapter 3.

7.7 Artificial Evolution of Cooperation

Cooperation describes the situation where a group of individuals obtain a
net benefit by working together. A first major issue in the artificial evolution
of cooperation is whether robots should be genetically identical or different
and whether the fitness used for selection should take into account the per-
formance of the entire group or only that of single individuals. These two
choices are analogous to the issues of genetic relatedness and of group selec-
tion that were discussed earlier in the context of the biological literature.

If we consider only the extreme cases, individuals in a team can be genet-
ically homogeneous (clones) or heterogeneous (they differ from each other);
and the fitness can be computed at the level of the team (in which case, the
entire team of individuals is reproduced) or at the level of the individual (in
which case, only individuals of the team are selected for reproduction).

The majority of current approaches to the evolution of multiagent sys-
tems use genetically homogeneous teams evolved with team-level selection
(a comparative survey can be found in Waibel et al. 2008). Where the rea-
sons for the choice of genetically homogeneous teams are made explicit, it
is argued that homogeneous teams are easy to use (Baray 1997; Trianni et al.
2006), require fewer evaluations (Luke et al. 1997; Richards et al. 2005), scale
more easily (Bryant and Miikkulainen 2003), and are more robust against the
failure of team members (Bryant and Miikkulainen 2003; Quinn et al. 2002a)
than heterogeneous teams.

Many other approaches use genetically heterogeneous teams evolved with
individual-level selection. Genetically heterogeneous teams are sometimes
seen as providing more behavioral flexibility (Luke et al. 1997) and as allow-
ing specialization (Baldassarre et al. 2003b; J.C. Bongard 2000; Luke et al.
1997; Quinn et al. 2002a). However, the reasons for the choice of team-level
or individual-level selection are rarely made explicit.

The terms “homogeneous team" and “heterogeneous team" used in the
current literature cover many different aspects. It is important to note that
while all agents in genetically homogeneous teams share the same genes,
agents can nevertheless be behaviorally heterogeneous. This can happen
when agents differentiate during their lifetime, for example, due to vary-
ing initial conditions (Quinn et al. 2003), or due to developmental processes

7.7 Artificial Evolution of Cooperation 573

or learning. This can also happen when agents “activate" different parts of
their genome, for example, when each agent’s behavior is controlled by a dif-
ferent section of a single team genome (J.C. Bongard 2000; Haynes and Sen
1997; Miconi 2003; Robinson and Spector 2002). In this case, agents can spe-
cialize in different functions, yet be genetically identical, just like specialized
cells in a biological organism.

In some cases, teams consist of clonal subteams (Luke et al. 1997; Luke
1998) or of agents that share only part of their genome. Teams with agents
that are, on average, genetically more similar (but not identical) to mem-
bers of their team than to members of the rest of the population are termed
“partially heterogeneous.” The effects of partial genetic heterogeneity on
the evolution of multiagent teams are not yet fully explored in evolutionary
computation (Mirolli and Parisi 2005), but have been thoroughly studied in
biology (Hamilton 1964; Lehmann and Keller 2006).

The choice of level of selection is rarely discussed explicitly. Some research
has addressed the related issue of credit assignment for the evolution of mul-
tiagent systems (Agogino and Tumer 2004). In the context of multiagent
systems, credit assignment is concerned with distributing fitness rewards
among individual agents. Fitness distribution leads to credit assignment
problems (Grefenstette 1988; Minsky 1961) in many cooperative multiagent
tasks because individual contributions to team performance are often dif-
ficult to estimate or difficult to monitor (Panait and Luke 2005). Selection
is usually performed on the basis of accumulated individual or team fitness,
which may be the result of many fitness rewards with different types of credit
assignment. Therefore an optimal choice of level of selection is not only in-
fluenced by the type of task but also by the types of credit assignment used.

7.7.1 Evolutionary Conditions and Task Demands

Waibel et al. (2008) systematically compared the performance of robot teams
evolved in four evolutionary conditions (figure 7.32): genetically homoge-
neous teams evolved with team-level selection; genetically homogeneous
teams evolved with individual-level selection; genetically heterogeneous
teams evolved with team-level selection; and genetically heterogeneous
teams evolved with individual-level selection. Team-level selection (akin to
group selection) consisted in computing the fitness of the team and reproduc-
ing the robots in the best teams to create a new population of robot teams.
Individual-level selection instead consisted in computing the fitness of in-
dividual robots (notice that even robots with identical genomes can obtain

574 7 Collective Systems

Select

best teams

Select

best teams

Team

Select best

individuals

Select best

individuals

Individual

H
o

m
o

g
e

n
e

o
u

s
H

e
te

ro
g

e
n

e
o

u
s

Level of Selection

T
e

a
m

 c
o

m
p

o
s
it
io

n

Figure 7.32 Four methods for evolution of cooperation. A population (large oval)
was composed of several teams (medium-sized ovals), each of which was composed
of several robots (small circles). Genetic team composition was varied by either com-
posing teams of robots with identical genomes (homogeneous, identical shading), or
different genomes (heterogeneous, different shading). The level of selection was var-
ied by either selecting teams (team selection) or selecting individuals independently
of their team affiliation (individual selection).

different fitness because they are exposed to different situations) and repro-
ducing the best ones independently of their team affiliation to re-create new
teams.

Since the relative performance of the four conditions may vary according
to the type of cooperative task, the authors evaluated the performance of
robot teams in three classes of multirobot tasks (figure 7.33, left): a collective
task that did not require cooperation; a task that required cooperation but
did not imply a cost to cooperators; and a task that required altruistic coop-
eration, i.e., a task that implied an individual fitness cost to cooperators. The
experiments were carried out in physics-based simulations of 10 microrobots
that had to find and bring to a foraging area small and large food tokens (fig-
ure 7.33, right). A small token could be pushed by a single robot, which
gained one fitness point; instead, a large token required two or more robots

7.7 Artificial Evolution of Cooperation 575

Figure 7.33 Left: The experimental setup for the altruistic foraging task. Ten mi-
crorobots (black squares with arrows) searched for small and large tokens and trans-
ported them to the target area (hatched area at bottom) under the white wall (the
other three walls were black). An identical setup was used in the other two exper-
imental conditions, except that the arena contained either only small tokens in the
collective task (no cooperation required), or only large tokens in the cooperative task
(cooperation required, but no cost to the individual). Right: Three microrobots in the
altruistic cooperative foraging task. The robot in the background could transport the
small token by itself. The robot at the left could not transport the large token by itself
and needed to wait for the arrival of a second robot. From Waibel et al. (2008).

to be pushed, but all robots in the team received one fitness point indepen-
dently of whether they helped to bring the token to the foraging area.

When only small tokens were placed in the arena, robots were not required
to cooperate because each one could forage in isolation. When only large to-
kens were placed in the arena, robots had to cooperate, but there was no cost
because that was the only way robots could obtain fitness. When both large
and small food tokens were present, robots that cooperated to push large to-
kens paid a cost with respect to robots that pushed small tokens because it
took a longer time to carry a large token and it was more difficult to bring
it all the way to the foraging area. However, teams of robots that displayed
altruistic cooperation obtained higher team fitness than teams of robots that
pushed only small objects.

The results indicated that when no cooperation was required, heteroge-
neous robots with individual-level selection obtained the highest perfor-
mance. Instead, when some degree of cooperation was required, either with
or without cost to the cooperators, homogeneous teams evolved either with
team-level selection or with individual-level selection obtained consistently

576 7 Collective Systems

Figure 7.34 A Swarm-bot composed of four interconnected s-bots in chain forma-
tion.

the highest performance. In the case of altruistic foraging, heterogeneous
teams were more efficient at bringing objects to the foraging area, but those
objects were mainly small tokens, whereas homogeneous teams carried fewer
objects, but those were mainly large tokens.

These results carry two messages. The first is that if some degree of coop-
eration is required, it is advisable to use genetically related controllers and
team-level selection. The second is that the choice of evolutionary method
depends on the type of cooperative task. Tasks that do not require special-
ization are carried out most efficiently by homogeneous teams; however, if a
task benefits from some degree of specialization, then heterogeneous teams
may obtain higher performance (J.C. Bongard 2000). Armed with the insights
from these experiments, we can now approach the literature on evolution of
cooperative behavior and better appreciate the choice of evolutionary meth-
ods.

Let us consider the case of evolution of Swarm-bots (Mondada et al. 2004)
described earlier in this chapter. From a morphological point of view, s-bots
are not specialized because they have been created mainly with the pur-
pose of cooperating by dynamically self-assembling when required by the
task at hand. Indeed, almost all experiments with evolution of Swarm-bots
resorted to populations of homogeneous robots with team-level selection
(Dorigo et al. 2004). The evolutionary tasks that were studied included heavy
object transportation, collective exploration, communication, and navigation
in swarm formation.

7.7 Artificial Evolution of Cooperation 577

In a simple case, Swarm-bots of four s-bots assembled in chain forma-
tion were evolved for the ability to move coordinately on a flat terrain (fig-
ure 7.34). Each s-bot was provided with a simple neural controller where
sensory neurons were directly connected to the motor neurons that con-
trolled the desired speed of the tracks and whether or not a sound signal
was produced. Evolved neural controllers were also capable of producing
coordinated movement when the Swarm-bot was augmented by additional
s-bots and reorganized in different shapes. Swarm-bots also dynamically re-
arranged their shape so as to effectively negotiate narrow passages and were
capable of moving on rough terrains by negotiating situations that could not
be handled by a single robot. Such robots also collectively avoided obsta-
cles and coordinated to transport heavy objects (Baldassarre et al. 2003a,b;
Trianni et al. 2006).

Let us instead consider the case of evolving a team of agents that must
accomplish a foraging task typically faced by honeybees. The animals (and
agents) must collect both pollen and nectar, but must ensure that the quan-
tity of nectar in the hive is within a certain small quantity in order to ensure
the viability of the colony. Too little or too much nectar is deleterious to
colony survival. This task typically requires division of labor and specializa-
tion between agents collecting pollen or nectar. Tarapore et al. (2006) used a
response threshold model whereby agents had two different behaviors, nec-
tar and pollen collection, characterized by genetically encoded thresholds.
The question in this case was whether the best colony performance, defined
as the amount of pollen collected for a regulated nectar quantity, was ob-
tained by genetically related or genetically different teams. The results of the
computational experiments predicted that colonies characterized by high ge-
netic diversity resulting from the queen mating with several different males
performed much better than genetically related colonies. These predictions
were later verified by experimental evidence collected with the biological
animals (Mattila and Seeley 2007).

7.7.2 Evolution of Communication

In social species communication plays a pivotal organizing role, allowing the
transfer of vital information among colony members, for example, to detect
predators and find food sources (E.O. Wilson 2000). While much is known
concerning the neurophysiological processes by which signals are produced,
conducted, perceived, and interpreted, the conditions conductive to the evo-
lution of communication and the paths by which reliable systems of commu-

578 7 Collective Systems

Figure 7.35 A team of s-bots engaged in cooperative communication (Floreano et al.
2007). A group of four s-bots feed on the food objects while they are lighted up in blue
color. Two s-bots in white color are attracted by the blue signal and move away from
the poison object.

nication become established remain largely unknown because communica-
tion does not leave a fossil record. This is a particularly challenging problem
because efficient communication requires tight coevolution between the sig-
nal emitted and the response elicited (Maynard-Smith and Harper 2003). Un-
der natural conditions, most communication systems are also costly because
of the energy required for signal production and/or increased competition
for resources resulting from information transfer about food location.

Werner and Dyer (1992) studied the emergence of communication in a
population of simulated agents evolving in grid worlds. Female agents had
the ability to see males and to emit sounds. Male agents were blind, but
could hear signals from females. Thus, the environment was designed to
favor organisms that evolved to generate and interpret meaningful signals.
Starting with random neural networks, the simulation resulted in a progres-
sion of generations that exhibit increasingly effective mate-finding strategies.
In addition, a number of distinct subspecies, i.e., groups with different sig-
naling protocols or dialects, evolved and competed. These protocols became
a behavioral barrier to mating that supported the formation of distinct sub-
species.

7.7 Artificial Evolution of Cooperation 579

However, that study did not clarify whether communication involved a
cost, to what extent the population was genetically related, and did not leave
agents the possibility of surviving without communication. To address these
issues, Floreano et al. (2007) used teams of 10 s-bots that could forage in
an environment containing a food and a poison source that both emitted a
red light and could only be discriminated at close range (figure 7.35). Un-
der such circumstances, foraging efficiency could potentially be increased if
robots transmitted information on food and poison location. However, such
communication also incurred direct costs to the signaler because it resulted
in higher robot density and increased competition and interference near the
food (i.e., spatial constraints around the food source allowed a maximum
of 8 robots out of 10 to feed simultaneously and resulted in robots some-
times pushing each other away from the food). Thus, while beneficial to
other team members, signaling of a food location effectively constituted a
costly act (Hamilton 1964; Lehmann and Keller 2006) because it decreased
the food intake of signaling robots. This setting thus mimics the natural situ-
ation where communicating almost invariably incurs costs in terms of signal
production or increased competition for resources (Zahavi and Zahavi 1997).

The authors evolved teams of robots under the four evolutionary condi-
tions of genetic relatedness and level of selection by using physics-based
simulations that precisely model the dynamical properties of real robots. At
the end of the experiments evolved genomes were transferred in real robots
that displayed the same behavior observed in simulation. Robots could sig-
nal by switching on and off their light ring in blue light. Robots could see the
red food and poison items as well as the blue-lighted robots with the omni-
directional color camera. In a control situation, the evolutionary experiments
were repeated with the light ring disabled.

In evolving teams where robots could produce blue light, foraging effi-
ciency greatly increased over generations and was significantly greater com-
pared to control experiments for all evolutionary conditions, except for the
condition of heterogeneous teams under individual-level selection. An anal-
ysis of the robot behavior revealed that this performance increment in the
three conditions of genetic relatedness or team-level selection was associated
with the evolution of effective systems of communication.

In teams of genetically related robots with team-level selection, two dis-
tinct communication strategies evolved. In 12 of the 20 evolutionary repli-
cates, robots preferentially produced light in the vicinity of the food and
were attracted by blue light (figure 7.36, left). Instead, in the other 8 evo-
lutionary replicates, robots tended to emit light near the poison and were

580 7 Collective Systems

Figure 7.36 Signaling frequency measured in each area of the arena for robots from
two different evolved teams. a, This team was one where robots signal the presence of
food. b, In this team robots signal the presence of poison. The darkness of each square
is proportional to the amount of signaling in that area of the arena. From Floreano
et al. (2007).

repulsed by blue light (figure 7.36, right). Teams of robots that signaled food
resulted in higher team performance. Interestingly, once one type of com-
munication was well established, there was no transition to the alternate and
more efficient strategy. This was because a change in either the signaling
or response strategy would completely destroy the communication system
and result in a performance decrease. Thus, each communication strategy
effectively constituted an adaptive peak separated by a valley with lower
performance values.

These results bring two messages. The first message is that cooperative
communication is expected to occur principally among genetically related
individuals or when selection takes place at the team rather than the indi-
vidual level. Consistent with this view, most sophisticated systems of com-
munication indeed occur in animals forming kin groups, as exemplified by
pheromone communication in social insects (E.O. Wilson 1971; Bourke and
Franks 1995) and quorum sensing in clonal colonies of bacteria (Keller and
Surette 2006). Humans are a notable exception, but other selective forces
such as reciprocal altruism and reputation-based systems of reciprocity may
operate to favor altruism (Nowak and Sigmund 2005) and costly communi-
cation.

7.8 Closing Remarks 581

The second message is that, once a given system of communication has
evolved, it may constrain the evolution of more efficient communication sys-
tems because it would require going through a stage where communication
between signalers and receivers is perturbed. This finding supports the idea
of the possible arbitrariness and imperfection of communication systems,
which can be maintained despite their suboptimal nature. Similar observa-
tions have been made about evolved biological systems (Jacob 1981), which
are formed by the randomness of the evolutionary selection process, leading,
for example, to different dialects in the honeybee dance language (von Frisch
1967).

The study of the evolution of embodied communication is a growing field
of research. For example, Cangelosi (2001) showed that agents provided with
suitable neural architectures can evolve increasingly complex communica-
tion patterns from signals to symbols and all the way to syntax. However,
a better understanding of the evolution of human-like language will require
capturing the evolutionary, neural, physical, and environmental conditions
that have led to the emergence of this unique phenomenon in the history of
our planet.

7.8 Closing Remarks

In this chapter we reviewed theories, methods, and technologies developed
to understand and replicate the functional organization of living collective
systems. The distinction between self-organizing and evolutionary processes
adopted here is deeper than a necessity of organizing the material to be pre-
sented. We witness a similar gap between researchers that pursue either one
of the two approaches and, interestingly, the same occurs both in the biolog-
ical and engineering sciences.

In our daily investigations of collective systems and throughout the re-
search of background material for the preparation of this chapter, we noticed
that, on the one hand, biologists who study the self-organization of insect
societies tend to ignore the evolutionary reasons for the observed state of af-
fairs, and vice versa; and that, on the other hand, computer scientists and
engineers who develop collective systems capable of self-organization tend
to ignore how alternative organization principles could be brought about by
artificial evolution, and vice versa.

This dichotomy is certainly a gross approximation because there are doc-
umented exceptions in both scientific areas. Nonetheless, we never came
across a deep reflection or experimental study of the extent to which func-

582 7 Collective Systems

tional phenomena observed in collective systems should be explained with
the language of self-organization or of evolution. We may have neglected
important papers, but we are not alone in our conclusions. On the biological
side, Camazine et al. (2001, pp. 88-89) raise a similar issue and conclude that

There is no contradiction or competition between self-organization and
natural selection. Instead, it is a cooperative “marriage” in which self-
organization allows tremendous economy in the amount of informa-
tion that natural selection needs to encode in the genome.

But they also reveal their interest in self-organization by closing the para-
graph with a defensive note

In this way, the study of self-organization in biological systems pro-
motes orthodox evolutionary explanation, not heresy.

On the engineering side, a certain pragmatism favors the adoption of the
methodology that produces the best results or best matches the available
technology without much preoccupation with explanatory principles. This
approach is certainly justified, but a more critical reflection may be use-
ful because both self-organization and artificial evolution present significant
shortcomings as they stand today. For example, within a self-organization
approach it is not clear how to design simple rules that, once embedded in
collections of interacting agents, will generate the desired functionality. Fur-
thermore, since a self-organizing system develops over time, it is not guaran-
teed that satisfactory behavior observed now will remain stable in the future
or will not drastically bifurcate due to external perturbations. Winfield et al.
(2004) have explicitly raised these issues and suggested a methodology to
engineer self-organizing systems for dependability. Self-organization relies
mainly on collection of simple and reactive agents. As we have seen in the
section on swarm robotics, these agents may stagnate in suboptimal solu-
tions because they cannot forecast the consequence of their actions at a global
level, unless they result from an evolutionary process where behavioral rules
that produce inferior outcomes are selected out of the population. Further-
more, some aspects of collaboration or competition demand consideration
of evolutionary factors. For example, although cooperative behaviors that
do not imply a cost for the cooperating individual may result from a variety
of conditions, altruistic cooperation with a cost to the cooperator demands
specific design principles that are rooted in evolutionary conditions, such
as team relatedness or team selection. Similarly, a purely evolutionary ap-
proach may not be sufficiently justified considering the amount of resources

7.9 Suggested Readings 583

it takes (populations of agents must be continuously tested for several gen-
erations), which may not even be feasible in hardware systems. Further-
more, in the absence of other self-organizing or adaptive mechanisms, arti-
ficial evolution may result in solutions that work only in the environmental
conditions used during generational selection.

Finally, some reader may be surprised that in this chapter we did not cover
recent work on the topology and dynamics of biological networks, which
was contributed mainly by the community of physicists. Indeed, there is
mounting evidence that several living systems and phenomena are not ran-
domly or uniformly interconnected and that some observed network topolo-
gies, such as small-world networks, may offer advantageous adaptive func-
tionalities, such as robustness and efficient spread of information (e.g., Sole
and Goodwin 2000; Barabási 2002; Watts 2003). The accounts reported in
technical and popular writings, ranging from the organization of brains to
the organization of societies and languages, are extremely fascinating and
intriguing. However, in our opinion it is not yet sufficiently clear to what ex-
tent those network topologies and dynamics are a side effect of other mech-
anisms and processes or a cause of the adaptive functionalities that they are
associated with. At the same time, it is not yet clear at this stage if, and
how, constraints on network topologies and dynamics should, and could, be
incorporated in engineering practice to produce more efficient systems.

7.9 Suggested Readings

For an introduction to self-organization in animal societies we recommend
the book by Camazine et al. (2001), which was a major source of inspiration
and information for the first section of this chapter. The book is organized
in two parts, the first part providing a general overview of physical and be-
havioral phenomena that are common to many species of animals while the
second part delves into experimental and modeling aspects of specific ani-
mals and behaviors previously published as separate articles by the authors.
However, this book does not cover the evolution of self-organization in bio-
logical systems.

For an introduction to self-organization in artificial systems, instead, we
recommend the book on swarm intelligence by Bonabeau et al. (1999), which
describes both ant colony optimization and early experiments in collective
and reconfigurable robotics. Although parts of the book are very technical
and the area of robotics has progressed significantly since its publication,

584 7 Collective Systems

the book represents a well-structured and lucid guide to algorithms that are
currently witnessing a proliferation of applications and modifications. Un-
fortunately, this book does not cover particle swarm optimization, whose
treatment can be found in the book Swarm Intelligence by Kennedy and Eber-
hart (2001), who are among the first proposers of this approach. Although
both books mention artificial evolution in several chapters, neither addresses
the evolution of swarm intelligence.

The imbalance between self-organization and evolution can be easily cor-
rected by reading Sociobiology by Edward Wilson (2000), which in its 25th
anniversary edition remains a classic treatment of evolutionary factors that
can lead to cooperation in animal and human societies. The Evolution of Co-
operation by Axelrod (1989), despite its somewhat misleading title, is an ex-
tremely clear treatment of the conditions that can lead to cooperation within
the framework of game theory. The author describes with great clarity the
prisoner dilemma problem and its variations, showing the effects of different
strategies and establishing links with both animal and human behavior. One
of the chapters provides also an interpretation of the game in the context of
evolutionary theory. Important aspects, puzzles, and suggested solutions of
the evolution of communication can be found in Animal Signals by Maynard-
Smith and Harper (2003).

Finally, the science fiction novel Prey by Michael Crichton (2002), which
was a number 1 New York Times bestseller, is an entertaining story based on
the nanotechnology, swarm robotics, and competitive coevolution described
in this chapter.

Conclusion

A careful reader may have noticed that we have not yet defined what in-
telligence is. This was done on purpose because intelligence has different
meanings for different persons and in different situations. For example, some
believe that intelligence is the ability to be creative; others think that it is the
ability to make predictions; and others believe that intelligence exists only in
the eye of the observer. In this book we have shown that biological and artifi-
cial intelligence manifests itself through multiple processes and mechanisms
that interact at different spatial and temporal scales to produce emergent
and functional behavior. The most important implication of the approaches
presented here is that understanding and engineering intelligence does not
reduce to replicating a mammalian brain in a computer but requires also cap-
turing multiple types and levels of interactions, such as those between brains
and bodies, individuals and societies, learning and behavior, evolution and
development, self-protection and self-repair, to mention a few.

The approaches and examples described in this book show that biology
is a bewildering source of inspiration for the design of intelligent artifacts
capable of efficient and autonomous operation in unknown and changing
environments. It is difficult to resist the fascination of creating artifacts that
display elements of lifelike intelligence, but we should keep in mind two
caveats. The first caveat is that copying a mechanism from biology does
not necessarily bring an advantage either because the technology may not
match the biology or because the desired functionality may be different from
that of the biological mechanisms. In this case, the artifact is no more than
a curiosity or, at best, a piece of art with no function. The second caveat
consists of resorting to biological inspiration (for example by evolving a com-
plicated neural control system) without understanding how the resulting ar-
tifact works. In this case, one cannot characterize the performance of the

586 Conclusion

artifact and predict under which conditions it will fail, which is definitely
not good engineering practice.

Proper practice of bio-inspired artificial intelligence requires a scientific ef-
fort to extract the principles of biological intelligence from the data and the-
ories provided by biologists, and an engineering effort to translate those prin-
ciples into functional artifacts and technologies. The rejoining of science and
engineering in bio-inspired artificial intelligence is witnessed by the numer-
ous examples described in this book where intelligent artifacts, such as evo-
lutionary software or mobile robots, are used to test biological hypotheses
and make new predictions about biological organisms and processes.

We believe that the theories, methods, and technologies presented in this
book have strong potentials for the engineering of intelligent artifacts capa-
ble of self-organization and self-adaptation. We also believe that since these
artifacts originate from the same processes that operate in nature, they are
more likely to capture the very essence of biological intelligence. Even if in-
telligence is only a subjective phenomenon, we are more likely to attribute
intelligence to artifacts whose behaviors emerge from self-organization and
self-adaptation than to artifacts that behave according to a predefined plan.

References

Abeles, M. (1991). Corticonics. Cambridge University Press, Cambridge, UK.

Abelson, H. and diSessa, A. A. (1981). Turtle Geometry : The Computer as a Medium for
Exploring Mathematics. MIT Press, Cambridge, MA.

Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning algorithm for
Boltzmann machines. Cognitive Science, 9:147–169.

Ackley, D. H. and Littman, M. L. (1992). Interactions between learning and evolu-
tion. In Langton, C., Farmer, J., Rasmussen, S., and Taylor, C., editors, Artificial Life
II: Proceedings Volume of Santa Fe Conference, volume 11, pages 487–510. Addison
Wesley, Redwood City, CA.

Adami, C. (1998). Introduction to Artificial Life. Springer-Verlag, New York.

Adami, C., Ofria, C., and Collier, T. C. (2000). Evolution of biological complexity.
Proceedings of the National Academy of Sciences USA, 97:4463.

Adleman, L. M. (1994). Molecular computation of solutions to combinatorial prob-
lems. Science, 226:1021–1024.

Adrian, E. D. (1928). The Basis of Sensation: The Action of the Sense Organs. Norton,
New York.

Agogino, A. and Tumer, K. (2004). Efficient evaluation functions for multi-rover sys-
tems. In Deb, K., Poli, R., Banzhaf, W., Beyer, H.-G., Burke, E. K., Darwen, P. J.,
Dasgupta, D., Floreano, D., Foster, J. A., Harman, M., Holland, O., Lanzi, P. L.,
Spector, L., Tettamanzi, A., Thierens, D., and Tyrrell, A. M., editors, Proceedings of
the 2004 Genetic and Evolutionary Computation Conference (GECCO04), volume 3102
of Lecture Notes in Computer Science, pages 1–11. Springer-Verlag, Berlin.

Aickelin, U. and Cayzer, S. (2002). The danger theory and its application to artifi-
cial immune systems. In Proceedings of the First International Conference on Artificial
Immune Systems (ICARIS-2002), Canterbury, UK, pages 141–148.

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002). Molecular
Biology of the Cell, 4th edition. Garland, New York.

588 References

Alexander, W. H. and Sporns, O. (2002). An embodied model of learning, plasticity,
and reward. Adaptive Behavior, 10:143–159.

Allen, P. E. and Holberg, D. R. (2002). CMOS Analog Circuit Design, 2nd edition.
Oxford University Press, Oxford.

Aloimonos, J., Weiss, I., and Bandopadhay, A. (1987). Active vision. International
Journal of Computer Vision, 1(4):333–356.

Alpaydin, G., Balkir, S., and Dundar, G. (2003). An evolutionary approach to auto-
matic synthesis of high-performance analog integrated circuits. IEEE Transactions
on Evolutionary Computation, 7(3):240–252.

Amit, D., Gutfreund, H., and Sompolinsky, H. (1985). Spin-glass models of neural
networks. Physical Review A, 32:1007–1018.

Anderson, A. M. (1977). A model of landmark learning in the honey-bee. Journal of
Comparative Physiology A, 114:335–355.

Anderson, J. A. and Rosenfeld, E., editors (1988). Neurocomputing: Foundations of
Research. MIT Press, Cambridge, MA.

Anderson, J. A. and Rosenfeld, E. (1998). Talking Nets: An Oral History of Neural Net-
works. MIT Press, Cambridge, MA.

Angeline, P. J. and Pollack, J. B. (1993). Competitive environments evolve better so-
lutions for complex tasks. In Forrest, S., editor, Proceedings of the Fifth International
Conference on Genetic Algorithms, pages 264–270. Morgan Kaufmann, San Mateo,
CA.

Arbib, M., editor (1995). The Handbook of Brain Theory and Neural Networks. MIT Press,
Cambridge, MA.

Arena, P., Caponetto, R., Fortuna, L., and Manganaro, G. (1997). Cellular neural net-
works to explore complexity. Soft Computing - A Fusion of Foundations, Methodologies
and Applications, 1(3):120–136.

Arkin, R. C. (1990). Integrating behavioral, perceptual and world knowledge in reac-
tive navigation. Robotics and Autonomous Systems, 6:105–122.

Arkin, R. C., editor (1998). Behavior-Based Robotics. MIT Press, Cambridge, MA.

Arleo, A., Millan, J., and Floreano, D. (1999). Learning of variable-resolution cog-
nitive maps for autonomous indoor navigation. IEEE Transactions on Robotics and
Automation, 15(6):990–1000.

Ashby, W. R. (1960). Design for a Brain, 2nd revised edition. Chapman and Hall,
London.

Astor, J. and Adami, C. (2000). A developmental model for the evolution of artificial
neural networks. Artificial Life, 6(3):189–218.

References 589

Autumn, K., Dittmore, A., Santos, D., Spenko, M., and Cutkosky, M. (2006). Fric-
tional adhesion: A new angle on gecko attachment. Journal of Experimental Biology,
209:3569–3579.

Autumn, K., Sitti, M., Liang, Y. A., Peattie, A. M., Hansen, W. R., Sponberg, S., Kenny,
T. W., Fearing, R., Israelachvili, J. N., and Full, R. J. (2002). Evidence for van der
Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences USA,
99(19):12252–12256.

Avnir, D., Biham, O., Lidar, D., and Malcai, O. (1998). Is the geometry of nature
fractal? Science, 279(5347):39–40.

Axelrod, R. (1989). The Evolution of Cooperation. Basic Books, New York.

Ayers, J., Davis, J. L., and Rudolph, A., editors (2002). Neurotechnology for Biomimetic
Robots. MIT Press, Cambridge, MA.

Bäck, T. (1992). Self-adaptation in genetic algorithms. In Varela, F. and Bourgine, P.,
editors, Proceedings of the First European Conference on Artificial Life, pages 263–271.
MIT Press, Cambridge, MA.

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice. Oxford University Press,
Oxford.

Bäck, T., Fogel, D. B., and Michalewicz, Z. (2000). Evolutionary Computation 2: Ad-
vanced Algorithms and Operators. Institute of Physics, Bristol, UK.

Baddeley, R. J. and Hancock, P. J. (1991). A statistical analysis of natural images
matches psychophysically derived orientation tuning curves. Proceedings of the
Royal Society of London B, 246:219–223.

Bailey, C. H., Giustetto, M., Huang, Y.-Y., Hawkins, R. D., and Kandel, E. R. (2000).
Is heterosynaptic modulation essential for stabilizing Hebbian plasticity and mem-
ory? Nature Reviews Neuroscience, 1(1):11–20.

Bajcsy, R. (1988). Active perception. Proceedings of the IEEE, 76:996–1005.

Baker, R. W. and Herman, G. T. (1972a). Simulation of organisms using a developmen-
tal model. Part 1: Basic description. International Journal of Bio-Medical Computing,
3(3):201–215.

Baker, R. W. and Herman, G. T. (1972b). Simulation of organisms using a devel-
opmental model. Part 2: The heterocyst formation problem in blue-green algae.
International Journal of Bio-Medical Computing, 3(4):251–267.

Baldassarre, G., Nolfi, S., and Parisi, D. (2003a). Evolving mobile robots able to dis-
play collective behaviour. Artificial Life, 9:255–267.

Baldassarre, G., Parisi, D., and Nolfi, S. (2003b). Coordination and behavior inte-
gration in cooperating simulated robots. In Schaal, S., Ijspeert, A., Billard, A.,
Vijayakumar, S., Hallam, J., and Meyer, J.-A., editors, From Animals to Animats 8:
Proceedings of the Eight International Conference on Simulation of Adaptive Behavior.
MIT Press, Cambridge, MA.

590 References

Baldwin, J. M. (1896). A new factor in evolution. American Naturalist, 30:441–451.

Ball, P. (1999). The Self-Made Tapestry: Pattern Formation in Nature. Oxford University
Press, Oxford.

Ball, P. (2004). Critical Mass. Arrow Books, London.

Ballard, D. H. (1991). Animate vision. Artificial Intelligence, 48(1):57–86.

Baluja, S. (1996). Evolution of an artificial neural network-based autonomous land
vehicle controller. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 26:450–
463.

Baluja, S. (1997). Genetic algorithms and explicit search statistics. In Mozer, M. C., Jor-
dan, M. I., and Petsche, T., editors, Advances in Neural Information Processing Systems
9, pages 319–325. MIT Press, Cambridge, MA.

Baluja, S. and Caruana, R. (1995). Removing the genetics from the standard genetic
algorithm. In Prieditis, A. and Russel, S., editors, Proceedings of the Twelfth Interna-
tional Conference on Machine Learning, pages 38–46. Morgan Kaufmann, San Mateo,
CA.

Bandini, S. and Mauri, G. (1999). Multilayered cellular automata. Theoretical Computer
Science, 217(1):99–113.

Banzhaf, W., Beslon, G., Christensen, S., Foster, J. A., Képés, F., Lefort, V., Miller, J. F.,
Radman, M., and Ramsden, J. J. (2006). From artificial evolution to computational
evolution: A research agenda. Nature Reviews Genetics, 7:729–735.

Bar-Cohen, Y., editor (2001). Electroactive Polymer (EAP) Actuators as Artificial Muscles.
SPIE Press, Bellingham, WA.

Barabási, A.-L. (2002). Linked. The New Science of Networks. Perseus, Cambridge, MA.

Baray, C. (1997). Evolving cooperation via communication in homogeneous multi-
agent systems. Intelligent Information Systems, 1997. IIS’97. Proceedings, pages 204–
208.

Barlow, H. (1989). Unsupervised learning. Neural Computation, 1:295–311.

Barto, A. G. (1995). Adaptive critic and the basal ganglia. In Houk, J. C., Davis, J. L.,
and Beiser, D. G., editors, Models of Information Processing in the Basal Ganglia, pages
215–232. MIT Press, Cambridge, MA.

Baxter, J. (1992). The evolution of learning algorithms for artificial neural networks.
In Green, D. and Bossomaier, T., editors, Complex Systems. IOS Press, Amsterdam.

Beckers, R., Holland, O., and Deneubourg, J.-L. (1994). From local actions to global
tasks: Stigmergy and collective robotics. In Brooks, R. and Maes, P., editors, Pro-
ceedings of the Fourth Workshop on Artificial Life. MIT Press, Cambridge, MA.

Beer, R. D. (1990). Intelligence as Adaptive Behavior: An Experiment in Computational
Neuroethology. Academic Press, San Diego.

References 591

Beer, R. D. and Gallagher, J. C. (1992). Evolving dynamical neural networks for adap-
tive behavior. Adaptive Behavior, 1:91–122.

Behera, N. and Nanjundiah, V. (1995). An investigation into the role of phenotypic
plasticity in evolution. Journal of Theoretical Biology, 172:225–234.

Bejan, A. (1997). Constructal-theory network of conducting paths for cooling a heat
generating volume. International Journal of Heat and Mass Transfer, 40(4):799–811.

Bejan, A. (2000). Shape and Structure, from Engineering to Nature. Cambridge University
Press, Cambridge, UK.

Belew, R. K., McInerney, J., and Schraudolph, N. N. (1992). Evolving networks: Using
the genetic algorithm with connectionistic learning. In Langton, C. G., Taylor, C.,
Farmer, J. D., and Rasmussen, S., editors, Proceedings of the Second Conference on
Artificial Life, pages 511–548. Addison-Wesley, Reading, MA.

Belew, R. K. and Mitchell, M., editors (1996). Adaptive Individuals in Evolving Popula-
tions: Models and Algorithms. Addison-Wesley, Redwood City, CA.

Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. Princeton University
Press, Princeton, NJ.

Beni, G. (2004). From swarm intelligence to swarm robotics. In Şahin, E. and Spears,
W. M., editors, Proceedings of the Swarm Robotics Workshop, pages 1–9. Springer-
Verlag, Heidelberg, Germany.

Bentley, P. J. (2004). Fractal proteins. Genetic Programming and Evolvable Machines,
5(1):71–101.

Bentley, P. J., Greensmith, J., and Ujjin, S. (2005). Two ways to grow tissue for artificial
immune systems. In Proceedings of the Fourth International Conference on Artificial
Immune Systems (ICARIS 2005), volume 3627 of Lecture Notes in Computer Science,
pages 139–152. Springer-Verlag, Berlin.

Berek, C. and Ziegner, M. (1993). The maturation of the immune response. Immunol-
ogy Today, 14(8):400–404.

Berlekamp, E., Conway, J. H., and Guy, R. (2004). Winning Ways for Your Mathematical
Plays, 2nd edition. A K Peters, Wellesley, MA.

Bernstein, N. (1967). The Coordination and Regulation of Movement. Pergamon Press,
London.

Beshers, S. N. and Fewell, J. H. (2001). Models of division of labor in social insects.
Annual Review of Entomology, 46:413–440.

Betsch, B. Y., Einhäuser, W., Körding, K. P., and König, P. (2004). The world from a
cat’s perspective – statistics of natural videos. Biological Cybernetics, 90(1):41–50.

Beyeler, A., Zufferey, J.-C., and Floreano, D. (2007). 3D vision-based navigation for
indoor microflyers. In IEEE International Conference on Robotics and Automation
(ICRA’07).

592 References

Bi, G.-Q. and Poo, M.-M. (2001). Synaptic modification by correlated activity: Hebb’s
postulate revisited. Annual Review of Neuroscience, 24:139–166.

Billard, A. (2002). Imitation. In Arbib, M. A., editor, Handbook of Brain Theory and
Neural Networks, pages 566–569. MIT Press, Cambridge, MA.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press,
New York.

Bithell, M. and Macmillan, W. (2007). Escape from the cell: Spatially explicit mod-
elling with and without grids. Ecological Modelling, 200(1-2):59–78.

Blynel, J. (2001). Evolving reinforcement learning-like abilities for robots. In Tyrrell,
A., Haddow, P., and Torresen, J., editors, Fifth International Conference on Evolvable
Systems (ICES’03).

Blynel, J. and Floreano, D. (2003). Exploring the T-maze: Evolving learning-like robot
behaviors using CTRNNs. In Raidl, G., editor, Second European Workshop on Evolu-
tionary Robotics.

Bochev, P. and Hyman, J. (2006). Principles of mimetic discretizations of differential
operators. In Arnold, D. N., Bochev, P. B., Lehoucq, R. B., Nicolaides, R. A., and
Shashkov, M., editors, Compatible Spatial Discretizations, volume 142 of The IMA
Volumes in Mathematics and Its Applications, pages 89–119. Springer-Verlag, New
York.

Boers, E. and Sprinkhuizen-Kuyper, I. (2001). Combined biological metaphors. In
Patel, M., Honavar, V., and Balakrishnan, K., editors, Advances in the Evolutionary
Synthesis of Intelligent Agents, pages 153–183. MIT Press, Cambridge, MA.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm Intelligence: From Natural
to Artificial Systems. Oxford University Press, New York.

Bonabeau, E., Theraulaz, G., and Deneubourg, J.-L. (1996). Quantitative study of the
fixed threshold model for the regulation of division of labour in insect societies.
Proceedings of the Royal Society of London B, 263:1565–1569.

Bongard, J. and Lipson, H. (2005). Nonlinear system identification using coevolution
of models and tests. IEEE Transactions on Evolutionary Computation, 9(4):361–384.

Bongard, J. and Pfeifer, R. (2001). Repeated structure and dissociation of genotypic
and phenotypic complexity in artificial ontogeny. In Spector, L., Goodman, E. D.,
Wu, A., Langdon, W. B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S.,
Garzon, M. H., and Burke, E., editors, GECCO 2001, pages 829–836. Morgan Kauf-
mann, San Francisco.

Bongard, J. and Pfeifer, R. (2003). Evolving complete agents using artificial ontogeny.
In Hara, F. and Pfeifer, R., editors, Morpho-Functional Machines: The New Species
(Designing Embodied Intelligence), pages 237–258. Springer-Verlag, Berlin.

Bongard, J., Zykov, V., and Lipson, H. (2006). Resilient machines through continuous
self-modeling. Science, 5802:1118–1121.

References 593

Bongard, J. C. (2000). The legion system: A novel approach to evolving heterogeneity
for collective problem solving. In Poli, R., Banzhaf, W., Langdon, W., Miller, J.,
Nordin, P., and Fogarty, T., editors, Genetic Programming, pages 16–28. Springer-
Verlag, Berlin.

Bourke, A. F. G. and Franks, N. R. (1995). Social Evolution in Ants. Princeton University
Press, Princeton, NJ.

Bradley, D. W. and Tyrrell, A. M. (2002). Immunotronics - novel finite-state-machine
architectures with built-in self-test using self-nonself differentiation. IEEE Transac-
tions on Evolutionary Computation, 6(3):227–238.

Braitenberg, V. (1984). Vehicles. Experiments in Synthetic Psychology. MIT Press, Cam-
bridge, MA.

Breazeal, C. (2002a). Designing Sociable Robots. MIT Press, Cambridge, MA.

Breazeal, C. (2002b). Robots that imitate humans. Trends in Cognitive Sciences,
6(11):481–487.

Breazeal, C. (2003). Toward sociable robots. Robotics and Autonomous Systems, 42(3-
4):167–175.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation, RA-2(1):14–23.

Brooks, R. A. (1989). A robot that walks: Emergent behavior from a carefully evolved
network. Neural Computation, 1(2):253–262.

Brooks, R. A. (1991a). Intelligence without reason. In Proceedings of the International
Joint Conference on Artificial Intelligence, pages 569–595. Morgan Kaufmann, San Ma-
teo, CA.

Brooks, R. A. (1991b). Intelligence without representation. Artificial Intelligence Jour-
nal, 47:139–160.

Brooks, R. A. (1991c). New approaches to robotics. Science, 253:1227–1232.

Brooks, R. A. (1992). Artificial life and real robots. In Varela, F. J. and Bourgine, P.,
editors, Toward a Practice of Autonomous Systems: Proceedings of the First European
Conference on Artificial Life, pages 3–10. MIT Press, Cambridge, MA.

Brooks, R. A. (1999). Cambrian Intelligence. The Early History of the New AI. MIT Press,
Cambridge, MA.

Brooks, R. A. (2002). Flesh and Machines: How Robots Will Change Us. Pantheon, New
York.

Brooks, R. A., Breazeal, C., Marjanovic, M., Scassellati, B., and Williamson, M. (1998).
The cog project: Building a humanoid robot. In Nehaniv, C., editor, Computation for
Metaphors, Analogy and Agents. Springer-Verlag, Berlin.

594 References

Brooks, R. A., Breazeal, C., Scassellati, B., and O’Reilly, U. (1999). Technologies for
human/humanoid natural interactions. In Nehaniv, C., editor, The Second Interna-
tional Symposium on Humanoid Robots (HURO99). Tokyo, Japan,.

Brooks, R. A. and Stein, L. A. (1994). Building brains for bodies. Autonomous Robots,
1:7–25.

Bryant, B. and Miikkulainen, R. (2003). Neuroevolution for adaptive teams. In Pro-
ceedings of the 2003 Congress on Evolutionary Computation, CEC ’03, volume 3, pages
2194–2201.

Bryson, A. E. and Ho, Y.-C. (1969). Applied Optimal Control. Blaisdell, New York.

Bull, L. and Kovacs, T., editors (2005). Foundations of Learning Classifier Systems.
Springer-Verlag, Berlin.

Burgess, N., Donnett, J. G., Jeffery, K. J., and O’Keefe, J. (1997). Robotic and neuronal
simulation of the hippocampus and and rat navigation. Philosophical Transactions of
the Royal Society B, 352:1535–1543.

Burke, R., Gustafson, S., and Kendall, G. (2002). A survey and analysis of diversity
measures in genetic programming. In Langdon, W. B., Cantú-Paz, E., Mathias, K.,
Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J.,
Bull, L., Potter, M. A., Schultz, A. C., Miller, J. F., Burke, E., and Jonoska, N., editors,
Proceedings of Genetic and Evolutionary Computation Conference - GECCO 2002, pages
716–723. Morgan Kaufmann, San Francisco.

Burks, A., editor (1970). Essays on Cellular Automata. University of Illinois Press,
Urbana, IL.

Burton, J. L. and Franks, N. R. (1985). The foraging ecology of the army ant Eciton
rapax: An ergonomic enigma? Ecological Entomology, 10:131–141.

Butler, Z., Kotay, K., Rus, D., and Tomita, K. (2001). Cellular automata for decentral-
ized control of self-reconfigurable robots. In Proceedings of the Workshop on Modular
Self-Reconfigurable Robots at the International Conference on Robotics and Automation,
Seoul, Korea. IEEE Press„ Piscataway, NJ.

Calderone, N. W. and Page, R. E. (1996). Temporal polyethism and behavioural canal-
ization in the honey bee, Apis mellifera. Animal Behavior, 51:631–643.

Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., and
Bonabeau, E. (2001). Self-Organization in Biological Systems. Princeton University
Press, Princeton, NJ.

Cangelosi, A. (2001). Evolution of communication and language using signals, sym-
bols, and words. IEEE Transactions on Evolutionary Computation, 5:93–101.

Cangelosi, A., Parisi, D., and Nolfi, S. (1994). Cell division and migration in a geno-
type for neural networks. Network, 5:497–515.

References 595

Caporale, L. H. (1984). Is there a higher level genetic code that directs evolution?
Molecular and Cellular Biochemistry, 64:5–13.

Caporale, L. H. (2003). Darwin in the Genome: Molecular Strategies in Biological Evolu-
tion. McGraw-Hill, New York.

Caporale, L. H. (2004). Genomes don’t play dice. New Scientist, 181(2437):42–45.

Carpenter, G. A. and Grossberg, S. (1987). A massively parallel architecture for self-
organizing neural pattern recognition machines. Computer Vision, Graphics, and
Image Processing, 37:54–115.

Carr, C. E. and Konishi, M. (1988). Axonal delay lines for time measurement in the
owl’s brainstem. Proceedings of the National Academy of Sciences USA, 85:8311–8315.

Cartwright, B. A. and Collett, T. S. (1983). Landmark learning in bees. Journal of
Comparative Physiology A, 151:521–543.

Casasent, D. (1992). Optical processing in neural networks. IEEE Expert, October:55–
61.

Castano, A., Shen, W., and Will, P. (2000). CONRO: Towards deployable robots with
inter-robot metamorphic capabilities. Autonomous Robots, 8:309–324.

Cavalier-Smith, T. (1978). Nuclear volume control by nucleoskeletal DNA, selection
for cell volume and cell growth rate and the solution to the DNA C-value paradox.
Journal of Cell Science, 34:247–278.

Chalmers, D. J. (1990). The evolution of learning: An experiment in genetic connec-
tionism. In Touretzky, D. S., Elman, J. L., Sejnowski, T., and Hinton, G. E., editors,
Proceedings of the 1990 Connectionist Models Summer School, pages 81–90. Morgan
Kaufmann, San Mateo, CA.

Chauvin, Y. (1989). A back-propagation algorithm with optimal use of hidden units.
In Touretzky, D., editor, Advances in Neural Information Processing Systems 1. Morgan
Kaufmann, San Francisco.

Chiel, H. and Beer, R. (1997). The brain has a body: Adaptive behaviour emerges from
interactions of nervous system, body and environment. Trends in Neurosciences,
20:553–557.

Chomsky, N. (1957). Syntactic Structures. Mouton, The Hague.

Chopard, B. and Droz, M. (1998). Cellular Automata Modeling of Physical Systems. Cam-
bridge University Press, Cambridge, UK.

Chua, L. and Yang, L. (1988a). Cellular neural networks: Applications. IEEE Transac-
tions on Circuits and Systems, 35(10):1273–1290.

Chua, L. and Yang, L. (1988b). Cellular neural networks: Theory. IEEE Transactions
on Circuits and Systems, 35(10):1257–1272.

596 References

Chua, L. O., Sbitnev, V. I., and Yoon, S. (2003). A nonlinear dynamics perspective of
Wolfram’s new kind of science. Part 2: Universal neuron. International Journal of
Bifurcation and Chaos, 13(9):2377–2491.

Chua, L. O., Sbitnev, V. I., and Yoon, S. (2004). A nonlinear dynamics perspective of
Wolfram’s new kind of science. Part 3: Predicting the unpredictable. International
Journal of Bifurcation and Chaos, 14(11):3689–3820.

Chua, L. O., Sbitnev, V. I., and Yoon, S. (2005). A nonlinear dynamics perspective
of Wolfram’s new kind of science. Part 4: From Bernoulli shift to 1/f spectrum.
International Journal of Bifurcation and Chaos, 15(4):1045–1183.

Chua, L. O., Yoon, S., and Dogaru, R. (2002). A nonlinear dynamics perspective of
Wolfram’s new kind of science. Part 1: Threshold of complexity. International Jour-
nal of Bifurcation and Chaos, 12(12):2655–2766.

Churchland, P. M. and Sejnowski, T. J. (1992). The Computational Brain. MIT Press,
Cambridge, MA.

Clark, A. (1989). Microcognition: Philosophy, Cognitive Science, and Parallel Distributed
Processing. MIT Press, Cambridge, MA.

Clark, A. (1997). Being There: Putting Brain, Body and World Together Again. MIT Press,
Cambridge, MA.

Clearwater, S. H. (1995). Market-Based Control: A Paradigm for Distributed Resource
Allocation. World Scientific, Singapore.

Clerc, M. and Kennedy, J. (2002). The particle swarm-explosion, stability, and con-
vergence in a multidimensional complex space. IEEE Transactions on Evolutionary
Computation, 6:58–73.

Cliff, D., Harvey, I., and Husbands, P. (1993). Explorations in evolutionary robotics.
Adaptive Behavior, 2:73–110.

Cliff, D. and Miller, G. F. (1995). Tracking the Red Queen: Measurements of adaptive
progress in co-evolutionary simulations. In Morán, F., Moreno, A., Merelo, J. J.,
and Chacón, P., editors, Advances in Artificial Life: Proceedings of the Third European
Conference on Artificial Life, pages 200–218. Springer-Verlag, Berlin.

Cliff, D. and Miller, G. F. (1996). Co-evolution of pursuit and evasion II: Simulation
methods and results. In Maes, P., Matarić, M., Meyer, J., Pollack, J., Roitblat, H., and
Wilson, S., editors, From Animals to Animats IV: Proceedings of the Fourth International
Conference on Simulation of Adaptive Behavior. MIT Press, Cambridge, MA.

Cliff, D. T. (1991). Computational neuroethology: A provisional manifesto. In Meyer,
J. A. and Wilson, S. W., editors, From Animals to Animats: Proceedings of the First
International Conference on Simulation of Adaptive Behavior. MIT Press, Cambridge,
MA.

Codd, E. (1968). Cellular Automata. Academic Press, New York.

References 597

Coen, E. (1999). The Art of Genes. Oxford University Press, Oxford.

Coico, R., Sunshine, G., and Benjamini, E. (2003). Immunology: A Short Course, 5th
edition. Wiley-Liss, Hoboken, NJ.

Collins, S., Ruina, A., Tedrake, R., and Wisse, M. (2005). Efficient bipedal robots based
on passive-dynamic walkers. Science, 307:1082–1085.

Conrad, M. (1988). The price of programmability. In Herken, R., editor, The Uni-
versal Turing Machine: A Fifty Year Survey, pages 285–307. Oxford University Press,
Oxford.

Conrad, M. (1990). The geometry of evolution. Biosystems, 24:61–81.

Cook, N. D. (1995). Artefact or network evolution? Nature, 374:313–314.

Cook, N. D., Fruh, H., and Landis, T. (1995). The cerebral hemispheres and neural
network simulations: Design considerations. Journal of Experimental Psychology:
Human Perception and Performance, 95 (21):410–422.

Crichton, M. (2002). Prey. Harper Collins (Avon Books), New York.

Crutchfield, J. P. (2003). When evolution is revolution–origins of innovation. In
Crutchfield, J. P. and Schuster, P., editors, Evolutionary Dynamics: Exploring the In-
terplay of Selection, Accident, Neutrality, and Function, SFI Studies in the Sciences of
Complexity, pages 101–133. Oxford University Press, Oxford.

Crutchfield, J. P., Farmer, J., Packard, N. H., and Shaw, R. S. (1986). Chaos. Scientific
American, 255:46–57.

Culik, K. and Yu, S. (1988). Undecidability of CA classification schemes. Complex
Systems, 2(2):177–190.

Damiani, E., Tettamanzi, A., and Liberali, V. (1999). On-line evolution of FPGA-based
circuits: A case study on hash functions. In Stoica, A., Keymeulen, D., and Lohn, J.,
editors, First NASA/DoD Workshop on Evolvable Hardware (EH ’99), July 19-21, 1999,
Pasadena, CA, pages 26–33. IEEE Computer Society, Los Alamitos, CA.

Darwin, C. (1859). On The Origin of Species by Means of Natural Selection, or The Preser-
vation of Favoured Races in the Struggle for Life. Murray, London.

Dasdan, A. and Oflazer, K. (1993). Genetic synthesis of unsupervised learning algo-
rithms. Technical report, Department of Computer Engineering and Information
Science, Bilkent University, Ankara, Turkey.

Dasgupta, D. (1997). Artificial neural networks and artificial immune systems: simi-
larities and differences. In 1997 IEEE International Conference on Systems, Man, and
Cybernetics, 1997, Orlando, FL, 12-15 Oct. 1997, volume 1, pages 873–878. IEEE Press,
Piscataway, NJ.

Dasgupta, D. and Michalewicz, Z., editors (1997). Evolutionary Algorithms in Engineer-
ing Applications. Springer-Verlag, New York.

598 References

Dastidar, T. R., Chakrabarti, P. P., and Ray, P. (2005). A synthesis system for analog
circuits based on evolutionary search and topological reuse. IEEE Transactions on
Evolutionary Computation, 9(2):211–234.

Davis, D. M. (2006). Intrigue at the immune synapse. Scientific American, 294(2):48–55.

Davis, D. M. and Dustin, M. L. (2004). What is the importance of the immunological
synapse? Trends in Immunology, 25(6):323–327.

Davis, L., editor (1989). Genetic Algorithms and Simulated Annealing. Morgan Kauf-
mann, San Mateo, CA.

Davis, L., editor (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold, New
York.

Dawkins, R. (1976). The Selfish Gene. Oxford University Press, Oxford.

Dawkins, R. (1986). The Blind Watchmaker. Longman, Essex, UK.

Dawkins, R. and Krebs, J. R. (1979). Arms races between and within species. Proceed-
ings of the Royal Society of London B, 205:489–511.

de Castro, L. N. and Timmis, J. I. (2002). Artificial Immune Systems: A New Computa-
tional Intelligence Approach. Springer-Verlag, London.

de Castro, L. N. and Von Zuben, F. J. (2002). Learning and optimization using the
clonal selection principle. IEEE Transactions on Evolutionary Computation, 6(3):239–
251.

de Garis, H. (1990). Genetic programming: Evolution of time dependent neural net-
work modules which teach a pair of stick legs to walk. In Proceedings of the Ninth
European Conference on Artificial Intelligence, pages 204–206. Stockholm.

de Garis, H. (1993). Growing an artificial brain with a million neural net modules
inside a trillion cell cellular automaton machine. In Fourth International Symposium
on Micro Machine and Human Science, pages 211–214. Nagoya, Japan.

De Lillo, C., Floreano, D., and Antinucci, F. (2001). Transitive choices by a simple,
fully connected, backpropagation neural network: Implications for the compara-
tive study of transitive inference. Animal Cognition, 4:61–66.

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. Wiley,
Chichester, UK.

Deiss, S. R., Douglas, R. J., and Whatley, A. M. (1999). A pulse-coded communications
infrastructure for neuromorphic systems. In Maass, W. and Bishop, C. M., editors,
Pulsed Neural Networks. MIT Press, Cambridge, MA.

Dellaert, F. and Beer, R. (1996). A developmental model for the evolution of complete
autonomous agents. In Maes, P., Mataric, M., Meyer, J.-A., Pollack, J., and Wilson,
S., editors, From Animals to Animats IV, pages 393–401. MIT Press, Cambridge, MA.

References 599

DeMarse, T. B., Wagenaar, D. A., Blau, A. W., and Potter, S. M. (2001). The neurally
controlled animat: Biological brains acting with simulated bodies. Autonomous
Robots, 11:305–310.

Demiris, Y. and Hayes, G. (2002). Imitation as a dual-route process featuring predic-
tive and learning components: A biologically-plausible computational model. In
Dautenhahn, K. and Nehaniv, C., editors, Imitation in Animals and Artifacts. MIT
Press, Cambridge, MA.

Deneubourg, J.-L., Goss, S., Franks, N. R., and Pasteels, J. M. (1989). The blind leading
the blind: Modelling chemically mediated army ant raid patterns. Journal of Insect
Behavior, 2:719–725.

Deneubourg, J.-L., Goss, S., Franks, N. R., Sendova-Franks, A., Detrain, C., and Chre-
tien, L. (1991). The dynamics of collective sorting: Robot-like ant and ant-like robot.
In Meyer, J.-A. and Wilson, S. W., editors, Proceedings of the First International Con-
ference on Simulation of Adaptive Behavior: From Animals to Animats, pages 356–365.
MIT Press, Cambridge, MA.

Deneubourg, J.-L., Gregoire, J. C., and Le Fort, E. (1990). Kinetics of the larval gre-
garious behaviour in the bark beetle Dendroctonus micans. Journal of Insect Behavior,
3:169–182.

Detrain, C. and Pasteels, J. M. (1991). Caste differences in behavioral thresholds as
a basis for polyethism during food recruitment in the ant Pheidole pallidula (nyl.)
(Hymenoptera: Myrmicinae). Journal of Insect Behavior, 4:157–176.

Deussen, O. and Lintermann, B. (2005). Digital Design of Nature: Computer Generated
Plants and Organics. Springer-Verlag, Berlin.

Deutsch, A. and Dormann, S. (2005). Cellular Automaton Modeling of Biological Pattern
Formation. Birkhäuser, Boston.

Dewdney, A. K. (1993). Misled by metaphors: Two tools that don’t always work. In
Haken, H., Karlqvist, A., and Svedin, U., editors, The Machine as Metaphor and Tool.
Springer-Verlag, Berlin.

DeYoe, E. A. and van Essen, D. C. (1988). Concurrent processing streams in monkey
visual cortex. Trends in Neuroscience, 11:219–226.

D’haeseleer, P., Forrest, S., and Helman, P. (1996). An immunological approach to
change detection: Algorithms, analysis and implications. In Proceedings of the 1996
IEEE Symposium on Security and Privacy, pages 110–119.

Di Caro, G. and Dorigo, M. (1998). Antnet: Distributed stigmergetic control for com-
munications networks. Journal of Artificial Intelligence Research, 9:317–365.

Diamantaras, K. I. and Kung, S. Y., editors (1996). Principal Component Analysis. Wiley,
New York.

600 References

DiCarlo, A., Milicchio, F., Paoluzzi, A., and Shapiro, V. (2007). Solid and physical
modeling with chain complexes. In Proceedings of the 2007 ACM Symposium on Solid
and Physical Modeling, Beijing, pages 73–84. ACM Press, New York.

Dickinson, M. (1999). Haltere-mediated equilibrium reflexes of the fruit fly, Drosophila
melanogaster. Philosophical Transactions: Biological Sciences, 354 (1385):903–916.

Dickinson, W. J. and Seger, J. (1999). Cause and effect in evolution. Nature,
399(6731):30.

Diermeier, D. (2007). Arguing for computational power. Science, 318(5852):918–919.

DiPaolo, E. (2003). Evolving spike-timing-dependent plasticity for single-trial learn-
ing in robots. Philosophical Transactions of the Royal Society of London A, 361:2299–
2319.

DiPaolo, E. A. (2000). Homeostatic adaptation to inversion of the visual field and
other sensorimotor disruptions. In Meyer, J., Berthoz, A., Floreano, D., Roitblat,
H., and Wilson, S., editors, From Animals to Animats VI: Proceedings of the Fifth In-
ternational Conference on Simulation of Adaptive Behavior, pages 440–449. MIT Press,
Cambridge, MA.

Dissanayake, M., Newman, P., Clark, S., Durrant-Whyte, H., and Csorba, M. (2001).
A solution to the simultaneous localization and map building (SLAM) problem.
IEEE Transactions on Robotics and Automation, 17(3):229–241.

Dobzhansky, T. (1973). Nothing in biology makes sense except in the light of evolu-
tion. The American Biology Teacher, 35:125–129.

Dorigo, M. and Gambardella, L. (1997). Ant colony system: A cooperative learn-
ing approach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1:53–66.

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). The ant system: Optimization by a
colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics B,
26:29–41.

Dorigo, M., Trianni, V., Scedilahin, E., Gross, R., Labella, T. H., Baldassarre, G., Nolfi,
S., Deneubourg, J. L., Mondada, F., Floreano, D., and Gambardella, L. M. (2004).
Evolving self-organizing behaviors for a Swarm-bot. Autonomous Robots, 17(2-
3):223–245.

Douglas, R. J. and Martin, K. A. C. (1990). Neocortex. In Shepherd, G. M., editor, The
Synaptic Organization of the Brain. Oxford University Press, Oxford.

Doya, K. (2002). Metalearning and neuromodulation. Neural Networks, 15:495–506.

Doya, K., Dayan, P., and Hasselmo, M. E. (2002). Special issue on Computational
Models of Neuromodulation. Neural Networks, 15:475–774.

Doya, K., Kimura, H., and M., K. (2001). Neural mechanisms of learning and control.
IEEE Control Systems Magazine, 21:42–54.

References 601

Dreyfus, H. L. (1992). What Computers Still Can’t Do: A Critique of Artificial Reason.
MIT Press, Cambridge, MA.

Drogoul, A. and Ferber, J. (1992). From Tom Thumb to the dockers: Some experiments
with foraging robots. In Meyer, J., Roitblat, H. L., and Wilson, S. W., editors, From
Animals to Animats II: Proceedings of the Second International Conference on Simulation
of Adaptive Behavior, pages 451–459. MIT Press, Cambridge, MA.

Drossel, B. and Schwabl, F. (1992). Self-organized critical forest-fire model. Physical
Review Letters, 69(11):1629–1632.

Drossel, B. and Schwabl, F. (1994). Formation of space-time structure in a forest-fire
model. Physica A: Statistical and Theoretical Physics, 204(1-4):212–229.

Dufay, B. and Latombe, J. C. (1984). An approach to automatic robot programming
based on inductive learning. International Journal of Robotics Research, 3:3–20.

Durlauf, S. N. (1997). Insights for socioeconomic modeling. Complexity, 2(3):47–49.

Dürr, P., Mattiussi, C., and Floreano, D. (2006). Neuroevolution with analog genetic
encoding. In Runarsson, T. P., Beyer, H.-G., Burke, E. K., Guervós, J. J. M., Whitley,
L. D., and Yao, X., editors, Parallel Problem Solving from Nature - PPSN IX, volume 9,
pages 671–680. Springer-Verlag, Berlin.

Edelman, G. M. (1988). Neural Darwinism: The Theory of Neuronal Group Selection. Basic
Books, New York.

Egelhaaf, M. and Kern, R. (2002). Vision in flying insects. Current Opinion in Neurobi-
ology, 12(6):699–706.

Eggenberger, P. (1997a). Creation of neural networks based on developmental and
evolutionary principles. In Gerstner, W., Germond, A., Hasler, M., and Nicoud, J.-
D., editors, Proceedings of the International Conference on Artificial Neural Networks,
ICANN’97, Lausanne, Switzerland, October 8-10, 1997, volume 1327 of Lecture
Notes in Computer Science, pages 337–342. Springer-Verlag, Berlin.

Eggenberger, P. (1997b). Evolving morphologies of simulated 3D organisms based on
differential gene expression. In Husbands, P. and Harvey, I., editors, Proceedings of
the Fourth European Conference on Artificial Life, ECAL97, pages 205–213. MIT Press,
Cambridge, MA.

Eggenberger, P. (2003). Genome-physics interaction as a new concept to reduce the
number of genetic parameters in artificial evolution. In Proceedings of the 2003
Congress on Evolutionary Computation. CEC03., volume 1, pages 191–198. IEEE Press,
Piscataway, NJ.

Eggenberger, P. (2004a). Asymmetric cell division and its integration with other de-
velopmental processes for artificial evolutionary systems. In Pollack, J., Bedau, M.,
Husbands, P., Ikegami, T., and R., W., editors, Proceedings of the Ninth International
Conference on Artificial Life, ALIFE IX, Boston, September 12–15, pages 387–392. MIT
Press, Cambridge, MA.

602 References

Eggenberger, P. (2004b). Comparing direct and developmental encoding schemes in
artificial evolution: A case study in evolving lens shapes. In Maes, P., Mataric, M.,
Meyer, J.-A., Pollack, J., and Wilson, S., editors, Proceedings of the 2004 Congress on
Evolutionary Computation, CEC 2004. IEEE Press, Piscataway, NJ.

Eiben, A. E. and Smith, J. E., editors (2003). Introduction to Evolutionary Computing.
Springer-Verlag, Berlin.

Eilon, S. (1972). Goals and constraints in decision-making. Operational Research Quar-
terly, 23(1):3–15.

Eldredge, J. G. and Hutchings, B. L. (1994). Density enhancement of a neural network
using FPGAs and run-time reconfiguration. In Buell, D. A. and Pocek, K. L., edi-
tors, IEEE Workshop on FPGAs for Custom Computing Machines, pages 180–188. IEEE
Computer Society Press, Los Alamitos, CA.

Eliasmith, C. and Anderson, C. H. (2003). Neural Engineering: Computation, Represen-
tation, and Dynamics in Neurobiological Systems. MIT Press, Cambridge, MA.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14:179–211.

Engelhard, V. H. (1994). How cells process antigens. Scientific American, 271(2):54–61.

Enquist, M. and Arak, A. (1994). Symmetry, beauty, and evolution. Nature, 372:169–
172.

Epstein, J. M. (2006). Generative Social Science: Studies in Agent-based Computational
Modeling. Princeton University Press, Princeton, NJ.

Epstein, J. M. and Axtell, R. (1996). Growing Artificial Societies: Social Science from the
Bottom Up. Complex Adaptive Systems. Brookings Institution Press, Washington,
DC.

Escuela, G., Ochoa, G., and Krasnogor, N. (2005). Evolving L-systems to capture pro-
tein structure native conformations. In Proceedings of the Eigth European Conference,
EuroGP 2005, Lausanne, Switzerland, March 30 - April 1, 2005, volume 3447 of
Lecture Notes in Computer Science, pages 74–84. Springer-Verlag, Berlin.

Estier, T., Crausaz, Y., Merminod, B., Lauria, M., R.Piguet, and Siegwart, R. (2000).
An innovative space rover with extended climbing alilities. In Proceedings of Space
and Robotics 2000. Albuquerque, NM.

Fahlman, S. E. (1989). Fast-learning variations on back-propagation: An empiri-
cal study. In Touretzky, D., Hinton, G., and Sejnowski, T., editors, Proceedings of
the 1988 Connectionist Models Summer School, pages 38–51. Morgan Kaufmann, San
Francisco.

Fahlman, S. E. and Lebiere, C. (1990). The cascade-correlation learning architecture.
In Touretzky, D., editor, Advances in Neural Information Processing Systems 2. Morgan
Kaufmann, San Francisco.

References 603

Farah, M. J. and McClelland, J. L. (1991). A computational model of semantic mem-
ory impairment: Modality specificity and emergent category specificity. Journal of
Experimental Psychology: General, 120:339–357.

Farge, M. (2007). Numerical experimentation: A third way to study nature. In
Kaneda, Y., Kawamura, H., and Sasai, M., editors, Frontiers of Computational Sci-
ence. Proceedings of the International Symposium on Frontiers of Computational Science
2005, pages 15–30. Springer-Verlag, Berlin.

Fatès, N. and Morvan, M. (2004). Perturbing the topology of the Game of Life in-
creases its robustness to asynchrony. In Cellular Automata: Sixth International Con-
ference on Cellular Automata for Research and Industry, ACRI 2004, Amsterdam, Oc-
tober 25-28, 2004, volume 3305 of Lecture Notes in Computer Science, pages 111–120.
Springer-Verlag, Berlin.

Featherstone, R. and Orin, D. E. (2000). Robot dynamics: Equations and algorithms.
In Proceedings of the IEEE International Conference on Robotics and Automation. IEEE
Press, Piscataway, NJ.

Fellous, J.-M. and Linster, C. (1998). Computational models of neuromodulation.
Neural Computation, 10(4):771–805.

Field, D. J. (1994). What is the goal of sensory coding? Neural Computation, 4:559–601.

Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Oxford University Press,
Oxford.

Fleischer, K. and Barr, A. (1994). A simulation testbed for the study of multicellular
development: The multiple mechanisms of morphogenesis. In Langton, C., editor,
Artificial Life III , Proceedings of the Third International Workshop on the Synthesis and
Simulation of Living Systems, pages 246–257. Addison-Wesley, Reading, MA.

Fleming, K. M., Reger, B. D., Sanguineti, V., Alford, S., and Mussa-Ivaldi, F. A. (2000).
Connecting brains to robots: An artificial animal for the study of learning in ver-
tebrate nervous systems. In Meyer, J., Berthoz, A., Floreano, D., Roitblat, H., and
Wilson, S., editors, From Animals to Animats V: Proceedings of the Sixth International
Conference on Simulation of Adaptive Behavior. MIT Press, Cambridge, MA.

Floreano, D. (1992). Emergence of home-based foraging strategies in ecosystems of
neural networks. In Meyer, J., Roitblat, H. L., and Wilson, S. W., editors, From
Animals to Animats II: Proceedings of the Second International Conference on Simulation
of Adaptive Behavior. MIT Press, Cambridge, MA.

Floreano, D. (2006-2008). Talking robots. http://lis.epfl.ch/podcast.

Floreano, D., Kato, T., Marocco, D., and Sauser, E. (2004). Coevolution of active vision
and feature selection. Biological Cybernetics, 90(3):218–228.

Floreano, D. and Mattiussi, C. (2001). Evolution of spiking neural controllers for
autonomous vision-based robots. In Gomi, T., editor, Evolutionary Robotics. From
Intelligent Robotics to Artificial Life. Springer-Verlag, Tokyo.

604 References

Floreano, D., Miglino, O., and Parisi, D. (1991). Emergent complex behaviours in
ecosystems of neural networks. In Caianiello, E., editor, Parallel Architectures and
Neural Networks. World Scientific Press, Singapore.

Floreano, D., Mitri, S., Magnenat, S., and Keller, L. (2007). Evolutionary conditions
for the emergence of communication in robots. Current Biology, 17:514–519.

Floreano, D. and Mondada, F. (1994). Automatic creation of an autonomous agent:
Genetic evolution of a neural-network driven robot. In Cliff, D., Husbands, P.,
Meyer, J., and Wilson, S. W., editors, From Animals to Animats III: Proceedings of the
Third International Conference on Simulation of Adaptive Behavior, pages 421–430. MIT
Press, Cambridge, MA.

Floreano, D. and Mondada, F. (1996). Evolution of plastic neurocontrollers for situ-
ated agents. In Maes, P., Matarić, M., Meyer, J., Pollack, J., Roitblat, H., and Wilson,
S., editors, From Animals to Animats IV: Proceedings of the Fourth International Con-
ference on Simulation of Adaptive Behavior, pages 402–410. MIT Press, Cambridge,
MA.

Floreano, D. and Nolfi, S. (1997a). Adaptive behavior in competing co-evolving
species. In Husbands, P. and Harvey, I., editors, Proceedings of the Fourth European
Conference on Artificial Life, pages 378–387. MIT Press, Cambridge, MA.

Floreano, D. and Nolfi, S. (1997b). God save the Red Queen! Competition in co-
evolutionary robotics. In Koza, J., Deb, K., Dorigo, M., Fogel, D., Garzon, M., Iba,
H., and Riolo, R. L., editors, Proceedings of the Second International Conference on
Genetic Programming. Morgan Kaufmann, San Mateo, CA.

Floreano, D., Nolfi, S., and Mondada, F. (2001). Co-evolution and ontogenetic change
in competing robots. In Patel, M., Honavar, V., and Balakrishnan, K., editors, Ad-
vances in the Evolutionary Synthesis of Intelligent Agents. MIT Press, Cambridge, MA.

Floreano, D., Schoeni, C., Caprari, G., and Blynel, J. (2002). Evolutionary bits’
n’spikes. In Standish, R. K., Bedau, M. A., and Abbass, H. A., editors, Artificial
Life VIII. Proceedings of the Eighth International Conference on Artificial Life. MIT Press,
Cambridge, MA.

Floreano, D., Suzuki, M., and Mattiussi, C. (2005). Active vision and receptive field
development in evolutionary robots. Evolutionary Computation, 13(4):527–544.

Floreano, D. and Urzelai, J. (2000). Evolutionary robots with online self-organization
and behavioral fitness. Neural Networks, 13:431–443.

Floreano, D. and Urzelai, J. (2001). Neural morphogenesis, synaptic plasticity, and
evolution. Theory in Biosciences, 120(3-4):225–240.

Fogel, D. (1998). Evolutionary Computation: The Fossil Record. Wiley - IEEE Press, New
York.

Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artificial Intelligence through Simu-
lated Evolution. Wiley, New York.

References 605

Fong, T., Nourbakhsh, I., and Dautenhahn, K. (2003). A survey of socially interactive
robots. Robotics and Autonomous Systems, 42:143–166.

Fonseca, C. M. and Fleming, P. J. (2002). Multiobjective optimization. In Bäck, T.,
Fogel, D. B., and Michalewicz, Z., editors, Evolutionary Computation 2: Advanced
Algorithms and Operators, pages 25–37. Institute of Physics, Bristol, UK.

Fontanari, J. F. and Meir, R. (1991). Evolving a learning algorithm for the binary
perceptron. Network, 2:353–359.

Forrest, S. and Hofmeyr, S. A. (2001). Immunology as information processing. In
Segel, L. and Cohen, I., editors, Design Principles for the Immune System and Other
Distributed Autonomous Systems, Santa Fe Institute Studies in the Sciences of Com-
plexity, chapter 17, pages 361–387. Oxford University Press, Oxford.

Forrest, S., Perelson, A. S., Allen, L., and Cherukuri, R. (1994). Self-nonself discrim-
ination in a computer. In Proceedings of the 1994 IEEE Symposium on Security and
Privacy, pages 202–212.

Fortuna, L., Arena, P., Balya, D., and Zarandy, A. (2001). Cellular neural networks: A
paradigm for nonlinear spatio-temporal processing. Circuits and Systems Magazine,
IEEE, 1(4):6–21.

Franceschini, N., Pichon, J. M., and Blanes, C. (1992). From insect vision to robot
vision. Philosophical Transactions of the Royal Society B, 337:283–294.

Franco, S. (2001). Design with Operational Amplifiers and Analog Integrated Circuits.
McGraw-Hill, New York.

Franks, N. R. and Sendova-Franks, A. B. (1992). Brood sorting in ants: Distributing
the workload over the work-surface. Behavioural Ecology and Sociobiology, 30:109–
123.

Franks, N. R., Wilby, A., Silverman, B. W., and Tofts, C. (1992). Self-organizing nest
construction in ants: Sophisticated building by blind bulldozing. Animal Behaviour,
44:357–375.

Franz, M. O., Schölkopf, B., Mallot, H. A., and Bülthoff, H. H. (1998). Where did I
take that snapshot? Scene-based homing by image matching. Biological Cybernetics,
79:191–202.

Frean, M. R. (1990). The upstart algorithm: A method for constructing and training
feedforward neural networks. Neural Computation, 2:190–209.

Fredkin, E. (1992). A new cosmogony. Department of Physics, Boston University,
Boston.

Freeman, W. J., editor (2001). How Brains Make Up Their Minds. Columbia University
Press, New York.

Freeman, W. J. (2003). W. Grey Walter: Biographical essay. In Nadel, L., editor, McMil-
lan Encyclopedia of Cognitive Science, volume 4, pages 537–539. McMillan, London.

606 References

Friedl, P., DenBoer, A. T., and Gunzer, M. (2005). Tuning immune responses: Diver-
sity and adaptation of the immunological synapse. Nature Reviews Immunology,
5(7):532–545.

Frisch, U., Hasslacher, B., and Pomeau, Y. (1986). Lattice-gas automata for the Navier-
Stokes equation. Physical Review Letters, 56(14):1505–1508.

Friston, K., Tononi, G., Reeke, G., Sporns, O., and Edelman, G. (1994). Value-
dependent selection in the brain: Simulation in a synthetic neural model. Neu-
roscience, 59:229–243.

Fromherz, P. (2003). Neuroelectronic interfacing: Semiconductor chips with ion chan-
nels, nerve cells, and brain. In Waser, R., editor, Nanoelectronics and Information
Technology. Wiley-VCH, Berlin.

Fuks, H. (1997). Solution of the density classification problem with two cellular au-
tomata rules. Physical Review E, 55(3):R2081–R2084.

Fukuda, T., Mizoguchi, H., Sekiyama, K., and Arai, F. (1999). Group behavior con-
trol for MARS. In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 1550–1555. IEEE Press, Piscataway, NJ.

Fukuda, T. and Ueyama, T. (1994). Cellular Robotics and Micro Robotic Systems. World
Scientific, Singapore.

Full, R. J. and Koditschek, D. E. (1999). Templates and anchors: Neuromechanical
hypotheses of legged locomotion on land. Journal of Experimental Biology, 202:3325–
3332.

Funes, P. and Pollack, J. (1998). Evolutionary body building: Adaptive physical de-
signs for robots. Artificial Life, 4(4):337–357.

Gallagher, J., Beer, R., Espenschiel, M., and Quinn, R. (1996). Application of evolved
locomotion controllers to a hexapod robot. Robotics and Autonomous Systems,
19(1):95–103.

Gallistel, C. R., editor (1990). The Organization of Learning. MIT Press, Cambridge,
MA.

Galt, S., Luk, B., and Collie, A. (1997). Evolution of smooth and efficient walking
motions for an 8-legged robot. In Proceedings of the Sixth European Workshop on
Learning Robots. Brighton,UK.

Gardner, M. (1970). The fantastic combinations of John Conway’s new solitaire game
"life". Scientific American, 223(4):120–123.

Gardner, M. (1971). On cellular automata, self-reproduction, the Garden of Eden and
the game "life". Scientific American, 224(2):112–117.

Garrett, S. M. (2005). How do we evaluate artificial immune systems? Evolutionary
Computation, 13(2):145–178.

References 607

Garthwaite, J. (1991). Glutamate, nitric oxide and cell-cell signalling in the nervous
system. Trends in Neuroscience, 87:3547–3551.

Gaylord, R. J. and D’Andria, L. J. (1998). Simulating Society : A Mathematica Toolkit for
Modeling Socioeconomic Behavior. Springer-Verlag, New York.

Gaylord, R. J. and Nishidate, K. (1996). Modeling Nature: Cellular Automata Simulations
with Mathematica. Springer-Verlag, New York.

Gaylord, R. J. and Wellin, P. R. (1995). Computer Simulations with Mathematica: Explo-
rations in Complex Physical and Biological Systems. Springer-Verlag, New York.

Gerhart, J. and Kirschner, M. (1997). Cells, Embryos, and Evolution. Blackwell, London.

Gerstner, W. (1999). Spiking neurons. In Maass, W. and Bishop, C. M., editors, Pulsed
Neural Networks. MIT Press, Cambridge, MA.

Gerstner, W. and Kistler, W. (2002). Spiking Neuron Models. Cambridge University
Press, Cambridge, UK.

Gerstner, W., van Hemmen, J. L., and Cowan, J. D. (1996). What matters in neuronal
locking? Neural Computation, 8:1653–1676.

Ghodoossi, L. (2004). Conceptual study on constructal theory. Energy Conversion and
Management, 45(9-10):1379–1395.

Giacobini, M., Tomassini, M., Tettamanzi, A., and Alba, E. (2005). Selection inten-
sity in cellular evolutionary algorithms for regular lattices. IEEE Transactions on
Evolutionary Computation, 9(5):489–505.

Gibson, J. J. (1950). The Perception of the Visual World. Houghton Mifflin, Boston.

Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Houghton Mifflin,
Boston.

Gilbert, B. (1991). Where do little circuits come from? In Williams, J., editor,
Analog Circuit Design: Art, Science, and Personalities, pages 177–186. Butterworth-
Heinemann, Boston.

Gilbert, B. (2002). Design for manufacture. In Toumazou, C., Moschytz, G., and
Gilbert, B., editors, Trade-Offs in Analog Circuit Design, pages 7–74. Kluwer, Boston.

Gilboa, E. (2004). The promise of cancer vaccines. Nature Reviews Cancer, 4(5):401–411.

Glickman, M., Balthrop, J., and Forrest, S. (2005). A machine learning evaluation of
an artificial immune system. Evolutionary Computation, 13(2):179–212.

Gluck, M. (1991). Stimulus sampling and distributed representations in adaptive
network theories of learning. In Healy, A., Kosslyn, S., and Shiffrin, R., editors,
Festschrift for W. K. Estes. Erlbaum, Hillsdale, NJ.

Glusman, G., Yanai, I., Rubin, I., and Lancet, D. (2001). The complete human olfactory
subgenome. Genome Research, 11:685–702.

608 References

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Redwood City, CA.

Gomi, T. and Ide, K. (1996). The Tao project: Intelligent wheelchairs for the handi-
capped. In V. Mittal, H. Yanco, J. A. and Simpson, R., editors, AAAI Fall Symposium.
MIT Press, Cambridge, MA.

Gomi, T. and Ide, K. (1998). Emergence of gaits of a legged robot by collaboration
through evolution. In IEEE World Congress on Computational Intelligence. IEEE Press,
New York.

Gordon, T. G. W. and Bentley, P. J. (2002). On evolvable hardware. In Ovaska, S.
and Sztandera, L., editors, Soft Computing in Industrial Electronics, pages 279–323.
Physica-Verlag, Heidelberg, Germany.

Goss, S., Aron, S., and Deneubourg, J.-L. (1989). Self-organized shortcuts in the ar-
gentine ant. Naturwissenschaften, 76:579–581.

Goss, S. and Deneubourg, J.-L. (1992). Harvesting by a group of robots. In Varela, F. J.
and Bourgine, P., editors, Toward a Practice of Autonomous Systems: Proceedings of the
First European Conference on Artificial Life, pages 195–204. MIT Press, Cambridge,
MA.

Gould, S. J. (1977). Ontogeny and Phylogeny. Harvard University Press, Cambridge,
MA.

Gould, S. J. (1997). Full House: The Spread of Excellence from Plato to Darwin, 2nd edition.
Random House, New York.

Gould, S. J. and Elredge, N. (1977). Punctuated equilibria: The tempo and mode of
evolution reconsidered. Paleobiology, 3:115–151.

Gouyet, J.-F. (1996). Physics and Fractal Structures. Masson, Paris.

Graham, P. (1993). On LISP. Prentice Hall, Englewood Cliffs, NJ.

Graham-Rowe, D. (2002). Animals grown from an artificial embryo. New Scientist.

Grassé, P.-P. (1959). La reconstruction du nid et les coordinations interindividuelles
chez Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Essai
d’interprétation du comportement des termites constructeurs. Insectes Sociaux,
6:41–83.

Graur, D. and Wen-Hsiung, L. (1999). Fundamentals of Molecular Evolution. Sinauer
Associates, Sunderland, MA.

Gray, P. R., Hurst, P. J., Lewis, S. H., and Meyer, R. G. (2001). Analysis and Design of
Analog Integrated Circuits, 4th edition. Wiley, New York.

Greenwood, G. W. and Tyrrell, A. M. (2007). Introduction to evolvable hardware: A
practical guide for designing self-adaptive systems. Wiley, Hoboken, NJ.

Grefenstette, J. (1988). Credit assignment in rule discovery systems based on genetic
algorithms. Machine Learning, 3(2):225–245.

References 609

Grefenstette, J. J. and Ramsey, C. L. (1992). An approach to anytime learning. In
Proceedings of the Ninth International Workshop on Machine Learning, pages 189–195.
Morgan Kauffmann, San Mateo, CA.

Grimbleby, J. B. (2000). Automatic analogue circuit synthesis using genetic algo-
rithms. IEE Proceedings - Circuits, Devices & Systems, 147(6):319–323.

Grossberg, S. (1980). How does the brain build a cognitive code? Psychological Review,
87:1–51.

Grossberg, S. (1987). Competitive learning: From interactive activation to adaptive
resonance. Cognitive Science, 11:121–134.

Gruau, F. (1994a). Automatic definition of modular neural networks. Adaptive Behav-
ior, 3(2):151–183.

Gruau, F. (1994b). Genetic microprogramming of neural networks. In Kinnear, K.,
editor, Advances in Genetic Programming, pages 495–518. MIT Press, Cambridge,
MA.

Gruau, F. and Quatramaran, K. (1997). Cellular encoding for interactive evolutionary
robotics. In Husbands, P. and Harvey, I., editors, Proceeding of the Fourth European
Conference on Artificial Life, pages 368–377. MIT Press„ Cambridge, MA.

Haldane, J. B. S. (1955). Population genetics. New Biology, 18:34–51.

Hamilton, W. D. (1964). The genetical evolution of social behavior, I and II. Journal of
Theoretical Biology, 7:1–52.

Hamilton, W. D., Axelrod, R., and Tanese, R. (1990). Sexual reproduction as an adap-
tation to resist parasites (a review). Proceedings of the National Academy of Sciences
USA, 87(9):3566–3573.

Hammerstein, P., Hagen, E. H., Herz, A. V. M., and Herzel, H. (2006). Robustness: A
key to evolutionary design. Biological Theory, 1(1):90–93.

Hampton, A. and Adami, C. (2004). Evolution of robust developmental neural net-
works. In Pollack, J., Bedau, M., Husbands, P., Ikegami, T., and R., W., editors,
Proceedings of the Ninth International Conference on Artificial Life, ALIFE IX, Boston,
September 12–15, pages 438–443. MIT Press, Cambridge, MA.

Hancock, P. J. (1992). Genetic algorithms and permutations problems: A comparison
of recombination operators for neural structure specification. In Whitley, D., editor,
Proceedings of the International Workshop on the Combination of Genetic Algorithms and
Neural Networks, Baltimore. IEEE Press, Piscataway, NJ.

Hancock, P. J., Baddeley, R. J., and Smith, L. S. (1992). The principal components of
natural images. Network, 3:61–70.

Hanson, D. (2005). Expanding the aesthetics possibilities for humanlike robots. In
Proceedings of the IEEE Humanoid Robotics Conference, Tsukuba, Japan. IEEE Press,
Piscataway, NJ.

610 References

Hanssen, S. A., Hasselquist, D., Folstad, I., and Erikstad, K. E. (2005). Costs of immu-
nity: Immune responsiveness reduces survival in a vertebrate. Proceedings of the
Royal Society of London B, 271(1542):925–930.

Hara, F., Akazawa, H., and Kobayashi, H. (2001). Realistic facial expressions by SMA
driven face robot. In Proceedings of the Tenth IEEE International Workshop on Robot
and Human Interactive Communication. Bordeaux, France.

Hara, F. and Pfeifer, R., editors (2003). Morpho-Functional Machines: The New Species.
Springer-Verlag, Tokyo.

Hardy, J., de Pazzis, O., and Pomeau, Y. (1976). Molecular dynamics of a classical
lattice gas: Transport properties and time correlation functions. Physical Review A,
13(5):1949–1961.

Harold, F. (2001). The Way of the Cell. Oxford University Press, Oxford.

Harp, S. A., Samad, T., and Guha, A. (1989). Toward the genetic synthesis of neural
networks. In Schaffer, J. D., editor, Proceedings of the Third International Conference
on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA.

Hartl, D. L. (2000). Molecular melodies in high and low C. Nature Reviews Genetics,
1:145–149.

Harvey, I. (1992). Species adaptation genetic algorithms: A basis for a continuing
SAGA. In Varela, F. J. and Bourgine, P., editors, Toward a Practice of Autonomous
Systems: Proceedings of the First European Conference on Artificial Life, pages 346–354.
MIT Press, Cambridge, MA.

Harvey, I. (1997). Is there another new factor in evolution? Evolutionary Computation,
4(3):313–329.

Harvey, I., Di Paolo, E., Wood, R., Quinn, M., and Tuci, E. (2005). Evolutionary
robotics: A new scientific tool for studying cognition. Artificial Life, 11(1-2):79–98.

Harvey, I., Husbands, P., and Cliff, D. (1994). Seeing the light: Artificial evolution,
real vision. In Cliff, D., Husbands, P., Meyer, J.-A., and Wilson, S., editors, From
Animals to Animats 3: Proceedings of the Third International Conference on Simulation
of Adaptive Behaviour, SAB94, pages 392–401. MIT Press, Cambridge, MA.

Harvey, I., Husbands, P., Cliff, D., Thompson, A., and Jakobi, N. (1997). Evolutionary
robotics: The Sussex approach. Robotics and Autonomous Systems, 20:205–224.

Harvey, I. and Thompson, A. (1996). Through the labyrinth, evolution finds a way: A
silicon ridge. In Higuchi, T., Iwata, M., and Liu, W., editors, Proceedings of the First
International Conference on Evolvable Systems: From Biology to Hardware. Springer-
Verlag, Tokyo.

Hashimoto, S., Narita, S., Kasahara, H., Shirai, K., Kobayashi, T., Takanishi, A., Sug-
ano, S., Yamaguchi, J., Sawada, H., Takanobu, H., Shibuya, K., Morita, T., Kurata,
T., Onoe, N., Ouchi, K., Noguchi, T., Niwa, Y., Nagayama, S., Tabayashi, H., Matsui,

References 611

I., Obata, M., Matsuzaki, H., Murasugi, A., Kobayashi, T., Haruyama, S., Okada,
T., Hidaki, Y., Taguchi, Y., Hoashi, K., Morikawa, E., Iwano, Y., Araki, D., Suzuki,
J., Yokoyama, M., Dawa, I., Nishino, D., Inoue, S., Hirano, T., Soga, E., Gen, S.,
Yanada, T., Kato, K., Sakamoto, S., Ishii, Y., Matsuo, S., Yamamoto, Y., Sato, K.,
Hagiwara, T., Ueda, T., Honda, N., Hashimoto, K., Hanamoto, T., Kayaba, S., Ko-
jima, T., Iwata, H., Kubodera, H., Matsuki, R., Nakajima, T., Nitto, K., Yamamoto,
D., Kamizaki, Y., Nagaike, S., Kunitake, Y., and Morita, S. (2002). Humanoid robots
in Waseda University – Hadaly-2 and WABIAN. Autonomous Robots, 12:25–38.

Haugeland, J., editor (1985). Artificial Intelligence: The Very Idea. MIT Press, Cam-
bridge, MA.

Hausen, K. and Egelhaaf, M. (1989). Neural mechanisms of visual course control in
insects. In Stavenga, D. G. and Hardie, R. C., editors, Facets of Vision. Springer-
Verlag, Berlin.

Hayes, A. T., Martinoli, A., and Goodman, R. M. (2002). Distributed odor source
localization. IEEE Sensors Journal, 2:260–271.

Haykin, S. (2007). Neural Networks. A Comprehensive Foundation, 3rd edition. Prentice
Hall, Upper Saddle River, NJ.

Haynes, T. and Sen, S. (1997). Crossover operators for evolving a team. In Koza,
J. R., Deb, K., Dorigo, M., Fogel, D. B., M. Garzon, H. I., and Riolo, R. L., editors,
Proceedings of the Second Annual Conference on Genetic Programming, Stanford, CA,
pages 162–167. Morgan Kaufmann„ San Mateo, CA.

Healy, S., editor (1998). Spatial Representations in Animals. Oxford University Press,
Oxford.

Hebb, D. O. (1949). The Organisation of Behavior. Wiley, New York.

Hegselmann, R. and Flache, A. (1998). Understanding complex social dynamics: A
plea for cellular automata based modelling. Journal of Artificial Societies and Social
Simulation, 1(3).

Held, R. (1965). Plasticity in sensory-motor systems. Scientific American, 213(5):84–94.

Held, R. and Hein, A. (1963). Movement-produced stimulation in the development
of visually guided behavior. Journal of Comparative and Physiological Psychology,
56(5):872–876.

Herrnstein, R. J. (1997). The Matching Law: Papers in Psychology and Economy. Harvard
University Press, Cambridge, MA.

Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to the Theory of Neural
Computation. Addison Wesley, Redwood City, CA.

Herz, A. V. M., Gollisch, T., Machens, C. K., and Jaeger, D. (2006). Modeling single-
neuron dynamics and computations: A balance of detail and abstraction. Science,
314:80–85.

612 References

Higuchi, T., Iwata, M., Keymeulen, D., Sakanashi, H., Murakawa, M., Kajitani, I.,
Takahashi, E., Toda, K., Salami, N., Kajihara, N., and Otsu, N. (1999). Real-world
applications of analog and digital evolvable hardware. IEEE Transactions on Evolu-
tionary Computation, 3(3):220–235.

Hillis, W. D. (1987). The Connection Machine. Scientific American, 256:108–115.

Hillis, W. D. (1992). Co-evolving parasites improve simulated evolution as an op-
timization procedure. In Langton, C., Farmer, J., Rasmussen, S., and Taylor, C.,
editors, Artificial Life II: Proceedings Volume of Santa Fe Conference, volume 11. Series
of the Santa Fe Institute Studies in the Sciences of Complexities, Addison Wesley,
Redwood City, CA.

Hinton, G. E. and Nowlan, S. J. (1987). How learning can guide evolution. Complex
Systems, 1:495–502.

Hinton, G. E. and Sejnowski, T. J., editors (1999). Unsupervised Learning. MIT Press,
Cambridge, MA.

Hiptmair, R. (2001). Discrete Hodge operators. Numerische Mathematik, 90(2):265–289.

Hirai, K., Hirose, M., and Takenaka, T. (1998). The development of the Honda hu-
manoid robot. In Proceedings of the IEEE International Conference on Robotics and
Automation, Leuven, Belgium. IEEE Press, Piscataway, NJ.

Hirotsune, S., Yoshida, N., Chen, A., Garrett, L., Fumihiro, S., Takahashi, S., Yagami,
K., Wynshaw-Boris, A., and Yoshiki, A. (2003). An expressed pseudogene regulates
the messenger-RNA stability of its homologous coding gene. Nature, 423:91–96.

Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane cur-
rent and its application to conduction and excitation in nerve. Journal of Physiology
(London), 108:500–544.

Hofmeyr, S. A. (2001). An interpretative introduction to the immune system. In
Segel, L. and Cohen, I., editors, Design Principles for the Immune System and Other
Distributed Autonomous Systems, Santa Fe Institute Studies in the Sciences of Com-
plexity, chapter 1, pages 3–26. Oxford University Press, Oxford.

Hofmeyr, S. A. and Forrest, S. (2000). Architecture for an artificial immune system.
Evolutionary Computation, 8(4):443–473.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michi-
gan Press, Ann Arbor.

Holland, J. H. (1976). Adaptation. In Rosen, R. and Snell, F. M., editors, Progress in
Theoretical Biology IV. Academic Press, New York.

Holland, O. (2003). Exploration and high adventure: The legacy of Grey Walter.
Philosophical Transactions of the Royal Society, 361(1811):2085–2121.

Holland, O. E. and Melhuish, C. (1999). Stigmergy, self-organisation, and sorting in
collective robotics. Artificial Life, 5:173–202.

References 613

Hong, J., Tan, X., Pinette, B., Weiss, R., and Riseman, E. (1992). Image-based homing.
Control Systems Magazine, IEEE, 12(1):38–45.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2006). Introduction to Automata Theory,
Languages, and Computation, 3rd edition. Addison Wesley, Menlo Park, CA.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collec-
tive computational abilities. Proceedings of the National Academy of Sciences USA,
79:3088–3092.

Hopfield, J. J. (1995). Pattern recognition computation using action potential timing
for stimulus representation. Nature, 376:33–36.

Hornby, G., Lipson, H., and Pollack, J. (2003). Generative representations for the
automated design of modular physical robots. IEEE Transactions on Robotics and
Automation, 19(4):703–719.

Hornby, G. and Pollack, J. (2001a). The advantages of generative grammatical en-
codings for physical design. In Proceedings of the 2001 Congress on Evolutionary
Computation, volume 1, pages 600–607.

Hornby, G. S. and Pollack, J. B. (2001b). Evolving L-systems to generate virtual crea-
tures. Computers & Graphics, 25(6):1041–1048.

Hubel, D. H. and Wiesel, T. N. (1963). Receptive fields of cells in striate cortex of very
young, visually inexperienced kittens. Journal of Neurophysiology, 26:994–1002.

Hubel, D. H. and Wiesel, T. N. (1977). Functional architecture of a macaque monkey
visual cortex. Proceedings of the Royal Society of London B, 198:1–59.

Humphrey, N. (2002). Great Expectations: The Evolutionary Psychology of Faith Healing
and the Placebo Effect, chapter 19, pages 255–285. Oxford University Press, Oxford.

Husbands, P. and Harvey, I. (1992). Evolution versus design: Controlling autonomous
robots. In Integrating Perception, Planning and Action, Proceedings of Third IEEE
Annual Conference on Artificial Intelligence, Simulation and Planning, pages 139–146.
IEEE Press, Piscataway, NJ.

Husbands, P., Harvey, I., Cliff, D., and Miller, G. (1994). The use of genetic algorithms
for the development of sensorimotor control systems. In Gaussier, P. and Nicoud,
J.-D., editors, From Perceptin to Action. IEEE Press, Los Alamitos, CA.

Husbands, P., Harvey, I., Cliff, D., and Miller, G. (1997). Artificial evolution: A new
path for artificial intelligence? Brain and Cognition, 34:130–159.

Husbands, P., Smith, T., Jakobi, N., and O’Shea, M. (1998). Better living through
chemistry: Evolving gasnets for robot control. Connection Science, 10:185–210.

Huth, A. and Wissel, C. (1992). The simulation of the movement of fish schools.
Journal of Theoretical Biology, 156:365–385.

Huynen, M. A., Stadler, P. F., and Fontana, W. (1996). Smoothness within ruggedness:
The role of neutrality in adaptation. Proceedings of the National Academy of Sciences
USA, 93:397–401.

614 References

Hyvärinen, A., Karhunen, J., and Oja, E. (2001). Independent Component Analysis. Wi-
ley, Indianapolis, IN.

Ienne, P., Cornu, T., and Kuhn, G. (1996). Special-purpose digital hardware for neural
networks: An architectural survey. Journal of VLSI Signal Processing, 13:5–25.

Ijspeert, A. J., Crespi, A., Ryczko, D., and Cabelguen, J.-M. (2007). From swimming to
walking with a salamander robot driven by a spinal cord model. Science, 315:1416–
1420.

Ijspeert, A. J., Martinoli, A., Billard, A., and Gambardella, L. M. (2001). Collaboration
through the exploitation of local interactions in autonomous collective robotics:
The stick pulling experiment. Autonomous Robots, 11:149–171.

Ilachinski, A. (2001). Cellular Automata: A Discrete Universe. World Scientific, Singa-
pore.

Indiveri, G. and Douglas, R. (2000). Robotic vision: Neuromorphic vision sensors.
Science, 288:1189–1190.

International Human Genome Sequencing Consortium (1995). An estimation of min-
imal genome size required for life. FEBS Letters, 362:257–260.

International Human Genome Sequencing Consortium (2001). Initial sequencing and
analysis of the human genome. Nature, 409:860–921.

Ishida, Y. (2004). Immunity-Based Systems: A Design Perspective. Advanced Information
Processing. Springer-Verlag, Berlin.

Jacob, C. (2001). Illustrating Evolutionary Computation with Mathematica. Morgan Kauf-
mann, San Diego.

Jacob, F. (1981). Le jeu des possibles. Librairie Arthéme Fayard, Paris.

Jacobs, R. A. and Kosslyn, S. M. (1994). Encoding shape and spatial relations: The role
of receptive field size in coordinating complementary representations. Cognitive
Science, 18:361–386.

Jacobson, H. (1958). On models of reproduction. American Scientist, 46:255–284.

Jaeger, H. and Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems
and saving energy in wireless communication. Science, 304:78–80.

Jakobi, N. (1997a). Evolutionary robotics and the radical envelope of noise hypothe-
sis. Adaptive Behavior, 6:131–174.

Jakobi, N. (1997b). Half-baked, ad-hoc and noisy: Minimal simulations for evolu-
tionary robotics. In Husbands, P. and Harvey, I., editors, Proceedings of the Fourth
European Conference on Artificial Life, pages 348–357. MIT Press, Cambridge, MA.

Jakobi, N. (1998). Running across the reality gap: Octopod locomotion evolved in
a minimal simulation. In Husbands, P. and Meyer, J.-A., editors, Evolutionary
Robotics: First European Workshop, EvoRobot98, pages 39–58. Springer-Verlag, Lon-
don.

References 615

Jakobi, N. (2003). Harnessing morphogenesis. In Kumar, S. and Bentley, P., editors,
On Growth, Form and Computers, pages 392–404. Academic Press, London.

Jakobi, N., Husbands, P., and Harvey, I. (1995). Noise and the reality gap: The use
of simulation in evolutionary robotics. In Moran, F., Moreno, A., Merelo, J., and
Chacon, P., editors, Advances in Artificial Life: Proceedings of the Third European Con-
ference on Artificial Life, volume 929 of Lecture Notes in Artificial Intelligence, pages
704–720. Springer-Verlag, London.

James, W. (1890). The Principles of Psychology. Dover, New York. Reprint 1950.

Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge University
Press, Cambridge, UK.

Jennings, H. S. (1906). Behavior of the Lower Organisms. Indiana University Press,
Bloomington. Reprint 1976.

Jerne, N. K. (1974). Towards a network theory of the immune system. Annales de
l’Institut Pasteur. Immunologie, 125(C):373–389.

Ji, Z. and Dasgupta, D. (2007). Revisiting negative selection algorithms. Evolutionary
Computation, 15(2):223–251.

Jordan, M. and Rumelhart, D. (1992). Forward models: Supervised learning with a
distal teacher. Cognitive Science, 16:307–354.

Jordan, M. I. (1989). Serial order: A parallel, distributed processing approach. In
Elman, J. and Rumelhart, D., editors, Advances in Connectionist Theory: Speech. Erl-
baum, Hillsdale, NJ.

Jorgensen, M. W., Ostergaard, E. H., and Lund, H. H. (2004). Modular ATRON:
Modules for a self-reconfigurable robot. In Proceedings of the IEEE/RSJ International
Conference on Robotics and Intelligent Systems (IROS), Sendai, Japan. IEEE Press, Pis-
cataway NJ.

Jun-Ho, O., Hanson, D., Han, I. Y., Kim, J. K., Kim, W. S., and Park, I. W. (2006). Design
of android type humanoid robot Albert HUBO. In Proceedings of the International
IEEE/RJS Conference on Intelligent Robotics and Systems. Beijing.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237–285.

Kandel, E. R., Schwartz, J. H., and Jessell, T. M. (2000). Principles of Neural Science, 4th
edition. McGraw-Hill, New York.

Kaneko, K. (1992). Overview of coupled map lattices. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 2(3):279–282.

Karolyi, A. and Kertesz, J. (1999). Granular medium lattice gas model: The algorithm.
Computer Physics Communications, 121-122:290–293.

Kato, I., Mori, Y., and Masuda, T. (1972). Pneumatically powered artificial legs walk-
ing automatically under various circumstances. In Proceedings of the Fourth Interna-
tional Symposium on External Control of Human Extremities, pages 458–470.

616 References

Kato, T. and Floreano, D. (2001). An evolutionary active-vision system. In Proceedings
of the Congress on Evolutionary Computation (CEC01). IEEE Press, Piscataway, NJ.

Katz, R. H. and Borriello, G. (2004). Contemporary Logic Design, 2nd edition. Prentice
Hall, Upper Saddle River, NJ.

Kazadi, S., Goodman, R., Tsikate, D., and Lin, H. (2000). An autonomous water vapor
plume tracking robot using passive resistive polymers sensors. Autonomous Robots,
9:175–188.

Keller, L. and Chapuisat, M. (2002). Eusociality and cooperation. In Encyclopedia of
Life Sciences, pages 1–8. MacMillan, London.

Keller, L. and Surette, M. G. (2006). Communication in bacteria. Nature Reviews Mi-
crobiology, 4:249–258.

Keller, P. E., Kouzes, R. T., and Kangas, L. J. (1994). Three neural network based sensor
systems for environmental monitoring. In IEEE Electro/94 International Combined
Conference Proceedings, pages 378–382. IEEE Press, Piscataway, NJ.

Kelso, S., Ganong, A., and Brown, T. (1986). Hebbian synapses in hippocampus.
Proceedings of the National Academy of Sciences USA, 83:5326–5330.

Kennedy, J. and Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of
the IEEE International Conference on Neural Networks, pages 1942–1948. IEEE Press,
Piscataway, NJ.

Kennedy, J. and Eberhart, R. C. (2001). Swarm Intelligence. Morgan Kaufmann, San
Francisco.

Kennedy, P. and Osborn, T. (2001). A model of gene expression and regulation in an
artificial cellular organism. Complex Systems, 13(1):33–59.

Keymeulen, D., Iwata, M., Kuniyoshi, Y., and Higuchi, T. (1998). Online evolution for
a self-adapting robotic navigation system using evolvable hardware. Artificial Life,
4(4):359–393.

Keymeulen, D., Konaka, K., Iwata, M., Kuniyoshi, Y., and Higuchi, T. (1997). Off-line
evolution for a robot navigation system based on a gate-level evolvable hardware.
Technical report, Electrotechnical Laboratory, Ibaraki, Japan.

Kim, J., Bentley, P., Aickelin, U., Greensmith, J., Tedesco, G., and Twycross, J. (2007a).
Immune system approaches to intrusion detection – a review. Natural Computing,
6(4):413–466.

Kim, J. and Bentley, P. J. (1999). Negative selection and niching by an artificial immune
system for network intrusion detection. In Banzhaf, W., Daida, J., Eiben, A. E.,
Garzon, M. H., Honavar, V., Jakiela, M., and Smith, R. E., editors, Proceedings of the
1999 Conference on Genetic and Evolutionary Computation (GECCO-99), Orlando, FL
July 13-17, 1999, pages 149–158. Morgan Kaufmann, San Francisco.

References 617

Kim, J., Greensmith, J., Twycross, J., and Aickelin, U. (2005). Malicious code execution
detection and response immune system inspired by the danger theory. In Proceed-
ings of the Adaptive and Resilient Computing Security Workshop (ARCS-05), Santa Fe,
NM.

Kim, S., Spenko, M., Trujillo, S., Heyneman, B., Mattoli, V., and Cutkosky, M. R.
(2007b). Whole body adhesion: Hierarchical, directional and distributed control
of adhesive forces for a climbing robot. In Proceedings of the IEEE International Con-
ference on Robotics and Automation. Rome.

Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge University
Press, Cambridge, UK.

Kirkland, K. L. (2002). High-tech brains: A history of technology and models of nerve
and brain function. Perspectives in Biology and Medicine, 45 (2):212–223.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220:671–680.

Kirschner, M. and Gerhart, J. (1998). Evolvability. Proceedings of the National Academy
of Sciences USA, 95(15):8420–8427.

Kirschner, M. and Gerhart, J. C. (2005). The Plausibility of Life: Resolving Darwin’s
Dilemma. Yale University Press, New Haven, CT.

Kitano, H. (1990). Designing neural networks using genetic algorithms with graph
generation system. Complex Systems, 4(4):461–476.

Kitano, H. (1995). A simple model of neurogenesis and cell differentiation based on
evolutionary large-scale chaos. Artificial Life, 2(1):79–99.

Kleinfeld, D. and Sompolinski, H. (1989). Associative network models for central
pattern generators. In Koch, C. and Segev, I., editors, Methods in Neuronal Modeling:
From Synapses to Networks, pages 195–246. MIT Press, Cambridge, MA.

Klimovich, V. B. (2002). Actual problems of evolutionary immunology. Journal of
Evolutionary Biochemistry and Physiology, 38(5):562 – 574.

Knudsen, E. I., du Lac, S., and Esterly, S. D. (1987). Computational maps in the brain.
Annual Review of Neuroscience, 10:41–65.

Knuth, D. E. (1998). The Art of Computer Programming. Volume 3: Sorting and Searching,
2nd edition. Addison-Wesley, Boston.

Kodjabachian, J. and Meyer, J.-A. (1998a). Evolution and development of modular
control architectures for 1-D locomotion in six-legged animats. Connection Science,
10(3-4):211–254.

Kodjabachian, J. and Meyer, J.-A. (1998b). Evolution and development of neural net-
works controlling locomotion, gradient following and obstacle avoidance in artifi-
cial insects. IEEE Transactions on Neural Networks, 9:796–812.

618 References

Koenderink, J. and van Doorn, A. (1987). Facts on optic flow. Biological Cybernetics,
56:247–254.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 43:59–69.

Kohonen, T. (1989). Self-Organization and Associative Memory. Springer Verlag, Berlin.

Kolen, J. F. and Pollack, J. B. (1991). Back propagation is sensitive to initial conditions.
In Lippmann, R. P., Moody, J. E., and Touretzky, D. S., editors, Advances in Neural
Information Processing Systems, volume 3, pages 860–867. Morgan Kaufmann, San
Francisco.

Komosinski, M. and Ulatowski, S. (1999). Framsticks: Towards a simulation of a
nature-like world, creatures and evolution. In Floreano, D., Nicoud, J.-D., and
Mondada, F., editors, Advances in Artificial Life - ECAL99. Springer-Verlag, Berlin.

Komosinski, M. and Ulatowski, S. (2000). The world of Framsticks: Simulation, evo-
lution, interaction. In Proceedings of Second International Conference on Virtual Worlds,
pages 214–224. Springer-Verlag, Berlin.

Komosinski, M. and Ulatowski, S. (2006). Framsticks Manual. Available at
http://www.framsticks.com.

Kondrashov, A. S. and Crow, J. F. (1993). A molecular approach to estimating human
deleterious mutation rate. Human Mutation, 2:229–234.

Koonin, E. and Mushegian, A. (1996). Complete genome sequences of cellular life
forms: Glimpses of theoretical evolutionary genomics. Current Opinion in Genetics
and Development, 6:757–762.

Korneev, S. A., Park, J., and O’Shea, M. (1999). Neuronal expression of neural ni-
tric oxide synthase (nNOS) protein is suppressed by an antisense RNA transcribed
from an NOS pseudogene. Journal of Neuroscience, 19:7711–7720.

Kosslyn, S. M., Chabris, C. F., Marsolek, C. J., and Koenig, O. (1992). Categorical
versus coordinate spatial relations: Computational analyses and computer simula-
tions. Journal of Experimental Psychology: Human Perception and Performance, 18:562–
577.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA.

Koza, J. R. (1993). Discovery of rewrite rules in Lindenmayer systems and state tran-
sition rules in cellular automata via genetic programming. In Symposium on Pattern
Formation (SPF-93), Claremont, CA.

Koza, J. R. (1994). Genetic programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge, MA.

Koza, J. R., Bennett III, F. H., Andre, D., and Keane, M. A. (1999). Genetic Programming
III: Darwinian Invention and Problem Solving. Morgan Kaufmann, San Francisco.

References 619

Koza, J. R., Jones, L. W., Keane, M. A., Streeter, M. J., and Al-Sakran, S. H. (2005). To-
ward automated design of industrial-strength analog circuits by means of genetic
programming. In O’Reilly, U.-M., Yu, T., Riolo, R., and Worze, B., editors, Genetic
Programming Theory and Practice II, chapter 8, pages 121–142. Springer-Verlag, New
York.

Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J., and Lanza, G. (2003).
Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer,
Norwell, MA.

Kruiskamp, W. and Leenaerts, D. (1995). DARWIN: CMOS opamp synthesis by
means of a genetic algorithm. In Proceedings of the 32nd ACM/IEEE Design Au-
tomation Conference, pages 433–438.

Kube, C. R. and Bonabeau, E. (2000). Cooperative transport by ants and robots.
Robotics and Autonomous Systems, 30:85–101.

Kube, C. R. and Zhang, H. (1993). Collective robotics: From social insects to robots.
Adaptive Behavior, 2:189–218.

Kuddusi, L. and Eǧrican, N. (2008). A critical review of constructal theory. Energy
Conversion and Management, 49(5):1283–1294.

Kumar, S. and Bentley, P. J., editors (2003). On Growth, Form and Computers. Academic
Press, Orlando, FL.

Kuniyoshi, Y., Ohmura, Y., Terada, K., and Nagakubo, A. (2004). Dynamic roll-and-
rise motion by an adult-size humanoid robot. International Journal of Humanoid
Robotics, 1:497–516.

Kuniyoshi, Y. and Sangawa, S. (2006). Early motor development from partially or-
dered neural-body dynamics: Experiments with a cortico-spinal-musculo-skeletal
model. Biological Cybernetics, 95:589–605.

Kuniyoshi, Y., Yorozu, Y., Suzuki, S., Sangawa, S., Ohmura, Y., Terada, K., and Na-
gakubo, A. (2007). Emergence and development of embodied cognition – a con-
structivist approach using robots. In von Hofsten, C. and Rosander, K., editors,
From Action to Cognition. Elsevier, Amsterdam.

Lamarck, J. B. (1914). Zoological Philosophy. Macmillan, London. Relevant parts
reprinted in Belew, R. K. and Mitchell, M., editors, (1996).

Lambrinos, D., Moöller, R., Labhart, T., Pfeifer, R., and Wehner, R. (2000). A mobile
robot employing insect strategies for navigation. Robotics and Autonomous Systems,
30:39–64.

Land, M. (1997). Visual acuity in insects. Annual Review of Entomology, 42:147–177.

Land, M. F. and Fernald, R. D. (1992). The evolution of eyes. Annual Review of Neuro-
science, 15(1):1–29.

620 References

Landon, W. B. and Poli, R. (2007). Evolving problems to learn about particle swarm
optimizers and other search algorithms. IEEE Transactions on Evolutionary Compu-
tation, 11:561–578.

Langton, C. G. (1984). Self-reproduction in cellular automata. Physica D: Nonlinear
Phenomena, 10(1-2):135–144.

Langton, C. G. (1990). Computation at the edge of chaos: Phase transitions and emer-
gent computation. Physica D: Nonlinear Phenomena, 42(1-3):12–37.

Langton, C. G. (1996). Artificial life. In Boden, M. A., editor, The Philosophy of Artificial
Life, pages 39–94. Oxford University Press, Oxford.

Lanzi, P. L., Stolzmann, W., and Wilson, S. W., editors (2000). Learning Classifier Sys-
tems: From Foundations to Applications. Springer-Verlag, Berlin.

Laszlo, J. F., van de Panne, M., and Fiume, E. (1996). Limit cycle control and its
application to the animation of balancing and walking. In Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’96),
pages 155–162. ACM Press, New York.

Lawrence, P. A. and Levine, M. (2006). Mosaic and regulative development: Two
faces of one coin. Current Biology, 16(7):R236–R239.

Layzell, P. (1998). A new research tool for intrinsic hardware evolution. In ICES ’98:
Proceedings of the Second International Conference on Evolvable Systems, volume 1478
of Lecture Notes in Computer Science, pages 47–56.

Lazzaro, J. P., Wawrzynek, J., and Kramer, A. (1994). Systems technologies for silicon
auditory models. IEEE Micro, 14:7–15.

Le Cun, Y., Boser, B., Denker, J. S., Henderson, R. E., Howard, R. E., Hubbard, W.,
and Jackel, L. D. (1990). Handwritten digit recognition with a back-propagation
network. In Touretzky, D., editor, Advances in Neural Information Processing Systems
2, pages 396–404. Morgan Kaufmann, San Francisco.

Le Masson, G., Renaud-Le Masson, S., Debay, D., and Bal, T. (2000). Feedback inhibi-
tion controls spike transfer in hybrid thalamic circuits. Nature, 417:854–858.

Lehmann, L. and Keller, L. (2006). The evolution of cooperation and altruism – a
general framework and a classification of models. Journal of Evolutionary Biology,
19:1365–1376.

Lenski, R. E., Ofria, C., Collier, T. C., and Adami, C. (1999). Genomic complexity,
robustness, and genetic interactions in digital organisms. Nature, 400:661–664.

Lewis, M., Fagg, A., and Bekey, G. (1994). Genetic algorithms for gait synthesis in a
hexapod robot. In Zheng, Y., editor, Recent Trends in Mobile Robots, pages 317–331.
World Scientific, Singapore.

Lewis, M. A., Fagg, A. H., and Solidum, A. (1992). Genetic programming approach to
the construction of a neural network for a walking robot. In Proceedings of the IEEE

References 621

International Conference on Robotics and Automation, pages 2618–2623. IEEE Press,
Piscataway, NJ.

Lewontin, R. C. (1978). Adaptation. Scientific American, 293(3):157–169.

Lewontin, R. C. (1996). Evolution as engineering. In Collado-Vides, J., Smith, T., and
Magasanik, B., editors, Integrative Approaches to Molecular Biology, pages 1–10. MIT
Press, Cambridge, MA.

Li, W., Luo, C., and Wu, C. (1985). Evolution of DNA sequences. In MacIntyre, R. J.,
editor, Molecular Evolutionary Genetics. Plenum, New York.

Lindenmayer, A. (1968). Mathematical models for cellular interactions in develop-
ment I. Filaments with one-sided inputs. Journal of Theoretical Biology, 18(3):280–
299.

Lindenmayer, A. (1974). Adding continuous components to L-systems. In Rozenberg,
G. and Salomaa, A., editors, L-Systems, volume 15 of Lecture Notes in Computer Sci-
ence, pages 53–68. Springer-Verlag, Berlin.

Lindenmayer, A. (1975). Developmental systems and languages in their biological
context. In Herman, G. T. and Rozenberg, G., editors, Developmental Systems and
Languages, pages 1–40. North-Holland, Amsterdam.

Lindsay, P. N. and Norman, D. A. (1972). Human Information Processing. Academic
Press, New York.

Linsker, R. (1986). From basic network principles to neural architecture (series). Pro-
ceedings of the National Academy of Sciences USA, 83:7508–7512, 8390–8394, 8779–
8783.

Linsker, R. (1988). Self-organization in a perceptual network. Computer, 3:105–117.

Lipson, H. (2005). Homemade: The future of functional rapid prototyping. IEEE
Spectrum, 42(5):24–31.

Lipson, H. and Pollack, J. B. (2000). Automatic design and manufacture of robotic
lifeforms. Nature, 406:974–978.

Liu, S.-C., Kramer, J., Indiveri, G., Delbrueck, T., and Douglas, R. (2002). Analog VLSI:
Circuits and Principles. MIT Press, Cambridge, MA.

Lohn, J. D. and Colombano, S. P. (1999). A circuit representation technique for auto-
mated circuit design. IEEE Transactions on Evolutionary Computation, 3(3):205–219.

Lohn, J. D. and Hornby, G. S. (2006). Evolvable hardware: Using evolutionary com-
putation to design and optimize hardware systems. IEEE Computational Intelligence
Magazine, 1(1):19–27.

Lohn, J. D., Hornby, G. S., and Linden, D. S. (2004). An evolved antenna for de-
ployment on NASA’s space technology 5 mission. In O’Reilly, U.-M., Riolo, R. L.,
Yu, T., and Worzel, B., editors, Genetic Programming Theory and Practice II. Kluwer,
Amsterdam.

622 References

Loker, E. S., Adema, C. M., Zhang, S. M., and Kepler, T. B. (2004). Invertebrate im-
mune systems – not homogeneous, not simple, not well understood. Immunological
Reviews, 198(1):10–24.

Long, J. A., Young, G. C., Holland, T., Senden, T. J., and Fitzgerald, E. M. G. (2006). An
exceptional Devonian fish from Australia sheds light on tetrapod origins. Nature,
444:199–202.

Lotka, A. J. (1925). Elements of Physical Biology. Williams and Wilkins, Baltimore.

Luke, S. (1998). Genetic programming produced competitive soccer softbot teams for
RoboCup 97. In Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D., Garzon,
M., Goldberg, D., H., I., Koza, J., and Riolo, R., editors, Genetic Programming 1998:
Proceedings of the Third Annual Conference, pages 214–222. Morgan Kaufmann, San
Francisco.

Luke, S., Hohn, C., Farris, J., Jackson, G., and Hendler, J. (1997). Co-evolving soc-
cer softbot team coordination with genetic programming. In Proceedings of the
First International Workshop on RoboCup, (IJCAI-97), Nagoya, Japan, pages 214–222.
Springer-Verlag, London.

Lund, H. H., Hallam, J., and Lee, W. (1997). Evolving robot morphology. In Pro-
ceedings of IEEE Fourth International Conference on Evolutionary Computation, pages
197–202. IEEE Press, Piscataway, NJ.

Lund, H. H., Webb, B., and Hallam, J. (1998). Physical and temporal scaling consid-
erations in a robot model of cricket calling song preference. Artificial LIfe, 4:95–107.

Lungarella, M. and Berthouze, L. (2002). On the interplay between morphologi-
cal, neural and environmental dynamics: A robotic case-study. Adaptive Behavior,
10:223–241.

Lungarella, M., Metta, G., Pfeifer, R., and Sandini, G. (2003). Developmental robotics:
A survey. Connection Science, 15:151–190.

Lydyard, P. M., Whelan, A., and Fanger, M. W. (2000). Immunology, 2nd edition. BIOS
Scientific Publishers, London.

Maass, W. and Bishop, C. M., editors (1999). Pulsed Neural Networks. MIT Press,
Cambridge, MA.

Maass, W., Natschlager, T., and Markram, T. (2002). Real-time computing without
stable state: A new framework for neural computation based on perturbations.
Neural Computation, 14(11):2531–2560.

MacDorman, K. F. (2005). Androids as an experimental apparatus: Why is there an
uncanny valley and can we exploit it? In Proceedings of the CogSci 2005 Workshop,
pages 106–118. Cognitive Science Society, Wheat Ridge, CO.

MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press, Cambridge, UK.

References 623

Maddox, J. (1992). Forest-fires, sandpiles and the like. Nature, 359(6394):359–359.

Maerivoet, S. and De Moor, B. (2005). Cellular automata models of road traffic. Physics
Reports, 419(1):1–64.

Maes, P. (1989). The dynamics of action selection. In Sridharan, N. S., editor, Proceed-
ings of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI-89),
Detroit, pages 51–58. Morgan Kaufmann, San Francisco.

Mahadavi, S. H. and Bentley, P. J. (2003). An evolutionary approach to damage re-
covery of robot motion with muscles. In Banzhaf, W., Christaller, T., Dittrich, P.,
Kim, J. T., and Ziegler, J., editors, Proceedings of the Seventh European Conference on
Artificial Life, pages 248–255. Springer-Verlag, Berlin.

Mahmood, A. and McCluskey, E. J. (1988). Concurrent error detection using watch-
dog processors–a survey. IEEE Transactions on Computers, 37(2):160–174.

Mahner, M. and Bunge, M. (1997). Foundations of Biophilosophy. Springer-Verlag,
Berlin.

Mahovald, M., editor (1994). An Analog VLSI System for Stereoscopic Vision. Kluwer,
Boston.

Makowski, L., Casper, D. L. D., and Philips, W. C. (1977). Gap junction structure. II.
Analysis of x-ray diffraction data. Journal of Cellular Biology, 74:629–645.

Mandelbrot, B. B. (1982). The Fractal Geometry of Nature. Freeman, San Francisco.

Mange, D., Sipper, M., Stauffer, A., and Tempesti, G. (2000). Toward robust integrated
circuits: The embryonics approach. Proceedings of the IEEE, 88(4):516–543.

Marijuán, P. (1996). Gloom in the society of enzymes: On the nature of biological
information. BioSystems, 38(2-3):163–171.

Mark I Perceptron (1960). MARK I Perceptron Press Conference Records (CBI 48), Charles
Babbage Institute, University of Minnesota, Minneapolis. Cornell Aeronautical
Laboratory, Inc. Material archived by K. D. Corbitt in March 1991.

Marr, D. (1982). Vision. Freeman, New York.

Matarić, M. (1992). Designing emergent behaviors: From local interactions to col-
lective intelligence. In Meyer, J., Roitblat, H. L., and Wilson, S. W., editors, From
Animals to Animats II: Proceedings of the Second International Conference on Simulation
of Adaptive Behavior, pages 432–441. MIT Press, Cambridge, MA.

Matarić, M. and Brooks, R. A. (1990). Learning a distributed map representation
based on navigation behaviors. In Proceedings of the 1990 USA-Japan Symposium on
Flexible Automation. Kyoto, Japan.

Mattila, H. R. and Seeley, T. D. (2007). Genetic diversity in honeybee colonies en-
hances productivity and fitness. Science, 317:317–364.

624 References

Mattiussi, C. (1997). An analysis of finite volume, finite element, and finite difference
methods using some concepts from algebraic topology. Journal of Computational
Physics, 133(2):289–309.

Mattiussi, C. (2000). The finite volume, finite difference, and finite elements methods
as numerical methods for physical field problems. Advances in Imaging and Electron
Physics, 113:1–146.

Mattiussi, C. (2002). A reference discretization strategy for the numerical solution of
physical field problems. Advances in Imaging and Electron Physics, 121:143–279.

Mattiussi, C. (2005). Evolutionary Synthesis of Analog Networks. PhD thesis, École
Polytechnique Fédérale de Lausanne, Lausanne.

Mattiussi, C. and Floreano, D. (2004). Evolution of analog networks using local string
alignment on highly reorganizable genomes. In Zebulum, R. S., Gwaltney, D.,
Keymeulen, D., Lohn, J., and Stoica, A., editors, Proceedings of the 2004 NASA/DoD
Conference on Evolvable Hardware, Seattle, June 24-26, 2004, pages 30–37. IEEE Com-
puter Society, Los Alamitos, CA.

Mattiussi, C. and Floreano, D. (2005). Viability evolution. Technical report, Labo-
ratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland.

Mattiussi, C. and Floreano, D. (2007). Analog genetic encoding for the evolution of
circuits and networks. IEEE Transaction on Evolutionary Computation, 11(5):596–607.

Mattiussi, C., Marbach, D., Dürr, P., and Floreano, D. (2008). The age of analog net-
works. AI Magazine. In press.

Mattiussi, C., Waibel, M., and Floreano, D. (2004). Measures of diversity for pop-
ulations and distances between individuals with highly reorganizable genomes.
Evolutionary Computation, 12:495–515.

Matzinger, P. (1994). Tolerance, danger, and the extended family. Annual Review of
Immunology, 12:991–1045.

Matzinger, P. (1998). An innate sense of danger. Seminars in Immunology, 10(5):399–
415.

Matzinger, P. (2002). The danger model: A renewed sense of self. Science,
296(5566):301–305.

Matzinger, P. (2007). Friendly and dangerous signals: Is the tissue in control? Nature
Immunology, 8(1):11–13.

Maupertuis, P. M. d. (1753). The Earthly Venus. Translated by S. Boas, 1966. Johnson
Reprint, New York.

May, R. M. (1974). Biological populations with nonoverlapping generations: Stable
points, stable cycles, and chaos. Science, 186:645–647.

References 625

Mayley, G. (1996). Landscapes, learning costs and genetic assimilation. Evolutionary
Computation, 4(3):213–234.

Maynard-Smith, J. (1964). Group selection and kin selection. Nature, 201:1145–1147.

Maynard-Smith, J. and Harper, D. (2003). Animal Signals. Oxford University Press,
Oxford.

Maynard-Smith, J. and Szathmáry, E. (1995). The Major Transitions in Evolution. Oxford
University Press, Oxford.

Maynard-Smith, J. and Szathmáry, E. (1999). The Origins of Life. Oxford University
Press, Oxford.

Mayr, E. (2001). What Evolution Is. Basic Books, New York.

McClelland, J., Rumelhart, D. E., and the PDP Research Group (1986). Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition. Volume 2: Psycho-
logical and Biological Models. MIT Press, Cambridge, MA.

McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent in ner-
vous activity. Bulletin of Mathematical Biophysics, 5:115–133.

McFarland, D. J. and Boesser, T. (1993). Intelligent Behavior in Animals and Robots. MIT
Press, Cambridge, MA.

McGeer, T. (1990a). Passive bipedal running. Proceedings of the Royal Society of London.
B, 240:107–134.

McGeer, T. (1990b). Passive dynamic walking. International Journal of Robotics Research,
9:62–82.

McHale, G. and Husbands, P. (2004a). Gasnets and other evolvable neural networks
applied to bipedal locomotion. In Schaal, S., editor, From Animals to Animats 8:
Proceedings of the Eighth International Conference on Simulation of Adaptive Behaviour
(SAB’2004), pages 163–172. MIT Press, Cambridge, MA.

McHale, G. and Husbands, P. (2004b). Quadrupedal locomotion: Gasnets, ctrnns and
hybrid ctrnn/pnns compared. In Pollack, J., Bedau, M., Husbands, P., Ikegami, T.,
and R., W., editors, Proceedings of the Ninth International Conference on Artificial Life,
ALIFE IX, Boston, September 12–15, pages 106–112. MIT Press, Cambridge, MA.

McMullin, B. (2000). John von Neumann and the evolutionary growth of complexity:
Looking backward, looking forward. Artificial Life, 6(4):347–361.

McVean, G. A. T., Myers, S. R., Hunt, S., Deloukas, P., Bentley, D. R., and Donnelly,
P. (2004). The fine-scale structure of recombination rate variation in the human
genome. Science, 304(5670):581–584.

Mead, C. (1989). Analog VLSI and Neural Systems. Addison-Wesley, Reading, MA.

Mead, C. (1990). Neuromorphic electronic systems. Proceedings of the IEEE,
78(10):1629–1636.

626 References

Meltzoff, A. N. and Moore, M. K. (1977). Imitation of facial and manual gestures by
human neonates. Science, 198:74–78.

Menzel, P. and D’Aluiso, F., editors (2000). Robosapiens. MIT Press, Cambridge, MA.

Merleau-Ponty, M. (1962). Phenomenology of Perception. Routledge and Kegan Paul,
London. Translated by C. Smith from Phénoménologie de la perception, Gallimard,
Paris, 1945.

Merzenich, M. M. and Kaas, J. H. (1980). Principles of organization of sensory-
perceptual systems in mammals. In Progress in Psychobiology and Physiological Psy-
chology, volume 9, pages 1–42. Academic Press, London.

Metzgar, D. and Wills, C. (2000). Evidence for the adaptive evolution of mutation
rates. Cell, 101:581–584.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs, 3rd
edition. Springer-Verlag, Berlin.

Michalewicz, Z. and Fogel, D. B. (2004). How to Solve It: Modern Heuristics, 2nd edition.
Springer-Verlag, Berlin.

Michod, R. E. (1999). Darwinian Dynamics. Evolutionary Transitions in Fitness and Indi-
viduality. Princeton University Press, Princeton, NJ.

Miconi, T. (2003). When evolving populations is better than coevolving individu-
als: The blind mice problem. In Gottlob, G. and Walsh, T., editors, Proceedings of
the Eighteenth International Joint Conference on Artificial Intelligence, pages 647–652.
Morgan Kaufmann, San Francisco.

Miglino, O., Lund, H. H., and Nolfi, S. (1996). Evolving mobile robots in simulated
and real environments. Artificial Life, 2:417–434.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on
our capacity for processing information. Psychological Review, 63(2):81–97.

Miller, G. F. and Cliff, D. (1994). Protean behavior in dynamic games: Arguments
for the co-evolution of pursuit-evasion tactics. In Cliff, D., Husbands, P., Meyer,
J., and Wilson, S. W., editors, From Animals to Animats III: Proceedings of the Third
International Conference on Simulation of Adaptive Behavior. MIT Press, Cambridge,
MA.

Miller, G. S. P. (2002). Snake robots for search and rescue. In Neurotechnology for
Biomimetic Robots, pages 271–284. MIT Press, Cambridge, MA.

Miller, J. and Banzhaf, W. (2003). Evolving the program for a cell: From French flags
to Boolean circuits. In Kumar, S. and Bentley, P., editors, On Growth, Form and
Computers, pages 278–302. Academic Press, London.

Miller, J. F., Job, D., and Vassilev, V. K. (2000). Principles in the evolutionary design of
digital circuits – Part I. Genetic Programming and Evolvable Machines, 1(1-2):7–35.

References 627

Minsky, M. (1961). Steps toward artificial intelligence. Proceedings of the Institute of
Radio Engineers, 49:8–30.

Minsky, M. (1982). Cellular vacuum. International Journal of Theoretical Physics, 21(6-
7):537–551.

Mirolli, M. and Parisi, D. (2005). How can we explain the emergence of a language
that benefits the hearer but not the speaker? Connection Science, 17:307–324.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA.

Mitchell, M. (1998). Computation in cellular automata: A selected review. In Gramss,
T., Bornholdt, S., Gross, M., Mitchell, M., and Pellizzari, T., editors, Nonstandard
Computation: Molecular Computation, Cellular Automata, Evolutionary Algorithms,
Quantum Computers, pages 95–140. Wiley-VCH, Weinheim, Germany.

Mitchell, M., Crutchfield, J. P., and Hraber, P. T. (1994). Evolving cellular automata
to perform computations: Mechanisms and impediments. Physica D: Nonlinear
Phenomena, 75(1-3):361–391.

Mitchell, M., Hraber, P. T., and Crutchfield, J. P. (1993). Revisiting the edge of chaos:
Evolving cellular automata to perform computations. Technical report, Santa Fe
Institute, Working Paper 93-03-014, Santa Fe, NM.

Mitchison, A. (1993). Will we survive? Scientific American, 269(3):136–144.

Mizutani, E. and Dreyfus, S. E. (1998). Totally model-free reinforcement learning by
actor-critic Elman networks in non-Markovian domains. In Proceedings of the IEEE
World Congress on Computational Intelligence. IEEE Press, Piscataway, NJ.

Mochon, S. and McMahon, T. (1980). Ballistic walking: An improved model. Mathe-
matical Biosciences, 52:241–260.

Möller, R. (2000). Insect visual homing strategies in a robot with analog processing.
Biological Cybernetics, 83:231–243.

Möller, R. and Vardy, A. (2006). Local visual homing by matched-filter descent in
image distances. Biological Cybernetics, 95:413–430.

Mondada, F., Franzi, E., and Ienne, P. (1993). Mobile robot miniaturization: A tool for
investigation in control algorithms. In Yoshikawa, T. and Miyazaki, F., editors, Pro-
ceedings of the Third International Symposium on Experimental Robotics, Tokyo, pages
501–513. Springer-Verlag, Berlin.

Mondada, F., Pettinaro, G., Guignard, A., Kwee, I., Floreano, D., Deneubourg, J.-L.,
Nolfi, S., Gambardella, L., and Dorigo, M. (2004). Swarm-bot: A new distributed
robotic concept. Autonomous Robots, 17:193–221.

Montague, P., Dayan, P., and Sejnowski, T. (1996). A framework for mesencephalic
dopamine systems based on predictive Hebbian learning. Journal of Neuroscience,
16(5):1936–1947.

628 References

Montana, D. and Davis, L. (1989). Training feedforward neural networks using ge-
netic algorithms. In Proceedings of the Eleventh International Joint Conference on Arti-
ficial Intelligence, pages 529–538. Morgan Kaufmann, San Mateo, CA.

Moody, D. B., Zajonc, D. M., and Wilson, I. A. (2005). Anatomy of CD1-lipid antigen
complexes. Nature Reviews Immunology, 5(5):387–399.

Morgan, C. L. (1896). Habit and Instinct. Edward Arnold, London.

Mori, M. (1970). Bukimi no tani [the uncanny valley]. Energy, 7(4):33–35. In Japanese.
English translation in MacDorman (2005).

Morowitz, H. J. (1959). A model of reproduction. American Scientist, 47:261–263.

Morowitz, H. J. (1984). The completeness of molecular biology. Israel Journal of Medical
Sciences, 20:750–753.

Morrey, J. M., Lambrecht, B., Horchler, A. D., Ritzmann, R. E., and Quinn, R. D. (2003).
Highly mobile and robust small quadruped robots. In IEEE International Conference
on Intelligent Robots and Systems. Las Vegas.

Mountcastle, V. B., Poggio, G. F., and Werner, G. (1963). The relation of thalamic
cell response to peripheral stimuli varied over an intensive continuum. Journal of
Neurophysiology, 26:807–834.

Mukherjee, B., Heberlein, L. T., and Levitt, K. N. (1994). Network intrusion detection.
IEEE Network, 8(3):26–41.

Murata, A., Fadiga, L., Fogassi, L., Gallese, V., Raos, V., and Rizzolatti, G. (1998). Ob-
ject representation in the ventral premotor cortex (area F5) of the monkey. Journal
of Neurophysiology, 78:2226–2230.

Murata, S. and Kurokawa, H. (2007). Self-reconfigurable robots. IEEE Robotics and
Automation Magazine, March:71–78.

Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., and Kokaji, S.
(2002). M-TRAN: Self-reconfigurable modular robotic system. IEEE/ASME Trans-
actions on Mechatronics, 7:431–441.

Murphy, M. and Sitti, M. (2007). Waalbot: An agile small-scale wall climbing robot
utilizing pressure sensitive adhesives. IEEE/ASME Transactions on Mechatronics,
12(3):330–338.

Mytilinaios, E., Desnoyer, M., Marcus, D., and Lipson, H. (2004). Designed and
evolved blueprints for physical self-replicating machines. In Pollack, J., Bedeau,
M., Husbands, P., Ikegami, T., and Watson, R. A., editors, Artificial Life IX. Pro-
ceedings of the Ninth International Conference on the Simulation and Synthesis of Living
Systems. MIT Press, Cambridge, MA.

Nachenberg, C. (1997). Computer virus-antivirus coevolution. Communications of the
ACM, 40(1):46–51.

References 629

Nagel, K. and Schreckenberg, M. (1992). A cellular automaton model for freeway
traffic. Journal de Physique I, 2:2221–2229.

Nägeli, C. (1845). Wachsthumsgeschichte der Laub- und Lebermoose. Zeitschrift für
wissenschaftliche Botanik, 1:138–210.

Nalbach, G. and Hengstenberg, R. (1994). The halteres of the blowfly Calliphora.
Three-dimensional organization of compensatory reactions to real and simulated
rotations. Journal of Comparative Physiology A, 175:695–708.

Nam, D., Seo, Y. D., Park, L. J., Park, C. H., and Kim, B. (2001). Parameter optimiza-
tion of an on-chip voltage reference circuit using evolutionary programming. IEEE
Transactions on Evolutionary Computation, 5(4):414–421.

Nayfeh, B. A. (1993). Cellular automata for solving mazes. Dr. Dobb’s Journal, 18(2):32–
38.

Neal, R. M. (1996). Bayesian Learning for Neural Networks. volume 118 of Lecture Notes
in Statistics. Springer-Verlag, Secaucus, NJ.

Neisser, U. (1967). Cognitive Psychology. Appleton-Century-Crofts, New York.

Neisser, U. (1976). Cognition and Reality. Principles and Implications of Cognitive Psychol-
ogy. Freeman, San Francisco.

Newell, A. and Simon, H. (1972). Human Problem Solving. Prentice-Hall, Englewood
Cliffs, NJ.

Nijhout, H. F. (1997). Pattern formation in biological systems. In Nijhout, H. F., Nadel,
L., and Stein, D., editors, Pattern Formation in the Physical and Biological Sciences,
volume 5 of Studies in the Sciences of Complexity, pages 269–297. Addison-Wesley,
Reading, MA.

Niv, Y., Joel, D., Meilijson, I., and Ruppin, E. (2002). Evolution of reinforcement
learning in uncertain environments: A simple explanation for complex foraging
behaviors. Adaptive Behavior, 10(1):5–24.

Nobili, R. and Pesavento, U. (1996). Generalised von Neumann’s automata I: A revis-
itation. In Besussi, E. and Cecchini, A., editors, Artificial Worlds and Urban Studies.
DAEST, Venezia, Italy.

Noë, A. (2004). Action in Perception. MIT Press, Cambridge, MA.

Nolfi, S. (1999). How learning and evolution interact: The case of a learning task
which differs from the evolutionary task. Adaptive Behavior, 7(2):231–236.

Nolfi, S., Elman, J. L., and Parisi, D. (1994a). Learning and evolution in neural net-
works. Adaptive Behavior, 3:5–28.

Nolfi, S. and Floreano, D. (1998). Co-evolving predator and prey robots: Do "arms
races" arise in artificial evolution? Artificial Life, 4:311–335.

Nolfi, S. and Floreano, D. (1999). Learning and evolution. Autonomous Robots, 7(1):89–
113.

630 References

Nolfi, S. and Floreano, D. (2000). Evolutionary Robotics: Biology, Intelligence, and Tech-
nology of Self-Organizing Machines. MIT Press, Cambridge, MA.

Nolfi, S., Miglino, O., and Parisi, D. (1994b). Phenotypic plasticity in evolving neural
networks. In Gaussier, D. and Nicoud, J.-D., editors, From Perception to Action:
Proceedings of the International Conference, pages 146–157. IEEE Computer Society
Press, Los Alamitos, CA.

Nolfi, S. and Parisi, D. (1996). Learning to adapt to changing environments in evolv-
ing neural networks. Adaptive Behavior, 5(1):75–98.

Nouyan, S. and Dorigo, M. (2006). Chain based path formation in swarms of robots.
In Dorigo, M., editor, ANTS 2006. Springer-Verlag, Heidelberg, Germany.

Nowak, M. and Sigmund, K. (1998). Evolution of indirect reciprocity by image scor-
ing. Nature, 393:573–577.

Nowak, M. and Sigmund, K. (2005). Evolution of indirect reciprocity. Nature,
437:1291–1298.

Nowak, M. A. (2006). Evolutionary Dynamics: Explorng the Equations of Life. Harvard
University Press, Cambridge, MA.

Nowak, M. A. and McMichael, A. J. (1995). How HIV defeats the immune system.
Scientific American, 273(2):58–65.

Nüsslein-Volhard, C. (2006). Coming to Life: How Genes Drive Development. Kales Press,
San Diego.

Ochoa, G. (1998). On genetic algorithms and Lindenmayer systems. In Eiben, A. E.,
Bäck, T., Schoenauer, M., and Schwefel, H.-P., editors, Proceedings of Parallel Problem
Solving from Nature – PPSN V, volume 1498 of Lecture Notes in Computer Science,
pages 335–344. Springer-Verlag, Berlin.

Ohno, S. (1970). Evolution by Gene Duplication. Springer-Verlag, Berlin.

Oja, E. (1982). A simplified neuron model as a principal component analyzer. Journal
of Mathematical Biology, 15:267–273.

Oja, E. (1989). Neural networks, principal components, and subspaces. International
Journal of Neural Systems, 1:61–68.

O’Keefe, J. (1991). The hippocampal cognitive map and navigational strategies. In
Paillard, J., editor, Brain and Space, pages 273–295. Oxford University Press, Oxford.

O’Keefe, J. and Nadel, L. (1978). The Hippocampus as a Cognitive Map. Clarendon Press,
Oxford.

O’Regan, J. K. and Noë, A. (2001). A sensorimotor approach to vision and visual
consciousness. Behavioral and Brain Sciences, 24 (5):939–973.

Orgel, L. E. and Crick, F. H. C. (1980). Selfish DNA: The ultimate parasite. Nature,
284:604–607.

References 631

Osborn, H. F. (1896). Ontogenetic and phylogenetic variation. Science, 4:786–789.

Oztop, E. and Arbib, M. A. (2002). Schema design and implementation of the grasp-
related mirror neuron system. Biological Cybernetics, 87(2):116–140.

Oztop, E., Kawato, M., and Arbib, M. (2006). Mirror neurons and imitation: A com-
putationally guided review. Neural Networks, 19(3):254–271.

Packard, N. H. (1988). Adaptation toward the edge of chaos. In Kelso, J. A. S., Man-
dell, A. J., and Shlesinger, M. F., editors, Dynamic Patterns in Complex Systems, pages
293–301. World Scientific, Singapore.

Palmer, E. (2003). Negative selection – clearing out the bad apples from the T-cell
repertoire. Nature Reviews Immunology, 3(5):383–391.

Panait, L. and Luke, S. (2005). Cooperative multi-agent learning: The state of the art.
Autonomous Agents and Multi-Agent Systems, 11:387–434.

Pardoll, D. (1998). Cancer vaccines. Nature Medicine, 4(5):525–531.

Pardoll, D. (2003). Does the immune system see tumors as foreign or self? Annual
Review of Immunology, 21:807–839.

Parisi, D., Cecconi, F., and Nolfi, S. (1990). Econets: Neural networks that learn in an
environment. Network, 1:149–168.

Park, Y.-L., Chau, K., Black, R. J., and Cutkosky, M. R. (2007). Force sensing smart
robot fingers using embedded fiber Bragg grating sensors and shape deposition
manufacturing. In Proceedings of the IEEE International Conference on Robotics and
Automation. Rome.

Parker, C. A. C., Zhang, H., and Kube, C. R. (2003). Blind bulldozing: Multiple robot
nest construction. In Proceedings of the IEEE/RSJ International Conference on Robotics
and Intelligent Systems (IROS), Las Vegas. IEEE Press, Piscataway, NJ.

Parker, D. B. (1985). Learning logic. Technical report 47, Center for Computational
Research in Economics and Management Science. MIT Press, Cambridge, MA.

Parker, G. H., editor (1919). The Elementary Nervous System. Lippincott, Philadelphia.

Parker, L. E. (2000). Lifelong adaptation in heterogeneous multi-robot teams: Re-
sponse to continual variation in individual robot performance. Autonomous Robots,
8:239–267.

Partridge, B. L. (1982). The structure and function of fish schools. Scientific American,
246:90–99.

Payton, D., Estkowski, R., and Howard, M. (2005). Pheromone robotics and the logic
of virtual pheromones. In Şahin, E. and Spears, W. M., editors, Proceedings of the
Swarm Robotics Workshop. Springer-Verlag, Heidelberg, Germany.

Payton, D. W. (1986). An architecture for reflexive autonomous vehicle control. In
Proceedings of the IEEE International Conference on Robotics and Automation. San Fran-
cisco.

632 References

Pease, B. (1991). The story of the P2 - the first successful solid-state operational ampli-
fier with picoampere input currents. In Williams, J., editor, Analog Circuit Design:
Art, Science, and Personalities, pages 67–78. Butterworth-Heinemann, Boston.

Peitgen, H.-O., Jürgens, H., and Saupe, D. (1992). Fractals for the Classroom. Part 2:
Complex Systems and Mandelbrot Set. Springer-Verlag, New York.

Peitgen, H.-O. and Saupe, D., editors (1988). The Science of Fractal Images. Springer-
Verlag, New York.

Penrose, L. S. (1959). Self-reproducing machines. Scientific American, 200 (6):105–113.

Penrose, L. S. (1962). On living matter and self-replication. In Good, I. J., Mayne, A. J.,
and Maynard-Smith, J., editors, The Scientist Speculates: An Anthology of Partly-Baked
Ideas. Heinemann, London.

Percus, J. K., Percus, O. E., and Perelson, A. S. (1993). Predicting the size of the
T-cell receptor and antibody combining region from consideration of efficient
self-nonself discrimination. Proceedings of the National Academy of Sciences USA,
90(5):1691–1695.

Perelson, A. S. and Oster, G. F. (1979). Theoretical studies of clonal selection: Minimal
antibody repertoire size and reliability of self-non-self discriminationt. Journal of
Theoretical Biology, 81(4):645–670.

Perez-Uribe, A. and Sanchez, E. (1996). FPGA implementation of an adaptable-size
neural network. In von der Malsburg, C., von Seelen, W., Vorbrüggen, J. C., and
Sendhoff, B., editors, Proceedings of the International Conference on Artificial Neural
Networks, pages 383–388. Springer-Verlag, Berlin.

Perrett, D. I., Harries, M. H., Mistlin, A. J., Hietanen, J. K., Benson, P. J., Bevan, R.,
Thomas, S., Oram, M. W., Ortega, J., and Brierley, K. (1990). Social signals ana-
lyzed at the single cell level: Someone is looking at me, something touched me,
something moved! International Journal of Comparative Psychology, 4:25–55.

Pesavento, U. (1995). An implementation of von Neumann’s self-reproducing ma-
chine. Artificial Life, 2(4):337–354.

Petrov, D. A., Lozovskaya, E. R., and Hartl, D. L. (1996). High intrinsic rates of DNA
loss in Drosophila. Nature, 384:346–349.

Pfeifer, R. and Bongard, J. C. (2007). How the body shapes the way we think. MIT Press,
Cambridge, MA.

Pfeifer, R. and Scheier, C. (1999). Understanding Intelligence. MIT Press, Cambridge,
MA.

Piaget, J. (1953). The Origins of Intelligence. Routledge, New York.

Piel, J., editor (1993). Life, Death, and the Immune System. 269 (3), Scientific American.

Pine, J. (1980). Recording action potentials from cultured neurons with extracellular
microcircuit electrodes. Journal of Neuroscience Methods, 2:19–31.

References 633

Plaut, D. C. and Shallice, T. (1993). Deep dyslexia: A case study of connectionist
neuropsychology. Cognitive Neuropsychology, 10:377–500.

Plotkin, H. C. (1988). Learning and evolution. In Plotkin, H. C., editor, The Role of
Behavior in Evolution, pages 133–164. MIT Press, Cambridge, MA.

Potter, D. (1973). Computational Physics. Wiley, London.

Potter, S. M. and DeMarse, T. B. (2001). A new approach to neural cell culture for
long-term studies. Journal of Neuroscience Methods, 110:17–24.

Poundstone, W. (1985). The Recursive Universe. Oxford University Press, Oxford.

Pratt, G. A. and Williamson, M. M. (1995). Series elastic actuators. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 399–406.
Pittsburgh.

Prusinkiewicz, P. (1986). Graphical applications of L-systems. In Proceedings on Graph-
ics Interface ’86/Vision Interface ’86, pages 247–253. Canadian Information Processing
Society, Toronto.

Prusinkiewicz, P. and Lindenmayer, A. (1990). The Algorithmic Beauty of Plants.
Springer-Verlag, Berlin.

Psaltis, D., Brady, D., Gu, X.-G., and Lin, S. (1990). Holography in artificial neural
networks. Nature, 343:325–330.

Purves, D. (1994). Neural Activity in the Growth of the Brain. Cambridge University
Press, Cambridge, UK.

Quartz, S. and Sejnowski, T. J. (1997). The neural basis of cognitive development: A
constructivist manifesto. Behavioral and Brain Science, 4:537–555.

Quinn, M., Smith, L., Mayley, G., and Husbands, P. (2002a). Evolving teamwork
and role-allocation with real robots. In Artificial Life VIII: Proceedings of the Eighth
International Conference, pages 302–311. MIT Press, Cambridge, MA.

Quinn, M., Smith, L., Mayley, G., and Husbands, P. (2003). Evolving controllers for a
homogeneous system of physical robots: Structured cooperation with minimal sen-
sors. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, 361:2321–2344.

Quinn, R. D., Offi, J. T., Kingsley, D. A., and Ritzmann, R. E. (2002b). Improved
mobility through abstracted biological principles. In Proceedings of the International
Conference on Intelligent Robots and Systems. Lausanne, Switzerland.

Radcliffe, N. J. (1991). Forma analysis and random respectful recombination. In
Belew, R. K. and Booker, L. B., editors, Proceedings of the Fourth International Confer-
ence on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA.

Ramón y Cajal, S., editor (1909, 1911). Histologie du système nerveux de l’homme et des
vertébrés. 2 volumes. Maloine, Paris.

634 References

Ray, T. S. (1992). An approach to the synthesis of life. In Langton, C., Farmer, J.,
Rasmussen, S., and Taylor, C., editors, Artificial Life II: Proceedings Volume of Santa
Fe Conference, volume 11 of Series of the Santa Fe Institute Studies in the Sciences of
Complexities. Addison Wesley, Redwood City, CA.

Rechenberg, I. (1965). Cybernetic Solution Path of an Experimental Problem. Royal Air-
craft Establishment, Ministry of Aviation, Farnborough Hants, UK.

Rechenberg, I. (1973). Evolutionstrategie: Optimierung technischer Systeme nach Prinzip-
ien der biologischen Evolution. Friedrich Fromann Verlag, Stuttgart.

Rédei, M., editor (2005). John von Neumann : Selected letters. American Mathematical
Society, Providence, RI.

Redish, A. D. (1999). Beyond the Cognitive Map. From Place Cells to Episodic Memory.
MIT Press, Cambridge, MA.

Reed, R. D. and Marks, R. J., II. (1999). Neural Smithing: Supervised Learning in Feedfor-
ward Artificial Neural Networks. MIT Press, Cambridge, MA.

Reil, T. and Husbands, P. (2002). Evolution of central pattern generators for bipedal
walking in real-time physics environments. IEEE Transactions on Evolutionary Com-
putation, 6(2):10–21.

Reis, A. H., Miguel, A. F., and Aydin, V. (2004). Constructal theory of flow architecture
of the lungs. Medical Physics, 31(5):1135–1140.

Reisberg, D. (1999). Learning. In Wilson, R. A. and Keil, F. C., editors, The MIT
Encyclopedia of the Cognitive Sciences, pages 460–461. MIT Press, Cambridge, MA.

Reynolds, C. (1987). Flocks, herds, and schools: A distributed behavioral model.
Computer Graphics, 21(4):25–34.

Reynolds, C. W. (1994). Competition, coevolution and the game of tag. In Brooks,
R. and Maes, P., editors, Proceedings of the Fourth Workshop on Artificial Life, pages
59–69. MIT Press, Cambridge, MA.

Richards, F. C., Meyer, T. P., and Packard, N. H. (1990). Extracting cellular automaton
rules directly from experimental data. Physica D: Nonlinear Phenomena, 45(1-3):189–
202.

Richards, M., Whitley, D., Beveridge, J., Mytkowicz, T., Nguyen, D., and Rome, D.
(2005). Evolving cooperative strategies for UAV teams. In Proceedings of the 2005
Conference on Genetic and Evolutionary Computation, pages 1721–1728.

Ridley, M. (2004). Evolution, 3rd edition. Blackwell Publishing, Oxford.

Rieke, F., Warland, D., van Steveninck, R., and Bialek, W. (1997). Spikes. Exploring the
neural code. MIT Press, Cambridge, MA.

Rizzolatti, G. and Arbib, M. A. (1998). Language within our grasp. Trends in Neuro-
sciences, 21(5):188–194.

References 635

Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., and Matelli, M.
(1988). Functional organization of inferior area 6 in the macaque monkey. II. Area
F5 and the control of distal movements. Experimental Brain Research, 71:491–507.

Rizzolatti, G., Fadiga, L., Gallese, V., and Fogassi, L. (1996). Premotor cortex and the
recognition of motor actions. Cognitive Brain Research, 3:131–141.

Roach, S. (1995). Signal conditioning in oscilloscopes and the spirit of invention.
In Williams, J., editor, The Art and Science of Analog Circuit Design, pages 65–84.
Butterworth-Heinemann, Boston.

Robinson, A. and Spector, L. (2002). Using genetic programming with multiple data
types and automatic modularization to evolve decentralized and coordinated navi-
gation in multi-agent systems. In Late-Breaking Papers of the Genetic and Evolutionary
Computation Conference (GECCO-2002). The International Society for Genetic and
Evolutionary Computation, New York.

Robinson, G. E. (1992). Regulation of division of labor in insect societies. Annual
Review of Entomology, 37:637–65.

Roggen, D., Federici, D., and Floreano, D. (2007). Evolutionary morphogenesis for
multi-cellular systems. Genetic Programming and Evolvable Machines, 8(1):61–96.

Roggen, D., Floreano, D., and Mattiussi, C. (2003a). A morphogenetic evolutionary
system: Phylogenesis of the POEtic circuit. In Proceedings of the Fifth International
Conference on Evolvable Systems (ICES’2003), pages 153–164.

Roggen, D., Hofmann, S., Thoma, Y., and Floreano, D. (2003b). Hardware spiking
neural network with run-time reconfigurable conectivity in an autonomous robot.
In Lohn, J., Zebulum, R., Steincamp, J., Keymeulen, D., Stoica, A., and Ferguson,
M. I., editors, NASA/DoD Conference on Evolvable Hardware, pages 189–198. IEEE
Computer Society Press, Los Alamitos, CA.

Rosenblatt, F. (1962). Principles of Neurodynamics. Spartan Books, New York.

Rosin, C. and Belew, R. (1997). New methods for competitive co-evolution. Evolution-
ary Computation, 5(1):1–29.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986a). Learning representations
by back-propagation of errors. Nature, 323:533–536.

Rumelhart, D. E., McClelland, J., and the PDP Research Group (1986b). Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Founda-
tions. MIT Press, Cambridge, MA.

Russo, L. (2004). The Forgotten Revolution. Springer-Verlag, Berlin.

Şahin, E. (2004). Swarm robotics: From sources of inspiration to domains of appli-
cation. In Şahin, E. and Spears, W. M., editors, Proceedings of the Swarm Robotics
Workshop, pages 10–20. Springer-Verlag, Heidelberg, Germany.

636 References

Sakoda, J. M. (1971). The checkerboard model of social interaction. Journal of Mathe-
matical Sociology, 1(2):119–132.

Salzberg, C., Antony, A., and Sayama, H. (2004). Evolutionary dynamics of cellular
automata-based self-replicators in hostile environments. Biosystems, 78(1-3):119–
134.

Samad, T. and Harp, S. A. (1989). Self-organization with partial data. Network, 3:205–
212.

Sanger, T. D. (1989). Optimal unsupervised learning in a single-layer feedforward
neural network. Neural Networks, 2:459–473.

Santos, D., Kim, S., Spenko, M., Parness, A., and Cutkosky, M. R. (2007). Directional
adhesive structures for controlled climbing on smooth vertical surfaces. In Proceed-
ings of the IEEE International Conference on Robotics and Automation. Rome.

Saranli, U., Buehler, M., and Koditschek, D. E. (2001). RHex - a simple and highly
mobile hexapod robot. International Journal of Robotics Research, 20(7):616–631.

Sarpeshkar, R. (1998). Analog versus digital: Extrapolating from electronics to neuro-
biology. Neural Computation, 10(7):1601–1638.

Sarpeshkar, R. (2006). Brain power. IEEE Spectrum, 43(5):24–29.

Sasaki, T. and Tokoro, M. (1997). Adaptation toward changing environments: Why
Darwinian in nature? In Husbands, P. and Harvey, I., editors, Proceedings of the
Fourth European Conference on Artificial Life. MIT Press, Cambridge, MA.

Scalettar, R. and Zee, A. (1988). Emergence of grandmother memory in feed forward
networks: Learning with noise and forgetfulness. In Waltz, D. and Feldman, J. A.,
editors, Connectionist Models and Their Implications: Readings from Cognitive Science.
Ablex, Norwood, MA.

Schaal, S. (1999). Is imitation learning the route to humanoid robots? Trends in Cogni-
tive Sciences, 3:233–242.

Schaal, S., Ijspeert, A., and Billard, A. (2003). Computational approaches to mo-
tor learning by imitation. Philosophical Transaction of the Royal Society of London B,
358:537–547.

Schaffer, J. D., Whitley, D., and Eshelman, L. J. (1992). Combinations of genetic algo-
rithms and neural networks: A survey of the state of the art. In Whitley, D. and
Schaffer, J. D., editors, Proceedings of an International Workshop on the Combinations of
Genetic Algorithms and Neural Networks (COGANN-92). IEEE Press, Piscataway, NJ.

Schmajuk, N. A. and Blair, H. T. (1993). Place learning and the dynamics of spatial
navigation: A neural network approach. Adaptive Behavior, 1:353–385.

Schmid-Hempel, P. (2003). Variation in immune defence as a question of evolutionary
ecology. Proceedings of the Royal Society of London B, 270(1513):357–366.

References 637

Schonfisch, B. and de Roos, A. (1999). Synchronous and asynchronous updating in
cellular automata. Biosystems, 51(3):123–143.

Schoonderwoerd, R., Holland, O., Bruten, J., and Rothkrantz, L. (1996). Ant-based
load balancing in telecommunication networks. Adaptive Behavior, 5:169–207.

Schraudolph, N. N. and Belew, R. K. (1992). Dynamic parameter encoding for genetic
algorithms. Machine Learning, 9:9–21.

Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neuro-
physiology, 80:1–27.

Schultz, W., Dayan, P., and Montague, P. R. (1997). A neural substrate of prediction
and reward. Science, 275(5306):1593–1599.

Searcy, W. A. and Nowicki, S., editors (2005). The Evolution of Animal Communication:
Reliability and Deception in Signaling Systems. Princeton University Press, Princeton,
NJ.

Seeley, T. D. (1995). The Wisdom of the Hive. Harvard University Press, Cambridge,
MA.

Segel, L. A. and Cohen, I. R. (2001). Design Principles for the Immune System and Other
Distributed Autonomous Systems. Santa Fe Institute Studies in the Sciences of Com-
plexity. Oxford University Press, Oxford.

Seidenberg, M. S. and McClelland, J. L. (1989). A distributed, developmental model
of word recognition and naming. Psychological Review, 96:523–568.

Sejnowski, T. J. and Rosenberg, C. R. (1987). Parallel networks that learn to pronounce
English text. Complex Systems, 1:145–168.

Sekanina, L. (2004). Evolvable components: From theory to hardware implementations.
Springer-Verlag, Berlin.

Seong, S.-Y. and Matzinger, P. (2004). Hydrophobicity: An ancient damage-associated
molecular pattern that initiates innate immune responses. Nature Reviews Immunol-
ogy, 4(6):469–478.

Shahaf, G. and Marom, S. (2001). Learning in networks of cortical neurons. Journal of
Neuroscience, 21:8782–8788.

Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the
Institute of Radio Engineers, 37(1):10–21.

Shapiro, J. (2005). A 21st century view of evolution: Genome system architecture,
repetitive DNA, and natural genetic engineering. Gene, 345(1):91–100.

Shashkov, M. and Steinberg, S. (1995). Support-operator finite-difference algorithms
for general elliptic problems. Journal of Computational Physics, 118(1):131–151.

Shepherd, G. M., editor (1990). The Synaptic Organization of the Brain. Oxford Univer-
sity Press, Oxford.

638 References

Sherrington, C. S., editor (1906). Integrative Action of the Nervous System. Yale Univer-
sity Press, New Haven, CT.

Shi, Y. and Eberhart, R. C. (1998). A modified particle swarm optimizer. In Pro-
ceedings of the IEEE Congress on Evolutionary Computation, pages 69–73. IEEE Press,
Piscataway, NJ.

Siddiqi, A. and Lucas, S. (1998). A comparison of matrix rewriting versus direct en-
coding for evolving neural networks. In Proceedings of the 1998 IEEE World Congress
on Computational Intelligence, pages 392–397.

Simon, H. A. (1996). The Science of the Artificial, 3rd edition. MIT Press, Cambridge,
MA.

Sims, K. (1994). Evolving 3D morphology and behavior by competition. In Brooks,
R. and Maes, P., editors, Proceedings of Artificial Life IV, pages 28–39. MIT Press,
Cambridge, MA.

Singer, W. (1987). Activity-dependant self-organisation of synaptic connections as a
substrate of learning. In Changeux, J. P. and Konishi, M., editors, The Neural and
Molecular Bases of Learning. Wiley, London.

Singer, W. (1990). Search for coherence: A basic principle of cortical self-organization.
Concepts in Neuroscience, 1:1–26.

Singer, W. and Gray, C. M. (1995). Visual feature integration and the temporal corre-
lation hypothesis. Annual Review of Neuroscience, 18:555–586.

Sipper, M. (1996). Co-evolving non-uniform cellular automata to perform computa-
tions. Physica D: Nonlinear Phenomena, 92(3-4):193–208.

Sipper, M. (1998). Fifty years of research on self-replication: An overview. Artificial
Life, 4(3):237–257.

Sipper, M., Tomassini, M., and Capcarrere, M. S. (1997). Designing cellular automata
using a parallel evolutionary algorithm. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
389(1-2):278–283.

Sivia, D. S. (2006). Data Analysis: A Bayesian Tutorial, 2nd edition. Oxford University
Press, Oxford.

Skinner, B. F. (1938). The Behavior of Organisms. Appleton-Century-Crofts, New York.

Smallwood, P. D. (1996). An introduction to risk sensitivity: The use of Jensen’s in-
equality to clarify evolutionary arguments of adaptation and constraint. American
Zoologist, 36:392–401.

Smith, D. J., Forrest, S., Ackley, D. H., and Perelson, A. S. (1999). Variable efficacy
of repeated annual influenza vaccination. Proceedings of the National Academy of
Sciences USA, 96(24):14001–14006.

References 639

Smith, T. M. C., Husbands, P., and O’Shea, M. (2001). Not measuring evolvabil-
ity: Initial investigation of an evolutionary robotics search space. In Angeline,
P., Michaelewicz, M., Schonauer, G., Yao, X., and Zalzala, Z., editors, Proceedings of
the 1999 Congress on Evolutionary Computation. IEEE Press, Piscataway, NJ.

Sokal, A. D. (1996). Transgressing the boundaries: Towards a transformative
hermeneutics of quantum gravity. Social Text, 46/47:217–252.

Sole, R. V. and Goodwin, B. (2000). Signs of Life: How Complexity Pervades Biology.
Basic Books, New York.

Soltoggio, A., Duerr, P., Mattiussi, C., and Floreano, D. (2007). Evolving neuro-
modulatory topologies for reinforcement learning-like problems. In Angeline, P.,
Michaelewicz, M., Schonauer, G., Yao, X., and Zalzala, Z., editors, Proceedings of the
2007 Congress on Evolutionary Computation. IEEE Press, Piscataway, NJ.

Sompayrac, L. (2003). How the Immune System Works, 2nd edition. Blackwell, Malden,
MA.

Song, S. and Abbott, L. F. (2000). Temporally asymmetric Hebbian learning, spike
timing and neuronal response variability. In Kearns, M. S., Solla, S. A., and Cohn,
D. A., editors, Advances in Neural Information Processing Systems 11. MIT Press, Cam-
bridge, MA.

Srinivasan, M. (1994). An image-interpolation technique for the computation of optic
flow and egomotion. Biological Cybernetics, 71:401–416.

Stanley, K. and Miikkulainen, R. (2002). Evolving neural networks through augment-
ing topologies. Evolutionary Computation, 10(2):99–127.

Stanley, K. and Miikkulainen, R. (2003). A taxonomy for artificial embryogeny. Arti-
ficial Life, 9(2):93–130.

Stanton, P. K. and Sejnowski, T. J. (1989). Associative long-term depression in the
hippocampus induced by Hebbian covariance. Nature, 339:215–218.

Steinberg, S. (2004). A discrete calculus with applications of high-order discretiza-
tions to boundary-value problems. Computational Methods in Applied Mathematics,
4(2):228–261.

Stent, G. (1973). A physiological mechanism for Hebb’s postulate of learning. Pro-
ceedings of the National Academy of Sciences USA, 70:997–1001.

Stoica, A. (1999). Toward evolvable hardware chips: Experiments with a pro-
grammable transistor array. In Proceedings of the Seventh International Conference on
Microelectronics for Neural, Fuzzy and Bio-Inspired Systems, MicroNeuro99, Granada,
Spain, pages 156–162.

Stoica, A., Arslan, T., Keymeulen, D., Duong, V., Zebulum, R., Ferguson, I., and Daud,
T. (2004). Evolutionary recovery from radiation induced faults on reconfigurable
devices. In Proceedings 2004 IEEE Aerospace Conference, March 6-13, 2004, pages
2449–2457.

640 References

Stoica, A., Keymeulen, D., and Zebulum, R. (2001a). Evolvable hardware solutions for
extreme temperature electronics. In Proceedings of the Third NASA/DoD Workshop on
Evolvable Hardware, 2001, pages 93–97.

Stoica, A., Zebulum, R., Keymeulen, D., Tawel, R., Daud, T., , and Thakoor, A.
(2001b). Reconfigurable VLSI architectures for evolvable hardware: From exper-
imental field programmable transistor arrays to evolution-oriented chips. IEEE
Transactions on VLSI Systems, 9(1):227–232.

Stoy, K. (2006). Using cellular automata and gradients to control self-reconfiguration.
Robotics and Autonomous Systems, 54:135–141.

Stuetzle, T. and Dorigo, M., editors (2004). Ant Colony Optimization. MIT Press, Cam-
bridge, MA.

Sugano, S. and Kato, I. (1987). WABOT-2: Autonomous robot with dexterous finger-
arm. In Proceedings of the IEEE International Conference on Robotics and Automation,
Raleigh, NC, pages 90–97. IEEE Press, Piscataway, NJ.

Suri, R. E. (2002). TD models of reward predictive responses in dopamine neurons.
Neural Networks, 15:523–534.

Sutton, R. S. (1988). Learning to predict by the method of temporal difference. Machine
Learning, 3:9–44.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning. An Introduction. MIT
Press, Cambridge, MA.

Suzuki, M., Floreano, D., and Di Paolo, E. A. (2005). The contribution of active
body movement to visual development in evolutionary robots. Neural Networks,
18(5/6):656–665.

Svensson, E., Raberg, L., and Koch, C .and Hasselquist, D. (1998). Energetic stress,
immunosuppression and the costs of an antibody response. Functional Ecology,
12(6):912–919.

Swanson, L. (2003). Brain Architecture. Understanding the Basic Plan. Oxford University
Press, New York.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Proceedings of the
Third International Conference on Genetic Algorithms, pages 2–9. Morgan Kaufmann,
San Mateo, CA.

Szamado, S. and Szathmary, E. (2006). Selective scenarios for the emergence of natural
language. Trends in Ecology and Evolution, 21:555–561.

Takagi, H. (2001). Interactive evolutionary computation: Fusion of the capacities of
EC optimization and human evaluation. Proceedings of the IEEE, 89:1275–1296.

Talia, D. (2000). Cellular processing tools for high-performance simulation. Computer,
33(9):44–52.

References 641

Tammero, L. and Dickinson, M. (2002). The influence of visual landscape on the
free flight behavior of the fruit fly Drosophila melanogaster. Journal of Experimental
Biology, 205:327–343.

Tan, K. C., Lee, T. H., and Khor, E. F. (2002). Evolutionary algorithms for multi-
objective optimization: Performance assessments and comparisons. Artificial Intel-
ligence Review, 17(4):251–290.

Tapus, A. and Siegwart, R. (2006). A cognitive modeling of space using fingerprints of
places for mobile robot navigation. In Proceedings of the IEEE International Conference
on Robotics and Automation.

Tarapore, D., Floreano, D., and Keller, L. (2006). Influence of the level of polyandry
and genetic architecture on division of labour. In Rocha, L. M., Yaeger, L. S., Be-
deau, M. A., Floreano, D., Goldstone, R. L., and Vespignani, A., editors, The Tenth
International Conference on the Simulation and Synthesis of Living Systems, pages 358–
364. MIT Press, Cambridge, MA.

Taube, J. S., Muller, R. U., and Ranck, J. B. J. (1990). Head-direction cells recorded from
the postsubiculum in freely moving rats. I. Description and quantitative analysis.
Journal of Neuroscience, 10:420–435.

Taubes, G. A. (1995). The rise and fall of thinking machines. Inc. Magazine, September.

Taylor, C. P. and Dudek, F. E. (1984). Excitation of hippocampal pyramidal cells by
electrical field effect. Trends in Neuroscience, 11:126–142.

Teixeira, F. and Chew, W. (1999). Lattice electromagnetic theory from a topological
viewpoint. Journal of Mathematical Physics, 40(1):169–187.

Tellez, R., Angulo, C., and Pardo, D. (2006). Evolving the walking behaviour of a
12 DOF quadruped using a distributed neural architecture. In Second International
Workshop on Biologically Inspired Approaches to Advanced Information Technology (Bio-
ADIT’2006), LNCS vol. 3853, pages 5–19. Springer-Verlag, Berlin.

Tempesti, G., Roggen, D., Sanchez, E., and Thoma, Y. (2002). A POEtic architecture for
bio-inspired hardware. In Standish, R. K., Bedau, M. A., and Abbas, H. A., editors,
Proceedings of the Eighth International Conference on Artificial Life, ALIFE VIII, pages
111–115. MIT Press, Cambridge, MA.

Tempesti, G., Roggen, D., Sanchez, E., Thoma, Y., Canham, R., and Tyrrell, A. M.
(2003). Ontogenetic development and fault tolerance in the poetic tissue. In Pro-
ceedings of the Fifth International Conference on Evolvable Systems: From Biology to
Hardware, pages 335–363. Springer-Verlag, Berlin.

Tenaillon, O., Taddei, F., Radman, M., and Matic, I. (2001). Second-order selection
in bacterial evolution: Selection acting on mutation and recombination rates in the
course of adaptation. Research in Microbiology, 152(1):11–16.

Terada, K., Ohmura, Y., and Kuniyoshi, Y. (2003). Analysis and control of whole body
dynamic humanoid motion. Towards experiments on a roll-and-rise motion. In

642 References

Proceedings of the IEEE/RSJ International Conference on Robotics and Intelligent Systems
(IROS), Las Vegas. IEEE Press, Piscataway, NJ.

Thelen, E. and Smith, L. B. (1994). A Dnamical Systems Approach to the Development of
Cognition and Action. MIT Press, Cambridge, MA.

Theraulaz, G. and Bonabeau, E. (1995). Coordination in distributed building. Science,
269:686–688.

Theraulaz, G., Bonabeau, E., Nicolis, S., Solé, R. V., Fourcassié, V., Blanco, S., Fournier,
R., Joly, J.-L., Fernandez, P., Grimal, A., Dalle, P., and Deneubourg, J.-L. (2002).
Spatial patterns in ant colonies. Proceedings of the National Academy of Sciences USA,
99:9645–9649.

Thompson, A. and Layzell, P. (1999). Analysis of unconventional evolved circuits.
Communications of the ACM, 42(4):71–79.

Thompson, A. and Layzell, P. (2000). Evolution of robustness in an electronics design.
In Miller, J., Thompson, A., Thomson, P., and Fogarty, T., editors, Proceedings of the
Third International Conference on Evolvable Systems (ICES2000): From Biology to Hard-
ware, volume 1801 of Lecture Notes in Computer Science, pages 218–228. Springer-
Verlag, Berlin.

Thompson, A., Layzell, P., and Zebulum, R. S. (1999). Explorations in design space:
unconventional electronics design through artificial evolution. IEEE Transactions
on Evolutionary Computation, 3(3):167–196.

Thompson, D. W. (1941). On Growth and Form. Cambridge University Press, Cam-
bridge, UK.

Thompson, D. W. (1992). On Growth and Form. Cambridge University Press, Cam-
bridge, UK. Abridged edition edited by John Tyler Bonner.

Thompson, E. and Varela, F. J. (2001). Radical embodiment: Neural dynamics and
consciousness. Trends in Cognitive Science, 5:418–425.

Timmis, J. (2007). Artificial immune systems–today and tomorrow. Natural Comput-
ing, 6(1):1–18.

Toffoli, T. (1984). Cellular automata as an alternative to (rather than an approximation
of) differential equations in modeling physics. Physica D: Nonlinear Phenomena,
10(1-2):117–127.

Toffoli, T. (1994). Occam, Turing, von Neumann, Jaynes: How much can you get for
how little? In Proceedings of ACRI’94, pages 1–9. Springer-Verlag, Berlin.

Toffoli, T. (1999). Programmable matter methods. Future Generation Computer Systems,
16(2-3):187–201.

Toffoli, T. and Margolus, N. (1987). Cellular Automata Machines: A New Environment
for Modeling. MIT Press, Cambridge, MA.

References 643

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55:189–
208.

Tonti, E. (2001). A direct discrete formulation of field laws: The cell method. CMES -
Computer Modeling in Engineering & Sciences, 2(2):237–258.

Trianni, V., Nolfi, S., and Dorigo, M. (2006). Cooperative hole-avoidance in a Swarm-
bot. Robotics Autonomous Systems, 54:97–103.

Tuci, E., Quinn, M., and Harvey, I. (2002). An evolutionary ecological approach to
the study of learning behavior using a robot-based model. Adaptive Behavior, 10(3-
4):201–221.

Turing, A. (1950). Computing machinery and intelligence. Mind, 59(236):433–460.

Turing, A. (1953). The chemical basis of morphogenesis. Philosophical Transactions of
the Royal Society B, 237:37–72.

Turrigiano, G. G. and Nelson, S. B. (2004). Homeostatic plasticity in the developing
nervous system. Nature Reviews Neuroscience, 5:97–107.

Tyrrell, A. M., Sanchez, E., Floreano, D., Tempesti, G., Mange, D., Moreno, J.-M.,
Rosenberg, J., and Villa, A. E. (2003). Poetic tissue: An integrated architecture for
bio-inspired hardware. In Proceedings of the Fifth International Conference on Evolvable
Systems: From Biology to Hardware, pages 269–294. Springer-Verlag, Berlin.

Ulam, S. M. (1976). Adventures of a Mathematician. Scribner, New York.

Urzelai, J. and Floreano, D. (1999). Incremental evolution with minimal resources. In
Rückert, U., Mondada, F., and Löffler, A., editors, First International Khepera Work-
shop. Heinz Nixdorf Institute, Paderborn, Germany.

Urzelai, J. and Floreano, D. (2001). Evolution of adaptive synapses: Robots with fast
adaptive behavior in new environments. Evolutionary Computation, 9:495–524.

Utida, S. (1957). Population fluctuations. In Proceedings of the Twenty-second CSHL
Symposium on Population Studies: Animal Ecology and Demography. Cold Spring Har-
bor Laboratory, New York.

Vaario, J., Onitsuka, A., and Shimohara, K. (1997). Formation of neural structures. In
Husbands, P. and Harvey, I., editors, Proceedings of the Fourth European Conference
on Artificial Life, pages 214–223. MIT Press, Cambridge, MA.

van Essen, D. C. and Maunsell, J. H. R. (1983). Hierarchical organization and func-
tional streams in the visual cortex. Trends in Neuroscience, 6:370–375.

van Gelder, T. J. (1998). The dynamical hypothesis in cognitive science. Behavioral and
Brain Sciences, 21:1–14.

van Schaik, A., Fragnière, E., and Vittoz, E. (1996). Improved silicon cochlea using
compatible lateral bipolar transistors. In Touretzky, D. S., Mozer, M. C., and Has-
selmo, M. E., editors, Advances in Neural Information Processing Systems, volume 8,
pages 671–677. MIT Press, Cambridge, MA.

644 References

van Valen, L. (1973). A new evolutionary law. Evolution Theory, 1:1–30.

Vassilev, V. K., Job, D., and Miller, J. F. (2000). Towards the automatic design of more
efficient digital circuits. In Lohn, J., Stoica, A., Keymeulen, D., and Colombano, S.,
editors, Proceedings of the Second NASA/DoD Workshop on Evolvable Hardware, EH-
2000, Palo Alto, CA, July 13-15, 2000, pages 151–160. IEEE Computer Society, Los
Alamitos, CA.

Vaughan, E., Di Paolo, E. A., and Harvey, I. (2004a). The evolution of control and
adaptation in a 3D powered passive dynamic walker. In Pollack, J., Bedau, M.,
Husbands, P., Ikegami, T., and Watson, R., editors, Proceedings of the Ninth Interna-
tional Conference on the Simulation and Synthesis of Living Systems, Artificial Life IX,
pages 139–145. MIT Press, Cambridge, MA.

Vaughan, E., Di Paolo, E. A., and Harvey, I. (2004b). The tango of a load balancing
biped. In Armada, M. and Gonzalez De Santos, P., editors, Proceedings of the Seventh
International Conference on Climbing and Walking Robots, CLAWAR. Springer-Verlag,
Berlin.

Verschure, P. F. M. J., Voegtlin, T., and Douglas, R. J. (2003). Environmentally medi-
ated synergy between perception and behaviour in mobile robots. Nature, 425:620–
624.

Villa, A. (2000). Empirical evidence about temporal structure in multi-unit recordings.
In Miller, R., editor, Time and the Brain. Harwood Academic, Reading, UK.

Virasoro, M. (1989). Categorization and prosopagnosia. Physics Report, 24:301.

Vittoz, E. A. (1985). The design of high-performance analog circuits on digital CMOS
chips. IEEE Journal of Solid-State Circuits, 20:657–665.

Vladimirescu, A. (1994). The SPICE Book. Wiley, New York.

Vogel, S. (2003). Comparative Biomechanics. Life’s Physical World. Princeton University
Press, Princeton, NJ.

Volterra, V. (1926). Variazioni e fluttuazioni del numero di individui in specie animali
conviventi. Memorie dell’Accademia dei Lincei, 2:31–113. Translation in Chapman, R.
N. (1931). Animal Ecology, pages 409–448. McGraw Hill, New York.

von Frisch, K. (1967). The Dance Language and Orientation of Bees. Harvard University
Press, Cambridge, MA.

von Haller, B., Ijspeert, A., and Floreano, D. (2005). Co-evolution of structures and
controllers for neubot underwater modular robots. In Capcarrere, M. S., Freitas,
A. A., Bentley, P. J., Johnson, C. G., and Timmis, J., editors, Eighth European Confer-
ence on Artificial Life (ECAL’2005). Springer-Verlag, Berlin.

von Neumann, J. (1958). The Computer and the Brain. Yale University Press, New
Haven, CT. Reprint 2000.

References 645

von Neumann, J. (1961). The general and logical theory of automata. In Taub, A. H.,
editor, John von Neumann: Collected Works. Volume 5: Design of Computers, Theory
of Automata and Numerical Analysis, chapter 9, pages 288–328. Pergamon Press, Ox-
ford.

von Neumann, J. (1966). Theory of Self-Reproducing Automata. University of Illinois
Press, Urbana, IL. Edited and completed by A.W. Burks.

von Toussaint, U., Gori, S., and Dose, V. (2006). Invariance priors for Bayesian feed-
forward neural networks. Neural Networks, 19(10):1550–1557.

Vose, M. D. (1991). Generalizing the notion of schema in genetic algorithms. Artificial
Intelligence, 50:385–396.

Vukobratovic, M. and Borovac, B. (2004). Zero-moment point - Thirty five years of its
life. International Journal of Humanoid Robotics, 1:157–173.

Wagner, A. (2005). Robustness and Evolvability in Living Systems. Princeton Studies in
Complexity. Princeton University Press, Princeton , NJ.

Wagner, G. P. (2000). What is the promise of developmental evolution? Part 1: Why
is developmental biology necessary to explain evolutionary innovations? Journal
of Experimental Zoology, 288(2):95–98.

Wagner, G. P. (2001). What is the promise of developmental evolution? Part 2: A
causal explanation of evolutionary innovations may be impossible. Journal of Ex-
perimental Zoology, 291(4):305–309.

Wagner, G. P. and Altenberg, L. (1996). Complex adaptations and the evolution of
evolvability. Evolution, 50:967–976.

Wagner, G. P. and Larsson, H. C. (2003). What is the promise of developmental evo-
lution? Part 3: The crucible of developmental evolution. Journal of Experimental
Zoology Part B: Molecular and Developmental Evolution, 300B(1):1–4.

Waibel, M., Keller, L., and Floreano, D. (2008). Genetic team composition and level
of selection in the evolution of cooperation. Technical report, Laboratory of In-
telligent Systems, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne,
Switzerland.

Wakerly, J. F. (2001). Digital Design: Principles and Practices, 3rd edition. Prentice Hall,
Upper Saddle River, NJ.

Wallace, A. R. (1870). Natural Selection. Macmillan, London.

Walter, W. G. (1950). An imitation of life. Scientific American, 182(5):42–45.

Walter, W. G. (1951). A machine that learns. Scientific American, 185(2):60–63.

Watt, R. (1991). Understanding Vision. Academic Press, London.

Watts, D. J. (2003). Six Degrees: The Science of a Connected Age. Norton, New York.

646 References

Webb, B. (2001). Can robots make good models of biological behaviour? Behavioral
and Brain Sciences, 24:1033–1050.

Webb, B. (2002). Robots in invertebrate neuroscience. Nature, 417:359–363.

Webb, B. and Consi, T. R., editors (2001). Biorobotics. MIT Press, Cambridge, MA.

Webb, B. and Scutt, T. (2000). A simple latency-dependent spiking-neuron model of
cricket phonotaxis. Biological Cybernetics, 82:247–269.

Weber, M. (1996). Evolutionary plasticity in prokaryotes: A Panglossian view. Biology
and Philosophy, 11(1):67–88.

Wehner, R. (1997). The ant’s celestial compass system: Spectral and polarization
channels. In Lehrer, M., editor, Orientation and Communication in Arthropods, pages
145–185. Birkäuser, Basel, Switzerland.

Wehner, R., Michel, B., and Antonsen, P. (1996). Visual navigation in insects: Cou-
pling of egocentric and geocentric information. Journal of Experimental Biology,
199(1):141–146.

Wehner, R. and Räber, F. (1979). Visual spatial memory in desert ants Cataglyphis
bicolor (Hymenoptera: Formicidae). Experientia, 35:1569–1571.

Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M., and Thelen, E.
(2001). Autonomous mental development by robots and animals. Science, 291:599–
600.

Werbos, P. (1974). Beyond Regression: New Tools for Prediction and Analysis of Behavioral
Sciences. PhD thesis, Harvard University, Cambridge, MA.

Werger, B. B. and Matarić (1996). Robotic food chains: Externalization of state and
program for minimal-agent foraging. In Maes, P., Matarić, M., Meyer, J., Pollack,
J., Roitblat, H., and Wilson, S., editors, From Animals to Animats IV: Proceedings of
the Fourth International Conference on Simulation of Adaptive Behavior, pages 625–634.
MIT Press, Cambridge, MA.

Werner, G. M. and Dyer, M. G. (1992). Evolution of communication in artificial organ-
isms. In Langton, C., Taylor, C., Farmer, D., and Rasmussen, S., editors, Artificial
Life II, pages 659–687. Addison Wesley, Redwood City, CA.

West-Eberhard, M. (2003). Developmental Plasticity and Evolution. Oxford University
Press, Oxford.

Whiteside, T. C. D. and Samuel, G. D. (1970). Blur zone. Nature, 225:94–95.

Whitley, D. and Kauth, J. (1988). GENITOR: A different genetic algorithm. In Pro-
ceedings of the Rocky Mountain Conference on Artificial Intelligence, pages 118–130.
Denver.

Whitley, D., Rana, S., and Heckendorn, R. B. (1998). The island model genetic algo-
rithm: On separability, population size and convergence. Journal of Computing and
Information Technology, 7(1):33–47.

References 647

Whitley, D., Starkweather, T., and Bogart, C. (1990). Genetic algorithms and neural
networks: Optimizing connections and connectivity. Parallel Computing, 14:347–
361.

Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits. In Proceedings of the
1960 IRE WESCON Convention, volume 4, pages 96–104. IRE, New York. Reprinted
in Anderson and Rosenfeld (1988).

Wiemann, B. and Starnes, C. O. (1994). Coley’s toxins, tumor necrosis factor and
cancer research: A historical perspective. Pharmacology & Therapeutics, 64(3):529–
564.

Wilke, C. O., Wang, J. L., Ofria, C., Lenski, R. E., and Adami, C. (2001). Evolution
of digital organisms at high mutation rate leads to survival of the flattest. Nature,
412:331–333.

Williams, J. (1991). Analog Circuit Design: Art, Science, and Personalities. Butterworth-
Heinemann, Boston.

Williams, J. (1995). The Art and Science of Analog Circuit Design. Butterworth-
Heinemann, Boston.

Williamson, M. M. (1998). Neural control of rhythmic arm movements. Neural Net-
works, 11:1379–1394.

Wilson, E. O. (1971). The Insect Societies. Harvard University Press, Cambridge, MA.

Wilson, E. O. (1984). The relation between caste ratios and division of labour in the ant
genus Pheidole (Hymenoptera: Formicidae). Behavioural Ecology and Sociobiology,
16:89–98.

Wilson, E. O. (2000). Sociobiology. The New Synthesis. Harvard University Press, Cam-
bridge, MA. Twenty-fifth Anniversary Edition.

Wilson, S. W. (1987). Classifier systems and the animat problem. Machine Learning,
2:199–228.

Wilson, S. W. (1994). ZCS: A zeroth-level classifier system. Evolutionary Computation,
2(1):1–18.

Wilson, S. W. (1995). Classifier fitness based on accuracy. Evolutionary Computation,
3(2):149–176.

Wineberg, M. and Oppacher, F. (2003). The underlying similarity of diversity mea-
sures used in evolutionary computation. In Cantú-Paz, E., Foster, J. A., Deb, K.,
Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Standish, R. K., Kendall, G., Wil-
son, S. W., Harman, M., Wegener, J., Dasgupta, D., Potter, M. A., Schultz, A. C.,
Dowsland, K. A., Jonoska, N., and Miller, J. F., editors, Proceedings of Genetic and
Evolutionary Computation Conference - GECCO 2003, pages 1493–1504. Springer-
Verlag, Berlin.

648 References

Winfield, A. F. T., Harper, C. J., and Nembrini, J. (2004). Towards dependable swarms
and a new discipline of swarm engineering. In Şahin, E. and Spears, W. M., ed-
itors, Proceedings of the Swarm Robotics Workshop, pages 126–142. Springer-Verlag,
Heidelberg, Germany.

Wittlinger, M., Wehner, R., and Wolf, H. (2006). The ant odometer: Stepping on stilts
and stumps. Science, 312(5782):1965–1967.

Wolf, D. E. (1999). Cellular automata for traffic simulations. Physica A: Statistical
Mechanics and Its Applications, 263(1-4):438–451.

Wolfram, S. (1983). Statistical mechanics of cellular automata. Reviews of Modern
Physics, 55(3):601–644.

Wolfram, S. (1984). Universality and complexity in cellular automata. Physica D:
Nonlinear Phenomena, 10(1-2):1–35.

Wolfram, S. (2002). A New Kind of Science. Wolfram Media, Champaign, IL.

Wolpert, L. (1969). Positional information and the spatial pattern of cellular differen-
tiation. Journal of Theoretical Biology, 25(1):1–47.

Wolpert, L. (1992). The Unnatural Nature of Science. Faber and Faber, London.

Wolpert, L. (2003). Relationships between development and evolution. In Kumar, S.
and Bentley, P. J., editors, On Growth, Form and Computers, pages 47–63. Academic
Press, London.

Wolpert, L., Jessell, T., Lawrence, P., Meyerowitz, E., Robertson, E., and Smith, J.
(2007). Principles of Development, 3rd edition. Oxford University Press, Oxford.

Wolpert, L. and Szathmary, E. (2002). Multicellularity: Evolution and the egg. Nature,
420:745–745.

Worsch, T. (1999). Simulation of cellular automata. Future Generation Computer Sys-
tems, 16(2-3):157–170.

Wynne-Edwards, V. C. (1986). Evolution through Group Selection. Blackwell, Palo Alto,
CA.

Yamauchi, B. M. and Beer, R. D. (1994). Integrating reactive, sequential, and learning
behavior using dynamical neural networks. In Cliff, D., Husbands, P., Meyer, J.,
and Wilson, S. W., editors, From Animals to Animats III: Proceedings of the Third In-
ternational Conference on Simulation of Adaptive Behavior, pages 382–391. MIT Press,
Cambridge, MA.

Yao, X. (1993). A review of evolutionary artificial neural networks. International Jour-
nal of Intelligent Systems, 4:203–222.

Yao, X. and Higuchi, T. (1999). Promises and challenges of evolvable hardware. IEEE
Transactions on Systems, Man and Cybernetics, Part C, 29(1):87–97.

References 649

Yim, M., Zhang, Y., Roufas, K., Duff, D., and Eldershaw, C. (2002). Connecting and
disconnecting for chain self-reconfiguration with polybot. IEEE/ASME Transactions
on Mechatronics, 7:442–451.

Zahavi, A. and Zahavi, A. (1997). The Handicap Principle. A Missing Piece of Darwin’s
Puzzle. Oxford University Press, New York.

Zampoglou, M., Szenher, M., and Webb, B. (2006). Adaptation of controllers for
image-based homing. Adaptive Behavior, 14(4):381–399.

Zebulum, R. S., Pacheco, M. A. C., and Vellasco, M. M. B. R. (2002). Evolutionary
Electronics: Automatic Design of Electronic Circuits and Systems by Genetic Algorithms.
CRC Press, Boca Raton, FL.

Zeil, J., Hofmann, M. I., and Chahl, J. S. (2003). Catchment areas of panoramic snap-
shots in outdoor scenes. Journal of the Optical Society of America A, 20(3):450–469.

Zeil, J., Kelber, A., and Voss, R. (1996). Structure and function of learning flights in
bees and wasps. Journal of Experimental Biology, 199:245–252.

Zhang, L. I., Tao, H. W., Holt, C. E., Harris, W. A., and Poo, M.-m. (1998). A critical
window for cooperation and competition among developing retinotectal synapses.
Nature, 395:37–44.

Zipser, D. and Andersen, R. A. (1988). A back-propagation programmed network
that simulates response properties of a subset of posterior parietal neurons. Nature,
331:679–684.

Zuckerkandl, E. (1976). Gene control in eukaryotes and the C-value paradox: “Ex-
cess” DNA as an impediment to transcription of coding sequences. Journal of
Molecular Evolution, 9:73–104.

Zufferey, J. and Floreano, D. (2006). Fly-inspired visual steering of an ultralight indoor
aircraft. IEEE Transactions on Robotics, 22:137–146.

Zufferey, J., Floreano, D., van Leeuwen, M., and Merenda, T. (2002). Evolving
vision-based flying robots. In Bülthoff, H., Lee, S.-W., Poggio, T., and Wallraven,
C., editors, Second International Workshop on Biologically Motivated Computer Vision
(BMCV’2002), pages 592–600. Springer-Verlag, Berlin.

Zufferey, J., Guanella, A., Beyeler, A., and Floreano, D. (2006a). Flying over the reality
gap: From simulated to real indoor airships. Autonomous Robots, 21(3):243–254.

Zufferey, J., Klaptocz, A., Beyeler, A., Nicoud, J., and Floreano, D. (2006b). A 10-gram
microflyer for vision-based indoor navigation. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS’2006).

Zuse, K. (1982). The computing universe. International Journal of Theoretical Physics,
21(6-7):589–600.

Zykov, V., Mytilinaios, E., Adams, B., and Lipson, H. (2005). Self-reproducing ma-
chines. Nature, 435:163–164.

Index

abstraction, 45
cost of, 47

action potential, 167
active vision, 473
actor, 236
adaptation, 173

as a homeostatic process, 263
adaptive resonance theory (ART), 213
AES; see artificial evolutionary system
affinity maturation , 348
AGE; see analog genetic encoding
agent-based models, 148
AIS; see artificial immune system
algorithm

clonal selection, 388
negative selection, 384

altruism, 550
ALV; see average landmark vector
amino acid, 7
analog, 49

genetic encoding (AGE), 84, 242
immune recognition, 354

android, 435
animate vision, 406
ant system, 528
antibody, 363
antigen, 337

-binding region, 363
-presenting cell (APC), 346, 357

AO; see artificial ontogeny
APC; see antigen-presenting cell

apoptosis, 333, 343, 348
ART; see adaptive resonance theory
artificial

developmental systems, 271
evolutionary system (AES), 329
immune system (AIS), 336
immune system (ARTIS), 390
intelligence, xi, 403, 585
life, 141
nose, 235
ontogeny (AO), 330

ARTIS; see artificial immune system
Asimo, 431
attractor, 217
autoantigen, 338
autoassociative network, 190
autoimmune diseases, 351
automatic definition of neural subnet-

works, 315
automaton, 107
autonomous robots, 399
average landmark vector (ALV), 443
axon, 167

backpropagation of error, 221
Baldwin effect, 165
Bayesian learning, 224
Bayes’ theorem, 224
B cell, 362

antigen receptor (BCR), 363
BCR; see B cell antigen receptor

652 Index

behavior, 410
behavior-based robotics, 406
behaviorism, 400
bias, 182
bifurcation, 517
binary representation, 16
blind bulldozing, 537
blueprint, 9
boids, 532
building blocks, 37

CA; see cellular automaton
Cartesian genetic programming (CGP),

67
catabolism, 333
cell differentiation, 321
cellular

automaton (CA), 107
agent-based models, 148
asynchronous, 125
binary, 107
block rule, 129
elementary, 118
evolution of, 158
forest fire model, 126
Game of Life, 120
granular media models, 150
HPP gas model, 130
in physics, 152
Langton parameter, 156
Margolus neighborhood, 129
maze solver, 134
mobile, 126
multilayered, 131
natural topology, 150
nonhomogeneous, 124
outer neighborhood, 109
particle, 128
partitioning, 129
probabilistic, 126
random number generation, 152
space-time diagram, 109

traffic model, 111
transition rule, 107
transition table, 107
Wolfram classes, 154
Wolfram’s rule code, 118

computer, 134
encoding, 311
evolutionary models, 146
immunity, 354
neural network (CNN), 131
space, 102
system

analysis, 153
boundary condition, 104
homogeneous, 104
initial condition, 106
neighborhood, 102
quiescent state, 102
vs. rewriting system, 293
seed, 106
state, 102
state set , 102
stopping condition, 106
synthesis, 153
transition function, 103

central pattern generator (CPG)), 447
central tolerance, 343
chaining, 536
chromosome, 6
CIAO plot, 562
circuit

analog, 49
combinational, 58
digital, 49
sequential, 58
sizing, 42
topology, 42

clonal selection algorithm, 388
closure, 20
clustering, 538
CML; see coupled map lattice
CNN; see cellular neural network

Index 653

coding region, 9
codon, 8
COG, 433
cognitive science, 400
competing conventions, 238
complement system, 354
complexity, 139, 146
complex system, 146
computational

irreducibility, 137
neuroscience, 163, 401

connection machine, 251
constraints, 87
constructal theory, 294
continuous time recurrent neural net-

work (CTRNN), 184
copying, 457
cortical canonical circuit, 173
costimulation, 347
coupled map lattice (CML), 130
CPG; see central pattern generator
credit assignment problem, 236

structural, 236
temporal, 236

critic, 236
crossover, 26

arithmetic, 27
one-point, 27
uniform, 27

CTRNN; see continuous time recurrent
neural network

C-value, 12

danger
model, 374
signal, 343

delta rule, 220
dendrite, 167
dendritic cell, 355
density classification task, 137
deoxyribonucleic acid (DNA), 5

genic, 9

nongenic, 12
depression

long-term (LTD), 173
development, 269
developmental

program, 310
representation, 269
robotics, 450
system

artificial, 271
classification, 299
inference problem, 296
intrinsic, 328

digital, 49
immune recognition, 354

diversity, 2, 31
DNA; see deoxyribonucleic acid
DNA computing, 36
dry adhesion, 427
dynamic encoding, 238

eater, 122
echo state network, 190
ecological approach, 401
elementary motion detectors (EMDs),

421
elitism, 26
embodied cognitive science, 403
embodiment, 409
embryo, 271, 289

mosaic , 289
regulative , 289

EMD; see elementary motion detector
enactive perception, 402
EP; see evolutionary programming
epigenetic robotics, 449
ES; see evolutionary strategy
estimation-exploration algorithm, 510
evo-devo; see evolutionary developmen-

tal biology
evolution

artificial, 13

654 Index

extrinsic, 53
intrinsic, 53
Lamarckian, 250
of learning, 511
of learning rules, 245
neutral, 4
steady-state, 34
unconstrained, 48
viability-based, 95

evolutionary
algorithm, 13

multiobjective, 87
developmental biology, 298
electronics, 42
measures, 29
programming (EP), 33
robotics, 461
strategy (ES), 33
system, 1
theory, 2

evolvability, 20, 271, 327
evolvable hardware, 58
excitable media, 146
extrinsic

developmental process, 328
evolution, 53

fabbers, 504
false negatives and positives, 390
fault

detection, 394
tolerance, 328, 394

feedback, 517
feedforward, 189
FET; see field-effect transistor
field-effect transistor (FET), 259
field-programmable gate array (FPGA),

61, 72, 253
finite state machine (FSM), 394
firing squad synchronization problem,

135
fitness

evaluation, 22
function, 22
graph, 30
landscape, 29
subjective, 23

FPGA; see field-programmable gate ar-
ray

fractal, 279
Framsticks, 501
FSM; see finite state machine
functional genomics, 10
functions, 19

GA; see genetic algorithm
Game of Life, 120
gantry robot, 468
GasNet, 261
gene, 7

duplication, 12
expression, 7
expression threshold, 318
regulatory network, 10

generalized
delta rule, 221
shape, 376

generational replacement, 25
genetic

algorithm (GA), 33
encoding, 16

binary, 16
dynamic mapping, 21
implicit, 84
real-valued, 18
schematic-based, 80
tree-based, 19, 81

mutation, 10
operators, 26
programming (GP), 19, 33, 81, 307

closure, 20
functions, 19
sufficiency, 20
terminals, 19

Index 655

genotype, 5
glider, 122
golem project, 503
good old-fashioned AI, 407
GP; see genetic programming
group selection, 553
growth, 271

Hall of Fame, 561
head-direction neurons, 481
Hebb, Donald, 173
Hebb’s rule, 173, 196
heredity, 2
heterochrony, 270
hierarchical structure, 46
Hopfield network, 215
host, 335
HPP gas, 130
humoral immunity, 354
hypermutation; see somatic hypermu-

tation

imitation
active route, 459
passive route, 459

immune
detector, 337
effector, 339
gene library, 359
memory, 348
receptor

affinity, 376
permutation mask, 381
recognition region, 376
specificity, 376

repertoire, 377
hole, 377

response
primary, 351
secondary, 351

synapse, 347
system, 336

artificial, 336
danger model, 374
network model, 375
traditional model, 374

immunity
cellular, 354
danger model, 374
humoral, 354
traditional model, 374

immunological synapse, 347
immunotronics, 394
inclusive fitness, 550
independent noise, 508
indoor flying robot , 422
intelligence, 585
interneuron, 170
intrinsic

developmental process, 328
evolution, 53

inverse
model, 457
problem

for cellular systems, 153
for developmental systems, 296

island models, 33

Khepera, 462
kin selection, 551
Kismet, 435
knacks, 433
Koch curve, 279

Lamarckian evolution, 250
Langton’s loop, 143
lattice Boltzmann model, 131
lattice-gas automaton, 128
leaky integrator, 185
learning

plasticity-stability dilemma, 212
supervised, 196
unsupervised, 196

Lindenmayer system; see L-system

656 Index

linearly separable, 181
liquid state machines, 191
logistic function, 179
Lotka-Volterra model, 547
LPD; see depression, long-term (LTD)
LPT; see potentiation, long-term (LTP)
L-system, 272

alphabet, 272
axiom, 272
bracketed, 283
context-free, 289
context-sensitive, 289
deterministic, 286
evolutionary, 301
graph interpretation, 276, 281
parametric, 287
production rule; see rewriting rule
rewriting rule, 272

predecessor, 272
successor, 272

stochastic, 286
stopping condition, 273
turtle graphics, 276

lymphatic system, 355

major histocompatibility complex (MHC),
355, 358

restriction , 360
master tournaments, 566
matrix rewriting, 305
MEA; see multielectrode array
meiosis, 7
memory units, 230
MHC; see major histocompatibility com-

plex
minimal simulations, 508
mirror neurons, 458
mitosis, 6
modularity, 270
modular networks, 284
molecubes, 506
momentum, 229

morphogen, 320
morphogenesis, 319
morphogenetic system, 323

robustness, 327
morphological computation, 434
motor babbling, 456
multielectrode array (MEA), 256
multiple objectives, 22
mutation, 10, 28

deletion, 11
insertion, 11
inversion, 11
recombination, 11
substitution, 10

natural killer cell (NK), 358
NEAT; see neuroevolution of augment-

ing topologies
negative selection, 342

algorithm, 384
neighborhood, 102

radius, 103
NETtalk, 232
network transformation operations, 311
neural

engineering, 163
network (NN), 175

architecture, 189
feedforward, 189
recurrent connections, 189

neuroevolution of augmenting topolo-
gies (NEAT), 241

neuromodulatory system, 451
neuromorphic engineering, 254
neuron

activation level, 167
axon, 167
bias, 182
dendrites, 167
direct connections, 171
excitatory, 169
firing

Index 657

rate, 170
time, 170

inhibitory, 169
model, 177

continuous time, 184
discrete-time, 183
dynamic, 183
integrate and fire, 187
McCulloch and Pitts, 178
spike response, 188

motor, 170
potential, 167
receptive field, 193
sensory, 169
spiking, 187

neurotransmitter, 167
long-range, 171

neutral
evolution, 4
path, 31

neutralist hypothesis, 12
new AI, 407
nitric oxide, 171
NK; see natural killer cell
NN; see neural network
normalization, 194
nucleotide, 6
nucleotypic hypothesis, 13
numerical methods, 133

objective, 22, 87
priority-ranked, 87
tradeoffs, 88
with targets, 88

Oja rule, 200
operational envelope, 91
optical character recognition (OCR), 234
optical systems, 251
overfitting, 227

PAMP; see pathogen-associated molec-
ular pattern

parallel rewriting system, 273
Pareto dominance, 88
partial differential equation (PDE), 131,

133
passive walker, 431
pathogen, 335

-associated molecular pattern (PAMP),
339

pattern recognition receptor (PRR), 337
PBIL; see population-based incremen-

tal learning
PDE; see partial differential equation
periodic boundary condition, 111, 119,

127, 147
peripheral tolerance, 346
phagocyte, 354
phase transition, 113
phenotype, 5

plasticity, 316
pheromone robotics, 535
physical entrainment, 455
PLA; see programmable logic array
place cells, 481
plasticity-stability dilemma, 212
population, 2

-based incremental learning (PBIL),
35
adaptive, 35

diversity, 31
all-possible-pairs, 32
entropic, 32

initial, 21
size, 21

positional information theory, 320
positive selection, 342
potentiation

long-term (LTP), 173
primary immune response, 351
Prisoner’s dilemma, 552
programmable logic array (PLA), 60,

63
progress, 3

658 Index

protein, 5
production, 8

PRR; see pattern recognition receptor
pseudogene, 12
pulse; see spike

reality gap, 507
recombination, 26
recurrent connections, 189
Red Queen effect, 560
regulatory region, 9
reinforcement learning, 235

actor and critic, 236
replacement

generational, 25
steady-state, 34

reproduction, 23
response threshold mode, 523
reversibility, 123
rewriting system, 272

vs. cellular system, 293
RHex, 424
ribonucleic acid (RNA), 6
RMS error surface, 445
RNA; see ribonucleic acid
robot, 399, 404

autonomous, 399
mobile, 404
reconfigurable

chain-type, 541
lattice-type, 541

robustness, 270, 327
robust self-reproduction, 141

Sanger rule, 201
satisficing, 89
scalability, 270
schema, 37

theory, 37
secondary immune response, 351
selection, 3, 23

elitism, 26

natural, 3
negative, 342
positive, 342
pressure, 23
proportionate, 24
rank-based, 25
roulette wheel, 24
selective reproduction, 3
tournament, 25
truncated rank-based, 25

selectionist hypothesis, 12
selfish DNA hypothesis, 12
self/nonself discrimination, 374
self-organization, 145, 329, 334
self-organizing map, 206

convergence stage, 210
ordering stage, 210

self-protection paradox, 371
self-reproduction, 123

robust, 141
self-similarity, 279, 282, 294
sensitivity level, 390
separation line, 180
SGOCE; see simple geometry-oriented

cellular encoding
shape space, 376
sigmoid function, 179
signal encoding

distributed, 192
local, 192
with spikes, 194

simple geometry-oriented cellular en-
coding (SGOCE), 495

simulated annealing, 34
simultaneous localization and mapping

(SLAM), 446
situatedness, 409
sizing; see circuit sizing
SLAM; see simultaneous localization and

mapping
snapshot model, 441
sociable robots, 435

Index 659

socially evocative, 435
somatic hypermutation, 348, 364
species adaptation genetic algorithm

(SAGA), 95
spike, 169

response model, 188
time-dependent plasticity (STDP), 174,

197
spin glass theory, 217
SRI; see syllable repetition interval
staged evolution, 464
standard competitive learning, 209
STDP; see spike time-dependent plas-

ticity
Stickybot, 428
stigmergy, 518
subjective fitness, 23
subsumption architecture, 410
sufficiency, 20
superlinearity, 532
swarm intelligence, 523
syllable repetition interval (SRI), 438
synapse, 167

T cell, 358
antigen receptor (TCR), 358
cytotoxic (T), 358
helper (T), 358
monospecificity of , 359

TCR; see T cell antigen receptor
temporal difference reinforcement learn-

ing, 237
terminals, 19
testing phase, 198
time delay neural network (TDNNs),

230
tolerance

central, 343
peripheral, 346

topology; see circuit topology
training phase, 198
transcription, 8

transition rule
null state quiescent, 109
outer totalistic, 108
symmetric, 109
totalistic, 108

transposon, 12
transputers, 251
traveling salesman problem (TSP), 18
true imitation, 457
TSP; see traveling salesman problem
Turing, Alan

morphogenetic model, 320
pattern, 320

turtle graphics, 276

Ulam, Stanislaw, 117
uncanny valley, 437
unconstrained evolution, 48
universal

computation, 137
constructor, 141

unsupervised learning, 196

vaccination, 382
value system, 451
viability evolution, 95
von Neumann, John, 117, 138

cellular model, 139
kinematic model, 139
self-reproducing automaton, 139, 295

universal constructor, 141

Waalbot, 428
WABOT, 430
Walter, Grey, 404
weight sharing, 234
Whegs, 424

zero-moment point, 431
zygote, 269

