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PREFACE

he EyeBot controller and mobile robots have evolved over more than a
decade. This book gives an in-depth introduction to embedded systems
and autonomous mobile robots, using the EyeBot controller (EyeCon)

and the EyeBot mobile robot family as application examples.
This book combines teaching and research material and can be used for

courses in Embedded Systems as well as in Robotics and Automation. We see
labs as an essential teaching and learning method in this area and encourage
everybody to reprogram and rediscover the algorithms and systems presented
in this book.

Although we like simulations for many applications and treat them in quite
some depth in several places in this book, we do believe that students should
also be exposed to real hardware in both areas, embedded systems and robot-
ics. This will deepen the understanding of the subject area and of course create
a lot more fun, especially when experimenting with small mobile robots.

The original goal for the EyeBot project has been to interface an embedded
system to a digital camera sensor (EyeCam), process its images locally in real-
time for robot navigation, and display results on a graphics LCD. All of this
started at a time before digital cameras came to the market – in fact the EyeBot
controller was one of the first “embedded vision systems”. 

As image processing is always hungry for processing power, this project
requires somewhat more than a simple 8-bit microprocessor. Our original
hardware design used a 32-bit controller, which was required for keeping up
with the data delivered by the image sensor and for performing some moderate
image processing on board. Our current design uses a fast state-of-the-art
embedded controller in combination with an FPGA as hardware accelerator for
low-level image processing operations. On the software application level
(application program interface), however, we try to stay compatible with the
original system as much as possible.

The EyeBot family includes several driving robots with differential steering,
tracked vehicles, omnidirectional vehicles, balancing robots, six-legged walkers,
biped android walkers, and autonomous flying and underwater robots. It also
comprises simulation systems for driving robots (EyeSim) and underwater
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robots (SubSim). EyeBot controllers are used in several other projects, with and
without mobile robots. We use stand-alone EyeBot controllers for lab experi-
ments in a course in Embedded Systems as part of the Electrical Engineering,
Computer Engineering, and Mechatronics curriculum, while we and numerous
other universities use EyeBot controllers together with the associated simulation
systems to drive our mobile robot creations.
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Additional Material
Hardware and mechanics of the “EyeCon” controller and various robots of the
EyeBot family are available from INROSOFT and various distributors:
http://inrosoft.com

All system software discussed in this book, the RoBIOS operating system,
C/C++ compilers for Linux and Windows/Vista, system tools, image process-
ing tools, simulation system, and a large collection of example programs are
available free from the following website:
http://robotics.ee.uwa.edu.au/eyebot/

Third Edition
Almost five years after publishing the original version, we have now com-
pleted the third edition of this book. This edition has been significantly
extended with new chapters on CPUs, robot manipulators and automotive sys-
tems, as well as additional material in the chapters on navigation/localization,
neural networks, and genetic algorithms. This not only resulted in an increased
page count, but more importantly in a much more complete treatment of the
subject area and an even more well-rounded publication that contains up-to-
date research results.

This book presents a combination of teaching material and research con-
tents on embedded systems and mobile robots. This allows a fast entry into the
subject matter with an in-depth follow-up of current research themes.

As always, I would like to thank all students and visitors who conducted
research and development work in my lab and contributed to this book in one
form or another.

All software presented in this book, especially the RoBIOS operating sys-
tem and the EyeSim and SubSim simulation systems can be freely downloaded
from the following website:

http://robotics.ee.uwa.edu.au

Lecturers who adopt this book for a course can receive a full set of the
author’s course notes (PowerPoint slides), tutorials, and labs from this Web
site. And finally, if you have developed some robot application programs you
would like to share, please feel free to submit them to our Web site.

Perth, Australia, August 2008 Thomas Bräunl
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ROBOTS AND 
. . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CONTROLLERS

obotics has come a long way. Especially for mobile robots, a similar
trend is happening as we have seen for computer systems: the transi-
tion from mainframe computing via workstations to PCs, which will

probably continue with handheld devices for many applications. In the past,
mobile robots were controlled by heavy, large, and expensive computer sys-
tems that could not be carried and had to be linked via cable or wireless
devices. Today, however, we can build small mobile robots with numerous
actuators and sensors that are controlled by inexpensive, small, and light
embedded computer systems that are carried on-board the robot.

There has been a tremendous increase of interest in mobile robots. Not just
as interesting toys or inspired by science fiction stories or movies [Asimov
1950], but as a perfect tool for engineering education, mobile robots are used
today at almost all universities in undergraduate and graduate courses in Com-
puter Science/Computer Engineering, Information Technology, Cybernetics,
Electrical Engineering, Mechanical Engineering, and Mechatronics.
What are the advantages of using mobile robot systems as opposed to tradi-
tional ways of education, for example mathematical models or computer simu-
lation?

First of all, a robot is a tangible, self-contained piece of real-world hard-
ware. Students can relate to a robot much better than to a piece of software.
Tasks to be solved involving a robot are of a practical nature and directly
“make sense” to students, much more so than, for example, the inevitable com-
parison of sorting algorithms.

Secondly, all problems involving “real-world hardware” such as a robot, are
in many ways harder than solving a theoretical problem. The “perfect world”
which often is the realm of pure software systems does not exist here. Any
actuator can only be positioned to a certain degree of accuracy, and all sensors
have intrinsic reading errors and certain limitations. Therefore, a working
robot program will be much more than just a logic solution coded in software.
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1
It will be a robust system that takes into account and overcomes inaccuracies
and imperfections. In summary: a valid engineering approach to a typical
(industrial) problem.

Third and finally, mobile robot programming is enjoyable and an inspira-
tion to students. The fact that there is a moving system whose behavior can be
specified by a piece of software is a challenge. This can even be amplified by
introducing robot competitions where two teams of robots compete in solving
a particular task [Bräunl 1999] – achieving a goal with autonomously operat-
ing robots, not remote controlled destructive “robot wars”.

1.1 Mobile Robots
Since the foundation of the Mobile Robot Lab by the author at The University
of Western Australia in 1998, we have developed a number of mobile robots,
including wheeled, tracked, legged, flying, and underwater robots. We call
these robots the “EyeBot family” of mobile robots (Figure 1.1), because they
are all using the same embedded controller “EyeCon” (EyeBot controller, see
the following section). 

The simplest case of mobile robots are wheeled robots, as shown in Figure
1.2. Wheeled robots comprise one or more driven wheels (drawn solid in the
figure) and have optional passive or caster wheels (drawn hollow) and possi-
bly steered wheels (drawn inside a circle). Most designs require two motors for
driving (and steering) a mobile robot. 

The design on the left-hand side of Figure 1.2 has a single driven wheel that
is also steered. It requires two motors, one for driving the wheel and one for
turning. The advantage of this design is that the driving and turning actions

Figure 1.1: Some members of the EyeBot family of mobile robots
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have been completely separated by using two different motors. Therefore, the
control software for driving curves will be very simple. A disadvantage of this
design is that the robot cannot turn on the spot, since the driven wheel is not
located at its center.

The robot design in the middle of Figure 1.2 is called “differential drive”
and is one of the most commonly used mobile robot designs. The combination
of two driven wheels allows the robot to be driven straight, in a curve, or to
turn on the spot. The translation between driving commands, for example a
curve of a given radius, and the corresponding wheel speeds has to be done
using software. Another advantage of this design is that motors and wheels are
in fixed positions and do not need to be turned as in the previous design. This
simplifies the robot mechanics design considerably.

Finally, on the right-hand side of Figure 1.2 is the so-called “Ackermann
Steering”, which is the standard drive and steering system of a rear-driven pas-
senger car. We have one motor for driving both rear wheels via a differential
box and one motor for combined steering of both front wheels.

It is interesting to note that all of these different mobile robot designs
require two motors in total for driving and steering.

A special case of a wheeled robot is the omni-directional “Mecanum drive”
robot in Figure 1.3, left. It uses four driven wheels with a special wheel design
and will be discussed in more detail in a later chapter. 

One disadvantage of all wheeled robots is that they require a street or some
sort of flat surface for driving. Tracked robots (see Figure 1.3, middle) are
more flexible and can navigate over rough terrain. However, they cannot navi-
gate as accurately as a wheeled robot. Tracked robots also need two motors,
one for each track.

Figure 1.2: Wheeled robots

Figure 1.3: Omni-directional, tracked, and walking robots
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Legged robots (see Figure 1.3, right) are the final category of land-based

mobile robots. Like tracked robots, they can navigate over rough terrain or
climb up and down stairs, for example. There are many different designs for
legged robots, depending on their number of legs. The general rule is: the more
legs, the easier to balance. For example, the six-legged robot shown in the fig-
ure can be operated in such a way that three legs are always on the ground
while three legs are in the air. The robot will be stable at all times, resting on a
tripod formed from the three legs currently on the ground – provided its center
of mass falls in the triangle described by these three legs. The less legs a robot
has, the more complex it gets to balance and walk, for example a robot with
only four legs needs to be carefully controlled, in order not to fall over. A
biped (two-legged) robot cannot play the same trick with a supporting triangle,
since that requires at least three legs. So other techniques for balancing need to
be employed, as is discussed in greater detail in Chapter 11. Legged robots
usually require two or more motors (“degrees of freedom”) per leg, so a six-
legged robot requires at least 12 motors. Many biped robot designs have five
or more motors per leg, which results in a rather large total number of degrees
of freedom and also in considerable weight and cost.

Braitenberg
vehicles

A very interesting conceptual abstraction of actuators, sensors, and robot
control is the vehicles described by Braitenberg [Braitenberg 1984]. In one
example, we have a simple interaction between motors and light sensors. If a
light sensor is activated by a light source, it will proportionally increase the
speed of the motor it is linked to.

In Figure 1.4 our robot has two light sensors, one on the front left, one on
the front right. The left light sensor is linked to the left motor, the right sensor
to the right motor. If a light source appears in front of the robot, it will start
driving toward it, because both sensors will activate both motors. However,
what happens if the robot gets closer to the light source and goes slightly off
course? In this case, one of the sensors will be closer to the light source (the
left sensor in the figure), and therefore one of the motors (the left motor in the
figure) will become faster than the other. This will result in a curve trajectory
of our robot and it will miss the light source.

Figure 1.4: Braitenberg vehicles avoiding light (phototroph)
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Figure 1.5 shows a very similar scenario of Braitenberg vehicles. However,
here we have linked the left sensor to the right motor and the right sensor to the
left motor. If we conduct the same experiment as before, again the robot will
start driving when encountering a light source. But when it gets closer and also
slightly off course (veering to the right in the figure), the left sensor will now
receive more light and therefore accelerate the right motor. This will result in a
left curve, so the robot is brought back on track to find the light source.

Braitenberg vehicles are only a limited abstraction of robots. However, a
number of control concepts can easily be demonstrated by using them.

1.2 Embedded Controllers
The centerpiece of all our robot designs is a small and versatile embedded con-
troller that each robot carries on-board. We called it the “EyeCon” (EyeBot
controller, Figure 1.6), since its chief specification was to provide an interface
for a digital camera in order to drive a mobile robot using on-board image
processing [Bräunl 2001]. 

Figure 1.5: Braitenberg vehicles searching light (photovore)

Figure 1.6: EyeCon, front and with camera attached
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The EyeCon is a small, light, and fully self-contained embedded controller.

It combines a 32bit CPU with a number of standard interfaces and drivers for
DC motors, servos, several types of sensors, plus of course a digital color cam-
era. Unlike most other controllers, the EyeCon comes with a complete built-in
user interface: it comprises a large graphics display for displaying text mes-
sages and graphics, as well as four user input buttons. Also, a microphone and
a speaker are included. The main characteristics of the EyeCon are:

EyeCon specs • 25MHz 32bit controller (Motorola M68332)
• 1MB RAM, extendable to 2MB
• 512KB ROM (for system + user programs)
• 1 Parallel port
• 3 Serial ports (1 at V24, 2 at TTL)
• 8 Digital inputs
• 8 Digital outputs
• 16 Timing processor unit inputs/outputs
• 8 Analog inputs
• Single compact PCB
• Interface for color and grayscale camera
• Large graphics LCD (128× 64 pixels)
• 4 input buttons
• Reset button
• Power switch
• Audio output 

• Piezo speaker
• Adapter and volume potentiometer for external speaker

• Microphone for audio input
• Battery level indication
• Connectors for actuators and sensors:

• Digital camera
• 2 DC motors with encoders
• 12 Servos
• 6 Infrared sensors
• 6 Free analog inputs

One of the biggest achievements in designing hardware and software for the
EyeCon embedded controller was interfacing to a digital camera to allow on-
board real-time image processing. We started with grayscale and color Con-
nectix “QuickCam” camera modules for which interface specifications were
available. However, this was no longer the case for successor models and it is
virtually impossible to interface a camera if the manufacturer does not disclose
the protocol. This lead us to develop our own camera module “EyeCam” using
low resolution CMOS sensor chips. The current design includes a FIFO hard-
ware buffer to increase the throughput of image data.

A number of simpler robots use only 8bit controllers [Jones, Flynn, Seiger
1999]. However, the major advantage of using a 32bit controller versus an 8bit
controller is not just its higher CPU frequency (about 25 times faster) and
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wider word format (4 times), but the ability to use standard off-the-shelf C and
C++ compilers. Compilation makes program execution about 10 times faster
than interpretation, so in total this results in a system that is 1,000 times faster.
We are using the GNU C/C++ cross-compiler for compiling both the operating
system and user application programs under Linux or Windows. This compiler
is the industry standard and highly reliable. It is not comparable with any of
the C-subset interpreters available.

The EyeCon embedded controller runs our own “RoBIOS” (Robot Basic
Input Output System) operating system that resides in the controller’s flash-
ROM. This allows a very simple upgrade of a controller by simply download-
ing a new system file. It only requires a few seconds and no extra equipment,
since both the Motorola background debugger circuitry and the writeable
flash-ROM are already integrated into the controller.

RoBIOS combines a small monitor program for loading, storing, and exe-
cuting programs with a library of user functions that control the operation of
all on-board and off-board devices (see Appendix B.5). The library functions
include displaying text/graphics on the LCD, reading push-button status, read-
ing sensor data, reading digital images, reading robot position data, driving
motors, v-omega (vω) driving interface, etc. Included also is a thread-based
multitasking system with semaphores for synchronization. The RoBIOS oper-
ating system is discussed in more detail in Chapter B.

Another important part of the EyeCon’s operating system is the HDT
(Hardware Description Table). This is a system table that can be loaded to
flash-ROM independent of the RoBIOS version. So it is possible to change the
system configuration by changing HDT entries, without touching the RoBIOS
operating system. RoBIOS can display the current HDT and allows selection
and testing of each system component listed (for example an infrared sensor or
a DC motor) by component-specific testing routines.

Figure 1.7 from [InroSoft 2006], the commercial producer of the EyeCon
controller, shows hardware schematics. Framed by the address and data buses
on the top and the chip-select lines on the bottom are the main system compo-
nents ROM, RAM, and latches for digital I/O. The LCD module is memory
mapped, and therefore looks like a special RAM chip in the schematics.
Optional parts like the RAM extension are shaded in this diagram. The digital
camera can be interfaced through the parallel port or the optional FIFO buffer.
While the Motorola M68332 CPU on the left already provides one serial port,
we are using an ST16C552 to add a parallel port and two further serial ports to
the EyeCon system. Serial-1 is converted to V24 level (range +12V to –12V)
with the help of a MAX232 chip. This allows us to link this serial port directly
to any other device, such as a PC, Macintosh, or workstation for program
download. The other two serial ports, Serial-2 and Serial-3, stay at TTL level
(+5V) for linking other TTL-level communication hardware, such as the wire-
less module for Serial-2 and the IRDA wireless infrared module for Serial-3. 

A number of CPU ports are hardwired to EyeCon system components; all
others can be freely assigned to sensors or actuators. By using the HDT, these
assignments can be defined in a structured way and are transparent to the user
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program. The on-board motor controllers and feedback encoders utilize the
lower TPU channels plus some pins from the CPU port E, while the speaker
uses the highest TPU channel. Twelve TPU channels are provided with match-
ing connectors for servos, i.e. model car/plane motors with pulse width modu-
lation (PWM) control, so they can simply be plugged in and immediately oper-
ated. The input keys are linked to CPU port F, while infrared distance sensors
(PSDs, position sensitive devices) can be linked to either port E or some of the
digital inputs.

An eight-line analog to digital (A/D) converter is directly linked to the
CPU. One of its channels is used for the microphone, and one is used for the
battery status. The remaining six channels are free and can be used for con-
necting analog sensors. 

1.3 Interfaces
A number of interfaces are available on most embedded systems. These are
digital inputs, digital outputs, and analog inputs. Analog outputs are not
always required and would also need additional amplifiers to drive any actua-
tors. Instead, DC motors are usually driven by using a digital output line and a
pulsing technique called “pulse width modulation” (PWM). See Chapter 4 for

Figure 1.7: EyeCon schematics

© InroSoft, Thomas Bräunl 2006
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details. The Motorola M68332 microcontroller already provides a number of
digital I/O lines, grouped together in ports. We are utilizing these CPU ports as

Figure 1.8: EyeCon controller M5, front and back
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serial 1 serial 2

graphics LCD
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speaker microphone input buttons
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can be seen in the schematics diagram Figure 1.7, but also provide additional
digital I/O pins through latches.

Most important is the M68332’s TPU. This is basically a second CPU inte-
grated on the same chip, but specialized to timing tasks. It simplifies tremen-
dously many time-related functions, like periodic signal generation or pulse
counting, which are frequently required for robotics applications.

Figure 1.8 shows the EyeCon board with all its components and interface
connections from the front and back. Our design objective was to make the
construction of a robot around the EyeCon as simple as possible. Most inter-
face connectors allow direct plug-in of hardware components. No adapters or
special cables are required to plug servos, DC motors, or PSD sensors into the
EyeCon. Only the HDT software needs to be updated by simply downloading
the new configuration from a PC; then each user program can access the new
hardware.

The parallel port and the three serial ports are standard ports and can be
used to link to a host system, other controllers, or complex sensors/actuators.
Serial port 1 operates at V24 level, while the other two serial ports operate at
TTL level.

The Motorola background debugger (BDM) is a special feature of the
M68332 controller. Additional circuitry is included in the EyeCon, so only a
cable is required to activate the BDM from a host PC. The BDM can be used to
debug an assembly program using breakpoints, single step, and memory or
register display. It can also be used to initialize the flash-ROM if a new chip is
inserted or the operating system has been wiped by accident. 

Figure 1.9: EyeBox units



Operating System

13

At The University of Western Australia, we are using a stand-alone, boxed
version of the EyeCon controller (“EyeBox” Figure 1.9) for lab experiments in
the Embedded Systems course. They are used for the first block of lab experi-
ments until we switch to the EyeBot Labcars (Figure 8.5). See Appendix E for
a collection of lab experiments.

1.4 Operating System
Embedded systems can have anything between a complex real-time operating
system, such as Linux, or just the application program with no operating sys-
tem, whatsoever. It all depends on the intended application area. For the Eye-
Con controller, we developed our own operating system RoBIOS (Robot Basic
Input Output System), which is a very lean real-time operating system that
provides a monitor program as user interface, system functions (including
multithreading, semaphores, timers), plus a comprehensive device driver
library for all kinds of robotics and embedded systems applications. This
includes serial/parallel communication, DC motors, servos, various sensors,
graphics/text output, and input buttons. Details are listed in Appendix B.5. 

The RoBIOS monitor program starts at power-up and provides a compre-
hensive control interface to download and run programs, load and store pro-
grams in flash-ROM, test system components, and to set a number of system
parameters. An additional system component, independent of RoBIOS, is the

Figure 1.10: RoBIOS structure

Robot mechanics,
actuators, and sensors

User programRoBIOS

User input/output

RoBIOS Operating system + Library functions
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Hardware Description Table (HDT, see Appendix C), which serves as a user-
configurable hardware abstraction layer [Kasper et al. 2000], [Bräunl 2001].

RoBIOS is a software package that resides in the flash-ROM of the control-
ler and acts on the one hand as a basic multithreaded operating system and on
the other hand as a large library of user functions and drivers to interface all
on-board and off-board devices available for the EyeCon controller. RoBIOS
offers a comprehensive user interface which will be displayed on the inte-
grated LCD after start-up. Here the user can download, store, and execute pro-
grams, change system settings, and test any connected hardware that has been
registered in the HDT (see Table 1.1). 

The RoBIOS structure and its relation to system hardware and the user pro-
gram are shown in Figure 1.10. Hardware access from both the monitor pro-
gram and the user program is through RoBIOS library functions. Also, the
monitor program deals with downloading of application program files, storing/
retrieving programs to/from ROM, etc. 

The RoBIOS operating system and the associated HDT both reside in the
controller’s flash-ROM, but they come from separate binary files and can be

Monitor Program System Functions Device Drivers

Flash-ROM management Hardware setup LCD output

OS upgrade Memory manager Key input

Program download Interrupt handling Camera control

Program decompression Exception handling Image processing

Program run Multithreading Latches

Hardware setup and test Semaphores A/D converter

Timers RS232, parallel port

Reset resist. variables Audio

HDT management Servos, motors

Encoders

vω driving interface

Bumper, infrared, PSD

Compass

TV remote control

Radio communication

Table 1.1: RoBIOS features
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downloaded independently. This allows updating of the RoBIOS operating
system without having to reconfigure the HDT and vice versa. Together the
two binaries occupy the first 128KB of the flash-ROM; the remaining 384KB
are used to store up to three user programs with a maximum size of 128KB
each (Figure 1.11). 

Since RoBIOS is continuously being enhanced and new features and drivers
are being added, the growing RoBIOS image is stored in compressed form in
ROM. User programs may also be compressed with utility srec2bin before
downloading. At start-up, a bootstrap loader transfers the compressed RoBIOS
from ROM to an uncompressed version in RAM. In a similar way, RoBIOS
unpacks each user program when copying from ROM to RAM before execu-
tion. User programs and the operating system itself can run faster in RAM than
in ROM, because of faster memory access times.

Each operating system comprises machine-independent parts (for example
higher-level functions) and machine-dependent parts (for example device driv-
ers for particular hardware components). Care has been taken to keep the
machine-dependent part as small as possible, to be able to perform porting to a
different hardware in the future at minimal cost.
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CENTRAL 
. . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PROCESSING UNIT

he CPU (central processing unit) is the heart of every embedded system
and every personal computer. It comprises the ALU (arithmetic logic
unit), responsible for the number crunching, and the CU (control unit),

responsible for instruction sequencing and branching. Modern microprocessors
and microcontrollers provide on a single chip the CPU and a varying degree of
additional components, such as counters, timing coprocessors, watchdogs,
SRAM (static RAM), and Flash-ROM (electrically erasable ROM).

Hardware can be described on several different levels, from low-level tran-
sistor-level to high-level hardware description languages (HDLs). The so-
called register-transfer level is somewhat in-between, describing CPU compo-
nents and their interaction on a relatively high level. We will use this level in
this chapter to introduce gradually more complex components, which we will
then use to construct a complete CPU. With the simulation system Retro
[Chansavat Bräunl 1999], [Bräunl 2000], we will be able to actually program,
run, and test our CPUs.

One of the best analogies for a CPU, I believe, is a mechanical clockwork
(Figure 2.1). A large number of components interact with each other, follow-
ing the rhythm of one central oscillator, where each part has to move exactly at
the right time.

Figure 2.1: Working like clockwork
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2.1 Logic Gates
On the lowest level of digital logic, we have logic gates AND, OR, and NOT
(Figure 2.2). The functionality of each of these three basic gates can be fully
described by a truth table (Table 2.1), which defines the logic output value for
every possible combination of logic input values. Each logic component has a
certain delay time (time it takes from a change of input until the corrected out-
put is being produced), which limits its maximum operating frequency.  

Gates are built by using electronically activated switches. These are transis-
tors in today’s technology, while relays and vacuum tubes have been used in
the past. However, for the understanding of the material in this chapter, we do
not need to know any further low-level details.

The layer of abstraction above gate-level is formed by so-called combinato-
rial logic circuits. These do not have any timing components, and so every-
thing can be explained as a combination of AND, OR, NOT gates.

In the following we will denote negated signals with an apostrophe (e.g. a’
for NOT a) in text, and as a dot in a gate’s input or output in diagrams (see Fig-
ure 2.3).

Figure 2.2: AND, OR, NOT gates

AND

OR

NOT

a

b

Input
a, b

Output 
a AND b

Output 
a OR b

Output 
NOT a

0, 0 0 0 1

0, 1 0 1 1

1, 0 0 1 0

1, 1 1 1 0

Table 2.1: Truth table
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2.1.1 Encoder and Decoder
A decoder can be seen as a translator device of a given binary input number. A
decoder with n input lines has 2n output lines. Only the output line correspond-
ing to the binary value of the input line will be set to “1”, all other output lines
will be set to “0”. This can be described by the formula:

Only the output line matching the binary input pattern is set to “1”.
So if e.g. n = 4 and input X is a binary 2, meaning X1=1 and X0=0, then out-

put line Y2 will be “1”, while Y0, Y1, and Y3 will be “0”.
Figure 2.3 shows a simple decoder example with two input lines and conse-

quently four output lines. Its implementation with combinatorial logic requires
four AND gates and four NOT gates. Decoders are being used as building
blocks for memory modules (ROM and RAM) as well as for multiplexers and
demultiplexers.

Encoders perform the opposite function of a decoder. They work under the
assumption that only a single one of their input lines is active at any time.
Their output lines will then represent the input line number as a binary number.
Consequently, encoders with n output lines have 2n input lines. Figure 2.4
shows the implementation of an encoder using only two OR gates. Note that
X0 is not connected to anything, as the output lines will default to zero if none
of the other X lines are active. Figure 2.5 shows the interaction between an
encoder and a decoder unit, reconstructing the original signal lines.  

Yi
1 if i X
0 else⎩

⎨
⎧= =

Figure 2.3: Decoder symbol and implementation
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2.1.2 Multiplexer and Demultiplexer
The next level of abstraction are multiplexers and demultiplexers. A multi-
plexer routes exactly one of its inputs (X1, ..., Xn) through to its output Y,
depending on the selection lines S. Each input Xi and output Y have the same
width (number of lines), and so they can either be a single line as in Figure 2.6
or can all be e.g. 8-bit wide.

The width (number of lines) of selection line S depends on the number of
multiplexer inputs n, which is always a power of 2:

Number of inputs n = 2k, with k being the width of S.
In the example in Figure 2.6, we have only two inputs, and so we need only

a single selection line to distinguish between them. In this simple case, we can
write the logic equation for a multiplexer as:

Y := S · X1 + S’ · X0

The equivalence circuit built from AND, OR, and NOT gates is shown on
the right-hand-side of Figure 2.6. 

When building a larger multiplexer, such as the four-way multiplexer in
Figure 2.7, using a decoder circuit makes the implementation a lot easier (Fig-
ure 2.7, right). For each case, the input position matching the selection lines is
routed through, which can be written in short as:

Y := XS 
A demultiplexer has the opposite functionality to a multiplexer. Here we

connect a single input X to one of several outputs Y1..Yn, depending on the

Figure 2.4: Encoder symbol and implementation

Figure 2.5: Encoder and Decoder
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status of the selection line S. In fact, if multiplexers and demultiplexers were
built like a mechanical pipe system, they would be the same thing – just turn-
ing it around would make a multiplexer a demultiplexer and vice versa. Unfor-
tunately, in the electronics world, it is not so easy to exchange inputs and out-
puts. Most electronic circuits have a “direction”, as it becomes clear from the
demultiplexer’s equivalence circuit made out of AND and NOT gates in Fig-
ures 2.8 and 2.9.  

The logic formula for a general demultiplexer is very similar to a decoder,
however, remember that input X and outputs Yi can be wider than a single line:

Figure 2.6: Multiplexer 2-way and implementation

Figure 2.7: Multiplexer 4-way and implementation
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2.1.3 Adder
The adder is a standard textbook example, and so we can be very brief about it.
The first step is building a half-adder that can add 2-bit input (X, Y) and pro-
duce 1-bit output plus a carry bit. It can be constructed by using an XOR and
an AND gate (Figure 2.10). 

Figure 2.8: Demultiplexer 2-way and implementation

Figure 2.9: Demultiplexer 4-way and implementation
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Figure 2.10: Half-Adder symbol (2-bit) and implementation
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Two half-adders and an OR gate are being used to build a full-adder cell. The
full-adder adds two input bits plus an input carry and produces a single bit sum
plus an output carry (Figure 2.11). It will later be used in a bit-slice manner to
build adders with word inputs, e.g. 8-bit wide. 

2.2 Function Units
Function units are essentially higher-level combinatorial logic circuits. This
means each one of them could be represented by a set of AND, OR, and NOT
gates, but using the higher level building blocks from the previous Section will
help to understand their functionality.

The adder for two n-bit numbers is the first function unit we introduce here
(Figure 2.12). Note that we draw fat lines to indicate that an input or output
consists of multiple lines (in same cases showing the numeric number next to
the fat line).

Internally, an adder is built by using n full-adder components, each taking
one input bit each from X and Y. Note that the adder’s propagation delay is n
times the propagation delay of a bit-slice full-adder component, and so the
carry bits can percolate through from right to left. 

Incrementing a counter by one is a standard operation for which it would be
useful to have a function unit available, ready to use. Figure 2.13 shows the
definition of an incrementer function unit with a single n-bit number as input
and a single n-bit output. The incrementer can easily be implemented by using
the adder for two n-bit numbers and hard-wiring one of the inputs to the hexa-

Figure 2.11: Full-Adder symbol (3-bit) and implementation
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Figure 2.12: Adder function unit and implementation

C-1A A A A
S4=C3

S4 S3 S2 S1 S0

X3 Y3 X2 Y2 X1 Y1 X0 Y0

C0C1 0C2
+

X Y

sum



Central Processing Unit

24

2
decimal value “$01”. By “hard-wiring” we mean to connect all “0” bits of the
$01 word to electric ground, and to connect the “1” bit to the supply voltage
(possibly using a pull-up resistor). 

A comparator is another very useful function unit. It takes one n-bit word as
input and has only a single output line (yes or no, 1 or 0). Since in a zero-word
all bits are equal to “0”, we can implement the zero-comparator by using a sin-
gle NOR gate that connects to all input bits (Figure 2.14). 

The one’s complement of a single input is simply the inverse of all its bits.
We can implement this function unit by using n NOT gates (Figure 2.15). 

Having function units for AND and OR is useful and their implementation
is equally simple, since each bit can be calculated independent of the other

Figure 2.13: Incrementer function unit and implementation
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bits. The implementation in Figure 2.16 uses n AND gates, each connected to
the corresponding input bits from X and Y. 

The two’s complement returns the negated value of an input number (Figure
2.17). We can implement this function unit by combining two of the function
units we have constructed before, the one’s complement (NOT) and the incre-
menter, executed one after the other. 

The subtractor shown in Figure 2.18 is another important function unit. We
can implement it with the help of the previously defined function units for add-
ing and negation. 

Figure 2.16: AND of two operands
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Figure 2.17: Two’s complement and implementation
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Figure 2.18: Subtractor and implementation
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For a number of cases it is important to be able to compare two input num-

bers, e.g., to check for equality, and so we define a function unit for this, hav-
ing two n-bit inputs and a single output (yes or no, see Figure 2.19). We could
implement this function unit by using the previously defined function units for
subtraction and check for equality to zero (Figure 2.19, middle). While this
would be correct in a mathematical sense, it would be a very poor choice of
implementation, both in terms of hardware components required and in the
required delay time (computation time). Checking two n-bit numbers for
equality can be more simply achieved by using n EQUIV gates (negated
XORs) for a bit-wise equality check and one AND gate (Figure 2.19, right). 

A function unit for multiplying the input number by two is another example
where we have to be careful with reusing function units that are too complex
for the task (Figure 2.20). Although, we could implement “multiply by two”
with a single adder, the operation is equivalent with a “shift left” operation,
and this we can realize with a simple reordering of the wires. No active com-
ponents are required for this solution (Figure 2.20, right). 

Performing comparisons with integer values can be quite tricky, especially
when there is a mix of unsigned and signed numbers in a system. Figure 2.21
shows a comparator that checks whether a single signed input number is less
than zero (remember that an unsigned number can never be less than zero). In
two’s complement representation, the highest bit of a signed number deter-
mines whether the number is negative or positive. The implementation in Fig-

Figure 2.19: Equality of two operands and implementations
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ure 2.21 takes advantage of this fact and therefore does not require any active
components either. 

We had already discussed comparing two numbers for equality, for which
we had shown a simple solution using combinatorial gates. However, when
comparing whether one input number is less than the other, we cannot get
away with this simple implementation. For this, we do have to conduct a sub-
traction and then subsequently check whether the result (as a signed number) is
less than zero (Figure 2.22, right). 

The list of function units shown in this section is not meant to be complete.
More function units can be designed and implemented using the methods
shown here, whenever a specific function is considered useful for a design.
The good thing about this additional level of abstraction is that we can now
forget about the (hopefully efficient) implementation of each function unit and
can concentrate on how to use function units in order to build more complex
structures.

Figure 2.21: Signed comparison and implementation
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2.3 Registers and Memory
So far, we have been using combinatorial logic exclusively, and so a combina-
tion of AND, OR, and NOT gates, without any clock or system state. This will
change when we want to store data in a register or in memory.

The smallest unit of information is one bit (short for binary digit), which is
the information that can be held by a single flip–flop. The RS (reset/set) flip-
flop type in Figure 2.23 has inputs for setting and resetting the flip-flop (both
active-low in this case). The flip-flop’s one-bit contents will always be dis-
played at output Q, while Q’ displays the negated output. 

The RS flip-flop has now introduced the concept of a “state” to our circuits.
Depending on whether S’ or R’ was activated last, our flip-flop will have the
stored state “1” or “0” and will keep it indefinitely until either the set or reset
input will be activated again.

One drawback of the RS-type flip-flop is that the data inputs (set or reset)
are two separate lines that are “level triggered”, i.e., rising edge (also called
positive edge or low-to-high) or falling edge (also called negative edge, high-
to-low). This means any change on these lines will cause an instantaneous
change of the flip-flop contents and its output Q. However, we would like to be
able to decouple the input data (as a single data line) from an “edge-triggered”
activation line. These improvements can be achieved by linking two RS flip-
flops together, forming a D flip-flop (Figure 2.24). 

Figure 2.23: RS flip-flop and implementation
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Figure 2.24: D flip-flop, positive and negative edge-triggered
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The “D type” flip-flop shown in Figure 2.24 has a single data input line D
and one output line Q. On the rising edge of the clock input CK, the current
input of D is copied into the flip-flop and will from then on be available on its
output Q. There is also an equivalent version of the D flip-flop that switches on
the falling edge of the clock signal; we draw this version with a solid clock
arrow instead of a hollow one. 

For the D flip-flop implementation (positive edge, Figure 2.25), we use the
master–slave combination of two RS flip-flops in series (the output of FF-1 is
input to FF-2 via some auxiliary NAND gates), whose reset signals are trig-
gered by opposite clock levels (inverter to the second flip-flop’s R’ input).
This interlocking design accomplishes the transition from level-triggered
latches to edge-triggered flip-flops. However, for understanding the following
components it is more important to remember the behavior of a D flip-flop
than its actual implementation. 

A register is now simply a bank of D flip-flops with all their clock lines
linked together (Figure 2.26). That way, we can store a full data word with a
single control line (clock) signal. We use a box with digits in the register sym-
bol to denote its current contents (sort of a window to its memory contents). 

Figure 2.25: D flip-flop implementation (positive edge)
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Figure 2.26: Register (4-bit) and implementation
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The final components are memory modules RAM (random access memory

– read and write) and ROM (read only memory) as shown in Figure 2.27.
Memory modules come in various sizes, and so they will have different num-
bers of address lines (determining the number of memory cells) and various
numbers of data lines (determining the size of each memory cell). A typical
memory chip might have 20 address lines, which let it access 220 different
memory cells. If this memory module has eight data lines (8 bits = 1 Byte),
then the whole module has 1,048,576 Bytes, which equals 1 Megabyte (1 MB).

Both ROM and RAM modules in our notation have chip select (CS’, active
low) and output enable (OE’, active low) lines, which are required if our
design has multiple memory modules or if other devices need to write to the
data bus. Only the RAM module as an additional Read/Write’ line (read when
high, write when low) that allows data to be written back to the RAM module. 

Note that because of the complexity of memory modules, their typical delay
times are significantly larger than those of simple gates or function units,
which again limits the maximum CPU clock speed. At this level of abstraction
we do not distinguish between different types of ROM (e.g. mask-ROM vs.
flash-ROM, etc.) and RAM (e.g. SRAM vs. DRAM, etc.). It simply does not
matter for our purposes here.

2.4 Retro 
Before we proceed with the major CPU blocks, we introduce the Retro hard-
ware design and simulation system [Chansavat Bräunl 1999], [Bräunl 2000].
Retro is a tool for visual circuit design at register-transfer level, which gives
students a much better understanding of how to construct a complex digital
system and how a computer system works in detail.

Retro supplies a number of basic components and function units (as dis-
cussed in the preceding sections) that can be selected from a palette and placed
on a canvas where they will be interconnected. Components can be linked by
either a single signal line or a bus of variable size (e.g. 8, 16, 32 lines). All pal-
ette components are grouped into libraries that can be loaded into the system,
making Retro extendable with new component types. Retro can run in several

Figure 2.27: Memory modules ROM and RAM
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demo modes, displaying signal levels as colors and data in hex displays. Simi-
lar to a debugger, the simulator can be run in single-step mode and its execu-
tion can be halted at any time. Retro is implemented in Java and can run either
as an applet or as a stand-alone application.

Figure 2.28 shows a sample Retro setup with the component library palette
on the left and execution control buttons (VCR-style control buttons) on the
top. 

All synchronous circuits require a central clock, which is a component from
the palette. The clock speed can be set in relation to the components’ latencies
and to the simulated time passing. Since most synchronous circuits require a
number of timing signals derived from the central clock, the standard palette
also includes a high-level pulse generator (Figure 2.29, left). The pulse genera-
tor has a variable number of outputs, for each of which a repetitive timing pat-
tern can be specified.

The palette component for memory modules such as ROM and RAM are
more complex than other components. They allow detailed propagation delay
settings for various memory aspects and also include a tool for displaying and
changing memory contents in a window or for saving to a file. Since memory
data is stored in a separate data file and not together with the circuit design

Figure 2.28: Retro simulator with library component palette
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data, the same hardware can be used with several different programs for indi-
vidual experiments (Figure 2.29, right). 

Retro was implemented by B. Chansavat under the direction of T. Bräunl
[Chansavat, Bräunl 1999], [Bräunl 2000] and was inspired by N. Wirth’s text-
book [Wirth 1995]. 

2.5 Arithmetic Logic Unit
The first major component of any CPU is the ALU (arithmetic logic unit). It is
the number cruncher of a CPU, supplying basic arithmetic operations such as
addition and subtraction (in more advanced ALUs also multiplication and divi-
sion) and logic operations such as AND, OR, and NOT for data words of a spe-
cific width. In fact, one can imagine the ALU as a small calculator inside the
CPU.

One of the most important decisions to make when designing an ALU is
how many registers to use and how many operands to receive from memory
per instruction. For our first ALU we will use the simplest possible case: one
register and one operand per instruction. This is called a one-address machine
(assuming the operand is in fact an address – more about this later). Since here
each instruction has only one operand, we need to use some intermediate steps
when, e.g., adding two numbers. In the first step we load the first operand into
the register (which we will call accumulator from now on). In the second step,
we add the second operand to the accumulator.

ALUs that can perform this operation in a single step are called two-address
machines. Each of their instructions can supply two operands (e.g. a + b) and
the result will be stored in the accumulator. Three-address machines provide

Figure 2.29: Pulse generator component and memory contents tool
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an address for the result as well (e.g. c := a + b), and so there is no need for a
central accumulator in such a system. And, just for completeness, there are
also zero-address machines, where all operands and results are pushed and
popped from a stack. 

Figure 2.30 shows the basic ALU structure for a one-address machine. Only
one operand (8-bit wide) at a time comes in from memory, and so each opera-
tion (3-bit wide) is between the accumulator (i.e., the result of the previous
operation) and the operand. Also, we have made no provisions for writing a
data value back to memory. 

We already know what a register is, and so the remaining secret of ALU-1
is the central function block. Figure 2.31 reveals this black box. We are using
one large multiplexer that is being switched by the function code (also called
opcode or machine code). The 3-bit function code gives us a total of 23 = 8 dif-
ferent instructions and each of them is defined by the respective multiplexer
input. 

Figure 2.30: ALU structure
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• Opcode 0 simply routes the left operand through. Remember, this is

linked to the accumulator, and so effectively this instruction will not
change the accumulator contents. This is known as a NOP (short for
no operation).

• Opcode 1 negates the left operand, and so it negates the accumulator.
No memory data is used for this instruction.

• Opcodes 2, 3, and 4 perform logic AND, OR, and arithmetic addition,
respectively, between left and right operand (i.e. accumulator and
memory operand).

• Opcode 5 routes the right operand through, and the accumulator will
be loaded with the memory operand.

• Opcodes 6 and 7 are identical to opcode 0, and so from the ALU point
of view they are also NOPs.

It might seem like waste of resources to calculate all possible results (i.e.
NOT, AND, OR, ADD) for every single instruction, and then discard all but
one. However, since we need all of these operations at some stage in a pro-
gram, there is no possible savings in terms of chip space or execution time.
There may be a possible energy consumption issue, but we do not look at it
now.

We can now summarize the function of these eight opcodes in a table form
as machine code with mnemonic abbreviations (Table 2.2). 

2.6 Control Unit
The CU (control unit) is the second part of each CPU, enabling step-by-step
program execution and branching. The central register used in the CU is the
program counter. The program counter addresses the memory in order to load
opcodes and operands (immediate data or memory addresses) from memory.

No. Opcode (bin.) Operation

0 000 Z := X

1 001 Z := NOT X

2 010 Z := X AND Y

3 011 Z := X OR Y

4 100 Z := X + Y

5 101 Z := Y

6 110 Z := X

7 111 Z := X

Table 2.2: Operations for ALU-1
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Figure 2.32 shows a first, very simple CU structure. The program counter is
incremented by one in each step and its output is used for addressing the mem-
ory unit. This means, every instruction (opcode + operand) will be a single
word and there are no provisions for branches. Each program on this CU will
be executed line after line with no exceptions (i.e., no branching forward or
backward). 

2.7 Central Processing Unit
To build a fully functional CPU, we link together an ALU and a CU with a
memory module. In this section we will introduce a number of CPU designs,
starting with the most simple design, then successively adding more features
when building more complex CPUs.

2.7.1 CPU-1: Minimal Design
To build the first complete CPU-1, we use ALU-1 and CU-1 from the previous
two sections, linked by a ROM module (Figure 2.33). 

As has been established before, this CPU design does not allow for any
branching, and only immediate operands (constant values) are used in a single
memory word of 11 bits that combines opcode and operand. Figure 2.34 shows
the identical CPU-1 design in the Retro system (with the exception of unused
or disconnected opcodes 6 and 7). The function block shows now all internal
details, and the load signals for accumulator and program counter are wired up
to a pulse generator, driven by the central clock.

As can be verified from the multiplexer configuration, ALU-1 supports
eight opcodes, of which only the first six are being used (in the order of opcode
0 5): NOP, NOT, AND, OR, ADD, LOAD.

On the CU-1 side, the program counter (PC) always addresses the memory
module and its output is fed back via an incrementer. This means, program steps
are always executed consecutively, and branches or jumps are not possible. 

Figure 2.32: CU structure
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Figure 2.33: CPU-1 design

Figure 2.34: CPU-1 in Retro
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The memory module uses an unusual 11-bit data format, which further sim-
plifies the design, because operator (3-bit opcode) and immediate operand (8-
bit data) can be encoded in a single instruction, and no additional registers are
required to store them. The splitting of the two is simply done by dividing the
data bus wires coming from the memory module, while the most significant bit
of the opcode is not being used. 

The timing requirements for CPU-1 are minimal. Since only two registers
need to be triggered, all we need are two alternating signals, derived from a
master clock. First the accumulator gets triggered, then the program counter is
incremented (see Figure 2.35). 

Table 2.3 summarizes the available instructions for CPU-1 and lists their
specific accumulator and program counter operations. 

Figure 2.35: Timing diagram for CPU-1
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Opcode Description Mnemonic

0 acc ← acc
pc ← pc + 1

NOP

1 acc ← NOT acc
pc ← pc + 1

NOT 

2 acc ← acc AND constant
pc ← pc + 1

AND const

3 acc ← acc OR constant
pc ← pc + 1

OR const

4 acc ← acc + constant
pc ← pc + 1

ADD const

5 acc ← constant
pc ← pc + 1

LOAD const

6 Not used

7 Not used

Table 2.3: CPU-1 opcodes
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We can now look at the software side, the programming of CPU-1. We do

this by writing opcodes and data directly into the ROM. The simple program
shown in Table 2.4 adds the two numbers 1 and 2. With the first instruction we
load constant 1 into the accumulator (code: 5 01). In the second step we add
constant 2 (code: 4 02). 

This program also shows some of the deficiencies of CPU-1’s minimal
design:

1. Operands can only be constant values (immediate operands).
Memory addresses cannot be specified as operands.

2. Results cannot be stored in memory.
3. There is no way to “stop” the CPU or at least bring to a dynamic halt.

This means after executing a large number of NOP instructions, the
PC will eventually come back to address 00 and repeat the program,
overwriting the result.

2.7.2 CPU-2: Double Byte Instructions and Branching
CPU-1 gave a first impression of CPU design, stressing the importance of tim-
ing and interaction between hardware and software. For this second design,
CPU-2, we would like to address the major deficiencies of CPU-1, which are
the lack of branching and the lack of memory data access (read or write).

For CPU-2, we choose an 8-bit opcode followed by an 8-bit memory
address and an 8-bit wide RAM/data bus configuration. This design choice
requires two subsequent memory accesses for each instruction. CPU-2
requires two additional registers, a code register and an address register for
storing opcode and address, respectively, which are being loaded subsequently
from memory. Figure 2.36 shows the CPU-2 schematics (top) and the Retro
implementation (bottom). 

The instruction execution sequence, defined by the timing diagram (micro-
programming) now requires several steps:

Address Opcode Operand Comment

00 5 01 LOAD 1

01 4 02 ADD 2

02 0 00 NOP

.. .. .. ..

FF 0 00 NOP

Table 2.4: CPU-1 addition program
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Figure 2.36: CPU-2 schematics and Retro implementation
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1. Load first byte of instruction (opcode) and store it in the code register.
2. Increment program counter by 1.
3. Load second byte of instruction (address) and store it in the address register.
4. Use the address value for addressing the memory and retrieving the actual

data value, which is then passed on to the ALU.

5. Update the accumulator with the calculation result.

6. (a) If required by the opcode no. 6, write accumulator data back to memory
(b) If required by opcode no. 7, use address parameter as PC increment.

7. Increment program counter for the second time (+1 for arithmetic instruc-
tions or offset for branching).

Figure 2.37 shows the timing diagram required for CPU-2. It is important to
note that the program counter will now be incremented twice for each instruc-
tion. 

CPU-2 uses the same ALU as CPU-1, but also makes use of the previously
unused opcodes 6 and 7. As can be seen in Figure 2.36, opcode 6 is individu-
ally decoded (box “=6”) and used to write the accumulator result back to the
memory. Of course, this can only work if the timing diagram has made provi-
sions for it. In Figure 2.37, we can see that one impulse of each master cycle is
reserved to activate signal W, which is used to switch the RAM from read to
write and also to open the tri-state gate allowing data to flow from the accumu-
lator toward the RAM. The memory address for writing comes from the
address register. 

The final major addition is a conditional branch for opcode 7 (see box
“=7”). The condition is true if the accumulator is equal to zero. Therefore, a
branch will occur only if opcode 7 is used, the accumulator is equal to zero,

Figure 2.37: Timing diagram for CPU-2
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and timing signal BR is present. Signal BR overlaps (and therefore replaces)
the second increment of the program counter in the timing diagram (Figure
2.37), which again demonstrates the importance of proper timing design. Table
2.5 now shows the complete set of opcodes for CPU-2.

Interaction between CPU-2’s components can be seen best by following the
execution of an instruction, which takes seven cycles of the master clock (Fig-
ure 2.37). Assuming the PC is initialized with zero, it will address the first byte
in memory (mem[0]), which will be put on the data bus. The data bus is linked
to the code register, the address register, and (over a multiplexer) to the ALU,
but only one of them will take the data at a time. Since the first cycle activates
signal C (line 0 from the pulse generator), this triggers “load” on the code reg-
ister, and so mem[0] will be copied into it.

In the second cycle, “PC load” will be triggered (line 1). The PC’s input is
an adder with the left-hand side being the constant 1 (via a multiplexer) and the
right-hand side being the PC’s previous value (0 in the beginning). So as long
as the multiplexer is not being switched over, a pulse on “PC load” will always
increment it by 1. With the PC now holding value 1, the second memory byte
(mem[1]) is on the data bus, and at cycle 3 (line AD), it will be copied into the
address register. 

Opcode Description Mnemonic

0 acc ← acc
pc ← pc + 2

NOP

1 acc ← NOT acc
pc ← pc + 2

NOT

2 acc ← acc AND memory
pc ← pc + 2

AND mem

3 acc ← acc OR memory
pc ← pc + 2

OR mem

4 acc ← acc + memory
pc ← pc + 2

ADD mem

5 acc ← memory
pc ← pc + 2

LOAD mem

6 memory ← acc
pc ← pc + 2

STORE mem

7 (* acc unchanged *)
if acc = 0 then pc ← pc + address

else pc ← pc + 2

BEQ address

Table 2.5: CPU-2 opcodes
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Cycle 4 will activate signal B (line 4), which switches the RAM addressing

from the program counter to the current address register contents. This is
needed since each instruction in CPU-2 has an address operand instead of an
immediate (constant) operand in CPU-1 (see also opcodes in Table 2.5). With
the address register now being connected to the RAM, the data bus will have
the memory contents to which the address register points to. This value will be
selected as input for the ALU.

With the ALU’s left-hand side input being the accumulator’s old value and
the right-hand side input being set to the data bus (memory operand), the code
register selects the desired operation over the large multiplexer on top of the
accumulator. Cycle 5 then activates the accumulator’s load signal (line 5), to
copy the operation’s result.

Cycle 6 will activate signal W (line 6). In case the instruction opcode is 6
(STORE memory, see Table 2.5), the RAM’s output enable line will be acti-
vated (see box “=6” and NAND gate) and the accumulator’s current value is
written back to the RAM at the address specified by the address register. In
case the current instruction is not a STORE, the RAM’s write enable and the
tri-state gate will not be activated, and so this cycle will have no effect.

Cycle 6 also activates signal BR (line 3), to not to waste another cycle. This
flips CU-2’s adder input from constant “+1” to the address register contents,
but only if either the instruction’s opcode is 7 (BEQ, branch if equal) and the
current accumulator contents is equal to zero (see box “=0”).

Finally on cycle 7, the program counter is updated a second time, either by
“+1” (in case of an arithmetic instruction) or by adding the contents of the
address register to it (for the BEQ instruction, if a branch is being executed).

This concludes the execution of one full instruction. On the next master
clock cycle, the system will start over again with cycle 1.

Example Program
Table 2.6 shows the implementation of an addition program, similar to the one
for CPU-1. However, in CPU-2 there are no constant values, instead all oper-
ands are addresses. Therefore, we first load the contents of memory cell A1
(instruction: 05 A1), then add the contents of cell A2 (instruction: 04 A2), and
finally store the result in cell A3 (instruction: 06 A3).

After that, we would like to bring the program to a dynamic halt. We can do
this with the operation BEQ -1 (in hexadecimal: 07 FF). Although each
instruction takes 2 bytes, we must decrement the program counter only by -1,
not -2. This is because at the time the data value -1 (FF) is added to the pro-
gram counter, it has only been incremented once so far, not twice.

We also have to consider that the branching instruction is conditional, and
so for the unconditional branch we need here, we have to make sure the accu-
mulator is equal to 0. Since we do no longer have constants (immediate values)
that we can load, we need to execute a LOAD memory instruction from an
address that we know has value zero before we can actually execute the branch
instruction. In the example program, memory cell A0 has been initialized to 0
before program start.
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2.7.3 CPU-3: Addresses and Constants
The design of CPU-3 (Figure 2.38) is extending CPU-2 by adding:

• Load operation for constants (immediate values)
• Unconditional branch operation 

Address Code Data Comment

00 05 A1 LOAD mem [A1]

02 04 A2 ADD mem [A2]

04 06 A3 STORE mem [A3]

06 05 A0 LOAD mem [A0] "0"

08 07 FF BEQ -1

Table 2.6: CPU-2 addition program

Figure 2.38: CPU-3 design
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CPU-3 still uses only eight different opcodes in total (3 bits), and so we

reduced the functionality of ALU-3 in this design. 
An additional multiplexer, controlled by opcode 0 (see box “=0”), allows

switching between feeding ALU-3 with memory output (memory operand,
direct addressing) and address register contents (constant, immediate operand).
However, this trick only works for the LOAD operation. Since the opcodes for
ADD and AND are not equal to 0, these instructions will still receive data from
memory. 

The second change is to include both conditional branching (opcode 5) and
unconditional branching (opcode 6). Note that the STORE instruction in CPU-
3 has been changed to opcode 2. A branch will now be executed either (see OR
gate in Figure 2.38) if opcode is 6 (see box “=6”) or if opcode is 5 (see box
“=5”) and the accumulator is equal to 0. 

2.7.4 CPU-4: Symmetrical Design
While CPU-3 addressed some of the deficiencies of CPU-2, its design is more
an ad hoc or makeshift solution. The redesigned CPU-4 shown in Figure 2.39
shows a much clearer, symmetrical design.   

Figure 2.39: CPU-4 design
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We are now using one additional bit for opcodes (4 bits), resulting in 24 =
16 instructions in total. The design is symmetrical in the way that the highest
bit (bit 3) of the opcode is used to switch between constants (immediate oper-

Opcode Description Mnemonic

0 acc ← memory
pc ← pc + 2

LOAD mem

1 memory ← acc
pc ← pc + 2

STORE mem

2 acc ← NOT acc
pc ← pc + 2

NOT

3 acc ← acc + memory
pc ← pc + 2

ADD mem

4 acc ← acc - memory
pc ← pc + 2

SUB mem

5 acc ← acc AND memory
pc ← pc + 2

AND mem

6 acc ← acc OR memory
pc ← pc + 2

OR mem

7 (* acc unchanged *)
if acc = 0 then pc ← pc + address

else pc ← pc + 2

BEQ mem

8 acc ← constant
pc ← pc + 2

LOAD const

9 Not used

10 Not used

11 acc ← acc + constant
pc ← pc + 2

ADD const

12 acc ← acc - constant
pc ← pc + 2

SUB const

13 acc ← acc AND constant
pc ← pc + 2

AND const

14 acc ← acc OR constant
pc ← pc + 2

OR const

15 (* acc unchanged *)
pc ← pc + address

BRA addr

Table 2.7: CPU-4 opcodes
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ands) and memory operands; therefore two versions of each instruction exist.
All opcodes for CPU-4 are listed in Table 2.7. The instructions belong into two
groups, instructions with opcodes 0..7 use memory data (direct address), while
instructions with opcodes 8..15 use constants (immediate data) instead. The
distinction between memory and constant values is made by bit 3 in each
opcode. The same bit line is used to distinguish between conditional branch
(opcode 7) and unconditional branch (branch always, opcode 15). Bits 4..7 of
each opcode byte are not used in CPU-4, but could be utilized for extensions.

As can be seen in Figure 2.39, bit no. 3 is split from the code register output
and used to switch the multiplexer between immediate (constant) and direct
(memory) operands for every opcode. This symmetric design is characteristic
for good CPU designs and highly appreciated by assembly programmers and
compiler code generators.

A similar solution for including conditional and unconditional branches as
in CPU-3 has been implemented. Here, opcodes 7 and 15 have been selected,
as they correspond to each other with respect to opcode bit no. 3 and always
use an immediate address parameter, never a value from memory.

Example Program
As example program we selected the multiplication of two numbers by

repeated addition (see Table 2.8). The program expects the two operands in
memory cells $FD and $FE and will place the result in $FF. 

Addr. Code data Mnemonic Comment

00 08 00 LOAD #0 Clear result memory cell ($FF)

02 01 FF STORE FF

04 00 FD LOAD FD Load first operand ($FD) ..

06 07 FF BEQ -1 .. done if 0 (BEQ -1 equiv. to 
dynamic HALT)

08 0C 01 SUB #1 Subtract 1 from first operand

0A 01 FD STORE FD

0C 00 FE LOAD FE Load second operand ($FE) and 
add to result

0E 03 FF ADD FF

10 01 FF STORE FF

12 0F F1 BRA -15 Branch to loop (address 4)

Table 2.8: CPU-4 program for multiplying two numbers in memory
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First, the result cell is cleared. Then, at the beginning of a loop, the first
operand is loaded. If it is equal to zero, the program will terminate. For halting
execution, we use a branch relative to the current address –1. This will engage
the CPU in an endless loop and effectively halt execution.

If the result is not yet zero, 1 is subtracted from the first operand (which is
then updated in memory) and the second operand is loaded and subsequently
added to the final result. The program ends with an unconditional branch state-
ment to the beginning of the loop.
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. . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSORS

here are a vast number of different sensors being used in robotics,
applying different measurement techniques, and using different inter-
faces to a controller. This, unfortunately, makes sensors a difficult sub-

ject to cover. We will, however, select a number of typical sensor systems and
discuss their details in hardware and software. The scope of this chapter is
more on interfacing sensors to controllers than on understanding the internal
construction of sensors themselves.

What is important is to find the right sensor for a particular application.
This involves the right measurement technique, the right size and weight, the
right operating temperature range and power consumption, and of course the
right price range.

Data transfer from the sensor to the CPU can be either CPU-initiated (poll-
ing) or sensor-initiated (via interrupt). In case it is CPU-initiated, the CPU has
to keep checking whether the sensor is ready by reading a status line in a loop.
This is much more time consuming than the alternative of a sensor-initiated
data transfer, which requires the availability of an interrupt line. The sensor
signals via an interrupt that data is ready, and the CPU can react immediately
to this request. 

Sensor Output Sample Application

Binary signal (0 or 1) Tactile sensor

Analog signal (e.g. 0..5V) Inclinometer

Timing signal (e.g. PWM) Gyroscope

Serial link (RS232 or USB) GPS module

Parallel link Digital camera

Table 3.1: Sensor output
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3

3.1 Sensor Categories
From an engineer’s point of view, it makes sense to classify sensors according
to their output signals. This will be important for interfacing them to an
embedded system. Table 3.1 shows a summary of typical sensor outputs
together with sample applications. However, a different classification is
required when looking at the application side (see Table 3.2). 

From a robot’s point of view, it is more important to distinguish:
• Local or on-board sensors

(sensors mounted on the robot)
• Global sensors

(sensors mounted outside the robot in its environment
and transmitting sensor data back to the robot)

For mobile robot systems it is also important to distinguish:
• Internal or proprioceptive sensors

(sensors monitoring the robot’s internal state)
• External sensors

(sensors monitoring the robot’s environment)

Local Global

Internal Passive
battery sensor,
chip-temperature sensor,
shaft encoders,
accelerometer,
gyroscope,
inclinometer,
compass

Active –

Passive –

Active –

External Passive
on-board camera

Active
sonar sensor,
infrared distance sensor,
laser scanner

Passive
overhead camera,
satellite GPS

Active
sonar (or other) global 
positioning system

Table 3.2: Sensor classification
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A further distinction is between:
• Passive sensors

(sensors that monitor the environment without disturbing it,
for example digital camera, gyroscope)

• Active sensors
(sensors that stimulate the environment for their measurement,
for example sonar sensor, laser scanner, infrared sensor)

Table 3.2 classifies a number of typical sensors for mobile robots according
to these categories. A good source for information on sensors is [Everett
1995].

3.2 Binary Sensor
Binary sensors are the simplest type of sensors. They only return a single bit of
information, either 0 or 1. A typical example is a tactile sensor on a robot, for
example using a microswitch. Interfacing to a microcontroller can be achieved
very easily by using a digital input either of the controller or a latch. Figure 3.1
shows how to use a resistor to link to a digital input. In this case, a pull-up
resistor will generate a high signal unless the switch is activated. This is called
an “active low” setting. 

3.3 Analog versus Digital Sensors
A number of sensors produce analog output signals rather than digital signals.
This means an A/D converter (analog to digital converter, see Section 3.5) is
required to connect such a sensor to a microcontroller. Typical examples of
such sensors are:

• Microphone
• Analog infrared distance sensor

Figure 3.1: Interfacing a tactile sensor
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• Analog compass
• Barometer sensor

Digital sensors on the other hand are usually more complex than analog
sensors and often also more accurate. In some cases the same sensor is avail-
able in either analog or digital form, where the latter one is the identical analog
sensor packaged with an A/D converter.

The output signal of digital sensors can have different forms. It can be a
parallel interface (for example 8 or 16 digital output lines), a serial interface
(for example following the RS232 standard) or a “synchronous serial” inter-
face.

The expression “synchronous serial” means that the converted data value is
read bit by bit from the sensor. After setting the chip-enable line for the sensor,
the CPU sends pulses via the serial clock line and at the same time reads 1 bit
of information from the sensor’s single bit output line for every pulse (for
example on each rising edge). See Figure 3.2 for an example of a sensor with a
6bit wide output word. 

3.4 Shaft Encoder

Encoder ticks

Encoders are required as a fundamental feedback sensor for motor control
(Chapters 4 and 5). There are several techniques for building an encoder. The
most widely used ones are either magnetic encoders or optical encoders. Mag-
netic encoders use a Hall-effect sensor and a rotating disk on the motor shaft
with a number of magnets (for example 16) mounted in a circle. Every revolu-
tion of the motor shaft drives the magnets past the Hall sensor and therefore
results in 16 pulses or “ticks” on the encoder line. Standard optical encoders
use a sector disk with black and white segments (see Figure 3.3, left) together
with an LED and a photo-diode. The photo-diode detects reflected light during
a white segment, but not during a black segment. So once again, if this disk has
16 white and 16 black segments, the sensor will receive 16 pulses during one
revolution.

Encoders are usually mounted directly on the motor shaft (that is before the
gear box), so they have the full resolution compared to the much slower rota-

Figure 3.2: Signal timing for synchronous serial interface

CE

Clock
(from CPU)

D-OUT
(from A/D)

1 2 3 4 5 6



Shaft Encoder

53

tional speed at the geared-down wheel axle. For example, if we have an
encoder which detects 16 ticks per revolution and a gearbox with a ratio of
100:1 between the motor and the vehicle’s wheel, then this gives us an encoder
resolution of 1,600 ticks per wheel revolution.

Both encoder types described above are called incremental, because they
can only count the number of segments passed from a certain starting point.
They are not sufficient to locate a certain absolute position of the motor shaft.
If this is required, a Gray-code disk (Figure 3.3, right) can be used in combina-
tion with a set of sensors. The number of sensors determines the maximum res-
olution of this encoder type (in the example there are 3 sensors, giving a reso-
lution of 23 = 8 sectors). Note that for any transition between two neighboring
sectors of the Gray code disk only a single bit changes (e.g. between 1 = 001
and 2 = 011). This would not be the case for a standard binary encoding (e.g. 1
= 001 and 2 = 010, which differ by two bits). This is an essential feature of this
encoder type, because it will still give a proper reading if the disk just passes
between two segments. (For binary encoding the result would be arbitrary
when passing between 111 and 000.)

As has been mentioned above, an encoder with only a single magnetic or
optical sensor element can only count the number of segments passing by. But
it cannot distinguish whether the motor shaft is moving clockwise or counter-
clockwise. This is especially important for applications such as robot vehicles
which should be able to move forward or backward. For this reason most
encoders are equipped with two sensors (magnetic or optical) that are posi-
tioned with a small phase shift to each other. With this arrangement it is poss-
ible to determine the rotation direction of the motor shaft, since it is recorded
which of the two sensors first receives the pulse for a new segment. If in Fig-
ure 3.3 Enc1 receives the signal first, then the motion is clockwise; if Enc2
receives the signal first, then the motion is counter-clockwise. 

Since each of the two sensors of an encoder is just a binary digital sensor,
we could interface them to a microcontroller by using two digital input lines.
However, this would not be very efficient, since then the controller would have
to constantly poll the sensor data lines in order to record any changes and
update the sector count.

Figure 3.3: Optical encoders, incremental versus absolute (Gray code)
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Luckily this is not necessary, since most modern microcontrollers (unlike

standard microprocessors) have special input hardware for cases like this.
They are usually called “pulse counting registers” and can count incoming
pulses up to a certain frequency completely independently of the CPU. This
means the CPU is not being slowed down and is therefore free to work on
higher-level application programs.

Shaft encoders are standard sensors on mobile robots for determining their
position and orientation (see Chapter 16).

3.5 A/D Converter
An A/D converter translates an analog signal into a digital value. The charac-
teristics of an A/D converter include:

• Accuracy
expressed in the number of digits it produces per value
(for example 10bit A/D converter)

• Speed
expressed in maximum conversions per second
(for example 500 conversions per second)

• Measurement range
expressed in volts
(for example 0..5V)

A/D converters come in many variations. The output format also varies.
Typical are either a parallel interface (for example up to 8 bits of accuracy) or a
synchronous serial interface (see Section 3.3). The latter has the advantage that
it does not impose any limitations on the number of bits per measurement, for
example 10 or 12bits of accuracy. Figure 3.4 shows a typical arrangement of
an A/D converter interfaced to a CPU. 

Many A/D converter modules include a multiplexer as well, which allows
the connection of several sensors, whose data can be read and converted subse-
quently. In this case, the A/D converter module also has a 1bit input line,
which allows the specification of a particular input line by using the synchro-
nous serial transmission (from the CPU to the A/D converter).

Figure 3.4: A/D converter interfacing
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3.6 Position Sensitive Device
Sensors for distance measurements are among the most important ones in
robotics. For decades, mobile robots have been equipped with various sensor
types for measuring distances to the nearest obstacle around the robot for navi-
gation purposes.

Sonar sensors In the past, most robots have been equipped with sonar sensors (often Polar-
oid sensors). Because of the relatively narrow cone of these sensors, a typical
configuration to cover the whole circumference of a round robot required 24
sensors, mapping about 15° each. Sonar sensors use the following principle: a
short acoustic signal of about 1ms at an ultrasonic frequency of 50kHz to
250kHz is emitted and the time is measured from signal emission until the
echo returns to the sensor. The measured time-of-flight is proportional to twice
the distance of the nearest obstacle in the sensor cone. If no signal is received
within a certain time limit, then no obstacle is detected within the correspond-
ing distance. Measurements are repeated about 20 times per second, which
gives this sensor its typical clicking sound (see Figure 3.5). 

Sonar sensors have a number of disadvantages but are also a very powerful
sensor system, as can be seen in the vast number of published articles dealing
with them [Barshan, Ayrulu, Utete 2000], [Kuc 2001]. The most significant
problems of sonar sensors are reflections and interference. When the acoustic
signal is reflected, for example off a wall at a certain angle, then an obstacle
seems to be further away than the actual wall that reflected the signal. Interfer-
ence occurs when several sonar sensors are operated at once (among the 24
sensors of one robot, or among several independent robots). Here, it can hap-
pen that the acoustic signal from one sensor is being picked up by another sen-
sor, resulting in incorrectly assuming a closer than actual obstacle. Coded
sonar signals can be used to prevent this, for example using pseudo random
codes [Jörg, Berg 1998].

Laser sensors Today, in many mobile robot systems, sonar sensors have been replaced by
either infrared sensors or laser sensors. The current standard for mobile robots
is laser sensors (for example Sick Auto Ident [Sick 2006]) that return an almost

Figure 3.5: Sonar sensor
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perfect local 2D map from the viewpoint of the robot, or even a complete 3D
distance map. Unfortunately, these sensors are still too large and heavy (and
too expensive) for small mobile robot systems. This is why we concentrate on
infrared distance sensors. 

Infrared sensors Infrared (IR) distance sensors do not follow the same principle as sonar sen-
sors, since the time-of-flight for a photon would be much too short to measure
with a simple and cheap sensor arrangement. Instead, these systems typically
use a pulsed infrared LED at about 40kHz together with a detection array (see
Figure 3.6). The angle under which the reflected beam is received changes
according to the distance to the object and therefore can be used as a measure
of the distance. The wavelength used is typically 880nm. Although this is
invisible to the human eye, it can be transformed to visible light either by IR
detector cards or by recording the light beam with an IR-sensitive camera.

Figure 3.7 shows the Sharp sensor GP2D02 [Sharp 2006] which is built in a
similar way as described above. There are two variations of this sensor:

• Sharp GP2D12 with analog output
• Sharp GP2D02 with digital serial output

The analog sensor simply returns a voltage level in relation to the measured
distance (unfortunately not proportional, see Figure 3.7, right, and text below).
The digital sensor has a digital serial interface. It transmits an 8bit measure-
ment value bit-wise over a single line, triggered by a clock signal from the
CPU as shown in Figure 3.2. 

In Figure 3.7, right, the relationship between digital sensor read-out (raw
data) and actual distance information can be seen. From this diagram it is clear
that the sensor does not return a value linear or proportional to the actual dis-
tance, so some post-processing of the raw sensor value is necessary. The sim-
plest way of solving this problem is to use a lookup table which can be cali-
brated for each individual sensor. Since only 8 bits of data are returned, the
lookup table will have the reasonable size of 256 entries. Such a lookup table
is provided in the hardware description table (HDT) of the RoBIOS operating
system (see Section B.3). With this concept, calibration is only required once
per sensor and is completely transparent to the application program.

Figure 3.6: Infrared sensor
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Another problem becomes evident when looking at the diagram for actual
distances below about 6cm. These distances are below the measurement range
of this sensor and will result in an incorrect reading of a higher distance. This
is a more serious problem, since it cannot be fixed in a simple way. One could,
for example, continually monitor the distance of a sensor until it reaches a
value in the vicinity of 6cm. However, from then on it is impossible to know
whether the obstacle is coming closer or going further away. The safest solu-
tion is to mechanically mount the sensor in such a way that an obstacle can
never get closer than 6cm, or use an additional (IR) proximity sensor to cover
for any obstacles closer than this minimum distance.

IR proximity switches are of a much simpler nature than IR PSDs. IR prox-
imity switches are an electronic equivalent of the tactile binary sensors shown
in Section 3.2. These sensors also return only 0 or 1, depending on whether
there is free space (for example 1-2cm) in front of the sensor or not. IR prox-
imity switches can be used in lieu of tactile sensors for most applications that
involve obstacles with reflective surfaces. They also have the advantage that
no moving parts are involved compared to mechanical microswitches.

3.7 Compass
A compass is a very useful sensor in many mobile robot applications, espe-
cially self-localization. An autonomous robot has to rely on its on-board sen-
sors in order to keep track of its current position and orientation. The standard
method for achieving this in a driving robot is to use shaft encoders on each
wheel, then apply a method called “dead reckoning”. This method starts with a
known initial position and orientation, then adds all driving and turning actions
to find the robot’s current position and orientation. Unfortunately, due to wheel
slippage and other factors, the “dead reckoning” error will grow larger and

Figure 3.7: Sharp PSD sensor and sensor diagram (source: [Sharp 2006])
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larger over time. Therefore, it is a good idea to have a compass sensor on-
board, to be able to determine the robot’s absolute orientation.

A further step in the direction of global sensors would be the interfacing to
a receiver module for the satellite-based global positioning system (GPS). GPS
modules are quite complex and contain a microcontroller themselves. Interfac-
ing usually works through a serial port (see the use of a GPS module in the
autonomous plane, Chapter 12). On the other hand, GPS modules only work
outdoors in unobstructed areas.

Analog compass Several compass modules are available for integration with a controller.
The simplest modules are analog compasses that can only distinguish eight
directions, which are represented by different voltage levels. These are rather
cheap sensors, which are, for example, used as directional compass indicators
in some four-wheel-drive car models. Such a compass can simply be con-
nected to an analog input of the EyeBot and thresholds can be set to distinguish
the eight directions. A suitable analog compass model is:

• Dinsmore Digital Sensor No. 1525 or 1655
[Dinsmore 1999]

Digital compass Digital compasses are considerably more complex, but also provide a much
higher directional resolution. The sensor we selected for most of our projects
has a resolution of 1° and accuracy of 2°, and it can be used indoors:

• Vector 2X
[Precision Navigation 1998]

This sensor provides control lines for reset, calibration, and mode selection,
not all of which have to be used for all applications. The sensor sends data by
using the same digital serial interface already described in Section 3.3. The
sensor is available in a standard (see Figure 3.8) or gimbaled version that
allows accurate measurements up to a banking angle of 15°.

Figure 3.8: Vector 2X compass
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3.8 Gyroscope, Accelerometer, Inclinometer
Orientation sensors to determine a robot’s orientation in 3D space are required
for projects like tracked robots (Figure 8.7), balancing robots (Chapter 10),
walking robots (Chapter 11), or autonomous planes (Chapter 12). A variety of
sensors are available for this purpose (Figure 3.9), up to complex modules that
can determine an object’s orientation in all three axes. However, we will con-
centrate here on simpler sensors, most of them only capable of measuring a
single dimension. Two or three sensors of the same model can be combined for
measuring two or all three axes of orientation. Sensor categories are:

• Accelerometer
Measuring the acceleration along one axis
• Analog Devices ADXL05 (single axis, analog output)
• Analog Devices ADXL202 (dual axis, PWM output)

• Gyroscope
Measuring the rotational change of orientation about one axis
• HiTec GY 130 Piezo Gyro (PWM input and output)

• Inclinometer
Measuring the absolute orientation angle about one axis
• Seika N3 (analog output)
• Seika N3d (PWM output) 

3.8.1 Accelerometer
All these simple sensors have a number of drawbacks and restrictions. Most of
them cannot handle jitter very well, which frequently occurs in driving or
especially walking robots. As a consequence, some software means have to be
taken for signal filtering. A promising approach is to combine two different
sensor types like a gyroscope and an inclinometer and perform sensor fusion in
software (see Figure 8.7).

A number of different accelerometer models are available from Analog
Devices, measuring a single or two axes at once. Sensor output is either analog

Figure 3.9: HiTec piezo gyroscope, Seika inclinometer
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or a PWM signal that needs to be measured and translated back into a binary
value by the CPU’s timing processing unit.

The acceleration sensors we tested were quite sensitive to positional noise
(for example servo jitter in walking robots). For this reason we used additional
low-pass filters for the analog sensor output or digital filtering for the digital
sensor output.

3.8.2 Gyroscope
The gyroscope we selected from HiTec is just one representative of a product
range from several manufacturers of gyroscopes available for model airplanes
and helicopters. These modules are meant to be connected between the
receiver and a servo actuator, so they have a PWM input and a PWM output. In
normal operation, for example in a model helicopter, the PWM input signal
from the receiver is modified according to the measured rotation about the
gyroscope’s axis, and a PWM signal is produced at the sensor’s output, in
order to compensate for the angular rotation.

Obviously, we want to use the gyroscope only as a sensor. In order to do so,
we generate a fixed middle-position PWM signal using the RoBIOS library
routine SERVOSet for the input of the gyroscope and read the output PWM sig-
nal of the gyroscope with a TPU input of the EyeBot controller. The periodical
PWM input signal is translated to a binary value and can then be used as sensor
data.

A particular problem observed with the piezo gyroscope used (HiTec GY
130) is drift: even when the sensor is not being moved and its input PWM sig-
nal is left unchanged, the sensor output drifts over time as seen in Figure 3.10
[Smith 2002], [Stamatiou 2002]. This may be due to temperature changes in
the sensor and requires compensation.

Figure 3.10: Gyroscope drift at rest and correction
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An additional general problem with these types of gyroscopes is that they
can only sense the change in orientation (rotation about a single axis), but not
the absolute position. In order to keep track of the current orientation, one has
to integrate the sensor signal over time, for example using the Runge-Kutta
integration method. This is in some sense the equivalent approach to “dead
reckoning” for determining the x/y-position of a driving robot. The integration
has to be done in regular time intervals, for example 1/100s; however, it suffers
from the same drawback as “dead reckoning”: the calculated orientation will
become more and more imprecise over time. 

Figure 3.11 [Smith 2002], [Stamatiou 2002] shows the integrated sensor
signal for a gyro that is continuously moved between two orientations with the
help of a servo. As can be seen in Figure 3.11, left, the angle value remains
within the correct bounds for a few iterations, and then rapidly drifts outside
the range, making the sensor signal useless. The error is due to both sensor
drift (see Figure 3.10) and iteration error. The following sensor data processing
techniques have been applied:

1. Noise reduction by removal of outlier data values
2. Noise reduction by applying the moving-average method
3. Application of scaling factors to increment/decrement absolute angles
4. Re-calibration of gyroscope rest-average via sampling
5. Re-calibration of minimal and maximal rest-bound via sampling

Two sets of bounds are used for the determination and re-calibration of the
gyroscope rest characteristics. The sensor drift has now been eliminated (upper
curve in Figure 3.10). The integrated output value for the tilt angle (Figure
3.11, right) shows the corrected noise-free signal. The measured angular value
now stays within the correct bounds and is very close to the true angle.

Figure 3.11: Measured gyro in motion (integrated), raw and corrected
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3.8.3 Inclinometer

Inclinometers measure the absolute orientation angle within a specified range,
depending on the sensor model. The sensor output is also model-dependent,
with either analog signal output or PWM being available. Therefore, interfac-
ing to an embedded system is identical to accelerometers (see Section 3.8.1).

Since inclinometers measure the absolute orientation angle about an axis
and not the derivative, they seem to be much better suited for orientation meas-
urement than a gyroscope. However, our measurements with the Seika incli-
nometer showed that they suffer a time lag when measuring and also are prone
to oscillation when subjected to positional noise, for example as caused by
servo jitter.

Especially in systems that require immediate response, for example balanc-
ing robots in Chapter 10, gyroscopes have an advantage over inclinometers.
With the components tested, the ideal solution was a combination of inclinom-
eter and gyroscope.

3.9 Digital Camera
Digital cameras are the most complex sensors used in robotics. They have not
been used in embedded systems until recently, because of the processor speed
and memory capacity required. The central idea behind the EyeBot develop-
ment in 1995 was to create a small, compact embedded vision system, and it
became the first of its kind. Today, PDAs and electronic toys with cameras are
commonplace, and digital cameras with on-board image processing are availa-
ble on the consumer market.

For mobile robot applications, we are interested in a high frame rate,
because our robot is moving and we want updated sensor data as fast as poss-
ible. Since there is always a trade-off between high frame rate and high resolu-
tion, we are not so much concerned with camera resolution. For most applica-
tions for small mobile robots, a resolution of 60× 80 pixels is sufficient. Even
from such a small resolution we can detect, for example, colored objects or
obstacles in the way of a robot (see 60× 80 sample images from robot soccer in
Figure 3.12). At this resolution, frame rates (reading only) of up to 30 fps
(frames per second) are achievable on an EyeBot controller. The frame rate
will drop, however, depending on the image processing algorithms applied. 

The image resolution must be high enough to detect a desired object from a
specified distance. When the object in the distance is reduced to a mere few
pixels, then this is not sufficient for a detection algorithm. Many higher-level
image processing routines are non-linear in time requirements, but even simple
linear filters, for example Sobel edge detectors, have to loop through all pixels,
which takes some time [Bräunl 2001]. At 60× 80 pixels with 3 bytes of color
per pixel this amounts to 14,400 bytes.
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Digital + analog
camera output

Unfortunately for embedded vision applications, newer camera chips have
much higher resolution, for example QVGA (quarter VGA) up to
1,024× 1,024, while low-resolution sensor chips are no longer produced. This
means that much more image data is being sent, usually at higher transfer
rates. This requires additional, faster hardware components for our embedded
vision system just to keep up with the camera transfer rate. The achievable
frame rate will drop to a few frames per second with no other benefits, since
we would not have the memory space to store these high-resolution images, let
alone the processor speed to apply typical image processing algorithms to
them. Figure 3.13 shows the EyeCam camera module that is used with the
EyeBot embedded controller. EyeCam C2 has in addition to the digital output
port also an analog grayscale video output port, which can be used for fast
camera lens focusing or for analog video recording, for example for demon-
stration purposes.

In the following, we will discuss camera hardware interfaces and system
software. Image processing routines for user applications are presented in
Chapter 19.

3.9.1 Camera Sensor Hardware
In recent years we have experienced a shift in camera sensor technology. The
previously dominant CCD (charge coupled device) sensor chips are now being
overtaken by the cheaper to produce CMOS (complementary metal oxide
semiconductor) sensor chips. The brightness sensitivity range for CMOS sen-
sors is typically larger than that of CCD sensors by several orders of magni-
tude. For interfacing to an embedded system, however, this does not make a
difference. Most sensors provide several different interfacing protocols that
can be selected via software. On the one hand, this allows a more versatile
hardware design, but on the other hand sensors become as complex as another
microcontroller system and therefore software design becomes quite involved. 

Typical hardware interfaces for camera sensors are 16bit parallel, 8bit par-
allel, 4bit parallel, or serial. In addition, a number of control signals have to be
provided from the controller. Only a few sensors buffer the image data and
allow arbitrarily slow reading from the controller via handshaking. This is an

Figure 3.12: Sample images with 60× 80 resolution
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ideal solution for slower controllers. However, the standard camera chip pro-
vides its own clock signal and sends the full image data as a stream with some
frame-start signal. This means the controller CPU has to be fast enough to
keep up with the data stream.

The parameters that can be set in software vary between sensor chips. Most
common are the setting of frame rate, image start in (x,y), image size in (x,y),
brightness, contrast, color intensity, and auto-brightness.

The simplest camera interface to a CPU is shown in Figure 3.14. The cam-
era clock is linked to a CPU interrupt, while the parallel camera data output is
connected directly to the data bus. Every single image byte from the camera
will cause an interrupt at the CPU, which will then enable the camera output
and read one image data byte from the data bus. 

Every interrupt creates considerable overhead, since system registers have
to be saved and restored on the stack. Starting and returning from an interrupt
takes about 10 times the execution time of a normal command, depending on
the microcontroller used. Therefore, creating one interrupt per image byte is
not the best possible solution. It would be better to buffer a number of bytes
and then use an interrupt much less frequently to do a bulk data transfer of
image data. Figure 3.15 shows this approach using a FIFO buffer for interme-
diate storing of image data. The advantage of a FIFO buffer is that it supports
unsynchronized read and write in parallel. So while the camera is writing data

Figure 3.13: EyeCam camera module

Figure 3.14: Camera interface
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to the FIFO buffer, the CPU can read data out, with the remaining buffer con-
tents staying undisturbed.The camera output is linked to the FIFO input, with
the camera’s pixel clock triggering the FIFO write line. From the CPU side, the
FIFO data output is connected to the system’s data bus, with the chip select
triggering the FIFO read line. The FIFO provides three additional status lines:

• Empty flag
• Full flag
• Half full flag

These digital outputs of the FIFO can be used to control the bulk reading of
data from the FIFO. Since there is a continuous data stream going into the
FIFO, the most important of these lines in our application is the half full flag,
which we connected to a CPU interrupt line. Whenever the FIFO is half full,
we initiate a bulk read operation of 50% of the FIFO’s contents. Assuming the
CPU responds quickly enough, the full flag should never be activated, since
this would indicate an imminent loss of image data. 

3.9.2 Camera Sensor Data
We have to distinguish between grayscale and color cameras, although, as we
will see, there is only a minor difference between the two. The simplest avail-
able sensor chips provide a grayscale image of 120 lines by 160 columns with
1 byte per pixel (for example VLSI Vision VV5301 in grayscale or VV6301 in
color). A value of zero represents a black pixel, a value of 255 is a white pixel,
everything in between is a shade of gray. Figure 3.16 illustrates such an image.
The camera transmits the image data in row-major order, usually after a certain
frame-start sequence. 

Bayer pattern

Creating a color camera sensor chip from a grayscale camera sensor chip is
very simple. All it needs is a layer of paint over the pixel mask. The standard
technique for pixels arranged in a grid is the Bayer pattern (Figure 3.17). Pix-
els in odd rows (1, 3, 5, etc.) are colored alternately in green and red, while
pixels in even rows (2, 4, 6, etc.) are colored alternately in blue and green.

Figure 3.15: Camera interface with FIFO buffer
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With this colored filter over the pixel array, each pixel only records the inten-
sity of a certain color component. For example, a pixel with a red filter will
only record the red intensity at its position. At first glance, this requires 4 bytes
per color pixel: green and red from one line, and blue and green (again) from
the line below. This would result effectively in a 60× 80 color image with an
additional, redundant green byte per pixel.

However, there is one thing that is easily overlooked. The four components
red, green1, blue, and green2 are not sampled at the same position. For exam-
ple, the blue sensor pixel is below and to the right of the red pixel. So by treat-
ing the four components as one pixel, we have already applied some sort of fil-
tering and lost information. 

Demosaicing A technique called “demosaicing” can be used to restore the image in full
120× 160 resolution and in full color. This technique basically recalculates the
three color component values (R, G, B) for each pixel position, for example by
averaging the four closest component neighbors of the same color. Figure 3.18
shows the three times four pixels used for demosaicing the red, green, and blue
components of the pixel at position [3,2] (assuming the image starts in the top
left corner with [0,0]). 

Figure 3.16: Grayscale image

Figure 3.17: Color image
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Averaging, however, is only the simplest method of image value restoration
and does not produce the best results. A number of articles have researched
better algorithms for demosaicing [Kimmel 1999], [Muresan, Parks 2002].

3.9.3 Camera Driver
There are three commonly used capture modes available for receiving data
from a digital camera:

• Read mode: The application requests a frame from the driver and
blocks CPU execution. The driver waits for the next complete frame
from the camera and captures it. Once a frame has been completely read
in, the data is passed to the application and the application continues. In
this mode, the driver will first have to wait for the new frame to start.
This means that the application will be blocked for up to two frames, one
to find the start of a new frame and one to read the current frame. 

• Continuous capture mode: In this mode, the driver continuously cap-
tures a frame from the camera and stores it in one of two buffers. A
pointer to the last buffer read in is passed to the application when the ap-
plication requests a frame.

• Synchronous continuous capture mode: In this mode, the driver is
working in the background. It receives every frame from the camera and
stores it in a buffer. When a frame has been completely read in, a trap
signal/software interrupt is sent to the application. The application’s sig-
nal handler then processes the data. The processing time of the interrupt
handler is limited by the acquisition time for one camera image.

Most of these modes may be extended through the use of additional buffers.
For example, in the synchronous capture mode, a driver may fill more than a
single buffer. Most high-end capture programs running on workstations use the
synchronous capture mode when recording video. This of course makes sense,

Figure 3.18: Demosaic of single pixel position
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3
since for recording video, all frames (or as many frames as possible) lead to
the best result.

The question is which of these capture modes is best suited for mobile
robotics applications on slower microprocessors. There is a significant over-
head for the M68332 when reading in a frame from the camera via the parallel
port. The camera reads in every byte via the parallel port. Given the low reso-
lution color camera sensor chip VLSI Vision VV6301, 54% of the CPU usage
is used to read in a frame, most of which will not actually be used in the appli-
cation. 

Another problem is that the shown image is already outdated (one frame
old), which can affect the results. For example, when panning the camera
quickly, it may be required to insert delays in the code to wait for the capture
driver to catch up to the robot motion.

Therefore, the “read” interface is considered the most suitable one for
mobile robotics applications. It provides the least amount of overhead at the
cost of a small delay in the processing. This delay can often be eliminated by
requesting a frame just before the motion command ends.

3.9.4 Camera RoBIOS Interface
All interaction between camera and CPU occurs in the background through
external interrupts from the sensor or via periodic timer interrupts. This makes
the camera user interface very simple. The routines listed in Program 3.1 all
apply to a number of different cameras and different interfaces (i.e. with or
without hardware buffers), for which drivers have been written for the EyeBot. 

The only mode supported for current EyeCam camera models is NORMAL,
while older QuickCam cameras also support zoom modes. CAMInit returns the

Program 3.1: Camera interface routines

typedef BYTE image [imagerows][imagecolumns];
typedef BYTE colimage[imagerows][imagecolumns][3];

int CAMInit (int mode);
int CAMRelease (void);

int CAMGetFrame (image *buf);
int CAMGetColFrame (colimage *buf, int convert);

int CAMGetFrameMono (BYTE *buf);
int CAMGetFrameRGB (BYTE *buf);
int CAMGetFrameBayer (BYTE *buf);

int CAMSet (int para1, int para2, int para3);
int CAMGet (int *para1, int *para2, int *para3);
int CAMMode (int mode);
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code number of the camera found or an error code if not successful (see
Appendix B.5.4).

The standard image size for grayscale and color images is 62 rows by 82
columns. For grayscale, each pixel uses 1 byte, with values from 0 (black) over
128 (medium-gray) to 255 (white). For color, each pixel comprises 3 bytes in
the order red, green, blue. For example, medium green is represented by (0,
128, 0), fully red is (255, 0, 0), bright yellow is (200, 200, 0), black is (0, 0, 0),
white is (255, 255, 255).

The standard camera read functions return images of size 62× 82 (including
a 1-pixel-wide white border) for all camera models, irrespective of their inter-
nal resolution:

• CAMGetFrame (read one grayscale image)
• CAMGetColFrame (read one color image)

This originated from the original camera sensor chips (QuickCam and Eye-
Cam C1) supplying 60× 80 pixels. A single-pixel-wide border around the
image had been added to simplify coding of image operators without having to
check image boundaries.

Function CAMGetColFrame has a second parameter that allows immediate
conversion into a grayscale image in-place. The following call allows gray-
scale image processing using a color camera:

image buffer;
CAMGetColFrame((colimage*)&buffer, 1);

Newer cameras like EyeCam C2, however, have up to full VGA resolution.
In order to be able to use the full image resolution, three additional camera
interface functions have been added for reading images at the camera sensor’s
resolution (i.e. returning different image sizes for different camera models, see
Appendix B.5.4). The functions are:

• CAMGetFrameMono (read one grayscale image)
• CAMGetFrameColor (read one color image in RGB 3byte format)
• CAMGetFrameBayer (read one color image in Bayer 4byte format)

Since the data volume is considerably larger for these functions, they may
require considerably more transmission time than the CAMGetFrame/CAMGet-
ColFrame functions.

Different camera models support different parameter settings and return dif-
ferent camera control values. For this reason, the semantics of the camera rou-
tines CAMSet and CAMGet is not unique among different cameras. For the cam-
era model EyeCam C2, only the first parameter of CAMSet is used, allowing the
specification of the camera speed (see Appendix B.5.4):

FPS60, FPS30, FPS15, FPS7_5, FPS3_75, FPS1_875

For cameras EyeCam C2, routine CAMGet returns the current frame rate in
frames per second (fps), the full supported image width, and image height (see
Appendix B.5.4 for details). Function CAMMode can be used for switching the
camera’s auto-brightness mode on or off, if supported by the camera model
used (see Appendix B.5.4).
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There are a number of shortcomings in this procedural camera interface,

especially when dealing with different camera models with different resolu-
tions and different parameters, which can be addressed by an object-oriented
approach.

Example
camera use

Program 3.2 shows a simple program that continuously reads an image and
displays it on the controller’s LCD until the rightmost button is pressed (KEY4
being associated with the menu text “End”). The function CAMInit returns the
version number of the camera or an error value. This enables the application
programmer to distinguish between different camera models in the code by
testing this value. In particular, it is possible to distinguish between color and
grayscale camera models by comparing with the system constant COLCAM, for
example:

if (camera<COLCAM) /* then grayscale camera ... */

Alternative routines for color image reading and displaying are CAMGet-
ColFrame and LCDPutColorGraphic, which could be used in Program 3.2
instead of the grayscale routines.
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1 #include "eyebot.h"
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5 int main()
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10 LCDPutGraphic(&grayimg);
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12   return 0;
13 }
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ACTUATORS

here are many different ways that robotic actuators can be built. Most
prominently these are electrical motors or pneumatic actuators with
valves. In this chapter we will deal with electrical actuators using

direct current (DC) power. These are standard DC motors, stepper motors, and
servos, which are DC motors with encapsulated positioning hardware and are
not to be confused with servo motors.

4.1 DC Motors
Electrical motors

can be:
AC motors
DC motors

Stepper motors
Servos

DC electric motors are arguably the most commonly used method for locomo-
tion in mobile robots. DC motors are clean, quiet, and can produce sufficient
power for a variety of tasks. They are much easier to control than pneumatic
actuators, which are mainly used if very high torques are required and umbili-
cal cords for external pressure pumps are available – so usually not an option
for mobile robots.

Standard DC motors revolve freely, unlike for example stepper motors (see
Section 4.4). Motor control therefore requires a feedback mechanism using
shaft encoders (see Figure 4.1 and Section 3.4). 

The first step when building robot hardware is to select the appropriate
motor system. The best choice is an encapsulated motor combination compris-
ing a:

Figure 4.1: Motor–encoder combination
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• DC motor
• Gearbox
• Optical or magnetic encoder

(dual phase-shifted encoders for detection of speed and direction)

Using encapsulated motor systems has the advantage that the solution is
much smaller than that using separate modules, plus the system is dust-proof
and shielded against stray light (required for optical encoders). The disadvan-
tage of using a fixed assembly like this is that the gear ratio may only be
changed with difficulty, or not at all. In the worst case, a new motor/gearbox/
encoder combination has to be used.

A magnetic encoder comprises a disk equipped with a number of magnets
and one or two Hall-effect sensors. An optical encoder has a disk with black
and white sectors, an LED, and a reflective or transmissive light sensor. If two
sensors are positioned with a phase shift, it is possible to detect which one is
triggered first (using a magnet for magnetic encoders or a bright sector for
optical encoders). This information can be used to determine whether the
motor shaft is being turned clockwise or counterclockwise.

A number of companies offer small, powerful precision motors with encap-
sulated gearboxes and encoders:

• Faulhaber http://www.faulhaber.de

• Minimotor http://www.minimotor.ch

• MicroMotor http://www.micromo.com

They all have a variety of motor and gearbox combinations available, so it
is important to do some power-requirement calculations first, in order to select
the right motor and gearbox for a new robotics project. For example, there is a
Faulhaber motor series with a power range from 2W to 4W, with gear ratios
available from approximately 3:1 to 1,000,000:1.  

Figure 4.2 illustrates an effective linear model for the DC motor, and Table
4.1 contains a list of all relevant variables and constant values. A voltage  is
applied to the terminals of the motor, which generates a current  in the motor
armature. The torque  produced by the motor is proportional to the current,
and  is the motor’s torque constant:

Figure 4.2: Motor model
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It is important to select a motor with the right output power for a desired
task. The output power  is defined as the rate of work, which for a rotational
DC motor equates to the angular velocity of the shaft  multiplied by the
applied torque  (i.e., the torque of the load):

The input power , supplied to the motor, is equal to the applied voltage
multiplied by the current through the motor:

The motor also generates heat as an effect of the current flowing through
the armature. The power lost to thermal effects  is equivalent to:

The efficiency  of the motor is a measure of how well electrical energy is
converted to mechanical energy. This can be defined as the output power pro-
duced by the motor divided by the input power required by the motor:

The efficiency is not constant for all speeds, which needs to be kept in mind
if the application requires operation at different speed ranges. The electrical
system of the motor can be modelled by a resistor-inductor pair in series with a
voltage , which corresponds to the back electromotive force (see Figure
4.2). This voltage is produced because the coils of the motor are moving
through a magnetic field, which is the same principle that allows an electric
generator to function. The voltage produced can be approximated as a linear
function of the shaft velocity;  is referred to as the back-emf constant:

Simple motor
model

In the simplified DC motor model, motor inductance and motor friction are
negligible and set to zero, and the rotor inertia is denoted by J. The formulas
for current and angular acceleration can therefore be approximated by:

θ Angular position of shaft, rad R Nominal terminal resistance, Ω
ω Angular shaft velocity, rad/s L Rotor inductance, H
α Angular shaft accel., rad/s2 J Rotor inertia, kg·m2

i Current through armature, A Kf Frictional const., N·m·s / rad
Va Applied terminal voltage, V Km Torque constant, N·m / A
Ve Back emf voltage, V Ke Back emf constant, V·s / rad
τm Motor torque, N·m Ks Speed constant, rad / (V·s)
τa Applied torque (load), N·m Kr Regulation constant, (V·s) / rad

Table 4.1: DC motor variables and constant values

τm Kmi=

Po
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Pi
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Figure 4.3 shows the ideal DC motor performance curves. With increasing
torque, the motor velocity is reduced linearly, while the current increases line-
arly. Maximum output power is achieved at a medium torque level, while the
highest efficiency is reached for relatively low torque values. For further read-
ing see [Bolton 1995] and [El-Sharkawi 2000]. 

4.2 H-Bridge
H-bridge is

needed to run a
motor forward
and backward

For most applications we want to be able to do two things with a motor:
1. Run it in forward and backward directions.
2. Modify its speed.

An H-bridge is what is needed to enable a motor to run forward/backward.
In the next section we will discuss a method called “pulse width modulation”
to change the motor speed. Figure 4.4 demonstrates the H-bridge setup, which
received its name from its resemblance to the letter “H”. We have a motor with
two terminals a and b and the power supply with “+” and “–”. Closing
switches 1 and 2 will connect a with “+” and b with “–”: the motor runs for-
ward. In the same way, closing 3 and 4 instead will connect a with “–” and b
with “+”: the motor runs backward.

The way to implement an H-bridge when using a microcontroller is to use a
power amplifier chip in combination with the digital output pins of the control-
ler or an additional latch. This is required because the digital outputs of a
microcontroller have very severe output power restrictions. They can only be
used to drive other logic chips, but never a motor directly. Since a motor can
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Figure 4.3: Ideal DC motor performance curve
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draw a lot of power (for example 1A or more), connecting digital outputs
directly to a motor can destroy the microcontroller.

A typical power amplifier chip containing two separate amplifiers is L293D
from ST SGS-Thomson. Figure 4.5 demonstrates the schematics. The two
inputs x and y are needed to switch the input voltage, so one of them has to be
“+”, the other has to be “–”. Since they are electrically decoupled from the
motor, x and y can be directly linked to digital outputs of the microcontroller.
So the direction of the motor can then be specified by software, for example
setting output x to logic 1 and output y to logic 0. Since x and y are always the
opposite of each other, they can also be substituted by a single output port and
a negator. The rotation speed can be specified by the “speed” input (see the
next section on pulse width modulation).

There are two principal ways of stopping the motor:
• set both x and y to logic 0 (or both to logic 1) or
• set speed to 0 

Figure 4.4: H-bridge and operation
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4.3 Pulse Width Modulation
PWM is

digital control

Duty cycle

Pulse width modulation or PWM for short is a smart method for avoiding ana-
log power circuitry by utilizing the fact that mechanical systems have a certain
latency. Instead of generating an analog output signal with a voltage propor-
tional to the desired motor speed, it is sufficient to generate digital pulses at the
full system voltage level (for example 5V). These pulses are generated at a
fixed frequency, for example 20 kHz, so they are beyond the human hearing
range.

By varying the pulse width in software (see Figure 4.6, top versus bottom),
we also change the equivalent or effective analog motor signal and therefore
control the motor speed. One could say that the motor system behaves like an
integrator of the digital input impulses over a certain time span. The quotient
ton/tperiod is called the “pulse–width ratio” or “duty cycle”. 

The PWM can be generated by software. Many microcontrollers like the
M68332 have special modes and output ports to support this operation. The
digital output port with the PWM signal is then connected to the speed pin of
the power amplifier in Figure 4.5. 

Figure 4.5: Power amplifier
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Figure 4.7, left, shows the motor speed over time for PWM settings of 10,
20, .., 100. In each case, the velocity builds up at time 5s with some delay, then
stays constant, and will slow down with a certain inertia at time 10s. These
measurements are called “step response”, since the motor input signal jumps in
a step function from zero to the desired PWM value.

Unfortunately, the generated motor speed is normally not a linear function
of the PWM signal ratio, as can be seen when comparing the measurement in
Figure 4.7, right, to the dashed line. This shows a typical measurement using a
Faulhaber 2230 motor. In order to re-establish an approximately linear speed
curve when using the MOTORDrive function (for example MOTORDrive(m1,50)
should result in half the speed of MOTORDrive(m1,100)), each motor has to be
calibrated.

Motor calibration Motor calibration is done by measuring the motor speed at various settings
between 0 and 100, and then entering the PW ratio required to achieve the
desired actual speed in a motor calibration table of the HDT. The motor’s max-
imum speed is about 1,300 rad/s at a PW ratio of 100. It reaches 75% of its
maximum speed (975 rad/s) at a PW ratio of 20, so the entry for value 75 in the
motor calibration HDT should be 20. Values between the 10 measured points
can be interpolated (see Section B.3).

Motor calibration is especially important for robots with differential drive
(see Section 5.4 and Section 8.2), because in these configurations normally
one motor runs forward and one backward, in order to drive the robot. Many
DC motors exhibit some differences in speed versus PW ratio between forward
and backward direction. This can be eliminated by using motor calibration.

Open loop control We are now able to achieve the two goals we set earlier: we can drive a
motor forward or backward and we can change its speed. However, we have no
way of telling at what speed the motor is actually running. Note that the actual
motor speed does depend not only on the PWM signal supplied, but also on
external factors such as the load applied (for example the weight of a vehicle
or the steepness of its driving area). What we have achieved so far is called

Figure 4.7: Measured motor step response and speed versus PW ratio
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open loop control. With the help of feedback sensors, we will achieve closed
loop control (often simply called “control”), which is essential to run a motor
at a desired speed under varying load (see Chapter 5).

4.4 Stepper Motors
There are two motor designs which are significantly different from standard
DC motors. These are stepper motors discussed in this section and servos,
introduced in the following section.

Stepper motors differ from standard DC motors in such a way that they
have two independent coils which can be independently controlled. As a result,
stepper motors can be moved by impulses to proceed exactly a single step for-
ward or backward, instead of a smooth continuous motion in a standard DC
motor. A typical number of steps per revolution is 200, resulting in a step size
of 1.8°. Some stepper motors allow half steps, resulting in an even finer step
size. There is also a maximum number of steps per second, depending on load,
which limits a stepper motor’s speed.

Figure 4.8 demonstrates the stepper motor schematics. Two coils are inde-
pendently controlled by two H-bridges (here marked A, A and B, B). Each
four-step cycle advances the motor’s rotor by a single step if executed in order
1..4. Executing the sequence in reverse order will move the rotor one step
back. Note that the switching sequence pattern resembles a gray code. For
details on stepper motors and interfacing see [Harman, 1991]. 

Stepper motors seem to be a simple choice for building mobile robots, con-
sidering the effort required for velocity control and position control of standard
DC motors. However, stepper motors are very rarely used for driving mobile
robots, since they lack any feedback on load and actual speed (for example a
missed step execution). In addition to requiring double the power electronics,
stepper motors also have a worse weight/performance ratio than DC motors.

Figure 4.8: Stepper motor schematics

A A B B

Switching Sequence:
Step A B
1 1 1
2 1 0
3 0 0
4 0 1
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4.5 Servos
Servos are not
servo motors!

DC motors are sometimes also referred to as “servo motors”. This is not what
we mean by the term “servo”. A servo motor is a high-quality DC motor that
qualifies to be used in a “servoing application”, i.e. in a closed control loop.
Such a motor must be able to handle fast changes in position, speed, and accel-
eration, and must be rated for high intermittent torque. 

A servo, on the contrary, is a DC motor with encapsulated electronics for
PW control and is mainly used for hobbyist purposes, as in model airplanes,
cars, or ships (see Figure 4.9).

A servo has three wires: VCC, ground, and the PW input control signal.
Unlike PWM for DC motors, the input pulse signal for servos is not trans-
formed into a velocity. Instead, it is an analog control input to specify the
desired position of the servo’s rotating disk head. A servo’s disk cannot per-
form a continuous rotation like a DC motor. It only has a range of about ±120°
from its middle position. Internally, a servo combines a DC motor with a sim-
ple feedback circuit, often using a potentiometer sensing the servo head’s cur-
rent position. 

The PW signal used for servos always has a frequency of 50Hz, so pulses
are generated every 20ms. The width of each pulse now specifies the desired
position of the servo’s disk (Figure 4.10). For example, a width of 0.7ms will
rotate the disk to the leftmost position (–120°), and a width of 1.7ms will rotate
the disk to the rightmost position (+120°). Exact values of pulse duration and
angle depend on the servo brand and model.

Like stepper motors, servos seem to be a good and simple solution for
robotics tasks. However, servos have the same drawback as stepper motors:
they do not provide any feedback to the outside. When applying a certain PW
signal to a servo, we do not know when the servo will reach the desired posi-
tion or whether it will reach it at all, for example because of too high a load or
because of an obstruction.

Figure 4.9: Servo
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Figure 4.10: Servo control
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CONTROL

losed loop control is an essential topic for embedded systems, bringing
together actuators and sensors with the control algorithm in software.
The central point of this chapter is to use motor feedback via encoders

for velocity control and position control of motors. We will exemplify this by a
stepwise introduction of PID (Proportional, Integral, Derivative) control.

In Chapter 4, we showed how to drive a motor forward or backward and
how to change its speed. However, because of the lack of feedback, the actual
motor speed could not be verified. This is important, because supplying the
same analog voltage (or equivalent: the same PWM signal) to a motor does not
guarantee that the motor will run at the same speed under all circumstances.
For example, a motor will run faster when free spinning than under load (for
example driving a vehicle) with the same PWM signal. In order to control the
motor speed we do need feedback from the motor shaft encoders. Feedback
control is called “closed loop control” (simply called “control” in the follow-
ing), as opposed to “open loop control”, which was discussed in Chapter 4.

5.1 On-Off Control
Feedback is

everything
As we established before, we require feedback on a motor’s current speed in
order to control it. Setting a certain PWM level alone will not help, since the
motor’s speed also depends on its load. 

The idea behind feedback control is very simple. We have a desired speed,
specified by the user or the application program, and we have the current
actual speed, measured by the shaft encoders. Measurements and actions
according to the measurements can be taken very frequently, for example 100
times per second (EyeBot) or up to 20,000 times per second. The action taken
depends on the controller model, several of which are introduced in the follow-
ing sections. However, in principle the action always looks similar like this:

• In case desired speed is higher than actual speed:
Increase motor power by a certain degree.

• In case desired speed is lower than actual speed:
Decrease motor power by a certain degree.
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In the simplest case, power to the motor is either switched on (when the

speed is too low) or switched off (when the speed is too high). This control law
is represented by the formula below, with:

R(t) motor output function over time t
vact(t) actual measured motor speed at time t
vdes(t) desired motor speed at time t
KC constant control value 

Bang-bang
controller

What has been defined here, is the concept of an on-off controller, also
known as “piecewise constant controller” or “bang-bang controller”. The
motor input is set to constant value KC if the measured velocity is too low, oth-
erwise it is set to zero. Note that this controller only works for a positive value
of vdes. The schematics diagram is shown in Figure 5.1. 

The behavior over time of an on-off controller is shown in Figure 5.2.
Assuming the motor is at rest in the beginning, the actual speed is less than the
desired speed, so the control signal for the motor is a constant voltage. This is
kept until at some stage the actual speed becomes larger than the desired speed.
Now, the control signal is changed to zero. Over some time, the actual speed
will come down again and once it falls below the desired speed, the control
signal will again be set to the same constant voltage. This algorithm continues
indefinitely and can also accommodate changes in the desired speed. Note that

R t( )
KC if vact t( ) vdes t( )<

0 otherwise⎩
⎨
⎧=

Figure 5.1: On-off controller
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the motor control signal is not continuously updated, but only at fixed time
intervals (e.g. every 10ms in Figure 5.2). This delay creates an overshooting or
undershooting of the actual motor speed and thereby introduces hysteresis.

Hysteresis The on-off controller is the simplest possible method of control. Many tech-
nical systems use it, not limited to controlling a motor. Examples are a refriger-
ator, heater, thermostat, etc. Most of these technical systems use a hysteresis
band, which consists of two desired values, one for switching on and one for
switching off. This prevents a too high switching frequency near the desired
value, in order to avoid excessive wear. The formula for an on-off controller
with hysteresis is: 

Note that this definition is not a function in the mathematical sense, because
the new motor output for an actual speed between the two band limit values is
equal to the previous motor value. This means it can be equal to KC or zero in
this case, depending on its history. Figure 5.3 shows the hysteresis curve and
the corresponding control signal.

All technical systems have some delay and therefore exhibit some inherent
hysteresis, even if it is not explicitly built-in.

From theory
to practice

Once we understand the theory, we would like to put this knowledge into
practice and implement an on-off controller in software. We will proceed step
by step:
1. We need a subroutine for calculating the motor signal as defined in the for-

mula in Figure 5.1. This subroutine has to:
a. Read encoder data (input)
b. Compute new output value R(t)
c. Set motor speed (output)

2. This subroutine has to be called periodically (for example every 1/100s).
Since motor control is a “low-level” task we would like this to run in the
background and not interfere with any user program.

R t Δt( )

KC if vact t( ) von t( )<

0 if vact t( ) voff t( )>

R t( ) otherwise⎩
⎪
⎨
⎪
⎧

=+

Figure 5.3: On-off control signal with hysteresis band
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Let us take a look at how to implement step 1. In the RoBIOS operating sys-

tem there are functions available for reading encoder input and setting motor
output (see Appendix B.5 and Figure 5.4). 

The program code for this subroutine would then look like Program 5.1.
Variable r_mot denotes the control parameter R(t). The dotted line has to be
replaced by the control function “KC if vact<vdes” from Figure 5.1. 

Program 5.2 shows the completed control program, assuming this routine is
called every 1/100 of a second. 

So far we have not considered any potential problems with counter over-
flow or underflow. However, as the following examples will show, it turns out
that overflow/underflow does still result in the correct difference values when
using standard signed integers.

Overflow example from positive to negative values:
7F FF FF FC = +2147483644Dec
80 00 00 06 = -6Dec

Figure 5.4: RoBIOS motor functions

1. Write a control subroutine
a. Read encoder data (INPUT)
b. Compute new output value R(t)
c. Set motor speed (OUTPUT)

See library.html:
int QUADRead(QuadHandle handle);

Input:          (handle) ONE decoder-handle
Output:         32bit counter-value (-2^31 .. 2^31-1)
Semantics:      Read actual Quadrature-Decoder counter, initially zero.

Note: A wrong handle will ALSO result in a 0 counter value!!

int MOTORDrive (MotorHandle handle,int speed);
Input:          (handle) logical-or of all MotorHandles which should be driven

(speed) motor speed in percent
Valid values: -100 - 100 (full backward to full forward)

0 for full stop
Output:         (return code)  0 = ok

-1 = error wrong handle
Semantics:      Set the given motors to the same given speed

Program 5.1: Control subroutine framework

1 void controller()
2 { int enc_new, r_mot, err;
3   enc_new = QUADRead(enc1);
4   ...
5   err = MOTORDrive(mot1, r_mot);
6   if (err) printf(“error: motor”);
7 }
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Overflow and
underflow

The difference, second value minus first value, results in:
00 00 00 0A = +10Dec

This is the correct number of encoder ticks.

Overflow Example from negative to positive values:
FF FF FF FD = -3Dec
00 00 00 04 = +4Dec

The difference, second value minus first value, results in +7, which is the
correct number of encoder ticks. 

Program 5.2: On-off controller

1 int v_des;     /* user input in ticks/s */
2 #define Kc 75  /* const speed setting */
3
4 void onoff_controller()
5 { int enc_new, v_act, r_mot, err;
6   static int enc_old;
7
8   enc_new = QUADRead(enc1);
9   v_act = (enc_new-enc_old) * 100;

10   if (v_act < v_des) r_mot = Kc;
11                else  r_mot = 0;
12   err = MOTORDrive(mot1, r_mot);
13   if (err) printf("error: motor");
14   enc_old = enc_new;
15 }

Figure 5.5: RoBIOS timer functions

2. Call control subroutine periodically
e.g. every 1/100 s

See library.html:
TimerHandle OSAttachTimer(int scale, TimerFnc function);

Input:          (scale) prescale value for 100Hz Timer (1 to ...)
(TimerFnc) function to be called periodically

Output:         (TimerHandle) handle to reference the IRQ-slot
A value of 0 indicates an error due to a full list(max. 16).

Semantics:      Attach a irq-routine (void function(void)) to the irq-list.
The scale parameter adjusts the call frequency (100/scale Hz)
of this routine to allow many different applications.

int OSDetachTimer(TimerHandle handle)
Input:          (handle) handle of a previous installed timer irq
Output:         0 = handle not valid

1 = function successfully removed from timer irq list
Semantics:      Detach a previously installed irq-routine from the irq-list.
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Let us take a look at how to implement step 2, using the timer functions in

the RoBIOS operating system (see Appendix B.5 and Figure 5.5). There are
operating system routines available to initialize a periodic timer function, to be
called at certain intervals and to terminate it.

Program 5.3 shows a straightforward implementation using these routines.
In the otherwise idle while-loop, any top-level user programs should be exe-
cuted. In that case, the while-condition should be changed from:

while (1) /* endless loop - never returns */

to something than can actually terminate, for example:
while (KEYRead() != KEY4)

in order to check for a specific end-button to be pressed. 

Figure 5.6 shows a typical measurement of the step response of an on-off
controller. The saw-tooth shape of the velocity curve is clearly visible. 

Program 5.3: Timer start

1 int main()
2 { TimerHandle t1;
3
4   t1 = OSAttachTimer(1, onoff_controller);
5   while (1) /* endless loop - never returns */
6   { /* other tasks or idle */ }
7   OSDetachTimer(t1); /* free timer, not used */
8   return 0;          /* not used */
9 }

Figure 5.6: Measured step response of on-off controller
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5.2 PID Control
PID = P + I + D The simplest method of control is not always the best. A more advanced con-

troller and almost industry standard is the PID controller. It comprises a pro-
portional, an integral, and a derivative control part. The controller parts are
introduced in the following sections individually and in combined operation.

5.2.1 Proportional Controller
For many control applications, the abrupt change between a fixed motor con-
trol value and zero does not result in a smooth control behavior. We can
improve this by using a linear or proportional term instead. The formula for the
proportional controller (P controller) is:

R(t) = KP · (vdes(t) – vact(t))

The difference between the desired and actual speed is called the “error
function”. Figure 5.7 shows the schematics for the P controller, which differs
only slightly from the on-off controller. Figure 5.8 shows measurements of
characteristic motor speeds over time. Varying the “controller gain” KP will
change the controller behavior. The higher the KP chosen, the faster the con-
troller responds; however, a too high value will lead to an undesirable oscillat-
ing system. Therefore it is important to choose a value for KP that guarantees a
fast response but does not lead the control system to overshoot too much or
even oscillate.  

Steady state error Note that the P controller’s equilibrium state is not at the desired velocity. If
the desired speed is reached exactly, the motor output is reduced to zero, as
defined in the P controller formula shown above. Therefore, each P controller
will keep a certain “steady-state error” from the desired velocity, depending on
the controller gain KP. As can be seen in Figure 5.8, the higher the gain KP, the
lower the steady-state error. However, the system starts to oscillate if the
selected gain is too high.

Program 5.4 shows the brief P controller code that can be inserted into the
control frame of Program 5.1, in order to form a complete program. 

Figure 5.7: Proportional controller
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5.2.2 Integral Controller
Unlike the P controller, the I controller (integral controller) is rarely used
alone, but mostly in combination with the P or PD controller. The idea for the I
controller is to reduce the steady-state error of the P controller. With an addi-
tional integral term, this steady-state error can be reduced to zero, as seen in
the measurements in Figure 5.9. The equilibrium state is reached somewhat
later than with a pure P controller, but the steady-state error has been elimi-
nated. 

When using e(t) as the error function, the formula for the PI controller is:

R(t) = KP · [ e(t)  +  1/TI · 0∫ t e(t)dt ]

We rewrite this formula by substituting QI = KP/TI, so we receive independ-
ent additive terms for P and I:

R(t) = KP · e(t) +  QI · 0∫ t e(t)dt
Naive approach The naive way of implementing the I controller part is to transform the inte-

gration into a sum of a fixed number (for example 10) of previous error values.
These 10 values would then have to be stored in an array and added for every
iteration.

Figure 5.8: Step response for proportional controller
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Program 5.4: P controller code

1 e_func = v_des - v_act; /* error function */
2 r_mot  = Kp*e_func; /* motor output */
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Proper PI
implementation

The proper way of implementing a PI controller starts with discretization,
replacing the integral with a sum, using the trapezoidal rule:

Rn = KP · en +  QI · tdelta · 

Now we can get rid of the sum by using the preceding output value Rn–1:

Rn – Rn–1 = KP · (en – en–1) +  QI · tdelta · (en + en–1)/2

Therefore (substituting KI for QI · tdelta):

Rn = Rn–1 + KP · (en – en–1) +  KI · (en + en–1)/2 

Limit controller
output values!

So we only need to store the previous control value and the previous error
value to calculate the PI output in a much simpler formula. Here it is important
to limit the controller output to the correct value range (for example
-100 .. +100 in RoBIOS) and also store the limited value for the subsequent
iteration. Otherwise, if a desired speed value cannot be reached, both control-
ler output and error values can become arbitrarily large and invalidate the
whole control process [Kasper 2001].

Figure 5.9: Step response for integral controller
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Program 5.5: PI controller code

1 static int r_old=0, e_old=0;
2 ...
3 e_func = v_des - v_act;
4 r_mot  = r_old + Kp*(e_func-e_old) + Ki*(e_func+e_old)/2;
5 r_mot = min(r_mot, +100); /* limit output */
6 r_mot = max(r_mot, -100); /* limit output */
7 r_old = r_mot;
8 e_old  = e_func;

ei ei 1
2

-------------------
i 1

n

∑
=

+
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Program 5.5 shows the program fragment for the PI controller, to be

inserted into the framework of Program 5.1.

5.2.3 Derivative Controller
Similar to the I controller, the D controller (derivative controller) is rarely used
by itself, but mostly in combination with the P or PI controller. The idea for
adding a derivative term is to speed up the P controller’s response to a change
of input. Figure 5.10 shows the measured differences of a step response
between the P and PD controller (top), and the PD and PID controller (bot-
tom). The PD controller reaches equilibrium faster than the P controller, but
still has a steady-state error. The full PID controller combines the advantages
of PI and PD. It has a fast response and suffers no steady-state error. 

Figure 5.10: Step response for derivative controller and PID controller
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When using e(t) as the error function, the formula for a combined PD con-
troller is:

R(t) = KP · [ e(t) + TD · de(t)/dt]

The formula for the full PID controller is:

R(t) = KP · [ e(t)  +  1/TI · 0 ∫ t e(t)dt  +  TD · de(t)/dt ]

Again, we rewrite this by substituting TD and TI, so we receive independent
additive terms for P, I, and D. This is important, in order to experimentally
adjust the relative gains of the three terms.

R(t) = KP · e(t) +  QI · 0 ∫ t e(t)dt + QD · de(t)/dt

Using the same discretization as for the PI controller, we will get:

Rn = KP · en +  QI · tdelta ·  + QD / tdelta · (en – en–1)

Again, using the difference between subsequent controller outputs, this
results in:

Rn – Rn–1 = KP · (en – en–1) + QI · tdelta · (en + en–1)/2
+ QD / tdelta · (en – 2·en–1 + en–2)

Finally (substituting KI for QI · tdelta and KD for QD / tdelta):

Complete
PID formula

Rn = Rn–1 + KP · (en – en–1) + KI · (en + en–1)/2 + KD · (en - 2·en–1 + en–2)  

ei ei 1
2

-------------------
i 1

n

∑
=

+

Program 5.6: PD controller code

1 static int e_old=0;
2 ...
3 e_func = v_des - v_act; /* error function */
4 deriv  = e_old - e_func; /* diff. of error fct. */
5 e_old  = e_func; /* store error function */
6 r_mot  = Kp*e_func + Kd*deriv; /* motor output */
7 r_mot = min(r_mot, +100); /* limit output */
8 r_mot = max(r_mot, -100); /* limit output */

Program 5.7: PID controller code

1 static int r_old=0, e_old=0, e_old2=0;
2 ...
3 e_func = v_des - v_act;
4 r_mot  = r_old + Kp*(e_func-e_old) + Ki*(e_func+e_old)/2
5 + Kd*(e_func - 2* e_old + e_old2);
6 r_mot = min(r_mot, +100); /* limit output */
7 r_mot = max(r_mot, -100); /* limit output */
8 r_old = r_mot;
9 e_old2 = e_old;

10 e_old  = e_func;
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Program 5.6 shows the program fragment for the PD controller, while Pro-

gram 5.7 shows the full PID controller. Both are to be inserted into the frame-
work of Program 5.1.

5.2.4 PID Parameter Tuning
Find parameters

experimentally
The tuning of the three PID parameters KP, KI, and KD is an important issue.
The following guidelines can be used for experimentally finding suitable val-
ues (adapted after [Williams 2006]):

1. Select a typical operating setting for the desired speed, turn off integral
and derivative parts, then increase KP to maximum or until oscillation
occurs.

2. If system oscillates, divide KP by 2.
3. Increase KD and observe behavior when increasing/decreasing the

desired speed by about 5%. Choose a value of KD which gives a damped
response.

4. Slowly increase KI until oscillation starts. Then divide KI by 2 or 3.

5. Check whether overall controller performance is satisfactorily under
typical system conditions.

Further details on digital control can be found in [Åström, Hägglund 1995]
and [Bolton 1995].

5.3 Velocity Control and Position Control
What about
starting and

stopping?

So far, we are able to control a single motor at a certain speed, but we are not
yet able to drive a motor at a given speed for a number of revolutions and then
come to a stop at exactly the right motor position. The former, maintaining a
certain speed, is generally called velocity control, while the latter, reaching a
specified position, is generally called position control. 

Position control requires an additional controller on top of the previously
discussed velocity controller. The position controller sets the desired velocities
in all driving phases, especially during the acceleration and deceleration
phases (starting and stopping). 

Speed ramp Let us assume a single motor is driving a robot vehicle that is initially at rest
and which we would like to stop at a specified position. Figure 5.11 demon-
strates the “speed ramp” for the starting phase, constant speed phase, and stop-
ping phase. When ignoring friction, we only need to apply a certain force (here
constant) during the starting phase, which will translate into an acceleration of
the vehicle. The constant acceleration will linearly increase the vehicle’s speed
v (integral of a) from 0 to the desired value vmax, while the vehicle’s position s
(integral of v) will increase quadratically.
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When the force (acceleration) stops, the vehicle’s velocity will remain con-
stant, assuming there is no friction, and its position will increase linearly.

During the stopping phase (deceleration, braking), a negative force (nega-
tive acceleration) is applied to the vehicle. Its speed will be linearly reduced to
zero (or may even become negative – the vehicle now driving backwards – if
the negative acceleration is applied for too long a time). The vehicle’s position
will increase slowly, following the square root function. 

The tricky bit now is to control the amount of acceleration in such a way
that the vehicle:

a. Comes to rest
(not moving slowly forward to backward).

b. Comes to rest at exactly the specified position
(for example we want the vehicle to drive exactly 1 meter and stop
within ±1mm).

Figure 5.12 shows a way of achieving this by controlling (continuously
updating) the braking acceleration applied. This control procedure has to take
into account not only the current speed as a feedback value, but also the cur-
rent position, since previous speed changes or inaccuracies may have had
already an effect on the vehicle’s position.

Figure 5.11: Position control
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5.4 Multiple Motors – Driving Straight 
Still more tasks

to come
Unfortunately, this is still not the last of the motor control problems. So far, we
have only looked at a single isolated motor with velocity control – and very
briefly at position control. The way that a robot vehicle is constructed, how-
ever, shows us that a single motor is not enough (see Figure 5.13 repeated from
Chapter 1). 

All these robot constructions require two motors, with the functions of driv-
ing and steering either separated or dependent on each other. In the design on
the left or the design on the right, the driving and steering functions are sepa-
rated. It is therefore very easy to drive in a straight line (simply keep the steer-
ing fixed at the angle representing “straight”) or drive in a circle (keep the
steering fixed at the appropriate angle). The situation is quite different in the

Figure 5.12: Braking adaptation
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“differential steering” design shown in the middle of Figure 5.13, which is a
very popular design for small mobile robots. Here, one has to constantly moni-
tor and update both motor speeds in order to drive straight. Driving in a circle
can be achieved by adding a constant offset to one of the motors. Therefore, a
synchronization of the two motor speeds is required. 

There are a number of different approaches for driving straight. The idea
presented in the following is from [Jones, Flynn, Seiger 1999]. Figure 5.14
shows the first try for a differential drive vehicle to drive in a straight line.
There are two separate control loops for the left and the right motor, each
involving feedback control via a P controller. The desired forward speed is
supplied to both controllers. Unfortunately, this design will not produce a nice
straight line of driving. Although each motor is controlled in itself, there is no
control of any slight speed discrepancies between the two motors. Such a setup
will most likely result in the robot driving in a wriggly line, but not straight. 

An improvement of this control structure is shown in Figure 5.15 as a sec-
ond try. We now also calculate the difference in motor movements (position,
not speed) and feed this back to both P controllers via an additional I control-
ler. The I controller integrates (or sums up) the differences in position, which

Figure 5.14: Driving straight – first try

L-MoP

R-MoP-

-+

+

Figure 5.15: Driving straight – second try

L-MoP

R-MoP-

-

+
-I

+

-
+

+

L-MoP

R-MoP-

-

+
-I

+

-
+

+



Control

98

5
will subsequently be eliminated by the two P controllers. Note the different
signs for the input of this additional value, matching the inverse sign of the
corresponding I controller input. Also, this principle relies on the fact that the
whole control circuit is very fast compared to the actual motor or vehicle
speed. Otherwise, the vehicle might end up in trajectories parallel to the
desired straight line. 

For the final version in Figure 5.16 (adapted from [Jones, Flynn, Seiger,
1999]), we added another user input with the curve offset. With a curve offset
of zero. the system behaves exactly like the previous one for driving straight.
A positive or negative fixed curve offset, however, will let the robot drive in a
counter-clockwise or clockwise circle, respectively. The radius can be calcu-
lated from the curve offset amount.

The controller used in the RoBIOS vω library is a bit more complex than
the one shown in Figure 5.16. It uses a PI controller for handling the rotational
velocity ω in addition to the two PI controllers for left and right motor velocity.
More elaborate control models for robots with differential drive wheel
arrangements can be found in [Kim, Tsiotras 2002] (conventional controller
models) and in [Seraji, Howard 2002] (fuzzy controllers).

5.5 V-Omega Interface
When programming a robot vehicle, we have to abstract all the low-level
motor control problems shown in this chapter. Instead, we prefer to have a
user-friendly interface with specialized driving functions for a vehicle that
automatically takes care of all the feedback control issues discussed.

We have implemented such a driving interface in the RoBIOS operating
system, called the “v-omega interface”, because it allows us to specify a linear
and rotational speed of a robot vehicle. There are lower-level functions for
direct control of the motor speed, as well as higher-level functions for driving a
complete trajectory in a straight line or a curve (Program 5.8).  

Figure 5.16: Driving straight or in curves
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Dead reckoning The initialization of the vω interface VWInit specifies the update rate of
motor commands, usually 1/100 of a second, but does not activate PI control.
The control routine, VWStartControl, will start PI controllers for both driving
and steering as a background process with the PI parameters supplied. The cor-
responding timer interrupt routine contains all the program code for control-
ling the two driving motors and updating the internal variables for the vehicle’s
current position and orientation that can be read by using VWGetPosition.
This method of determining a vehicle’s position by continued addition of driv-
ing vectors and maintaining its orientation by adding all rotations is called
“dead reckoning”. Function VWStalled compares desired and actual motor

Program 5.8: vω  interface

VWHandle VWInit(DeviceSemantics semantics, int Timescale);
int VWRelease(VWHandle handle);
int VWSetSpeed(VWHandle handle, meterPerSec v, radPerSec w);
int VWGetSpeed(VWHandle handle, SpeedType* vw);
int VWSetPosition(VWHandle handle, meter x, meter y, radians phi);
int VWGetPosition(VWHandle handle, PositionType* pos);
int VWStartControl(VWHandle handle, float Vv,float Tv, float Vw,float Tw);
int VWStopControl(VWHandle handle);
int VWDriveStraight(VWHandle handle, meter delta, meterpersec v)
int VWDriveTurn(VWHandle handle, radians delta, radPerSec w)
int VWDriveCurve(VWHandle handle, meter delta_l, radians delta_phi, 

meterpersec v)
float VWDriveRemain(VWHandle handle)
int VWDriveDone(VWHandle handle)
int VWDriveWait(VWHandle handle)
int VWStalled(VWHandle handle)

Program 5.9: vω  application program

1 #include "eyebot.h"
2 int main()
3 { VWHandle vw;
4 vw=VWInit(VW_DRIVE,1);
5 VWStartControl(vw, 7.0, 0.3 , 10.0, 0.1);/* emp. val.*/
6
7 VWDriveStraight(vw, 1.0, 0.5); /* drive 1m */
8 VWDriveWait(vw); /* wait until done */
9

10 VWDriveTurn(vw, 3.14, 0.5); /* turn 180 on spot */
11 VWDriveWait(vw);
12
13 VWDriveStraight(vw, 1.0, 0.5); /* drive back */
14 VWDriveWait(vw);
15
16 VWStopControl(vw);
17 VWRelease(vw);
18 }
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speeds in order to check whether the robot’s wheels have stalled, possibly
because it has collided with an obstacle. 

It is now possible to write application programs using only the vω interface
for driving. Program 5.9 shows a simple program for driving a robot 1m
straight, then turning 180° on the spot, and driving back in a straight line. The
function VWDriveWait pauses user program execution until the driving com-
mand has been completed. All driving commands only register the driving
parameters and then immediately return to the user program. The actual execu-
tion of the PI controller for both wheels is executed completely transparently
to the application programmer in the previously described background rou-
tines. 

With the help of the background execution of driving commands, it is poss-
ible to implement high-level control loops when driving. An example could be
driving a robot forward in a straight line, until an obstacle is detected (for
example by a built-in PSD sensor) and then stop the robot. There is no pre-
determined distance to be traveled; it will be determined by the robot’s envi-
ronment. 

Program 5.10 shows the program code for this example. After initialization
of the vω interface and the PSD sensor, we only have a single while-loop. This
loop continuously monitors the PSD sensor data (PSDGet) and only if the dis-
tance is larger than a certain threshold will the driving command (VWDriveS-
traight) be called. This loop will be executed many times faster than it takes
to execute the driving command for 0.05m in this example; no wait function
has been used here. Every newly issued driving command will replace the pre-
vious driving command. So in this example, the final driving command will

Program 5.10: Typical driving loop with sensors

1 #include "eyebot.h"
2 int main()
3 { VWHandle vw;
4 PSDHandle psd_front;
5
6 vw=VWInit(VW_DRIVE,1);
7 VWStartControl(vw, 7.0, 0.3 , 10.0, 0.1);
8 psd_front = PSDInit(PSD_FRONT);
9 PSDStart(psd_front, TRUE);

10
11 while (PSDGet(psd_front)>100)
12 VWDriveStraight(vw, 0.05, 0.5);
13
14 VWStopControl(vw);
15 VWRelease(vw);
16 PSDStop();
17 return 0;
18 }
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not drive the robot the full 0.05m, since as soon as the PSD sensor registers a
shorter distance, the driving control will be stopped and the whole program
terminated. 
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MULTITASKING

oncurrency is an essential part of every robot program. A number of
more or less independent tasks have to be taken care of, which
requires some form of multitasking, even if only a single processor is

available on the robot’s controller.
Imagine a robot program that should do some image processing and at the

same time monitor the robot’s infrared sensors in order to avoid hitting an
obstacle. Without the ability for multitasking, this program would comprise
one large loop for processing one image, then reading infrared data. But if
processing one image takes much longer than the time interval required for
updating the infrared sensor signals, we have a problem. The solution is to use
separate processes or tasks for each activity and let the operating system
switch between them.

Threads versus
processes

The implementation used in RoBIOS is “threads” instead of “processes” for
efficiency reasons. Threads are “lightweight processes” in the sense that they
share the same memory address range. That way, task switching for threads is
much faster than for processes. In this chapter, we will look at cooperative and
preemptive multitasking as well as synchronization via semaphores and timer
interrupts. We will use the expressions “multitasking” and “process” synony-
mously for “multithreading” and “thread”, since the difference is only in the
implementation and transparent to the application program.

6.1 Cooperative Multitasking
The simplest way of multitasking is to use the “cooperative” scheme. Cooper-
ative means that each of the parallel tasks needs to be “well behaved” and does
transfer control explicitly to the next waiting thread. If even one routine does
not pass on control, it will “hog” the CPU and none of the other tasks will be
executed.

The cooperative scheme has less problem potential than the preemptive
scheme, since the application program can determine at which point in time it
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is willing to transfer control. However, not all programs are well suited for it,
since there need to be appropriate code sections where a task change fits in.

Program 6.1 shows the simplest version of a program using cooperative
multitasking. We are running two tasks using the same code mytask (of course
running different code segments in parallel is also possible). A task can
recover its own task identification number by using the system function
OSGetUID. This is especially useful to distinguish several tasks running the
same code in parallel. All our task does in this example is execute a loop, print-
ing one line of text with its id-number and then calling OSReschedule. The
system function OSReschedule will transfer control to the next task, so here
the two tasks are taking turns in printing lines. After the loop is finished, each
task terminates itself by calling OSKill. 

The main program has to initialize multitasking by calling OSMTInit; the
parameter COOP indicates cooperative multitasking. Activation of processes is
done in three steps. Firstly, each task is spawned. This creates a new task struc-
ture for a task name (string), a specified function call (here: mytask) with its
own local stack with specified size, a certain priority, and an id-number. The
required stack size depends on the number of local variables and the calling

Program 6.1: Cooperative multitasking

1 #include "eyebot.h"
2 #define SSIZE  4096
3 struct tcb *task1, *task2;
4
5 void mytask()
6 { int id, i;
7   id = OSGetUID(0); /* read slave id no. */
8   for (i=1; i<=100; i++)
9   { LCDPrintf("task %d : %d\n", id, i);

10     OSReschedule();   /* transfer control */
11   }
12   OSKill(0);  /* terminate thread */
13 }
14
15 int main()
16 { OSMTInit(COOP);  /* init multitasking */
17   task1 = OSSpawn("t1", mytask, SSIZE, MIN_PRI, 1);
18   task2 = OSSpawn("t2", mytask, SSIZE, MIN_PRI, 2);
19   if(!task1 || !task2) OSPanic("spawn failed");
20
21   OSReady(task1); /* set state of task1 to READY */
22   OSReady(task2);
23   OSReschedule(); /* start multitasking */
24 /* -------------------------------------------------- */
25   /* processing returns HERE, when no READY thread left */
26   LCDPrintf("back to main");
27   return 0;
28 };
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depth of subroutines (for example recursion) in the task. Secondly, each task is
switched to the mode “ready”. Thirdly and finally, the main program relin-
quishes control to one of the parallel tasks by calling OSReschedule itself.
This will activate one of the parallel tasks, which will take turns until they both
terminate themselves. At that point in time – and also in the case that all paral-
lel processes are blocked, i.e. a “deadlock” has occurred – the main program
will be reactivated and continue its flow of control with the next instruction. In
this example, it just prints one final message and then terminates the whole
program.

The system output will look something like the following:
task 2 : 1
task 1 : 1
task 2 : 2
task 1 : 2
task 2 : 3
task 1 : 3
...
task 2 : 100
task 1 : 100
back to main

Both tasks are taking turns as expected. Which task goes first is system-
dependent.

6.2 Preemptive Multitasking
At first glance, preemptive multitasking does not look much different from
cooperative multitasking. Program 6.2 shows a first try at converting Program
6.1 to a preemptive scheme, but unfortunately it is not completely correct. The
function mytask is identical as before, except that the call of OSReschedule is
missing. This of course is expected, since preemptive multitasking does not
require an explicit transfer of control. Instead the task switching is activated by
the system timer. The only other two changes are the parameter PREEMPT in the
initialization function and the system call OSPermit to enable timer interrupts
for task switching. The immediately following call of OSReschedule is
optional; it makes sure that the main program immediately relinquishes con-
trol.

This approach would work well for two tasks that are not interfering with
each other. However, the tasks in this example are interfering by both sending
output to the LCD. Since the task switching can occur at any time, it can (and
will) occur in the middle of a print operation. This will mix up characters from
one line of task1 and one line from task2, for example if task1 is interrupted
after printing only the first three characters of its string:
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task 1 : 1
task 1 : 2
tastask 2 : 1
task 2 : 2
task 2 :k 1: 3
task 1 : 4
... 

But even worse, the task switching can occur in the middle of the system
call that writes one character to the screen. This will have all sorts of strange
effects on the display and can even lead to a task hanging, because its data area
was corrupted.

So quite obviously, synchronization is required whenever two or more tasks
are interacting or sharing resources. The corrected version of this preemptive
example is shown in the following section, using a semaphore for synchroniza-
tion. 

Program 6.2: Preemptive multitasking – first try (incorrect)

1 #include "eyebot.h"
2 #define SSIZE  4096
3 struct tcb *task1, *task2;
4
5 void mytask()
6 { int id, i;
7   id = OSGetUID(0); /* read slave id no. */
8   for (i=1; i<=100; i++)
9 LCDPrintf("task %d : %d\n", id, i);

10 OSKill(0);  /* terminate thread */
11 }
12
13 int main()
14 { OSMTInit(PREEMPT);  /* init multitasking */
15 task1 = OSSpawn("t1", mytask, SSIZE, MIN_PRI, 1);
16   task2 = OSSpawn("t2", mytask, SSIZE, MIN_PRI, 2);
17   if(!task1 || !task2) OSPanic("spawn failed");
18
19   OSReady(task1);  /* set state of task1 to READY */
20   OSReady(task2);
21   OSPermit();      /* start multitasking */
22   OSReschedule();  /* switch to other task */
23 /* -------------------------------------------------- */
24 /* processing returns HERE, when no READY thread left */
25   LCDPrintf("back to main");
26   return 0;
27 };
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6.3 Synchronization
Semaphores for
synchronization

In almost every application of preemptive multitasking, some synchronization
scheme is required, as was shown in the previous section. Whenever two or
more tasks exchange information blocks or share any resources (for example
LCD for printing messages, reading data from sensors, or setting actuator val-
ues), synchronization is essential. The standard synchronization methods are
(see [Bräunl 1993]):

• Semaphores
• Monitors
• Message passing

Here, we will concentrate on synchronization using semaphores. Sema-
phores are rather low-level synchronization tools and therefore especially use-
ful for embedded controllers.

6.3.1 Semaphores
The concept of semaphores has been around for a long time and was formal-
ized by Dijkstra as a model resembling railroad signals [Dijkstra 1965]. For
further historic notes see also [Hoare 1974], [Brinch Hansen 1977], or the
more recent collection [Brinch Hansen 2001].

A semaphore is a synchronization object that can be in either of two states:
free or occupied. Each task can perform two different operations on a sema-
phore: lock or release. When a task locks a previously “free” semaphore, it
will change the semaphore’s state to “occupied”. While this (the first) task can
continue processing, any subsequent tasks trying to lock the now occupied
semaphore will be blocked until the first task releases the semaphore. This will
only momentarily change the semaphore’s state to free – the next waiting task
will be unblocked and re-lock the semaphore.

In our implementation, semaphores are declared and initialized with a spec-
ified state as an integer value (0: blocked, ≥1: free). The following example
defines a semaphore and initializes it to free:

struct sem my_sema;
OSSemInit(&my_sema, 1);

The calls for locking and releasing a semaphore follow the traditional
names coined by Dijkstra: P for locking (“pass”) and V for releasing (“leave”).
The following example locks and releases a semaphore while executing an
exclusive code block:

OSSemP(&my_sema);
/* exclusive block, for example write to screen */

OSSemV(&my_sema);

Of course all tasks sharing a particular resource or all tasks interacting have
to behave using P and V in the way shown above. Missing a P operation can
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result in a system crash as shown in the previous section. Missing a V opera-
tion will result in some or all tasks being blocked and never being released. If
tasks share several resources, then one semaphore per resource has to be used,
or tasks will be blocked unnecessarily.

Since the semaphores have been implemented using integer counter varia-
bles, they are actually “counting semaphores”. A counting semaphore initial-
ized with, for example, value 3 allows to perform three subsequent non-block-
ing P operations (decrementing the counter by three down to 0). Initializing a
semaphore with value 3 is equivalent to initializing it with 0 and performing
three subsequent V operations on it. A semaphore’s value can also go below
zero, for example if it is initialized with value 1 and two tasks perform a P
operation on it. The first P operation will be non-blocking, reducing the sema-
phore value to 0, while the second P operation will block the calling task and
will set the semaphore value to –1.

In the simple examples shown here, we only use the semaphore values 0
(blocked) and 1 (free). 

Program 6.3: Preemptive multitasking with synchronization

1 #include "eyebot.h"
2 #define SSIZE  4096
3 struct tcb *task1, *task2;
4 struct sem lcd;
5
6 void mytask()
7 { int id, i;
8   id = OSGetUID(0); /* read slave id no. */
9   for (i=1; i<=100; i++)

10   { OSSemP(&lcd);
11       LCDPrintf("task %d : %d\n", id, i);
12     OSSemV(&lcd);
13   }
14   OSKill(0);  /* terminate thread */
15 }
16
17 int main()
18 { OSMTInit(PREEMPT);  /* init multitasking */
19 OSSemInit(&lcd,1); /* enable semaphore  */
20 task1 = OSSpawn("t1", mytask, SSIZE, MIN_PRI, 1);
21   task2 = OSSpawn("t2", mytask, SSIZE, MIN_PRI, 2);
22   if(!task1 || !task2) OSPanic("spawn failed");
23 OSReady(task1);  /* set state of task1 to READY */
24   OSReady(task2);
25   OSPermit();      /* start multitasking */
26   OSReschedule();  /* switch to other task */
27 /* ---- proc. returns HERE, when no READY thread left */
28   LCDPrintf("back to main");
29   return 0;
30 };
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6.3.2 Synchronization Example
We will now fix the problems in Program 6.2 by adding a semaphore. Program
6.3 differs from Program 6.2 only by adding the semaphore declaration and
initialization in the main program, and by using a bracket of OSSemP and
OSSemV around the print statement.

The effect of the semaphore is that only one task is allowed to execute the
print statement at a time. If the second task wants to start printing a line, it will
be blocked in the P operation and has to wait for the first task to finish printing
its line and issue the V operation. As a consequence, there will be no more task
changes in the middle of a line or, even worse, in the middle of a character,
which can cause the system to hang.

Unlike in cooperative multitasking, task1 and task2 do not necessarily
take turns in printing lines in Program 6.3. Depending on the system time
slices, task priority settings, and the execution time of the print block enclosed
by P and V operations, one or several iterations can occur per task.

6.3.3 Complex Synchronization
In the following, we introduce a more complex example, running tasks with
different code blocks and multiple semaphores. The main program is shown in
Program 6.4, with slave tasks shown in Program 6.5 and the master task in
Program 6.6.   

The main program is similar to the previous examples. OSMTInit,
OSSpawn, OSReady, and OSPermit operations are required to start multitasking
and enable all tasks. We also define a number of semaphores: one for each
slave process plus an additional one for printing (as in the previous example).
The idea for operation is that one master task controls the operation of three
slave tasks. By pressing keys in the master task, individual slave tasks can be
either blocked or enabled.

All that is done in the slave tasks is to print a line of text as before, but
indented for readability. Each loop iteration has now to pass two semaphore
blocks: the first one to make sure the slave is enabled, and the second one to
prevent several active slaves from interfering while printing. The loops now
run indefinitely, and all slave tasks will be terminated from the master task. 

The master task also contains an infinite loop; however, it will kill all slave
tasks and terminate itself when KEY4 is pressed. Pressing KEY1 .. KEY3 will
either enable or disable the corresponding slave task, depending on its current
state, and also update the menu display line.
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Program 6.4: Preemptive main

1 #include "eyebot.h"
2 #define SLAVES 3
3 #define SSIZE  8192
4 struct tcb *slave_p[SLAVES], *master_p;
5 struct sem sema[SLAVES];
6 struct sem lcd;
7
8 int main()
9 { int i;

10 OSMTInit(PREEMPT); /* init multitasking */
11 for (i=0; i<SLAVES; i++) OSSemInit(&sema[i],0);
12   OSSemInit(&lcd,1);  /* init semaphore */
13 for (i=0; i<SLAVES; i++) {
14     slave_p[i]= OSSpawn("slave-i",slave,SSIZE,MIN_PRI,i);
15     if(!slave_p[i]) OSPanic("spawn for slave failed");
16   }
17   master_p = OSSpawn("master",master,SSIZE,MIN_PRI,10);
18   if(!master_p) OSPanic("spawn for master failed");
19 for (i=0; i<SLAVES; i++) OSReady(slave_p[i]);
20   OSReady(master_p);
21   OSPermit();  /* activate preemptive multitasking */
22   OSReschedule(); /* start first task */
23 /* -------------------------------------------------- */
24 /* processing returns HERE, when no READY thread left */
25 LCDPrintf("back to main\n");
26 return 0;
27 }

Program 6.5: Slave task

1 void slave()
2 { int id, i, count = 0;
3  
4   /** read slave id no. */
5   id = OSGetUID(0);
6   OSSemP(&lcd);
7     LCDPrintf("slave %d start\n", id);
8   OSSemV(&lcd);
9

10   while(1)
11   { OSSemP(&sema[id]); /* occupy semaphore */
12       OSSemP(&lcd);
13         for (i=0; i<2*id; i++) LCDPrintf("-");
14         LCDPrintf("slave %d:%d\n", id, count);
15       OSSemV(&lcd);
16       count = (count+1) % 100; /* max count 99 */
17     OSSemV(&sema[id]); /* free semaphore */
18   }
19 } /* end slave */
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6.4 Scheduling
A scheduler is an operating system component that handles task switching.
Task switching occurs in preemptive multitasking when a task’s time slice has
run out, when the task is being blocked (for example through a P operation on
a semaphore), or when the task voluntarily gives up the processor (for example
by calling OSReschedule). Explicitly calling OSReschedule is the only possi-
bility for a task switch in cooperative multitasking.

Program 6.6: Master task

1 void master()
2 { int i,k;
3   int block[SLAVES] = {1,1,1};  /* slaves blocked */
4 OSSemP(&lcd); /* optional since slaves blocked */
5     LCDPrintf("master start\n");
6     LCDMenu("V.0", "V.1", "V.2", "END");
7   OSSemV(&lcd);
8
9   while(1)

10   { k = ord(KEYGet());
11     if (k!=3)
12     { block[k] = !block[k];
13       OSSemP(&lcd);
14         if (block[k]) LCDMenuI(k+1,"V");
15 else LCDMenuI(k+1,"P");
16       OSSemV(&lcd);
17       if (block[k])   OSSemP(&sema[k]);
18 else OSSemV(&sema[k]);
19     }
20      else /* kill slaves then exit master */
21      { for (i=0; i<SLAVES; i++) OSKill(slave_p[i]);
22 OSKill(0);
23      }
24   } /* end while */
25 } /* end master */
26
27 int ord(int key)
28 { switch(key)
29   {
30     case KEY1: return 0;
31     case KEY2: return 1;
32     case KEY3: return 2;
33     case KEY4: return 3;
34   }
35   return 0; /* error */
36 }
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Each task can be in exactly one of three states (Figure 6.1):

• Ready
A task is ready to be executed and waiting for its turn.

• Running
A task is currently being executed.

• Blocked
A task is not ready for execution, for example because it is waiting for
a semaphore. 

Each task is identified by a task control block that contains all required control
data for a task. This includes the task’s start address, a task number, a stack
start address and size, a text string associated with the task, and an integer pri-
ority.

Round robin Without the use of priorities, i.e. with all tasks being assigned the same pri-
ority as in our examples, task scheduling is performed in a “round-robin” fash-
ion. For example, if a system has three “ready” tasks, t1, t2, t3, the execution
order would be:

t1, t2, t3, t1, t2, t3, t1, t2, t3, ...
Indicating the “running” task in bold face and the “ready” waiting list in

square brackets, this sequence looks like the following:
t1 [t2, t3]
t2 [t3, t1]
t3 [t1, t2]
...
Each task gets the same time slice duration, in RoBIOS 0.01 seconds. In

other words, each task gets its fair share of processor time. If a task is blocked
during its running phase and is later unblocked, it will re-enter the list as the
last “ready” task, so the execution order may be changed. For example:

t1 (block t1) t2, t3, t2, t3 (unblock t1) t2, t1, t3, t2, t1, t3, ...

Figure 6.1: Task model
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Using square brackets to denote the list of ready tasks and curly brackets for
the list of all blocked processes, the scheduled tasks look as follows:

t1 [t2, t3] {} → t1 is being blocked
t2 [t3] {t1}
t3 [t2] {t1}
t2 [t3] {t1}
t3 [t2, t1] {} → t3 unblocks t1
t2 [t1, t3] {}
t1 [t3, t2] {}
t3 [t2, t1] {}
...
Whenever a task is put back into the “ready” list (either from running or

from blocked), it will be put at the end of the list of all waiting tasks with the
same priority. So if all tasks have the same priority, the new “ready” task will
go to the end of the complete list.

Priorities The situation gets more complex if different priorities are involved. Tasks
can be started with priorities 1 (lowest) to 8 (highest). The simplest priority
model (not used in RoBIOS) is static priorities. In this model, a new “ready”
task will follow after the last task with the same priority and before all tasks
with a lower priority. Scheduling remains simple, since only a single waiting
list has to be maintained. However, “starvation” of tasks can occur, as shown
in the following example.

Starvation Assuming tasks tA and tB have the higher priority 2, and tasks ta and tb have
the lower priority 1, then in the following sequence tasks ta and tb are being
kept from executing (starvation), unless tA and tB are both blocked by some
events.

tA [tB, ta, tb] {}
tB [tA, ta, tb] {}
tA [tB, ta, tb] {} → tA blocked
tB [tA, ta, tb] {tA} → tB blocked
ta [tb] {tA, tB}
...

Dynamic
priorities

For these reasons, RoBIOS has implemented the more complex dynamic
priority model. The scheduler maintains eight distinct “ready” waiting lists,
one for each priority. After spawning, tasks are entered in the “ready” list
matching their priority and each queue for itself implements the “round-robin”
principle shown before. So the scheduler only has to determine which queue to
select next.

Each queue (not task) is assigned a static priority (1..8) and a dynamic pri-
ority, which is initialized with twice the static priority times the number of
“ready” tasks in this queue. This factor is required to guarantee fair scheduling
for different queue lengths (see below). Whenever a task from a “ready” list is
executed, then the dynamic priority of this queue is decremented by 1. Only
after the dynamic priorities of all queues have been reduced to zero are the
dynamic queue priorities reset to their original values.
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The scheduler now simply selects the next task to be executed from the

(non-empty) “ready” queue with the highest dynamic priority. If there are no
eligible tasks left in any “ready” queue, the multitasking system terminates and
continues with the calling main program. This model prevents starvation and
still gives tasks with higher priorities more frequent time slices for execution.
See the example below with three priorities, with static priorities shown on the
right, dynamic priorities on the left. The highest dynamic priority after decre-
menting and the task to be selected for the next time slice are printed in bold
type:

– 6 [tA]3 (2 · priority · number_of_tasks = 2 · 3 · 1 = 6)
8 [ta,tb]2 (2 · 2 · 2 = 8)
4 [tx,ty]1 (2 · 1 · 2 = 4)

ta 6 [tA]3
7 [tb]2
4 [tx,ty]1

tb 6 [tA]3
6 [ta]2
4 [tx,ty]1

tA 5 []3
6 [ta,tb]2
4 [tx,ty]1

ta 5 [tA]3
5 [tb]2
4 [tx,ty]1

...
ta 3 [tA]3

3 [tb]2
4 [tx,ty]1

tx 3 [tA]3
3 [ta,tb]2
3 [ty]1

...

6.5 Interrupts and Timer-Activated Tasks
A different way of designing a concurrent application is to use interrupts,
which can be triggered by external devices or by a built-in timer. Both are very
important techniques; external interrupts can be used for reacting to external
sensors, such as counting ticks from a shaft encoder, while timer interrupts can
be used for implementing periodically repeating tasks with fixed time frame,
such as motor control routines.

The event of an external interrupt signal will stop the currently executing
task and instead execute a so-called “interrupt service routine” (ISR). As a
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general rule, ISRs should have a short duration and are required to clean up
any stack changes they performed, in order not to interfere with the foreground
task. Initialization of ISRs often requires assembly commands, since interrupt
lines are directly linked to the CPU and are therefore machine-dependent (Fig-
ure 6.2). 

Somewhat more general are interrupts activated by software instead of
external hardware. Most important among software interrupts are timer inter-
rupts, which occur at regular time intervals.

In the RoBIOS operating system, we have implemented a general purpose
100Hz timing interrupt. User programs can attach or detach up to 16 timer
interrupt ISRs at a rate between 100Hz (0.01s) and 4.7 10-8Hz (248.6 days), by
specifying an integer frequency divider. This is achieved with the following
operations:

TimerHandle OSAttachTimer(int scale, TimerFnc function);
int OSDetachTimer(TimerHandle handle);

The timing scale parameter (range 1..100) is used to divide the 100Hz
timer and thereby specifies the number of timer calls per second (1 for 100Hz,
100 for 1Hz). Parameter TimerFct is simply the name of a function without
parameters or return value (void).

An application program can now implement a background task, for exam-
ple a PID motor controller (see Section 5.2), which will be executed several
times per second. Although activation of an ISR is handled in the same way as
preemptive multitasking (see Section 6.2), an ISR itself will not be preempted,
but will keep processor control until it terminates. This is one of the reasons
why an ISR should be rather short in time. It is also obvious that the execution
time of an ISR (or the sum of all ISR execution times in the case of multiple
ISRs) must not exceed the time interval between two timer interrupts, or regu-
lar activations will not be possible. 

The example in Program 6.7 shows the timer routine and the corresponding
main program. The main program initializes the timer interrupt to once every
second. While the foreground task prints consecutive numbers to the screen,
the background task generates an acoustic signal once every second.

Figure 6.2: Interrupt generation from external device
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Program 6.7: Timer-activated example

1 void timer()
2 { AUBeep(); /* background task */
3 }

1 int main()
2 { TimerHandle t; int i=0;
3 t = OSAttachTimer(100, timer);
4 /* foreground task: loop until key press */
5 while (!KEYRead()) LCDPrintf("%d\n", i++); 
6 OSDetachTimer(t);
7   return 0;
8 }
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here are a number of tasks where a self-configuring network based on
wireless communication is helpful for a group of autonomous mobile
robots or a single robot and a host computer:

1. To allow robots to communicate with each other
For example, sharing sensor data or cooperating on a common task or
devising a shared plan.

2. To remote-control one or several robots
For example, giving low-level driving commands or specifying high-
level goals to be achieved.

3. To monitor robot sensor data
For example, displaying camera data from one or more robots or record-
ing a robot's distance sensor data over time.

4. To run a robot with off-line processing
For example, combining the two previous points, each sensor data
packet is sent to a host where all computation takes place, the resulting
driving commands being relayed back to the robot.

5. To create a monitoring console for single or multiple robots
For example, monitoring each robot’s position, orientation, and status in
a multi-robot scenario in a common environment. This will allow a post-
mortem analysis of a robot team’s performance and effectiveness for a
particular task.

The network needs to be self-configuring. This means there will be no fixed
or pre-determined master node. Each agent can take on the role of master.
Each agent must be able to sense the presence of another agent and establish a
communication link. New incoming agents must be detected and integrated in
the network, while exiting agents will be deleted from it. A special error proto-
col is required because of the high error rate of mobile wireless data exchange.
Further details of this project can be found in [Bräunl, Wilke 2001].
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7.1 Communication Model
In principle, a wireless network can be considered as a fully connected net-
work, with every node able to access every other node in one hop, i.e. data is
always transmitted directly without the need of a third party.

However, if we allowed every node to transmit data at any point in time, we
would need some form of collision detection and recovery, similar to CSMA/
CD [Wang, Premvuti 94]. Since the number of collisions increases quadrati-
cally with the number of agents in the network, we decided to implement a
time division network instead. Several agents can form a network using a
TDMA (time division multiple access) protocol to utilize the available band-
width. In TDMA networks, only one transceiver may transmit data at a time,
which eliminates data loss from transmission collisions. So at no time may two
transceiver modules send data at once. There are basically two techniques
available to satisfy this condition (Figure 7.1): 

• Polling:
One agent (or a base station) is defined as the “master” node. In a
round-robin fashion, the master talks to each of the agents subsequent-
ly to let it send one message, while each agent is listening to all mes-
sages and can filter out only those messages that apply to it.

• Virtual Token Ring:
A token (special data word) is sent from one agent to the next agent in
a circular list. Whoever has the token may send its messages and then
pass the token on to the next agent. Unlike before, any agent can be-
come master, initiating the ring mechanism and also taking over in
case a problem occurs (for example the loss of a token, see
Section 7.3). 

While both approaches are similar, the token approach has the advantage of
less overhead and higher flexibility, yet has the same functionality and safety.
Therefore, we chose the “Virtual Token Ring” approach.

Figure 7.1: Polling versus Virtual Token Ring
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1. The master has to create a list of all active robot nodes in the network by
a polling process at initialization time. This list has also to be maintained
during the operation of the network (see below) and has to be broadcast
to all robots in the network (each robot has to know its successor for
passing on the token).

2. The master has to monitor the data communication traffic with a time-
out watchdog. If no data exchange happens during a fixed amount of
time, the master has to assume that the token got lost (for example, the
robot that happened to have the token was switched off), and create a
new one.

3. If the token is lost several times in a row by the same agent (for example
three times), the master decides that this agent is malfunctioning and
takes it off the list of active nodes.

4. The master periodically checks for new agents that have become avail-
able (for example just switched on or recovered from an earlier malfunc-
tion) by sending a “wild card” message. The master will then update the
list of active agents, so they will participate in the token ring network.

All agents (and base stations) are identified by a unique id-number, which is
used to address an agent. A specific id-number is used for broadcasts, which
follows exactly the same communication pattern. In the same way, subgroups
of nodes can be implemented, so a group of agents receive a particular mes-
sage.

The token is passed from one network node to another according to the set
of rules that have been defined, allowing the node with the token to access the
network medium. At initialization, a token is generated by the master station
and passed around the network once to ensure that all stations are functioning
correctly.

A node may only transmit data when it is in possession of the token. A node
must pass the token after it has transmitted an allotted number of frames. The
procedure is as follows:

1. A logical ring is established that links all nodes connected to the wire-
less network, and the master control station creates a single token. 

2. The token is passed from node to node around the ring.
3. If a node that is waiting to send a frame receives the token, it first sends

its frame and then passes the token on to the next node.

The major error recovery tool in the network layer is the timer in the master
station. The timer monitors the network to ensure that the token is not lost. If
the token is not passed across the network in a certain period of time, a new
token is generated at the master station and the control loop is effectively reset.

We assume we have a network of about 10 mobile agents (robots), which
should be physically close enough to be able to talk directly to each other with-
out the need for an intermediate station. It is also possible to include a base sta-
tion (for example PC or workstation) as one of the network nodes.
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7.2 Messages
Messages are transmitted in a frame structure, comprising the data to be sent
plus a number of fields that carry specific information.
Frame structure:

• Start byte
A specific bit pattern as the frame preamble.

• Message type
Distinction between user data, system data, etc. (see below).

• Destination ID
ID of the message’s receiver agent or ID of a subgroup of agents or
broadcast to all agents.

• Source ID
ID of the sending agent.

• Next sender’s ID
ID of the next active agent in the token ring.

• Message length
Number of bytes contained in message (may be 0).

• Message contents
Actual message contents limited by message length (may be empty).

• Checksum
Cyclic redundancy checksum (CRC) over whole frame; automatic
error handling for bad checksum.

So each frame contains the id-numbers of the transmitter, receiver, and the
next-in-line transmitter, together with the data being sent. The message type is
used for a number of organizational functions. We have to distinguish three
major groups of messages, which are:

1. Messages exchanged at application program level.
2. Messages exchanged to enable remote control at system level

(i.e. keypresses, printing to LCD, driving motors).
3. System messages in relation to the wireless network structure

that require immediate interpretation.

Distinguishing between the first two message types is required because the
network has to serve more than one task. Application programs should be able
to freely send messages to any other agent (or group of agents). Also, the net-
work should support remote control or just monitor the behavior of an agent by
sending messages, transparent to the application program.

This requires the maintenance of two separate receive buffers, one for user
messages and one for system messages, plus one send buffer for each agent.
That way it can be guaranteed that both application purposes (remote control
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and data communication between agents) can be executed transparently at the
same time.
Message types:

• USER
A message sent between agents.

• OS
A message sent from the operating system, for example transparently
monitoring an agent’s behavior on a base station.

• TOKEN
No message contents are supplied, i.e. this is an empty message.

• WILD CARD
The current master node periodically sends a wild card message in-
stead of enabling the next agent in the list for sending. Any new agent
that wants to be included in the network structure has to wait for a wild
card message.

• ADDNEW
This is the reply message to the “wild card” of a new agent trying to
connect to the network. With this message the new agent tells the cur-
rent master its id-number.

• SYNC
If the master has included a new agent in the list or excluded a non-
responding agent from the list, it generates an updated list of active
agents and broadcasts it to all agents. 

7.3 Fault-Tolerant Self-Configuration
The token ring network is a symmetric network, so during normal operation
there is no need for a master node. However, a master is required to generate
the very first token and in case of a token loss due to a communication problem
or an agent malfunction, a master is required to restart the token ring.

There is no need to have the master role fixed to any particular node; in fact
the role of master can be assigned temporarily to any of the nodes, if one of the
functions mentioned above has to be performed. Since there is no master node,
the network has to self-configure at initialization time and whenever a problem
arises. 

When an agent is activated (i.e. a robot is being switched on), it knows only
its own id-number, but not the total number of agents, nor the IDs of other
agents, nor who the master is. Therefore, the first round of communication is
performed only to find out the following:

• How many agents are communicating?
• What are their id-numbers?
• Who will be master to start the ring or to perform recovery?
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Agent IDs are used to trigger the initial communication. When the wireless
network initialization is called for an agent, it first listens to any messages cur-
rently being sent. If no messages are picked up within a certain time interval
multiplied by the node’s own ID, the agent assumes it is the lowest ID and
therefore becomes master.

The master will keep sending “wild card” messages at regular time inter-
vals, allowing a new incoming robot to enter and participate in the ring. The
master will receive the new agent's ID and assign it a position in the ring. All
other agents will be notified about the change in total robot number and the
new virtual ring neighborhood structure via a broadcast SYNC message (Fig-
ure 7.2). It is assumed that there is only a single new agent waiting at any time.

Figure 7.2: Adding a node to the network 
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Each agent has an internal timer process. If, for a certain time, no communi-
cation takes place, it is assumed that the token has been lost, for example due
to a communication error, an agent malfunction, or simply because one agent
has been switched off. In the first case, the message can be repeated, but in the
second case (if the token is repeatedly lost by the same agent), that particular
agent has to be taken out of the ring. 

If the master node is still active, that agent recreates a token and monitors
the next round for repeated token loss at the same node. If that is the case, the
faulty agent will be decommissioned and a broadcast message will update all
agents about the reduced total number and the change in the virtual ring neigh-
borhood structure.

If there is no reply after a certain time period, each agent has to assume that
it is the previous master itself which became faulty. In this case, the previous
master’s successor in the virtual ring structure now takes over its role as mas-
ter. However, if this process does not succeed after a certain time period, the
network start-up process is repeated and a new master is negotiated.

For further reading on related projects in this area, refer to [Balch, Arkin
1995], [Fukuda, Sekiyama 1994], [MacLennan 1991] [Wang, Premvuti 1994],
[Werner, Dyer 1990].

7.4 User Interface and Remote Control
As has been mentioned before, the wireless robot communication network
EyeNet serves two purposes:

• message exchange between robots for application-specific purposes
under user program control and

• monitoring and remote controlling one or several robots from a host
workstation.

Both communication protocols are implemented as different message types
using the same token ring structure, transparent to both the user program and
the higher levels of the RoBIOS operating system itself.

In the following, we discuss the design and implementation of a multi-robot
console that allows the monitoring of robot behavior, the robots’ sensor read-
ings, internal states, as well as current position and orientation in a shared
environment. Remote control of individual robots, groups of robots, or all
robots is also possible by transmitting input button data, which is interpreted
by each robot’s application program.

The optional host system is a workstation running Unix or Windows,
accessing a serial port linked to a wireless module, identical to the ones on the
robots. The workstation behaves logically exactly like one of the robots, which
make up the other network nodes. That is, the workstation has a unique ID and
also receives and sends tokens and messages. System messages from a robot to
the host are transparent from the user program and update the robot display
window and the robot environment window. All messages being sent in the
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entire network are monitored by the host without the need to explicitly send
them to the host. The EyeBot Master Control Panel has entries for all active
robots.

The host only then actively sends a message if a user intervention occurs,
for example by pressing an input button in one of the robot’s windows. This
information will then be sent to the robot in question, once the token is passed
to the host. The message is handled via low-level system routines on the robot,
so for the upper levels of the operating system it cannot be distinguished
whether the robot’s physical button has been pressed or whether it was a
remote command from the host console. Implementation of the host system
largely reuses communication routines from the EyeCon and only makes a few
system-dependent changes where necessary.

Remote control One particular application program using the wireless libraries for the Eye-
Con and PC under Linux or Windows is the remote control program. A wire-
less network is established between a number of robots and a host PC, with the
application “remote” being run on the PC and the “remote option” being acti-
vated on the robots (Hrd / Set / Rmt / On). The remote control can be oper-
ated via a serial cable (interface Serial1) or the wireless port (interface
Serial2), provided that a wireless key has been entered on the EyeCon (<I> /
Reg).

The remote control protocol runs as part of the wireless communication
between all network nodes (robots and PC). However, as mentioned before,
the network supports a number of different message types. So the remote con-
trol protocol can be run in addition to any inter-robot communication for any
application. Switching remote control on or off will not affect the inter-robot
communication. 

Remote control operates in two directions, which can be enabled independ-
ently of each other. All LCD output of a robot is sent to the host PC, where it is
displayed in the same way on an EyeCon console window. In the other direc-
tion, it is possible to press a button via a mouse-click on the host PC, and this

Figure 7.3: Remote control windows

Start screen Color image transmission
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signal is then sent to the appropriate robot, which reacts as if one of its physi-
cal buttons had been pressed (see Figure 7.3). 

Another advantage of the remote control application is the fact that the host
PC supports color, while current EyeCon LCDs are still monochrome for cost

Program 7.1: Wireless “ping” program for controller

1 #include "eyebot.h"
2
3 int main()
4 { BYTE myId, nextId, fromId;
5   BYTE mes[20]; /* message buffer */
6   int  len, err;
7
8   LCDPutString("Wireless Network");
9   LCDPutString("----------------");

10   LCDMenu(" "," "," ","END");
11
12   myId = OSMachineID();
13   if (myId==0) { LCDPutString("RadioLib not enabled!\n");
14 return 1; }
15     else LCDPrintf("I am robot %d\n", myId);
16   switch(myId)
17   { case 1 : nextId = 2; break;
18     case 2 : nextId = 1; break;
19     default: LCDPutString("Set ID 1 or 2\n"); return 1;
20   }
21
22   LCDPutString("Radio");
23   err = RADIOInit();
24   if (err) {LCDPutString("Error Radio Init\n"); return 1;}
25     else LCDPutString("Init\n");
26
27   if (myId == 1)  /* robot 1 gets first to send */
28   { mes[0] = 0;
29     err = RADIOSend(nextId, 1, mes);
30     if (err) { LCDPutString("Error Send\n"); return 1; }
31   }
32
33   while ((KEYRead()) != KEY4)
34   { if (RADIOCheck())  /* check whether mess. is wait. */
35     { RADIORecv(&fromId, &len, mes);  /* wait for mess. */
36       LCDPrintf("Recv %d-%d: %3d\a\n", fromId,len,mes[0]);
37       mes[0]++; /* increment number and send again */
38       err = RADIOSend(nextId, 1, mes);
39       if (err) { LCDPutString("Error Send\n"); return 1; }
40     }
41   }
42   RADIOTerm();
43   return 0;
44 }
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reasons. If a color image is being displayed on the EyeCon’s LCD, the full or a
reduced color information of the image is transmitted to and displayed on the
host PC (depending on the remote control settings). This way, the processing
of color data on the EyeCon can be tested and debugged much more easily.

An interesting extension of the remote control application would be includ-
ing transmission of all robots’ sensor and position data. That way, the move-
ments of a group of robots could be tracked, similar to the simulation environ-
ment (see Chapter 15). 

7.5 Sample Application Program
Program 7.1 shows a simple application of the wireless library functions. This
program allows two EyeCons to communicate with each other by simply
exchanging “pings”, i.e. a new message is sent as soon as one is received. For
reasons of simplicity, the program requires the participating robots’ IDs to be 1
and 2, with number 1 starting the communication. 

Program 7.2: Wireless host program

1 #include "remote.h"
2 #include "eyebot.h"
3
4 int main()
5 { BYTE myId, nextId, fromId;
6   BYTE mes[20]; /* message buffer */
7   int  len, err;
8   RadioIOParameters radioParams;
9

10 RADIOGetIoctl(&radioParams); /* get parameters */
11 radioParams.speed = SER38400;
12 radioParams.interface = SERIAL3; /* COM 3 */
13   RADIOSetIoctl(radioParams); /* set parameters */
14
15 err = RADIOInit();
16   if (err) { printf("Error Radio Init\n"); return 1; }
17 nextId = 1; /* PC (id 0) will send to EyeBot no. 1 */
18
19   while (1)
20   { if (RADIOCheck())  /* check if message is waiting */
21     { RADIORecv(&fromId, &len, mes);  /* wait next mes. */
22       printf("Recv %d-%d: %3d\a\n", fromId, len, mes[0]);
23       mes[0]++; /* increment number and send again */
24       err = RADIOSend(nextId, 1, mes);
25       if (err) { printf("Error Send\n"); return 1; }
26     }
27   }
28   RADIOTerm();
29   return 0;
30 }
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Each EyeCon initializes the wireless communication by using “RADIO-
Init”, while EyeCon number 1 also sends the first message. In the subsequent
while-loop, each EyeCon waits for a message, and then sends another message
with a single integer number as contents, which is incremented for every data
exchange.

In order to communicate between a host PC and an EyeCon, this example
program does not have to be changed much. On the EyeCon side it is only
required to adapt the different id-number (the host PC has 0 by default). The
program for the host PC is listed in Program 7.2.

It can be seen that the host PC program looks almost identical to the Eye-
Con program. This has been accomplished by providing a similar EyeBot
library for the Linux and Windows environment as for RoBIOS. That way,
source programs for a PC host can be developed in the same way and in many
cases even with identical source code as for robot application programs.
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DRIVING ROBOTS

sing two DC motors and two wheels is the easiest way to build a
mobile robot. In this chapter we will discuss several designs such as
differential drive, synchro-drive, and Ackermann steering. Omni-

directional robot designs are dealt with in Chapter 9. A collection of related
research papers can be found in [Rückert, Sitte, Witkowski 2001] and [Cho,
Lee 2002]. Introductory textbooks are [Borenstein, Everett, Feng 1998],
[Arkin 1998], [Jones, Flynn, Seiger 1999], and [McKerrow 1991].

8.1 Single Wheel Drive
Having a single wheel that is both driven and steered is the simplest conceptual
design for a mobile robot. This design also requires two passive caster wheels
in the back, since three contact points are always required.

Linear velocity and angular velocity of the robot are completely decoupled.
So for driving straight, the front wheel is positioned in the middle position and
driven at the desired speed. For driving in a curve, the wheel is positioned at an
angle matching the desired curve. 

U

Figure 8.1: Driving and rotation of single wheel drive
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Figure 8.1 shows the driving action for different steering settings. Curve

driving is following the arc of a circle; however, this robot design cannot turn
on the spot. With the front wheel set to 90° the robot will rotate about the mid-
point between the two caster wheels (see Figure 8.1, right). So the minimum
turning radius is the distance between the front wheel and midpoint of the back
wheels.

8.2 Differential Drive
The differential drive design has two motors mounted in fixed positions on the
left and right side of the robot, independently driving one wheel each. Since
three ground contact points are necessary, this design requires one or two addi-
tional passive caster wheels or sliders, depending on the location of the driven
wheels. Differential drive is mechanically simpler than the single wheel drive,
because it does not require rotation of a driven axis. However, driving control
for differential drive is more complex than for single wheel drive, because it
requires the coordination of two driven wheels.

The minimal differential drive design with only a single passive wheel can-
not have the driving wheels in the middle of the robot, for stability reasons. So
when turning on the spot, the robot will rotate about the off-center midpoint
between the two driven wheels. The design with two passive wheels or sliders,
one each in the front and at the back of the robot, allows rotation about the
center of the robot. However, this design can introduce surface contact prob-
lems, because it is using four contact points.

Figure 8.2 demonstrates the driving actions of a differential drive robot. If
both motors run at the same speed, the robot drives straight forward or back-
ward, if one motor is running faster than the other, the robot drives in a curve
along the arc of a circle, and if both motors are run at the same speed in oppo-
site directions, the robot turns on the spot. 

Figure 8.2: Driving and rotation of differential drive
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• Driving straight, forward: vL = vR, vL > 0
• Driving in a right curve: vL > vR, e.g. vL = 2·vR

• Turning on the spot, counter-clockwise: vL = –vR, vL > 0

Eve We have built a number of robots using a differential drive. The first one
was the EyeBot Vehicle, or Eve for short. It carried an EyeBot controller (Fig-
ure 8.3) and had a custom shaped I/O board to match the robot outline – a
design approach that was later dropped in favor of a standard versatile control-
ler.

The robot has a differential drive actuator design, using two Faulhaber
motors with encapsulated gearboxes and encapsulated encoders. The robot is
equipped with a number of sensors, some of which are experimental setups:

• Shaft encoders (2 units)
• Infrared PSD (1-3 units)
• Infrared proximity sensors (7 units)
• Acoustic bump sensors (2 units)
• QuickCam digital grayscale or color camera (1 unit) 

One of the novel ideas is the acoustic bumper, designed as an air-filled tube
surrounding the robot chassis. Two microphones are attached to the tube ends.
Any collision of the robot will result in an audible bump that can be registered
by the microphones. Provided that the microphones can be polled fast enough
or generate an interrupt and the bumper is acoustically sufficiently isolated
from the rest of the chassis, it is possible to determine the point of impact from
the time difference between the two microphone signals.

SoccerBot Eve was constructed before robot soccer competitions became popular. As
it turned out, Eve was about 1cm too wide, according to the RoboCup rules. As
a consequence, we came up with a redesigned robot that qualified to compete
in the robot soccer events RoboCup [Asada 1998] small size league and FIRA
RoboSot [Cho, Lee 2002].

Figure 8.3: Eve
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The robot has a narrower wheel base, which was accomplished by using

gears and placing the motors side by side. Two servos are used as additional
actuators, one for panning the camera and one for activating the ball kicking
mechanism. Three PSDs are now used (to the left, front, and right), but no
infrared proximity sensors or a bumper. However, it is possible to detect a col-
lision by feedback from the driving routines without using any additional sen-
sors (see function VWStalled in Appendix B.5.12). 

The digital color camera EyeCam is used on the SoccerBot, replacing the
obsolete QuickCam. With an optional wireless communication module, the
robots can send messages to each other or to a PC host system. The network
software uses a Virtual Token Ring structure (see Chapter 7). It is self-organiz-
ing and does not require a specific master node.

A team of robots participated in both the RoboCup small size league and
FIRA RoboSot. However, only RoboSot is a competition for autonomous
mobile robots. The RoboCup small size league does allow the use of an over-
head camera as a global sensor and remote computing on a central host system.
Therefore, this event is more in the area of real-time image processing than
robotics.

Figure 8.4 shows the current third generation of the SoccerBot design. It
carries an EyeBot controller and EyeCam camera for on-board image process-
ing and is powered by a lithium-ion rechargeable battery. This robot is com-
mercially available from InroSoft [InroSoft 2006].

LabBot For our robotics lab course we wanted a simpler and more robust version of
the SoccerBot that does not have to comply with any size restrictions. LabBot
was designed by going back to the simpler design of Eve, connecting the
motors directly to the wheels without the need for gears or additional bearings.

Figure 8.4: SoccerBot
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The controller is again flat on the robot top and the two-part chassis can be
opened to add sensors or actuators.

Getting away from robot soccer, we had one lab task in mind, namely to
simulate foraging behavior. The robot should be able to detect colored cans,
collect them, and bring them to a designated location. For this reason, LabBot
does not have a kicker. Instead, we designed it with a circular bar in front (Fig-
ure 8.5) and equipped it with an electromagnet that can be switched on and off
using one of the digital outputs.

The typical experiment on the lab course is to have one robot or even two
competing robots drive in an enclosed environment and search and collect cans
(Figure 8.6). Each robot has to avoid obstacles (walls and other robots) and use
image processing to collect a can. The electromagnet has to be switched on
after detection and close in on a can, and has to be switched off when the robot
has reached the collection area, which also requires on-board localization. 

Figure 8.5: LabBot with colored band for detection

Figure 8.6: Can collection task
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8.3 Tracked Robots
A tracked mobile robot can be seen as a special case of a wheeled robot with
differential drive. In fact, the only difference is the robot’s better maneuvera-
bility in rough terrain and its higher friction in turns, due to its tracks and mul-
tiple points of contact with the surface.

Figure 8.7 shows EyeTrack, a model snow truck that was modified into a
mobile robot. As discussed in Section 8.2, a model car can be simply con-
nected to an EyeBot controller by driving its speed controller and steering
servo from the EyeBot instead of a remote control receiver. Normally, a
tracked vehicle would have two driving motors, one for each track. In this par-
ticular model, however, because of cost reasons there is only a single driving
motor plus a servo for steering, which brakes the left or right track. 

EyeTrack is equipped with a number of sensors required for navigating
rough terrain. Most of the sensors are mounted on the bottom of the robot. In
Figure 8.7, right, the following are visible: top: PSD sensor; middle (left to
right): digital compass, braking servo, electronic speed controller; bottom:
gyroscope. The sensors used on this robot are:

• Digital color camera
Like all our robots, EyeTrack is equipped with a camera. It is mounted
in the “driver cabin” and can be steered in all three axes by using three
servos. This allows the camera to be kept stable when combined with
the robot’s orientation sensors shown below. The camera will actively
stay locked on to a desired target, while the robot chassis is driving
over the terrain.

• Digital compass
The compass allows the determination of the robot’s orientation at all

Figure 8.7: EyeTrack robot and bottom view with sensors attached
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times. This is especially important because this robot does not have
two shaft encoders like a differential drive robot.

• Infrared PSDs
The PSDs on this robot are not just applied to the front and sides in or-
der to avoid obstacles. PSDs are also applied to the front and back at
an angle of about 45°, to detect steep slopes that the robot can only de-
scend/ascend at a very slow speed or not at all.

• Piezo gyroscopes
Two gyroscopes are used to determine to robot’s roll and pitch orien-
tation, while yaw is covered by the digital compass. Since the gyro-
scopes’ output is proportional to the rate of change, the data has to be
integrated in order to determine the current orientation.

• Digital inclinometers
Two inclinometers are used to support the two gyroscopes. The incli-
nometers used are fluid-based and return a value proportional to the ro-
bot’s orientation. Although the inclinometer data does not require
integration, there are problems with time lag and oscillation. The cur-
rent approach uses a combination of both gyroscopes and inclinome-
ters with sensor fusion in software to obtain better results.

There are numerous application scenarios for tracked robots with local
intelligence. A very important one is the use as a “rescue robot” in disaster
areas. For example, the robot could still be remote controlled and transmit a
video image and sensor data; however, it might automatically adapt the speed
according to its on-board orientation sensors, or even refuse to execute a driv-
ing command when its local sensors detect a potentially dangerous situation
like a steep decline, which could lead to the loss of the robot.

8.4 Synchro-Drive
Synchro-drive is an extension to the robot design with a single driven and
steered wheel. Here, however, we have three wheels that are all driven and all
being steered. The three wheels are rotated together so they always point in the
same driving direction (see Figure 8.8). This can be accomplished, for exam-
ple, by using a single motor and a chain for steering and a single motor for
driving all three wheels. Therefore, overall a synchro-drive robot still has only
two degrees of freedom.

A synchro-drive robot is almost a holonomous vehicle, in the sense that it
can drive in any desired direction (for this reason it usually has a cylindrical
body shape). However, the robot has to stop and realign its wheels when going
from driving forward to driving sideways. Nor can it drive and rotate at the
same time. Truly holonomous vehicles are introduced in Chapter 9. 

An example task that demonstrates the advantages of a synchro-drive is
“complete area coverage” of a robot in a given environment. The real-world
equivalent of this task is cleaning floors or vacuuming.
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A behavior-based approach has been developed to perform a goal-oriented
complete area coverage task, which has the potential to be the basis for a com-
mercial floor cleaning application. The algorithm was tested in simulation first
and thereafter ported to the synchro-drive robot Xenia for validation in a real
environment. An inexpensive and easy-to-use external laser positioning sys-
tem was developed to provide absolute position information for the robot. This
helps to eliminate any positioning errors due to local sensing, for example
through dead reckoning. By using a simple occupancy-grid representation
without any compression, the robot can “clean” a 10m×10m area using less
than 1MB of RAM. Figure 8.9 depicts the result of a typical run (without ini-
tial wall-following) in an area of 3.3m×2.3m. The photo in Figure 8.9 was
taken with an overhead camera, which explains the cushion distortion. For
details see [Kamon, Rivlin 1997], [Kasper, Fricke, von Puttkamer 1999],
[Peters et al. 2000], and [Puttkamer 2000]. 

Figure 8.8: Xenia, University of Kaiserslautern, with schematic diagrams

Figure 8.9: Result of a cleaning run, map and photo
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8.5 Ackermann Steering
The standard drive and steering system of an automobile are two combined
driven rear wheels and two combined steered front wheels. This is known as
Ackermann steering and has a number of advantages and disadvantages when
compared to differential drive:

+ Driving straight is not a problem, since the rear wheels are driven via
a common axis.

− Vehicle cannot turn on the spot, but requires a certain minimum radius.
− Rear driving wheels experience slippage in curves.

Obviously, a different driving interface is required for Ackermann steering.
Linear velocity and angular velocity are completely decoupled since they are
generated by independent motors. This makes control a lot easier, especially
the problem of driving straight. The driving library contains two independent
velocity/position controllers, one for the rear driving wheels and one for the
front steering wheels. The steering wheels require a position controller, since
they need to be set to a particular angle as opposed to the velocity controller of
the driving wheels, in order to maintain a constant rotational speed. An addi-
tional sensor is required to indicate the zero steering position for the front
wheels.

Figure 8.10 shows the “Four Stooges” robot soccer team from The Univer-
sity of Auckland, which competed in the RoboCup Robot Soccer Worldcup.
Each robot has a model car base and is equipped with an EyeBot controller and
a digital camera as its only sensor. 

Model cars Arguably, the cheapest way of building a mobile robot is to use a model car.
We retain the chassis, motors, and servos, add a number of sensors, and replace
the remote control receiver with an EyeBot controller. This gives us a ready-
to-drive mobile robot in about an hour, as for the example in Figure 8.10.

Figure 8.10: The Four Stooges, University of Auckland
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The driving motor and steering servo of the model car are now directly con-

nected to the controller and not to the receiver. However, we could retain the
receiver and connect it to additional EyeBot inputs. This would allow us to
transmit “high-level commands” to our controller from the car’s remote con-
trol.

Model car with
servo and speed

controller

Connecting a model car to an EyeBot is easy. Higher-quality model cars
usually have proper servos for steering and either a servo or an electronic
power controller for speed. Such a speed controller has the same connector and
can be accessed exactly like a servo. Instead of plugging the steering servo and
speed controller into the remote control unit, we plug them into two servo out-
puts on the EyeBot. That is all – the new autonomous vehicle is ready to go.

Driving control for steering and speed is achieved by using the command
SERVOSet. One servo channel is used for setting the driving speed (–100 ..
+100, fast backward .. stop .. fast forward), and one servo channel is used for
setting the steering angle (–100 ..  +100, full left .. straight .. full right).

Model car with
integrated

electronics

The situation is a bit more complex for small, cheap model cars. These
sometimes do not have proper servos, but for cost reasons contain a single
electronic box that comprises receiver and motor controller in a single unit.
This is still not a problem, since the EyeBot controller has two motor drivers
already built in. We just connect the motors directly to the EyeBot DC motor
drivers and read the steering sensor (usually a potentiometer) through an ana-
log input. We can then program the software equivalent of a servo by having
the EyeBot in the control loop for the steering motor.

Figure 8.11 shows the wiring details. The driving motor has two wires,
which need to be connected to the pins Motor+ and Motor– of the “Motor A”
connector of the EyeBot. The steering motor has five wires, two for the motor
and three for the position feedback. The two motor wires need to be connected
to Motor+ and Motor– of the EyeBot's “Motor B” connector. The connectors
of the feedback potentiometer need to be connected to VCC (5V) and Ground
on the analog connector, while the slider of the potentiometer is connected to a
free analog input pin. Note that some servos are only rated for 4.8V, while oth-
ers are rated for 6.0V. This has to be observed, otherwise severe motor damage
may be the consequence. 

Driving such a model car is a bit more complex than in the servo case. We
can use the library routine MOTORDrive for setting the linear speed of the driv-
ing motors. However, we need to implement a simple PID or bang-bang con-
troller for the steering motor, using the analog input from the potentiometer as
feedback, as described in Chapter 5.

The coding of the timing interrupt routine for a simple bang-bang controller
is shown in Program 8.1. Routine IRQSteer needs to be attached to the timer
interrupt and called 100 times per second in the background. This routine
allows accurate setting of the steering angle between the values –100 and
+100. However, most cheap model cars cannot position the steering that accu-
rately, probably because of substandard potentiometers. In this case, a much
reduced steering setting with only five or three values (left, straight, right) is
sufficient. 
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8.6 Drive Kinematics 
In order to obtain the vehicle’s current trajectory, we need to constantly moni-
tor both shaft encoders (for example for a vehicle with differential drive). Fig-
ure 8.12 shows the distance traveled by a robot with differential drive.

We know:
• r wheel radius
• d distance between driven wheels
• ticks_per_rev number of encoder ticks for one full wheel revolution
• ticksL number of ticks during measurement in left encoder
• ticksR number of ticks during measurement in right encoder

First we determine the values of sL and sR in meters, which are the distances
traveled by the left and right wheel, respectively. Dividing the measured ticks

Figure 8.11: Model car connection diagram with pin numbers
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Program 8.1: Model car steering control

1 #include "eyebot.h"
2 #define STEER_CHANNEL 2
3 MotorHandle MSteer;
4 int steer_angle; /* set by application program */
5
6 void IRQSteer() 
7 { int steer_current,ad_current;
8 ad_current=OSGetAD(STEER_CHANNEL);
9   steer_current=(ad_current-400)/3-100;

10   if (steer_angle-steer_current >  10)
11 MOTORDrive(MSteer,  75);
12 else if (steer_angle-steer_current < -10)
13 MOTORDrive(MSteer, -75);
14 else MOTORDrive(MSteer, 0);
15 }
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by the number of ticks per revolution gives us the number of wheel revolu-
tions. Multiplying this by the wheel circumference gives the traveled distance
in meters:

sL = 2π·r · ticksL / ticks_per_rev
sR = 2π·r · ticksR / ticks_per_rev 

So we already know the distance the vehicle has traveled, i.e.:
s = (sL + sR) / 2
This formula works for a robot driving forward, backward, or turning on the

spot. We still need to know the vehicle’s rotation ϕ over the distance traveled.
Assuming the vehicle follows a circular segment, we can define sL and sR as
the traveled part of a full circle (ϕ in radians) multiplied by each wheel’s turn-
ing radius. If the turning radius of the vehicle’s center is c, then during a left
turn the turning radius of the right wheel is c + d/2, while the turning radius of
the left wheel is c – d/2. Both circles have the same center.

sR = ϕ · (c + d/2)
sL = ϕ · (c – d/2)
Subtracting both equations eliminates c:
sR – sL = ϕ · d
And finally solving for ϕ:
ϕ = (sR – sL) / d

Using wheel velocities vL,R instead of driving distances sL,R and using
 as wheel rotations per second with radius r for left and right wheel, we

get:
vR = 2πr ·

vL = 2πr ·

Figure 8.12: Trajectory calculation for differential drive
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Kinematics
differential drive

The formula specifying the velocities of a differential drive vehicle can now
be expressed as a matrix. This is called the forward kinematics:

where:
v is the vehicle’s linear speed (equals ds/dt or ),
ω is the vehicle’s rotational speed (equals  or ),

are the individual wheel speeds in revolutions per second,
r is the wheel radius,
d is the distance between the two wheels.

Inverse
kinematics

The inverse kinematics is derived from the previous formula, solving for
the individual wheel speeds. It tells us the required wheel speeds for a desired
vehicle motion (linear and rotational speed). We can find the inverse kinemat-
ics by inverting the 2×2 matrix of the forward kinematics:

Kinematics
Ackermann drive

If we consider the motion in a vehicle with Ackermann steering, then its
front wheel motion is identical with the vehicle’s forward motion s in the
direction of the wheels. It is also easy to see (Figure 8.13) that the vehicle’s
overall forward and downward motion (resulting in its rotation) is given by:

forward = s · cos α
down = s · sin α 
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Figure 8.13: Motion of vehicle with Ackermann steering
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If e denotes the distance between front and back wheels, then the overall

vehicle rotation angle is ϕ = down / e since the front wheels follow the arc of
a circle when turning.

The calculation for the traveled distance and angle of a vehicle with Acker-
mann drive vehicle is shown in Figure 8.14, with:

α steering angle,
e distance between front and back wheels,
sfront distance driven, measured at front wheels,

driving wheel speed in revolutions per second,
s total driven distance along arc,
ϕ total vehicle rotation angle 

The trigonometric relationship between the vehicle’s steering angle and
overall movement is:

s = sfront
ϕ = sfront · sin α / e

Expressing this relationship as velocities, we get:
vforward = vmotor = 
ω = vmotor · sin α / e

Therefore, the kinematics formula becomes relatively simple:

Note that this formula changes if the vehicle is rear-wheel driven and the
wheel velocity is measured there. In this case the sin function has to be
replaced by the tan function.

θ·

Figure 8.14: Trajectory calculation for Ackermann steering
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OMNI-DIRECTIONAL 
. . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ROBOTS

ll the robots introduced in Chapter 8, with the exception of syncro-
drive vehicles, have the same deficiency: they cannot drive in all
possible directions. For this reason, these robots are called “non-

holonomic”. In contrast, a “holonomic” or omni-directional robot is capable of
driving in any direction. Most non-holonomic robots cannot drive in a direc-
tion perpendicular to their driven wheels. For example, a differential drive ro-
bot can drive forward/backward, in a curve, or turn on the spot, but it cannot
drive sideways. The omni-directional robots introduced in this chapter, howev-
er, are capable of driving in any direction in a 2D plane.

9.1 Mecanum Wheels
The marvel behind the omni-directional drive design presented in this chapter
are Mecanum wheels. This wheel design has been developed and patented by
the Swedish company Mecanum AB with Bengt Ilon in 1973 [Jonsson 1987],
so it has been around for quite a while. Further details on Mecanum wheels
and omni-directional drives can be found in [Carlisle 1983], [Agullo, Cardona,
Vivancos 1987], and [Dickerson, Lapin 1991].  

Figure 9.1: Mecanum wheel designs with rollers at 45°
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There are a number of different Mecanum wheel variations; Figure 9.1
shows two of our designs. Each wheel’s surface is covered with a number of
free rolling cylinders. It is important to stress that the wheel hub is driven by a
motor, but the rollers on the wheel surface are not. These are held in place by
ball-bearings and can freely rotate about their axis. While the wheels in Figure
9.1 have the rollers at +/– 45° and there is a left-hand and a right-hand version
of this wheel type, there are also Mecanum wheels with rollers set at 90° (Fig-
ure 9.2), and these do not require left-hand/right-hand versions.

A Mecanum-based robot can be constructed with either three or four inde-
pendently driven Mecanum wheels. Vehicle designs with three Mecanum
wheels require wheels with rollers set at 90° to the wheel axis, while the design
we are following here is based on four Mecanum wheels and requires the roll-
ers to be at an angle of 45° to the wheel axis. For the construction of a robot
with four Mecanum wheels, two left-handed wheels (rollers at +45° to the
wheel axis) and two right-handed wheels (rollers at –45° to the wheel axis) are
required (see Figure 9.3).  

Figure 9.2: Mecanum wheel designs with rollers at 90°

Figure 9.3: 3-wheel and 4-wheel omni-directional vehicles
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Although the rollers are freely rotating, this does not mean the robot is spin-
ning its wheels and not moving. This would only be the case if the rollers were
placed parallel to the wheel axis. However, our Mecanum wheels have the roll-
ers placed at an angle (45° in Figure 9.1). Looking at an individual wheel (Fig-
ure 9.4, view from the bottom through a “glass floor”), the force generated by
the wheel rotation acts on the ground through the one roller that has ground
contact. At this roller, the force can be split in a vector parallel to the roller axis
and a vector perpendicular to the roller axis. The force perpendicular to the
roller axis will result in a small roller rotation, while the force parallel to the
roller axis will exert a force on the wheel and thereby on the vehicle.

Since Mecanum wheels do not appear individually, but e.g. in a four wheel
assembly, the resulting wheel forces at 45° from each wheel have to be com-
bined to determine the overall vehicle motion. If the two wheels shown in Fig-
ure 9.4 are the robot’s front wheels and both are rotated forward, then each of
the two resulting 45° force vectors can be split into a forward and a sideways
force. The two forward forces add up, while the two sideways forces (one to
the left and one to the right) cancel each other out. 

9.2 Omni-Directional Drive
Figure 9.5, left, shows the situation for the full robot with four independently
driven Mecanum wheels. In the same situation as before, i.e. all four wheels
being driven forward, we now have four vectors pointing forward that are
added up and four vectors pointing sideways, two to the left and two to the
right, that cancel each other out. Therefore, although the vehicle’s chassis is
subjected to additional perpendicular forces, the vehicle will simply drive
straight forward.

In Figure 9.5, right, assume wheels 1 and 4 are driven backward, and
wheels 2 and 4 are driven forward. In this case, all forward/backward veloci-

Figure 9.4: Mecanum principle, vector decomposition

left-hand wheel right-hand wheel
seen from below seen from below
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ties cancel each other out, but the four vector components to the left add up
and let the vehicle slide to the left.

The third case is shown in Figure 9.6. No vector decomposition is necessary
in this case to reveal the overall vehicle motion. It can be clearly seen that the
robot motion will be a clockwise rotation about its center. 

Figure 9.5: Mecanum principle, driving forward and sliding sideways;
dark wheels rotate forward, bright wheels backward (seen from below)
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Figure 9.6: Mecanum principle, turning clockwise (seen from below)
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The following list shows the basic motions, driving forward, driving side-
ways, and turning on the spot, with their corresponding wheel directions (see
Figure 9.7).

• Driving forward: all four wheels forward
• Driving backward: all four wheels backward
• Sliding left: 1, 4: backward; 2, 3: forward
• Sliding right: 1, 4: forward; 2. 3: backward
• Turning clockwise on the spot: 1, 3: forward; 2, 4: backward
• Turning counter-clockwise: 1, 3: backward; 2, 4: forward

So far, we have only considered a Mecanum wheel spinning at full speed
forward or backward. However, by varying the individual wheel speeds and by
adding linear interpolations of basic movements, we can achieve driving direc-
tions along any vector in the 2D plane.

9.3 Kinematics
Forward

kinematics
The forward kinematics is a matrix formula that specifies which direction the
robot will drive in (linear velocity vx along the robot’s center axis, vy perpen-
dicular to it) and what its rotational velocity ω will be for given individual
wheel speeds , ..,  and wheels distances d (left/right) and e (front/
back): 

with:
, etc. four individual wheel speeds in revolutions per second,

r wheel radius,
d distance between left and right wheel pairs,

Figure 9.7: Kinematics of omni-directional robot
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e distance between front and back wheel pairs,
vx vehicle velocity in forward direction,
vy vehicle velocity in sideways direction,
ω vehicle rotational velocity.

Inverse
kinematics

The inverse kinematics is a matrix formula that specifies the required indi-
vidual wheel speeds for given desired linear and angular velocity (vx, vy, ω)
and can be derived by inverting the matrix of the forward kinematics [Viboon-
chaicheep, Shimada, Kosaka 2003]. 

9.4 Omni-Directional Robot Design
We have so far developed three different Mecanum-based omni-directional
robots, the demonstrator models Omni-1 (Figure 9.8, left), Omni-2 (Figure 9.8,
right), and the full size omni-directional wheelchair (Figure 9.9). 

The first design, Omni-1, has the motor/wheel assembly tightly attached to
the robot’s chassis. Its Mecanum wheel design has rims that only leave a few
millimeters clearance for the rollers. As a consequence, the robot can drive
very well on hard surfaces, but it loses its omni-directional capabilities on
softer surfaces like carpet. Here, the wheels will sink in a bit and the robot will
then drive on the wheel rims, losing its capability to drive sideways. 
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Figure 9.8: Omni-1 and Omni-2
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The deficiencies of Omni-1 led to the development of Omni-2. This robot
first of all has individual cantilever wheel suspensions with shock absorbers.
This helps to navigate rougher terrain, since it will keep all wheels on the
ground. Secondly, the robot has a completely rimless Mecanum wheel design,
which avoids sinking in and allows omni-directional driving on softer sur-
faces.

After experimenting with the scaled models we built a full size omni-direc-
tional wheelchair using the more robust rimmed Mecanum wheel design. The
wheelchair has been constructed for a payload of 100kg and uses four power-
ful controlled by an EyeBot embedded system through external power amplifi-
ers. The wheelchair can be driven via a joystick with three degrees of freedom
(dof), which are forward/backward (driving forward/backward), left/right (for
sliding sideways), and rotational torque left/right (for rotating the wheelchair
left/right), or any combination of the three commands. 

We have developed a driver-assistance system for this wheelchair to sim-
plify navigation for severely handicapped drivers [Woods 2006]. The wheel-
chair is equipped some two buttons, which will initiate driving through a nar-
row doorway (e.g. entering of leaving a lift) or driving along a hallway (wall
following and avoiding obstacles), respectively. The wheelchair has been
equipped with a number of infrared sensors to be able to execute these semi-
autonomous tasks. Any joystick input will override and stop the semi-autono-
mous operation and an emergency switch will bring it to a full stop.  

Figure 9.9: Wheelchair simulation and CAD design [Woods 2006]
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9.5 Driving Program

Extending the
vω interface

Operating the omni-directional robots obviously requires an extended driving
interface. The vω routines for differential drive or Ackermann-steering robots
are not sufficient, since we also need to specify a vector for the driving direc-
tion in addition to a possible rotation direction. Also, for an omni-directional
robot it is possible to drive along a vector and rotate at the same time, which
has to be reflected by the software interface. The extended library routines are:

int OMNIDriveStraight(VWHandle handle, meter distance,
meterPerSec v, radians direction);

int OMNIDriveTurn(VWHandle handle, meter delta1,
radians direction, radians delta_phi,
meterPerSec v, radPerSec w);

int OMNITurnSpot(VWHandle handele, radians delta_phi,
radPerSec w);

The code example in Program 9.1, however, does not use this high-level
driving interface. Instead it shows as an example how to set individual wheel
speeds to achieve the basic omni-directional driving actions: forward/back-
ward, sideways, and turning on the spot. 

Figure 9.10: Omni-directional wheelchair [Woods 2006]
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Program 9.1: Omni-directional driving (excerpt)

1 LCDPutString("Forward\n");
2 MOTORDrive (motor_fl, 60);
3 MOTORDrive (motor_fr, 60);
4 MOTORDrive (motor_bl, 60);
5 MOTORDrive (motor_br, 60);
6 OSWait(300);
7 LCDPutString("Reverse\n");
8 MOTORDrive (motor_fl,-60);
9 MOTORDrive (motor_fr,-60);

10 MOTORDrive (motor_bl,-60);
11 MOTORDrive (motor_br,-60);
12 OSWait(300);
13 LCDPutString("Slide-L\n");
14 MOTORDrive (motor_fl,-60);
15 MOTORDrive (motor_fr, 60);
16 MOTORDrive (motor_bl, 60);
17 MOTORDrive (motor_br,-60);
18 OSWait(300);
19 LCDPutString("Turn-Clock\n");
20 MOTORDrive (motor_fl, 60);
21 MOTORDrive (motor_fr,-60);
22 MOTORDrive (motor_bl, 60);
23 MOTORDrive (motor_br,-60);
24 OSWait(300);
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BALANCING ROBOTS

alancing robots have recently gained popularity with the introduction
of the commercial Segway vehicle [Segway 2006]; however, many
similar vehicles have been developed before. Most balancing robots

are based on the inverted pendulum principle and have either wheels or legs.
They can be studied in their own right or as a precursor for biped walking
robots (see Chapter 11), for example to experiment with individual sensors or
actuators. Inverted pendulum models have been used as the basis of a number
of bipedal walking strategies: [Caux, Mateo, Zapata 1998], [Kajita, Tani
1996], [Ogasawara, Kawaji 1999], and [Park, Kim 1998]. The dynamics can
be constrained to two dimensions and the cost of producing an inverted pendu-
lum robot is relatively low, since it has a minimal number of moving parts.

10.1 Simulation
A software simulation of a balancing robot is used as a tool for testing control
strategies under known conditions of simulated sensor noise and accuracy. The
model has been implemented as an ActiveX control, a software architecture
that is designed to facilitate binary code reuse. Implementing the system model
in this way means that we have a simple-to-use component providing a real-
time visual representation of the system’s state (Figure 10.1). 

The system model driving the simulation can cope with alternative robot
structures. For example, the effects of changing the robot’s length or its weight
structure by moving the position of the controller can be studied. These will
impact on both the robot’s center of mass and its moment of inertia.

Software simulation can be used to investigate techniques for control sys-
tems that balance inverted pendulums. The first method investigated was an
adaptive control system, based on a backpropagation neural network, which
learns to balance the simulation with feedback limited to a single failure signal
when the robot falls over. Disadvantages of this approach include the require-
ment for a large number of training cycles before satisfactory performance is
obtained. Additionally, once the network has been trained, it is not possible to
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make quick manual changes to the operation of the controller. For these rea-
sons, we selected a different control strategy for the physical robot.

An alternative approach is to use a simple PD control loop, of the form:
u(k) = [W]·[X(k)]
where:
u(k) Horizontal force applied by motors to the ground.
X(k) k-th measurement of the system state.
W Weight vector applied to measured robot state. 
Tuning of the control loop was performed manually, using the software sim-

ulation to observe the effect of modifying loop parameters. This approach
quickly yielded a satisfactory solution in the software model, and was selected
for implementation on the physical robot [Sutherland 2006].

10.2 Inverted Pendulum Robot

Inverted
pendulum

The physical balancing robot is an inverted pendulum with two independently
driven motors, to allow for balancing, as well as driving straight and turning
(Figure 10.2). Tilt sensors, inclinometers, accelerometers, gyroscopes, and dig-
ital cameras are used for experimenting with this robot and are discussed
below. 

• Gyroscope (Hitec GY-130)
This is a piezo-electric gyroscope designed for use in remote control-
led vehicles, such as model helicopters. The gyroscope modifies a ser-
vo control signal by an amount proportional to its measure of angular
velocity. Instead of using the gyro to control a servo, we read back the
modified servo signal to obtain a measurement of angular velocity. An
estimate of angular displacement is obtained by integrating the veloc-
ity signal over time. 

Figure 10.1: Simulation system [Sutherland 2006]
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• Acceleration sensors (Analog Devices ADXL05)
These sensors output an analog signal, proportional to the acceleration
in the direction of the sensor’s axis of sensitivity. Mounting two accel-
eration sensors at 90° angles means that we can measure the transla-
tional acceleration experienced by the sensors in the plane through
which the robot moves. Since gravity provides a significant compo-
nent of this acceleration, we are able to estimate the orientation of the
robot.

• Inclinometer (Seika N3)
An inclinometer is used to support the gyroscope. Although the incli-
nometer cannot be used alone because of its time lag, it can be used to
reset the software integration of the gyroscope data when the robot is
close to resting in an upright position.

• Digital camera (EyeCam C2)
Experiments have been conducted in using an artificial horizon or,
more generally, the optical flow of the visual field to determine the ro-
bot’s trajectory and use this for balancing (see also Chapter 11). 

Figure 10.2: BallyBot balancing robot

Variable Description Sensor

x Position Shaft encoders
v Velocity Differentiated encoder reading
Θ Angle Integrated gyroscope reading
ω Angular velocity Gyroscope

Table 10.1: State variables
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The PD control strategy selected for implementation on the physical robot

requires the measurement of four state variables: {x, v, Θ, ω}, see Table 10.1. 
An implementation relying on the gyroscope alone does not completely

solve the problem of balancing the physical robot, remaining balanced on
average for 5–15 seconds before falling over. This is an encouraging initial
result, but it is still not a robust system. The system’s balancing was greatly
improved by adding an inclinometer to the robot. Although the robot was not
able to balance with the inclinometer alone, because of inaccuracies and the
time lag of the sensor, the combination of inclinometer and gyroscope proved
to be the best solution. While the integrated data of the gyroscope gives accu-
rate short-term orientation data, the inclinometer is used to recalibrate the
robot’s orientation value as well as the gyroscope’s zero position at certain
time intervals when the robot is moving at a low speed.

Gyro drift A number of problems have been encountered with the sensors used. Over
time, and especially in the first 15 minutes of operation, the observed “zero
velocity” signal received from the gyroscope can deviate (Figure 10.3). This
means that not only does our estimate of the angular velocity become inaccu-
rate, but since our estimate of the angle is the integrated signal, it becomes
inaccurate as well. 

Motor force The control system assumes that it is possible to accurately generate a hori-
zontal force using the robot’s motors. The force produced by the motors is
related to the voltage applied, as well as the current shaft speed and friction.
This relationship was experimentally determined and includes some simplifi-
cation and generalization.

Wheel slippage In certain situations, the robot needs to generate considerable horizontal
force to maintain balance. On some surfaces this force can exceed the fric-
tional force between the robot tires and the ground. When this happens, the
robot loses track of its displacement, and the control loop no longer generates
the correct output. This can be observed by sudden, unexpected changes in the
robot displacement measurements.

Program 10.1 is an excerpt from the balancing program. It shows the peri-
odic timer routine for reading sensor values and updating the system state.

Figure 10.3: Measurement data revealing gyro drift
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Details of this control approach are described in [Sutherland, Bräunl 2001] and
[Sutherland, Bräunl 2002].  

Second
balancing robot

A second two-wheel balancing robot had been built in a later project [Ooi
2003], Figure 10.4. Like the first robot it uses a gyroscope and inclinometer as
sensors, but it employs a Kalman filter method for balancing [Kalman 1960],
[Del Gobbo, Napolitano, Famouri, Innocenti 2001]. A number of Kalman-
based control algorithms have been implemented and compared with each
other, including a pole-placement controller and a Linear Quadratic Regulator
(LQR) [Nakajima, Tsubouchi, Yuta, Koyanagi 1997], [Takahashi, Ishikawa,
Hagiwara 2001]. An overview of the robot’s control system from [Ooi 2003] is
shown in Figure 10.5.

The robot also accepts driving commands from an infrared remote control,
which are interpreted as a bias by the balance control system. They are used to
drive the robot forward/backward or turn left/right on the spot. 

Program 10.1: Balance timer routine

1 void CGyro::TimerSample()
2 { ...
3 iAngVel = accreadX();
4 if (iAngVel > -1)
5 {
6 iAngVel = iAngVel;
7  // Get the elapsed time
8  iTimeNow = OSGetCount();
9  iElapsed = iTimeNow - g_iSampleTime;

10  // Correct elapsed time if rolled over!
11  if (iElapsed < 0) iElapsed += 0xFFFFFFFF; // ROLL OVER
12  // Correct the angular velocity
13  iAngVel -= g_iZeroVelocity;
14  // Calculate angular displacement
15  g_iAngle += (g_iAngularVelocity * iElapsed);
16  g_iAngularVelocity = -iAngVel;
17  g_iSampleTime = iTimeNow;
18  // Read inclinometer (drain residual values)
19  iRawADReading = OSGetAD(INCLINE_CHANNEL);
20  iRawADReading = OSGetAD(INCLINE_CHANNEL);
21  // If recording, and we have started...store data
22  if (g_iTimeLastCalibrated > 0)
23  { ... /* re-calibrate sensor */
24  }
25 }
26 // If correction factor remaining to apply, apply it!
27 if (g_iGyroAngleCorrection > 0)
28 { g_iGyroAngleCorrection -= g_iGyroAngleCorrectionDelta;
29 g_iAngle -= g_iGyroAngleCorrectionDelta;
30 }
31 }
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10.3 Double Inverted Pendulum
Another design is taking the inverted pendulum approach one step further by
replacing the two wheels with four independent leg joints. This gives us the
equivalent of a double inverted pendulum; however, with two independent legs
controlled by two motors each, we can do more than balancing – we can walk.

Dingo The double inverted pendulum robot Dingo is very close to a walking robot,
but its movements are constrained in a 2D plane. All sideways motions can be
ignored, since the robot has long, bar-shaped feet, which it must lift over each
other. Since each foot has only a minimal contact area with the ground, the
robot has to be constantly in motion to maintain balance.

Figure 10.4: Second balancing robot design

Figure 10.5: Kalman-based control system [Ooi 2003]
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Figure 10.6 shows the robot schematics and the physical robot. The robot
uses the same sensor equipment as BallyBot, namely an inclinometer and a
gyroscope. 
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WALKING ROBOTS

alking robots are an important alternative to driving robots, since
the majority of the world’s land area is unpaved. Although driving
robots are more specialized and better adapted to flat surfaces –

they can drive faster and navigate with higher precision – walking robots can
be employed in more general environments. Walking robots follow nature by
being able to navigate rough terrain, or even climb stairs or over obstacles in a
standard household situation, which would rule out most driving robots.

Robots with six or more legs have the advantage of stability. In a typical
walking pattern of a six-legged robot, three legs are on the ground at all times,
while three legs are moving. This gives static balance while walking, provided
the robot’s center of mass is within the triangle formed by the three legs on the
ground. Four-legged robots are considerably harder to balance, but are still
fairly simple when compared to the dynamics of biped robots. Biped robots are
the most difficult to balance, with only one leg on the ground and one leg in
the air during walking. Static balance for biped robots can be achieved if the
robot’s feet are relatively large and the ground contact areas of both feet are
overlapping. However, this is not the case in human-like “android” robots,
which require dynamic balance for walking.

A collection of related research papers can be found in [Rückert, Sitte,
Witkowski 2001] and [Cho, Lee 2002].

11.1 Six-Legged Robot Design
Figure 11.1 shows two different six-legged robot designs. The “Crab” robot
was built from scratch, while “Hexapod” utilizes walking mechanics from
Lynxmotion in combination with an EyeBot controller and additional sensors.

The two robots differ in their mechanical designs, which might not be rec-
ognized from the photos. Both robots are using two servos (see Section 4.5)
per leg, to achieve leg lift (up/down) and leg swing (forward/backward)
motion. However, Crab uses a mechanism that allows all servos to be firmly
mounted on the robot’s main chassis, while Hexapod only has the swing ser-
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vos mounted to the robot body; the lift servos are mounted on small sub-
assemblies, which are moved with each leg.

The second major difference is in sensor equipment. While Crab uses sonar
sensors with a considerable amount of purpose-built electronics, Hexapod uses
infrared PSD sensors for obstacle detection. These can be directly interfaced to
the EyeBot without any additional electronic circuitry. 

Program 11.1 shows a very simple program generating a walking pattern for
a six-legged robot. Since the same EyeCon controller and the same RoBIOS
operating system are used for driving and walking robots, the robot’s HDT
(Hardware Description Table) has to be adapted to match the robot’s physical
appearance with corresponding actuator and sensor equipment.  

Data structures like GaitForward contain the actual positioning data for a
gait. In this case it is six key frames for moving one full cycle for all legs.
Function gait (see Program 11.2) then uses this data structure to “step
through” these six individual key frame positions by subsequent calls of
move_joint.

Function move_joint moves all the robot’s 12 joints from one position to
the next position using key frame averaging. For each of these iterations, new
positions for all 12 leg joints are calculated and sent to the servos. Then a cer-
tain delay time is waited before the routine proceeds, in order to give the ser-
vos time to assume the specified positions.

Figure 11.1: Crab six-legged walking robot, Univ. Stuttgart, 
and Lynxmotion Hexapod base with EyeCon, Univ. Stuttgart
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Program 11.1: Six-legged gait settings

1 #include "eyebot.h"
2 ServoHandle servohandles[12];
3 int semas[12]= {SER_LFUD, SER_LFFB, SER_RFUD, SER_RFFB,
4 SER_LMUD, SER_LMFB, SER_RMUD, SER_RMFB,
5 SER_LRUD, SER_LRFB, SER_RRUD, SER_RRFB};
6 #define MAXF  50
7 #define MAXU  60
8 #define CNTR 128      
9 #define UP (CNTR+MAXU)

10 #define DN (CNTR-MAXU)
11 #define FW (CNTR-MAXF)
12 #define BK (CNTR+MAXF)
13 #define GaitForwardSize 6
14 int GaitForward[GaitForwardSize][12]= {
15 {DN,FW, UP,BK, UP,BK, DN,FW, DN,FW, UP,BK},
16  {DN,FW, DN,BK, DN,BK, DN,FW, DN,FW, DN,BK},
17  {UD,FW, DN,BK, DN,BK, UP,FW, UP,FW, DN,BK},
18  {UP,BK, DN,FW, DN,FW, UP,BK, UP,BK, DN,FW},
19  {DN,BK, DN,FW, DN,FW, DN,BK, DN,BK, DN,FW},
20  {DN,BK, UP,FW, UP,FW, DN,BK, DN,BK, UP,FW},
21 };
22 #define GaitTurnRightSize 6
23 int GaitRight[GaitTurnRightSize][12]= { ...};
24 #define GaitTurnLeftSize 6
25 int GaitLeft[GaitTurnLeftSize][12]= { ...};
26 int PosInit[12]=
27  {CT,CT, CT,CT, CT,CT, CT,CT, CT,CT, CT,CT};

Program 11.2: Walking routines

1 void move_joint(int pos1[12], int pos2[12], int speed)
2 { int i, servo, steps = 50;
3 float size[12];
4 for (servo=0; servo<NumServos; servo++)
5     size[servo] = (float) (pos2[servo]-pos1[servo]) /
6 (float) steps;
7 for (i=0;i<steps;i++)
8   { for(servo=0; servo<NumServos; servo++)
9       SERVOSet(servohandles[servo], pos1[servo]+

10 (int)((float) i *size[servo]));
11     OSWait(10/speed);
12   }
13 } 

1 void gait(int g[][12], int size, int speed)
2 { int i;
3   for (i=0; i<size; i++)
4     move_joint(g[i], g[(i+1)%size], speed);
5 }
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11.2 Biped Robot Design
Finally, we get to robots that resemble what most people think of when hearing
the term “robot”. These are biped walking robots, often also called “humanoid
robots” or “android robots” because of their resemblance to human beings. 

Our first attempts at humanoid robot design were the two robots Johnny
Walker and Jack Daniels, built in 1998 and named because of their struggle to
maintain balance during walking (see Figure 11.2, [Nicholls 1998]). Our goal
was humanoid robot design and control with limited funds. We used servos as
actuators, linked in an aluminum U-profile. Although servos are very easily
interfaced to the EyeBot controller and do not require an explicit feedback
loop, it is exactly this feature (their built-in hardwired feedback loop and lack
of external feedback) which causes most control problems. Without feedback
sensors from the joints it is not possible to measure joint positions or joint
torques.

These first-generation robots were equipped with foot switches (micro-
switches and binary infrared distance switches) and two-axes accelerometers
in the hips. Like all of our other robots, both Johnny and Jack are completely
autonomous robots, not requiring any umbilical cords or “remote brains”. Each
robot carries an EyeBot controller as on-board intelligence and a set of
rechargeable batteries for power.

The mechanical structure of Johnny has nine degrees of freedom (dof), four
per leg plus one in the torso. Jack has eleven dof, two more for its arms. Each
of the robots has four dof per leg. Three servos are used to bend the leg at the
ankle, knee, and hip joints, all in the same plane. One servo is used to turn the

Figure 11.2: Johnny and Jack humanoid robots, UWA
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leg in the hip, in order to allow the robot to turn. Both robots have an addi-
tional dof for bending the torso sideways as a counterweight. Jack is also
equipped with arms, a single dof per arm enabling it to swing its arms, either
for balance or for touching any objects.

A second-generation humanoid robot is Andy Droid, developed by InroSoft
(see Figure 11.3). This robot differs from the first-generation design in a
number of ways [Bräunl, Sutherland, Unkelbach 2002]:

• Five dof per leg
Allowing the robot to bend the leg and also to lean sideways.

• Lightweight design
Using the minimum amount of aluminum and steel to reduce weight.

• Separate power supplies for controller and motors
To eliminate incorrect sensor readings due to high currents and voltage
fluctuations during walking. 

Figure 11.3, left, shows Andy without its arms and head, but with its second
generation foot design. Each foot consists of three adjustable toes, each
equipped with a strain gauge. With this sensor feedback, the on-board control-
ler can directly determine the robot’s pressure point over each foot’s support
area and therefore immediately counteract to an imbalance or adjust the walk-
ing gait parameters (Figure 11.3, right, [Zimmermann 2004]).

Andy has a total of 13 dof, five per leg, one per arm, and one optional dof
for the camera head. The robot’s five dof per leg comprise three servos for
bending the leg at the ankle, knee, and hips joints, all in the same plane (same
as for Johnny). Two additional servos per leg are used to bend each leg side-

Figure 11.3: Andy Droid humanoid robot
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ways in the ankle and hip position, allowing the robot to lean sideways while
keeping the torso level. There is no servo for turning a leg in the hip. The turn-
ing motion can still be achieved by different step lengths of left and right leg.
An additional dof per arm allows swinging of the arms. Andy is 39cm tall and
weighs approximately 1kg without batteries [Bräunl 2000], [Montgomery
2001], [Sutherland, Bräunl 2001], [Bräunl, Sutherland, Unkelbach 2002].

Digital servos Andy 2 from InroSoft (Figure 11.4) is the successor robot of Andy Droid.
Instead of analog servos it uses digital servos that serve as both actuators and
sensors. These digital servos are connected via RS232 and are daisy-chained,
so a single serial port is sufficient to control all servos. Instead of pulse width
modulation (PWM) signals, the digital servos receive commands as an ASCII
sequence, including the individual servo number or a broadcast command.
This further reduces the load on the controller and generally simplifies opera-
tion. The digital servos can act as sensors, returning position and electrical cur-
rent data when being sent the appropriate command sequence. 

Figure 11.5 visualizes feedback uploaded from the digital servos, showing
the robot’s joint positions and electrical currents (directly related to joint
torque) during a walking gait [Harada 2006]. High current (torque) joints are
color-coded, so problem areas like the robot’s right hip servo in the figure can
be detected. 

A sample robot motion program without using any sensor feedback is
shown in Program 11.3 (main) and Program 11.4 (move subroutine). This pro-
gram for the Johnny/Jack servo arrangement demonstrates the robot’s move-
ments by letting it execute some squat exercises, continuously bending both
knees and standing up straight again.   

Figure 11.4: Andy 2 humanoid robot
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Program 11.3: Robot gymnastics – main

1 int main()
2 { int i, delay=2;
3 typedef enum{rHipT,rHipB,rKnee,rAnkle, torso,
4 lAnkle,lKnee,lHipB,lHipT} link;
5   int up [9] = {127,127,127,127,127,127,127,127,127};
6 int down[9] = {127, 80,200, 80,127,200, 80,200,127};
7
8 /* init servos */
9   serv[0]=SERVOInit(RHipT);  serv[1]=SERVOInit(RHipB);  

10   serv[2]=SERVOInit(RKnee);  serv[3]=SERVOInit(RAnkle);  
11   serv[4]=SERVOInit(Torso);  
12   serv[5]=SERVOInit(LAnkle); serv[6]=SERVOInit(LKnee);  
13   serv[7]=SERVOInit(LHipB);  serv[8]=SERVOInit(LHipT);  
14 /* put servos in up position */
15   LCDPutString("Servos up-pos..\n");
16   for(i=0;i<9;i++) SERVOSet(serv[i],up[i]);
17 LCDMenu(""," "," ","END");
18
19 while (KEYRead() != KEY4) /* exercise until key press */
20   { move(up,down, delay);   /* move legs in bent pos.*/
21     move(down,up, delay);   /* move legs straight */
22 }
23
24   /* release servo handles */
25   SERVORelease(RHipT);  SERVORelease(RHipB);  
26   SERVORelease(RKnee);  SERVORelease(RAnkle);  
27   SERVORelease(Torso);  
28   SERVORelease(LAnkle); SERVORelease(LKnee);  
29   SERVORelease(LHipB);  SERVORelease(LHipT);  
30   return 0;
31 }

Program 11.4: Robot gymnastics – move

1 void move(int old[], int new[], int delay)
2 { int i,j; /* using int constant STEPS */
3 float now[9], diff[9];
4
5   for (j=0; j<9; j++) /* update all servo positions */
6 { now[j]  = (float) old[j];
7 diff[j] = (float) (new[j]-old[j]) / (float) STEPS;
8 }
9 for (i=0; i<STEPS; i++) /* move servos to new pos.*/

10   { for (j=0; j<9; j++)
11     { now[j] +=  diff[j];
12 SERVOSet(serv[j], (int) now[j]);
13 }
14 OSWait(delay);
15   }
16 }
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The main program comprises four steps:
• Initializing all servos.
• Setting all servos to the “up” position.
• Looping between “up” and “down” until keypress.
• Releasing all servos.

Robot configurations like “up” and “down” are stored as arrays with one
integer value per dof of the robot (nine in this example). They are passed as
parameters to the subroutine “move”, which drives the robot servos to the
desired positions by incrementally setting the servos to a number of intermedi-
ate positions.

Subroutine “move” uses local arrays for the current position (now) and the
individual servo increment (diff). These values are calculated once. Then for
a pre-determined constant number of steps, all servos are set to their next
incremental position. An OSWait statement between loop iterations gives the
servos some time to actually drive to their new positions.

11.3 Sensors for Walking Robots
Sensor feedback is the foundation of dynamic balance and biped walking in
general. This is why we put quite some emphasis on the selection of suitable
sensors and their use in controlling a robot. On the other hand, there are a
number of biped robot developments made elsewhere, which do not use any
sensors at all and rely solely on a stable mechanical design with a large support
area for balancing and walking.

Figure 11.5: Visualization of servo sensor data [Harada 2006]
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Our humanoid robot design, Andy, uses the following sensors for balancing:
• Infrared proximity sensors in feet

Using two sensors per foot, these give feedback on whether the heel or
the toe has contact with the ground.

• Strain gauges in feet
Each foot comprises three toes of variable length with exactly one con-
tact point. This allows experimenting with different foot sizes. One
strain gauge per toe allows calculation of foot torques including the
“zero moment point” (see Section 11.5).

• Acceleration sensors
Using acceleration sensors in two axes to measure dynamic forces on
the robot, in order to balance it.

• Piezo gyroscopes
Two gyroscopes are used as an alternative to acceleration sensors,
which are subject to high-frequency servo noise. Since gyroscopes
only return the change in acceleration, their values have to be integrat-
ed to maintain the overall orientation.

• Inclinometer
Two inclinometers are used to support the gyroscopes. Although incli-
nometers cannot be used alone because of their time lag, they can be
used to eliminate sensor drift and integration errors of the gyroscopes.

In addition, Andy uses the following sensors for navigation:
• Infrared PSDs

With these sensors placed on the robot’s hips in the directions forward,
left, and right, the robot can sense surrounding obstacles.

• Digital camera
The camera in the robot’s head can be used in two ways, either to sup-
port balancing (see “artificial horizon” approach in Section 11.5) or
for detecting objects, walking paths, etc.

Acceleration sensors for two axes are the main sensors for balancing and
walking. These sensors return values depending on the current acceleration in
one of two axes, depending on the mounting angle. When a robot is moving
only slowly, the sensor readings correspond to the robot’s relative attitude, i.e.
leaning forward/backward or left/right. Sensor input from the infrared sensors
and acceleration sensors is used as feedback for the control algorithm for bal-
ancing and walking.
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11.4 Static Balance
There are two modes of walking:

• Static balance
The robot’s center of mass is at all times within the support area of its
foot on the ground – or the combined support area of its two feet (con-
vex hull), if both feet are on the ground.

• Dynamic balance
The robot’s center of mass may be outside the support area of its feet
during a phase of its gait.

In this section we will concentrate on static balance, while dynamic balance
is the topic of the following section.

Our approach is to start with a semi-stable pre-programmed, but parameter-
ized gait for a humanoid robot. Gait parameters are:

1. Step length
2. Height of leg lift
3. Walking speed
4. Leaning angle of torso in forward direction (constant)
5. Maximal leaning angle of torso sideways (variable, in sync with gait)

We will then update the gait parameters in real time depending on the
robot’s sensors. Current sensor readings are compared with desired sensor
readings at each time point in the gait. Differences between current and desired
sensor readings will result in immediate parameter adaptations to the gait pat-
tern. In order to get the right model parameters, we are conducting experiments
with the BallyBot balancing robot as a testbed for acceleration, inclination, and
gyro sensors (see Chapter 10).

We constructed a gait generation tool [Nicholls 1998], which is being used
to generate gait sequences off-line, that can subsequently be downloaded to the
robot. This tool allows the independent setting of each dof for each time step
and graphically displays the robot’s attitude in three orthogonal views from the
major axes (Figure 11.6). The gait generation tool also allows the playback of
an entered gait sequence. However, it does not perform any analysis of the
mechanics for the viability of a gait.

The first step toward walking is to achieve static balance. For this, we have
the robot standing still, but use the acceleration sensors as a feedback with a
software PI controller to the two hip joints. The robot is now actively standing
straight. If pushed back, it will bend forward to counterbalance, and vice versa.
Solving this isolated problem is similar to the inverted pendulum problem.

Unfortunately, typical sensor data is not as clean as one would like. Figure
11.7 shows typical sensor readings from an inclinometer and foot switches for
a walking experiment [Unkelbach 2002]:
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• The top curve shows the inclinometer data for the torso’s side swing.
The measured data is the absolute angle and does not require integra-
tion like the gyroscope.

• The two curves on the bottom show the foot switches for the right and
left foot. First both feet are on the ground, then the left foot is lifted up
and down, then the right foot is lifted up and down, and so on.  

Program 11.5 demonstrates the use of sensor feedback for balancing a
standing biped robot. In this example we control only a single axis (here for-
ward/backward); however, the program could easily be extended to balance
left/right as well as forward/backward by including a second sensor with
another PID controller in the control loop.

The program’s endless while-loop starts with the reading of a new accelera-
tion sensor value in the forward/backward direction. For a robot at rest, this
value should be zero. Therefore, we can treat this value directly as an error
value for our PID controller. The PID controller used is the simplest possible.
For the integral component, a number (e.g. 10) of previous error values should
be added. In the example we only use two: the last plus the current error value.
The derivative part uses the difference between the previous and current error
value. All PID parameter values have to be determined experimentally.

11.5 Dynamic Balance
Walking gait patterns relying on static balance are not very efficient. They
require large foot areas and only relatively slow gaits are possible, in order to
keep dynamic forces low. Walking mechanisms with dynamic balance, on the

Figure 11.6: Gait generation tool
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Figure 11.7: Inclinometer side swing and left/right foot switch data
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Program 11.5: Balancing a biped robot

1 void balance( void ) /* balance forward/backward */
2 { int posture[9]= {127,127,127,127,127,127,127,127,127};
3 float err, lastErr =0.0, adjustment;
4 /* PID controller constants */
5 float kP = 0.1, kI = 0.10, kD = 0.05, time = 0.1;
6 int i, delay = 1;
7
8 while (1) /* endless loop */
9 { /* read derivative. sensor signal = error */

10 err = GetAccFB(); 
11 /* adjust hip angles using PID */
12 adjustment = kP*(err)
13 + kI*(lastErr + err)*time
14 + kD*(lastErr - err);
15 posture[lHipB] += adjustment;
16 posture[rHipB] += adjustment;
17 SetPosture(posture);
18 lastErr = err;
19 OSWait(delay);
20 }
21 }
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other hand, allow the construction of robots with smaller feet, even feet that
only have a single contact point, and can be used for much faster walking gaits
or even running.

As has been defined in the previous section, dynamic balance means that at
least during some phases of a robot’s gait, its center of mass is not supported
by its foot area. Ignoring any dynamic forces and moments, this means that the
robot would fall over if no counteraction is taken in real time. There are a
number of different approaches to dynamic walking, which are discussed in
the following.

11.5.1 Dynamic Walking Methods
In this section, we will discuss a number of different techniques for dynamic
walking together with their sensor requirements.

1. Zero moment point (ZMP)
[Fujimoto, Kawamura 1998], [Goddard, Zheng, Hemami 1992], [Kajita,
Yamaura, Kobayashi 1992], [Takanishi et al. 1985]
This is one of the standard methods for dynamic balance and is published
in a number of articles. The implementation of this method requires the
knowledge of all dynamic forces on the robot’s body plus all torques be-
tween the robot’s foot and ankle. This data can be determined by using ac-
celerometers or gyroscopes on the robot’s body plus pressure sensors in the
robot’s feet or torque sensors in the robot’s ankles.

With all contact forces and all dynamic forces on the robot known, it is
possible to calculate the “zero moment point” (ZMP), which is the dynamic
equivalent to the static center of mass. If the ZMP lies within the support
area of the robot’s foot (or both feet) on the ground, then the robot is in dy-
namic balance. Otherwise, corrective action has to be taken by changing
the robot’s body posture to avoid it falling over.

2. Inverted pendulum
[Caux, Mateo, Zapata 1998], [Park, Kim 1998], [Sutherland, Bräunl 2001]
A biped walking robot can be modeled as an inverted pendulum (see also
the balancing robot in Chapter 10). Dynamic balance can be achieved by
constantly monitoring the robot’s acceleration and adapting the corre-
sponding leg movements.

3. Neural networks
[Miller 1994], [Doerschuk, Nguyen, Li 1995], [Kun, Miller 1996]
As for a number of other control problems, neural networks can be used to
achieve dynamic balance. Of course, this approach still needs all the sensor
feedback as in the other approaches.

4. Genetic algorithms
[Boeing, Bräunl 2002], [Boeing, Bräunl 2003]
A population of virtual robots is generated with initially random control
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settings. The best performing robots are reproduced using genetic algo-
rithms for the next generation.

This approach in practice requires a mechanics simulation system to
evaluate each individual robot’s performance and even then requires sever-
al CPU-days to evolve a good walking performance. The major issue here
is the transferability of the simulation results back to the physical robot.

5. PID control
[Bräunl 2000], [Bräunl, Sutherland, Unkelbach 2002]
Classic PID control is used to control the robot’s leaning front/back and
left/right, similar to the case of static balance. However, here we do not in-
tend to make the robot stand up straight. Instead, in a teaching stage, we
record the desired front and side lean of the robot’s body during all phases
of its gait. Later, when controlling the walking gait, we try to achieve this
offset of front and side lean by using a PID controller. The following pa-
rameters can be set in a standard walking gate to achieve this leaning:

• Step length
• Height of leg lift
• Walking speed
• Amount of forward lean of torso
• Maximal amount of side swing

6. Fuzzy control
[Unpublished]
We are working on an adaptation of the PID control, replacing the classic
PID control by fuzzy logic for dynamic balance.

7. Artificial horizon
[Wicke 2001]
This innovative approach does not use any of the kinetics sensors of the
other approaches, but a monocular grayscale camera. In the simple version,
a black line on white ground (an “artificial horizon”) is placed in the visual
field of the robot. We can then measure the robot’s orientation by changes
of the line’s position and orientation in the image. For example, the line
will move to the top if the robot is falling forward, it will be slanted at an
angle if the robot is leaning left, and so on (Figure 11.8).

With a more powerful controller for image processing, the same princi-
ple can be applied even without the need for an artificial horizon. As long
as there is enough texture in the background, general optical flow can be
used to determine the robot’s movements.

Figure 11.9 shows Johnny Walker during a walking cycle. Note the typical
side-swing of the torso to counterbalance the leg-lifting movement. This cre-
ates a large momentum around the robot’s center of mass, which can cause
problems with stability due to the limited accuracy of the servos used as actua-
tors. 



Dynamic Balance

179

Figure 11.10 shows a similar walking sequence with Andy Droid. Here, the
robot performs a much smoother and better controlled walking gait, since the
mechanical design of the hip area allows a smoother shift of weight toward the
side than in Johnny’s case. 

11.5.2 Alternative Biped Designs
All the biped robots we have discussed so far are using servos as actuators.
This allows an efficient mechanical and electronic design of a robot and there-
fore is a frequent design approach in many research groups, as can be seen
from the group photo of FIRA HuroSot World Cup Competition in 2002 [Bal-
tes, Bräunl 2002]. With the exception of one robot, all robots were using ser-
vos (see Figure 11.11). 

Other biped robot designs also using the EyeCon controller are Tao Pie Pie
from University of Auckland, New Zealand, and University of Manitoba, Can-
ada, [Lam, Baltes 2002] and ZORC from Universität Dortmund, Germany
[Ziegler et al. 2001]. 

Figure 11.8: Artificial horizon

Figure 11.9: Johnny walking sequence

Robot in balance Robot falling left Robot falling forward
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As has been mentioned before, servos have severe disadvantages for a
number of reasons, most importantly because of their lack of external feed-
back. The construction of a biped robot with DC motors, encoders, and end-
switches, however, is much more expensive, requires additional motor driver
electronics, and is considerably more demanding in software development. So
instead of redesigning a biped robot by replacing servos with DC motors and
keeping the same number of degrees of freedom, we decided to go for a mini-
mal approach. Although Andy has 10 dof in both legs, it utilizes only three
independent dof: bending each leg up and down, and leaning the whole body
left or right. Therefore, it should be possible to build a robot that uses only
three motors and uses mechanical gears or pulleys to achieve the articulated
joint motion. 

Figure 11.10: Andy walking sequence

Figure 11.11: Humanoid robots at FIRA HuroSot 2002 with robots from
(left to right): Korea, Australia, Singapore, New Zealand, and Korea
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The CAD designs following this approach and the finished robot are shown
in Figure 11.12 [Jungpakdee 2002]. Each leg is driven by only one motor,
while the mechanical arrangement lets the foot perform an ellipsoid curve for
each motor revolution. The feet are only point contacts, so the robot has to
keep moving continuously, in order to maintain dynamic balance. Only one
motor is used for shifting a counterweight in the robot’s torso sideways (the
original drawing in Figure 11.12 specified two motors). Figure 11.13 shows
the simulation of a dynamic walking sequence [Jungpakdee 2002]. 

Figure 11.12: Minimal biped design Rock Steady

Figure 11.13: Dynamic walking sequence [Jungpakdee 2002]
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AUTONOMOUS PLANES

uilding an autonomous model airplane is a considerably more difficult
undertaking than the previously described autonomous driving or
walking robots. Model planes or helicopters require a significantly

higher level of safety, not only because the model plane with its expensive
equipment might be lost, but more importantly to prevent endangering people
on the ground.

A number of autonomous planes or UAVs (Unmanned Aerial Vehicles)
have been built in the past for surveillance tasks, for example Aerosonde [Aer-
osonde 2006]. These projects usually have multi-million-dollar budgets, which
cannot be compared to the smaller-scale projects shown here. Two projects
with similar scale and scope to the one presented here are “MicroPilot”
[MicroPilot 2006], a commercial hobbyist system for model planes, and
“FireMite” [Hennessey 2002], an autonomous model plane designed for com-
peting in the International Aerial Robotics Competition [AUVS 2006].

12.1 Application
Low-budget

autopilot
Our goal was to modify a remote controlled model airplane for autonomous
flying to a given sequence of waypoints (autopilot).

• The plane takes off under remote control.
• Once in the air, the plane is switched to autopilot and flies to a previ-

ously recorded sequence of waypoints using GPS (global positioning
system) data.

• The plane is switched back to remote control and landed.

So the most difficult tasks of take-off and landing are handled by a pilot
using the remote control. The plane requires an embedded controller to inter-
face to the GPS and additional sensors and to generate output driving the ser-
vos.

There are basically two design options for constructing an autopilot system
for such a project (see Figure 12.1): 
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A. The embedded controller drives the plane’s servos at all times. It re-
ceives sensor input as well as input from the ground transmitter.

B. A central (and remote controlled) multiplexer switches between
ground transmitter control and autopilot control of the plane’s servos.

Design option A is the simpler and more direct solution. The controller
reads data from its sensors including the GPS and the plane’s receiver. Ground
control can switch between autopilot and manual operation by a separate chan-
nel. The controller is at all times connected to the plane’s servos and generates
their PWM control signals. However, when in manual mode, the controller
reads the receiver’s servo output and regenerates identical signals.

Design option B requires a four-way multiplexer as an additional hardware
component. (Design A has a similar multiplexer implemented in software.)
The multiplexer connects either the controller’s four servo outputs or the
receiver’s four servo outputs to the plane’s servos. A special receiver channel
is used for toggling the multiplexer state under remote control.

Although design A is the superior solution in principle, it requires that the
controller operates with highest reliability. Any fault in either controller hard-
ware or controller software, for example the “hanging” of an application pro-

Figure 12.1: System design options
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gram, will lead to the immediate loss of all control surfaces and therefore the
loss of the plane. For this reason we opted to implement design B. Although it
requires a custom-built multiplexer as additional hardware, this is a rather sim-
ple electro-magnetic device that can be directly operated via remote control
and is not subject to possible software faults. 

Figure 12.2 shows photos of the construction and during flight of our first
autonomous plane. This plane had the EyeCon controller and the multiplexer
unit mounted on opposite sides of the fuselage.

Figure 12.2: Autonomous model plane during construction and in flight
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12.2 Control System and Sensors

Black box

An EyeCon system is used as on-board flight controller. Before take-off, GPS
waypoints for the desired flight path are downloaded to the controller. After
the landing, flight data from all on-board sensors is uploaded, similar to the
operation of a “black box” data recorder on a real plane.

The EyeCon’s timing processor outputs generate PWM signals that can
directly drive servos. In this application, they are one set of inputs for the mul-
tiplexer, while the second set of inputs comes from the plane’s receiver. Two
serial ports are used on the EyeCon, one for upload/download of data and pro-
grams, and one for continuous GPS data input.

Although the GPS is the main sensor for autonomous flight, it is insufficient
because it delivers a very slow update of 0.5Hz .. 1.0Hz and it cannot deter-
mine the plane’s orientation. We are therefore experimenting with a number of
additional sensors (see Chapter 3 for details of these sensors):

• Digital compass
Although the GPS gives directional data, its update rates are insuffi-
cient when flying in a curve around a waypoint.

• Piezo gyroscope and inclinometer
Gyroscopes give the rate of change, while inclinometers return the ab-
solute orientation. The combined use of both sensor types helps reduce
the problems with each individual sensor.

• Altimeter and air-speed sensor
Both altimeter and air-speed sensor have been built by using air pres-
sure sensors. These sensors need to be calibrated for different heights
and temperatures. The construction of an air-speed sensor requires the
combination of two sensors measuring the air pressure at the wing tip
with a so-called “Pitot tube”, and comparing the result with a third air
pressure sensor inside the fuselage, which can double as a height sen-
sor.

Figure 12.3 shows the “EyeBox”, which contains most equipment required
for autonomous flight, EyeCon controller, multiplexer unit, and rechargeable
battery, but none of the sensors. The box itself is an important component,
since it is made out of lead-alloy and is required to shield the plane’s receiver
from any radiation from either the controller or the multiplexer. Since the
standard radio control carrier frequency of 35MHz is in the same range as the
EyeCon’s operating speed, shielding is essential.

Another consequence of the decision for design B is that the plane has to
remain within remote control range. If the plane was to leave this range, unpre-
dictable switching between the multiplexer inputs would occur, switching con-
trol of the plane back and forth between the correct autopilot settings and noise
signals. A similar problem would exist for design A as well; however, the con-
troller could use plausibility checks to distinguish noise from proper remote
control signals. By effectively determining transmitter strength, the controller
could fly the plane even outside the remote transmitter’s range. 



Flight Program

189

12.3 Flight Program
There are two principal techniques for designing a flight program and user
interface of the flight system, depending on the capabilities of the GPS unit
used and the desired capability and flexibility of the flight system:

A. Small and lightweight embedded GPS module
(for example Rojone MicroGenius 3 [Rojone 2002])
Using a small embedded GPS module has clear advantages in model
planes. However, all waypoint entries have to be performed directly to
the EyeCon and the flight path has to be computed on the EyeCon con-
troller.

B. Standard handheld GPS with screen and buttons
(for example Magellan GPS 315 [Magellan 1999])
Standard handheld GPS systems are available at about the same cost as
a GPS module, but with built-in LCD screen and input buttons. Howev-
er, they are much heavier, require additional batteries, and suffer a high-
er risk of damage in a rough landing. Most handheld GPS systems
support recording of waypoints and generation of routes, so the com-
plete flight path can be generated on the handheld GPS without using the
embedded controller in the plane. The GPS system also needs to support
the NMEA 0183 (Nautical Marine Electronics Association) data mes-
sage format V2.1 GSA, a certain ASCII data format that is output via the
GPS’s RS232 interface. This format contains not only the current GPS
position, but also the required steering angle for a previously entered
route of GPS waypoints (originally designed for a boat’s autohelm).
This way, the on-board controller only has to set the plane’s servos ac-
cordingly; all navigation is done by the GPS system.

Figure 12.3: EyeBox and multiplexer unit
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Program 12.1 shows sample NMEA output. After the start-up sequence, we

get regular code strings for position and time, but we only decode the lines
starting with $GPGGA. In the beginning, the GPS has not yet logged on to a suf-
ficient number of satellites, so it still reports the geographical position as 0 N

and 0 E. The quality indicator in the sixth position (following “E”) is 0, so the
coordinates are invalid. In the second part of Program 12.1, the $GPRMC string
has quality indicator 1 and the proper coordinates of Western Australia. 

In our current flight system we are using approach A, to be more flexible in
flight path generation. For the first implementation, we are only switching the
rudder between autopilot and remote control, not all of the plane’s surfaces.
Motor and elevator stay on remote control for safety reasons, while the ailer-
ons are automatically operated by a gyroscope to eliminate any roll. Turns
under autopilot therefore have to be completely flown using the rudder, which
requires a much larger radius than turns using ailerons and elevator. The
remaining control surfaces of the plane can be added step by step to the autopi-
lot system.

The flight controller has to perform a number of tasks, which need to be
accessible through its user interface:

Program 12.1: NMEA sample output

$TOW: 0       
$WK:  1151
$POS: 6378137  0        0       
$CLK: 96000   
$CHNL:12
$Baud rate: 4800  System clock: 12.277MHz
$HW Type: S2AR
$GPGGA,235948.000,0000.0000,N,00000.0000,E,0,00,50.0,0.0,M,,,,0000*3A
$GPGSA,A,1,,,,,,,,,,,,,50.0,50.0,50.0*05
$GPRMC,235948.000,V,0000.0000,N,00000.0000,E,,,260102,,*12
$GPGGA,235948.999,0000.0000,N,00000.0000,E,0,00,50.0,0.0,M,,,,0000*33
$GPGSA,A,1,,,,,,,,,,,,,50.0,50.0,50.0*05
$GPRMC,235948.999,V,0000.0000,N,00000.0000,E,,,260102,,*1B
$GPGGA,235949.999,0000.0000,N,00000.0000,E,0,00,50.0,0.0,M,,,,0000*32
$GPGSA,A,1,,,,,,,,,,,,,50.0,50.0,50.0*05
...
$GPRMC,071540.282,A,3152.6047,S,11554.2536,E,0.49,201.69,171202,,*11
$GPGGA,071541.282,3152.6044,S,11554.2536,E,1,04,5.5,3.7,M,,,,0000*19
$GPGSA,A,2,20,01,25,13,,,,,,,,,6.0,5.5,2.5*34
$GPRMC,071541.282,A,3152.6044,S,11554.2536,E,0.53,196.76,171202,,*1B
$GPGGA,071542.282,3152.6046,S,11554.2535,E,1,04,5.5,3.2,M,,,,0000*1E
$GPGSA,A,2,20,01,25,13,,,,,,,,,6.0,5.5,2.5*34
$GPRMC,071542.282,A,3152.6046,S,11554.2535,E,0.37,197.32,171202,,*1A
$GPGGA,071543.282,3152.6050,S,11554.2534,E,1,04,5.5,3.3,M,,,,0000*18
$GPGSA,A,2,20,01,25,13,,,,,,,,,6.0,5.5,2.5*34
$GPGSV,3,1,10,01,67,190,42,20,62,128,42,13,45,270,41,04,38,228,*7B
$GPGSV,3,2,10,11,38,008,,29,34,135,,27,18,339,,25,13,138,37*7F
$GPGSV,3,3,10,22,10,095,,07,07,254,*76
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Pre-flight
• Initialize and test all sensors,

calibrate sensors.
• Initialize and test all servos,

enable setting of zero positions of servos,
enable setting of maximum angles of servos.

• Perform waypoint download – (only for technique A).

In-flight (continuous loop)
• Generate desired heading – (only for technique A).
• Set plane servos according to desired heading.
• Record flight data from sensors.

Post-flight
• Perform flight data upload. 

These tasks and settings can be activated by navigating through several
flight system menus, as shown in Figure 12.4 [Hines 2001]. They can be dis-
played and operated through button presses either directly on the EyeCon or

Figure 12.4: Flight system user interface [Hines 2001]
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remotely via a serial link cable on a PDA (Personal Digital Assistant, for
example Compaq IPAQ). 

The link between the EyeCon and the PDA has been developed to be able to
remote-control (via cable) the flight controller pre-flight and post-flight, espe-
cially to download waypoints before take-off and upload flight data after land-
ing. All pre-start diagnostics, for example correct operation of all sensors or
the satellite log-on of the GPS, are transmitted from the EyeCon to the hand-
held PDA screen. 

After completion of the flight, all sensor data from the flight together with
time stamps are uploaded from the EyeCon to the PDA and can be graphically
displayed. Figure 12.5 [Purdie 2002] shows an example of an uploaded flight
path ([x, y] coordinates from the GPS sensor); however, all other sensor data is
being logged as well for post-flight analysis.

A desirable extension to this setup is the inclusion of wireless data trans-
mission from the plane to the ground (see also Chapter 7). This would allow us
to receive instantaneous data from the plane’s sensors and the controller’s sta-
tus as opposed to doing a post-flight analysis. However, because of interfer-
ence problems with the other autopilot components, wireless data transmission
has been left until a later stage of the project.

12.4 References
AEROSONDE, Global Robotic Observation System Aerosonde, http://www.

aerosonde.com, 2006
AUVS, International Aerial Robotics Competition, Association for Unmanned

Vehicle Systems, http://avdil.gtri.gatech.edu/AUVS/IARC

LaunchPoint.html, 2006
HENNESSEY, G. The FireMite Project, http://www.craighennessey.com/

firemite/, May 2002

Figure 12.5: Flight path [Purdie 2002] 
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13AUTONOMOUS VESSELS 
. . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AND UNDERWATER VEHICLES

he design of an autonomous vessel or underwater vehicle requires one
additional skill compared to the robot designs discussed previously:
watertightness. This is a challenge especially for autonomous under-

water vehicles (AUVs), as they have to cope with increasing water pressure
when diving and they require watertight connections to actuators and sensors
outside the AUV’s hull. In this chapter, we will concentrate on AUVs, since
autonomous vessels or boats can be seen as AUVs without the diving function-
ality.

The area of AUVs looks very promising to advance commercially, given
the current boom of the resource industry combined with the immense cost of
either manned or remotely operated underwater missions.

13.1 Application
Unlike many other areas of mobile robots, AUVs have an immediate applica-
tion area conducting various sub-sea surveillance and manipulation tasks for
the resource industry. In the following, we want to concentrate on intelligent
control and not on general engineering tasks such as constructing AUVs that
can go to great depths, as there are industrial ROV (remotely operated vehicle)
solutions available that have solved these problems.

While most autonomous mobile robot applications can also use wireless
communication to a host station, this is a lot harder for an AUV. Once sub-
merged, none of the standard communication methods work; Bluetooth or
WLAN only operate up to a water depth of about 50cm. The only wireless
communication method available is sonar with a very low data rate, but unfor-
tunately these systems have been designed for the open ocean and can usually
not cope with signal reflections as they occur when using them in a pool. So
unless some wire-bound communication method is used, AUV applications
have to be truly autonomous.

T
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AUV Competition The Association for Unmanned Vehicles International (AUVSI) organizes

annual competitions for autonomous aerial vehicles and for autonomous
underwater vehicles [AUVSI 2006]. Unfortunately, the tasks are very demand-
ing, so it is difficult for new research groups to enter. Therefore, we decided to
develop a set of simplified tasks, which could be used for a regional or entry-
level AUV competition (Figure 13.1).

We further developed the AUV simulation system SubSim (see Section
15.6), which allows to design AUVs and implement control programs for the
individual tasks without having to build a physical AUV. This simulation sys-
tem could serve as the platform for a simulation track of an AUV competition. 

The four suggested tasks to be completed in an olympic size swimming
pool are:
1. Wall Following

The AUV is placed close to a corner of the pool and has to follow the pool
wall without touching it. The AUV should perform one lap around the pool,
return to the starting position, then stop.

2. Pipeline Following
A plastic pipe is placed along the bottom of the pool, starting on one side
of the pool and terminating on the opposite side. The pipe is made out of
straight pieces and 90 degree angles.
The AUV is placed over the start of the pipe on one side of the pool and has
to follow the pipe on the ground until the opposite wall has been reached.

Figure 13.1: AUV competition tasks
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3. Target Finding
The AUV has to locate a target plate with a distinctive texture that is placed
at a random position within a 3m diameter from the center of the pool.

4. Object Mapping
A number of simple objects (balls or boxes of distinctive color) are placed
at the bottom of the pool, distributed over the whole pool area. The AUV
has to survey the whole pool area, e.g. by diving along a sweeping pattern,
and record all objects found at the bottom of the pool. Finally, the AUV has
to return to its start corner and upload the coordinates of all objects found.

13.2 Dynamic Model
The dynamic model of an AUV describes the AUV’s motions as a result of its
shape, mass distribution, forces/torques exerted by the AUV’s motors, and
external forces/torques (e.g. ocean currents). Since we are operating at rela-
tively low speeds, we can disregarding the Coriolis force and present a simpli-
fied dynamic model [Gonzalez 2004]: 

with:
M mass and inertia matrix
v linear and angular velocity vector
D hydrodynamic damping matrix
G gravitational and buoyancy vector

force and torque vector (AUV motors and eternal forces/torques)

D can be further simplified as a diagonal matrix with zero entries for y
(AUV can only move forward/backward along x, and dive/surface along z, but
not move sideways), and zero entries for rotations about x and y (AUV can
actively rotate only about z, while its self-righting movement, see Section 13.3,
greatly eliminates rotations about x and y).

G is non-zero only in its z component, which is the sum of the AUV’s grav-
ity and buoyancy vectors.

 is the product of the force vector combining all of an AUV’s motors, with
a pose matrix that defines each motor’s position and orientation based on the
AUV’s local coordinate system.

13.3 AUV Design Mako
The Mako (Figure 13.2) was designed from scratch as a dual PVC hull con-
taining all electronics and batteries, linked by an aluminum frame and pro-
pelled by 4 trolling motors, 2 of which are for active diving. The advantages of
this design over competing proposals are [Bräunl et al. 2004], [Gonzalez
2004]:  

M v· D v( ) v G⋅⋅ τ+ + =

τ

τ
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• Ease in machining and construction due to its simple structure
• Relative ease in ensuring watertight integrity because of the lack of ro-

tating mechanical devices such as bow planes and rudders
• Substantial internal space owing to the existence of two hulls
• High modularity due to the relative ease with which components can

be attached to the skeletal frame
• Cost-effectiveness because of the availability and use of common ma-

terials and components
• Relative ease in software control implementation when compared to

using a ballast tank and single thruster system
• Ease in submerging with two vertical thrusters
• Static stability due to the separation of the centers of mass and buoy-

ancy, and dynamic stability due to the alignment of thrusters 

Simplicity and modularity were key goals in both the mechanical and elec-
trical system designs. With the vehicle not intended for use below 5m depth,
pressure did not pose a major problem. The Mako AUV measures 1.34 m long,
64.5 cm wide and 46 cm tall.

The vehicle comprises two watertight PVC hulls mounted to a supporting
aluminum skeletal frame. Two thrusters are mounted on the port and starboard
sides of the vehicle for longitudinal movement, while two others are mounted
vertically on the bow and stern for depth control. The Mako’s vertical thruster
diving system is not power conservative, however, when a comparison is made
with ballast systems that involve complex mechanical devices, the advantages
such as precision and simplicity that comes with using these two thrusters far
outweighs those of a ballast system.

Figure 13.2: Autonomous submarine Mako
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Propulsion is provided by four modified 12V, 7A trolling motors that allow
horizontal and vertical movement of the vehicle. These motors were chosen
for their small size and the fact that they are intended for underwater use; a fea-
ture that minimized construction complexity substantially and provided water-
tight integrity. 

Figure 13.3: Mako design [Gonzalez 2004]

Figure 13.4: Electronics and controller setup inside Mako’s top hull
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The starboard and port motors provide both forward and reverse movement

while the stern and bow motors provide depth control in both downward and
upward directions. Roll is passively controlled by the vehicle’s innate righting
moment (Figure 13.5). The top hull contains mostly air besides light electron-
ics equipment, the bottom hull contains heavy batteries. Therefore mainly a
buoyancy force pulls the top cylinder up and gravity pulls the bottom cylinder
down. If for whatever reason, the AUV rolls as in Figure 13.5, right, these two
forces ensure that the AUV will right itself.

Overall, this provides the vehicle with 4DOF that can be actively control-
led. These 4DOF provide an ample range of motion suited to accomplishing a
wide range of tasks. 

Controllers The control system of the Mako is separated into two controllers; an EyeBot
microcontroller and a mini-PC. The EyeBot’s purpose is controlling the
AUV’s movement through its four thrusters and its sensors. It can run a com-
pletely autonomous mission without the secondary controller. The mini PC is a
Cyrix 233MHz processor, 32Mb of RAM and a 5GB hard drive, running
Linux. Its sole function is to provide processing power for the computationally
intensive vision system. 

Motor controllers designed and built specifically for the thrusters provide
both speed and direction control. Each motor controller interfaces with the
EyeBot controller via two servo ports. Due to the high current used by the
thrusters, each motor controller produces a large amount of heat. To keep the
temperature inside the hull from rising too high and damaging electronic com-
ponents, a heat sink attached to the motor controller circuit on the outer hull
was devised. Hence, the water continuously cools the heat sink and allows the
temperature inside the hull to remain at an acceptable level. 

Sensors The sonar/navigation system utilizes an array of Navman Depth2100 echo
sounders, operating at 200 kHz. One of these sensors is facing down and
thereby providing an effective depth sensor (assuming the pool depth is
known), while the other three sensors are used as distance sensors pointing for-
ward, left, and right. An auxiliary control board, based on a PIC controller, has
been designed to multiplex the four sonars and connect to the EyeBot [Alfirev-
ich 2005].

Figure 13.5: Self-righting moment of AUV

Buoyancy

Gravity
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A low-cost Vector 2X digital magnetic compass module provides for yaw
or heading control. A simple dual water detector circuit connected to ana-
logue-to-digital converter (ADC) channels on the EyeBot controller is used to
detect a possible hull breach. Two probes run along the bottom of each hull,
which allows for the location (upper or lower hull) of the leak to be known.
The EyeBot periodically monitors whether or not the hull integrity of the vehi-
cle has been compromised, and if so immediately surfaces the vehicle. Another
ADC input of the EyeBot is used for a power monitor that will ensure that the
system voltage remains at an acceptable level. Figure 13.6 shows the Mako in
operation.

13.4 AUV Design USAL
The USAL AUV uses a commercial ROV as a basis, which was heavily modi-
fied and extended (Figure 13.7). All original electronics were taken out and
replaced by an EyeBot controller (Figure 13.8). The hull was split and
extended by a trolling motor for active diving, which allows the AUV to hover,
while the original ROV had to use active rudder control during a forward
motion for diving, [Gerl 2006], [Drtil 2006]. Figure 13.8 shows USAL’s com-
plete electronics subsystem.   

For simplicity and cost reasons, we decided to trial infrared PSD sensors
(see Section 3.6) for the USAL instead of the echo sounders used on the Mako.
Since the front part of the hull was made out of clear perspex, we were able to
place the PSD sensors inside the AUV hull, so we did not have to worry about
waterproofing sensors and cabling. Figure 13.9 shows the results of measure-
ments conducted in [Drtil 2006], using this sensor setup in air (through the
hull), and in different grades of water quality. Assuming good water quality, as
can be expected in a swimming pool, the sensor setup returns reliable results
up to a distance of about 1.1 m, which is sufficient for using it as a collision
avoidance sensor, but too short for using it as a navigation aid in a large pool. 

Figure 13.6: Mako in operation
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Figure 13.7: Autonomous submarine USAL

Figure 13.8: USAL controller and sensor subsystem

Figure 13.9: Underwater PSD measurement [Drtil 2006]



AUV Design USAL

203

The USAL system overview is shown in Figure 13.10. Numerous sensors
are connected to the EyeBot on-board controller. These include a digital cam-
era, four analog PSD infrared distance sensors, a digital compass, a three-axes
solid state accelerometer and a depth pressure sensor. The Bluetooth wireless
communication system can only be used when the AUV has surfaced or is div-
ing close to the surface. The energy control subsystem contains voltage regula-
tors and level converters, additional voltage and leakage sensors, as well as
motor drivers for the stern main driving motor, the rudder servo, the diving
trolling motor, and the bow thruster pump. 

Figure 13.11 shows the arrangement of the three thrusters and the stern rud-
der, together with a typical turning movement of the USAL. 

Figure 13.10: USAL system overview [Drtil 2006]

Figure 13.11: USAL thrusters and rudder turning maneuver [Drtil 2006]



Autonomous Vessels and Underwater Vehicles

204

13

13.5 References
ALFIREVICH, E. Depth and Position Sensing for an Autonomous Underwater

Vehicle, B.E. Honours Thesis, The University of Western Australia,
Electrical and Computer Eng., supervised by T. Bräunl, 2005 

AUVSI, AUVSI and ONR's 9th International Autonomous Underwater Vehicle
Competition, Association for Unmanned Vehicle Systems Internation-
al, http://www.auvsi.org/competitions/water.cfm, 2006

BRÄUNL, T., BOEING, A., GONZALES, L., KOESTLER, A., NGUYEN, M., PETITT,
J. The Autonomous Underwater Vehicle Initiative – Project Mako,
2004 IEEE Conference on Robotics, Automation, and Mechatronics
(IEEE-RAM), Dec. 2004, Singapore, pp. 446-451 (6)

DRTIL, M. Electronics and Sensor Design of an Autonomous Underwater Vehi-
cle, Diploma Thesis, The University of Western Australia and FH
Koblenz, Electrical and Computer Eng., supervised by T. Bräunl, 2006 

GERL, B. Development of an Autonomous Underwater Vehicle in an Interdisci-
plinary Context, Diploma Thesis, The University of Western Australia
and Technical Univ. München, Electrical and Computer Eng., super-
vised by T. Bräunl, 2006

GONZALEZ, L. Design, Modelling and Control of an Autonomous Underwater
Vehicle, B.E. Honours Thesis, The University of Western Australia,
Electrical and Computer Eng., supervised by T. Bräunl, 2004



205

ROBOT 
. . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MANIPULATORS

he main focus on the robotics side of this book is on autonomous
mobile robots. However, we also want to give a brief introduction to
the area of stationary manipulators, as they still form the vast majority

of all commercial robot systems. Traditional applications of robot manipula-
tors are spot welding and spray painting (Figure 14.1, Figure 14.2), e.g., in the
automotive industry, as well as packaging and filling tasks, e.g. in the chemical
and pharmaceutical industry. Robot manipulators can work in hazardous envi-
ronments (e.g., nuclear power plants), and can conduct a variety of tasks from
simple repetitive movements to complex sensor-based assemblies.  

Figure 14.1: Industrial application and individual manipulator. Photo 
courtesy of Kuka Systems GmbH
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14.1 Homogeneous Coordinates
Any design work involving robot manipulators is based on kinematics. Homo-
geneous coordinates are a necessary prerequisite for this.

In traditional three-dimensional geometry, the addition of 3×1 vectors is
used for translation operations and the multiplication with 3×3 matrices is used
for rotation operations. This works quite well for simple applications, how-
ever, for manipulators we quite often have longer chains of translations and
rotations, e.g.:

Trans(x1,y1,z1) → Rot(x, 90) → Trans(x2,y2,z2) → Rot(z, −45)
So for a starting point p in 3D-space, the destination would be:

p’ = (((p+Trans(x1,y1,z1)) * Rot(x, 90)) + Trans(x2,y2,z2)) * Rot(z, −45)
Unfortunately, using standard 3D geometry operations, there is no way to

simplify this expression in a way so that we can apply a single operation to a
point in order to transform them from start to destination. This may become a
performance issue if there are many points that require the same transformation.

Homogeneous coordinates [Möbius 1827] solve this problem very ele-
gantly; almost two centuries after their discovery, they are today’s standard in
geometry calculations for robot manipulators.

Homogeneous coordinates extend both translations and rotations by a
fourth coordinate (scaling factor), which is set to one for our purposes, and
they use the same transformation format of a 4×4 matrix for both. So each
homogeneous 4×4 transformation contains a rotational part followed by a

Figure 14.2: Spray painting cabin and individual manipulator. Photo 
(left) courtesy of ABB Robotics
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translational part. Either part can be zero (or rather the identity transforma-
tion). For example, a 3D translation Trans(1,2,3) now becomes: 

Note that the top-left 3×3 submatrix is the identity matrix (three ones along
the main diagonal) and there are three zeros and a one in the bottom row.

A 90º rotation about the x axis will then become: 

The 3×3 matrix of the rotation is maintained as the top-left sub-matrix, a
translation part of 0, 0, 0 is added as the right column and a bottom row of 0, 0,
0, 1 is added as before.

So this gives us the following 4×4 matrices for a general translation along x,
y, z and for general rotations about the main axes x, y, z, respectively:  

4×4 matrices are also a convenient tool to describe the 3D position and ori-
entation of an object (e.g. the robot’s hand) in a single data structure. This is
called a pose.

14.2 Kinematics
The standard textbooks on kinematics are [Paul 1981] and [Craig 2003] and
we will only scratch the surface of this topic. Each manipulator is made up of a
number of links (metal bars) and joints (motor-actuated pivots). A typical
manipulator has a base, an end-effector (e.g. gripper, welding or spray-nozzle
hand), and six joints and links between them. This allows it to reach any 3D
position and orientation (pose). Each actuated joint is called a degree of free-
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dom, and so a manipulator with six joints is a six-degree-of-freedom manipula-
tor, or in short: 6-dof.

We start by introducing the standard manipulator joints and their unambigu-
ous drawing norm. There are three basic types or manipulator joints (see Fig.
14.3): rotational joints with the rotation axis along the link, rotational joints
with the rotation axis perpendicular to the link (hinge joints), and prismatic
joints (telescopic joints). All other joints, e.g., a more complex ball joint, can
be described as a combination of these basic types.

The Puma 560 from Unimation/Stäubli is a standard 6-dof manipulator that
is frequently used as a model in textbooks. Figure 14.4 shows a simulation
screenshot in RoboSim [Bräunl 1999] of this robot and its conceptual drawing,
labeling its joints θ1, .., θ6. 

Manipulator kinematics deals with answering the following two basic ques-
tions for a specified manipulator geometry:

1. For a given set of joint settings, what is the manipulator’s end-effector’s
pose?
This will be answered by forward kinematics.

2. What joint angles are required to reach a desired end-effector pose?
This will be answered by inverse kinematics.

Figure 14.3: Basic manipulator joint types

Rotational joint (in line)

Rotational joint (hinge)

Prismatic joint (telescopic)

Figure 14.4: Puma 560 simulation and conceptual drawing

θ1

θ2 θ3

θ4

θ5

θ6



Kinematics

209

There are of course a number of additional and more complex questions in
manipulator kinematics. Below are a few examples, but these are beyond the
scope of this chapter.

• How can I make the end-effector move in a straight line?
(Motion equations)

• How can I make the end-effector apply a certain force to an object?
(Jacobi matrix)

14.2.1 Forward Kinematics
The forward kinematics of a manipulator describes its transformations from
the manipulator’s base via subsequent joints to the end-effector. Each partial
transformation, i.e., from joint to joint, can be described by a 4×4 homogene-
ous matrix, and we need to multiply all 4×4 matrices (six matrices for a 6-dof
manipulator) in order to get a single 4×4 matrix that describes the complete
manipulator transformation from base to end-effector.

Denavit–
Hartenberg

We could use individual 4×4 matrices to describe the transition from joint to
joint, but Denavit and Hartenberg have developed a standard called the
Denavit–Hartenberg notation, which allows a standardized description of any
joint configuration using only four transformations to go from one joint to the
next. When going from joint i−1 to joint i, we assume that the joint axis for
revolutionary joints is aligned with the local z axis. We then perform two trans-
lations and two rotations as follows:

1. Trans(ai−1, 0, 0)
Translation along xi−1 to position new zi axis

2. Rot(xi−1, αi−1)
Rotation about xi−1 to align new zi axis

3. Trans(0, 0, di)
Translation along new zi to position new xi axis

4. Rot(zi, θi)
Actual joint rotation (± max. range) about new zi axis 

So the transformation from one joint to the next can be written as a product
of these four individual transformations and is then reduced to a single 4×4
transformation matrix. The indices on transformation T indicate starting from
joint i-1, going to joint i: 

Ti 1
i Rot x α, i 1( ) Trans ai 1 0 0, ,( ) Rot z θ, i( ) Trans 0 0 di, ,( )⋅ ⋅ ⋅=

Ti 1
i

θicos θisin 0 ai 1

θisin αi 1cos⋅ θicos αi 1cos⋅ αi 1sin αi 1sin di⋅

θisin αi 1sin⋅ θicos αi 1sin⋅ αi 1cos αi 1cos di⋅

0 0 0 1

=

−

−

−−

−

− −

− −

− −

−

−

−

−

−
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As a basic example for this, see Figure 14.5. It shows a planar (2D) manip-

ulator with three joints. The first joint coincides with the manipulator’s base,
while there is a tool of unspecified size at the end of joint 3. 

We can now fill in the Denavit–Hartenberg table for this sample manipula-
tor by placing individual local coordinate systems in each joint and finding the
four parameters each for the transition from joint to joint (see Figure 14.6).
Note that right-handed coordinate systems are used at all times. 

The overall manipulator transformation (going from base 0 until after joint
3) is:

We also know all individual transition matrices from i-1 to i, respectively.
They are all translations along x followed by rotations about θi, as outlined by
the Denavit-Hartenberg notation – or by directly deriving the transformations,
which may be easier for this simple example (using abbreviations for sin and
cos): 

Figure 14.5: 3-dof manipulator example
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Figure 14.6: Denavit-Hartenberg example

Equation stops after θ3,
L3 is not included
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As each transformation is a 4×4 matrix, we can now multiply them together
(see [Craig 2003]) to find the complete manipulator transition from base to
tool – something we could not have done without homogeneous coordinates
(c123 is an abbreviation for cos(θ1+θ2+θ3); equivalent for s123, c12, s12): 

This transformation can be applied to a point p on the tool tip of the manip-
ulator (relative to joint 3) and will return its 3D pose (position and orientation).
If the manipulator moves, we do not have to recalculate the 4×4 matrix, we
only have to update the matrix’s parameters (here, θ1, θ2, θ3).

If we assume the sample configuration θ1 = 0°, θ2 = 90°, θ3 = -90°, then we
can calculate the end-effector position L3 as shown in Figure 14.7 (the top
index of point P indicates the relative coordinate system used, so 0P is using
the base coordinate system). 

14.2.2 Inverse Kinematics
Performing the inverse kinematics calculation proves to be much more com-
plex than the forward kinematics and there has been at least anecdotal evi-
dence of manipulator manufacturers changing their mechanical design in order
to simplify the inverse kinematics solution. On the other hand, inverse kine-
matics is the more important task, as we usually need to know how to get to a

T0
1

cθ1 sθ1 0 0
sθ1 cθ1 0 0
0 0 1 0
0 0 0 1

= T1
2

cθ2 sθ2 0 L1

sθ2 cθ2 0 0
0 0 1 0
0 0 0 1

= T2
3

cθ3 sθ3 0 L2

sθ3 cθ3 0 0
0 0 1 0
0 0 0 1

=

− −−

T0
3

c123 s123 0 L1 c1⋅ L2 c12⋅+
s1 c1 0 L1 s1⋅ L2 s12⋅+
0 0 1 0
0 0 0 1

=

−

Figure 14.7: Sample configuration
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desired manipulator pose, rather than just checking where the manipulator
would go for a given set of joint angles.

Unfortunately, for any given manipulator, there is no general or simple way
of deriving the inverse kinematics. The algebraic solution for the Puma 560
goes over five pages in [Craig 2003] and there are multiple solutions for most
goal poses as the manipulator does have some mechanical redundancies. The
use of numeric approximations may be an alternative for this.

14.3 Simulation and Programming
There are a number of robot manipulator simulators available either as public
domain systems (e.g. RoboSim in Figure 14.8, [Bräunl 1999]) or as commer-
cial products. All manipulator manufacturers provide simulation systems for
application planning with their products and in many cases specialized pro-
gramming environments as well. 

After simulation, the first step in programming a real robot is a process
called “teaching,” in which the operator manually drives the robot in a certain
configuration and then stores this pose by pressing a button on its controls.
These poses are then subsequently used as reference points in a robot program,
e.g., for repeatedly moving to certain poses for a pick-and-place task.

There is a large and growing number of programming languages and library
packages available for robot manipulators. There are procedural languages
such as the traditional AL [Mujtaba and Goldman 1981], VAL-II [Shimano,
Geschke, Spalding, 1984], and even functional languages. On the other end of
the spectrum are library packages for linking with C/C++ or Matlab. Discuss-
ing the vast differences in syntax, semantics and capabilities of these lan-
guages would be beyond the scope of this chapter.

Figure 14.8: Manipulator simulator RoboSim
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SIMULATION SYSTEMS

imulation is an essential part of robotics, whether for stationary manip-
ulators, mobile robots, or for complete manufacturing processes in fac-
tory automation. We have developed a number of robot simulation sys-

tems over the years, two of which will be presented in this Chapter.
EyeSim is a simulation system for multiple interacting mobile robots. Envi-

ronment modeling is 2½D, while 3D sceneries are generated with synthetic
images for each robot’s camera view of the scene. Robot application programs
are compiled into dynamic link libraries that are loaded by the simulator. The
system integrates the robot console with text and color graphics, sensors, and
actuators at the level of a velocity/position control (v ) driving interface.

SubSim is a simulation system for autonomous underwater vehicles (AUVs)
and contains a complete 3D physics simulation library for rigid body systems
and water dynamics. It conducts simulation at a much lower level than the
driving simulator EyeSim. SubSim requires a significantly higher computa-
tional cost, but is able to simulate any user-defined AUV. This means that
motor number and positions, as well as sensor number and positions can be
freely chosen in an XML description file, and the physics simulation engine
will calculate the correct resulting AUV motion.

Both simulation systems are freely available over the Internet and can be
downloaded from:

http://robotics.ee.uwa.edu.au/eyebot/ftp/ (EyeSim)
http://robotics.ee.uwa.edu.au/auv/ftp/ (SubSim)

15.1 Mobile Robot Simulation
Simulators can
be on different

levels

Quite a number of mobile robot simulators have been developed in recent
years, many of them being available as freeware or shareware. The level of
simulation differs considerably between simulators. Some of them operate at a
very high level and let the user specify robot behaviors or plans. Others oper-
ate at a very low level and can be used to examine the exact path trajectory
driven by a robot.

S

ω



Simulation Systems

216

15
We developed the first mobile robot simulation system employing synthetic

vision as a feedback sensor in 1996, published in [Bräunl, Stolz 1997]. This
system was limited to a single robot with on-board vision system and required
the use of special rendering hardware.

Both simulation systems presented below have the capability of using gen-
erated synthetic images as feedback for robot control programs. This is a sig-
nificant achievement, since it allows the simulation of high-level robot appli-
cation programs including image processing. While EyeSim is a multi-robot
simulation system, SubSim is currently limited to a single AUV.

Most other mobile robot simulation systems, for example Saphira [Kono-
lige 2001] or 3D7 [Trieb 1996], are limited to simpler sensors such as sonar,
infrared, or laser sensors, and cannot deal with vision systems. [Matsumoto et
al. 1999] implemented a vision simulation system very similar to our earlier
system [Bräunl, Stolz 1997]. The Webots simulation environment [Wang, Tan,
Prahlad 2000] models among others the Khepera mobile robot, but has only
limited vision capabilities. An interesting outlook for vision simulation in
motion planning for virtual humans is given by [Kuffner, Latombe 1999].

15.2 EyeSim Simulation System
All EyeBot

programs run
on EyeSim

The goal of the EyeSim simulator was to develop a tool which allows the con-
struction of simulated robot environments and the testing of mobile robot pro-
grams before they are used on real robots. A simulation environment like this
is especially useful for the programming techniques of neural networks and
genetic algorithms. These have to gather large amounts of training data, which
is sometimes difficult to obtain from actual vehicle runs. Potentially harmful
collisions, for example due to untrained neural networks or errors, are not a
concern in the simulation environment. Also, the simulation can be executed in
a “perfect” environment with no sensor or actuator errors – or with certain
error levels for individual sensors. This allows us to thoroughly test a robot
application program’s robustness in a near real-word scenario [Bräunl, Koes-
tler, Waggershauser 2005], [Koestler, Bräunl 2004].

The simulation library has the same interface as the RoBIOS library (see
Appendix B.5). This allows the creation of robot application programs for
either real robots or simulation, simply by re-compiling. No changes at all are
required in the application program when moving between the real robot and
simulation or vice versa. 

The technique we used for implementing this simulation differs from most
existing robot simulation systems, which run the simulation as a separate pro-
gram or process that communicates with the application by some message
passing scheme. Instead, we implemented the whole simulator as a collection
of system library functions which replace the sensor/actuator functions called
from a robot application program. The simulator has an independent main-pro-
gram, while application programs are compiled into dynamic link-libraries and
are linked at run-time.



EyeSim Simulation System

217

As shown in Figure 15.1 (top), a robot application program is compiled and
linked to the RoBIOS library, in order to be executed on a real robot system.
The application program makes system calls to individual RoBIOS library
functions, for example for activating driving motors or reading sensor input. In
the simulation scenario, shown in Figure 15.1 (middle), the compiled applica-
tion library is now linked to the EyeSim simulator instead. The library part of
the simulator implements exactly the same functions, but now activates the
screen displays of robot console and robot driving environment.

In case of a multi-robot simulation (Figure 15.1 bottom), the compilation
and linking process is identical to the single-robot simulation. However, at run-
time, individual threads are created to simulate each of the robots concurrently.
Each thread executes the robot application program individually on local data,
but all threads share the common environment through which they interact. 

The EyeSim user interface is split into two parts, a robot console per simu-
lated robot and a common driving environment (Figure 15.2). The robot con-
sole models the EyeBot controller, which comprises a display and input but-
tons as a robot user interface. It allows direct interaction with the robot by
pressing buttons and printing status messages, data values, or graphics on the
screen. In the simulation environment, each robot has an individual console,
while they all share the driving environment. This is displayed as a 3D view of
the robot driving area. The simulator has been implemented using the OpenGL
version Coin3D [Coin3D 2006], which allows panning, rotating, and zooming
in 3D with familiar controls. Robot models may be supplied as Milkshape
MS3D files [Milkshape 2006]. This allows the use of arbitrary 3D models of a
robot or even different models for different robots in the same simulation.

Figure 15.1: System concept
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However, these graphics object descriptions are for display purposes only. The
geometric simulation model of a robot is always a cylinder.

Simulation execution can be halted via a “Pause” button and robots can be
relocated or turned by a menu function. All parameter settings, including error
levels, can be set via menu selections. All active robots are listed at the right of
the robot environment window. Robots are assigned unique id-numbers and
can run different programs.

Sensor–actuator
modeling

Each robot of the EyeBot family is typically equipped with a number of
actuators:

• DC driving motors with differential steering
• Camera panning motor
• Object manipulation motor (“kicker”)

and sensors:

• Shaft encoders
• Tactile bumpers
• Infrared proximity sensors
• Infrared distance measurement sensors
• Digital grayscale or color camera

The real robot’s RoBIOS operating system provides library routines for all
of these sensor types. For the EyeSim simulator, we selected a high-level sub-
set to work with.

Driving interfaces Identical to the RoBIOS operating system, two driving interfaces at differ-
ent abstraction levels have been implemented:

Figure 15.2: EyeSim interface
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• High-level linear and rotational velocity interface (vw)
This interface provides simple driving commands for user programs
without the need for specifying individual motor speeds. In addition,
this simplifies the simulation process and speeds up execution.

• Low-level motor interface
EyeSim does not include a full physics engine, so it is not possible to
place motors at arbitrary positions on a robot. However, the following
three main drive mechanisms have been implemented and can be spec-
ified in the robot’s parameter file. Direct motor commands can then be
given during the simulation.
• Differential drive
• Ackermann drive
• Mecanum wheel drive

All robots’ positions and orientations are updated by a periodic process
according to their last driving commands and respective current velocities.

Simulation of
tactile sensors

Tactile sensors are simulated by computing intersections between the robot
(modeled as a cylinder) and any obstacle in the environment (modeled as line
segments) or another robot. Bump sensors can be configured as a certain sector
range around the robot. That way several bumpers can be used to determine
the contact position. The VWStalled function of the driving interface can also
be used to detect a collision, causing the robot’s wheels to stall.

Simulation of
infrared sensors

The robot uses two different kinds of infrared sensors. One is a binary sen-
sor (Proxy) which is activated if the distance to an obstacle is below a certain
threshold, the other is a position sensitive device (PSD), which returns the dis-
tance value to the nearest obstacle. Sensors can be freely positioned and orien-
tated around a robot as specified in the robot parameter file. This allows testing
and comparing the performance of different sensor placements. For the simu-
lation process, the distance between each infrared sensor at its current position
and orientation toward the nearest obstacle is determined.

Synthetic camera
images

The simulation system generates artificially rendered camera images from
each robot’s point of view. All robot and environment data is re-modeled in
the object-oriented format required by the OpenInventor library and passed to
the image generator of the Coin3D library [Coin3D 2006]. This allows testing,
debugging, and optimizing programs for groups of robots including vision.
EyeSim allows the generation of individual scene views for each of the simu-
lated robots, while each robot receives its own camera image (Figure 15.3) and
can use it for subsequent image processing tasks as in [Leclercq, Bräunl,
2001]. 

Error models The simulator includes different error models, which allow to either run a
simulation in a “perfect world” or to set an error rate in actuators, sensors, or
communication for a more realistic simulation. This can be used for testing a
robot application program’s robustness against sensor noise. The error models
use a standard Gaussian distribution for fault values added to sensor readings
or actuator positions. From the user interface, error percentages can be selected
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for each sensor/actuator. Error values are added to distance measurement sen-
sors (infrared, encoders) or the robot’s [x, y] coordinates and orientation.

Simulated communication errors include also the partial or complete loss or
corruption of a robot-to-robot data transmission.

For the generated camera images, some standard image noise methods have
been implemented, which correspond to typical image transmission errors and
dropouts (Figure 15.4):

• Salt-and-pepper noise
a percentage of random black and white pixels is inserted.

• 100s&1000s noise
a percentage of random colored pixels is inserted.

• Gaussian noise
a percentage of pixels are changed by a zero mean random process. 

Figure 15.3: Generated camera images

Figure 15.4: Camera image, salt-and-pepper, 100s&1000s, Gaussian noise
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15.3 Multiple Robot Simulation
A multi-robot simulation can be initiated by specifying several robots in the
parameter file. Concurrency occurs at three levels:

• Each robot may contain several threads for local concurrent process-
ing.

• Several robots interact concurrently in the same simulation environ-
ment.

• System updates of all robots’ positions and velocities are executed
asynchronously in parallel with simulation display and user input.

Individual threads for each robot are created at run-time. Posix threads and
semaphores are used for synchronization of the robots, with each robot receiv-
ing a unique id-number upon creation of its thread.

In a real robot scenario, each robot interacts with all other robots in two
ways. Firstly, by moving around and thereby changing the environment it is
part of. Secondly, by using its radio communication device to send messages to
other robots. Both of these methods are also simulated in the EyeSim system.

Since the environment is defined in 2D, each line represents an obstacle of
unspecified height. Each of the robot’s distance sensors measures the free
space to the nearest obstacle in its orientation and then returns an appropriate
signal value. This does not necessarily mean that a sensor will return the phys-
ically correct distance value. For example, the infrared sensors only work
within a certain range. If a distance is above or below this range, the sensor
will return out-of-bounds values and the same behavior has been modeled for
the simulation.

Whenever several robots interact in an environment, their respective
threads are executed concurrently. All robot position changes (through driving)
are made by calling a library function and will so update the common environ-
ment. All subsequent sensor readings are also library calls, which now take
into account the updated robot positions (for example a robot is detected as an
obstacle by another robot’s sensor). Collisions between two robots or a robot
and an obstacle are detected and reported on the console, while the robots
involved are stopped.

Avoid
global variables

Since we used the more efficient thread model to implement multiple robots
as opposed to separate processes, this restricts the use of global (and static)
variables. Global variables can be used when simulating a single robot; how-
ever, they can cause problems with multiple robots, i.e. only a single copy
exists and will be accessible to threads from different robots. Therefore, when-
ever possible, global and static variables should be avoided. 
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15.4 EyeSim Application
The sample application in Program 15.1 lets a robot drive straight until it
comes too close to an obstacle. It will then stop, back up, and turn by a random
angle, before it continues driving in a straight line again. Each robot is
equipped with three PSD sensors (infrared distance sensors). All three sensors
plus the stall function of each robot are being monitored. Figure 15.5 shows
simulation experiments with six robots driving concurrently.  

Program 15.1: Random drive

1 #include "eyebot.h"
2 #include <stdlib.h>
3 #include <math.h>
4 #define SAFETY 300
5
6 int main ()
7 { PSDHandle front, left, right;
8   VWHandle  vw;
9   float     dir;

10
11   LCDPrintf("Random Drive\n\n");
12   LCDMenu("", "", "", "END");
13 vw=VWInit(VW_DRIVE,1);
14   VWStartControl(vw, 7.0,0.3,10.0,0.1);
15   front = PSDInit(PSD_FRONT);
16   left  = PSDInit(PSD_LEFT);
17   right = PSDInit(PSD_RIGHT);
18   PSDStart(front | left | right , TRUE);
19
20   while(KEYRead() != KEY4)
21   { if ( PSDGet(left) >SAFETY && PSDGet(front)>SAFETY
22      &&  PSDGet(right)>SAFETY && !VWStalled(vw) )
23               VWDriveStraight(vw, 0.5, 0.3);
24     else
25     { LCDPutString("back up, ");
26       VWDriveStraight(vw,-0.04,0.3);
27       VWDriveWait(vw);
28       LCDPutString("turn\n"); /* random angle */
29       dir = M_PI * (drand48() - 0.5); /* -90 .. +90 */
30       VWDriveTurn(vw, dir, 0.6);
31 VWDriveWait(vw);
32     }
33     OSWait(10);
34   }
35   VWRelease(vw);
36   return 0;
37 }
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15.5 EyeSim Environment and Parameter Files
All environments are modeled by 2D line segments and can be loaded from
text files. Possible formats are either the world format used in the Saphira
robot operating system [Konolige 2001] or the maze format developed by
Bräunl following the widely used “Micro Mouse Contest” notation [Bräunl
1999].

Figure 15.5: Random drive of six robots
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World format The environment in world format is described by a text file. It specifies

walls as straight line segments by their start and end points with dimensions in
millimeters. An implicit stack allows the specification of a substructure in
local coordinates, without having to translate and rotate line segments. Com-
ments are allowed following a semicolon until the end of a line.

The world format starts by specifying the total world size in mm, for exam-
ple:

width  4680
height 3240

Wall segments are specified as 2D lines [x1,y1, x2,y2], so four integers are
required for each line, for example:

;rectangle
0 0 0 1440
0 0 2880 0
0 1440 2880 1440
2880 0 2880 1440

Through an implicit stack, local poses (position and orientation) can be set.
This allows an easier description of an object in object coordinates, which may
be offset and rotated in world coordinates. To do so, the definition of an object
(a collection of line segments) is enclosed within a push and pop statement,
which may be nested. Push requires the pose parameters [x, y, phi], while pop
does not have any parameters. For example:

;two lines translated to [100,100] and rotated by 45 deg.
push 100 100 45
0 0 200   0
0 0 200 200
pop

The starting position and orientation of a robot may be specified by its pose
[x, y, ], for example:

position 180 1260 -90 

Maze format The maze format is a very simple input format for environments with
orthogonal walls only, such as the Micro Mouse competitions. We wanted the
simulator to be able to read typical natural graphics ASCII maze representa-
tions, which are available from the web, like the one below.

Each wall is specified by single characters within a line. A “|” (at odd posi-
tions in a line, 1, 3, 5, ..) denotes a wall segment in the y-direction, a “_” (at
even positions in a line, 2, 4, 6, ..) is a wall segment in the x-direction. So, each
line contains in fact the horizontal walls of its coordinate and the vertical wall
segments of the line above it.

ϕ
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_________________
|  _________|     |
| |  _____  | |___|
| | |_____  | | | |
| |  _  __|___|  _|
| |_|____________ |
| |___    |  _  | |
|  _  | |___| | __|
| | | |   | ____  |
|S|_____|_______|_|

The example below defines a rectangle with two dividing walls:
 _ _ _
|    _|
|_|_ _|

The following shows the same example in a slightly different notation,
which avoids gaps in horizontal lines (in the ASCII representation) and there-
fore looks nicer: 

 _____
|    _|
|_|___|

Extra characters may be added to a maze to indicate starting positions of
one or multiple robots. Upper-case characters assume a wall below the charac-
ter, while lower-case letters do not. The letters U (or S), D, L, R may be used in
the maze to indicate a robot’s start position and orientation: up (equal to start),
down, left, or right. In the last line of the maze file, the size of a wall segment
can be specified in mm (default value 360mm) as a single integer number.

A ball can be inserted by using the symbol “o”, a box can be inserted with
the symbol “x”. The robots can then interact with the ball or box by pushing or
kicking it (see Figure 15.6).

_____________________________________________________
  |                                                     |
  |                                                     |
  |          r                               l          |
  |                                                     |
 _|                                                     |_
|            r                               l            |
|                                                         |
|  r                         o                         l  |
|                                                         |
|_           r                               l           _|
  |                                                     |
  |                                                     |
  |          r                               l          |
  |                                                     |
  |_____________________________________________________|
100
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A number of parameter files are used for the EyeSim simulator, which
determine simulation parameters, physical robot description, and robot sensor
layout, as well as the simulation environment and graphical representation:

• myfile.sim

Main simulation description file, contains links to environment and
robot application binary.

• myfile.c (or .cpp) and myfile.dll

Robot application source file and compiled binary as dynamic link
library (DLL).

The following parameter files can be supplied by the application program-
mer, but do not have to be. A number of environment, as well as robot descrip-
tion and graphics files are available as a library:

• myenvironment.maz or myenvironment.wld

Environment file in maze or world format (see Section 15.5).
• myrobot.robi

Robot description file, physical dimensions, location of sensors, etc.
• myrobot.ms3d

Milkshape graphics description file for 3D robot shape (graphics rep-
resentation only).

SIM
parameter file

Program 15.2 shows an example for a “.sim” file. It specifies which envi-
ronment file (here: “maze1.maz”) and which robot description file (here:
S4.robi”) are being used. 

The robot’s starting position and orientation may be specified in the “robi”
line as optional parameters. This is required for environments that do not spec-
ify a robot starting position. E.g.:

robi S4.robi  DriveDemo.dll  400 400 90

Figure 15.6: Ball simulation
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ROBI
parameter file

There is a clear distinction between robot and simulation parameters, which
is expressed by using different parameter files. This split allows the use of dif-
ferent robots with different physical dimensions and equipped with different
sensors in the same simulation. 

Program 15.2: EyeSim parameter file “.sim”

1 # world description file (either maze or world)
2 maze maze1.maz
3
4 # robot description file
5 robi S4.robi  DriveDemo.dll

Program 15.3: Robot parameter file “.robi” for S4 soccer robot

1 # the name of the robi
2 name S4
3
4 # robot diameter in mm
5 diameter 186
6
7 # max linear velocity in mm/s
8 speed    600 
9

10 # max rotational velocity in deg/s
11 turn     300
12
13 # file name of the graphics model used for this robi
14 model    S4.ms3d
15
16 # psd sensor definition: (id-number from "hdt_sem.h")
17 # "psd", name, id, relative position to robi center(x,y,z)
18 # in mm, angle in x-y plane in deg
19 psd PSD_FRONT  -200    60 20 30      0
20 psd PSD_LEFT   -205    56 45 30     90
21 psd PSD_RIGHT  -210    56 -45 30    -90
22
23 # color camera sensor definition:
24 # "camera", relative position to robi center (x,y,z),
25 # pan-tilt-angle (pan, tilt), max image resolution
26 camera  62  0  60    0  -5    80  60
27
28 # wheel diameter [mm], max. rotational velocity [deg/s],
29 # encoder ticks/rev., wheel-base distance [mm]
30 wheel  54  3600  1100  90
31
32 # motors and encoders for low level drive routines
33 # Diff.-drive: left motor, l. enc, right motor, r. enc
34 drive  DIFFERENTIAL_DRIVE  MOTOR_LEFT QUAD_LEFT
35 MOTOR_RIGHT QUAD_RIGHT
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Each robot type is described by two files: the “.robi” parameter file, which

contains all parameters of a robot relevant to the simulation, and the default
Milkshape “.ms3d” graphics file, which contains the robot visualization as a
colored 3D model (see next section). With this distinction, we can have a
number of physically identical robots with different shapes or color representa-
tion in the simulation visualization. Program 15.3 shows an example of a typi-
cal “.robi” file, which contains:

• Robot type name
• Physical size
• Maximum speed and rotational speed
• Default visualization file (may be changed in “.sim” file)
• PSD sensor placement
• Digital camera placement and camera resolution in pixels
• Wheel velocity and dimension
• Drive system to enable low-level (motor- or wheel-level) driving,

supported drive systems are DIFFERENTIAL_DRIVE, ACKERMANN_
DRIVE, and OMNI_DRIVE

With the help of the robot parameter file, we can run the same simulation
with different robot sensor settings. For example, we can change the sensor
mounting positions in the parameter file and find the optimal solution for a
given problem by repeated simulation runs.

15.6 SubSim Simulation System
SubSim is a simulation system for Autonomous Underwater Vehicles (AUVs)
and therefore requires a full 3D physics simulation engine. The simulation
software is designed to address a broad variety of users with different needs,
such as the structure of the user interface, levels of abstraction, and the com-
plexity of physics and sensor models. As a result, the most important design
goal for the software is to produce a simulation tool that is as extensible and
flexible as possible. The entire system was designed with a plug-in based
architecture. Entire components, such as the end-user API, the user interface
and the physics simulation library can be exchanged to accommodate the
users’ needs. This allows the user to easily extend the simulation system by
adding custom plug-ins written in any language supporting dynamic libraries,
such as standard C or C++.

The simulation system provides a software developer kit (SDK) that con-
tains the framework for plug-in development, and tools for designing and visu-
alizing the submarine. The software packages used to create the simulator
include:

• wxWidgets [wxWidgets 2006] (formerly wxWindows)
A mature and comprehensive open source cross platform C++ GUI
framework. This package was selected as it greatly simplifies the task
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of cross platform interface development. It also offers straightforward
plug-in management and threading libraries.

• TinyXML [tinyxml 2006]
This XML parser was chosen because it is simple to use and small
enough to distribute with the simulation.

• Newton Game Dynamics Engine [Newton 2006]
The physics simulation library is exchangeable and can be selected by
the user. However, the Newton system, a fast and deterministic phys-
ics solver, is SubSim’s default physics engine. 

Physics
simulation

The underlying low-level physics simulation library is responsible for cal-
culating the position, orientation, forces, torques and velocities of all bodies
and joints in the simulation. Since the low-level physics simulation library per-
forms most of the physics calculations, the higher-level physics abstraction
layer (PAL) is only required to simulate motors and sensors. The PAL allows
custom plug-ins to be incorporated to the existing library, allowing custom
sensor and motor models to replace, or supplement the existing implementa-
tions.

Application
programmer

interface

The simulation system implements two separate application programmer
interfaces (APIs). The low-level API is the internal API, which is exposed to
developers so that they can encapsulate the functionality of their own control-
ler API. The high-level API is the RoBIOS API (see Appendix B.5), a user
friendly API that mirrors the functionality present on the EyeBot controller
used in both the Mako and USAL submarines.

The internal API consists of only five functions:
SSID InitDevice(char *device_name);
SSERROR QueryDevice (SSID device, void *data);
SSERROR SetData(SSID device, void *data);
SSERROR GetData(SSID device, void *data);
SSERROR GetTime(SSTIME time);

The function InitDevice initializes the device given by its name and stores
it in the internal registry. It returns a unique handle that can be used to further
reference the device (e.g. sensors, motors). QueryDevice stores the state of the
device in the provided data structure and returns an error if the execution
failed. GetTime returns a time stamp holding the execution time of the subma-
rine’s program in ms. In case of failure an error code is returned.

The functions that are actually manipulating the sensors and actuators and
therefore affect the interaction of the submarine with its environment are either
the GetData or SetData function. While the first one retrieves the data (e.g.
sensor readings) the latter one changes the internal state of a device by passing
control and/or information data to the device. Both functions return appropri-
ate error codes if the operation fails.
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15.7 Actuator and Sensor Models
Propulsion model The motor model (propulsion model) implemented in the simulation is based

on the standard armature controlled DC motor model [Dorf, Bishop 2001]. The
transfer function for the motor in terms of an input voltage (V) and output rota-
tional speed (θ) is:

Where:
J is the moment of inertia of the rotor,
s is the complex Laplace parameter,
b is the damping ratio of the mechanical system,
L is the rotor electrical inductance,
R is the terminal electrical resistance,
K is the electro-motive force constant.

Thruster model The default thruster model implemented is based on the lumped parameter
dynamic thruster model developed by [Yoerger, Cook, Slotine 1991]. The
thrust produced is governed by:

Thrust = Ct · Ω · |Ω|
Where:
Ω is the propeller angular velocity,
Ct is the proportionality constant.

Control surfaces Simulation of control surfaces (e.g. rudder) is required for AUV types such
as USAL. The model used to determine the lift from diametrically opposite
fins [Ridley, Fontan, Corke 2003] is given by:

Where:
Lfin is the lift force,
ρ is the density,

is the rate of change of lift coefficient
with respect to fin effective angle of attack,

Sfin is the fin platform area,
δe is the effective fin angle,
ve is the effective fin velocity

SubSim also provides a much simpler model for the propulsion system in
the form of an interpolated look-up table. This allows a user to experimentally
collect input values and measure the resulting thrust force, applying these
forces directly to the submarine model.
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Sensor models The PAL already simulates a number of sensors. Each sensor can be cou-
pled with an error model to allow the user to simulate a sensor that returns data
similar to the accuracy of the physical equipment they are trying to simulate.
Many of the position and orientation sensors can be directly modeled from the
data available from the lower level physics library. Every sensor is attached to
a body that represents a physical component of an AUV.

The simulated inclinometer sensor calculates its orientation from the orien-
tation of the body that it is attached to, relative to the inclinometers own initial
orientation. Similarly, the simulated gyroscope calculates its orientation from
the attached body’s angular velocity and its own axis of rotation. The veloci-
meter calculates the velocity in a given direction from its orientation axis and
the velocity information from the attached body.

Contact sensors are simulated by querying the collision detection routines
of the low-level physics library for the positions where collisions occurred. If
the collisions queried occur within the domain of the contact sensors, then
these collisions are recorded. 

Distance measuring sensors, such as echo-sounders and Position Sensitive
Devices (PSDs) are simulated by traditional ray casting techniques, provided
the low level physics library supports the necessary data structures.

A realistic synthetic camera image is being generated by the simulation sys-
tem as well. With this, user application programs can use image processing for
navigating the simulated AUV. Camera user interface and implementation are
similar to the EyeSim mobile robot simulation system.

Environments Detailed modeling of the environment is necessary to recreate the complex
tasks facing the simulated AUV. Dynamic conditions force the AUV to contin-
ually adjust its behavior. E.g. introducing (ocean) currents causes the subma-
rine to permanently adapt its position, poor lighting and visibility decreases
image quality and eventually adds noise to PSD and vision sensors. The terrain
is an essential part of the environment as it defines the universe the simulation
takes part in as well as physical obstacles the AUV may encounter. 

Error models Like all the other components of the simulation system, error models are
provided as plug-in extensions. All models either apply characteristic, random,
or statistically chosen noise to sensor readings or the actuators’ control signals.
We can distinguish two different types of errors: Global errors and local errors.
Global errors, such as voltage gain, affect all connected devices. Local errors
only affect a certain device at a certain time. In general, local errors can be data
dropouts, malfunctions or device specific errors that occur when the device
constraints are violated. For example, the camera can be affected by a number
of errors such as detector, Gaussian, and salt-and-pepper noise. Voltage gains
(either constant or time dependent) can interfere with motor controls as well as
sensor readings.

Also to be considered are any peculiarities of the simulated medium, e.g.
refraction due to glass/water transitions and condensation due to temperature
differences on optical instruments inside the hull.
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15.8 SubSim Application
The example in Program 15.4 is written using the high-level RoBIOS API (see
Appendix B.5). It implements a simple wall following task for an AUV, swim-
ming on the water surface. Only a single PSD sensor is used (PSD_LEFT) for
wall following using a bang-bang controller (see Section 5.1). No obstacle
detection is done in front of the AUV.

The Mako AUV first sets both forward motors to medium speed. In an end-
less loop, it then continuously evaluates its PSD sensor to the left and sets left/
right motor speeds accordingly, in order to avoid a wall collision.   

The graphical user interface (GUI) is best demonstrated by screen shots of
some simulation activity. Figure 15.7 shows Mako doing a pipeline inspection
in ocean terrain, using vision feedback for detecting the pipeline. The controls
of the main simulation window allow the user to rotate, pan, and zoom the
scene, while it is also possible to link the user’s view to the submarine itself.
The console window shows the EyeBot controller with the familiar buttons
and LCD, where the application program’s output in text and graphics are dis-
played.

Figure 15.8 shows USAL hovering at the pool surface with sensor visuali-
zation switched on. The camera viewing direction and opening angle is shown
as the viewing frustrum at the front end of the submarine. The PSD distance
sensors are visualized by rays emitted from the submarine up to the next obsta-
cle or pool wall (see also downward rays in pipeline example Figure 15.7).

Program 15.4: Sample AUV control program

1 #include <eyebot.h>
2
3 int main(int argc, char* argv[])
4 { PSDHandle psd;
5   int distance;
6 MotorHandle left_motor;
7   MotorHandle right_motor;
8   psd = PSDInit(PSD_LEFT);
9   PSDStart(psd, 1);

10   left_motor = MOTORInit(MOTOR_LEFT);
11   right_motor= MOTORInit(MOTOR_RIGHT);
12   MOTORDrive(right_motor, 50);   /* medium speed */
13   MOTORDrive(left_motor,  50);
14   while(1)  /* endless loop */
15   { distance = PSDGet(psd);   /* distance to left */
16     if (distance < 100) MOTORDrive(left_motor, 90);
17      else if (distance>200) MOTORDrive(right_motor, 90);     
18       else { MOTORDrive(right_motor, 50); 
19              MOTORDrive(left_motor,  50);
20            }
21   }
22 }
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Figure 15.7: Mako pipeline following

Figure 15.8: USAL pool mission
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15.9 SubSim Environment and Parameter Files
XML (Extensible Markup Language) [Quin 2006] has been chosen as the basis
for all parameter files in SubSim. These include parameter files for the overall
simulation setup (.sub), the AUV and any passive objects in the scenery (.xml),
and the environment/terrain itself (.xml).

Simulation file
SUB

The general simulation parameter file (.sub) is shown in Program 15.5. It
specifies the environment to be used (inclusion of a world file), the submarine
to be used for the simulation (here: link to Mako.xml), any passive objects in
the simulation (here: buoy.xml), and a number of general simulator settings
(here: physics, view, and visualize).

The file extension “.sub” is being entered in the Windows registry, so a
double-click on this parameter file will automatically start SubSim and the
associated application program. 

Object file
XML

The object xml file format (see Program 15.6) is being used for active
objects, i.e. the AUV that is being controlled by a program, as well as inactive
objects, e.g. floating buoys, submerged pipelines, or passive vessels.

The graphics section defines the AUV’s or object’s graphics appearance by
linking to an ms3d graphics model, while the physics section deals with all
simulation aspects of the object. Within the physics part, the primitives section
specifies the object’s position, orientation, dimensions, and mass. The subse-
quent sections on sensors and actuators apply only to (active) AUVs. Here, rel-
evant details about each of the AUV’s sensors and actuators are defined. 

Program 15.5: Overall simulation file (.sub)

1 <Simulation>
2 <Docu text="FloorFollowing Example"/>
3 <World file="terrain.xml" />
4
5 <WorldObjects>
6 <Submarine file="./mako/mako.xml"
7 hdtfile="./mako/mako.hdt">
8    <Client file="./floorfollowing.dll" /> 
9 </Submarine>

10 <WorldObject file="./buoy/buoy.xml" />
11 </WorldObjects>
12
13 <SimulatorSettings>
14 <Physics noise="0.002" speed="40"/>
15  <View rotx="0" roty="0" strafex="0" strafey="0"
16 zoom="40" followobject="Mako AUV"/> 
17 <Visualize psd="dynamic"/>
18 </SimulatorSettings>
19 </Simulation>
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Program 15.6: AUV object file for the Mako

1 <?xml version="1.0"?>
2 <Submarine name="Mako AUV">
3 <Origin x="10" y="0" z="0"/>
4 <Graphics>
5 <Origin x="0" y="0" z="0"/>
6 <Scale x="0.18" y="0.18" z="0.18" />
7 <Modelfile="mako.ms3d" />
8 </Graphics>
9 <Noise>

10 <WhiteNoise strength="5.0" connects="psd_down" />
11 <WhiteNoise strength="0.5" connects="psd_front"/>
12 </Noise>
13
14 <Physics>
15 <Primitives>
16 <Box name="Mako AUV">
17 <Position x="0" y="0" z="0" />
18 <Dimensions width="1.8" height="0.5"
19  depth="0.5" />
20 <Mass mass= "0.5"> </Mass>
21 </Box>
22 </Primitives>
23
24 <Sensors>
25 <Velocimeter name="vel0">
26 <Axis x="1" y="0" z="0"></Axis>
27 <Connection connects="Mako AUV">
28 </Connection>
29 </Velocimeter>
30 ...
31 </Sensors>
32
33 <Actuators>
34 <ImpulseActuator name="fakeprop1">
35 <Position x="0" y="0" z="0.25"></Position>
36 <Axis x="1" y="0" z="0"></Axis>
37 <Connection connects="Mako AUV"></Connection>
38 </ImpulseActuator>
39 ...
40 <Propeller name="prop0">
41 <Position x="0" y="0" z="0.25"></Position>
42 <Axis x="1" y="0" z="0"></Axis>
43 <Connection connects="Mako AUV"></Connection>
44 <Alpha lumped="0.05"></Alpha>
45 </Propeller>
46 ...
47 </Actuators>
48 </Physics>
49 </Submarine>
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World file

XML
The world xml file format (see Program 15.7) allows the specification of

typical underwater scenarios, e.g. a swimming pool or a general subsea terrain
with arbitrary depth profile.

The sections on physics and water set relevant simulation parameters. The
terrain section sets the world’s dimensions and links to both a height map and a
texture file for visualization. The visibility section affects both the graphics
representation of the world, and the synthetic image that AUVs can see
through their simulated on-board cameras. The optional section WorldOb-
jects allows to specify passive objects that should always be present in this
world setting (here a buoy). Individual objects can also be specified in the
“.sub” simulation parameter file. 

Program 15.7: World file for a swimming pool

1 <?xml version="1.0"?>
2 <World>
3 <Environment>
4 <Physics>
5 <Engine engine="Newton" />
6 <Gravity x="0" y="-9.81" z="0" />
7 </Physics>
8
9 <Water density="1030.0"linear_viscosity="0.00120"

10 angular_viscosity="0.00120">
11    <Dimensions width="24" length="49" />
12    <Texture file="water.bmp" />
13 </Water>
14
15 <Terrain>
16 <Origin x="0" y="-3" z="0" />
17 <Dimensions width="25" length="50" depth="4" />
18 <Heightmap file="pool.bmp" />
19 <Texture file="stone.bmp" />
20 </Terrain>
21
22 <Visibility>
23   <Fog density="0.0" depth="100" />
24 </Visibility>
25 </Environment>
26
27 <WorldObjects>
28 <WorldObject file="buoy/buoy.xml" /> 
29 </WorldObjects> 
30 </World>
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16LOCALIZATION AND 
. . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NAVIGATION

ocalization and navigation are the two most important tasks for mobile
robots. We want to know where we are, and we need to be able to
make a plan for how to reach a goal destination. Of course these two

problems are not isolated from each other, but rather closely linked. If a robot
does not know its exact position at the start of a planned trajectory, it will
encounter problems in reaching the destination.

After a variety of algorithmic approaches were proposed in the past for
localization, navigation, and mapping, probabilistic methods that minimize
uncertainty are now applied to the whole problem complex at once (e.g.
SLAM, simultaneous localization and mapping).

In this Chapter, we will look at navigation algorithms that operate with or
without maps. A navigation algorithm without a map (e.g. DistBug) is often
used in a continuously changing environment or if a path has to be traveled
only once and therefore does not necessarily have to be optimal. If a map is
provided, then algorithms like Dijkstra or A* can be applied to find the short-
est path offline before the robot starts driving. Navigation algorithms without
maps operate in direct interaction with the robot’s sensors while driving. Navi-
gation algorithms with maps require a nodal distance graph that has to be
either provided or needs to be extracted from the environment (e.g. Quadtree
method).

16.1 Localization
One of the central problems for driving robots is localization. For many appli-
cation scenarios, we need to know a robot’s position and orientation at all
times. For example, a cleaning robot needs to make sure it covers the whole
floor area without repeating lanes or getting lost, or an office delivery robot
needs to be able to navigate a building floor and needs to know its position and

L
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orientation relative to its starting point. This is a non-trivial problem in the
absence of global sensors.

The localization problem can be solved by using a global positioning sys-
tem. In an outdoor setting this could be the satellite-based GPS. In an indoor
setting, a global sensor network with infrared, sonar, laser, or radio beacons
could be employed. These will give us directly the desired robot coordinates as
shown in Figure 16.1. 

Let us assume a driving environment that has a number of synchronized
beacons that are sending out sonar signals at the same regular time intervals,
but at different (distinguishable) frequencies. By receiving signals from two or
three different beacons, the robot can determine its local position from the time
difference of the signals’ arrival times.

Using two beacons can narrow down the robot position to two possibilities,
since two circles have two intersection points. For example, if the two signals
arrive at exactly the same time, the robot is located in the middle between the
two transmitters. If, say, the left beacon’s signal arrives before the right one,
then the robot is closer to the left beacon by a distance proportional to the time
difference. Using local position coherence, this may already be sufficient for
global positioning. However, to be able to determine a 2D position without
local sensors, three beacons are required.

Only the robot’s position can be determined by this method, not its orienta-
tion. The orientation has to be deducted from the change in position (difference
between two subsequent positions), which is exactly the method employed for
satellite-based GPS, or from an additional compass sensor.

Using global sensors is in many cases not possible because of restrictions in
the robot environment, or not desired because it limits the autonomy of a
mobile robot (see the discussion about overhead or global vision systems for
robot soccer in Chapter 20). On the other hand, in some cases it is possible to
convert a system with global sensors as in Figure 16.1 to one with local sen-
sors. For example, if the sonar sensors can be mounted on the robot and the

Figure 16.1: Global positioning system
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beacons are converted to reflective markers, then we have an autonomous
robot with local sensors.

Homing beacons Another idea is to use light emitting homing beacons instead of sonar bea-
cons, i.e. the equivalent of a lighthouse. With two light beacons with different
colors, the robot can determine its position at the intersection of the lines from
the beacons at the measured angle. The advantage of this method is that the
robot can determine its position and orientation. However, in order to do so,
the robot has either to perform a 360° rotation, or to possess an omni-direc-
tional vision system that allows it to determine the angle of a recognized light
beacon.

For example, after doing a 360° rotation in Figure 16.2, the robot knows it
sees a green beacon at an angle of 45° and a red beacon at an angle of 165° in
its local coordinate system.  

We still need to fit these two vectors in the robot’s environment with known
beacon positions (see Figure 16.3). Since we do not know the robot’s distance
from either of the beacons, all we know is the angle difference under which the
robot sees the beacons (here: 165°– 45° = 120°).

As can be seen in Figure 16.3, top, knowing only two beacon angles is not
sufficient for localization. If the robot in addition knows its global orientation,
for example by using an on-board compass, localization is possible (Figure
16.3, middle). When using three light beacons, localization is also possible
without additional orientation knowledge (Figure 16.3, bottom).

Dead reckoning In many cases, driving robots have to rely on their wheel encoders alone for
short-term localization, and can update their position and orientation from time
to time, for example when reaching a certain waypoint. So-called “dead reck-
oning” is the standard localization method under these circumstances. Dead
reckoning is a nautical term from the 1700s when ships did not have modern
navigation equipment and had to rely on vector-adding their course segments
to establish their current position.

Dead reckoning can be described as local polar coordinates, or more practi-
cally as turtle graphics geometry. As can be seen in Figure 16.4, it is required
to know the robot’s starting position and orientation. For all subsequent driv-
ing actions (for example straight sections or rotations on the spot or curves),

Figure 16.2: Beacon measurements
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the robot’s current position is updated as per the feedback provided from the
wheel encoders. 

Obviously this method has severe limitations when applied for a longer
time. All inaccuracies due to sensor error or wheel slippage will add up over
time. Especially bad are errors in orientation, because they have the largest
effect on position accuracy.

This is why an on-board compass is very valuable in the absence of global
sensors. It makes use of the earth’s magnetic field to determine a robot’s abso-
lute orientation. Even simple digital compass modules work indoors and out-
doors and are accurate to about 1° (see Section 3.7).

Figure 16.3: Homing beacons
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16.2 Probabilistic Localization 
All robot motions and sensor measurements are affected by a certain degree of
noise. The aim of probabilistic localization is to provide the best possible esti-
mate of the robot’s current configuration based on all previous data and their
associated distribution functions. The final estimate will be a probability distri-
bution because of the inherent uncertainty [Choset et al. 2005]. 

Example Assume a robot is driving in a straight line along the x axis, starting at the
true position x=0. The robot executes driving commands with distance d,
where d is an integer, and it receives sensor data from its on-board global
(absolute) positioning system s (e.g. a GPS receiver), where s is also an inte-
ger. The values for d and Δs = s – s’ (current position measurement minus posi-
tion measurement before executing driving command) may differ from the true
position Δx = x – x’.

The robot’s driving accuracy from an arbitrary starting position has to be
established by extensive experimental measurements and can then be
expressed by a PMF (probability mass function), e.g.:

p(Δx=d–1) = 0.2; p(Δx=d) = 0.6; p(Δx=d+1) = 0.2
Note that in this example, the robot’s true position can only deviate by plus

or minus one unit (e.g. cm); all position data are discrete.

Figure 16.4: Dead reckoning
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In a similar way, the accuracy of the robot’s position sensor has to be estab-

lished by measurements, before it can be expressed as a PMF. In our example,
there will again only be a possible deviation from the true position by plus or
minus one unit:

p(x=s–1) = 0.1; p(x=s) = 0.8; p(x=s+1) = 0.1
Assuming the robot has executed a driving command with d=2 and after

completion of this command, its local sensor reports its position as s=2. The
probabilities for its actual position x are as follows, with n as normalization
factor:

p(x=1) = n · p(s=2 | x=1) · p(x=1 | d=2, x’=0) · p(x’=0)
= n · 0.1 · 0.2 · 1 = 0.02n

p(x=2) = n · p(s=2 | x=2) · p(x=2 | d=2, x’=0) · p(x’=0)
= n · 0.8 · 0.6 · 1 = 0.48n

p(x=3) = n · p(s=2 | x=3) · p(x=3 | d=2, x’=0) · p(x’=0)
= n · 0.1 · 0.2 · 1 = 0.02n

Positions 1, 2 and 3 are the only ones the robot can be at after a driving
command with distance 2, since our PMF has probability 0 for all deviations
greater than plus or minus one. Therefore, the three probabilities must add up
to one, and we can use this fact to determine the normalization factor n:

0.02n + 0.48n + 0.02n =1
→ n = 1.92

Robot’s belief Now, we can calculate the probabilities for the three positions, which reflect
the robot’s belief:

p(x=1) = 0.04;
p(x=2) = 0.92;
p(x=3) = 0.04

So the robot is most likely to be in position 2, but it remembers all probabil-
ities at this stage.

Continuing with the example, let us assume the robot executes a second
driving command, this time with d=1, but after execution its sensor still reports
s=2. The robot will now recalculate its position belief according to the condi-
tional probabilities, with x denoting the robot’s true position after driving and
x’ before driving:

p(x=1) = n · p(s=2 | x=1) ·
[ p(x=1 | d=1, x’=1) · p(x’=1)
 +p(x=1 | d=1, x’=2) · p(x’=2)
 +p(x=1 | d=1, x’=3) · p(x’=3) ]
= n · 0.1 · (0.2 · 0.04 + 0 · 0.92 + 0 · 0.04)
= 0.0008n
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p(x=2) = n · p(s=2 | x=2) ·
[ p(x=2 | d=1, x’=1) · p(x’=1)
 +p(x=2 | d=1, x’=2) · p(x’=2) 
 +p(x=2 | d=1, x’=3) · p(x’=3) ]
= n · 0.8 · (0.6 · 0.04 + 0.2 · 0.92 + 0 · 0.04)
= 0.1664n

p(x=3) = n · p(s=2 | x=3) · 
[ p(x=3 | d=1, x’=1) · p(x’=1) 
 +p(x=3 | d=1, x’=2) · p(x’=2) 
 +p(x=3 | d=1, x’=3) · p(x’=3) ]
= n · 0.1 · (0.2 · 0.04 + 0.6 · 0.92 + 0.2 · 0.04)
= 0.0568n

Note that only states x = 1, 2 and 3 were computed since the robot’s true
position can only differ from the sensor reading by one. Next, the probabilities
are normalized to 1.

0.0008n + 0.1664n + 0.0568n = 1
→ n = 4.46

→ p(x=1) = 0.0036
p(x=2) = 0.743
p(x=3) = 0.254

These final probabilities are reasonable because the robot’s sensor is more
accurate than its driving, hence p(x=2) > p(x=3). Also, there is a very small
chance the robot is in position 1, and indeed this is represented in its belief.

The biggest problem with this approach is that the configuration space must
be discrete. That is, the robot’s position can only be represented discretely. A
simple technique to overcome this is to set the discrete representation to the
minimum resolution of the driving commands and sensors, e.g. if we may not
expect driving or sensors to be more accurate than 1cm, we can then express
all distances in 1cm increments. This will, however, result in a large number of
measurements and a large number of discrete distances with individual proba-
bilities.

Particle filters A technique called particle filters can be used to address this problem and
will allow the use of non-discrete configuration spaces. The key idea in parti-
cle filters is to represent the robot’s belief as a set of N particles, collectively
known as M. Each particle consists of a robot configuration x and a weight

.
After driving, the robot updates the j-th particle’s configuration xj by first

sampling the PDF (probability density function) of p(xj | d, xj’); typically a
Gaussian distribution. After that, the robot assigns a new weight wj = p(s | xj)
for the j-th particle. Then, weight normalization occurs such that the sum of all
weights is one. Finally, resampling occurs such that only the most likely parti-
cles remain. A standard resampling algorithm [Choset et al. 2005] is shown
below:

w 0 1,[ ]∈
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M = { }
R = rand(0, 1/N)
c = w[0]
i = 0
for j=0 to N-1 do

u = R + j/N
while u > c do

i = i + 1
c = c + w[i]

end while
M = M + { (x[i], 1/N) } /* add particle to set */

end for

Example Like in the previous example, the robot starts at x=0, but this time the PDF
for driving is a uniform distribution specified by:

p(Δx=d+b) = 

The sensor PDF is specified by: 

p(x=s+b) =

The PDF for x’=0 and d=2 is shown in Figure 16.6, left, the PDF for s=2 is
shown in Figure 16.6, right. 

Assuming the initial configuration x=0 is known with absolute certainty and
our system consists of 4 particles (this is a very small number; in practice
around 10,000 particles are used). Then the initial set is given by:

M = {(0, 0.25), (0, 0.25), (0, 0.25), (0, 0.25)}

1 for b 0.5 0.5,[ ]∈
0 otherwise

16b 4 for b 0.25 0,[ ]∈
16b 4 for b 0 0.25,[ ]∈

0 otherwise

+

+

Figure 16.6: Probability density functions
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Now, the robot is given a driving command d=2 and after completion, its
sensors report the position as s=2. The robot first updates the configuration of
each particle by sampling the PDF in Figure 16.6, left, four times. One possi-
ble result of sampling is: 1.6, 1.8, 2.2 and 2.1. Hence, M is updated to:

M = {(1.6, 0.25), (1.8, 0.25), (2.2, 0.25), (2.1, 0.25)}

Now, the weights for the particles are updated according to the PDF shown
in Figure 16.6, right. This results in:

p(x=1.6) = 0, p(x=1.8) = 0.8, p(x=2.2) = 0.8, p(x=2.1) = 2.4.

Therefore, M is updated to:

M = {(1.6, 0), (1.8, 0.8), (2.2, 0.8), (2.1, 2.4)}

After that, the weights are normalized to add up to one. This gives:

M = {(1.6, 0), (1.8, 0.2), (2.2, 0.2), (2.1, 0.6)}

Finally, the resampling procedure is applied with R=0.1 . The new M will
then be:

M = {(1.8, 0.25), (2.2, 0.25), (2.1, 0.25), (2.1, 0.25)}

Note that the particle value 2.1 occurs twice because it is the most likely,
while 1.6 drops out. If we need to know the robot’s position estimate P at any
time, we can simply calculate the weighted sum of all particles. In the example
this comes to:

P = 1.8 · 0.25 + 2.2 · 0.25 + 2.1 · 0.25 + 2.1 · 0.25 = 2.05

16.3 Coordinate Systems
Local and global

coordinate
systems

We have seen how a robot can drive a certain distance or turn about a certain
angle in its local coordinate system. For many applications, however, it is
important to first establish a map (in an unknown environment) or to plan a
path (in a known environment). These path points are usually specified in glo-
bal or world coordinates.

Transforming
local to global

coordinates

Translating local robot coordinates to global world coordinates is a 2D
transformation that requires a translation and a rotation, in order to match the
two coordinate systems (Figure 16.7).

Assume the robot has the global position [rx, ry] and has global orientation
ϕ. It senses an object at local coordinates [ox´, oy´]. Then the global coordi-
nates [ox, oy] can be calculated as follows:

[ox, oy] = Trans(rx, ry) · Rot(ϕ) · [ox´, oy´]
For example, the marked position in Figure 16.7 has local coordinates

[0, 3]. The robot’s position is [5, 3] and its orientation is 30°. The global object
position is therefore:
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[ox, oy] = Trans(5, 3) · Rot(30°) · [0, 3]
= Trans(5, 3) · [–1.5, 2.6]
= [3.5, 5.6]

Homogeneous
coordinates

Coordinate transformations such as this can be greatly simplified by using
homogeneous coordinates. As already shown for manipulators in Chapter 14,
arbitrary long 3D transformation sequences can be summarized in a single 4×4
matrix [Craig 1989].

In the 2D case above, a 3×3 matrix is sufficient:  

for α = 30° this comes to:

Navigation
algorithms

Navigation, however, is much more than just driving to a certain specified
location – it all depends on the particular task to be solved. For example: Are
the destination points known or do they have to be searched? Are the dimen-
sions of the driving environment known? Are all objects in the environment
known? Are objects moving or stationary? And so on.

Figure 16.7: Global and local coordinate systems
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There are a number of well-known navigation algorithms, which we will
briefly touch on in the following. However, some of them are of a more theo-
retical nature and do not closely match the real problems encountered in prac-
tical navigation scenarios. For example, some of the shortest path algorithms
require a set of node positions and full information about their distances. But
in many practical applications there are no natural nodes (e.g. large empty
driving spaces) or their location or existence is unknown, as for partially or
completely unexplored environments.

See [Arkin 1998] for more details and Chapters 17 and 18 for related topics.

16.4 Environment Representation
The two basic representations of a 2D environment are configuration space
and occupancy grid. In configuration space, we are given the dimensions of
the environment plus the coordinates of all obstacle walls (e.g., represented by
line segments). In an occupancy grid, the environment is specified at a certain
resolution with individual pixels either representing freespace (white pixels) or
an obstacle (black pixels). These two formats can easily be transformed into
each other. For transforming a configuration space into an occupancy grid, we
can “print” the obstacle coordinates on a canvas data structure of the desired
resolution. For transforming an occupancy grid into a configuration space, we
can extract obstacle line segment information by combining neighboring
obstacle pixels into individual line segments. 

While many navigation algorithms work directly on the environment
description (configuration space or occupancy grid), some algorithms, such as
Dijkstra and A*, require a distance graph as input. A distance graph is an envi-
ronment description at a higher level. It does not contain the full environment
information, but it allows for an efficient initial path-planning step (e.g., from

Figure 16.8: Basic environment representations
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room to room) that can be subsequently refined (e.g., from x,y-position to x,y-
position). 

A distance graph contains only a few individually identified node positions
from the environment and their relative distances. Neither of these two basic
environment formats leads directly to a distance graph, and so we are interested
in algorithms that can automatically derive a distance graph (Figure 16.8). 

The brute force solution to this problem would be starting with an occu-
pancy grid and treating each pixel of the grid as a node in the distance graph. If
the given environment is in configuration space, it can easily be converted to
occupancy grid by “printing it” on a canvas at the desired resolution.

However, this approach has a number of problems. First, the number of
nodes in the resulting distance graph will be huge, and so this will be infeasible
for larger environments or finer grids. Second, path planning in such a graph
will result in suboptimal paths, as neighboring pixels have been transformed
into neighboring graph nodes and therefore only support turning angles that are
multiples of ±45º (eight nearest neighbors) of multiples of ±90º (four nearest
neighbors).

Using a quadtree will improve this situation on both counts; it will have sig-
nificantly fewer nodes and does not impose the turning angle restriction. To
generate a quadtree, the given environment (in either configuration space or
occupancy grid) is recursively divided into four quadrants. If a quadrant is
either completely empty (free space) or completely covered by an obstacle, it
becomes a terminal node, also called a leaf. Those quadrant nodes that contain
a mix of free space and obstacles will be further divided in the next recursive
step (see Figure 16.9). This procedure continues until either all nodes are ter-
minal or until a maximum resolution is reached. 

All free nodes of the quadtree (or more precisely their center positions) can
now be used as nodes in the distance graph. We construct a complete graph by

Figure 16.9: Quadtree construction
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linking each node with each other, then eliminate those edges for which the
corresponding two nodes cannot be linked through a direct line because of a
blocking obstacle (e.g. lines c–e and b–e in Figure 16.10). For the remaining
edges we determine their relative distances by measuring in the original envi-
ronment and enter these values into the distance graph (Figure 16.10, right).
As the final path-planning step, we can now use, e.g., the A* algorithm on the
distance graph. 

This algorithm can be further improved by using a framed quadtree, as
shown in [Yahja et al. 1998]. The following two sections discuss more evolved
methods for automatically generating a distance graph.

16.5 Visibility Graph
The visibility graph method uses a different idea to identify node positions for
the distance graph. While the Quadtree method identifies points with some
free space around them, the visibility graph method uses corner points of
obstacles instead. 

If the environment is represented as a configuration space, then we already
have the polygon description of all obstacles. We simply collect a list of all

Figure 16.10: Distance graph construction from quadtree
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start and end points of obstacle border lines, plus the robot’s start and goal
position. 

As shown in Figure 16.11, center, we then construct a complete graph by
linking every node position of every other one. Finally, we delete all the lines
that intersect an obstacle, leaving only those lines that allow us to drive from
one node to another in a direct line (Figure 16.11, right). 

One problem of this approach is that it allows lines to pass very closely to
an obstacle, and so this would only work for a theoretical robot with a zero
diameter. However, this problem can be easily solved by virtually enlarging
each obstacle by at least half of the robot’s diameter before applying the algo-
rithm (see Figure 16.12). 

Piano mover’s
problem

More advanced versions of the visibility graph algorithm can be used to
also include the robot’s orientation for driving, which is especially important
for robots that are not of cylindrical shape [Bicchi, Casalino, Santilli 1996].
For noncylindrical robots (noncircular in their 2D projection), there may exist
possible paths that require a change of orientation in order to drive through a
narrow passageway between two obstacles. This more complex problem has
become known as the “piano mover’s problem” [Hopcroft, Schwartz, Sharir
1987] (Figure 16.13). 

Figure 16.12: Enlarging obstacles by half of robot diameter
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16.6 Voronoi Diagram
A Voronoi diagram is another method for extracting distance node information
from a given 2D environment dating back some time to the work done by
Voronoi, Dirichlet, and Delaunay [Voronoi 1907], [Dirichlet 1850], [Delaunay
1934]. The principle way the algorithm works is by constructing a skeleton of
points with minimal distances to obstacles and walls.

We can define a Voronoi diagram as follows:

F free space in environment (i.e. white pixels in binary image)
F’ occupied space (i.e. black pixels in binary image)
b ∈ F’ is basis point for p ∈ F iff b has minimal distance to p, com-

pared with all other points in F’
Voronoi diagram = { p ∈ F |  p has at least two basis points }

Figure 16.14 demonstrates on two examples the relationship between basis
points and Voronoi points. Only points with at least two basis points qualify as
Voronoi points. 

Figure 16.15 shows the set of Voronoi points for a closed box. The Voronoi
points clearly span a minimal distance skeleton of the environment structure. 

If we have a Voronoi diagram, we can simply use the end points of all Voro-
noi lines as nodes to construct the distance graph. However, deriving all Voro-
noi points is not as easy as the simple definition may suggest. The brute force
approach of checking every single pixel in the image for its Voronoi property
would take a very long time, as this would involve two nested loops over all

Figure 16.14: Basis points and Voronoi points
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pixels. Much more efficient methods for determining Voronoi points are the
Delauney triangulation [Delaunay 1934] and the Brushfire algorithm [Lengyel
et al. 1990], which we will describe in detail.

16.6.1 Delaunay Triangulation
The Delaunay triangulation [Delaunay 1934] tries to construct a Voronoi dia-
gram with much less computational effort. We start with the definition of a
Delaunay triangle:

q1, q2, q3 ∈ F’ form a Delaunay triangle iff there is point p ∈ F that is
equidistant to all q1, q2, q3 and no
other point in F’ is nearer to p.

Point p in a Delaunay triangle is a Voronoi point.
All corner points in F’ are also Voronoi points.

This means: Voronoi point p is the center of a free space circle touch-
ing obstacle/boundary points q1, q2, q3 without any other
obstacle point inside it. 

Figure 16.16, left, shows an example of two Voronoi points inside circles
plus four corner Voronoi points. Voronoi points can be used directly as graph

Figure 16.15: Voronoi example

Figure 16.16: Delaunay triangulation example
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nodes for a navigation algorithm or they can be joined with their nearest neigh-
bors through straight lines to form a complete Voronoi diagram (see Figure
16.16, right).

16.6.2 Brushfire Algorithm
The Brushfire algorithm [Lengyel et al. 1990] is a discrete graphics algorithm
for generating Voronoi diagrams on an occupancy grid (1 for occupied, 0 for
free). The algorithm steps are as follows: 

1. Identify each obstacle and each border with a unique label (color).
2. Iteration (i=2; until no more changes; i++):

a. If a free pixel is neighbor (four-nearest or eight-nearest neighbor) to a
labeled pixel (or a border), then label the pixel “i” in the same color.

Figure 16.17: Brushfire algorithm steps and final Voronoi diagram
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b. If a free pixel is being overwritten twice or more in different colors by

this procedure, then make it a Voronoi point.
c. If a pixel and its top or right neighbor (two-nearest neighbor) were

both overwritten with “i” in different colors by this procedure, then
make this pixel a Voronoi point.

The border-labels (or “colors”) are slowly moving in from the sides toward
the center, so in that sense Brushfire is similar to a flood-fill algorithm. Figure
16.17 shows the step-by-step execution of the Brushfire algorithm and the
resulting Voronoi diagram for a sample environment.

16.7 Potential Field Method
References [Arbib, House 1987], [Koren, Borenstein 1991],

[Borenstein, Everett, Feng 1998]

Description Global map generation algorithm with virtual forces.

Required Start and goal position, positions of all obstacles and walls.

Algorithm Generate a map with virtual attracting and repelling forces. Start point, obsta-
cles, and walls are repelling, goal is attracting; force strength is inverse to
object distance; robot simply follows force field. 

Example Figure 16.18 shows an example with repelling forces from obstacles and walls,
plus a superimposed general field direction from start to goal. 

Figure 16.19 exemplifies the potential field generation steps in the form of
3D surface plots. A ball placed on the start point of this surface would roll
toward the goal point – this demonstrates the derived driving path of a robot.
The 3D surface on the left only represents the force vector field between start
and goal as a potential (height) difference, as well as repelling walls. The 3D
surface on the right has the repelling forces for two obstacles added. 

Figure 16.18: Potential field
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Problem The robot can get stuck in local minima. In this case the robot has reached a
spot with zero force (or a level potential), where repelling and attracting forces
cancel each other out. So the robot will stop and never reach the goal.

16.8 Wandering Standpoint Algorithm
Reference [Puttkamer 2000]

Description Local path planning algorithm.

Required Local distance sensor.

Algorithm Try to reach goal from start in direct line. When encountering an obstacle,
measure avoidance angle for turning left and for turning right, turn to smaller
angle. Continue with boundary-following around the object, until goal direc-
tion is clear again. 

Example Figure 16.20 shows the subsequent robot positions from Start through 1..6 to
Goal. The goal is not directly reachable from the start point. Therefore, the
robot switches to boundary-following mode until, at point 1, it can drive again
unobstructed toward the goal. At point 2, another obstacle has been reached, so
the robot once again switches to boundary-following mode. Finally at point 6,
the goal is directly reachable in a straight line without further obstacles.

Realistically, the actual robot path will only approximate the waypoints but
not exactly drive through them.

Problem The algorithm can lead to an endless loop for extreme obstacle placements. In
this case the robot keeps driving, but never reaches the goal.

Figure 16.19: Potential fields as 3D surfaces
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16.9 Bug Algorithm Family 
References Bug1 [Lumelsky, Stepanov 1986]

Bug2 [Lumelsky, Stepanov 1986]
DistBug [Kamon, Rivlin 1997]
For a summary and comparison of Bug algorithms see [Ng, Bräunl 2007].

Description Local planning algorithm that guarantees convergence and will find a path if
one exists or report that goal is unreachable.

Required Own position (odometry), goal position, and touch sensor (for Bug1 and Bug2)
or distance sensor data (for DistBug).

Algorithm Bug1: Drive straight towards the goal until an obstacle is hit (hit point). Then
do boundary following while recording the shortest distance to goal (leave
point). When hit point is reached again, drive to leave point and continue algo-
rithm from there.
Bug2: Using an imaginary straight line M from start to goal, follow M line
until an obstacle is hit (hit point). Then follow the boundary until a point on M
is reached that is closer to the goal (leave point). Continue the algorithm from
here.
DistBug: Drive straight towards the goal until an obstacle is hit (hit point).
Then follow the boundary while recording the shortest distance to goal. If the
goal is visible or if there is sufficient free space towards the goal, continue the
algorithm from here (leave point). However, if the robot returns to the previous
hit point, then the goal is unreachable.

Below is our algorithmic version of DistBug, adapted from the original paper
text.

Constant: STEP min. distance of two leave points, e.g. 1cm

Figure 16.20: Wandering standpoint
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Variables: P current robot position (x, y)
G goal position (x, y)
Hit location where current obstacle was first hit
Min_dist minimal distance to goal during boundary following

1. Main program
Loop

“drive towards goal” /* non-blocking, proc. continues while driv. */
if P=G then {“success”; terminate;}
if “obstacle collision” { Hit = P; call follow; }

End loop

2. Subroutine follow
Min_dist = ; /* init */
Turn left; /* to align with wall */
Loop

“drive following obstacle boundary”; /* non-block., cont. proc. */
D = dist(P, G) /* air-line distance from current position to goal */
F = free(P, G) /* space in direction of goal, e.g. PSD measurement */
if D < Min_dist then Min_dist = D;

if F  D or D–F  Min_dist – STEP then return;
/* goal is directly reachable or a point closer to goal is reachable */ 
if P = Hit then { “goal unreachable”; terminate; }

End loop

Problem Although this algorithm has nice theoretical properties, it is not very usable in
practice, as the positioning accuracy and sensor distance required for the suc-
cess of the algorithm are usually not achievable. Most variations of the Dist-
Bug algorithm suffer from a lack of robustness against noise in sensor readings
and robot driving/positioning.

Examples Figure 16.21 shows two standard DistBug examples, here simulated with the
EyeSim system. In the example on the left-hand side, the robot starts in the
main program loop, driving forward toward the goal, until it hits the U-shaped
obstacle. A hit point is recorded and subroutine follow is called. After a left
turn, the robot follows the boundary around the left leg, at first getting further
away from the goal, then getting closer and closer. Eventually, the free space in
goal direction will be greater or equal to the remaining distance to the goal
(this happens at the leave point). Then the boundary follow subroutine returns
to the main program, and the robot will for the second time drive directly
toward the goal. This time the goal is reached and the algorithm terminates. 

Figure 16.21, right, shows another example. The robot will stop boundary
following at the first leave point, because its sensors have detected that it can
reach a point closer to the goal than before. After reaching the second hit point,
boundary following is called a second time, until at the second leave point the
robot can drive directly to the goal. 

∞

≥ ≤
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Figure 16.23 shows two more examples that further demonstrate the Dist-
Bug algorithm. In Figure 16.23, left, the goal is inside the E-shaped obstacle
and cannot be reached. The robot first drives straight toward the goal, hits the
obstacle, and records the hit point, then starts boundary following. After com-
pletion of a full circle around the obstacle, the robot returns to the hit point,
which is its termination condition for an unreachable goal.

To point out the differences between the two algorithms, we show the exe-
cution of the algorithms Bug1 (Figure 16.22, left) and Bug2 (Figure 16.22,
right) in the same environment as Figure 16.21, right. 

Figure 16.23, right, shows a more complex example. After the hit point has
been reached, the robot surrounds almost the whole obstacle until it finds the
entry to the maze-like structure. It continues boundary following until the goal
is directly reachable from the leave point.

Figure 16.21: Distbug examples [Ng, Bräunl 2007]
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Figure 16.22: Bug1 and Bug2 examples [Ng, Bräunl 2007]
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16.10 Dijkstra’s Algorithm
Reference [Dijkstra 1959]

Description Algorithm for computing all shortest paths from a given starting node in a
fully connected graph. Time complexity for naive implementation is O(e + v2),
and can be reduced to O(e + v·log v), for e edges and v nodes.
Distances between neighboring nodes are given as edge(n,m).

Required Relative distance information between all nodes; distances must not be nega-
tive.

Algorithm While all previous algorithms worked directly on the environment data, Dijk-
stra (and also A* below) require a distance graph (see Section 16.4) to be con-
structed first.
Start “ready set” with start node. In loop select node with shortest distance in
every step, then compute distances to all of its neighbors and store path prede-
cessors. Add current node to “ready set”; loop finishes when all nodes are
included.

1. Init
Set start distance to 0, dist[s]=0,
others to infinite: dist[i]=  (for i≠s),
Set Ready = { } .

Figure 16.23: Complex Distbug examples [Ng, Bräunl 2007]
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2. Loop until all nodes are in Ready
Select node n with shortest known distance that is not in Ready set
Ready = Ready + {n} .
FOR each neighbor node m of n
IF dist[n]+edge(n,m) < dist[m]    /* shorter path found */

THEN { dist[m] = dist[n]+edge(n,m);
pre[m] = n;

}  

Example Consider the nodes and distances in Figure 16.24. On the left hand side is the
distance graph, on the right-hand side is the table with the shortest distances
found so far and the immediate path predecessors that lead to this distance. 

In the beginning (initialization step), we only know that start node S is
reachable with distance 0 (by definition). The distances to all other nodes are
infinite and we do not have a path predecessor recorded yet. Proceeding from
step 0 to step 1, we have to select the node with the shortest distance from all
nodes that are not yet included in the Ready set. Since Ready is still empty, we

Figure 16.24: Dijkstra’s algorithm step 0 and 1
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Figure 16.25: Dijkstra’s algorithm steps 2-5
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have to look at all nodes. Clearly S has the shortest distance (0), while all other
nodes still have an infinite distance.

For step 1, Figure 16.24 bottom, S is now included into the Ready set and
the distances and path predecessors (equal to S) for all its neighbors are being
updated. Since S is neighbor to nodes a, c, and d, the distances for these three
nodes are being updated and their path predecessor is being set to S. 

When moving to step 2, we have to select the node with the shortest path
among a, b, c, d, as S is already in the Ready set. Among these, node c has the
shortest path (5). The table is updated for all neighbors of c, which are S, a, b,
and d. As shown in Figure 16.25, new shorter distances are found for a, b, and
d, each entering c as their immediate path predecessor.

In the following steps 3 through 5, the algorithm’s loop is repeated, until
finally, all nodes are included in the Ready set and the algorithm terminates.
The table now contains the shortest path from the start node to each of the
other nodes, as well as the path predecessor for each node, allowing us to
reconstruct the shortest path. 

Figure 16.26 shows how to construct the shortest path from each node’s
predecessor. For finding the shortest path between S and b, we already know
the shortest distance (9), but we have to reconstruct the shortest path back-
wards from b, by following the predecessors:

pre[b]=a, pre[a]=c, pre[c]=S

Therefore, the shortest path is: S → c → a → b

Figure 16.26: Determine shortest path
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16.11 A* Algorithm
Reference [Hart, Nilsson, Raphael 1968]

Description Pronounced “A-Star”; heuristic algorithm for computing the shortest path from
one given start node to one given goal node. Average time complexity is
O(k·logkv) for v nodes with branching factor k, but can be quadratic in worst
case.

Required Distance graph with relative distance information between all nodes plus
lower bound of distance to goal from each node (e.g. air-line or linear dis-
tance).

Algorithm Maintain sorted list of paths to goal, in every step expand only the currently
shortest path by adding adjacent node with shortest distance (including esti-
mate of remaining distance to goal).

Example Consider the nodes and local distances in Figure 16.27. Each node has also a
lower bound distance to the goal (e.g. using the Euclidean distance from a glo-
bal positioning system).

For the first step, there are three choices:
• {S, a} with min. length 10 + 1 = 11
• {S, c} with min. length 5 + 3 = 8
• {S, d} with min. length 9 + 5 = 14

Using a “best-first” algorithm, we explore the shortest estimated path first:
{S, c}. Now the next expansion from partial path {S, c} are:

• {S, c, a} with min. length 5 + 3 + 1 = 9
• {S, c, b} with min. length 5 + 9 + 0 = 14
• {S, c, d} with min. length 5 + 2 + 5 = 12

Figure 16.27: A* example
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As it turns out, the currently shortest partial path is {S, c, a}, which we will

now expand further:
• {S, c, a, b} with min. length 5 + 3 + 1 + 0 = 9

There is only a single possible expansion, which reaches the goal node b
and is the shortest path found so far, so the algorithm terminates. The shortest
path and the corresponding distance have been found.

Note This algorithm may look complex since there seems to be the need to store
incomplete paths and their lengths at various places. However, using a recur-
sive best-first search implementation can solve this problem in an elegant way
without the need for explicit path storing.

The quality of the lower bound goal distance from each node greatly influ-
ences the timing complexity of the algorithm. The closer the given lower
bound is to the true distance, the shorter the execution time.
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MAZE EXPLORATION

obile robot competitions have been around for over 30 years, with
the Micro Mouse Contest being the first of its kind in 1977. These
competitions have inspired generations of students, researchers,

and laypersons alike, while consuming vast amounts of research funding and
personal time and effort. Competitions provide a goal together with an objec-
tive performance measure, while extensive media coverage allows participants
to present their work to a wider forum. 

As the robots in a competition evolved over the years, becoming faster and
smarter, so did the competitions themselves. Today, interest has shifted from
the “mostly solved” maze contest toward robot soccer (see Chapter 20).

17.1 Micro Mouse Contest
Start: 1977 in

New York
“The stage was set. A crowd of spectators, mainly engineers, were there.
So were reporters from the Wall Street Journal, the New York Times,
other publications, and television. All waited in expectancy as Spec-
trum’s Mystery Mouse Maze was unveiled. Then the color television
cameras of CBS and NBC began to roll; the moment would be recreated
that evening for viewers of the Walter Cronkite and John Chancellor-
David Brinkley news shows” [Allan 1979].

This report from the first “Amazing Micro-Mouse Maze Contest” demon-
strates the enormous media interest in the first mobile robot competition in
New York in 1977. The academic response was overwhelming. Over 6,000
entries followed the announcement of Don Christiansen [Christiansen 1977],
who originally suggested the contest. 

The task is for a robot mouse to drive from the start to the goal in the fastest
time. Rules have changed somewhat over time, in order to allow exploration of
the whole maze and then to compute the shortest path, while also counting
exploration time at a reduced factor.

The first mice constructed were rather simple – some of them did not even
contain a microprocessor as controller, but were simple “wall huggers” which
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would find the goal by always following the left (or the right) wall. A few of
these scored even higher than some of the intelligent mice, which were
mechanically slower. 

John Billingsley [Billingsley 1982] made the Micro Mouse Contest popular
in Europe and called for the first rule change: starting in a corner, the goal
should be in the center and not in another corner, to eliminate wall huggers.
From then on, more intelligent behavior was required to solve a maze (Figure
17.1). Virtually all robotics labs at that time were building micromice in one
form or another – a real micromouse craze was going around the world. All of
a sudden, people had a goal and could share ideas with a large number of col-
leagues who were working on exactly the same problem. 

Micromouse technology evolved quite a bit over time, as did the running
time. A typical sensor arrangement was to use three sensors to detect any walls
in front, to the left, and to the right of the mouse. Early mice used simple

Figure 17.1: Maze from Micro Mouse Contest in London 1986

Figure 17.2: Micromouse generations, Univ. Kaiserslautern [Hinkel 1987]
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micro-switches as touch sensors, while later on sonar, infrared, or even optical
sensors [Hinkel 1987] became popular (Figure 17.2).

While the mouse’s size is restricted by the maze’s wall distance, smaller
and especially lighter mice have the advantage of higher acceleration/decelera-
tion and therefore higher speed. Even smaller mice became able to drive in a
straight diagonal line instead of going through a sequence of left/right turns,
which exist in most mazes. 

One of today’s fastest mice comes from the University of Queensland, Aus-
tralia (see Figure 17.3 – the Micro Mouse Contest has survived until today!),
using three extended arms with several infrared sensors each for reliable wall
distance measurement. By and large, it looks as if the micromouse problem has
been solved, with the only possible improvement being on the mechanics side,
but not in electronics, sensors, or software [Bräunl 1999].

17.2 Maze Exploration Algorithms
For maze exploration, we will develop two algorithms: a simple iterative pro-
cedure that follows the left wall of the maze (“wall hugger”), and an only
slightly more complex recursive procedure to explore the full maze.

17.2.1 Wall-Following
Our first naive approach for the exploration part of the problem is to always
follow the left wall. For example, if a robot comes to an intersection with sev-
eral open sides, it follows the leftmost path. Program 17.1 shows the imple-
mentation of this function explore_left. The start square is assumed to be at
position [0,0], the four directions north, west, south, and east are encoded as
integers 0, 1, 2, 3. 

The procedure explore_left is very simple and comprises only a few lines
of code. It contains a single while-loop that terminates when the goal square is

Figure 17.3: Micromouse, University of Queensland
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reached (x and y coordinates match). In each iteration, it is determined by
reading the robot’s infrared sensors whether a wall exists on the front, left-, or
right-hand side (boolean variables front_open, left_open, right_open).
The robot then selects the “leftmost” direction for its further journey. That is, if
possible it will always drive left, if not it will try driving straight, and only if
the other two directions are blocked, will it try to drive right. If none of the
three directions are free, the robot will turn on the spot and go back one square,
since it has obviously arrived at a dead-end. 

The support functions for turning multiples of 90° and driving one square
are quite simple and shown in Program 17.2. Function turn turns the robot by
the desired angle (±90° or 180°), and then updates the direction parameter dir.

Program 17.1: Explore-Left

1 void explore_left(int goal_x, int goal_y)
2 { int x=0, y=0, dir=0; /* start position */
3 int front_open, left_open, right_open;
4
5   while (!(x==goal_x && y==goal_y)) /* goal not reached */
6   { front_open = PSDGet(psd_front) > THRES;
7     left_open  = PSDGet(psd_left)  > THRES; 
8     right_open = PSDGet(psd_right) > THRES;
9

10     if (left_open) turn(+1, &dir); /* turn left */
11      else if (front_open); /* drive straight*/ 
12       else if (right_open) turn(-1, &dir);/* turn right */
13        else turn(+2, &dir); /* dead end - back up */
14     go_one(&x,&y,dir); /* go one step in any case */
15   }
16 }

Program 17.2: Driving support functions

1 void turn(int change, int *dir)
2 {  VWDriveTurn(vw, change*PI/2.0, ASPEED);
3    VWDriveWait(vw);
4    *dir = (*dir+change +4) % 4;
5 }

1 void go_one(int *x, int *y, int dir)
2 { switch (dir)
3   { case 0: (*y)++; break; 
4     case 1: (*x)--; break; 
5     case 2: (*y)--; break; 
6     case 3: (*x)++; break; 
7   }
8   VWDriveStraight(vw, DIST, SPEED);
9   VWDriveWait(vw);

10 }
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Function go_one updates the robot’s position in x and y, depending on the cur-
rent direction dir. It then drives the robot a fixed distance forward.

This simple and elegant algorithm works very well for most mazes. How-
ever, there are mazes where this algorithm does not work As can be seen in
Figure 17.4, a maze can be constructed with the goal in the middle, so a wall-
following robot will never reach it. The recursive algorithm shown in the fol-
lowing section, however, will be able to cope with arbitrary mazes. 

17.2.2 Recursive Exploration
The algorithm for full maze exploration guarantees that each reachable square
in the maze will be visited, independent of the maze construction. This, of
course, requires us to generate an internal representation of the maze and to
maintain a bit-field for marking whether a particular square has already been
visited. Our new algorithm is structured in several stages for exploration and
navigation:

1. Explore the whole maze:
Starting at the start square, visit all reachable squares in the maze, then
return to the start square (this is accomplished by a recursive algorithm).

2. Compute the shortest distance from the start square to any other square
by using a “flood fill” algorithm.

3. Allow the user to enter the coordinates of a desired destination square:
Then determine the shortest driving path by reversing the path in the
flood fill array from the destination to the start square.

The difference between the wall-following algorithm and this recursive
exploration of all paths is sketched in Figure 17.5. While the wall-following
algorithm only takes a single path, the recursive algorithm explores all poss-
ible paths subsequently. Of course this requires some bookkeeping of squares
already visited to avoid an infinite loop.  

Program 17.3 shows an excerpt from the central recursive function
explore. Similar to before, we determine whether there are walls in front and
to the left and right of the current square. However, we also mark the current
square as visited (data structure mark) and enter any walls found into our inter-

Figure 17.4: Problem for wall-following

goal square
never reached
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nal representation using auxiliary function maze_entry. Next, we have a max-
imum of three recursive calls, depending on whether the direction front, left, or
right is open (no wall) and the next square in this direction has not been visited
before. If this is the case, the robot will drive into the next square and the pro-
cedure explore will be called recursively. Upon termination of this call, the
robot will return to the previous square. Overall, this will result in the robot

Figure 17.5: Left wall-following versus recursive exploration
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Program 17.3: Explore

1 void explore()
2 { int front_open, left_open, right_open;
3   int old_dir;
4
5   mark[rob_y][rob_x] = 1;   /* set mark */
6   PSDGet(psd_left), PSDGet(psd_right));
7 front_open = PSDGet(psd_front) > THRES;
8   left_open  = PSDGet(psd_left)  > THRES;
9   right_open = PSDGet(psd_right) > THRES;

10   maze_entry(rob_x,rob_y,rob_dir,       front_open);
11   maze_entry(rob_x,rob_y,(rob_dir+1)%4, left_open);
12   maze_entry(rob_x,rob_y,(rob_dir+3)%4, right_open);
13 old_dir = rob_dir;
14
15   if (front_open  && unmarked(rob_y,rob_x,old_dir))
16     { go_to(old_dir);   /* go 1 forward */
17       explore();        /* recursive call */
18       go_to(old_dir+2); /* go 1 back */
19     }
20 if (left_open && unmarked(rob_y,rob_x,old_dir+1))
21     { go_to(old_dir+1); /* go 1 left */
22       explore();        /* recursive call */
23       go_to(old_dir-1); /* go 1 right */
24     }
25 if (right_open && unmarked(rob_y,rob_x,old_dir-1))
26     { go_to(old_dir-1); /* go 1 right */
27       explore();        /* recursive call */
28       go_to(old_dir+1); /* go 1 left */
29     }
30 }
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exploring the whole maze and returning to the start square upon completion of
the algorithm.

A possible extension of this algorithm is to check in every iteration if all
surrounding walls of a new, previously unvisited square are already known
(for example if the surrounding squares have been visited). In that case, it is
not required for the robot to actually visit this square. The trip can be saved
and the internal database can be updated. 

We have now completed the first step of the algorithm, sketched in the
beginning of this section. The result can be seen in the top of Figure 17.6. We
now know for each square whether it can be reached from the start square or
not, and we know all walls for each reachable square.

Flood fill algorithm In the second step, we want to find the minimum distance (in squares) of
each maze square from the start square. Figure 17.6, bottom, shows the short-
est distances for each point in the maze from the start point. A value of –1 indi-
cates a position that cannot be reached (for example outside the maze bounda-
ries). We are using a flood fill algorithm to accomplish this (see Program 17.4). 

Figure 17.6: Maze algorithm output

..................................

._._._._._._._._._................

|  _ _ _ _ _|     |...............

| |  _ _ _  | |_ _|...............

| | |_ _ _  | | | |...............

| |  _   _|_ _|  _|...............

| |_|_ _ _ _ _ _  |...............

| |_ _    |  _  | |...............

|  _  | |_ _| |  _|...............

| | | |   |  _ _  |...............

|.|_ _ _|_ _ _ _|_|...............

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

  8  9 10 11 12 13 38 39 40 -1 -1 -1 -1 -1 -1 -1

  7 28 29 30 31 32 37 40 -1 -1 -1 -1 -1 -1 -1 -1

  6 27 36 35 34 33 36 21 22 -1 -1 -1 -1 -1 -1 -1

  5 26 25 24 25 34 35 20 21 -1 -1 -1 -1 -1 -1 -1

  4 27 24 23 22 21 20 19 18 -1 -1 -1 -1 -1 -1 -1

  3 12 11 10 11 14 15 16 17 -1 -1 -1 -1 -1 -1 -1

  2  3  4  9 12 13 14 15 16 -1 -1 -1 -1 -1 -1 -1

  1  8  5  8  9 12 13 14 15 -1 -1 -1 -1 -1 -1 -1

  0  7  6  7 10 11 12 13 16 -1 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
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The program uses a 2D integer array map for recording the distances plus a
copy, nmap, which is used and copied back after each iteration. In the begin-
ning, each square (array element) is marked as unreachable (–1), except for the
start square [0,0], which can be reached in zero steps. Then, we run a while-
loop as long as at least one map entry changes. Since each “change” reduces
the number of unknown squares (value –1) by at least one, the upper bound of
loop iterations is the total number of squares (MAZESIZE2). In each iteration we
use two nested for-loops to examine all unknown squares. If there is a path
(no wall to north, south, east, or west) to a known square (value ≠ –1), the new
distance is computed and entered in distance array nmap. Additional if-selec-
tions are required to take care of the maze borders. Figure 17.7 shows the step-
wise generation of the distance map. 

In the third and final step of our algorithm, we can now determine the short-
est path to any maze square from the start square. We already have all wall
information and the shortest distances for each square (see Figure 17.6). If the
user wants the robot to drive to, say, maze square [1,2] (row 1, column 2,
assuming the start square is at [0,0]), then we know already from our distance
map (see Figure 17.7, bottom right) that this square can be reached in five

Program 17.4: Flood fill

1 for (i=0; i<MAZESIZE; i++) for (j=0; j<MAZESIZE; j++)
2 {  map [i][j] = -1;  /* init */
3 nmap[i][j] = -1;
4 }
5   map [0][0] = 0;
6   nmap[0][0] = 0;
7 change = 1;
8
9 while (change)

10 { change = 0;
11     for (i=0; i<MAZESIZE; i++) for (j=0; j<MAZESIZE; j++)
12     { if (map[i][j] == -1)
13       { if (i>0)
14           if (!wall[i][j][0]   && map[i-1][j] != -1)
15 { nmap[i][j] = map[i-1][j] + 1; change = 1; }
16         if (i<MAZESIZE-1)
17           if (!wall[i+1][j][0] && map[i+1][j] != -1)
18            { nmap[i][j] = map[i+1][j] + 1; change = 1; }
19         if (j>0)
20           if (!wall[i][j][1]   && map[i][j-1] != -1)
21            { nmap[i][j] = map[i][j-1] + 1; change = 1; }
22         if (j<MAZESIZE-1)
23           if (!wall[i][j+1][1] && map[i][j+1] != -1)
24            { nmap[i][j] = map[i][j+1] + 1; change = 1; }
25       }
26     }
27 for (i=0; i<MAZESIZE; i++) for (j=0; j<MAZESIZE; j++)
28       map[i][j] = nmap[i][j];  /* copy back */
29 }
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steps. In order to find the shortest driving path, we can now simply trace back
the path from the desired goal square [1,2] to the start square [0,0]. In each step
we select a connected neighbor square from the current square (no wall
between them) that has a distance of one less than the current square. That is, if
the current square has distance d, the new selected neighbor square has to have
a distance of d–1 (Figure 17.8). 

Program 17.5 shows the program to find the path, Figure 17.9 demonstrates
this for the example [1,2]. Since we already know the length of the path (entry
in map), a simple for-loop is sufficient to construct the shortest path. In each
iteration, all four sides are checked whether there is a path and the neighbor
square has a distance one less than the current square. This must be the case for
at least one side, or there would be an error in our data structure. There could
be more than one side for which this is true. In this case, multiple shortest
paths exist.  

Figure 17.7: Distance map development (excerpt)

 -1 -1 -1 -1 -1 -1

  4 -1 -1 -1 -1 -1

  3 -1 -1 -1 -1 -1

  2  3  4 -1 -1 -1

  1 -1 -1 -1 -1 -1

  0 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

  3 -1 -1 -1 -1 -1

  2  3 -1 -1 -1 -1

  1 -1 -1 -1 -1 -1

  0 -1 -1 -1 -1 -1

 5 -1 -1 -1 -1 -1

  4 -1 -1 -1 -1 -1

  3 -1 -1 -1 -1 -1

  2  3  4 -1 -1 -1

  1 -1 5 -1 -1 -1

  0 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

  2 -1 -1 -1 -1 -1

  1 -1 -1 -1 -1 -1

  0 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

  1 -1 -1 -1 -1 -1

  0 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1

  0 -1 -1 -1 -1 -1

Figure 17.8: Screen dumps: exploration, visited cells, distances, shortest path
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Program 17.5: Shortest path

1 void build_path(int i, int j)
2 { int k;
3 for (k = map[i,j]-1; k>=0; k--)
4   {
5     if (i>0 && !wall[i][j][0] && map[i-1][j] == k)
6     { i--;
7       path[k] = 0; /* north */
8     }
9    else

10     if (i<MAZESIZE-1  &&!wall[i+1][j][0] &&map[i+1][j]==k)
11     { i++;
12       path[k] = 2; /* south */
13     }
14    else
15     if (j>0  && !wall[i][j][1] && map[i][j-1]==k)
16     { j--;
17       path[k] = 3; /* east */
18     }
19   else
20     if (j<MAZESIZE-1  &&!wall[i][j+1][1] &&map[i][j+1]==k)
21     { j++;
22       path[k] = 1; /* west */
23     }
24   else
25     { LCDPutString("ERROR\a");
26 }
27 }
28 }

Figure 17.9: Shortest path for position [y,x] = [1,2]

 5 -1 -1 -1 -1 -1

  4 -1 -1 -1 -1 -1

  3 -1 -1 -1 -1 -1

  2  3  4 -1 -1 -1

  1 -1 5 -1 -1 -1

  0 -1 -1 -1 -1 -1

 5 -1 -1 -1 -1 -1

  4 -1 -1 -1 -1 -1

  3 -1 -1 -1 -1 -1

  2  3  4 -1 -1 -1

  1 -1 5 -1 -1 -1

  0 -1 -1 -1 -1 -1

 5 -1 -1 -1 -1 -1

  4 -1 -1 -1 -1 -1

  3 -1 -1 -1 -1 -1

  2  3  4 -1 -1 -1

  1 -1 5 -1 -1 -1

  0 -1 -1 -1 -1 -1

 5 -1 -1 -1 -1 -1

  4 -1 -1 -1 -1 -1

  3 -1 -1 -1 -1 -1

  2  3  4 -1 -1 -1

  1 -1 5 -1 -1 -1

  0 -1 -1 -1 -1 -1

 5 -1 -1 -1 -1 -1

  4 -1 -1 -1 -1 -1

  3 -1 -1 -1 -1 -1

  2  3  4 -1 -1 -1

  1 -1 5 -1 -1 -1

  0 -1 -1 -1 -1 -1

 5 -1 -1 -1 -1 -1

  4 -1 -1 -1 -1 -1

  3 -1 -1 -1 -1 -1

  2  3  4 -1 -1 -1

  1 -1 5 -1 -1 -1

  0 -1 -1 -1 -1 -1

Path: {} Path: {S} Path: {E,S}

Path: {E,E,S} Path: {N,E,E,S} Path: {N,N,E,E,S}
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17.3 Simulated versus Real Maze Program
Simulations are
never enough:
the real world
contains real

problems!

We first implemented and tested the maze exploration problem in the EyeSim
simulator before running the same program unchanged on a real robot [Koes-
tler, Bräunl 2005]. Using the simulator initially for the higher levels of pro-
gram design and debugging is very helpful, because it allows us to concentrate
on the logic issues and frees us from all real-world robot problems. Once the
logic of the exploration and path planning algorithm has been verified, one can
concentrate on the lower-level problems like fault-tolerant wall detection and
driving accuracy by adding sensor/actuator noise to error levels typically
encountered by real robots. This basically transforms a Computer Science
problem into a Computer Engineering problem. 

Now we have to deal with false and inaccurate sensor readings and disloca-
tions in robot positioning. We can still use the simulator to make the necessary
changes to improve the application’s robustness and fault tolerance, before we
eventually try it on a real robot in a maze environment.

What needs to be added to the previously shown maze program can be
described by the term fault tolerance. We must not assume that a robot has
turned 90° degrees after we give it the corresponding command. It may in fact
have turned only 89° or 92°. The same holds for driving a certain distance or
for sensor readings. The logic of the program does not need to be changed,
only the driving routines.

The best way of making our maze program fault tolerant is to have the robot
continuously monitor its environment while driving (Figure 17.10). Instead of
issuing a command to drive straight for a certain distance and wait until it is

Figure 17.10: Simulated maze solving
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finished, the robot should constantly measure the distance to the left and right
wall while driving and continuously correct its steering while driving forward.
This will correct driving errors as well as possible turning errors from a previ-
ous change of direction. If there is no wall to the left or the right or both, this
information can be used to adjust the robot’s position inside the square, i.e.
avoiding driving too far or too short (Figure 17.11). For the same reason, the
robot needs to constantly monitor its distance to the front, in case there is a
wall.  
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Figure 17.11: Adaptive driving using three sensors
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MAP GENERATION

apping an unknown environment is a more difficult task than the
maze exploration shown in the previous chapter. This is because, in
a maze, we know for sure that all wall segments have a certain

length and that all angles are at 90°. In the general case, however, this is not the
case. So a robot having the task to explore and map an arbitrary unknown envi-
ronment has to use more sophisticated techniques and requires higher-preci-
sion sensors and actuators as for a maze.

18.1 Mapping Algorithm
Several map generation systems have been presented in the past [Chatila
1987], [Kampmann 1990], [Leonard, Durrant-White 1992], [Melin 1990],
[Piaggio, Zaccaria 1997], [Serradilla, Kumpel 1990]. While some algorithms
are limited to specific sensors, for example sonar sensors [Bräunl, Stolz 1997],
many are of a more theoretical nature and cannot be directly applied to mobile
robot control. We developed a practical map generation algorithm as a combi-
nation of configuration space and occupancy grid approaches. This algorithm
is for a 2D environment with static obstacles. We assume no prior information
about obstacle shape, size, or position. A version of the “DistBug” algorithm
[Kamon, Rivlin 1997] is used to determine routes around obstacles. The algo-
rithm can deal with imperfect distance sensors and localization errors [Bräunl,
Tay 2001].

For implementation, we are using the robot Eve, which is the first EyeBot-
based mobile robot. It uses two different kinds of infrared sensors: one is a
binary sensor (IR-proxy) which is activated if the distance to an obstacle is
below a certain threshold, the other is a position sensitive device (IR-PSD)
which returns a distance value to the nearest obstacle. In principle, sensors can
be freely positioned and oriented around the robot. This allows testing and
comparison of the performance of different sensor positions. The sensor con-
figuration used here is shown in Figure 18.1.
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Accuracy and speed are the two major criteria for map generation.
Although the quad-tree representation seems to fit both criteria, it was unsuit-
able for our setup with limited accuracy sensors. Instead, we used the approach
of visibility graphs [Sheu, Xue 1993] with configuration space representation.
Since the typical environments we are using have only few obstacles and lots
of free space, the configuration space representation is more efficient than the
free space representation. However, we will not use the configuration space
approach in the form published by Sheu and Xue. We modified the approach to
record exact obstacle outlines in the environment, and do not add safety areas
around them, which results in a more accurate mapping. 

The second modification is to employ a grid structure for the environment,
which simplifies landmark localization and adds a level of fault tolerance. The
use of a dual map representation eliminates many of the problems of each indi-
vidual approach, since they complement each other. The configuration space
representation results in a well-defined map composed of line segments,
whereas the grid representation offers a very efficient array structure that the
robot can use for easy navigation.

The basic tasks for map generation are to explore the environment and list
all obstacles encountered. In our implementation, the robot starts exploring its
environment. If it locates any obstacles, it drives toward the nearest one, per-
forms a boundary-following algorithm around it, and defines a map entry for
this obstacle. This process continues until all obstacles in the local environ-
ment are explored. The robot then proceeds to an unexplored region of the
physical environment and repeats this process. Exploration is finished when
the internal map of the physical environment is fully defined.

The task planning structure is specified by the structogram in Figure 18.2. 

Figure 18.1: Robot sensor configuration with three PSDs and seven proxies
IR-Proxy

IR-PSD

IR-Proxy

Camera

Controller
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18.2 Data Representation
The physical environment is represented in two different map systems, the
configuration space representation and the occupancy grid.

Configuration space was introduced by Lozano-Perez [Lozano-Perez 1982]
and modified by Fujimura [Fujimura 1991] and Sheu and Xue [Sheu, Xue
1993]. Its data representation is a list of vertex–edge (V,E) pairs to define
obstacle outlines. Occupancy grids [Honderd, Jongkind, Aalst 1986] divide the
2D space into square areas, whose number depends on the selected resolution.
Each square can be either free or occupied (being part of an obstacle).

Since the configuration space representation allows a high degree of accu-
racy in the representation of environments, we use this data structure for stor-
ing the results of our mapping algorithm. In this representation, data is only
entered when the robot’s sensors can be operated at optimum accuracy, which
in our case is when it is close to an object. Since the robot is closest to an
object during execution of the boundary-following algorithm, only then is data
entered into configuration space. The configuration space is used for the fol-
lowing task in our algorithm:

• Record obstacle locations.

The second map representation is the occupancy grid, which is continually
updated while the robot moves in its environment and takes distance measure-
ments using its infrared sensors. All grid cells along a straight line in the meas-
urement direction up to the measured distance (to an obstacle) or the sensor
limit can be set to state “free”. However, because of sensor noise and position
error, we use the state “preliminary free” or “preliminary occupied” instead,
when a grid cell is explored for the first time. This value can at a later time be
either confirmed or changed when the robot revisits the same area at a closer
range. Since the occupancy grid is not used for recording the generated map
(this is done by using the configuration space), we can use a rather small,
coarse, and efficient grid structure. Therefore, each grid cell may represent a

Figure 18.2: Mapping algorithm

Scan local environment, locate any obstacles

While unexplored obstacles exist

Repeat until global environment is fully defined

Drive to nearest unexplored obstacle
Perform boundary following to define obstacle

Drive to unexplored area using path planner
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rather large area in our environment. The occupancy grid fulfils the following
tasks in our algorithm:

• Navigating to unexplored areas in the physical environment.
• Keeping track of the robot’s position.
• Recording grid positions as free or occupied (preliminary or final).
• Determining whether the map generation has been completed.

Figure 18.3 shows a downloaded screen shot of the robot’s on-board LCD
after it finished exploring a maze environment and generated a configuration
space map.

18.3 Boundary-Following Algorithm
When a robot encounters an obstacle, a boundary-following algorithm is acti-
vated, to ensure that all paths around the obstacle are checked. This will locate
all possible paths to navigate around the obstacle.

In our approach, the robot follows the edge of an obstacle (or a wall) until it
returns close to its starting position, thereby fully enclosing the obstacle. Keep-
ing track of the robot’s exact position and orientation is crucial, because this
may not only result in an imprecise map, but also lead to mapping the same
obstacle twice or failing to return to an initial position. This task is non-trivial,
since we work without a global positioning system and allow imperfect sen-
sors.

Care is also taken to keep a minimum distance between robot and obstacle
or wall. This should ensure the highest possible sensor accuracy, while avoid-
ing a collision with the obstacle. If the robot were to collide, it would lose its
position and orientation accuracy and may also end up in a location where its
maneuverability is restricted.

Obstacles have to be stationary, but no assumptions are made about their
size and shape. For example, we do not assume that obstacle edges are straight
lines or that edges meet in rectangular corners. Due to this fact, the boundary-
following algorithm must take into account any variations in the shape and
angle of corners and the curvature of obstacle surfaces.

Figure 18.3: EyeBot screen shot
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Path planning is required to allow the robot to reach a destination such as an
unexplored area in the physical environment. Many approaches are available
to calculate paths from existing maps. However, as in this case the robot is just
in the process of generating a map, this limits the paths considered to areas that
it has explored earlier. Thus, in the early stages, the generated map will be
incomplete, possibly resulting in the robot taking sub-optimal paths.

Our approach relies on a path planning implementation that uses minimal
map data like the DistBug algorithm [Kamon, Rivlin 1997] to perform path
planning. The DistBug algorithm uses the direction toward a target to chart its
course, rather than requiring a complete map. This allows the path planning
algorithm to traverse through unexplored areas of the physical environment to
reach its target. The algorithm is further improved by allowing the robot to
choose its boundary-following direction freely when encountering an obstacle.

18.4 Algorithm Execution
A number of states are defined for each cell in the occupancy grid. In the
beginning, each cell is set to the initial state “unknown”. Whenever a free
space or an obstacle is encountered, this information is entered in the grid data
structure, so cells can either be “free” or contain an “obstacle”. In addition we
introduce the states “preliminary free” and “preliminary obstacle” to deal with
sensor error and noise. These temporal states can later be either confirmed or
changed when the robot passes within close proximity through that cell. The
algorithm stops when the map generation is completed; that is, when no more
preliminary states are in the grid data structure (after an initial environment
scan).
Grid cell states

• Unknown o
• Preliminary free
• Free
• Preliminary obstacle  
• Obstacle  

Our algorithm uses a rather coarse occupancy grid structure for keeping
track of the space the robot has already visited, together with the much higher-
resolution configuration space to record all obstacles encountered. Figure 18.4
shows snapshots of pairs of grid and space during several steps of a map gener-
ation process. 

In step A, the robot starts with a completely unknown occupancy grid and
an empty corresponding configuration space (i.e. no obstacles). The first step
is to do a 360° scan around the robot. For this, the robot performs a rotation on
the spot. The angle the robot has to turn depends on the number and location of
its range sensors. In our case the robot will rotate to +90° and –90°. Step A
shows a snapshot after the initial range scan. When a range sensor returns a
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value less than the maximum measurement range, then a preliminary obstacle
is entered in the cell at the measured distance. All cells between this obstacle
and the current robot position are marked as preliminary empty. The same is
entered for all cells in line of a measurement that does not locate an obstacle;
all other cells remain “unknown”. Only final obstacle states are entered into
the configuration space, therefore space A is still empty.

In step B, the robot drives to the closest obstacle (here the wall toward the
top of the page) in order to examine it closer. The robot performs a wall-
following behavior around the obstacle and, while doing so, updates both grid
and space. Now at close range, preliminary obstacle states have been changed
to final obstacle states and their precise location has been entered into configu-
ration space B.

Figure 18.4: Stepwise environment exploration with corresponding
occupancy grids and configuration spaces
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D
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In step C, the robot has completely surrounded one object by performing
the wall-following algorithm. The robot is now close again to its starting posi-
tion. Since there are no preliminary cells left around this rectangular obstacle,
the algorithm terminates the obstacle-following behavior and looks for the
nearest preliminary obstacle.

In step D, the whole environment has been explored by the robot, and all
preliminary states have been eliminated by a subsequent obstacle-following
routine around the rectangular obstacle on the right-hand side. One can see the
match between the final occupancy grid and the final configuration space.

18.5 Simulation Experiments
Experiments were conducted first using the EyeSim simulator (see Chapter
15), then later on the physical robot itself. Simulators are a valuable tool to test
and debug the mapping algorithm in a controlled environment under various
constraints, which are hard to maintain in a physical environment. In particu-
lar, we are able to employ several error models and error magnitudes for the
robot sensors. However, simulations can never be a substitute for an experi-
ment in a physical environment [Bernhardt, Albright 1993], [Donald 1989].

Collision detection and avoidance routines are of greater importance in the
physical environment, since the robot relies on dead reckoning using wheel
encoders for determining its exact position and orientation. A collision may
cause wheel slippage, and therefore invalidate the robot’s position and orienta-
tion data.

The first test of the mapping algorithm was performed using the EyeSim
simulator. For this experiment, we used the world model shown in Figure 18.5
(a). Although this is a rather simple environment, it possesses all the required
characteristic features to test our algorithm. The outer boundary surrounds two
smaller rooms, while some other corners require sharp 180° turns during the
boundary-following routine.

Figures 18.5 (b-d) show various maps that were generated for this environ-
ment. Varying error magnitudes were introduced to test our implementation of
the map generation routine. From the results it can be seen that the configura-
tion space representation gradually worsens with increasing error magnitude.
Especially corners in the environment become less accurately defined. Never-
theless, the mapping system maintained the correct shape and structure even
though errors were introduced.

We achieve a high level of fault tolerance by employing the following tech-
niques:

• Controlling the robot to drive as close to an obstacle as possible.
• Limiting the error deviation of the infrared sensors.
• Selectively specifying which points are included in the map.

By limiting the points entered into the configuration space representation to
critical points such as corners, we do not record any deviations along a straight
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edge of an obstacle. This makes the mapping algorithm insensitive to small
disturbances along straight lines. Furthermore, by maintaining a close distance
to the obstacles while performing boundary-following, any sudden changes in
sensor readings from the infrared sensors can be detected as errors and elimi-
nated. 

18.6 Robot Experiments
Using a physical maze with removable walls, we set up several environments
to test the performance of our map generation algorithm. The following figures
show a photograph of the environment together with a measured map and the
generated map after exploration through the robot. 

Figure 18.6 represents a simple environment, which we used to test our map
generation implementation. A comparison between the measured and gener-
ated map shows a good resemblance between the two maps. 

Figure 18.7 displays a more complicated map, requiring more frequent
turns by the robot. Again, both maps show the same shape, although the angles
are not as closely mapped as in the previous example. 

The final environment in Figure 18.8 contains non-rectangular walls. This
tests the algorithm’s ability to generate a map in an environment without the
assumption of right angles. Again, the generated maps show distinct shape
similarities.

Figure 18.5: Simulation experiment:
(a) simulated environment (b) generated map with zero error model
(c) with 20% PSD error (d) with 10% PSD error and 5% positioning error

(a)

(d)

(b)

(c)
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Figure 18.6: Experiment 1 photograph, measured map, and generated map

Figure 18.7: Experiment 2 photograph, measured map, and generated map
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The main source of error in our map generation algorithm can be traced
back to the infrared sensors. These sensors only give reliable measurements
within the range of 50 to 300 millimeters. However, individual readings can
deviate by as much as 10 millimeters. Consequently, these errors must be con-
sidered and included in our simulation environment.

The second source of error is the robot positioning using dead reckoning.
With every move of the robot, small inaccuracies due to friction and wheel
slippage lead to errors in the perceived robot position and orientation.
Although these errors are initially small, the accumulation of these inaccura-
cies can lead to a major problem in robot localization and path planning, which
will directly affect the accuracy of the generated map.

For comparing the measured map with the generated map, a relation
between the two maps must be found. One of the maps must be translated and
rotated so that both maps share the same reference point and orientation. Next,
an objective measure for map similarity has to be found. Although it might be
possible to compare every single point of every single line of the maps to
determine a similarity measure, we believe that such a method would be rather
inefficient and not give satisfying results. Instead, we identify key points in the
measured map and compare them with points in the generated map. These key
points are naturally corners and vertices in each map and can be identified as
the end points of line segments. Care has to be taken to eliminate points from
the correct map which lie in regions which the robot cannot sense or reach,
since processing them would result in an incorrectly low matching level of the
generated map. Corner points are matched between the two maps using the
smallest Euclidean distance, before their deviation can be measured.

Figure 18.8: Experiment 3 photograph, measured map, and generated map
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18.7 Results
Table 18.1 summarizes the map accuracy generated for Figure 18.5. Errors are
specified as median error per pixel and as median error relative to the robot’s
size (approximately 170mm) to provide a more graphic measure.

From these results we can observe that the mapping error stays below 17%
of the robot’s size, which is satisfactory for our experiments. An interesting
point to note is that the map error is still above 10% in an environment with
perfect sensors. This is an inaccuracy of the EyeSim simulator, and mainly due
to two factors:

• We assume the robot is obtaining data readings continuously. Howev-
er, this is not the case as the simulator obtains readings at time-discrete
intervals. This may result in the robot simulation missing exact corner
positions.

• We assume the robot performs many of its functions simultaneously,
such as moving and obtaining sensor readings. However, this is not the
case as programs run sequentially and some time delay is inevitable
between actions. This time delay is increased by the large number of
computations that have to be performed by the simulator, such as its
graphics output and the calculations of updated robot positions. 

For the experiments in the physical environment (summarized in Table
18.2), higher error values were measured than obtained from the simulation.

Median Error Median Error Relative 
to Robot Size

Figure b (no error) 21.1mm 12.4%

Figure c (20% PSD) 29.5mm 17.4%

Figure d (10% PSD, 5% pos.) 28.4mm 16.7%

Table 18.1: Results of simulation

Median Error Median Error Relative to 
Robot Size

Experiment 1 39.4mm 23.2%

Experiment 2 33.7mm 19.8%

Experiment 3 46.0mm 27.1%

Table 18.2: Results of real robot
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However, this was to be expected since our simulation system cannot model all
aspects of the physical environment perfectly. Nevertheless, the median error
values are about 23% of the robot’s size, which is a good value for our imple-
mentation, taking into consideration limited sensor accuracy and a noisy envi-
ronment.
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REAL-TIME IMAGE 
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PROCESSING

very digital consumer camera today can read images from a sensor
chip and (optionally) display them in some form on a screen. However,
what we want to do is implement an embedded vision system, so read-

ing and maybe displaying image data is only the necessary first step. We want
to extract information from an image in order to steer a robot, for example fol-
lowing a colored object. Since both the robot and the object may be moving,
we have to be fast. Ideally, we want to achieve a frame rate of 10 fps (frames
per second) for the whole perception–action cycle. Of course, given the limited
processing power of an embedded controller, this restricts us in the choice of
both the image resolution and the complexity of the image processing opera-
tions.

In the following, we will look at some basic image processing routines.
These will later be reused for more complex robot applications programs, like
robot soccer in Chapter 20.

For further reading in robot vision see [Klette, Peleg, Sommer 2001] and
[Blake, Yuille 1992]. For general image processing textbooks see [Parker
1997], [Gonzales, Woods 2002], [Nalwa 1993], and [Faugeras 1993]. A good
practical introduction is [Bässmann, Besslich 1995].

19.1 Camera Interface
Since camera chip development advances so rapidly, we have already had five
camera chip generations interfaced to the EyeBot and have implemented the
corresponding camera drivers. For a robot application program, however, this
is completely transparent. The routines to access image data are:

• CAMInit(NORMAL)
Initializes camera, independent of model. Older camera models sup-
ported modes different to “normal”.
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• CAMRelease()

Disable camera.
• CAMGetFrame (image *buffer)

Read a single grayscale image from the camera, save in buffer.
• CAMGetColFrame (colimage *buffer, int convert)

Read a single color image from the camera. If “convert” equals 1, the
image is immediately converted to 8bit grayscale.

• int CAMSet (int para1, int para2, int para3)

Set camera parameters. Parameter meaning depends on camera model
(see Appendix B.5.4).

• int CAMGet (int *para1, int *para2 ,int *para3)

Get camera parameters. Parameter meaning depends on camera model
(see Appendix B.5.4).

The first important step when using a camera is setting its focus. The Eye-
Cam C2 cameras have an analog grayscale video output, which can be directly
plugged into a video monitor to view the camera image. The lens has to be
focussed for the desired object distance.

Siemens star Focussing is also possible with the EyeBot’s black and white display only.
For this purpose we place a focus pattern like the so-called “Siemens star” in
Figure 19.1 at the desired distance in front of the camera and then change the
focus until the image appears sharp. 

Figure 19.1: Focus pattern
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19.2 Auto-Brightness
The auto-brightness function adapts a cameras’s aperture to the continuously
changing brightness conditions. If a sensor chip does support aperture settings
but does not have an auto-brightness feature, then it can be implemented in
software. The first idea for implementing the auto-brightness feature for a
grayscale image is as follows:

1. Compute the average of all gray values in the image.
2.a If the average is below threshold no. 1: open aperture.
2.b If the average is above threshold no. 2: close aperture. 

So far, so good, but considering that computing the average over all pixels
is quite time consuming, the routine can be improved. Assuming that to a cer-
tain degree the gray values are evenly distributed among the image, using just
a cross-section of the whole image, for example the main diagonal (Figure
19.2), should be sufficient. 

Figure 19.2: Auto-brightness using only main diagonal

Program 19.1: Auto-brightness

1 typedef BYTE image [imagerows][imagecolumns];
2 typedef BYTE colimage[imagerows][imagecolumns][3];

1 #define THRES_LO 70
2 #define THRES_HI 140
3
4 void autobrightness(image orig)
5 { int i,j, brightness = 100, avg =0;
6 for (i=0; i<imagerows; i++) avg += orig[i][i];
7 avg = avg/imagerows;
8
9 if (avg<THRES_LO)

10 { brightness = MIN(brightness * 1.05, 200);
11 CAMSet(brightness, 100, 100)
12 }
13 else if (avg>THRES_HI)
14 { brightness = MAX(brightness / 1.05, 50);
15 CAMSet(brightness, 100, 100)
16 }
17 }
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Program 19.1 shows the pre-defined data types for grayscale images and

color images and the implementation for auto-brightness, assuming that the
number of rows is less than or equal to the number of columns in an image (in
this implementation: 60 and 80). The CAMSet routine adjusts the brightness
setting of the camera to the new calculated value, the two other parameters
(here: offset and contrast) are left unchanged. This routine can now be called in
regular intervals (for example once every second, or for every 10th image, or
even for every image) to update the camera’s brightness setting. Note that this
program only works for the QuickCam, which allows aperture settings, but
does not have auto-brightness.

19.3 Edge Detection
One of the most fundamental image processing operations is edge detection.
Numerous algorithms have been introduced and are being used in industrial
applications; however, for our purposes very basic operators are sufficient. We
will present here the Laplace and Sobel edge detectors, two very common and
simple edge operators.

The Laplace operator produces a local derivative of a grayscale image by
taking four times a pixel value and subtracting its left, right, top, and bottom
neighbors (Figure 19.3). This is done for every pixel in the whole image. 

The coding is shown in Program 19.2 with a single loop running over all
pixels. There are no pixels beyond the outer border of an image and we need to
avoid an access error by accessing array elements outside defined bounds.
Therefore, the loop starts at the second row and stops at the last but one row. If
required, these two rows could be set to zero. The program also limits the max-
imum value to white (255), so that any result value remains within the byte
data type. 

The Sobel operator that is often used for robotics applications is only
slightly more complex [Bräunl 2001]. 

In Figure 19.4 we see the two filter operations the Sobel filter is made of.
The Sobel-x only finds discontinuities in the x-direction (vertical lines), while
Sobel-y only finds discontinuities in the y-direction (horizontal lines). Com-
bining these two filters is done by the formulas shown in Figure 19.4, right,
which give the edge strength (depending on how large the discontinuity is) as
well as the edge direction (for example a dark-to-bright transition at 45° from
the x-axis).

Figure 19.3: Laplace operator
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For now, we are only interested in the edge strength, and we also want to
avoid time consuming functions such as square root and any trigonometric
functions. We therefore approximate the square root of the sum of the squares
by the sum of the absolute values of dx and dy. 

Program 19.2: Laplace edge operator

1 void Laplace(BYTE * imageIn, BYTE * imageOut)
2 { int i, delta;
3 for (i = width; i < (height-1)*width; i++)
4     { delta = abs(4 * imageIn[i]
5 -imageIn[i-1] -imageIn[i+1]
6 -imageIn[i-width] -imageIn[i+width]);
7 if (delta > white) imageOut[i] = white;
8       else imageOut[i] = (BYTE)delta;
9     }

10 }

Figure 19.4: Sobel-x and Sobel-y masks, formulas for strength and angle
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Program 19.3: Sobel edge operator

1 void Sobel(BYTE *imageIn, BYTE *imageOut)
2 { int i, grad, delaX, deltaY;
3
4   memset(imageOut, 0, width); /* clear first row */
5 for (i = width; i < (height-1)*width; i++)
6 { deltaX = 2*imageIn[i+1] + imageIn[i-width+1]
7 + imageIn[i+width+1] - 2*imageIn[i-1]
8 - imageIn[i-width-1] - imageIn[i+width-1];
9

10 deltaY = imageIn[i-width-1] + 2*imageIn[i-width]
11 + imageIn[i-width+1] - imageIn[i+width-1]
12 - 2*imageIn[i+width] - imageIn[i+width+1];
13
14 grad = (abs(deltaX) + abs(deltaY)) / 3;
15 if (grad > white) grad = white;
16 imageOut[i] = (BYTE)grad;
17 }
18 memset(imageOut + i, 0, width); /* clear last line */
19 }
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The coding is shown in Program 19.3. Only a single loop is used to run over

all pixels. Again, we neglect a one-pixel-wide borderline; pixels in the first and
last row of the result image are set to zero. The program already applies a heu-
ristic scaling (divide by three) and limits the maximum value to white (255),
so the result value remains a single byte.

19.4 Motion Detection
The idea for a very basic motion detection algorithm is to subtract two subse-
quent images (see also Figure 19.5):

1. Compute the absolute value for grayscale difference for all pixel pairs
of two subsequent images.

2. Compute the average over all pixel pairs.
3. If the average is above a threshold, then motion has been detected. 

This method only detects the presence of motion in an image pair, but does
not determine any direction or area. Program 19.4 shows the implementation
of this problem with a single loop over all pixels, summing up the absolute dif-
ferences of all pixel pairs. The routine returns 1 if the average difference per
pixel is greater than the specified threshold, and 0 otherwise. 

This algorithm could also be extended to calculate motion separately for
different areas (for example the four quarters of an image), in order to locate
the rough position of the motion.

Figure 19.5: Motion detection

Program 19.4: Motion detection

1 int motion(image im1, image im2, int threshold)
2 { int diff=0;
3 for (i = 0; i < height*width; i++)
4 diff += abs(i1[i][j] - i2[i][j]);
5 return (diff > threshold*height*width); /* 1 if motion*/
6 }
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19.5 Color Space
Before looking at a more complex image processing algorithm, we take a side-
step and look at different color representations or “color spaces”. So far we
have seen grayscale and RGB color models, as well as Bayer patterns
(RGGB). There is not one superior way of representing color information, but
a number of different models with individual advantages for certain applica-
tions.

19.5.1 Red Green Blue (RGB)
The RGB space can be viewed as a 3D cube with red, green, and blue being the
three coordinate axes (Figure 19.6). The line joining the points (0, 0, 0) and (1,
1, 1) is the main diagonal in the cube and represents all shades of gray from
black to white. It is usual to normalize the RGB values between 0 and 1 for
floating point operations or to use a byte representation from 0 to 255 for inte-
ger operations. The latter is usually preferred on embedded systems, which do
not possess a hardware floating point unit.  

In this color space, a color is determined by its red, green, and blue compo-
nents in an additive synthesis. The main disadvantage of this color space is that
the color hue is not independent of intensity and saturation of the color.

Luminosity L in the RGB color space is defined as the sum of all three com-
ponents:

L = R+G+B

Luminosity is therefore dependent on the three components R, G, and B.

Figure 19.6: RGB color cube

(0, 0, 1) blue

(1, 1, 1) white

(0, 0, 0) black (1, 0, 0) red

(0, 1, 0) green
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19.5.2 Hue Saturation Intensity (HSI)

The HSI color space (see Figure 19.7) is a cone where the middle axis repre-
sents luminosity, the phase angle represents the hue of the color, and the radial
distance represents the saturation. The following set of equations specifies the
conversion from RGB to HSI color space: 

The advantage of this color space is to de-correlate the intensity information
from the color information. A grayscale value is represented by an intensity,
zero saturation, and arbitrary hue value. So it can simply be differentiated
between chromatic (color) and achromatic (grayscale) pixels, only by using
the saturation value. On the other hand, because of the same relationship it is
not sufficient to use the hue value alone to identify pixels of a certain color.
The saturation has to be above a certain threshold value.
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19.5.3 Normalized RGB (rgb)
Most camera image sensors deliver pixels in an RGB-like format, for example
Bayer patterns (see Section 3.9.2). Converting all pixels from RGB to HSI
might be too intensive a computing operation for an embedded controller.
Therefore, we look at a faster alternative with similar properties.

One way to make the RGB color space more robust with regard to lighting
conditions is to use the “normalized RGB” color space (denoted by “rgb”)
defined as:

This normalization of the RGB color space allows us to describe a certain
color independently of the luminosity (sum of all components). This is because
the luminosity in rgb is always equal to one:

r + g + b = 1 ∀ (r, g, b)

19.6 Color Object Detection
If it is guaranteed for a robot environment that a certain color only exists on
one particular object, then we can use color detection to find this particular
object. This assumption is widely used in mobile robot competitions, for
example the AAAI’96 robot competition (collect yellow tennis balls) or the
RoboCup and FIRA robot soccer competitions (kick the orange golf ball into
the yellow or blue goal). See [Kortenkamp, Nourbakhsh, Hinkle 1997],
[Kaminka, Lima, Rojas 2002], and [Cho, Lee 2002].

The following hue-histogram algorithm for detecting colored objects was
developed by Bräunl in 2002. It requires minimal computation time and is
therefore very well suited for embedded vision systems. The algorithm per-
forms the following steps:

1. Convert the RGB color image to a hue image (HSI model).
2. Create a histogram over all image columns of pixels

matching the object color.
3. Find the maximum position in the column histogram.

The first step only simplifies the comparison whether two color pixels are
similar. Instead of comparing the differences between three values (red, green,
blue), only a single hue value needs to be compared (see [Hearn, Baker 1997]).
In the second step we look at each image column separately and record how
many pixels are similar to the desired ball color. For a 60× 80 image, the histo-
gram comprises just 80 integer values (one for each column) with values
between 0 (no similar pixels in this column) and 60 (all pixels similar to the
ball color).

r R
R G B
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R G B
------------------------ b B

R G B
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At this level, we are not concerned about continuity of the matching pixels

in a column. There may be two or more separate sections of matching pixels,
which may be due to either occlusions or reflections on the same object – or
there might be two different objects of the same color. A more detailed analy-
sis of the resulting histogram could distinguish between these cases. 

Program 19.5 shows the conversion of an RGB image to an image (hue, sat-
uration, value), following [Hearn, Baker 1997]. We drop the saturation and
value components, since we only need the hue for detecting a colored object
like a ball. However, they are used to detect invalid hues (NO_HUE) in case of a
too low saturation (r, g, and b having similar or identical values for gray-
scales), because in these cases arbitrary hue values can occur. 

Program 19.5: RGB to hue conversion

1 int RGBtoHue(BYTE r, BYTE g, BYTE b)
2 /* return hue value for RGB color */
3 #define NO_HUE -1
4 { int hue, delta, max, min;
5
6   max   = MAX(r, MAX(g,b));
7   min   = MIN(r, MIN(g,b));
8   delta = max - min;
9   hue =0; /* init hue*/

10
11 if (2*delta <= max) hue = NO_HUE; /* gray, no color */
12   else {
13     if (r==max) hue = 42 + 42*(g-b)/delta; /* 1*42 */
14     else if (g==max) hue = 126 +42*(b-r)/delta; /* 3*42 */
15     else if (b==max) hue = 210 +42*(r-g)/delta; /* 5*42 */
16 }
17   return hue; /* now: hue is in range [0..252] */
18 }

Figure 19.8: Color detection example
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The next step is to generate a histogram over all x-positions (over all col-
umns) of the image, as shown in Figure 19.8. We need two nested loops going
over every single pixel and incrementing the histogram array in the corre-
sponding position. The specified threshold limits the allowed deviation from
the desired object color hue. Program 19.6 shows the implementation. 

Finally, we need to find the maximum position in the generated histogram.
This again is a very simple operation in a single loop, running over all posi-
tions of the histogram. The function returns both the maximum position and
the maximum value, so the calling program can determine whether a sufficient
number of matching pixels has been found. Program 19.7 shows the imple-
mentation. 

Programs 19.6 and 19.7 can be combined for a more efficient implementa-
tion with only a single loop and reduced execution time. This also eliminates
the need for explicitly storing the histogram, since we are only interested in the
maximum value. Program 19.8 shows the optimized version of the complete
algorithm.  

For demonstration purposes, the program draws a line in each image col-
umn representing the number of matching pixels, thereby optically visualizing
the histogram. This method works equally well on the simulator as on the real

Program 19.6: Histogram generation

1 int GenHistogram(image hue_img, int obj_hue,
2 line histogram, int thres)
3 /* generate histogram over all columns */
4 { int x,y;
5 for (x=0;x<imagecolumns;x++)
6 { histogram[x] = 0;
7 for (y=0;y<imagerows;y++)
8 if (hue_img[y][x] != NO_HUE &&
9 (abs(hue_img[y][x] - obj_hue) < thres ||

10 253 - abs(hue_img[y][x] - obj_hue) < thres)
11 histogram[x]++;
12 }
13 }

Program 19.7: Object localization

1 void FindMax(line histogram, int *pos, int *val)
2 /* return maximum position and value of histogram */
3 int x;
4 { *pos = -1; *val = 0; /* init */
5 for (x=0; x<imagecolumns; x++)
6 if (histogram[x] > *val)
7 { *val = histogram[x]; *pos = x; }
8 }
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robot. In Figure 19.9 the environment window with a colored ball and the con-
sole window with displayed image and histogram can be seen. 

The main program for the color search is shown in Program 19.9. In its first
phase, the camera image is constantly displayed together with the RGB value
and hue value of the middle position. The user can record the hue value of an
object to be searched. In the second phase, the color search routine is called

Program 19.8: Optimized color search

1 void ColSearch(colimage img, int obj_hue, int thres,
2                int *pos, int *val)
3 /* find x position of color object, return pos and value*/
4 { int x,y, count, h, distance;
5   *pos = -1; *val = 0;  /* init */
6   for (x=0;x<imagecolumns;x++)
7   { count = 0;
8     for (y=0;y<imagerows;y++)
9     { h = RGBtoHue(img[y][x][0],img[y][x][1],

10 img[y][x][2]);
11 if (h != NO_HUE)
12       { distance = abs((int)h-obj_hue); /* hue dist. */
13 if (distance > 126) distance = 253-distance;
14         if (distance < thres) count++;
15       }
16 }
17     if (count > *val) { *val = count; *pos = x; }
18 LCDLine(x,53, x, 53-count, 2); /* visualization only*/
19   }
20 }

Figure 19.9: Color detection on EyeSim simulator
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with every image displayed. This will display the color detection histogram
and also locate the object’s x-position.

This algorithm only determines the x-position of a colored object. It could
easily be extended to do the same histogram analysis over all lines (instead of
over all columns) as well and thereby produce the full [x, y] coordinates of an
object. To make object detection more robust, we could further extend this
algorithm by asserting that a detected object has more than a certain minimum
number of similar pixels per line or per column. By returning a start and finish
value for the line diagram and the column diagram, we will get [x1, y1] as the
object’s start coordinates and [x2, y2] as the object’s finish coordinates. This
rectangular area can be transformed into object center and object size.

Program 19.9: Color search main program

1 #define X 40 // ball coordinates for teaching
1 #define Y 40
2
3 int main()
4 { colimage c;
5   int hue, pos, val;
6
7   LCDPrintf("Teach Color\n");
8   LCDMenu("TEA","","","");
9   CAMInit(NORMAL);

10   while (KEYRead() != KEY1)
11   { CAMGetColFrame(&c,0);
12     LCDPutColorGraphic(&c);
13     hue = RGBtoHue(c[Y][X][0], c[Y][X][1], c[Y][X][2]);
14     LCDSetPos(1,0);
15     LCDPrintf("R%3d G%3d B%3d\n",
16 c[Y][X][0], c[Y][X][1], c[Y][X][2]);
17     LCDPrintf("hue %3d\n", hue);
18                 OSWait(100);
19   }
20
21 LCDClear();
22 LCDPrintf("Detect Color\n");
23   LCDMenu("","","","END");
24   while (KEYRead() != KEY4)
25   { CAMGetColFrame(&c,0);
26     LCDPutColorGraphic(&c);
27     ColSearch(c, hue, 10, &pos, &val);  /* search image */
28     LCDSetPos(1,0);
29     LCDPrintf("h%3d p%2d v%2d\n", hue, pos, val);
30     LCDLine  (pos, 0, pos, 53, 2);  /* vertical line */
31   }
32 return 0;
33 }
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19.7 Image Segmentation
Detecting a single object that differs significantly either in shape or in color
from the background is relatively easy. A more ambitious application is seg-
menting an image into disjoint regions. One way of doing this, for example in
a grayscale image, is to use connectivity and edge information (see
Section 19.3, [Bräunl 2001], and [Bräunl 2006] for an interactive system). The
algorithm shown here, however, uses color information for faster segmentation
results [Leclercq, Bräunl 2001].

This color segmentation approach transforms all images from RGB to rgb
(normalized RGB) as a pre-processing step. Then, a color class lookup table is
constructed that translates each rgb value to a “color class”, where different
color classes ideally represent different objects. This table is a three-dimen-
sional array with (rgb) as indices. Each entry is a reference number for a cer-
tain “color class”.

19.7.1 Static Color Class Allocation
Optimized for

fixed application
If we know the number and characteristics of the color classes to be distin-
guished beforehand, we can use a static color class allocation scheme. For
example, for robot soccer (see Chapter 20), we need to distinguish only three
color classes: orange for the ball and yellow and blue for the two goals. In a
case like this, the location of the color classes can be calculated to fill the table.
For example, “blue goal” is defined for all points in the 3D color table for
which blue dominates, or simply:

b > thresholdb

In a similar way, we can distinguish orange and yellow, by a combination of
thresholds on the red and green component:

If (rgb) were coded as 8bit values, the table would comprise (28)3 entries,
which comes to 16MB when using 1 byte per entry. This is too much memory
for a small embedded system, and also too high a resolution for this color seg-
mentation task. Therefore, we only use the five most significant bits of each
color component, which comes to a more manageable size of (25)3 = 32KB.

In order to determine the correct threshold values, we start with an image of
the blue goal. We keep changing the blue threshold until the recognized rectan-
gle in the image matches the right projected goal dimensions. The thresholds
for red and green are determined in a similar manner, trying different settings

colclass
blueGoal if b thresb>

yellowGoal if r thresr> and g thresg>

orangeBall if r thresr> and g thresg<
⎩
⎪
⎪
⎨
⎪
⎪
⎧

=
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until the best distinction is found (for example the orange ball should not be
classified as the yellow goal and vice versa). With all thresholds determined,
the corresponding color class (for example 1 for ball, 2 or 3 for goals) is calcu-
lated and entered for each rgb position in the color table. If none of the criteria
is fulfilled, then the particular rgb value belongs to none of the color classes
and 0 is entered in the table. In case that more than one criterion is fulfilled,
then the color classes have not been properly defined and there is an overlap
between them.

19.7.2 Dynamic Color Class Allocation
General

technique
However, in general it is also possible to use a dynamic color class allocation,
for example by teaching a certain color class instead of setting up fixed topo-
logical color borders. A simple way of defining a color space is by specifying a
sub-cube of the full rgb cube, for example allowing a certain offset from the
desired (taught) value r´g´b´ :

r ∈ [r´–δ .. r´+δ]
g ∈ [g´–δ .. g´+δ]
b ∈ [b´–δ .. b´+δ]

Starting with an empty color table, each new sub-cube can be entered by
three nested loops, setting all sub-cube positions to the new color class identi-
fier. Other topological entries are also possible, of course, depending on the
desired application.

A new color can simply be added to previously taught colors by placing a
sample object in front of the camera and averaging a small number of center
pixels to determine the object hue. A median filter of about 4× 4 pixels will be
sufficient for this purpose.

19.7.3 Object Localization
Having completed the color class table, segmenting an image seems simple.
All we have to do is look up the color class for each pixel’s rgb value. This
gives us a situation as sketched in Figure 19.10. Although to a human observer,
coherent color areas and therefore objects are easy to detect, it is not trivial to
extract this information from the 2D segmented output image. 

If, as for many applications, identifying rectangular areas is sufficient, then
the task becomes relatively simple. For now, we assume there is at most a sin-
gle coherent object of each color class present in the image. For more objects
of the same color class, the algorithm has to be extended to check for coher-
ence. In the simple case, we only need to identify four parameters for each
color class, namely top left and bottom right corner, or in coordinates:

[xtl, ytl], [xbr, ybr]
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Finding these coordinates for each color class still requires a loop over all
pixels of the segmented image, comparing the indices of the current pixel posi-
tion with the determined extreme (top/left, bottom/right) positions of the previ-
ously visited pixels of the same color class.

19.8 Image Coordinates versus World Coordinates
Image

coordinates

World
coordinates

Whenever an object is identified in an image, all we have is its image coordi-
nates. Working with our standard 60× 80 resolution, all we know is that our
desired object is, say, at position [50, 20] (i.e. bottom left) and has a size of
5× 7 pixels. Although this information might already be sufficient for some
simple applications (we could already steer the robot in the direction of the
object), for many applications we would like to know more precisely the
object’s location in world coordinates relative from our robot in meters in the
x- and y-direction (see Figure 19.11).

For now, we are only interested in the object’s position in the robot’s local
coordinate system {x´, y´}, not in the global word coordinate system {x, y}.

Figure 19.10: Segmentation example

Input image Segmented image

0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 2 0 0 0 0 0 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0 0 0 2 2
2 2 2 2 2 0 2 0 0 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2

Figure 19.11: Image and world coordinates

Robot image data World view

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0

x´
y´

x

y
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Once we have determined the coordinates of the object in the robot coordinate
system and also know the robot’s (absolute) position and orientation, we can
transform the object’s local coordinates to global world coordinates.

As a simplification, we are looking for objects with rotational symmetry,
such as a ball or a can, because they look the same (or at least similar) from
any viewing angle. The second simplification is that we assume that objects
are not floating in space, but are resting on the ground, for example the table
the robot is driving on. Figure 19.12 demonstrates this situation with a side
view and a top view from the robot’s local coordinate system. What we have to
determine is the relationship between the ball position in local coordinates
[x´, y´] and the ball position in image coordinates [j, i]:

y´ = f (i, h, α, f, d)
x´ = g (j, 0, β, f, d) 

It is obvious that f and g are the same function, taking as parameters:
• One-dimensional distance in image coordinates

(object’s length in image rows or columns in pixels)
• Camera offset

(height in y´z´ view, 0 side offset in x´y´ view)
• Camera rotation angle

(tilt or pan)

Figure 19.12: Camera position and orientation

ball y´-position in [m]

i = y´ object size
in [pixels]
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m
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a 
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camera angle α (about x)
z´

ball size

x´

j = x´ object size
in [pixels]

camera angle β ball x´-pos.
 in [m]

d

(about z)

camera focal length f
in [m]

y´
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• Camera focal length

(distance between lens and sensor array)
• Ball size

(diameter d)

Provided that we know the detected object’s true physical size (for example
golf ball for robot soccer), we can use the intercept theorem to calculate its
local displacement. With a zero camera offset and a camera angle of zero (no
tilting or panning), we have the proportionality relationships:

These can be simplified when introducing a camera-specific parameter
g = k · f for converting between pixels and meters:

y´ = g · d / i
x´ = g · d / j

So in other words, the larger the image size in pixels, the closer the object
is. The transformation is just a constant linear factor; however, due to lens dis-
tortions and other sources of noise these ideal conditions will not be observed
in an experiment. It is therefore better to provide a lookup table for doing the
transformation, based on a series of distance measurements.

With the camera offset, either to the side or above the driving plane, or
placed at an angle, either panning about the z-axis or tilting about the x-axis,
the trigonometric formulas become somewhat more complex. This can be
solved either by adding the required trigonometric functions to the formulas
and calculating them for every image frame, or by providing separate lookup
tables from all camera viewing angles used. In Section 20.5 this method is
applied to robot soccer.
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ROBOT SOCCER

ootball, or soccer as it is called in some countries, is often referred to as
“the world game”. No other sport is played and followed by as many
nations around the world. So it did not take long to establish the idea of

robots playing soccer against each other. As has been described earlier on the
Micro Mouse Contest, robot competitions are a great opportunity to share new
ideas and actually see good concepts at work.

Robot soccer is more than one robot generation beyond simpler competi-
tions like solving a maze. In soccer, not only do we have a lack of environment
structure (less walls), but we now have teams of robots playing an opposing
team, involving moving targets (ball and other players), requiring planning,
tactics, and strategy – all in real time. So, obviously, this opens up a whole new
dimension of problem categories. Robot soccer will remain a great challenge
for years to come.

20.1 RoboCup and FIRA Competitions
See details at:

www.fira.net
www.robocup.org

Today, there are two world organizations involved in robot soccer, FIRA and
RoboCup. FIRA [Cho, Lee 2002] organized its first robot tournament in 1996
in Korea with Jong-Hwan Kim. RoboCup [Asada 1998] followed with its first
competition in 1997 in Japan with Asada, Kuniyoshi, and Kitano [Kitano et al.
1997], [Kitano et al. 1998].

FIRA’s “MiroSot” league (Micro-Robot World Cup Soccer Tournament)
has the most stringent size restrictions [FIRA 2006]. The maximum robot size
is a cube of 7.5cm side length. An overhead camera suspended over the play-
ing field is the primary sensor. All image processing is done centrally on an
off-board workstation or PC, and all driving commands are sent to the robots
via wireless remote control. Over the years, FIRA has added a number of dif-
ferent leagues, most prominently the “SimuroSot” simulation league and the
“RoboSot” league for small autonomous robots (without global vision). In
2002, FIRA introduced “HuroSot”, the first league for humanoid soccer play-
ing robots. Before that all robots were wheel-driven vehicles.
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RoboCup started originally with the “Small-Size League”, “Middle-Size

League”, and “Simulation League” [RoboCup 2006]. Robots of the small-size
league must fit in a cylinder of 18cm diameter and have certain height restric-
tions. As for MiroSot, these robots rely on an overhead camera over the play-
ing field. Robots in the middle-size league abolished global vision after the
first two years. Since these robots are considerably larger, they are mostly
using commercial robot bases equipped with laptops or small PCs. This gives
them at least one order of magnitude higher processing power; however, it also
drives up the cost for putting together such a robot soccer team. In later years,
RoboCup added the commentator league (subsequently dropped), the rescue
league (not related to soccer), the “Sony 4-legged league” (which, unfortu-
nately, only allows the robots of one company to compete), and finally in 2002
the “Humanoid League”.

The following quote from RoboCup’s website may in fact apply to both
organizations [RoboCup 2006]:

“RoboCup is an international joint project to promote AI, robotics, and
related fields. It is an attempt to foster AI and intelligent robotics
research by providing a standard problem where a wide range of tech-
nologies can be integrated and examined. RoboCup chose to use the soc-
cer game as a central topic of research, aiming at innovations to be
applied for socially significant problems and industries. The ultimate
goal of the RoboCup project is: By 2050, develop a team of fully autono-
mous humanoid robots that can win against the human world champion
team in soccer.”

Real robots don’t
use global vision!

We will concentrate here on robot soccer played by wheeled robots (human-
oid robot soccer is still in its infancy) without the help of global vision. The
RoboCup Small-Size League, but not the Middle-Size League or FIRA
RoboSot, allows the use of an overhead camera suspended above the soccer
field. This leads teams to use a single central workstation that does the image
processing and planning for all robots. There are no occlusions: ball, robots,
and goals are always perfectly visible. Driving commands are then issued via
wireless links to individual “robots”, which are not autonomous at all and in
some respect reduced to remote control toy cars. Consequently, the “AllBots”
team from Auckland, New Zealand does in fact use toy cars as a low-budget
alternative [Baltes 2001a]. Obviously, global vision soccer is a completely dif-
ferent task to local vision soccer, which is much closer to common research
areas in robotics, including vision, self-localization, and distributed planning.

The robots of our team “CIIPS Glory” carry EyeCon controllers to perform
local vision on-board. Some other robot soccer teams, like “4 Stooges” from
Auckland, New Zealand, use EyeCon controllers as well [Baltes 2001b].

Robot soccer teams play five-a-side soccer with rules that are freely adapted
from FIFA soccer. Since there is a boundary around the playing field, the game
is actually closer to ice hockey. The big challenge is not only that reliable
image processing has to be performed in real time, but also that a team of five
robots/actors has to be organized. In addition, there is an opposing team which
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will change the environment (for example kick the ball) and thereby render
one’s own action plans useless if too slow.

One of the frequent disappointments of robot competitions is that enormous
research efforts are reduced to “show performance” in a particular event and
cannot be appreciated adequately. Adapting from the home lab environment to
the competition environment turns out to be quite tricky, and many programs
are not as robust as their authors had hoped. On the other hand, the actual com-
petitions are only one part of the event. Most competitions are part of confer-
ences and encourage participants to present the research behind their competi-
tion entries, giving them the right forum to discuss related ideas.

Mobile robot competitions brought progress to the field by inspiring people
and by continuously pushing the limits of what is possible. Through robot
competitions, progress has been achieved in mechanics, electronics, and algo-
rithms [Bräunl 1999].

CIIPS Glory
with local vision

on each robot

Note the colored
patches on top
of the Lilliputs
players. They
need them to

determine each
robot’s position
and orientation

with global vision.

Figure 20.1: CIIPS Glory line-up and in play vs. Lilliputs (1998)
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20.2 Team Structure
The CIIPS Glory robot soccer team (Figure 20.1) consists of four field players
and one goal keeper robot [Bräunl, Graf 1999], [Bräunl, Graf 2000]. A local
intelligence approach has been implemented, where no global sensing or con-
trol system is used. Each field player is equipped with the same control soft-
ware, only the goal keeper – due to its individual design and task – runs a dif-
ferent program. 

Different roles (left/right defender, left/right attacker) are assigned to the
four field players. Since the robots have a rather limited field of view with
their local cameras, it is important that they are always spread around the
whole field. Therefore, each player’s role is linked to a specific area of the
field. When the ball is detected in a certain position, only the robot responsible
for this area is meant to drive toward and play the ball. The robot which has
detected the ball communicates the position of the ball to its team mates which
try to find favorable positions on the field to be prepared to take over and play
the ball as soon as it enters their area.

Situations might occur when no robot sees the ball. In that case, all robots
patrol along specific paths in their assigned area of the field, trying to detect
the ball. The goal keeper usually stays in the middle of the goal and only
moves once it has detected the ball in a reasonably close position (Figure
20.2). 

This approach appears to be quite efficient, especially since each robot acts
individually and does not depend on any global sensing or communication sys-
tem. For example, the communication system can be switched off without any
major effects; the players are still able to continue playing individually.

Figure 20.2: Robot patrolling motion

x

y
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20.3 Mechanics and Actuators
According to the RoboCup Small-Size League and FIRA RoboSot regulations
the size of the SoccerBots has been restricted to 10cm by 15cm. The height is
also limited, therefore the EyeCon controller is mounted on a mobile platform
at an angle. To catch the ball, the robot has a curved front. The size of the
curved area has been calculated from the rule that at least two-thirds of the
ball’s projected area must be outside the convex hull around the robot. With
the ball having a diameter of approximately 4.5cm, the depth of the curved
front must be no more than 1.5cm.

The robots are equipped with two motorized wheels plus two casters at the
front and back of the vehicle. Each wheel is controlled separately, which ena-
bles the robots to drive forward, backward, as well as drive in curves or spin on
the spot. This ability for quick movement changes is necessary to navigate suc-
cessfully in rapidly changing environments such as during robot soccer com-
petitions.

Two additional servo motors are used to activate a kicking device at the
front of the robot and the movement of the on-board camera.

In addition to the four field players of the team, one slightly differing goal
keeper robot has been constructed. To enable it to defend the goal successfully
it must be able to drive sideways in front of the goal, but look and kick for-
ward. For this purpose, the top plate of the robot is mounted at a 90° angle to
the bottom plate. For optimal performance at the competition, the kicking
device has been enlarged to the maximum allowed size of 18cm.

20.4 Sensing
Sensing a robot’s environment is the most important part for most mobile robot
applications, including robot soccer. We make use of the following sensors:

• Shaft encoders
• Infrared distance measurement sensors
• Compass module
• Digital camera

In addition, we use communication between the robots, which is another
source of information input for each robot. Figure 20.3 shows the main sensors
of a wheeled SoccerBot in detail.

Shaft encoders The most basic feedback is generated by the motors’ encapsulated shaft
encoders. This data is used for three purposes:

• PI controller for individual wheel to maintain constant wheel speed.
• PI controller to maintain desired path curvature (i.e. straight line).
• Dead reckoning to update vehicle position and orientation.
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The controller’s dedicated timing processor unit (TPU) is used to deal with

the shaft encoder feedback as a background process. 

Infrared distance
measurement

Each robot is equipped with three infrared sensors to measure the distance
to the front, to the left, and to the right (PSD). This data can be used to:

• Avoid collision with an obstacle.
• Navigate and map an unknown environment.
• Update internal position in a known environment.

Since we are using low-cost devices, the sensors have to be calibrated for
each robot and, due to a number of reasons, also generate false readings from
time to time. Application programs have to take care of this, so a level of soft-
ware fault tolerance is required.

Compass module The biggest problem in using dead reckoning for position and orientation
estimation in a mobile robot is that it deteriorates over time, unless the data can
be updated at certain reference points. A wall in combination with a distance
sensor can be a reference point for the robot’s position, but updating robot ori-
entation is very difficult without additional sensors.

In these cases, a compass module, which senses the earth’s magnetic field,
is a big help. However, these sensors are usually only correct to a few degrees
and may have severe disturbances in the vicinity of metal. So the exact sensor
placement has to be chosen carefully.

Digital camera We use the EyeCam camera, based on a CMOS sensor chip. This gives a
resolution of 60 ×  80 pixels in 32bit color. Since all image acquisition, image
processing, and image display is done on-board the EyeCon controller, there is
no need to transmit image data. At a controller speed of 35MHz we achieve a
frame capture rate of about 7 frames per second without FIFO buffer and up to
30 fps with FIFO buffer. The final frame rate depends of course on the image
processing routines applied to each frame.

Robot-to-robot
communication

While the wireless communication network between the robots is not
exactly a sensor, it is nevertheless a source of input data to the robot from its
environment. It may contain sensor data from other robots, parts of a shared
plan, intention descriptions from other robots, or commands from other robots
or a human operator.

Figure 20.3: Sensors: shaft encoder, infrared sensors, digital camera
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20.5 Image Processing
Vision is the most important ability of a human soccer player. In a similar way,
vision is the centerpiece of a robot soccer program. We continuously analyze
the visual input from the on-board digital color camera in order to detect
objects on the soccer field. We use color-based object detection since it is com-
putationally much easier than shape-based object detection and the robot soc-
cer rules define distinct colors for the ball and goals. These color hues are
taught to the robot before the game is started.

The lines of the input image are continuously searched for areas with a
mean color value within a specified range of the previously trained hue value
and of the desired size. This is to try to distinguish the object (ball) from an
area similar in color but different in shape (yellow goal). In Figure 20.4 a sim-
plified line of pixels is shown; object pixels of matching color are displayed in
gray, others in white. The algorithm initially searches for matching pixels at
either end of a line (see region (a): first = 0, last = 18), then the mean color
value is calculated. If it is within a threshold of the specified color hue, the
object has been found. Otherwise the region will be narrowed down, attempt-
ing to find a better match (see region (b): first = 4, last = 18). The algorithm
stops as soon as the size of the analyzed region becomes smaller than the
desired size of the object. In the line displayed in Figure 20.4, an object with a
size of 15 pixels is found after two iterations. 

Distance
estimation

Once the object has been identified in an image, the next step is to translate
local image coordinates (x and y, in pixels) into global world coordinates (x´
and y´ in m) in the robot’s environment. This is done in two steps:

• Firstly, the position of the ball as seen from the robot is calculated from
the given pixel values, assuming a fixed camera position and orienta-
tion. This calculation depends on the height of the object in the image.
The higher the position in the image, the further an object’s distance
from the robot.

• Secondly, given the robot’s current position and orientation, the local
coordinates are transformed into global position and orientation on the
field.

Since the camera is looking down at an angle, it is possible to determine the
object distance from the image coordinates. In an experiment (see Figure
20.5), the relation between pixel coordinates and object distance in meters has
been determined. Instead of using approximation functions, we decided to use
the faster and also more accurate method of lookup tables. This allows us to

Figure 20.4: Analyzing a color image line
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calculate the exact ball position in meters from the screen coordinates in pixels
and the current camera position/orientation.  

The distance values were found through a series of measurements, for each
camera position and for each image line. In order to reduce this effort, we only
used three different camera positions (up, middle, down for the tilting camera
arrangement, or left, middle, right for the panning camera arrangement), which
resulted in three different lookup tables.

Depending on the robot’s current camera orientation, the appropriate table
is used for distance translation. The resulting relative distances are then trans-
lated into global coordinates using polar coordinates.

An example output picture on the robot LCD can be seen in Figure 20.6.
The lines indicate the position of the detected ball in the picture, while its glo-
bal position on the field is displayed in centimeters on the right-hand side. 

Figure 20.5: Relation between object height and distance

Figure 20.6: LCD output after ball detection
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This simple image analysis algorithm is very efficient and does not slow
down the overall system too much. This is essential, since the same controller
doing image processing also has to handle sensor readings, motor control, and
timer interrupts as well. We achieve a frame rate of 3.3 fps for detecting the
ball when no ball is in the image and of 4.2 fps when the ball has been detected
in the previous frame, by using coherence. The use of a FIFO buffer for read-
ing images from the camera (not used here) can significantly increase the
frame rate.

20.6 Trajectory Planning
Once the ball position has been determined, the robot executes an approach
behavior, which should drive it into a position to kick the ball forward or even
into the opponent’s goal. For this, a trajectory has to be generated. The robot
knows its own position and orientation by dead reckoning; the ball position has
been determined either by the robot’s local search behavior or by communicat-
ing with other robots in its team.

20.6.1 Driving Straight and Circle Arcs
The start position and orientation of this trajectory is given by the robot’s cur-
rent position, the end position is the ball position, and the end orientation is the
line between the ball and the opponent’s goal. A convenient way to generate a
smooth trajectory for given start and end points with orientations are Hermite
splines. However, since the robot might have to drive around the ball in order
to kick it toward the opponent’s goal, we use a case distinction to add “via-
points” in the trajectory (see Figure 20.7). These trajectory points guide the
robot around the ball, letting it pass not too close, but maintaining a smooth
trajectory.

Figure 20.7: Ball approach strategy
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In this algorithm, driving directly means to approach the ball without via-

points on the path of the robot. If such a trajectory is not possible (for example
for the ball lying between the robot and its own goal), the algorithm inserts a
via-point in order to avoid an own goal. This makes the robot pass the ball on a
specified side before approaching it. If the robot is in its own half, it is suffi-
cient to drive to the ball and kick it toward the other team's half. When a player
is already in the opposing team's half, however, it is necessary to approach the
ball with the correct heading in order to kick it directly toward the opponent’s
goal. 

The different driving actions are displayed in Figure 20.8. The robot drives
either directly to the ball (Figure 20.8 a, c, e) or onto a curve (either linear and
circular segments or a spline curve) including via-points to approach the ball
from the correct side (Figure 20.8 b, d).
Drive directly to the ball (Figure 20.8 a, b):
With localx and localy being the local coordinates of the ball seen from the
robot, the angle to reach the ball can be set directly as: 

With l being the distance between the robot and the ball, the distance to
drive in a curve is given by:

Drive around the ball (Figure 20.8 c, d, e):
If a robot is looking toward the ball but at the same time facing its own goal, it
can drive along a circular path with a fixed radius that goes through the ball.
The radius of this circle is chosen arbitrarily and was defined to be 5cm. The
circle is placed in such a way that the tangent at the position of the ball also
goes through the opponent’s goal. The robot turns on the spot until it faces this

Figure 20.8: Ball approach cases
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circle, drives to it in a straight line, and drives behind the ball on the circular
path (Figure 20.9).

Compute turning angle γ  for turning on the spot: γ  = α + β
Circle angle β between new robot heading and ball: β = β1 + β2
Angle to be driven on circular path: 2·β
Angle β1: goal heading from ball to x-axis:

Angle β2: ball heading from robot to x-axis:

Angle α: from robot orientation to ball heading (ϕ is robot orientation):
α = −ϕ + β2 

20.6.2 Driving Spline Curves
The simplest driving trajectory is to combine linear segments with circle arc
segments. An interesting alternative is the use of splines. They can generate a
smooth path and avoid turning on the spot, therefore they will generate a faster
path.

Figure 20.9: Calculating a circular path toward the ball
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Given the robot position Pk and its heading DPk as well as the ball position

Pk+1 and the robot’s destination heading DPk+1 (facing toward the opponent’s
goal from the current ball position), it is possible to calculate a spline which
for every fraction u of the way from the current robot position to the ball posi-
tion describes the desired location of the robot.

The Hermite blending functions H0 .. H3 with parameter u are defined as
follows:

The current robot position is then defined by:
 

A PID controller is used to calculate the linear and rotational speed of the
robot at every point of its way to the ball, trying to get it as close to the spline
curve as possible. The robot’s speed is constantly updated by a background
process that is invoked 100 times per second. If the ball can no longer be
detected (for example if the robot had to drive around it and lost it out of
sight), the robot keeps driving to the end of the original curve. An updated
driving command is issued as soon as the search behavior recognizes the
(moving) ball at a different global position.

This strategy was first designed and tested on the EyeSim simulator (see
Figure 20.10), before running on the actual robot. Since the spline trajectory

Figure 20.10: Spline driving simulation
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computation is rather time consuming, this method has been substituted by
simpler drive-and-turn algorithms when participating in robot soccer tourna-
ments.

20.6.3 Ball Kicking
After a player has successfully captured the ball, it can dribble or kick it
toward the opponent’s goal. Once a position close enough to the opponent’s
goal has been reached or the goal is detected by the vision system, the robot
activates its kicker to shoot the ball into the goal.

The driving algorithm for the goal keeper is rather simple. The robot is
started at a position of about 10cm in front of the goal. As soon as the ball is
detected, it drives between the ball and goal on a circular path within the
defense area. The robot follows the movement of the ball by tilting its camera
up and down. If the robot reaches the corner of its goal, it remains on its posi-
tion and turns on the spot to keep track of the ball. If the ball is not seen in a
pre-defined number of images, the robot suspects that the ball has changed
position and therefore drives back to the middle of the goal to restart its search
for the ball. 

If the ball is detected in a position very close to the goalie, the robot acti-
vates its kicker to shoot the ball away.

Figure 20.11: CIIPS Glory versus Lucky Star (1998)
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Fair play is

obstacle
avoidance

“Fair Play” has always been considered an important issue in human soccer.
Therefore, the CIIPS Glory robot soccer team (Figure 20.11) has also stressed
its importance. The robots constantly check for obstacles in their way, and – if
this is the case – try to avoid hitting them. In case an obstacle has been
touched, the robot drives backward for a certain distance until the obstacle is
out of reach. If the robot has been dribbling the ball to the goal, it turns quickly
toward the opponent’s goal to kick the ball away from the obstacle, which
could be a wall or an opposing player.
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NEURAL NETWORKS

he artificial neural network (ANN), often simply called neural network
(NN), is a processing model loosely derived from biological neurons
[Gurney 2002]. Neural networks are often used for classification prob-

lems or decision making problems that do not have a simple or straightforward
algorithmic solution. The beauty of a neural network is its ability to learn an
input to output mapping from a set of training cases without explicit program-
ming, and then being able to generalize this mapping to cases not seen previ-
ously.

There is a large research community as well as numerous industrial users
working on neural network principles and applications [Rumelhart, McClel-
land 1986], [Zaknich 2003]. In this chapter, we only briefly touch on this sub-
ject and concentrate on the topics relevant to mobile robots.

21.1 Neural Network Principles
A neural network is constructed from a number of individual units called neu-
rons that are linked with each other via connections. Each individual neuron
has a number of inputs, a processing node, and a single output, while each con-
nection from one neuron to another is associated with a weight. Processing in a
neural network takes place in parallel for all neurons. Each neuron constantly
(in an endless loop) evaluates (reads) its inputs, calculates its local activation
value according to a formula shown below, and produces (writes) an output
value. 

The activation function of a neuron a(I, W) is the weighted sum of its
inputs, i.e. each input is multiplied by the associated weight and all these terms
are added. The neuron’s output is determined by the output function o(I, W),
for which numerous different models exist.

In the simplest case, just thresholding is used for the output function. For
our purposes, however, we use the non-linear “sigmoid” output function
defined in Figure 21.1 and shown in Figure 21.2, which has superior character-
istics for learning (see Section 21.3). This sigmoid function approximates the
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Heaviside step function, with parameter ρ controlling the slope of the graph
(usually set to 1). 

21.2 Feed-Forward Networks
A neural net is constructed from a number of interconnected neurons, which
are usually arranged in layers. The outputs of one layer of neurons are con-
nected to the inputs of the following layer. The first layer of neurons is called
the “input layer”, since its inputs are connected to external data, for example
sensors to the outside world. The last layer of neurons is called the “output
layer”, accordingly, since its outputs are the result of the total neural network
and are made available to the outside. These could be connected, for example,
to robot actuators or external decision units. All neuron layers between the
input layer and the output layer are called “hidden layers”, since their actions
cannot be observed directly from the outside. 

If all connections go from the outputs of one layer to the input of the next
layer, and there are no connections within the same layer or connections from a
later layer back to an earlier layer, then this type of network is called a “feed-
forward network”. Feed-forward networks (Figure 21.3) are used for the sim-

Figure 21.1: Individual artificial neuron
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plest types of ANNs and differ significantly from feedback networks, which
we will not look further into here.

For most practical applications, a single hidden layer is sufficient, so the
typical NN for our purposes has exactly three layers:

• Input layer (for example input from robot sensors)
• Hidden layer (connected to input and output layer)
• Output layer (for example output to robot actuators)

Perceptron Incidentally, the first feed-forward network proposed by Rosenblatt had
only two layers, one input layer and one output layer [Rosenblatt 1962]. How-
ever, these so-called “Perceptrons” were severely limited in their computa-
tional power because of this restriction, as was soon after discovered by [Min-
sky, Papert 1969]. Unfortunately, this publication almost brought neural net-
work research to a halt for several years, although the principal restriction
applies only to two-layer networks, not for networks with three layers or more.

In the standard three-layer network, the input layer is usually simplified in
the way that the input values are directly taken as neuron activation. No activa-
tion function is called for input neurons. The remaining questions for our
standard three-layer NN type are:

• How many neurons to use in each layer?
• Which connections should be made between layer i and layer i + 1?
• How are the weights determined?

The answers to these questions are surprisingly straightforward:
• How many neurons to use in each layer?

The number of neurons in the input and output layer are determined by
the application. For example, if we want to have an NN drive a robot
around a maze (compare Chapter 17) with three PSD sensors as input

Figure 21.3: Fully connected feed-forward network
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and two motors as output, then the network should have three input
neurons and two output neurons.

Unfortunately, there is no rule for the “right” number of hidden neu-
rons. Too few hidden neurons will prevent the network from learning,
since they have insufficient storage capacity. Too many hidden neu-
rons will slow down the learning process because of extra overhead.
The right number of hidden neurons depends on the “complexity” of
the given problem and has to be determined through experimenting. In
this example we are using six hidden neurons.

• Which connections should be made between layer i and layer i + 1?
We simply connect every output from layer i to every input at layer
i + 1. This is called a “fully connected” neural network. There is no
need to leave out individual connections, since the same effect can be
achieved by giving this connection a weight of zero. That way we can
use a much more general and uniform network structure.

• How are the weights determined?
This is the really tricky question. Apparently the whole intelligence of
an NN is somehow encoded in the set of weights being used. What
used to be a program (e.g. driving a robot in a straight line, but avoid-
ing any obstacles sensed by the PSD sensors) is now reduced to a set
of floating point numbers. With sufficient insight, we could just “pro-
gram” an NN by specifying the correct (or let’s say working) weights.
However, since this would be virtually impossible, even for networks
with small complexity, we need another technique. 

The standard method is supervised learning, for example through
error backpropagation (see Section 21.3). The same task is repeatedly
run by the NN and the outcome judged by a supervisor. Errors made
by the network are backpropagated from the output layer via the hid-
den layer to the input layer, amending the weights of each connection.

Figure 21.4: Neural network for driving a mobile robot
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Evolutionary algorithms provide another method for determining
the weights of a neural network. For example, a genetic algorithm (see
Chapter 22) can be used to evolve an optimal set of neuron weights.

Figure 21.4 shows the experimental setup for an NN that should drive a
mobile robot collision-free through a maze (for example left-wall following)
with constant speed. Since we are using three sensor inputs and two motor out-
puts and we chose six hidden neurons, our network has 3 + 6 + 2 neurons in
total. The input layer receives the sensor data from the infrared PSD distance
sensors and the output layer produces driving commands for the left and right
motors of a robot with differential drive steering.

Let us calculate the output of an NN for a simpler case with 2 + 4 + 1 neu-
rons. Figure 21.5, top, shows the labelling of the neurons and connections in
the three layers, Figure 21.5, bottom, shows the network with sample input
values and weights. For a network with three layers, only two sets of connec-
tion weights are required: 

Figure 21.5: Example neural network

input layer hidden layer output layer

input layer hidden layer output layer

0.2
0.3
0.1
0.4

-0.2
0.6

-0.7
0.1

0.8

-0.2

-0.2

0.5

1.0

0.5
?

nin1

nin2

nh1id

nhid2

nhid3

nhid4

nout1

win 1,1
win 2,1
win 1,2
win 2,2
win 1,3
win 2,3
win 1,4
win 2,4

wout 1,1

wout 2,1

wout 3,1

wout 4,1

in1

in2

out1



Neural Networks

336

21
• Weights from the input layer to the hidden layer, summarized as ma-

trix win i,j (weight of connection from input neuron i to hidden neuron
j).

• Weights from the hidden layer to the output layer, summarized as ma-
trix wout i,j (weight of connection from hidden neuron i to output neu-
ron j).

No weights are required from sensors to the first layer or from the output
layer to actuators. These weights are just assumed to be always 1. All other
weights are normalized to the range [–1 .. +1]. 

Calculation of the output function starts with the input layer on the left and
propagates through the network. For the input layer, there is one input value
(sensor value) per input neuron. Each input data value is used directly as neu-
ron activation value:

a(nin1) = o(nin1) = 1.00
a(nin2) = o(nin2) = 0.50
For all subsequent layers, we first calculate the activation function of each

neuron as a weighted sum of its inputs, and then apply the sigmoid output
function. The first neuron of the hidden layer has the following activation and
output values:

a(nhid1) = 1.00 · 0.2 + 0.50 · 0.3 = 0.35
o(nhid1) = 1 / (1 + e–0.35) = 0.59
The subsequent steps for the remaining two layers are shown in Figure 21.6

with the activation values printed in each neuron symbol and the output values
below, always rounded to two decimal places.

Once the values have percolated through the feed-forward network, they
will not change until the input values change. Obviously this is not true for net-
works with feedback connections. Program 21.1 shows the implementation of

Figure 21.6: Feed-forward evaluation
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the feed-forward process. This program already takes care of two additional
so-called “bias neurons”, which are required for backpropagation learning. 

21.3 Backpropagation
A large number of different techniques exist for learning in neural networks.
These include supervised and unsupervised techniques, depending on whether
a “teacher” presents the correct answer to a training case or not, as well as on-
line or off-line learning, depending on whether the system evolves inside or
outside the execution environment. Classification networks with the popular
backpropagation learning method [Rumelhart, McClelland 1986], a super-
vised off-line technique, can be used to identify a certain situation from the
network input and produce a corresponding output signal. The drawback of
this method is that a complete set of all relevant input cases together with their
solutions have to be presented to the NN. Another popular method requiring

Program 21.1: Feed-forward execution

1 #include <math.h>
2 #define NIN (2+1) // number of input neurons
3 #define NHID (4+1) // number of hidden neurons
4 #define NOUT 1 // number of output neurons
5 float w_in [NIN][NHID]; // in weights from 3 to 4 neur.
6 float w_out[NHID][NOUT]; // out weights from 4 to 1 neur.
7
8 float sigmoid(float x)
9 { return 1.0 / (1.0 + exp(-x));

10 }
11
12 void feedforward(float N_in[NIN], float N_hid[NHID],
13 float N_out[NOUT])
14 { int i,j;
15   // calculate activation of hidden neurons
16   N_in[NIN-1] = 1.0; // set bias input neuron
17   for (i=0; i<NHID-1; i++)
18   { N_hid[i] = 0.0;
19     for (j=0; j<NIN; j++)
20 N_hid[i] += N_in[j] * w_in[j][i];
21 N_hid[i] = sigmoid(N_hid[i]);
22   }
23   N_hid[NHID-1] = 1.0; // set bias hidden neuron
24   // calculate activation and output of output neurons
25   for (i=0; i<NOUT; i++)
26   { N_out[i] = 0.0;
27     for (j=0; j<NHID; j++)
28 N_out[i] += N_hid[j] * w_out[j][i];
29     N_out[i] = sigmoid(N_out[i]);
30   }
31 }
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only incremental feedback for input/output pairs is reinforcement learning
[Sutton, Barto 1998]. This on-line technique can be seen as either supervised
or unsupervised, since the feedback signal only refers to the network’s current
performance and does not provide the desired network output. In the follow-
ing, the backpropagation method is presented.

A feed-forward neural network starts with random weights and is presented
a number of test cases called the training set. The network’s outputs are com-
pared with the known correct results for the particular set of input values and
any deviations (error function) are propagated back through the net.

Having done this for a number of iterations, the NN hopefully has learned
the complete training set and can now produce the correct output for each input
pattern in the training set. The real hope, however, is that the network is able to
generalize, which means it will be able to produce similar outputs correspond-
ing to similar input patterns it has not seen before. Without the capability of
generalization, no useful learning can take place, since we would simply store
and reproduce the training set.

The backpropagation algorithm works as follows:

1. Initialize network with random weights.
2. For all training cases:

a. Present training inputs to network and calculate output.
b. For all layers (starting with output layer, back to input layer):

i. Compare network output with correct output (error function).
ii. Adapt weights in current layer.

For implementing this learning algorithm, we do know what the correct
results for the output layer should be, because they are supplied together with
the training inputs. However, it is not yet clear for the other layers, so let us do
this step by step.

Firstly, we look at the error function. For each output neuron, we compute
the difference between the actual output value outi and the desired output dout i.
For the total network error, we calculate the sum of square difference:

Eout i = dout i – outi 

The next step is to adapt the weights, which is done by a gradient descent
approach:

So the adjustment of the weight will be proportional to the contribution of
the weight to the error, with the magnitude of change determined by constant
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η. This can be achieved by the following formulas [Rumelhart, McClelland
1986]:

diffout i = (o(nout i) – dout i) · (1 – o(nout i)) · o(nout i)
Δwout k,i = –2 · η · diffout i · inputk(nout i)

= –2 · η · diffout i · o(nhid k)

Assuming the desired output dout1 of the NN in Figure 21.5 to be
dout1 = 1.0, and choosing η= 0.5 to further simplify the formula, we can now
update the four weights between the hidden layer and the output layer. Note
that all calculations have been performed with full floating point accuracy,
while only two or three digits are printed.

diffout 1 = (o(nout 1) – dout1) · (1 – o(nout 1)) · o(nout 1)
= (0.60 – 1.00) · (1 – 0.60) · 0.60 = –0.096

Δwout 1,1 = – diffout1 · input1(nout1)
= – diffout1 · o(nhid1)
= – (–0.096) · 0.59 = +0.057

Δwout 2,1 = 0.096 · 0.57 = +0.055
Δwout 3,1 = 0.096 · 0.52 = +0.050
Δwout4,1 = 0.096 · 0.34 = +0.033
The new weights will be:
w´out 1,1 = wout1,1 + Δwout 1,1 = 0.8 + 0.057 = 0.86
w´out 2,1 = wout2,1 + Δwout 2,1 = –0.2 + 0.055 = –0.15
w´out 3,1 = wout3,1 + Δwout 3,1 = –0.2 + 0.050 = –0.15
w´out 4,1 = wout4,1 + Δwout 4,1 = 0.5 + 0.033 = 0.53
The only remaining step is to adapt the win weights. Using the same for-

mula, we need to know what the desired outputs dhid k are for the hidden layer.
We get these values by backpropagating the error values from the output layer
multiplied by the activation value of the corresponding neuron in the hidden
layer, and adding up all these terms for each neuron in the hidden layer. We
could also use the difference values of the output layer instead of the error val-
ues, however we found that using error values improves convergence. Here,
we use the old (unchanged) value of the connection weight, which again
improves convergence. The error formula for the hidden layer (difference
between desired and actual hidden value) is: 

diffhid i = Ehid i · (1 – o(nhid i)) · o(nhid i)

In the example in Figure 21.5, there is only one output neuron, so each hid-
den neuron has only a single term for its desired value. The value and differ-
ence values for the first hidden neuron are therefore:

Ehid i Eout k wout i k•⋅
k 1

num nout( )
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Ehid 1 = Eout 1 · wout 1,1

= 0.4 · 0.8 = 0.32

diffhid 1 = Ehid 1 · (1 – o(nhid 1)) · o(nhid 1)
= 0.32 · (1 – 0.59) · 0.59 = 0.077 

The weight changes for the two connections from the input layer to the first
hidden neuron are as follows. Remember that the input of the hidden layer is
the output of the input layer:

Δwin k,i = 2 · η · diffhid i · inputk(nhid i)
for η = 0.5
= diffhid i · o(nin k)

Program 21.2: Backpropagation execution

1 float backprop(float train_in[NIN], float train_out[NOUT])
2 /* returns current square error value */
3 { int i,j;
4   float err_total;
5   float N_out[NOUT],err_out[NOUT];
6   float diff_out[NOUT];
7   float N_hid[NHID], err_hid[NHID], diff_hid[NHID];
8
9   //run network, calculate difference to desired output

10   feedforward(train_in, N_hid, N_out);
11   err_total = 0.0;
12   for (i=0; i<NOUT; i++)
13   {  err_out[i] = train_out[i]-N_out[i];
14      diff_out[i]= err_out[i] * (1.0-N_out[i]) * N_out[i];
15 err_total += err_out[i]*err_out[i];
16   }
17
18   // update w_out and calculate hidden difference values
19   for (i=0; i<NHID; i++)
20   { err_hid[i] = 0.0;
21     for (j=0; j<NOUT; j++)
22     { err_hid[i]  += err_out[j] * w_out[i][j];
23       w_out[i][j] += diff_out[j] * N_hid[i];
24     }
25 diff_hid[i] = err_hid[i] * (1.0-N_hid[i]) * N_hid[i];
26 }
27
28   // update w_in
29   for (i=0; i<NIN; i++)
30     for (j=0; j<NHID; j++)
31       w_in[i][j] += diff_hid[j] * train_in[i];
32
33   return err_total;
34 }
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Δwin1,1 = diffhid 1 · o(nin 1)
= 0.077 · 1.0 = 0.077

Δwin2,1 = diffhid 1 · o(nin 2)
= 0.077 · 0.5 = 0.039

and so on for the remaining weights. The first two updated weights will
therefore be:

w´in1,1 = win1,1 + Δwin1,1 = 0.2 + 0.077 = 0.28
w´in2,1 = win2,1 + Δwin2,1 = 0.3 + 0.039 = 0.34

The backpropagation procedure iterates until a certain termination criterion
has been fulfilled. This could be a fixed number of iterations over all training
patterns, or until sufficient convergence has been achieved, for example if the
total output error over all training patterns falls below a certain threshold.

Bias neurons Program 21.2 demonstrates the implementation of the backpropagation
process. Note that in order for backpropagation to work, we need one addi-
tional input neuron and one additional hidden neuron, called “bias neurons”.
The activation levels of these two neurons are always fixed to 1. The weights
of the connections to the bias neurons are required for the backpropagation
procedure to converge (see Figure 21.7). 

Figure 21.7: Bias neurons and connections for backpropagation
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21.4 Neural Network Examples
Seven-segment

display
A simple example for testing a neural network implementation is trying to
learn the digits 0..9 from a seven-segment display representation. Figure 21.8
shows the arrangement of the segments and the numerical input and training
output for the neural network, which could be read from a data file. Note that
there are ten output neurons, one for each digit, 0..9. This will be much easier
to learn than, e.g., a four-digit binary encoded output (0000 to 1001). 

Figure 21.9 shows the decrease of total error values by applying the back-
propagation procedure on the complete input data set for some 700 iterations.
Eventually, the goal of an error value below 0.1 is reached and the algorithm
terminates. The weights stored in the neural net are now ready to take on previ-
ously unseen real data. In this example, the trained network could, e.g., be
tested against seven-segment inputs with a single defective segment (e.g.,
always on or always off). 

Figure 21.8: Seven-segment digit representation

digit 0 in: 1 1 1 0 1 1 1   out: 1 0 0 0 0 0 0 0 0 0
digit 1 in: 0 0 1 0 0 1 0   out: 0 1 0 0 0 0 0 0 0 0
digit 2 in: 1 0 1 1 1 0 1   out: 0 0 1 0 0 0 0 0 0 0
digit 3 in: 1 0 1 1 0 1 1   out: 0 0 0 1 0 0 0 0 0 0
digit 4 in: 0 1 1 1 0 1 0   out: 0 0 0 0 1 0 0 0 0 0
digit 5 in: 1 1 0 1 0 1 1   out: 0 0 0 0 0 1 0 0 0 0
digit 6 in: 1 1 0 1 1 1 1   out: 0 0 0 0 0 0 1 0 0 0
digit 7 in: 1 0 1 0 0 1 0   out: 0 0 0 0 0 0 0 1 0 0
digit 8 in: 1 1 1 1 1 1 1   out: 0 0 0 0 0 0 0 0 1 0
digit 9 in: 1 1 1 1 0 1 1   out: 0 0 0 0 0 0 0 0 0 17
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Figure 21.9: Error reduction for 7-segment example
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Of course, using a seven-segment display as an example was only for dem-
onstration purposes and does not show the full classification capabilities of a
neural network. A much more useful but also more complex problem is the
classification of handwritten digits, e.g., for an automated letter sorter that
scans the ZIP code. This problem is also known as OCR (optical character rec-
ognition). A good source for handwritten digits (unless you want to write and
scan your own) is the MNIST database [LeCun et al. 1998], [LeCun, Cortes
2008]. This freely accessible database contains a total of 70,000 handwritten
digits from ~250 writers.

Figure 21.10 shows some sample digits together with a visualization tool
we developed, which uses the same program code for backpropagation train-
ing as the seven-segment display example. 

21.5 Neural Controller
Control of mobile robots produces tangible actions from sensor inputs. A con-
troller for a robot receives input from its sensors, processes the data using rele-
vant logic, and sends appropriate signals to the actuators. For most large tasks,

Figure 21.10: Handwritten digits from MNIST and visualization tool
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the ideal mapping from input to action is not clearly specified nor readily
apparent. Such tasks require a control program that must be carefully designed
and tested in the robot’s operational environment. The creation of these control
programs is an ongoing concern in robotics as the range of viable application
domains expands, increasing the complexity of tasks expected of autonomous
robots.

A number of questions need to be answered before the feed-forward ANN
in Figure 21.4 can be implemented. Among them are:

How can the success of the network be measured?
The robot should perform a collision-free left-wall following.

How can the training be performed?
In simulation or on the real robot.

What is the desired motor output for each situation?
The motor function that drives the robot close to the wall on the left-hand
side and avoids collisions.

Neural networks have been successfully used to mediate directly between
sensors and actuators to perform certain tasks. Past research has focused on
using neural net controllers to learn individual behaviors. Vershure developed
a working set of behaviors by employing a neural net controller to drive a set
of motors from collision detection, range finding, and target detection sensors
[Vershure et al. 1995]. The on-line learning rule of the neural net was designed
to emulate the action of Pavlovian classical conditioning. The resulting con-
troller associated actions beneficial to task performance with positive feed-
back.

Adaptive logic networks (ALNs), a variation of NNs that only use boolean
operations for computation, were successfully employed in simulation by
Kube et al. to perform simple cooperative group behaviors [Kube, Zhang,
Wang 1993]. The advantage of the ALN representation is that it is easily map-
pable directly to hardware once the controller has reached a suitable working
state.

In Chapter 24 an implementation of a neural controller is described that is
used as an arbitrator or selector of a number of behaviors. Instead of applying a
learning method like backpropagation shown in Section 21.3, a genetic algo-
rithm is used to evolve a neural network that satisfies the requirements.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GENETIC ALGORITHMS

volutionary algorithms are a family of search and optimization tech-
niques that make use of principles from Darwin’s theory of evolution
[Darwin 1859] to progress toward a solution. Genetic algorithms (GA)

are a prominent part of this larger overall group. They operate by iteratively
evolving a solution from a history of potential solutions, which are manipu-
lated by a number of biologically inspired operations. Although only an
approximation to real biological evolutionary processes, they have been
proven to provide a powerful and robust means of solving problems.

The utility of genetic algorithms is their ability to be applied to problems
without a deterministic algorithmic solution. Certain satisfiability problems in
robotic control fall into this category. For example, there is no known algo-
rithm to deterministically develop an optimal walking gait for a particular
robot. An approach to designing a gait using genetic algorithms is to evolve a
set of parameters controlling a gait generator. The parameters completely con-
trol the type of gait that is produced by the generator. We can assume there
exists a set of parameters that will produce a suitable walk for the robot and
environment – the problem is to find such a set. Although we do not have a
way to obtain these algorithmically, we can use a genetic algorithm in a simu-
lated environment to incrementally test and evolve populations of parameters
to produce a suitable gait.

It must be emphasized that the effectiveness of using a genetic algorithm to
find a solution is dependent on the problem domain, the existence of an opti-
mal solution to the problem at hand, and a suitable fitness function. Applying
genetic algorithms to problems that may be solved algorithmically is decidedly
inefficient. They are best used for solving tasks that are difficult to solve, such
as NP-hard problems. NP-hard problems are characterized by the difficulty of
finding a solution due to a large solution search space, but being easy to verify
once a candidate solution has been obtained.

For further reading see [Goldberg 1989] and [Langton 1995].

E
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22.1 Genetic Algorithm Principles
In this section we describe some of the terminology used, and then outline the
operation of a genetic algorithm. We then examine the components of the algo-
rithm in detail, describing different implementations that have been employed
to produce results.

Genotype and
phenotype

Genetic algorithms borrow terminology from biology to describe their
interacting components. We are dealing with phenotypes, which are possible
solutions to a given problem (for example a simulated robot with a particular
control structure), and genotypes, which are encoded representations of pheno-
types. Genotypes are sometimes also called chromosomes and can be split into
smaller chunks of information, called genes (Figure 22.1).

The genetic operators work only on genotypes (chromosomes), while it is
necessary to construct phenotypes (individuals) in order to determine their fit-
ness. 

GA execution The basic operation of a genetic algorithm can be summarized as follows:

1. Randomly initialize a population of chromosomes.
2. While the terminating criteria have not been satisfied: 

a. Evaluate the fitness of each chromosome:
i. Construct the phenotype (e.g. simulated robot)

corresponding to the encoded genotype (chromosome).
ii. Evaluate the phenotype (e.g. measure the simulated robot’s

walking abilities), in order to determine its fitness.
b. Generate a new generation of chromosomes:

i. Copy one or more of the top performing chromosomes un-
changed to the new generation (elitism).

ii. Use a selection scheme that selects chromosomes from the cur-
rent generation proportional to their relative fitness.

iii. Apply crossover to selected pairs of chromosomes to produce
a pair of new chromosomes

iv. Apply random mutation (with low probability) to one or more
chromosomes

Figure 22.1: Terminology

Gene Chromosome
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Gene-Pool
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The algorithm can start with either a set of random chromosomes, or ones
that represent already approximate solutions to the given problem. The gene
pool is evolved from generation to generation by a set of modifying operators
and a selection scheme that depends on the fitness of each chromosome. The
selection scheme determines which chromosomes should reproduce, and typi-
cally selects the highest-performing members for reproduction. Reproduction
is achieved through various operators, which create new chromosomes from
existing chromosomes. They effectively alter the parameters to cover the
search space, preserving and combining the highest-performing parameter
sets. 

Each iteration of the overall procedure creates a new population of chromo-
somes. The total set of chromosomes at one iteration of the algorithm is known
as a generation. As the algorithm iteration continues, it searches through the
solution space, refining the chromosomes, until either it finds one with a suffi-
ciently high fitness value (matching the desired criteria of the original prob-
lem), or the evolutionary progress slows down to such a degree that finding a
matching chromosome is unlikely.

Fitness function Each problem to be solved requires the definition of a unique fitness func-
tion describing the characteristics of an appropriate solution. The purpose of
the fitness function is to evaluate the suitability of a solution with respect to the
overall goal. Given a particular chromosome, the fitness function returns a
numerical value corresponding to the chromosome’s quality. For some applica-
tions the selection of a fitness function is straightforward. For example, in
function optimization problems, fitness is evaluated by the function itself.
However, in many applications there are no obvious performance measure-
ments of the goal. In these cases a suitable fitness function may be constructed
from a combination of desired factors characteristic of the problem.

Selection
schemes

In nature, organisms that reproduce the most before dying will have the
greatest influence on the composition of the next generation. This effect is
employed in the genetic algorithm selection scheme that determines which
individuals of a given population will contribute to form the new individuals
for the next generation. “Tournament selection”, “Random selection”, and
“Roulette wheel selection” are three commonly used selection schemes.

Tournament selection operates by selecting two chromosomes from the
available pool, and comparing their fitness values when they are evaluated
against each other. The better of the two is then permitted to reproduce. Thus,
the fitness function chosen for this scheme only needs to discriminate between
the two entities.

Random selection randomly selects the parents of a new chromosome from
the existing pool. Any returned fitness value below a set operating point is
instantly removed from the population. Although it would appear that this
would not produce beneficial results, this selection mechanism can be
employed to introduce randomness into a population that has begun to con-
verge to a sub-optimal solution.

In roulette wheel selection (sometimes referred to as fitness proportionate
selection) the chance for a chromosome to reproduce is proportional to the fit-
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ness of the entity. Thus, if the fitness value returned for one chromosome is
twice as high as the fitness value for another, then it is twice as likely to repro-
duce. However, its reproduction is not guaranteed as in tournament selection.

Although genetic algorithms will converge to a solution if all chromosomes
reproduce, it has been shown that the convergence rate can be significantly
increased by duplicating unchanged copies of the fittest chromosomes for the
next generation.

22.2 Genetic Operators
Genetic operators comprise the methods by which one or more chromosomes
are combined to produce a new chromosome. Traditional schemes utilize only
two operators: mutate and crossover [Beasley, Bull, Martin 1993a]. Crossover
takes two individuals and divides the string into two portions at a randomly
selected point inside the encoded bit string. This produces two “head” seg-
ments and two “tail” segments. The two tail segments for the chromosomes are
then interchanged, resulting in two new chromosomes, where the bit string
preceding the selected bit position belongs to one parent, and the remaining
portion belongs to the other parent. This process is illustrated in Figure 22.2.

The mutate operator (Figure 22.3) randomly selects one bit in the chromo-
some string, and inverts the value of the bit with a defined probability. Histori-
cally, the crossover operator has been viewed as the more important of the two
techniques for exploring the solution space; however, without the mutate oper-
ator portions of the solution space may not be searched, as the initial chromo-
somes may not contain all possible bit combinations [Beasley, Bull, Martin
1993b]. 

Figure 22.2: Crossover operator

Figure 22.3: Mutate operator
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There are a number of possible extensions to the set of traditional operators.
The two-point crossover operates similarly to the single point crossover
described, except that the chromosomes are now split into two positions rather
than just one. The mutate operator can also be enhanced to operate on portions
of the chromosome larger than just one bit, increasing the randomness that can
be added to a search in one operation.

Further extensions rely on modifying the bit string under the assumption
that portions of the bit string represent non-binary values (such as 8bit integer
values or 32bit floating point values). Two commonly used operators that rely
on this interpretation of the chromosome are the “Non-Binary Average” and
“Non-Binary Creep” operators. Non-Binary Average interprets the chromo-
some as a string of higher cardinality symbols and calculates the arithmetic
average of the two chromosomes to produce the new individual. Similarly,
Non-Binary Creep treats the chromosomes as strings of higher cardinality
symbols and increments or decrements a randomly selected value in these
strings by a small randomly generated amount.  

The operation of the Non-Binary Average operator is illustrated in Figure
22.4. In the example shown the bit string is interpreted as a set of two bit sym-
bols, and averaged using truncation. Thus, zero plus two averages to one, i.e.

(00 + 10) / 2 = 01
but two plus three will average to two, i.e.

(10 + 11) / 2 = 10
The Non-Binary Creep operator shown in Figure 22.5 also represents the bit

string as two bit symbols and decrements the second symbol by a value of one.
Encoding The encoding method chosen to transform the parameters to a chromosome

can have a large effect on the performance of the genetic algorithm. A compact
encoding allows the genetic algorithm to perform efficiently. There are two

Figure 22.4: Non-Binary Average operator

Figure 22.5: Non-Binary Creep operator
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common encoding techniques applied to the generation of a chromosome.
Direct encoding explicitly specifies every parameter within the chromosome,
whereas indirect encoding uses a set of rules to reconstruct the complete
parameter space. Direct encoding has the advantage that it is a simple and
powerful representation, but the resulting chromosome can be quite large.
Indirect encoding is far more compact, but it often represents a highly restric-
tive set of the original structures.

22.3 Applications to Robot Control
Three applications of genetic algorithms to robot control are briefly discussed
in the following sections. These topics are dealt with in more depth in the fol-
lowing chapters on behavior-based systems and gait evolution.

Gait generation Genetic algorithms have been applied to the evolution of neural controllers
for robot locomotion by numerous researchers [Ijspeert 1999], [Lewis Fagg,
Bekey 1994]. This approach uses the genetic algorithm to evolve the weight-
ings between interconnected neurons to construct a controller that achieves the
desired gait. Neuron inputs are taken from various sensors on the robot, and
the outputs of certain neurons are directly connected to the robot’s actuators.
[Lewis, Fagg, Bekey 1994] successfully generated gaits for a hexapod robot
using a simple traditional genetic algorithm with one-point crossover and
mutate. A simple neural network controller was used to control the robot, and
the fitness of the individuals generated was evaluated by human designers.
[Ijspeert 1999] evolved a controller for a simulated salamander using an
enhanced genetic algorithm. The neural model employed was biologically
based and very complex. However, the system developed was capable of oper-
ating without human fitness evaluators.

[Boeing, Bräunl 2003] and [Boeing, Bräunl 2004] used genetic algorithms
for finding spline parameters for biped robot locomotion (see Chapter 25).

Schema-based
navigation

Genetic algorithms have been used in a variety of different ways to newly
produce or optimize existing behavioral controllers. [Ram et al. 1994] used a
genetic algorithm to control the weightings and internal parameters of a simple
reactive schema controller. In schema-based control, primitive motor and per-
ceptual schemas do simple distributed processing of inputs (taken from sensors
or other schemas) to produce outputs. Motor schemas asynchronously receive
input from perceptual schemas to produce response outputs intended to drive
an actuator. A schema arbitration controller produces output by summing con-
tributions from independent schema units, each contributing to the final output
signal sent to the actuators according to a weighting (Figure 22.6). These
weightings are usually manually tuned to produce desired system behavior
from the robot.

The approach taken by Ram et al. was to use a genetic algorithm to deter-
mine an optimal set of schema weightings for a given fitness function. By tun-
ing the parameters of the fitness function, robots optimized for the qualities of
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safety, speed, and path efficiency were produced. The behavior of each of
these robots was different from any of the others. This graphically demon-
strates how behavioral outcomes may be easily altered by simple changes in a
fitness function.

Behavior
selection

[Harvey, Husbands, Cliff 1993] used a genetic algorithm to evolve a robot
neural net controller to perform the tasks of wandering and maximizing the
enclosed polygonal area of a path within a closed space. The controller used
sensors as its inputs and was directly coupled to the driving mechanism of the
robot. A similar approach was taken in [Venkitachalam 2002] but the outputs
of the neural network were used to control schema weightings. The neural net-
work produces dynamic schema weightings in response to input from percep-
tual schemas.

22.4 Example Evolution
In this section we demonstrate a simple walk-through example. We will
approach the problem of manually solving a basic optimization problem using
a genetic algorithm, and suggest how to solve the same problem using a com-
puter program. The fitness function we wish to optimize is a simple quadratic
formula (Figure 22.7):

f(x) = – (x – 6)2 for 0  x  31 

Using a genetic algorithm to search a solvable equation with a small search
space like this is inefficient and not advised for reasons stated earlier in this

Figure 22.6: Schema hierarchy
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chapter. In this particular example, the genetic algorithm is not significantly
more efficient than a random search, and possibly worse. Rather, this problem
has been chosen because its relatively small size allows us to examine the
workings of the genetic algorithm.

The genetic algorithm we will use features a simple binary encoding, one-
point crossover, elitism, and a decease rate. In this particular problem, the gene
consists of a single integral number. Since there is only one parameter to be
found, each chromosome consists only of a single gene. The rather artificial
constraint on the function given above allows us to use a 5bit binary encoding
for our genes. Hence chromosomes are represented by bit strings of length 5.
We begin by producing a random population and evaluating each chromosome
through the fitness function. If the terminating criteria are met, we stop the
algorithm. In this example, we already know the optimal solution is x = 6 and
hence the algorithm should terminate when this value is obtained. Depending
on the nature of the fitness function, we may want to let the algorithm continue
to find other (possibly better) feasible solutions. In these cases we may want to
express the terminating criteria in relation to the rate of convergence of the top
performing members of a population. 

The initial population, encodings, and fitnesses are given in Table 22.1.
Note that chromosomes x = 2 and x = 10 have equal fitness values, hence their
relative ranking is an arbitrary choice.

The genetic algorithm we use has a simple form of selection and reproduc-
tion. The top performing chromosome is reproduced and preserved for use in
the next iteration of the algorithm. It replaces the lowest performing chromo-
some, which is removed from the population altogether. Hence we remove
x = 31 from selection.

The next step is to perform crossover between the chromosomes. We ran-
domly pair the top four ranked chromosomes and determine whether they are
subject to crossover by a non-deterministic probability. In this example, we
have chosen a crossover probability of 0.5, easily modeled by a coin toss. The

Figure 22.7: Graph of f(x)
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random pairings selected are ranked chromosomes (1,4) and (2,3). Each pair of
chromosomes will undergo a single random point crossover to produce two
new chromosomes.

As described earlier, the single random point crossover operation selects a
random point to perform the crossover. In this iteration, both pairs undergo
crossover (Figure 22.8).

The resulting chromosomes from the crossover operation are as follows:

Note that in the case of the second crossover, because the first bit is identi-
cal in both strings the resulting chromosomes are the same as the parents. This

x Bit String f(x) Ranking

2 00010 –16 1

10 01010 –16 2

0 00000 –36 3

20 10100 –196 4

31 11111 –625 5

Table 22.1: Initial population

Figure 22.8: Crossover

Crossover point

0 0 0 1 0 0 0 1 0 0

1 0 1 0 0 1 0 0 1 0

Crossover point

0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0

(1) 00|010 ↓→ 00100 = 4
(4) 10|100 ↑→ 10010 = 18

(2) 0|1010 ↓→ 00000 = 0
(3) 0|0000 ↑→ 01010 = 10 
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is effectively equivalent to no crossover operation occurring. After one itera-
tion we can see the population has converged somewhat toward the optimal
answer. We now repeat the evaluation process with our new population (Table
22.2). 

Again we preserve the best chromosome (x = 4) and remove the worst
(x = 18). Our random pairings this time are ranked chromosomes (1, 2) and
(3, 4). This time, only pair (3, 4) has been selected by a random process to
cross over, and (1, 2) is selected for mutation. It is worth noting that the (1, 2)
pair had the potential to produce the optimal solution x = 6 if it had undergone
crossover. This missed opportunity is characteristic of the genetic algorithm’s
non-deterministic nature: the time taken to obtain an optimal solution cannot
be accurately foretold. The mutation of (2), however, reintroduced some of the
lost bit-string representation. With no mutate operator the algorithm would no
longer be capable of representing odd values (bit strings ending with a one).

Mutation of (1) and (2)
(1) 00100 00000 = 0
(2) 00010 00011 = 3

Crossover of pair (3, 4)
(3) 01|010 01000 = 8
(4) 00|000 00010 = 2

The results of the next population fitness evaluation are presented in Table
22.3. 

As before, chromosome x = 0 is removed and x = 4 is retained. The selected
pairs for crossover are (1, 3) and (1, 4), of which only (1, 4) actually undergoes
crossover:

(1) 001|00 00110 = 6
(4) 000|10 00000 = 0

The optimal solution of x = 6 has been obtained. At this point, we can stop
the genetic algorithm because we know this is the optimal solution. However,

x Bit String f(x) Ranking

4 00100 –4 1

2 00010 –16 2

10 01010 –16 3

0 00000 –36 4

18 10010 –144 5

Table 22.2: Population after crossover

→
→

↓→
↑→

↓→
↑→
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if we let the algorithm continue, it should eventually completely converge to
x = 6. This is because the x = 6 chromosome is now persistent through subse-
quent populations due to its optimal nature. When another chromosome is set
to x = 6 through crossover, the chance of it being preserved through popula-
tions increases due to its increased presence in the population. This probability
is proportional to the presence of the x = 6 chromosome in the population, and
hence given enough iterations the whole population should converge. The elit-
ism operator, combined with the fact that there is only one maximum, ensures
that the population will never converge to another chromosome.

22.5 Implementation of Genetic Algorithms
In the following, we describe an elementary genetic algorithm framework in C,
which can be used for the robot projects described in the following chapters.
The base data type is a gene, which in our case is a number of bytes or inte-
gers. The gene pool contains a larger number of genes, representing the cur-
rent generation of genes.

It should be noted that there are more fully featured third-party genetic
algorithm libraries freely available for use in complex applications, such as
GA Lib [GALib 2008] and OpenBeagle [Beaulieu, Gagné 2008]. These allow
to design a working genetic algorithm without having to implement any infra-
structure. 

The main program (Program 22.1) shows the fundamental steps of the
generic algorithm. We define a genepool (array of genes) according to the
desired size of the population, plus a second array for copying over the next
generation. The first step is initializing each gene (for-loop) with random val-
ues. The second step is the iteration part, which continues until we either find a
gene that has the desired fitness or we have reached the maximum number of
iterations.

In each iteration, we determine the fitness of each gene by calling function
evaluate. For testing purposes, evaluate simply adds up all bytes of the gene,
so we already know that the gene with perfect fitness would be made up of

x Bit String f(x) Ranking

4 00100 –4 1

8 01000 –4 2

3 00011 –9 3

2 00010 –16 4

0 00000 –36 5

Table 22.3: Connection between the input and output indices
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integers 255, 255, ..., 255. We also calculate the maximum fitness and the sum
of all fitness values, which we will need for the selection function later.

For populating the next generation pool, we iteratively call the select func-
tion twice, followed by the crossover function. We then only perform one sin-
gle mutation operation on a randomly selected gene in the next generation
pool.

The final step is copying back the new generation into the gene pool array.
However, we are making one exception here: The gene with the highest fitness
of the old gene pool (max_pos) is not being overwritten, but will live on
unchanged in the new generation (elitism).

Program 22.1: Main program

1 typedef int gene[GENESIZE]; // values -128 .. +127
2
3 int main(int argc, char *argv[])
4 { gene genepool[POPSIZE], nextgen[POPSIZE];
5   int  fitness [POPSIZE];
6   int  i,j, iter=0, sum_fit, max_fit=0, max_pos, s1, s2;
7     
8 for(i=0; i<POPSIZE; i++) init(genepool[i]); // INIT
9

10   //  Iterate genetic algorithm
11   while (max_fit < DES_FITNESS && iter < MAX_ITER)
12   { // Evaluate population
13     for (i=0; i<POPSIZE; i++)
14       fitness[i] = evaluate(genepool[i]);
15     max_fit = calc_max(fitness, &max_pos);
16     sum_fit = calc_sum(fitness);
17
18     if (max_fit < DES_FITNESS)
19     { // SELECT + CROSSOVER
20       for (i=0; i<POPSIZE; i+=2)
21       { s1 = select(fitness, sum_fit);
22         s2 = select(fitness, sum_fit);
23         crossover(genepool[s1],genepool[s2],
24 nextgen[i],nextgen[i+1]);
25       }
26     
27       // single MUTATION
28       mutation(nextgen[rand()%POPSIZE]);
29    
30       // Copy back generation
31       for (i=0; i<POPSIZE; i++)
32         if (i != max_pos) // RETAIN top performer
33           copygene(nextgen[i], genepool[i]);
34     } 
35   }
36 return 0;
37 }
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Program 22.2 lists a number of auxiliary function, which do not require
much further comment. The evaluate function simply adds the integer values
of each gene, and would have to be replaced by the fitness function in a real
application. Two small routines calculate the value and position of the top
scoring gene (highest overall fitness), and the total sum of all fitness values in
the gene pool. Plus there are two auxiliary functions for initializing a gene
(with random number generator rand()) and for copying a complete gene. 

Program 22.2: Fitness functions

1 int evaluate(gene g)
2 { int i, fitness;
3   // calculate fitness by evaluating phene from gene
4   fitness = 0;
5   for (i=0; i<GENESIZE; i++) fitness+=g[i];
6   return fitness;
7 }
8
9 int calc_max(int fitness[], int* pos)

10 // calc max of fitness values
11 { int i, ret = fitness[0];
12 *pos=0;
13   for (i=1; i<POPSIZE; i++)
14     if (fitness[i] > ret)
15     { ret = fitness[i];
16       *pos = i;
17     }
18   return ret;
19 }
20
21 int calc_sum(int fitness[])
22 // calc sum of fitness values
23 { int i, ret = 0;
24   for (i=0; i<POPSIZE; i++) ret += fitness[i];
25   return ret;
26 }
27
28 void init(gene g)
29 { // random initialiazation
30   int i;
31   for (i=0; i<GENESIZE; i++)
32      g[i] = rand()%256;
33 }
34
35 void copygene(gene g_from, gene g_to)
36 { // copy one gene over to new generation
37   int i;
38   for (i=0; i<GENESIZE; i++) g_to[i] = g_from[i];
39 }



Genetic Algorithms

360

22
Program 22.3 finally shows the implementation of the three genetic opera-

tors, selection, crossover, and mutation. The select function uses a method
we originally devised for a parallel programming implementation and that we
called “fitness wheel of fortune”. If we visualize the list of genes with their rel-
ative integer fitness values as arc segments, then the complete gene pool
resembles a fortune wheel (or a pie chart). Giving it a random spin will select a
gene with a probability relative to its fitness (see Figure 22.9 with sample fit-
ness values for six genes). So a gene with a high fitness is more likely to be
chosen (even multiple times) than a gene with a low fitness. But even a gene
with a low fitness has a nonzero chance of being selected.

No sorting
required!

The random value used in the select function very closely resembles the
spinning force of a fortune wheel (however, limited to a maximum of one rev-
olution through using the modulo operation). The remainder of this function is
simply finding out which gene corresponds to the random number. This imple-
mentation has the significant advantage over other methods that it does not
require any sorting of fitness values or gene indices – a large computational
saving of O(n · log(n)) steps.  

The crossover function has two input parameters (old genes) and two output
parameters (new genes). In this simplified implementation we determine a ran-
dom cross-over point and then swap over bytes in the same way as it has been
shown for bits in Figure 22.8. To do the cross-over bit-wise would require a lit-
tle additional arithmetic for the one byte cut in half, but our experiments have
shown that this will not affect algorithm performance.

Finally, the mutation function does operate on bit-level. We call the random
function twice in order to determine byte number and bit position of where the
mutation is to strike. The actual flipping of a single bit is achieved by using the
XOR-function “^” in C. 

Figure 22.9: Sample fitness pie chart with six genes and their relative fitness
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select winner
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Figure 22.10 shows the fitness progress over generations in graphical form.
The desired fitness value of 2,000 (out of a maximum of 2,550) is being
reached in 26 generations using 100 genes in the gene pool.  

22.6 Starman
“Mr. Star-Man” is a simulated 2D mobile robot first devised by Ngo and
Marks in 1994 [Fukunaga et al. 1994]. It has five identical actuated legs (one
hinge joint per leg) on a cylindrical body (see Figure 22.11). It is an ideal

Program 22.3: Genetic operators

1 int select(int fitness[], int sum_fit)
2 { // select gene according to relative fitness
3   int i, select, start;
4
5   select = rand()%sum_fit; // value 0..sum_fit-1
6   start=fitness[0]; i=0; 
7   while (start<select)
8   {  i++;
9      start += fitness[i];

10   }
11   return i;
12 }
13
14
15 void crossover(gene old1, gene old2, gene new1, gene new2)
16 { // create two new genes by cross-over: integer, NOT bin
17   int i, pos,bit;
18   
19   pos = rand()%(GENESIZE-1); //range 0.. GENESIZE-2
20 for (i=0; i<=pos; i++)
21   { new1[i] = old1[i];  // keep front parts
22     new2[i] = old2[i];
23   }
24 for (i=pos+1; i<GENESIZE; i++)
25   { new1[i] = old2[i];  // swap back parts
26     new2[i] = old1[i];
27   }
28 }
29
30
31 void mutation(gene g)
32 { // flip a single bit position
33   int pos,bit;
34   
35   pos = rand()%GENESIZE;
36   bit = rand()%8;
37   g[pos] = g[pos]^(1<<bit); // use XOR to flip bit
38 }
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application for genetic algorithms since the problem is sufficiently hard, and so
there is no obvious procedural solution and a genetic algorithm might even
reveal surprising locomotion techniques (reminiscent of “The Ministry of Silly
Walks” for fans of Monty Python’s Flying Circus, Episode 14, 1970). 

The Starman model is based on the following assumptions:
• The robot lives in 2D.

So the robot can never fall sideways.
• Fitness can simply be measured by the distance the robot has travelled

within, e.g., five simulated seconds.
• The robot can rotate each of its five legs about its body center by ap-

plying a force (or impulse in some physics engines).
• The maximum rotation angle of each leg is ±36° [ =(360°/5) /2 ].

That way legs can never collide with each other.

Figure 22.10: Fitness progression over 28 generations, population-size 10
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For encoding Starman’s motions in a way suitable for genetic algorithms,
we are using a simplified variation of the algorithm presented in [Boeing,
Bräunl 2004]:

• All leg motions are repetitive with a fixed cycle time (e.g. 1s).
• Each of the five leg motions is represented by one spline function

with a fixed number of control points (e.g., 10 points for a 1s iteration).
• Starman’s complete motion behavior can be described by L*T Bytes 

with L = number of legs and T = number of time steps,
e.g., 5*10 = 50 Bytes.
After 1s of simulation is up, the spline functions will be repeated from 
the start.

• An open source physics engine (e.g. Bullet [Coumans 2008]) is used 
for carrying out the physics simulation.

Figure 22.12 shows some Starman simulation results using the Bullet phys-
ics engine and the above mentioned GA method. 
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PROGRAMMING

enetic programming extends the idea of genetic algorithms discussed
in Chapter 22, using the same idea of evolution going back to Darwin
[Darwin 1859]. Here, the genotype is a piece of software, a directly

executable program. Genetic programming searches the space of possible
computer programs that solve a given problem. The performance of each indi-
vidual program within the population is evaluated, then programs are selected
according to their fitness and undergo operations that produce a new set of pro-
grams. These programs can be encoded in a number of different programming
languages, but in most cases a variation of Lisp [McCarthy et al. 1962] is cho-
sen, since it facilitates the application of genetic operators.

The concept of genetic programming was introduced by Koza [Koza 1992].
For further background reading see [Blickle, Thiele 1995], [Fernandez 2006],
[Hancock 1994], [Langdon, Poli 2002].

23.1 Concepts and Applications
The main concept of genetic programming is its ability to create working pro-
grams without the full knowledge of the problem or the solution. No additional
encoding is required as in genetic algorithms, since the executable program
itself is the phenotype. Other than that, genetic programming is very similar to
genetic algorithms. Each program is evaluated by running it and then assigning
a fitness value. Fitness values are the base for selection and genetic manipula-
tion of a new generation. As for genetic algorithms, it is important to maintain
a wide variety of individuals (here: programs), in order to fully cover the
search area.

Koza summarizes the steps in genetic programming as follows [Koza
1992]:
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1. Randomly generate a combinatorial set of computer programs. 
2. Perform the following steps iteratively until a termination criterion is

satisfied (i.e. the program population has undergone the maximum
number of generations, or the maximum fitness value has been reached,
or the population has converged to a sub-optimal solution). 
a. Execute each program and assign a fitness value to each individual. 
b. Create a new population with the following steps:

i. Reproduction: Copy the selected program unchanged to the
new population.

ii. Crossover: Create a new program by recombining two selected
programs at a random crossover point. 

iii. Mutation: Create a new program by randomly changing a se-
lected program. 

3. The best sets of individuals are deemed the optimal solution upon termi-
nation.

Applications
in robotics

The use of genetic programming is widely spread from evolving mathemat-
ical expressions to locating optimum control parameters in a PID controller.
The genetic programming paradigm has become popular in the field of robot-
ics and is used for evolving control architectures and behaviors of mobile
robots.

[Kurashige, Fukuda, Hoshino 1999] use genetic programming as the learn-
ing method to evolve the motion planning of a six-legged walker. The genetic
programming paradigm is able to use primitive leg-moving functions and
evolve a program that performs robot walking with all legs moving in a hierar-
chical manner.

[Koza 1992] shows the evolution of a wall-following robot. He uses primi-
tive behaviors of a subsumption architecture [Brooks 1986] to evolve a new
behavior that lets the robot execute a wall-following pattern without prior
knowledge of the hierarchy of behaviors and their interactions. 

[Lee, Hallam, Lund 1997] apply genetic programming as the means to
evolve a decision arbitrator on a subsumption system. The goal is to produce a
high-level behavior that can perform box-pushing, using a similar technique to
Koza’s genetic programming. 

[Walker, Messom 2002] use genetic programming and genetic algorithms to
auto-tune a mobile robot control system for object tracking.

The initial population holds great importance for the final set of solutions. If
the initial population is not diverse enough or strong enough, the optimal solu-
tion may not be found. [Koza 1992] suggests a minimum initial population
size of 500 for robot motion control and 1,000 for robot wall-following (see
Table 23.1).  
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23.2 Lisp

Lisp functions:
atoms and lists

It is possible to formulate inductive programs in any programming language.
However, evolving program structures such as C or Java are not straightfor-
ward. Therefore, Koza used the functional language Lisp (“List Processor”)
for genetic programming. Lisp was developed by McCarthy starting in 1958
[McCarthy et al. 1962], which makes it one of the oldest programming lan-
guages of all. Lisp is available in a number of implementations, among them
the popular Common Lisp [Graham 1995]. Lisp is usually interpreted and pro-
vides only a single program and data structure: the list.

Every object in Lisp is either an atom (a constant, here: integer or a parame-
terless function name) or a list of objects, enclosed in parentheses.

Examples for atoms: 7, 123, obj_size

Examples for lists: (1 2 3), (+ obj_size 1), (+ (* 8 5) 2)

S-Expression Lists may be nested and are not only the representation for data structures,
but also for program code as well. Lists that start with an operator, such as
(+ 1 2), are called S-expressions. An S-expression can be evaluated by the
Lisp interpreter (Figure 23.1) and will be replaced by a result value (an atom or
a list, depending on the operation). That way, a program execution in a proce-
dural programming language like C will be replaced by a function call in Lisp:

(+ (* 8 5) 2) → (+ 40 2) → 42

Lisp subset
for robotics

Only a small subset of Lisp is required for our purpose of driving a mobile
robot in a restricted environment. In order to speed up the evolutionary proc-
ess, we use very few functions and constants (see Table 23.2).

Problem Reference Initial 
Pop. Size

Wall-following robot [Koza 1992] 1,000

Box-moving robot [Mahadevon, Connell 1991] 500

Evolving behavior prim-
itives and arbitrators

[Lee, Hallam, Lund 1997] 150

Motion planning for
six-legged robot

[Kurashige, Fukuda, Hoshino 1999] 2,000

Evolving communica-
tion agents

[Iba, Nonzoe, Ueda 1997] 500

Mobile robot motion 
control

[Walker, Messom 2002] 500

Table 23.1: Initial population sizes
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We deal only with integer data values. Our Lisp subset contains pre-defined
constants zero, low, and high, and allows the generation of other integer con-
stants by using the function (INC v). Information from the robot’s vision sen-
sor can be obtained by calling obj_size or obj_pos. An evaluation of any of
these two atoms will implicitly grab a new image from the camera and then
call the color object detection procedure.

There are four atoms psd_aaa for measuring the distance between the robot
and the nearest obstacle to the left, right, front, and back. Evaluating any of
these atoms activates a measurement of the corresponding PSD (position sen-
sitive device) sensor. These sensors are very useful for obstacle avoidance,
wall-following, detecting other robots, etc.

There are four movement atoms remaining. Two for driving (forward and
backward), and two for turning (left and right). When one of these is evalu-
ated, the robot will drive (or turn, respectively) by a small fixed amount.

Finally, there are three program constructs for selection, iteration, and
sequence. An “if-then-else” S-expression allows branching. Since we do not
provide explicit relations, for example like (< 3 7), the comparison operator
“less” is a fixed part of the if-statement. The S-expression contains two integer
values for the comparison, and two statements for the “then” and “else”
branch. Similarly, the while-loop has a fixed “less” comparison operator as
loop condition. The iteration continues while the first integer value is less than
the second. The two integer arguments are followed by the iteration statement
itself.

These are all constructs, atoms, and S-expression lists allowed in our Lisp
subset. Although more constructs might facilitate programming, it might make
evolution more complex and would therefore require much more time to
evolve useful solutions. 

Although Lisp is an untyped language, we are only interested in valid S-
expressions. Our S-expressions have placeholders for either integer values or
statements. So during genetic processing, only integers may be put into integer
slots and only statements may be put into statement slots. For example, the
first two entries following the keyword in a WHILE_LESS-list must be integer
values, but the third entry must be a statement. An integer value can be either

Figure 23.1: Tree structure and evaluation of S-expression
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an atom or an S-expression, for example low or INC(zero). In the same way, a
statement can be either an atom or an S-expression, for example
drive_straight or PROGN2(turn_left, drive_back).

Name Kind Semantics

zero atom, int, constant 0

low atom, int, constant 20

high atom, int, constant 40

(INC v) list, int, function Increment
v+1

obj_size atom, int, 
image sensor

search image for color object,
return height in pixels (0..60)

obj_pos atom, int, 
image sensor

search image for color object,
return x-position in pixels (0..80)
or return –1 if not found

psd_left atom, int, 
distance sensor

measure distance in mm to left 
(0..999)

psd_right atom, int, 
distance sensor

measure distance in mm to right 
(0..999)

psd_front atom, int, 
distance sensor

measure distance in mm to front 
(0..999)

psd_back atom, int, 
distance sensor

measure distance in mm to back 
(0..999)

turn_left atom, statem., act. rotate robot 10° to the left

turn_right atom, statem., act. rotate robot 10° to the right

drive_straight atom, statem., act. drive robot 10cm forward

drive_back atom, statem., act. drive robot 10cm backward

(IF_LESS
v1 v2 s1 s2)

list, statement, 
program construct

Selection
if (v1<v2) s1; else s2;

(WHILE_LESS
v1 v2 s)

list, statement, 
program construct

Iteration
while (v1<v2) s;

(PROGN2
s1 s2)

list, statement, 
program construct

Sequence
s1; s2;

Table 23.2: Lisp subset for genetic programming
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We implemented the Lisp interpreter as a recursive C program (Lisp purists

would have implemented it in Lisp) that is executed by the EyeSim simulator.
Program 23.1 shows an extract of the main Lisp decoding routine. 

Program 23.1: Lisp interpreter in C

1 int compute(Node n)
2 { int ret, return_val1, return_val2;
3   ...
4 CAMGetColFrame (&img, 0);
5 if (DEBUG) LCDPutColorGraphic(&img);
6 ret = -1; /* no return value */
7
8 switch(n->symbol) {
9 case PROGN2:

10 compute(n->children[0]);
11 compute(n->children[1]);
12 break;
13
14 case IF_LESS:
15 return_val1 = compute(n->children[0]);
16 return_val2 = compute(n->children[1]);
17 if (return_val1 <= return_val2) compute(n->children[2]);
18 else                          compute(n->children[3]);
19 break;
20
21 case WHILE_LESS:
22 do {
23 return_val1 = compute(n->children[0]);
24 return_val2 = compute(n->children[1]);
25 if (return_val1 <= return_val2) compute(n->children[2]);
26 } while (return_val1 <= return_val2);
27 break;
28
29 case turn_left: turn_left(&vwhandle);
30 break;
31 case turn_right: turn_right(&vwhandle);
32 break;
33 ...
34 case obj_size: ColSearch2 (img, RED_HUE, 10, &pos, &ret);
35 break;
36 case obj_pos: ColSearch2 (img, RED_HUE, 10, &ret, &val);
37 break;
38 case low:  ret = LOW;
39 break;
40 case high: ret = HIGH;
41 break;
42 default: printf("ERROR in compute\n");
43 exit(1);
44 }
45 return ret;
46 }



Genetic Operators

371

23.3 Genetic Operators
Similar to the genetic algorithm operators in Chapter 22, we have crossover
and mutation. However, here they are applied directly to a Lisp program.

Crossover Crossover (sexual recombination) operation for genetic programming re-
creates the diversity in the evolved population by combining program parts
from two individuals:

1. Select two parent individuals from the current generation based on their
fitness values.

2. Randomly determine a crossover point in each of the two parents. Both
crossover points must match, i.e. they must both represent either a value
or a statement.

3. Create the first offspring by using parent no. 1, replacing the sub-tree
under its crossover point by the sub-tree under the crossover point from
parent no. 2. Create the second offspring the same way, starting with
parent no. 2.

Since we require the selected crossover points to match type, we have guar-
anteed that the two generated offspring programs will be valid and executable.

Crossover points can be external (a leaf node, i.e. replacing an atom) or
internal (an internal tree node, i.e. replacing a function). External points may
extend the program structure by increasing its depth. This occurs when one
parent has selected an external point, and the other has selected an internal
point for crossing over. An internal point represents a possibly substantial
alteration of the program structure and therefore maintains the variety within
the population. 

Figure 23.2: Crossover
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The following shows an example with the crossover point marked in bold

face:

1. (IF_LESS obj_pos low turn_left turn_right)
2. (WHILE_LESS psd_front (PROGN2 turn_right drive_straight))

⇒
1. (IF_LESS obj_pos low (PROGN2 turn_right drive_straight)

turn_right)
2. (WHILE_LESS psd_front turn_left)

Both selected crossover points represent statements. The statement turn-
left in parent no. 1 is replaced by the PROGN2-statement of parent no. 2,
whereas the PROGN2-statement of parent no. 2 is replaced by statement
turn_left as the new child program. Figure 23.2 presents the crossover oper-
ator graphically for this example.

Mutation The mutation operation introduces a random change into an individual and
thereby introduces diversity into the new individual and the next generation in
general. While mutation is considered essential by some [Blickle, Thiele
1995], others believe it to be almost redundant [Koza 1992]. Mutation works
as follows:

1. Select one parent from the current generation.
2. Select a mutation point.
3. Delete sub-tree at mutation point.
4. Replace sub-tree with randomly generated sub-tree. 

The following shows an example with the mutation point marked in bold
face:

(IF_LESS obj_pos low
(PROGN2 drive_straight drive-straight) turn_right)

⇒
(IF_LESS obj_pos low

(WHILE_LESS psd_front high drive_straight) turn_right)

Figure 23.3: Mutation
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The selected sub-tree (PROG2N2-sequence) is deleted from the parent pro-
gram and subsequently replaced by a randomly generated sub-tree (here: a
WHILE-loop construct containing a drive_straight statement). Figure 23.3
presents the mutation operator graphically.

23.4 Evolution
Initial population To start the evolutionary process, we first need an initial population. This con-

sists of randomly generated individuals, which are random Lisp programs of
limited tree depth. A large diversity of individuals improves the chances of
locating the optimum solution after a set number of generations. [Koza 1992]
suggests a number of methods to ensure a large diversity of different sizes and
shapes in the initial population: full method, grow method, and ramped half-
and-half (see below).

To ensure the validity and termination of each individual, the randomly
generated Lisp programs must be sound and the root node must be a statement.
All leaf nodes at the desired depth must be atoms.

A random program is initialized with a random statement for the root node.
In case it is a function, the process continues recursively for all arguments until
the maximum allowed depth is reached. For the leaf nodes, only atoms may be
selected in the random process.

The “full method” requires the generated random tree to be fully balanced.
That is, all leaves are at the same level, so there are no atoms at the inner level
of the tree. This method ensures that the random program will be of the maxi-
mum allowed size.

The “grow method” allows the randomly generated trees to be of different
shapes and heights. However, a maximum tree height is enforced.

The “ramped half-and-half method” is an often used mix between the grow
method and the full method. It generates an equal number of grow trees and
full trees of different heights and thereby increases variety in the starting gen-
eration. This method generates an equal number of trees of height 1, 2, ..., up
to the allowed maximum height. For each height, half of the generated trees
are constructed with the “full method” and half with the “grow method”.

The initial population should be checked for duplicates, which have a rather
high probability if the number of statements and values is limited. Duplicates
should be removed, since they reduce the overall diversity of the population if
they are allowed to propagate.

Evaluation
and fitness

Each individual (Lisp program) is now executed on the EyeSim simulator
for a limited number of program steps. Depending on the nature of the prob-
lem, the program’s performance is rated either continually or after it terminates
(before or at the maximum allowed number of time steps). For example, the
fitness of a wall-following program needs to be constantly monitored during
execution, since the quality of the program is determined by the robot’s dis-
tance to the wall at each time step. A search problem, on the other hand, only
needs to check at the end of a program execution whether the robot has come
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sufficiently close to the desired location. In this case, the elapsed simulation
time for achieving the goal will also be part of the fitness function.

Selection After evaluating all the individuals of a population, we need to perform a
selection process based on the fitness values assigned to them. The selection
process identifies parents for generating the next generation with the help of
previously described genetic operators. Selection plays a major role in genetic
programming, since the diversity of the population is dependent on the choice
of the selection scheme.

Fitness proportionate. The traditional genetic programming/genetic algo-
rithm model selects individuals in the population according to their fitness
value relative to the average of the whole population. However, this simple
selection scheme has severe selection pressure that may lead to premature con-
vergence. For example, during the initial population, an individual with the
best fitness in the generation will be heavily selected, thus reducing the diver-
sity of the population.

Tournament selection. This model selects n (e.g. two) individuals from the
population and the best will be selected for propagation. The process is
repeated until the number of individuals for the next generation is reached. 

Linear rank selection. In this method, individuals are sorted according to
their raw fitness. A new fitness value is then assigned to the individuals
according to their rank. The ranks of individuals range from 1 to N. Now the
selection process is identical to the proportionate schema. The advantage of
the linear rank selection is that small differences between individuals are
exploited and, by doing so, the diversity of the population is maintained.

Truncation selection. In this model, the population is first sorted according
to its fitness values, and then from a certain point fitness value F, the poorer
performing individuals below this value are cut off, only the better performing
individuals remain eligible. Selection among these is now purely random; all
remaining individuals have the same selection probability. 

23.5 Tracking Problem
We chose a fairly simple problem to test our genetic programming engine,
which can later be extended to a more complex scenario. A single robot is
placed at a random position and orientation in a rectangular driving area
enclosed by walls. A colored ball is also placed at a random position. Using its
camera, the robot has to detect the ball, drive toward it, and stop close to it.
The robot’s camera is positioned at an angle so the robot can see the wall ahead
from any position in the field; however, note that the ball will not always be
visible.

Before we consider evolving a tracking behavior, we thoroughly analyze
the problem by implementing a hand-coded solution. Our idea for solving this
problem is shown below.
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In a loop, grab an image and analyze it as follows:
• Convert the image from RGB to HSV.
• Use the histogram ball detection routine from Section 19.6

(this returns a ball position in the range [0..79] (left .. right) or no ball,
and a ball size in pixels [0..60]).

• If the ball height is 20 pixels or more, then stop and terminate
(the robot is then close enough to the ball).

• Otherwise:
• if no ball is detected or the ball position is less than 20, turn slowly

left.
• if the ball position is between 20 and 40, drive slowly straight.
• if the ball position is greater than 40, turn slowly right.

We experimentally confirm that this straightforward algorithm solves the
problem sufficiently. Program 23.2 shows the main routine, implementing the
algorithm described above. ColSearch returns the x-position of the ball (or –1
if not detected) and the ball height in pixels. The statement VWDriveWait fol-
lowing either a VWDriveTurn or a VWDriveStraight command suspends exe-
cution until driving or rotation of the requested distance or angle has finished.  

The next task is to hand-code the same solution in our Lisp notation. Pro-
gram 23.3 shows the implementation as a Lisp string. This short program uses
the following components:

Constants: low (20), high (40)

Program 23.2: Hand-coded tracking program in C

1 do
2   { CAMGetColFrame(&c,0);
3 ColSearch(c, BALLHUE, 10, &pos, &val);  /* search image */
4
5 if (val < 20)  /* otherwise FINISHED */
6 { if (pos == -1 || pos < 20) VWDriveTurn(vw,  0.10, 0.4);/* left */
7         else if (pos > 60)       VWDriveTurn(vw, -0.10, 0.4);/* right*/
8           else                   VWDriveStraight(vw,  0.05, 0.1);
9 VWDriveWait(vw);  /* finish motion */

10 }
11   } while (val < 20);

Program 23.3: Hand-coded tracking program in Lisp

1 ( WHILE_LESS obj_size low
2 (IF_LESS obj_pos low rotate_left
3 (IF_LESS obj_pos high drive_straight
4 rotate_right )))
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Sensor input: obj_size (0..60), obj_pos (–1, 0..79)

sensor values are evaluated from the image in each step
Constructs: (WHILE_LESS a b c)

C equivalent: while (a<b) c;

(IF_LESS a b c d)

C equivalent: if (a<b) c; else d;

Bearing in mind that obj_size and obj_pos are in fact calls to the image
processing subroutine, the procedural translation of the Lisp program in Pro-
gram 23.3 is almost identical to the hand-coded C solution in Program 23.2:

while (obj_size<20)
if (obj_pos<20) rotate_left;

else if (obj_pos<40) drive_straight;
else rotate_right;

Figure 23.4 shows a graphical representation of the program tree structure.
Of course the choice of the available constants and program constructs simpli-
fies finding a solution and therefore also simplifies the evolution discussed
below. Figure 23.5 and Figure 23.6 show the execution of the hand-coded
solution from several different starting directions.  

Figure 23.4: Lisp program tree structure

Figure 23.5: Execution of hand-coded solution in EyeSim simulator
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23.6 Evolution of Tracking Behavior
Koza suggests the following steps for setting up a genetic programming sys-
tem for a given problem [Koza 1992]:

1. Establish an objective.
2. Identify the terminals and functions used in the inductive programs.
3. Establish the selection scheme and its evolutionary operations.
4. Finalize the number of fitness cases.
5. Determine fitness function and hence the range of raw fitness values. 
6. Establish the generation gap G, and the population M. 
7. Finalize all control parameters.
8. Execute the genetic paradigm. 

Our objective is to evolve a Lisp program that lets the robot detect a colored
ball using image processing, drive toward it, and stop when it is close to it.
Terminals are all statements that are also atoms, so in our case these are the
four driving/turning routines from Table 23.2. Functions are all statements that
are also lists, so in our case these are the three control structures sequence
(PROGN2), selection (IF_LESS), and iteration (WHILE_LESS).

In addition, we are using a set of values, which comprises constants and
implicit calls to image processing functions (obj_pos, obj_size) and to dis-
tance sensors (psd_aaa). Since we are not using PSD sensors for this experi-
ment, we take these values out of the selection process. Table 23.3 shows all
parameter choices for the experimental setup. 

Figure 23.7 demonstrates the execution sequence for the evaluation proce-
dure. The genetic programming engine generates a new generation of Lisp
programs from the current generation. Each individual Lisp program is inter-
preted by the Lisp parser and run on the EyeSim simulator four times in order
to determine its fitness. These fitness values are then in turn used as selection
criteria for the genetic programming engine [Hwang 2002]. 

Figure 23.6: Robot’s view and driving path in EyeSim simulator
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Fitness function In order to determine the fitness for an individual program, we let each pro-
gram run a number of times from different starting positions. Potentially more
robust solutions can be achieved by choosing the starting positions and orien-
tations at random. However, it is important to ensure that all individuals in a
generation get the same starting distances for a run, otherwise, the fitness val-

Control Parameters Value Description

Initial population 500 generated with ramp half-and-half 
method

Number of generations 50 [0..49]

Probability of crossover 90% crossover operation is performed 
on 90% of selected individuals

Probability of reproduc-
tion

10% copy operation is performed on 
10% of the selected individual

Probability of mutation 0% mutation is not used here

Probability of crossover 
point being a leaf node

10% possibly extending program depth

Probability of crossover 
point being internal node

90% possibly reducing program depth

Maximum tree height 5 maximum allowed program depth

Number of evaluations 
per individual

4 starting individual from different 
positions in the field

Maximum simulation 
time steps per trial

180 time limit for each individual to 
reach the ball

Table 23.3: Parameter settings

Figure 23.7: Evaluation and simulation procedure
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ues will not be fair. In a second step, the ball position should also be made ran-
dom. 

Therefore, we run each individual in four trials with a random starting posi-
tion and orientation, but with a trial-specific ball distance, i.e. the starting posi-
tions for all robots for a certain trial are located on a circle around the ball (Fig-
ure 23.8). 

The fitness function is the difference between the initial and the final dis-
tance between robot and ball, added over four trials with different starting
positions (the higher the fitness value, the better the performance): 

Programs with a shorter execution time (fewer Lisp steps) are given a
bonus, while all programs are stopped at the maximum number of time steps.
Also, a bonus for programs with a lower tree height can be given. 

Figure 23.8: Robot starting positions
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Evaluation results The initial fitness diversity was quite large, which signifies a large search

domain for the optimal solution. Figure 23.9 displays the maximum fitness of
the population over 25 generations. Although we are retaining the best individ-
uals of each generation unchanged as well as for recombination, the fitness
function is not continuously increasing. This is due to the random robot start-
ing positions in the experimental setup. A certain Lisp program may perform
well “by accident”, because of a certain starting position. Running the evolu-
tion over many generations and using more than four randomly selected start-
ing positions per evaluation for each individual will improve this behavior.

The evolved Lisp programs and corresponding fitness values are shown in
Program 23.4 for a number of generations. 

The driving results of the evolved program can be seen in Figure 23.10, top.
As a comparison, Figure 23.10, bottom, shows the driving results of the hand-
coded program. The evolved program detects the ball and drives directly
toward it in less than the allotted 180 time steps, while the robot does not
exhibit any random movement. The evolved solution shows a similar perform-
ance to the hand-coded solution, while the hand-coded version still drives
along a smoother path.  

Speedup through
parallelization

The enormous computational time required by genetic programming is an
inherent problem of this approach. However, evolution time can be signifi-
cantly reduced by using parallel processing. For each generation, the popula-
tion can be split into sub-populations, each of which evaluated in parallel on a
workstation. After all sub-populations have finished their evaluation, the fit-
ness results can be distributed among them, in order to perform a global selec-
tion operation for the next generation.

Program 23.4: Optimal Lisp programs and fitness values

Generation 1, fitness 0.24
(  IF_LESS obj-size obj-size turn-left move-forw )

Generation 6, fitness 0.82
(  WHILE_LESS low obj-pos move-forw )

Generation 16, firness 0.95
(  WHILE_LESS low high (  IF_LESS high low turn-left (  PROGN2 (  
IF_LESS low low move-back turn-left ) move-forw )  )  )

Generation 22, fitness 1.46
(  PROGN2 (  IF_LESS low low turn-left (  PROGN2 (  PROGN2 (  
WHILE_LESS low obj-pos move-forw )  move-forw )  move-forw )  )  turn-
left )

Generation 25, fitness 1.49
(  IF_LESS low obj-pos move-forw (  PROGN2 move-back (  WHILE_LESS low 
high (  PROGN2 turn-right (  PROGN2 (  IF_LESS low obj-pos move-forw (  
PROGN2 turn-right (  IF_LESS obj-size obj-size (  PROGN2 turn-right 
move-back )  move-back )  )  )  move-forw )  )  )  )  )



References

381

23.7 References
BLICKLE, T., THIELE, L. A Comparison of Selection Schemes used in Genetic

Algorithms, Computer Engineering and Communication Networks
Lab (TIK), Swiss Federal Institute of Technology/ETH Zürich, Report
no. 11, 1995

BROOKS, R. A Robust Layered Control System for a Mobile Robot, IEEE Jour-
nal of Robotics and Automation, vol. 2, no. 1, March 1986, pp. 14-23
(10)

Figure 23.10: Evolved driving results versus hand-coded driving results

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000 2500

X, width of field (2740 mm)

Y
, l

en
gt

h 
of

 fi
el

d 
(1

52
5 

m
m

) 

Hand-coded

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000 2500

X, width of field (2740 mm)

Y
, l

en
gt

h 
of

 fi
el

d 
(1

52
5 

m
m

) 

Evolved



Genetic Programming

382

23
DARWIN, C. On the Origin of Species by Means of Natural Selection, or Pres-

ervation of Favoured Races in the Struggle for Life, John Murray, Lon-
don, 1859

FERNANDEZ, J. The GP Tutorial – The Genetic Programming Notebook,
http://www.geneticprogramming.com/Tutorial/, 2006

GRAHAM, P. ANSI Common Lisp, Prentice Hall, Englewood Cliffs NJ, 1995
HANCOCK, P. An empirical comparison of selection methods in evolutionary al-

gorithms, in T. Fogarty (Ed.), Evolutionary Computing, AISB Work-
shop, Lecture Notes in Computer Science, no. 865, Springer-Verlag,
Berlin Heidelberg, 1994, pp. 80-94 (15)

HWANG, Y. Object Tracking for Robotic Agent with Genetic Programming,
B.E. Honours Thesis, The Univ. of Western Australia, Electrical and
Computer Eng., supervised by T. Bräunl, 2002

IBA, H., NOZOE, T., UEDA, K. Evolving communicating agents based on genetic
programming, IEEE International Conference on Evolutionary Com-
putation (ICEC97), 1997, pp. 297-302 (6)

KOZA, J. Genetic Programming – On the Programming of Computers by Means
of Natural Selection, The MIT Press, Cambridge MA, 1992

KURASHIGE, K., FUKUDA, T., HOSHINO, H. Motion planning based on hierar-
chical knowledge for six legged locomotion robot, Proceedings of
IEEE International Conference on Systems, Man and Cybernetics
SMC’99, vol. 6, 1999, pp. 924-929 (6)

LANGDON, W., POLI, R. Foundations of Genetic Programming, Springer-Ver-
lag, Heidelberg, 2002

LEE, W., HALLAM, J., LUND, H. Applying genetic programming to evolve be-
havior primitives and arbitrators for mobile robots, IEEE Internation-
al Conference on Evolutionary Computation (ICEC97), 1997, pp. 501-
506 (6)

MAHADEVAN, S., CONNELL, J. Automatic programming of behaviour-based ro-
bots using reinforcement learning, Proceedings of the Ninth National
Conference on Artificial Intelligence, vol. 2, AAAI Press/MIT Press,
Cambridge MA, 1991

MCCARTHY, J., ABRAHAMS, P., EDWARDS, D., HART, T., LEVIN, M. The Lisp
Programmers' Manual, MIT Press, Cambridge MA, 1962

WALKER, M., MESSOM, C. A comparison of genetic programming and genetic
algorithms for auto-tuning mobile robot motion control, Proceedings
of IEEE International Workshop on Electronic Design, Test and Appli-
cations, 2002, pp. 507-509 (3)



383

BEHAVIOR-BASED 
. . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SYSTEMS

raditional attempts at formulating complex control programs have been
based on “Artificial Intelligence” (AI) theory. The dominant paradigm
of this approach has been the sense–plan–act (SPA) organization: a

mapping from perception, through construction of an internal world model,
planning a course of action based upon this model, and finally execution of the
plan in the real-world environment. Aspects of this method of robot control
have been criticized, notably the emphasis placed on construction of a world
model and planning actions based on this model [Agre, Chapman 1990],
[Brooks 1986]. The computation time required to construct a symbolic model
has a significant impact on the performance of the robot. Furthermore, dispar-
ity between the planning model and the actual environment may result in
actions of the robot not producing the intended effect.

An alternative to this approach is described by behavior-based robotics.
Reactive systems that do not use symbolic representation are demonstrably
capable of producing reasonably complex behavior [Braitenberg 1984], see
Section 1.1. Behavior-based robotic schemes extend the concept of simple
reactive systems to combining simple concurrent behaviors working together.

24.1 Software Architecture
Often the importance of the software structure for mobile robots is stressed.
Unfortunately, many published software structures are either too specialized
for a particular problem or too general, so no advantage can be gained for the
particular application at hand. Still, at least two standard models have emerged
which we will discuss briefly.

The classical model (Figure 24.1, left) is known by many names: hierarchi-
cal model, functional model, engineering model, or three-layered model. It is a
predictable software structure with top-down implementation. Names for the
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three levels in some systems are Pilot (lowest level), Navigator (intermediate
level), and Planner (highest level), creating three levels of abstraction. Sensor
data from the vehicle is pre-processed in two levels until the highest “intelli-
gent” level takes the driving decisions. Execution of the actual driving (for
example navigation and lower-level driving functions) is left to the layers
below. The lowest layer is again the interface to the vehicle, transmitting driv-
ing commands to the robot’s actuators. 

Subsumption
architecture

The behavior-based model (Figure 24.1, right, [Brooks 1986]) is a bottom-
up design that is not easily predictable. Instead of designing large blocks of
code, each robot functionality has been encapsulated in a small self-contained
module, here called a “behavior”. All behaviors are executed in parallel, while
explicit synchronization is not required. One of the goals of this design is to
simplify extendability, for example for adding a new sensor or a new behavio-
ral feature to the robot program. While all behaviors can access all vehicle sen-
sors, a problem occurs at the reduction of the behaviors to produce a single
output for the vehicle’s actuators. The original “subsumption architecture”
uses fixed priorities among behaviors, while modern implementations use
more flexible selection schemes (see Chapter 24).

24.2 Behavior-Based Robotics
The term “behavior-based robotics” is broadly applicable to a range of control
approaches. Concepts taken from the original subsumption design [Brooks
1986] have been adapted and modified by commercial and academic research
groups, to the point that the nomenclature has become generic. Some of the
most frequently identified traits of behavior-based architectures are [Arkin
1998]:

Figure 24.1: Software architecture models
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• Tight coupling of sensing and action
At some level, all behavioral robots are reactive to stimuli with actions
that do not rely upon deliberative planning. Deliberative planning is
eschewed in favor of computationally simple modules that perform a
simple mapping from input to action, facilitating a rapid response.
Brooks succinctly expressed this philosophy with the observation that
“Planning is just a way of avoiding figuring out what to do next”
[Brooks 1986]. 

• Avoiding symbolic representation of knowledge
Rather than construct an internal model of the environment to perform
planning tasks, the world is used as “its own best model” [Brooks
1986]. The robot derives its future behavior directly from observations
of its environment, instead of trying to produce an abstract representa-
tion of the world that can be internally manipulated and used as a basis
for planning future actions.

• Decomposition into contextually meaningful units
Behaviors act as situation–action pairs, being designed to respond to
certain situations with a definite action.

• Time-varying activation of concurrent relevant behaviors
A control scheme is utilized to change the activation level of behaviors
during run-time to accommodate the task that is trying to be achieved.

Behavior
selection

In a behavior-based system, a certain number of behaviors run as parallel
processes. While each behavior can access all sensors (read), only one behav-
ior can have control over the robot’s actuators or driving mechanism (write).
Therefore, an overall controller is required to coordinate behavior selection or
behavior activation or behavior output merging at appropriate times to achieve
the desired objective.

Early behavior-based systems such as [Brooks 1986] used a fixed priority
ordering of behaviors. For example, the wall avoidance behavior always has
priority over the foraging behavior. Obviously such a rigid system is very
restricted in its capabilities and becomes difficult to manage with increasing
system complexity. Therefore, our goal was to design and implement a behav-
ior-based system that employs an adaptive controller. Such a controller uses
machine learning techniques to develop the correct selection response from the
specification of desired outcomes. The controller is the “intelligence” behind
the system, deciding from sensory and state input which behaviors to activate
at any particular time. The combination of a reactive and planning (adaptive
controller) component produces a hybrid system.

Hybrid systems combine elements of deliberative and reactive architec-
tures. Various hybrid schemes have been employed to mediate between sen-
sors and motor outputs to achieve a task. Perhaps the most appealing aspect of
combining an adaptive controller with a hybrid architecture is that the system
learns to perform the task from only the definition of criteria favoring task
completion. This shifts the design process from specifying the system itself to
defining outcomes of a working system. Assuming that the criteria for success-
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ful task completion are easier to define than a complete system specification,
this would significantly reduce the work required of the system designer.

A more advanced and more flexible method for behavior selection is to use
a neural network controller (see Chapter 21, Figure 24.2), as we did for some
of the following applications. The neural network will receive input from all
sensors (including pre-computed high-level sensor data), a clock, plus status
lines from each behavior and will generate output to select the currently active
behavior, and thereby cause a robot action. The structure of the network is
itself developed with a genetic algorithm designed to optimize a fitness func-
tion describing the task criteria (see Chapter 22). 

Emergent
functionality

The terms emergent functionality, emergent intelligence or swarm intelli-
gence (if multiple robots are involved) are used to describe the manifestation
of an overall behavior from a combination of smaller behaviors that may not
have been designed for the original task [Moravec 1988], [Steels, Brooks
1995]. The appearance of this behavior can be attributed to the complexity of
interactions between simple tasks instead of the tasks themselves. Behavior is
generally classified as emergent if the response produced was outside the anal-
ysis of system design but proves to be beneficial to system operation.

Arkin argues that the coordination between simpler sub-units does not
explain emergence completely [Arkin 1998]. As coordination of a robot is
achieved by a deterministic algorithm, a sufficiently sophisticated analysis

Figure 24.2: Behaviors and selection mechanism in robot environment
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should be able to perfectly predict the behavior of a robot. Rather, the emer-
gent phenomenon is attributed to the non-deterministic nature of real-world
environments. These can never be modeled completely accurately, and so there
is always a margin of uncertainty in system design that could cause unexpected
behavior to be exhibited.

24.3 Behavior-Based Applications
Typical behavior-based applications involve a group of interacting robots
mimicking some animal behavior pattern and thereby exhibiting some form of
swarm intelligence. Communication between the robots can be either direct
(e.g. wireless) or indirect via changes in the shared environment (stigmergy).
Depending on the application, communication between individuals can range
from essential to not required [Balch, Arkin 1994]. Some prominent applica-
tions are:

• Foraging
One or more robots search an area for “food” items (usually easy to de-
tect objects, such as colored blocks), collect them and bring them to a
“home” area. Note that this is a very broad definition and also applies
to tasks such as collecting rubbish (e.g. cans).

• Predator-Prey
Two or more robots interact, with at least one robot in the role of the
predator, trying to catch one of the prey robots, who are in turn trying
to avoid the predator robots.

• Clustering
This application mimics the social behavior of termites, which individ-
ually follow very simple rules when building a mound together.

Emergence In the mound building process, each termite places new building material to
the largest mound so far in its vicinity – or at a random position when starting.
The complex mound structure resulting from the interaction of each of the col-
ony’s terminates is a typical example for emergence. 

Cube clustering This phenomenon can be repeated by either computer simulations or real
robots interacting in a similar way [Iske, Rückert 2001], [Du, Bräunl 2003]. In
our implementation (see Figure 24.3) we let a single or multiple robots search
an area for red cubes. Once a robot has found a cube, it pushes it to the position
of the largest collection of red cubes it has seen previously – or, if this is the
first cube the robot has encountered, it uses this cube’s coordinates for the start
of a new cluster.

Over time, several smaller clusters will appear, which will eventually be
merged to a single large cluster, containing all cubes from the robots’ driving
area. No communication between the robots is required to accomplish this
task, but of course the process can be sped up by using communication. The
number of robots used for this task also affects the average completion time.
Depending on the size of the environment, using more and more robots will



Behavior-Based Systems

388

24
result in a faster completion time, up to the point where too many robots
encumber each other (e.g. stopping to avoid collisions or accidentally destroy-
ing each other’s cluster), resulting in an increasing completion time [Du,
Bräunl 2003]. 

24.4 Behavior Framework
The objective of a behavior framework is to simplify the design and imple-
mentation of behavior-based programs for a robot platform such as the Eye-
Bot. At its foundation is a programming interface for consistently specified
behaviors.

We adapt the convention of referring to simple behaviors as schemas and
extend the term to encompass any processing element of a control system. The
specification of these schemas is made at an abstract level so that they may be
generically manipulated by higher-level logic and/or other schemas without
specific knowledge of implementation details.

Schemas may be recursively combined either by programming or by gener-
ation from a user interface. Aggregating different schemas together enables
more sophisticated behaviors to be produced. The mechanism of arbitration
between grouped schemas is up to the system designer. When combined with
coordination schemas to select between available behaviors, the outputs of the
contributing modules can be directed to actuator schemas to produce actual
robot actions. A commonly used technique is to use a weighted sum of all
schemas that drive an actuator as the final control signal.

Behavior design The framework architecture was inspired by AuRA’s reactive component
[Arkin, Balch 1997], and takes implementation cues from the TeamBots envi-
ronment realization [Balch 2006].

The basic unit of the framework is a schema, which may be perceptual (for
example a sensor reading) or behavioral (for example move to a location). A
schema is defined as a unit that produces an output of a pre-defined type. In

Figure 24.3: Cube clustering with real robots and in simulation
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our implementation, the simplest types emitted by schemas are integer, float-
ing point, and boolean scalar values. More complex types that have been
implemented are the two-dimensional floating point vector and image types.
The floating point vector may be used to encode any two-dimensional quantity
commonly used by robot schemas, such as velocities and positions. The image
type corresponds to the image structure used by the RoBIOS image processing
routines.

Schemas may optionally embed other schemas for use as inputs. Data of the
pre-defined primitive types is exchanged between schemas. In this way behav-
iors may be recursively combined to produce more complex behaviors.

In a robot control program, schema organization is represented by a
processing tree. Sensors form the leaf nodes, implemented as embedded sche-
mas. The complexity of the behaviors that embed sensors varies, from simple
movement in a fixed direction to ball detection using an image processing
algorithm. The output of the tree’s root node is used every processing cycle to
determine the robot’s next action. Usually the root node corresponds to an
actuator output value. In this case output from the root node directly produces
robot action.

Behavior
implementation

The behavioral framework has been implemented in C++, using the
RoBIOS API to interface with the Eyebot. These same functions are simulated
and available in EyeSim (see Chapter 15), enabling programs created with the
framework to be used on both the real and simulated platforms.

The framework has been implemented with an object-oriented methodol-
ogy. There is a parent Node class that is directly inherited by type-emitting
schema classes for each pre-defined type. For example, the NodeInt class rep-
resents a node that emits an integer output. Every schema inherits from a node
child class, and is thus a type of node itself.

All schema classes define a value(t) function that returns a primitive type
value at a given time t. The return type of this function is dependent on the
class – for example, schemas deriving from NodeInt return an integer type.
Embedding of schemas is by a recursive calling structure through the schema
tree. Each schema class that can embed nodes keeps an array of pointers to the
embedded instances. When a schema requires an embedded node value, it iter-
ates through the array and calls each embedded schema’s respective value(t)
function. This organization allows invalid connections between schemas to be
detected at compile time: when a schema embedding a node of an invalid type
tries to call the value function, the returned value will not be of the required
type. The compiler checks that the types from connected emitting and embed-
ding nodes are the same at compilation time and will flag any mismatch to the
programmer.

The hierarchy of schema connections forms a tree, with actuators and sen-
sors mediated by various schemas and schema aggregations. Time has been
discretized into units, Schemas in the tree are evaluated from the lowest level
(sensors) to the highest from a master clock value generated by the running
program. 



Behavior-Based Systems

390

24
Schemas A small working set of schemas using the framework was created for use in

a neural network controller design task. The set of schemas with a short
description of each is listed in Table 24.1. The schemas shown are either per-
ceptual (for example Camera, PSD), behavioral (for example Avoid), or
generic (for example Fixed vector). Perceptual schemas only emit a value of
some type that is used by the behavioral schemas. Behavioral schemas trans-
form their input into an egocentric output vector that would fulfill its goal.

A front-end program has been created to allow point-and-click assemblage
of a new schema from pre-programmed modules [Venkitachalam 2002]. The
representation of the control program as a tree of schemas maps directly to the
interface presented to the user (Figure 24.4).

For a schema to be recognized by the user interface, the programmer must
“tag” the header file with a description of the module. A sample description
block is shown in Program 24.1. The graphical user interface then parses the
header files of a schema source directory to determine how to present the mod-
ules to the user.  

The header block specifies how a particular schema interconnects with
other schemas. It includes a description of typed initialization parameters for
the module, a list of ports that can be used for emitting or embedding other
modules, and various meta-information. 

From the interconnection of the visual modules, the user interface generates
appropriate code to represent the tree specified by the user. The structure of the
program is determined by analyzing the behavior tree and translating it into a
series of instantiations and embedding calls. The uniform nature of the behav-
ioral API facilitates a simple code generation algorithm.

Schema Description Output

Camera Camera perceptual schema Image

PSD PSD sensor perceptual schema Integer

Avoid Avoid obstacles based on PSD reading 2D vector

Detect ball Detects ball position in image by hue analysis 2D vector

Fixed vector Fixed vector representation 2D vector

Linear 
movement

Moves linearly from current position to an-
other point

2D vector

Random Randomly directed vector of specified size 2D vector

Table 24.1: Behavior schemas
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24.5 Adaptive Controller
The adaptive controller system used in this system consists of two parts: a neu-
ral network controller (see Chapter 21) and a genetic algorithm learning sys-
tem (see Chapter 22). The role of the neural network controller is to transform
inputs to control signals that activate the behaviors of the robot at the appropri-
ate time. The structure of the neural network determines the functional trans-
formation from input to output. As a consequence of the neural network topol-
ogy, this is effectively determined by changing the weights of all the network

Figure 24.4: Graphical user interface for assembling schemas

Program 24.1: Schema header descriptor block

1  NAME          "Avoid obstacles"
2    CATEGORY      "Vector generator"
3    ORG           "edu.uwa.ciips"
4
5    DESC          "Produces vector to avoid obstacle\"
6    DESC          "based on three PSD readings"
7 INIT INT      "Object detection range in mm"
8    INIT DOUBLE   "Maximum vector magnitude"
9

10    EMIT VEC2     "Avoidance vector"
11 EMBED INT     "PSD Front reading"
12    EMBED INT     "PSD Left reading"
13    EMBED INT     "PSD Right reading"
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arcs. Evolution of the structure to achieve an objective task is performed by the
genetic algorithm. The set of parameters describing the neural network arc
weights is optimized to produce a controller capable of performing the task.

Our implementation of a genetic algorithm uses a direct binary encoding
scheme to encode the numeric weights and optionally the thresholds of the
controller’s neural network. A single, complete, neural network controller con-
figuration is encoded into a chromosome. The chromosome itself is a concate-
nation of individual floating point genes. Each gene encodes a single weight of
the neural network. The population consists of a number of chromosomes, ini-
tially evaluated for fitness and then evolved through numerous iterations. Pop-
ulation evolution is achieved by a single point crossover operation at gene
boundaries on a set percentage of the population. This is supplemented by
mutation operations (random bit-wise inversion) on a small percentage of the
population, set as a user parameter. The top performing members of a popula-
tion are preserved between iterations of the algorithm (elitism). The lowest
performing are removed and replaced by copies of the highest performing
chromosomes. In our trials we have used population sizes of between 100 and
250 chromosomes.

The simulator environment was built around an early version of EyeSim 5
[Waggershauser 2002]. EyeSim is a sophisticated multi-agent simulation of the
Eyebot hardware platform set in a virtual 3D environment. As well as simulat-
ing standard motor and hardware sensors, the environment model allows real-
istic simulation of image capture by an on-board camera sensor (Figure 24.5).
This allows for complete testing and debugging of programs and behaviors
using image processing routines. 

Because we run our programs in a simulated environment, we can obtain
records of the positions and orientations of all objects in the environment with
perfect accuracy. The logging calls determine positions during execution from

Figure 24.5: EyeSim 5 simulator screen shot
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the simulator’s internal world model. The control program of the robot calls
these functions after it completes execution and writes them in a suitable file
format for reading by the separate evolutionary algorithm. The results are not
used by the robot to enhance its performance while running. The final output
of the program to the logfile is analyzed after termination to determine how
well the robot performed its task.  

Program 24.2: Schema example definition

1 #include "Vec2.h"
2 #include "NodeVec2.h"
3 class v_Random : public NodeVec2
4 { public:
5 v_Random(int seed);
6 ~v_Random();
7 Vec2* value(long timestamp);
8
9 private:

10 Vec2*   vector;
11 long    lastTimestamp;
12 };

Program 24.3: Schema example implementation

1 v_Random::v_Random(double min = 0.0f, double max = 1.0f,
2 int seed = 5)
3 { double phi, r;
4 srand( (unsigned int) seed);
5 phi = 2*M_PI / (rand() % 360);
6 r = (rand() % 1000) / 1000.0;
7 vector = new Vec2(phi, r);
8 lastTimestamp = -1;
9 }

10
11 v_Random::~v_Random()
12 { if(vector)
13 delete vector;
14 }
15
16 Vec2* v_Random::value(long timestamp)
17 { if(timestamp > lastTimestamp)
18 { lastTimestamp = timestamp;
19 //  Generate a new random vector for this timestamp
20 vector->setx(phi = 2*M_PI / (rand() % 360));
21 vector->sety(r = (rand() % 1000) / 1000.0);
22 }
23 return vector;
24 }
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Sample schema
implementation

As an example of a simple motor schema we will write a behavior to move
in a random direction. This does not take any inputs so does not require behav-
ior embedding. The output will be a 2D vector representing a direction and dis-
tance to move to. Accordingly, we subclass the NodeVec2 class, which is the
base class of any schemas that produce 2D vector output. Our class definition
is shown in Program 24.2.

The constructor specifies the parameters with which the schema is initial-
ized, in this case a seed value for our random number generator (Program
24.3). It also allocates memory for the local vector class where we store our
output, and produces an initial output. The destructor for this class frees the
memory allocated for the 2D vector.

The most important method is value, where the output of the schema is
returned each processing cycle. The value method returns a pointer to our pro-
duced vector; had we subclassed a different type (for example NodeInt), it
would have returned a value of the appropriate type. All value methods should
take a timestamp as an argument. This is used to check if we have already
computed an output for this cycle. For most schemas, we only want to produce
a new output when the timestamp is incremented. 

Schemas that embed a node (i.e. take the output of another node as input)
must allocate space for these nodes in their constructor. A method to do this is
already available in the base class (initEmbeddedNodes), so the schema only
needs to specify how many nodes to allocate. For example, the avoid schema

Program 24.4: Avoid schema

1 v_Avoid_iii::v_Avoid_iii(int sensitivity, double maxspeed)
2 { vector = new Vec2(); //  Create output vector
3 initEmbeddedNodes(3); //  Allocate space for nodes
4 sense_range = sensitivity; //  Initialise sensitivity
5 this->maxspeed = maxspeed;
6 }
7 Vec2* v_Avoid_iii::value(long timestamp)
8 { double front, left, right;
9 if(timestamp != lastTimestamp) {

10 // Get PSD readings
11 frontPSD = (NodeInt*) embeddedNodes[0];
12 leftPSD  = (NodeInt*) embeddedNodes[1];
13 rightPSD = (NodeInt*) embeddedNodes[2];
14 front = frontPSD->value(timestamp);
15 left  = leftPSD->value(timestamp);
16 right = rightPSD->value(timestamp);
17 //  Calculate avoidance vector
18 // Ignore object if out of range
19 if (front >= sense_range) front = sense_range;
20 if (left >= sense_range) left = sense_range;
21 if (right >= sense_range) right = sense_range;
22 ...
23
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embeds three integer schemas; hence the constructor calls initEmbedded-
Nodes shown in Program 24.4. The embedded nodes are then accessible in an
array embeddedNodes. By casting these to their known base classes and calling
their value methods, their outputs can be read and processed by the embedding
schema.

24.6 Tracking Problem
The evolved controller task implemented in this project is to search an
enclosed space to find a colored ball. We began by identifying the primitive
schemas that could be combined to perform the task. These are selected by the
evolved controller during program execution to perform the overall task. A
suitable initial fitness function for the task was constructed and then an initial
random population generated for refinement by the genetic algorithm.

Primitive
schemas

We identified the low-level motor schemas that could conceivably perform
this task when combined together. Each schema produces a single normalized
2D vector output, described in Table 24.2. 

The “avoid detected obstacles” schema embeds PSD sensor schemas as
inputs, mounted on the front, left, and right of the robot (Figure 24.6). These
readings are used to determine a vector away from any close obstacle (see Fig-
ure 24.6). Activation of the “avoid detected obstacles” schema prevents colli-
sions with walls or other objects, and getting stuck in areas with a clear exit. 

Behavior Normalized Vector Output

Move straight ahead In the direction the robot is facing

Turn left Directed left of the current direction

Turn right Directed right of the current direction

Avoid detected obstacles Directed away from detected obstacles

Table 24.2: Primitive schemas

Figure 24.6: Avoidance schema
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Ball detection is achieved by a hue recognition algorithm that processes

images captured from the Eyebot camera (Figure 24.5) and returns ball posi-
tion in the x-direction and ball height as “high-level sensor signals”. The sys-
tem should learn to activate the “turn left” behavior whenever the ball drifts
toward the left image border and the “turn right” behavior whenever the balls
drifts to the right. If the sensors detect the ball roughly in the middle, the sys-
tem should learn to activate the “drive straight” behavior.

At the moment, only one behavior can be active at a time. However, as a
future extension, one could combine multiple active behaviors by calculating a
weighted sum of their respective vector outputs.

24.7 Neural Network Controller
The role of the neural network controller is to select the currently active behav-
ior from the primitive schemas during each processing cycle. The active
behavior will then take control over the robot’s actuators and drive the robot in
the direction it desires. In principle, the neural network receives information
from all sensor inputs, status inputs from all schemas, and a clock value to
determine the activity of each of the schemas. Inputs may be in the form of raw
sensor readings or processed sensor results such as distances, positions, and
pre-processed image data. Information is processed through a number of hid-
den layers and fed into the output layer. The controller’s output neurons are
responsible for selecting the active schema.

An additional output neuron is used to have the controller learn when it has
finished the given task (here driving close to the ball and then stop). If the con-
troller does not stop at a maximal number of time steps, it will be terminated
and the last state is analyzed for calculating the fitness function. Using these
fitness values, the parameters of the neural network controller are evolved by
the genetic algorithm as described in Chapter 22.

We decided to use an off-line learning approach for the following reasons:
• Generation of ideal behavior

There is the possibility of the system adapting to a state that fulfills
some but not all of the task’s fitness criteria. This typically happens
when the method of learning relies on gradient descent and becomes
stuck in a local fitness maxima [Gurney 2002]. Off-line evolution al-
lows the application of more complex (and hence processor intensive)
optimization techniques to avoid this situation.

• Time to convergence
The time a robot takes to converge to an appropriate controller state re-
duces the robot’s effective working time. By evolving suitable param-
eters off-line, the robot is in a suitable working state at run-time.
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• System testing
Evolution of behavior in a real environment limits our ability to test the
controller’s suitability for a task. Off-line evolution enables extensive
testing of the system in simulation before actual use.

• Avoid physical damage to system
While the controller is evolving, its response may cause damage to the
physical robot until it learns to perform a task safely. Evolving the con-
troller in simulation allows such responses to be modified before real
harm can be done to expensive hardware. 

Figure 24.7 shows the neural network structure used. Image processing is
done in an “intelligent sensor”, so the ball position and ball size in the image
are determined by image processing for all frames and directly fed into the net-
work’s input layer. The output layer has three nodes, which determine the
robot’s action, either turning left, turning right, or driving forward. The neuron
with the highest output value is selected in every cycle.

Each chromosome holds an array of floating point numbers representing the
weights of the neural network arbitrator. The numbers are mapped first-to-last
in the neural network as is demonstrated for a simpler example network in Fig-
ure 24.8. 

Figure 24.7: Neural network structure used

ball size

ball x-pos.

turn left

turn right

drive straight

input layer hidden layer output layer

Figure 24.8: Chromosome encoding
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24.8 Experiments
The task set for the evolution of our behavior-based system was to make a
robot detect a ball and drive toward it. The driving environment is a square
area with the ball in the middle and the robot placed at a random position and
orientation. This setup is similar to the one used in Section 23.5.

The evolution has been run with minimal settings, namely 20 generations
with 20 individuals. In order to guarantee a fair evaluation, each individual is
run three times with three different original distances from the ball. The same
three distance values are used for the whole population, while the individual
robot placement is still random, i.e. along a circle around the ball.

The fitness function used is shown in Program 24.5. We chose only the
improvement in distance toward the ball for the fitness function, while nega-
tive values are reset to zero. Note that only the desired outcome of the robot
getting close to the ball has been encoded and not the robot’s performance dur-
ing the driving. For example, it would also have been possible to increase an
individual’s fitness whenever the ball is in its field of view – however, we did
not want to favor this selection through hard-coding. The robot should dis-
cover this itself through evolution. Experiments also showed that even a sim-
pler neural network with 2×4×3 nodes is sufficient for evolving this task,
instead of 2×6×3. 

Program 24.5: Fitness function for ball tracking

1 fitness = initDist - b_distance();
2 if (fitness < 0.0) fitness = 0.0;

Figure 24.9: Robot driving result
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This elementary fitness function worked surprisingly well. The robots
learned to detect the ball and drive toward it. However, since there are no
incentives to stop once the ball has been approached, most high-scoring robots
continued pushing and chasing the ball around the driving environment until
the maximum simulation time ran out. Figure 24.9 shows typical driving
results obtained from the best performing individual after 11 generations. The
robot is able to find the ball by rotating from its starting position until it is in its
field of view, and can then reliably track the ball while driving toward it, and
will continue to chase the ball that is bouncing off the robot and off the walls.  

Figure 24.10: Fitness development over generations

Figure 24.11: Individual runs of best evolved behavioral controller
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Figure 24.10 shows the development of the maximum fitness over 10 gen-

erations. The maximum fitness increases consistently and finally reaches a
level of acceptable performance. 

This experiment can be extended if we want to make the robot stop in front
of the ball, or change to a different behavioral pattern (for example goal kick-
ing). What needs to be done is to change the fitness function, for example by
adding a bonus for stopping in a time shorter than the maximum allowed simu-
lation time, and to extend the neural network with additional output (and hid-
den) nodes. Care needs to be taken that only robots with a certain fitness for
approaching the ball get the time bonus, otherwise “lazy” robots that do not
move and stop immediately would be rewarded. Figure 24.11 shows several
runs of the best evolved behavioral controller. This state was reached after 20
generations; the simulation is halted once the robot gets close to the ball.
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25EVOLUTION OF 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WALKING GAITS

esigning or optimizing control systems for legged locomotion is a
complex and time consuming process. Human engineers can only
produce and evaluate a limited number of configurations, although

there may be numerous competing designs that should be investigated. Auto-
mation of the controller design process allows the evaluation of thousands of
competing designs, without requiring prior knowledge of the robot’s walking
mechanisms [Ledger 1999]. Development of an automated approach requires
the implementation of a control system, a test platform, and an adaptive
method for automated design of the controller. Thus, the implemented control
system must be capable of expressing control signals that can sufficiently
describe the desired walking pattern. Furthermore, the selected control system
should be simple to integrate with the adaptive method.

One possible method for automated controller design is to utilize a spline
controller and evolve its control parameters with a genetic algorithm [Boeing,
Bräunl 2002], [Boeing, Bräunl 2003]. To decrease the evolution time and
remove the risk of damaging robot hardware during the evolution, a dynamic
mechanical simulation system can be employed.

25.1 Splines
Splines are a set of special parametric curves with certain desirable properties.
They are piecewise polynomial functions, expressed by a set of control points.
There are many different forms of splines, each with their own attributes [Bar-
tels, Beatty, Barsky 1987]; however, there are two desirable properties: 

• Continuity, so the generated curve smoothly connects its parts.
• Locality of the control points, so the influence of a control point is lim-

ited to a neighborhood region.

D
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The Hermite spline is a special spline with the unique property that the

curve generated from the spline passes through the control points that define
the spline. Thus, a set of pre-determined points can be smoothly interpolated
by simply setting these points as control points for the Hermite spline. Each
segment of the curve is dependent on only a limited number of the neighboring
control points. Thus, a change in the position of a distant control point will not
alter the shape of the entire spline. The Hermite spline can also be constrained
so as to achieve CK–2 continuity. 

The function used to interpolate the control points, given starting point p1,
ending point p2, tangent values t1 and t2, and interpolation parameter s, is
shown below:

f(s) = h1p1 + h2p2 + h3t1 + h4t2
where

h1 = 2s3 – 3s2 + 1
h2 = –2s3 + 3s2

h3 = s3 – 2s2 + s
h4 = s3 – s2

for 0  s  1
Program 25.1 shows the routine utilized for evaluating splines. Figure 25.1

illustrates the output from this function when evaluated with a starting point at
one, with a tangent of zero, and an ending point of zero with a tangent of zero.
The Hermite_Spline function was then executed with s ranging from zero to
one.  

25.2 Control Algorithm
Using splines for

modeling robot
joint motions

Larger, more complex curves can be achieved by concatenating a number of
cubic Hermite spline sections. This results in a set of curves that are capable of
expressing the control signals necessary for legged robot locomotion. The

Program 25.1: Evaluating a simple cubic Hermite spline section

1 float Hermite_Spline(float s) {
2 float ss=s*s;
3 float sss=s*ss;
4 float h1 =  2*sss - 3*ss +1; // calculate basis funct. 1
5 float h2 = -2*sss + 3*ss; // calculate basis funct. 2
6 float h3 =   sss - 2*ss + s; // calculate basis funct. 3
7 float h4 =   sss -  ss; // calculate basis funct. 4
8 float value = h1*starting_point_location
9 + h2*ending_point_location

10 + h3*tangent_for_starting_point
11 + h4*tangent_for_ending_point;
12 return value;
13 }

≤ ≤
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spline controller consists of a set of joined Hermite splines. The first set con-
tains robot initialization information, to move the joints into the correct posi-
tions and enable a smooth transition from the robot’s starting state to a travel-
ing state. The second set of splines contains the cyclic information for the
robot’s gait. Each spline can be defined by a variable number of control points,
with variable degrees of freedom. Each pair of a start spline and a cyclic spline
corresponds to the set of control signals required to drive one of the robot’s
actuators.

An example of a simple spline controller for a robot with three joints (three
degrees of freedom) is illustrated in Figure 25.2. Each spline indicates the con-
troller’s output value for one actuator. 

There are a number of advantages offered by Hermite spline controllers.
Since the curve passes through all control points, individual curve positions
can be pre-determined by a designer. This is especially useful in situations
where the control signal directly corresponds to angular, or servo, positions.
Program 25.2 provides a simplified code snippet for calculating the position
values for a one-dimensional spline. 

Figure 25.1: Cubic Hermite spline curve

Hermite(s)

s

Figure 25.2: Spline joint controller
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There is a large collection of evidence that supports the proposition that
most gaits for both animals and legged robots feature synchronized movement
[Reeve 1999]. That is, when one joint alters its direction or speed, this change
is likely to be reflected in another limb. Enforcing this form of constraint is far
simpler with Hermite splines than with other control methods. In order to force
synchronous movement with a Hermite spline, all actuator control points must
lie at the same point in cycle time. This is because the control points represent
the critical points of the control signal when given default tangent values.

25.3 Incorporating Feedback
Most control methods require a form of feedback in order to correctly operate
(see Chapter 11). Spline controllers can achieve walking patterns without the
use of feedback; however, incorporating sensory information into the control
system allows a more robust gait. The addition of sensory information to the
spline control system enabled a bipedal robot to maneuver on uneven terrain. 

In order to incorporate sensor feedback information into the spline control-
ler, the controller is extended into another dimension. The extended control
points specify their locations within both the gait’s cycle time and the feedback
value. This results in a set of control surfaces for each actuator. Extending the
controller in this form significantly increases the number of control points
required. Figure 25.3 illustrates a resulting control surface for one actuator. 

The actuator evaluates the desired output value from the enhanced control-
ler as a function of both the cycle time and the input reading from the sensor.
The most appropriate sensory feedback was found to be an angle reading from
an inclinometer (compare Section 3.8.3) placed on the robot’s central body
(torso). Thus, the resultant controller is expressed in terms of the percentage
cycle time, the inclinometer’s angle reading, and the output control signal.

Program 25.2: Evaluating a concatenated Hermite spline

1 Hspline hs[nsec]; //A spline with nsec sections
2
3 float SplineEval(float s) {
4 int sect; //what section are we in?
5 float z; //how far into that section are we?
6 float secpos;
7 secpos=s*(nsec-1);
8 sect=(int)floorf(secpos);
9 z=fmodf(secpos,1); 

10 return hs[sect].Eval(z);
11 }



Controller Evolution

407

25.4 Controller Evolution
Genetic algorithms can be applied to automate the design of the control sys-
tem. To achieve this, the parameters for the control system need to be encoded
in a format that can be evolved by the genetic algorithm. The parameters for
the spline control system are simply the position and tangent values of the con-
trol points that are used to describe the spline. Thus, each control point has
three different values that can be encoded:

• Its position in the cycle time
(i.e. position along the x-axis)

• The value of the control signal at that time
(i.e. position along the y-axis)

• The tangent value

To allow these parameters to evolve with a genetic algorithm in minimal
time, a more compact format of representing the parameters is desired. This
can be achieved by employing fixed point values. 

For example, if we wanted to encode the range [0..1] using 8bit fixed point
values, then the 8 bits can represent any integer value from 0 to 255. By simply

Figure 25.3: Generic extended spline controller
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dividing this value by 255, we can represent any number ranging from 0 to 1,
with an accuracy of 0.004 (1/256).

The curve shown in Figure 25.1 was generated by a one-dimensional spline
function, with the first control point (s = 0) at position 1 with tangent value of
0, and the second control point (s = 1) at position 0 with tangent value of 0. If
an encoding which represented each value as an 8bit fixed point number from
0 to 1 is used, then the control parameters in this case would be represented as
a string of 3 bytes with values of [0, 255, 0] for the first control point’s position
and tangent, and [255, 0, 0] for the second control point’s position and tangent. 

Thus, the entire spline controller can be directly encoded using a list of con-
trol point values for each actuator. An example structure to represent this infor-
mation is shown in Program 25.3. 

Staged evolution There are a number of methods for optimizing the performance of the
genetic algorithm. One method for increasing the algorithm’s performance is
staged evolution. This concept is an extension to “Behavioural Memory”, and
was first applied to controller evolution by [Lewis, Fagg, Bekey 1994]. Staged
evolution divides a problem task into a set of smaller, manageable challenges
that can be sequentially solved. This allows an early, approximate solution to
the problem to be solved. Then, incrementally increasing the complexity of the
problem provides a larger solution space for the problem task and allows for
further refinements of the solution. Finally, after solving all the problem’s sub-
tasks, a complete solution can be determined. Solving the sequence of sub-
tasks is typically achieved in less time than required if the entire problem task
is tackled without decomposition.

This optimization technique can also be applied to the design of the spline
controller. The evolution of the controller’s parameters can be divided into the
following three phases:

1. Assume that each control point is equally spaced in the cycle time. As-
sume the tangent values for the control points are at a default value.
Only evolve the parameters for the control points’ output signal (y-axis).

2. Remove the restriction of equidistant control points, and allow the con-
trol points to be located at any point within the gait time (x-axis).

Program 25.3: Full direct encoding structures

1 struct encoded_controlpoint {
2 unsigned char x,y,tangent;
3 };
4
5 struct encoded_splinecontroller {
6 encoded_controlpoint
7 initialization_spline[num_splines][num_controlpoints];
8 encoded_controlpoint
9 cyclic_spline [num_splines][num_controlpoints];

10 };
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3. Allow final refinement of the solution by evolving the control point tan-
gent values.

To evolve the controller in this form, a staged encoding method is required.
Table 25.1 indicates the number of control points required to represent the con-
troller in each phase. In the case of an encoding where each value is repre-
sented as an 8 bit fixed-point number, the encoding complexity directly corre-
sponds to the number of bytes required to describe the controller.

25.5 Controller Assessment
In order to assign a fitness value to each controller, a method for evaluating the
generated gait is required. Since many of the generated gaits result in the robot
eventually falling over, it is desirable to first simulate the robot’s movement in
order to avoid damaging the actual robot hardware. There are many different
dynamic simulators available that can be employed for this purpose. 

One such simulator is DynaMechs, developed by McMillan [DynaMechs
2006]. The simulator implements an optimized version of the Articulated
Body algorithm, and provides a range of integration methods with configura-
ble step sizes. The package is free, open source, and can be compiled for a
variety of operating systems (Windows, Linux, Solaris). The simulator pro-
vides information about an actuator’s location, orientation, and forces at any
time, and this information can be utilized to determine the fitness of a gait.

A number of fitness functions have been proposed to evaluate generated
gaits. Reeve proposed the following sets of fitness measures [Reeve 1999]:

• FND (forward not down): The average speed the walker achieves mi-
nus the average distance of the center of gravity below the starting
height.

• DFND (decay FND): Similar to the FND function, except it uses an ex-
ponential decay of the fitness over the simulation period.

Evolution Phase Encoding Complexity

Phase 1 a(s + c)

Phase 2 2a(s + c)

Phase 3 3a(2 + c)

with

Table 25.1: Encoding complexity

a number of actuators
s number of initialization control points, and
c number of cyclic control points
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• DFNDF (DFND or fall): As above, except a penalty is added for any

walker whose body touches the ground.
Fitness function These fitness functions do not consider the direction or path that is desired

for the robot to walk along. Thus, more appropriate fitness functions can be
employed by extending the simple FND function to include path information,
and including terminating conditions [Boeing, Bräunl 2002]. The terminating
conditions assign a very low fitness value to any control system which gener-
ates a gait that results in:

• A robot’s central body coming too close to the ground. This termina-
tion condition ensures that robots do not fall down.

• A robot that moves too far from the ground. This removes the possibil-
ity of robots achieving high fitness values early in the simulation by
propelling themselves forward through the air (jumping).

• A robot’s head tilting too far forward. This ensures the robots are rea-
sonably stable and robust.

Thus, the overall fitness function is calculated, taking into account the dis-
tance the robot moves along the desired path, plus the distance the robot devi-
ates from the path, minus the distance the robot’s center of mass has lowered
over the period of the walk, as well as the three terminating conditions.

25.6 Evolved Gaits
This system is capable of generating a wide range of gaits for a variety of
robots. Figure 25.4 illustrates a gait for a simple bipedal robot. The robot
moves forward by slowly lifting one leg by rotating the hip forward and knee
backward, then places its foot further in front, straightens its leg, and repeats
this process. The gait was evolved within 12 hours on a 500MHz AMD Athlon
PC. The genetic algorithm typically requires the evaluation of only 1,000 indi-
viduals to evolve an adequate forward walking pattern for a bipedal robot. 

Figure 25.5 illustrates a gait generated by the system for a tripod robot. The
robot achieves forward motion by thrusting its rear leg toward the ground, and

Figure 25.4: Biped gait
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lifting its forelimbs. The robot then gallops with its forelimbs to produce a
dynamic gait. This illustrates that the system is capable of generating walking
patterns for legged robots, regardless of the morphology and number of legs. 

The spline controller also evolves complex dynamic movements. Removing
the termination conditions allows for less stable and robust gaits to be evolved.
Figure 25.6 shows a jumping gait evolved for an android robot. The resultant
control system depicted was evolved within 60 generations and began conver-
gence toward a unified solution within 30 generations. However, the gait was
very unstable, and the android could only repeat the jump three times before it
would fall over. 

The spline controller utilized to create the gait depicted in Figure 25.4 was
extended to include sensory information from an inclinometer located in the
robot’s torso. The inclinometer reading was successfully interpreted by the
control system to provide an added level of feedback capable of sustaining the
generated gait over non-uniform terrain. An example of the resultant gait is

Figure 25.5: Tripod gait

Figure 25.6: Biped jumping

Figure 25.7: Biped walking over uneven terrain
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illustrated in Figure 25.7. The controller required over 4 days of computation
time on a 800MHz Pentium 3 system, and was the result of 512 generations of
evaluation. 

The graph in Figure 25.8 demonstrates the increase in fitness value during
the evolution of the extended controller depicted in Figure 25.7. A rapid
increase in fitness values can clearly be observed at around 490 generations.
This corresponds to the convergence point where the optimal solution is
located. The sharp increase is a result of the system managing to evolve a con-
troller that was capable of traversing across flat, rising, and lowering terrains.

This chapter presented a flexible architecture for controller evolution, and
illustrated a practical robotics application for genetic algorithms. The control
system was shown to describe complex dynamic walking gaits for robots with
differing morphologies. A similar system can be employed to control any robot
consisting of multiple actuators, and the present system could be extended to
evolve the robot’s morphology in unison with the controller. This would ena-
ble the robot’s design to be improved, such that the robot’s structure was opti-
mally designed to suit its desired purpose. Further extensions of this could be
to automatically construct the designed robots using 3D printing technology,
removing the human designer completely from the robot design process [Lip-
son, Pollack 2006].

Figure 25.8: Fitness versus generation for extended spline controller

0

20

40

60

80

100

120
1 47 93 13
9

18
5

23
1

27
7

32
3

36
9

41
5

46
1

50
7

55
3

59
9

64
5

Generation

Fi
tn

es
s

Top Fitness

Average Fitness



References

413

25.7 References
BARTELS, R,. BEATTY, J., BARSKY, B. An Introduction to Splines for Use in

Computer Graphics and Geometric Models, Morgan Kaufmann, San
Francisco CA, 1987

BOEING, A., BRÄUNL, T. Evolving Splines: An alternative locomotion control-
ler for a bipedal robot, Proceedings of the Seventh International Con-
ference on Control, Automation, Robotics and Vision (ICARV 2002),
CD-ROM, Nanyang Technological University, Singapore, Dec. 2002,
pp. 1-5 (5)

BOEING, A., BRÄUNL, T. Evolving a Controller for Bipedal Locomotion, Pro-
ceedings of the Second International Symposium on Autonomous
Minirobots for Research and Edutainment, AMiRE 2003, Brisbane,
Feb. 2003, pp. 43-52 (10)

DYNAMECHS, Dynamics of Mechanisms: A Multibody Dynamic Simulation Li-
brary, http://dynamechs.sourceforge.net, 2006

LEDGER, C. Automated Synthesis and Optimization of Robot Configurations,
Ph.D. Thesis, Carnegie Mellon University, 1999

LEWIS, M., FAGG, A., BEKEY, G. Genetic Algorithms for Gait Synthesis in a
Hexapod Robot, in Recent Trends in Mobile Robots, World Scientific,
New Jersey, 1994, pp. 317-331 (15)

LIPSON, H., POLLACK, J. Evolving Physical Creatures, http://citeseer.
nj.nec.com/523984.html, 2006

REEVE, R. Generating walking behaviours in legged robots, Ph.D. Thesis, Uni-
versity of Edinburgh, 1999



415

. . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AUTOMOTIVE SYSTEMS

odern automobiles are a real gathering place for embedded sys-
tems. Each new car has between twenty and one hundred embed-
ded controllers, each dedicated to one particular task. There are

individual controllers for engine control, dashboard displays, trip computer,
keyless entry, electric seat adjustment and position memory, mirror adjust-
ment, power windows, cruise control, and airbag control. Advanced safety fea-
tures such as ABS (anti–lock breaking system) and ESP (electronic stability
program) have their individual embedded systems, as do more advanced fea-
tures such as automatic headlight switch, rain sensor, parking distance sensors,
and so on.

With new features being added to automobiles every day, it is cheaper to
add additional embedded controllers than to develop a single monolithic auto-
motive computer system. Also, individual embedded systems can be replaced
more easily in case of a defect. However, drawbacks of having many individ-
ual controllers in a car are the need to include one or more bus systems for
interfacing the controllers. Each controller has to meet the bus specification in
order to not disturb the communication of others, as well as to comply with
EMC (electromagnetic compatibility) restrictions.

Reliable communication is an extremely noisy environment such as a car is
a challenge, which is why the automotive industry has developed their own
bus standards. Most cars produced today include a CAN bus (controller area
network) [ISO 2003], [Zhou, Wang, Zhou 2006], while the newer FlexRay bus
[ISO 2007], [Bretz 2001], [Hönninger, 2006] is gaining support.

In this Chapter we want to look beyond today’s automotive technology and
look at research issues for autonomous automobiles or robotic cars.

26.1 Autonomous Automobiles
The history of autonomous automobiles is still very young and has been initi-
ated and shaped by Ernst Dickmanns from University BW, München, Ger-
many. When he first introduced his ideas on vision-guided autonomous vehicle
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control at regional conferences [Dickmanns, Zapp, Otto 1984], [Dickmanns
1985], research colleagues questioned the viability of his approach and even
the overall feasibility of such a project. Dickmanns proved them wrong by
developing several autonomous car prototypes (VaMoRs, VaMP) and demon-
strating the reliability of his autonomous driving systems on public highways
in the presence of other traffic (see Fig. 26.1). His autonomous car trip from
Bavaria to Denmark in 1995 over 1,758km with only minimal intervention
was a milestone for autonomous vehicles. Dickmanns’ hardware and software
designs have been copied for research projects in industry (e.g. Daimler-Benz),
as well as in academia (e.g. TU München). See [Dickmanns 2007] for a sum-
mary on his work. 

By comparison, this makes the DARPA Grand Challenge in 2004 and 2005
[DARPA 2006], [Seetharaman, Lakhotia, Blasch 2006] look like a walk in the
park. For the 2005 Grand Challenge (see Fig. 26.2), vehicles had to navigate an
empty road over 132 miles in the Nevada desert, while the exact driving path was
specified by several thousand GPS way points. Teams were allowed to manually
adjust and edit the given way points before the race start (e.g., with help of satel-
lite-based maps). Once the autonomous vehicle was on its way, no further interfer-
ence was allowed. While none of the competitors was able to finish the race in
2004, five autonomous cars finished the race in 2005 [Thrun et al. 2006]. 

The most prominent sensors used for the Grand Challenge are a differential
GPS receiver for navigation and a combination of several laser and radar sen-
sors for fine-tuned road detection and collision avoidance. While several par-
ticipating teams did use a vision-subsystem to increase their road look-ahead
in order to be able to drive at higher speeds, solving the Grand Challenge does
not necessarily require any image processing, since the navigation path is
given and each vehicle has the road to itself.

Although DARPA’s initiative undoubtedly created a new momentum for
research in autonomous automobiles, DARPA has also been criticized for
restricting participation to U.S. entries and for providing million dollar start-up
funding for previously successful teams.

Figure 26.1: Autonomous vehicle VaMoRs at University BW, München. 
Photos courtesy of Prof. E. Dickmanns
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Most entries in the Grand Challenge and its 2007 successor competition
Urban Challenge are funded well in excess of one or two million U.S. dollars,
not counting staff and student labor or generous donations and support from
automotive industry partners. Of course, this makes it impossible for interna-
tional universities or smaller research groups to participate. This is why the
University of Manitoba, Winnipeg, Canada, and The University of Western
Australia, Perth, Australia, have introduced the “not so Grand Challenge” as a
student competition [Bräunl, Baltes 2005] (see Fig. 26.3). Similar GPS-based
navigation tasks are to be solved with small robot vehicles over a much smaller
track on the university campus. 

The automotive industry has been very reluctant to release products related
to autonomous driving systems, although several research systems are market-
ready. This is mainly due to liability issues and the fear of law suits following
accidents with autonomous driving systems. Who would be liable in the case

Figure 26.2: DARPA Grand Challenge 2005 competitors
Photos courtesy of DARPA

Figure 26.3: Vehicles used in the “not so Grand Challenge” at UWA
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of an accident with an autonomous driving system? Since it cannot be the
(non-) driver, as he or she is not in control of the vehicle, liability would
default to the manufacturer.

As a consequence, the automotive industry has concentrated on developing
driver-assistance systems. These systems perform exactly the same tasks as an
autonomous driving system, but they do not have a direct link for interfering
with the automobile’s controls. Instead, a driver-assistance system monitors
the environment through its sensors (e.g., radar, vision) and warns the driver in
potentially dangerous situations.

One example for such a driver-assistance system is the lane-departure
warner by Daimler-Benz, which can be ordered as an option for Actros class
trucks. This system comprises an embedded vision system using a monocular
camera that performs a real-time lane detection by identifying lane markings in
the camera image. If the system detects that the truck slowly drifts out of its
lane without the driver operating the turn signal, an acoustic warning signal is
played over the truck’s stereo speakers, mimicking an audible lane marking to
the left or right. Since most truck accidents are due to driver fatigue, the warn-
ing system will hopefully wake up the driver in time to correct the truck’s path
[DaimlerChrysler 2001].

Other current driver-assistance systems do interfere with the automotive’s
driving. We have now seen ABS and ESP for a number of years, and the “intel-
ligent cruise control” since 2001. The intelligent cruise control lets the driver
not only set a desired speed, but also a desired minimum distance to the car in
front. Whenever the actual distance to the car in front goes below this mini-
mum distance, the car is automatically slowed down. All of today’s intelligent
cruise control systems are based on radar sensors, which are considered more
reliable than vision systems under all weather conditions. However, it is
expected that vision-based driver-assistance systems will be introduced in the
near future.

Other driver-assistance systems with driving interference about to be
released are automatic stop-and-go driving in a traffic jam, emergency braking
assistants, and lane-keeping assistants.

26.2 Automobile Conversion for Autonomous Driving
If you have watched the popular educational TV series MythBusters on the
Discovery Channel or an affiliated network, then you already know the quick-
and-dirty way for converting a standard car to a robot car. On several episodes,
Jamie Hyneman and Adam Savage have modified a standard car by adding
industrial strength remote control servos to gas pedal, brake pedal, and steering
(e.g. the “jet car” in Pilot 1 or the “pole-vaulting car” in Episode 27). This
effectively makes a standard car a large version of a toy remote control car. By
replacing the remote control receiver with an embedded system and adding
appropriate sensors, this would result in a low-cost autonomous car.
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But if your life were at stake, such as riding as a passenger in an autono-
mous car, we would not recommend using this method. The standard way
automotive manufacturers and research institutes modify cars for automated
control is much more reliable, but unfortunately also much more expensive
and requires privileged information that car manufacturers usually are not will-
ing to share. For making a standard car autonomous, we have to interface an
embedded system to the car’s gas, brake, and steering (Figure 26.4). To be
completely autonomous, the gear shift of the automatic gearbox (park, drive,
neutral, reverse) needs to be actuated as well. 

Steps for modifying a standard car for autonomous driving:
1. Gas

Interfacing to the car’s accelerator is fairly easy. Most modern cars already
have electronic accelerators or “gas-by-wire”. While older cars had a phys-
ical link (usually a cable) between the gas pedal and the carburator, modern
cars have only a sensor at the end of the gas pedal that sends data to the mo-
tor control system via the car’s CAN bus.

So all that is required to connect the gas to an embedded system, is to
interface to the car’s CAN (or FlexRay) bus and send the right commands
with the right timing. Unfortunately, there are no unique CAN commands
for pressing the gas pedal between different car companies, and so this
needs access to privileged information.

2. Brake
Interfacing to the car’s braking system is more difficult. Although embed-
ded systems in modern cars already link to the breaking system, such as
ABS and ESP subsystems, legislation currently still prohibits a full “brake-
by-wire” system for safety concerns. As a consequence, modern cars still
have a physical (in this case hydraulic) link between the brake pedal and

Figure 26.4: Making a car autonomous
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the braking system, although power brakes are a standard on most new
cars.

If a limited brake force is sufficient, then the same interfacing technique
as for the gas pedal can be applied, sending CAN bus signals that mimic
ABS or ESP data. Again, privileged information is required.

3. Steering
Modifying a car’s steering for autonomous control is the most challenging
task of the three actuators, as steering wheel and steering column are rigidly
connected to a rack-and-pinion steering mechanism. “Steer-by-wire” is still
a project for the future, although first steps have been made with BMW’s
“active steering” mechanism that implements an automatic adaptation of
the steering ratio to the driving speed [BMW 2003]. Future cars with steer-
by-wire would free up space occupied by the steering column and allow a
redistribution of components in the engine area as well as the driver posi-
tion. However, drive-by-wire systems will be expensive since secondary
(and maybe even tertiary) steering systems must be in place to allow a fail-
safe operation.

The standard way of interfacing to a car’s steering is to let a servo motor
turn the steering column (and with it both the steering wheel and the rack-
and-pinion steering mechanism). The force of the steering column motor is
either chosen to be weak enough so that a human driver can easily override
it (in case the driver disagrees with the direction decision of the autono-
mous system), or if a powerful motor is chosen for fast response, a fail-safe
sensor system must be put in place to measure the force applied by the hu-
man driver to the steering wheel and shut down the autonomous steering
system whenever a threshold force is reached.

26.3 Computer Vision for Driver-Assistance Systems
As we have seen so far, computer vision is not necessarily the first project to
work on when preparing a car for autonomous operation or even when design-
ing a noninterfering driver-assistance system. However, computer vision may
well be the most important research topic for future intelligent automotive
assistance and driving systems.

Already Dickmanns’ first autonomous vehicle system was based on real-
time computer vision (see Section 26.1 and [Dickmanns 2007]) and many
industrial and academic research groups work on driver-assistance systems
that use vision either in combination with other sensors or as the sole sensor.

The first decision to make is on the camera equipment. The options are:
• Single camera or stereo camera system of several cameras with differ-

ent focal lengths (for near and far sight)
• Gray scale or color cameras
• Fixed camera or actuated camera or actuated mirror in front of camera
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The use of a stereo camera system gives valuable depth information for all
points of interest in an image, and with current computer performance, the
depth map can be derived in video real-time. While stereo systems are heavily
used in some research centers, others use dual cameras with different focal
lengths for near and far sight. The obvious advantage here is that such a system
can look further ahead with a sufficiently high resolution than a single or ste-
reo camera system. While a near sight camera system can remain stationary, a
far sight camera always requires actuation, in order to stay focussed on an
object such as another car driving in front. Actuating a small and light mirror
has a number of advantages to moving the whole camera. However, a system
without any moving parts would be preferred for an eventual market introduc-
tion because of reliability and durability issues.

Gray scale cameras are sufficient for interpreting most driving scenarios.
However, color cameras are required for detecting and interpreting traffic signs
and traffic lights, as well as brake lights and turn lights from other vehicles.

Finally, the preferred position of the camera is behind the rear-view mirror,
so it does not block the driver’s view through the windshield, but still gets a
similar view as the driver does. Other possibilities include positioning cameras
near the headlights or integrating them into the left and right mirror. Additional
cameras could be installed viewing to the left and right (important for auto-
matic overtaking, driving in inner-city traffic or automatic parking) or the rear
(for automatic parking or rear collision warning).

In the following sections we would like to present some driver-assistance
projects, following the historic developments, from lane detection to car recog-
nition and tracking. The first driver-assistance system [Dickmanns, Zapp, Otto
1984] had the goal to drive autonomous on a highway by detecting lane mark-
ings. Although it may seem paradox to start with a high-speed environment
such as a highway instead of inner-city traffic, it turns out that highway driving
is by far the simpler problem when compared with inner-city traffic. On a
highway there is no on-coming traffic, there are usually well-marked and
clearly identifiable lanes, and there is limited road curvature. For inner-city
traffic, there are much harder problems to solve: there is oncoming and inter-
secting traffic, there are bicycles and pedestrians, there are plenty of difficult to
read markings on the road, there are many distracting buildings and signs, and
cars may have to perform 90° turns at intersections.

26.4 Image Processing Framework
For over a decade we have developed successive versions of the image pro-
cessing framework “Improv” (Image Processing for Robot Vision) [Bräunl
1997], [Bräunl 2006], [Hawe 2008]. This tool allows the creation of complex
image processing applications of combining modules from a supplied image
processing library. Each module’s parameters can be adjusted via slide rulers
and results can be tested on either live camera data or prerecorded video
sequences. No recompilation is necessary. The image processing library is
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extendable and sample modules are provided for this purpose. The latest ver-
sion of Improv is called ImprovCV [Hawe 2008], incorporating the powerful
functions from the “OpenCV” public domain Computer Vision library [Intel
2008]. 

Figure 26.5 demonstrates an ImprovCV application using the Hough trans-
form of line and lane detection.

26.5 Lane Detection
The first driver-assistance systems developed, both academically [Dickmanns
1985] and commercially [DaimlerChrysler 2001], were lane detection or lane-
keeping systems. A possible method for finding lane information from auto-
motive image sequences using straight line segments is the following:

1. Edge detection (and possibly thinning)
2. Line detection (e.g., using the Hough transform)
3. Deleting short and stray lines
4. Matching lines to lanes

In the following, we describe a method that uses straight line segments
[Zeisl 2007]. This is simpler than using more advanced curve models, such as
splines [Wang, Shen, Teoh 2000] or clothoides, but has some limitations, espe-
cially regarding the maximum detectable lane curvature. For a straight road

Figure 26.5: ImprovCV
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section, lane markings are parallel lines on the ground. In the image, however,
with perspective distortion from the driver’s point of view, all lane markings
intersect in one point, the vanishing point. This property can be used to find
position and orientation of lane markings in an image frame (see Figure 26.6). 

Road and lane markings show a huge variety of shapes, which makes it diffi-
cult to use a single feature extraction technique. Edge-based techniques work
well with solid and segmented lines [Kasprzak, Niemann 1998]. However, this
method will fail if an image contains many lines not representing lane markings,
and so splitting the image into foreground and background range is helpful.

An advanced method is to take the expected direction of lane markings into
account in the filtering procedure. Steerable filters offer such a tool to tune the
edge filter in the direction of the expected lane orientation [Freeman, Adelson
1991]. Adaptive road templates build upon a matching of current road scenes
with predefined textures. The method will fail if the assumption of a constant
road surface texture does not hold. However, it is usable for the far field of a
road scene, where lane markings are difficult to identify by other methods
[Kaske, Wolf, Husson 1997]. Statistical criteria such as energy, homogeneity,
and contrast can be used as well to distinguish between road and nonroad
areas. This approach of lane boundary detection especially addresses the pecu-
liarities of country roads, where other methods might fail because of fuzzy
road boundaries.

26.5.1 Edge Detection
There is a large number of different edge detection methods that could be used
for this preprocessing step. We compared a modified (mirrored) Sobel filter,
with first- and second-order steerable filters [Freeman, Adelson 1991].

All edge filters search for grayscale discontinuities in images; therefore,
they will detect dark-to-bright transitions as well as bright-to-dark transitions.
In a single horizontal scan line, this will result in an inner and an outer edge for
each lane marking (see Figure 26.7, bottom). 

Figure 26.6: Lane detection
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When applying the simple Sobel filter, we want to avoid this problem at the
lowest possible filter level, rather than having to postprocess the edge image
later. So we want the edge filter to return only the narrower inner edges for
each lane marking. We modified the Sobel operator to only return bright-to-
dark edges for the left half of the image, and only dark-to-bright edges (mir-
rored filter) for the right half of the image. This will effectively only return the
inner edges for lane markings.

When applying a steerable filter set to an image frame, the image has to be
split into several segments (see Figure 26.7, top). For each of these segments,
one dedicated orientation is being defined, matching the typical expected lane
angles for that particular image part (see Figure 26.7, middle, for second-order
steerable filters). 

A comparison of the image preprocessing methods mirrored Sobel and first-
order steerable filter are presented in Figure 26.8 together with the original
images. For the examples shown, the first-order steerable filter gives the best
results. All lane markings are detected well and only few other edges occur in
the filtered image [Zeisl 2007]. 

Figure 26.7: Steerable filters applied to lane markings [Zeisl 2007]
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26.5.2 Image Tiling
The next step is to find and extract lines from the filtered binary images. Our
goal is to find a scalable algorithm for detecting lines that is suitable for imple-
menting on embedded systems. Ideally, this should avoid using the compute-
intense Hough transform.

Our novel approach to this task is to divide the image into several square
tiles, which are then being processed independent of each other. This means
the algorithm can easily cope with images of different sizes or resolutions and
individual tiles can be processed in parallel, either by multiple processors or by
reconfigurable hardware. With the appropriate tile size chosen, most tiles will
contain only a single image line [Zeisl 2007].

For each tile, the center point of all line pixels is calculated and the line ori-
entation is determined through the variance of the image tile. After discarding
outliers, detected lines are clustered to find a set of lines representing the lane
markings. If a tile contains pixels belonging to just one line, then its local cen-
troid matches exactly with the global line. The centroid (marked as a gray dot)
is given by the first moment of the tile and its coordinates can be calculated as: 

Because of interferences of two or more discontinuous features, the calcu-
lated centroid might not match with a point on a line as can, e.g., be seen in
Figure 26.9 top, row 2, column 5. A subsequent cleaning process is required to
detect and remove such outliers.

To be able to find the direction vector of the line, we decided to perform a
Principal Component Analysis for each remaining tile. The computation of the
principal axes of a binary object can be easily done, implementing an Eigen-

Figure 26.8: Comparison of original, mirrored Sobel, steerable filter
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value decomposition of the covariance matrix for every tile. Because the cova-
riance matrix is a symmetric matrix, both Eigenvalues are positive. They
describe the variances of the binary tile along the major and minor principal
axes. The Eigenvector belonging to the greater Eigenvalue is pointing in the
direction of the greatest variance:

As a result, a tile similar to the top left in Figure 26.9 bottom, containing
only a single line, has a high variance in the direction of the line and a low vari-
ance in the direction normal to the line. Therefore, the ratio of its Eigenvalues will
be high. We use this property to eliminate all tiles with a ratio below a certain

Figure 26.9: Image tiling and vanishing pint calculation [Zeisl 2007]
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threshold. We also delete tiles without any lines in it, but we are still consider-
ing tiles with a thick line that results in a lower ratio.

As an image frame of a road scenery shows a perspective distortion, all
lines representing lane markings intersect in one point, called the vanishing
point. For further elimination of incorrectly detected line segments, we use
their minimum line distance to the vanishing point. Lines with a large distance
to the vanishing point are unlikely to represent lane markings and are therefore
discarded.

As in most images of a road scenery the vanishing point lies in the middle
of the top border, we assume this position to initialize the first frame of an
image sequence. For all subsequent image frames, we calculate the vanishing
point dynamically by using a least square optimization, intersecting all quali-
fying line segments from the previous image frame. This requires detection of
at least two lane marking lines in the previous image, otherwise the previous
vanishing point is retained.

26.5.3 Line Segment Clustering
So far line segments are only described locally by the center of mass in refer-
ence to the tile in which they appear and by an Eigenvector in direction of the
line. We are not using a global Hough transform in order to significantly
reduce the computational effort, and so we need a different algorithm to merge
local line segments to global lines.

Using the Moore-Penrose pseudo-inverse, we transform each tile’s line
equation to the form:

a⋅x + b⋅y + c = 0
As each lane marking, whether continuous or dashed, is likely to span over

several image tiles, we will have multiple parameter sets (one from each tile)
representing the same line. For clustering of line segments in the image, we
match their respective parameter triplets (a, b, c) in a three-dimensional
parameter space. The distance function of parameter triplets is calculates as:

Parameters a and b lie in the range [−1, .., +1], while parameter c has a value
range about 100 times greater. To equally weight the parameters, their values
would have to be scaled considering their statistical distribution. The optimal
approach would require choosing the weights so that the variance of the differ-
ent parameters is the same. However, this implies more computational effort
without significantly improving the clustering. For our application, it is suffi-
cient to scale parameters a and b by a constant, matching their value range to c. 

Figure 26.10 shows each line segment as a point in 3D space, represented
by its scaled line parameters a, b, c. Line segments from different tiles repre-
senting the same lane marking are close together, while different lane mark-
ings are clusters significantly further apart.

d I1 In( )T I1 In( )⋅ a1 an( )2 b1 bn( )2 c1 cn( )2+ += =− − − − −
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If the distance is below a certain threshold, the lines will be clustered. After
each iteration, all lines in the new cluster are removed from the set. The cluster
itself is represented by calculating the mean parameter values of the lines
included. If a cluster contains only a single line, it is discarded. Hence, it is
necessary to find at least two similar line segments in different tiles to detect a
lane marking. With this additional restriction, incorrect lines and outliers are
rejected, but we might also miss correct lines, especially for poorly painted or
dashed lane markings. 

To improve algorithm performance, we use temporal coherence by includ-
ing lanes found in the previous image frame in the clustering process. The
rationale for this is that lane markings do not change abruptly between succes-
sive image frames, but move gradually. This modification allows us to detect
lane marking that are supported by only a single tile, but have also appeared in
the previous image frame.

Figure 26.10: Parameter triplet matching [Zeisl 2007]

Figure 26.11: Lane detection results and mobile phone implementation
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Figure 26.11 shows the lane detection results. The algorithm is efficient
enough to run on an embedded vision system or even on a current mobile
phone (here Nokia 6260 under Symbian 60) as shown in Figure 26.11.

Further methods for lane detection can be found in [Dickmanns, Mysliwetz
1992], [Kaske, Wolf, Husson 1997], [Kreucher, Lakshmanan 1999], [Yim, Oh
2003] and [McCall, Trivedi 2006].

26.6 Vehicle Recognition and Tracking
After lane keeping, the next logical step is the recognition and tracking of
other vehicles in traffic, in order to detect and possibly avoid hazardous situa-
tions. Daimler, BMW, and Jaguar were the first to introduce radar-based
“adaptive cruise control” systems in 2001. These systems will override the set
speed of the cruise control if the vehicle in front comes closer than an adjust-
able minimum distance. Consequently, most driver-assistance systems devel-
oped after 2001 make dual use of the radar information to initialize, identify, or
track other vehicles. While these systems rely on a working radar system to
function, we will present a vehicle recognition and tracking system that is
solely based on image processing. Our system can work without radar infor-
mation; however, if radar information is present, it can be used to improve
results through sensor fusion.

Our algorithm for vehicle detection is based on symmetry properties of
cars’ rear views and uses the following steps:

• Horizon detection
• Spatial feature clustering using optic flow
• Lane detection for reduction of search area
• Elimination of lane marking features
• Temporal feature clustering
• Determining of vehicle center point via symmetry properties

• Compact Symmetry Operator
• Generalized Symmetry Transform

• Vehicle extraction and car fitting for fine adjustment 

Figure 26.12 shows the first three steps of the algorithm. The original image
is clipped at the horizon line (top) in order to restrict image information to
areas that potentially have cars in them. Next, we perform a lane detection
(middle) and a feature-based tracking using optic flow (bottom). This already
gives us moving features, but it remains uncertain whether these features actu-
ally belong to a car or to some other object (e.g., a traffic sign) and there are
many separate feature tags instead of a single one per car.
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26.6.1 Symmetry Operators
The rear view of a car is usually highly symmetrical about a vertical axis. The
licence plate is in the middle and we have lights on either side of the car. Even
if we see the car at a slight angle on a curved road, this skewed symmetry is
usually sufficient for a vehicle detection. We tried a number of symmetry oper-
ators and found that a combination of the Compact Symmetry Operator [Hueb-
ner 2003] and the General Symmetry Transform [Reisfeld, Wolfson, Yeshurun
1995], [Choi, Chien 2004] gives best results [Bourgou 2007]. 

The compact symmetry operator (Figure 26.13, left) works directly on a
scan line, and so it is very easy to implement, but will give inferior results if
the camera’s and the car’s horizontal axes are not lined up. The formula
expressing the symmetry property at point pi with search window size m is: 

Figure 26.12: Lane detection and feature tracking in optic flow

Figure 26.13: Compact symmetry (left) and general symmetry (right)

pi-1 pi pi+1 pi+mpi-m

ri , θi
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p = (pi+pj)/2pi pj
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This means we are only looking at image gray values directly and sum up
weighted differences of pixel pairs equidistant from the center pi. The further
away a pixel pair is from pi, the less its differences subtract from the symmetry
score. The total number of pixel pairs considered equals the window size m.

In contrast to this, the more complex general symmetry transform can work
with any symmetry axis, but we have simplified it to detect symmetries about a
vertical axis only (Figure 26.13, right). This symmetry operator works on
edges instead of on raw grayscale image data and it takes into account edge
strength and edge direction. The symmetry score at point p is a combination of
edge distance, phase difference (edge direction difference) and edge strengths.
The following formula is used for points pi and pj to the left and right of the
symmetry center p with their respective edge strengths ri, rj and edge direc-
tions θi, θj : 

Figure 26.14, top, shows the results of symmetry points detected when
using a combination of both symmetry methods.

Figure 26.14, bottom, shows the results of the car extraction algorithm,
which uses the edge image of the area surrounding the symmetry points. The
car fitter algorithm [Betke, Haritaoglu, Davis 1996] scans the edge histogram
around a symmetry point until a threshold is reached. This cut-out rectangular
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Figure 26.14: Finding car symmetry centers and car extraction
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area is then the approximation of the vehicle area. The following formulas are
used for this: 

26.6.2 Vehicle Tracking
The final step is tracking the detected vehicle over subsequent image frames.
This will make use of temporal cohesion as cars tend to be at very similar
image coordinates in subsequent image frames. A full image scan is conducted
at a much lower frequency in order to reduce the computational effort, but is
still necessary to detect new cars coming into the field of view.

A template matching is conducted with the original car region found by the
car tracker from the previous step. For the matching, a correlation coefficient
method from the OpenCV library is used [Intel 2008].

The rear view of a car changes from image frame to image frame because of
a number of factors, e.g., the distance to it gets shorter or larger or the car turns
in a curved section of the road or the general lighting conditions change.
Because of this, we have to constantly dynamically change the template for the
correlation-based matching function, in order to ensure that the most recent
model for the car is used for the matching process.

Figure 26.15 shows an image frame from the tracking process (left) [Bour-
gou 2007] and its ImprovCV implementation (right) [Hawe 2008]. 

Further methods for vehicle tracking can be found in [Papageorgiou, Oren,
Poggio 1998], [Thomanek, Dickmanns, Dickmanns 1994, [Marola 1989] and
[Bertozzi, Broggi, Castelluccio, 1997].
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Figure 26.15: Vehicle tracking examples
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26.7 Automatic Parking
Parking aids have been introduced in luxury vehicles a number of years ago
and have since made their way into smaller cars and after-market systems.
While simpler systems only measure the distance between the front and rear
bumper of a vehicle to an obstacle, more complex systems can automatically
park a car on the press of a button (see Figure 26.16).

Sonar sensors have been the choice for most commercial parking aid sys-
tems, while radar and laser sensors have been used mainly in research applica-
tions. In the patent application [Bräunl, Franke 2001] a camera-based approach
is described that could serve as an alternative low-cost sensor, providing sig-
nificantly more accurate and detailed information than sonar sensors. 

Motion Stereo The principle used in this patent application is to apply stereo processing to
subsequent images of a moving monocular camera (motion stereo). The cam-
era is mounted perpendicular to the vehicle’s driving direction, monitoring the
right curb for potential parking space (or the left curb in countries driving on
the left side of the road). While the vehicle (and therefore the camera) is in
motion, subsequent image frames have a similar (but variable) stereo baseline
as image pairs captured with a stereo camera pair. The baseline width depends
on the speed of the vehicle and the frame rate of the camera. An online stereo-
matching process can reproduce the car surroundings in 3D. It can then either
advise the driver on whether a potential parking space is large enough, issue a
warning signal when encountering obstacles during the parking process, sug-
gest an optimal parallel parking procedure, or even automatically park the
vehicle if it is fitted with the necessary drive-by-wire actuators. 

Quoting from the patent application [Bräunl, Franke 2001]: “The first com-
mercially-available driver assist systems required a compromise between the
resolution of the scanning and the extent of the scanned region, according to
application. Conventional video-based systems have a good compromise

Figure 26.16: Camera-based automatic parking [Bräunl, Franke 2001]
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between resolution and recording range, however do not generally provide
direct distance information. According to the new arrangement of the object of
the invention, it is possible to achieve a system, which, on installation in a road
vehicle, can record complex dynamic scenes, for example the lateral 3D geom-
etry to the road edge from the point of view of the dynamically operating vehi-
cle and use the same to advantage on parking. According to the invention, the
monitoring and measuring of the lateral environment of a vehicle is displayed
on the one hand by means of a camera with the digital images and on the other
hand with a computer unit which serves to provide the images with a time
stamp and to buffer the same. The movements of the vehicle are further
recorded, in order to select image pairs from the buffered images, based on the
above data. A local 3D depth image of the lateral environment of a vehicle can
thus be generated by an algorithm for stereo image processing.” 

Figure 26.17 shows a sample image sequence and the pair-wise recon-
structed 3D model. The individual algorithm steps are outlined as follows:
• Each input image from the camera stream needs to be marked with the cor-

responding vehicle odometry data and a time stamp.
• Not always are subsequent images on the camera stream selected for stereo

matching, as the time stamp difference between images in a pair needs to
be translated to a stereo base distance of at least 30cm.

• A stereo matching algorithm is applied to all image pairs selected in the
previous step. This produces a 3D depth map for the lateral view at a par-
ticular point in time, which translates to a particular point in space, provid-
ed the vehicle’s trajectory is known.

• The local 3D views (scatter plots) generated in each step of the stereo
matching process are then combined in a single geometry data structure.

Figure 26.17: Frames from driving sequence with calculated 3D geometry
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This generates an accumulated 3D view to the side of a vehicle over a cer-
tain length. 

As shown in Figure 26.18, the 3D data is accumulated in a global geometry
data structure using discretization or spatial subsampling. Because of a number
of inaccuracies in the overall process, data points will not always line up creat-
ing some amount of noise (Figure 26.18, top). After applying some noise fil-
tering techniques (Figure 26.18, middle), we subdivide the volume of interest
into small voxel cells and accumulate all generated geometry data into an
octree of larger cubic voxel cells (matching the desired spatial resolution).
Each voxel stores its number of accumulated points as its weight. A simple
thresholding will then delete voxels with a low weight (Figure 26.18, bottom).

Figure 26.18: Raw and filtered voxel structures



Automotive Systems

436

26

26.8 References
BERTOZZI, M., BROGGI A., CASTELLUCCIO S. A real-time oriented system for

vehicle detection, EUROMICRO Journal of Systems Architecture,
vol. 43, no. 1–5, March 1997, pp. 317–325 (9)

BETKE, M., HARITAOGLU, E., DAVIS, L. Multiple Vehicle Detection and Track-
ing in Hard Real Time, Computer Vision Laboratory, Center for Auto-
mation Research, Institute for Advanced Computer Studies, Technical
Report CS-TR-3667, University of Maryland, College Park, July 1996

BMW. BMW Magazin special – Der neue 5er. 2003, pp. (72)
BOURGOU, S. Objekterkennung und Tracking für autonome Fahrzeuge, Bach-

elor thesis, Technical University München TUM, supervised by T.
Bräunl and G. Färber, 2007, pp. (41)

BRÄUNL, T. Improv and EyeBot – Real-Time Vision on-board Mobile Ro-
bots, 4th Annual Conference on Mechatronics and Machine Vision
in Practice (M2VIP), Toowoomba QLD, Australia, Sep. 1997,
pp.131–135 (5) 

BRÄUNL, T., FRANKE, U. Method and device for the video-based monitoring
and measurement of the lateral environment of a vehicle – Verfahren
und Vorrichtung zur videobasierten Beobachtung und Vermessung der
seitlichen Umgebung eines Fahrzeugs, Patent application – Schutz-
rechtsanmeldung 102 44 148.0-32, submitted 23 Sep. 2002, DC Akte
P1 12799/DE/1, in cooperation with Daimler Research Esslingen/
Ulm, March 2003, Submitted as international patent in Europe, Japan,
and USA, 23 Sep. 2003, http://v3.espacenet.com/text-

doc?DB=EPODOC &IDX=WO2004029877 &F=0 &QPN=WO2004029877,
Daimler internal report, June 2001

BRÄUNL, T., BALTES, J. Introducing the "not so Grand Challenge", http://
robotics.ee.uwa.edu.au/nsgc/, 2005

BRÄUNL, T. Improv – Image Processing for Robot Vision, http://robotics.
ee.uwa.edu.au/improv, 2006

BRETZ, E. By-wire cars turn the corner, IEEE Spectrum, vol. 38, no. 4, Apr.
2001, pp. 68–73 (6) 

CHOI, I., CHIEN, S. A Generalized Symmetry Transform With Selective Attention
Capability for Specific Corner Angles, IEEE Signal Processing Let-
ters, vol. 11, no. 2, Feb. 2004, pp. 255–257 (3) 

DAIMLERCHRYSLER. Answers for questions to come, Annual Report 2001,
DaimlerChrysler AG, Stuttgart, 2001, pp. (130)

DARPA, Grand Challenge, http://www.darpa.mil/grandchallenge/
index.asp, 2006



References

437

DICKMANNS, E. Normierte Krümmungsfunktionen zur Darstellung und Erken-
nung ebener Figuren, DAGM-Symposium 1985, Erlangen, Germany,
1985, pp. 58–62 (5)

DICKMANNS, E. Dynamic Vision for Perception and Control of Motion, Springer,
Heidelberg, 2007, pp. (486)

DICKMANNS. E., MYSLIWETZ, B. Recursive 3-D road and relative ego-state rec-
ognition, IEEE Transaction on Pattern Analysis and Machine Intelli-
gence, vol. 14, 1992, pp. 199–213 (15) 

DICKMANNS, E., ZAPP, A., OTTO, K. Ein Simulationskreis zur Entwicklung
einer automatischen Fahrzeugführung mit bildhaften und iner-
tialen Signalen. 2. Symposium Simulationstechnik, Wien, Austria,
1984, pp. 554–558 (5)

FREEMAN, W., ADELSON, E. The design and use of steerable filters, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 13 no.
9, 1991, pp. 891–906 (16)

HAWE, S. A Component-Based Image Processing Framework for Automotive
Vision, Diploma/Master Thesis, Technical University München TUM,
supervised by T. Bräunl and G. Färber, 2008, pp. (87)

HÖNNINGER, H. Plenty of Traffic in Vehicles’ Central Nervous Systems, Bosch
Research Info, News from Research and Development, no. 2, 2006,
pp. (4), http://researchinfo.bosch.com

HUEBNER, K. A 1-Dimensional Symmetry Operator for Image Feature Extrac-
tion in Robot Applications, 16th International Conference on Vision
Interface (VI’03), 2003, pp. 286–291 (6)

INTEL. Open Source Computer Vision Library, http://www.intel.com/
technology/computing/opencv/, 2008

ISO. Road vehicles – Controller area network (CAN) – Part 1: Data link layer
and physical signalling, ISO standard 11898-1:2003, TC 22/SC 3,
2003, pp. (45)

ISO. Road vehicles – Communication on FlexRay – Part 1: General description
and use case definition, ISO standard 10681-1:2007, TC 22/SC 3,
standards under development, 2007

KASKE, A. WOLF, D., HUSSON, R. Lane boundary detection using statistical
criteria, International Conference on Quality by Artificial Vision,
QCAV'97, Le Creusot, France, 1997, pp. 28–30 (3)

KASPRZAK, W., NIEMANN, H. Adaptive Road Recognition and Ego-state Track-
ing in the Presence of Obstacles, International Journal of Computer
Vision, 28(1), 526 (1998), Kluwer, vol. 28, no. 1, 1998, pp. 5–26 (22)

KREUCHER, C., LAKSHMANAN, S. LANA: a lane extraction algorithm that uses
frequency domain features, IEEE Transactions on Robotics and Auto-
mation, vol. 15, no. 2, 1999, pp. 343–350 (8)



Automotive Systems

438

26
MAROLA, G. Using symmetry for detecting and locating objects in a picture,

Computer Vision, Graphics and Image Processing, Vol. 46, May 1989,
pp. 179–195 (17) 

MCCALL, J., TRIVEDI, M. Video Based Lane Estimation and Tracking for Driv-
er Assistance: Survey, Systems and Evaluation, IEEE Transactions on
Intelligent Transportation Systems, vol. 7, no. 1, 2006, pp. 20–37 (18) 

PAPAGEORGIOU, C., OREN, M., POGGIO, T. A General Framework for Object
Detection, Proceedings of the Sixth International Conference on Com-
puter Vision, IEEE, 1998, pp. 555–563 (9) 

REISFELD, D., WOLFSON, H., YESHURUN, Y. Context-Free Attentional Opera-
tors: The Generalized Symmetry Transform, International Journal of
Computer Vision, vol. 14, 1995, pp. 119–130 (12) 

SEETHARAMAN, G., LAKHOTIA, A., BLASCH, E., Unmanned Vehicles Come of
Age: The DARPA Grand Challenge, IEEE Computer, Dec. 2006, pp.
26–29 (4)

THOMANEK, F., DICKMANNS E., DICKMANNS, D. Multiple object recognition and
scene interpretation for autonomous road vehicle guidance, IEEE Intel-
ligent Vehicles Symposium ‘94, Paris, France, Oct. 1994, 231–236 (6) 

THRUN S., et al. Stanley: The Robot that Won the DARPA Grand Challenge,
Journal of Field Robotics, vol. 23, no. 9, 2006, pp. 661–692 (32) 

WANG, Y., SHEN, D., TEOH, E. Lane detection using spline model, Pattern Rec-
ognition Letters, vol. 21, no. 8, 2000, pp. 677–689 (13) 

YIM, Y. OH, S. Three-feature based automatic lane detection algorithm
(TFALDA) for autonomous driving, IEEE Transactions on Intelligent
Transportation Systems, vol. 4, no. 4, 2003, pp. 219–225 (7) 

ZEISL, B. Robot Control and Lane Detection with Mobile Phones, Bachelor the-
sis, Technical University München TUM, supervised by T. Bräunl and
G. Färber, 2007, pp. (93)

ZHOU, Y., WANG, X., ZHOU, M. The Research and Realization for Passenger
Car CAN Bus, The 1st International Forum on Strategic Technology,
Oct. 2006, pp. 244–247 (4) 



439

. . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OUTLOOK

n this book we have presented embedded systems in general and applied
to mobile robot systems. We looked at hardware and CPU design, interfac-
ing to sensors and actuators, feedback control, operating system functions,

device drivers, multitasking, and system tools. On the robot design side, we
have presented driving, walking, swimming or diving, and flying robots, while
on the robot application side, we have examined localization, navigation, and
AI techniques, including neural networks and evolutionary or genetic algo-
rithms. A number of detailed programming examples were presented to aid
understanding of this practical subject area.

Of course, time does not stand still. In the decade of development of the
EyeBot robots and the EyeCon controller, we have seen quite a remarkable
development in components. Processing power has increased by a factor of
about 100 (confirming Moore’s Law that predicts a doubling of processor
speed every 18 months). Following the same miniaturization in its production
process, camera sensor resolution has increased by a factor of about 30. How-
ever, a higher resolution is not always desirable in robotic systems, because
there is a trade-off between image resolution vs. frame rate, and for many
robot applications a higher frame rate is more important than a higher resolu-
tion. The required processing time usually grows much faster than linearly
with the number of image pixels.

In terms of speed, the gap between microcontrollers and microprocessors
gets even bigger, most likely because of low industrial demand for fast micro-
controllers in comparison to PC components. In general, the latest-generation
embedded systems are about one order of magnitude slower than high-end PCs
or workstations. Commercial embedded systems also have to meet additional
requirements such as an extended temperature range and electromagnetic com-
patibility (EMC), which will further reduce their performance. These systems
must be able to function in a harsh environment, at cold or hot temperatures,
and in the presence of electromagnetic noise, while their own level of electro-
magnetic emission is strictly limited.

With a rapid development in processor and image sensor chips, advances in
electric motors, gearboxes, and battery technology seem slow. However, one
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should not forget that improvements in processor speed and image sensor reso-
lution are mainly a consequence of miniaturization – a technique that cannot
easily be applied to other components. The largest development effort still
remains software development. Several person-years are required for a project
like the RoBIOS operating system, including cross compiler adaptations, oper-
ating system routines, system tools, simulation systems, and application pro-
grams.

While it has been estimated that up to 99% of all produced CPUs are being
used to build embedded systems, most of us own 100 or more embedded sys-
tems. Even small and unassuming electric household devices are now being
fitted with embedded controllers.

We do not have intelligent robots helping us with household chores yet, but
with more and more embedded systems invading our daily lives and smart cars
becoming a reality, they might arrive sooner than we think and without us even
noticing.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PROGRAMMING TOOLS

A.1 System Installation
We are using the “GNU” cross-compiler tools [GNU 2006] for operating sys-
tem development as well as for compiling user programs. GNU stands for
“Gnu’s not Unix”, representing an independent consortium of worldwide dis-
tributed software developers that have created a huge open-source software
collection for Unix systems. The name, however, seems to be a relic from the
days when proprietary Unix implementations had a larger market share.

Supported operating systems for EyeCon are Windows (from DOS to XP)
and Unix (Linux, Sun Solaris, SGI Unix, etc.).

Windows System installation in Windows has been made extremely simple, by pro-
viding an installer script, which can be executed by clicking on:

rob65win.exe

This executable will run an installer script and install the following compo-
nents on a Windows system:

• GNU cross-compiler for C/C++ and assembly
• RoBIOS libraries, include-files, hex-files and shell-scripts
• Tools for downloading, sound conversion, remote control, etc.
• Example programs for real robot and simulator

Unix For installation under Unix, several pre-compiled packages are available for
the GNU cross-compiler. For Linux Red-Hat users, “rpm” packages are avail-
able as well. Because a number of different Unix systems are supported, the
cross-compiler and the RoBIOS distribution have to be installed separately, for
example:

• gcc68-2.95.3-linux.rpm cross-compiler for Linux
• rob65usr.tgz complete RoBIOS distribution
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The cross-compiler has to be installed in a directory that is contained in the

command path, to ensure the Unix operating system can execute it (when
using “rpm” packages, a standard path is being chosen). The RoBIOS distribu-
tion can be installed at an arbitrary location. The following lists the required
steps:

• >setenv ROBIOS /usr/local/robios/

Set the environment variable ROBIOS to the chosen installation path.
• >setenv PATH "${PATH}:/usr/local/gnu/bin:${ROBIOS}/cmd"

Include both the cross-compiler binaries and the RoBIOS commands
in the Unix command path, to make sure they can be executed.

Example program
library

Besides the compiler and operating system, a huge EyeBot/RoBIOS exam-
ple program library is available for download from:

http://robotics.ee.uwa.edu.au/eyebot/ftp/EXAMPLES-ROB/

http://robotics.ee.uwa.edu.au/eyebot/ftp/EXAMPLES-SIM/

or in compressed form:
http://robotics.ee.uwa.edu.au/eyebot/ftp/PARTS/

The example program library contains literally hundreds of well-docu-
mented example programs from various application areas, which can be
extremely helpful for familiarizing oneself with a particular aspect or applica-
tion of the controller or robot.

After installing and unpacking the examples (and after installing both the
cross-compiler and RoBIOS distribution), they can be compiled all at once by
typing:

make

(In Windows first open a console window by double-clicking on “start-
rob.bat“.) This will compile all C and assembly files and generate corre-
sponding hex-files that can subsequently be downloaded to the controller and
run.

RoBIOS upgrade Upgrading to a newer RoBIOS version or updating a hardware description
file (HDT) with new sensors/actuators is very simple. Simple downloading of
the new binary file is required. RoBIOS will automatically detect the system
file and prompt the user to authorize overwriting of the flash-ROM. Only in
the case of a corrupted flash-ROM is the background debugger required to re-
install RoBIOS (see Section A.4). Of course, the RoBIOS version installed on
the local host system has to match the version installed on the EyeCon control-
ler.

A.2 Compiler for C and C++
The GNU cross-compiler [GNU 2006] supports C, C++, and assembly lan-
guage for the Motorola 68000 family. All source files have specific endings
that determine their type:
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• .c C program
• .cc or .cpp C++ program
• .s Assembly program
• .o Object program (compiled binary)
• a.out Default generated executable
• .hex Hex-file, downloadable file (ASCII)
• .hx Hex-file, downloadable file (compressed binary)

Hello World Before discussing the commands (shell-scripts) for compiling a C or C++
source program, let us have a look at the standard “hello world” program in
Program A.1. The standard “hello world” program runs on the EyeCon in the
same way as on an ordinary PC (note that ANSI C requires main to be of type
int). Library routine printf is used to write to the controller’s LCD, and in
the same way, getchar can be used to read key presses from the controller’s
menu keys.

Program A.2 shows a slightly adapted version, using RoBIOS-specific
commands that can be used in lieu of standard Unix libc-commands for print-
ing to the LCD and reading the menu keys. Note the inclusion of eyebot.h in
line 1, which allows the application program to use all RoBIOS library rou-
tines listed in Appendix B.5. 

Assuming one of these programs is stored under the filename hello.c, we
can now compile the program and generate a downloadable binary:

>gcc68 hello.c -o hello.hex

This will compile the C (or C++) source file, print any error messages, and
– in case of an error-free source program – generate the downloadable output
file hello.hex. This file can now be downloaded (see also Section A.5) with

Program A.1: “Hello World” program in C

1 #include <stdio.h>
2 int main ()
3 { printf("Hello !\n");
4  return 0;
5 }

Program A.2: Extended C program

1 #include "eyebot.h"
2 int main ()
3 { LCDPrintf("Hello !\n");
4  LCDPrintf("key %d pressed\n", KEYGet());
5  return 0;
6 }
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the following command from the host PC to the EyeCon controller via a serial
cable or a wireless link:

>dl hello.hex

On the controller, the program can now be executed by pressing “RUN” or
stored in ROM.

Optionally, it is possible to compress the generated hex-file to the binary
hx-format by using the utility srec2bin as shown in the command below. This
reduces the file size and therefore shortens the time required for transmitting
the file to the controller.

>srec2bin hello.hex hello.hx

The gcc GNU C/C++ compiler has a large number of options, which all are
available with the script gcc68 as well. For details see [GNU 2006]. For com-
pilation of larger program systems with many source files, the Makefile util-
ity should be used. See [Stallman, McGrath 2002] for details. Note that if the
output clause is omitted if during compilation (see below), then the default C
output filename a.out is assumed:

>gcc68 hello.c

A.3 Assembler
Since the same GNU cross-compiler that handles C/C++ can also translate
Motorola 68000 assembly programs, we do not need an additional tool or an
additional shell-script. Let us first look at an assembly version of the “hello
world” program (Program A.3).

We include eyebot.i as the assembly equivalent of eyebot.h in C. All
program code is placed in assembly section text (line 2) and the only label
visible to the outside is main, which specifies the program start (equivalent to
main in C).

The main program starts by putting all required parameters on the stack
(LCDPutString only has one: the start address of the string). Then the

Program A.3: Assembly demo program

1  .include "eyebot.i"
2  .section .text
3  .globl main
4
5 main:  PEA hello, -(SP) | put parameter on stack
6  JSR LCDPutString | call RoBIOS routine
7 ADD.L 4,SP | remove param. from stack
8  RTS
9

10  .section .data
11 hello: .asciz "Hello !"
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RoBIOS routine is called with command JSR (jump subroutine). After return-
ing from the subroutine, the parameter entry on the stack has to be cleared,
which is simply done by adding 4 (all basic data types int, float, char, as
well as addresses, require 4 bytes). The command RTS (return from subroutine)
terminates the program. The actual string is stored in the assembly section
data with label hello as a null-terminated string (command asciz).

For further details on Motorola assembly programming, see [Harman
1991]. However, note that the GNU syntax varies in some places from the
standard Motorola assembly syntax:

• Filenames end with “.s”.
• Comments start with “|”.
• If the length attribute is missing, WORD is assumed.
• Prefix “0x” instead of “$” for hexadecimal constants.
• Prefix “0b” instead of “%” for binary constants.

As has been mentioned before, the command for translating an assembly
file is identical to compiling a C program:

>gcc68 hello.s -o hello.hex

Combining C and
Assembly

It is also possible to combine C/C++ and assembly source programs. The
main routine can be either in assembly or in the C part. Calling a C function
from assembly is done in the same way as calling an operating system function
shown in Program A.3, passing all parameters over the stack. An optional
return value will be passed in register D0. 

The more common way of calling an assembly function from C is even
more flexible. Parameters can be passed on the stack, in memory, or in regis-
ters. Program A.4 shows an example, passing parameters over the stack.

From the C program (top of Program A.4) the function call does not look
any different from calling a C function. All parameters of a function are
implicitly passed via the stack (here: variable x). The assembly function (bot-

Program A.4: Calling assembly from C

1 #include "eyebot.h"
2 int fct(int); /* define ASM function prototype */
3
4 int main (void)
5 { int x=1,y=0;
6 y = fct(x);
7 LCDPrintf("%d\n", y);
8 return 0;
9 }

1 .globl  fct
2 fct:    MOVE.L 4(SP), D0 | copy parameter x in register
3         ADD.L #1,D0 | increment x
4         RTS
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tom of Program A.4) can then copy all its parameters to local variables or reg-
isters (here: register D0).

Note that an assembly routine called from a C function can freely use data
registers D0, D1 and address registers A0, A1. Using any additional registers
requires storing their original contents on the stack at the beginning of the rou-
tine and restoring their contents at the end of the routine.

After finishing all calculations, the function result (here: x+1) is stored in
register D0, which is the standard register for returning a function result to the
calling C routine. Compiling the two source files (assuming filenames main.c
and fct.s) into one binary output file (demo.hex) can be done in a single
command:

>gcc68 main.c fct.s -o demo.hex

A.4 Debugging
The debugging system BD32 (Figure A.1) is a free program for DOS (also run-
ning under Windows) utilizing the M68332 controller’s built-in “background
debugger module” (BDM). This means it is a true hardware debugger that can
stop the CPU, display memory and register contents, disassemble code, upload
programs, modify memory, set breakpoints, single-step, and so on. Currently,
BD32 is only available for DOS and only supports debugging at assembly level.
However, it may be possible to integrate BDM with a Unix source-level
debugger for C, such as gdb.

Figure A.1: Background debugger
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Whenever the debugger is used, the EyeCon controller has to be connected
to the parallel port of a Windows-PC using a BDM-cable. The actual debug-
ging hardware interface is included on the EyeCon controller, so the BDM-
cable contains no active components. The main uses for the BD32 debugger
are:

• Debugging an assembly program.
• Rewriting a corrupted flash-ROM.

Debugging When debugging an assembly program, the program first has to be loaded
in memory using the button sequence Usr/Ld on the controller. Then, the
BD32 debugger is started and the CPU execution is halted with the command
STOP.

The user program is now located at the hex address $20000 and can be
viewed with the disassemble debugger command:

dasm $20000

To go through a program step by step, use the following commands:
window on Continuously display registers and memory contents.
br $20a44 Set breakpoint at desired address.
s “Single-step”, execute program one command at a time,

but skip over subroutine calls at full speed.
t “Trace”, execute program one command at a time, in-

cluding subroutine calls.
Detailed information on the background debugger can be found at:
http://robotics.ee.uwa.edu.au/eyebot/

Restoring the
flash-ROM

Under normal conditions, rewriting the EyeCon’s on-board flash-ROM is
handled by the RoBIOS operating system, requiring no user attention. When-
ever a new RoBIOS operating system or a new HDT is downloaded through
the serial port, the operating system detects the system file and asks the user
for authorization to overwrite the flash-ROM. In the same way, the user area of
the flash-ROM can be overwritten by pressing the corresponding buttons for
storing a downloaded program in flash-ROM.

Unfortunately, there are cases when the EyeCon’s on-board flash-ROM can
be corrupted, for example through a power failure during the write cycle or
through a misbehaving user program. If this has happened, the EyeCon can no
longer boot (start) and no welcome screen is printed on power-up. Since the
operating system that normally takes care of the flash-ROM writing has been
wiped out, trying to download the correct operating system does not work.
While simpler controllers require the flash-ROM chip to be replaced and exter-
nally reprogrammed, the EyeCon has an on-board reprogramming capability
using the processor’s BDM interface. This allows restoration of the flash-
ROM without having to remove it.

Similar to the debugging procedure, the controller has to be connected to a
Windows-PC and its execution stopped before issuing the rewrite command
via the BDM. The command sequence is:
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stop Stop processor execution;

if EyeCon does not halt, press the reset button.
do mapcs Initialize chip select lines.
flash 11000000 rob52f.hex 0

Delete RoBIOS in flash-ROM, overwrite with new ver-
sion (bit string 11111111 can be used instead, to delete
all sectors in the flash-ROM, including user programs).
This process takes a few minutes.

flash 00000000 hdt-std.hex $1c000

Without deleting any flash-ROM sectors, write the HDT
file at offset $1c000.

The parameters of the flash command are:
• Deletion of individual sectors:

Each flash-ROM has eight sectors; specifying a “1” means delete,
specifying a “0” means keep.

• Filename of hex-file to be written to flash-ROM.
• Address-offset:

RoBIOS starts at address 0 in the ROM, the HDT starts at $1c000.
Note that because of the flash-ROM sector structure, only complete sectors

can be deleted and overwritten. In the case of a corrupted RoBIOS, both
RoBIOS and HDT need to be restored. In the case of a corrupted HDT and
intact RoBIOS, the HDT can be restored by flashing it to the to the first user
program slot at offset $20000. During restart, RoBIOS will detect the updated
HDT and re-flash it as part of the operating system ROM sector:

flash 00100000 hdt-std.hex $20000

After rewriting the flash-ROM, the EyeCon needs to be reset of switched
off and on again. It will then start with the normal greeting screen.

A.5 Download and Upload
Download For downloading a program, the EyeCon controller needs to be connected to a

host PC via a standard serial cable (nine-pin RS232). Data transmission is
possible at a number of different baud rates with default value 115,200 Baud.
Executable programs can be transmitted as ASCII “.hex” files following the
Motorola S-record format, or faster as compressed binary “.hx” files. The
RoBIOS system tool srec2bin transforms hex-files to hx-files and vice versa.

To start a user program download from the host PC to the EyeCon, the data
transfer has to be initialized on both sides:

• On the EyeCon:
Press Usr / Ld
(The LCD screen will indicate that the controller is ready to receive
data. Download progress is indicated graphically and in the number of
bytes transmitted.)
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• On the host PC:
Use the command dl for download:
>dl userprog.hx

Upload Besides downloading executable programs, it is also possible to transfer
data under program control either from the PC to the EyeCon or from the Eye-
Con to the PC. For uploading a block of data to the PC, the shell-script ul can
be used instead of dl. A number of more elaborate example programs are
available on the web to illustrate this procedure, for example for uploading
images or measurement data [Bräunl 2006].

Turn-key system A turn-key system can be created if the uploaded program name is either
startup.hex or startup.hx (for compressed programs). The program has to
be stored under this name in one of the three ROM slots. At start-up, RoBIOS
will then bypass the standard monitor program and directly execute the user
program. If the user program terminates, the RoBIOS monitor program will
become active.

In case of a user program error like an endless loop, it would seem imposs-
ible to return to the monitor program in order to undo the turn-key setting and
delete the user program, unless resorting to the background debugger. In order
to solve this problem, it is possible to hold down one of the user buttons during
start-up. In this case, the turn-key system will be temporarily deactivated and
the regular RoBIOS monitor program will start.
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ROBIOS 
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OPERATING SYSTEM

B.1 Monitor Program
On power-up of the EyeCon controller, RoBIOS is booted and automatically
starts a small monitor program which presents a welcome screen on the LCD
and plays a small tune. This monitor program is the control interface for
RoBIOS. The user can navigate via the four keys through numerous informa-
tion and settings pages that are displayed on the LCD. In particular, the moni-
tor program allows the user to change all basic settings of RoBIOS, test every
single system component, receive and run user programs, and load or store
them in flash-ROM.

Following the welcome screen, the monitor program displays the RoBIOS
status screen with information on operating system version and controller
hardware version, user-assigned system name, network ID, supported camera
type, selected CPU frequency, RAM and ROM size with usage, and finally the
current battery charge status (see Figure B.1).

All monitor pages (and most user programs) use seven text lines for dis-
playing information. The eighth or bottom display line is reserved for menus
that define the current functionality of the four user keys (soft keys). The pages
that can be reached by pressing buttons from the main status page will be dis-
cussed in the following. 

B.1.1 Information Section
The information screen displays the names of people that have contributed to
the EyeBot project. On the last page a timer is perpetually reporting the
elapsed time since the last reset of the controller board.
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By pressing the REG-labelled key, a mask is displayed that shows the serial
number of the controller and allows the user to enter a special keyword to
unlock the wireless communication library of RoBIOS (see Chapter 7). This
key will be saved in the flash-ROM so that it has to be entered only once for a
controller, even if RoBIOS is being updated.

B.1.2 Hardware Settings
The hardware screens allow the user to monitor, modify, and test most of the
on-board and off-board sensors, actuators, and interfaces. The first page dis-
plays the user-assigned HDT version number and a choice for three more sub-
menus.

The setup menu (Set) offers two sections that firstly (Ser) deal with the set-
tings of the serial port for program downloads and secondly (Rmt) with settings
of the remote control feature. All changes that are made in those two pages are
valid only as long as the controller is supplied with power. The default values
for the power-up situation can be set in the HDT as described in Section B.3. 

For download, the interface port, baud rate, and transfer protocol can be
selected. There are three different transfer protocols available that all just dif-
fer in the handling of the RTS and CTS handshake lines of the serial port:

• NONE Completely disregard handshaking.
• RTS/CTS Full support for hardware handshaking. 
• IrDA No handshaking but the handshake lines are used to

select different baud rates on an infrared module.
For wireless communication, the interface port and the baud rate can be

selected in the same manner. In addition, specific parameters for the remote
control protocol can be set. These are the network unique id-number between 0
and 255, the image quality, and the protocol. The protocol modes (to be set in
the HDT file) are:

• RADIO_BLUETOOTH Communication via a serial Bluetooth module.
• RADIO_WLAN Communication via a serial WLAN module.

Figure B.1: RoBIOS status page and user keys

>RoBIOS 6.5  M5<
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SocBot 03 Cam:f
35MHz 512K ROM
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• RADIO_METRIX Communication via a serial transceiver module.
The image quality modes are:    

• Off No images are sent.
• Reduced Images are sent in reduced resolution and color depth.
• Full Images are sent in full resolution and color depth.

The second sub-menu (HDT) of the hardware settings page displays a list of
all devices found in the HDT that can be tested by RoBIOS. For each device
type, the number of registered instances and their associated names are shown.
Currently nine different device types can be tested:

• Motor
The corresponding test function directly drives the selected motor with
user-selectable speed and direction. Internally it uses the MOTORDrive
function to perform the task.

• Encoder
The encoder test is an extension of the motor test. In the same manner
the speed of the motor linked to the encoder is set. In addition, the cur-
rently counted encoder ticks and the derived speed in ticks per second
are displayed by internally calling the QUADRead function.

• vω Interface
This test is somewhat more “high level” since it utilizes the vω inter-
face for differential drives, which is based upon the motor and encoder
drivers. Wheel distance and encoder IDs are shown, as stored in the
HDT. By pressing the Tst-labelled key, vω commands to drive a
straight line of 40cm, turn 180° on the spot, come back in a straight
line, and turn 180° again are issued.

• Servo
In analogy to the motor test, an angular value between 0 and 255 can
be entered to cause an attached servo to take the corresponding posi-
tion by using the SERVOSet function.

• PSD
The currently measured distance value from the selected PSD is dis-
played graphically in a fast scrolling fashion. In addition, the numeric
values of raw and calibrated sensor data (through a lookup table in the
HDT) are shown by using functions PSDGetRaw and PSDGet.

• IR
The current binary state of the selected sensor is permanently sampled
by calling IRRead and printed on the LCD. With this test, any binary
sensor that is connected to an HDT-assigned TPU channel and entered
in the HDT can be monitored.

• Bumper
The precise transition detection driver is utilized here. Upon detection
of a signal edge (predefined in the HDT) on the selected TPU channel
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the corresponding time of a highly accurate TPU timer is captured and
posted for 1s on the LCD before restarting the process. The applied
function is BUMPCheck.

• Compass
A digital compass can be calibrated and its read-out displayed. For the
calibration process, the compass first has to be placed in a level posi-
tion aligned to a virtual axis. After acknowledging this position, the
compass has to be turned in the opposite direction followed by another
confirmation. The calibration data is permanently stored in the com-
pass module so that no further calibration should be required. In the
read-out mode, a graphical compass rose with an indicator for the
north direction and the corresponding numerical heading in degrees
(from function COMPASSGet) is displayed.

• IRTV
The currently received infrared remote control code is displayed in nu-
merical form. All the necessary parameters for the different remote
control types have to be defined in the HDT before any valid code will
be displayed. This test is very useful to find out which code each but-
ton of the remote control will deliver upon calling the IRTVPressed
function, so these codes can be used in the software.

If any of these tests shows an unsatisfactory result, then the parameters in
the corresponding HDT structure should be checked first and modified where
appropriate before any conclusions about the hardware status are drawn. All of
these tests and therefore the RoBIOS drivers solely rely upon the stored values
in the HDT, which makes them quite universal, but they depend on correct set-
tings.

The third sub-menu (IO) of the hardware settings page deals with the status
of the on-board I/O interfaces. Three different groups are distinguished here.
These are the input and output latches (Dig), the parallel port interface (Parl),
and the analog input channels (AD). In the latch section, all eight bits of the
input latch can be monitored and each of the eight bits of the output latch can
be modified. In the parallel port section the port can be handled as an input
port to monitor the eight data pins plus the five incoming status pins or as an
output port to set any of the eight data pins plus the four outgoing control pins.
Finally in the analog input section, the current readings of the eight available
A/D converter (ADC) channels can be read with a selectable refresh rate.

B.1.3 Application Programs
The application program screens are responsible for the download of all
RoBIOS-related binaries, their storage in the flash-ROM, or the program exe-
cution from RAM. In the first screen, the program name together with the file-
size and, if applicable, the uncompressed size of an application in RAM are
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displayed. From here, there is a choice between three further actions: Ld, Run,
or ROM.
1. Load

The display shows the current settings for the assigned download port and
RoBIOS starts to monitor this port for any incoming data. If a special start
sequence is detected, the subsequent data in either binary or S-record for-
mat is received. Download progress is displayed as either a graphical bar
(for binary format) or byte counter (for S-record). If the cyclic redundancy
check (crc) reveals no error, the data type is being checked. If the file con-
tains a new RoBIOS or HDT, the user will be prompted for storing it in
ROM. If it contains a user application, the display changes back to the
standard download screen. 

Auto-download There is an alternative method to enter the download screen. If in the
HDT info-structure, the “auto_download” member is set to “AUTOLOAD” or
“AUTOLOADSTART”, RoBIOS will perform the scanning of the download
port during the status screen that appears at power-up. If data is being
downloaded, the system jumps directly to the download screen. In the “AU-
TOLOADSTART” case, it even automatically executes the downloaded appli-
cation. This mode comes in handy if the controller is fixed in a difficult-to-
reach assembly, where the LCD may not be visible or even attached, or
none of the four keys can be reached.

2. Run
If there is a user program ready in RAM, either by downloading or copying
from ROM, it can be executed by choosing this option. If the program bi-
nary is compressed RoBIOS will decompress it before execution. Program
control is completely transferred to the user application rendering the mon-
itor program inactive during the application’s run-time. If the user program
terminates, control is passed back to the monitor program. It will display
the overall run-time of the application before showing the Usr screen again.
The application can be restarted, but one has to be aware that any global
variables that are not initialized from the main program will still contain
the old values of the last run. Global declaration initializations such as:

Explicitly initialize
global variables

int x = 7;

will not work a second time in RAM!
The application in RAM will survive a reset, so any necessary reset dur-

ing the development phase of an application will not make it necessary to
reload the application program. 

3. ROM
In order to store user programs permanently, they need to be saved to the
flash-ROM. Currently, there are three program slots of 128KB each avail-
able. By compressing user programs before downloading, larger applica-
tions can be stored. The ROM screen displays the name of the current
program in RAM and the names of the three stored programs or NONE if
empty. With the Sav key, the program currently in RAM will be saved to
the selected ROM slot. This will only be performed if the program size
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does not exceed the 128KB limit and the program in RAM has not yet been
executed. Otherwise programs could be stored that have already modified
their global variable initializations or are already decompressed. With the
corresponding Ld key, a stored program is copied from flash-ROM to
RAM, either for execution or for copying to a different ROM slot.

Demo programs
in ROM

Turn-key system
in ROM

There are two reserved names for user applications that will be treated
in a special way. If a program is called “demos.hex” or “demos.hx” (com-
pressed program), it will be copied to RAM and executed if the Demo key
is pressed in the main menu of the monitor program (see Section B.1.4 be-
low). The second exception is that a program stored as “startup.hex” or
“startup.hx”will automatically be executed on power-up or reset of the
controller without any keys being pressed. This is called a “turn-key” sys-
tem and is very useful in building a complete embedded application with
an EyeCon controller. To prevent RoBIOS from automatically starting such
an application, any key can be pressed at boot time.

B.1.4 Demo Programs
As described above, if a user program with the name “demos.hex” or
“demos.hx” is stored in ROM, it will be executed when the Demo key is
pressed in the main screen. The standard demo program of RoBIOS includes
some small demonstrations: Camera, Audio, Network, and Drive. 

In the camera section three different demos are available. The Gry demo
captures grayscale camera images and lets the user apply up to four image
processing filters on the camera data before displaying them with the effective
frame rate in frames per second (fps). The Col demo grabs color images and
displays the current red, green, and blue values of the center pixel. By pressing
Grb, the color of the center pixel is memorized so that a subsequent press of
Tog can toggle between the normal display and showing only those pixels in
black that have a similar RGB color value to the previously stored value. The
third camera demo FPS displays color images and lets the user vary the frame
rate. Camera performance at various frame rates can be tested depending on
image resolution and CPU speed. At too high a frame rate the image will start
to roll through. Recorded images can be sent via serial port 1 to a PC by press-
ing the Upl key in PPM format. Also, the vω interface can be started in order
to check image processing while slowly driving the robot.

In the audio section, a simple melody or a voice sample can be played.
Also, the internal microphone can be monitored or used to record and play
back a sample sound.

In the network section, the radio module on serial port 2 can be tested. The
first test Tst simply sends five messages of 1,000 characters via the radio
module. The next test requires two controllers with a radio module. One Eye-
Con acts as the sender by pressing Snd, while the other acts as the receiver by
pressing Rcv. The sender now permanently sends a short changing message
that the receiver will print on its LCD.
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The last section drive performs the same task as described for the vω inter-
face HDT test function in Section B.1.2. In addition to this, driving can be per-
formed with the camera activated, showing captured images while driving.

B.2 System Function and Device Driver Library
The RoBIOS binary contains a large library of system functions and device
drivers to access and control all on-board and off-board hardware and to utilize
the operating system’s services. The advantages of placing those functions as a
shared library in the operating system code instead of distributing them as a
static library that is linked to all user programs are obvious. Firstly, the user
programs are kept small in size so that they can be downloaded faster to the
controller and naturally need less space in the case of being stored in ROM.
Secondly, if the function library is updated in ROM, every user program can
directly benefit from the new version without the need of being re-compiled.
Lastly, the interaction between the library functions and the operating system
internal functions and structures is straightforward and efficient since they are
integrated in the same code segment. Any user program running under
RoBIOS can call these library functions. Only the eyebot.h header file needs
to be included in the program source code. 

A special mechanism takes place to redirect a system call from a user pro-
gram to the appropriate RoBIOS library function. The header file only con-
tains so-called “function stubs”, which are simple macro definitions handling
parameter passing via stack or registers and then calling the “real” RoBIOS
functions via a jump address table. With this mechanism, any RoBIOS func-
tion call from a user program will be replaced by a function stub that in turn
calls the RAM address of the matching RoBIOS function. Since the order of
the current RoBIOS functions in this lookup table is static, no user program

Figure B.2: RoBIOS function call

User Program

RoBIOS function def.

#include "eyebot.h"
int main()
{ ...

OSsample(x);
...

}

Stub from header file
push_param(x)
JSR $0018

RoBIOS jump table

pop_param()

$0012: BRA lcd

void sample(int x)
{ ...
}

$0018: BRA sample
$000E: BRA key
...

RoBIOS
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has to be re-compiled if a new version of RoBIOS is installed on the EyeCon
controller (see Figure B.2).

The library functions are grouped in the following categories:
• Image Processing A small set of sample image processing func-

tions for demonstration purposes
• Key Input Reading the controller’s user keys
• LCD Output Printing text of graphics to the controller’s

LCD screen
• Camera Camera drivers for several grayscale and

color camera modules
• System Functions Low-level system functions and interrupt

handling
• Multi-Tasking Thread system with semaphore synchroniza-

tion
• Timer Timer, wait, sleep functions as well as real-

time clock
• Serial Communication Program and data download/upload via

RS232
• Audio Sound recording and playback functions,

tone and wave-format playing functions
• Position Sensitive Devices Infrared distance sensor functions with dig-

ital distance values
• Servos and Motors Driving functions for model servos and DC

motors with encoders
• vω Driving Interface High-level vehicle driving interface with PI

controller for linear and angular velocity
• Bumper+Infrared Sensors Routines for simple binary sensors (on/off

switches)
• Latches Access routines for digital I/O ports of the

controller
• Parallel Port Reading/writing data from/to standard par-

allel port, setting/reading of port status lines
• Analog-Digital Converter Access routines for A/D converter, including

· microphone input (analog input 0)
· battery status (analog input 1)

• Radio Communication Wireless communication routines for virtual
token ring of nodes (requires enabling)

• Compass Device driver for digital compass sensor
• IR Remote Control Reading a standard infrared TV remote as

user interface

All library functions are described in detail in Section B.5.
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B.3 Hardware Description Table
The EyeCon controller was designed as a core component for the large EyeBot
family of mobile robots and numerous external robot projects that implement
very different kinds of locomotion. Among those are wheeled, tracked, legged,
and flying robots. They all have in common that they utilize the same RoBIOS
library functions to control the attached motors, servos, and other supported
devices.

Therefore, the RoBIOS operating system is not committed to one hardware
design or one locomotion type only. This makes the operating system more
open toward different hardware applications but also complicates software
integration of the diverse hardware setups. Without any system support, a user
program would have to know exactly which hardware ports are used by all the
used actuators and sensors and what their device characteristics are. For
instance, even motors of the same type may have different performance curves
that have to be individually measured and compensated for in software. Due to
the same reasons another problem emerges: a piece of software that was writ-
ten for a particular target will not show exactly the same performance on a
similar model, unless adapted for any differences in the hardware characteris-
tics.

To overcome those deficiencies a hardware abstraction layer (called the
“Hardware Description Table”, HDT) has been introduced to RoBIOS. The
idea is that, for each controller, the characteristics and connection ports of all
attached devices are stored in a simple internal database. Each entry is associ-
ated with a unique keyword that reflects the semantics of the device. Thus, the
application programs only need to pass the desired semantics to the corre-
sponding RoBIOS driver to gain control. The driver searches the database for
the corresponding entry and reads out all necessary configurations for this
device. With this abstraction layer, a user program becomes portable not only
between robots of the same model, but also between electronically and
mechanically different robots.

If, for example, an application requests access to the left and right motor of
a vehicle, it simply calls the motor driver with the pre-defined semantics con-
stants (a kind of “device name”, see definition file htd_sem.h) MOTOR_LEFT
and MOTOR_RIGHT, without having to know where the motors are connected to
and what characteristic performance curves they have. By using the high level
vω interface, an application can even issue commands like “drive 1m forward”
without having to know what kind of locomotion system the robot is actually
based on. Furthermore, a program can dynamically adapt to different hardware
configurations by trying to access multiple devices through a list of semantics
and only cope with those that respond positively. This can be used for sensors
like the PSD distance sensors or IR binary sensors that help to detect surround-
ing obstacles, so that the software can adapt its strategy on the basis of the
available sensors and their observed area or direction.

The HDT not only incorporates data about the attached sensors and actua-
tors, but also contains a number of settings for the internal controller hardware
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(including CPU frequency, chip-access waitstates, serial port settings and I/O-
latch configuration) and some machine-dependent information (for example
radio network ID, robot name, start-up melody, and picture).

As already noted in Section 1.4, the HDT is stored separately in the flash-
ROM, so modifications can easily be applied and downloaded to the controller
without having to reload RoBIOS as well. The size of the HDT is limited to
16KB, which is more than enough to store information about a fully equipped
and configured controller.

B.3.1 HDT Component List
The HDT primarily consists of an array of component structures. These struc-
tures carry information about the object they are referring to (see Program
B.1). 

• type_id: This is the unique identifier (listed in hdt.h) of the category
the described object belongs to. Examples are MOTOR, SERVO, PSD,
COMPASS, etc. With the help of this category information, RoBIOS is
able to determine the corresponding driver and hence can count how
many entries are available for each driver. This is used among others
in the HDT section of the monitor program to display the number of
candidates for each test.

• semantics: The abstraction of a device from its physical connection
is primarily achieved by giving it a meaningful name, such as
MOTOR_RIGHT, PSD_FRONT, L_KNEE, etc., so that a user program only
needs to pass such a name to the RoBIOS driver function, which will
in turn search the HDT for the valid combination of the according Ty-
peID and this name (DeviceSemantics). The list of already assigned
semantics can be found in hdt_sem.h. It is strongly recommended to
use the predefined semantics in order to support program portability.

• device_name: This is a string representation of the numerical seman-
tics parameter with a maximum of six letters. It is only used for testing
purposes, to produce a readable semantics output for the HDT test
functions of the monitor program.

Program B.1: Component structure of HDT array

1 typedef struct
2 { TypeID              type_id;
3   DeviceSemantics     semantics;
4   String6             device_name;
5   void*               data_area;
6 } HDT_entry_type;
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• data_area: This is a typeless pointer to the different category-depend-
ent data structures that hold type-specific information for the assigned
drivers. It is a typeless pointer, since no common structure can be used
to store the diversity of parameters for all the drivers.

The array of these structures has no predefined length and therefore requires
a special end marker to prevent RoBIOS from running past the last valid entry.
This final entry is denoted as:

{END_OF_HDT,UNKNOWN_SEMANTICS,"END",(void *)0}

Apart from this marker, two other entries are mandatory for all HDTs:
• WAIT: This entry points to a list of waitstate values for the different

chip-access times on the controller platform, which are directly de-
rived from the chosen CPU frequency.

• INFO: This entry points to a structure of numerous basic settings, like
the CPU frequency to be used, download and serial port settings, net-
work ID, robot name, etc.

Program B.2 is an example of the shortest valid HDT. 

The descriptions of all the different HDT data structures can be found in
Appendix C. Together with the array of component structures, the used data
structures build up the complete source code for an HDT binary. To obtain a
downloadable binary image the HDT source code has to be compiled with the
special HDT batch commands provided with the RoBIOS distribution. For
example:

gcchdt myhdt.c -o myhdt.hex

The HDT code is compiled like a normal program except for a different
linker file that tells the linker not to include any start-up code or main() func-

Program B.2: Shortest valid HDT file

1 #include "robios.h"
2 int    magic = 123456789;
3 extern HDT_entry_type HDT[];
4 HDT_entry_type  *hdtbase = &HDT[0];
5
6 /* Info: EyeBot summary */
7 info_type roboinfo  = {0, VEHICLE, SER115200, RTSCTS,
8 SERIAL1, 0, 0, AUTOBRIGHTNESS, BATTERY_ON, 35, 1.0,
9 "Eye-M5",1};

10 /* waitstates for: ROM, RAM, LCD, IO, UART */
11 waitstate_type waitstates = {0,3,1,2,1,2};
12
13 HDT_entry_type HDT[] =
14 { {WAIT,WAIT,"WAIT",(void *)&waitstates},
15     {INFO,INFO,"INFO",(void *)&roboinfo},
16     {END_OF_HDT,UNKNOWN_SEMANTICS,"END",(void *)0}
17 };
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tion, since only the data part is needed. During the download of an HDT binary
to the controller, the “magic number” in the HDT header is recognized by
RoBIOS and the user is prompted to authorize updating the HDT in flash-
ROM.

B.3.2 HDT Access Functions
There are five internal functions in RoBIOS to handle the HDT. They are
mainly used by hardware drivers to find the data structure corresponding to a
given semantics or to iterate through all assigned data structures with the same
type identifier:

int HDT_Validate(void)

This function is used by RoBiOS to check the magic number of the HDT
and to initialize the global HDT access data structure.
void *HDTFindEntry(TypeID typeid,DeviceSemantics semantics)

With the help of this function the address of the data structure that corre-
sponds to the given type identifier and semantics is found. This is the only
function that can also be called from a user program to obtain more detailed
information about a specific device configuration or characteristic.
DeviceSemantics HDT_FindSemantics(TypeID typeid, int x)

This is the function that is needed to iterate through all available entries of
the same type. By calling this function in a loop with increasing values for
x until reaching UNKNOWN_SEMANTICS, it is possible to inspect all instances
of a specific category. The return value is the semantics of the correspond-
ing instance of this type and might be used in calling HDT_FindEntry() or
the device driver initialization function.
int HDT_TypeCount(TypeID typeid)

This function returns the number of entries found for a specific type iden-
tifier.
char *HDT_GetString(TypeID typeid,DeviceSemantics semantics)

This function returns the readable name found in the entry associated with
the given type and semantics. 

Normally, an application program does not need to bother with the internal
structure of the HDT. It can simply call the driver functions with the defined
semantics as shown in an example for the motor driver functions in Program
B.3. For details of all HDT entries see Appendix C.
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B.4 Boot Procedure
The time between switching on the EyeCon controller and the display of the
RoBIOS user interface is called the boot phase. During this time numerous
actions are performed to bring the system up to an initialized and well-defined
state.

In the beginning, the CPU is trying to fetch the start address of an execut-
able program from memory location $000004. Since the RAM is not yet ini-
tialized, the default memory area for the CPU is the flash-ROM, which is acti-
vated by the hardware chip-select line CSBOOT’ and therefore is internally
mapped to address $000000. As shown in Figure 1.11, RoBIOS starts at
exactly that memory location, so the CPU will start executing the RoBIOS
bootstrap loader, which precedes the compressed RoBIOS binary. This code
initializes the CPU chip-select signals for the RAM chips, so that the com-
pressed RoBIOS can later be unpacked into RAM. Furthermore, the address
mapping is changed so that after the unpacking the RAM area will start at
address $000000, while the ROM area will start at $C00000.

It seems to be a waste of RAM space to have RoBIOS in ROM and in
RAM, but this offers a number of advantages. First, RAM access is about three
times faster than ROM access because of different waitstates and the 16bit
RAM bus compared to the 8bit ROM bus. This increases RoBIOS perform-
ance considerably. Secondly, it allows storage of the RoBIOS image in com-
pressed form in ROM, saving ROM space for user programs. And finally, it
allows the use of self-modifying code. This is often regarded as bad program-
ming style, but can result in higher performance, e.g for time consuming tasks
like frame grabbing or interrupt handling. On the other hand, a RAM location
has the disadvantage of being vulnerable to memory modifications caused by

Program B.3: Example of HDT usage

1 /* Step1: Define handle variable as a motor reference */
2 MotorHandle leftmotor;
3
4 /* Step2: Initialize handle with the semantics (name) of
5 chosen motor. The function will search the HDT
6 for a MOTOR entry with given semantics and, if
7 successful, initialize motor hardware and return
8 the corresponding handle */
9 leftmotor = MOTORInit(LEFTMOTOR);

10
11 /* Step3: Use a motor command to set a certain speed.
12 Command would fail if handle was not initial. */
13 MOTORDrive (leftmotor,50);
14
15 /* Step4: Release motor handle when motor is no longer
16 needed */
17 MOTORRelease (leftmotor);
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user programs, which can temporarily lead to an unexpected system behavior
or a total crash. However, after a reset everything will work fine again, since a
new RoBIOS copy will be read from the protected flash-ROM.

After the RAM chips and all other required chip-select pins have been ini-
tialized, the start-up code copies a small decompression algorithm to a CPU-
local RAM area (TPU-RAM), where it can be executed with zero waitstates,
which speeds up the unpacking of the RoBIOS binary to external RAM.
Finally, after having placed the executable RoBIOS image in the address area
from $000000 to $020000, the start-up code jumps into the first line of the now
uncompressed RoBIOS in RAM, where the remaining initialization tasks are
performed. Among those are the test for additional mounted RAM chips and
the subsequent calculation of the actual RAM size.

In the same manner the ROM size is checked, to see if it exceeds the mini-
mum of 128KB. If so, RoBIOS knows that user programs can be stored in
ROM. Now it is checked if a new HDT is located at the first user ROM slot. In
this case, a short message is printed on the LCD that the re-programming of
the flash-ROM will take place before the system continues booting. Now that
an HDT is available, RoBIOS checks it for integrity and starts extracting infor-
mation from it like the desired CPU clock rate, or the waitstate settings for dif-
ferent chip-select lines. Finally, the interrupt handlers, the 100Hz system timer,
and some basic drivers, for example for serial interface, ADC, in/out-latches
and audio, are started just before the welcome screen is shown and a melody is
played.

Before displaying the standard monitor status screen, RoBIOS has to check
whether a program called “startup.hex” or “startup.hx” is stored in ROM.
If this is the case, a turn-key system has been created and the application pro-
gram will be loaded and started immediately, unless a button is being pressed.
This is very useful for an embedded application of the EyeCon controller or in
the case when no LCD is mounted, which obviously would make a manual
user program start difficult.

B.5 RoBIOS Library Functions
This section describes the RoBIOS operating system library routines in version
6.5 (2008). Newer versions of the RoBIOS software may differ from the func-
tionality described below – see the latest software documentation. The follow-
ing libraries are available in ROM for programming in C.

In application files use:
#include "eyebot.h"

The following libraries are available in ROM for programming in C and are
automatically linked when calling "gcc68" and the like (using librobi.a).
Note that there are also a number of libraries available which are not listed
here, since they are not in ROM but in the EyeBot distribution (e.g. elaborate
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image processing library). They can also be linked with an application
program, as shown in the demo programs provided.

Return Codes
Unless specifically noted otherwise, all routines return 0 when successful, or a 
value !=0 when an error has occurred. Only very few routines support multiple 
return codes. 

B.5.1 Image Processing
A few basic image processing functions are included in RoBiOS. A larger collec-
tion of image processing functions is contained in the "image processing 
library", which can be linked to an application program.

Data Types:
        /* image is 80x60 but has a border of 1 pixel */
        #define imagecolumns 82
        #define imagerows 62

        typedef BYTE image[imagerows][imagecolumns];
        typedef BYTE colimage[imagerows][imagecoulmns][3];

int IPLaplace (image *src, image *dest);
        Input:          (src) source b/w image
        Output:         (dest) destination b/w image
        Semantics:      The Laplace operator is applied to the source image
                        and the result is written to the destination image

int IPSobel (image *src, image *dest);
        Input:          (src) source b/w image
        Output:         (dest) destination b/w image
        Semantics:      The Sobel operator is applied to the source image
                        and the result is written to the destination image

int IPDither (image *src, image *dest);
        Input:          (src) source b/w image
        Output:         (dest) destination b/w image
        Semantics:      The Dithering operator with a 2x2 pattern is applied
                        to the source image and the result is written to the
                        destination image

int IPDiffer (image *current, image *last, image *dest);
        Input:          (current) the current b/w image
                        (last) the last read b/w image
        Output:         (dest) destination b/w image
        Semantics:      Calculate the grey level difference at each pixel
                        position between current and last image, and
                        store the result in destination.

int IPColor2Grey (colimage *src, image *dest);
        Input:          (src) source color image
        Output:         (dest) destination b/w image
        Semantics:      Convert RGB color image given as source to 8-bit
                        grey level image and store the result in
                        destination.

Advanced image processing functions are available as library "improc.a".
For detailed info see the Improv web-page:
  http://robotics.ee.uwa.edu.au/improv/ 
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B.5.2 Key Input

Using the standard Unix "libc" library, it is possible to use standard C 
"scanf" commands to read key "characters" from the "keyboard".

int KEYGetBuf (char *buf);
Input:          (buf) a pointer to one character
Output:         (buf) the keycode is written into the buffer
                Valid keycodes are: KEY1,KEY2,KEY3,KEY4 (keys
                from left to right)
Semantics:      Wait for a keypress and store the keycode into
               the buffer

int KEYGet (void);
Input:          NONE
Output:         (returncode) the keycode of a pressed key is returned
               Valid keycodes are: KEY1,KEY2,KEY3,KEY4 (keys
               from left to right)
Semantics:      Wait for a keypress and return keycode

int KEYRead (void);
Input:          NONE
Output:         (returncode) the keycode of a pressed key is
                returned or 0 if no key is pressed.
                Valid keycodes are: KEY1,KEY2,KEY3,KEY4 (keys
                from left to right) or 0 for no key.
Semantics:      Read keycode and return it. Function does not wait.

int KEYWait (int excode);
Input:          (excode) the code of the key expected to be pressed
               Valid keycodes are: KEY1,KEY2,KEY3,KEY4 (keys
                from left to right) or ANYKEY.
Output:         NONE
Semantics:      Wait for a specific key

B.5.3 LCD Output
Using the standard Unix "libc" library, it is possible to use standard
C "printf" commands to print on the LCD "screen". E.g. the "hello
world" program works:

  printf("Hello, World!\n");

The following routines can be used for specific output functions:

int LCDPrintf (const char format[], ...);
Input:          format string and parameters
Output:         NONE
Semantics:      Prints text or numbers or combination of both
                onto LCD. This is a simplified and smaller
                version of standard Clib "printf".

int LCDClear (void);
Input:          NONE
Output:         NONE
Semantics:      Clear the LCD

int LCDPutChar (char char);
Input:          (char) the character to be written
Output:         NONE
Semantics:      Write the given character to the current cursor
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                position and increment cursor position

int LCDSetChar (int row,int column,char char);
Input:          (char) the character to be written
                (column) the number of the column
                Valid values are: 0-15
                (row) the number of the row
                Valid values are: 0-6
Output:         NONE
Semantics:      Write the given character to the given display position

int LCDPutString (char *string);
Input:          (string) the string to be written
Output:         NONE
Semantics:       Write the given string to the current cursor pos.
                and increment cursor position

int LCDSetString (int row,int column,char *string);
Input:          (string) the string to be written
                (column) the number of the column
                Valid values are: 0-15
                (row) the number of the row
                 Valid values are: 0-6
Output:         NONE
Semantics:      Write the given string to the given display position

int LCDPutHex (int val);
Input:          (val) the number to be written
Output:         NONE
Semantics:      Write the given number in hex format at current
                cursor position

int LCDPutHex1 (int val);
Input:          (val) the number to be written (single byte 0..255)
Output:         NONE
Semantics:      Write the given number as 1 hex-byte at current
                cursor position

int LCDPutInt (int val);
Input:          (val) the number to be written
Output:         NONE
Semantics:      Write the given number as decimal at current 
                cursor position

int LCDPutIntS (int val, int spaces);
Input:          (val)    the number to be written
                (spaces) the minimal number of print spaces
Output:         NONE
Semantics:      Write the given number as decimal at current 
                    cursor position using extra spaces in front if necessary

int LCDPutFloat (float val);
        Input:          (val) the number to be written
        Output:         NONE
        Semantics:      Write the given number as floating point number
                        at current cursor position

int LCDPutFloatS (float val, int spaces, int decimals);
        Input:          (val)      the number to be written
                        (spaces)   the minimal number of print spaces
                        (decimals) the number of decimals after the point
        Output:         NONE
        Semantics:      Write the given number as a floating point number
                        at current cursor position using extra spaces in
                        front if necessary and with specified number of
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                        decimals

int LCDMode (int mode);
Input:          (mode) the display mode you want
                        Valid values are: (NON)SCROLLING|(NO)CURSOR
Output:         NONE
Semantics:      Set the display to the given mode
                SCROLLING: the display will scroll up one
                line, when the right bottom corner is
                reached and the new cursor position
                will be the first column of the now
                blank bottom line
                NONSCROLLING: display output will resume in
                   the top left corner when the bottom
                   right corner is reached
                NOCURSOR: the blinking hardware cursor is not
                   displayed at the current cursor position
                CURSOR: the blinking hardware cursor is
                   displayed at the current cursor position

int LCDSetPos (int row, int column);
Input:          (column) the number of the column
                Valid values are: 0-15
                (row) the number of the row
                Valid values are: 0-6
Output:         NONE
Semantics:      Set the cursor to the given position

int LCDGetPos (int *row, int *column);
Input:           (column) pointer to the storing place for current
                column.
                    (row) pointer to the storing place for current row.
Output:         (*column) current column
                Valid values are: 0-15
                (row) current row
                Valid values are: 0-6
Semantics:      Return the current cursor position

int LCDPutGraphic (image *buf);
Input:          (buf) pointer to a grayscale image (80*60 pixel)
Output:         NONE
Semantics:      Write the given graphic b/w to the display
                    it will be written starting in the top left corner
                down to the menu line.  Only 80x54 pixels will
                be written to the LCD, to avoid destroying the
                menu line.

int LCDPutColorGraphic (colimage *buf);
        Input:          (buf) pointer to a color image (80*60 pixel)
        Output:         NONE
        Semantics:      Write the given graphic b/w to the display
                        it will be written starting in the top left corner
                        down to the menu line.  Only 80x54 pixels will
                        be written to the LCD, to avoid destroying the
                        menu line.  Note: The current implementation
                        destroys the image content.

int LCDPutImage (BYTE *buf);
Input:          (buf) pointer to a b/w image (128*64 pixel)
Output:         NONE
Semantics:      Write the given graphic b/w to the hole display.

int LCDMenu (char *string1, char *string2, char *string3,char *string4);
Input:          (string1) menu entry above key1
                (string2) menu entry above key2
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                (string3) menu entry above key3
                (string4) menu entry above key4
                Valid Values are:
                - a string with max 4 characters, which
                  clears the menu entry and writes the new one
                - "" : leave the menu entry untouched
                - " " : clear the menu entry
Output:         NONE
Semantics:      Fill the menu line with the given menu entries

int LCDMenuI (int pos, char *string);
Input:          (pos) number of menu entry to be exchanged (1..4)
                (string) menu entry above key <pos> a string
                with max 4 characters
Output:         NONE
Semantics:      Overwrite the menu line entry at position pos with
                the given string

int LCDSetPixel (int row, int col, int val);
Input:          (val) pixel operation code
                Valid codes are:        0 = clear pixel
                                        1 = set pixel
                                        2 = invert pixel
                (column) the number of the column
                Valid values are: 0-127
                (row) the number of the row
                Valid values are: 0-63
Output:         NONE

Semantics:      Apply the given operation to the given pixel
                position.  LCDSetPixel(row, col, 2) is the
                same as LCDInvertPixel(row, col).

int LCDInvertPixel (int row, int col);
Input:          (column) the number of the column
                Valid values are: 0-127
                (row) the number of the row
                Valid values are: 0-63
Output:         NONE
Semantics:      Invert the pixel at the given pixel position.
                LCDInvertPixel(row, col) is the same as
                LCDSetPixel(row, col, 2).

int LCDGetPixel (int row, int col);
Input:          (column) the number of the column
                Valid values are: 0-127
                (row) the number of the row
                Valid values are: 0-63
Output:         (returncode) the value of the pixel
                Valid values are:       1 for set pixel
                                        0 for clear pixel
Semantics:      Return the value of the pixel at the given
                position

int LCDLine (int x1, int y1, int x2, int y2, int col)
Input:          (x1,y1) (x2,y2) and color
Output:         NONE
Semantics:      Draw a line from (x1,y1) to (x2,y2) using Bresenham Algorithm
                top left  is   0, 0
                bottom right is 127,63
                color: 0 white
                       1 black
                       2 negate image contents

int LCDArea (int x1, int y1, int x2, int y2, int col)
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Input:  (x1,y1) (x2,y2) and color
Output: NONE
Semantics: Fill rectangular area from (x1,y1) to (x2,y2) it must
           hold: x1 < x2 AND y1 < y2
              top    left  is   0, 0
              bottom right is 127,63
              color: 0 white
                     1 black
                     2 negate image contents

B.5.4 Camera
The following functions handle initializing and image reading from either gray-
scale or color camera:

int CAMInit (int mode);
        Input:          (mode) camera initialization mode
                        Valid Values are: NORMAL
        Output:         (return code) Camera version or Error code
                        Valid values:

255 = no camera connected
200..254 = camera init error (200 + cam. code)

0 = QuickCam V1 grayscale
16 = QuickCam V2 color
17 = EyeCam-1 (6300), res.  82x 62 RGB
18 = EyeCam-2 (7620), res. 320x240 Bayer
19 = EyeCam-3 (6620), res. 176x144 Bayer

        Semantics:      Reset and initialize connected camera
        Notes:          [Previously used camera modes for Quickcam:
                         WIDE,NORMAL,TELE]
                        The maximum camera speed is determined by processor speed
                        and any background tasks. E.g. when using v-omega motor 
                        control as a background task, set the camera speed to:
                        CAMSet (FPS1_875, 0, 0);

int CAMRelease (void);
        Input:          NONE
        Output:         (return code) 0 = success
                                     -1 = error
        Semantics:      Release all resources allocated using CAMInit().

int CAMGetFrame (image *buf);
        Input:          (buf) a pointer to a gray scale image
        Output:         NONE
        Semantics:      Read an image size 62x82 from gray scale camera.
                        Return 8 bit gray values 0 (black) .. 255 (white)

int CAMGetColFrame (colimage *buf, int convert);
        Input:          (buf) a pointer to a color image
                        (convert) flag if image should be reduced to 8 bit gray
                                  0 = get 24bit color image
                                  1 = get 8bit grayscale image
        Output:         NONE
        Semantics:      Read an image size 82x62 from color cam and reduce it
                        if required to 8 bit gray scale.
        Note:           - buf needs to be a pointer to 'image'
                        - enable conversion like this:
                                image buffer;
                                CAMGetColFrame((colimage*)&buffer, 1);

int CAMGetFrameMono (BYTE *buf);
        Note:           This function works only for EyeCam
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        Input:          (buf) pointer to image buffer of full size (use CAMGet)
        Output:         (return code) 0 = success
                                     -1 = error (camera not initialized)
        Semantics:      Reads one full gray scale image

(e.g. 82x62, 88x72, 160x120) dep. on camera module

int CAMGetFrameRGB (BYTE *buf);
        Note:           This function works only for EyeCam
        Input:          (buf) pointer to image buffer of full size (use CAMGet)
        Output:         (return code) 0 = success
                                     -1 = error (camera not initialized)
        Semantics:      Reads full color image in RBG format, 3 bytes per pixel,
                      (e.g. 82x62*3, 88x72*3, 160x120*3)

depending on camera module

int CAMGetFrameBayer (BYTE *buf);
        Note:           This function works only for EyeCam
        Input:          (buf) pointer to image buffer of full size (use CAMGet)
        Output:         (return code) 0 = success
                                     -1 = error (camera not initialized)
        Semantics:      Reads full color image in Bayer format, 4 bytes per pix,
                      (e.g. 82x62*4, 88x72*4, 160x120*4)

depending on camera module

int CAMSet (int para1, int para2, int para3);
        Note:           parameters have different meanings for different cameras
        Input:QuickCam  (para1) camera brightness
                        (para2) camera offset (b/w camera) / hue (color camera)
                        (para3) contrast (b/w camera) / saturation (color camera)
                        Valid values are: 0-255
              ---------------------------------------------------
              EyeCam    (para1) frame rate in frames per second
                        (para2) not used
                        (para3) not used
                        Valid values are: FPS60, FPS30, FPS15,
                         FPS7_5, FPS3_75, FPS1_875, FPS0_9375, and FPS0_46875.
                         For the VV6300/VV6301, the default is FPS7_5.
                         For the OV6620, the default is FPS1_875.
                         For the OV7620, the default is FPS0_48375.
        Output:         NONE
        Semantics:      Set camera parameters

int CAMGet (int *para1, int *para2 ,int *para3);
        Note:           parameters have different meanings for different cameras
        Input:QuickCam  (para1) pointer for camera brightness
                        (para2) pointer for offset (b/w camera) / hue (color cam)
                        (para3) pointer for contrast (b/w cam) / sat. (color cam)
                        Valid values are: 0-255
              ---------------------------------------------------
              EyeCam    (para1) frame rate in frames per second
                        (para2) full image width
                        (para3) full image height
        Output:         NONE
        Semantics:      Get camera hardware parameters

int CAMMode (int mode);
        Input:          (mode) the camera mode you want
                        Valid values are: (NO)AUTOBRIGHTNESS
        Output:         NONE
        Semantics:      Set the display to the given mode
                        AUTOBRIGHTNESS: the brightness value of the
                          camera is automatically adjusted
                        NOAUTOBRIGHTNESS: the brightness value is not
                          automatically adjusted



RoBIOS Operating System

474

B
B.5.5 System Functions

Miscellaneous system functions:

char *OSVersion (void);
Input:          NONE
Output:         OS version
Semantics:      Returns string containing running RoBIOS version.
Example:        "3.1b"

int OSError (char *msg,int number,BOOL dead);
Input:          (msg) pointer to message
                (number) int number
                (dead) switch to choose dead end or key wait
                Valid values are:       0 = no dead end
                                        1 = dead end
Output:         NONE
Semantics:      Print message and number to display then
                stop processor (dead end) or wait for key

int OSMachineType (void);
Input:          NONE
Output:         Type of used hardware
                Valid values are:
                VEHICLE, PLATFORM, WALKER
Semantics:      Inform the user in which environment the program runs.

int OSMachineSpeed (void);
Input:          NONE
Output:         actual clockrate of CPU in Hz
Semantics:      Inform the user how fast the processor runs.

char* OSMachineName (void);
Input:          NONE
Output:         Name of actual Eyebot
Semantics:      Inform the user with which name the Eyebot is
                titled (entered in HDT).

unsigned char OSMachineID (void);
Input:          NONE
Output:         ID of actual Eyebot
Semantics:      Inform the user with which ID the Eyebot is titled
                (entered in HDT).

void *HDTFindEntry(TypeID typeid,DeviceSemantics semantics);
        Input:  (typeid)    Type identifier tag of the category
                            (e.g. MOTOR, for a motor type)
                (semantics) Semantics itentifier tag (e.g. MOTOR_LEFT,
                            specifying which of several motors)
        Output:         Reference to matching HDT entry
        Semantics:      This function is used by device drivers to search for
                        first entry that matches the semantics and returns a
                        pointer to the corresponding data structure.
                        See HDT description in HDT.txt .

Interrupts:

int OSEnable (void);
Input:          NONE
Output:         NONE
Semantics:      Enable all cpu-interrupts

int OSDisable (void);
Input:          NONE
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Output:         NONE
Semantics:      Disable all cpu-interrupts

Saving of variables in TPU-RAM (SAVEVAR1-3 occupied by RoBiOS):

int OSGetVar (int num);
Input:          (num) number of tpupram save location
Valid values:   SAVEVAR1-4 for word saving
                SAVEVAR1a-4a/1b-4b for byte saving

Output:         (returncode) the value saved
                 Valid values are:  0-65535 for word saving
                                    0-255 for byte saving
Semantics:      Get the value from the given save location

int OSPutVar (int num, int value);
Input:          (num) number of tpupram save location
                 valid values are: SAVEVAR1-4 for word saving
                                   SAVEVAR1a-4a/1b-4b for byte saving
                (value) value to be stored
                 Valid values are: 0-65535 for word saving
                                   0-255 for byte saving
Output:         NONE
Semantics:      Save the value to the given save location

B.5.6 Multitasking
RoBiOS implements both preemptive and cooperative multitasking. One of these 
modes needs to be selected when initializing multitasking operation.

int OSMTInit (BYTE mode);
Input:          (mode) operation mode
                 Valid values are: COOP=DEFAULT,PREEMPT
Output:         NONE
Semantics:      Initialize multithreading environment

tcb *OSSpawn (char *name,int code,int stksiz,int pri,int uid);
Input:          (name) pointer to thread name
                (code) thread start address
                (stksize) size of thread stack
                (pri) thread priority
                Valid values are: MINPRI-MAXPRI
                (uid) thread user id
Output:         (returncode) pointer to initialized thread
                control block
Semantics:      Initialize new thread, tcb is initialized and
                inserted in scheduler queue but not set to
                READY

int OSMTStatus (void);
Input:          NONE
Output:         PREEMPT, COOP, NOTASK
Semantics:      returns actual multitasking mode (preemptive,
                cooperative or sequential)

int OSReady (struct tcb *thread);
Input:          (thread) pointer to thread control block
Output:         NONE
Semantics:      Set status of given thread to READY

int OSSuspend (struct tcb *thread);
Input:          (thread) pointer to thread control block
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Output:         NONE
Semantics:      Set status of given thread to SUSPEND

int OSReschedule (void);
Input:          NONE
Output:         NONE
Semantics:      Choose new current thread

int OSYield (void);
Input:          NONE
Output:         NONE
Semantics:      Suspend current thread and reschedule

int OSRun (struct tcb *thread);
Input:          (thread) pointer to thread control block
Output:         NONE
Semantics:      READY given thread and reschedule

int OSGetUID (thread);
Input:          (thread) pointer to thread control block
                (tcb *)0 for current thread
Output:         (returncode) UID of thread
Semantics:      Get the UID of the given thread

int OSKill (struct tcb *thread);
Input:          (thread) pointer to thread control block
Output:         NONE
Semantics:      Remove given thread and reschedule

int OSExit (int code);
Input:          (code) exit code
Output:         NONE
Semantics:      Kill current thread with given exit code and message

int OSPanic (char *msg);
Input:          (msg) pointer to message text
Output:         NONE
Semantics:      Dead end multithreading error, print message to display
                and stop processor

int OSSleep (int n)
Input:          (n) number of 1/100 secs to sleep
Output:         NONE
Semantics:      Let current thread sleep for at least n*1/100
                seconds.  In multithreaded mode, this will
                reschedule another thread.  Outside
                multi-threaded mode, it will call OSWait().

int OSForbid (void)
Input:          NONE
Output:         NONE
Semantics:      disable thread switching in preemptive mode

int OSPermit (void)
Input:          NONE
Output:         NONE
Semantics:      enable thread switching in preemptive mode

In the functions described above the parameter "thread" can always be a pointer 
to a tcb or 0 for current thread.

Semaphores:

int OSSemInit (struct sem *sem,int val);
Input:          (sem) pointer to a semaphore
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                        (val) start value
Output:         NONE
Semantics:      Initialize semaphore with given start value

int OSSemP (struct sem *sem);
Input:          (sem) pointer to a semaphore
Output:         NONE
Semantics:      Do semaphore P (down) operation

int OSSemV (struct sem *sem);
Input:          (sem) pointer to a semaphore
Output:         NONE
Semantics:      Do semaphore V (up) operation

B.5.7 Timer
int OSSetTime (int hrs,int mins,int secs);
Input:          (hrs) value for hours
                (mins) value for minutes
                (secs) value for seconds
Output:         NONE
Semantics:      Set system clock to given time

int OSGetTime (int *hrs,int *mins,int *secs,int *ticks);
Input:          (hrs) pointer to int for hours
                (mins) pointer to int for minutes
                (secs) pointer to int for seconds
                (ticks) pointer to int for ticks
Output:         (hrs) value of hours
                (mins) value of minutes
                (secs) value of seconds
                (ticks) value of ticks
Semantics:      Get system time, one second has 100 ticks

int OSShowTime (void);
Input:          NONE
Output:         NONE
Semantics:      Print system time to display

int OSGetCount (void);
Input:          NONE
Output:         (returncode) number of 1/100 seconds since last reset
Semantics:      Get the number of 1/100 seconds since last reset.
                Type int is 32 bits, so this value will wrap
                around after ~248 days.

int OSWait (int n);
Input:          (n) time to wait
Output:         NONE
Semantics:      Busy loop for n*1/100 seconds.

Timer-IRQ:

TimerHandle OSAttachTimer (int scale, TimerFnc function);
Input:          (scale) prescale value for 100Hz Timer (1 to ...)
                (TimerFnc) function to be called periodically
Output:         (TimerHandle) handle to reference the IRQ-slot
                A value of 0 indicates an error due to a full list
                (max. 16).
Semantics:      Attach an irq-routine (void function(void)) to the irq-list.
                The scale parameter adjusts the call frequency (100/scale Hz)
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                of this routine to allow many different applications.

int OSDetachTimer (TimerHandle handle)
Input:          (handle) handle of a previous installed timer irq
Output:         0 = handle not valid
                1 = function successfully removed from timer irq list
Semantics:      Detach a previously installed irq-routine from the irq-list.

B.5.8 Serial Communication (RS232)
int OSDownload (char *name,int *bytes,int baud,int handshake,int interface);
Input:          (name) pointer to program name array
                (bytes) pointer to bytes transferred int
                (baud) baud rate selection
                Valid values are: SER4800, SER9600,SER19200,SER38400,
                SER57600, SER115200
                (handshake) handshake selection
                Valid values are: NONE,RTSCTS
                (interface): serial interface
                 Valid values are: SERIAL1-3
Output:         (returncode)
                 0 = no error, download incomplete - call again
                99 = download complete
                 1 = receive timeout error
                 2 = receive status error
                 3 = send timeout error
                 5 = srec checksum error
                 6 = user canceled error
                 7 = unknown srecord error
                 8 = illegal baud rate error
                 9 = illegal startadr. error
                10 = illegal interface

Semantics:      Load user program with the given serial setting
                and get name of program.  This function must
                be called in a loop until the returncode is
                !=0. In the loop the bytes that have been
                transferred already can be calculated from the
                bytes that have been transferred in this round.
                Note: do not use in application programs.

int OSInitRS232 (int baud,int handshake,int interface);
Input:          (baud) baud rate selection
                Valid values are:
                SER4800,SER9600,SER19200,SER38400,SER57600,SER115200
                (handshake) handshake selection
                Valid values are: NONE,RTSCTS
                (interface) serial interface
                Valid values are: SERIAL1-3
Output:         (returncode)
                 0 = ok
                 8 = illegal baud rate error
                10 = illegal interface
Semantics:      Initialize rs232 with given setting

int OSSendCharRS232 (char chr,int interface);
Input:          (chr) character to send
                (interface) serial interface
                Valid values are: SERIAL1-3
Output:         (returncode)
                 0 = good
                 3 = send timeout error
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                10 = illegal interface
Semantics:      Send a character over rs232

int OSSendRS232 (char *chr,int interface);
Input:          (chr) pointer to character to send
                (interface) serial interface
                 Valid values are: SERIAL1-3
Output:         (returncode)
                 0 = good
                 3 = send timeout error
                10 = illegal interface
Semantics:      Send a character over rs232.  Use OSSendCharRS232()
                instead.  This function will be removed in the future.

int OSRecvRS232 (char *buf,int interface);
Input:          (buf) pointer to a character array
                (interface) serial interface
                 Valid values are: SERIAL1-3
Output:         (returncode)
                 0 = good
                 1 = receive timeout error
                 2 = receive status error
                10 = illegal interface
Semantics:      Receive a character over rs232

int OSFlushInRS232 (int interface);
Input:          (interface) serial interface
                Valid values are: SERIAL1-3
Output:         (returncode)
                 0 = good
                10 = illegal interface
Semantics:      resets status of receiver and flushes its
                FIFO. Very useful in NOHANDSHAKE-mode to bring
                the FIFO in a defined condition before
                starting to receive

int OSFlushOutRS232 (int interface);
Input:          (interface) serial interface
                 Valid values are: SERIAL1-3
Output:         (returncode)
                 0 = good
                10 = illegal interface
Semantics:      flushes the transmitter-FIFO.  very useful to abort
                current transmission to host (E.g.: in the case
                of a not responding host)

int OSCheckInRS232 (int interface);
Input:          (interface) serial interface
                 Valid values are: SERIAL1-3
Output:         (returncode) >0 : the number of chars currently
                                  available in FIFO
                 <0 : 0xffffff02 receive status error
                      (no chars available)
                 0xffffff0a illegal interface
Semantics:      useful to read out only packages of a certain size

int OSCheckOutRS232 (int interface);
Input:          (interface) serial interface
                Valid values are: SERIAL1-3
Output:         (returncode) >0 : the number of chars currently
                 waiting in FIFO
                 <0 : 0xffffff0a illegal interface
Semantics:      useful to test if the host is receiving
                properly or to time transmission of packages
                in the speed the host can keep up with
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int USRStart (void);
Input:          NONE
Output:         NONE
Semantics:      Start loaded user program.
                Note: do not use in application programs.

int USRResident (char *name, BOOL mode);
Input:          (name) pointer to name array
                (mode) mode
                Valid values are: SET,GET
Output:         NONE
Semantics:      Make loaded user program reset resistant
                SET  save startaddress and program name.
                GET  restore startaddress and program name.
                Note: do not use in application programs.

B.5.9 Audio
Audio files can be generated with a conversion program on a PC.
Sampleformat: WAV or AU/SND (8bit, pwm or mulaw)
Samplerate: 5461, 6553, 8192, 10922, 16384, 32768 (Hz)
Tonerange: 65 Hz to 21000 Hz
Tonelength: 1 msec to 65535 msecs

int AUPlaySample (char* sample);
Input:          (sample) pointer to sample data
Output:         (returncode) playfrequency for given sample
                0 if unsupported sampletype
Semantics:      Plays a given sample (nonblocking)
                supported formats are:
                WAV or AU/SND  (8bit, pwm or mulaw)
                5461, 6553, 8192, 10922, 16384, 32768 (Hz)

int AUCheckSample (void);
Input:          NONE
Output:         FALSE while sample is playing
Semantics:      nonblocking test for sampleend

int AUTone (int freq, int msec);
Input:          (freq) tone frequency
                (msecs) tone length
Output:         NONE
Semantics:      Plays tone with given frequency for the given
                time (nonblocking)
                supported formats are:
                freq = 65 Hz to 21000 Hz
                msecs = 1 msec to 65535 msecs

int AUCheckTone (void);
Input:          NONE
Output:         FALSE while tone is playing
Semantics:      nonblocking test for toneend

int AUBeep (void);
Input:          NONE
Output:         NONE
Semantics:      BEEP!

int AURecordSample (BYTE* buf, long len, long freq);
Input:          (buf) pointer to buffer
                (len) bytes to sample + 28 bytes header
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                (freq) desired samplefrequency
Output:         (returncode) real samplefrequency
Semantics:      Samples from microphone into buffer with given
                frequency (nonblocking)
                Recordformat: AU/SND (pwm) with unsigned 8bit samples

int AUCheckRecord (void);
Input:          NONE
Output:         FALSE while recording
Semantics:      nonblocking test for recordend

int AUCaptureMic (void);
Input:          NONE
Output:         (returncode) microphone value (10bit)
Semantics:      Get microphone input value

B.5.10 Position Sensitive Devices (PSDs)
Position Sensitive Devices (PSDs) use infrared beams to measure
distance. The accuracy varies from sensor to sensor, and they need to
be calibrated in the HDT to get correct distance readings.

PSDHandle PSDInit (DeviceSemantics semantics);
Input:          (semantics) unique definition for desired PSD (see hdt.h)
Output:         (returncode) unique handle for all further operations
Semantics:      Initialize single PSD with given name (semantics)
                Up to 8 PSDs can be initialized

int PSDRelease (void);
Input:          NONE
Output:         NONE
Semantics:      Stops all measurings and releases all initialized PSDs

int PSDStart (PSDHandle bitmask, BOOL cycle);
Input:          (bitmask) sum of all handles to which parallel
                 measuring should be applied
                (cycle)   TRUE  = continuous measuring
                          FALSE = single measuring
Output:         (returncode) status of start-request
                  -1 = error (false handle)
                   0 = ok
                   1 = busy (another measuring blocks driver)
Semantics:      Starts a single/continuous PSD-measuring.  Continuous
                gives new measurement ca. every 60ms.

int PSDStop (void);
Input:          NONE
Output:         NONE
Semantics:      Stops actual continuous PSD-measuring after
                completion of the current shot

BOOL PSDCheck (void);
Input:          NONE
Output:         (returncode) TRUE if a valid result is available
Semantics:      nonblocking test if a valid PSD-result is available

int PSDGet (PSDHandle handle);
Input:          (handle) handle of the desired PSD
                 0 for timestamp of actual measure-cycle
Output:         (returncode) actual distance in mm (converted through
                internal table)
Semantics:      Delivers actual timestamp or distance measured by
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                the selected PSD.  If the raw reading is out of
                range for the given sensor, PSD_OUT_OF_RANGE(=9999)
                is returned.

int PSDGetRaw (PSDHandle handle);
Input:          (handle) handle of the desired PSD
                 0 for timestamp of actual measure-cycle
Output:         (returncode) actual raw-data (not converted)
Semantics:      Delivers actual timestamp or raw-data measured by
                the selected PSD

B.5.11 Servos and Motors
ServoHandle SERVOInit (DeviceSemantics semantics);
Input:          (semantics) semantic (see hdt.h)
Output:         (returncode) ServoHandle
Semantics:      Initialize given servo

int SERVORelease (ServoHandle handle)
Input:          (handle) sum of all ServoHandles which should be released
Output:         (returncode)
                 0 = ok
                 errors (nothing is released):
                 0x11110000 = totally wrong handle
                 0x0000xxxx = the handle parameter in which only those bits
                              remain set that are connected to a releasable
                              TPU-channel
Semantics:      Release given servos

int SERVOSet (ServoHandle handle,int angle);
Input:          (handle) sum of all ServoHandles which should be set parallel
                (angle) servo angle
                Valid values: 0-255
Output:         (returncode)
                 0 = ok
                -1 = error wrong handle
Semantics:      Set the given servos to the same given angle

MotorHandle MOTORInit (DeviceSemantics semantics);
Input:          (semantics) semantic (see hdt.h)
Output:         (returncode) MotorHandle
Semantics:      Initialize given motor

int MOTORRelease (MotorHandle handle)
Input:          (handle) sum of all MotorHandles which should be released
Output:         (returncode)
                 0 = ok
                 errors (nothing is released):
                 0x11110000 = totally wrong handle
                 0x0000xxxx = the handle parameter in which only those bits
                              remain set that are connected to a releasable
                              TPU-channel
Semantics:      Release given motor

int MOTORDrive (MotorHandle handle,int speed);
Input:          (handle) sum of all MotorHandles which should be driven
                (speed) motor speed in percent
                Valid values: -100 - 100 (full backward to full forward)
                               0 for full stop
Output:         (returncode)
                 0 = ok
                -1 = error wrong handle
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Semantics:      Set the given motors to the same given speed

QuadHandle QuadInit (DeviceSemantics semantics);
Input:          (semantics) semantic
Output:         (returncode) QuadHandle or 0 for error
Semantics:      Initialize given Quadrature-Decoder (up to 8 decoders are
                possible)

int QuadRelease (QuadHandle handle);
Input:          (handle) sum of decoder-handles to be released
Output:          0 = ok
                -1 = error wrong handle
Semantics:      Release one or more Quadrature-Decoder

int QuadReset (QuadHandle handle);
Input:          (handle) sum of decoder-handles to be reset
Output:          0 = ok
                -1 = error wrong handle
Semantics:      Reset one or more Quadrature-Decoder

int QuadRead (QuadHandle handle);
Input:          (handle) ONE decoder-handle
Output:         32bit counter-value (0 to 2^32-1)
                a wrong handle will ALSO result in an 0 counter-value!!
Semantics:      Read actual Quadrature-Decoder counter

DeviceSemantics QUADGetMotor (DeviceSemantics semantics);
Input:          (handle) ONE decoder-handle
Output:         semantic of the corresponding motor
                 0 = wrong handle
Semantics:      Get the semantic of the corresponding motor

float QUADODORead (QuadHandle handle);
Input:          (handle) ONE decoder-handle
Output:         meters since last odometer-reset
Semantics:      Get the distance from the last resetpoint of a single motor!
                It is not the overall meters driven since the last reset!
                It is just the nr of meters left to go back to the startpoint.
                Useful to implement a PID-control

int QUADODOReset (QuadHandle handle);
Input:          (handle) sum of decoder-handles to be reset
Output:          0 = ok
                -1 = error wrong handle
Semantics:      Resets the simple odometer(s) to define the startpoint

B.5.12 Driving Interface vω
This is a high level wheel control API using the motor and quad primitives to 
drive the robot.

Data Types:
        typedef float meterPerSec;
        typedef float radPerSec;
        typedef float meter;
        typedef float radians;

        typedef struct
        { meter x;
          meter y;
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          radians phi;
        } PositionType;

        typedef struct
        { meterPerSec v;
          radPerSec w;
        } SpeedType;
   
VWHandle VWInit (DeviceSemantics semantics, int Timescale);
Input:          (semantics) semantic
                (Timescale) prescale value for 100Hz IRQ (1 to ...)
Output:         (returncode) VWHandle or 0 for error
Semantics:      Initialize given VW-Driver (only 1 can be initialized!)
                The motors and encoders are automatically reserved!!
                The Timescale allows to adjust the tradeoff between
                accuracy (scale=1, update at 100Hz) and speed(scale>1,
                update at 100/scale Hz).

int VWRelease (VWHandle handle);
Input:          (handle) VWHandle to be released
Output:          0 = ok
                -1 = error wrong handle
Semantics:      Release VW-Driver, stop motors

int VWSetSpeed (VWHandle handle, meterPerSec v, radPerSec w);
Input:          (handle) ONE VWHandle
                (v) new linear speed
                (w) new rotation speed
Output:          0 = ok
                -1 = error wrong handle
Semantics:      Set the new speed: v(m/s) and w(rad/s not degree/s)

int VWGetSpeed (VWHandle handle, SpeedType* vw);
Input:          (handle) ONE VWHandle
                (vw) pointer to record to store actual v, w values
Output:          0 = ok
                -1 = error wrong handle
Semantics:      Get the actual speed: v(m/s) and w(rad/s not degree/s)

int VWSetPosition (VWHandle handle, meter x, meter y, radians phi);
Input:          (handle) ONE VWHandle
                (x) new x-position
                (y) new y-position
                (phi) new heading
Output:          0 = ok
                -1 = error wrong handle
Semantics:      Set the new position: x(m), y(m) phi(rad not degree)

int VWGetPosition (VWHandle handle, PositionType* pos);
Input:          (handle) ONE VWHandle
                (pos) pointer to record to store actual position (x,y,phi)
Output:          0 = ok
                -1 = error wrong handle
Semantics:      Get the actual position: x(m), y(m) phi(rad not degree)

int VWStartControl (VWHandle handle, float Vv, float Tv, float Vw, float Tw);
Input:          (handle) ONE VWHandle
                (Vv) the parameter for the proportional component of the
                 v-controller
                (Tv) the parameter for the integrating component of the
                 v-controller
                (Vw) the parameter for the proportional component of the
                 w-controller
                (Tv) the parameter for the integrating component of the
                 w-controller
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Output:          0 = ok
                -1 = error wrong handle
Semantics:      Enable the PI-controller for the vw-interface and set
                the parameters.
                As default the PI-controller is deactivated when the
                vw-interface is initialized. The controller tries to keep the
                desired speed (set with VWSetSpeed) stable by adapting the
                energy of the involved motors.
                The parameters for the controller have to be choosen carefully!
                The formula for the controller is:
                                                t
                    new(t) = V*(diff(t) + 1/T * ∫ diff(t)dt )
                                                0
                    V: a value usually around 1.0
                    T: a value usually between 0 and 1.0
                After enabling the controller the last set speed (VWSetSpeed)
                is taken as the speed to be held stable.

int VWStopControl (VWHandle handle);
Input:          (handle) ONE VWHandle
Output:          0 = ok
                -1 = error wrong handle
Semantics:      Disable the controller immediately. The vw-interface continues
                normally with the last valid speed of the controller.

int VWDriveStraight (VWHandle handle, meter delta, meterpersec v)
Input:          (handle) ONE VWHandle
                (delta)  distance to drive in m (pos. -> forward)
                                                (neg. -> backward)
                (v)      speed to drive with (always positive!)
Output:          0 = ok
                -1 = error wrong handle
Semantics:      Drives distance "delta" with speed v straight ahead
                (forward or backward).
                Any subsequent call of VWDriveStraight, -Turn, -Curve or
                VWSetSpeed, while this one is still being executed, results in
                an immediate interruption of this command

int VWDriveTurn (VWHandle handle, radians delta, radPerSec w)
Input:          (handle) ONE VWHandle
                (delta)  degree to turn in radians (pos. -> counter-clockwise)
                                                   (neg. -> clockwise)
                (w)      speed to turn with (always positive!)
Output:          0 = ok
                -1 = error wrong handle
Semantics:      turns about "delta" with speed w on the spot (clockwise
                or counter-clockwise)
                any subsequent call of VWDriveStraight, -Turn, -Curve or
                VWSetSpeed, while this one is still being executed, results in
                an immediate interruption
                of this command

int VWDriveCurve (VWHandle handle, meter delta_l, radians delta_phi,
                 meterpersec v)
Input:          (handle)    ONE VWHandle
                (delta_l)   length of curve_segment to drive in m
                (pos. -> forward)
                (neg. -> backward)
                (delta_phi) degree to turn in radians
                (pos. -> counter-clockwise)
                (neg. -> clockwise)
                (v)         speed to drive with (always positive!)
Output:          0 = ok
                -1 = error wrong handle
Semantics:      drives a curve segment of length "delta_l" with overall vehicle
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                turn of "delta_phi"
                with speed v (forw. or backw. / clockw. or counter-clockw.).
                        any subsequent call of VWDriveStraight, -Turn, -Curve or
                        VWSetSpeed, while this one is still being executed,
                        results in an immediate interruption of this command

float VWDriveRemain (VWHandle handle)
Input:          (handle) ONE VWHandle
Output:          0.0 = previous VWDriveX command has been completed
                any other value = remaining distance to goal
Semantics:      remaining distance to goal set by VWDriveStraight, -Turn
                (for -Curve only the remaining part of delta_l is reported)

int VWDriveDone (VWHandle handle)
Input:          (handle) ONE VWHandle
Output:         -1 = error wrong handle
                 0 = vehicle is still in motion
                 1 = previous VWDriveX command has been completed
Semantics:      checks if previous VWDriveX() command has been completed

int VWDriveWait (VWHandle handle)
Input:          (handle) ONE VWHandle
Output:         -1 = error wrong handle
                 0 = previous VWDriveX command has been completed
Semantics:      blocks the calling process until the previous VWDriveX()
                command has been completed

int VWStalled (VWHandle handle)
Input:          (handle) ONE VWHandle
Output:         -1 = error wrong handle
                 0 = vehicle is still in motion or
                     no motion command is active
                 1 = at least one vehicle motor is stalled during
                     VW driving command
Semantics:      checks if at least one of the vehicle's motors is stalled
                right now

B.5.13 Bumper and Infrared Sensors
Tactile bumpers and infrared proximity sensors have been used in some previous 
robot models. They are currently not used for the SoccerBots, but may be used, 
e.g. for integrating additional sensors.

BumpHandle BUMPInit (DeviceSemantics semantics);
Input:          (semantics) semantic
Output:         (returncode) BumpHandle or 0 for error
Semantics:      Initialize given bumper (up to 16 bumpers are possible)

int BUMPRelease (BumpHandle handle);
Input:          (handle) sum of bumper-handles to be released
Output:         (returncode)
                 0 = ok
                 errors (nothing is released):
                 0x11110000 = totally wrong handle
                 0x0000xxxx = the handle parameter in which only those
                              bits remained set that are connected to a releasable
                              TPU-channel
Semantics:      Release one or more bumper

int BUMPCheck (BumpHandle handle, int* timestamp);
Input:          (handle) ONE bumper-handle
                (timestamp) pointer to an int where the timestamp is placed
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Output:         (returncode)
                 0 = bump occurred, in *timestamp is now a valid stamp
                -1 = no bump occurred or wrong handle, *timestamp is cleared
Semantics:      Check occurrence of a single bump and return the
                timestamp(TPU).
The first bump is recorded and held until BUMPCheck is called.

IRHandle IRInit (DeviceSemantics semantics);
Input:          (semantics) semantic
Output:         (returncode) IRHandle or 0 for error
Semantics:      Initialize given IR-sensor (up to 16 sensors are possible)

int IRRelease (IRHandle handle);
Input:          (handle) sum of IR-handles to be released
Output:         (returncode)
                 0 = ok
                 errors (nothing is released):
                 0x11110000 = totally wrong handle
                 0x0000xxxx = the handle parameter in which only those bits
                 remain set that are connected to a releasable TPU-channel
Semantics:      Release one or more IR-sensors

int IRRead (IRHandle handle);
Input:          (handle) ONE IR-handle
Output:         (returncode)
                 0/1 = actual pinstate of the TPU-channel
                -1 = wrong handle
Semantics:      Read actual state of the IR-sensor

B.5.14 Latches
Latches are low-level IO buffers.

BYTE OSReadInLatch (int latchnr);
Input:          (latchnr) number of desired Inlatch (range: 0..3)
Output:         actual state of this inlatch
Semantics:      reads contents of selected inlatch

BYTE OSWriteOutLatch (int latchnr, BYTE mask, BYTE value);
Input:          (latchnr) number of desired Outlatch (range: 0..3)
                (mask)    and-bitmask of pins which should be cleared
                (inverse!)
                (value)   or-bitmask of pins which should be set
Output:         previous state of this outlatch
Semantics:      modifies an outlatch and keeps global state consistent
                example: OSWriteOutLatch(0, 0xF7, 0x08); sets bit4
                example: OSWriteOutLatch(0, 0xF7, 0x00); clears bit4

BYTE OSReadOutLatch (int latchnr);
Input:          (latchnr) number of desired Outlatch (range: 0..3)
Output:         actual state of this outlatch
Semantics:      reads global copy of outlatch

B.5.15 Parallel Port
BYTE OSReadParData (void);
Input:          NONE
Output:         actual state of the 8bit dataport
Semantics:      reads contents of parallelport (active high)
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void OSWriteParData (BYTE value);
Input:          (value) new output-data
Output:         NONE
Semantics:      writes out new data to parallelport (active high)

BYTE OSReadParSR (void);
Input:          NONE
Output:         actual state of the 5 statuspins
Semantics:      reads state of the 5 statuspins active-high!
                (BUSY(4), ACK(3), PE(2), SLCT(1), ERROR(0)):

void OSWriteParCTRL (BYTE value);
Input:          (value) new ctrl-pin-output (4bits)
Output:         NONE
Semantics:      writes out new ctrl-pin-states active high!
               (SLCTIN(3), INT(2), AUTOFDXT(1), STROBE(0))

BYTE OSReadParCTRL (void);
Input:          NONE
Output:         actual state of the 4 ctrl-pins
Semantics:      reads state of the 4 ctrl-pins active-high!
                (SLCTIN(3), INT(2), AUTOFDXT(1), STROBE(0))   

B.5.16 Analog-Digital Converter
int OSGetAD (int channel);
Input:          (channel) desired AD-channel range: 0..15
Output:         (returncode) 10 bit sampled value
Semantics:      Captures one single 10bit value from specified
                AD-channel

int OSOffAD (int mode);
Input:          (mode) 0 = full powerdown
                       1 = fast powerdown
Output:         none
Semantics:      Powers down the 2 AD-converters (saves energy)
                A call of OSGetAD awakens the AD-converter again   

B.5.17 Radio Communication
Note: Additional hardware and software (Radio-Key) are required to use these 
library routines.
"EyeNet" network among arbitrary number of EyeBots and optional workstation 
host. Network operates as virtual token ring and has fault tolerant aspects. A 
net Master is negotiated autonomously, new EyeBots will automatically be inte-
grated into the net by "wildcard" messages, and dropped out EyeBots will be 
eliminated from the network. This network uses a RS232 interface and can be run 
over cable or wireless.

The communication is 8-bit clean and all packets are sent with checksums to 
detect transmission errors. The communication is unreliable, meaning there is 
no retransmit on error and delivery of packets are not guaranteed.

int RADIOInit (void);
Input:          none
Output:         returns 0 if OK
Semantics:      Initializes and starts the radio communication.
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int RADIOTerm (void);
Input:          none
Output:         returns 0 if OK
Semantics:      Terminate network operation.

int RADIOSend (BYTE id, int byteCount, BYTE* buffer);
Input:          (id) the EyeBot ID number of the message destination
                (byteCount) message length
                (buffer)    message contents
Output:         returns 0 if OK
                returns 1 if send buffer is full or message is too long.
Semantics:      Send message to another EyeBot. Send is buffered,
                so the sending process can continue while the
                message is sent in the background.  Message
                length must be below or equal to MAXMSGLEN.
                Messages are broadcasted by sending them to
                the special id BROADCAST.

int RADIOCheck (void);
Input:          none
Output:         returns the number of user messages in the buffer
Semantics:      Function returns the number of buffered messages.
                This function should be called before
                receiving, if blocking is to be avoided.

int RADIORecv (BYTE* id, int* bytesReceived, BYTE* buffer);
Input:          none
Output:         (id) EyeBot ID number of the message source
                (bytesReceived) message length
                (buffer) message contents
Semantics:      Returns the next message buffered. Messages are
                returned in the order they are
                received. Receive will block the calling
                process if no message has been received until
                the next one comes in.  The buffer must have
                room for MAXMSGLEN bytes.

Data Type:
  struct RadioIOParameters_s{
    int interface;     /* SERIAL1, SERIAL2 or SERIAL3 */
    int speed;         /* SER4800,SER9600,SER19200,SER38400,SER57600,SER115200*/
    int id;            /* machine id */
   int remoteOn;       /* non-zero if remote control is active */
    int imageTransfer; /* if remote on: 0 off, 2 full, 1 reduced */
    int debug;         /* 0 off, 1..100 level of debugging spew */
  };

void RADIOGetIoctl (RadioIOParameters* radioParams);
Input:          none
Output:         (radioParams) current radio parameter settings
Semantics:      Reads out current radio parameter settings.

void RADIOSetIoctl (RadioIOParameters* radioParams);
Input:          (radioParams) new radio parameter settings
Output:         none
Semantics:      Changes radio parameter settings.  This should
                be done before calling RADIOInit().

int RADIOGetStatus(RadioStatus *status);
        Input:          NONE
        Output:         (status) current radio communication status.
        Semantics:      Return current status info from RADIO communication.
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B.5.18 Compass

These routines provide an interface to a digital compass. 

Sample HDT Setting:
compass_type compass = {0,13,(void*)OutBase, 5,(void*)OutBase, 6, 
(BYTE*)InBase, 5};

HDT_entry_type HDT[] =
{ ...
  {COMPASS,COMPASS,"COMPAS",(void *)&compass},
  ...
};

int COMPASSInit(DeviceSemantics semantics);
        Input:          Unique definition for desired COMPASS (see hdt.h)
        Output:         (return code) 0 = OK
                                      1 = error
        Semantics:      Initialize digital compass device

int COMPASSStart(BOOL cycle);
        Input:          (cycle) 1 for cyclic mode
                                0 for single measurement
        Output:         (return code) 1 = module has already been started
                                      0 = OK
        Semantics:      This function starts the measurement of the actual
                        heading. The cycle parameter chooses the operation mode
                        of the compass-module.
                        In cyclic mode (1), the compass delivers as fast as
                        possible the actual heading without pause. In normal mode
                        (0) a single measurement is requested and allows the
                        module to go back to sleep mode afterwards.

int COMPASSCheck();
        Input:          NONE
        Output:         (return code) 1 = result is ready
                                      0 = result is not yet ready
        Semantics:      If a single shot was requested this function allows to
                        check if the result is already available. In the cyclic
                        mode this function is useless because it always indicates
                        'busy'. Usually a user uses a loop to wait for a result:
                          int heading;
                          COMPASSStart(FALSE);
                          while(!COMPASSCheck());  
                               //In single tasking! Otherwise yield to other tasks
                          heading = COMPASSGet();

int COMPASSStop();
        Input:          NONE
        Output:         (return code) 0 = OK
                                      1 = error
        Semantics:      To stop the initiated cyclic measurement this function
                        WAITS for the current measurement to be finished and
                        stops the module. This function therefore will
                        return after 100msec at latest or will deadlock if no
                        compass module is connected to the EyeBot!

int COMPASSRelease();
        Input:          NONE
        Output:         (return code) 0 = OK
                                      1 = error
        Semantics:      This function shuts down the driver and aborts any
                        ongoing measurement directly.
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int COMPASSGet();
        Input:          NONE
        Output:         (return code) Compass heading data: [0..359]
                                      -1 = no heading has been calculated yet
                                           (wait after initializing). 
        Semantics:      This function delivers the actual compass heading.

int COMPASSCalibrate(int mode);
        Input:          (mode) 0 to reset calibration data of compass module
                                (requires about 0.8s)
                               1 to perform normal calibration.
        Output:         (return code) 0 = OK
                                      1 = error
        Semantics:      This function has two tasks. With mode=0 it resets the
                        calibration data of the compass module. With mode=1 the
                        normal calibration is performed. It has to be called
                        twice (first at any position, second at 180degree to the 
                        first position).
                        Normally you will perform the following steps:
                          COMPASSCalibrate(1);
                          VWDriveTurn(VWHandle handle, M_PI, speed);
                               // turn EyeBot 180deg in place
                          COMPASSCalibrate(1);

B.5.19 IR Remote Control
These commands allow sending commands to an EyeBot via a standard TV remote.

Include:
#include "irtv.h"    /* only required for HDT files */
#include "IRu170.h"; /* depending on remote control, e.g. also "IRnokia.h" */

Sample HDT Setting:
/* infrared remote control on Servo S10 (TPU11)*/
/* SupportPlus 170 */
irtv_type irtv =     {1, 13, TPU_HIGH_PRIO, REMOTE_ON, 
                      MANCHESTER_CODE, 14, 0x0800, 0x0000, DEFAULT_MODE, 4,300,
                      RC_RED, RC_YELLOW, RC_BLUE, 0x303C};

/* NOKIA */
irtv_type irtv =     {1, 13, TPU_HIGH_PRIO, REMOTE_ON, 
                      SPACE_CODE,      15, 0x0000, 0x03FF, DEFAULT_MODE, 1,  -1,
                      RC_RED, RC_GREEN, RC_YELLOW, RC_BLUE};

HDT_entry_type HDT[] =
{ ...
  {IRTV,IRTV,"IRTV",(void *)&irtv},   
  ...
};

int IRTVInitHDT(DeviceSemantics semantics);
        Input:          (semantics) unique def. for desired IRTV (see hdt.h)
        Output:         (return code) 0 = ok
                                      1 = illegal type or mode (in HDT IRTV entry)
                                      2 = invalid or missing "IRTV" HDT entry
                                          for this semantics
        Semantics:      Initializes the IR remote control decoder by calling
                        IRTVInit() with the parameters found in the correspond.
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                        HDT entry. Using this function applications are indep.
                        of the used remote control since the defining param.
                        are located in the HDT.
                                   
int IRTVInit(int type, int length, int tog_mask, int inv_mask, int mode,
             int bufsize, int delay);
        Input:          (type)     the used code type
                                   Valid values are:
                                   SPACE_CODE, PULSE_CODE, MANCHESTER_CODE,
                                   RAW_CODE
                        (length)   code length (number of bits)
                        (tog_mask) bitmask that selects "toggle bits" in a code
                                   (bits that change when the same key is pressed
                                    repeatedly)
                        (inv_mask) bitmask that selects inverted bits in a code
                                   (for remote controls with alternating codes)
                        (mode)     operation mode
                                   Valid values are: DEFAULT_MODE, SLOPPY_MODE,
                                   REPCODE_MODE
                        (bufsize)  size of the internal code buffer
                        Valid values are: 1-4
                        (delay)    key repetition delay
                                   >0: number of 1/100 sec (should be >20)
                                   -1: no repetition
        Output:         (return code) 0 = ok
                                      1 = illegal type or mode
                                      2 = invalid or missing "IRTV" HDT entry
        Semantics:      Initializes the IR remote control decoder.
                        To find out the correct values for the "type", "length",
                        "tog_mask", "inv_mask" and "mode" parameters, use the IR
                        remote control analyzer program (IRCA).
                        SLOPPY_MODE can be used as alternative to DEFAULT_MODE.
                        In default mode, at least two consecutive identical code
                        sequences  must be received before the code becomes
                        valid. When using sloppy mode, no error check is
                        performed, and every code becomes valid immediately.
                        This reduces the delay between pressing the key and
                        the reaction.
                        With remote controls that use a special repetition
                        coding, REPCODE_MODE must be used (as suggested by the
                        analyzer).
                       
                        Typical param. | Nokia (VCN 620)   | RC5 (Philips)
                        ---------------+-------------------+--------------
                        type           | SPACE_CODE        | MANCHESTER_CODE 
                        length         | 15                | 14
                        tog_mask       | 0                 | 0x800
                        inv_mask       | 0x3FF             | 0
                        mode           | DEFAULT_MODE /    | DEFAULT_MODE /
                                       | SLOPPY_MODE       | SLOPPY_MODE
                       
                        The type setting RAW_CODE is intended for code analysis
                        only. If RAW_CODE is specified, all of the other
                        parameters should be set to 0. Raw codes must be handled
                        by using the IRTVGetRaw and IRTVDecodeRaw functions.
                       
void IRTVTerm(void);
        Input:          NONE
        Output:         NONE
        Semantics:      Terminates the remote control decoder and releases the
                        occupied TPU channel.

int IRTVPressed(void);
        Input:          NONE
        Output:         (return code) Code of the remote key that is currently
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                        being pressed
                                      0 = no key
        Semantics:      Directly reads the current remote key code. Does not
                        touch the code buffer. Does not wait.

int IRTVRead(void);
        Input:          NONE
        Output:         (return code) Next code from the buffer
                                      0 = no key
        Semantics:      Reads and removes the next key code from code buffer.
                        Does not wait.

int IRTVGet(void);
        Input:          NONE
        Output:         (return code) Next code from the buffer (!=0)
        Semantics:      Reads and removes the next key code from  code buffer.
                        If the buffer is empty, the function waits until a remote
                        key is pressed.

void IRTVFlush(void);
        Input:          NONE
        Output:         NONE
        Semantics:      The code buffer is emptied.

void IRTVGetRaw(int bits[2], int *count, int *duration, int *id, int *clock);
        Input:          NONE
        Output:         (bits)     contains the raw code
                                   bit #0 in bits[0] represents the 1st pulse
                                                     in code sequence
                                   bit #0 in bits[1] represents the 1st space
                                   bit #1 in bits[0] represents the 2nd pulse
                                   bit #1 in bits[1] represents the 2nd space
                                   ...
                                   A cleared bit stands for a short signal,
                                   a set bit for a long signal.
                        (count)    number of signals (= pulses + spaces) received
                        (duration) the logical duration of the code sequence
                                   duration = (number of short signals) +
                                               2*(num. of long signals)
                        (id)       a unique ID for the current code
                                   (incremented by 1 each time)
                        (clock)    the time when the code was received
        Semantics:      Returns information about the last received raw code.
                        Works only if type setting == RAW_CODE.
                       
int IRTVDecodeRaw(const int bits[2], int count, int type);
        Input:          (bits)  raw code to be decoded (see IRTVGetRaw)
                        (count) number of signals (= pulses + spaces) in raw code
                        (type)  the decoding method
                                Valid values are: SPACE_CODE, PULSE_CODE,
                                                  MANCHESTER_CODE
        Output:         (return code) The decoded value (0 on an illegal
                        Manchester code)
        Semantics:      Decodes the raw code using the given method.

Thomas Bräunl, Klaus Schmitt, Michael Kasper 1996-2006
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HARDWARE 
. . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DESCRIPTION TABLE

C.1 HDT Overview
The Hardware Description Table (HDT) is the link between the RoBIOS oper-
ating system and the actual hardware configuration of a robot. This table
allows us to run the same operating system on greatly varying robot structures
with different mechanics and sensor/actuator equipment. Every sensor, every
actuator, and all auxiliary equipment that is connected to the controller are
listed in the HDT with its exact I/O pin and timing configurations. This allows
us to change, for example, motor and sensor ports transparent to the user pro-
gram – there is no need to even re-compile it. The HDT comprises:

• HDT access procedures
• HDT data structures

The HDT resides in the EyeCon’s flash-ROM and can be updated by
uploading a new HDT hex-file. Compilation of HDT files is done with the
script gcchdt instead of the standard script gcc68 for user programs.

The following procedures are part of RoBiOS and are used by hardware
drivers to determine where and if a hardware component exists. These proce-
dures cannot be called from a user program.

int HDT_Validate(void);
/* used by RoBiOS to check and initialize the HDT data structure. */

void *HDT_FindEntry(TypeID typeid,DeviceSemantics semantics);
/* used by device drivers to search for first entry that matches semantics and 
returns pointer to the corresponding data structure. */

DeviceSemantics HDT_FindSemantics(TypeID typeid, int x);
/* look for xth entry of given Typ and return its semantics */

int HDT_TypeCount(TypeID typeid);
/* count entries of given Type */
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char *HDT_GetString(TypeID typeid,DeviceSemantics semantics)
/* get semantic string */

The HDT data structure is a separate data file (sample sources in directory
hdtdata). Each controller is required to have a compiled HDT file in ROM in
order to operate.

Each HDT data file contains complete information about the connection
and control details of all hardware components used in a specific system con-
figuration. Each source file usually contains descriptions of all required data
structures of HDT components, plus (at the end of the source file) the actual
list of components, utilizing the previous definitions.

Example HDT data entry for a DC motor (see include file hdt.h for spe-
cific type and constant definitions):

motor_type motor0 = {2,  0, TIMER1, 8196, (void*)(OutBase+2), 6, 7,
                      (BYTE*)&motconv0};
2               : the maximum driver version for which this entry is sufficient
0               : the tpu channel the motor is attached to
TIMER2          : the tpu timer that has to be used
8196            : pwm period in Hz
OutBase+2       : the I/O Port address the driver has to use
6               : the portbit for forward drive
7               : the portbit for backward drive
motconv0        : the pointer to a conversion table to adjust different motors

The following example HDT list contains all hardware components used for
a specific system configuration (entries INFO and END_OF_HDT are mandatory
for all HDTs):

HDT_entry_type HDT[] =
{
    MOTOR,MOTOR_RIGHT,"RIGHT",(void *)&motor0,
    MOTOR,MOTOR_LEFT,"LEFT",(void *)&motor1,
    PSD,PSD_FRONT,"FRONT",(void *)&psd1,
    INFO,INFO,"INFO",(void *)&roboinfo,
    END_OF_HDT,UNKNOWN_SEMANTICS,"END",(void *)0
};

Explanations for first HDT entry:

MOTOR           : it is a motor
MOTOR_LEFT      : its semantics
"LEFT"          : a readable string for testroutines
&motor0         : a pointer to the motor0 data structure

From the user program point of view, the following describes how to make
use of HDT entries, using the motor entry as an example. Firstly, a handle to
the device has to be defined:

MotorHandle     leftmotor;

Next, the handle needs to be initialized by calling MOTORInit with the
semantics (HDT name) of the motor. MOTORInit now searches the HDT for a
motor with the given semantics and if found calls the motor driver to initialize
the motor.
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leftmotor = MOTORInit(LEFTMOTOR);

Now the motor can be used by the access routines provided, e.g. setting a
certain speed. The following function calls the motor driver and sets the speed
on a previously initialized motor:

MOTORDrive (leftmotor,50);

After finishing using a device (here: the motor), it is required to release it,
so it can be used by other applications:

MOTORRelease (leftmotor);

Using the HDT entries for all other hardware components works in a similar
way. See the following description of HDT information structures as well as
the RoBIOS details in Appendix B.5.

C.2 Battery Entry
typedef struct
{
  int     version;
  short   low_limit;
  short   high_limit;
}battery_type;

e.g.
battery_type battery = {0,550,850};

int version: 
The maximum driver version for which this entry is compatible.
Because newer drivers will surely need more information, this tag prevents this 
driver from reading more information than actually available.

short low_limit: 
The value the AD-converter channel 1 measures shortly before the batteries are 
empty. This defines the lower limit of the tracked battery voltage.

short   high_limit:
The value the AD-converter channel 1 measures with fully loaded batteries. 
This defines the upper limit of the tracked battery voltage.

C.3 Bumper Entry
typedef struct
{
    int     driver_version;
    int     tpu_channel;
    int     tpu_timer;
    short   transition;
}bump_type;

e.g.
bump_type bumper0 = {0, 6, TIMER2, EITHER};
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int driver_version: 
The maximum driver version for which this entry is compatible.
Because newer drivers will surely need more information, this tag prevents this 
driver from reading more information than actually available.

int tpu_channel:
The tpu channel the bumper is attached to. Valid values are 0..15
Each bumper needs a tpu channel to signal a 'bump'-occurrence.

int tpu_timer:
The tpu timer that has to be used. Valid values are TIMER1, TIMER2
If a 'bump' is detected the corresponding timer-value is stored for later cal-
culations.
TIMER1 runs at a speed of 4MHz-8MHz (depending on CPUclock)
TIMER2 runs at a speed of 512kHz-1MHz (depending on CPUclock)

short transition:
React on a certain transition. Valid values are RISING, FALLING, EITHER
To alter the behaviour of the bumper, the type of transition the TPU reacts on 
can be choosen.

C.4 Compass Entry
typedef struct
{
  short   version;
  short   channel;
  void*   pc_port;
  short   pc_pin;
  void*   cal_port;
  short   cal_pin;
  void*   sdo_port;
  short   sdo_pin;
}compass_type;

e.g.
compass_type compass = {0,13,(void*)IOBase, 2,(void*)IOBase, 4, (BYTE*)IOBase, 
0};

short version:
The maximum driver version for which this entry is compatible.
Because newer drivers will surely need more information, this tag prevents this 
driver from reading more information than actually available.

short channel: 
TPU channel that is connected to the compass for clocking the data transfer. 
Valid values are 0..15

void* pc_port:
Pointer to an 8Bit register/latch (out). PC is the start signal for the compass

short pc_pin:
This is the bit number in the register/latch addressed by pc_port. Valid values 
are 0..7

void* cal_port:
Pointer to an 8Bit register/latch (out). CAL is the calibration start signal 
for the compass.
It can be set to NULL if no calibration is needed (In this case never call the 
calibration function).

short cal_pin:
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This is the bitnumber in the register/latch addressed by cal_port. Valid values 
are 0..7

void* sdo_port:
Pointer to an 8Bit register/latch (in). SDO is the serial data output connec-
tion of the compass. The driver will read out the serial data timed by the TPU 
channel.

short sdo_pin:
This is the bitnumber in the register/latch addressed by sdo_port. Valid values 
are 0..7

C.5 Information Entry
typedef struct
{
  int     version;
  int     id;
  int     serspeed;
  int     handshake;
  int     interface;
  int     auto_download;
  int     res1;
  int     cammode;
  int     battery_display;
  int     CPUclock;
  float   user_version;
  String10 name;
  unsigned char res2;
}info_type;

e.g.
info_type roboinfo0  = {0,VEHICLE,SER115200,RTSCTS,SERIAL2,AUTOLOAD,0,
                        AUTOBRIGHTNESS,BATTERY_ON,16,VERSION,NAME,0};

int version: 
The maximum driver version for which this entry is compatible.
Because newer drivers will surely need more information, this tag prevents this 
driver from reading more information than actually available.

int id:
The current environment on which RoBiOS is running. Valid values are PLATFORM, 
VEHICLE, WALKER
It is accessible via OSMachineType().

int serspeed:
The default baudrate for the default serial interface. 
Valid values are SER9600, SER19200, SER38400, SER57600 SER115200

int handshake:
The default handshake mode for the default serial interface. 
Valid values are NONE, RTSCTS

int interface:
The default serial interface for the transfer of userprograms. 
Valid values are SERIAL1, SERIAL2, SERIAL3

int auto_download;
The download mode during the main menu of RoBIOS. After startup of RoBIOS it 
can permanently scan the default serial port for a file-download. If it detects 
a file it automatically downloads it (set to AUTOLOAD). 
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If it should automatically run this file too set the value to (AUTOLOADSTART). 
If it is set to NO_AUTOLOAD no scanning is performed.

int res1:
this is a reserved value (formerly it was used for the state of the radio remote 
control which has now its own HDT entry. So always set it to 0)

int cammode:
The default camera mode. Valid values are AUTOBRIGHTNESS, NOAUTOBRIGHTNESS

int battery_display:
Switch the battery status display on or off. Valid values are BATTERY_ON, 
BATTERY_OFF

int CPUclock:
The clock rate(MHz) the MC68332 microprocessor should run with.
It is accessible via OSMachineSpeed().

float user_version:
The user defined version number of the actual HDT. This nr is just for informa-
tion and will be displayed in the HRD-menue of the RoBiOS!

String10 name;
The user defined unique name for this Eyebot. This name is just for information 
and will be displayed in the main menu of the RoBiOS! It is accessible via 
OSMachineName().

unsigned char robi_id;
The user defined unique id for this Eyebot. This id is just for information and 
will be displayed in the main-menu of the RoBiOS! Is is accessible via OSMachi-
neID(). It can temporarily be changed in Hrd/Set/Rmt

unsigned char res2:
this is a reserved value (formerly it was used for the robot-ID of the radio 
remote control which has now its own HDT entry. So always set it to 0)

C.6 Infrared Sensor Entry
typedef struct
{
    int     driver_version;
    int     tpu_channel;
}ir_type;

e.g.
ir_type   ir0 = {0, 8};

int driver_version: 
The maximum driver version for which this entry is compatible.
Because newer drivers will surely need more information this tag prevents this 
driver from reading more information than actually available.

int tpu_channel:
The tpu channel the ir-sensor is attached to. Valid values are 0..15
Each ir-sensor needs a tpu channel to signal the recognition of an obstacle.
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C.7 Infrared TV Remote Entry
typedef struct
{
  short   version;
  short   channel;
  short   priority;
  /* new in version 1: */
  short   use_in_robios;
  int     type;
  int     length;
  int     tog_mask;
  int     inv_mask;
  int     mode;
  int     bufsize;
  int     delay;
  int     code_key1;
  int     code_key2;
  int     code_key3;
  int     code_key4;
} irtv_type;

This is the new extended IRTV struct. RoBIOS can still handle the old version 
0-format which will cause RoBIOS to use the settings for the standard Nokia VCN 
620. But only with the new version 1 is it possible to use the IRTV to control 
the 4 keys in RoBIOS.

old settings (version 0):
e.g. for a SoccerBot:
irtv_type irtv = {0, 11, TPU_HIGH_PRIO}; /* Sensor connected to TPU 11 (=S10)*/

e.g. for an EyeWalker:
irtv_type irtv = {0, 0, TPU_HIGH_PRIO};  /* Sensor connected to TPU 0 */

new settings (version 1 for Nokia VCN620 and activated RoBIOS control):
irtv_type irtv = {1, 11, TPU_HIGH_PRIO, REMOTE_ON, SPACE_CODE, 15, 0x0000, 
0x03FF, DEFAULT_MODE, 1, -1, RC_RED, RC_GREEN, RC_YELLOW, RC_BLUE}; 

short version: 
The maximum driver version for which this entry is compatible.
Because newer drivers will surely need more information, this tag
prevents this driver from reading more information than actually available.

short channel:
The TPU channel the IRTV-sensor is attached to. Valid values are 0..15.
Normally, the sensor is connected to a free servo port. However on the
EyeWalker there is no free servo connector so the sensor should be
connected to a motor connector (a small modification is needed for this
- see manual).

short priority:
The IRQ-priority of the assigned TPU channel. This should be set to
TPU_HIGH_PRIO to make sure that no remote commands are missed.

short use_in_robios:
If set to REMOTE_ON, the remote control can be used to control the 4 EyeCon keys 
in RoBIOS. Use REMOTE_OFF to disable this feature.

int type:
int length:
int tog_mask:
int inv_mask:
int mode:
int bufsize:
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int delay:
These are the settings to configure a certain remote control. They are exactly 
the same as the parameters for
the IRTVInit() system call. Above is an example for the default Nokia VCN620 
control. The settings can be found  by using the irca-program.

int code_key1:
int code_key2:
int code_key3:
int code_key4:
These are the codes of the 4 buttons of the remote control that should match the 
4 EyeCon keys. For the Nokia remote control all codes can be found in the header 
file 'IRnokia.h'.

C.8 Latch Entry
With this entry RoBIOS is told where to find the In/Out-Latches and how many of 
them are installed.

typedef struct
{
  short   version;
  BYTE*   out_latch_address;
  short   nr_out;
  BYTE*   in_latch_address;
  short   nr_in;
} latch_type;

e.g.
latch_type latch = {0, (BYTE*)IOBase, 1 , (BYTE*)IOBase, 1};

int version: 
The maximum driver version for which this entry is compatible.
Because newer drivers will surely need more information, this tag prevents this 
driver from reading more information than actually available.

BYTE*   out_latch_address:
Start address of the out-latches.

short   nr_out:
Amount of 8Bit out-latches

BYTE*   in_latch_address;
Start address of the in-latches.

short   nr_in;
Amount of 8Bit in-latches

C.9 Motor Entry
typedef struct
{
  int     driver_version;
  int     tpu_channel;
  int     tpu_timer;
  int     pwm_period;
  BYTE*   out_pin_address;
  short   out_pin_fbit;
  short   out_pin_bbit;
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  BYTE*   conv_table;     /* NULL if no conversion needed */
  short   invert_direction; /* only in driver_version > 2 */ 
}motor_type;

e.g. 
motor_type motor0 = {3,  0, TIMER1, 8196, (void*)(OutBase+2), 6, 6, 
(BYTE*)&motconv0), 0};

int driver_version: 
The maximum driver version for which this entry is compatible.
Because newer drivers will surely need more information this tag prevents this 
driver from reading more information than actually available.
Use driver_version = 2 for hardware versions < MK5 to utilize the two bits for 
the motor direction setting. 
Use driver_version = 3 for hardware version >= MK5 to utilize only one bit 
(_fbit) for the direction setting. 

int tpu_channel:
The tpu channel the motor is attached to. Valid values are 0..15
Each motor needs a pwm (pulse width modulated) signal to drive with different 
speeds.
The internal TPU of the MC68332 is capable of generating this signal on up to 16 
channels. The value to be entered here is given through the actual hardware 
design.

int tpu_timer:
The tpu timer that has to be used. Valid values are TIMER1, TIMER2
The tpu generates the pwm signal on an internal timer basis. There are two dif-
ferent timers that can be used to determine the actual period for the pwm sig-
nal.
TIMER1 runs at a speed of 4MHz up to 8MHz depending on the actual CPU-clock
which allows periods between 128Hz and 4MHz (with 4MHz basefrq) up to 256Hz - 
8MHz (with 8MHz)
TIMER2 runs at a speed of 512kHz up to 1MHz depending on the actual CPU-clock
which allows periods between 16Hz and 512kHz (512kHz base) up to 32Hz - 1MHz 
(1MHz base)
To determine the actual TIMERx speed use the following equation:
TIMER1[MHz] = 4MHZ * (16MHz + (CPUclock[MHz] % 16))/16
TIMER2[MHz] = 512kHZ * (16MHz + (CPUclock[MHz] % 16))/16

int pwm_period:
This value sets the length of one pwm period in Hz according to the selected 
timer.
The values are independent (in a certain interval) of the actual CPU-clock.
The maximal frequency is the actual TPU-frequency divided by 100 in order 
to guarantee 100 different energy levels for the motor. This implies a maximum 
period of 
40-80kHz with TIMER1 and 5-10kHz with TIMER2 (depending on the cpuclock). 
The minimal frequency is therefore the Timerclock divided by 32768 which 
implies 128-256Hz (Timer1) and 16-32Hz (Timer2) as longest periods (depending 
on CPUclock).
To be independent of the actual CPUclock a safe interval is given by 256Hz - 
40kHz (Timer1) and 32Hz - 5kHz (Timer2).
To avoid a 'stuttering' of the motor, the period should not be set too slow. But 
on the other hand setting the period too fast, will decreases the remaining 
calculation time of the TPU.

BYTE* out_pin_address:
The I/O Port address the driver has to use. Valid value is a 32bit address.
To control the direction a motor is spinning a H-bridge is used. This type of 
hardware  is normally connected via two pins to a latched output. The out-
latches of the EyeCon controller are for example located at IOBASE and the suc-
ceeding addresses.
One of these two pins is set for forward movement and the other for backward 
movement.
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short out_pin_fbit:
The portbit for forward drive. Valid values are 0..7
This is the bitnumber in the latch addressed by out_pin_address.

short out_pin_bbit:
The portbit for backward drive. Valid values are 0..7
This is the bitnumber in the latch addressed by out_pin_address.
If driver_version is set to 3 this bit is not used and should be set to the same 
value as the fbit.

BYTE* conv_table: 
The pointer to a conversion table to adjust differently motors. 
Valid values are NULL or a pointer to a table containing 101 bytes.
Usually two motors behave slightly different when they get exactly the same 
amount of energy. This will for example show up in a differential drive, when a 
vehicle should drive in a straight line but moves in a curve. To adjust one 
motor to another a conversion table is needed. For each possible speed 
(0..100%) an appropriate value has to be entered in the table to obtain the 
same speed for both motors. It is wise to adapt the faster motor because at high 
speeds the slower one can't keep up, you would need speeds of more than 100% !
Note: The table can be generated by software using the connected encoders.

short invert_direction:
This flag is only used if driver_version is set to 3. This flag indicates to the 
driver  to invert the spinning direction. 
If driver_version is set to 2, the inversion will be achieved by swapping the 
bit numbers of fbit and bbit and this flag will not be regarded.

C.10 Position Sensitive Device (PSD) Entry
typedef struct
{
  short   driver_version;
  short   tpu_channel;
  BYTE*   in_pin_address;
  short   in_pin_bit;
  short   in_logic;
  BYTE*   out_pin_address;
  short   out_pin_bit;
  short   out_logic;
  short*  dist_table;
}psd_type;

e.g.
psd_type psd0 = {0, 14, (BYTE*)(Ser1Base+6), 5, AL, (BYTE*)(Ser1Base+4), 0, AL,
                 (short*)&dist0};
psd_type psd1 = {0, 14, (BYTE*)IOBase, 2, AH, (BYTE*)IOBase, 0, AH,
                 (short*)&dist1};

int driver_version: 
The maximum driver version for which this entry is compatible.
Because newer drivers will surely need more information, this tag prevents this 
driver from reading more information than actually available.

short tpu_channel:
The master TPU channel for serial timing of the PSD communication. Valid values 
are 0..15
This TPU channel is not used as an input or output. It is just used as a high 
resolution timer needed to generate exact communication timing. If there are 
more than 1 PSD connected to the hardware each PSD has to use the same TPU chan-
nel. The complete group or just a selected subset of PSDs can 'fire' simultane-
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ously. Depending on the position of the PSDs it is preferable to avoid measure 
cycles of adjacent sensors to get correct distance values.

BYTE* in_pin_address:
Pointer to an 8Bit register/latch to receive the PSD measuring result.

short in_pin_bit:
The portbit for the receiver. Valid values are 0..7
This is the bitnumber in the register/latch addressed by in_pin_address.

short in_logic:
Type of the received data. Valid values are AH, AL
Some registers negate the incoming data. To compensate this, active low(AL) has 
to be selected.

BYTE* out_pin_address:
Pointer to an 8Bit register/latch to transmit the PSD control signal.
If two or more PSDs are always intended to measure simultaneously the same out-
pin can be connected to all of these PSDs. This saves valuable register bits.

short out_pin_bit:
The portbit for the transmitter. Valid values are 0..7
This is the bitnumber in the register/latch addressed by out_pin_address.

short out_logic:
Type of the transmitted data. Valid values are AH, AL
Some registers negate the outgoing data. To compensate this, active low(AL) has 
to be selected.

short* dist_table:
The pointer to a distance conversion table.
A PSD delivers an 8bit measure result which is just a number. Due to inaccuracy 
of the  result only the upper 7 bits are used (div 2). To obtain the correspond-
ing distance in mm, a lookup table with 128 entries is needed. Since every PSD 
slightly deviates in its measured distance from each other, each PSD needs its 
own conversion table to guarantee correct distances. The tables have to be gen-
erated 'by hand'. The testprogram included in RoBiOS shows the raw 8bit PSD 
value for the actual measured distance. By slowly moving a plane object away 
from the sensor the raw values change accordingly. Now take every second raw 
value and write down the corresponding distance in mm.

C.11 Quadrature Encoder Entry
typedef struct
{
  int     driver_version;
  int     master_tpu_channel;
  int     slave_tpu_channel;
  DeviceSemantics motor;
  unsigned int clicksPerMeter;
  float   maxspeed;       /* (in m/s) only needed for VW-Interface */
}quad_type;

e.g.
quad_type decoder0 = {0, 3, 2, MOTOR_LEFT, 1234, 2.34};

int driver_version: 
The maximum driver version for which this entry is compatible.
Because newer drivers will surely need more information, this tag prevents this 
driver from reading more information than actually available.

int master_tpu_channel:
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The first TPU channel used for quadrature decoding. Valid values are 0..15
To perform decoding of the motor encoder signals the TPU occupies two adjacent 
channels. By changing the order of the two channels the direction of counting 
can be inverted.

int slave_tpu_channel:
The second TPU channel used for quadrature decoding. Valid values are 
master_tpu_channel +|- 1

DeviceSemantics motor:
The semantics of the attached motor.
To test a specific encoder via the internal RoBiOS function the semantics of 
the coupled motor is needed.

unsigned int clicksPerMeter:
This parameter is used only if the the connected motor powers a driving wheel.
It is the number of clicks that are delivered by the encoder covering the dis-
tance of 1 meter. 

float maxspeed:
This parameter is used only if  the connected motor powers a driving wheel.
It is the maximum speed of this wheel in m/s. 

C.12 Remote Control Entry
With this entry the default behavior of the (wireless) remote control can be 
specified.

typedef struct
{
    int version;
    short robi_id;
    short remote_control;
    short interface;
    short serspeed;
    short imagemode;
    short protocol;
} remote_type;

e.g.
remote_type remote = {1, ID, REMOTE_ON, SERIAL2, SER115200, IMAGE_FULL,
                      RADIO_BLUETOOTH};

int version: 
The maximum driver version for which this entry is compatible.
Because newer drivers will surely need more information this tag prevents this 
driver from reading more information than actually available.

short robi_id;
The user defined unique id (0-255) for this EyeCon. This id is just for infor-
mation and will
be displayed in the main menu of the RoBiOS! Is is accessible via OSMachi-
neID(). It can temporarily be changed in Hrd/Set/Rmt

short remote_control:
The default control mode for the EyeCon. Valid values are:
REMOTE_ON (the display is forwarded to and the keys are sent from a remote PC),
REMOTE_OFF (normal mode), 
REMOTE_PC (only the PC sends data i.e. button press is activated only)
REMOTE_EYE (only the EyeCon sends data i.e. display information only)

short interface:
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The default serial interface for the radio transfer
Valid values are SERIAL1, SERIAL2, SERIAL3

short serspeed:
The default baudrate for the selected serial interface. 
Valid values are SER9600, SER19200, SER38400, SER57600, SER115200

short imagemode:
The mode in which the images of the camera should be transferred to the PC.
Valid values are IMAGE_OFF (no image), IMAGE_REDUCED (reduced quality), 
IMAGE_FULL (original frame)

short protocol:
This specifies the module type connected to the serial port.
Valid values are RADIO_METRIX (message length 50 Bytes), RADIO_BLUETOOTH 
(mes.len. 64KB), RADIO_WLAN (message lenngth 64KB)

C.13 Servo Entry
typedef struct
{
  int     driver_version;
  int     tpu_channel;
  int     tpu_timer;
  int     pwm_period;
  int     pwm_start;
  int     pwm_stop;
}servo_type;

e.g.
servo_type servo0 = {1,  0, TIMER2, 20000, 700, 1700};

int driver_version: 
The maximum driver version for which this entry is compatible.
Because newer drivers will surely need more information, this tag prevents this 
driver from reading more information than actually available.

int tpu_channel:
The tpu channel the servo is attached to. Valid values are 0..15
Each servo needs a pwm (pulse width modulated) signal to turn into different 
positions.
The internal TPU of the MC68332 is capable of generating this signal on up to 16 
channels. The value to be entered here is given through the actual hardware 
design.

int tpu_timer:
The tpu timer that has to be used. Valid values are TIMER1, TIMER2
The tpu generates the pwm signal on an internal timer basis. There are two dif-
ferent timers that can be used to determine the actual period for the pwm sig-
nal.
TIMER1 runs at a speed of 4MHz up to 8MHz depending on the actual CPU-clock
which allows periods between 128Hz and 4MHz (with 4MHz basefrq) up to 256Hz - 
8MHz (with 8MHz)
TIMER2 runs at a speed of 512kHz up to 1MHz depending on the actual CPU-clock
which allows periods between 16Hz and 512kHz (512kHz base) up to 32Hz - 1MHz 
(1MHz base)
To determine the actual TIMERx speed use the following equation:
TIMER1[MHz] = 4MHZ * (16MHz + (CPUclock[MHz] % 16))/16
TIMER2[MHz] = 512kHZ * (16MHz + (CPUclock[MHz] % 16))/16

int pwm_period:
This value sets the length of one pwm period in microseconds (us).
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A normal servo needs a pwm_period of 20ms which equals 20000us. For any exotic 
servo this value can be changed accordingly. It is always preferable to take 
TIMER2 because only here are enough discrete steps available to position the 
servo accurately. The values are in a certain interval (see motor), independent 
of the CPUclock.

int pwm_start:
This is the minimal hightime of the pwm period in us. Valid values are 
0..pwm_period
To position a servo the two extreme positions for it have to be defined. In the 
normal case a servo needs to have a minimal hightime of 0.7ms (700us) at the 
beginning of each pwm period. This is also one of the two extreme positions a 
servo can take.

int pwm_stop:
This is the maximum hightime of the pwm period. Valid values are 0..pwm_period.
Depending on the rotation direction of a servo, one may choose pwm_stop less 
than or greater than pwm_start.
To position a servo the two extreme positions for it have to be defined. In the 
normal case a servo needs to have a maximum hightime of 1.7ms (1700us) at the 
beginning of each pwm period. This is also one of the two extreme positions a 
servo can take.
All other positions of the servo are linear interpolated in 256 steps between 
these two extremes. 
Hint: If you don't need the full range the servo offers you can adjust the start 
and stop parameters to a smaller 'window' like 1ms to 1.5ms and gain a higher 
resolution in these bounds. Or the other way around, you can enlarge the 'win-
dow' to adjust the values to the real degrees the servo changes its position:
Take for example a servo that covers a range of 210 degrees. Simply adjust the 
stop value to 1.9ms. If you now set values between 0 and 210 you will reach the 
two extremes in steps corresponding to the real angles. Values higher than 210 
would not differ from the result gained by the value of 210.

C.14 Startimage Entry
typedef BYTE image_type[16*64];

e.g.
image_type startimage = {0xB7,0x70,0x1C,...0x00};

Here a user-defined startup image can be entered as a byte array
(16*64 = 1024Bytes).
This is a 128x64 Pixel B/W picture where each pixel is represented by a bit.

C.15 Startmelody Entry
no typedef

e.g.
int startmelody[] = {1114,200, 2173,200, 1114,200, 1487,200, 1669,320, 0};

Here you can enter your own melody that will be played at startup. It is a list 
of integer pairs.  The first value indicates the frequency, the second the 
duration in 1/100s of the tone. As last value there must be single 0 in the 
list.
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C.16 VW Drive Entry
typedef struct
{
  int     version;
  int     drive_type;
  drvspec drive_spec; /* -> diff_data */
}vw_type;

typedef struct
{
  DeviceSemantics quad_left;
  DeviceSemantics quad_right;
  float           wheel_dist; /* meters */
}diff_data;

e.g.
vw_type drive = {0, DIFFERENTIAL_DRIVE, {QUAD_LEFT, QUAD_RIGHT, 0.21}};

int driver_version: 
The maximum driver version for which this entry is compatible.
Because newer drivers will surely need more information, this tag prevents this 
driver from reading more information than actually available.

int drive_type:
Define the type of the actual used drive.
Valid values are DIFFERENTIAL_DRIVE (ACKERMAN_DRIVE, SYNCHRO_DRIVE, 
TRICYCLE_DRIVE)
The following parameters depend on the selected drive type.

DIFFERENTIAL_DRIVE:
The differential drive is made up of two parallel independent wheels with the 
kinematic center right between them. Obviously two encoders with the connected 
motors are needed.

    DeviceSemantics quad_left:
    The semantics of the encoder used for the left wheel. 

    DeviceSemantics quad_right:
    The semantics of the encoder used for the right wheel.
    
    float wheel_dist:
    The distance (meters) between the two wheels to determine the kinematic
    center.

C.17 Waitstates Entry
typedef struct
{
  short     version;
  short     rom_ws;
  short     ram_ws;
  short     lcd_ws;
  short     io_ws;
  short     serpar_ws;
}waitstate_type;

e.g.
waitstate_type waitstates = {0,3,0,1,0,2};

int version: 
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The maximum driver version for which this entry is compatible.
Because newer drivers will surely need more information, this tag prevents this 
driver from reading more information than actually available.

short rom_ws:
Waitstates for the ROM access
Valid values (for all waitstates):
waitstates = 0..13, Fast Termination = 14, External = 15

short ram_ws:
Waitstates for the RAM access

short lcd_ws:
Waitstates for the LCD access

short io_ws:
Waitstates for the Input/Output latches access

short serpar_ws:
Waitstates for the 16c552 Serial/Parallel Port Interface access

Thomas Bräunl, Klaus Schmitt, Michael Kasper 1996-2006



511

HARDWARE 
. . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPECIFICATION

The following tables speficy details of the EyeCon controller hardware.        

Version Features

Mark 1 First prototypes, two boards, double-sided, rectangular push 
button, no speaker

Mark 2 Major change: two boards, double-sided, speaker and micro-
phone on board, changed audio circuit

Mark 2.1 Minor change: connect digital and analog ground

Mark 3.0 Completely new design: single board design, four layers, di-
rect-plug-in connectors for sensors and motors, motor control-
lers on board, BDM on board, wireless module and antenna on 
board

Mark 3.11 Minor change: miniature camera port added

Mark 3.12 Minor change: replaced fuse by reconstituting polyswitch

Mark 4.02 Major change: extension to 2MB RAM, adding fast camera 
framebuffer, additional connector for third serial port, redesign 
of digital I/O

 Mark 5 Major redesign: camera plugs in directly into controller, new 
motor connectors, video out, additional servo connectors

Table D.1: Hardware versions
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D

Chip Select Function

CSBOOT Flash-ROM

CS 0+1 RAM (1MB)

CS 2 LCD

CS 3+7 RAM (additional 1MB)

CS 4 Input/Output latch (IOBase)

CS 5 FIFO camera buffer

CS 6 Address A19

CS 7 Autovector acknowledge generation

CS 8 Parallel port of 16C552

CS 9 Serial port 1 of 16C552

CS 10 Serial port 2 of 16C552

Table D.2: Chip-select lines

Address Memory Usage Chip Selects

0x00000000 RoBIOS RAM (128KB) CS0,1,3,7

0x00020000 User RAM (max. 2MB-128KB) CS0,1,3,7

0x00200000 End of RAM

... unused addresses

0x00a00000 TpuBase (2KB)

0x00a00800 End of TpuBase

... unused addresses

0x00c00000 Flash-ROM (512KB) CS2

0x00c80000 End of Flash-ROM

... unused addresses

0x00e00800 Latches CS4

0x00e01000 FIFO or Latches CS5

0x00e01800 Parallel Port/Camera CS8

Table D.3: Memory map (continued)
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0x00e02000 Serial Port2 CS9

0x00e02800 Serial Port3 CS10

... unused addresses

0x00fff000 MCU68332 internal registers (4KB)

0x01000000 End of registers and addressable RAM

IRQ Function

1 FIFO half-full flag (hardwired)

2 INT-SIM (100Hz Timer, arbitration 15)

3 INT serial 1 (neg.)/serial 2 (neg.) of 16C552 (hardwired)

4 INT QSPI and SCI of the QSM (arbitration 13)

5 INT parallel port (neg.) of 16C552 (hardwired)

6 INT-TPU (arbitration 14)

7 free

Note INT 1,3,5 are hardwired to FIFO or 16C552, respectively,
all other INTs are set via software

Table D.4: Interrupt request lines

Port F Key Function

PF0 KEY4

PF2 KEY3

PF4 KEY2

PF6 KEY1

Table D.5: Push buttons

Address Memory Usage Chip Selects

Table D.3: Memory map (continued)
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Description Value

Voltage Required: between 6V and 12V DC, normally: 7.2V

Power con-
sumption

EyeCon controller only: 235mA
EyeCon controller with EyeCam CMOS camera: 270mA

Run-time With 1,350mAh, 7.2V Li-ion rechargeable battery (approx.):
4 – 5 hours EyeCon controller only
1 – 2 hours EyeCon controller with SoccerBot robot and 
camera, constantly driving and sensing, depending on pro-
gram and speed

Power limi-
tation

Total power limit is 3A
3A polyswitch prohibits damage through higher current or 
wrong polarity
Can drive DC motors with up to 1A each

Table D.6: Electrical characteristics

Description Value

Size Controller: 10.6cm ×  10.0cm ×  2.8cm
(width ×  height ×  depth)

EyeCam 3.0cm ×  3.4cm ×  3.2cm

Weight Controller: 190g
EyeCam: 25g

Table D.7: Physical characteristics
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Port Pins

Serial 1 Download (9 pin), standard RS232 serial port, 12V, female
1  -
2  Tx
3  Rx
4  -
5  GND
6  -
7  CTS
8  RTS
9  -

Serial 2 Upload (9 pin), standard RS232 serial port, 12V, male
1  -
2  Rx
3  Tx
4  -
5  GND
6  -
7  RTS
8  CTS
9  5V regulated

Serial 3 RS232 at TTL level (5V)
1  CD'
2  DTR'
3  Tx
4  CTS'
5  Rx
6  RTS'
7  DSR'
8  RI'
9  GND
10  Vcc (5V)

Table D.8: Pinouts EyeCon Mark 5 (continued)



Hardware Specification

516

D

Digital 
camera

16 pin connector requires 1:1 connection
(cable with female:female) to EyeCam digital color camera
Note: The little pin on the EyeCon side of the cable

 has to point up:
 |--^--|
 |-----|

1  STB
2-9 Data 0-7
10  ACK
11  INT
12  BSY
13  KEY
14  SLC
15  Vcc (5V)
16  GND

Parallel Standard parallel port
1 Strobe'
2 PD0
3 PD1
4 PD2
5 PD3
6 PD4
7 PD5
8 PD6
9 PD7
10 ACK
11 Busy'
12 PE
13 SLCT
14 Autofxdt'
15 Error
16 Init
17 Slctin'
18..25 GND

BDM Motorola Background Debugger (10 pin),
connects to PC parallel port

Port Pins

Table D.8: Pinouts EyeCon Mark 5 (continued)
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Motors DC motor and encoder connectors (2 times 10 pin)
Motors are mapped to TPU channels 0..1
Encoders are mapped to TPU channels 2..5
Note: Pins are labeled in the following way:

 | 1 | 3 | 5 | 7 | 9 |
 ---------------------
 | 2 | 4 | 6 | 8 | 10|

1 Motor +
2 Vcc (unregulated)
3 Encoder channel A
4 Encoder channel B
5 GND
6 Motor –
7 --
8 --
9 --
10 --

Servos Servo connectors (12 times 3 pin)
Servo signals are mapped to TPU channels 2..13
Note: If both DC motors are used, TPU 0..5 are already in use,

so Servo connectors Servo1 (TPU2) .. Servo4 (TPU5)
cannot be used.

1  Signal
2  Vcc (unregulated)
3  GND

Port Pins

Table D.8: Pinouts EyeCon Mark 5 (continued)
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Infrared Infrared connectors (6 times 4 pin)
Sensor outputs are mapped to digital input 0..3
1  GND
2  Vin (pulse)
3  Vcc (5V regulated)
4  Sensor output (digital)

Analog Analog input connector (10 pin)
Microphone, mapped to analog input 0
Battery-level gauge, mapped to analog input 1
1 Vcc (5V regulated)
2 Vcc (5V regulated)
3 analog input 2
4 analog input 3
5 analog input 4
6 analog input 5
7 analog input 6
8 analog input 7
9 analog GND
10 analog GND

Digital Digital input/output connector (16 pin)
[Infrared PSDs use digital output 0 and digital input 0..3]
1- 8  digital output 0..7
9-12  digital input  4..7
13-14  Vcc (5V)
15-16  GND

Port Pins

Table D.8: Pinouts EyeCon Mark 5 (continued)
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LABORATORIES

Lab 1  Controller
The first lab uses
the controller only
and not the robot

EXPERIMENT 1  Etch-a-Sketch

Write a program that implements the “Etch-a-Sketch” 
children’s game.

Use the four buttons in a consistent way for moving
the drawing pen left/right and up/down. Do not erase
previous dots, so pressing the buttons will leave a visi-
ble trail on the screen.

EXPERIMENT 2  Reaction Test Game

Write a program that imple-
ments the reaction game as
given by the flow diagram. 

To compute a random wait-
time value, isolate the last digit
of the current time using
OSGetCount() and transform
it into a value for OSWait() to
wait between 1 and 8 seconds.

START

STOP

use last hex-digit of OS count

wait for random time interval

is button pressed ? print “cheated!”
YES

NO

get current sys. timer (a)

wait for key press

get current sys.timer (b)

print message “press button”

print reaction time b–a

as random number

in decimal form
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EXPERIMENT 3  Analog Input and Graphics Output 

Write a program to plot the amplitude of an analog signal. For this experiment,
the analog source will be the microphone. For input, use the following
function:

AUCaptureMic(0)

It returns the current microphone intensity value as an integer between 0
and 1,023.

Plot the analog signal versus time on the graphics LCD. The dimension of
the LCD is 64 rows by 128 columns. For plotting use the functions:

LCDSetPixel(row,col,1)

Maintain an array of the most recent 128 data values and start plotting data
values from the leftmost column (0). When the rightmost column is reached
(127), continue at the leftmost column (0) – but be sure to remove the col-
umn’s old pixel before you plot the new value. This will result in an oscillo-
scope-like output.

Lab 2  Simple Driving
Driving a robot

using motors and
shaft encoders

EXPERIMENT 4  Drive a Fixed Distance and Return

Write a robot program using VWDriveStraight and VWDriveTurn to let the
robot drive 40cm straight, then turn 180°, drive back and turn again, so it is
back in its starting position and orientation.

EXPERIMENT 5  Drive in a Square

Similar to experiment 4.

EXPERIMENT 6  Drive in a Circle

Use routine VWDriveCurve to drive in a circle.

0,0

63,127

current value
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Lab 3  Driving Using Infrared Sensors
Combining

sensor reading
with driving

routines

EXPERIMENT 7  Drive Straight toward an Obstacle and Return

This is a variation of an experiment from the previous lab. This time the task is
to drive until the infrared sensors detect an obstacle, then turn around and drive
back the same distance.

Lab 4  Using the Camera
Using camera
and controller

without the
vehicle

EXPERIMENT 8  Motion Detection with Camera

By subtracting the pixel value of two subsequent grayscale images, motion can
be detected. Use an algorithm to add up grayscale differences in three different
image sections (left, middle, right). Then output the result by printing the word
“left”, “middle”, or “right”.
Variation (a): Mark the detected motion spot graphically on the LCD.
Variation (b): Record audio files for speaking “left”, “middle”, “right” and

have the EyeBot speak the result instead of print it.

EXPERIMENT 9  Motion Tracking

Detect motion like before. Then move the camera servo (and with it the cam-
era) in the direction of movement. Make sure that you do not mistake the auto-
motion of the camera for object motion.

Lab 5  Controlled Motion
Drive of the robot
using motors and

shaft encoders
only

Due to manufacturing tolerances in the motors, the wheels of a the mobile
robots will usually not turn at the same speed, when applying the same voltage.
Therefore, a naive program for driving straight may lead in fact to a curve. In
order to remedy this situation, the wheel encoders have to be read periodically
and the wheel speeds have to be amended.

For the following experiments, use only the low-level routines MOTORDrive
and QUADRead. Do not use any of the vω routines, which contain a PID con-
troller as part their implementation.

EXPERIMENT 10  PID Controller for Velocity Control of a Single Wheel

Start by implementing a P controller, then add I and D components. The wheel
should rotate at a specified rotational velocity. Increasing the load on the
wheel (e.g. by manually slowing it down) should result in an increased motor
output to counterbalance the higher load.
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EXPERIMENT 11  PID Controller for Position Control of a Single Wheel

The previous experiment was only concerned with maintaining a certain rota-
tional velocity of a single wheel. Now we want this wheel to start from rest,
accelerate to the specified velocity, and finally brake to come to a standstill
exactly at a specified distance (e.g. exactly 10 revolutions).

This experiment requires you to implement speed ramps. These are
achieved by starting with a constant acceleration phase, then changing to a
phase with (controlled) constant velocity, and finally changing to a phase with
constant deceleration. The time points of change and the acceleration values
have to be calculated and monitored during execution, to make sure the wheel
stops at the correct position.

EXPERIMENT 12  Velocity Control of a Two-Wheeled Robot

Extend the previous PID controller for a single wheel to a PID controller for
two wheels. There are two major objectives:

a. The robot should drive along a straight path.
b. The robot should maintain a constant speed.

You can try different approaches and decide which one is the best solution:
a. Implement two PID controllers, one for each wheel.
b. Implement one PID controller for forward velocity and one PID con-

troller for rotational velocity (here: desired value is zero).
c. Implement only a single PID controller and use offset correction val-

ues for both wheels.
Compare the driving performance of your program with the built-in vω rou-

tines.

EXPERIMENT 13  PID Controller for Driving in Curves

Extend the PID controller from the previous experiment to allow driving in
general curves as well as straight lines.

Compare the driving performance of your program with the built-in vω rou-
tines.

EXPERIMENT 14  Position Control of a Two-Wheeled Robot

Extend the PID controller from the previous experiment to enable position
control as well as velocity control. Now it should be possible to specify a path
(e.g. straight line or curve) plus a desired distance or angle and the robot
should come to a standstill at the desired location after completing its path.

Compare the driving performance of your program with the built-in vω rou-
tines.
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Lab 6  Wall-Following
This will be a

useful subroutine
for subsequent

experiments

EXPERIMENT 15  Driving Along a Wall

Let the robot drive forward until it detects a wall to its left, right, or front. If the
closest wall is to its left, it should drive along the wall facing its left-hand side
and vice versa for right. If the nearest wall is in front, the robot can turn to
either side and follow the wall.

The robot should drive in a constant distance of 15cm from the wall. That
is, if the wall is straight, the robot would drive in a straight line at constant dis-
tance to the wall. If the wall is curved, the robot would drive in the same curve
at the fixed distance to the wall.

Lab 7  Maze Navigation
Have a look at

the Micro Mouse
Contest. This is
an international
competition for

robots navigating
mazes.

EXPERIMENT 16  Exploring a Maze and Finding the Shortest Path

The robot has to explore and analyze
an unknown maze consisting of
squares of a known fixed size. An
important sub-goal is to keep track of
the robot’s position, measured in
squares in the x- and y-direction from
the starting position.

After searching the complete maze
the robot is to return to its starting
position. The user may now enter any
square position in the maze and the
robot has to drive to this location and
back along the shortest possible path.

Lab 8  Navigation
Two of the classic

and most
challenging tasks
for mobile robots

EXPERIMENT 17  Navigating a Known Environment

The previous lab dealt with a rather simple environment. All wall segments
were straight, had the same length, and all angles were 90°. Now imagine the
task of navigating a somewhat more general environment, e.g. the floor of a
building.

Specify a map of the floor plan, e.g. in “world format” (see EyeSim simula-
tor), and specify a desired path for the robot to drive in map coordinates. The
robot has to use its on-board sensors to carry out self-localization and navigate
through the environment using the provided map.
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EXPERIMENT 18  Mapping an Unknown Environment

One of the classic robot tasks is to explore an unknown environment and auto-
matically generate a map. So, the robot is positioned at any point in its envi-
ronment and starts exploration by driving around and mapping walls, obsta-
cles, etc.

This is a very challenging task and greatly depends on the quality and com-
plexity of the robot’s on-board sensors. Almost all commercial robots today
use laser scanners, which return a near-perfect 2D distance scan from the
robot’s location. Unfortunately, laser scanners are still several times larger,
heavier, and more expensive than our robots, so we have to make do without
them for now.

Our robots should make use of their wheel encoders and infrared PSD sen-
sors for positioning and distance measurements. This can be augmented by
image processing, especially for finding out when the robot has returned to its
start position and has completed the mapping.

The derived map should be displayed on the robot’s LCD and also be pro-
vided as an upload to a PC. 
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Lab 9  Vision
EXPERIMENT 19  Follow the Light

Assume the robot driving area is enclosed by a boundary wall. The robot’s task
is to find the brightest spot within a rectangular area, surrounded by walls. The
robot should use its camera to search for the brightest spot and use its infrared
sensors to avoid collisions with walls or obstacles.
Idea 1: Follow the wall at a fixed distance, then at the brightest spot turn

and drive inside the area.
Idea 2: Let the robot turn a full circle (360°) and record the brightness lev-

els for each angle. Then drive in the direction of the brightest spot.

EXPERIMENT 20  Line-Following

Mark a bright white line on a dark table, e.g. using masking tape. The robot’s
task is to follow the line.

This experiment is somewhat more difficult than the previous one, since not
just the general direction of brightness has to be determined, but the position
(and maybe even curvature) of a bright line on a dark background has to be
found. Furthermore, the driving commands have to be chosen according to the
line’s curvature, in order to prevent the robot “losing the line”, i.e. the line
drifting out of the robot’s field of view.

Special routines may be programmed for dealing with a “lost line” or for
learning the maximum speed a robot can drive at for a given line curvature
without losing the line.

Lab 10  Object Detection

EXPERIMENT 21  Object Detection by Shape

An object can be detected by its:
a. Shape
b. Color
c. Combination of shape and color

To make things easy at the beginning, we use objects of an easy-to-detect
shape and color, e.g. a bright yellow tennis ball. A ball creates a simple circu-
lar image from all viewpoints, which makes it easy to detect its shape. Of
course it is not that easy for more general objects: just imagine looking from
different viewpoints at a coffee mug, a book, or a car.
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There are textbooks full of image processing and detection tasks. This is a

very broad and active research area, so we are only getting an idea of what is
possible.

An easy way of detecting shapes, e.g. distinguishing squares, rectangles,
and circles in an image, is to calculate “moments”. First of all, you have to
identify a continuous object from a pixel pattern in a binary (black and white)
image. Then, you compute the object’s area and circumference. From the rela-
tionship between these two values you can distinguish several object catego-
ries such as circle, square, rectangle.

EXPERIMENT 22  Object Detection by Color

Another method for object detection is color recognition, as mentioned above.
Here, the task is to detect a colored object from a background and possibly
other objects (with different colors).

Color detection is simpler than shape detection in most cases, but it is not as
straightforward as it seems. The bright yellow color of a tennis ball varies
quite a bit over its circular image, because the reflection depends on the angle
of the ball’s surface patch to the viewer. That is, the outer areas of the disk will
be darker than the inner area. Also, the color values will not be the same when
looking at the same ball from different directions, because the lighting (e.g.
ceiling lights) will look different from a different point of view. If there are
windows in your lab, the ball’s color values will change during the day
because of the movement of the sun. So there are a number of problems to be
aware of, and this is not even taking into account imperfections on the ball
itself, like the manufacturer’s name printed on it, etc.

Many image sources return color values as RGB (red, green, blue). Because
of the problems mentioned before, these RGB values will vary a lot for the
same object, although its basic color has not changed. Therefore it is a good
idea to convert all color values to HSV (hue, saturation, value) before process-
ing and then mainly work with the more stable hue of a pixel.

The idea is to detect an area of hue values similar to the specified object hue
that should be detected. It is important to analyze the image for a color “blob”,
or a group of matching hue values in a neighborhood area. This can be
achieved by the following steps:

a. Convert RGB input image to HSV.
b. Generate binary image by checking whether each pixel’s hue value is

within a certain range to the desired object hue:
binaryi,j = | huei,j – hueobj | < ε

c. For each row, calculate the matching binary pixels.
d. For each column, calculate the matching binary pixels.
e. The row and column counter form a basic histogram. Assuming there

is only one object to detect, we can use these values directly:
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Search the row number with the maximum count value.
Search the column number with the maximum count value.

f. These two values are the object’s image coordinates.

EXPERIMENT 23  Object Tracking

Extending the previous experiment, we want the robot to follow the detected
object. For this task, we should extend the detection process to also return the
size of the detected object, which we can translate into an object distance, pro-
vided we know the size of the object.

Once an object has been detected, the robot should “lock onto” the object
and drive toward it, trying to maintain the object’s center in the center of its
viewing field.

A nice application of this technique is having a robot detect and track either
a golf ball or a tennis ball. This application can be extended by introducing a
ball kicking motion and can finally lead to robot soccer.

You can think of a number of techniques of how the robot can search for an
object once it has lost it.

Lab 11  Robot Groups
Now we have a

number of robots
interacting with

each other

EXPERIMENT 24  Following a Leading Robot

Program a robot to drive along a path made of random curves, but still avoid-
ing obstacles.

Program a second robot to follow the first robot. Detecting the leading robot
can be done by using either infrared sensors or the camera, assuming the lead-
ing robot is the only moving object in the following robot’s field of view. 

EXPERIMENT 25  Foraging

A group of robots has to search for food items, collect them, and bring them
home. This experiment combines the object detection task with self-localiza-
tion and object avoidance.

Food items are uniquely colored cubes or balls to simplify the detection
task. The robot’s home area can be marked either by a second unique color or
by other features that can be easily detected.
This experiment can be conducted by:

a. A single robot
b. A group of cooperating robots
c. Two competing groups of robots
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EXPERIMENT 26  Can Collection

A variation of the previous experiment is to use magnetic cans instead of balls
or cubes. This requires a different detection task and the use of a magnetic
actuator, added to the robot hardware.
This experiment can be conducted by:

a. A single robot
b. A group of cooperating robots
c. Two competing groups of robots

EXPERIMENT 27  Robot Soccer

Robot soccer is of course a whole field in its own right. There are lots of publi-
cations available and of course two independent yearly world championships,
as well as numerous local tournaments for robot soccer. Have a look at the web
pages of the two world organizations, FIRA and Robocup:

• http://www.fira.net/

• http://www.robocup.org/
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SOLUTIONS

Lab 1  Controller
EXPERIMENT 1  Etch-a-Sketch

1 /* ------------------------------------------------------
2 | Filename:     etch.c
3 | Authors:      Thomas Braunl
4 | Description:  pixel operations resembl. "etch a sketch"
5 | ----------------------------------------------------- */
6 #include <eyebot.h>
7
8 void main()
9 { int k;

10   int x=0, y=0, xd=1, yd=1;
11
12   LCDMenu("Y","X","+/-","END");
13   while(KEY4 != (k=KEYRead())) {
14     LCDSetPixel(y,x, 1);
15     switch (k) {
16       case KEY1: y = (y + yd +  64) %  64; break;
17       case KEY2: x = (x + xd + 128) % 128; break;
18       case KEY3: xd = -xd; yd = -yd; break;
19     }
20     LCDSetPrintf(1,5);
21     LCDPrintf("y%3d:x%3d", y,x);
22   }
23 }
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EXPERIMENT 2  Reaction Test Game

1 /* ------------------------------------------------------
2 | Filename:     react.c
3 | Authors:      Thomas Braunl
4 | Description:  reaction test
5 | ----------------------------------------------------- */
6 #include "eyebot.h"
7 #define MAX_RAND  32767
8
9 void main()

10 { int time, old,new;
11
12   LCDPrintf(" Reaction Test\n");
13   LCDMenu("GO"," "," "," ");
14   KEYWait(ANYKEY);
15   time = 100 + 700 * rand() / MAX_RAND; /* 1..8 s */
16   LCDMenu(" "," "," "," ");
17
18   OSWait(time);
19   LCDMenu("HIT","HIT","HIT","HIT");
20   if (KEYRead()) printf("no cheating !!\n");
21    else
22    { old = OSGetCount();
23      KEYWait(ANYKEY);
24      new = OSGetCount();
25      LCDPrintf("time: %1.2f\n", (float)(new-old) / 100.0);
26    }
27
28   LCDMenu(" "," "," ","END");
29   KEYWait(KEY4);
30 }
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EXPERIMENT 3  Analog Input and Graphics Output 

1 /* ------------------------------------------------------
2 | Filename:     micro.c
3 | Authors:      Klaus Schmitt
4 | Description:  Displays microphone input graphically
5 |               and numerically
6 | ----------------------------------------------------- */
7 #include "eyebot.h"
8
9 void main ()

10 {   int disttab[32];
11     int pointer=0;
12     int i,j;
13     int val;
14
15     /* clear the graphic-array */
16     for(i=0; i<32; i++)
17       disttab[i]=0;
18    
19     LCDSetPos(0,3);
20     LCDPrintf("MIC-Demo");
21     LCDMenu("","","","END");
22
23     while (KEYRead() != KEY4)
24     { /* get actual data and scale it for the LCD */
25       disttab[pointer] = 64 - ((val=AUCaptureMic(0))>>4);
26
27       /* draw graphics */
28       for(i=0; i<32; i++)
29       { j = (i+pointer)%32;
30         LCDLine(i,disttab[j], i+4,disttab[(j+1)%32], 1);
31       }
32
33       /* print actual distance and raw-data */
34       LCDSetPos(7,0);
35       LCDPrintf("AD0:%3X",val);
36
37       /* clear LCD */
38       for(i=0; i<32; i++)
39       { j = (i+pointer)%32;
40         LCDLine(i,disttab[j], i+4,disttab[(j+1)%32], 0);
41       }
42
43       /* scroll the graphics */
44       pointer = (pointer+1)%32;
45     }
46 }
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Lab 2  Simple Driving
Simple driving,
using no other

sensors than
shaft encoders

EXPERIMENT 4  Drive a Fixed Distance and Return

1 /* ------------------------------------------------------
2 | Filename:     drive.c
3 | Authors:      Thomas Braunl
4 | Description:  Drive a fixed distance, then come back
5 | ----------------------------------------------------- */
6 #include "eyebot.h"
7 #define DIST   0.4
8 #define SPEED  0.1
9 #define TSPEED 1.0

10
11 void main()
12 { VWHandle     vw;
13   PositionType pos;
14   int          i;
15
16   LCDPutString("Drive Demo\n");
17   vw = VWInit(VW_DRIVE,1); /* init v-omega interface */
18   if(vw == 0)
19     {
20       LCDPutString("VWInit Error!\n\a");
21       OSWait(200); return;
22     }
23   VWStartControl(vw,7,0.3,7,0.1);
24   OSSleep(100); /* delay before starting */
25
26   for (i=0;i<4; i++) /* do 2 drives + 2 turns twice */
27   { if (i%2==0) { LCDSetString(2,0,"Drive");
28                   VWDriveStraight(vw,DIST,SPEED);
29                 }
30         else    { LCDSetString(2,0,"Turn ");
31                   VWDriveTurn(vw,M_PI,TSPEED);
32                 }
33     while (!VWDriveDone(vw))
34     { OSWait(33);
35       VWGetPosition(vw,&pos);
36       LCDSetPrintf(3,0,"Pos: %4.2f x %4.2f",pos.x,pos.y);
37       LCDSetPrintf(4,0,"Heading:%5.1f",
38                         pos.phi*180.0/M_PI);
39     }
40   }
41   OSWait(200);
42   VWRelease(vw);
43 }
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A* algorithm 267
A/D converter 54
abstraction layer 461
accelerometer 59, 159, 173
accumulator 37
Ackermann steering 5, 139
actuator 73, 321
actuator models 230
adaptive controller 385, 391
adaptive cruise control 429
adaptive driving 282
adder

full 23
half 23

AI 383
air-speed sensor 188
altimeter 188
ALU 17, 32
analog sensor 51
android 168
Andy Droid 169
application program 14, 456
arithmetic logic unit 17, 32
artificial horizon 178
artificial intelligence 383
assemble 446
assembly language 446
audio demo 458
auto-brightness 299
auto-download 457
automatic parking 433
automobile conversion 418
automotive systems 415
autonomous driving 418

autonomous flying 185
autonomous underwater vehicle 195
autopilot 185
AUV 195

B
background debugger 12
background debugger module 448
balancing robot 157
ball detection 323
ball kicking 329
bang-bang controller 84
Bayer pattern 65, 303
BD32 448
BDM 12, 448
beacon 242, 243
behavior 384, 385
behavior selection 385
behavioral memory 408
behavior-based robotics 384
behavior-based software architecture 384
behavior-based systems 383
belief 246
bias neurons 341
binary sensor 51
biped robot 168, 179

artificial horizon 178
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fuzzy control 178
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sensor data 176
static balance 174
uneven terrain 411
walking sequence 179, 181
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biped sensor data 176
blocked 112
boot procedure 465
bootstrap-loader 15
boundary-following algorithm 286
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breakpoint 449
Brushfire algorithm 257
Bug algorithms 260
Bug1 algorithm 260
Bug2 algorithm 260
bumper 455

C
C 444
C++ 444
camera 62, 159, 173, 322

auto-brightness 299
Bayer pattern 65
color 65
demosaicing 66
EyeSim 219
focus pattern 298
grayscale 65
image processing 297
interface 297
pixel 65
Siemens star 298
software interface 68

camera demo 458
camera sensor data 65
CAN 415
central processing unit 17
chip-select line 465
chromosome 392, 397
CIIPS Glory 318
classical software architecture 383
cleaning 138
clock 37
closed loop control 80, 83

color class 310
color cone 304
color cube 303
color hue 304
color object detection 305
color space 303
combinatorial logic circuits 18
combining C and assembly 447
communication 322

fault tolerance 121
frame structure 120
master 119
message 120
message types 121
polling 118
remote control 124
robot-to-robot 322
self-configuration 121
token ring 118
user interface 123
wild card 119
wireless 117

compass 57, 188, 243, 244, 322, 456
compression 15
computer vision 420
concurrency 103
configuration space 251, 285
control 83

bang-bang 84
D 92
driving straight 96
fuzzy 178
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on-off 83
P 89
parameter tuning 94
PID 89, 178, 321
position 94
spline generation 404
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