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Preface

Topological robotics is a new mathematical discipline studying topo-
logical problems inspired by robotics and engineering as well as prob-
lems of practical robotics requiring topological tools. It is a part of a
broader newly created research area called “computational topology”.
The latter studies topological problems appearing in computer science
and algorithmic problems in topology.

This book is based on a one-semester lecture course “Topics of
Topological Robotics” which I gave at the ETH Zürich during April–
June 2006. I describe here four selected mathematical stories which
have interesting connections to other sciences.

Chapter 1 studies configuration spaces of mechanical linkages, a
remarkable class of manifolds which appear in several fields of mathe-
matics as well as in molecular biology and in statistical shape theory.
Methods of Morse theory, enriched with new techniques based on prop-
erties of involutions, allow effective computation of their Betti numbers.
We describe here a recent solution of the conjecture raised by Kevin
Walker in 1985. This conjecture asserts that the relative sizes of bars of
a linkage are determined, up to certain equivalence, by the cohomology
algebra of the linkage configuration space.

In Chapter 1 we also discuss topology of random linkages, a proba-
bilistic approach to topological spaces depending on a large number of
random parameters.

In Chapter 2 we describe a beautiful theorem of Swiatoslaw R. Gal
[38] which gives a general formula for Euler characteristics of configura-
tion spaces F (X,n) of of n distinct particles moving in a polyhedron X,
for all n. The Euler – Gal power series is a rational function encoding
all numbers χ(F (X,n)) and Gal’s theorem gives an explicit expression
for it in terms of local topological properties of the space.

Chapter 3 deals with the knot theory of the robot arm, a variation of
the traditional knot theory question motivated by robotics. The main
result (which in my view is one of the remarkable jewels of modern
mathematics) is an unknotting theorem for planar robot arms, proven
recently by R. Connelly, E.Demaine and G. Rote [10].
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Chapter 4 discusses the notion of topological complexity of the ro-
bot motion planning problem TC(X) and mentions several new results
and techniques. The number TC(X) measures the complexity of the
problem of navigation in a topological space X viewed as the configu-
ration space of a system. In this chapter we explain how one may use
stable cohomology operations to improve lower bounds on the topolog-
ical complexity based on products of zero-divisors. These results were
obtained jointly with Mark Grant.

I would like to thank Jean-Claude Hausmann, Thomas Kappeler
and Dirk Schuetz for useful discussions of various parts of the book.
My warmest thanks go also to Mark Grant who helped me in many ways
to make this text readable and in particular for his advice concerning
the material of Chapter 4.

Problems of topological robotics can roughly be split into two main
categories: (A) studying special topological spaces, configuration spaces
of important mechanical systems; (B) studying new topological invari-
ants of general topological spaces, invariants which are motivated and
inspired by applications in robotics and engineering. Class (A) includes
describing the topology of varieties of linkages, configuration spaces of
graphs, knot theory of the robot arm — topics which are partly covered
below. The story about TC(X) represents a theory of class (B).

The book is intended as an appetizer and will introduce the reader
to many fascinating topological problems motivated by engineering.

Michael Farber
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CHAPTER 1

Linkages and Polygon Spaces

In this chapter we study configuration spaces of mechanical linkages,
also known as polygon spaces. These spaces are quite important in
various engineering applications: in molecular biology they describe
varieties of molecular shapes, in robotics they appear as spaces of all
possible configurations of some mechanisms, and they play a central
role in statistical shape theory, see [63]. Mathematically, these spaces
are also very interesting: generically they are smooth closed manifolds,
however for some special values of parameters they have singularities.

Mathematical study of linkages and more general mechanisms has
a long history going back to the Middle Ages. Engineering discoveries
concerning linkages played an important role in the industrial revolu-
tion. Among the most famous are the pantograph, Watt’s linkage and
Peaucellier’s inverser, see [51], [62], [16].

Topological theory of linkages was initiated by W. Thurston and
his students and collaborators, see for instance [95]. We want to men-
tion also the thesis of S. H. Niemann [79] written in Oxford in 1978.
Kevin Walker [100] in his 1985 Princeton undergraduate thesis gives
an amazingly deep picture of configuration spaces of linkages. Some
results mentioned in [100] were not rigorously proven there, but sub-
sequent work of other authors confirmed most of Walker’s statements.

Further significant progress in topology of linkages was made by J.-
Cl. Hausmann [47] and M. Kapovich and J. Millson [59]. Non-generic
polygon spaces were studied by A. Wenger [101] and the Japanese
school (see, e.g. [56]). An explicit expression for the Betti numbers of
configuration spaces of linkages in R3 were given by A. A. Klyachko
[65] who used methods of algebraic geometry. Later J.-Cl. Hausmann
and A. Knutson [48] applied methods of symplectic topology (toric
varieties) to compute the multiplicative structure of the cohomology
in the case of linkages in R3. Historic comments concerning other
developments can be found in corresponding places in the text.

In this chapter we cover several specific topics of topology of linkages
without attempting to represent everything known. Our choice is based
purely on the author’s personal preferences. Our first goal is to explain
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(following [28]) how one may compute Betti numbers of planar polygon
spaces. We also discuss classification results for these spaces in terms
of combinatorics of chambers and strata of their length vectors (the
Walker conjecture); here we briefly describe results of [29]. Finally
we present a probabilistic approach to polygon spaces, which is very
effective in situations when one does not know the bar lengths and the
number of links n is large, n → ∞; these results are described in [31]
in more detail.

The style of the exposition is not uniform and varies while we ad-
vance into the chapter. In the beginning it is very elementary, with
many simple examples, pictures and explanations. Sections §1.5–1.8
are written in the style of a research article containing theorems and
full proofs. In several concluding sections we adopt the survey style,
simply stating major results and referring to original articles for proofs
and further details.

A special role is played by section §1.7 on Morse theory of manifolds
with involution which can be read independently of the other material
of the chapter and may be applied in various contexts.

1.1. Configuration space of a linkage

Consider a simple planar mechanism consisting of n bars of fixed lengths
l1, . . . , ln connected by revolving joints forming a closed polygonal chain,
see Figure 1.1. The positions of two adjacent vertices are fixed but the
other vertices are free to move so that angles between the bars change
but the lengths of the bars remain fixed and the links are not discon-
nected from each other. Our task is to understand the topology of

l

l
l

l

l

1

2

34

5

Figure 1.1. Linkage.

the configuration space of this mechanism. Recall that in general the
configuration space of a system S is defined as the space of all possible
states of S. The configuration space of the linkage will be denoted by
MW where

Z = (l1, l2, . . . , ln) ∈ Rn
+, l1 > 0, . . . , ln > 0,(1.1)
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is the collection of the bar lengths, called the length vector of the link-
age. Clearly, a configuration of the linkage is fully determined by angles
the bars make with the horizontal direction. Hence, the configuration
space MW can be identified with

MW = {(u1, . . . , un) ∈ S1 × · · · × S1;
n∑

i=1

liui = 0, un = −e1}.(1.2)

Here ui is the unit vector in the direction of the bar number i and the
condition

∑n
i=1 liui = 0 expresses the property of the polygonal chain

to be closed. The equation un = −e1 means that the last bar always
points in the direction opposite to the x-axis.

The topological space MW can also be understood as the moduli
space of planar n-gons with sides of length l1, . . . , ln, viewed up to the
action of orientation-preserving isometries of the plane. It is important
to emphasize that our n-gons have cyclically oriented sides which are
labeled by integers 1, 2, . . . , n as shown on Figure 1.2. For any such pla-
nar n-gon there is a unique rotation of the plane bringing the polygon
in the position with a given side pointing in a fixed direction. Hence
there is a one-to-one correspondence between the configuration space
of the mechanism shown on Figure 1.1 and the variety of all different
polygonal shapes of planar n-gons with sides of lengths l1, . . . , ln. This

l5

l1 l

l

l
4

2

3

Figure 1.2. Closed planar polygon.

explains why the space MW is also called the polygon space — it para-
meterizes shapes of all planar n-gons with sides l1, . . . , ln. Therefore
one can equivalently write

MW = {(u1, . . . , un) ∈ S1 × · · · × S1;
n∑

i=1

liui = 0}/SO(2).(1.3)

In (1.3) the group of rotations SO(2) acts on the vectors u1, . . . , un

diagonally, i.e., a rotation R ∈ SO(2) acting on the n-tuple of unit
vectors (u1, . . . , un) produces (Ru1, Ru2, . . . , Run).
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Spaces MW appear also in the statistical shape theory, see [63], deal-
ing with shapes of finite clouds of points viewed up to orientation-
preserving Euclidean isometries. A finite set z1, . . . , zn ∈ R2 has the
center c = (z1 + · · ·+zn)/n and is partly characterized by the distances
li = |zi − c|. Let us assume that all li > 0, i.e., zi == c. Then

ui = (zi − c)/li ∈ S1, i = 1, . . . , n

is a collection of unit vectors satisfying
∑n

i=1 liui = 0. If z′1, . . . , z
′
n ∈ R2

is obtained from z1, . . . , zn ∈ R2 by applying an orientation-preserving
planar isometry, then the corresponding set u′1, . . . , u

′
n ∈ S1 is obtained

from u1, . . . , un ∈ S1 by a global orientation-preserving rotation. This
explains why MW parameterizes all planar shapes with given distances
li from the central point.

Any permutation σ : {1, . . . , n} → {1, . . . , n} defines a diffeomor-
phism

φσ : S1 × · · · × S1 → S1 × · · · × S1,

given by

φσ(u1, . . . , un) = (uσ(1), . . . , uσ(n)).

Clearly, φσ maps the polygon spaceMW ⊂ S1×· · ·×S1 diffeomorphically
onto the polygon space MW′ ⊂ S1×· · ·×S1 where Z′ = (lσ(1), . . . , lσ(n)).
Hence, we conclude that the order in which the numbers l1, l2, . . . , ln
appear in the length vector (1.1) is irrelevant for the diffeomorphism
type of MW.

P

P

P
2

P2

1

3

P3

The case n = 3 is trivial. By the remark
above without loss of generality we may as-
sume that l1 ≥ l2 ≥ l3. If the triangle inequal-
ity l1 < l2 + l3 is satisfied, then MW consists of
two points — two triangles with sides l1, l2, l3
which are congruent to each other via a re-
flection of the plane. If l1 = l2 + l3, then MW

consists of a single point — the degenerate tri-
angle. In the remaining case l1 > l2 + l3 the
variety MW is empty, MW = ∅.

The following lemma describes all cases
when the variety MW is empty, n ≥ 3.

Lemma 1.1. For any n ≥ 3, the variety MW is empty if and only if one
of the links li is longer than the sum of all other links, i.e.,

li > l1 + · · ·+ li−1 + li+1 + · · ·+ ln.(1.4)
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Proof. It is obvious that (1.4) implies that MW = ∅.
Below we assume that li ≤ l1 + · · · + li−1 + li+1 + · · · + ln for all i

and prove that MW == ∅. In the case n = 3 the statement is obvious.
We will argue by induction for n ≥ 4.

We claim that for n ≥ 4 there always exists a pair of adjacent1

edges li, li+1 such that

li + li+1 ≤ l1 + · · ·+ li−1 + li+2 + · · ·+ ln.(1.5)

Indeed, assuming the contrary, we obtain

2(li + li+1) > L = l1 + · · ·+ ln, i = 1, . . . , n

and adding all these inequalities gives 4L > nL, a contradiction.
Now, if (1.5) holds, by the induction hypothesis there exists a closed

(n− 1)-gon with sides l1, . . . , li−1, li + li+1, li+2, . . . , ln; it can be viewed
as an n-gon with collinear sides li, li+1. !

1.2. The robot arm workspace map

In this section we analyze the simplest robot arm having two links (see
Figure 1.3) with lengths l1 ≥ l2, its configuration space C, work space
W and the associated workspace map α : C → E. A configuration

A

l

l

1

2

B

G

Figure 1.3. Robot arm with two bars.

of the arm is determined by two angles which make the bars with
the x-axis. Since these angles are independent, we obtain that the
configuration space C is the two-dimensional torus C = T 2 = S1× S1.
The workspace is the variety of positions on the end point of the arm
G (the location of the gripper). It is easy to see that the work space
is a planar annulus having an external circle of radius R = l1 + l2 and

1The notion adjacent is understood cyclically, i.e., l1 and ln are also adjacent.
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C = T
2 W

α

Figure 1.4. Robot arm map α : C = T 2 → W .

an internal circle of radius r = l1 − l2. In the special case l1 = l2 the
internal circle degenerates into a point. The robot arm workspace map

(1.6) α : C → W

associates with each configuration of the arm the corresponding posi-
tion of the gripper, see Figure 1.4. Analytically α is given by

α(u1, u2) = l1u1 + l2u2, u1, u2 ∈ S1.(1.7)

Lemma 1.2. (a) The preimage α−1(w) of any internal point w of the
annulus W consists of exactly two configurations which are symmetric
to each other with respect to the line passing through the origin and w.

(b) If |w| = l1 + l2, the preimage α−1(w) contains a single configu-
ration with u1 = u2.

(c) If |w| = l1 − l2 > 0, the preimage α−1(w) contains a single
configuration with u1 = −u2.

(d) In the case l1 = l2, the preimage α−1(0) equals the anti-diagonal
Δ∗ = {(u,−u); u ∈ S1}.

(e) Let Δ ⊂ T 2 denote the diagonal Δ = {(u, u); u ∈ S1}. The com-
plement T 2− (Δ∪Δ∗) is a union of two connected components (which
we denote C+ and C−) and α maps each of them diffeomorphically onto
the domain l1 − l2 < |w| < l1 + l2.

Proof. To prove (e) we note that T 2 − (Δ∪Δ∗) is the set of linearly
independent pairs of unit vectors u1, u2 ∈ S1 and C+ is defined as the
set of pairs u1, u2 with det(u1, u2) > 0 (the positive frames). The other
set C− is defined as the set of negative frames.

Remaining statements of the lemma are obvious. !

1.3. Varieties of quadrangles: n = 4

Next we use the method of J. Milgram and J. Trinkle [75] to understand
the variety MW in the case n = 4. This elementary discussion will give
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us some experimental material which will be helpful in handling the
general case. We assume that

(1.8) l1 ≥ l2 ≥ l3 ≥ l4.

Our purpose is to study the variety of shapes of all quadrangles with
sides of lengths l1, l2, l3, l4. The side AD will stay fixed and paral-
lel to the x-axis. To understand the variety MW in this situation we

B

P

P

P

P

1

A D

C

2

3

4

examine possible positions of the point C. Clearly,
C must lie in the work space W of the robot arm
with links l1 and l2 (see §1.2); on the other hand C
must be on the circle of radius l3 centered at D.

Let us first assume that l1 > l2 so that W is
a planar ring with exterior radius R = l1 + l2 and
interior radius r = l1 − l2 > 0. Depending on the
values of l3 and l4 the circle of radius l4 with center
D (it is drawn in bold on Figure 1.5) may intersect the ring W in five
different ways, see Figure 1.5.

A
(5,2,1,1)

B
(4,2,1,1)

C
(3,2,1,1)

D
(3,2,2,1)

E
(4,3,3,1)

Figure 1.5. Mutual positions of the annulusW and the
circle; each case is illustrated by a sample length vector.

Case A: Here we assume l3+l4 < r. Then the bold circle lies entirely
inside the central part of the ring. The variety MW = ∅ is empty.

Case B: If l3 + l4 = r, the bold circle is tangent to the ring. The
variety MW consists in this case of a single point.

Case C: If l3 + l4 > r but l3 − l4 < r, the bold circle intersects the
ring in an arc. By Lemma 1.2 each internal point of the ring represents
two different configurations of the linkage, each boundary point of the
arc represents a single configuration. Hence, the configuration space
MW is obtained from two copies of the arc by identifying their end point.
We see that MW = S1 is homeomorphic to a circle.

Case D: The situation shown on Figure 1.5, D happens when l3 +
l4 > r and l3 − l4 = r (the first inequality is obviously superfluous).
Now the bold circle is tangent to the ring. Each point of the bold circle
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represents two different configurations except the tangency point where
these two configurations become identical. Hence the moduli space MW

is topologically S1 ∨ S1, the wedge of two circles.
Case E: Finally, if l3−l4 > r, the configuration spaceMW is a disjoint

union of two circles S1 5 S1.
Hence we see that, under the assumption l1 > l2, the moduli space

MW can be

∅, single point, S1, S1 ∨ S1, S1 5 S1

depending on the values of l1, . . . , l4. The cases B and D should be
viewed as special as they happen for certain “resonance” values of the
parameters and are characterized by equations: l1 = l2+ l3+ l4 (case B)
and l1 + l4 = l2 + l3 (case D). The remaining cases A, C, E are generic:
small perturbations of the length vector Z do not result in topological
changes for MW. We see that for a generic Z the variety MW is a closed
manifold of dimension 1. In cases B and D the variety has singular
points (i.e., points where it is not locally homeomorphic to R) and
these points correspond to collinear configurations of the linkage.

In the special case l1 = l2 the analysis is slightly different. The
ring W degenerates into a disc |w| ≤ R such that the center 0 ∈ W
represents a circle of different configurations α−1(0) = {(u,−u); u ∈
S1} of the robot arm l1, l2 (see Lemma 1.2). The mutual position of
the workspace W and the circle with center D of radius l4 could be as
shown on Figure 1.6.

F G H

(3,3,2,1) (2,2,1,1) (1,1,1,1)

Figure 1.6. The workspace and the bold circle for l1 = l2.

Case F: Here we assume that l1 = l2 > l3 > l4. ClearlyMW = S15S1.
Case G: l1 = l2 > l3 = l4. The image of the canonical map α : MW →

W is shown on Figure 1.6G — it is a circle passing through the center.
The moduli space MW is shown on Figure 1.7, case G. MW contains the
circle α−1(0) = γ, see Figure 1.7G. The points a and b represent two
collinear configurations a = (1,−1, 1,−1), b = (−1, 1, 1,−1). Each of
the arcs α and β connecting a and b is mapped onto the bold circle
shown on Figure 1.6G.
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α
α

β β

γ γ

a ab
c

b

Case G, Case H,

Figure 1.7. The configuration space MW in cases F and G

Case H: l1 = l2 = l3 = l4. The image of α : MW → W is shown
on Figure 1.6H, it is the circle passing through the center 0 ∈ W and
tangent to boundary ∂W . In this case the configuration space MW is
the union of three circles (two preimages of the bold circle and the
preimage of the center) such that any two have a common point (this
statement requires a justification which is left as an exercise for the
reader). Compared with case G, we see that the middle points of the
arcs α and β (see Figure 1.7G) become identified, see point c shown on
Figure 1.7H.

1.4. Short, long and median subsets

A length vector Z = (l1, l2, . . . , ln), li > 0 is called generic if

n∑
i=1

liεi == 0 for εi = ±1.(1.9)

Geometrically this can be expressed as follows. A length vector Z is
generic if the moduli space MW contains no collinear configurations; in
other words it is not possible to make a closed collinear n-gon with given
side lengths. For instance, the length vectors (2, 2, 1, 1) and (1, 1, 1, 1)
which were mentioned in the previous section are not generic. On the
other hand, length vector (3, 3, 2, 1) is generic. The set of generic length
vectors Z coincides with the complement in the positive quadrant li > 0
of the union of finitely many hyperplanes (1.9).

Theorem 1.3. If the length vector Z = (l1, . . . , ln) is generic, then the
moduli space of planar linkages MW is a closed orientable manifold of
dimension n− 3.

A proof will be given later. If Z is not generic, then MW has singu-
larities which will be described in the sequel.
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We will call a subset J ⊂ {1, . . . , n} short with respect to the length
vector Z if ∑

i∈J

li <
∑
i/∈J

li.(1.10)

A subset of a short set is short. As we shall see later, the set of all
short subsets with respect to Z fully determines the diffeomorphism
type of MW. Hence one expects to be able to express all topological
characteristics of MW in terms of the family of all short subsets with
respect to Z.

A subset J ⊂ {1, . . . , n} is called long with respect to Z if∑
i∈J

li >
∑
i/∈J

li,(1.11)

i.e., if its complement is short. By Lemma 1.4 the moduli space of
planar linkages MW is empty if and only if there exists a one-element
long subset J = {i} ⊂ {1, . . . , n}. There exist no disjoint long subsets.

J ⊂ {1, 2, . . . , n} is a median subset with respect to Z if∑
i∈J

li =
∑
i/∈J

li.(1.12)

The complement of a median subset is also a median subset. Clearly,
median subsets exist only when the vector Z is not generic. A subset
J ⊂ {1, . . . , n} is median if and only if neither J nor its complement
J̄ are short. Hence, the family of short subsets determines the families
of median and long subsets.

As an illustration we give the following table describing families of
short subsets for n = 4 (varieties of quadrangles) in all cases A–H (see
the previous section) under the assumption (1.8).

Case Family of short subsets MW

A J ⊂ {2, 3, 4} ∅
B J " {2, 3, 4} single point
C J = {1} or J " {2, 3, 4} S1

D |J | ≤ 1 or J = {2, 4} or J = {3, 4} S1 ∨ S1

E & F |J | ≤ 2 and J == {1, 2}, {1, 3}, {2, 3} S1 5 S1

G |J | ≤ 1 or J = {3, 4} Figure 1.7 left
H |J | ≤ 1 Figure 1.7 right

To explain our notations, let us mention that in Case B the short
subsets are all subsets of {2, 3, 4} except J = {2, 3, 4}.
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Generic cases are A, C, E & F and in these cases the configuration
space MW is a one-dimensional manifold confirming Theorem 1.3.

The reader is invited to compare these results with another ap-
proach to classifying the quadrangle spaces described in [49], Table 2,
page 39.

1.5. The robot arm distance map

A robot arm is a simple mechanism consisting of n bars (links) of fixed
length (l1, . . . , ln) connected by revolving joints as shown on Figure 1.8.
The initial point of the robot arm is fixed on the plane. The moduli

l2

l1

l3 l4

Figure 1.8. Robot arm with n links.

space of the robot arm (defined as the space of possible shapes) is

W = {(u1, . . . , un) ∈ S1 × · · · × S1}/SO(2).(1.13)

Clearly, W is diffeomorphic to torus T n−1 of dimension n−1. A diffeo-
morphism can be specified, for example, by assigning to a configuration
(u1, . . . , un) the point (1, u2u

−1
1 , u3u

−1
1 , . . . , un−1u

−1
1 ) ∈ T n−1 (measur-

ing angles between the directions of the first and the other links).
The moduli space of polygons MW (where Z = (l1, . . . , ln)) is natu-

rally embedded into W .

M

W

P

fP

0

Figure 1.9. Function fW : W → R.
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Define a real-valued function on W as follows:

fW : W → R, fW(u1, . . . , un) = −
∣∣∣∣∣

n∑
i=1

liui

∣∣∣∣∣
2

.(1.14)

Geometrically the value of fW equals the negative of the squared distance
between the initial point of the robot arm to the end of the arm shown
by the dotted line on Figure 1.8. Note that the maximum of fW is
achieved on the moduli space of planar linkages MW ⊂ W .

An important role is played by the collinear configurations of the
robot arm, i.e., such that ui = ±uj for all i, j, see Figure 1.10. We will
label such configurations by long and median subsets J ⊂ {1, . . . , n},
assigning to a long or median subset J the configuration pJ ∈ W given
by pJ = (u1, . . . , un) where ui = 1 for i ∈ J and ui = −1 for i /∈ J . Note

i ∈ J

i ∈ J/

Figure 1.10. A collinear configuration pJ of the robot arm.

that the configurations pJ , pJ̄ ∈ W are identical where J ⊂ {1, . . . , n}
is a median subset and J̄ denotes its complement. Note also that pJ

lies in MW if and only if J is median.

Lemma 1.4. The critical points of fW : W → R lying in W −MW are
exactly the collinear configurations pJ corresponding to long subsets J ⊂
{1, . . . , n}. Each pJ , viewed as a critical point of fW, is nondegenerate
in the sense of Morse and its Morse index equals n− |J |.

Proof. View fW as a function on the torus T n with the angular coor-
dinates (u1, . . . , un), where ui ∈ S1. The moduli space W is the factor-
space W = T n/SO(2). Write ui = exp(

√−1 θi), where 0 ≤ θi < 2π.
Then

fW(u1, . . . , un) = −(
n∑

i=1

li cos θi)
2 − (

n∑
i=1

li sin θi)
2

= −
n∑

i=1

l2i − 2
∑
i<j

lilj cos(θi − θj).
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We find

∂fW

∂θi

= −2li

n∑
j=1

lj sin(θj − θi).(1.15)

The equation ∂f,

∂θi
= 0 gives

sin θi ·
n∑

j=1

lj cos θj = cos θi ·
n∑

j=1

lj sin θj.(1.16)

We conclude that either
n∑

j=1

lj cos θj = 0 =
n∑

j=1

lj sin θj,

or tan θi is independent of i. The first possibility happens if and only
if the tuple (u1, . . . , un) ∈ T n represents a closed polygon, i.e., a con-
figuration lying in MW. If the second possibility happens, then for any
pair of indices i and j either θi = θj or θi = θj ± π. This shows that
any critical point of function fW lying in W −MW is represented by a
collinear configuration. The inverse statement is obvious from (1.15).

Let J ⊂ {1, 2, . . . , n} be a long subset. Consider the corresponding
critical point pJ = (u1, . . . , un) where ui = 1 for i ∈ J and ui = −1 for
i /∈ J . Then

LJ =
n∑

i=1

liui > 0.(1.17)

We will calculate the Hessian of fW at point pJ . Note that fW(pJ) =
−(LJ)2. Using (1.15) we find

1

2
· ∂2fW

∂θi ∂θj

=


li
∑
k 1=i

lk cos(θi − θk), if i = j,

−lilj cos(θj − θi), if i == j.

(1.18)

Since cos(θi − θj) = uiuj, we may rewrite (1.18) in the form

1

2
· ∂2fW

∂θi ∂θj

(pJ) =

 l2i (di − 1) if i = j,

−liljuiuj if i == j,
(1.19)

where

di =
uiLJ

li
.
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This shows that the Hessian of fW at pJ is congruent to the matrixD−E,
where E is an n× n-matrix with all entries 1 and D is a diagonal with
diagonal entries di. Note that di > 0 for i ∈ J and di < 0 for i /∈ J .

We are going to calculate the signature of the Hessian D−E using
the Sylvester criterion and Lemma 1.5. Let us reorder the set {1, . . . , n}
such that the indices of J follow the indices which are not in J ; in other
words we assume that J = {k, k + 1, . . . , n}.

By Lemma 1.5 (see below) the determinant of the principal minor
of size r of D − E equals

Δr =
r∏

j=1

dj · (1−
r∑

β=1

d−1
β ).(1.20)

Let us show that the number in the brackets in formula (1.20) is always
non-negative and it vanishes only for r = n. Indeed, if r < k then
dj < 0 for 1 ≤ j ≤ r, and the statement is obvious. For r ≥ k we have

1−
r∑

β=1

d−1
β = L−1

J (LJ −
r∑

i=1

liui) = L−1
J

n∑
i=r+1

liui ≥ 0,(1.21)

as ui = +1 for i ∈ J ; the vanishing in (1.21) happens only for r = n,
as is clear from (1.21).

This shows that the sign of the minor Δr is given by

sign(Δr) =

 (−)r for 1 ≤ r < k,

(−)k−1 for k ≤ r < n

and Δn = 0. We see that the number of negative eigenvalues of D−E
equals n− |J |, the number of positive eigenvalues is |J | − 1, and there
is a unique zero eigenvalue.

The function fW viewed as a function on the torus T n is SO(2)-
invariant. Each pJ is represented by a circle in T n and the Hessian
vanishes in the direction tangent to the circle. It follows, that fW :
W → R is nondegenerate at pJ and its Morse index equals n− |J |.

!

Lemma 1.5. Let A be an n× n-matrix of the form

A = D − E,(1.22)
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where D = diag(d1, d2, . . . , dn) is an (n×n)-diagonal matrix, and E is
an (n× n)-matrix with all entries 1. Then

detA =
n∏

i=1

di ·
[
1−

n∑
i=1

1

di

]
.

Proof. In general, if X and Y are two square matrices, then det(X+
Y ) equals the sum

∑
det(Rα), where the matrix Rα is obtained by

replacing some columns of X by the corresponding columns of Y ; the
sum contains 2n terms. Since all columns of E are equal, replacing
more than one column of D by the columns of E gives a matrix with
zero determinant. This implies our statement. !

Now we are able to prove Theorem 1.3:

Proof of Theorem 1.3. Consider the robot arm with n − 1 links
having the length vector Z′ = (l1, . . . , ln−1). Its moduli space W 9
T n−2 is diffeomorphic to the torus T n−2, see §1.5. The function fW′ :
W → R (given by (1.14)) has only Morse critical points in W −MW′ =
f−1

W′ ((−∞, 0)). By Lemma 1.4 the critical values of fW′ are of the form
−l2n where ln > 0 is such that the vector

Z = (l1, . . . , ln−1, ln)

is not generic. One has

MW = f−1
W′ (−(ln)2).(1.23)

This implies that MW is a closed manifold of dimension n− 3. !

The following theorem describes singularities of MW.

Theorem 1.6. Assume that the length vector Z = (l1, . . . , ln) is not
generic. Then MW is a compact (n − 3)-dimensional manifold having
finitely many singular points which are in one-to-one correspondence
with collinear configurations pJ where J ⊂ {1, . . . , n} is a median sub-
set2. Near each configuration pJ the moduli space MW is homeomorphic
to the cone over the product of two spheres

S|J |−2 × Sn−|J |−2.

2Recall that pJ = pJ̄ ∈M% for a median subset J ⊂ {1, . . . , n}.
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Proof. The proof is similar to that of Theorem 1.3. Consider the
moduli space W = T n−2 of the robot arm with links l1, . . . , ln−1 and
the function fW′ : MW′ → R where Z′ = (l1, . . . , ln−1). Let J ⊂ {1, . . . , n}
be a median subset such that n /∈ J . Then J can be viewed as a long
subset of {1, . . . , n − 1}. The corresponding collinear configuration
qJ ∈ W is a critical point of fW′ having the Morse index n− 1− |J | (by
Lemma 1.4). The value fW′(qJ) equals −l2n. We obtain that locally the
preimage f−1

W′ (−l2n) = MW is a cone over the product Sn−2−|J | × S|J |−2

as claimed. !

1.6. Poincaré polynomials of planar polygon spaces

The next theorem gives a general formula for the Poincaré polynomials
of moduli spaces MW. It describes the Betti numbers of all varieties
MW including the cases when MW has singularities (i.e., when the length
vector Z is not generic).

Theorem 1.7. For a given length vector Z = (l1, . . . , ln), fix a link of
the maximal length li, i.e., such that li ≥ lj for any j = 1, 2, . . . , n.
For k = 0, 1, . . . , n − 3, denote by ak the number of short subsets of
{1, . . . , n} of cardinality k + 1 which contain i, and by bk the number
of median subsets of {1, . . . , n} of cardinality k + 1 containing i. The
homology group Hk(MW;Z) is free abelian of rank

ak + an−3−k + bk,(1.24)

for any k = 0, 1, . . . , n− 3.

By Theorem 1.7 the Poincaré polynomial

p(t) =
n−3∑
k=0

dimHk(MW;Q) · tk

of MW can be written in the form

q(t) + tn−3q(t−1) + r(t)(1.25)

where

q(t) =
n−3∑
k=0

akt
k, r(t) =

n−3∑
k=0

bkt
k;(1.26)

the numbers ak and bk are described in the statement of Theorem 1.7.
Clearly bk = 0 for all k, assuming that the length vector Z = (l1, . . . , ln)
is generic.
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A proof of Theorem 1.7 is given below in §1.8. It is based on the
technique of Morse theory in the presence of involution developed in
section §1.7.

Next we illustrate the statement of Theorem 1.7 by several exam-
ples.

Example 1.8. Suppose that Z = (3, 2, 2, 1). Then a0 = 1 and b1 = 1
and all other numbers ai and bi vanish. We obtain that the Poincaré
polynomial of MW is 1 + 2t. This is consistent with the fact that MW =
S1 ∨ S1, as established earlier.

Example 1.9. Assume that Z = (3, 2, 1, 1). Then a0 = 1 and all other
numbers ai and bi vanish. We obtain that the Poincaré polynomial of
MW is 1 + t. It is consistent with our earlier result MW = S1 (see §1.4,
Case C).

Example 1.10. Suppose Z = (4, 3, 3, 1). Then a0 = 1, a1 = 1 and all
other numbers ai and bi vanish. We obtain that the Poincaré polyno-
mial of MW is 2(1 + t). We know that MW = S1 5 S1, see table in §1.4,
Case E.

Example 1.11. Suppose that n = 5 and l1 = 3, l2 = 2, l3 = 2, l4 = 1,
l5 = 1. Then l1 = 3 is the longest link and short subsets of {1, . . . , 5}
containing 1 are {1}, {1, 4} and {1, 5}. Hence a0 = 1, a1 = 2 and by
Theorem 1.7 the Poincaŕe polynomial of MW equals 1 + 4t + t2. We
conclude that MW is a closed orientable surface of genus 2.

Example 1.12. Consider the zero-dimensional Betti number a0+an−3+
b0 of MW as given by Theorem 1.7. Let’s assume again that

l1 ≥ l2 ≥ · · · ≥ ln.

If the one-element set {1} is long, then ak = 0 and bk = 0 for all k and
MW = ∅. If {1} is median, then ak = 0 for all k and b0 = 1 while bk = 0
for k > 0; the moduli space MW consists of a single point.

We assume below that {1} is short; then all one-element subsets of
{1, . . . , n} are short and MW == ∅ (see Lemma 1.1). We obtain in this
case that a0 = 1. Let us show that the number an−3 equals 0 or 1.
By the definition, an−3 coincides with the number of long two-element
subsets {r, s} ⊂ {1, . . . , n} not containing 1. There may exist at most
one such pair: if {r′, s′} is another long pair with r == r′, r == s′,
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then {1, r} and {r′, s′} would be two disjoint long subsets which is
impossible.

Example 1.13. As another example consider the equilateral case Z =
(1, 1, . . . , 1) with n = 2r+1 odd. It is clearly generic and hence bk = 0.
We may fix the first link l1 as being the longest. The short subsets in
this case are subsets of {1, . . . , n} of cardinality ≤ r. Hence we find
that the number ak equals

ak =


(

n−1
k

)
for k ≤ r − 1,

0, for k ≥ r.
(1.27)

By Theorem 1.7 the Betti numbers of MW are given by

bk(MW) =



(
n−1

k

)
for k < r − 1,

2 · (n−1
r−1

)
for k = r − 1,(

n−1
k+2

)
for k > r − 1.

(1.28)

This coincides with the result of Theorem 1.1 from [58], see also The-
orem C in [57].

Example 1.14. Consider now the equilateral case Z = (1, 1, . . . , 1) with
n = 2r + 2 even. We fix l1 = 1 as the longest link. The short subsets
are all subsets of cardinality ≤ r and the median subsets are all subsets
of cardinality r + 1. Hence we find that ak is given by formula (1.27),
bk = 0 for k == r and br =

(
2r+1

r

)
. Applying Theorem 1.7 we obtain

bk(MW) =



(
n−1

k

)
for k ≤ r − 1,(

n
r

)
for k = r,(

n−1
k+2

)
for r + 1 ≤ k ≤ n− 3.

(1.29)

This is consistent with the result of Theorem 1.1 from [58].

We will use later the observation (following from the last two ex-
amples) that the total Betti number

n−3∑
i=0

bi(M(1,1,...,1))
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for the equilateral linkage with n links equals

2n−1 −
(
n− 1

r

)
(1.30)

where r = [ (n−1)
2

].

1.7. Morse theory on manifolds with involutions

Our main tool in computing the Betti numbers of the moduli space of
planar polygons MW is Morse theory of manifolds with involution.

Theorem 1.15. Let M be a smooth compact manifold with boundary.
Assume that M is equipped with a Morse function f : M → [0, 1]
and with a smooth involution τ : M → M satisfying the following
properties:

(1) f is τ -invariant, i.e., f(τx) = f(x) for any x ∈M ;
(2) The critical points of f coincide with the fixed points of the

involution;
(3) f−1(1) = ∂M and 1 ∈ [0, 1] is a regular value of f .

Then each homology group Hi(M ;Z) is free abelian of rank equal to
the number of critical points of f having Morse index i. Moreover, the
induced map

τ∗ : Hi(M ;Z)→ Hi(M ;Z)

coincides with multiplication by (−1)i for any i.

As an illustration for Theorem 1.15 consider a surface in R3 (see Fig-
ure 1.11) which is symmetric with respect to the z-axis. The function f
is the orthogonal projection onto the z-axis, the involution τ : M →M
is given by τ(x, y, z) = (−x,−y, z). The critical points of f are exactly

z

M

Figure 1.11. Surface in R3.

the intersection points of M with the z-axis.
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Proof of Theorem 1.15. Choose a Riemannian metric onM which
is invariant with respect to τ .

Let p ∈ M be a critical point of f . By our assumption, p must be
a fixed point of τ , i.e., τ(p) = p. We claim that the differential of τ at
p is multiplication by −1, i.e.,

dτp(v) = −v, for any v ∈ TpM.(1.31)

Firstly, since τ is an involution, dτp must have eigenvalues ±1. Assume
that there exists a vector v ∈ TpM with dτp(v) = v. Then the geodesic
curve starting from p in the direction of v is invariant with respect
to τ , implying that p is not isolated in the fixed point set of τ . This
contradicts our assumption and hence dτp must have eigenvalue −1
only. Note that dτp is diagonalizable as dτp preserves the Hessian of f
at p,

H(f)p : Tp(M)⊗ Tp(M)→ R(1.32)

which is a nondegenerate quadratic form. This proves (1.31).
Consider the gradient vector field v of f with respect to the Rie-

mannian metric. We will assume that v satisfies the transversality
condition, i.e., all stable and unstable manifolds of the critical points
intersect transversally. v is τ -invariant which means that

vτ(x) = dτx(vx), x ∈M.(1.33)

The Morse – Smale chain complex (C∗(f), ∂) of f has the critical
points of f as its basis and the differential is given by

∂(p) =
∑

q

[p : q] q(1.34)

where in the summation is taken over the critical points q with Morse
index ind(q) = ind(p) − 1. The incidence numbers [p : q] ∈ Z are
defined as follows

[p : q] =
∑

γ

ε(γ), ε(γ) = ±1,(1.35)

where γ : (−∞,∞)→M are trajectories of the negative gradient flow
γ′(t) = −vγ(t) satisfying the boundary conditions γ(t)→ p as t→ −∞
and γ(t)→ q as t→ +∞.

Observe that if γ is a trajectory as above, then τ ◦γ is another such
trajectory. Indeed, using (1.33) we find (τ ◦γ)′ = dτ(γ′) = −dτ(vγ(t)) =
−vτ(γ(t)).
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p

q

γ γτ

Figure 1.12. Two symmetric trajectories of the nega-
tive gradient flow.

Theorem 1.15 would follow once we show that

ε(γ) + ε(τ ◦ γ) = 0,(1.36)

i.e., the total contribution to (1.35) of a pair of symmetric trajectories
is zero. Hence all incidence coefficients vanish [p : q] = 0 and the
differentials of the Morse – Smale complex are trivial.

To prove (1.36) we first recall the definition of the sign ε(γ) ∈
{1,−1}, see [77]. For a critical point p of f we denote by W u(p) and
W s(p) the unstable and stable manifolds of p. Recall that W u(p) is the
union of the trajectories γ : (−∞,∞) → M satisfying the differential
equation γ′(t) = −vγ(t) and the boundary condition γ(t) → p as t →
−∞. The stable manifold W s(p) is defined similarly but the boundary
condition in this case becomes γ(t)→ p as t→ +∞.

Fix an orientation of the stable manifold W s(p) for every critical
point p ∈M . Since W s(p) and W u(p) are of complementary dimension
and intersect transversally at p, the orientation of W s(p) determines a
coorientation of the unstable manifold W u(p), for every p.

If ind(p)− ind(q) = 1, then W u(p) and W s(q) intersect transversally
along finitely many connecting orbits γ(t) and the structure near each
of the connecting orbits looks as shown on Figure 1.13. Note that the
normal bundle to W u(p) along γ coincides with the normal bundle to γ
in W s(q). Hence, the coorientation of W u(p) together with the natural
orientation of the curve γ(t) determine an orientation of W s(q) along
γ. We set ε(γ) = 1 iff this orientation coincides with the prescribed
orientation of W s(q); otherwise we set ε(γ) = −1.

To compare ε(γ) with ε(τ ◦ γ) we first observe that the involution
τ preserves the stable and unstable manifolds W s(p) and W u(p) and
for every critical point p the degrees of the restriction of τ on these
submanifolds equal

deg(τ |W u(p)) = (−1)ind(p), deg(τ |W s(p)) = (−1)n−ind(p),(1.37)
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W
u
(p)

W
s
(q)

(t)γ

Figure 1.13. The stable and unstable manifolds along γ(t).

as follows from (1.31). Hence, applying the involution τ to the picture
shown on Figure 1.13, we have to multiply the coorientation of W u(p)
by (−1)n−ind(p) and multiply the orientation of W s(q) by (−1)n−ind(q).
As a result the total sign will be multiplied by

(−1)n−ind(p) · (−1)n−ind(q) = (−1)ind(p)−ind(q) = −1.

This proves (1.36) and completes the proof of the first statement of the
theorem. The second statement of the theorem follows from the first
one combined with (1.37). !

Theorem 1.16. Let M be a smooth compact connected manifold with
boundary. Suppose that M is equipped with a Morse function f : M →
[0, 1] and with a smooth involution τ : M →M satisfying the properties
of Theorem 1.15. Assume that for any critical point p ∈ M of the
function f we are given a smooth closed connected submanifold

Xp ⊂M

with the following properties:

(1) Xp is τ -invariant, i.e., τ(Xp) = Xp;
(2) p ∈ Xp and for any x ∈ Xp − {p}, one has f(x) < f(p);
(3) the function f |Xp

is Morse and the critical points of the re-
striction f |Xp

coincide with the fixed points of τ lying in Xp.
(4) For any fixed point q ∈ Xp of τ the Morse indexes of f and of

f |Xp
at q coincide. In particular,

dimXp = ind(p).

Then each submanifold Xp is orientable and the set of homology classes
realized by {Xp}p∈Fix(τ) forms a free basis of the integral homology group
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H∗(M ;Z). In other words, we claim that the inclusion induces an
isomorphism ⊕

dim Xp=i

Hi(Xp;Z) → Hi(M ;Z)(1.38)

for any i.

Proof of Theorem 1.16. First we note that each submanifold Xp

is orientable. Indeed, Theorem 1.15 applied to the restriction f |Xp

implies that f |Xp
has a unique maximum and unique minimum3 and

the top homology group Hi(Xp;Z) = Z is infinite cyclic where i =
dimXp = ind(p).

For a regular value a ∈ R of f we denote by Ma ⊂M the preimage
f−1(−∞, a]. It is a compact manifold with boundary. It follows from
Theorem 1.15 that f has a unique local minimum and therefore Ma

is either empty or connected. For a slightly above the minimum value
f(p0) = min f(M) the manifold Ma is a disc and the homology of Ma

is obviously realized by the submanifold Xp0
= {p0} ⊂Ma.

We proceed by induction on a. Our inductive statement is that
the homology of Ma is freely generated by the homology classes of the
submanifolds Xp where p runs over all critical points of f satisfying
f(p) ≤ a.

Suppose that the statement is true for a and the interval [a, b] con-
tains a single critical value c. Let p1, . . . , pr be the critical points of f
lying in f−1(c). Set

X =
r∐

i=1

Xpi

(the disjoint union). Then f induces a Morse function g : X → R and
we set

Xa = g−1(−∞, a].
Consider the Morse – Smale complexes C∗(M

a), C∗(M
b), C∗(X) and

C∗(X
a); the first two are constructed using the function f and the

latter two are constructed using the function g. We have the following
Mayer – Vietoris-type short exact sequence of chain complexes

0→ C∗(X
a)→ C∗(X)⊕ C∗(M

a)
Φ→ C∗(M

b)→ 0(1.39)

3since we assume that M and Xp are connected.
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which (by the arguments indicated in the proof of Theorem 1.15) have
trivial differentials and hence the sequence

0→ Hi(X
a)→ Hi(X)⊕Hi(M

a)
Φ→ Hi(M

b)→ 0(1.40)

is exact (all homology groups have coefficients Z). It follows from
Lemma 1.17 below and the construction of the Morse – Smale complex
(compare [77], §7) that the homomorphism Φ (which appears in (1.39)
and (1.40)) coincides with the sum of the homomorphisms induced by
the inclusions X →M b and Ma →M b.

For i < dimXpk
we have Hi(X

a
pk

) → Hi(Xpk
) is an isomorphism

(by Theorem 1.15). For i ≥ dimXpk
we have Hi(X

a
pk

) = 0. Hence we
obtain an isomorphism induced by the inclusions⊕

indpk=i

Hi(Xpk
)⊕Hi(M

a)→ Hi(M
b).(1.41)

This shows that Hi(M
b) is freely generated by the homology classes

of the submanifolds Xp satisfying f(p) < b and dimXp = i. This
completes the step of induction. !

Here is a minor variation of the Morse lemma which has been used
in the proof.

Lemma 1.17. Let f : Rn → R be a smooth function having 0 ∈ Rn

as a nondegenerate critical point and suppose that for some k ≤ n the
restriction f |Rk×{0} : Rk × {0} → R also has a nondegenerate critical

point at 0 ∈ Rk. Then there exists a neighborhood U ⊂ Rn of 0 and
a local coordinate system x : U → Rn such that x(Rk × {0} ∩ U) ⊂
Rk × {0} and

f(x1, . . . , xn) = ±x2
1 + · · ·+±x2

n + f(0).(1.42)

Proof. One simply checks that the coordinate changes in the standard
proof of the Morse lemma (compare [76], §2) can be chosen so that the
subspace Rk × {0} is mapped to itself. !

1.8. Proof of Theorem 1.7

Consider the moduli space W of the robot arm (defined by (1.13)) with
the function fW : W → R (defined by (1.14)). There is an involution

τ : W → W(1.43)
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given by

τ(u1, . . . , un) = (ū1, . . . , ūn).(1.44)

Here the bar denotes complex conjugation, i.e., the reflection with re-
spect to the real axis. It is obvious that formula (1.44) maps SO(2)-
orbits into SO(2)-orbits and hence defines an involution on W . The
fixed points of τ are the collinear configurations of the robot arm, i.e.,
the critical points of fW in W −MW, see Lemma 1.4. Our plan is to
apply Theorems 1.15 and 1.16 to the sublevel sets

W a = f−1
W (−∞, a](1.45)

of fW. Recall that the values of fW are non-positive and the maximum
is achieved on the submanifold MW ⊂ W . From Lemma 1.4 we know
that the critical points of fW are the collinear configurations pJ . The
latter are labelled by long subsets J ⊂ {1, . . . , n} and pJ = (u1, . . . , un)
where ui = 1 for i ∈ J and ui = −1 for i /∈ J . One has

fW(pJ) = −(LJ)2.(1.46)

Here LJ =
∑n

i=1 liui with pJ = (u1, . . . , un).
The number a which appears in (1.45) will be chosen so that

−(LJ)2 < a < 0(1.47)

for any long subset J such that the manifoldW a contains all the critical
points pJ . The situation is shown schematically on Figure 1.14.

MP

fP

W a

a
0

Figure 1.14. Function fW : W → R and the manifold W a.

For each subset J ⊂ {1, . . . , n} we denote by ZJ the length vector
obtained from Z = (l1, . . . , ln) by integrating all links li with i ∈ J into
one link. For example, if J = {1, 2} then ZJ = (l1 + l2, l3, . . . , ln). We
denote by WJ the moduli space of the robot arm with the length vector
ZJ . It is obvious that WJ is diffeomorphic to a torus T n−|J |. We view
WJ as being naturally embedded into W . Note that the submanifold
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WJ ⊂ W is disjoint from MW (in other words, WJ contains no closed
configurations) if and only if the subset J ⊂ {1, . . . , n} is long.

Lemma 1.18. Let J ⊂ {1, . . . , } be a long subset. The submanifold
WJ ⊂ W has the following properties:

(1) WJ is invariant with respect to the involution τ : W → W ;
(2) the restriction of fW onto WJ is a Morse function having as

its critical points the collinear configurations pI where I runs
over all subsets I ⊂ {1, . . . , n} containing J ;

(3) for any such pI the Morse indexes of fW and of fW|WJ
at pI

coincide;
(4) in particular, f |WJ

achieves its maximum at pJ ∈ WJ .

Proof. (1) is obvious. Statements (2) and (3) follow from Lemma 1.4
applied to the restriction of fW onto WJ . Here we use the assumption
that J is long. Under this assumption the long subset for the integrated
length vector ZJ are in one-to-one correspondence with the long subsets
I ⊂ {1, . . . , n} containing J . Statement (4) follows from (3) as the
Morse index of fW|WJ

at point pJ equals n− |J | = dimWJ . !

Applying Theorems 1.15 and 1.16 and taking into account Lemma
1.18 we obtain:

Corollary 1.19. One has:

(1) If a satisfies (1.47) then the manifold W a (see (1.45)) contains
all submanifolds WJ where J ⊂ {1, . . . , n} is an arbitrary long
subset.

(2) The homology classes of the submanifolds WJ form a free basis
of the integral homology group H∗(W

a;Z).

Next we examine the homomorphism

φ∗ : Hi(W
a;Z)→ Hi(W ;Z)(1.48)

induced by the inclusion φ : W a → W .
Below we will assume that l1 ≥ lj for all j ∈ {1, . . . , n}, i.e., l1 is

the longest link. This may always be achieved by relabelling.
We describe a specific basis of the homology H∗(W ;Z). For any

subset J ⊂ {1, 2, . . . , n} we denote by WJ the moduli space of con-
figurations of the robot arm with length vector ZJ where all links li
with i ∈ J are integrated into a single link. Note that WJ is naturally
embedded into W and

WJ ∩MW = ∅
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if and only if the set J is long. Since W is homeomorphic to the torus
T n−1, it is easy to see that a basis of the homology group H∗(W ;Z)
is formed by the homology classes of the submanifolds WJ where J ⊂
{1, . . . , n} runs over all subsets containing 1. We will denote the ho-
mology class of WJ by

[WJ ] ∈ Hn−|J |(W ;Z).(1.49)

Assuming that J, J ′ ⊂ {1, . . . , n} are two subsets with |J | + |J ′| =
n + 1, the classes [WJ ] and [WJ ′ ] have complementary dimensions in
W and their intersection number is given by

[WJ ] · [WJ ′ ] =

 ±1, if |J ∩ J ′| = 1,

0, if |J ∩ J ′| > 1.
(1.50)

Indeed, if J ∩ J ′ = {i0} then WJ ∩WJ ′ consists of a single point {p},
the moduli space of a robot arm with all links integrated into one
link. Let us show that the intersection WJ ∩ WJ ′ is transversal. A
tangent vector to W at p = (u1, . . . , un) can be labelled by a vector
w = (λ1, . . . , λn) ∈ Rn (an element of the Lie algebra of the torus T n)
viewed up to adding vectors of the form (λ, λ, . . . , λ). Such a tangent
vector w is tangent to the submanifold WJ iff λi = λj for all i, j ∈ J .
Given w as above it can be written as

w = w′ + w′′ + (λi0 , . . . , λi0)

where w′ has coordinates 0 on places i ∈ J and coordinates λi−λi0 on
places i =∈ J ; coordinates of w′′ vanish on places i /∈ J and are λi − λi0

on places i ∈ J . Hence every tangent vector to W is a sum of a tangent
vector to WJ and a tangent vector to WJ ′ .

Now suppose that |J ∩ J ′| > 1. We will show that then the sub-
manifold WJ ′ can be continuously deformed inside W to a submanifold
W ′

J ′ such that WJ ∩W ′
J ′ = ∅. This would prove the second claim in

(1.50). Let us assume that {1, 2} ⊂ J ∩ J ′. Define gt : WJ ′ → W by

gt(u1, . . . , un) = (eiθtu1, u2, . . . , un), t ∈ [0, 1].

Here θ satisfies 0 < θ < π. Then W ′
J ′ = g1(WJ ′) is clearly disjoint from

WJ ; indeed, the links l1 and l2 are parallel in WJ and make an angle θ
in W ′

J ′ .
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It follows that the intersection form in the basis [WJ ], [WJ ′ ] ∈
H∗(W ;Z), where J 2 1, J ′ 2 1, has a very simple form:

[WJ ] · [WJ ′ ] =

 ±1, if J ∩ J ′ = {1},

0, if |J ∩ J ′| > 1.
(1.51)

In particular, given [WJ ] with 1 ∈ J , its dual homology class lying
in H∗(W ;Z) equals [WK ] where K = CJ ∪ {1}; here CJ denotes the
complement of J in {1, . . . , n}.

Denote by A∗ ⊂ H∗(W
a;Z) (correspondingly, B∗ ⊂ H∗(W

a;Z)) the
subgroup generated by the homology classes [WJ ] where J ⊂ {1, . . . , n}
is long and contains 1 (correspondingly, J is long and 1 /∈ J). Then

Hi(W
a;Z) = Ai ⊕ Bi.(1.52)

Similarly, one has

Hi(W ;Z) = Ai ⊕ Ci ⊕Di,(1.53)

where:

• A∗ is as above;
• C∗ ⊂ H∗(W ;Z) is the subgroup generated by the homology

classes [WJ ] with J ⊂ {1, . . . , n} short and 1 ∈ J ;
• D∗ is the subgroup generated by the classes [WJ ] ∈ H∗(W ;Z)

where J is median and contains 1.

It is clear that φ∗ (see (1.48)) is identical when restricted to Ai,
compare (1.52) and (1.53). We claim that the image φ∗(Bi) is contained
in Ai. This would follow once we show that

[WJ ] · [WK ] = 0(1.54)

assuming that [WJ ] ∈ Bi and [WK ] is the dual of a class [WJ ′ ] ∈ Ci or
[WJ ′ ] ∈ Di, see (1.51). We have

(1) J is long and 1 /∈ J ,
(2) J ′ is short or median and 1 ∈ J ′,
(3) |J | = |J ′|,
(4) K = CJ ′ ∪ {1}.

Here CJ ′ denotes the complement of J ′ in {1, . . . , n}. By (1.50), to
prove (1.54) we have to show that under the above conditions one has
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|J ∩ K| > 1. Indeed, suppose that |J ∩ K| = 1, i.e., J ∩ K = {j},
a single element subset. Then J ′ is obtained from J by removing the
index j and adding the index 1 which leads to a contradiction: indeed,
J is long, lj ≤ l1 and J ′ is either short or median.

Corollary 1.20. The kernel of the homomorphism

φi : Hi(W
a;Z)→ Hi(W ;Z)

has rank equal4 to rkBi and the cokernel has rank rkCi + rkDi.

Below we omit the coefficient group Z from the notation.
One has

Hj(W,W
a) 9 Hj(N, ∂N) 9 Hn−1−j(N) 9 Hn−1−j(MW).(1.55)

Here N denotes the preimage f−1
W ([a, 0]). Note that MW is a strong de-

formation retract of N : the gradient flow of fW gives such a deformation
retraction.

Hence we obtain the short exact sequence

0→ coker(φn−1−j)→ Hj(MW)→ kerφn−2−j → 0(1.56)

which splits since the kernel of φn−2−j is isomorphic to Bn−2−j (see
above) and hence it is free abelian.

This proves that the cohomology H∗(MW) has no torsion and there-
fore the homology H∗(MW) is free as well (by the Universal Coefficient
Theorem). The cokernel of φn−1−j is isomorphic to Cn−1−j ⊕ Dn−1−j

as we established earlier. We find that the rank of cokerφn−1−j equals
the number of subsets J ⊂ {1, . . . , n} which are short or median and
have cardinality |J | = j + 1. In other words,

rk(cokerφn−1−j) = aj + bj,(1.57)

where we use the notation introduced in the statement of Theorem 1.7.
The rank of the kernel of φn−2−j equals the rank of Bn−2−j, i.e.,

the number of long subsets J ⊂ {2, . . . , n} of cardinality |J | = j + 2.
Passing to the complements, we find

rk(kerφn−2−j) = an−3−j(1.58)

i.e., the number of short subsets containing 1 with |J | = n− 2− j.

4Note that the kernel of φi (viewed as a subgroup) is distinct from Bi in general.
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Combining (1.57), (1.58) with the exact sequence (1.56) we finally
obtain

rkHj(MW) = rkHj(MW) = aj + bj + an−3−j.

This completes the proof, compare (1.24).

1.9. Maximum of the total Betti number of M"

It is well known that moduli space of pentagons MW with a generic
length vector Z = (l1, . . . , l5) is a compact orientable surface of genus
not exceeding 4, see [75]. In the equilateral case, i.e., if Z = (1, 1, 1, 1, 1),
MW is indeed an orientable surface of genus 4 and hence the above upper
bound for pentagons is sharp.

In this section we state theorems generalizing this result for arbi-
trary n and give sharp upper bounds on the total Betti number

n−3∑
i=0

bi(MW).(1.59)

Theorem 1.21. Let Z = (l1, . . . , ln) be a length vector, li > 0. Denote
by r the number [n−1

2
]. Then the total Betti number of the moduli space

MW does not exceed

Bn = 2n−1 −
(
n− 1

r

)
.(1.60)

This estimate is sharp: Bn equals the total Betti number of the moduli
space of planar equilateral n-gons, see Examples 1.13 and 1.14.

Note that for n even the equilateral linkage with n sides is not
generic and hence Theorem 1.21 does not answer the question about
the maximum of the total Betti number on the set of all generic length
vectors with n even.

Theorem 1.22. Assume that n is even and Z = (l1, . . . , ln) is a generic
length vector. Then the total Betti number of MW does not exceed

B′
n = 2 ·Bn−1,(1.61)

where Bk is defined by (1.60). This upper bound is achieved on the
length vector Z = (1, 1, . . . , 1, ε) where 0 < ε < 1 and the number of
ones is n− 1.
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Note that M(1,...,1,ε) is diffeomorphic to the product M(1,...,1) × S1

(the number of ones in both cases equals 2r + 1), see5 Prop. 6.1 of
[49]. Hence the total Betti number of M(1,...,1,ε) is twice the total Betti
number of M(1,...,1).

Proofs of Theorems 1.21 and 1.22 can be found in [28].
The asymptotic behavior of the number Bn (defined by (1.60)) can

be recovered using available information about Catalan numbers

Cr =
1

r + 1
·
(

2r
r

)
∼ 22r

√
πr3/2

,

see [98]. One obtains the asymptotic formula

Bn ∼ 2n−1 ·
(

1−
√

2

nπ

)
.(1.62)

1.10. On the conjecture of Kevin Walker

In 1985 Kevin Walker in his study of topology of polygon spaces [100]
raised an interesting conjecture in the spirit of the well-known question
“Can you hear the shape of a drum?” of Marc Kac. Roughly, Walker’s
conjecture asserts that one can recover relative lengths of the bars of
a linkage from intrinsic algebraic properties of the cohomology algebra
of its configuration space. In this section we survey results of a recent
paper [29] answering the conjecture for polygon spaces in R3. In [29]
it is also proven that for planar polygon spaces the conjecture holds
in several modified forms: (a) if one takes into account the action of a
natural involution on cohomology, (b) if the cohomology algebra of the
involution’s orbit space is known, or (c) if the length vector is normal.
Some results mentioned below allow the length vector to be non-generic
(the corresponding polygon space has singularities).

Walker’s conjecture [100] states that for a generic length vector
Z the cohomology ring of MW determines the length vector Z up to a
natural equivalence (described below). To state the Walker conjecture
in full detail we recall the dependence of the configuration space MW on
the length vector

Z = (l1, . . . , ln) ∈ Rn
+.(1.63)

Here Rn
+ denotes the set of vectors in Rn having non-negative coordi-

nates. Clearly, MW = MtW for any t > 0. Also, MW is diffeomorphic to
MW′ if Z′ is obtained from Z by permuting coordinates.

5This can also be easily deduced from Lemma 1.4, statement (4).
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Denote by A = An−1 ⊂ Rn
+ the interior of the unit simplex, i.e.,

the set given by the inequalities l1 > 0, . . . , ln > 0,
∑
li = 1. One can

view A as the quotient space of Rn
+ with respect to R+-action. For any

subset J ⊂ {1, . . . , n} we denote by HJ ⊂ Rn the hyperplane defined
by the equation ∑

i∈J

li =
∑
i/∈J

li.(1.64)

One considers the stratification

A(0) ⊂ A(1) ⊂ · · · ⊂ A(n−1) = A.(1.65)

Here the symbol A(i) denotes the set of points Z ∈ A lying in at least
n− 1− i linearly independent hyperplanes HJ for various subsets J . A
stratum of dimension k is a connected component of the complement
A(k)−A(k−1). By Theorem 1.1 of [49], manifolds with singularities MW

and MW′ are diffeomorphic if the vectors Z and Z′ belong to the same
stratum.

Lemma 1.23. Two length vectors Z, Z′ ∈ An−1 lie in the same stratum
of An−1 if and only if the family of all subsets J ⊂ {1, 2, . . . , n} which
are short with respect to Z coincides with the family of all subsets J ⊂
{1, 2, . . . , n} which are short with respect to Z′.

Proof. J is long iff the complement J̄ is short and J is median iff
neither J nor J̄ is short. Hence, vectors Z, Z′ satisfying conditions of
the lemma have identical families of short, long and median subsets.
This clearly implies that Z and Z′ lie in the same stratum of A. !

Strata of dimension n − 1 are called chambers. Vectors Z lying in
chambers are generic. Non-generic length vectors lie in walls separating
chambers and hence satisfy linear equations (1.64) for some J .

Walker’s conjecture: Let Z, Z′ ∈ A be two generic length vec-
tors; if the corresponding polygon spaces MW and MW′ have isomor-
phic graded integral cohomology rings, then for some permutation σ :
{1, . . . , n} → {1, . . . , n} the length vectors Z and σ(Z′) lie in the same
chamber of A.

It is important to recall that polygon spaces (1.3) come with a
natural involution

(1.66) τ : MW →MW, τ(u1, . . . , un) = (ū1, . . . , ūn)
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induced by complex conjugation; a similar involution played an impor-
tant role earlier in section §1.8. Geometrically, this involution asso-

!2

!2

!1

!1

!4

!4

!3

!3

X

ciates to a polygonal shape the shape of the reflected polygon. The
fixed points of τ are the collinear configurations, i.e., degenerate poly-
gons. In particular we see that τ : MW → MW has no fixed points iff
the length vector Z is generic. Clearly, τ induces an involution on the
cohomology of MW with integral coefficients

τ ∗ : H∗(MW;Z)→ H∗(MW;Z).(1.67)

Theorem 1.24. [29] Suppose that two length vectors Z, Z′ ∈ An−1 are
ordered, i.e., Z = (l1, l2, . . . , ln) with l1 ≥ l2 ≥ · · · ≥ ln > 0 and
similarly for Z′. If there exists a graded ring isomorphism of the integral
cohomology algebras

f : H∗(MW;Z)→ H∗(MW′ ;Z)

commuting with the action of the involution (1.67), then Z and Z′ lie in
the same stratum of A. In particular, under the above assumptions the
moduli spaces MW and MW′ are τ -equivariantly diffeomorphic.

Let Z, Z′ ∈ An−1 be length vectors (possibly non-generic) lying in
the same stratum. Then there exists a diffeomorphism φ : MW′→MW

which is equivariant with respect to the involution τ , see page 36 and
Remark 3.3 in [49].

Let M̄W denote the factor-space of MW with respect to the involution
(1.66). An alternative definition of M̄W is given by

M̄W = {(u1, . . . , un) ∈ S1 × · · · × S1;
n∑

i=1

liui = 0}/O(2).(1.68)
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Theorem 1.25. [29] Suppose that two generic ordered length vectors
Z, Z′ ∈ An−1 are such that there exists a graded algebra isomorphism

f : H∗(M̄W;Z2)→ H∗(M̄W′ ;Z2)

of cohomology algebras with Z2 coefficients. If n == 4, then Z and Z′ lie
in the same chamber of A.

Theorem 1.25 is false for n = 4. Indeed, for the length vectors
Z = (2, 1, 1, 1) and Z′ = (2, 2, 2, 1) the manifolds M̄W and M̄W′ are circles.
However MW and MW′ are not diffeomorphic (the first is S1 and the
second is S1 5 S1) and thus Z and Z′ do not lie in the same chamber.

In [29] we also prove a result in the spirit of Walker’s conjecture
for the spatial polygon spaces. These spaces are defined by

(1.69) NW = {(u1, . . . , un) ∈ S2 × · · · × S2;
n∑

i=1

liui = 0}/SO(3).

Points of NW parameterize the shapes of n-gons in R3 having sides of
length Z = (l1, . . . , ln). If the length vector Z is generic then NW is a
closed smooth manifold of dimension 2(n− 3).

Theorem 1.26. [29] Suppose that two generic ordered length vectors
Z, Z′ ∈ An−1 are such that there exists a graded algebra isomorphism

f : H∗(NW;Z2)→ H∗(NW′ ;Z2)

of cohomology algebras with Z2 coefficients. If n == 4, then Z and Z′ lie
in the same chamber of A. This theorem remains true if the cohomology
algebras are taken with integral coefficients.

Theorem 1.26 is false for n = 4: for length vectors Z = (2, 1, 1, 1)
and Z′ = (2, 2, 2, 1) lying in different chambers (see above) the manifolds
NW and NW′ are both diffeomorphic to S2.

Definition 1.27. A length vector Z = (l1, . . . , ln) is called normal if
∩J == ∅ where J runs over all subsets J ⊂ {1, . . . , n} with |J | = 3
which are either median or long with respect to Z.

A stratum of An−1 is called normal if it contains a normal vector.

Clearly, any vector lying in a normal stratum is normal. A length
vector Z with the property that all subsets J of cardinality 3 are short is
normal since then the intersection ∩J where |J | = 3 equals {1, . . . , n}
as the intersection of the empty family.

If Z = (l1, . . . , ln) where 0 < l1 ≤ l2 ≤ · · · ≤ ln, then Z is normal
if and only if the set {n − 3, n − 2, n − 1} is short with respect to Z.
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Indeed, if this set is not short, then neither of the sets {n−3, n−2, n},
{n − 3, n − 1, n}, {n − 2, n − 1, n} is short and the intersection of
these four sets of cardinality three is empty. On the other hand, if the
set {n − 3, n − 2, n − 1} is short, then any median or long subset of
cardinality three J ⊂ {1, . . . , n} contains n and therefore ∩J , where
|J | = 3, also contains n.

Examples of non-normal length vectors are (1, 1, 1, 1, 1) (for n = 5)
and (3, 2, 2, 2, 1, 1) for n = 6. Only 7 chambers out 21 are normal for
n = 6. However, for large n it is very likely that a randomly selected
length vector is normal. For n = 9, where there are 175428 chambers
up to permutation, 86% of them are normal. It is shown in [31] that
the (n− 1)-dimensional volume of the union Nn ⊂ An−1 of all normal
strata satisfies

vol(An−1 −Nn)

vol(An−1)
<

n6

2n
,

i.e., for large n the relative volume of the union of non-normal strata
is exponentially small.

Theorem 1.28. [29] Suppose that Z, Z′ ∈ An−1 are two ordered length
vectors such that there exists a graded algebra isomorphism between the
integral cohomology algebras H∗(MW;Z) → H∗(MW′ ;Z). Assume that
one of the vectors Z, Z′ is normal. Then the other vector is normal as
well and Z and Z′ lie in the same stratum of the simplex A.

Consider the action of the symmetric group Σn on the simplex An−1

induced by permutations of vertices. This action defines an action of
Σn on the set of strata and we denote by cn and by c∗n the number
of distinct Σn-orbits of chambers (or chambers consisting of normal
length vectors, respectively).

Theorems 1.24–1.28 imply:

Theorem 1.29. [29] (a) For n == 4 the number of distinct diffeomor-
phism types of manifolds NW, where Z runs over all generic vectors of
An−1, equals cn;

(b) for n == 4 the number of distinct diffeomorphism types of mani-
folds M̄W, where Z runs over all generic vectors of An−1, equals cn;

(c) the number xn of distinct diffeomorphism types of manifolds MW,
where Z runs over all generic vectors of An−1, satisfies c∗n ≤ xn ≤ cn;

(d) the number of distinct diffeomorphism types of manifolds with
singularities MW, where Z varies in An−1, is bounded above by the num-
ber of distinct Σn-orbits of strata of An−1 and is bounded below by the
number of distinct Σn-orbits of normal strata of An−1.
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Statements (a), (b), (c), (d) remain true if one replaces the words
“diffeomorphism types” by “homeomorphism types” or by “homotopy
types”.

It is an interesting combinatorial problem to find explicit formulae
for the numbers cn and c∗n and to understand their behavior for large
n . For n ≤ 9, the numbers cn have been determined in [49], by giving
an explicit list of the chambers. The following table gives the values cn
and c∗n for n ≤ 9:

n 3 4 5 6 7 8 9

cn 2 3 7 21 135 2470 175428

c∗n 1 1 2 7 65 1700 151317

We refer the reader to the original paper [29] for proofs of theorems
mentioned in this section and more details.

1.11. Topology of random linkages

In this section we study polygon spaces NW and MW assuming that the
number of links n is large, n → ∞. This approach is motivated by
applications in topological robotics, statistical shape theory and mole-
cular biology. We view the lengths of the bars of the linkage as random
variables and study asymptotic values of the average Betti numbers
when n tends to infinity. We describe a surprising fact (established in
[30], [31]) that for a reasonably ample class of sequences of probabil-
ity measures the asymptotic values of the average Betti numbers are
independent of the choice of the measure.

The following picture summarizes our description of the field of
topological spaces Z 7→ NW viewed as a single object. The open simplex
Δn−1 is divided into a huge number of tiny chambers, each representing
a diffeomorphism type of manifolds NW. The symmetric group Σn acts
on the simplex Δn−1 mapping chambers to chambers and manifolds NW

and NW′ are diffeomorphic if and only if the vectors Z, Z′ lie in chambers
belonging the same Σn-orbit.

The main idea of this section is to use methods of probability the-
ory and statistics in dealing with the variety of diffeomorphism types
of configuration spaces NW and MW for n large. In applications different
manifold types appear with different probabilities and our intention is
to study the most “frequently emerging” manifolds NW and the mathe-
matical expectations of their topological invariants. Formally, we view
the length vector Z ∈ Δn−1 as a random variable whose statistical
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behavior is characterized by a probability measure νn. Topological
invariants of NW become random functions and their mathematical ex-
pectations might be very useful for applications. Thus, one is led to
study the average Betti numbers6∫

Δn−1

b2p(NW)dνn and

∫
Δn−1

bp(MW)dνn(1.70)

where the integration is understood with respect to Z. Here NW denotes
the polygon space in R3 (see (1.69)) andMW denotes the planar polygon
space (1.3). The main result of this section states that for p fixed and
n large these average Betti numbers can be calculated explicitly up to
an exponentially small error. More precisely,∫

Δn−1

b2p(NW)dνn ∼
p∑

i=0

(
n− 1

i

)
and ∫

Δn−1

bp(MW)dνn ∼
(
n− 1

p

)
.

It might appear surprising that the asymptotic values of average Betti
numbers do not depend on the sequence of probability measures νn

which are allowed to vary in an ample class of admissible probability
measures described below. First we have to define what is meant by
an admissible sequence of measures.

For a vector Z = (l1, . . . , ln) we denote by

|Z| = max{|l1|, . . . , |ln|}
the maximum of absolute values of coordinates. The symbol Δn−1

denotes the open unit simplex, the set of all vectors Z = (l1, l2, . . . , ln) ∈
Rn such that li > 0 and l1 + · · ·+ ln = 1. Let µn denote the Lebesgue
measure on Δn−1 normalized so that µn(Δn−1) = 1. In other words, for
a Lebesgue measurable subset A ⊂ Δn−1 one has

µn(A) =
vol(A)

vol(Δn−1)

where the symbol vol denotes the (n− 1)-dimensional volume. For an
integer p ≥ 1 we write

Λp = Λn−1
p = {Z ∈ Δn−1; |Z| ≥ (2p)−1}.(1.71)

Clearly, Λp ⊂ Λq for p ≤ q.

6It is well known that all odd-dimensional Betti numbers of N% vanish, see [65].
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Definition 1.30. [31] Consider a sequence of probability measures νn

on Δn−1 where n = 1, 2, . . . . It is called admissible if νn = fn ·µn where
fn : Δn−1 → R is a sequence of functions satisfying: (i) fn ≥ 0, (ii)∫

Δn−1 fndµn = 1, and (iii) for any p ≥ 1 there exist constants A > 0
and 0 < b < 2 such that

fn(Z) ≤ A · bn(1.72)

for any n and any Z ∈ Λn−1
p ⊂ Δn−1.

Note that property (iii) imposes restrictions on the behavior of the
sequence νn only in domains Λn−1

p .

Example 1.31. Consider the unit cube !
n ⊂ Rn

+ given by the inequal-
ities 0 ≤ li ≤ 1 for i = 1, . . . , n. Let χn be the probability measure
on Rn

+ supported on !
n ⊂ Rn

+ such that the restriction χn|!n is the
Lebesgue measure, χn(!n) = 1. As in [30] consider the sequence of
induced measures νn = q∗(χn) on simplices Δn−1 where q : Rn

+ → Δn−1

is the normalization map q(Z) = tZ where t = (l1 + · · ·+ ln)−1. It is easy
to see that νn = fnµn where fn : Δn−1 → R is a function given by

fn(Z) = kn · |Z|−n, Z ∈ Δn−1.(1.73)

Here kn is a constant which can be found (using (ii) of Definition 1.30)
from the equation

k−1
n =

∫
Δn−1

|Z|−ndµn.(1.74)

If Z ∈ Λn−1
p then fn(Z) ≤ kn · (2p)n. We can represent Λn−1

p as the
union A1 ∪ · · · ∪ An where

Ai = {(l1, . . . , ln) ∈ Δn−1; li ≥ (2p)−1}, i = 1, . . . , n.

Clearly, µn(Ai) =
(

2p−1
2p

)n−1

and hence

µn(Δn−1 − Λp) ≥ 1− n
(

2p− 1

2p

)n−1

.

Using (1.74) we find that k−1
n ≥ (2p)n ·

(
1− n

(
2p−1
2p

)n−1
)

. This shows

that the sequence (2p)nkn remains bounded as n → ∞, implying (iii)
of Definition 1.30. Hence, the sequence of measures {νn} is admissible.
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The following two theorems are the main results of this section.

Theorem 1.32. [31] Fix an admissible sequence of probability measures
νn and an integer p ≥ 0, and consider the average 2p-dimensional Betti
number (1.70) of polygon spaces NW in R3 for large n→∞. Then there
exist constants C > 0 and 0 < a < 1 (depending on the sequence of
measures νn and on the number p but independent of n) such that the
average Betti numbers (1.70) satisfy∣∣∣∣∣∣

∫
Δn−1

b2p(NW)dνn −
p∑

i=0

(
n− 1

i

)∣∣∣∣∣∣ < C · an(1.75)

for all n.

Theorem 1.33. [31] Fix an admissible sequence of probability measures
νn and an integer p ≥ 0, and consider the average p-dimensional Betti
number (1.70) of planar polygon spaces for large n → ∞. Then there
exist constants C > 0 and 0 < a < 1 (depending on the sequence of
measures νn and on the number p but independent of n) such that∣∣∣∣∣∣

∫
Δn−1

bp(MW)dνn −
(
n− 1

p

)∣∣∣∣∣∣ < C · an(1.76)

for all n.

Proofs of Theorems 1.32 and 1.33 can be found in [31].
Matthew Hunt [52] applied Monte – Carlo simulation to compute

numerically the average Betti numbers of planar polygon spaces MW for
various n ≤ 11. His numerical results confirm Theorem 1.33.





CHAPTER 2

Euler Characteristics of Configuration Spaces

In this chapter we describe a beautiful result of S. Gal [38] which
expresses explicitly the Euler characteristics of various configuration
spaces associated with polyhedra.

2.1. The Euler – Gal power series

For a finite simplicial polyhedron X we denote by F (X,n) the space of
all configurations of n distinct particles moving in X. In other words,
F (X,n) is defined as the subspace of the Cartesian product

F (X,n) ⊂ Xn = X × · · · ×X

of n copies of X consisting of all n-tuples (x1, . . . , xn) satisfying xi == xj

for i == j. Configuration spaces of this kind appear in robotics in
problems of simultaneous control of multiple objects (robots) avoiding
collisions.

The symmetric group Σn acts freely on F (X,n) by permuting the
particles. The factor

B(X,n) = F (X,n)/Σn

is the space of all subsets of cardinality n in X. The notation B intends
to bring association with “braids”; the fundamental group π1(B(X,n))
is the braid group of X.

Our aim is to compute the Euler characteristics χ(F (X,n)) and
χ(B(X,n)) of configuration spaces F (X,n) and B(X,n) for a fixed
polyhedron X and various values of n. These numbers are related by

χ(B(X,n)) =
χ(F (X,n))

n!
(2.1)

where n = 1, 2, . . . . One formally defines F (X, 0) and B(X, 0) as sin-
gletons (i.e., spaces consisting of a single point) so that

χ(B(X, 0)) = χ(F (X, 0)) = 1.
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With each finite polyhedron X one associates a sequence of integers
(2.1) which may be organized into a formal power series with integer
coefficients

euX(t) =
∞∑

n=0

χ(B(X,n)) · tn =
∞∑

n=0

χ(F (X,n)) · t
n

n!
.(2.2)

The latter is called the Euler – Gal power series of X. The constant
term of euX(t) is 1. We shall see that euX(t) has a fairly simple expres-
sion while the individual numbers (2.1) are much more involved.

Theorem 2.1. For any finite polyhedron X the Euler – Gal power
series euX(t) represents a rational function

euX(t) =
p(t)

q(t)
,(2.3)

where p(t) and q(t) are polynomials with integral coefficients satisfying

p(0) = 1 = q(0), deg(p)− deg(q) = χ(X).

Theorem 2.1 will be made more precise later in Theorem 2.3.
Theorem 2.1 implies that the numbers χn = χ(B(X,n)) satisfy a

linear recurrence relation:

Corollary 2.2. Given a finite simplicial polyhedron X, there exist
integers a1, . . . , ar ∈ Z (for some r depending on X) such that for any
n ≥ r one has

χn = a1χn−1 + a2χn−2 + · · ·+ arχn−r.(2.4)

Theorem 2.3 stated below describes explicitly the polynomials p(t)
and q(t) appearing in formula (2.3) in terms of local topological prop-
erties of X.

Recall the notion of link of a simplex in a simplicial complex. Let
σ be a simplex of X. The link of σ (denoted Lσ) is the union of all
simplices τ ⊂ X such that τ ∩ σ = ∅ and τ and σ lie in a common
simplex of X. Clearly Lσ is a subcomplex of X.

Figure 2.1 illustrates this notion. We see a one-dimensional simplex
σ which is incident to three two-dimensional simplices. The link Lσ

consists of three points and the cone C(Lσ) over Lσ is shown on Figure
2.1 on the right. This example tells us that the cone C(Lσ) describes
the geometry of X near σ “in the direction perpendicular” to σ.

It will be convenient for us to deal with polyhedral cell complexes.
Let us briefly recall the relevant definitions, see [85] for more detail.
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σ
C(Lσ)

Figure 2.1. Link of a simplex.

We consider RN with coordinates x = (x1, . . . , xn) and with the metric
d(x, y) = sup |xi − yi| so that any ball {x; d(x, y) ≤ ε} is a cube cen-
tered at y. A cell σ ⊂ RN is the convex hull of a finite set of points
v1, . . . , vm ∈ RN . We say that the set v1, . . . , vm is the set of vertices
of σ if the convex hull of any proper subset of v1, . . . , vm is a proper
subset of σ. We refer to [85], pages 13, 14 for the definition of a face
of a cell; notation σ′ < σ.

A polyhedral cell complex K is a finite collection of cells lying in
some Euclidean space RN such that with each cell it contains all its
faces and such that the intersection τ ∩ σ of any pair of cells τ, σ ∈ K
is a face of both τ and σ. The underlying polyhedron X = |K| = ∪σ
has the following important property: any point x ∈ X has a cone
neighbourhood C(L) where L is compact. If x lies in the interior of a
cell σ, then a metric ball of small radius with center x is topologically
the product of a Euclidean disk of dimension dimσ and a cone C(Lσ)
where Lσ is compact. This Lσ is called the link of the cell σ.

Lσ

σ

If X is an m-dimensional piecewise-linear
manifold with boundary (we refer to the book
[85] for basic definitions) then for any cell σ of
dimension d lying in the interior of X one has
Lσ 9 Sm−d−1. If σ belongs to the boundary ∂X
then Lσ is topologically the disk Dm−d−1.

It will be convenient for us to introduce the
invariant

χ̃(X) = 1− χ(X) = χ(C(X), X),(2.5)

the reduced Euler characteristic. Here C(X) denotes the cone over X.
The reduced Euler characteristic behaves well with respect to the join
operation:

χ̃(X ∗ Y ) = χ̃(X) · χ̃(Y ).(2.6)
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This follows from the observation

(C(X ∗ Y ), X ∗ Y ) = (C(X), X)× (C(Y ), Y )

using the multiplicative property of the Euler characteristic. Note also
the useful formula

χ̃(Sk) = (−1)k+1.(2.7)

The statement given below is not used in the sequel and therefore it
is left as an exercise. It is a special case of Theorem 2.3 – the equation
for the first order terms in t.

Exercise: Show that for a finite polyhedral cell complex X one has

χ(X) =
∑

σ

χ̃(Lσ),(2.8)

where σ runs over all cells of X.
Next we state an important addition to Theorem 2.1:

Theorem 2.3 (see Theorem 2 in [38]). Let X be a finite polyhedral cell
complex. Then the polynomials p(t) and q(t) which appear in formula
(2.3) can be chosen as follows:

p(t) =
∏

dim σ=even

[1 + tχ̃(Lσ)](2.9)

and

q(t) =
∏

dim σ=odd

[1− tχ̃(Lσ)] .(2.10)

In (2.9) and in (2.10) σ runs over all cells of X having even or odd
dimension, correspondingly.

Corollary 2.4. The zeros of the rational function euX(t) are of the
form

t = −χ̃(Lσ)−1,(2.11)

where σ is an even-dimensional cell σ with χ̃(Lσ) == 0. Poles of euX(t)
are of the form

t = χ̃(Lσ)−1,(2.12)

where σ is an odd-dimensional cell σ with χ̃(Lσ) == 0.
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The proofs of Theorems 2.1 and 2.3 will be completed in section
§2.8. In the following sections we examine the statements of these
theorems in several special cases.

2.2. Configuration spaces of manifolds

Here we apply Theorems 2.1 and 2.3 in the case of manifolds.

Theorem 2.5. Let X be a piecewise-linear compact manifold, possibly
with boundary. Then

euX(t) =

 (1 + t)χ(X), if dimX is even,

(1− t)−χ(X), if dimX is odd.
(2.13)

Theorem 2.5 was mentioned in [35] in the special case when dimX
is even and ∂X = ∅. Passing to binomial expansions Theorem 2.5 may
be restated as follows:

χ(F (X, k)) =

 χ(χ− 1) . . . (χ− k + 1) if dimX is even,

χ(χ+ 1) . . . (χ+ k − 1) if dimX is odd.

Here X is a compact manifold, possibly with boundary, and χ = χ(X).
Theorem 2.5 may also be obtained by examining the towers of

Fadell – Neuwirth fibrations [21]: if X is a manifold without boundary,
then projecting onto the first coordinate gives a locally trivial fibration
F (X,n)→ X. Its fibre above a point p ∈ X equals F (X −{p}, n− 1),
the configuration space of n− 1 distinct points in X − {p}. Using the
multiplicative property of the Euler characteristic1 we find

χ(F (X,n)) = χ(F (X − {p}, n− 1)) · χ(X).(2.14)

Iterating we obtain

χ(F (X,n)) = χ(X) · χ(X1) · · · · · χ(Xn−1),

where each Xi is obtained from X by removing i distinct points. This
gives the formulae mentioned above since χ(Xi) = χ(X)− (−1)dim X · i.

Next we give a proof of Theorem 2.5 based on Theorem 2.3. For
every cell σ lying in the interior of X one has Lσ = Sn−dσ−1 and

1It states that for a fibration E → B with fibre F one has χ(E) = χ(B)χ(F ).
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χ̃(Lσ) = (−1)n−dσ where n = dimX and dσ = dim σ. If σ is a cell
lying in the boundary, then χ̃(Lσ) = 0. Hence Theorem 2.3 gives

euX(t) =
(
1 + (−1)dim Xt

)χ(X)−χ(∂X)
.(2.15)

This implies (2.13) since for dimX even one has χ(∂X) = 0 and for
dimX odd, χ(∂X) = 2χ(X).

2.3. Configuration spaces of graphs

Next we examine the special case of Theorem 2.3 when X = Γ is a finite
graph, i.e., a one-dimensional finite simplicial complex. For any vertex
v ∈ Γ the link Lv is the discrete set of vertices which are connected to
v by an edge in Γ. Hence

χ̃(Lv) = 1− µ(v)

where µ(v) denotes the valence of v. For any edge e ⊂ Γ the link Le is
empty and therefore

χ̃(Le) = 1.

Applying Theorem 2.3 we find

Theorem 2.6. The Euler – Gal power series of a graph Γ is given by
the formula

euΓ(t) = (1− t)−E ·∏
v

[1 + t(1− µ(v))]

(2.16)

=
[
1 +

(
E
1

)
t+
(

E+1
2

)
t2 + · · · ] ·∏

v

[1 + t(1− µ(v))] .

Here E denotes the total number of edges in Γ and v runs over all
vertices of Γ.

Observe that in the product appearing in (2.16) the univalent ver-
tices µ(v) = 1 give no contribution. As another observation note that
subdividing an edge by introducing a new vertex of valence 2 makes no
change to the Euler – Gal series (2.16) as two new terms cancel each
other.

As an illustration we use formula (2.16) to compute explicitly the
Euler characteristic χ(F (Γ, 2)), which equals twice the coefficient of t2

in the above series.
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Corollary 2.7. For any finite graph Γ one has

χ(F (Γ, 2)) = χ(Γ)2 + χ(Γ)−
∑

v

(µ(v)− 1)(µ(v)− 2).(2.17)

Proof. The coefficient of t2 in (2.16) equals(
E + 1

2

)
+ E

∑
v

(1− µ(v)) +
1

2

∑
v 1=w

(1− µ(v))(1− µ(w)).(2.18)

In the last sum the summation is over all ordered pairs of distinct
vertices (v, w). Since 2E =

∑
v µ(v) the second term in (2.18) is

V E − 1

2

∑
v

µ(v) ·
∑

w

µ(w),

where V is the number of vertices. Similarly, the third term in (2.18)
equals

1

2
(V 2 − V )− (V − 1) · 2E +

1

2

∑
v 1=w

µ(v)µ(w).

Hence by Theorem 2.3 we find that the Euler characteristic χ(F (Γ, 2))
equals twice the coefficient of t2 in (2.18), i.e.,

E(E + 1) + 2V E − F + (V 2 − V )− (V − 1)4E,(2.19)

where F denotes
∑

v µ(v)2. Formula (2.19) can be rewritten as

(V 2 − 2V E + E2) + (V − E)− 2V + 6E − F
which is equivalent to (2.17). !

As an example consider graph Γµ shown on Figure 2.2. It consists

Figure 2.2. Graph Γµ.
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of µ edges incident to a vertex. The the Euler – Gal series is

euΓµ
(t) =

1 + t(1− µ)

(1− t)µ
.

Hence,

χ(F (Γµ, n)) = − (µ+ n− 2)!

(µ− 1)!
[(n− 1)µ− 2n+ 1] .

This result was obtained in [39] by a different method.
Next we analyze the behavior of χ(F (X,n)) assuming that the num-

ber of particles n tends to infinity.

Proposition 2.8. Assume that Γ is a connected graph with χ(Γ) < 0.
Then for large n one has the asymptotic formula

χ(B(Γ, n)) ∼ cΓ · nE′−1.(2.20)

Here E ′ = E − V + V ′ with V ′ denoting the number of vertexes v of Γ
satisfying µ(v) == 2 and the constant cΓ is given by

cΓ =

∏
µ(v) 1=2

(2− µ(v))

(E ′ − 1)!
.

In the product, v ∈ Γ runs over all vertexes with µ(v) == 2.

Proof. One may write∏
µ(v) 1=2

(1 + tµ̃(v)) = a0(1− t)V ′

+ a1(1− t)V ′−1 + · · ·+ aV ′ ,

where µ̃(v) = 1− µ(v) and

aV ′ =
∏

µ(v) 1=2

(2− µ(v)) == 0.

Using the binomial expansion

(1− t)−k =
∞∑

n=0

(
k + n− 1

n

)
tn
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and Theorem 2.6 we obtain that χ(F (Γ, n)) equals

aV ′

(E ′ + n− 1)!

(E ′ − 1)!
+ aV ′−1

(E ′ + n− 2)!

(E ′ − 2)!
+ · · ·+ a0

(n− χ(Γ)− 1)!

(−χ(Γ)− 1)!

=
(E ′ + n− 1)!

(E ′ − 1)!

[
aV ′ + aV ′−1

E ′ − 1

E ′ − 1 + n
+ · · ·

]
.

For n large the first term in square brackets dominates and we may
ignore the other terms. We obtain that asymptotically one has

χ(F (Γ, n)) ∼
∏

µ(v) 1=2

(2− µ(v)) · (n+ E ′ − 1)!

(E ′ − 1)!
.(2.21)

This implies the statement of Lemma 2.8. !

2.4. Recurrent formula for euX(t)

Having examined various special cases of Theorem 2.3 of S. Gal, we
start preparing auxiliary results which will be used in the proof of
Theorem 2.3. Our exposition essentially follows the original paper [38].
A central role in the proof of Theorem 2.3 is played by the following
statement:

Theorem 2.9. Let X be a finite polyhedral cell complex. For any
cell σ ⊂ X denote by 〈σ〉 ⊂ X a sufficiently small open contractible
neighborhood of an internal point of σ. Then

χ(F (X,n)) =
∑

σ

χ(F (X − 〈σ〉), n− 1) · χ̃(Lσ),(2.22)

where σ runs over all simplices of X. Formula (2.22) can be equiva-
lently rewritten as

d

dt
euX(t) =

∑
σ

euX−〈σ〉(t) · χ̃(Lσ).(2.23)

Figure 2.3 shows such neighborhoods 〈σ〉 for edges and vertices of
a graph.

In general the set 〈σ〉 is homeomorphic to the product

intσ × intC(Lσ)

where C(Lσ) denotes the cone over the link Lσ of σ. The interior of the
cone C(L) is defined as intC(L) = C(L)− L, i.e., as the cone without
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〈σ〉

〈σ〉

Figure 2.3. Neighborhood 〈σ〉 in the case when X is a graph.

the base. Recall the standard convention that the cone over an empty
set is a one-point set (the vertex).

In the case n = 1, Theorem 2.9 coincides with the statement of
Exercise 1.

Proof of Theorem 2.9. Observe that both sides of (2.22) are in-
variant under subdivision. This is obvious with regards to the left-hand
side of (2.22) as it is independent of the cell structure. Suppose that
under a subdivision the interior of a cell σ of dimension d is divided
into cells σ1, . . . , σk where the dimension of σi is di. Clearly

k∑
i=1

(−1)di = (−1)d(2.24)

as follows from invariance of the Euler characteristic. Under the sub-
division the term

χ(F (X − 〈σ〉, n− 1) · χ̃(Lσ)(2.25)

of (2.22) is being replaced by the sum

k∑
i=1

χ(F (X − 〈σi〉, n− 1) · χ̃(Lσi
).(2.26)

Note that

F (X − 〈σi〉, n− 1) = F (X − 〈σ〉, n− 1)(2.27)

for all i = 1, . . . , k. Besides, one has

Lσi
= Sd−di−1 ∗ Lσ

and using (2.6) and (2.7) we find

χ̃(Lσi
) = (−1)d−diχ̃(Lσ).(2.28)

Combining (2.28), (2.27) with (2.24) one obtains equality between
(2.25) and (2.26).
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Hence we may assume that X is a simplicial complex. Fix a metric
d on X compatible with the simplicial structure such that each cell of
X is a regular simplex with side of length 8. The symbols Bδ(x) and
Bδ(A) denote open metric balls of radius δ around x ∈ X and A ⊂ X
respectively.

We will study the projection

π : F (X,n)→ X

onto the first factor.
We denote by pk the projection onto the k-dimensional skeleton

X(k) of X; it is a map x 7→ pk(x) defined only for points x ∈ X which
are sufficiently close to X(k) and sufficiently far from X(k−1). Here
pk(x) ∈ X(k) denotes the closest point to x lying in X(k).

Set ε = 1/8 and define inductively the following closed subspaces
of F (X,n):

· · · ⊃ Ak ⊃ Bk ⊃ Ck ⊃ Ak+1 ⊃ · · · .(2.29)

Here Ak ⊂ F (X,n) denotes the set of all configurations (x1, . . . , xn),
xi ∈ X, xi == xj, such that the first particle x1 lies “far from the
skeleton X(k−1)” in the following sense:

d(x1, X
(l)) ≥ εl, for l < k.(2.30)

Note that A0 = F (X,n) and Ak+1 = ∅ for k ≥ dimX.
The set Bk ⊂ Ak contains all configurations (x1, . . . , xn) ∈ Ak such

that either d(x1, X
(k)) ≥ εk, or d(x1, X

(k)) < εk and x1 is the only
particle amongst x1, x2, . . . , xn lying in the ball Bεk(pk(x1)).

Finally, Ck ⊂ Bk consists of all configurations of Bk satisfying

d(x1, X
(k)) ≥ εk/2.

We prove below that for k = 0, 1, . . . one has:

(i) Bk is a deformation retract of Ak and hence χ(Ak, Bk) = 0;
(ii) χ(Bk, Ck) =

∑
dim σ=k

χ(F (X − 〈σ〉, n− 1) · χ̃(Lσ);

(iii) Ak+1 is a deformation retract of Ck and hence χ(Ck, Ak+1) = 0.
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Statements (i) – (iii) imply Theorem 2.9. Indeed,

χ(F (X,n)) = χ(A0) =
∞∑

k=0

χ(Ak, Ak+1)

=
∞∑

k=0

[χ(Ak, Bk) + χ(Bk, Ck) + χ(Ck, Ak+1)]

=
∑

σ

χ(F (X − 〈σ〉, n− 1) · χ̃(Lσ).

Let us start proving (ii). Consider a configuration (x1, . . . , xn) lying
in Bk − Ck. Then d(x1, X

(k)) < εk/2 and d(x1, X
(l)) ≥ εl for all l < k.

This means that x1 lies in the union of disjoint neighborhoods

Nσ = {x ∈ X; d(x, σ) < εk/2} ∩ π(Ak),

one for each k-dimensional cell σ, see Figure 2.4. Clearly, Nσ is home-

Nσ2

Nσ1

Nσ3

Figure 2.4. Neighborhoods Nσ.

omorphic to the product σ × int(C(Lσ)) and the boundary of Nσ in
π(Bk) is homeomorphic to σ×Lσ. Over Nσ the map π : F (X,n)→ X
is a locally trivial fibration with fibre F (X − 〈σ〉, n − 1). Hence we
obtain

χ(Bk, Ck) =
∑

dim σ=k

χ(F (X − 〈σ〉, n− 1) · χ(σ) · χ(CLσ, Lσ)

=
∑

dim σ=k

χ(F (X − 〈σ〉, n− 1) · χ̃(Lσ).
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Next we prove (i). We want to construct a deformation retraction
of Ak onto Bk. A configuration (x1, . . . , xn) satisfying (2.30) belongs to
Ak−Bk if d(x1, X

(k)) < εk and the ball Bεk(pk(x1)) contains besides x1

some other particle xi where i > 1. Our plan is to apply a stretching
isotopy moving the particles away from pk(x1) until either x1 leaves
the neighborhood Bεk(X(k)) or all other particles are outside the ball
Bεk(x1).

We use the following notation. Let Y be a topological space and
CY = [0, δ]× Y/{0× Y } be a cone over Y . We shall say that a point
z = (t, y) ∈ CY has modulus |z| = t and argument arg(z) = y. Note
that the argument function arg : CY − 0 → Y is not defined on the
vertex of the cone 0 ∈ CY . The functions | · | and arg form polar
coordinates on CY .

Let ξ = (x1, . . . , xn) be a configuration in Ak − Bk such that
d(x1, X

(k)) < εk. The closure of the ball Bεk(pk(x1)) is a cone over
its boundary and hence may be viewed with its polar coordinates. The
numbers

ρ = ρ(ξ) = min{d(xi, pk(x1); i > 1}
and

r = r(ξ) = max(ρ, d(x1, X
(k)))

are continuous functions of a configuration ξ ∈ Ak such that their
first point x1 lies “near” X(k). Note that r > 0. Let the function
φ : [0, 2εk]× (0, 2εk]→ [0, 2εk] be given for 0 < R ≤ εk by

φ(t, R) =
2ε2k −R2

R(2εk −R)
t+

R− εk
R(2εk −R)

t2

and φ(t, R) = t for R ∈ [εk, 2εk]. It has the following properties:
(a) for any R ∈ (0, 2εk] the function t 7→ φ(t, R) is a homeomor-

phism [0, 2εk]→ [0, 2εk] preserving the endpoints;
(b) φ(R,R) = εk for R ∈ (0, εk];
(c) φ(t, R) ≡ t for R ∈ [εk, 2εk].
Using the function φ we define a homeomorphism Fξ,τ : X → X

(where τ ∈ [0, 1]) as the identity map outside the ball B2εk(pk(x1) and
given by the formula

Fξ,τ (y) = φ(|y|, (1− τ)r + τεk) arg(y), y = (|y|, arg(y))

inside this ball. Clearly, Fξ,τ is a homeomorphism of X which depends
continuously on ξ ∈ Ak and τ ∈ [0, 1]. Because of (c), the map Fξ,1 is
the identity map X → X. Figure 2.5 shows that under Fξ,τ every point
moves away from pk(x1) along the line connecting these points. For



54 2. EULER CHARACTERISTICS OF CONFIGURATION SPACES

F (y)ξ,τ

y x1

pk(x1)

σ

Figure 2.5. Homeomorphism Fξ,τ : X → X.

τ = 0 the homeomorphism Fξ,0 : X → X has the following property:
the inequality

d(Fξ,0(xi), pk(x1)) ≥ εk

holds either for i = 1 or for all i > 1. In other words, the configuration
(Fξ,0(x1), . . . , Fξ,0(xn)) lies in Bk. Also, if the initial configuration ξ =
(x1, . . . , xn) lies in Bk, then r ≥ εk and therefore Fξ,τ (y) = y for any
y ∈ X. The homotopy Hτ : Ak → Ak,

Hτ (ξ) = (Fξ,τ (x1), . . . , Fξ,τ (xn)), ξ = (x1, . . . , xn), τ ∈ [0, 1]

is a deformation retraction of Ak onto Bk. This proves (i).
Statement (iii) follows using arguments similar to those used in the

proof of (ii). If a configuration ξ = (x1, . . . , xn) lies in Ck−Ak+1, then
x1 satisfies

εk/2 ≤ d(x1, X
(k)) < εk

and one applies a stretching isotopy of X moving x1 away from the
skeleton X(k). For full details we refer to [38], page 64. !

2.5. Cut and paste surgery

Let X be a finite polyhedron. A subpolyhedron S ⊂ X is collared if
it has a neighborhood U ⊂ X such that (U, S) is homeomorphic to
(S × (−1, 1), S × {0}). We say that a polyhedron Y is obtained from
X by C&P-surgery along S if Y is the result of cutting X along S and
then gluing back by a piecewise linear automorphism of S. Here C&P
stands for “cut and paste”.

The following statement is a crucial observation:

Theorem 2.10. If Y is obtained from X by C&P -surgery along S,
then

euX(t) ≡ euY (t),(2.31)
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S

X

Figure 2.6. C&P-surgery.

or, equivalently,

χ(F (X,n)) = χ(F (Y, n))(2.32)

for any n.

Proof. We prove (2.32) by induction on n. It is trivial for n = 0 and
is obvious for n = 1. Suppose that it is true for n− 1. By Theorem 2.9
we have

χ(F (X,n)) =
∑

σ

χ(F (X − 〈σ〉), n− 1) · χ̃(LX
σ ),(2.33)

and

χ(F (Y, n)) =
∑

σ

χ(F (Y − 〈σ〉), n− 1) · χ̃(LY
σ ).(2.34)

There is a natural one-to-one correspondence between the cells of X
and Y and we claim that the contribution of each simplex to formulae
(2.33) and (2.34) are equal.

If σ does not lie in Uε = S × (−ε, ε) then its links in X and in Y
are equal, LX

σ = LY
σ , and obviously the spaces X−〈σ〉 and Y −〈σ〉 are

related by C&P surgery along S. Hence, by induction hypothesis, one
has χ(F (X − 〈σ〉), n− 1) = χ(F (Y − 〈σ〉, n− 1)).

If σ intersects Uε, then the above argument applies with S replaced
by a slightly shifted parallel copy S ′ of S. We conclude that LX

σ = LY
σ

and the spaces X − 〈σ〉 and Y − 〈σ〉 are related by a C&P-surgery
(along S ′) and hence χ(F (X − 〈σ〉), n− 1) = χ(F (Y − 〈σ〉, n− 1)) by
induction. !

2.6. Cut and paste Grothendieck ring

The operation of C&P-surgery and the relation of piecewise linear
homeomorphism generate an equivalence relation on the set of all fi-
nite polyhedra. The equivalence class of X is denoted [X]. The set of
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all equivalence classes is a semi-ring with addition and multiplication
given by

[X] + [Y ] = [X 5 Y ], [X]× [Y ] = [X × Y ].

The usual construction gives a Grothendieck ring C&P; elements of
C&P are represented by formal differences [X]− [Y ].

Proposition 2.11. The Euler – Gal series euX(t) determines a ho-
momorphism

[X]− [Y ] 7→ euX(t)

euY (t)
∈ Z[[t]]∗

from the additive group of the Grothendieck ring C&P to the multi-
plicative group of formal power series having integral coefficients and
constant term 1.

Proof. Consider

euX/Y (t) =
∞∑

n=0

χ(F (X 5 Y, n)) · t
n

n!
.

It is easy to see that

χ(F (X 5 Y, n))

n!
=

n∑
k=0

χ(F (X, k))

k!
· χ(F (X,n− k))

(n− k)! ,(2.35)

which can also be expressed by the equation

euX/Y = euX · euY .

Proposition 2.11 now follows from Theorem 2.10. !

Consider the following example. Suppose that X = A ∪ B where

A B

S

Figure 2.7. C& P-surgery.

A and B are closed subpolyhedra and the intersection A ∩ B = S
has a neighborhood U = (S × [−1, 1]) ⊂ X such that (U ∩ A, S) 9
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(S × [0, 1], S × {0}) and (U ∩ B, S) 9 (S × [−1, 0], S × {0}). Then in
the ring C&P one has

[X] = [A] + [B]− [S × [−1, 1]].(2.36)

To see this start with the disjoint union X 5 (S × [−1, 1]), cut along
S 5 S (one copy S ⊂ X and another S = S × 0 ⊂ S × [−1, 1]) and
glue one of these copies to another one and vice versa. The result is
homeomorphic to A 5 B which proves (2.36). Combining this result
with Proposition 2.11 we obtain:

Corollary 2.12. Under the conditions described above one has

euX(t) =
euA(t) · euB(t)

euS×I(t)
.(2.37)

2.7. Cones and cylinders

In this section we compare the Euler – Gal series of a cone and a
cylinder having the same base.

Proposition 2.13. Let X be a finite polyhedron. Then one has

euCX(t)

euX×I(t)
= 1 + tχ̃(X).(2.38)

Proof. Suppose that X is given a simplicial structure. Assume that
CX has the simplicial structure of the cone. Simplices of CX are of
three types: (i) simplices of X, (ii) cones over the simplices of X and
(iii) the vertex v of the cone. If σ is a simplex of X, then the link of
σ viewed as a simplex of CX equals the cone over its link in X, i.e.,
LCX

σ = C(LX
σ ). In particular, we see that χ̃(LCX

σ ) = 0 for σ ⊂ X. If σ
is a simplex of X, then the link of the simplex σ′ = Cσ of CX equals
LX

σ . The link of the vertex v equals Lv = X.
We view the cylinder X × I as the cone CX with a small open ball

around the vertex v removed. We shall use notations introduced in
Theorem 2.9. Let σ be a simplex of X and let σ′ = Cσ ⊂ CX be its
cone. Applying (2.36) to the neighborhood 〈σ′〉 twice (for CX and for
X × I) one finds

[CX] = [CX − 〈σ′〉] + [〈σ′〉]− [∂〈σ′〉 × I]
and

[X × I] = [X × I − 〈σ′〉] + [〈σ′〉]− [∂〈σ′〉 × I].
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Subtracting, one obtains

[CX − 〈σ′〉] = [CX] + [X × I − 〈σ′〉]− [X × I] ∈ C&P.

By Proposition 2.11,

euCX−〈σ′〉(t) =
euCX(t)

euX×I(t)
· euX×I−〈σ′〉(t).(2.39)

If σ′ = v is the vertex of the cone CX, then

CX − 〈σ′〉 = X × I

and Lσ′ = X.
Theorem 2.9 gives

eu′
CX(t) =

∑
σ

euCX−〈σ〉 · χ̃(LCX
σ )(2.40)

where σ runs over all simplices of CX. As explained above simplices of
type (i) do not contribute to (2.40). Using (2.39) we obtain that (2.40)
equals

euCX(t)

euX×I(t)
·
∑

σ

euX×I−〈σ〉 · χ̃(LX×I
σ ) + euX×I(t) · χ̃(X).(2.41)

In the first sum in (2.41) the symbol σ runs over all cells of X × I of
the form σ × I where σ is a simplex of X. However, links of the cells
of X × I which intersect the top and the bottom faces of the cylinder
X × I are contractible and therefore for such cells χ̃(Lσ) = 0. Hence,
we may apply Theorem 2.9 again to obtain:

eu′
CX =

euCX

euX×I

· eu′
X×I + euX×I · χ̃(X),(2.42)

which is equivalent to the differential equation(
euCX

euX×I

)′

= χ̃(X).(2.43)

This proves Proposition 2.13 since the constant term of Euler – Gal
power series is always 1. !
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2.8. Proof of Theorem 2.3

Let X be a finite polyhedron and σ a cell of X. In the Grothendieck
ring C&P we have the equation

[X − 〈σ〉] = [X] + [∂〈σ〉 × I]− [〈σ〉].(2.44)

Clearly, 〈σ〉 is homeomorphic to the cone CYσ over the space

Yσ = ∂〈σ〉 9 Sdim σ−1 ∗ Lσ, χ̃(Yσ) = (−1)dim σ · χ̃(Lσ).

Hence applying Proposition 2.13 we obtain

euX−〈σ〉 = euX · euYσ

euCYσ

= euX · 1

1 + tχ̃(Yσ)

= euX · 1

1 + (−1)dim σ · χ̃(Lσ) · t .

By Theorem 2.9 we have

eu′
X =

∑
σ

euX−〈σ〉 · χ̃(Lσ) = euX ·
∑

σ

χ̃(Lσ)

1 + (−1)dim σ · χ̃(Lσ) · t .

The last equation can be rewritten in the form

d

dt
(log euX) =

d

dt

(
log

{∏
σ

[1 + (−1)dim σχ̃(Lσ)t](−1)dim σ

})
or, equivalently,

euX = C · p(t)
q(t)

(2.45)

where C is a constant. Comparing the free terms we find that C = 1.
This completes the proof of Theorem 2.3.





CHAPTER 3

Knot Theory of the Robot Arm

The classical knot theory studies subsets K ⊂ Rn, called “knots”,
viewed up to the equivalence relation of ambient isotopy. The precise
meaning of the word “knot” depends on the context; most common
“knots” are formed by embeddings of spheres (e.g. circles) or disks,
subject to requirements of being smooth, piecewise linear, or locally
flat. An isotopy is a one-parameter family of homeomorphisms ht :
Rn → Rn which depends continuously on a real parameter t ∈ [0, 1]
such that h0 is the identity map Rn → Rn. Two subsets K1, K2 ⊂ Rn

are ambient isotopic if there exists an isotopy ht : Rn → Rn such that
h1(K1) = K2. One may think of ht as being a continuous deformation of
the whole space Rn ultimately bringing K1 onto K2. In some situations
knot theory provides invariants of knots and classifies their types.

Unknotting theorems of knot theory state that under specific as-
sumptions various “knots” are all equivalent to each other. One of
the historically first unknotting theorems was proven by L. Antoine in
1921. It states that there are no nontrivial knots formed by planar
circles or arcs:

Theorem 3.1. For any simple closed curve C ⊂ R2 there exists an
isotopy ht : R2 → R2 taking C onto the standard circle S1 = ∂D2 ⊂
R2. Similarly, any simple arc1 L ⊂ R2 is ambient isotopic to the
straight line segment.

Surprisingly this result is false for arcs in R3; examples of “wild”
arcs in R3 can be found in [36].

3.1. Can a robot arm be knotted?

In this chapter we consider the following “robotical” variation of the
knotting problem. A robot arm is a mechanism with hinges at its
vertices and rigid bars at its edges. The hinges can be folded but the
bars must maintain their length and cannot cross. Mechanisms of this

1An arc is a subset homeomorphic to the interval [0, 1].
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kind appear widely in robotics. Related mathematical problems were
studied in discrete and computational geometry [4], in knot theory [6],
in molecular biology and polymer physics [37].

Let Z = (l1, . . . , ln−1) be a fixed length vector, where li > 0. Consider
the planar robot arm with length vector Z having no self-intersections.
An admissible configuration p of the arm is given by a sequence of
distinct points p1,p2, . . . ,pn ∈ R2 (positions of the elbows of the arm)
such that

|pi − pi+1| = li, i = 1, . . . , n− 1,

the closed line segments [pi,pi+1] and [pj ,pj+1] are disjoint assuming
that |i− j| > 1 and besides [pi,pi+1]∩ [pi+1,pi+2] = {pi+1}, see Figure
3.1.

pi

pi+1

li

Figure 3.1. Embedded planar robot arm.

Alternatively, a configuration is uniquely determined by the posi-
tion of the first point p1 ∈ R2 and by the unit vectors

ui =
pi − pi−1

|pi − pi−1| , i = 2, . . . , n

fixing the directions of the bars.
We denote by XW the space of all admissible configurations of the

arm. Clearly, XW is an open subset of the product R2 × T n−1; we
emphasize that only sequences p = (p1,u2, . . . ,un) ∈ R2 × T n−1 de-
termining non-self-intersecting configurations of the arm belong to the
configuration space XW.

The central problem we study in this chapter is whether the space
XW is path-connected. In other words, we ask if there exists a continu-
ous motion of an arbitrary configuration of the robot arm bringing it
into a straight line segment such that, in the process of the motion, no
self-intersections are created and the lengths of the bars pipi+1 remain
constant. This question, known also as the carpenter’s rule problem,
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has a long history. It was mentioned in Kirby’s well-known list of
Problems in Low-Dimensional Topology (see [64], Problem 5.18) but it
remained unresolved for years despite the efforts of many mathemati-
cians. The problem is relevant to various topological applications in
molecular biology and in robotics. The answer was found in 2003 by
R. Connelly, E. Demaine and G. Rote [10]:

Theorem 3.2. The configuration space XW is path-connected. More-
over, the factor space XW/G (where G = SE(R2) denotes the group of
orientation, preserving isometries of R2) is contractible.

An alternative approach was developed by I. Streinu [91]. A recent
survey covering some related problems and generalizations can be found
in [11]. The recent book [16] offers a wealth of additional information.

One may view Theorem 3.2 as an unknotting result for planar robot
arms analogous to the theorem of Antoine mentioned above. Theorem
3.2 becomes false for knots of robotic arms in space. An example of
a knotted arm in R3 is shown in Figure 3.2; see [6], [73] for more
information.

Figure 3.2. Knotted robot arm in R3.

Similar questions can be asked regarding configuration spaces of
embeddings into R2 of more complicated metric graphs (linkages), see
Figure 3.3. It was recently discovered that trees may knot, i.e., the
space of embeddings of a metric tree into R2 can be disconnected (see
for example [5]). Here we consider metric embeddings, i.e., such that
each bar of the tree is mapped onto a planar segment of length equal
to the length of the bar.

In this chapter we describe a proof of Theorem 3.2 following essen-
tially the original paper [10]; we only suggest an improvement of the
last argument of [10] leading to the construction of a global motion,
see §3.7.
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Figure 3.3. Two embeddings of a metric tree into R2

which cannot be continuously deformed one into another.

3.2. Expansive motions

A deformation of a planar robot arm is a family of continuous functions
p1(t), . . . ,pn(t) ∈ R2 of a real parameter t ∈ [0, 1] such that |pi(t) −
pi+1(t)| = li for any t and no self-intersections happen during the mo-
tion. This last condition is the main source of difficulty of the problem.
To deal with it we introduce a class of motions p1(t), . . . ,pn(t) ∈ R2

such that the distances |pi(t) − pj(t)| between any pair of vertices
is nondecreasing. Such motions are called expansive. In this sec-
tion we show that self-intersections do not occur in expansive mo-
tions p1(t), . . . ,pn(t) under the condition that the initial configuration
p1(0), . . . ,pn(0) is self-intersection free.

Consider a smooth deformation p1(t), . . . ,pn(t) ∈ R2 and velocities
vi = ṗi(0) of the vertices of the arm. Since the distance between pi

and pi+1 is constant, we obtain

〈vi+1 − vi,pi+1 − pi〉 = 0.(3.1)

This is a consequence of the fact that the derivative of |pi+1(t)−pi(t)|2
equals twice the scalar product 2 · 〈ṗi+1(t)− ṗi(t),pi+1(t)−pi(t)〉. The
velocity vector w of a point c lying on the bar pipi+1 is given by

w =
|c− pi+1|
|pi − pi+1| · vi +

|c− pi|
|pi − pi+1| · vi+1.(3.2)

Lemma 3.3. Let p1,p2,p3 ∈ R2 be three pairwise distinct points,
and let v1,v2,v3 ∈ R2 be vectors (describing velocities of the points
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p1,p2,p3) satisfying

〈v2 − v1,p2 − p1〉 = 0,(3.3)

〈v3 − v2,p3 − p2〉 ≥ 0,(3.4)

〈v3 − v1,p3 − p1〉 ≥ 0.(3.5)

For a point c of the open interval (p1p2) set

w =
|c− p2|
|p1 − p2| · v1 +

|c− p1|
|p2 − p1| · v2.

(This is the velocity at point c if we view the interval [p1,p2] as a rigid
body whose end points move with velocities v1 and v2 correspondingly,
see (3.2)). Then

〈v3 −w,p3 − c〉 ≥ 0.(3.6)

Inequality (3.6) is strict if at least one of the inequalities (3.4) or (3.5)
is strict.

v3

v2
v w

c

1

p3

p2
p1

Figure 3.4. Velocities of points of a triangle.

The statement of Lemma 3.3 is illustrated by Figure 3.4. It can be
also expressed as follows: if the vertices of a triangle move such that
the distance |p2 − p1| remains constant and the distances |p3 − p1|,
|p3−p2| are nondecreasing, then the distance |p3−c| is nondecreasing
as well.

Proof. Without loss of generality we may assume that

v1 = 0 = v2,

i.e., the bar [p1,p2] is motionless (and hence w = 0) and only the point
p3 moves.
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First we assume that p3−p1 and p3−p2 are linearly independent.
Let (p3 − p2)

⊥ denote a vector which is perpendicular to p3 − p2 and
such that

〈(p3 − p2)
⊥,p3 − p1〉 > 0.

Similarly, denote by (p3 − p1)
⊥ a vector which is perpendicular to

p3 − p1 and such that 〈(p3 − p1)
⊥,p3 − p2〉 > 0. It follows from (3.4)

and (3.5) that v3 lies inside the cone spanned by the vectors (p3−p1)
⊥

and (p3 − p2)
⊥ and hence one can write

v3 = λ · (p3 − p1)
⊥ + µ · (p3 − p2)

⊥, λ ≥ 0, µ ≥ 0.

On the other hand one has

p3 − c =
|p1 − c|
|p1 − p2| · (p3 − p2) +

|p2 − c|
|p2 − p1| · (p3 − p1).

Therefore the scalar product 〈v3,p3 − c〉 equals

λ · |p1 − c|
|p1 − p2| · 〈(p3 − p1)

⊥,p3 − p2〉

+µ · |p2 − c|
|p2 − p1| · 〈(p3 − p2)

⊥,p3 − p1〉 ≥ 0.

Note in the last formula the coefficients of both λ and µ are positive.
Finally, if one of the inequalities (3.4) or (3.5) is strict, then either

λ > 0 or µ > 0 and hence 〈v3,p3 − c〉 > 0.
Now consider the remaining case when p3−p1 and p3−p2 are lin-

early dependent, i.e., the points p1,p2,p3 lie on a straight line. There
are two subcases: (a) p3 lies between p1 and p2 and (b) p3 /∈ [p1,p2].
Assuming (a), we see that (3.6) is obvious, however none of (3.4), (3.5),
(3.6) can be satisfied with a strong inequality.

In the case (b) the statement of Lemma 3.3 is obvious. !

Corollary 3.4. For any expansive motion, the distance between any
pair of points of the robot arm is nondecreasing. In particular, no self-
intersection may occur in an expansive motion p1(t), . . . ,pn(t) starting
with a configuration p1(0), . . . ,pn(0) without self-intersections.

Proof. Consider a point c lying on the bar p1p2 and its distance to
another vertex p3 (see Figure 3.5, left). We know that p3 moves such
that the distances from p3 to p1 and p2 are nondecreasing. By Lemma
3.3, the distance from p3 to c is nondecreasing as well.
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Figure 3.5. Mutual distances under an expansive motion.

Next, consider two internal points c and d of bars p1p2 and p4p5,
see Figure 3.5, right. We observe that the distances p4c and p5c are
nondecreasing (by the above statement), hence applying Lemma 3.3 to
triangle p4p5c, we obtain that the distance cd is nondecreasing. !

3.3. Infinitesimal motions

Given an expansive motion p1(t), . . . ,pn(t), consider the velocity vec-
tors vi = p′

i(0) describing the velocities of motion of the vertices at
time t = 0. The set of velocity vectors v1, . . . ,vn is called an infini-
tesimal motion. Which infinitesimal motions correspond to expansive
motions? Since the length |pi+1(t)− pi(t)| must be constant, we have

〈vi+1 − vi,pi+1 − pi〉 = 0,(3.7)

where pj = pj(0). On the other hand, the distance |pi(t)−pj(t)| must
be nondecreasing in t for |i− j| > 1 and hence

〈vi − vj,pi − pj〉 ≥ 0, for |i− j| > 1.(3.8)

In general, it is unrealistic to require that a strong inequality holds
in all inequalities (3.8) since a part of the robot arm between points
pi and pj may be a straight line segment. For example, assume that
pi+1 − pi and pi+2 − pi+1 are parallel. Then (vi+1 − vi) ⊥ (pi+1 − pi)
and (vi+2 − vi+1) ⊥ (pi+2 − pi+1) imply (vi+2 − vi) ⊥ (pi+2 − pi).

Definition 3.5. Let p1, . . . ,pn ∈ R2 be a configuration of the ro-
bot arm. An infinitesimal motion v1, . . . ,vn is called expansive if it
satisfies (3.7) and for any pair of indices i < j such that the points
pi,pi+1, . . . ,pj are not on a straight line, one has

〈vj − vi,pj − pi〉 > 0.(3.9)

One of the key steps in the proof of Theorem 3.2 is the following
statement [10].
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Theorem 3.6. For any admissible configuration p1, . . . ,pn ∈ R2 of the
robot arm there exists an infinitesimal expansive motion v1, . . . ,vn.

Note that an infinitesimal expansive motion v1, . . . ,vn is automat-
ically not identically zero if p1, . . . ,pn is not a straight line configura-
tion: one of the strict inequalities (3.9) will be satisfied.

3.4. Struts and equilibrium stresses

Now we reformulate the problem by introducing struts — segments of a
new type compared to bars. In contrast to bars, which must have con-
stant length during the motion, struts are permitted to increase their
length or to stay the same length but are not allowed to shorten. In an
admissible configuration p1, . . . ,pn ∈ R2 where each pi is connected
to pi+1 by a bar, we connect by a strut any pair of vertices pi and pj

such that the part of the arm between pi and pj is not a straight line
segment. We obtain a planar framework of the type shown on Figure
3.6 (right), where the struts are indicated by the dotted lines.

Figure 3.6. The initial configuration (left) and the pla-
nar framework obtained by adding struts (right).

Let us denote by B the set of bars and by S the set of struts. We
will write [i, j] ∈ S or [i, j] ∈ B to indicate that the segment connecting
pi and pj is a strut or a bar, correspondingly. Here [i, j] denotes an
unordered pair of indices. The conditions describing expansive infini-
tesimal motions are:

〈vi − vj,pi − pj〉 = 0, if [i, j] ∈ B,
(3.10)

〈vi − vj,pi − pj〉 > 0, if [i, j] ∈ S.
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This is a system of linear equations and inequalities and Theorem 3.6
essentially states that it always has a solution.

At this point we will invoke the following well-known criterion for
existence of solutions of systems of linear equations and inequalities.
The following statement is a special case of Theorem 22.2 from [83].

Theorem 3.7. Let ai ∈ RN for i = 1, . . . ,m and let k be an integer,
1 ≤ k ≤ m. Then one and only one of the following two alternatives
holds:

(a) There exists a vector x ∈ RN such that

〈ai,x〉 > 0 for i = 1, . . . , k,

〈ai,x〉 = 0 for i = k + 1, . . . ,m.

(b) There exist real numbers λ1, . . . , λm such that

m∑
i=1

λiai = 0,

where each of the numbers λ1, . . . , λk is non-negative and at least one
of them is positive.

We intend to apply this theorem to decide whether the system of
equations and inequalities (3.10) admits a solution. As the space RN

we take the direct sum RN = R2 ⊕ · · · ⊕R2 of n copies of the plane
R2. For any pair i, j = 1, . . . , n with i < j we denote by aij ∈ RN the
vector which has i-th component pi − pj and j-th component pj − pi

and all other components are zero. The vector

x = v1 ⊕ · · · ⊕ vn ∈ RN

must then satisfy

〈aij,x〉 > 0, if [i, j] ∈ S,(3.11)

〈aij,x〉 = 0, if [i, j] ∈ B.(3.12)

By Theorem 3.7, this system has a solution if and only if there does
not exist a function assigning a real number

ωij = ωji, i == j

to any bar or strut such that:
(a) numbers associated to struts [i, j] ∈ S are non-negative, ωij ≥ 0,
(b) at least one of the numbers ωij associated to those struts is

positive,
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(c) for any i = 1, . . . , n the sum∑
j; [i,j]∈B∪S

ωij · (pj − pi) = 0 ∈ R2(3.13)

vanishes. In the last sum the summation is over all indices j such that
the pair [i, j] belongs to B ∪ S.

There is a useful mechanical interpretation of the weights ωij. One
can view ωij as the stresses induced in the bar or strut [i, j] ∈ B ∪ S.
A negative stress means that the edge is pushing on its endpoints by
an equal amount, a positive stress means that that the edge is pulling
on its endpoints by an equal amount, and zero means that the edge
induces no force. The major condition (3.13) can now be interpreted
by saying that the total force applied to any vertex equates to zero.
For that reason a stress

[i, j] 7→ ωij, [i, j] ∈ B ∪ S(3.14)

satisfying (3.13) is called an equilibrium stress.
A stress (3.14) is called proper if ωij ≥ 0 for any strut [i, j] ∈ S.
Summarizing the above discussion we obtain that Theorem 3.6 is

equivalent to the following statement:

Theorem 3.8. Let p1, . . . ,pn ∈ R2 be an admissible planar config-
uration of the robot arm. Then the planar network obtained from
the configuration by adding struts admits no proper equilibrium stress
[i, j] 7→ ωij such that ωij > 0 is positive for at least one strut [i, j] ∈ S.

1
1

-1-

-1--1-

-1-

Figure 3.7. Equilibrium stress on a bar and strut graph
(left). No proper nonzero equilibrium stress exists on the
bar and strut graph shown on the right.

We illustrate Theorem 3.8 by Figure 3.7. On the left picture we see
an equilibrium stress on a bar and strut graph. On the right picture
no proper equilibrium stress exists, as can be easily understood by
examining forces near the end points of the robot arm.
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The next step is called “planarization”, its goal is to reduce the
problem of existence of equilibrium stress on a bar and strut framework
to a similar problem for a planar graph, i.e., such that any two edges
meet only at a vertex. This operation is illustrated by Figure 3.8. We
simply add new vertices at all crossing points.

Y

Figure 3.8. The planar framework obtained from the
bar and strut graph of Figure 3.6 (right).

Suppose that the initial graph admits an equilibrium stress ωij.
We claim that the obtained planar framework Γ admits an equilibrium
stress as well. Indeed, suppose that an edge [pi,pj ] of the initial graph
having the stress ωij is subdivided into a number of smaller edges, then
each of the new edges [p′

k,p
′
l] gets stress

ω′
kl = ωij · |pi − pj|

|p′
k − p′

l|
.(3.15)

The equilibrium condition (3.13) remains preserved at all vertices of
Γ (old and new) since the actual force is obtained by multiplying the
stress to the length of the edge, and the forces corresponding to two
subintervals cancel each other at newly created vertices.

It may happen that in the obtained planar framework several edges
overlap. In this case we add new vertices as explained above and merge
the multiple edges. The stress ω′ corresponding to multiple edges equals
the sum of the initial stresses of the merged edges. Clearly, this oper-
ation also preserves the equilibrium condition (3.13).

When doing planarization we make the following convention. Split-
ting a bar into several edges produces bars, and splitting a strut pro-
duces struts. When we merge several edges, the resulting edge will be
a strut if all merged edges were struts. The result is a bar if at least
one of the merged edges is a bar.
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If the initial stress ω was proper, i.e., the struts had non-negative
stresses, then the obtained stress ω′ is proper as well.

Suppose that the initial graph had a strut with a positive stress.
After performing the operations of subdivision and merging edges, a
part of this edge remains to be a strut with a positive stress.

3.5. Maxwell – Cremona Theorem

As the result of planarization described in the previous section we ob-
tain a convex polygonal domain Y ⊂ R2 subdivided into finitely many
polyhedral cells, see Figure 3.8. The exterior of Y in R2 will be denoted
by F0. We consider continuous functions f : R2 → R which are affine
when restricted onto every cell F of Y or onto the exterior F0. In other
words,

f(x) = 〈aF ,x〉+ bF , x ∈ F(3.16)

where F denotes either F0 or a cell of Y . If F and F ′ are adjacent cells
and e ⊂ Γ is the edge separating them, then

〈aF ,x〉+ bF = 〈aF ′ ,x〉+ bF ′

for x ∈ e. Differentiating both sides of the above equation in the direc-
tion of e we obtain that the vector aF − aF ′ must be perpendicular to
e. Hence we may write

aF ′ − aF = ωe · e⊥, ωe ∈ R,(3.17)

where e⊥ denotes the vector perpendicular to e, having the same length
as e and pointing from F towards F ′.

F F
e

e

´

Figure 3.9. Stress determined by a piecewise affine
function f : R2 → R.

We obtain a “stress” function

e 7→ ωe
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assigning real valued weights2 to the edges of Y . Note that the order of
F and F ′ is irrelevant: if the roles of F and F ′ are interchanged, then
the vector e⊥ reverses and the value ωe remains unchanged.

Clearly, ωe is the jump of the slope of f when crossing the edge e
along the line perpendicular to the edge e. The graph of f is a piecewise
linear surface with edges lying above the edges of Γ. One may write

ωe = tan(αe)

where αe is the dihedral external angle between the faces of the graph
of f lying above F and F ′, see Figure 3.10. Edges of Γ having positive
stresses are called valleys and edges having negative stresses are called
mountains.

F

F

F ´ F´

e
α

e

e

α

ω >0

e
ω <0

Valley Mountain

Figure 3.10. Geometric interpretation of the stress de-
termined by a piecewise affine function.

The following statement is known as the Maxwell – Cremona theo-
rem; it was known to James Clerk Maxwell and Luigi Cremona in the
nineteenth century.

Theorem 3.9. (i) The stress function e 7→ ωe defined by the equation
(3.17) is an equilibrium stress on the planar framework Γ. (ii) Any
equilibrium stress on Γ can be realized by a continuous piecewise affine
function f : R2 → R which is affine when restricted to any cell of Y
and on the exterior of Y . Such f is unique up to addition of an affine
function.

Proof. Consider a vertex p ∈ Γ and the cells F1, . . . , Fk incident to
it; one of the Fi’s can be the exterior F0 of Y . We will assume that
F1, . . . , Fk appear in cyclic order in the anticlockwise direction. Let ei

2Our sign conventions here differ from the ones used in [10].
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denote the edge separating Fi and Fi+1. Assume that ei connects p to
a vertex qi where i = 1, . . . , k, i.e., ei = qi − p. Then

aFi+1
− aFi

= ωei
· e⊥

i ,(3.18)

where e⊥
i is the vector perpendicular to ei satisfying |ei| = |e⊥

i | and
pointing from Fi to Fi+1. In other words, e⊥

i = (qi − p)⊥ is obtained
by rotating ei 90 degrees in the anticlockwise direction. Adding all
equations (3.18) we obtain

k∑
i=1

ωei
· (qi − p)⊥ =

(
k∑

i=1

ωei
· (qi − p)

)⊥

= 0

which is equivalent to the equilibrium condition (3.13). This completes
the proof of (i).

To prove (ii) consider an equilibrium stress e 7→ ωe on Γ. We want
to assign a vector aF ∈ R2 to each cell of Y and to the exterior F0 of Y
such that (3.17) holds. Fix aF0

∈ R2 arbitrarily. Any sequence of cells
F1, . . . , Fk such that each pair of neighbors Fi and Fi+1 have a common
edge allows us to define (using (3.17)) the vector aFk

if the initial vector
aF1

is given. Choosing a different path from F1 to Fk gives the same
value aFk

as follows from the equilibrium condition (3.13). Indeed,
the equilibrium condition says that the total increment obtained while
surrounding a vertex equals zero. Starting from F0 we may find a
sequence of cells as above ending at any given cell F , which allows us
to determine the vectors aF for all cells F in a unique way such that
the compatibility condition (3.18) is satisfied.

Next we want to choose constants bF such that the affine functions
defined on different cells by 〈aF ,x〉 + bF form a continuous function
R2 → R. In other words we require that the functions corresponding
to different cells coincide on their intersections.

If we have two adjacent cells F and F ′ and we have already fixed the
constant bF , then there is a unique value of bF ′ such that the resulting
function is continuous on the union F∪F ′. If the constant terms bF and
bF ′ are chosen arbitrarily, then the difference 〈aF ,x〉+bF−〈aF ′ ,x〉−bF ′

is a constant function on F ∩ F ′.
Suppose that we have a sequence of cells F1, F2, . . . , Fk (listed in

cyclic order) which are incident to a vertex p, see Figure 3.11. Given
the value of bF1

, one may use this sequence to determine subsequently
the constants bFi

, where i = 1, . . . , k. Potentially there may appear a
discontinuity along the last edge ek separating Fk and F1. We claim
that this discontinuity does not happen. Indeed, the difference between
the two functions on the edge ek (the restrictions from F1 and from Fk)
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F2

F1

Fk

ek

e1

p

Figure 3.11. Adjacent cells surrounding a vertex.

is (a) a constant function; (b) it vanishes at the vertex p. Hence the
difference is identically zero. This fully proves statement (ii) since we
may fix the constant bF0

in an arbitrary way. !

3.6. The main argument

Our next goal is to prove the following theorem:

Theorem 3.10. Consider a planar convex polygon Y subdivided into
finitely many polyhedral cells and let Γ ⊂ R2 denote the 1-skeleton of
the subdivision. Let γ ⊂ Γ be a polyhedral arc (such as the one shown
on figure below in bold). The edges lying in γ are called “bars”, and
the edges lying in the complement of γ are called “struts”. Then there
does not exist a stress function ω assigning weights ωe ∈ R to edges e
of Γ satisfying the following three properties:

(a) the stress of any strut e is non-negative ωe ≥ 0;
(b) for at least one strut ωe > 0;
(c) for any vertex p ∈ Γ one has∑

q

ωe · (q− p) = 0 ∈ R2.(3.19)

In (3.19) q runs over all vertices of Γ incident to p and e denotes the
edge e = [p,q].

Y
γ

The proof of Theorem 3.10 will be based on
the following lemmas.

Suppose that such a stress function e 7→ ωe

exists. By the Maxwell – Cremona theorem
we may construct a continuous piecewise affine
function f : R2 → R which is affine on the cells
of Y which is identically zero outside Y and such
that the stress determined by f equals ω.
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Lemma 3.11. Any mountain in the graph of f projects onto a bar e ⊂ γ
of the framework Γ.

Proof. Indeed, a strut has a non-negative stress and therefore over
any strut a flat or a valley of the graph lies. Hence all mountains must
project onto bars. !

Denote by M the set of points where f achieves its maximum. Note
that M may have several connected components.

Lemma 3.12. Let v be a vertex on the boundary of M , and let b1, . . . , bk
be the bars incident to v, in cyclic order. Consider a small disk D
around v.

(1) If there is an angle of at least π at v between two consecutive
bars, say bi and bi+1, then the pie wedge P of D bounded by bi
and bi+1 belongs to M (see Figure 3.12).

(2) If there are no bars or only one bar incident to v, i.e., k ≤ 1,
then the entire disk D belongs to M .

P

v v

b2 b3 b2

b1

b3

b1

c

c

r

Figure 3.12. Illustration of Lemma 3.12. Solid lines
are bars, dotted lines are struts, the shaded pie wedge P
is contained in M .

Proof. (1) Edges lying in the boundary ∂M must be mountains, and
hence they must project onto bars, by Lemma 3.11. Since there are no
bars in the pie wedge P , we obtain that P must be either disjoint from
M or must be completely contained in M . Assuming that P is disjoint
from M , consider the level set f = m − ε (where m is the maximal
value of f and ε > 0 is small) in P . It is a star-shaped polygonal arc
around v (see Figure 3.12, right) starting at a point of bi and ending
at a point of bi+1. Convex vertices of this arc (denoted by c on Figure
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3.12, right) lie on mountains emanating from v and reflex vertices of
the arc (denoted r on Figure 3.12) lie on valleys emanating from v.
Since the angle of the pie wedge is at least π, the arc must contain at
least one convex vertex in P . By Lemma 3.11 there must be a bar in
P , a contradiction.

Statement (2) is a special case of (1) and follows from the same
argument. !

Now we may complete the proof of Theorem 3.10. If the equilibrium
stress ω with properties described in the state-
ment of Theorem 3.10 exists, then the boundary
of any connected component of the maximum
region M ⊂ R2 for the corresponding piecewise
affine function f : R2 → R has the following
property: every convex point v ∈ ∂M has at

least three incident bars, as follows from Lemma 3.12. However we
know that the set of bars is an arc γ ⊂ Γ and hence each vertex must
have at most two incident bars. This excludes many possibilities for
f , for example we see that f may not have an isolated maximum as
shown on the picture.

M

We obtain that ∂M must have no convex
points (by Lemma 3.12). Therefore M must
coincide with the exterior of a closed polygonal
curve. But then the boundary ∂M is a closed cy-
cle consisting entirely of bars which contradicts
our assumption concerning γ.

These arguments prove Theorem 3.8. They also prove Theorem 3.6
which is equivalent to Theorem 3.8 as was mentioned earlier.

3.7. Global motion

In this section we complete the proof of Theorem 3.2. First we recall
our notation. Given a length vector Z = (l1, . . . , ln−1), we consider the
space XW ⊂ R2 × T n−1 of all configurations of the planar robot arm
having n − 1 bars of length li without self-intersections (see Figure
3.1). We denote by X̃W the factor-space XW/G where G is the group of
orientation-preserving isometries of R2. Points of X̃W represent different
shapes of the arm. Our main goal is to show that the space X̃W is
contractible, as Theorem 3.2 states.

We will view X̃W as an open subset of the torus T n−2. An em-
bedding X̃W → T n−2 is given by assigning to a configuration the set
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of angles which the bars of the arm make with the first bar. Alter-
natively, we may think that the first bar [p1p2] is pinned at points
p1 = (0, 0) and p2 = (l1, 0); then X̃W parameterizes the variety of all
possible positions of p3, . . . ,pn which are determined by all possible
angles φ3, φ4, . . . , φn with the x-axis, see Figure 3.13. Given a config-

p1 p2

p3

pn-1

pn

φn

φ3

Figure 3.13. Planar robot arm.

uration p ∈ X̃W represented by the sequence p1 = (0, 0), p2 = (l1, 0),
p3, . . . ,pn ∈ R2, a tangent vector V to X̃W at p is a sequence of velocity
vectors v1,v2, . . . ,vn satisfying v1 = 0 = v2 and equations (3.7). It
makes sense to speak of expansive tangent vectors

V = (v3, . . . ,vn) ∈ Tp(X̃W), vi ∈ Tpi
(R2),

having in mind those which satisfy the conditions of Definition 3.5.
Our goal is to prove the following theorem:

Theorem 3.13. There exists a continuous tangent vector field V on
the torus T n−2 with the following properties:

(a) for any p ∈ X̃W ⊂ T n−2 the tangent vector Vp is expansive;
(b) the vector Vp ∈ Tp(T

n−2) vanishes if and only if p ∈ T n−2 is
either the straight line configuration (see Figure 3.14) or is a configu-
ration having self-intersections;

(c) The restriction V |X̃W is C∞-smooth.

p1 p2 pn-1

ln-1l2l1

pn

Figure 3.14. Straight line configuration.

Proof. First we show that such an expansive vector field v exists in
a small open neighborhood of any configuration p ∈ X̃W. Theorem 3.6
guarantees that an expansive tangent vector Vp exists for any admissible

configuration p ∈ X̃W. Now we want to find a continuous family of such
vectors Vq where q varies in a neighborhood of p ∈ X̃W.
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One may parameterize expansive tangent vectors as follows. Let
p = (p1,p2, . . . ,pn) be an admissible configuration of the robot arm
and let V = (v1,v2, . . . ,vn) be an expansive tangent vector V ∈
Tp(X̃W). Equation (3.7) is equivalent to

vi+1 − vi = λi+1 · (pi+1 − pi)
⊥, λi+1 ∈ R.(3.20)

Here for a planar vector v ∈ R2 we denote by v⊥ the vector obtained
from v by rotating it 90 degrees in the anticlockwise direction.

Geometrically, λi has the meaning of the angular velocity of rotation
of pi about the previous point pi−1. One may also write

λi = φ̇i(3.21)

in term of the angles φi shown on Figure 3.13. Since v1 = 0 = v2 we
have

vi =
i∑

r=3

λr · (pr − pr−1)
⊥, i = 3, . . . , n.(3.22)

We formally set λ1 = λ2 = 0. The numbers λ3, . . . , λn parameterize
tangent vectors V = (v1, . . . ,vn) satisfying (3.7). Inequality (3.9) can
now be expressed in the form

j∑
r=i+1

λr · det(pj − pi,pr − pr−1) > 0(3.23)

under the assumption that not all numbers det(pj − pi,pr − pr−1)
vanish for r = i + 1, . . . , j. Here for two planar vectors p,q ∈ R2 we
denote

det(p,q) = 〈p,q⊥〉,
the scalar product of p and q⊥. Inequality (3.23) can be rewritten as

j∑
r, s=i+1

λr · det(ps − ps−1,pr − pr−1) > 0.(3.24)

If φk denotes the angle between pk−pk−1 and the x-axis (as shown on
Figure 3.13) then one has

det(ps − ps−1,pr − pr−1) = lslr sin(φs − φr)

and inequality (3.24) turns into∑
i+1≤r<s≤j

lrls(λr − λs) sin(φs − φr) > 0.(3.25)



80 3. KNOT THEORY OF THE ROBOT ARM

Theorem 3.6 states that for any admissible configuration (φ3, . . . , φn)
there exist numbers λ1, . . . , λn such that λ1 = λ2 = 0 and (3.25) holds
for any i+ 1 < j and φr == φr+1 for some i+ 1 ≤ r < j (i.e., such that
the points pi,pi+1, . . . ,pj do not lie on a line).

Now, suppose that p = (p1, . . . ,pn) is a configuration without
straight pieces, i.e., φr == φr+1. Assume that a vector (0, 0, λ3, . . . , λn)
represents an infinitesimal expansive motion at p. Then the same vec-
tor represents an infinitesimal expansive motion at any configuration
q which is sufficiently close to p, as follows from (3.23). This clearly
gives a smooth expansive vector field defined in a neighborhood of p.

This simple argument fails to work near configurations which have
some adjacent collinear edges. Indeed, if the points pi+1,pi+2, . . . ,pj

lie on a straight line, then φi+1 = φi+2 = · · · = φj and the LHS of (3.25)
is identically zero. However, we may not guarantee that the LHS of
(3.25) will be positive at configurations close to p = (p1, . . . ,pn) which
are not collinear between pi+1 and pj.

Consider now the general case when the configuration in question
p = (p1, . . . ,pn) has collinear arcs as shown on Figure 3.15. For a
sequence of indices k0 = 1 < k1 < · · · < km < km+1 = n the points

pkµ
,pkµ+1, . . . ,pkµ+1−1,pkµ+1

lie on a straight line for µ = 0, 1, . . . ,m while points

pkµ−1,pkµ
,pkµ+1

are not collinear. The corresponding sequence of angles (φ3, φ4, . . . , φn)

p1

pk1

pk2

pkm

pn

Figure 3.15. Robot arm with straight line segments.

satisfies

φkµ+1 = φkµ+2 = · · · = φkµ+1
.(3.26)

One may view this configuration as a robot arm with fewer vertices
p1,pk1

, . . . ,pkm
,pn and apply to it Theorem 3.6. We obtain that there
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exists an expansive tangent vector V = (v1, . . . ,vn) ∈ Tp(X̃W) repre-
sented by a sequence of real numbers (λ1, . . . , λn) having the following
additional property:

λi = λj where kµ < i, j ≤ kµ+1.(3.27)

This is obvious from the interpretation of numbers λi as angular veloc-
ities φ̇i (see above) since all subdivided parts of a segment move with
the same velocity when viewed as parts of the integrated arm.

Consider now admissible configurations q = (q1, . . . ,qn) ∈ X̃W near
p. Each such configuration can be also described by a sequence of angles
(ψ3, ψ4, . . . , ψn). A tangent vector field Ṽ near p will be described by

a sequence of C∞-smooth functions λ̃i = λ̃i(ψ3, . . . , ψn), where i =
3, . . . , n. We set

λ̃i = λi − ψi + φi, i = 3, . . . , n.(3.28)

Let us show that condition (3.25) is satisfied for q lying sufficiently
close to p, i.e., when ψi is close to φi for all i. First we see that
λ̃i = λi for q = p and hence (3.25) holds for ψi = φi. Given two
indices i + 1 < j such that the part of p is not straight between i and
j, then inequality (3.25) is satisfied and hence it also holds for close
configurations q. Finally consider the case when the part of p between
i and j is collinear. Then using (3.27) and (3.28) we find∑

i+1≤r<s≤j

lrls(λ̃r − λ̃s) sin(ψs − ψr)

=
∑

i+1≤r<s≤j

lrls(ψs − ψr) sin(ψs − ψr).

Clearly there exists ε > 0 such that for all x == 0, |x| < ε one has
x sin x > 0. Hence, each term in the above sum is non-negative and
the sum vanishes if and only if the segment of configuration q between
the vertices qi and qj is collinear. This proves that Ṽ is an expansive
tangent vector field in a small open neighborhood of p.

Now, if locally the fields ṼU are constructed on an open covering
{U} of X̃W ⊂ T n−2, one takes a smooth partition of unity {φU} subor-
dinate to this covering and defines

V =
∑

U

φU ṼU .(3.29)

This gives the required field in X̃W ⊂ T n−2.
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The next step is to extend it to a vector field on the whole torus
T n−2. We may assume that each of the local fields ṼU is bounded by
a common constant C (note that tangent vectors are elements of the
Lie algebra of T n−2, which is Rn−2). This can be achieved by scaling
(multiplying by a small constant). Then the global field (3.29) will be
also bounded by C. Find a smooth function ψ : T n−2 → R such that
ψ ≥ 0 and the set of zeros of ψ is exactly the complement T n−2 − X̃W.
Then the product w = ψ · V is a continuous vector field on T n−2

satisfying our requirements.
This completes the proof of Theorem 3.13. !

Proof of Theorem 3.2. Now we are able to complete the proof of
the main theorem of this chapter — Theorem 3.2.

Consider the vector field V on the torus T n−2 given by Theorem
3.13. We know that V vanishes on the complement of X̃W ⊂ T n−2.
Besides, Vp0

= 0 where p0 ∈ X̃W is the straight line configuration. For

any p ∈ X̃W with p == p0 the vector Vp is nonzero and is expansive. The

field V is smooth everywhere except possibly on the boundary of X̃W

where it is only continuous.
Given p ∈ X̃W, consider a solution x(p, t) ∈ T n−2 of the initial value

problem

dx

dt
= Vx, x(p, 0) = p, t ≥ 0.(3.30)

Here we use the well-known general theorem about existence of solu-
tions of ordinary differential equations with continuous right-hand side.
One may view x(p, t) as a continuous process of modification of the ro-
bot arm starting with the initial configuration p for t = 0. Our aim is
to show that x(p, t) converges to p0 for t→∞.

Lemma 3.14. Let p1, p2, . . . be a sequence of admissible configurations,
pn ∈ X̃W, and let tn > 0 be a sequence of real numbers. If the limits

lim
n→∞

x(pn, tn) = q ∈ T n−2, lim
n→∞

pn = p ∈ T n−2

exist and p is an admissible configuration, p ∈ X̃W, then q is an admis-
sible configuration as well, i.e., q ∈ X̃W.

Proof. Any configuration p = (p1, . . . ,pn) determines a continuous
map sp : [0, L]→ R2 defined as follows. Here L = l1 + · · ·+ ln−1 is the
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total length of the robot arm and for

r−1∑
i=1

li ≤ a ≤
r∑

i=1

li

the point sp(a) lies on the segment [pr,pr+1] and satisfies

|sp(a)− pr| = a−
r−1∑
i=1

li.

Clearly, sp is analogous to the arc-length parametrization of smooth
curves.

The set of admissible configurations X̃W ⊂ T n−2 can be characterized
as the set of configurations p for which sp is injective. For two distinct
numbers a, b ∈ [0, L] define a function Fa,b : T n−2 → R given by

Fa,b(p) = |sp(a)− sp(b)|.
A configuration p ∈ T n−2 lies in X̃W if and only if Fa,b(p) > 0 for all
a == b.

To prove Lemma 3.14 we assume the contrary, i.e., that q is not
admissible. Then Fa,b(q) = 0 for some a < b. We know that Fa,b(p) =
c > 0 is positive and hence Fa,b(pn) > c/2 for all sufficiently large n.
Therefore, by Corollary 3.4,

Fa,b(x(pn, tn)) ≥ Fa,b(pn) > c/2

for all large n. This implies, by passing to the limit, that

limFa,b(x(pn, tn)) = Fa,b(q) ≥ c/2,

a contradiction. !

Corollary 3.15. For p ∈ X̃W the solution x(p, t) stays in the domain
X̃W ⊂ T n−2 and, moreover, any limit point of the set {x(p, t), t ≥ 0}
belongs to X̃W.

The vector field V |X̃W is smooth and therefore (invoking a well-
known result from the theory of ordinary differential equations) we
conclude now that the solution x(p, t) of the differential equation (3.30)
is smooth as a function of p and t.

Let us now show that for any initial configuration p ∈ X̃W one has

lim
t→∞

x(p, t) = p0,(3.31)
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where p0 ∈ X̃W denotes the straight line configuration. In other words,
we claim that solution of the differential equation (3.30) implements
the “full straightening of the robot arm”. Consider the smooth function
F : T n−2 → R given by

F (p1, . . . ,pn) =
∑

i+1<j

|pi − pj|2.

The restriction F |X̃W has a unique critical point p = p0 (the maxi-
mum). Indeed, for any admissible configuration p ∈ X̃W there exists an
expansive tangent vector Vp ∈ Tp(T

n−2) and the derivative Vp(F ) > 0
is positive assuming that p == p0 since at least one of the inequalities
(3.9) will be satisfied.

Consider a limit point q of the trajectory {x(p, t); t ≥ 0}. We
know that q ∈ X̃W (by Lemma 3.14). Assume that q == p0. Then
Vq(F ) = ε > 0.

We claim that x(p, t) converges to q as t→∞. If this statement is
false, then there exists an open neighborhood U of q such that for any
t > 0 there is T > t such that x(p, T ) /∈ U . We may assume that U
is so small that for any q′ ∈ U one has Vq′(F ) > ε/2. Find a smaller
neighborhood U0 ⊂ U of q such that the distance between U0 and the
complement T n−2 − U is ≥ η > 0 positive. Let C > 0 be such that
|Vp| ≤ C for all p ∈ T n−2 (here we use the standard trivialization of
the tangent bundle of the torus T n−2). There is a sequence tn → ∞
such that x(p, tn) ∈ U0 (since q is a limit point) and a sequence Tn > tn
such that x(p, Tn) /∈ U . We may assume without loss of generality that
Tn < tn+1. Then one has

η <

∫ Tn

tn

|ẋ|dt =

∫ Tn

tn

|Vx(p,t)|dt ≤ C · (Tn − tn),

i.e., Tn − tn > η/C. Hence we obtain that

F (x(p, Tn))− F (x(p, tn)) =

∫ Tn

tn

Vx(p,t)(F )dt > ε/2 · η/C

and therefore

F (x(p, tn+1)) ≥ F (x(p, Tn)) ≥ F (x(p, tn)) +
εη

2C
,

a contradiction (since F is bounded above). This proves that x(p, t)
converges to q as t→∞.
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Now suppose that t is such that x(p, τ) ∈ U for all τ ≥ t. Using the
Mean Value Theorem we find some ξ satisfying t ≤ ξ ≤ τ such that

F (x(p, τ))− F (x(p, t)) = Vx(p,ξ)(F ) · (τ − t) > ε/2 · (τ − t)
which again contradicts the fact that F is bounded. Hence we obtain
a contradiction to our initial assumption that q == p0.

This argument proves that q = p0 is the only limit point of the
trajectory {x(p, t); t ≥ 0} and hence for any admissible configuration
p ∈ X̃W the trajectory x(p, t) converges to p0 as t→∞.

Our final goal is to show that X̃W is contractible. Define a deforma-
tion

H : X̃W × [0, 1]→ X̃W

by the formula

H(p, τ) = x

(
p,

τ

1− τ
)
, for p ∈ X̃W, τ ∈ [0, 1)

and
H(p, 1) = p0.

We claim that H is continuous, which is equivalent to the following
statement: For any neighborhood U of p0 there exists a neighborhood
V of p and a real number T such that for any t ≥ T and q ∈ V one
has x(q, t) ∈ U .

The negation of this statement is equivalent to the existence of
a neighborhood U of p0, a sequence pn ∈ X̃W converging to p and a
sequence tn →∞ such that x(pn, tn) /∈ U . Set

S = {x(pn, t); n ∈ N, t ≥ 0}.
By Lemma 3.7 the closure S̄ is contained in X̃W. By our assumptions,
there is ε > 0 such that S̄ ⊂ F−1([0, L− ε]).

We know that for x ∈ X̃W the function x 7→ Vx(F ) vanishes only for
x = p0. Hence we obtain that for all x ∈ S̄ one has Vx(F ) > 0 and
therefore, using compactness, there exists c > 0 such that Vx(F ) ≥ c
for all x ∈ S̄.

We obtain that

F (x(pn, tn))− F (x(pn, 0)) = Vx(pn,ξ)(F ) · tn ≥ c · tn.
This implies that the sequence F (x(pn, tn)) is unbounded, a contradic-
tion. !





CHAPTER 4

Navigational Complexity of Configuration Spaces

In this chapter we discuss topological invariants which arise in con-
nection with the problem of construction and design of robot motion
planning algorithms. Given a mechanical system, a motion planning
algorithm is a function which assigns to any ordered pair of states of the
system (A,B), where A is the initial state and B is the desired state,
a continuous motion of the system starting at the state A and ending
at the state B. Such an algorithm allows the system to function in an
autonomous regime. A survey of algorithmic motion planning can be
found in [87]; see also the textbook [67].

In this chapter we study the topological invariant TC(X) introduced
originally in [22], see also [23] and [27]. It is a numerical homotopy
invariant inspired by problems of robotics, quite similar in spirit to
the classical Lusternik – Schnirelmann category cat(X). Intuitively,
TC(X) is a measure of the navigational complexity of X viewed as the
configuration space of a system. Knowing TC(X) allows us to predict
instabilities in the behavior of the system and is helpful in practical
situations while constructing motion planning algorithms for real life
machines.

Formally TC(X), as well as cat(X), are special cases of the notion
of genus of a fibration introduced by A. Schwarz [93]. In 1987–1988 S.
Smale [88] and V.A. Vassiliev [99] applied the notion of Schwarz genus
to study complexity of algorithms for solving polynomial equations.
Our discussion of TC(X) brings into the realm of algebraic topology
a broad variety of important engineering applications and gives a new
motivation for studying the concept of Schwarz genus.

4.1. Motion planning algorithms

Let X denote the configuration space of a mechanical system. States
of the system are represented by points of X, and continuous motions
of the system are represented by continuous paths γ : [0, 1]→ X. Here
the point A = γ(0) represents the initial state and γ(1) = B represents
the final state of the system. The space X is path-connected if and
only if the system can be brought to an arbitrary state from any given
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state by a continuous motion. We are now interested in algorithms
producing such motions.

Denote by PX = XI the space of all continuous paths

γ : I = [0, 1]→ X.

The space PX is supplied with the compact-open topology [89]. Let

π : PX → X ×X(4.1)

be the map which assigns to a path γ the pair (γ(0), γ(1)) ∈ X ×X of
the initial – final configurations. It is easy to see that π is a fibration
in the sense of Serre, see [89], chapter 2, §8, Corollary 3.

Definition 4.1. A motion planning algorithm is a section of fibration
(4.1).

In other words a motion planning algorithm is a map (not neces-
sarily continuous)

s : X ×X → PX(4.2)

satisfying

π ◦ s = 1X×X .(4.3)

Note that s(A,B)(t) ∈ X is a continuous function of t ∈ I for any
pair of points A,B ∈ X.

A motion planning algorithm s : X ×X → PX is continuous if the
suggested route s(A,B) of going from A to B depends continuously on
the states A and B.

Do there always exist continuous motion planning algorithms?

Lemma 4.2. A continuous motion planning algorithm in X exists if
and only if the space X is contractible.

Proof. Assume that there exists a continuous motion planning al-
gorithm s : X × X → PX. For A,B ∈ X the image s(A,B) is a
path starting at A and ending at B. Fix B = B0 ∈ X and define
F (x, t) = s(x,B0)(t). Here F : X × [0, 1] → X is a continuous defor-
mation with F (x, 0) = x and F (x, 1) = B0 for any x ∈ X. Hence X is
contractible.

Conversely, assume that X is contractible. Then there exists a
continuous homotopy F : X × [0, 1]→ X connecting the identity map
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X → X with the constant map X → X onto a point B0 ∈ X. Using
F one may connect any two given points A and B by the path s(A,B)
which is the concatenation of the path F (A, t) and the inverse path
to F (B, t). This defines a continuous motion planning algorithm in
X. !

Corollary 4.3. For a system with non-contractible configuration space
any motion planning algorithm must be discontinuous.

This explains why motion planning algorithms appearing in indus-
try are quite often discontinuous.

4.2. The concept TC(X)

Configuration spaces of mechanical systems appearing in most indus-
trial applications are semi-algebraic sets, i.e., they are finite unions of
sets of the form

{x ∈ Rn; P (x) = 0, Q1(x) > 0, . . . , Ql(x) > 0}

where P,Q1, . . . , Ql ∈ R[X1, . . . , Xn] are polynomials with real coeffi-
cients, see [13]. It is well known that any semi-algebraic set is homeo-
morphic to a polyhedron, see Theorem 3.12 of [13].

Recall that a polyhedron is defined as a subset X ⊂ RN homeomor-
phic to the underlying space of a finite-dimensional simplicial complex,
compare [85]. It is well known that any smooth manifold is homeo-
morphic to a polyhedron.

Since our main goal is to study motion planning algorithms for real
robotics applications, we may assume that the configuration space X
is homeomorphic to a polyhedron.

Definition 4.4. LetX be a polyhedron. A motion planning algorithm
s : X × X → PX is called tame if X × X can be split into finitely
many sets

X ×X = F1 ∪ F2 ∪ F3 ∪ · · · ∪ Fk(4.4)

such that:

1. The restriction s|Fi : Fi → PX is continuous, i = 1, . . . , k;
2. Fi ∩ Fj = ∅, where i == j;
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3. Each Fi is a Euclidean Neighborhood Retract (ENR), see be-
low.

For a fixed pair of points (A,B) ∈ Fi, the path t 7→ s(A,B)(t) ∈ X
produced by the algorithm s is continuous as a function of t, it starts
at point A ∈ X and ends at point B ∈ X. The curve s(A,B) depends
continuously on (A,B) assuming that the pair of points (A,B) varies
in the set Fi ⊂ X.

Recall the definition of an ENR, see [17]:

Definition 4.5. A topological space X is a Euclidean Neighborhood
Retract (ENR) if it can be embedded into a Euclidean space X ⊂ RN

such that for some open neighborhood X ⊂ U ⊂ RN there exists a
retraction r : U → X, r|X = 1X .

A subset X ⊂ RN is an ENR if and only if it is locally compact
and locally contractible, see [17], Chapter 4, §8.

In particular, the class of ENR’s includes all finite-dimensional cell
complexes and all manifolds.

Motion planning algorithms which appear in industrial applications
are tame. As we mentioned earlier, the configuration space X is usually
a semi-algebraic set, and the algorithm is described by several different
rules for various scenarios Fj ⊂ X × X for the initial – final config-
urations. These sets Fi are also given by equations and inequalities
involving real algebraic functions; thus they are semi-algebraic as well.
The functions s|Fj : Fj → PX are also often real algebraic, hence they
are continuous.

Definition 4.6. The topological complexity of a tame motion plan-
ning algorithm (4.2) is the minimal number of domains of continuity k
in any representation of type (4.4) for s.

Definition 4.7. The topological complexity TC(X) of a finite-
dimensional polyhedron X is the minimal topological complexity of
tame motion planning algorithms in X.

TC(X) = 1 if and only if the polyhedron X is a contractible.

Example 4.8. Let us show that TC(Sn) = 2 for n odd and besides
TC(Sn) ≤ 3 for n even.

Let F1 ⊂ Sn × Sn be the set of all pairs (A,B) such that A == −B.
We may construct a continuous section s1 : F1 → PSn by moving
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A towards B along the shortest geodesic arc. Consider now the set

A

B

-A-

F2 ⊂ Sn × Sn of all pairs of antipodal points (A,−A). If n is odd we
may construct a continuous section s2 : F2 → PSn as follows. Fix a
non-vanishing tangent vector field v on Sn; such v exists for n odd.
Move A towards the antipodal point −A along the semi-circle tangent
to vector v(A).

-A-

A

In the case when n is even the above procedure has to be modified
since for n even any vector field v tangent to Sn has at least one zero.
However, we may find a tangent vector field v having a single zero
A0 ∈ Sn. Write F2 = {(A,−A);A == A0} and define s2 : F2 → PSn

as in the previous paragraph. The set F3 = {(A0,−A0)} consists of a
single pair; define s3 : F3 → PSn by choosing an arbitrary path from
A0 to −A0.

Next we explain the relation between the invariant TC(X) and the
notion of Schwarz genus of a fibration. Recall that the Schwarz genus
of a fibration p : E → B is defined as the minimal number k such that
there exists an open cover of the base B = U1 ∪ U2 ∪ · · · ∪ Uk with the
property that over each set Uj ⊂ B there exists a continuous section
sj : Uj → E of p : E → B, see [93].

The concept of Schwarz genus generalizes the notion of Lusternik –
Schnirelmann category cat(X); the latter is defined as the smallest
integer k such that X admits an open cover

X = U1 ∪ U2 ∪ · · · ∪ Uk
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with the property that each inclusion Ui → X is null-homotopic, see
[12]. It is easy to see that cat(X) coincides with the genus of the Serre
fibration P0X → X. Here P0(X) is the space of all paths in X which
start at the base point x0 ∈ X.

Proposition 4.9 gives a similar interpretation of TC(X):

Proposition 4.9. Let X be a polyhedron. Then the number TC(X)
coincides with the Schwarz genus of the path fibration π : PX → X×X.

In the proof of Proposition 4.9 we use the following fact:

Lemma 4.10. Let Y, Z ⊂ P be two disjoint closed subsets of a poly-
hedron P . Then there exists a closed sub-polyhedron F ⊂ P which
contains Y and is disjoint from Z, i.e., Y ⊂ F and F ∩ Z = ∅.

Proof of Lemma 4.10. Let Pα ⊂ P be a locally finite family of finite
subpolyhedra such that ∪Pα = P ; here α runs over an index set A. For
each α ∈ A the intersections Y ∩ Pα and Z ∩ Pα are disjoint compact
sets, hence we may find a sequence of real numbers εα > 0 such that

dist(Y ∩ Pα, Z ∩ Pα) > εα

where dist is a fixed metric on P compatible with its topology. Using
the local finiteness of the family {Pα} we may subdivide P such that
every simplex lying in Pα has diameter < εα. Let F denote the union
of all simplices of P whose closure intersects Y . Then clearly F is a
closed sub-polyhedron of P containing Y and disjoint from Z. !

Proof of Proposition 4.9. Denote by g the Schwarz genus of π
and by k the number TC(X). Consider a splitting X×X = F1∪· · ·∪Fk

as in Definition 4.4. We show that one may enlarge each Fi to an open
set Ui admitting a continuous section of π. This implies the inequality
g ≤ k.

We will use the following property of ENRs (see [17], chapter 4,
Corollary 8.7): If F ⊂ X and both spaces F and X are ENRs, then
there is an open neighborhood U ⊂ X of F and a retraction r : U → F
such that the inclusion j : U → X is homotopic to i◦r, where i : F → X
denotes the inclusion.

In our situation, for any i = 1, . . . , k the sets Fi and X × X are
ENRs, hence the statement of the previous paragraph implies that
there exists an open neighborhood Ui ⊂ X × X of the set Fi and a
continuous homotopy hi

τ : Ui → X × X, where τ ∈ [0, 1], such that
hi

0 : Ui → X ×X is the inclusion and hi
1 is a retraction of Ui onto Fi.
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We may describe now a continuous map s′i : Ui → PX with the
property π ◦ s′i = 1Ui

. Given a pair (A,B) ∈ Ui, the path hi
τ (A,B) in

X × X is a pair of paths (γ, δ), where γ is a path in X starting at
the point γ(0) = A and ending at a point γ(1), and δ is a path in X
starting at B = δ(0) and ending at δ(1). Note that the pair (γ(1), δ(1))
belongs to Fi; therefore the section si = s|Fi : Fi → PX defines a path

ξ = si(γ(1), δ(1)) ∈ PX

connecting the points γ(1) and δ(1). Now we set s′i(A,B) to be the
concatenation of γ, ξ, and δ−1 (the reverse path of δ):

s′i(A,B) = γ · ξ · δ−1.

Next we want to show that k ≤ g. Suppose one has an open cover
U1∪· · ·∪Ug = X×X such that each of the sets Ui admits a continuous
section of π. We show that for i = 1, . . . , g one may find subsets Fi ⊂ Ui

satisfying the properties of Definition 4.4.
The sets Y1 = X ×X − (U2 ∪ · · · ∪ Ug) and Z1 = X ×X − U1 are

closed and disjoint. Applying Lemma 4.10 we see that there exists a
closed sub-polyhedron F1 containing Y1 and disjoint from Z1.

We proceed by induction. Suppose that for some 1 < i < g we
have constructed sets F1, . . . , Fi−1 ⊂ X × X satisfying the following
properties:

(a) each Fj is a polyhedron lying in Uj,
(b) Fj ∩ Fj′ = ∅ for j == j′,
(c) The closure of each Fj is contained in the union F1 ∪ · · · ∪ Fj,
(d) F1 ∪ · · · ∪ Fi−1 ∪ Ui ∪ · · · ∪ Ug = X ×X.
The set Pi = X × X − (F1 ∪ · · · ∪ Fi−1) is an open subset of a

polyhedron, hence it is a polyhedron on its own, see [85]. The sets

Yi = Pi − (Ui+1 ∪ · · · ∪ Ug) and Zi = Pi − Ui

are disjoint and closed in Pi. Applying Lemma 4.10 we find a closed
polyhedral subset Fi ⊂ Pi which contains Yi and is disjoint from
Zi. This completes the step of induction. Thus, we find subsets
F1, . . . , Fg−1 and we finally define Fg = X × X − (F1 ∪ · · · ∪ Fg−1).
We obtain a splitting of

X ×X = F1 ∪ · · · ∪ Fg

satisfying all properties of Definition 4.4. Therefore g ≤ k. !

Definition 4.11. Let X be a topological space. Its topological com-
plexity TC(X) is defined as the Schwarz genus of fibration (4.1).
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Several equivalent characterizations of TC(X) are given by Propo-
sition 4.12 in the case when X is an ENR.

Proposition 4.12. Let X be an ENR. Then TC(X) = k = Z = r
where the numbers k = k(X), Z = Z(X), r = r(X) are defined as
follows:

(a) k = k(X) is the minimal integer such that there exist a section
s : X×X → PX of fibration (4.1) and an increasing sequence
of k open subsets

U1 ⊂ U2 ⊂ · · · ⊂ Uk = X ×X
with the property that for any i = 0, 1, . . . , k−1 the restriction
s|(Ui+1 − Ui) is continuous; here U0 = ∅.

(b) l = l(X) is the minimal integer such that there exist a section
s : X × X → PX of (4.1) and an increasing sequence of k
closed subsets

F1 ⊂ F2 ⊂ · · · ⊂ Fk = X ×X
with the property that for any i = 0, 1, . . . , k−1 the restriction
s|(Fi+1 − Fi) is continuous; here F0 = ∅.

(c) r = r(X) is the minimal integer such that there exist a section
s : X ×X → PX of fibration (4.1) and a splitting

G1 ∪G2 ∪ · · · ∪Gr = X ×X, Gi ∩Gj = ∅, i == j

where each Gi is a locally compact subset of X ×X and each
restriction s|Gi : Gi → PX is continuous, for i = 1, . . . , r.

Remark 4.13. In the definition of r(X) in (c) one may drop the re-
quirement Gi ∩ Gj = ∅ for i == j and the obtained number will be
unchanged. This follows from the arguments of the proof of Proposi-
tion 4.12 given below.

Proof. Suppose that TC(X) = s and W1 ∪W2 ∪ · · · ∪Ws = X ×X is
an open cover such that each open set Wi admits a continuous section
si : Wi → PX of fibration (4.1). Set Ui = W1 ∪W2 ∪ · · · ∪Wi where
i = 1, . . . , s. Then U1 ⊂ U2 ⊂ · · · ⊂ Us = X × X and one defines a
section s : X ×X → PX by the rule: s(x, y) = si(x, y) where x, y ∈ X
and i is the smallest index such that (x, y) ∈ Wi. Clearly,

Ui+1 − Ui = Wi+1 − (W1 ∪ · · · ∪Wi)
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and the restriction s|(Ui+1 − Ui) is continuous. This shows that

TC(X) = s ≥ k = k(X).

Let s denote TC(X) and W1, . . . ,Ws be as above. The space X×X
is normal (since X and hence X × X are metrizable). Therefore one
may find closed subsets Vi ⊂ Wi such that V1∪· · ·∪Vs = X×X. Setting
Fi = V1 ∪V2 ∪ · · · ∪Vi (where i = 1, . . . , s) and repeating the argument
of the previous paragraph we obtain the inequality TC(X) ≥ Z(X).

Suppose that U1 ⊂ U2 ⊂ · · · ⊂ UW = X ×X is an increasing chain
of open subsets satisfying conditions of item (a). Then the sets

Gi = Ui − (U1 ∪ · · · ∪ Ui−1)

are locally closed and form a splitting ofX×X satisfying the conditions
of item (c). Hence, k = k(X) ≥ r = r(X).

The inequality Z ≥ r follows similarly.
Finally we want to show that r = r(X) ≥ s = TC(X). Suppose

that G1 ∪ G2 ∪ · · · ∪ Gr = X × X is a decomposition of X × X into
pairwise disjoint locally compact subsets Gi such that each Gi admits
a continuous section si : Gi → PX of (4.1). Such sections are in
one-to-one correspondence with continuous homotopies hi

t : Gi → X
where t ∈ [0, 1] and the end maps hi

0, h
i
1 : Gi → X are projections of

Gi ⊂ X×X onto the first and the second coordinates correspondingly.
Let Wi ⊂ X ×X be an open subset such that Gi = Gi ∩Wi; such Wi

exists since Gi is a locally closed subset of X ×X, see [17], chapter 4,
Lemma 8.3. Using Exercise 2 at the end of chapter 4 in [17], we find an
open set Gi ⊂ Ui ⊂ Wi and a homotopy H i

t : Ui → X connecting the
projections of Ui onto the first and the second coordinates. The latter
homotopy can be interpreted as a continuous section Si : Ui → PX of
(4.1). As the result we obtain an open cover U1, U2, . . . , Ur of X ×X
such that each set Ui admits a continuous section of (4.1). Therefore,
TC(X) ≤ r. !

Recall that the multiplicity µ(V) of a cover V = {Vi}i∈I is defined
as the maximal cardinality of a subset J ⊂ I such that the intersection
∩i∈JVi == ∅ is nonempty.

Corollary 4.14. Let X be an ENR. Then TC(X) equals the minimal
multiplicity µ(V) of open (or closed) covers V = {V1, . . . , Vm} of X×X
having the property that the fibration (4.1) admits a continuous section
over each of the sets Vi where i = 1, . . . ,m.
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Proof. If k = TC(X) and U = {U1, . . . , Uk} is an open (closed) cover
of X ×X having the above property, then clearly µ(U) ≤ k = TC(X).
Hence to prove Corollary 4.14 one only has to prove the inequality

TC(X) ≤ µ(V)

for any closed (or open) cover V = {V1, . . . , Vm} with the property that
the fibration (4.1) admits a continuous section over each set Vi.

For (x, y) ∈ X × X denote by µ(x, y) the number of sets Vi con-
taining the point (x, y). The multiplicity µ(V) of the cover V equals

µ(V) = max
(x,y)∈X×X

µ(x, y).

For i = 1, 2, . . . , µ(V) we write

Wi = {(x, y) ∈ X ×X; µ(x, y) ≥ µ(V)− i+ 1}.
Each Wi is open (or closed, respectively) and one has

W1 ⊂ W2 ⊂ · · · ⊂ Wµ(V) = X ×X.
Moreover, every complement Wi+1 −Wi is a disjoint union of a family
of subsets, each lying in one of the sets Vj. It follows that there ex-
ists a continuous section of fibration (4.1) over each Wi+1 −Wi. The
inequality TC(X) ≤ µ(V) is now a consequence of Proposition 4.12. !

Corollary 4.14 is closely related to characterization of the topo-
logical complexity TC(X) in terms of degrees of instabilities of robot
motion planning algorithms, see [23].

Corollary 4.15. Let X be a polyhedron. Then

TC(X) ≤ 2 dimX + 1.(4.5)

Proof. This corollary is obviously true for any ENR as follows from
the previous corollary. We state and prove it for polyhedra since in
this case we may give an explicit construction of a motion planning
algorithm.

Let X(r) = Xr −Xr−1 denote the union of interiors of all simplices
of dimension r where r = 0, 1, . . . , n. Define

Gi =
⋃

r+s=i

X(r) ×X(s), i = 0, 1, . . . , 2n.
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The result of Corollary 4.15 would follow from Proposition 4.12 once
we show that each set Gi admits a continuous section si : Gi → PX.
One has

Gi =
⊔

r+s=i

Δ(r) ×Δ(s)

where Δ(r),Δ(s) run over open simplices of X of dimensions r and s
correspondingly. Hence a continuous section si can be described on
each connected component Δ(r) ×Δ(s) of Gi separately.

Given Δ(r) and Δ(s), consider a path γ leading from a point x0 ∈
Δ(r) to a point y0 ∈ Δ(s). Then one can move from any point x ∈ Δ(r) to
any point y ∈ Δ(s) by first going to x0 (along the straight line segment
in Δ(r)), then following γ, and finally going from y0 to y, along the
straight line path in Δ(s). This proves (4.5). !

A more general upper bound was found in [23], Theorem 5.2:

Theorem 4.16. If X is an r-connected polyhedron then

TC(X) <
2 dim(X) + 1

r + 1
+ 1.(4.6)

Example 4.17. Let us show that for any suspension X = ΣY where
Y is an ENR one has

TC(X) ≤ 3.(4.7)

Recall that suspension ΣY is defined as the factor space of the cylinder

p

q

Y

Y

Σ

γ0

Y × [0, 1] where each of the subsets Y × 0 and Y × 1 is collapsed to a
single point, denoted by p and q correspondingly. Note that removing
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either of p or q makes the suspension X contractible. We see that for
y ∈ X − {p} there exists a path σy in X − {p} starting at q, ending at
y and depending continuously on y.

To prove (4.7) one can use property (b) of Proposition 4.12. Con-
sider the closed subsets

F1 ⊂ F2 ⊂ F3 = X ×X
where F1 consists of a single pair (p, p) ∈ X ×X and

F2 = {p} ×X ∪X × {p}.
Define a section s : X × X → PX as follows. We set s(p, p) to be
the constant path at p. The complement F2 − F1 is the union of two
disjoint sets p × (X − {p}) and (X − {p}) × p. For y == p we define
the path s(p, y) as the concatenation of a fixed path γ0 from p to q

and the path σy, see above; besides, we define s(y, p) as s(p, y), the
inverse of the path s(p, y). For (x, y) ∈ F3 − F2 (i.e., when x == p and
x == p) we set s(x, y) = σxσy. We see that the restriction s|(Fi+1 − Fi)
is continuous for i = 0, 1, 2 and Proposition 4.12 now gives TC(X) ≤ 3.

Example 4.18. The arguments of the previous example can be used to
prove the following more general statement. LetX be a path-connected
ENR and Y = X − Z where Z is a finite set. Then

TC(X) ≤ TC(Y ) + cat(Y ) + 1.(4.8)

We leave details of the proof as an exercise.

Proposition 4.19. For any topological space X one has

cat(X) ≤ TC(X) ≤ cat(X ×X).(4.9)

Proof. This follows directly from Definition 4.11, see [22], Theorem
5. !

Exercise: Let G be a connected Lie group. Then

TC(G) = cat(G).(4.10)

As a corollary we obtain

TC(SO(3)) = cat(SO(3)) = cat(RP3) = 4.(4.11)
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This example is important for robotics since SO(3) is the configuration
space of a rigid body in R3 fixed at a point. Let us also mention
another consequence of (4.10),

TC(T n) = cat(T n) = n+ 1.(4.12)

Finally we mention that there exists yet another interpretation of
the notion TC(X) as a feature of random motion planning algorithms,
see [27].

4.3. The notion of relative complexity

In this section we introduce a relative version of the notion of topo-
logical complexity. We also prove that the topological complexity is
homotopy invariant.

Definition 4.20. Let X be a topological space and A ⊂ X ×X be a
subspace. Then the number TCX(A) is defined as the Schwarz genus
of the fibration π : PAX → A where PAX ⊂ PX is the space of all
paths γ : [0, 1] → X such that the pair of end points (γ(0), γ(1)) lies
in A. In other words, TCX(A) is the smallest integer k such that there
is an open cover U1 ∪ U2 ∪ · · · ∪ Uk = A with the property that each
Ui ⊂ A is open and the projections X ← Ui → X on the first and the
second factors are homotopic to each other, for each i = 1, . . . , k.

Clearly TC(X) = TCX(X ×X).
We state for future reference:

Lemma 4.21. For a subset A ⊂ X × X the following properties are
equivalent:

(i) TCX(A) = 1,
(ii) the projections X ← A→ X are homotopic,
(iii) the inclusion A→ X ×X is homotopic to a map A→ X ×X

with values in the diagonal ΔX ⊂ X ×X.

Let us mention a few obvious inequalities:

TCX(A) ≤ TC(X)(4.13)

and

TCX(A) ≤ catX×X(A).(4.14)

If A ⊂ B ⊂ X ×X then

TCX(A) ≤ TCX(B).(4.15)
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Let Y ⊂ X be a subspace. Then

TCX(Y × Y ) ≤ TC(Y ).(4.16)

Lemma 4.22. Suppose that the sets A ⊂ B ⊂ X ×X are such that B
can be deformed into A inside X ×X. Then

TCX(A) = TCX(B).(4.17)

Proof. Indeed, suppose that ht : B → X × X is a homotopy where
h0 : B → X × X is the inclusion and h1 maps B into A. Set k =
TCX(A) and let U1 ∪ · · · ∪ Uk = A be an open cover such that the
projections X ← Ui → X are homotopic. Hence there is a homotopy
si : Ui × I → X with si(a, b, 0) = a and si(a, b, 1) = b for (a, b) ∈ Ui.
Set Wi = h−1

1 (Ui) where i = 1, . . . , k. Then W1 ∪ · · · ∪Wk = B is an
open cover. For (x, y) ∈ Wi the homotopy ht(x, y) can be viewed as a
pair of paths (γ, σ) in X starting at γ(0) = x and σ(0) = y and ending
at a pair (γ(1), σ(1)) = (a, b) lying in Ui ⊂ A. The concatenation
of γ, si(a, b, ·) and σ−1 is a path connecting x to y which depends
continuously on (x, y) ∈ Wi. This shows that TCX(B) ≤ TCX(A) and
together with (4.15) proves (4.17). !

Lemma 4.23. Let X be an ENR and let A ⊂ X×X be a locally compact
subset. Then there is an open neighbourhood A ⊂ U ⊂ X × X such
that

TCX(A) = TCX(U).(4.18)

This statement follows by applying Definition 4.20 and the result
of Exercise 2 from [17], chapter 4, §8.

If A1, . . . , Ak ⊂ X × X are open subsets covering X × X, then
clearly

TC(X) ≤ TCX(A1) + · · ·+ TCX(Ak).(4.19)

The next statement claims that inequality (4.19) is true in a slightly
more general situation.

Proposition 4.24. Let X be an ENR and let X × X be covered by
locally compact sets A1, . . . , Ak ⊂ X×X, i.e., X×X = A1∪A2∪· · ·∪Ak.
Then TC(X) ≤ TCX(A1) + · · ·+ TCX(Ak).

Proof. It follows from Lemma 4.23. !

Lemma 4.25. Let Y ⊂ X be a retract. Then TC(Y ) ≤ TC(X).
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Proof. Suppose that U1 ∪ · · · ∪ Uk = X × X is an open cover with
a continuous section si : Ui → PX for each i = 1, . . . , k where k =
TC(X). Let r : X → Y be a retraction. For (x, y) ∈ Ui ∩ (Y × Y )
the formula r(si(x, y)(t)) defines a path in Y from x to y depending
continuously on (x, y) ∈ Ui ∩ (Y × Y ) and on t ∈ [0, 1]. Hence the
sets Vi = Ui ∩ (Y × Y ) form an open cover of Y × Y with the required
properties. Therefore, TC(Y ) ≤ k. !

Corollary 4.26. If Y ⊂ X is a retract and X can be deformed into
Y , then TC(X) = TC(Y ).

Proof. By inequality (4.16) and Lemma 4.22 we have

TC(Y ) ≥ TCX(Y × Y ) = TCX(X ×X) = TC(X).

The opposite inequality is given by Lemma 4.25. !

Corollary 4.27. The topological complexity is homotopy invariant.
In other words, if topological spaces X and Y are homotopy equivalent
then TC(X) = TC(Y ).

Proof. Any two homotopy equivalent spaces can be realized as de-
formation retracts of a single space and the result follows from the
previous corollary. !

Attaching a cell to a space may increase its category by at most 1.
The similar result for the topological complexity reads as follows:

Proposition 4.28. Let Y be an ENR and let

X = Y ∪f (en1

1 ∪ · · · ∪ enr

r )

be obtained from Y by attaching simultaneously several cells via a con-
tinuous map f : Sn1−1 5 · · · 5 Snr−1 → Y . Then

TC(X) ≤ TC(Y ) + cat(Y ) + 1.(4.20)

Proof. Let Z ⊂ X be the finite set Z = {p1, . . . , pr} containing a
single point pi ∈ eni

i lying in the interior of each of the attached cells.
Then X − Z is homotopy equivalent to Y and the result follows from
Example 4.18. !
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There are simple examples when inequality (4.20) is sharp. An even
dimensional sphere Sn is obtained from one point Y by adding a cell.
In this case TC(Y ) = cat(Y ) = 1 and TC(X ∪ en) = 3.

Another example: let Y be a contractible graph (a tree) and let X
be obtained from Y attaching r > 1 one-dimensional cells. Then again
TC(Y ) = cat(Y ) = 1 and TC(X) = 3.

Finally we mention the following relation with the notion of relative
Lusternik – Schnirelmann category:

Lemma 4.29. For a subset A ⊂ X and a point x0 ∈ X one has

TCX(A× x0) = catX(A) = TCX(x0 × A).

The relative category catX(A) is defined as the smallest cardinality
of an open cover of A with the property that each of its elements is
null-homotopic in X.

Several variations of the notion of TC were studied in [34]. They
were motivated by the natural requirement to have motion planning
algorithms which are symmetric, i.e., such that the motion from A to
B is the reverse of the motion from B to A.

4.4. Navigation functions

The material of this section is inspired by discussions with Daniel Kodi-
tschek and Elon Rimon and by reading their papers [66],[82]. Rimon
and Koditschek studied mechanisms which navigate to a fixed goal
using a gradient flow technique. We modify slightly their approach by
allowing variable targets; therefore our navigation functions depend on
two variables, the source and the target. Two parametric navigation
functions lead to universal motion planning algorithms for moving from
an arbitrary source to an arbitrary target, instead of having the target
destination fixed, as it was in [66], [82].

In this section we assume that the configuration space of our system
is a closed smooth manifold M without boundary.

Definition 4.30. A smooth function F : M × M → R is called a
navigation function for M if

(a) F(x, y) ≥ 0 for all x, y ∈M ,
(b) F(x, y) = 0 if and only if x = y,
(c) F is nondegenerate in the sense of Bott.

The last property means that the set of critical points of F has
several connected components S1, S2, . . . , Sk ⊂ M ×M where each Si
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is a smooth submanifold and the Hessian of F is nondegenerate on
the normal bundle to Si. As follows from properties (a), (b), one of
these critical submanifolds Si is the diagonal ΔM ⊂ M × M where
ΔM = {(x, x); x ∈M}. We will always assume that S1 = ΔM .

Example 4.31. Suppose that M ⊂ Rn is a smooth submanifold em-
bedded into Euclidean space. Then the function F : M × M → R
given by

F(x, y) = |x− y|2(4.21)

for x, y ∈ M satisfies conditions (a) and (b). Condition (c) is also
satisfied provided that the submanifold M is generic. A pair (x, y) ∈
M ×M is a critical point of F if and only if the tangent spaces to M
at the points x and y (i.e., TxM and TyM) are perpendicular to the
Euclidean segment [x, y] ⊂ Rn connecting x and y.

The main idea of the method of navigation functions is the pos-
sibility of exploiting the gradient flow of a navigation function (with
respect to a fixed Riemannian metric on M) for constructing motion
planning algorithms. An explicit description of motion planning algo-
rithms based on navigation functions is given below after Example 4.34;
it utilizes notations introduced in the proof of the following theorem.

Theorem 4.32. Let F : M ×M → R be a navigation function for M .
Consider the connected components S1, S2, . . . , Sk ⊂M ×M of the set
of critical points of F and denote by ci ∈ R the corresponding critical
values, i.e., F(Si) = {ci}. Then one has

TC(M) ≤
∑

r∈Crit(F)

Nr.(4.22)

Here Crit(F) ⊂ R denotes the set of critical values of F and for r ∈
Crit(F) the symbol Nr denotes the maximum of the numbers TCM(Si)
where i runs over indices satisfying ci = r, i.e.,

Nr = max
ci=r
{TCM(Si)}.

Proof. Consider the negative gradient flow of F with respect to a
Riemannian metric on M . An integral trajectory of this flow is a
pair of smooth curves x(t) ∈ M , y(t) ∈ M satisfying the differential
equation

(ẋ(t), ẏ(t)) = − grad(F)(x(t), y(t)), t ∈ [0,∞),(4.23)
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and the initial conditions x(0) = A, y(0) = B. As t tends to infinity
the trajectory (x(t), y(t)) approaches one of the critical submanifolds
Si. For every i = 1, 2, . . . , k we denote by Fi ⊂ M × M the set of
all pairs of initial conditions (A,B) such that the limit of (x(t), y(t))
belongs to Si. We have

M ×M = F1 ∪ · · · ∪ Fk,(4.24)

and Fi ∩ Fj = ∅, i == j. Each Fi is a submanifold (although not nec-
essarily compact), hence an ENR. More precisely, Fi is homeomorphic
to the total space of a vector bundle over Si of rank

2 dimM − indSi − dimSi

where indSi denotes the Bott index of Si, viewed as a critical subman-
ifold of F . The projection πi : Fi → Si is given by

πi(A,B) = lim
t→∞

(x(t), y(t))

where (x(t), y(t)) is the trajectory (4.23) satisfying the initial conditions
x(0) = A, y(0) = B.

For a critical value r ∈ Crit(F) denote by Cr and Br the unions

Cr =
⋃
ci=r

Fi and Br =
⋃
ci=r

Si.

Clearly Br is the set of all critical points of F lying on the level r
and Cr is the stable manifold of Br. The retraction qr : Cr → Br is
continuous (where qr|Fi = πi) and we have

M ×M =
⋃

r∈Crit(F)

Cr.

By Proposition 4.12,

TC(M) ≤
∑

r∈Crit(F)

TCM(Cr)

and for r ∈ Crit(F) ⊂ R Corollary 4.26 implies

TCM(Cr) = max
ci=r
{TC(Fi)} = max

ci=r
{TC(Si)} = Nr.

!
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Remark 4.33. The proof above uses the observation that different
critical submanifolds Si, Sj ⊂ M ×M lying on the same level set of
F can be “aggregated”, i.e., united into a single submanifold so that
the map qr (see above) remains continuous. This allows significant
improvement of the upper bound — replacing the summation operation
by the maximum, compare (4.22).

More generally, two critical submanifolds Si, Sj can be “aggregated”
for this purpose assuming that there are no orbits of the gradient flow
of F “connecting” them.

Note also that the proof of Theorem 4.32 does engage property (b)
from Definition 4.30.

Example 4.34. Let M = S1×S1×· · ·×S1 = T n be the n-dimensional
torus. Consider the navigation function F : M ×M → R given by

F(u, z) =
n∑

i=1

|ui − zi|2.

Here u = (u1, u2, . . . , un) ∈ M and z = (z1, z2, . . . , zn) ∈ M where
ui, zi ∈ S1 ⊂ C denote complex numbers lying on the unit circle. The
critical submanifolds SJ ⊂ M ×M of F are in one-to-one correspon-
dence with subsets J ⊂ {1, 2, . . . , n} where SJ is defined as the set of all
pairs of configurations (u, z) such that ui = −zi for i ∈ J and uj = zj

for j /∈ J . The critical value of submanifold SJ equals 4|J |, where |J |
denotes the cardinality of J . Note that each SJ is diffeomorphic to the
torus T n and the relative topological complexity TCM(SJ) equals 1, as
it is easy to see. Hence in this example we have n + 1 critical values
0, 4, 8, . . . , 4n and each of the numbers Nr appearing in (4.22) equals
1. Therefore, Theorem 4.32 gives the inequality

TC(T n) ≤ n+ 1

which, as we know from (4.12), is sharp.

Next we construct a specific motion planning algorithm which uses
navigation functions F : M ×M → R. We will employ the notations
introduced in the proof of Theorem 4.32. For simplicity we will assume
below that all critical values ci are distinct.

Denote by ri the relative topological complexity TCM(Si), see §4.3.
Find a decomposition

Gi
1 ∪Gi

2 ∪ · · · ∪Gi
ri

= Si × Si, Gi
j ∩Gi

j′ = ∅, j == j′,
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into locally compact subsets (as in Proposition 4.12(c)) and continuous
sections

(4.25) sij : Gi
j → PM, i = 1, . . . , k, j = 1, . . . , ri

of the path space fibration PM →M ×M . Consider the subsets

V i
j = π−1

i (Gi
j), i = 1, . . . , k, j = 1, . . . , ri.

If (A,B) ∈ V i
j and πi(A,B) = (a, b) ∈ Gi

j ⊂ Si we may move from A
to B by first following the trajectory x(τ) of the flow (4.23) arriving at
a, then following the path sij(a, b) which starts at a and ends at b and
finally following the inverse path y(τ), the solution of (4.23).

It is convenient to introduce a new “time” parameter τ = τ(t) given
by

τ =

∫ t

0

|grad(F)(x(σ), y(σ))|2dσ.(4.26)

Then the trajectory (x(τ), y(τ)) (see (4.23)) reaches the critical sub-
manifold Si in finite time

τ = F(A,B)−Fi(4.27)

where Fi = F(Si) denotes the constant value which the function F
attains on Si, as follows from the equation dF/dτ = 1.

Equations (4.23) in the special case of navigation function (4.21)
have the form

ẋ = 2Px(y − x), ẏ = 2Py(x− y),(4.28)

where Px : TxR
n → TxM and Py : TyR

n → TxM are orthogonal
projections.

4.5. TC(X), cohomology, and cohomology operations

In this section X denotes a path-connected topological space.

Definition 4.35. Let u ∈ H∗(X×X;R) be a cohomology class, where
R is a coefficient system on X × X. We say that u has weight k ≥ 0
if k is the largest integer with the property that for any open subset
A ⊂ X ×X with TCX(A) ≤ k one has u|A = 0.
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This definition is inspired by the work of E. Fadell and S. Husseini
[20] and Y. Rudyak [86]; it is similar (but not identical) to the notion
of weight introduced in [34], [32].

We will denote the weight of u by wgt(u). The weight of the zero
cohomology class equals ∞. Knowing weights of cohomology classes
may be helpful in finding lower bounds for the topological complexity
TC(X). The following statement is an immediate consequence of the
definition.

Proposition 4.36. If there exists a nonzero cohomology class u ∈
H∗(X ×X;R) with wgt(u) ≥ k, then TC(X) > k.

Hence, our goal is to find nonzero cohomology classes of highest
possible weight.

Lemma 4.37. For u ∈ H∗(X ×X;R) one has wgt(u) ≥ 1 if and only
if

u|ΔX = 0 ∈ H∗(X;R′).(4.29)

Here ΔX ⊂ X ×X denotes the diagonal and R′ = R|ΔX .

Proof. The statement follows from Lemma 4.21. !

Cohomology classes satisfying (4.29) are called zero-divisors; this
term was suggested in [22].

Example 4.38. Any cohomology class u ∈ Hj(X;R), where R is an
abelian group, determines a zero-divisor

ū = 1× u− u× 1 ∈ Hj(X ×X;R).(4.30)

Zero-divisors are easy to describe in the case of cohomology with
coefficients in a field. By the Künneth theorem any cohomology class
u ∈ Hn(X ×X;k) (where k is a field) can be represented in the form

u =
m∑

i=1

ai × bi, ai ∈ Hαi(X;k), bi ∈ Hn−αi(X;k).

The class u is a zero-divisor if and only if
m∑

i=1

aibi = 0,

i.e., when the result of replacing the cross-product by the cup-product
is trivial. Hence many examples of zero-divisors are available.
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Cohomology classes having higher weight can be obtained as cup-
products of zero-divisors as concluded from the following statement:

Lemma 4.39. Let u ∈ Hn(X × X;R) and v ∈ Hm(X × X;R′) be
two cohomology classes. Then the weight of their cup product uv ∈
Hn+m(X ×X;R⊗R′) satisfies

wgt(uv) ≥ wgt(u) + wgt(v).(4.31)

Proof. Denote r = wgt(u), s = wgt(v). Any open subset A ⊂ X×X
with TCX(A) ≤ r+s can be represented as the union A = B∪C where
B,C ⊂ X × X are open subsets with TCX(B) ≤ r and TCX(C) ≤ s.
Then u|B = 0 and hence there exists a class u′ ∈ Hn(X × X,B;R)
with u′|(X × X) = u. In a similar manner, there exists a refinement
v′ ∈ Hm(X × X,C;R′) with v′|(X × X) = v. Then the cup-product
u′v′ ∈ Hn+m(X ×X,A;R⊗R′) satisfies (u′v′)|A = 0 = (uv)|A. !

Corollary 4.40. If the cup-product of k zero-divisors

ui ∈ H∗(X ×X;Ri), i = 1, . . . , k

is nonzero, then TC(X) > k.

Proof. It follows from Proposition 4.36 and Lemmas 4.37 and 4.39.
!

Corollary 4.40 gives a very effective tool for dealing with TC. As
an illustration we will compute the topological complexity of spheres,
graphs and orientable surfaces.

Proposition 4.41. One has TC(Sn) = 2 for n odd and TC(Sn) = 3
for n even.

Proof. Let u ∈ Hn(Sn;Q) denote the fundamental class. Then

ū = 1× u− u× 1 ∈ Hn(Sn × Sn;Q)

is a nonzero zero-divisor and

ū2 = −[1 + (−1)n] · u× u.
We see that ū2 is nonzero for n even and hence, by Corollary 4.40,
TC(Sn) ≥ 3 for n even. Similarly, Corollary 4.40 implies that TC(Sn) ≥
2 for n odd. The inverse inequalities were obtained in Example 4.8. !

Now we calculate topological complexity of graphs.
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Proposition 4.42. If X is a connected finite graph then

TC(X) =

 1, if b1(X) = 0,
2, if b1(X) = 1,
3, if b1(X) > 1.

Proof. If b1(X) = 0, then X is contractible and hence TC(X) = 1. If
b1(X) = 1, then X is homotopy equivalent to the circle and therefore
TC(X) = TC(S1) = 2, see above.

Assume now that b1(X) > 1. Then there exist two linearly inde-
pendent classes u1, u2 ∈ H1(X). Thus

ūi = 1× ui − ui × 1, i = 1, 2

are zero-divisors and their product u2 × u1 − u1 × u2 == 0 is nonzero.
This implies TC(X) ≥ 3 by Corollary 4.40. On the other hand, we
know that TC(X) ≤ 3 by Corollary 4.15. Therefore, TC(X) = 3. !

Proposition 4.43. Let Σg denote a closed orientable surface of genus
g. Then

TC(Σg) =

{
3, for g = 0, or g = 1,
5, for g ≥ 2.

Proof. The case g = 0 is covered by Proposition 4.41. In the case
g = 1 the surface Σ1 is a Lie group and hence TC(Σ1) = cat(Σ1) =
3 as follows from the exercise at the end of §4.2. Let us show that
TC(Σg) ≥ 5 for g ≥ 2. Indeed, for g ≥ 2 one may find cohomology
classes u1, v1, u2, v2 ∈ H1(Σg;Q) such that uiuj = uivj = vivj = 0 for
i == j and u2

i = 0, v2
i = 0, and besides, u1v1 = u2v2 = A ∈ H2(Σg;Q)

is the fundamental class. Then, using the notation (4.30), we obtain

ū1ū2v̄1v̄2 = −2A× A == 0.

Hence, the product of four zero-divisors is nonzero and TC(Σg) ≥ 5
follows from Corollary 4.40. The inverse inequality TC(Σg) ≤ 5 is a
special case of Corollary 4.15. !

Next we describe a result from [32] which allows us to find coho-
mology classes of weight 2 which are not necessarily cup-products.

Let R and S be abelian groups. A stable cohomology operation of
degree i,

θ : H∗(−;R)→ H∗+i(−;S),(4.32)
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is a family of natural transformations θ : Hn(−;R)→ Hn+i(−;S), one
for each n ∈ Z, which commute with the suspension isomorphisms, see
[74]. It follows that θ commutes with all Mayer – Vietoris connecting
homomorphisms, and each homomorphism (4.32) is additive, i.e., is a
group homomorphism.

Definition 4.44. The excess of a stable cohomology operation θ, de-
noted e(θ), is defined to be the largest integer n such that θ(u) = 0 for
all cohomology classes u ∈ Hm(X;R) with m < n.

Consider a few examples. For an extension 0→ R′ → R→ R′′ → 0
of abelian groups the Bockstein homomorphism

β : Hn(−;R′′)→ Hn+1(−;R′)

has excess 1. The excess of the Steenrod square

Sqi : H∗(−;Z2)→ H∗+i(−;Z2)

equals i and for any odd prime p the excess of the Steenrod power
operation

P i : Hn(−;Zp)→ Hn+2i(p−1)(−;Zp)

equals 2i, see [46], pages 489–490. More generally, the excess of a
composition of Steenrod squares θ = SqI = Sqi1Sqi2 . . . Sqin satisfies

e(θ) ≥ max
1≤k≤n

{ik − ik+1 − · · · − in}.

It is easy to see that for an admissible sequence I = i1i2 . . . in (i.e. such
that ik ≥ 2 · ik+1 for all k) the excess equals

e(θ) =
∑

k

(ik − 2ik+1),

which coincides with the standard notion of excess, see [74], page 27.
As noted above, any cohomology class u ∈ Hj(X;R) determines a

class

u = 1× u− u× 1 ∈ Hj(X ×X;R)

where × denotes the cohomology cross product. Note that u is a zero-
divisor and hence wgt(u) ≥ 1. Observe that

θ(u) = θ(p∗2(u)− p∗1(u)) = p∗2(θ(u))− p∗1(θ(u)) = θ(u),

by the naturality and additivity of θ (here p1, p2 : X ×X → X are the
projections onto each factor).
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Theorem 4.45. (Compare [32], Theorem 6) Let θ : H∗(−;R) →
H∗+i(−;S) be a stable cohomology operation of degree i and excess
e(θ) ≥ n. Then for any cohomology class u ∈ Hn(X;R) of dimen-
sion n the class

θ(u) = θ(u) = 1× θ(u)− θ(u)× 1 ∈ Hn+i(X ×X;S)

has weight at least 2. In symbols,

wgt(θ(u)) ≥ 2.(4.33)

Proof. Let A ⊂ X ×X be an open subset with TCX(A) ≤ 2. Then
A = B ∪ C where B and C are open and such that their projections
pB

1 : B → X, pB
2 : B → X, pC

1 : C → X, pC
2 : C → X are pairwise

mutually homotopic, i.e.,

pB
1 9 pB

2 , pC
1 9 pC

2 .(4.34)

Consider the element

ū|A = (pA
2 )∗(u)− (pA

1 )∗(u) ∈ Hn(A;R).(4.35)

The homomorphism F of the Mayer – Vietoris sequence for A,

· · · → Hn−1(B ∩ C;R)
δ→ Hn(A;R)

F→ Hn(B;R)⊕Hn(C;R)→ · · ·

takes the class u|A to zero, F (u|A) = 0, as follows from (4.34) and
(4.35). Hence, u|A = δ(w) for some w ∈ Hn−1(B ∩ C;R). Therefore,

(θu)|A = θ(u|A) = θδ(w) = δθ(w) = 0,

since θ is a stable operation of excess ≥ n and w has degree n− 1. !

In [32] we applied Theorem 4.45 to compute the topological com-
plexity of some lens spaces

L2n+1
m = S2n+1/Zm.

Here the cyclic group Zm = {1, ω, . . . , ωm−1} ⊆ C of m-th roots of
unity acts freely on the unit sphere S2n+1 ⊆ Cn+1 by pointwise multi-
plication. In the literature L2n+1

m is known as Lm(1, 1, . . . , 1), see page
144 of [46].
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To illustrate our method we state here a few results from [32].

Theorem 4.46. (See [32], Theorem 13) Suppose that p is an odd prime
and n is such that its p-adic expansion,

n = n0 + n1 · p+ · · ·+ nk · pk, where ni ∈ {0, 1, . . . ,m− 1},
involves only “digits” ni satisfying ni ≤ (p−1)/2. Then the topological
complexity of the lens space L2n+1

p equals

TC(L2n+1
p ) = 2 · dim(L2n+1

p ) = 4n+ 2.(4.36)

Sketch of the proof. The cohomology H i(L2n+1
p ;Zp) is Zp for 0 ≤

i ≤ 2n + 1 and vanishes for i > 2n + 1, see [46]. As generators one
can choose x ∈ H1(L2n+1

p ;Zp) and y = β(x) ∈ H2(L2n+1
p ;Zp), where

β : H1(−;Zp)→ H2(−;Zp) is the mod p Bockstein homomorphism. As
a graded algebraH∗(L2n+1

p ;Zp) coincides with the factor-ring Zp[x, y]/I

where I is the ideal generated by yn+1 and x2 (see [46], Example 3E.2).
Since β is a stable cohomology operation of excess 1, we have by

Theorem 4.45,

wgt(β(x)) = wgt(β(x))) = wgt(y) ≥ 2,(4.37)

where x = 1× x− x× 1, y = 1× y − y × 1 ∈ H∗(L2n+1
p × L2n+1

m ;Zp).
The cohomology class

x · y2n = (−1)n ·
(

2n

n

)
· x · (yn × yn) ∈ H4n+1(L2n+1

p × L2n+1
m ;Zp)

is nonzero provided that the binomial coefficient
(
2n
n

)
is not divisible

by p. The latter condition is equivalent to the requirement that all
“digits” ni in the p-adic decomposition of n are “small”, i.e., satisfy
ni ≤ (p − 1)/2, see [32], Lemma 19. Using (4.37) and Corollary 4.40
we obtain that under the assumptions of the theorem one has

TC(L2n+1
p ) > wgt(x) + 2n · wgt(y) ≥ 4n+ 1.

This proves the lower bound TC(L2n+1
p ) ≥ 4n+ 2.

The reverse upper bound TC(L2n+1
p ) ≤ 2(2n+1) = 4n+2 holds for

all lens spaces; we refer to [32] for more detail. !

Next we state without proof two results from [32].
Let α(n) denote the number of 1s in the dyadic expansion of n.
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Theorem 4.47. (See [32], Theorem 14) Assume that m = 2r. Then
one has

TC(L2n+1
m ) = 2 · dim(L2n+1

m ) = 4n+ 2(4.38)

for lens spaces Lm of dimension 2n+1 for all n satisfying α(n) ≤ r−1.

The following result gives the answer for all 3-dimensional lens
spaces:

Theorem 4.48. (See [32], Corollary 15) The topological complexity of
the 3-dimensional lens space L3

m is given by

TC(L3
m) =

{
4, for m = 2,
6, for m ≥ 3.

The topological complexity of rational formal simply-connected to-
pological spaces coincides with their zero-divisors cup-length plus 1, as
shown by L. Lechuga and A. Murillo [69]. In other words, Corollary
4.40 is sharp in this case.

In a recent preprint [8] Daniel Cohen and Goderzi Pruidze com-
puted explicitly the topological complexity of right-angled Artin groups.
Let Γ = (VΓ, EΓ) be a finite graph with no loops or multiple edges. Here
VΓ is the set of vertices of the graph and EΓ is the set of edges. The
right-angled Artin group associated to Γ is the group G = GΓ with gen-
erators corresponding to vertices v ∈ VΓ of Γ and relations vw = wv
corresponding to edges {v, w} ∈ EΓ. R. Charney and M. Davis [7]
and J. Meier and L. Van Wyk [72] describe explicitly the Eilenberg –
MacLane space XΓ of type K(GΓ, 1). The main result of Cohen and
Pruidze [8] states that

TC(XΓ) = z(Γ) + 1,(4.39)

where

z(Γ) = max
K1,K2

|K1 ∪K2|

is the largest number of vertices of Γ covered by two cliques K1 and
K2 in Γ.

Recall that a clique K in a graph Γ is a subset of vertices such that
any two vertices v, w ∈ K are connected by an edge in Γ.
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4.6. Simultaneous control of multiple objects

In this section we consider motion planning algorithms to control simul-
taneously several systems, assuming that the systems do not interact.
The case of interacting systems will be discussed in the following sec-
tion.

We will start with the case of two systems S1 and S2. Let X and Y
be the corresponding configuration spaces. The configuration space of
the system S1 × S2 consisting of S1 and S2, viewed as a single system,
is the product X × Y ; indeed, a state of S1 × S2 is a pair consisting of
a state of S1 and a state of S2.

Thus, we have to understand the topological complexity of products
X ×Y and explicit constructions of motion planning algorithms in the
products X × Y .

Theorem 4.49. Let X and Y be ENRs. Then one has

TC(X × Y ) ≤ TC(X) + TC(Y )− 1.(4.40)

Proof. Let s : X × X → PX be a section such that for some tower
of open subsets

∅ = U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Uk = X ×X
the restriction s|(Ui+1 − Ui) is continuous for i = 0, 1, . . . , k − 1. Here
k = TC(X), see Proposition 4.12. Similarly, let s′ : Y × Y → PY be a
section such that for some tower of open subsets

∅ = U ′
0 ⊂ U ′

1 ⊂ U ′
2 ⊂ · · · ⊂ U ′

k′ = Y × Y
the restriction s′|(U ′

i+1−U ′
i) is continuous for i = 0, 1, . . . , k′−1, where

k′ denotes TC(Y ).
Define the product section s× s′ : (X×Y )× (X×Y )→ P (X×Y )

as follows: if x1, x2 ∈ X and y1, y2 ∈ Y , then

(s× s′)((x1, y1), (x2, y2))(t) = (s(x1, x2)(t), s
′(y1, y2)(t)).

In other words, we apply s with respect to the x-coordinate and s′ with
respect to the y-coordinate. Define

Wn =
⋃

i+j=n+1

Ui × U ′
j ⊂ (X ×X)× (Y × Y ) ≡ (X × Y )× (X × Y )

where n = 0, . . . , k + k′ − 1. Then

∅ = W0 ⊂ W1 ⊂ · · · ⊂ Wk+k′−1 = (X ×X)× (Y × Y )
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and

Wn −Wn−1 =
⊔

i+j=n

(Ui − Ui−1)× (U ′
j − U ′

j−1)

is a disjoint union and the section (s× s′)|((Ui − Ui−1)× (U ′
j − U ′

j−1))
is continuous. The result now follows from Proposition 4.12. !

Another proof of Theorem 4.49 can be found in [22].
Arguments similar to those used in the proof of Theorem 4.49 prove

the following inequality:

Theorem 4.50. Let A,B ⊂ X be locally compact subsets of an ENR
X. Then

TCX(A×B) ≤ catX(A) + catX(B)− 1.

Theorem 4.49 suggests the notation

T̃C(X) = TC(X)− 1,

the reduced topological complexity.

Corollary 4.51. For ENRs X1, . . . , Xk one has

T̃C(X1 ×X2 × · · · ×Xk) ≤
k∑

i=1

T̃C(Xi).(4.41)

Hence, if one controls simultaneously k systems having configura-
tion spaces X1, . . . , Xk, the total configuration space is the Cartesian
product X1×X2× · · · ×Xk and its topological complexity is bounded
above by the sum of topological complexities of individual systems ac-
cording to inequality (4.41).

To obtain a lower bound we introduce the following notation. For
a topological space X we denote by zcl(X) the largest integer k such
that there exist k zero-divisors u1, . . . , uk ∈ H∗(X × X;Q) having a
nontrivial cup-product u1u2 . . . uk == 0 ∈ H∗(X×X;Q). Corollary 4.40
gives the inequality

T̃C(X) ≥ zcl(X).(4.42)

Lemma 4.52. One has

zcl(X × Y ) ≥ zcl(X) + zcl(Y ).
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Proof. Set us k = zcl(X) and l = zcl(Y ). Further, let u1, . . . , uk ∈
H∗(X ×X;Q) and v1, . . . , vs ∈ H∗(Y × Y ;Q) be zero-divisors having
nontrivial products u1u2 . . . uk == 0 and v1v2 . . . vl == 0. Then

ũi = ui× 1× 1 ∈ H∗(X×X×Y ×Y ;Q) 9 H∗((X×Y )× (X×Y );Q)

is a zero divisor and

ṽi = 1× 1× vj ∈ H∗(X×X×Y ×Y ;Q) 9 H∗((X×Y )× (X×Y );Q)

is a zero-divisor and the product

ũ1ũ2 . . . ũkṽ1ṽ2 . . . ṽl = ±(u1u2 . . . uk)× (v1v2 . . . vl)

is nonzero. Hence, zcl(X × Y ) ≥ k + l. !

Corollary 4.53. T̃C(X1 ×X2 × · · · ×Xk) ≥
∑k

i=1 zcl(Xi).

Corollary 4.54. Suppose that one controls simultaneously k systems
having path-connected configuration spaces X1, . . . , Xk. Assume that

(1) for some constant M one has T̃C(Xi) ≤ M and (2) each Xi has a
nontrivial reduced rational cohomology H̃∗(Xi;Q) == 0. Then

k ≤ T̃C(X1 ×X2 × · · · ×Xk) ≤ kM

i.e., the number T̃C(X1 × · · · ×Xk) grows linearly with k.

Example 4.55. Imagine that we control k identical systems, each hav-
ing configuration space X = R2 − B, where B ⊂ R2 is a ball (repre-

senting an obstacle). Then T̃C(X) = 1, zcl(X) = 1 and T̃C(Xn) = n.
Here Xn denotes the n-fold Cartesian product X × · · · ×X.

In the case when X = R3−B, where B ⊂ R3 is a ball, the answers

are slightly different: T̃C(X) = 2, zcl(X) = 2 and T̃C(Xn) = 2n.
Comparing these two cases we conclude that the complexity of the

motion planning problem in R3 is twice the complexity of the planar
motion planning problem.

So far we have discussed the problem of centralized control which
is characterized by centralized decision making. Now let us consider
algorithms of distributed control, i.e., when the controllable objects
have their own motion planning algorithms and behave independently
of the behavior of the others. For simplicity we will assume that the
objects we control are identical, each object has configuration space X
and all motion planning algorithms are tame, see Definition 4.4.
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The motion planning algorithm of the i-th object is given by a
splitting F i

1 ∪ F i
2 ∪ · · · ∪ F i

si
= X × X and by defining a continuous

section si
j : F i

j → PX for j = 1, . . . , si. Here clearly si ≥ TC(X). The
domains of continuity for the system of k objects are of the form

F 1
r1
× F 2

r2
× · · · × F k

rk

where 1 ≤ ri ≤ ki. We see that any distributed motion planning
algorithm has at least

s1s2 . . . sk ≥ TC(X)k

domains of continuity.
This result has an important implication in control theory:

Theorem 4.56. The topological complexity of centralized control of k
identical objects is linear in k. The distributed control has an exponen-
tial in k topological complexity TC(X)k.

Hence, the centralized simultaneous control of a large number of
objects k →∞ is more efficient than the distributed one.

4.7. Collision-free motion planning

In this section we briefly discuss the problem of finding the topological
complexity TC(F (Rm, n)) of the configuration space F (Rm, n) of n
distinct points in the Euclidean space Rm as well as the problem of
finding TC(F (Γ, n)) where Γ is a graph. These two problems can be
viewed as instances of the problem of simultaneous control of multiple
objects avoiding collisions with each other.

A motion planning algorithm in F (Rm, n) takes as an input two
configurations of n distinct points in Rm and produces n continuous
curves A1(t), . . . , An(t) ∈ Rm, where t ∈ [0, 1], such that Ai(t) == Aj(t)
for all t ∈ [0, 1], i == j and (A1(0), . . . , An(0)) and (A1(1), . . . , An(1)) are
the first and the second given configurations. In other words, a motion
planning algorithm in F (Rm, n) moves one of the given configurations
into another, avoiding collisions.

The following theorem was obtained jointly with S. Yuzvinsky [26].

Theorem 4.57. One has

TC(F (Rm, n)) =

{
2n− 1 for any odd m,
2n− 2 for m = 2.
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It is an interesting combinatorial problem to find explicit motion
planning algorithms in F (Rm, n) with 2n local rules. Such algorithms
might have some interesting industrial applications. In [27] we sug-
gested an algorithm having n2 − n+ 1 local rules.

The proof of Theorem 4.57 uses the theory of subspace arrange-
ments. Consider the set

Hij = {(y1, . . . , yn); yi ∈ Rm, yi = yj} ⊂ Rnm.

Here i, j ∈ {1, 2, . . . , n}, i < j. The set Hij is a linear subspace of Rnm

of codimension m. The system of subspaces {Hij}i<j is an arrangement
of linear subspaces of codimension m. Our approach to the problem is
to view the union

H =
⋃
i<j

Hij

as the set of obstacles:

F (Rm, n) = Rnm −H.
We will only comment here on the easy case when m ≥ 3 is odd.

Then F (Rm, n) is (m − 2)-connected and in particular it is simply
connected. Its cohomology algebra is generated by the cohomology
classes

eij ∈ Hm−1(F (Rm, n)), i == j

which arise as follows. Consider the map

φij : F (Rm, n)→ Sm−1, (y1, y2, . . . , yn) 7→ yi − yj

|yi − yj| ∈ Sm−1.

Then

eij = φ∗
ij[S

m−1]

where [Sm−1] is the fundamental class of the sphere Sm−1.
The cohomology classes eij satisfy the following relations:

e2ij = 0, and eijejk + ejkeki + ekieij = 0(4.43)

for any triple i, j, k. It follows that a product ei1j1ei2j2 . . . eikjk
is nonzero

if and only if the subgraph of the full graph on vertices {1, 2, . . . , n}
having the edges (ir, jr) contains no cycles.

Hence for m ≥ 3 the configuration space F (Rm, n) has the homo-
topy type of a polyhedron of dimension ≤ (n − 1)(m − 1). Since it is
(m− 2)-connected we may use inequality (4.6) to find

TC(F (Rm, n)) <
2(n− 1)(m− 1) + 1

m− 1
+ 1 = 2n− 1 +

1

m− 1
.
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We obtain the inequality TC(F (Rm, n)) ≤ 2n − 1. To show that
it is an equality we shall use the cohomological lower bound given by
Corollary 4.40. Set ēij = 1 × eij − eij × 1. It is a zero-divisor and
(ēij)

2 = −2 · eij × eij == 0. Here we use the assumption that m is odd.
The product

π =
n∏

i=2

(ē1i)
2

equals π = (−2)n−1m ×m where m =
∏n

i=2 e1i. The monomial m == 0
is nonzero and hence the product π is nonzero.

The opposite inequality TC(F (Rm, n)) ≥ 2n − 1 follows now from
Corollary 4.40. This completes the proof of Theorem 4.57 in the case
m ≥ 3 odd. Details of the proof in the case m = 2 can be found in
[26].

In a forthcoming joint paper with Mark Grant we show that

TC(F (Rm, n)) = 2n− 2

for all even m.
In paper [33] we studied a more general problem of controlling

multiple particles such that there are no collisions between the particles
and a set of obstacles, which can be movable (however the trajectory
of the obstacles is known in advance).

Next we discuss the configuration spaces F (Γ, n) where Γ is a con-
nected graph. These spaces were studied by R. Ghrist, D. Koditschek
and A. Abrams [39], [40], [2] ; see also [38], [90]. To illustrate the
importance of these configuration spaces for robotics one may mention
the control problems where a number of automated guided vehicles
(AGV) have to move along a network of floor wires. The motion of
the vehicles must be safe: it should be organized so that collisions do
not occur. If n is the number of AGV, then the natural configuration
space of this problem is F (Γ, n) where Γ is a graph.

The first question to ask is whether the configuration space
F (Γ, n) is connected. Clearly F (Γ, n) is disconnected if Γ = [0, 1]
is a closed interval (and n ≥ 2) or if Γ = S1 is the circle and n ≥ 3.
These are the only examples of this kind as the following simple lemma
claims:

Lemma 4.58. Let Γ be a connected finite graph having at least one
essential vertex. Then the configuration space F (Γ, n) is connected.
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An essential vertex is a vertex which is incident to three or more
edges.

Theorem 4.59. Let Γ be a connected graph having an essential vertex.
Then the topological complexity of F (Γ, n) satisfies

TC(F (Γ, n)) ≤ 2m(Γ) + 1,(4.44)

where m(Γ) denotes the number of essential vertices in Γ.

A proof can be found in [24].

Theorem 4.60. Let Γ be a tree having an essential vertex. Let n be
an integer satisfying n ≥ 2m(Γ) where m(Γ) denotes the number of
essential vertices of Γ. In the case n = 2 we will additionally assume
that the tree Γ is not homeomorphic to the letter Y viewed as a subset
of the plane R2. Then the upper bound (4.16) is exact, i.e.,

TC(F (Γ, n)) = 2m(Γ) + 1.(4.45)

Paper [24] contains a sketch of the proof and also an explicit de-
scription of a motion planning algorithm in F (Γ, n) (assuming that Γ
is a tree) having precisely 2m(Γ) + 1 domains of continuity.

If Γ is homeomorphic to the letter Y , then m(Γ) = 1 and F (Γ, 2) is
homotopy equivalent to the circle S1. Hence in this case TC(F (Γ, 2)) =
2. The equality (4.45) fails in this case.

For any tree Γ one has TC(F (Γ, 2)) = 3 assuming that Γ is not
homeomorphic to the letter Y . This example shows that the assump-
tion n ≥ 2m(Γ) of Theorem 4.60 cannot be removed: if Γ is a tree
with m(Γ) ≥ 2, then the inequality above would give TC(F (Γ, 2)) =
2m(Γ) + 1 ≥ 5.

Here are more examples. For the graphs K5 and K3,3

K5 K3,3

one has

TC(F (K5, 2)) = TC(F (K3,3, 2)) = 5.(4.46)

In these examples the equality (4.45) is violated.



4.8. MOTION PLANNING AND THE IMMERSION PROBLEM 121

4.8. Motion planning and the immersion problem

In this last section we briefly consider the problem of computing the
topological complexity of the real projective spaces. The main result
[25] states that the problem of computing the number TC(RPn) is
equivalent to a classical problem of manifold topology which asks what
is the minimal dimensionN of Euclidean space such that there exists an
immersion RPn → RN . The immersion problem for the real projective
spaces was studied by many people and a variety of important results
were obtained; a relatively recent survey can be found in [14]. However
at the moment the immersion dimension of RPn as a function of n is
not known.

The problem of finding motion planning algorithms in the projective
space RPn can be viewed as an elementary problem of topological
robotics. Indeed, points of RPn represent lines through the origin in
the Euclidean space Rn+1 and hence a motion planning algorithm in
RPn describes how a given line A in Rn+1 should be moved to another
prescribed position B.

A B

O

Lines through the origin in R3 may represent metallic bars fixed at the
fixed point by a revolving joint; this situation is common in practical
robotics.

If the angle between the lines A and B is acute, then one may rotate
A towards B in the two-dimensional plane spanned by A and B such
that A sweeps the acute angle. Hence the problem reduces immediately
to the special case when the lines A and B are orthogonal. In this case,
if the intention is to use simple rotations, one needs a continuous choice
of the direction of rotation in the plane spanned by A and B.

Note that the Lusternik – Schnirelmann category of the real pro-
jective spaces is well known and easy to compute: cat(RPn) = n + 1,
see for example Proposition 4.5 of [53]. Using the general properties
of the topological complexity mentioned above we may write

n+ 1 ≤ TC(RPn) ≤ 2n+ 1.

More precisely, one can show that TC(RPn) ≤ 2n for all n and the
equality holds iff n is a power of 2.
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The following is the main result of [25]:

Theorem 4.61. For any n == 1, 3, 7 the number TC(RPn) equals the
smallest k such that the projective space RPn admits an immersion
into Rk−1.

For the special values n = 1, 3, 7 one has TC(RPn) = n+ 1, as it is
easy to see [25].

Below is the table of the values TC(RPn) for n ≤ 23, see [25]. It
is obtained by combining Theorem 4.61 with the information on the
immersion problem available in the literature.

n 1 2 3 4 5 6 7 8 9 10 11 12
TC(RPn) 2 4 4 8 8 8 8 16 16 17 17 19

n 13 14 15 16 17 18 19 20 21 22 23 24
TC(RPn) 23 23 23 32 32 33 33 35 39 39 39 ?

Explicit motion planning algorithms in RPn with n ≤ 7 could be
constructed using multiplication of the complex numbers, the quater-
nions, and the Cayley numbers, see [25].

The following theorem gives a direct construction of a motion plan-
ning algorithm in RPn starting from an immersion RPn → Rk.

Theorem 4.62. (See [25]) Suppose that the projective space RPn can
be immersed in Rk. Then TC(RPn) ≤ k + 1.

Proof. Imagine RPn being immersed in Rk. Fix a frame in Rk

and extend it, by parallel translation, to a continuous field of frames.
Projecting orthogonally onto RPn, we find k continuous tangent vec-
tor fields v1, v2, . . . , vk on RPn such that the vectors vi(p) (where
i = 1, 2, . . . , k) span the tangent space Tp(RPn) for any p ∈ RPn.

A nonzero tangent vector v to the projective space RPn at a point
A (which we understand as a line in Rn+1) determines a line v̂ in Rn+1,
which is orthogonal to A, i.e., v̂ ⊥ A. The vector v also determines an
orientation of the two-dimensional plane spanned by the lines A and v̂,
see the figure.

A

v

v̂
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For i = 1, 2, . . . , k let Ui ⊂ RPn × RPn denote the open set of
all pairs of lines (A,B) in Rn+1 such that the vector vi(A) is nonzero

and the line B makes an acute angle with the line v̂i(A). Let U0 ⊂
RPn ×RPn denote the set of pairs of lines (A,B) in Rn+1 making an
acute angle.

The sets U0, U1, . . . , Uk cover RPn × RPn. Indeed, given a pair
(A,B), there exist indices 1 ≤ i1 < · · · < in ≤ k such that the vectors
vir(A), where r = 1, . . . , n, span the tangent space TA(RPn). Then the

lines A, v̂i1(A), . . . , v̂in(A) span the Euclidean space Rn+1 and therefore
the line B makes an acute angle with one of these lines. Hence, (A,B)
belongs to one of the sets U0, Ui1 , . . . , Uik .

We may describe a continuous motion planning strategy over each
set Ui, where i = 0, 1, . . . , k. First define it over U0. Given a pair
(A,B) ∈ U0, rotate A towards B with constant velocity in the two-
dimensional plane spanned by A and B so that A sweeps the acute
angle. This defines a continuous motion planning section s0 : U0 →
P (RPn). The continuous motion planning strategy si : Ui → P (RPn),
where i = 1, 2, . . . , k, is a composition of two motions: first we rotate

line A toward the line v̂i(A) in the 2-dimensional plane spanned by A

and v̂i(A) in the direction determined by the orientation of this plane

(see above). On the second step rotate the line v̂i(A) towards B along
the acute angle similarly to the action of s0. !

Jesús González [42] studied relations between the topological com-
plexity and the immersion dimension for lens spaces. See also the paper
of J. González, L. Zárate [43].

Finally, we want to warn the reader about a mistake in paper [81]
which attempts to compute the topological complexity of real Grass-
mannians. The authors claim in [81] that TC(X) = cat(X × X) for
any space (see Theorem 1.8 of [81]). This is incorrect in general; for
example TC(S1) = 2 and cat(S1×S1) = 3. This error compromises all
statements made in [81].





Recommendations for further reading

To my regret that many exciting mathematical stories of topological ro-
botics have not been mentioned in my lectures. To redress this shortfall
I point out some of them below and give the reader additional biblio-
graphic references.

A relation between topology and robotics was pioneered by D. Got-
tlieb [44] who observed that the inverse kinematic problem of robotics
reduces to the task of finding a section of a specific smooth map and
methods of differential topology can be used to decide existence or
nonexistence of a continuous section. A related mathematical prob-
lem of “snake charming” was studied by J.-Cl. Hausmann [50] and E.
Rodriguez [84].

Methods of symplectic topology play a key role in studying polygon
spaces in R3. This approach was initiated in a fascinating paper of A.
A. Klyachko [65] and developed further by M. Kapovich and J. Mill-
son [60] and J.-Cl. Hausmann and A. Knutson [48]. A.A. Klyachko
[65] used the toolbox of symplectic topology and algebraic geometry to
find the Poincaré polynomials of spatial polygon spaces. J.-Cl. Haus-
mann and A. Knutson [48] went one step further and determined the
structure of cohomology algebras of these spaces.

One of the key results of topology of configuration spaces of graphs
(which were mentioned briefly in Chapter 2) is the theorem stating that
they are non-positively curved. Using a more technical language, these
configuration spaces are CAT(0)-spaces, and therefore aspherical. This
theorem was discovered independently by A. Abrams and R. Ghrist
[39], [1], [2], and J. Swiatkowski [90] who in fact attributes this result
to M. Davis and T. Januszkiewicz (unpublished). Many interesting
consequences of this theorem for robotics and engineering were found
by Robert Ghrist and his collaborators, see for example [41].

The work of V. de Silva and R. Ghrist [15] uses topology for solving
an important engineering problem of coverage in sensor networks.

My recommendations for further reading of topics of computational
topology include [18], [55], [80] and [103]. I also suggest that the
reader browse through the volume “Topology and Robotics” published
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in 2007 in the AMS series “Contemporary Mathematics”. This vol-
ume is a collection of papers written by participants of the conference
“Topology and Robotics” held in ETH Zurich in 2006.

The book [16], which appeared when these notes had been com-
pleted, is an amazing additional source of beautiful mathematics which
uses geometry and topology in service of algorithms in computer sci-
ence and engineering.
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articulés, Travail de diplôme, University of Geneva, 1988.



132 BIBLIOGRAPHY

[102] S. Yuzvinsky, Topological complexity of generic hyperplane complements,
Topology and Robotics, M. Farber, R. Ghrist et al editors, Contempo-
rary Mathematics, 438(2007), 115–119.

[103] A. Zomorodian, G. Carlsson, Computing persistent homology. Discrete
Comput. Geom. 33 (2005), no. 2, 249–274.



Index

Admissible sequence of measures, 38
Average Betti numbers, 37

Bockstein homomorphism, 110

Centralized control, 116
Chamber, 32
Cohomology operation, 109
Collared subpolyhedron, 54
Collinear configurations, 12
Configuration space, 2
Configuration spaces of graphs, 46
Configuration spaces of manifolds, 45
C&P-Grothendieck ring, 55
C&P-surgery, 54

Distributed control, 116

ENR, 90
Equilateral linkage, 18
Euclidean neighbourhood retract, 90
Euler – Gal power series, 42
Expansive infinitesimal motion, 67

Generic length vector, 9

Infinitesimal motion, 67
Isotopy, 61

Length vector, 3
Lens space, 111
Link of a simplex, 42
Linkage, 2
Long subset, 10
Lusternik – Schnirelmann category,

91

Manifold with involution, 19
Maxwell – Cremona theorem, 73

Median subset, 10
Morse – Smale complex, 20
Motion planning algorithm, 88

Navigation function, 102
Normal length vector, 34

Planar linkage, 2
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